
jif.

VS FORTRAN Version 2

Language and Library
Reference

Release 3

'Sa= laStAife 220i- '̂yg.fe0sl]^ mjssM i4
Si£f=(DuiiS^ £ii^ cs<Si^l&a £2 - §j))_

CC^JU 4322=*i]-@ ©©©Ia)«- 22+Sf
^£?=.(g(g)©lju i7(l©-S^,®(si©Ci;2iV+ '̂̂ (sh^y^ }4\

.^r-

\

m-

•• 1

\

: /v

SC26-4221-3

d]
'-..i' I

•'-.AM I

\

IIM VS FORTRAN Version 2

^ Language and Library
Reference

Release 3

SC26-4221-3

I Fourth Edition (March 1988)

I This edition replaces and makes obsolete the previous edition, SC26-4221-2.

I This edition applies to Release 3 of VS FORTRAN Version 2. Program numbers 5668-806 and 5668-805,
I and to any subsequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the preface
"About This Book." Specific changes are indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent publication of the page affected. Editorial changes that have no
technical significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, SOxx, 4300, and 9370 Processors Bibli
ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. Ifyou request publications from the address given below, your order will be
delayed because publications are not stocked there.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, P.O. Box 49023, Programming Publishing,
San Jose, California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986, 1987, 1988

^ About This Book

This book contains reference Information about VS FORTRAN Version 2. It Is

not Intended as a tutorial. Rather, It Is designed as a reference tool for the
user who already has some basic FORTRAN knowledge.

How This Book Is Organized

"Part 1. Language Reference," gives the programming rules for the VS
FORTRAN Version 2 source language.

— Chapter 1, "Language," describes elements of the FORTRAN language:
statements, comments, syntax, and other conventions used to convey
Information to the compiler.

— Chapter 2, "Data," discusses the constants, variables and arrays that
you can use with VS FORTRAN Version 2.

— Chapter 3, "Expressions," explains the four kinds of expressions: arith
metic, character, relational, and logical.

— Chapter 4, "Statements," presents the syntax rules and conventions of
the VS FORTRAN Version 2 language statements.

— Chapter 5, "Intrinsic Functions," contains usage Information for the
explicitly-called routines commonly used for mathematical computations
and character and bit conversions.

"Part 2. Library Reference," provides Information about the subroutines
and functions that are supplied with the product.

— Chapter 6, "Mathematical, Character, and Bit Routines," contains usage
Information about the Implicitly-called routines commonly used for com
putations and conversions.

— Chapter 7, "Service Subroutines," provides you with usage Information
concerning the subroutines that have been provided for general pro
gramming tasks.

— Chapter 8, "Data-in-Virtual Subroutines," presents Information on the
subroutines that allow you to use the Data-In-Virtual facility on MVS/XA.

— Chapter 9, "Extended Error-Handling Subroutines and Error Option
Table," gives you Information about the subroutines that are used for
extended error handling.

— Chapter 10, "Multitasking Facility (MTF) Subroutines," presents Informa
tion on the subroutines that allow you to use the Multitasking Facility
when running under MVS/XA.

Appendixes

— Appendix A, "Source Language Flaggers," lists the Items which are
flagged when either the FIRS compiler option or the SAA compiler
option Is specified.

— Appendix B, "Assembler Language Information," provides Information
on using the VS FORTRAN Version 2 mathematical and service routines
In assembler language programs.

About This Book iii

Appendix C, "Sample Storage Printouts," presents the output format of
symbolic dumps, including output examples for variable items, for array
items, and for non-recoverable failure.

Appendix D, "Library Procedures and Messages," contains the explana
tions of the program-interrupt and error procedures used by the VS
FORTRAN Version 2 library.

How to Use This Book

Syntax Notation

For the task of application programming, you will need to use both this book
and VS FORTRAN Version 2 Programming Guide. Whereas this book contains
detailed information on the VS FORTRAN Version 2 language and library, the
VS FORTRAN Version 2 Programming Guide contains information on how to
compile and run your VS FORTRAN Version 2 programs, as well as some infor
mation on advanced coding topics.

The following items explain how to interpret the syntax used in this manual;

Uppercase letters and special characters (such as commas and paren
theses) are to be coded exactly as shown, except where otherwise noted.
You can, however, mix lowercase and uppercase letters; lowercase letters
are equivalent to their uppercase counterparts, except in character con
stants.

Italicized, lowercase letters or words indicate variables, such as array
names or data types, and are to be substituted.

Underlined letters or words indicate IBM-supplied defaults.

Ellipses (...) indicate that the preceding optional items may appear one or
more times in succession.

Braces ({ }) group items from which you must choose one.

Square brackets ([]) group optional items from which you may choose
none, one, or more.

OR signs (|) indicate you may choose only one of the items they separate.

Blanks in FORTRAN statements are used to improve readability; they have
no significance, except when shown within apostrophes (' '). In
non-FORTRAN statements, blanks may be significant. Code non-FORTRAN
statements exactly as shown.

For clarity of presentation, continuation designators have been omitted from
continuation lines in examples.

For example, given the following syntax:

— Syntax ———— —

CALL name [([argi [,arg2] ...])]

these statements are among those allowed:

CALL ABCD

IV VS FORTRAN Version 2 Language and Library Reference

CALL ABCD ()
CALL ABCD (X)
CALL ABCD {X, Y)
CALL ABCD (X, Y. Z)

For double-byte character data, the following syntax notation is used:

< represents the shift-out character (X'OE'), which indicates the start
of double-byte character data

> represents the shift-in character {X'OF'), which indicates the end of
double-byte character data

kk

represents the first byte (X'42') of an EBCDIC double-byte character

represents a double-byte character not in the EBCDIC double-byte
character set

In examples, the character b represents a blank.

Summary of the VS FORTRAN Version 2 Publications
The following table lists the VS FORTRAN Version 2 publications and the tasks
they support.

Task VS FORTRAN Version 2 Publications Order Numbers

Evaluation and

Planning

General Information

Licensed Program Specifications

GC46-4219

GC26-4225

Installation and

Customization

Installation and Customization for VM

Installation and Customization for MVS

SC26-4339

SC26-4340

Application
Programming

Language and Library Reference
Programming Guide
Interactive Debug Guide and Reference
Reference Summary

SC26-4221

SC26-4222

SC26-4223

SX26-3751

Diagnosis Diagnosis Guide LY27-9516

Industry Standards
The VS FORTRAN Version 2 Compiler and Library licensed program is designed
according to the specifications of the following industry standards, as under
stood and interpreted by IBM as of March, 1988.

The following two standards are technically equivalent. In the publications, ref
erences to FORTRAN 77 are references to these two standards:

American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 (also known as FORTRAN 77)

International Organization for Standardization ISO 1539-1980 Programming
Languages-FORTRAN

The bit string manipulation functions are based on ANSI/ISA-S61.1.

About This Book V

The following two standards are technically equivalent. References to
FORTRAN 66 are references to these two standards:

• American Standard FORTRAN. X3.9-1966

International Organization for Standardization ISO R 1539-1972 Program
ming Languages-FORTRAN

At both the FORTRAN 77 and the FORTRAN 66 levels, the VS FORTRAN Version
2 language also includes IBM extensions. References to current FORTRAN are
references to the FORTRAN 77 standard, plus the IBM extensions valid with it.
References to old FORTRAN are references to the FORTRAN 66 standard, plus
the IBM extensions valid with it.

Documentation of IBM Extensions
In addition to the statements available in FORTRAN 77, IBM provides "exten
sions ' to the language. These extensions are printed in color, as in the fol
lowing senterice:

This sentence shows how IBM language extensions in text are documented.

vi VS FORTRAN Version 2 Language and Library Reference

n

Summary of Changes

Release 3, March 1988

Major Changes to the Product
*- Enhancements to the vector feature of VS FORTRAN Version 2

- Automatic vectorization of user programs is improved by relaxing some
restrictions on vectorizable source code. Specifically, VS FORTRAN
Version 2 can no\A/ vectorize MAX and MIN intrinsic functions, COMPLEX
compares, more adjustably dimensioned arrays, and more DO loops
with unknown increments.

- Ability to specify certain vector directives globally within a source
program.

- Addition of an option to generate the vector report in source order.

- Ability to collect tuning information for vector source programs.

— Ability to record compile-time statistics on vector length and stride
and include these statistics in the vector report.

— Ability to record and display run-time statistics on vector length and
stride. Two new commands, VECSTAT and LISTVEC, have been
added to Interactive Debug to support this function.

— Enhancements to Interactive Debug to allow timing and sampling of
DO loops.

— Inclusion of vector feature messages in the on-line HELP function of
Interactive Debug.

- Simplification of the VECTOR compile-time option.

- Vectorization is allowed at 0PTIMIZE(2) and 0PTIM1ZE{3).

- Changes to the way in which the vector feature treats partial sum proc
essing result in a performance improvement.

• Enhancements to the language capabilities of VS FORTRAN Version 2

- Ability to specify the file or data-set name on the INCLUDE statement.

- Ability to write comments on the same line as the code to which they
refer.

- Support for the DO WHILE programming construct.

- Support for the END DO statement as the terminal statement of a DO
loop.

- Enhancements to the DO statement so that the label of the terminal
statement is optional.

- Support for statements extending to 99 continuation lines or a maximum
of 6600 characters.

Summary of Changes Vll

— Implementation of IBM's Systems Application Architecture (SAA)
FORTRAN definition: support for a flagger to indicate source language
that does not conform to the language defined by SAA.

— Support for the use of double-byte characters as variable names and as
character data in source programs, I/O, and for Interactive Debug input
and output.

— Support for the use of a comma to indicate the end of data in a for
matted input field, thus eliminating the need for the user to insert
leading or trailing zeros or blanks.

Enhancements to the programming aids in VS FORTRAN Version 2

— Enhancements to the intercompilation analysis function to detect con
flicting and undefined arguments.

— Support for the Data-In-Virtual facility of MVS/XA.

— Ability to allocate certain commonly used files and data sets dynam-
ically. '

— Enhancements to the Multitasking Facility to allow large amounts of
data to be passed between parallel subroutines using a dynamic
common block.

— Support for named file I/O in parallel subroutines using the Multitasking
Facility.

— Ability to determine the amount of CPU time used by a program or a
portion of a program by using the CPUTIME service subroutine.

— Ability to determine the FORTRAN unit numbers that are available by
using the UNTANY and UNTNOFD service subroutines.

Enhancements to the full screen functions of Interactive Debug

Major Changes to This Manual
Documentation of the major product enhancements has been added.

Reorganization of Chapter 7, "Service Subroutines" on page 269

Addition of Chapter 8, "Data-in-Virtual Subroutines" on page 293

Reorganization of Appendix A, "Source Language Flaggers" on page 339

Removal of the appendix, "IBM and ANS FORTRAN Features"

Consolidation of the appendix, "EBCDIC and ISCII/ASCII Codes" to Figure 2
on page 6

Removal of the appendix, "Algorithms for Mathematical Functions"

Removal of the appendix, "Accuracy Statistics"

Vlil VS FORTRAN Version 2 Language and Library Reference

Release 2, June 1987

Major Changes to the Product
Support for 31-character symbolic names, which can include the underscore
{_) character.

• The ability to detect incompatibilities between separately-compiled program
units using the new compile-time option ICA (intercompilation analyzer).

Addition of the NONE keyword for the IMPLICIT statement.

• Enhancement of SDUMP when specified for programs vectorized at
LEVEL(2), so that ISNs of vectorized statements and DO-loops appear in the
object listing.

The ability of run-time library error-handling routines to identify vectorized
statements when a program interrupt occurs, and the ability under Interac
tive Debug to set breakpoints at vectorized statements.

Under MVS, addition of a data set and an optional DD statement to be used
during execution for loading library modules and Interactive Debug.

• Under VM, the option of creating a combined VSF2LINK TXTLIB during
installation for use in link mode in place of VSF2LINK and VSF2F0RT.

The ability to sample CPU use within a program unit using the new Interac
tive Debug commands LISTSAMP and ANNOTATE.

The ability to reset a closed unit to its original (preconnected) state using
the new Interactive Debug command RECONNECT.

The ability to automatically allocate data sets for viewing in the Interactive
Debug source window.

Change in the relative placement in storage of local items, that is, those
that are not in common blocks. Programs which depend upon a given
arrangement of items in storage may have to be re-coded. This change
does not affect items in common blocks nor the association of equivalenced
items.

Change in semantics for OPEN, CLOSE, and INQUIRE statements and the
addition of the execution-time options OCSTATUS and NOOCSTATUS.

— The INQUIRE statement can be used to determine the properties of a
file that has never been opened. INQUIRE specifiers SEQUENTIAL,
DIRECT, KEYED. FORMATTED, and UNFORMATTED will return values
dependent on how the files could potentially be connected.

— If execution-time option OCSTATUS is in effect:

— File existence is checked for consistency with the OPEN statement

specifiers STATUS = 'OLD' and STATUS = 'NEW.
— File deletion occurs when the CLOSE statement specifier

STATUS = 'DELETE' is given {on devices which allow deletion).
— A preconnected file is disconnected when a CLOSE statement is

given or when another file is opened on the same unit. It can be
reconnected only by an OPEN statement when there is no other file
currently connected to that unit.

Summary of Changes ix

— If execution-time option NOOCSTATUS is in effect:

— File existence is not checked for consistency with the OPEN state
ment specifiers STATUS = 'OLD' and STATUS = 'NEW.

— File deletion does not occur with the CLOSE statement specifier
STATUS ='DELETE'.

— A preconnected file is disconnected when a CLOSE statement is
given or when another file is opened on the same unit. It can be
reconnected by a sequential READ or WRITE, BACKSPACE, OPEN,
REWIND, or ENDFILE statement when there is no other file currently
connected to that unit.

— An OPEN statement cannot be issued for a currently open file except to
change the BLANK specifier.

Major Changes to This Manual
Documentation of the above product enhancements has been added.

Release 1.1, September 1986

Major Changes to the Product
Addition of vector directives, including compile-time option (DIRECTIVE) and
installation-time option (IGNORE)

^ Addition of NOIOINIT execution-time option

Addition of support for VM/XA System Facility Release 2.0 (5664-169) oper
ating system

Major Changes to This Manual
None. However, clarifications and editorial changes have been made
throughout.

X VS FORTRAN Version 2 Language and Library Reference

Contents

Parti. Language Reference 1

Chapter 1. Language 3
Valid and Invalid Programs 3
Language Definitions 3
Language Syntax 4

Input Records 4
Source Statement Characters 5

Names 7

Source Language Statements 8
Comments 12

Statement Labels 13

Keywords 13

Chapter 2. Data 15
Constants 15

Arithmetic Constants 15

Logical Constants 19
Character Constants 19

Hollerith Constants 20

Hexadecimal Constants 21

Variables 22

Variable Names 22

Data Types and Lengths 22
Array 24

Subscripts 25
Size and Type Declaration of an Array 26

Character Substrings 28

Chapter 3. Expressions 31
Evaluation of Expressions 31
Arithmetic Expressions 32

Arithmetic Operators 32
Rules for Constructing Arithmetic Expressions 32
Use of Parentheses in Arithmetic Expressions 34
Type and Length of the Result of Arithmetic Expressions 34
Examples of Arithmetic Expressions 36

Character Expressions 37
Use of Parentheses in Character Expressions 38

Relational Expressions 38
Logical Expressions 40

Logical Operators 40
Order of Computations in Logical Expressions 42
Use of Parentheses in Logical Expressions 43

Chapter 4. Statements 45
Statement Categories 45

Assignment Statements 45
Control Statements 45

Contents Xi

DATA Statement 46

Debug Statements 46
Input/Output Statements 46
PROGRAM Statement 48

Specification Statements 48
Subprogram Statements 48
Compiler Directives 48
Order of Statements in a Program Unit 49

Statement Descriptions 50
Arithmetic IF Statement 50

ASSIGN Statement 51

Assigned GO TO Statement 52
Assignment Statements 52
AT Statement 56

BACKSPACE Statement 57

BLOCK DATA Statement 59

Block IF Statement 60

CALL Statement 60

CHARACTER Type Statement 63
CLOSE Statement 64

Comments 66

COMMON Statement 66

COMPLEX Type Statement 68
Computed GO TO Statement 68
CONTINUE Statement 68

DATA Statement 69

DEBUG Statement 71

DELETE Statement 75

DIMENSION Statement 76

DISPLAY Statement 77

DO Statement 77

DOUBLE PRECISION Type Statement 82
DO WHILE Statement 82

EJECT Statement 83

ELSE Statement 83

ELSE IF Statement 83

END Statement 83

END DEBUG Statement 84

END DO Statement 84

ENDFILE Statement 85

END IF Statement 86

ENTRY Statement 86

EQUIVALENCE Statement 89

Explicit Type Statement 91
EXTERNAL Statement 95

FORMAT Statement 96

FUNCTION Statement 120

GO TO Statements 125

IF Statements 127

IMPLICIT Statement 133

INCLUDE Statement 134

INQUIRE Statement 136

INTEGER Type Statement 147
INTRINSIC Statement 147

Logical IF Statement 148

xii VS FORTRAN Version 2 Language and Library Reference

LOGICAL Type Statement 148
NAMELIST Statement 148

OPEN Statement 151

PARAMETER Statement 158

PAUSE Statement 159

PRINT Statements 160

PROGRAM Statement 162

READ Statements 163

REAL Type Statement 195
RETURN Statement 196

REWIND Statement 198

REWRITE Statement—Formatted with Keyed Access 199
REWRITE Statement—Unformatted with Keyed Access 201
SAVE Statement 203

Statement Function Statement 204

Statement Labels 207

STOP Statement 207

SUBROUTINE Statement 208

TRACE OFF Statement 213

TRACE ON Statement 213

Unconditional GO TO 213

WAIT Statement 214

WRITE Statements 216

Chapter 5. Intrinsic Functions 243

Part 2. Library Reference 261

Chapter 6. Mathematical, Character, and Bit Routines 263
Explicitly Called Routines 263
Implicitly Called Routines 263
Alternative Mathematical Library Subroutines 263

Chapter 7. Service Subroutines 269
Mathematical Exception Test Subroutines 270

DVCHK Subroutine 270

OVERFL Subroutine 270

Storage Dump Subroutines 271
DUMP/PDUMP Subroutines 271

CDUMP/CPDUMP Subroutines 273

SDUMP Subroutine 274

Return Code Subroutines 276

SYSRCS Subroutine 276

SYSRCT Subroutine 276

SYSRCX Subroutine 276

Other Service Subroutines 277

I ASSIGNM Subroutine 277
CLOCK/CLOCKX Subroutines 278

I CPUTIME Subroutine 280
DATIM/DATIMX Subroutines 282

EXIT Subroutine 283

I FILEINF Subroutine 283
SYSABN/SYSABD Subroutines 287

I UNTNOFD/UNTANY Subroutines 288

Contents Xill

XUFLOW Subroutine 291

Chapter 8. Data-in-Virtual Subroutines 293
Overview 293

Fixed-View Versus Varying-View Subroutines 294
Syntax of the Subroutines 296

Syntax of Fixed-View Subroutines 296
Syntax of Varying-View Subroutines 300
Syntax of Common Subroutines 305

Interface to the Data-in-Virtual Functions 306
Sample Program with Fixed-View Subroutines 307
Sample Program with Varying-View Subroutines 308
Remapping a DynamicCommon to Different Parts of the Data Object . . . 312
Resetting a Dynamic Common 313
Ensuring Data Integrity 313
Performance and Storage Factors 313
Effect on Optimization 314
Using Data-in-Virtual in an MTF Environment 314

Chapter 9. Extended Error-Handling Subroutines and Error Option Table 315
Extended Error Handling 315
Error-Handling Subroutines 316

ERRMON Subroutine 316
ERRSAV Subroutine 317
ERRSET Subroutine 318
ERRSTR Subroutine 321
ERRTRA Subroutine 321

Error Option Table 322

Chapter 10. Multitasking Facility (MTF) Subroutines 335
NTASKS Subroutine 335
DSPTCH Subroutine 336
SYNCRO Subroutine 337
SHRCOM Subroutine 338

Appendix A. Source Language Flaggers * 339
ANS Language (FIPS) Flagger 339
Systems Application Architecture Flagger 339
Items Flagged for FIPS and SAA 339

Appendix B. Assembler Language Information 343
Library Availability 343
Initializing the Execution Environment 344
Calling Sequences 344
Assembler Language Calling Sequence 346
Supplying Correct Parameters 346

Mathematical Routine Results 347
Space Considerations 347
Floating Point Registers Used by Routines 348
Calling Vector Intrinsic Elementary Functions 351

Required Contents of Registers 352
Program Mask 353
Error Handling 353
Vector Registers Used by Vector Intrinsic Elementary Functions 353

xiv VS FORTRAN Version 2 Language and Library Reference

Appendix C. Sample Storage Printouts 357
Output from Symbolic Dumps 357
Output Format 357

Variable Noncharacter 357

Variable Character 358

Array 358

Control Flow Information 359

I/O Unit Information 360

I/O Unit Status Information 361

Examples of Sample Programs and Symbolic Dump Output 361

Appendix D. Library Procedures and Messages 375
Library Interruption Procedures 375

Library Error Procedures 375
Library Messages 375

Operator Messages 376
Program-Interrupt Messages 377
Execution Error Messages 379

Glossary 439

Index 447

Contents XV

Part 1. Language Reference

The following topics are discussed in Part 1:

Language

Data

Expressions

Statements

Intrinsic Functions

Part 1. Language Reference 1

Chapter 1. Language

A valid FORTRAN program Is made up of three basic elements:

Data Consists of constants, variables, and arrays. See
Chapter 2, "Data" on page 15.

Expressions Executable sets of arithmetic, character, logical, or relational
data. See Chapter 3, "Expressions" on page 31.

Statements Combinations of data and expressions. See
Chapter 4, "Statements" on page 45.

Valid and Invalid Programs

This manual defines the rules {that is, the syntax, semantics, and restrictions)
applicable for writing valid FORTRAN programs, either for FORTRAN 77 or for
FORTRAN 77 plus IBM extensions. Most violations of language rules are diag
nosed by the compiler. However, some syntactic and semantic combinations
are not diagnosed until run time. Programs that contain these undiagnosed
combinations are invalid programs, whether or not they run as expected.

Language Definitions
\ Some of the terms used in the discussion of the FORTRAN programming lan

guage are defined as follows:

Program unit. A sequence of statements and optional comment lines, with the
final statement being an END statement, constituting a main program or subpro
gram.

Main program. The program unit that receives control from the system when
the executable program is invoked at run time. A main program may contain
any statement except BLOCK DATA, FUNCTION, SUBROUTINE, ENTRY, or
RETURN.

Function Subprogram. A program unit that specifies a function. It is invoked by
a function reference and returns a value to the invoking program unit. The first
statement of a function subprogram must be a FUNCTION statement. It may
contain any statement except PROGRAM, SUBROUTINE, and BLOCK DATA.

Subroutine Subprogram. A program unit that is invoked by its name or one of
its entry names in a CALL statement. The first statement of a subroutine sub
program must be a SUBROUTINE statement. It may contain any statement
except PROGRAM, FUNCTION, and BLOCK DATA.

Block Data Subprogram. A program unit that provides initial values for vari
ables and array elements in named common blocks. The first statement of a
block data subprogram must be a BLOCK DATA statement. The only other
statements that may appear in a block data subprogram are DIMENSION,
EQUIVALENCE, COMMON, type, IMPLICIT, PARAMETER, SAVE, DATA, and END.
Comment lines are permitted.

Chapter 1. Language 3

Procedure. A sequenced set of statements that may be invoked by a program
unit to perform a particular activity.

Intrinsic function. A function, supplied by VS FORTRAN Version 2. that per
forms mathematical, character, logical, or bit-manipulation operations. (See
"INTRINSIC Statement" on page 147 and Chapter 5, "Intrinsic Functions" on
page 243).

External procedure. A subroutine or function subprogram written in FORTRAN
or in a language accessible by VS FORTRAN Version 2.

Executable program. A collection of program units consisting of one main
program and, optionally, one or more subprograms.

Executable statement. A statement that moves data, performs an arithmetic,
character, logical, or relational operation, or alters the sequential processing of
statements.

Nonexecutable statement. A statement that describes the characteristics of the

program unit, of data, of editing information, or of statement functions, but does
not cause an action to be taken by the program.

Preconnected file or unit. A file or unit is preconnected if, at the beginning of
program processing, it is connected. For further information on connection and
preconnection, see "Input/Output Semantics" on page 46. The terms file con
nection and unit connection are equivalent.

Additional definitions can be found in the "Glossary" on page 439.

Language Syntax

Input Records

The meaning of a program unit is determined from keywords, special charac
ters, and rules that group these keywords and characters together to form
source language statements. For the compiler to process its input, certain
syntax rules must be carefully adhered to when entering the following items:

Source statement characters

Names

Source language statements
Statement labels

Keywords

VS FORTRAN Version 2 accepts source input in either of two formats:

Free-form input format

Fixed-form input format

A program unit must be written in either free form or fixed form, not both. For

more information, see the FREE | FIXED compiler option in VS FORTRAN
Version 2 Programming Guide. For a detailed description of the use and imple
mentation of the two formats, see "Free-Form Input Format" on page 9 and
"Fixed-Form Input Format" on page 11.

4 VS FORTRAN Version 2 Language and Library Reference

r\

The compiler receives its input in fixed-length {80 byte), variable-length, or
undefined-length records. For variable or undefined-length records, the com
piler accepts a maximum record length of 80 bytes.

Source Statement Characters
The VS FORTRAN character set, shown in Figure 1, is made up of letters, digits
and special characters.

Letters Digits Special Characters

AN an 0 Blank

B 0 b 0 1 . Decimal point (period)
C P c p 2 (Left parenthesis
D Q d q 3 + Plus sign

E R e r 4 ! Exclamation point

F S f s 5 * Asterisk

G T g t 6) Right parenthesis
H U h u 7 - Minus sign

I V i V B / Slash

J W j w 9 , Comma

K X k X Underscore

L Y 1 y ! Colon

HZ m 2 • Apostrophe
= Equals sign

$ Currency symbol " Quotation mark

Figure 1. Source Statement Characters (Character Set)

The following table, Figure 2 on page 6, shows the two-digit hexadecimal code
points for the characters in the character set. To determine the hexadecimal
code point of a character, look at the top of the column for the first hex digit,
and at the left of the row for the second hex digit.

In addition to the characters shown, the VS FORTRAN character set also
includes the shift-out character (X'OE') and the shift-in character (X'OF'). The
empty spaces in the table are subject to implementation; they are not part of
the VS FORTRAN character set.

In statements, lowercase letters are equivalent to their uppercase counterparts,
except within the following;

•- Character constants

»- H and apostrophe edit descriptors

In statements, blanks and double-byte blanks are significant only in the fol
lowing:

•- Character constants

H and apostrophe edit descriptors

*• The count of characters permitted in a statement

You may use blanks anywhere else within a program unit to make it more read
able.

Chapter 1. Language 5

Hex Digit
1st—•

2nd

i

4- 5- 6- 7- 8- 9- A- 8- C- D- E- F-

-0 E> - 0

-1 / a j A J 1

-2 b k s B K S 2

-3 c 1 t C L T 3

-4 d m u D M U 4

-5 e n V E N V 5

-6 f 0 w F 0 w 6

-7 9 P X G P X 7

-8 h 9 y H 0 Y 8

-9 i r z I R z 9

-A j :

-8
•

S »

-C ft 9

-D () •

-E +
=

-F -

Figure 2. EBCDIC Source Statement Code Points

Note: Hex'40' is the blank character.

Double-byte characters may be used in symbolic names and in character con
stants when the DBCS compiler option is in effect. For Information on the
DBCS compiler option, see t/S FORTRAN Version 2 Programming Guide. They
may be used in comment lines at all times.

Double-byte characters are represented by a two-byte code, where each byte is
in the range of X'41' to X'FE', except for the double-byte blank, which has an
internal representation of X'4040'.

An EBCDIC double-byte character is one with X'42' as the first byte and the
hexadecimal equivalent of a letter, digit, or special character as the second
byte. For example, an EBCDIC double-byte capital letter A is represented
internally as X'42C1' (because the hexadecimal equivalent of A is X'C1').

6 VS FORTRAN Version 2 Language and Library Reference

Names
Names can be used to identify the following items in a program unit:

• An array {see "Array" on page 24)

A variable (see "Variables" on page 22)

A constant (see "PARAMETER Statement" on page 158)

A main program (see "PROGRAM Statement" on page 162)

A statement function (see "Statement Function Statement" on page 204)

An intrinsic function (see "INTRINSIC Statement" on page 147)

A function subprogram (see "FUNCTION Statement" on page 120)

A subroutine subprogram (see "SUBROUTINE Statement" on page 208)

A block data subprogram (see "BLOCK DATA Statement" on page 59)

A common block (see "COMMON Statement" on page 66)

An external user-supplied subprogram that cannot be classified by its usage
in that program unit as either a subroutine or function subprogram name
(see "EXTERNAL Statement" on page 95)

A NAMELIST (see "NAMELIST Statement" on page 148)

Global and Local Names
Due to system restrictions, global names must consist of EBCDIC characters
only.

Classes of global names are:

Common block

External function

Subroutine

Main program

Block data subprogram

Local names are recognized internal to the program unit where they are refer
enced. Local names can consist of EBCDIC characters or of double-byte char
acters.

Classes of local names are:

Array

Variable

Constant

Statement function

Intrinsic function

Dummy procedure
NAMELIST

Names must not be in more than one class within a program unit, except in the
following situations:

A common-block name can also be an array, variable, or statement function
name in a program unit.

A function subprogram name must also be a variable name in the function
subprogram.

Chapter 1. Language 7

After a name is used as a main program name, a function subprogram name, a
subroutine subprogram name, a block data subprogram name, a common-block
name, or an external procedure name in any unit of an executable program, no
other program unit of that executable program can use that name to identify an
entity of these classes In any other way.

Note; For global names longer than seven characters, the first four and last

three characters are concatenated to form the external symbol used to identify
the global entity. For example, these names:

PASSED_PARAMETER
HASH$FUNCT10N

would be shortened to the following:

PASSTER

HASHION

EBCDIC and DBCS Names
— Definitions

EBCDIC Name—A sequence of 1 to 6 (31) letters, digits, or underscore char
acters, the first of which must be a letter.

DBCS Name—A shift-out character (X'OE') followed by a sequence of 1 to 14

double-byte characters terminated by a shift-in character (X'OF'). The
sequence must contain at least one doubie-byte character that does not rep
resent an EBCDIC double-byte character. If the first double-byte character

represents an EBCDIC double-byte character, it must be a letter.

An EBCDIC double-byte character must be a letter, digit or underscore in
double-byte. Double-byte lowercase letters are equivalent to double-byte
uppercase letters.

Valid Symbolic Names:

X_ray (An EBCDIC symbolic name)

<kk.l.2.3> (A DBCS symbolic name)

Source Language Statements
The rules for forming each type of source language statement are defined in
Chapter 5, along with a description of that statement's purpose and use. The
following discussion of source language statements is limited to the rules by
which input lines are classified as comments or other source language state
ments, and to the correct format of input lines.

There are two major kinds of input lines: statements and comments.

Statements, which may occupy one or more input lines, provide the infor
mation needed by the compiler to create the object program.

•- Comments are descriptive remarks about the program unit in which they
reside. Comments are copied onto the source program listing. Comments
are not present in the object program and have no effect on program exe
cution. Comment lines can be used to separate blocks of source language
statements to make the program more readable.

8 VS FORTRAN Version 2 Language and Library Reference

Free-Form Input Format
Free-form input permits greater freedom in arranging the input text of a
program than does fixed-form input. The following rules govern free-form input:

Comments

A comment line begins with a quotation mark {") or an exclamation point (!)
in column 1. This type of comment must not follow a continued line, and
cannot itself be continued.

I An in-line comment begins with an exclamation point, which initiates a
I comment anywhere on a line except when the exclamation point appears
I within character context. This in-line comment may be interspersed with
I free-form source lines.

^ Statement Text

The text of free-form statements is entered in up to 80 columns. The first
character of a statement (after a label, if any) must be alphabetic. Multiple

^ ^ statements per line are not allowed. Columns 73 through 80 are considered
part of the statement text in free form. They may not be used for identifica
tion in free-form statements.

I Note for DBCS Representation In Source: The DBCS compiler option must
I be in effect for double-byte character text to be interpreted correctly; the
I shIft-out/shift-in characters are invalid characters otherwise.

•- Statement Labels

The initial line of a statement may contain a label as the first (leftmost)
entry on the line. A label may contain 1 to 5 decimal digits. Blanks and
leading zeros are ignored. The value must not be zero. The values of
labels do not affect the order in which statements are compiled or exe
cuted. Each label must be unique within a program unit.

•- Initial Line

The initial line of a statement may have a label. The first character of the
statement text must be alphabetic. If a statement does not have a label, the
statement text must begin on the initial line.

*• Continued Lines

The text of any statement, except the END statement, may continue on the
following line. A line to be continued is Indicated by terminating the line
with a minus sign (-).

When an in-line comment appears on a continued line, the minus sign {-)
j must precede the exclamation point that begins the comment. If multiple
I comment lines are used between a continued line and its continuation, each
I exclamation point (!) must be preceded by a minus sign. See Figure 7 on
I page 13 for an example.

Preserving a Minus Sign

If the last character in a line is a minus sign, the compiler assumes it Indi
cates continuation. If the last two characters in a line are minus signs, only
the last one is taken as a continuation character, and the preceding one is
preserved as a minus sign.

Chapter!. Language 9

Continuation Lines '

A continuation line is a line following a continued line. The statement text
may start in any position. In free form source, there is no restriction on the
number of continuation lines. A statement is restricted only by the state- <
ment length limit.

Note for DBCS Representation In Source; When a character constant is

continued, the shift-in character that immediately precedes the minus sign
and the shift-out character on the next line will be ignored (if it is in column
1). In Figure 3. HEAD_L1NE1 and HEAD_LINE2 are equivalent;

Columnt 1 80

CHARACTER'50 HEAD_LINE1
CHARACTER-50 HEAD LINE2

HEAD_LINE1 = '<.A .H.E.A.D.I.H.Gs-
.L. I.N.E>'

HEAD LIIIE2 = '<.A .H.E.A.O.I.H.G .L.I.M.E>'

Figure 3. ShIft-out/Shift-in Characters in Continued Source

Maximum Statement Length

The maximum length of a free-form source statement is 6600 characters,
excluding the continuation characters and the statement label. Blank char
acters are counted in the total number of characters. Any blank characters
after the continuation characters are not counted.

Figure 4 Illustrates free-form source statements.

Column: 1

EPROCESS FREE

"SAHPLE TEXT

CHARACTER*200 BLINEO

IF (IREAD.GE.3) THEN ! Get ready for next line
IF (BLIIIE0(1:1).HE.'S') THEN

IWRITE = IV/RITE - 1

WRITE (Ut}IT=7,FMT=200) BLIHEO, BLINEl, BLINE2, BLINE3, -
TOKEMl, T0KEN2, T0KEIi3, T0KEN4, -
PGMNAME, LOPNAME

ENDIF

V/RITE (UNIT=5,FMT=300) BLIMEO ! Don't process tokens
ENDIF

Figure 4. Example of Free-Form Source Statements

10 VS FORTRAN Version 2 Language and Library Reference

Fixed-Form Input Format
The statements and comments of a source program in fixed form must conform
to the following rules:

Comments

A comment line must begin with a C or an asterisk (*) in column 1. In addi
tion, an exclamation point (!) initiates a comment anywhere on a line except
when it appears in character context or in column 6 {where it is treated as a
continuation character). This in-line comment consists of the exclamation

point and all the characters to its right, up to the end of the line. The in-line
comment is treated as a blank character.

Comment lines may appear anywhere in a program unit before the END

statement. (Comment lines may precede a continuation line.) Blank lines

may appear anywhere in a program unit and are processed as comment
lines. Comments may contain double-byte characters delimited by shift-
out/shift-in characters.

•- Statement Text

The text of a fixed-form statement is written in columns 7 through 72 on an

initial line. The statement text may continue on as many as 99 continuation
tines. Multiple statements per line are not allowed. Every statement in a
program unit may have a label in columns 1 to 5. Column 6 is used to dis
tinguish between Initial and continuation lines. Columns 73 through 80 are
not part ofthe statement and may be used for identification. Astatement is
terminated by another statement or by the end of the input.

Note for DBCS Representation in Source: The DBCS compiler option must
be in effect for double-byte character text to be Interpreted correctly; the
shift-out/shift-in characters are invalid characters otherwise.

Statement Labels

The statement label consists of from 1 to 5 decimal digits anywhere in
columns 1 to 5 in the initial line of a statement. The value must not be
zero. Values of labels do not affect the order in which statements are com
piled or executed. Each.label must be unique within a program unit.
Leading zeros are discarded.

•- Initial Line

Column 6ofthe initial line ofa statement must be a blank or a zero. The
initial line of every statement may be labeled. If a statement does not have
a label, the statement text must begin on the initial line. The initial line
cannot be blank.

Continuation Lines

Astatement that is not complete on the initial line may continue in columns
7through 72 on as many as 99 continuation lines. Acontinuation line must
have a character that is not blank or zero in column 6. Columns 1through
5 on a continuation line may contain characters, but they are ignored.

Note for DBCS Representation in Source: When a character constant is
continued, the shift-in character in column 72 and the shift-out character in
column 7 on the next line will be ignored.

Chapter 1. Language 11

Comments

Free-Form Input

In Figure 5, HEAD_LINE1 and HEAD_LINE2 are equivalent:

Column: 1

CHARACTER'50 HEAD_LINE1
CHARACTER-50 HEAD LINE2

72

HEAD_LINE1 '
X< .L.I.N.E>'

'<.A .H.E.A.O.I.N.G>

HEADLINES' '<.A .H.E.A.D.I.N.G .L.I.H.E>'

Figure 5. Shift-out/Shift-in Characters in Continued Source Lines

Identification

Columns 73 through 80 of any input line are not significant to the compiler
and may, therefore, be used for identification, sequencing, or any other
purpose.

As many blanks as desired may be written on a statement or comment to
improve readability. They are ignored by the compiler. However, blanks
inserted in literal or character data are retained and treated as blanks within

the data.

Figure 6 illustrates fixed-form source statements.

Column: 1 6

C SAMPLE TEXT

73 80

SAHPQO10

10 D = 010.5 I Initialize 0 SAHP0210
GO TO 56 SAHP0220

150 A = B + C • (0 + E - F ♦ SAHP023Q
1 G ♦ H - 2. • (G + P))

C « 3.
SAHP0240

SAHP0250

Figure 6. Example of Fixed-Form Source Statements

Comments provide documentation for a program. If you are working with fixed
format source code, you must use fixed-form comments; if you are working with
free format source code, you must use free-form comments.

A comment may appear anywhere before the END statement.

Free-form comments have the following attributes:

- Begins in column 1 with a quotation mark {") in column 1 or with an excla
mation point (!) anywhere on a line except within a character or Hollerith
constant

12 VS FORTRAN Version 2 Language and Library Reference

n

Fixed-Form Input

Comments cannot be continued

Valid Comment Placement:

Column: 1 7

"THIS COHtlENT BEGINS THE PROGRAM

100=010.5

GOTO 56 ! UNCONDITIONAL BRANCH
150 A=B+C*(D+E**F— f A CONTINUED LINE
-! THIS COMMENT IS VALID, BECAUSE IT IS PRECEDED BY A MINUS SIGN
GtH-2.*(6»P))
I THIS IS ANOTHER COMMENT

END

Fixed-form comments are indicated by one of the following:

A "C" or an asterisk {*) appearing in column 1

>• An exclamation point (!) appearing anywhere on a line except within a char
acter or Hollerith constant or in column 6 (where it acts as a continuation
character). This in-line comment consists of the exclamation point and all
the characters to its right, up to the end of the line.

^ A blank line, which is treated as a comment

Statement Labels

Keywords

statement labels uniquely identify statements within a program unit. Labels
can be given to every statement; however, a label Is significant to the compiler
only when it identifies:

»• A statement to which control is passed

^ The end of a sequence of statements that are to be executed repeatedly

A formatting statement

A statement label is a sequence of from 1 to 5 decimal digits, one of which
must be nonzero. It can be written in either fixed form or free form. See

"Statement Labels" on page 207.

Keywords identify procedures supplied by VS FORTRAN Version 2 (intrinsic
functions), which can be used as part of any program. These procedures are
mathematical functions and service subroutines, which are supplied to save
programmers' time. See Chapter 5, "Intrinsic Functions" on page 243 and

Chapter 7, "Service Subroutines" on page 269.

A keyword is a specified sequence of characters. The context identifies
whether a particular sequence of characters is a keyword or a name. There is

no keyword that Is reserved in all contexts.

Chapter!. Language 13

n

Chapter 2. Data

Data is a formal representation of facts, concepts, or instructions. VS FORTRAN

Version 2 manipulates three general kinds of data:

*• Constants

Variables

• Arrays

Note: These are not to be confused with data types. Data types correspond to
the the five types of variables, as discussed under "Data Types and Lengths"
on page 22.

Constants

A constant is a fixed, unvarying quantity. There are several classes of con
stants:

Arithmetic constants specify decimal values. There are three types of arith

metic constants:

Integer
Real

Complex

Logical constants specify a logical value as "true" or "false."

There are two logical constants:

.TRUE.

-FALSE.

Character constants are strings of characters enclosed in apostrophes.

»- Hollerith constants are used in FORMAT statements, as arguments, and are

also accepted in DATA statements as initialization values.

Hexadecimal constants are used only as data initialization values for any
type of variable or array.

With the PARAMETER statement, you can give a name to a constant. (See
"PARAMETER Statement" on page 158.)

Arithmetic Constants
Arithmetic constants fall into three categories: integer, real, and complex.

An unsigned constant is a constant with no leading sign. A signed constant is a
constant with a leading plus or minus sign.

Integer Constants
Definition

Integer Constant—A string of decimal digits containing no decimal point and
expressing a whole number.

Chapter 2. Data 15

Real Constants

Maximum Magnitude: 2147483647 (that is, 2^^ -1).

An integer constant may be positive, zero, or negative. If unsigned and
nonzero, it is assumed to be positive. (A zero may be written with a preceding
sign with no effect on the value.) Its magnitude must not be greater than the
maximum, and it must not contain embedded commas. It occupies 4 bytes of
storage.

Valid Integer Constants:

0

91

173

-2147483647

Invalid Integer Constants:

Contains a decimal point.27.

3145903612 Exceeds the maximum magnitude.

5,396 Contains an embedded comma.

•2147483648 Exceeds the maximum magnitude,
even though it fits into 4 bytes.

Definition

Real Constant—A string of decimal digits that expresses a real number. It
can have one of three forms: a basic real constant, a basic real constant

followed by a real exponent, or an integer constant followed by a real expo
nent.

Magnitude;

Precision:

0 or 16-®5 (approximately lO-^®)
through IB®® (approximately 10^5)

(Four bytes) 6 hexadecimal digits
(approximately 6 decimal digits)

(Eight bytes) 14 hexadecimal digits
(approximately 15 decimal digits)

(Sixteen bytes) 28 hexadecimal digits
(approximately 32 decimal digits)

A real constant may be positive, zero, or negative (if unsigned and nonzero, it
is assumed to be positive) and must be within the allowable range. It may not
contain embedded commas. A zero may be written with a preceding sign with
no effect on the value. The decimal exponent permits the expression of a real
constant as the product of a basic real constant or integer constant and 10
raised to a desired power.

A basic real constant is a string of digits with a decimal point. It is used to
approximate the value of the constant in 4 bytes of storage.

16 VS FORTRAN Version 2 Language and Library Reference

o

The storage requirement (length) of a real constant can be explicitly specified
by appending a real exponent to a basic real constant or an integer constant.
The valid exponents consist of the letters E, D, orQ, followed by an integer con
stant.

The letter E specifies a constant of length 4 and occupies 4 bytes of storage; the
letter D specifies a constant of length 8 and occupies 8 bytes of storage. The

letter Q specifies a constant of length 16 and occupies 16 bytes of storage.

Valid Real Constants (Four Bytes):

+0.

-999.9999

7.0E+0 That is, 7.0 x 10O = 7.0

9761.25E+1 That is, 9761.25 x 10i = 97612.5

7.E3

7.GE3 That is, 7.0 x 103 = 7000.0

7.0E+03

7E-03 That is, 7.0 x 10-3 = 0.007

21.98753829457168 Note: This is a valid real constant, but
it cannot be accommodated in four bytes.
It will be accepted and truncated.

Valid Real Constants (Eight Bytes):

123456789012345.D-73 Equivalent to .123456789012345x10-58

7.9D03

7.9D-H03 That is, 7.9 x 103 = 7900.0

7.9D-(-3

7.9D0 That is, 7.9 x 10° = 7.9

7003 That is, 7.0 x 103 = 7000.0

Valid Real Constants (Sixteen Bytes):

0.234523453455455734555678Q-f-43

5.001QG8

Chapter 2. Data 17

Invalid Real Constants:

1

3,471.1

l.E

1.2E+113

23.50+97

21.30-99

Complex Constants
Definition

Missing a decimal point or a
decimal exponent.

Embedded comma.

Missing a 1- or 2-digit integer constant
following the E. It is not interpreted
as 1.0 X 100.

Too many digits in the exponent.

Magnitude outside the allowable range,
that is, 23 . 5 x 1097>1663.

Magnitude outside the allowable range,
that is, 21.3 x l0-99<l6-65.

Complex Constant—An ordered pair of signed or unsigned integer or real
constants separated by a comma and enclosed in parentheses. The first
constant in a complex constant represents the real part of the complex
number; the second represents the imaginary part of the complex number.

The real or integer constants in a complex constant may be positive, zero, or
negative and must be within the allowable range. If unsigned and nonzero,
they are assumed to be positive. A zero may be written with a preceding sign,
with no effect on the value. If both constants are of integer type, however, then
both are converted to real type, of 4-byte length. If either constant is of integer
type, it is converted to real type. Both constants are converted to the length of
the longer constant.

Valid Complex Constants: (/

(3,-1.86)

(-5.0E+03,.16D+02)

(4.70+2,1.97361404)

(470+2,380+3)

(1234.345456567678Q59,-1.0Q-5)

(45Q6,6E45)

1)

Has the value 3.0 - 1.86i

both parts are real
(4 bytes long).

Has the value -5000.0 + 16.0i;
both parts are double
precision.

Has the value 470.0 + 19736.14i.

Has the value 4700.0 + 38000.i.

Both parts are real (16 bytes
long).

18 VS FORTRAN Version 2 Language and Library Reference

Invalid Complex Constants:

(A, 3.7) Real part is not a constant.

(.0O09Q-1,7643.Q+U99) Too many digits in the exponent
of the imaginary part.

(49.76, .0150+92)

Logical Constants
Definition

Magnitude of imaginary part is
outside of allowable range.

Logical Constant—A constant that can have a logical value of either true or
false.

There are t\A/o logical constants:

.TRUE.

.FALSE.

The words TRUE and FALSE must be preceded and.followed by periods. Each
occupies 4 bytes.

The logical constant .TRUE, or .FALSE., when assigned to a logical variable,
specifies that the value of the logical variable is true or false, respectively.
(See "Logical Expressions" on page 40.)

The abbreviations T and F (without the periods) may be used for .TRUE, and

.FALSE., respectively, only for the initialization of logical variables or logical
arrays in the DATA statement or in the explicit type statement. The following is
an example:

LOGICAL LI, L2
DATA Ll/T/, L2/F/

For use as input/output data, see "L Format Code" under "FORMAT
Statement."

Character Constants
— Definitions

Character Consfanf—A string of any characters capable of representation in
the processor. The string must be enclosed in apostrophes.

A character constant may be composed of EBCDIC and/or double-byte char

acters. Within character data, the shift-out and shift-in characters are used

to delimit double-byte characters.

A character constant may be used as a data initialization value, or in any of the

following:

A character expression

An assignment statement

^ The argument list of a CALL statement or function reference

Chapter 2. Data 19

An input or output statement

A FORMAT statement

A PARAMETER statement

A PAUSE or STOP statement

The delimiting apostrophes are not part of the data represented by the con
stant. An apostrophe within the character data is represented by two consec
utive apostrophes, with no intervening blanks. In a character constant, blanks
embedded between the delimiting apostrophes are significant.

The length of a character constant is the number of character storage units
needed to represent the character data between the delimiting apostrophes.
(Consecutive apostrophes count as one character storage unit.) The length of a
character constant must be greater than zero.

Valid Character Constants:

'DATA'

'X-COORDINATE Y-COORDINATE Z-COORDINATE'

'3.14'

'DON"T'

' <.D.O.N.'.T> '

'<.D.O.N.'.T>DO'

'<bb> '

Hollerith Constants
Definition

Length:

4

38

4

5

12

14

4

Hollerith Constant—A string of any characters capable of representation in
the processor and preceded by wH, where w is the number of characters in

the string. The value of w (the number of characters in the string), including
blanks, may not be less than 1 or greater than 255.

Each character requires one byte of storage.

Hollerith constants can be used in FORMAT statements, as arguments and in

initialization statements, other than in CHARACTER initialization.

Valid Hollerith Constants:

24H INPUT/OUTPUT AREA NO. 2

6H DON'T

20 VS FORTRAN Version 2 Language and Library Reference

Hexadecimal Constants
— Definition

Hexadecimal Constant—The character Z, followed by two or more

hexadecimal digits formed from the set of characters 0 through 9 and A
through F.

A hexadecimal constant may be used as a data initialization value for any type

of variable or array.

One byte contains 2 hexadecimal digits. If a constant is specified as an odd
number of digits, leading zeros are added on the left to fill the byte. The

internal binary form of each hexadecimal digit is as follows:

0-0000

1-OQ01

2-0010

3-0011

4-0100

5-0101

6-0110

7-0111

8-1000

9-1001

A-1010

B-1011

C-1100

D-1101

E-1110

F-1111

Valid Hexadecimal Constants:

Z1C49A2F1 represents the bit string:

0001110OO10O10Q1101QQO1011110001

ZBAOFADE represents the bit string:

00001011101011011111101011011110

where the first 4 zero bits are implied in the second bit string because an odd
number of hexadecimal digits are written.

The maximum number of digits allowed in a hexadecimal constant depends
upon the length specification of the variable being initialized (see "Data Types
and Lengths" on page 22). The following list shows the maximum number of
digits for each length specification:

Length

of Variables

32

16

8

4

2

1

Maximum Number

Hexadecimal Digits

64

32

16

8

4

2

Ifthe number of digits is greater than the maximum, the excess leftmost
hexadecimal digits are truncated; if the number of digits is less than the
maximum, hexadecimal zeros are supplied on the left.

If the variable being initialized is of COMPLEX type, the specirication should
indicate a single value, rather than a real value and an imaginary value.

Chapter 2. Data 21

Variables

Variable Names

A variable Is a data item, identified by a name, that occupies a storage area.
(However, in situations involving error or interruption handling, where normal

program flow is asynchronously interrupted, a variable may not occupy a

storage area.) The value represented by the name is always the current value.

Before a variable has been assigned a value, its content is undefined, and the

variable should not be referred to except to assign it a value.

You can set an initial value into a variable using the DATA statement, or the
first executable statement that refers to it (for example, a READ statement or an
assignment statement) can assign a value to it.

The names of variables are governed by the rules described in "Names" on
page 7. The use of meaningful variable names can aid in documenting a
program.

Valid Variable Names:

XPOSN

SAMOUNT

ZJOOST

object_class

<kk.l.2.3>

invalid Variable Names:

4ARRAY First character should be alphabetic.

SI'X Should not contain a special character.

Data Types and Lengths
The type of a variable corresponds to the type of data the variable represents.
(See Figure 7.) Thus, an integer variable must represent integer data, a real
variable must represent real data, and so on. There is no data type associated
with hexadecimal data; this type of data is identified by a name of one of the
other types. There is no data type associated with statement labels; variables
that contain the statement label of an executable statement or a FORMAT state

ment are not considered to contain an integer value. (See "ASSIGN Statement"
on page 51.)

For every data type, there is an implicit length specification that determines the
number of bytes that are reserved. If you are explicitly defining a noncharacter
data type, you may use an optional length specification.

Figure 7 shows each data type with its associated storage length and standard
length.

22 VS FORTRAN Version 2 Language and Library Reference

Data Type Valid Storage Default

Lengths Length

Integer 2 or 4 4

Real 4, 8, or 16 4

Double Precision 8 6

Complex 8. 16, or 32 8

Character 1 through 32767 1

Logical 1 or 4 4

Figure 7. Data Types and Valid Lengths

A programmer may declare the type of variable by using the following:

Explicit specification statements

IMPLICIT statement

Predefined specification contained in the language

An explicit specification statement overrides an IMPLICIT statement, which, in
turn, overrides a predefined specification. The optional length specification of a
variable may be declared only by explicit or IMPLICIT specification statements.
If. In these statements, no length specification is stated, the default length is
assumed. INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER are used to specify the length and type in these statements.

VS FORTRAN Version 2 accepts:

INTEGER*2 to indicate 2 bytes and !NTEGER*4 as an alternative to
INTEGER, to indicate 4 bytes;

REAL*4 as an alternative to REAL, to indicate 4 bytes;

REAL*8 as an alternative to DOUBLE PRECISION, to indicate 8 bytes;

REAL*16 to indicate 16 bytes;

" L0GICAL*1 to indicate 1 byte;

•- L0GICAL*4 to indicate 4 bytes, as an alternative to LOGICAL;

C0MPLEX*8 to indicate 8 bytes, as an alternative to COMPLEX (the first 4
bytes represent a real number and the second 4 bytes represent an imagi
nary number);

»• C0MPLEX*16 to indicate 16 bytes (the first 8 bytes represent a real
number and the second 8 bytes represent an imaginary number);

C0MPLEX*32 to Indicate 32 bytes (the first 16 bytes represent a real
number and the second 16 bytes represent an imaginary number).

Type Declaration by Predefined Specification
The predefined specification is a convention used to specify the type and preci
sion of variables as integer or real.

If the first character of the variable name is I, J, K, L, M, or N. the variable
is integer of length 4.

Chapter 2. Data 23

*• If the first character of the variable name is any other alphabetic character,

the variable is real of length 4.

If the first character of the variable name is a currency symbol {$), the
variable is real of length 4,

If the iirst double-byte character of a DBCS name represents an EBCDIC
double-byte character (that is, if the first byte is X'42'), the three rules
above determine the variable's type (based on the second byte).

*• If the first double-byte character of a DBCS name represents a character

not in the EBCDIC double-byte character set, the variable is real of length 4
and cannot be implicitly typed.

This convention is the traditional FORTRAN method of specifying the type of a

variable as either integer or real. Unless otherwise noted, it is assumed in the
examples in this publication that this specification applies. Variables defined
with this convention are of standard (default) length. —^

Type Declaration by the IMPLICIT Statement
The IMPLICIT statement allows you to specify the type of variables, in much the
same way as the type was specified by the predefined convention. That is. the
type is determined by the first character of the variable name. However, by
using the IMPLICIT statement, you have the option of specifying which initial
characters designate a particular data type. The IMPLICIT statement can be
used to specify all types of variables, integer, real, complex, logical, and char
acter. and to indicate storage length.

Note: If the first double-byte character of a DBCS name represents a character r>
not in the EBCDIC double-byte character set, the variable cannot be implicitly
typed.

The IMPLICIT statement overrides the data type as determined by the prede
fined convention.

The IMPLICIT NONE statement voids the implicit type rules for names. When
IMPLICIT NONE is specified, all names must be explicitly typed.

The IMPLICIT statement is discussed in "IMPLICIT Statement" on page 133. ^ ^

Type Declaration by Explicit Specification Statements
Explicit type statements override IMPLICIT statements and predefined specifica
tions. Explicit specification statements are discussed in "Explicit Type
Statement" on page 91.

Array

An array is an ordered and structured sequence of data items called array ele
ments. The number and arrangement of elements in an array are specified by
the array declarator. The array declarator indicates the number of dimensions
and the size of each dimension. An array must have at least one or as many
as seven dimensions. A particular element in the array is identified by the
array name and its position in the array. All elements of an array have the
same type and length.

24 VS FORTRAN Version 2 Language and Library Reference

Subscripts

To refer to any element in an array, the array name plus a parenthesized sub
script must be used. In particular, the array name alone does not represent the
first element except in an EQUIVALENCE statement.

Before an array element has been assigned a value, its content is undefined
and should not be referenced.

You can define an array using the DIMENSION statement, the explicit type state
ment, or the COMMON statement.

A subscript is a quantity (or a set of subscript expressions separated by
commas) associated with an array name to identify a particular element of the
array. The number of subscript quantities in any subscript must be the same
as the number of dimensions of the array referenced. A subscript is enclosed
in parentheses and is written immediately after the array name. A maximum of
seven subscript expressions can appear in a subscript.

The following rules apply to the construction of subscripts. (For additional infor
mation and restrictions, see Chapter 3, "Expressions" on page 31.)

1. Subscript expressions may contain arithmetic expressions that use any of
the arithmetic operators: *, /, **.

2. Subscript expressions may contain function references that do not change
any other value in the same statement.

3. Subscript expressions may contain array elements.

4. Mixed-mode expressions (Integer and real only) within a subscript are eval

uated according to normal FORTRAN rules. If the evaluated

expression is real, it is converted to integer by truncation.

5. The evaluated result of a subscript expression must always be greater than
or equal to the corresponding lower dimension bound and must not exceed

the corresponding upper dimension bound. (See "Size and Type Declara
tion of an Array" on page 26.)

Valid Array Elements:
1

ARRAY (IHOLD)

/-N

NEXT (19)

MATRIX (1-5)

BAK (I,J(K+2*L,.3*A[M,N))) J is an array.

ARRAY CI,J/4*K**2)

ARRAY (-5)

LOT (0)

Chapter 2. Data 25

Invalid Array Elements:

ALL(.TRUE.) Asubscript expression may not be a
logical expression.

NXT (1+(1.3,2.0)) Asubscript expression may not be a
complex expression.

Note: The elements of an array are stored in column-major order. To step
through the elements of the array In the linearized order defined as "column-
major order," each subscript varies (in steps of 1) from its lowest valid value to
its highest valid value, such that each subscript expression completes a full
cycle before the next subscript expression to the right is increased. Thus, the
leftmost subscript expression varies most rapidly, and the rightmost subscript
expression varies least rapidly.

The following list is the order of an array named C defined with two dimensions:

DIMENSION C(l:3,0:l)

C(1,0)
C(2,0)
C(3,0)
C(l,l)
C(2,l)
C(3,l)

Size and Type Declaration of an Array
The size (number of elements) of an array is declared by specifying, in a sub-
script, the number of dimensions in the array and the size of each dimension.
This type of specification is called an "array declarator." Each dimension is
represented by an optional lower bound (el) and a required upper bound (e2) in
the form:

Syntax

name ([e/:] e2)

name

is an array name.

el

e2

is the lower dimension bound. It is optional. If el (with its following
colon) is not specified, its value is assumed to be 1.

is the upper dimension bound and must always be specified.

The colon represents the range of values for an array's subscript.

The upper and lower bounds {el and e2) are arithmetic expressions in which all
constants and variables are of integer type.

The value of the lower bound may be positive, negative, or zero. It is
assumed to be 1, if it is not specified.

" A maximum of seven dimensions is permitted. The size of each dimension
is equal to the difference between the upper and lower bounds plus 1. If

26 VS FORTRAN Version 2 Language and Library Reference

the value of the lower dimension bound is 1, the size of the dimension is

equal to the value of its upper bound.

Function or array element references are not allowed in dimension bound
expressions.

The value of the upper bound must be greater than or equal to the value of
the lower bound. An upper dimension bound of an array, if specified as an
asterisk, is always assumed to be greater than or equal to the lower dimen
sion bound.

There are two kinds of arrays:

An actual array is one whose name is not a dummy argument and whose
dimension bound expressions can contain only constants or names of con
stants of integer type.

•• A dummy array is one whose name must contain a dummy argument and
whose dimension bound expressions can also contain:

— Integer variables that are also dummy arguments

— Expressions that contain:

— Signed or unsigned integer constants

— Names of integer constants

— Variables that are dummy arguments or appear in a common block
in that subprogram

The upper dimension bound of the last dimension of a dummy array name
can be an asterisk. In this case, the dummy array is called an assumed-
size array.

Valid Array Declarations:

DIMENSION A(0:9),8(3,-2:5)

DIMENSION ARAY(-3:-l),DARY(-3:ID3**IDl)

DIMENSION IARY(3)

Size information must be given for all actual arrays in a program, so that an
appropriate amount of storage may be reserved. Declaration of this information
is made by one of the following:

a DIMENSION statement (see "DIMENSION Statement" on page 76)
a COMMON statement (see "COMMON Statement" on page 66)

an explicit type statement (see "Explicit Type Statement" on page 91)

The type of an array name is determined by the conventions for specifying the
type of a variable name. Each element of an array is of the type and length
specified for the array name.

Chapter 2. Data 27

Object-Time Dimensions
If a dummy argument array Is used in a function or subroutine subprogram, the
absolute dimensions of the array do not have to be explicitly declared in the
subprogram by constants. Instead, the array declarators appearing in an
explicit specification statement or DIMENSION statement in the subprogram
may contain dummy arguments or variables in the common block that are
integer variables of length 4, to specify the size of the array.

When the subprogram is called, these integer variables receive their values
from the actual arguments in the calling program reference or from the
common block. As a result, the dimensions of a dummy array appearing in a
subprogram may change each time the subprogram is called. This is called an
"adjustable array" or an "object-time dimension array."

The absolute dimensions of an array must be declared in the calling program
or in a higher level calling program, and the array name must be passed to the
subprogram in the argument list of the calling program. The dimensions
passed to the subprogram must be less than or equal to the absolute dimen
sions of the array declared in the calling program. The variable dimension size
can be passed through more than one level of subprogram (that is, to a subpro
gram that calls another subprogram, passing it dimension information).

Integer variables in the explicit specification or DIMENSION statement that
provide dimension information may be redefined within the subprogram, but the
redefinitions have no effect on the size of the array. The size of the array is
determined at the entry point at which the array information is passed.

Character arrays are specified in the same manner as other data types. (See
"DIMENSION Statement" on page 76 and "Explicit Type Statement" on
page 91.) The length of each array element is either the standard length of 1
or may be declared larger with a type or IMPLICIT statement. Each character
array element is treated as a single entity. Portions of an array element can be
accessed through substring notation.

Character Substrings
A character substring is a contiguous portion of a character variable or char
acter array element. A character substring is identified by a substring refer
ence. It may be assigned values and may be referred to. A substring
reference is local to a program unit.

The form of a substring reference is:

— Syntax

a(e1:e2)

is a character variable name or a subscripted character array name (see
"Array" on page 24).

el and e2

are substring expressions.

28 VS FORTRAN Version 2 Language and Library Reference

Substring expressions are optional, but the colon {:) is always required inside
the parentheses. The colon represents a range of values. If el is omitted, a
value of one is implied for el. If e2 is omitted, a value equal to the length of the
character variable or array element is implied for e2. Both el and e2 may be
omitted; for example, the form v(:) Is equivalent to v.

The value of el specifies the leftmost character position and the value of e2
specifies the rightmost character position of the substring. The substring infor
mation {if any) must be specified after the subscript information (if any).

The values of el and e2 must be integer, positive, and nonzero.

The value of el must be less than or equal to the value of e2.

^ The values of el and e2 must be less than or equal to the number of char

acters contained in the corresponding variable name or array element.

Note for Double-Byte Characters: Since double-byte characters take two bytes

of storage, using substring references will give unpredictable results. Substring
references could split up the characters or cause unbalanced shift codes (see
Example 3). Therefore, the ASSIGNM subroutine should be used for string
operations on double-byte characters. For more information, see "ASSIGNM
Subroutine" on page 277.

Example 1:

Given the following statements:

CHARACTER*5 CH(10)
CH(2)='ABCDE'

then

CH(2)(1:2) has the value AB.
CH(2)(:3) has the value ABC.
CH(2)(3:) has the value CDE.

Example 2;

Given the following statements:

CHARACTER*5 SUBSTG, SYMNAM
SYMNAM= 'VWXYZ'

I = 3

J = 4

SUBSTG(1:2) = SYMNAM(I:J)
SUBSTG(I:J) = SYHNAM(1:2)
SUBSTG(J+1:) = SYMNAM(5:)

then SUBSTG has the value XYVWZ.

Example 3:

Substring operations on double-byte character data may split up a shift-
out/shift-in pair. Using such a substring will give unpredictable results.

Chapter 2. Data 29

Given the following statements:

CHARACTER L0G0*8, FR0NT*4

LOGO = ' < '

FRONT = L0G0(1:4)

then FRONT has the

value < . I. which contains unbalanced shift codes.

The ASSIGNM subroutine should be used for string operations on double-byte
characters. For more information, see "ASSIGNM Subroutine" on page 277.

30 VS FORTRAN Version 2 Language and Library Reference

rs

Chapter 3. Expressions

There are four kinds of expressions: arithmetic, character, relational, and

logical.

The value of an arithmetic expression is always a number whose type is
integer, real, or complex.

The value of a character expression is a character string.

The value of a relational or logical expression is always a .TRUE, or .FALSE,
logical value.

Evaluation of Expressions
Expressions are evaluated according to the following rules:

Any variable, array element, function, or character substring referred to as
an operand in an expression must be defined (that is, must have been
assigned a value) at the time the reference is executed.

In an expression, an integer operand must be defined with an integer value,
rather than a statement label. (See "ASSIGN Statement" on page 51.) If a
character string or a substring is referred to, all the characters referred to
must be defined at the time the reference is executed.

•- The execution of a function reference in a statement must not alter the

value of any other entity within the statement in which the function refer

ence appears. Also, it must not alter the value of any entity in the common
block that affects the value of any other function reference in that statement.

If a function reference in a statement alters the value of an actual argument
of the function, that argument or any associated entities must not appear
elsewhere in the statement. For example, the following statements are pro
hibited if the reference to the function F defines I or if the reference to the

function G defines X:

^ A(I) =F(I)
Y = G(X) + X

The data type of an expression in which a function reference appears does
not affect the evaluation of the actual arguments of the function.

An argument to a statement function reference must not be altered by the
evaluation of that reference.

Any array element reference requires the evaluation of its subscript. The
data type of an expression in which an array reference appears does not
affect, nor is it affected by, the evaluation of the subscript.

Any execution of a substring reference requires the evaluation of its sub
string expressions. The data type of an expression in which a substring
name appears does not affect, nor is it affected by, the evaluation of the
substring expressions.

Chapter 3. Expressions 31

Arithmetic Expressions
The simplest arithmetic expression consists of a single primary, which may be
a constant, name of a constant, variable, array element, function reference, or
another expression enclosed in parentheses. The type of an arithmetic
expression must be integer, real, or complex.

In an expression consisting of a single primary, the type of the primary is the
type of the expression. Examples of arithmetic expressions are shown in
Figure 8.

Primary Type of Primary Type Length

3 Integer constant Integer 4

A Real variable Real 4

3.14E3 Real constant Real 4

3.14D3 Real constant Double precision 8

(2.0,5.7) Complex constant Complex 8

SIN(X) Real function reference Real 4

(A*B + C) Parenthesized real expression Real 4

Figure 8. Examples of Arithmetic Expressions

Arithmetic Operators
More complicated arithmetic expressions containing two or more primaries
may be formed by using arithmetic operators that express the computation{s) to
be performed.

The arithmetic operators are shown in Figure 9.

Arithmetic

Operator Definition

is ic Exponentiation

* Multiplication

/ Division

+ Addition (or unary plus)

- Subtraction (or unary minus)

Figure 9. Arithmetic Operators

Rules for Constructing Arithmetic Expressions
The following are the rules for constructing arithmetic expressions that contain
arithmetic operators:

All desired computations must be specified explicitly. That is, if more than
one primary appears in an arithmetic expression, they must be separated
from one another by an arithmetic operator. For example, the two variables
A and B are not multiplied if written:

AB

In fact, AB is regarded as a single variable with a two-letter name.

32 VS FORTRAN Version 2 Language and Library Reference

If multiplication is desired, the expression must be written as follows:

A*B or B*A

»- No two arithmetic operators may appear consecutively in the same
expression. For example, the following expressions are invalid:

A*/B and A*-B

The expression A*-B could be written correctly as

A*(-B)

Two asterisks {**) designate exponentiation, not two multiplication oper
ations.

»- Order of Computation

When expressions are evaluated, operations are examined from left to right,
comparing successive operators. Successive operators are evaluated
according to the hierarchy shown in Figure 10.

Operation Hierarchy

Evaluation of functions 1st

Exponentiation (**) 2nd

Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th

Figure 10. Hierarchy of Arithmetic Operations

Note: A unary plus or minus has the same hierarchy as a plus or minus in
addition or subtraction.

Successive operators are evaluated left to right based on the hierarchy of oper
ations. If two or more operators of the same priority appear successively in the
expression, the order of priority of those operators is from left to right, except
for successive exponentiation operators, where the evaluation is from right to
left.

Consider the evaluation of the expression in the assignment statement:

RESULT=A*B+C*D**I

1. A*B Call the result X (multiplication) (X+C*D**I)

2. D**l Call the result Y (exponentiation) (X+C*Y)

3. C*Y Call the result Z (multiplication) (X+Z)

4. X+Z Final operation (addition)

The expression:

A**B**C

is evaluated as follows:

1. B**C Call the result Z

2. A**Z Final operation

Chapter 3. Expressions 33

Expressions with a unary minus are treated as follows:

A=-B is treated as A=0-B

A=-B*C Is treated as A=-(B*C) Because * has higher precedence
than -

A=-B+C is treated as A=(-B)+C Because - has equal precedence
to +

Use of Parentheses in Arithmetic Expressions
Because the order of evaluation (and, consequently, the result) of an
expression can be changed through the use of parentheses, refer to Figure 11,
Figure 12, and Figure 13 to determine the type and length of intermediate
results. Where parentheses are used, the expression contained within the most
deeply nested parentheses (that is, the innermost pair of parentheses) is evalu
ated first. A parenthesized expression is considered a primary.

For example, the expression,

B/((A-B)*C)+A**2

is effectively evaluated in the following order:

1. A-B Call the result W B/(W*C)+A**2
2. l'i*C Call the result X B/X+A**2
3. B/X Call the result Y Y+A**2
4. A**2 Call the result Z Y+Z

5. Y+Z Final operation

Type and Length of the Result of Arithmetic Expressions
The type and length of the result of an operation depend upon the type and
length of the two operands (primaries) involved in the operation.

Note: Except for a value raised to an integer power, if two operands are of dif
ferent type and length, the operand that differs from the type and/or length of
the result is converted to the type and/or length of the result. Thus the oper
ator operates on a pair of operands of matching type and length.

A negative operand (either real or integer) may not have a real exponent.

When an operand of real or complex type is raised to an integer power, the
integer operand is not converted. The resulting type and length match the type
and length of the base.

34 VS FORTRAN Version 2 Language and Library Reference

Figure 11 shows the type and length of the result of adding, subtracting, multi
plying, or dividing when the first operand is an integer.

First Operand Second Operand Result

Integer (2) Integer (2) Integer (2)
Integer (4) Integer (4)
Real (4) Real (4)
Real (8) Real (8)
Real (16) Real (16)
Complex (8) Complex (8)
Complex (16) Complex (16)
Complex (32) Complex (32)

Integer (4) Integer (2) Integer (4)
Integer (4) Integer (4)
Real (4) Real (4)
Real (8) Real (8)
Real (16) Real (16)
Complex (8) Complex (8)
Complex (16) Complex (16)
Complex (32) Complex (32)

Figure 11. Type and Length of Result Where the First Operand is integer

Figure 12 shows the type and length of the result of adding, subtracting, multi
plying, or dividing when the first operand is real.

First Operand Second Operand Result

Real (4) Integer (2) Real (4)
Integer (4) Real (4)
Real (4) Real (4)
Real (8) Real (8)
Real (16) Real (16)
Complex (8) Complex (8)
Complex (16) Complex (16)
Complex (32) Complex (32)

Real (8) Integer (2) Real (8)
Integer (4) Real (8)
Real (4) Real (8)
Real (8) Real (8)
Real (16) Real (16)
Complex (8) Complex (16)
Complex (16) Complex 06)
Complex (32) Complex (32)

Real (16) Integer (2) Real (16)
Integer (4) Real (16)
Real (4) Real (16)
Real (8) Real (16)
Real (16) Real (16)
Complex (8) Complex (32)
Complex (16) Complex (32)

Complex (32) Complex (32)

Figure 12. Type and Length of Result Where the First Operand Is Real

Chapter 3. Expressions 35

Figure 13 shows the type and length of the result of adding, subtracting, multi
plying, or dividing when the first operand is complex.

First Operand Second Operand Result

Complex (8) Integer (2) Complex (8)

Integer (4) Complex (8)
Real (4) Complex (8)
Real (8) Complex (16)
Real (16) Complex (32)
Complex (8) Complex (8)
Complex (16) Complex (16)
Complex (32) Complex (32)

Complex (16) Integer (2) Complex (16)

Integer (4) Complex (16)
Real (4) Complex (16)
Real (8) Complex (16)
Real (16) Complex (32)
Complex (8) Complex (16)
Complex (16) Complex (16)
Complex (32) Complex (32)

Complex (32) Integer (2) Complex (32)
Integer (4) Complex (32)

Real (4) Complex (32)
Real (8) Complex (32)
Real (16) Complex (32)
Complex (8) Complex (32)
Complex (16) Complex (32)
Complex (32) Complex (32)

Figure 13. Type and Length of Result Where the First Operand Is Complex

Examples of Arithmetic Expressions
Assume that the type of the following variables has been specified as indicated
below:

Name

I, J, K

C

D

Variable Type
Integer

Real

Complex

Length

4, 2. 2

4

16

Then the expression l*J/C**K-FD is evaluated as follows:

Subexpression

I*J (Call the result M)

C**K (Call the result Y)

M/Y (Call the result Z)
Z-^D

Type and Length

Integer of length 4

Real of length 4

Real of length 4
Complex of length 16

Note: M is converted to real of length 4 before division is performed.

Z is expanded to the real variable of length 8, and a complex quantity of length
16 (call it W) is formed, in which the real part is the expansion of Z and the
imaginary part is zero. The real part of W is then added to the real part of D,
and the imaginary part of W is added to the imaginary part of D.

Thus, the final type of the entire expression is complex of length 16, but the
types of the intermediate expressions change at different stages in the evalu
ation.

36 VS FORTRAN Version 2 Language and Library Reference

Depending on the values of the variables involved, the result of the expression
l*J*C might be different from l*C*J. This may occur because of the number of
conversions performed during the evaluation of the expression.

Because the operators are the same, the order of the evaluation is from left to
right. With l*J*C, a multiplication of the two integers l*J yields an intermediate
result of integer type and length 4. This intermediate result is converted to a
real type of length 4, and multiplied with C of real type of length 4, to yield a
real type of length 4 result.

With l*C*J, the integer I is converted to a real type of length 4, and the result is
multiplied with C of real type of length 4, to yield an intermediate result of real
type of length 4. The integer J is converted to a real type of length 4, and the
result is multiplied with the intermediate result to yield a real type of length 4
result.

Evaluation of l*J*C requires one conversion and l*C*J requires two conver
sions. The expressions require that the computation be performed with dif
ferent types of arithmetic. This may yield different results.

When division is performed using two integers, any remainder is truncated
(without rounding) and an integer quotient is given. If the mathematical quo
tient is less than 1, the answer is 0. The sign is determined according to the
rules of algebra. For example:

1 j l/J

g 2 4

5 -2 -2

1 -4 0

Character Expressions
The simplest form of a character expression is a character constant, a char
acter variable reference, a character array element reference, a character sub-
string reference, or a character function reference. More complicated character
expressions may be formed by using one or more character operands, together
with character operators and parentheses.

The character operator is shown in Figure 14.

Character

Operator Definition

// Concatenation

Figure 14. Character Operator

The concatenation operation joins the operands in such a way that the last
character of the operand to the left immediately precedes the first character of
the operand to the right.

Chapter 3. Expressions 37

For example:

'AB'//'CD' yields the value of 'ABCD'

and

'<.Vi.X>'//'<.Y.Z>' yields the value of '<.W.X><.Y.Z>'

The result of a concatenation operation Is a character string consisting of the
values of the operands concatenated left to right, and Its length Is equal to the
sum of the lengths of the operands.

Note: Except In a CHARACTER assignment statement, the operands of a con
catenation operation must not have Inherited length. That Is, their length spec
ification must not be an asterisk {*) unless the operand Is the name of a
constant. See "Explicit Type Statement" on page 91.

Use of Parentheses in Character Expressions
Parentheses have no effect on the value of a character expression. For

example. If X has the value 'AB', Y has the value 'CD', and Z has the value

'EF'.

then the two expressions:

X//Y//Z

X//(Y//Z)

both yield the same result, the value 'ABCDEF'.

Relational Expressions
Relational expressions are formed by combining two arithmetic expressions
with a relational operator, or two character expressions with a relational oper
ator.

The six relational operators are shown In Figure 15.

Relational

Operator Definition

.GT. Greater than

.GE. Greater than or equal to

•LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

Figure 15. Relational Operators

Relational operators:

Express a condition that can be either true or false.

*- May be used to compare two arithmetic expressions (except complex) or
two character expressions. Only the .EQ. and .NE. operators may be used
to compare an arithmetic expression with a complex expression. If the two
arithmetic expressions being compared are not of the same type or length,

38 VS FORTRAN Version 2 Language and Library Reference

r>

they are converted following the rules indicated in Figure 11, Figure 12, and
Figure 13.

Are not allowed in comparisons of arithmetic expressions to character
expressions or vice versa.

In the case of character expressions, the shorter operand is considered as
being extended temporarily on the right with blanks to the length of the longer

operand. The comparison is made from left to right, character by character,
according to the collating sequence, as shown in Figure 2 on page 6.

Note: The comparison for double-byte characters is made from left to right,

byte by byte, according to the binary value of double-byte code.

Examples:

Assume that the type of the following variables has been specified as indicated:

Variable Names Type

ROOT, E Real
A, I, F Integer
L Logical

C Complex

CHAR Character of length 10

Then the following examples illustrate valid and invalid relational expressions.

Valid Relational Expressions:

E .LI. I

E**2.7 .LE. (5*R00T+4)

.5 .GE. (.9*R00T)

E .EQ. 27.3E+05

CHAR .EQ. 'ABCDEFGH'

C.NE. CMPLX(ROOT,E)

Chapter 3. Expressions 39

Invalid Reiationa! Expressions:

C.GE.(2.7,5.9E3)

L.EQ.(A+F)

E**2 .LT 97.1E1

.GT.9

E*2 .EQ. 'ABC

Length of a Relational Expression:

Complex quantities can be compared only
for equal or not equal in relational
expressions.

Logical quantities may never be compared by
relational operators.

There is a missing period immediately
after the relational operator.

There is a missing artthmetic expression
before the relational operator.

A character expression may not be compared
with an arithmetic expression.

A relational expression is always evaluated to a L0GICAL*4 result, but the
result can be converted in an assignment statement to LOGICAL*!.

Logical Expressions

The simplest form of logical expression consists of a single logical primary. A
logical primary can be a logical constant, a name of a logical constant, a logical
variable, a logical array element, a logical function reference, a relational
expression (which may be an arithmetic relational expression or a character
relational expression), or a logical expression enclosed in parentheses. A
logical primary, when evaluated, always has a value of true or false.

More complicated logical expressions may be formed by using logical opera
tors to combine logical primaries.

Logical Operators
The logical operators are shown in Figure 16. (A and B represent logical con
stants or variables, or expressions containing relational operators.)

Logical

Operator Use Meaning

.NOT. .NOT.A If A is true, then .NOT.A is false; if A is false, then .NOT.A is true.

•AND. A.AND.B If A and B are both true, then A.AND.B is true; if either A or B or both
are false, then A.AND.B is false.

.OR. A.OR.B If either A or B or both are true, then A.OR.B is true: if both A and B are
false, then A.OR.B Is false.

.EQV. A.EQV.B If A and B are both true or both false, then A.EQV.B is true; otherwise, it
IS false.

.NEQV. A.NEQV.B If A and B are both true or both false, then A.NEQV.B is false; other
wise, it is true.

Figure 16. Logical Operators

40 VS FORTRAN Version 2 Language and Library Reference

rs

The only valid sequences of two logical operators are:

.AND..NOT.

.OR..NOT.

.EQV..NOT.

.NEQV..NOT.

The sequence .NOT..NOT. is invalid.

Only those expressions that have a value of true or false when evaluated, may
be combined with the logical operators to form logical expressions.

Examples:

Assume that the types of the following variables have been specified as indi
cated:

Variable Names Type

ROOT, E Real
A, I, F Integer
L, W Logical
CHAR, SYMBOL Character of lengths 3 and 6, respectively

Then the following examples illustrate valid and invalid logical expressions
using both logical and relational operators.

Valid Logical Expressions;

(ROOT*A .GT. A) .AND. W

L .AND. .NOT. (I .GT. F)

(E+5.9E2 .GT. 2*E) .OR. L

.NOT. W .AND. .NOT. L

L .AND. .NOT. W .OR. CHAR//'123'.LT.SYMBOL

(A**F .GT. ROOT .AND. .NOT. I .EQ. E)

Invalid Logical Expressions:

A.AND.L A is not a logical expression.

.OR.W .OR. must be preceded by a logical
expression.

NOT.(A.GT.F) There is a missing period before the logical
operator .NOT..

L.AND..OR.W The logical operators .AND. and .OR. must
always be separated by a logical expression.

.AND.L .AND. must be preceded by a logical
expression.

Chapter 3. Expressions 41

Order of Computations in Logical Expressions
In the evaluation of logical expressions, priority of operations involving arith-
metic operators is as shown in Figure 17.
Within a hierarchic level, computation is performed from left to right.

Operation Involving Arithmetic Operators Hierarchy

Evaluation of functions 1st (highest)

Exponentiation (**) 2nd

Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th

Relationals (.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.) 5th

.NOT. 6th

.AND. 7th

.OR. 8th

.EQV. or .NEQV. 9th

Figure 17. Hierarchy of Operations Involving Arithmetic Operators

In the evaluation of logical expressions, priority of operations involving char
acter operators is as shown in Figure 18. Within a hierarchic level, computa
tion is performed from left to right.

Operation Involving Ctiaracter Operators Hierarchy

Evaluation of functions 1st (highest)

Concatenation (//) 2nd

Relationals (.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.) 3th

.NOT. 4th

.AND. 5th

.OR. 6th

.EQV. or .NEQV. 7th

Figure 18. Hierarchy of Operations Involving Character Operators

Example:

Assume the type of the following variables has been specified as follows:

Variable Names Type Length

B,D REAL 4
A REAL 8

L,N LOGICAL 4

The expression

A.6T.D**B.AND..N0T.L.0R.N

is effectively evaluated in the following order {and from left to right):

1. D**B Call the result W.

Exponentiation is performed because arithmetic operators have a higher
priority than relational operators, yielding a real result W of length 4.

2. A.GT.W Call the result X.

42 VS FORTRAN Version 2 Language and Library Reference

The real variable A of length 8 is compared with the real variable W, which
was extended to a length of 8, yielding a logical result X, whose value is
either true or false.

3. .NOT.L Call the result Y.

The logical negation is performed because .NOT. has a higher priority than
.AND., yielding a logical result Y. whose value is true if L is false and false
if L is true.

4. X.AND.Y Call the result Z.

The logical operator .AND. is applied because .AND. has a higher priority
than .DR., to yield a logical result Z, whose value is true if both X and Y are
true and false, if both X and Y are false, or if either X or Y is false.

5. Z.OR.N

The logical operator .OR. is applied to yield a logical result of true if either
Z or N is true or if both Z and N are true. If both Z and N are false, the

logical result is false.

Note: Calculating the value of logical expressions may not always require that
all parts be evaluated. Functions within logical expressions may or may not be
invoked. For example, assume a logical function called LGF. In the expression
A.OR.LGF(.TRUE.), it should not be assumed that the LGF function is always
invoked, because it is not always necessary to do so to evaluate the expression
when A is true.

Use of Parentheses in Logical Expressions
Parentheses may be used in logical expressions to specify the order in which
the operations are to be performed. Where parentheses are used, the
expression contained within the innermost pair of parentheses is evaluated
first.

Example:

Assume the type of the following variables specified as follows:

Variable Names Type Length

B REAL 4

C REAL 8

K, L LOGICAL 4

The expression

•NOT.((B.GT.C.OR.K).AND.L)

is evaluated in the following order:

1. B.GT.C Call the result X.

B is extended to a real variable of length 8 and compared with C of length
8, yielding a logical result X of length 4, whose value is true if B is greater
than C or false if B is less than or equal to C.

2. X.OR.K Call the result Y.

The logical operator .OR. is applied to yield a logical result of Y, whose
value is true if either X or K is true or if both X and K are true. If both X

and K are false, the logical result Y is false.

Chapter 3. Expressions 43

3. Y.AND.L Call the result Z.

The logical operator .AND. is applied to yield a logical result Z. whose value
is true if both Y and L are true and false if both Y and L are false or if either
Y orL is false.

4. .NOT.Z

The logical negation is performed to yield a logical result, whose value is
true if Z is false and false if Z is true.

If it contains two or more quantities, a logical expression to which the logical
operator .NOT. applies must be enclosed in parentheses. Otherwise, because
of the higher precedence of the .NOT. operator, it will apply to the first operand
of the relation. For example, assume that the values of the logical variables, A
and B, are false and true, respectively. Then the following two expressions are
not equivalent:

.NOT.(A.OR.B) ^

.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. The result is true; but
.NOT.(.TRUE.) is the equivalent of .FALSE.. Therefore, the value of the first
expression is false.

In the second expression, .NOT.A is evaluated first. The result is true; but
.TRUE..OR.B is the equivalent of .TRUE.. Therefore, the value of the second
expression is true.

The lengths of the results of the various logical operations are shown in
Figure 19. (The result of logical operations is always logical of length 4.)

First Operand Second Operand Result

Logical (1) Logical (1) Logical (4)
Logical (4) Logical (4)

Logical (4) Logical (1) Logical (4)
Logical (4) Logical (4)

Figure 19. Type and Length of the Result of Logical Operations

44 VS FORTRAN Version 2 Language and Library Reference

Chapter 4. Statements

A source program consists of a set of statements from which the compiler gen
erates machine instructions and allocates storage for data areas. A statement
performs one of three functions:

It performs certain executable operations (for example, addition, multipli
cation, branching).

It specifies the nature of the data being handled.

It specifies the characteristics of the source program.

Statements are either executable or nonexecutable.

Statement Categories

Statements are divided into the following categories according to what they do:

>• Assignment statements

Control statements

DATA statement

•- Debug statements

Input/output statements

PROGRAM statement

Specification statements

Subprogram statements

Compiler directives

Assignment Statements
There are four types of assignment statements: the arithmetic, character, and
logical assignment statements and the ASSIGN statement. Execution of an
assignment statement assigns a value to a variable or array element.

Control Statements
In the absence of control statements, statements are executed sequentially.
Control statements can alter this normal sequence of execution of statements in
the program. Control statements are executable. The following are control
statements:

CALL

CONTINUE

DO

DO WHILE

END

END DO

GO TO

IF (ELSE, ELSE IF,
END IF)

PAUSE

RETURN

STOP

Chapter 4. Statements 45

DATA Statement
The DATA statement assigns initial values to variables, array elements, arrays,
and substrings. It is nonexecutable.

Debug Statements
The static debug facility is a programming aid that can help locate errors in a
source program. This facility traces the flow of execution within a program, dis
plays the values of variables and arrays, and checks the validity of subscripts.
DISPLAY, TRACE OFF, and TRACE ON are executable; AT, DEBUG, and END
DEBUG are nonexecutable. The following are debug statements:

AT DISPLAY TRACE OFF

DEBUG END DEBUG TRACE ON

Do not confuse the static debug with Interactive Debug, described in VS
FORTRAN Version 2 Interactive Debug Guide and Reference. Interactive Debug
provides more function and is preferable for debugging.

Input/Output Statements
Input/output (I/O) statements transfer data between two areas of internal

storage or between internal storage and an input/output device. Examples of
input/output devices are card readers, printers, punches, magnetic tapes, disk
storage units, and terminals.

I/O statements allow the programmer to specify how to process the files at dif
ferent times during the execution of a program. Except for the FORMAT state

ments, these statements are executable. The following are input/output
statements:

BACKSPACE INQUIRE REWIND

CLOSE OPEN REWRITE

DELETE PRINT WAIT

ENDFILE READ WRITE

FORMAT

Note: The description of the input and output statements is made from the

point of view of a VS FORTRAN Version 2 program. Therefore, words such as
file, record, or OPEN must not be confused with the same words used when dis

cussing an operating system. {See the description of each I/O statement later

in this chapter.)

Input/Output Semantics
The VS FORTRAN input/output statements are based on a set of semantics

which govern file naming, file and unit existence, and file/unit connection. The
following discussion provides an introduction to the I/O semantics; for a more
in-depth discussion, see VS FORTRAN Version 2 Programming Guide.

FORTRAN recognizes both unnamed and named files. In VS FORTRAN pro
grams. all files are referred to by their ddnames: a ddname is a name that iden
tifies an operating system file definition which in turn refers to an actual file.

Certain ddnames are reserved by VS FORTRAN for use in referring to an
unnamed file. Files that are referred to by the reserved ddnames cannot be
specified by name in a VS FORTRAN program. For this reason, these files are

46 VS FORTRAN Version 2 Language and Library Reference

n

called unnamed files. {Naming conventions for the reserved ddnames are
listed on page 139.) A named file is specified in a VS FORTRAN program by its
ddname or by its CMS file identifier or MVS data set name. The ddname for a
named file may not be one of the reserved ddnames.

With dynamic file allocation, the user does not need to supply an explicit file
definition for a file to be connected to a unit. VS FORTRAN wili create the file

definition. See VS FORTRAN Version 2 Programming Guide for more informa
tion on dynamic file allocation.

In FORTRAN, files and units are either existent or non-existent. On a concep
tual level, a file exists if it actually resides on the medium and an operating
system file definition statement is in effect for the file.

Note: File existence properties differ depending on the type of I/O device being
used. See VS FORTRAN Version 2 Programming Guide, for specific information
on devices and file existence.

A unit is a means of referring to a file so that the file can be used in an
input/output operation. Units are referred to in VS FORTRAN programs by a
unit identifier. A unit is considered to exist if the unit identifier Is valid for your
installation. (If you are unsure what the valid unit identifiers are for your instal
lation, see your system programmer.)

Before any data can be transferred, a file must be connected to a unit. In

FORTRAN, a unit is a means of accessing a file. Units and files become con
nected through an OPEN statement, or through preconnection. An OPEN state
ment associates a file with a unit.

Preconnected files are files that, at the beginning of program execution, are

connected to units; that is. the VS FORTRAN program does not need to explic

itly associate a file with a unit using an OPEN statement. Only unnamed files
may be preconnected.

Once a file is no longer needed by a VS FORTRAN program, it can be discon
nected from a unit. Files are disconnected through a CLOSE statement, at the

end of program execution, or through an implicit close operation. An implicit
close operation occurs when an OPEN statement is issued for a file that is dif
ferent from the file already connected to the unit.

At the time a file is disconnected, the file may also be deleted. When a file Is
deleted, VS FORTRAN considers that the file no longer exists. For details on
the circumstances under which a file will be deleted, see VS FORTRAN

Version 2 Programming Guide.

Files that have been disconnected from a unit may be reconnected only by an
OPEN statement. Under certain circumstances, I/O statements other than

OPEN, CLOSE, and INQUIRE may be Issued for a disconnected unit; see VS
FORTRAN Version 2 Programming Guide for details.

Chapter 4. Statements 47

PROGRAM Statement
The PROGRAM statement can be used only for naming a main program;
however, it is not required. The PROGRAM statement is nonexecutable.

Specification Statements
Specification statements provide the compiler with information about the nature
of the data in the source program. In addition, they supply the information
required to allocate storage for this data.

If used, the specification statements must follow the PROGRAM. SUBROUTINE,
FUNCTION, or BLOCK DATA statement. They may be preceded by a FORMAT
or an ENTRY statement. Specification statements are nonexecutable. The fol

lowing are specification statements:

COMMON

DIMENSION

EQUIVALENCE

Explicit type;
CHARACTER

COMPLEX

EXTERNAL

IMPLICIT

INTRINSIC

NAMELIST

PARAMETER

SAVE

DOUBLE PRECISION LOGICAL

INTEGER REAL

Subprogram Statements
There are three subprogram statements: FUNCTION, SUBROUTINE, and
BLOCK DATA.

The function subprogram begins with a FUNCTION statement. At least one exe
cutable statement in the function must assign a result to the function name.
This value is returned to the calling program unit as the result of the function.
The function subprogram is processed whenever its name is appropriately ref
erenced in another program unit.

Subroutine subprograms begin with the SUBROUTINE statement. Like the func
tion subprogram, the subroutine can be a set of commonly used computations,
but it need not return any result to the calling program. The subroutine is proc
essed whenever its name is referenced in a CALL statement.

The BLOCK DATA statement begins a block data subprogram. A block data
subprogram is used to initialize values for variables and array elements in
named common blocks.

Subprogram statements are nonexecutable.

Compiler Directives
EJECT and INCLUDE are IBM extensions that direct the compiler to respectively
start a new page or insert one or more source statements into the program.

For details on vector directives, see VS FORTRAN Version 2 Programming
Guide.

48 VS FORTRAN Version 2 Language and Library Reference

Order of Statements in a Program Unit
The order of statements in a program unit (other than a BLOCK DATA subpro
gram) is as follows:

1. PROGRAM or subprogram statement, if any.

2. IMPLICIT statements, if any.

3. Other specification statements, if any. (Explicit specification statements that
initialize variables or arrays must follow other specification statements that
contain the same variable or array names.)

4. For the order of data statements, see Figure 20 on page 50.

5. Statement function definitions, if any.

6. Executable statements.

7. END statement.

For the order of DEBUG statements, see "DEBUG Statement" on page 71.

Within the specification statements of a program unit, IMPLICIT statements must
precede all other specification statements. Any specification statement that
specifies the type of named constant must precede the PARAMETER statement
that defines that particular named constant; the named constants referenced in
a PARAMETER statement must have been defined by preceding PARAMETER
statements.

FORMAT and ENTRY statements may appear anywhere after the PROGRAM or
subprogram statement and before the END statement. The ENTRY statement,
however, may not appear between a block IF statement and its corresponding
END IF statement or within the range of a DO. DATA statements must follow
the IMPLICIT statements but may be intermixed with the other specification
statements. DATA statements must follow all other specification statements
which refer to the «ame item (variable or array).

A NAMELIST statement declaring a NAMELIST name must precede the use of
that name in any input/output statement. Its placement is as indicated for other
specification statements.

The order of statements in BLOCK DATA subprograms is discussed under

"BLOCK DATA Statement" on page 59.

Figure 20 shows the order of statements.

The vertical lines in the figure delineate varieties of statements that may be
interspersed. For example, FORMAT statements may be interspersed with
statement function statements and executable statements.

Horizontal lines delineate varieties of statements that must not be inter

spersed. For example, statement function statements must not be inter
spersed with executable statements.

Chapter 4. Statements 49

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
Statement

IMPLICIT NONE

Statement

IMPLICIT

Statements

Comment

Lines

FORMAT

and DATA

Other

Speci fication
Statements

ENTRY

Statements

Statements Statement

Function

Statements

Executable

Statements

END Statement

Figure 20. Order of Statements and Comment Lines

Statement Descriptions
The rules for coding each statement are described in this section, in alphabetic
sequence. Examples are included. For additional'examples and explanations,
see VS FORTRAN Version 2 Programming Guide.

Notes;

1. Comments and statement labels are included because, although they are

not actual statements, they are integral parts of your programs.

2. Most described statements begin at the top of a page.

Arithmetic IF Statement
See "IF Statements" on page 127.

50 VS FORTRAN Version 2 Language and Library Reference

ASSIGN

ASSIGN Statement
The ASSIGN statement assigns a number {a statement label) to an integer vari
able. See "Statement Labels" on page 207.

— Syntax

ASSIGN sti TO /

stI

is the label of an executable statement or a FORMAT statement in the same

program unit as the ASSIGN statement.

is the name of an integer variable (not an array element) of length 4 that is
assigned the statement label stI.

The statement label must be the number of a statement that appears in the
same program unit as the ASSIGN statement. The statement label must be the
number of an executable statement or a FORMAT statement.

Execution of ASSIGN is the only way that a variable can be defined with a state
ment label. A variable must have been defined with a statement label when it

is referred to in an assigned GO TO statement or as a format identifier in an

input or output statement. An integer variable defined with a statement label
may be redefined with the same or a different statement label or an integer
value.

If s// is the statement label of an executable statement, / can be used in an

assigned GOTO statement. If stI is the statement label of a FORMAT statement,
/ can be used as the format identifier in a READ, WRITE, or PRINT statement

with FORMAT control.

The value of / is not the integer constant represented by stI and cannot be used
as such. To use / as an integer, it must be assigned an integer value by an
assignment or input statement. This assignment can be done directly or
through EQUIVALENCE, COMMON, or argument passing.

Valid ASSIGN Statements:

This program fragment illustrates the use of the ASSIGN statement to assign
the statement labels of both an executable statement and a FORMAT statement

to variables.

Program fragment:

10 FORMAT (IX, 14)
ASSIGN 30 TO LABEL

ASSIGN 10 TO IFMT

NUM = 50

Function:

Assign statement label 30 to integer variable
LABEL.

Assign FORMAT statement label 10 to integer vari
able IFMT.

Chapter 4. Statements 51

Assignment

Program fragment: Function:

GOTO LABEL Transfer to statement labeled 30.

20 WRITE(5, IFMT) NUM Write using the FORMAT statement at statement 10.
30 PRINT *, NUM

END

Invalid ASSIGN Statements:

This program fragment illustrates an invalid use of the ASSIGN statement. The
variable set by an ASSIGN statement does not have the integer value represen
tation of the statement label.

The statement IF (NUM .EQ. LABEL) GOT0 20 is invalid. The results are unpre
dictable.

ASSIGN 10 TO LABEL

10 NUM = 10

IF (NUM .EQ. LABEL) GOTO 20
NUM = 20

20 CONTINUE

END

Assigned GO TO Statement
See "GO TO Statements" on page 125.

Assignment Statements
This statement closely resembles a conventional algebraic equation; however,
the equal sign specifies a replacement operation rather than equality. That is,
the expression to the right of the equal sign is evaluated, and the resulting
value replaces the current value of the variable, array element, character sub
string, or character variable to the left of the equal sign.

Syntax

a = b

a

is a variable, array element, character substring, or character variable.

b

is an arithmetic, character, or logical expression.

An assignment statement is used to obtain the results of calculations. The
result of evaluating the expression replaces the current value of a designated
variable, array element, character substring, or character variable. There are
three types of assignment statements: arithmetic, character, and logical.

Arithmetic Assignment Statement
If b is an arithmetic expression, a must be an integer, real, or complex variable
or an array element.

Figure 21 on page 53 shows the rules for conversion in arithmetic assignment
statements, a = b, where the type of b is integer, real or complex.

52 VS FORTRAN Version 2 Language and Library Reference

Assignment

The correspondence between type declarations and data item lengths in bytes
is described in Figure 22 on page 94.

Type
of b

Type
of a

INTEGER«2

INTEGER'4

INTEGER

REAL«4

REAL

REAL'S

Double

Precision

REAL'16 COMPLEX'S

COMPLEX

COMPLEX'16 COMPLEX'32

INTEGER"2

INTEGERM

INTEGER

Assign Fix and

assign

Fix and

assign
Fix and

assign

Fix and

assign real
part; imagi
nary part

not used

Fix and

assign real
part; imagi
nary part not

used

Fix and

assign real
part; imagi
nary part not

used

REALM

REAL

Float and

assign
Assign Real

assign
Real

assign

Assign real
part; imagi
nary part

not used

Real assign

real part;

imaginary

part not used

Real assign
real part;
Imaginary
part not used

REAL'S

Double

Precision

DP float

and assign

DP extend

and assign

Assign DP assign DP extend

and assign

real part:
imaginary

part not
used

Assign real
part; imagi

nary part not

used

DP assign
real part;
imaginary

part not used

REAL«16 QP float

and assign

QP extend
and assign

QP extena

and assign

Assign QP extend

and assign
real part;

imaginary
part not

used

QP extend

and assign

real part;
imaginary
part not used

Assign real

part; Imagi
nary part not
used

COMPLEX'S

COMPLEX

Float and

assign to
real part;
imaginary
part set to

zero

Assign to
real part;
imaginary

part set to
zero

Real

assign
real part;
imaginary

part set to
zero

Real

assign

real part;
imaginary

part set to

zero

Assign Real assign

real and

imaginary

parts

Real assign

real and

imaginary

parts

COMPLEX'16 DP Float

and assign
to real

part; imag

inary part

set to zero

DP extend

and assign

to real

part; imag

inary part

set to zero

Assign to

real part;
imaginary

part set to
zero

DP assign

real part;
Imaginary

part set to

zero

DP extend

and assign

real and

imaginary
parts

Assign DP assign

real and

imaginary
parts

COMPLEX'32 QP float

and assign
to real

part; imag
inary part

set to zero

QP extend

and assign

to real

part: imag

inary part
set to zero

QP extend
and assign

real part;

imaginary

part set to

zero

Assign

real part;
imaginary

part set to

zero

QP extend

and assign
real and

imaginary

parts

QP extend

and assign
real and

imaginary

parts

Assign

Figure 21. Conversion Rules for the Arithmetic Assignment Statement a = b.

Terms In Figure 21 are defined as follows;

Assign Transmit the expression value without change. If the expression
value contains more significant digits than the variable a can
hold, the value assigned to a is unpredictable.

Real assign Transmit to a as much precision of the most significant part of the
expression value as REAL*4 data can contain.

DP assign Transmit as much precision of the most significant part of the
expression value as double precision (REAL*8) data can contain.

Chapter 4. Statements 53

Assignment

Fix Truncate the fractional portion of the expression value and trans
form the result to an integer of 4 bytes in length. If the
expression value contains more significant digits than an integer
4 bytes in length can hold, the value assigned to the integer vari
able is unpredictable.

Float Transform the integer expression value to a REAL*4 number,
retaining in the process as much precision of the value as a
REAL*4 number can contain.

DP float Transform the integer expression value to a double precision
(REAL*8) number.

DP extend Extend the real value to a double precision (REAL*8) number.

QP float Transform the integer expression value to a REAL*16 number

QP extend Extend the real value to a REAL*16 number.

Character Assignment Statement
Ifb is a character expression, a must be a character variable, character array
element, or character substring.

None of the character positions being defined in a must be referenced in b
directly or through associations of variables (that is. using COMMON, EQUIV
ALENCE, or argument passing).

The lengths of a and b may be different. The characters of b are moved from
left to right into the corresponding character positions of a. If a has more posi
tions than there are characters in b, the rightmost positions of a are filled with
blanks. Ifa has fewer positions than there are characters in b, only the leftmost
characters of b are moved to fill the positions of a.

A character variable, character array element, or character substring (a) may
also be assigned a value by a WRITE statement to an internal file with unit = a.

Ifyou are doing assignment operations on double-byte characters, you should
use the ASSIGNM service subroutine. See "ASSIGNM Subroutine" on page 277
for more details.

Logical Assignment Statement
Ifb is a logical expression, a must be a logical variable or a logical array
element. The value of b must be either true or false.

Assignment Statement Examples
Assume the type of the following data items has been specified;

Variable Name Type Length
1, J, K Inieger 4, 4, 2
A, B, C, D Real 4, 4, 8, 8
E Complex 8

F(1)....F(5) Real array elements 4

G, H Logical 4. 4
CHAR1 Character 10

The following examples illustrate valid assignment statements using constants,
variables, and array elements as defined above.

54 VS FORTRAN Version 2 Language and Library Reference

statement

A = B

K = B

A = I

Assignment

Description

The value of A is replaced by the current value of B.

The value of B is converted to an integer value, and the value of K is trun
cated on the left to two bytes.

The value of I is converted to a real value, and replaces the value of A.

I = I -i- 1 The value of I is replaced by the value of I + 1.

E = l**j -l-D I is raised to the power J and the result is converted to a real value to
which the value of D Is added. This result replaces the real part of the
complex variable E. The imaginary part of the complex variable Is set to 0.

A = C*D

A = E

E = A

G = .TRUE.

H = .NOT.G

G = 3..GT.I

E = (1.0,2.0)

F(1) = A

E = F(5)

The most significant part of the product of C and D replaces the value of A.

The real part of the complex variable E replaces the value of A.

The value of A replaces the value of the real part of the complex variable
E; the imaginary part is set equal to 0.

The value of G is replaced by the logical value true.

If G is true, the value of H is replaced by the logical value false. If G is
false, the value of H is replaced by the logical value true.

The value of I is converted to a real value; if the real constant 3.0 is
greater than this result, t-he logical value true replaces the value of G. If
3.0 is not greater than the converted I, the logical value false replaces the
value of G.

The value of the complex variable E is replaced by the value of the
complex constant (1.0,2.0). The statement E = (A,B), where A and B are
real variables, is invalid. The mathematical function subprogram CMPLX
can be used to solve this problem. See Chapter 5, "Intrinsic Functions"
on page 243

The value of element 1 of array F is replaced by the value of A.

The real part of the complex constant E is replaced by the value of array
element F(5). The imaginary part is set equal to 0.

C = 99999999.0 Even though C is of length 8, the constant having no exponent is consid
ered to be of length 4. Thus the number will not have the accuracy that
may be intended. If the basic real constant were entered as 99999999.0D0,
the converted value placed in the variable C would be a closer approxi
mation to the entered basic real decimal constant, because 15 decimal
digits can be represented in 8 bytes.

CHAR1 = CHAR1 contains the value 'ABCDEFGHIJ' because CHAR1 is of length 10,
' ABCDEFGHIJ' ahd the constant is of length 10.

CHAR1 = 'ABC CHAR1 contains the value 'ABCbbbbbbbb' becauseCHAR1 is of length 10,
and the constant is only of length 3; thus CHAR1 is padded with blanks.

Chapter 4. Statements 55

AT

AT Statement

statement

CHAR1 =

•ABCDEFGHIJKL'

CHAR1 =

•FGHUV/'ABCDE'

Description

CHAR1 contains the value 'ABCDEFGHIJ' because CHAR1 is of length 10,
and the constant is of length 12; the last two characters In the constant are

not moved into CHAR1.

CHAR1 contains the value 'FGHIJABCDE', the result of the concatenation

operation.

The AT statement identifies the beginning of a debug packet and indicates the
point in the program at which debugging statements are to be inserted.

— Syntax

AT sti

sti

is the statement label of an executable statement in the program unit or
function or subroutine subprogram to be debugged.

The debugging operations specified within the debug packet are performed
prior to the execution of the statement indicated by the statement label {sti} in
the AT statement.

The statement label cannot be specified in another debug packet.

The AT statement identifies the beginning of a debug packet and the end of the
preceding packet (if any) unless this is the last packet, in which case it is ended
by the END DEBUG statement. There may be many debug packets for one
program or subprogram.

For more on debug packets and for examples of the AT statement, see "DEBUG
Statement" on page 71.

56 VS FORTRAN Version 2 Language and Library Reference

BACKSPACE

BACKSPACE Statement
The BACKSPACE statement, when first issued, positions a sequentially
accessed Tile to the beginning of the FORTRAN record last written or read. A
subsequent BACKSPACE statement will reposition the file to the beginning of
the preceding record.

The BACKSPACE statement reestablishes the position of a keyed file to a point
prior to the current file position. Following the BACKSPACE statement, you can
use a sequential retrieval statement to read the record to which the file was
positioned.

— Syntax

BACKSPACE un

BACKSPACE

([UNIT=]ur}
[,IOSTAT=/OS]
[,ERR=s//])

UNIT=un

un is the external unit identifier. It is an integer expression of length 4,
whose value must be zero or positive, un is required.

If the second form of the statement is used, un can, optionally, be preceded
by UNIT = . If UNIT = is not specified, un must appear immediately following
the left parenthesis. The other specifiers may appear in any order. If
UNIT= is specified, all the specifiers can appear in any order.

IOSTAT=/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error is detected.
VSAM return and reason codes are placed in ios. IOSTAT = /os is optional.

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the BACKSPACE statement. If an error is detected, control is trans

ferred to stI.

Valid BACKSPACE Statements;

BACKSPACE 08

BACKSPACE (05,ERR=0300)

BACKSPACE (UNIT=12,IOSTAT=errst,ERR=300)

BACKSPACE (ERR=300,UNIT=12)

BACKSPACE(UNIT=2*IN+2)

BACKSPACE(IOSTAT=IOS,ERR=99999,UNIT=2*IN-10)

Chapter 4. Statements 57

BACKSPACE

Invalid BACKSPACE Statements:

BACKSPACE 08,ERR=235 Parentheses must be specified.

BACKSPACE (ERR=235,08) UN1T= must be specified when un is not first.

When the BACKSPACE statement is encountered, the unit specified by un must
be connected to an external file for sequential or keyed access. (See VS
FORTRAN Version 2 Programming Guide.) If the unit is not connected, an error
is detected.

But when the NOOCSTATUS run-time option is in effect, the unit does not have
to be connected to an external file for sequential access. For more information
on the NOOCSTATUS option, see VS FORTRAN Version 2 Programming Guide.

A BACKSPACE statement positions an external file connected for sequential
access to the beginning of the preceding record. If there is no preceding
record, the BACKSPACE statement has no effect. The BACKSPACE statement

must not be used with external files using list-directed formatting.

An external file connected for sequential access can be extended if the exe
cution of an ENDFILE statement or the detection of an end-of-file is immediately
followed by the execution of a BACKSPACE and a WRITE statement on this file.

If the external file connected for sequential access is at the end-of-file, either
after an ENDFILE operation or after a READ that resulted in end-of-file. two
BACKSPACE statements are necessary to position the data set to the beginning
of its last logical record.

A BACKSPACE issued to a file connected for keyed access positions the file to
the beginning of the first record whose key value is the same as that in the
record that precedes the current file position. If there is no preceding record,
the file position remains at the beginning of the file.

The BACKSPACE statement must not be used with external files written using
NAMELIST. If it is used, the result is unpredictable.

The BACKSPACE statement may be used with asynchronous READ and WRITE
statements, provided that any input or output operation on the file has been
completed by the execution of a WAIT statement. A WAIT statement Is not

required to complete the BACKSPACE operation.

If an error is detected, transfer is made to the statement label designated by
the ERR specifier. If lOSTAT = /os is specified, a positive integer value is
assigned to ios when an error is detected. Execution continues with the state
ment label designated by the ERR specifier (if present) or with the next state
ment if no ERR specifier is included on the BACKSPACE statement.

58 VS FORTRAN Version 2 Language and Library Reference

BLOCK DATA

BLOCK DATA Statement
The BLOCK DATA subprogram initializes values for variables and array ele
ments in named common blocks.

Syntax

BLOCK DATA [name]

name

is the name of the block data subprogram. This name is optional. It must
not be the same as the name of another subprogram, a main program, or a
common block name in the executable program. There can be only one
unnamed block data subprogram in an executable program.

To initialize variables in a named common block, a separate subprogram must
be written. This separate subprogram contains only the BLOCK DATA,
IMPLICIT, PARAMETER, DATA, COMMON, DIMENSION, SAVE, EQUIVALENCE,
and END statements, comment lines, and explicit type specification statements
associated with the data being defined. This subprogram is not called; its pres
ence provides initial data values for named common blocks. Data may not be
initialized in unnamed common blocks.

The BLOCK DATA statement must appear only as the first statement in the sub
program. Statements that provide initial values for data items cannot precede
the COMMON statements that define those data items.

Any main program or subprogram using a named common block must contain
a COMMON statement defining that block. If initial values are to be assigned, a
block data subprogram is necessary.

A particular common block may not be initialized in more than one block data
subprogram.

Local variables cannot be declared in a BLOCK DATA statement. A variable

(or array) equivalenced to another in a common block is considered to be in
that common block.

All elements of a named common block must be listed in the COMMON state

ment, even though they are not all initialized. For example, the variable A in
the COMMON statement in the following block data subprogram does not
appear in the DATA statement.

Example 1:

BLOCK DATA

COMMON /ELN/C,A,B
COMPLEX C

DATA C/(2.4,3.769)/,B/1.2/
END

Data may be entered into more than one common block in a single block data
subprogram.

Chapter 4. Statements 59

CALL

Example 2:

BLOCK DATA VALUEl

COMMON /ELN/ C,A,B
COMMON /RMG/ Z,Y
COMPLEX C

DOUBLE PRECISION Z

DATA C /(2.4, 3.769)/
DATA B /1.2/
DATA Z /7.64980825D0/
END

As a result of the operation In this example, in BLOCK DATA named VALLIE1,

COMMON/ELN/C,A,B

will have the complex variable C real part initialized to 2.4 and the imaginary
part initialized to 3.769. The variable A will not be initialized and B will be ini
tialized to 1.2.

COMMON/RMG/Z,Y

will have the double precision variable Z initialized with the double precision
constant 7.64980825 and Y will not be initialized.

Block IF Statement
See "IF Statements" on page 127.

CALL Statement
The CALL statement:

1. Evaluates actual arguments on the CALL statement that are expressions

2. Passes actual arguments that will be associated with dummy arguments
defined in the subroutine subprogram

3. Transfers control to a subroutine subprogram

— Syntax

CALL name [([argi [, arg2]...])]

name

is the name of a subroutine subprogram or an entry point. This name may
be a dummy argument in a SUBROUTINE statement or in an ENTRY state
ment.

arg

is an actual argument that is being supplied to the subroutine subprogram.
The argument may be a variable, array element, or array name; a constant;
an arithmetic, logical, or character expression; a function or subroutine
name; or an asterisk {*) followed by the statement label of an executable
statement that appears in the same program unit as the CALL statement.

If no actual argument is specified, the parentheses may be omitted.

The CALL statement transfers control to a subroutine subprogram and passes
actual arguments that will be associated with dummy variables. This associ-

60 VS FORTRAN Version 2 Language and Library Reference

CALL

ation is done by passing the addresses of the actual arguments to the subrou
tine subprogram.

The CALL statement can be used in a main program, a function subprogram, or
a subroutine subprogram, but a subprogram must not refer to itself directly or
indirectly and must not refer to the main program. A main program cannot call
itself.

If name is a dummy argument in a subprogram containing CALL name, this
CALL statement can be executed only if the subprogram is given control at one
of its entry points where name appears in the list of dummy arguments. (See
"EXTERNAL Statement" on page 95.)

Valid CALL statements:

Example 1:

Assume that the following subroutine definition has been made:

SUBROUTINE SUBl

END

The next two statements are valid ways to call a subroutine with no arguments.

CALL SUBl

CALL SUB1()

Example 2:

Assume that this subroutine definition has been made:

SUBROUTINE SUB2(A, B, C)
REAL A

REAL B(*)
REAL C(2, 5)

END

And that these variables have been declared:

DIMENSION W(10), X(10), Z(5)
REAL Y

Example with a variable and two array names:

CALL SUB2(Y, W, X)

Example with an array element and two array names:

CALL SUB2(Z(3), X, W)

Example with a constant and two array names:

CALL SUB2(2.5, W, X)

Example with an expression and two array names:

CALL SUB2(5*Y, X, W)

Chapter4. Statements 61

CALL

Note that the size of an actual array passed as an argument must be larger
than or equal to the size of the corresponding dummy array. For information on
array layouts, see "Subscripts" on page 25.

Example 3:

For the following examples, assume this subroutine definition has been defined:

SUBROUTINE SUB3(LQGL) ,
LOGICAL LOGL

END

With this variable declaration:

LOGICAL L

Example using a logical variable:

Example using a logical constant:

CALL SUB3(.FALSE.)

CALL SUB3(L)

Example using a logical expression:

CALL SUB3(X(5) .EQ. Y) ^

Example 4:

Assume the following subroutine definition was made:

SUBROUTINE SUB4(CHAR)
CHARACTER*(*) CHAR

END

With the following declaration:

CHARACTER*5 Cl, C2

Example using a character variable:

CALL SUB4(C1)

Example using a character expression:

CALL SUB4(C1 // C2)

62 VS FORTRAN Version 2 Language and Library Reference *
/

Example 5:

Assume subroutines SUBS and SUB6 are as follows:

SUBROUTINE SUB5(SUBX, X, Y, FUNCX)
EXTERNAL SUBX, FUNCX
Z = FUNCX(X, Y)
CALL SUB6(SUBX)

END

SUBROUTINE SUB6(SUBY)
EXTERNAL SUBY

CALL SUBY

END

With the following declaration:

EXTERNAL SUBZ, FUNCA

Example of passing a subroutine name and a function name:

CALL SUB5(SUBZ, 1.0, 2.0, FUNCA)

Example 6;

SUBROUTINE SUB7 (A, B, *, *, *)

IF(A .LT. 0.0) RETURN 1
IF(A .EQ. 0.0) RETURN 2
RETURN 3

END

Example of passing statement labels. Execution will continue at the statement
labeled 100, 200, or 300 depending on the value of the RETURN specifier. Oth
erwise, execution will continue at the statement after the call.

CALL SUB7(X(3), L0G(Z(2)), *100, *200, *300)

Invalid CALL statements: Assume the same subroutine definitions as Example
5 above. The following example results indirectly in a call by one subroutine to
itself. This is invalid, but cannot be checked by the compiler.

CALL SUB5(SUB6, X(5), Y, COS)

CHARACTER Type Statement
See "Explicit Type Statement" on page 91.

Chapter 4. Statements 63

CLOSE

CLOSE Statement
A CLOSE statement disconnects a unit.

— Syntax

CLOSE

([UNIT =]un

t, ERR = s// 3

[, STATUS = sta]
[, IOSTAT = /os])

UNIT = un

un is the external unit identifier. It is an integer expression of length 4,
whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT= . If UNIT= is not
specified, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT= is included on the
CLOSE statement, all the specifiers can appear in any order.

ERR=sf/

sti is the statement label of an executable statement in the same program

unit as the CLOSE statement. If an error is detected, control is transferred
to stI.

STATUS = sfa

sfa is a character expression whose value (when any trailing blanks are
removed) must be KEEP or DELETE, sta determines the disposition of the
file that is connected to the specified unit.

If the STATUS specifier is omitted, the assumed value is KEEP, unless the
file status prior to execution of the CLOSE statement is SCRATCH, in which
case the assumed value is DELETE. For a discussion on the concept of file
status, see page 151.

Note: The run-time options OCSTATUS and NOOCSTATUS affect the opera
tion of the CLOSE statement. For details on these options, see VS

FORTRAN Version 2 Programming Guide.

If KEEP is specified for a file that exists, the file continues to exist after the
execution of the CLOSE statement. If KEEP is specified for a file that does
not exist, the file will not exist after the execution of the CLOSE statement.
If DELETE is specified, VS FORTRAN attempts to delete the file.

If KEEP is specified for a file whose status prior to execution of the CLOSE
statement is SCRATCH, an error is detected.

IOSTAT =/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error is detected. For
VSAM files, return and reason codes are placed in ios.

Execution of a CLOSE statement that refers to a unit may occur in any program
unit of an executable program and need not occur in the same program unit as
the execution of an OPEN statement referring to that unit. When the CLOSE
statement is encountered, the unit specified by un need not be connected to a

file. If the unit is connected, the file need not exist.

64 VS FORTRAN Version 2 Language and Library Reference

CLOSE

After a unit has been disconnected by execution of a CLOSE statement, it may
be connected again within the same executable program to the same file or a
different file.

After a named file has been disconnected by execution of a CLOSE statement, it
may be connected again within the same executable program to the same unit
or a different unit; an unnamed file may only be reconnected to the same unit.
(See "OPEN Statement" on page 151.)

When execution ends normally, all units are disconnected. Each unit is closed
with the status KEEP, unless the file status prior to termination of execution was
SCRATCH, in which case the unit is closed with the status DELETE.

Assume that the type of the following variables has been specified as follows:

Variable Names Type Length
IN, lACT, Z INTEGER 4

DELETE. STATUS CHARACTER. 6

and that

DELETE = 'DELETE'

The following statements are valid:

Example 1:

CL0SE(6+IN)

CL0SE(Z*IN+2)

CL0SE(Z*IN+3,STATUS=DELETE)

CLOSE(IOSTAT=IACT,ERR=99999,STATUS='KE'//'EP ',UNIT=0)

Example 2:

STATUS='KEEP'

CL0SE(UNIT=9,STATUS=DELETE)

CLOSE(UNIT=10,STATUS=STATUS)

CL0SE(UNIT=11,STATUS='KEEP')

Chapter 4. Statements 65

COMMON

Comments
Comments provide documentation for a program. If you are working with fixed
format source code, you must use fixed-form comments; if you are working with
free format source code, you must use free-form comments.

For more information on how to use comments in your program, see
"Comments" on page 12.

COMMON Statement
The COMMON statement makes it possible for two or more program units to
share storage and to specify the names of variables and arrays that are to
occupy the area.

I Syntax

COMMON [/[namely] listi [[,] /[/?ame2]/ Iist2 ...]

name

is an optional common block name. These names must always be enclosed
in slashes. They cannot be the same as names used in PROGRAM, SUB

ROUTINE. FUNCTION, ENTRY, or BLOCK DATA statements. They cannot be
intrinsic function names that are referenced in the same program unit.

The form // (with no characters except, possibly, blanks between the
slashes) denotes blank common. If name^ denotes blank common, the first

two slashes are optional.

The comma preceding the common block name designator /name/ is

optional.

list

is a list of variable names or array names that are not dummy arguments.

If a variable name is also a function name, subroutine name, or entry name,
it must not appear in the list. If the list contains an array name, dimensions
may also be declared for that array. (See "DIMENSION Statement" on
page 76.)

A given common block name may appear more than once in a COMMON state
ment. or in more than one COMMON statement in a program unit.

Blank and named common entries appearing in COMMON statements are

cumulative throughout the program unit. Consider the following two COMMON
statements:

COMMON A, B, C /R/ D, E /S/ F

COMMON G, H /S/ I, J /R/R/A^

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H, W/R/ D, E, R /S/ F, I. J

Character and noncharacter data types can be mixed in a common block.

Although the entries in a COMMON statement can contain dimension informa

tion, object-time dimensions may never be used. A common block resides in a
fixed location in storage during the execution of a program. The length of a

66 VS FORTRAN Version 2 Language and Library Reference

COMMON

blank common can be extended by using an EQUIVALENCE statement, but only
by adding beyond the last entry. Arrays may be declared In a common state
ment. but they must be actual arrays.

In the following example, the complex variable, CV, and the real array. RV, refer
to the same storage locations.

The statement: RV{2) = 1.2 will assign the value of 1.2 to the imaginary part of
CV.

Main Program Subroutine

COMMON CV SUBROUTINE SUB

C0MPLEX*8 CV COMMON RV(2)

CALL SUB RV(2) = 1.2

STOP RETURN

END END

Blank and Named Common Blocks

Variables and arrays may be placed in separate common blocks by giving them
distinct common block names. Those blocks that have the same name occupy

the same storage area. The name cannot be the same as the main program
name, subprogram name, or entry name.

The variables and arrays of a common block may be mixed character and non-
character data types.

Naming these separate blocks permits a calling program to share one common
block with one subprogram and another common block with another subpro
gram. It also makes it easier to document the program.

The differences between blank and named common blocks are:

There is only one blank common block in an executable program, and it has
no name.

There may be many named common blocks, each with its own name.

Blank common blocks may have different lengths in different program units.

Each program unit that uses a named common block must define it to be of
the same length.

Variables and array elements in a blank common block cannot be assigned
initial values.

Variables and array elements in a named common block may be assigned
Initial values by DATA statements or by explicit type specification state
ments in a block data subprogram.

Variables that are to be placed in a named common block are preceded by the
common block name enclosed in slashes. For example, the variables A„ B, and

C are placed in the named common block, HOLD, by the following statement:

Chapter 4. Statements 67

CONTINUE

COMMON /HOLD/ A,B,C

In a COMMON statement, a blank common block is distinguished from a named
common block by placing two consecutive slashes before the variables (or, if
the variables appear at the beginning of the COMMON statement, by omitting
any common block name). For example,

COMMON A, B, C /ITEMS/ X, Y, Z / / D, E, F

The variables A, B, C, D. E, and F are placed in a blank common block in that
order; the variables X, Y, and Z are placed in the named common block, ITEMS.

COMPLEX Type Statement
See "Explicit Type Statement" on page 91.

Computed GO TO Statement
See "GO TO Statements" on page 125.

CONTINUE Statement
The CONTINUE statement is an executable control statement that takes no

action. It can be used to designate the end of a DO loop, or to label a position
in a program.

— Syntax -

CONTINUE

CONTINUE is a statement that may be placed anywhere in the source program
(where an executable statement may appear) without affecting the sequence of
execution. It may be used as the last statement in the range of a DO loop.
Using it to end a DO loop will allow you to avoid using a statement that is pro
hibited from ending a DO loop.

68 VS FORTRAN Version 2 Language and Library Reference

DATA Statement

r\

DATA

The DATA statement defines initial values of variables, array elements, arrays,

and substrings.

Syntax

DATA listi /distil [[,] Iist2 IdistZI... 1

list

is a list of variables, array elements, arrays or substrings, and implied DO
lists. {See "Implied DO in a DATA Statement" on page 80.) The comma
preceding list2... is optional.

Subscript and substring expressions used in each list can contain only
integer constants or names of integer constants.

dist

is a list of constants or the names of constants. Integer and real constants
may, optionally, be signed. Any of these constants may be preceded by r*,
where r is a nonzero unsigned Integer constant or the name of such a con
stant. When the form r* appears before a constant, it indicates that the
constant is to be repeated r times.

A DATA initialization statement is not executable. DATA statements must

follow all other specification statements which refer to the same item; however,
DATA statements may be intermixed with all specification statements except for
the IMPLICIT statement.

There must be a one-to-one correspondence between the total number of ele
ments specified or implied by the list list and the total number of constants
specified by the corresponding list dist after application of any replication
factors, r.

Integer, real, and complex variables or array elements must be initialized with
integer, real, or complex constants; conversions take place according to the
arithmetic assignment rules, if necessary.

A hexadecimal constant can be used to initialize any type of variable or array
element. When initializing a variable of character type with hexadecimal data,
the data is right-justified and extended to the left with zeros to fill the substring
being initialized.

If a hexadecimal constant initializes a complex data type, one constant is used
that initializes both the real and the imaginary parts, and the constant is not
enclosed in parentheses. If the constant is smaller than the length (in bytes) of
the entire complex entity, zeros are added on the left. If the constant is larger,
the leftmost hexadecimal digits are truncated.

A Hollerith constant can be used to initialize a noncharacter variable or array

element.

A logical variable or logical array can be initialized with T instead of .TRUE, and
F instead of .FALSE..

Character items can be initialized by character data. Each character constant
initializes exactly one variable, one array element, or one substring. If a char-

Chapter 4. Statements 69

DATA

acter constant contains more characters than the item it initializes, the addi
tional rightmost characters in the constant are ignored. Ifa character constant
contains fewer characters than the item it initializes, the additional rightmost
characters in the item are initialized with blank characters. {Each character
represents one byte of storage.)

A variable in a blank common cannot be defined with an initial value. A vari
able in a named common block can be initially assigned a value only in a block
data subprogram. Because of this constraint, entities that are associated with
each other through COMMON or EQUIVALENCE statements are considered to
be the same entity.

Valid DATA Statements:

Example 1:

LOGICAL L(4)
CHARACTER*4 C

DIMENSION 0(50),F(5),G(9)
DATA A, B, S/5.0,6.1,7.3/,0/25*1.0,25*2.0/,E/5.1/
DATA F/5*1.0/, G/9*2.0/, L/2*.TRUE.,2*F/, C/'FDUR'/

Example 2:

CHARACTER*4 CC(5)
DATA CC(1){1:2)/'AB7,CC(1)(3:4)/'CD7
DATA CC(2)/ZC5C6C7C8/,I/ZF8/,R/Z00/

Example 3:

PARAMETER (DEGI=10.2,NRANGE=7)
DATA DEG/DEGI/,IRANGE/NRANGE/

Example 4:

DIMENSION A(5)
DATA A(1),A(2),A(3),A(4),A(5)/1.0,2.0,3.0,4.0,5.0/

Example 5:

DIMENSION ARRAYE(10,10)
DATA ((ARRAYE(I,J),1=1,10),J=1,10)/100*0.0/

70 VS FORTRAN Version 2 Language and Library Reference

DEBUG

DEBUG Statement
The DEBUG statement sets the conditions for operation of the debug facility and
designates debugging operations that apply to the entire program unit (such as
subscript checking).

Syntax

DEBUG optioni [, option2...}

An option may be any of the following:

UNIT (UP)
UP is an integer constant that represents a unit number. All debugging
output is placed in this file, which is called the debug output file. If this
option is not specified, any debugging output is placed in the installation-
defined output file. All unit definitions within an executable program must
refer to the same unit.

SUBCHK (a/, a2, ...)
a is an array name. The validity of the subscripts used with the named
arrays is checked by comparing the subscript combination with the size of
the array. If the subscript value exceeds the size of the array, a message is
placed In the debug file. Program execution continues, using the incorrect
subscript. If the list of array names is omitted, all arrays in the program are
checked for valid subscript usage. If the entire option is omitted, no arrays
are checked for valid subscripts.

TRACE

This option must be in the DEBUG specification statement of each program
or subprogram for which tracing is desired. If this option is omitted, there
can be no display of program flow by statement label within this program.
Even when this option is used, a TRACE ON statement must appear in the
first debug packet in which tracing is desired.

INIT (//, 12, ...)
/ is the name of a variable or an array that is to be displayed in the debug
output file only when the variable or the array elements are assigned a
value. If / is a variable name, the name and value are displayed whenever
the variable is assigned a new value in either an assignment, a READ, or
an ASSIGN statement. If / is an array name, the array element is displayed.
If the list of names is omitted, a display occurs whenever the value of a var
iable or an array element is assigned a value. If the entire option is
omitted, no display occurs when values are assigned.

SUBTRACE

This option specifies that the name of this subprogram is to be displayed
whenever it is entered. The return message is to be displayed whenever
execution of the subprogram is completed.

The options in a DEBUG statement may be given in any order and must be sep
arated by commas.

Ail debugging statements must precede the first statement of the program unit
to which they refer.

In a subroutine, the debug statements must appear immediately before the
SUBROUTINE statement, in a function subprogram, the debug statements must

Chapter 4. Statements 71

DEBUG

appear immediately before the FUNCTION statement. The required statement
sequence is:

1. DEBUG statement

2. Debug packets

3. END DEBUG statement

4. First of the source program statements of a program unit to be debugged

A debug packet begins with an AT statement and ends when either another AT

statement or an END DEBUG statement is encountered.

Debug statements are written in either fixed form or free form and follow the

same rules as other FORTRAN statements.

In addition to the language statements, the following debug statements are
allowed:

TRACE ON

TRACE OFF

DISPLAY

Ail FORTRAN statements are allowed in a debug packet, except as listed in
"Considerations when Using DEBUG," below.

Considerations when Using DEBUG
When setting up a debug packet, use the following precautions:

•- Any DO loops or block IF, ELSE IF, or ELSE statements initiated within a
debug packet must be wholly contained within that packet.

Statement labels within a debug packet must be unique. They must be dif
ferent from statement labels within other debug packets and within the
program being debugged.

An error in a program should not be corrected with a debug packet; when
the debug packet is removed, the error remains in the program.

No specification statements can appear in a debug packet; nor can any of
the following statements:

BLOCK DATA

ENTRY

FUNCTION

PROGRAM

statement function

SUBROUTINE

The program being debugged must not transfer control to any statement
label defined in a debug packet; however, control may be returned from a
packet to any point in the program being debugged. In addition, no debug
packet may refer to a label defined in another debug packet. A debug
packet may contain a RETURN, STOP, or CALL statement.

> The SUBCHK function of DEBUG does proper subscript checking of an array
if, and only if, that array is a single-dimensioned array with a lower bound
of 1. If the lower bound is not 1 and an error is detected, the message will
give the index to the element as if it had a lower bound of 1. If multidimen-

72 VS FORTRAN Version 2 Language and Library Reference

O

n

DEBUG

sional arrays are being checked for valid subscripts, the array is perceived
to be a single-dimensioned array of the appropriate number of array ele
ments. The subscripts are evaluated and the check indicates whether you
are referencing an array element within the range of the array, but not
whether one of the subscripts is invalid. Individual subscripts are not

checked for their valid range.

Thus, if array A is dimensioned as A{5,6) and a reference is made to A(K,2),
where K is 7, the SUBCHK function will not flag this because the subscript

value yields an element within array A. The values of the first and second

subscripts are not checked for having values of 1 through 5 or 1 through 6,
respectively.

DEBUG Examples:

Example 1:

DEBUG UNIT[6),SUBCHK
END DEBUG

PROGRAM TEST

END

This example checks all arrays for valid subscripts.

Example 2:

DEBUG UNIT(6)
AT 11

WRITE(6,21)A,B,C
21 F0RMAT(1X,'A=',I10,'B=',110,'C=',110)

END DEBUG

INTEGER A,B,C

10 B=A* SQRT(FLOAT(C))
11 IF(B)4O,50,60

The values of A. B. and C are to be examined as they were at the completion of
the arithmetic operation in statement 10. Therefore, the statement label speci
fied in the AT statement is 11. The values of A. B, and C are written to the file
connected to unit 6.

Chapter 4. Statements 73

DEBUG

Example 3:

10

15

20

25

DEBUG TRACE, UNIT(6)
AT 10

TRACE ON

AT 25

TRACE OFF

AT 35

DISPLAY C

TRACE ON

END DEBUG

A=2.0

L= 1

B = A + 1.5

DC 30 I = 1,5

30 CONTINUE

35 C = B + 3.415

40 D=C**2

45 CALL SUB1(D,L,R)
STOP

END

DEBUG SUBTRACE,TRACE
AT 4

TRACE ON

END DEBUG

SUBROUTINE SUB1(X,I,Y)

100

Y=FUNC1(X-INT(X))
WRITE (6,*) Y

RETURN

END

DEBUG SUBTRACE,TRACE
AT 100

TRACE ON

END DEBUG

FUNCTION FUNCl(Z)

FUNCl = COS(Z) + SIN(Z)

RETURN

END

74 VS FORTRAN Version 2 Language and Library Reference

r\

DELETE

After statement 10 is encountered, tracing begins, as specified by the TRACE
ON statement in the first debug packet. After statement 25 is encountered,
tracing stops, as specified by the TRACE OFF statement in the second debug
packet. After statement 35 Is encountered, tracing begins again and the value
of C is written to the debug output file, as specified in the third debug packet.

When SUB1 is entered, the words "SUBTRACE SUB1" appear in the output

because of the SUBTRACE option on the DEBUG statement in subroutine SUB1.
When statement 4 is encountered, tracing begins. When FUNC1 is entered, the
words "SUBTRACE FUNC1" appear in the output. When FUNC1 is exited, the
words "SUBTRACE RETURN FROM FUNC1" appear in the output, and, similarly,
at exit from SUB1, the words "SUBTRACE RETURN FROM SUB1" appear. Note
that the output from the WRITE statement in SUB1 will go to the same unit (6)
as the DEBUG output.

DELETE Statement
The DELETE statement removes a record from a file connected for keyed

access. It removes the record retrieved by an immediately preceding READ
operation. No other operation, such as BACKSPACE or WRITE, can be issued
for the same file between the READ and DELETE statements.

— Syntax

DELETE un

DELETE

([UNIT=]un

[, IOSTAT=/os]
[, ERR = sf/])

UNIT=un

un is the external unit identifier. It is an integer expression of length 4
whose value must be zero or positive, un is required.

If the second form of the statement is used, un can, optionally, be preceded
by UNIT = . If UNIT= is not specified, un must appear immediately following
the left parenthesis. The other specifiers can appear in any order. If
UNIT= is included on the DELETE statement, all the specifiers can appear

in any order.

IOSTAT = /os

ios is an integer variable or an integer array element of length 4. It is set
positive if an error is detected; it is set to zero if no error is detected. For
VSAM fiies, return and reason codes are placed in ios. lOSTAT = /os is
optional.

ERR = sf/

sti is the statement labei of an executable statement in the same program

unit as the DELETE statement. If an error is detected, control is transferred

to sf/. ERR = err is optional.

Chapter 4. Statements 75

DIMENSION

DIMENSION Statement
The DIMENSION statement specifies the name and dimensions of an array.

— Syntax

DIMENSION a1(dim1) [, a2{dim2)...]

a

Is an array name.

dim

is composed of one through seven dimension bounds, separated by
commas, that represent the limits for each subscript of the array in the
form:

el;e2

or

e2

where:

el

is the lower dimension bound. It is optional. If el (with its following
colon) is not specified, its value is assumed to be 1.

e2

is the upper dimension bound and must always be specified.

(For rules governing dimension bounds, see "Size and Type Declaration
of an Array" on page 26.)

Each a in a DIMENSION statement declares that a is an array in that program
unit. Array names and their bounds may also be declared in COMMON state
ments and in type statements. Only one declaration of the array name (a) as
an array is permitted in a program unit.

Valid DIMENSION Statements:

DIMENSION A(10), ARRAY(5,5,5), LIST(10,100)

DIMENSION A(l:10), ARRAY(1:5,1:5,1;5), LIST(1:10,1:100)

DIMENSION B(0:24), C(-4:2), DATA(0:9,-5:4,10)

DIMENSION G(I:J,M:N)

DIMENSION ARRAY (M*N:I*J)

DIMENSION ARRAY (M*N:I*J,*)

76 VS FORTRAN Version 2 Language and Library Reference

DO

DISPLAY Statement
The DISPLAY statement displays data in NAMELiST output format, it may
appear anywhere within a debug packet.

— Syntax

DO Statement

DISPLAY list

list

is a list of variable or array names separated by commas.

The DISPLAY statement eliminates the need for FORMAT or NAMELIST and

WRITE statements to display the results of a debugging operation. The data is
placed in the debug output file.

The effect of a DISPLAY list statement is the same as the foliowing source ian-
guage statements:

NAMELiST /name/ list

WRITE {UP, name)

where name is the same in both statements.

Array elements, dummy arguments, and substring references may not appear
in the list.

For examples and explanations of the DISPLAY statement, see "DEBUG
Statement" on page 71.

The DO statement controls the execution of the statements that follow it, up to
and including the statement that denotes the end of the DO loop. These state
ments are called the "range of the DO" or a "DO loop."

— Syntax

DO [sf/E,Il/ = e/, e2[.e3]

sti

is the statement label of an executable statement, in the same program unit

as the DO statement, that denotes the end of the DO loop. If you do not
specify stI, you must use an END DO statement to indicate the end of the
DO loop. If you code both an END DO statement and stI, then stI must be

the statement label of the END DO statement. The statement at stI must not

be one of the following:

An unconditional or assigned GOTO

block IF, ELSE, ELSE IF, END IF, arithmetic IF

INCLUDE

•- STOP, RETURN, END

Another DO statement

Chapter 4. Statements 77

DO

/

is an integer, real, or double precision variable (not an array element)
called the DO variable.

el, e2, and e3
are integer, real, or double precision arithmetic expressions that define the
DO-loop iteration, el is the initial value; e2 is the test value. The test
value, also called the terminal value, is the value compared to the current
value for the DO variable (the value for which the DO loop processing is to
end). e3, the increment, is optional and cannot have a value of 0; if it is
omitted, its value is assumed to be 1, and the preceding comma must be
omitted. The control parameters, ml, m2, and m3, are established by eval
uating el, e2, and e3, respectively. Evaluation includes, if necessary, con
version to the type of the DO variable according to the rules for arithmetic
conversion.

Note: The use of real numbers for DO statement parameters (initial value,
test value, or increment) can lead to unexpected results. A floating point
number is only an approximation of the real number it represents. If a DO
statement parameter cannot be represented exactly in a computer, the iter
ations through a loop may not occur as expected, and the parameter's use
is not recommended.

The DO statement is processed once. When the DO statement is processed, /
is initialized to the value of ml.

The statements in the range of the DO are executed only if:

ml is less than or equal to m2, and m3 is greater than 0
or

ml is greater than or equal to m2, and m3 is less than 0.

If one of the above relationships is true, the statements in the range of the DO
are executed, using the initial value of / (initialized from miy, on each suc
ceeding iteration, / is incremented by the value of m3. The number of iterations
that can be executed, called the iteration count, is the value of:

MAX (INT((m2-m/ + m3)/m3),0).

When the iteration count is 0, execution continues with the statement following
the last statement of the range of the DO, or the next outer DO if the statement
labeled sti is shared by more than one DO.

If one of the above relationships is not true, execution continues with the state
ment following the last statement of the range of the DO, or the next outer DO if
the statement labeled sH is shared by more than one DO.

The DO variable should not be redefined within the range of the DO loop. No
transfers may be made to any of the executable statements within the range of
the DO by statements outside the range of the DO.

You can nest DO loops; if you nest one DO loop within another, you must
include the range of the i^ner DO loop entirely within the range of the outer DO
loop. You can use the same terminal statement for both the inner and the outer
DO statement ranges, but remember that this shared terminal statement is
actually part of the inner loop.

78 VS FORTRAN Version 2 Language and Library Reference

DO

I You can also code a DO WHILE loop within a DO loop and a DO loop within a

^ I DO WHILE loop. You must Include the range of the inner loop entirely withinI the range ofthe outer loop. The loops may not use the same terminal state-
I ment.

Ifyou code a DO loop within a block IF, ELSE IF, or ELSE block, make sure that
the range of the DO loop is completely contained within that block. If you code
an IF-THEN-ELSE structure within a DO loop, ensure that the entire structure,
including END IF, is within the range of the DO loop. {You cannot use the END
IF as the terminal statement for the DO loop.)

When you execute a DO statement, the DO loop becomes active. It remains
active until one of the following occurs:

*• The loop processes completely.

The program processes a RETURN statement within the DO loop's range.

A transfer is made out of the DO loop's range.

Any STOP statement is processed anywhere in the loop.

Program processing is ended because of an error condition.

Valid DO Statements:

The following program fragment illustrates the use of a negative increment.

DIMENSION IA(2Q)
lEND = 20

INCR = 1

DO 10, I = IEND/2, 1, -INCR
10 IA(I) = IA(I) + IA(I+1)

The iteration count for the above example is 10; that is.

Iteration Count = MAX(INT((1 - 10 - 1)/ -1), 0) = 10

The following program is an example of DO loop nesting. Two inner DO loops

— are nested within one outer DO loop.

DO 30 I = 1, 2
PRINT *, 'OUTER', I
DO 10 J = 1, 4, 2
PRINT *, 'INNER J', I, J

10 C0NTINUE

DO 20 K = 2, 4, 2
PRINT *, 'INNER K', I, K

20 CONTINUE

30 CONTINUE

Results from the nested DO example:

OUTER 1

INNER J 1 1

INNER J 1 3

INNER K 1 2

' • INNER K 1 4
OUTER 2

INNER J 2 1

Chapter 4. Statements 79

DO

INNER J 2 3

INNER K 2 2

INNER K 2 4

The following program fragments show the proper way to use an END DO state
ment to denote the end of a DO loop.

Without a statement label:

DO I = 1,10
A(I) = A(I) + 1

END DO

With a statement label:

DO 10 I = 1,10
A(I) = A(I) + 1

10 END DO

Implied DO In a DATA Statement
The form of an implied DO list in a DATA statement is:

Syntax

(dlist, i = ml, m2 [, m31)

where:

dlist

is a list of array element names and implied DO lists.

is the name of an integer variable called the implied DO variable.

ml, m2, and m3

are each integer constants or names of integer constants, or expressions

The range of an implied DO list is dlist. An iteration count is established from
ml, m2, and m3 exactly as for a DO-Ioop, except that the iteration count must
be positive.

Upon completion of the implied DO, the implied DO variable is undefined and
may not be used until assigned a value In a DATA statement, assignment state
ment. or READ statement.

Each subscript expression in dlist must be an integer constant or an expression
containing only integer constants or names of integer constants. The
expression may contain implied DO variables of implied DO lists that have the
subscript expression within their ranges.

80 VS FORTRAN Version 2 Language and Library Reference

i
containing only integer constants or names of integer constants. An ^
expression may contain implied DO variables of other surrounding implied
DO lists that have this implied DO list within their ranges (dlist). m3 is
optional; if omitted, it is assumed to be 1, and the preceding comma must
also be omitted.

DO

Valid Implied DO Statement:

The following example uses the implied DO to initialize a two-dimensional char
acter array.

CHARACTER CHAR1(3,4)
DATA ((CHAR1(I,J), J=l,4), 1=1,3)

The resultant array would be initialized as follows:

Row 1: A B C D

Row 2: E F G H

Row 3: 1 J K L

Implied DO in an Input/Output Statement
If an implied DO appears in the list parameter of an input/output statement, the
items specified by the implied DO are transmitted to or from the file. The
implied DO list in an input/output statement is of the form:

{dlist, i = ml, m2 [, m3])

where:

dlist

is an input/output list.

/

is the name of an integer, real, or double precision variable (not an array
element) called the DO variable.

ml, ni2, and m3
are integer, real, or double precision arithmetic expressions. The values of
the expressions ml, m2, and m3 are converted to the type of the DO vari
able /, if necessary. m3 is optional and cannot have a value of 0; if it is
omitted, its value is assumed to be 1. and the preceding comma must be
omitted.

In an input statement, the DO-variable /, or an associated entity, must not
appear as an input list item in dlist. When an implied-DO list appears in an
input/output list, the list items in dlist are specified once for each iteration of
the implied DO list with appropriate substitution of values for any occurrence of
the DO-variable /.

For example, assume that A is a variable and that B, C, and D are one-

dimensional arrays, each containing 20 elements. Then the statement:

READ (UNIT=5)A,B,(C(I),1=1,4),0(4)

reads one value into A, the next 20 values into B, and the next 4 values into the

first four elements of the array C, and the next value into the fourth element of.
D.

Or the statement:

^ WRITE (UNIT=6)A,B,(C(I),I=1,4),D(4)
writes one value from A, the next 20 values from B, and the next 4 values from

the first four elements of the array C, and the next value from the fourth
element of D.

Chapter 4. Statements 81

DO WHILE

Ifthe subscript (!) were not included with the array C, the entire array would be
transferred four times.

Implied DCs can be nested, if required. For example, to read an element Into
array B after values are read into each row of a 10-by-20 array A, the following
input statement would be written:

READ (UNIT=5)((A(I,J),J=1,2Q),B(I],I=1,10)

Or, to write an element from array 8 after values are written into each row of a
10x20 array A. the following output statement would be written:

WRITE {UNIT=5)((A(I,J),J=1,20),B(I),I=1.1Q)

The order of the names in the list specifies the order in which the data is to be

transferred.

DOUBLE PRECISION Type Statement
See "Explicit Type Statement" on page 91.

DO WHILE Statement
The DO WHILE statement controls the execution of a group of statements that
follow it, up to and including the required terminating END DO statement, based
on the value of a logical expression. This group of statements is called the
"range of the DO WHILE" or a "DO WHILE loop."

Syntax

DO [sf/ [,]] WHILE (m)

sti

m

is the statement label of the END DO statement, in the same program unit
as the DO WHILE statement, that denotes the end of the DO WHILE loop.
(Whether or not the statement label is used, an END DO statement must be
used to denote the end of the DO WHILE loop.)

is any logical expression.

The execution of a DO WHILE statement causes the logical expression m to be
evaluated. If m is true, then the statements in the range of the DO WHILE state

ment are executed and will continue to be executed until m is evaluated to be

false.

If m is initially false, then the range of the DO WHILE is not executed.

No transfers may be made to any of the executable statements within the range
of the DO WHILE by statements outside the range of the DO WHILE.

Each DO WHILE loop must have a separate END DO statement.

You can code a DO loop within a DO WHILE loop and a DO WHILE loop within a
DO loop. However, you must include the range of the inner loop entirely within
the range of the outer loop. The loops may not use the same terminal state
ment.

82 VS FORTRAN Version 2 Language and Library Reference

n

r^

r\

END

Valid DO WHILE statements:

The following program fragment shows how to use a DO WHILE without a label.

CONVERGE = .FALSE.

DO WHILE (.NOT. CONVERGE)
CALL FITTER (X, Y, Z, CONVERGE)

END DO

EJECT Statement

ELSE Statement

EJECT is a compiler directive. It starts a new full page of the source listing.
The EJECT statement should not be continued.

Syntax

EJECT

See "IF Statements" on page 127.

ELSE IF Statement

END Statement

See "IF Statements" on page 127.

The END statement defines a program unit. That is, it terminates a main
program, or a function, subroutine, or block data subprogram.

Syntax

END

The END statement may be numbered. It may not be continued, and no other
statement in the program unit may have an initial line that appears to be an
END statement. The END statement terminates program execution if it Is exe
cuted in the main program. If executed in a subprogram, it has the effect of a
RETURN statement.

Execution of an END statement terminates the association between the dummy

arguments of the subprogram and the current actual arguments. All entities
within the subprogram become undefined except:

*- Entities specified in SAVE statements. (See "SAVE Statement" on
page 203.)

»• Entities in a blank common block.

Initially defined entities that have neither been redefined nor become unde
fined.

Entities in named common blocks that appear in the subprogram and
appear in at least one other program unit that is referring, either directly or
indirectly, to that subprogram. The entities in a named common block may
become undefined by execution of a RETURN or END statement in another
program unit.

Chapter 4. Statements 83

END DO

All variables that are assigned a statement label with the ASSIGN statement
become undefined, regardless of whether the variable is In a common block or

specified in a SAVE statement.

An END statement cannot terminate the range of a DO loop.

END Statement in a Subprogram
All function subprograms must end with END statements. They may also
contain RETURN statements. An END statement specifies the physical end of
the subprogram.

If the END statement is reached during execution of the subroutine subprogram,
it is executed as a RETURN statement.

END DEBUG Statement
The END DEBUG statement terminates the last debug packet for the program.

Syntax

END DEBUG

END DEBUG is placed after the other debug statements and just before the first
statement of the program unit being debugged. Only one END DEBUG state
ment is allowed in a program unit.

See "DEBUG Statement" on page 71.

END DO Statement
The END DO statement may terminate the range of a DO loop and must termi
nate the range of a DO WHILE loop.

— Syntax

END DO

END DO Statement In a DO Loop: The END DO statement must be used if the
DO statement that specifies the DO loop does not specify a label. If both a
statement label and an END DO are used, the label must be the statement label

of the END DO statement.

END DO Statement In a DO WHILE Loop: The END DO statement must be used

to terminate a DO WHILE loop. If a statement label is specified on the DO
WHILE statement, the label must be the statement label of the END DO state

ment that terminates the loop.

84 VS FORTRAN Version 2 Language and Library Reference

ENDFILE

ENDFILE Statement
The ENDFILE statement writes an end-of-fiie record on a sequentially accessed
external file.

Syntax

ENDFILE un

ENDFILE

([UNIT=]i7n

[, ERR = sf/]
[, IOSTAT =/OS])

UNIT = un

un is the external unit Identifier. It is an integer expression of length 4,
whose value must be zero or positive, un is required.

If the second form of the statement is used, un can. optionally, be preceded
by UNIT = . If UNIT= is not specified, un must appear immediately following
the left parenthesis. The other specifiers may appear in any order. If
UNIT= is included on the ENDFILE statement, all the specifiers can appear

in any order.

ERR=s//

sti is the statement label of an executable statement in the same program
_ unit as the ENDFILE statement.

IOSTAT =/OS

ios is an integer variable or an integer array element of length 4. ios value
is set positive if an error is detected; it is set to zero if no error is detected.
For VSAM files, return and reason codes are placed in ios.

Valid ENDFILE Statements:

ENDFILE 8

_ ENDFILE (8,ERR=99999)

ENDFILE (ERR=99999,UNIT=8)

Invalid ENDFILE Statements:

ENDFILE UNIT=08 UNIT= is not allowed outside parentheses.

ENDFILE 08,ERR=99999 Parentheses must be specified.

ENDFILE (ERR=99999.08) UNIT= must be specified
or ^ must be first in the list.

When the ENDFILE statement is encountered, the unit specified by un must be
connected to an external file with sequential access. (See VS FORTRAN
Version 2 Programming Guide for an example.) If the unit is not connected, an
error is detected.

When the NOOCSTATUS run-time option is in effect, the unit does not have to
be connected. For more information on the NOOCSTATUS option, see VS
FORTRAN Version 2 Programming Guide.

Chapter 4, Statements 85

ENTRY

After successful execution of the ENDFILE statement, the external file connected
to the unit specified by un is created. If it does not already exist.

Use of ENDFILE with asynchronous READ and WRITE statements is allowed,
provided that any input or output operation on the file has been allowed to com
plete by the execution of a WAIT statement. A WAIT statement is not required
to complete the ENDFILE operation.

Ifan error is detected, transfer is made to the statement specified by the
ERR = . If IOSTAT = /os is specified, a positive Integer value is assigned to ios
when an error is detected. Execution then continues with the statement desig
nated on the ERR specifier, if present, or with the next statement if ERR is
omitted.

END IF Statement
See "IF Statements" on page 127.

ENTRY Statement

The ENTRY statement names the place in a subroutine or function subprogram
that can be used in a CALL statement or as a function reference.

The normal entry into a subroutine subprogram from the calling program is
made by a CALL statement that refers to the subprogram name. The normal
entry into a function subprogram is made by a function reference in an arith
metic, character, or logical expression. Entry is made at the first executable
statement following the SUBROUTINE or FUNCTION statement.

It is also possible to enter a subprogram by a CALL statement (for a subroutine
subprogram) or a function reference (for a function subprogram) that refers to
an ENTRY statement in the subprogram. Entry is made at the first executable
statement following the ENTRY statement.

Syntax

ENTRY name [(argi [, arg2 ...])]

name

is the name of an entry point in a subroutine or function subprogram. If
ENTRY appears in a subroutine subprogram, name is a subroutine name. If
ENTRY appears in a function subprogram, name is a function name.

arg

is an optional dummy argument corresponding to an actual argument in a
CALL statement or in a function reference. (See "Subprogram Statements"
on page 48.) If no arg is specified, the parentheses are optional.

arg may be a variable name, array name, or dummy procedure name or an
asterisk. An asterisk is permitted only in an ENTRY statement in a subrou
tine subprogram.

The ENTRY statement cannot appear in a main program.

A function subprogram must not refer to itself or to any of its entry points either
directly or indirectly.

86 VS FORTRAN Version 2 Language and Library Reference

r>

ENTRY

ENTRY statements are nonexecutable and do not affect control sequencing
during execution of a subprogram. They can appear anywhere after a FUNC
TION or SUBROUTINE statement, except that an ENTRY statement must not
appear between a block IF statement and its matching END IF statement or
between a DO statement and the terminal statement of Its range.

Note: ENTRY statements can appear before the IMPLICIT or PARAMETER state
ments. The appearance of an ENTRY statement does not alter the rule that
statement functions must precede the first executable statement.

Within a function or subroutine subprogram, an entry name must not appear as
a dummy argument of a FUNCTION, SUBROUTINE, or ENTRY statement and It
must not appear In an EXTERNAL statement.

If Information for an object-time dimension array Is passed In a reference to an
ENTRY statement, the array name and all Its dimension parameters (except any
that are In a common area) must appear In the argument list of the ENTRY
statement. (See "Size and Type Declaration of an Array" on page 26.)

In a function subprogram, the type of the function name and entry name are
determined (In order of decreasing priority) by:

1. An explicit type statement

2. An IMPLICIT statement

3. Predefined convention

In function subprograms, an entry name must not appear preceding the entry
statement, except In a type statement.

Ifany entry name In a function subprogram or the name of the function subpro
gram Is of type character, all entry names of the function subprogram must be
of type character with the same length. The CHARACTER type statement or
IMPLICIT statement can be used to specify the type and length of the entry
point name. The length specification Is restricted to the forms permitted In the
FUNCTION statement.

The types of these variables (that Is, the function name and entry names) can
be different only If the type Is not character; the variables are treated as If they
were equlvalenced. After one of these variables Is assigned a value In the sub
program, any others of different type become Indeterminate In value.

In a function subprogram, either the function name or one of the entry names
must be assigned a value.

Upon exit from a function subprogram, the value returned Is the value last
assigned to the function name or any entry name. It is returned as though It
were assigned to the name In the current function reference. If the last value Is
assigned to a different entry name, and that entry name differs In type from the
name In the current function reference, the value of the function Is undefined.

Note: Entry names In a subroutine subprogram do not have a type; explicit
typing Is not allowed-.

Chapter 4. Statements 87

ENTRY

Valid ENTRY Statements:

To illustrate the use of the ENTRY within a subroutine subprogram, the fol
lowing subprogram is defined:

SUBROUTINE SAMPLE(A,I,C)
X = A**I

GO TO 10

ENTRY ALIAS(B,C)
X = B

10 C = SQRT(X)
RETURN

END

The subprogram invocation

CALL SAMPLE(X,J,Z)

evaluates the expression SQRT{X**J) and returns the value in Z.

The subprogram invocation

CALL ALIAS(Y,W)

evaluates the expression SQRT{Y) and returns the value in W.

Actual Arguments in an ENTRY Statement
Entry into a function subprogram associates actual arguments with the dummy
arguments of the referenced ENTRY statement. Thus, all appearances of these
arguments in the subprogram become associated with actual arguments.

See "Actual Arguments in a Subroutine Subprogram" on page 209 and "Actual
Arguments in a Function Subprogram" on page 122.

Dummy Arguments in an ENTRY Statement
The dummy arguments in the ENTRY statement need not agree in order, type,
or number with the dummy arguments in the SUBROUTINE or FUNCTION state
ment or any other ENTRY statement in the same subprogram. However, the
actual arguments for each CALL or function reference must agree in order,
type, and number with the dummy arguments in the SUBROUTINE, FUNCTION,
or ENTRY statement to which it refers.

Unless it has already appeared as a dummy argument in an ENTRY. SUBROU
TINE, or FUNCTION statement prior to the executable statement, any dummy
argument of an ENTRY statement must not be in an executable statement pre
ceding the ENTRY statement.

If an ENTRY dummy argument is used as an adjustable array name, the array
name and all its dimensions (except those in a common block) must be in the
same dummy argument list.

Dummy arguments can be variables, arrays, dummy procedure names, or
asterisks. The asterisk is allowed only in an ENTRY statement in a subroutine
subprogram and indicates an alternate return parameter.

Unless the name is also a dummy argument to the statement function, or is in a
FUNCTION or SUBROUTINE statement, or is in an ENTRY statement prior to the

88 VS FORTRAN Version 2 Language and Library Reference

EQUIVALENCE

statement function definition, a dummy argument must not appear in the
expression of a statement function definition.

A dummy argument used in an executable statement is allowed only if that
dummy argument appears in the argument list of the FUNCTION, SUBROUTINE,
or ENTRY statement by which the subprogram was entered.

See "Dummy Arguments in a Subroutine Subprogram" on page 209 and
"Dummy Arguments in a Function Subprogram" on page 123.

EQUIVALENCE Statement
The EQUIVALENCE statement permits the sharing of data storage within a
single program unit.

— Syntax

EQUIVALENCE (Ilst1) [, Wst2)...]

list

is a list of variable, array, array element, or character substring names.
Names of dummy arguments of an external procedure in a subprogram
must not appear in the list. Each pair of parentheses must contain at least
two names.

The number of subscript quantities of array elements must be equal to the
number of dimensions of the array. If an array name is used without a sub
script in the EQUIVALENCE statement, it is interpreted as a reference to the
first element of the array.

An array element refers to a position in the array in the same manner as it
does in an assignment statement (that is, the array subscript specifies a
position relative to the first element of each dimension of the array).

The subscripts and substring information may be integer expressions con
taining only integer constants, or names of integer constants. They must
not contain variables, array elements, or function references.

All the named data within a single set of parentheses shares the same storage
location. When the logic of the program permits it, the EQUIVALENCE state
ment can reduce the number of bytes used by sharing two or more variables of
the same type or different noncharacter types.

Both character and noncharacter data types are allowed in an EQUIVALENCE
relationship.

The length of the equivalenced entities can be different,
variables implies storage sharing.

Equivalence between

Mathematical equivalence of variables or array elements is implied only when

they are of the same noncharacter type, when they share exactly the same
storage, and when the value assigned to the storage is of that type.

Because arrays are stored in a predetermined order, equivalencing two ele
ments of two different arrays implicitly equivalences other elements of the two
arrays. The EQUIVALENCE statement must not contradict itself or any previ
ously established equivalences.

Chapter 4. Statements 89

EQUIVALENCE

Two variables in one common block or in two different common blocks cannot

be made equivalent. However, a variable in a program unit can be made
equivalent to a variable in a common block. If the variable that is equivalenced
to a variable in the common block is an element of an array, the implicit equiv-
alencing of the rest of the elements of the array can extend the size of the
common block. The size of the common block cannot be extended so that ele

ments are added ahead of the beginning of the established common block.

For the following examples of the EQUIVALENCE statement, assume these

explicit type declarations:

COMMON /COMl/ B(5O,50), E(5Q,50)
INTEGER*4 A(10)
REAL*8 C(50), 0(10,10,2), F
CHARACTER*4 01(10), 02(10)
CHARACTER C3

Valid EQUIVALENCE Statements:

1. A locally defined variable sharing named common storage.

EQUIVALENCE (A(l}, E(l,l))

2. Equivalence a portion of a multi-dimensioned array to a single-dimensioned
array.

EQUIVALENCE (C(l), B(l,10))

3. Equivalence a single element of an array to a variable.

EQUIVALENCE (0(10,10,2), F)

4. The first half of a character array is equivalenced to the second half of
another character array. Twenty characters (or 5 array elements) are
equivalenced.

EQUIVALENCE (Cl(6), C2(l))

5. The last character in a character array is equivalenced to a single char
acter.

EQUIVALENCE (C3, 01(10)(4:))

Character variables may be equivalenced to noncharacter items.

A character array is equivalenced to the second half of an integer array.

EQUIVALENCE (Cl(l), A(6))

Invalid EQUIVALENCE Statement;

Two variables may not be equivalenced when both are in common.

EQUIVALENCE (B(i,l), E(l,l))

90 VS FORTRAN Version 2 Language and Library Reference

Explicit Type

Explicit Type Statement
The explicit type statement allows you to do the following:

Specify the type and length of variables, arrays, and user-supplied func
tions.

*• Specify the dimensions of an array.

*• Assign initial data values for variables and arrays.

The explicit type statement overrides the IMPLICIT statement, which, in turn,
overrides the predefined convention for specifying type.

— Syntax

fype namel (, name2 ...]

type

is COMPLEX, INTEGER. LOGICAL, REAL, DOUBLE PRECISION, or

CHARACTERl*/en]

where:

len

specifies the length (number of characters between 1 and 32767). It is
optional.

Note: The CHARLEN compiler option may be specified to override the

maximum length of the character data type to a range of 1 through

32767. The default maximum length remains 500 characters, or what

ever length was set at installation time, if the CHARLEN option has not

been specified.

The length len can be expressed as:

An unsigned, nonzero, integer constant.

An expression with a positive value that contains integer constants,
names of integer constants enclosed In parentheses, or an asterisk
enclosed in parentheses.

The length *len immediately following the word character is used as the
length specification of any name in the statement that has no length
specification attached to it. To override a length for a particular name,
see the alternative forms of name below. If *len is not specified, it is

assumed to be 1.

The comma in character(*len[,]] must not appear If *len is not specified. It
is optional if *len is specified.

type

is C0MPLEX[*/en1], INTEGER[*/en1], L0GICALI*/en1], or REAL[*/en1]

where:

*len1

is optional and leni represents one of the permissible length specifica
tions for its associated type as described in Figure 7 on page 22.

name

is a variable, array, function name, or dummy procedure name, or the name

of a constant. It can have the form:

Chapter 4. Statements 91

Explicit Type

alidirn)]

or

a[{dim)][*len2]

where:

a

is a variable, array, function name, or dummy procedure name.

dim

is optional, dim may only be specified for arrays. It is composed of one
through seven dimension bounds, separated by commas, that represent
the limits for each subscript of the array in the form:

el:e2

or

e2

where:

el

is the lower dimension bound. It is optional. If e1 (with its following
colon) is not specified, its value is assumed to be 1.

62

is the upper dimension bound and must always be specified.

(For rules about dimension bounds, see "Size and Type Declaration of an
Array" on page 26.)

If a specific intrinsic function name appears in an explicit specification
statement that causes a conflict with the type specified for this function in
Chapter 5, "Intrinsic Functions" on page 243, the name loses its intrinsic
function property in the program unit. A type statement that confirms the
type of an intrinsic function is permitted. If a generic function name
appears in an explicit specification statement, it does not lose its generic
property in the program unit.

overrides the length as specified in the statement by CHARACTER[*/en[,]]. ' i

Any length assigned must be an allowable value for the associated variable or
array type. The length specified (or assigned by default) with an array name is
the length of each element of the array.

If the length specification {len) is a constant, it must be an unsigned, nonzero,
integer constant. If the length specification is an arithmetic expression
enclosed in parentheses, it may contain only integer constants or names of
integer constants. Function and array element references must not appear in
the expression. The value of the expression must be a positive, nonzero,
integer constant.

If the CHARACTER statement is in a main program, and the length of name is
specified as an asterisk enclosed in parentheses (*)—also known as inherited
length—then name must be the name of a character constant. The character
constant assumes the length of its corresponding expression in a PARAMETER
statement.

92 VS FORTRAN Version 2 Language and Library Reference

Explicit Type

If the CHARACTER statement is in a subroutine subprogram, and the length of
name is specified as an asterisk enclosed in parentheses {*), name must be the
name of a dummy argument or the name of a character constant defined in a

PARAMETER statement. The dummy argument assumes the length of the asso
ciated actual argument for each reference to the subroutine. The character

constant assumes the length of Its corresponding expression in a PARAMETER
statement.

If the CHARACTER statement is in a function subprogram and the length of
name is specified as an asterisk enclosed In parentheses (*), name must be

either the name of a dummy argument, the name of the function in a FUNCTION
or ENTRY statement in the same program, or the name of a character constant
defined in a PARAMETER statement. If name is the name of a dummy argu
ment, the dummy argument assumes the length of the associated actual argu
ment for each reference to the function. If name is the function or entry name,
when a reference to such a function is executed, the function assumes the

length specified in the calling program unit. The character constant assumes

the length of its corresponding expression in a PARAMETER statement.

An alternative method of specifying both the length and the type of a function
name is by using the FUNCTION statement itself with the optional type declara

tion (see "FUNCTION Statement" on page 120).

The length of a statement function of character type cannot be specified in the
calling program by an asterisk enclosed with parentheses (*), but can be an
integer constant expression.

The length specified for a character function in a main program unit that refers
to the function must be an expression involving only integer constants or names
of integer constants. This length must agree with the length specified in the
subprogram that specifies the function, if the length Is not specified as an
asterisk enclosed with parentheses (*).

name

is a variable, array, function name, or dummy procedure name, or the name
of a constant. It can have the form;

a[*len3][{dim)]

or

a[*/en3][(d/m)] [/i1 ,i2,i3,.J]

where:

a

is a variable, array, function name, or dummy procedure name.

*len3

overrides the length as specified in the initial keyword of the statement
as COMPLEX. INTEGER. LOGICAL, REAL, COMPLEX[*/en/],

CHARACTER[*/en], INTEGER[*/en/], LOGICAL[*/en/], or REAL[*len1]

dim

is optional, dim may only be specified for arrays. It is composed of one

through seven dimension bounds, separated by commas, that represent

the limits for each subscript of the array. See the description of dim
above.

Chapter 4. Statements 93

Explicit Type

are optional and represent initial data values.

Dummy arguments and names of constants, functions, and statement functions
may not be assigned initial values.

Initial data values may be assigned for any items of type double precision.

Initial data values may be assigned to variables or arrays that are not dummy
arguments or in blank common, by use of in, where in is a constant or list of
constants separated by commas. Each in provides initialization only for the
immediately preceding variable or array. Lists of constants are used only to
assign initial values to array elements. The data must be of the same type as
the variable or array, except that hexadecimal data may also be used.

Note: If hexadecimal data is used, the hexadecimal constant form must be fol
lowed. (See "Hexadecimal Constants" on page 21.)

Successive occurrences of the same constant can be represented by the form
l*constant, as in the DATA statement. If initial data values are assigned to an

array in an explicit specification statement, the dimension information for the
array must be in the explicit specification statement or in a preceding DIMEN
SION or COMMON statement.

The following table lists all the possible explicit type statements, and the

resulting type and length of the data item.

Type Resulting Lengtti

Statement Type (Bytes)

CHARACTER CHARACTER 1

CHARACTER*n CHARACTER n (where 1 < n < x)See note.
COMPLEX COMPLEX 8

COMPLEX*8 COMPLEX 8

COMPLEX*16 COMPLEX 16

COMPLEX*32 COMPLEX 32

DOUBLE PRECISION REAL 6

INTEGER INTEGER 4

INTEGER*2 INTEGER 2

INTEGER*4 INTEGER 4

LOGICAL LOGICAL 4

LOGICAL*1 LOGICAL 1

LOGICAL*4 LOGICAL 4

REAL REAL 4

REALM REAL 4

REAL*8 REAL 8

REAL*16 REAL 16

Figure 22. Type and Length of Explicit Type Statements

Note: If the CHARLEN compiler option is not specified, x = 500 (or whatever
length was specified as the default at installation). If CHARLEN is specified,
x = CHARLEN, where x is greater than 0 and less than 32768. For more informa
tion about the CHARLEN option, see VS FORTRAN Version 2 Programming

Guide.

94 VS FORTRAN Version 2 Language and Library Reference

Valid Explicit Type Statements:

CHARACTER*8 ORANGE

DATA ORANGE/'ORANGE '/

SUBROUTINE SUB(DUM)
CHARACTER *(*) DUM

CHARACTER*a ORANGE/'ORANGE '/

COMPLEX C,D/(2.1,4.7)/,E*16

INTEGER*2 ITEM/76/, VALUE

REAL A(5,5)/20*5.9E2,4*1.0/,B(10G)/100*0.O/JEST*8(5)/5*0.0D0/

REAL*8 BAKER, HOLD, VALUE*4, ITEM(5,5)

EXTERNAL

EXTERNAL Statement
The EXTERNAL statement identifies a user-supplied subprogram name and
permits such a name to be used as an actual argument.

Syntax

EXTERNAL namel [, name2 ...]

name

is a name of a user-supplied subprogram {function or subroutine) that is
passed as an argument to another subprogram.

EXTERNAL is a specification statement and must precede DATA statements,
statement function definitions, and all executable statements.

Statement function names cannot appear in EXTERNAL statements. If the name
of a function supplied by VS FORTRAN Version 2 (that is, an intrinsic function)
is used in an EXTERNAL statement, the function is no longer recognized as
being an intrinsic function when it appears as a function reference, instead, it
is assumed that the function is supplied by the user.

The same name may not appear in both an EXTERNAL and an INTRINSIC state
ment.

The name of any subprogram that is passed as an argument to another subpro
gram must appear in an EXTERNAL or INTRINSIC statement in the calling

program.

Chapter 4. Statements 95

FORMAT

FORMAT Statement
The FORMAT statement is used with the input/output list in the READ and
WRITE statements to specify the structure of FORTRAN records and the form of
the data fields within the records.

Syntax

FORMAT (f1 I f2, ...]

f1, f2, ... are format codes. The valid format codes are as follows:

Code Format Description

1 a\w Integer data fields

1 a\w.m Integer data fields

D aDw.d Double precision data fields

E aEw.d Real data fields

E aEw.dEe Real data fields

F aFw.d Real data fields

G aGw.d Real data fields

G aGw.dEe Real data fields

P nP Scale factor

L aLw Logical data fields
A afii Character data fields

A afi^w Character data fields

'character Literal data (character constant)

constant'

H ivH Literal data (Hollerith constant)
X wX Input: Skip a field

Output: Fill with blanks
T Tr Transfer of data starts in current position

TL TLr Transfer of data starts r characters to the left of current position
TR TRr Transfer of data starts r characters to the right of current position

group a(...) Group format specification
S 5 Display of optional plus sign is restored

SP SP Plus sign is produced in output
SS 53 Plus sign is not produced in output
BN BN Blanks are ignored in input
BZ BZ Blanks are treated as zeros in input

slash / Data transfer on the current record is ended

colon Format control is terminated if there are no more items in the

input/output list

E aEw.dDe Extended precision data fields

G aGw.d Integer or logical data fields

G aGw.dEe Integer or logical data fields

Q aQw.d Extended precision data fields

Z aZw Hexadecimal data fields

96 VS FORTRAN Version 2 Language and Library Reference

FORMAT

Notes:

a is an optional repeat count—an unsigned, nonzero, integer constant used to denote the
number of times the format code or group is to be used. The range of a is 1 to 255. If
a is omitted, the code or group is used only once.

is an unsigned, nonzero, integer constant that specifies the width of the field. This
width must be less than 256.

m is an unsigned integer constant that specifies the number of digits to be printed.

d is an unsigned integer constant that specifies the number of digits to the right of the
decimal point:

e is an unsigned, nonzero, integer constant that specifies the number of digits in the
exponent field.

n is an (optionally) signed integer constant that specifies a scale factor to be applied.

r is an unsigned, nonzero, integer constant that specifies a character position in a
record.

(...) is a group format specification. Within the parentheses are format codes or additional
levels of groups, separated by commas, slashes, or colons. Commas are optional
before or after a slash and before or after a colon, if the slash or colon is not part of
a character constant.

The FORMAT statement is used with READ and WRITE statements for internal

and external files. The external files must be connected for SEQUENTIAL or

DIRECT access. In the FORMAT statement, the data fields are described with
format codes, and the order in which these format codes are specified deter
mines the structure of the FORTRAN records. The I/O list gives the names of
the data items that make up the record. The length of the list, in conjunction
with the FORMAT statement, specifies the length of the record. (See "Forms of
a FORMAT Statement" on page 100.)

The format codes delimited by left and right parentheses may appear as a char
acter constant in the format specification of the READ or WRITE statement,
instead of in a separate FORMAT statement. For example,

READ (UNIT=5,FHT='(I3,F5.2,E10.3,G10,3)')N,A,B,C

READ (5,'(I3,F5.2,E10.3,G10.3)')N,A,B,C

Throughout this section, the examples show 80-column input and printed line
output. However, the concepts apply to all input/output media. In the exam
ples, the character b represents a blank.

General Rules for Data Conversion

The following is a list of general rules for using the FORMAT statement or a
format in a READ or WRITE statement.

FORMAT statements are not executed; their function is to supply informa
tion to the object program. They may be placed anywhere in a program
unit other than in a block data subprogram, subject to the rules for the
placement of the PROGRAM. FUNCTION, SUBROUTINE, and END state
ments.

Complex data in records requires two successive D, E, G, F, orQ format
codes.

The two codes may be different and the format codes T, TL, TR, X, /, :, 8,
SP, SS, P, BN, BZ, H, or a character constant may appear between the two
codes.

Chapter4. Statements 97

FORMAT

When defining a record by a FORMAT, it is important to consider the
maximum size record allowed on the input/output medium. For example, if
a record is to be punched for output, the record should not be longer than
80 characters. If it is to be printed, it should not be longer than the printer's
line length.

When records are to be printed, the first character of each record functions
as a carrier control character. The control character determines the ver
tical spacing of the printed record and is not considered as part of a data
Item, as follows:

Control Vertical Spacing
Character Before Printing

blank Advance one line.

0 Advance two lines.

1 Advance to first print position on next page.

+ No advance (overstrike).

The control character is commonly specified in a FORMAT statement, using
either of two forms of character constant data, 'x' or 1Hx, where x is one of
the control characters shown above. The characters and spacing shown
are those defined for print records, and the result of using other characters
in the control position is indeterminate {except that the control position is
always discarded). Ifthe prjnt record contains no characters, spacing is
advanced by one, and a blank line is printed.

If records are to be displayed at a terminal, control characters are also
employed, and characters blank and zero (only) produce the spacing shown
above when used in the control position.

Note: In records that are not to be printed or displayed, the first character
of the record is treated as data.

If the I/O list is omitted from the READ or WRITE statement, the following

general rules apply:

~ Input: A record is skipped

— Output: A blank record is written unless the FORMAT statement con
tains an H format code or a character constant (see "H Format Code
and Character Constants" on page 111).

To produce a blank record on output, an empty format specification of
the form FORMAT () may be used.

To illustrate the nesting of group format specifications, the following state
ments are both valid:

FORMAT

or

FORMAT (...,a(...,aC...,a(.

where a is 1 ^ a < 256.

To illustrate the use of nesting in an implied DO and the corresponding
FORMAT specifications:

98 VS FORTRAN Version 2 Language and Library Reference

FORMAT

PROGRAM FMTl

DIMENSION IRR(3,4), IRI(3,4)
DO 10 I = 1, 3
DO 10 J = 1, 4
IRR(I,J) = 1000 + (I * 100) + J
IRI(I,J) = 2000 + (I * 100) + J

10 CONTINUE

PRINT 20, (I, (IRR(I,J), IRI(I,J), J = 1, 4),
1 I = 1, 3)

20 FORMAT (3(1X, 'ROW, 13, 4(15, IX, 14, 3X) /))
STOP

END

Results of program FMT1;

ROW 1 1101 2101 1102 2102 1103 2103 1104 2104
ROW 2 1201 2201 1202 2202 1203 2203 1204 2204
ROW 3 1301 2301 1302 2302 1303 2303 1304 2304

Names of constants must not be a part of a format specification (see
"PARAMETER Statement" on page 158).

If you use the comma as an input delimiter with the format codes I, D, E, F,
G. L. Q, and 2, you do not need to align the data with leading zeroes or
blanks. The comma will override the format specifications when the comma
appears before the end of the field width. Two successive commas or a
comma Immediately after a field indicate that the data should be considered
FALSE for format code L and 0 for codes I, D, E, F, G, Q, and Z.

For example, with the program fragment:

READ (10,3000) A, C, B, II, X
3000 FORMAT (F7.2, AS, F8.5, 110, E10.5)

And the following input:

l,abcdefgh,,32,1,7

The following assignments would occur:

A = .01 (not 1.00)
C = abcdefgh (the format A is not controlled by the comma)
B = 0.0 (because of the two consecutive commas)
II = 32

X= .00001 (not 1.00000, since no decimal was used in the input)

And the ,7 would be ignored.

With numeric data format codes I, F, E, G, and D, the following general rules
apply:

— input: Leading blanks are not significant. The interpretation of blanks,
other than leading blanks, is determined by a combination of the value
of the BLANK= specifier given when the file was connected (see
"OPEN Statement" on page 151) and any BN or BZ blank control that is
currently in effect. Plus signs may be omitted. A field of all blanks is
considered to be zero.

With F, E, G, and D format codes, a decimal point appearing in the input
field overrides the portion of a format code that specifies the decimal
point location. The input field may have more digits than VS FORTRAN
Version 2 uses to approximate the value.

Chapter 4. Statements 99

FORMAT

— Output; The representation of a positive or zero internal value in the
field may be prefixed with a plus, as controlled by the S. SP, and SS
format codes. The representation of a negative internal value in the
field is prefixed with a minus. A negative zero is not produced.

The representation is right-justified in the field. If the number of charac
ters produced by the editing is smaller than the field width, leading

blanks are inserted in the field.

If the number of characters produced exceeds the field width or if an
exponent exceeds its specified length using the Ew.dEe or Gw.dEe
format codes, the entire field of width w is filled with asterisks.

However, if the field width is not exceeded when optional characters are
omitted, asterisks are not produced. When an SP format code is in
effect, a plus is not optional.

With Q editing and D exponents, the following additional rules apply:

— Input: With Q editing, a decimal point appearing in the input field over
rides the portion of a format code that specifies the decimal point
location. The input Held may have more digits than VS FORTRAN
Version 2 uses to approximate the value.

— Output: If the number of characters produced exceeds the field width or
if an exponent exceeds its specified length using the Ew.cfDe or Qw.d
format codes, the entire field of width w is filled with asterisks.

However, if the field width is not exceeded when optional characters are
omitted, asterisks are not produced. When an SP format code is in
effect, a plus is not optional.

Forms of a FORMAT Statement

All the format codes in a FORfvlAT statement are enclosed in parentheses.
Within these parentheses, the format codes are delimited by corhmas. The
comma used to separate list items may be omitted as follows:

Between a P edit descriptor and an immediately following F, E, D, or G
format code

Before or after a slash format code

Before or after a colon format code

Execution of a formatted READ or formatted WRITE statement initiates format

control. Each action of format control depends on information provided jointly

by the I/O list, if one exists, and the format specification. If there is an I/O list,
there must be at least one I, D, E, F, A, G, L, Q, or 2 format code in the format
specification.

There is no I/O list item corresponding to the format codes: T, TL, TR, X, H.

character constants enclosed in apostrophes. S, SP, 83, BN, BZ, P, the slash

{/), or the colon (:). These communicate information directly to the record.

Whenever an I, D, E, F. A, G, L, Q or z format code is encountered, format
control determines whether there is a corresponding element in the I/O list.

If there is a corresponding element, appropriately converted information is
transmitted. If there is no corresponding element, the format control termi
nates, even if there is an unsatisfied repeat count.

100 VS FORTRAN Version 2 Language and Library Reference

i Format Code

FORMAT

When format control reaches the last (outer) right parenthesis of the format
specification, a test is made to determine whether another element is specified
in the I/O list. If not, control terminates. Ifanother list element is specified, the
format control starts a new record. Control then reverts to that group specifica
tion terminated by the last preceding right parenthesis, including its group
repeat count, if any, or, if no group specification exists, then to the first left
parenthesis of the format specification. Such a group specification must include
a closing right parenthesis. If no group specification exists, control reverts to
the first left parenthesis of the format specification.

For example, assume the following FORMAT statements:

70 FORMAT (I5,2(I3,F5.2),I4,F3.1)

80 FORMAT (I3,F5.2,2(I3,2F3.1))

90 FORMAT (I3,F5.2,2I4,5F3.1)

With additional elements in the I/O list after control has reached the last right
parenthesis of each, control would revert to the 2(13,F5.2) specification in the
case of statement 70; to 2(I3,2F3.1) in the case of statement 80; and to the
beginning of the format specification, I3,F5.2,... in the case of statement 90.

The question of whether there are further elements in the I/O list is asked only
when an I, D, E, F, A, G, L, Q, or Z format code or the final right parenthesis of
the format specification is encountered.

Before this is done, T, TL, TR, X, and H codes, character constants enclosed in
apostrophes, colons, and slashes are processed. If there are fewer elements in
the I/O list than there are format codes, the remaining format codes are
ignored.

The I format code edits integer data. For example, if a READ statement refers
to a FORMAT statement containing I format codes, the input data is stored in
internal storage in integer format. The magnitude of the data to be transmitted
must not exceed the maximum magnitude of an integer constant.

Input: Leading blanks in a field of the input line are interpreted as zeros.
Embedded and trailing blanks are treated as indicated in the general rules for
numeric fields described under "General Rules for Data Conversion" on

page 97. If the form \w.m is used, the value of m has no effect.

Output: The output field consists of blanks, if necessary, followed by a minus
sign if the internal value is negative, or an optional plus sign otherwise. If the
number of significant digits and sign required to represent the quantity in the
datum is less than w, the unused leftmost print positions are filled with blanks.
If it is greater than w, asterisks are printed instead of the number. If the form
Iw.m is used, the output is the same as the Iw form, except that the unsigned
integer constant consists of at least m digits and, if necessary, has leading
zeros. The value of m must not exceed the value of w. If m is zero and the

value of the internal datum is zero, the output field consists of only blank char
acters, regardless of the sign control in effect.

Chapter 4. Statements 101

FORMAT

F Format Code

The fw.d format code edits real data. It indicates that the field occupies w posi
tions, the fractional part of which consists of d digits.

Input: The input field consists of an optional sign, followed by a string of digits
optionally containing a decimal point. Ifthe decimal point is omitted, the right
most d digits of the string, with leading zeros assumed if necessary, are inter
preted as the fractional part of the value represented.

The input field may have more digits than VS FORTRAN Version 2 uses to
approximate the value of the datum. The basic form may be followed by an
exponent of one of the following forms:

»- Signed integer constant

E followed by zero or more blanks, followed by an optionally signed integer
constant

D followed by zero or more blanks, followed by an optionally signed integer
constant

Q followed by zero or more blanks, followed by an optionally signed integer
constant

An exponent containing a D or Qis processed identically to an exponent con
taining an E.

Output: The output field consists of blanks, if necessary, followed by a minus
sign if the internal value is negative, or an optional plus sign otherwise. This is
followed by a string of digits that contains a decimal point, representing the
magnitude of the internal value, as modified by the established scale factor and
rounded to d fractional digits. Leading zeros are not provided, except for an
optional zero immediately to the left of the decimal point if the magnitude of the
value in the output field Is less than one. The optional zero also appears if
there would otherwise be no digits in the output field.

D, E, and Q Format Codes
The Dw.d, Ew.d, Bw.dEe format codes edit real, complex, or double precision
data.

The Ew.dDe and Qw.d format codes edit extended precision data In addition to

real, complex, and double precision data.

The external field occupies w positions, the fractional part of which consists of d
digits (unless a scale factor greater than 1 is in effect). The exponent part con
sists of e digits. (The e has no effect on input.)

Input: The input field may have more digits than VS FORTRAN Version 2 uses
to approximate the value of the datum.

Input datum must be a number, which, optionally, may have a D, E, or Q expo
nent, or which may be omitted from the exponent if the exponent is signed.

All exponents must be preceded by a constant; that is. an optional sign fol
lowed by at least one decimal digit with or without decimal point. If the decimal
point is present, its position overrides the position indicated by the d portion of
the format code, and the number of positions specified by w must Include a

102 VS FORTRAN Version 2 Language and Library Reference

n

o

G Format Code

FORMAT

place for it. Ifthe data has an exponent, and a P format code is in effect, the
scale factor is ignored.

The interpretation of blanks is explained in "General Rules for Data
Conversion" on page 97.

The input datum may have an exponent of any form. The input datum is con
verted to the length of the variable as specified in the I/O list. The e of the
exponent in the format code has no effect on input.

Output: For data written under a D or E format code, unless a P-scale factor is
in effect, output consists of an optional sign (required for negative values), an
optional zero digit, a decimal point, the number of significant digits specified by
d, and a D or E exponent requiring four positions.

If the P-scale factor is negative, output consists of an optional sign (required for
negative values), an optional zero digit, a decimal point,]P| leading zeros.
\d+P\ significant digits, and a D or E exponent requiring four positions. (P is the
value of the P-scale factor.)

If the P-scale factor is positive, output consists of an optional sign (required for
negative values), P decimal digits, a decimal point, d-P+ 1 fractional digits, and
a D or E exponent requiring four positions. (P is the value of the P-scale
factor.)

For data written under a Q format code, unless a P-scale factor is in effect,

output consists of an optional sign (required for negative values), a decimal
point, the number of significant digits specified by d, and a Q exponent
requiring four positions.

On output, w must provide sufficient space for an integer segment if it is other
than zero, a fractional segment containing d digits, a decimal point, and, if the
output value is negative, a sign. If insufficient space is provided for the integer
portion, including the decimal point and sign (if any), asterisks are written
instead of data. If excess space is provided, the number is preceded by blanks.

The fractional segment is rounded to d digits. Ifthe output field consists only of
a fractional segment, and if additional space is available, a 0 is placed to the
left of the decimal point. If the entire value is zero, a 0 is printed before the
decimal point.

The G format code is a generalized code used to transmit real data according to
the type specification of the corresponding variable in the I/O list. The Gw.d
and Gw.dEe edit descriptors indicate that the external field occupies w posi
tions. Unless a scale factor greater than one is in effect, the fractional part of w
consists of d digits. The exponent part consists of e digits.

Input: The form of the input field Is the same as for the F format code.

Output: The method of representation in the output field depends on the magni
tude of the data being edited.

For example, letting N be the magnitude of the internal data,

if N < 0.1 or N ^ l0**d

Chapter 4. Statements 103

FORMAT

P Format Code

(where k is the scale factor currently in effect), then:

Gw.of output editing is the same as kPBw.d output editing.

Gw.dBe output editing is the same as kPEw.dEe output editing.

If N is greater than or equal to 0.1 and less than 10**cy, the scale factor has no
effect, and the value of N determines the editing as follows:

Magnitude of Data

0.1 5 N < 1

1 < N < 10

10**(c/-2) < N < 10**(d-l)

10**(cf-1) < N < 10**cf

Equivalent Conversion

F(w-n).d, n ('b')

F(w-n).(c/-1), n ('b')

F{w^n)^, n ('b')

F(iv-/7).0, n{'b')

b means blank.

n means:

4 for Gw.d

*• e + 2 for Gw.dEe

The scale factor has no effect unless the magnitude of the data to be edited is
outside the range that permits effective use of F editing.

The letter Q is used for the exponent of extended precision data.

The G format code may be used to transmit integer or logical data according to
the type specification of the corresponding variable in the I/O list.

If the variable in the I/O list is integer or logical, the d portion of the format
code, specifying the number of significant digits, can be omitted; if it is given, it
is ignored.

A P format code specifies a scale factor n, where n is an optionally signed
integer constant. The value of the scale factor is zero at the beginning of exe
cution of each input/output statement. It applies to all subsequently interpreted
F, E, D, G, and Q format codes until another scale factor is encountered; then

that scale factor is established.

Reversion of format control does not affect the established scale factor. A

repetition code can precede these format codes. For example, 2P,3F7.4 is valid.
(A comma must be placed after the P format code—for example, 2P,3F7.4, when
a repeat count is specified.) A scale factor of zero may be specified.

Input: If an exponent is in the data field, the scale factor has no effect. If no
exponent is in the field, the externally represented number equals the internally
represented number multiplied by for the external representation.

For example, if the input data is in the form

104 VS FORTRAN Version 2 Language and Library Reference

xx.xxxx

and is to be used internally in the form

•XXXXXX

then the format code used to effect this change is

2PF7.4

which may also be written 2P,F7.4.

Similarly, if the input data is in the form

xx.xxxx

and is to be used internally in the form

xxxx.xx

then the format code used to effect this change is

-2PF7.4

which may also be written -2P.F7.4.

FORMAT

Output: With an F format code, the internally represented number reduced by
10**n is produced.

For example, if the number has the internal form

.XXXXXX

and is to be written in the form

XX.XXXX

the format code used to effect this change is

2PF7.4

which may also be written 2P,F7.4.

On output with E, D, and Q format codes, the value of the internally represented
number is not changed. When the decimal point is moved according to the d of
the format code, the exponent is adjusted so that the value of the externally
represented number is not multiplied by 10**n.

For example, if the internal number

238.47

were printed according to the format E10.3, it would appear as

0.238E+03

If it were printed according to the format 1PE10.3 or 1P,E10.3, it would appear as

2.385E+02

On output with a G format code, the effect of the scale factor is suspended
unless the magnitude of the internally represented number {m) is outside the
range that permits the use of F format code editing. This range for use of the F
format code is

.1 ^ m < 10 ** d

where d is the number of digits as specified in the G format code Gw.d.

Chapter4. Statements 105

FORMAT

Z Format Code

If .1 ^ m < ^0**d and the F format code is used, there is no difference

between G format code with a scale factor and G format code without a scale

factor.

However, if m ^ 10**d or < 0.1, the scale factor moves the decimal point to
the right or left.

The following example illustrates the difference between G format code with
and without a scale factor:

If A is Initially set to 100 and multiplied by 10 each time, and:

76 FORMAT (' ',G13.5,1PG13.5,2PG13.5)
WRITE (6,76) A,A,A

the result is:

No Scale Factor Scale Factor = 1 Scale Factor = 2

100.00 100.00 100.00

1000.0 1000.0 1000.0

10000. 10000. 10000.

0.1000QE-F06 1.00000E-I-05 10.0000E + 04

0.10000E-I-07 1.00000E-I-06 10.0000E + 05

The Z format code transmits hexadecimal data.

Input: Scanning of the input field proceeds from right to left. Leading,
embedded, and trailing blanks in the field are treated as zeros. One byte in
internal storage contains two hexadecimal digits; thus, if an Input field contains
an odd number of digits, the number is padded on the left with a hexadecimal
zero when it Is stored. If the storage area is too small for the input data, the
data Is truncated and high-order digits are lost.

Example:

For the following program fragment:

iriTEGER*2 INPUTl

iriTEGER*4 INPUT2,INPUT3
READ (1O,10Q0) INPUTl
READ (10,1000) INPUT2
READ (10,1000) INPUT3

1000 FORMAT (28)

and the following input:

AA11CC33

11223344

DD22

the variables would receive these values (in hexadecimal):

INPUTl = CC33

INPUT2 = 11223344

INPUT3 = DD220000

(value is truncated to fit in the INTEGER*2 variable)
(input's length the same as variable's length)
(value is padded with zeros on the left)

106 VS FORTRAN Version 2 Language and Library Reference

n

r>

FORMAT

Output: If the number of digits In the datum is less than w, the leftmost print
positions are filled with blanks. If the number of digits in the byte is greater
than w, the leftmost digits are truncated and the rest of the number is printed.

Example:

With the following program fragment:

INTEGER*4 OUTPUTA, OUTPUTB, OUTPUTC
WRITE (11,2G00) OUTPUTA
WRITE (11,2000) OUTPUTB

2000 FORMAT (Z8)
WRITE (11,3000) OUTPUTC

3000 FORMAT (Z4)

and the hexadecimal values in the variables:

OUTPUTA = UBB99AA

OUTPUTB = 3355

OUTPUTC = CC220D44

the following would be the output:

11BB99AA (output and the variable are the same length)
55553355 (output is padded with spaces on the left
DD44 (leftmost digits of the output are truncated)

Numeric Format Code Examples
Example 1:

The following example illustrates the use of format codes I, F, D, E, and G.

75 FORMAT (I3,F5.2,E10.3,G10.3)

READ (5,75) N,A,B,C

Explanation

Four input fields are described In the FORMAT statement and four variables

are in the I/O list. Therefore, each time the READ statement Is executed,

one input line is read from the file connected to unit number 5.

When an input line is read, the number in the first field of the line (three
columns) is stored in integer format in location N. The number in the

second field of the Input line (five columns) is stored In real format in

location A, and so on.

*• If there were one more variable in the I/O list, for example, M, another line
would be read and the information in the first three columns of that line

would be stored in Integer format in location M. The rest of the line would
be ignored.

If there were one fewer variable in the list (for example, if C were omitted),
format code G10.3 would be Ignored.

This FORMAT statement defines only one record format. "Forms of a
FORMAT Statement" on page 100 explains how to define more than one

record format in a FORMAT statement.

Example 2:

This example illustrates the use of the Z, D, and G format codes.

Chapter 4. Statements 107

FORMAT

Assume that the following statements are given;

75 FORMAT (Z4,D10.3,2G10.3)

READ (5,75) A,B,C,D

where A, C. and D are REAL*4 and B is REAL*8.

Also, assume that on successive executions of the READ statement, the fol
lowing input lines are read:

Column: 15 15 25 35

Input

Lines

V V V V V

f»3Fl 156432D+02276.38E+15565f)556656

2AF3155381+O2t)382506E+28276.38E+15

3AC6346.18D-03485.322836276.38E+15

Format: Z4 DIG.3 G10.3 G10.3

Then b represents a blank and the variables A, B. C, and D receive values as if
the following data fields had been supplied:

A B CD

03F1 I56.432D02 276.38E+15 000000.000

2AF3 155.381+20 382.506E+28 276.38E+15

3AC0 346.18D-03 485.322836 275.38E+15

Explanation

*• Leading blanks in an input field are treated as zeros. If it is assumed that

all other blanks are to be treated as zeros, because the value for B on the

second Input line was not right justified in the field, the exponent is 20, not
2.

Values read into the variables C and D with a G format code are converted

according to the type of the corresponding variable in the I/O list.

Example 3:

This example illustrates the use of the character constant enclosed in apostro
phes and the F, E, G, and I format codes.

Assume that the following statements are given:

76 FORMAT ('0',F6.2,E12.3,G14.6,15)

WRITE (6,76)A,B,C,N

and that the variables A, B, C, and N have the following values on successive

executions of the WRITE statement:

108 VS FORTRAN Version 2 Language and Library Reference

ry

O

n

L Format Code

A B C N

034.40 123.380E+02 123.380E+02 031

1D31.1 1156.1E+02 123456789. 130

-354.32 834.621E-03 1234.56789 428

01.132 83.121E+06 123380.D+02 000

FORMAT

Then, the following lines are printed by successive executions of the WRITE
statement:

Print

Column:

Explanation

1 21 35

V V V V

34.40 0.123E+05 12338.0 31

31.10 0.116E+06 0.123457E 09 130

****** 0.835E+00 1234.57 428

1.13 0.831E+08 0.123380E 08 0

The integer portion of the third value of A exceeds the format code specifi
cation, so asterisks are printed instead of a value. The fractional portion of
the fourth value of A exceeds the format code specification, so the fractional
portion is rounded.

For the variable B, the decimal point is printed to the left of the first signif
icant digit and only three significant digits are printed because of the format
code E12.3. Excess digits are rounded off from the right.

The values of the variable C are printed according to the format specifica
tion G14.6. The d specification, which In this case is 6, deterniines the
number of digits to be printed and whether the number should be printed
with a decimal exponent. Values greater than or equal to 0.1 and less than
1000000 are printed without a decimal exponent in this example. Thus, the
first and third values have no exponent. The second and fourth values are
greater than 1000000, so they are printed with an exponent.

The L format code transmits logical variables.

Input: The input field must consist of either zeros or blanks with an optional
decimal point, followed by a T or an F, followed by optional characters, for true
and false, respectively. The T or F assigns a value of true or false to the logical
variable in the input list. The logical constants .TRUE, and .FALSE, are accept
able input forms.

Output: A T or an F is inserted in the output record, depending upon whether
the value of the logical variable in the I/O list was true or false, respectively.
The single character is right justified in the output field and preceded by w-1
blanks.

Chapter 4. Statements 109

FORMAT

A Format Code
The A format code transmits character data. Each character Is transmitted

without conversion.

If w is specified, the field consists of w characters.

If the number of characters w is not specified with the format code A, the
number of characters in the field is the length of the character item in
input/output list.

Input: The maximum number of characters stored in internal storage depends
on the length of the variable in the I/O list. If w is greater than the variable
length, for example, v, then the leftmost w-v characters in the field of the input
line are skipped, and remaining v characters are read and stored in the vari
able. If w is less than v, then w characters from the field in the input line are
read, and remaining rightmost characters in the variable are filled with blanks.

Output: If w is greater than the length v of the variable in the I/O list, then the
printed field contains v characters, right-justified in the field, preceded by
leading blanks. If w is less than v, the leftmost w characters from the variable
are printed, and the rest of the data is truncated.

Example 1:

Assume that B has been specified as CHARACTER*8, that N and M are
CHARACTER*4, and that the following statements are given:

25 FORMAT (3A7)

READ (5,25) B, N, M

When the READ statement is executed, one input line is read from the data set
associated with data set reference number 5 into the variables B, N, and M, in

the format specified by FORMAT statement 25. The following list shows the
values stored for the given input lines (b represents a blank).

Input Line B N M

ABCDEFG46bAT611234567 ABCDEFG6 AT51 4567

HIJKLMN76543213334445 HIJKLMNb 4321 4445

Example 2:

Assume that A and B are character variables of length 4, that C is a character
variable of length 8, and that the following statements are given:

26 FORMAT (A6,A5,A6)

WRITE (6,26) A,B,C

When the WRITE statement is executed, one line is .written on the data set asso

ciated with data set reference number 6 from the variables A, B, and C in the

format specified by FORMAT statement 26. The printed output for values of A,
B, and C is as follows (b represents a blank):

B Printed Line

110 VS FORTRAN Version 2 Language and Library Reference

FORMAT

A1B2 C3D4 E5F6G7H8 6f)AlB2f)C3D4E5F6G7

H Format Code and Character Constants

Character constants can appear in a FORMAT statement in one of two ways:
following the H format code or enclosed in apostrophes. For example, the fol
lowing FORMAT statements are equivalent.

25 FORMAT (22H 1982 INVENTORY REPORT)

25 FORMAT (' 1982 INVENTORY REPORT')

No item in the output list corresponds to the character constant. The constant
is written directly from the FORMAT statement. (The FORMAT statement can
contain other types of format code with corresponding variables in the I/O list.)

Input: Character constants cannot appear in a format used for input.

Output: The character constant from the FORMAT statement is written on the

output file. {Ifthe H format code is used, the w characters following the H are
written. If apostrophes are used, the characters enclosed in apostrophes are
written.) For example, the following statements:

8 FORMAT (14H0MEAN AVERAGE:, F8.4)

WRITE (6,8) AVRGE

would write the following record if the value of AVRGE were 12.3456:

MEAN AVERAGE: 12.3456

X Format Code

The first character of the output data record in this example is the carrier
control character for printed output. One line is skipped before printing, and
the carrier control character does not appear in the printed line.

Note: If the character constant is enclosed in apostrophes, an apostrophe char
acter in the data is represented by two successive apostrophes. For example,
DON'T would be represented as 'DON' 'T'. The two successive apostrophes are
counted as one character. A maximum of 255 characters can be specified in a
character or a Hollerith constant.

The X format code specifies a field of w characters to be skipped on input or
filled with blanks on output if the field was not previously filled. On output, an X
format code does not affect the length of a record. For example, the following
statements:

Read the first ten characters of the input line into variable I,

Skip over the next ten characters without transmission, and

*- Read the next four fields of ten characters each into the variables J, K, L,

and M.

5 FORMAT (I10,10X,4I10)

READ (5,5) I,J,K,L,M

Chapter 4. Statements 111

FORMAT

T Format Code
The T format code specifies the position in the record at which the transfer of
data is to begin.

To illustrate the use of the T code, the following statements:

5 FORMAT (T40,'1981 STATISTICAL REPORT', T80,

X 'DECEMBER',Tl,'OPART NO. 10095')

WRITE (6,5)

print the following:

Pri nt

Position: 1

PART NO. 10095

39 79

1981 STATISTICAL REPORT DECEMBER

The T format code can be used in a FORMAT statement with any type of format
code, as, for example, with FORMAT ('0',T40,I5).

Input: The T format code allows portions of a record to be processed more
than once, possibly with different format codes.

Output: The record is assumed to be initially filled with blank characters, and
the T format code can replace or skip characters. On output, a T format code
does not affect the length of a record.

(For printed output, the first character of the output data record is a carrier
control character and is not printed. Thus, for example, if T50,'Z' is specified in
a FORMAT statement, a Z will be the 50th character of the output record, but it
will appear in the 49th print position.)

TL and TP Format Codes: The TL and TR format codes specify how many char
acters left (TL) or right (TR) from the current character position the transfer of
data is to begin. With TL format code, if the current position is less than or
equal to the position specified with TL, the next character transmitted will be
placed in position 1 (that is, the carrier control position).

The TL and TR format codes can be used in a FORMAT statement with any type
of format code. On output, these format codes do not affect the length of a
record.

Group Format Specification
The group format specification repeats a set of format codes and controls the
order in which the format codes are used.

The group repeat count a is the same as the repeat indicator a that can be
placed in front of other format codes. For example, the following statements
are equivalent:

10 FORMAT (13,2(14,15),16)

10 FORMAT (13,(14,15,14,15),16)

112 VS FORTRAN Version 2 Language and Library Reference

FORMAT

Because control returns to the last group repeat specification when there are
more items in the I/O list than there are format codes in the FORMAT state

ment, group repeat specifications control the order in which format codes are
used. (See "Forms of a FORMAT Statement" on page 100.) Thus, in the pre
vious example, if there were more than six items in the I/O list, control would
return to the group repeat count 2, which precedes the specification (14,15).

If the group repeat count is omitted, a count of 1 is assumed. For example, the
statements:

15 FORMAT (13,(F6.2,010.3))

READ (5,15) N,A,B,C,D,E

read values from the first record for N, A, and B, according to the format codes
13, F6.2, and D10.3, respectively. Then, because the I/O list is not exhausted,
control returns to the last group repeat specification, the next record is read,
and values are transmitted to C and D according to the format codes F6.2 and
D10.3, respectively. Because the I/O list is still not exhausted, another record is
read and value is transmitted to E according to the format code F6.2—the format
code D10.3 is not used.

All format codes can appear within the group repeat specification. For
example, the following statement is valid:

40 FORMAT (2I3/(3F6.2,F6.3/010.3,3010.2))

The first physical record, containing two data items, is transmitted according to
the specification 213; the second, fourth, and so on, records, each containing
four data items, are transmitted according to the specification 3F6.2,F6.3; and
the third, fifth, and so on, records, each also containing four data items, are
transmitted according to the specification D10.3,3D10.2, until the I/O list is
exhausted.

S, SP, and SS Format Codes
The S, SP, and SS format codes control optional plus sign characters in
numeric output fields. At the beginning of execution of each formatted output
statement, a plus sign is produced in numeric output fields. If an SP format
code is encountered in a format specification, a plus sign is produced in any
subsequent position that normally contains an optional plus sign. If SS is
encountered, a plus sign is not produced in any subsequent position that
normally contains an optional plus sign. If an S is encountered, the option of
producing the plus sign is set off.

Chapter 4. Statements 113

FORMAT

BN Format Code

BZ Format Code

Example:

The following program:

DOUBLE PRECISION A

REAL*16 S

R=3.

S=4.

1=5

A=l.

T=7.

U=8.

WRITE (6,100) R,S,I,A,T,U
100 FORMAT (F10.2,SP,Q15.3,SS,I7,SP,D10.2,S,E10.3,SP,G10.1)

STOP

END

produces the following output:

3.00 +0.400Q+01 5 +0.10D+01 0.700E+01 +8.

The S, SP, and SS format codes affect only I. F, E, G. and D editing during the
execution of an output statement.

The S, SP, and 88 format codes also affect Q editing.

The 8, 8P, and 88 format codes have no effect during the execution of an input
statement.

The BN format code specifies the interpretation of blanks, other than leading
blanks, in numeric input fields. At the beginning of each formatted input state
ment, such blank characters are interpreted as zeros or are ignored, depending
on the value of the BLANK = specifier given when the unit was connected.
(See "OPEN Statement" on page 151.)

If BN is encountered in a format specification, all such blank characters in suc
ceeding numeric input fields are ignored. However, a field of all blanks has the
value zero.

The BN format code affects only I, F, E, G, and D editing during execution of an
input statement.

The BN format code also affects Q editing during execution of an input state
ment.

The BN format code has no effect during execution of an output statement.

The BZ format code specifies the Interpretation of blanks, other than leading
blanks, in numeric input fields.

If BZ is encountered in a format specification, all non-leading blank characters
in succeeding numeric fields are treated as zeros. If no OPEN statement is
given and the file is preconnected, all non-leading blanks in numeric fields are
interpreted as zeros.

114 VS FORTRAN Version 2 Language and Library Reference

FORMAT

The BZ format code affects only I, F, E, G, D, and Q editing during execution of
an input statement.

The BZ format code has no effect during execution of an output statement.

Example;

The following program {containing both BN and BZ format codes):

READ (9,100) R,S,I,J
REWIND 9

READ (9,101) A,B,K,L
100 FORMAT (BZ,E6.3,F7.2,I3,I4)
101 FORMAT (BN,E6.3,F7.2,I3,I4)

WRITE (*,102) R,S,I,J
WRITE (*,102) A,B,K,L

102 FORMAT (2X,E10.3,F7.2,I7,I4)
STOP

END

with the following input:

Column: 12345678901234567890

123 315 3 5

creates the following output:

0.123E+03 315.00 300 5

0.123E+0O 3.15 3 5

Slash Format Code

A slash indicates the end of a record.

On input from a file connected for sequential access, the remaining portion of
the current record is skipped, and the file Is positioned at the beginning of the
next record.

On output to a file connected for sequential access, a new record is created.
For example, on output, the statement:

25 FORMAT (I3,F6.2/D10.3,F6.2)

describes two record formats. The first, third, and so on, records are trans

mitted according to the format 13, F6.2 and the second, fourth, and so on,
records are transmitted according to the format 010.3, F6.2.

Consecutive slashes can be used to introduce blank output records or to skip
input records. Ifthere are n consecutive slashes at the beginning or end of a
FORMAT statement, n input records are skipped or n blank records are inserted
between output records. If n consecutive slashes appear anywhere else in a
FORMAT statement, the number of records skipped or blank records inserted is
n-1. For example, the statement:

25 FORMAT (1X,18I5//1X,8E14.5)

describes three record formats. On output, it places a blank line between the
line written with format IX,1015 and the line written with the format 1X,8E14.5.

Chapter 4. Statements 115

FORMAT

For a file connected for direct access, when a slash is encountered, the record
number is increased by one and the file is positioned at the beginning of the
record that has that record number.

Colon Format Code

A colon terminates format control if there are no more items in the input/output
list. The colon has no effect if there are more items in the input/output list.

Example:

Assume the following statements:

ITABLE=10

IELEM=0

10 WRITE(6,1000)ITABLE,IELEM

ITABLE=11

IELEM=25

XMIN=-.37E1

XMAX=.2495E3

20 WRITE(6,1000)ITABLE,IELEM,XMIN,XMAX
1000 FORMAT(' 0TABLE NUMBER',13,' CONTAINS',13,' ELEMENTS',:,

1 /' MINIMUM VALUE:',E15.7,
2 /' MAXIMUM VALUE:',E15.7)

The WRITE statement at statement 10 generates the following:

TABLE NUMBER 10 CONTAINS 0 ELEMENTS

The WRITE statement at statement 20 generates the following:

TABLE NUMBER 11 CONTAINS 25 ELEMENTS

MINIMUM VALUE: -.3700000E+01

MAXIMUM VALUE: .2495000E+03

Providing the Format in a Character String
VS FORTRAN Version 2 provides for variable FORMAT statements by allowing
a format specification to be read into a character array element or a character
variable in storage. The data in the character array or variable may then be
used as the format specification for subsequent input/output operations. The
format specification may also be placed into the character array or variable by -
a DATA statement or an assignment statement in the source program. The fol
lowing rules apply:

The format specification must be a character array or a character variable.

The format codes entered into the array or character variable must have
the same form as a source program FORMAT statement, except that the

116 VS FORTRAN Version 2 Language and Library Reference

FORMAT

word FORMAT and the statement label are omitted. The parentheses sur-

rounding the format codes are required.

If a format code read at object time contains two consecutive apostrophes
within a character field that is defined by apostrophes, it should be used for
output only.

Blank characters may precede the format specification, and character data
may follow the right parenthesis that ends the format specification.

Example:

Assume the following statements:

DIMENSION C(5)
CHARACTER*16 FMT

FMT='{2E10.3,5F10.8)'
READ(5,FHT)A.B.(C(I),I=1.5)

The data is read, converted, and stored in A, B, and the array C, according to
the format codes 2E10.3, 5F10.8.

Reading a FORMAT Into a noncharacter array: Assume the following state
ments:

DIMENSION RFMT(16),C(5)
READ(5,1) RFMT

1 FORMAT(16A4)
READ(5,RFMT)A,B,(C(I),I=1,5)

Assume also that the first input line associated with unit 5 contains;

(2E10.3,5F10.8)

The data on the next input record is read, converted, and stored in A, B, and
the array C, according to the format codes 2E10,3, 5F10.8.

List-Directed Formatting
The characters in one or more list-directed records constitute a sequence of
values and value separators. The end of a record has the same effect as a
blank character, unless it is within a character constant. Any sequence of two
or more consecutive blanks is treated as a single blank, unless it is within a
character constant.

Each value is either a constant, a null value, or one of the forms:

r*f

or

r*

where r is an unsigned, nonzero, integer constant. The r*f form is equivalent to
r successive appearances of the constant f, and the r* form is equivalent to r
successive null values. Neither of these forms may contain embedded blanks,

except where permitted within the constant f.

r\

Chapter 4. Statements 117

FORMAT

A value separator is one of the following:

A comma, optionally preceded by one or more blanks and optionally fol
lowed by one or more blanks

A slash, optionally preceded by one or more blanks and optionally followed
by one or more blanks

One or more blanks between two constants or following the last constant

Input: Input forms acceptable to format specifications for a given type are
acceptable for list-directed formatting, except as noted below. The form of the
input value must be acceptable for the type of the input list item. Blanks are
never treated as zeros, and embedded blanks are not permitted in constants,
except within character constants and complex constants as specified below.
The end of a record has the effect of a blank, except when it appears within a
character constant.

When the corresponding input list item is of real or double precision type, the
input form is that of a numeric input field. A numeric input field is a field suit
able for the F format code that is assumed to have no fractional digits, unless a
decimal point appears within the field.

When the corresponding list item is of COMPLEX type, the input form consists
of a left parenthesis, an ordered pair of numeric input fields separated by a
comma, and a right parenthesis. The first numeric input field is the real part of
the complex constant and the second is the imaginary part. Each of the
numeric input fields may be preceded or followed by blanks. The end of a
record may occur between the real part and the comma or between the comma
and the imaginary part.

When the corresponding list item is of logical type, the input form must not
include either slashes or commas among the optional characters permitted for
the L format code.

When the corresponding list item is of character type, the input form consists of
a nonempty string of characters enclosed in apostrophes. Each apostrophe
within a character constant must be represented by two consecutive apostro
phes without an intervening blank or the end of the record. Character con
stants may be continued from the end of one record to the beginning of the next
record. The end of the record does not cause a blank or any other character to
become part of the constant. The constant may be continued on as many
records as needed. The characters blank, comma, and slash may appear in
character constants.

For example, let len be the length of the list item, and let w be the length of the
character constant. If len is less than or equal to w, the leftmost len characters
of the constant are transmitted to the list item. If len is greater than w, the
constant is transmitted to the leftmost w characters of the list item and the

remaining len-w characters of the list item are filled with blanks. The effect is
that the constant is assigned to the list item in a character assignment state
ment.

A null value is specified by having no characters between successive separa
tors, by having no characters preceding the first value separator in the first
record read by each execution of a list-directed input statement, or by the r*

118 VS FORTRAN Version 2 Language and Library Reference

FORMAT

form. A null value has no effect on the definition status by the corresponding
input list item. Ifthe input list item is defined, it retains its previous value; if it
is undefined, it remains undefined. A null value may not be used as either the
real or imaginary part of a complex constant, but a single null value may repre
sent an entire complex constant. The end of a record following any other sepa
rator, with or without separating blanks, does not specify a null value.

A slash encountered as a value separator during execution of a list-directed
input statement causes termination of execution of that input statement after the
assignment of the previous value. Ifthere are additional items in the input list,
the effect is as if null values had been supplied for them.

All blanks in a list-directed input record are considered part of some value sep
arator, except for the following:

•- Blanks embedded in a character constant

" Embedded blanks surrounding the real or imaginary part of a complex con
stant

>• Leading blanks in the first record read by each execution of a list-directed
input statement, unless immediately followed by a slash or comma

Output: Except as noted, the form of the values produced is the same as that
required for input. With the exception of character constants, the values are
separated by one of the following:

*- One or more blanks

A comma, optionally preceded by one or more blanks and optionally fol
lowed by one or more blanks

VS FORTRAN Version 2 may begin new records as necessary but, except for
complex constants and character constants, the end of a record must not occur
within a constant, and blanks must not appear within a constant.

Logical output constants are T for the value .TRUE, and F for the value .FALSE..

Integer output constants are produced with the effect of an Iw edit descriptor for
some reasonable value of w.

Real and double precision constants are produced with the effect of either an F
format code or an E format code, depending on the magnitude x of the value
and a range:

10**dl ^ X < 10**d2

where dl and d2 are processor-dependent integer values. If the magnitude x is
within this range, the constant is produced using OPFw.d; otherwise, IPEw.dEe
is used. Reasonable processor-dependent values are used for each of the
cases involved.

Complex constants are enclosed in parentheses, with a comma separating the
real and imaginary parts. The end of a record may occur between the comma
and the imaginary part only if the entire constant is as long as, or longer than,
an entire record. The only embedded blanks permitted within a complex con
stant are between the comma and the end of a record and one blank at the

beginning of the next record.

Chapter 4. Statements 119

FUNCTION

Character constants produced:

Are not delimited by apostrophes

Are not preceded or followed by a value separator

Have each internal apostrophe represented externally by one apostrophe

Have a blank character inserted at the beginning of any record that begins
with the continuation of a character constant from the preceding record

Iftwo or more successive values in an output record produced have identical
values, the sequence of identical values is written.

Slashes, as value separators, and null values are not produced by list-directed
formatting.

Each output record begins with a blank character to provide carrier control if
the record is printed.

FUNCTION Statement
The FUNCTION statement identifies a function subprogram consisting of a
FUNCTION statement followed by other statements that may include one or
more RETURN statements. It is an independently written program that is exe
cuted wherever its name is referred to in another program.

Syntax

[type] FUNCTION name ([argi [, arg2...]])

type

is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or
CHARACTER{*/en/]

where:

*len1

is the length specification. It is optional; if omitted, it is assumed to be
1. It may be an unsigned, nonzero, integer constant, an integer con
stant expression enclosed in parentheses, or an asterisk enclosed in
parentheses. The expression can only contain integer constants; it
must not include names of integer constants.

If the name is of character type, all entry names must be of character
type, and lengths must be the same. If one length is specified as an
asterisk, all lengths must be specified as asterisks.

name

is the name of the function.

name*len2

is the name of the function.

where:

*len2

is a positive, nonzero, unsigned integer constant. It represents one of
the permissible length specifications for its associated type. {See "Data
Types and Lengths" on page 22.) It may be included only when type is

120 VS FORTRAN Version 2 Language and Library Reference

FUNCTION

specified as INTEGER, REAL, COMPLEX, or LOGICAL. It must not be

used when DOUBLE PRECISION or CHARACTER is specified.

arg

is a dummy argument. It must be a variable or array name that may
appear only once within the FUNCTION statement or dummy procedure
name. If there is no argument, the parentheses must be present. {See
"Dummy Arguments in a Function Subprogram" on page 123.)

A type declaration for a function name may be made by the predefined conven
tion, by an IMPLICIT statement, by an explicit specification in the FUNCTION
statement, or by an explicit type specification statement within the function sub
program. If the type of a function is specified in a FUNCTION statement, the
function name must not appear in an explicit type specification statement.

The name of a function must not be in any other nonexecutable statement
except a type statement.

Because the FUNCTION statement Is a separate program unit, there is no con
flict if the variable names and statement labels within it are the same as those

in other program units.

The FUNCTION statement must be the first statement in the subprogram. The
function subprogram may contain any FORTRAN statement except a SUBROU
TINE statement, another FUNCTION statement, a BLOCK DATA statement, or a

PROGRAM statement. If an IMPLICIT statement is used in a function subpro

gram, it must follow the FUNCTION statement and may only be preceded by
another IMPLICIT statement, or by a PARAMETER, FORMAT, or ENTRY state
ment.

The name of the function (or one of the ENTRY names) must appear as a vari
able name in the function subprogram and must be assigned a value at least
once during the execution of the subprogram in one of the following ways:

»- As the variable name to the left of the equal sign in an arithmetic, logical,
or character assignment statement

" As an argument of a CALL statement that will cause a value to be assigned
in the subroutine referred to

• In the list of a READ statement within the subprogram

As one of the parameters in an INQUIRE statement that is assigned a value
within the subprogram

As a DO- or implied DO-variable

•- As the result of the lOSTAT specification in an I/O statement

The value of the function is the last value assigned to the name of the function
when a RETURN or END statement is executed in the subprogram. For addi

tional information on RETURN and END statements in a function subprogram,

see "RETURN Statement" on page 196 and "END Statement" on page 83.

The function subprogram may also use one or more of its arguments to return
values to the calling program. An argument so used must appear:

• On the left side of an arithmetic, logical, or character assignment statement

Chapter 4. Statements 121

FUNCTION

•- In the list of a READ statement within the subprogram

As an argument in a function reference that is assigned a value by the func
tion referred to

As an argument in a CALL statement that is assigned a value in the subrou
tine referred to

As one of the parameters in an INQUIRE statement

The dummy arguments of the function subprogram {for example, argi, arg2,
arg3, ...) are replaced at the time of invocation by the actual arguments sup
plied in the function reference in the calling program.

If a function dummy argument is used as an adjustable array name, the array
name and all the variables in the array declarators (except those in the
common block) must be in the dummy argument list. See "Size and Type Dec
laration of an Array" on page 26.

If the predefined convention is not correct, the function name must be typed in
the program units that refer to it. The type and length specifications of the func
tion name in the function reference must be the same as those of the function

name in the FUNCTION statement.

Except in a character assignment statement, the name of a character function
whose length specification is an asterisk must not be the operand of a concat
enation operation.

The length specified for a character function in the program unit that refers to
the function must agree with the length specified in the subprogram that speci
fies the function. There is always agreement of length if the asterisk is used in
the referenced subprogram to specify the length of the function.

Actual Arguments in a Function Subprogram
The actual arguments in a function reference must agree in order, number, and
type with the corresponding dummy arguments in the dummy argument list of
the referenced function. The use of a subroutine name as an actual argument
is an exception to the rule requiring agreement of type.

If an actual argument is of type character, the associated dummy argument
must be of type character and the length of the actual argument must be
greater than or equal to the length of the dummy argument. If the length of the
actual argument is greater than the length of an associated dummy argument,
the leftmost characters of the actual argument are associated with the dummy
argument.

An actual argument in a function reference must be one of the following:

An array name

An intrinsic function name

An external procedure name

*• A dummy argument name v

122 VS FORTRAN Version 2 Language and Library Reference

FUNCTION

An expression, except a character expression Involving concatenation of an
operand whose length specification is an asterisk in parentheses (unless
the operand is the name of a constant).

For an entry point in a function subprogram, see "ENTRY Statement" on
page 86.

Dummy Arguments in a Function Subprogram
The dummy arguments of a function subprogram appear after the function
name and are enclosed in parentheses. They are replaced at the time of invo
cation by the actual arguments supplied in the function reference.

Dummy arguments must adhere to the following rules:

None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SAVE, INTRINSIC, or NAMELIST statement,
except as NAMELIST or common block names, in which case the names are
not associated with the dummy argument names.

A dummy argument name must not be the same as the procedure name
appearing in a FUNCTION, SUBROUTINE, ENTRY, or statement function defi
nition in the same program unit.

The dummy arguments must correspond in number, order, and type to the
actual arguments.

If a dummy argument is assigned a value in the subprogram, the corre
sponding actual argument must be a variable, an array element, a sub-
string, or an array. A constant, name of constant, subprogram name, or
expression should not be written as an actual argument unless the pro
grammer is certain that the corresponding dummy argument has not been
assigned a value in the subprogram.

A referenced subprogram cannot assign new values to dummy arguments
that are associated with other dummy arguments within the subprogram or
with variables in the common block.

Valid FUNCTION Statements:

1. Definition of function subprogram SUFFIX:

CHARACTER*10 FUNCTION SUFFIX(STR)
CHARACTER*/ STR

SUFFIX = STR // 'SUF'
END

Use of function subprogram SUFFIX:

CHARACTER*10 NAME, SUFFIX

NAME = SUFFIX(NAME(1:7))

2. Definition of function subprogram CUBE. This illustrates a function defined
without dummy arguments:

REAL FUNCTION CUBE*16()
COMMON /COMI/ A
CUBE = A * A * A

END

Use of function subprogram CUBE. Functions defined without dummy argu
ments must be invoked with the null parentheses.

Chapter 4. Statements 123

FUNCTION

REAL*16 A,X
COMMON /COMl/ A
A = 1.6

X = CUBE()

3. Function lADD illustrates assigning a value to the function name (in this
case, lADD) by means of an argument of a CALL statement.

FUNCTION IADO(M)

CALL SUBA (lADD, M)
RETURN

END

Definition of subroutine SUBA:

SUBROUTINE SUBA (J,K)
J = 10 + K

RETURN

END

4. Function IREAD illustrates assigning a value to the name of a function (in
this case, IREAD) by means of an I/O list of a READ statement within the
function definition.

FUNCTION IREAD ()
READ *, IREAD
RETURN

END

5. Function SUM illustrates the use of adjustable dimensions.

INTEGER FUNCTION SUM(ARRY, M, N)
INTEGER M, N, ARRY(M, N)

SUM = 0

DO 10 I = 1, M
DO 10 J = 1, N

10 SUM = SUM + ARRY(I,J)
RETURN

END

Use of function subprogram SUM:

DIMENSION IARRAY(20,30)
INTEGER SUM

IVAR = SUM(IARRAY, 20, 30)

Invalid FUNCTION Statements:

Assume the following function definition:

REAL FUNCTION BAD(ARG)

IF (ARG .EQ. 0.0) ARG = 1.0
BAD = 123.4^RG

RETURN

END

The following use of BAD is illegal, because the actual argument is an
expression, and BAD may assign a value to its dummy argument.

124 VS FORTRAN Version 2 Language and Library Reference

GO TO

X = BAD(6.0 * X)

The following use of BAD is also illegal, because the actual argument is a con
stant.

X = BAD(12.3)

GO TO Statements
GO TO statements transfer control to an executable statement in the program
unit. There are three GO TO statements:

*• Assigned GO TO

Computed GO TO

Unconditional GO TO

Assigned GO TO Statement
The assigned GO TO statement transfers control to the statement labeled stl1,
sU2, stl3, ... depending on whether the current assignment of / is stil, stl2, stl3
... respectively. (See "ASSIGN Statement" on page 51.)

Syntax

GO TO / [[,] {stn lstl2] [,sf/3]...)]

is an integer variable (not an array element) of length 4 that has been
assigned a statement label by an ASSIGN statement.

sti

is the statement label of an executable statement in the same program unit
as the assigned GO TO statement.

The list of statement labels, that is, (sf/1, sU2, stl3 ...), is optional. If omitted, the
preceding comma must be omitted. If the list of statement labels is specified,
the preceding comma is optional. The statement label assigned to / must be
one of the statement labels in the list. The statement label may appear more
than once in the list.

The ASSIGN statement that assigns the statement label to / must appear in the
same program unit as the assigned GO TO statement that is using this state
ment label.

For example, in the statement:

GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement number 8, the
statement labeled 8 is executed next. If the current assignment of N is state
ment number 10, the statement labeled 10 is executed next. If N is assigned
statement label 25, statement 25 is executed next.

At the time of execution of an assigned GO TO statement, the current value of /
must have been assigned the statement label of an executable statement (not a
FORMAT statement) by the previous execution of an ASSIGN statement.

Chapter 4. Statements 125

GO TO

If, at the time of the execution of an assigned GO TO statement, the current
value of / contains an integer value, assigned directly or through EQUIV
ALENCE, COMMON, or argument passing, the result of the GO TO is unpredict
able. If the integer variable / is a dummy argument in a subprogram, it must be
assigned a statement label in the subprogram, and also used in an assigned
GO TO in that subprogram. An integer variable used as an actual argument in
a subprogram reference may not be used in an assigned GO TO in the invoked
subprogram unless it is redefined in the subprogram.

Any executable statement immediately following the assigned GO TO statement
should have a statement label; otherwise, it can never be referred to or exe

cuted. An assigned GO TO statement cannot terminate the range of a DO.

Example:

ASSIGN 150 TO lASIGN

IVAR=150.

GO TO lASIGN

Computed GO TO Statement
The computed GO TO statement transfers control to the statement labeled stil,
stl2, or stl3, ... depending on whether the current value of m is 1, 2, or 3, ...
respectively.

— Syntax

GO TO (stil I stl2] [, stl3], ...) [,] m

sti

m

is the statement label of an executable statement in the same program unit
as the computed GO TO statement. The same label may appear more than
once within the parentheses.

is an integer expression. The comma before m is optional. If the value of
m is outside the range ^ ^ m ^ n, where n is the number of statement
labels, the next statement is executed.

A computed GO TO statement may terminate the range of a DO.

Example:

171 GO T0(172,173,174,173) INT(A)
172 A = A + 1.0

GO TO 174

173 A = A + 1.0

174 CONTINUE

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the statement specified
by the statement label. Every subsequent execution of this GO TO statement
results in a transfer to that same statement.

— Syntax

GO TO stI

126 VS FORTRAN Version 2 Language and Library Reference

IF

sti

is the statement label of an executable statement in the same program unit
as the unconditional GO TO statement.

Any executable statement imrnediately following this statement must have a
statement label; otherwise, it can never be referred to or executed.

An unconditional GO TO cannot terminate the range of a DO-loop.

Example:

GO TO 5

999 1=1+ 200

5 I = I t 1

IF Statements
The IF statements specify alternative paths of execution, depending on the con
dition given. There are three forms of the IF statement:

Arithmetic IF

Block IF

ELSE

ELSE IF

END IF

Logical IF

Arithmetic IF Statement

The arithmetic IF statement transfers control to the statement labeled stil, stl2,

or stl3 when the value of the arithmetic expression (m) is less than, equal to, or
greater than zero, respectively. The same statement label may appear more
than once within the same IF statement.

— Syntax

IF (m) stil, St12, stl3

m

is an arithmetic expression of any type except complex.

stI

is the label of an executable statement in the same program unit as the IF
statement.

An arithmetic IF statement cannot terminate the range of a DO-loop.

Any executable statement immediately following this statement must have a
statement label; otherwise, it can never be referred to or executed.

Chapter 4. Statements 127

IF

Block IF Statement

The block IF statement is used with the END IF statement and, optionally, the
ELSE IF and ELSE statements to control the execution sequence.

Syntax

IF (m) THEN

m

is any logical expression.

Two terms are used in connection with the block IF statement:

IF-block.

IF-level and

IF-level The number of IF-levels in a program unit is determined by the
number of sets of block IF statements (IF (m) THEN and END IF state
ments).

The IF-level of a particular statement {sti) is determined with the
formula:

nl - n2

where:

nl

is the number of block IF statements from the beginning of the
program unit up to and including the statement {stI).

n2

is the number of END IF statements in the program unit up to,
but not including, the statement (sf/).

IF-block An IF-block begins with the first statement after the block IF state
ment (IF (m) THEN), ends with the statement preceding the next
ELSE IF, ELSE, or END IF statement that has the same IF-level as the

block IF statement, and includes all the executable statements in

between. An IF-block is empty if there are no executable statements
in it.

Transfer of control into an IF-block from outside the IF-block is pro
hibited.

Execution of a block IF statement evaluates the expression m. If the value of m
is true, normal execution sequence continues with the first statement of the
IF-block, which is immediately following the IF {m) THEN. If the value of m is
true, and the IF-block is empty, control is transferred to the next END IF state
ment that has the same IF-level as the block IF statement. If the value of m is

false, control is transferred to the next ELSE IF, ELSE, or END IF statement that

has the same IF-level as the block IF statement.

If the execution of the last statement in the IF-block does not result in a transfer

of control, control is transferred to the next END IF statement that has the same

IF-level as the block IF statement that precedes the IF-block.

A block IF statement cannot terminate the range of a DO.

128 VS FORTRAN Version 2 Language and Library Reference

END IF Statement

ELSE Statement

IF

The END IF statement concludes an IP-block. Normal execution sequence con

tinues.

— Syntax

END IF

For each block IF statement, there must be a matching END IF statement in the
same program unit. A matching END IF statement is the next END IF statement
that has the same IF-level as the block IF statement.

An END IF statement cannot terminate the range of a DO.

Valid END IF Statements:

The following is the general form of a single alternative block IF statement (in
other words, no ELSE or ELSE IF statements are in the IF-block).

IF (m) THEN

EXECUTION SEQUENCE WHEN THE VALUE OF m IS TRUE

ENDIF

IF m IS FALSE, EXECUTION CONTINUES HERE

The following is an example of a single alternative IF.

IF (INDEX .EQ. 0) THEN
PRINT *, 'KEY NOT FOUND'
INDEX = - 1

ENDIF

The ELSE statement is executed if the preceding block IF or ELSE IF condition is
evaluated as FALSE. Normal execution sequence continues.

Syntax

ELSE

An ELSE-block consists of all the executable statements after the ELSE state

ment up to, but not including, the next END IF statement that has the same
IF-level as the ELSE statement. An ELSE-block may be empty.

Within an IF-block, you can have only one ELSE.

Transfer of control into an ELSE-block from outside the ELSE-block is prohibited.
The statement label, if any, of an ELSE statement must not be referred to by
any statement (except an AT statement of a DEBUG packet). An ELSE state
ment cannot terminate the range of a DO.

Chapter 4. Statements 129

IF

Valid ELSE Statements:

The following is the general form of the double alternative block IF statement (in
other words, IF-block contains an ELSE statement but no ELSE IF statements).

IF (m) THEN
C

C EXECUTION SEQUENCE WHEN THE VALUE OF m IS TRUE
C

ELSE

C

C EXECUTION SEQUENCE WHEN THE VALUE OF m IS FALSE
C

ENDIF

The following is an example of a double alternative block IF.

IF(X .GE. Y) THEN
LARGE = X

ELSE

LARGE = Y

ENDIF

ELSE IF Statement

The ELSE IF statement is executed if the preceding block IF condition is evalu
ated as false.

Syntax

ELSE IF (m) THEN

m

is any logical expression.

An ELSE IF block consists of all the executable statements after the ELSE IF

statement up to, but not including, the next ELSE IF, ELSE, or END IF statement
that has the same IF-level as the ELSE IF statement. An ELSE IF block may be

empty.

If the value of the logical expression m is true, normal execution sequence con
tinues with the first statement of the ELSE IF block.

If the value of m is true and the ELSE IF block is empty, control is transferred to
the next END IF statement that has the same IF-level as the ELSE IF statement.

If the value of m is false, control is transferred to the next ELSE IF, ELSE, or
END IF statement that has the same IF-level as the ELSE IF statement.

Transfer of control into an ELSE IF block from outside the ELSE IF block is pro

hibited. The statement label (sf/), if any, of the ELSE IF statement must not be
referred to by any statement (except an AT statement of a DEBUG packet).

130 VS FORTRAN Version 2 Language and Library Reference

IF

If execution of the last statement in the ELSE IF block does not result in a

transfer of control, control is transferred to the next END IF statement that has
the same IF-level as the ELSE IF statement that precedes the ELSE IF block.

An IF-THEN-ELSE structure can contain a maximum of 125 nested ELSE IF

blocks. An ELSE IF statement cannot terminate the range of a DO.

Valid ELSE IF Statements:

The following are the general forms of the multiple alternative block-IF state
ment.

IF (m) THEN

1. Execution sequence when the value of m is true.

ELSE IF (ml) THEN

2. Execution sequence when the value of m is false and the value of ml is
true.

ELSE

3. Execution sequence when the values of both m and ml are false.

ENDIF

The following is the second form of the multiple alternative block-IF.

IF (m) THEN

1. Execution sequence when the value of m is true.

ELSE IF (ml) THEN

2. Execution sequence when the value of m is false and the value ml is true.

ENDIF

3. Execution continues here, following execution of the block-IF.

The following is an example of multiple alternative block-IF.

CHARACTER*5 C

IF (C .EQ. 'RED ') THEN
PRINT *,

ELSEIF (C
PRINT *,

ELSEIF (C
PRINT *,

ELSE

PRINT *,
C = 'PLAID

PRINT *,
ENDIF

COLOR IS RED'

EQ. 'BLUE ') THEN
COLOR IS BLUE'

EQ. 'WHITE') THEN
COLOR IS WHITE'

COLOR IS NOT SET'

COLOR IS NOW PLAID'

Chapter 4. Statements 131

IF

Logical IF Statement
The logical IF statement evaluates a logical expression and executes or skips a
statement, depending on whether the value of the expression is true or false,
respectively.

— Syntax

IF (m) St

m

is any logical expression.

st

is any executable statement except:

A DO statement

Another logical IF statement

An END statement

A block IF, ELSE IF, ELSE, or END IF statement.

A TRACE ON or TRACE OFF statement

»- An INCLUDE statement

A DISPLAY statement

The statement st must not have a statement label.

The execution of a function reference in m is permitted to effect entities in
the statement st.

The logical IF statement containing st may have a statement label. If a
logical IF statement terminates the end of a DO loop, it may not contain a
DO, block IF, ELSE IF, ELSE, END IF, END, or another logical IF statement.

Example:

IF(A.LE.0.Q) GO TO 25
C = D + E

IF (A.EQ.B) ANSWER = 2.0*A/C
F = G/H

25 W = X**Z

132 VS FORTRAN Version 2 Language and Library Reference

IMPLICIT

IMPLICIT Statement
The IMPUCIT statement can be used to confirm or change the default implied
types or It may be used to void implied typing altogether.

— Syntax

IMPLICIT type (a [, a]...) [, type (a [, a]...)] ...

IMPLICIT NONE

type

is CHARACTER[*/en]. COMPLEX. DOUBLE PRECISION, INTEGER, LOGICAL.
REAL,C0MPLEX*8, C0MPLEX*16, COMPLEX*32, INTEGER*2, INTEGER*4,
L0GICAL*1, L0GICAL*4, REAL*4, REAL*8, or REAL*16.

len

specifies the length of a character entity. It is either an unsigned,
nonzero, integer constant, or a positive constant expression enclosed in
parentheses that has a positive value.

a

Is a single letter or range of letters. A range of letters is denoted by a,-a2.
where a, precedes 83 alphabetically. (The currency symbol, $, is consid
ered to follow the letter Z.) A range of letters has the same effect as speci
fying each letter within the range separately. For example, IMPLICIT
INTEGER (A-C) is equivalent to IMPLICIT INTEGER (A,B,C).

An IMPLICIT NONE statement voids all implied typing. A TYPE statement must
then be used to specify explicitly the data type of a name. The IMPLICIT NONE
statement must be the only IMPLICIT statement in a program unit. A PARAM
ETER statement may not precede an IMPLICIT NONE statement.

The IMPLICIT statement specifies the implied type of any name that begins with
any letter in the specification. The IMPLICIT statement does not change the
implied type of names which begin with non-EBCDIC double-byte characters. A
TYPE statement may be used to confirm or change the implied type of a name.

For any name, type specification by an IMPLICIT statement may be overridden
or confirmed by the appearance of that name in an explicit type specification
statement.

An IMPLICIT statement has no effect on names of intrinsic functions.

Valid IMPLICIT Statements:

IMPLICIT INTEGER(A,B,G-H), REAL(I-K), LOGICAL(L,M,N)

IMPLICIT COHPLEX(C-F)

IMPLICIT INTEGER(W-$)

Chapter 4. Statements 133

INCLUDE

For the following two IMPLICIT statements:

IMPLICIT DOUBLE PRECISION (A-C, F)
IMPLICIT LOGICAL (E,L), CHARACTER (D,G,H)

FORTRAN will treat the implicit type of names as follows:

Names beginning with:

A,B.C,F,a,b,c,f

E,L,e.l

0,G,H.d,g.h

l-K,M,N,i-k,m,n

0-2.o-z.$

Have data type:

DOUBLE PRECISION

LOGICAL

CHARACTER

INTEGER

REAL

Have length:

8

4

1

4 (defaults)

4 (defaults)

INCLUDE Statement
INCLUDE is a compiler directive. It inserts a specified statement or a group of
statements into a program unit.

A facility called conditional INCLUDE provides a means for selectively activating
INCLUDE statements within the source program during compilation. The
included files are specified by means of the Cl compiler option. For more infor
mation about the Cl compiler option and how to use the INCLUDE directive, see
VS FORTRAN Version 2 Programming Guide.

There are two forms of the INCLUDE statement syntax. The first form, which
requires a file definition (FILEDEF command, ALLOCATE command, or DD state
ment). allows you to specify the name of the source library member which is to
be included. The second form lets you refer directly to CMS files or MVS data
sets without the need for a file definition.

Syntax 1

INCLUDE (member-name) [n]

member-name

a sequence of 1 to 8 letters or digits, the first of which must be a letter.

member-name is the name of a member in the source library which is to be
included.

is the value used to decide whether to include the file during compilation.
When n is not specified, the file is always included. When n is specified, the
file is included only if the number appears in the list of identification
numbers on the Cl compiler option. The range of n is 1 to 255.

Syntax 2

INCLUDE char-constant

char-constant

is a character constant whose value, when trailing blanks are removed, is a
system-dependent file specifier naming the file to be included. This type of
INCLUDE statement conforms to the Systems Application Architecture. The
file specifier is in one of the following formats;

134 VS FORTRAN Version 2 Language and Library Reference

r\

INCLUDE

" On VM: filename [filetype [filemode]] [{member)]

filename filetype

each is a sequence of 1 to 8 characters chosen from letters,
numbers, and special characters (hyphen (-), colon (:). underscore

U. arid +). Iffiletype is not specified, a file type of FORTRAN
is assumed.

filemode

from 1 to 2 characters whose first character ranges from A to Z and
whose second character ranges from 0 to 6. If the second character
is not specified, 1 will be assumed. filemode is omitted, A1 will be
used. An asterisk {*) can also be specified for the file mode. If an
asterisk is specified, the CMS search order is used to locate the
first file with the same file name and file type.

member

a member name, 1 to 8 characters long, within a MACLIB. When
member is specified, the file type must be MACLIB. If no file type is
specified, MACLIB is assumed.

Note: Lower case letters are equivalent to upper case letters even
though it is possible to create file names with lowercase in CMS. One
or more blanks must separate each part of the CMS file identifier.

•- On MVS: dsn [{member)]

dsn

a fully qualified MVS data set name. It consists of qualifiers, each of
which are 1 through 8 characters long, separated by periods to a
maximum length of 44 characters. The character set is restricted to
letters, numbers and special characters (# and @). The first char
acter must be a letter, #, or @.

member

a member within a partitioned data set. Partitioned data set names
must be no longer than 54 characters (44 for the data set name and
8 for the member name plus the parentheses around the member
name). Partitioned data sets are valid only for non-VSAM files.

Note: Lower case letters are equivalent to upper case letters.

The following rules apply to INCLUDE:

INCLUDE must not be continued.

The group of statements inserted by the INCLUDE may contain any
FORTRAN source statements, including other INCLUDE statements.

The first non-comment line of the included group of statements must not be
a continuation line.

^ An INCLUDE of a group must not contain an INCLUDE statement that refers
to a currently open INCLUDE group (that is, recursion is not permitted).

Multiple INCLUDE statements may appear in the original source program.

INCLUDE statements may appear anywhere in a source program before the
END statement, except as the trailer of a logical IF statement. An END
statement may be part of the included group.

Chapter 4. Statements 135

INQUIRE

^ The statements in the group being included must be in the same form as
the source program being compiled; that is. either fixed form or free form.

After the inclusion of all groups, the resulting program must follow all rules
for sequencing of statements.

An included file may not contain an ©PROCESS statement.

Valid INCLUDE Statements;

For Syntax 1

INCLUDE (MYFILE)

INCLUDE (DATA) 2

For Syntax 2

VM Examples

INCLUDE 'CONSTANT'

INCLUDE 'COMMON PR0J_Q1'

INCLUDE 'MAS<S-1 INCLUDE Zl'

INCLUDE 'OLDPROJ MACLIB (CONTROL)'

MVS Examples

INCLUDE 'MORRIS.HISTQ.PACKAGE'

INCLUDE 'TJWATSON.PROJl.FORT.INCL(COMMON)'

INCLUDE 'CHOPIN.PR0F2.FORT.CONST(MASKS)'

INQUIRE Statement
The INQUIRE statement supplies information about a particular file or about a
particular external unit. By using INQUIRE, you can check a file's existence and
its connection to an external unit. File existence can be determined regardless
of whether the file is connected to a unit; the values returned by the INQUIRE
statement reflect the status of the file and file connection at the time the state

ment executes. There are three types of INQUIRE statements:

1. INQUIRE by file
2. INQUIRE by unit
3. INQUIRE by unnamed file

INQUIRE by File
Allows you to determine the file existence and connection status and other
properties of a named file. For a discussion of named and unnamed files, see
"Input/Output Semantics" on page 46.

Syntax

INQUIRE

(FILE = /n

l,specirier-list})

136 VS FORTRAN Version 2 Language and Library Reference

INQUIRE

FILE=fn

fn is the name of the file and must be preceded by FILE= . It may take one
of the following formats:

ddname

a character expression whose value, when any trailing blanks are
removed, is the name by which VS FORTRAN identifies the file defi
nition. The expression must be 1 to 8 characters, the first one being a
letter. #, or and the other seven being letters or digits, Including #
and

On VM: /filename filetype [filemode] [{member)]

a character expression whose value, when any trailing blanks are
removed, is the file name, file type, and file mode on VM.

The slash {/) indicates that the file identifier is not a ddname; therefore,
it must appear as the first character of the expression if this format is
used.

filename filetype

each is a sequence of 1 to 8 characters chosen from letters,
numbers and special characters (hyphen (-), colon (:), underscore

(J, +)•

filemode

from 1 to 2 characters long whose first character ranges from A to Z
and whose second character ranges from 0 to 6.

— If the second character is not specified, 1 will be assumed.

— If filemode is omitted, A will be used as the file mode.

— If an asterisk (*) is specified for the file mode, the standard CMS
search order will be used; if the file is found and the NAME

specifier is used, then INQUIRE will return the actual file mode.

member

a member name, 1 to 8 characters long, and the parentheses are
required to indicate that it is a member name, member may be
used only when referring to a LOADLIB, MACLIB, or TXTLIB filetype.

Note: Lowercase letters are equivalent to uppercase letters. One or
more blanks must separate each part of the CMS file identifier.

If this form is used, the FILEINF service subroutine may be used to set
up the file characteristics prior to issuing the INQUIRE statement. If
FILEINF is not used, the unit attribute table values will be used instead.

For more information, see "FILEINF Subroutine" on page 283.

•- On MVS: /dsn [{member)]

a character expression whose value, when any trailing blanks are
removed, is the data set name on MVS.

The slash (/) is used to indicate that the file identifier is not a ddname;
therefore, it must appear as the first character of the expression if this
form is used.

dsn

a fully qualified MVS data set name. It consists of qualifiers, each of
which are 1 to 8 characters long, separated by periods, to a

Chapter 4. Statements 137

INQUIRE

INQUIRE by Unit

maximum length of 44 characters. The character set is restricted to
letters, numbers and special characters {# and @). The first char
acter must be a letter, # or

member

a member within a partitioned data set. Partitioned data set names
must be no longer than 54 characters (44 for the data set name and
8 for the member name plus the parentheses around the member
name). Partitioned data sets are valid only for non-VSAM files.

Note: Trailing blanks are ignored and lower case is equivalent to upper
case.

If this form is used, the FILEINF service routine may be used to set up

the file characteristics prior to issuing the INQUIRE statement. If
FILEINF is not used, the unit attribute table values will be used instead.
For more information, see "FILEINF Subroutine" on page 283.

Allows you to determine the existence of a unit, whether the unit is connected
to a file, and, if the unit is connected, what the properties are of the unit and file
connection. For a general discussion of file and unit connection, see
"Input/Output Semantics" on page 46.

— Syntax

INQUIRE

([UNIT =]un
[,specifier-list})

UU\7=un

un is an integer expression of length 4 whose value is the external unit
identifier, un can be optionally preceded by UNIT =. If UNIT= is not speci
fied, un must appear immediately following the left parenthesis.

INQUIRE by Unnamed File
Allows you to determine the file existence and connection status for an
unnamed file, as well as other properties of the file. For a discussion of named
and unnamed files, see "Input/Output Semantics" on page 46.

Syntax 1

INQUIRE

([UNIT =]un,

FILE = fn

[,specifier-list})

— Syntax 2

INQUIRE

(FILE = fri

[,specifier-list})

138 VS FORTRAN Version 2 Language and Library Reference

n

INQUIRE

For Syntax 1:

UNIT = un

un is an integer expression of length 4 whose value is the external unit

identifier.

f\LE = fn

fn is an 8-byte character expression whose value is blanks, fn may be
specified as a character constant, as shown in the following example:

INQUIRE (UNIT=un,FILE=' ...)

If Syntax 1 of INQUIRE by unnamed file is used, information Is requested about
an unnamed file that is currently connected to the unit referred to by un. {The
unnamed file being inquired about must have been connected by an ENDFILE,
OPEN, READ, or WRITE statement.) If the unit referred to by un exists but there

is no unnamed file currently connected to it, VS FORTRAN attempts to deter
mine file existence as follows:

1. Checks for a file definition for: FTnnKOI

(where nn is the two-digit unit identifier).
2. Checks for a file definition for: FTnnFOOl

{where nn is the two-digit unit identifier).

If a file definition is found for FTnnFOOl, VS FORTRAN will return the file exist

ence properties for that file; otherwise, VS FORTRAN will continue to determine
the existence of FTnnFOOl.

For Syntax 2:

FILE = fn

fn must be a character expression whose value, when trailing blanks are

removed, is one of the default ddnames used for unnamed files. These

default ddnames take one of the following forms.

FTnnFmmm, where nn is the two-digit unit identifier and mmm is the
three-digit sequence number

• FTnnKkk, where nn is the two-digit unit identifier and kk is the two-digit

sequence number for a keyed file

FTERRsss, where sss is the three-digit MTF subtask number

FTPRTsss, where sss is the three-digit MTF subtask number

Optional Specifiers
The optional specifiers are listed in Figure 23 on page 140 and may be speci
fied in any order. Each specifier cannot appear more than once in an INQUIRE

statement. The same variable or array element cannot be designated for more

than one specifier in the same INQUIRE statement.

Note: Except for the lOSTAT, ERR, and PASSWORD specifiers, the variables or
array elements given in the optional specifiers become defined under different

conditions depending on the form of INQUIRE you are using. See Figure 24 on
page 145 for details.

Chapter 4. Statements 139

INQUIRE

ERR=stl RECL=rcl

IOSTAT=ios NEXTREC=nxr

EXIST=exs BLANK=blk

OPENED=opn ACTION=act

NAMED=nnid VJRITE=wri

NAME=nam READ=ron

SEQUENTIAL=seq READWRITE=rwr

DIRECT=dir PASSWORD=pwd
KEYED=ky^ KEYID=kid

FORMATTED=fmt KEYLENGTH=kle

UNFORMATTED=unf KEYSTART=kst

NUMBER=num KEYEND=ken

ACCESS=acc LASTRECL=lrl

FORM=frm LASTKEY=lky
CHAR=cTtF

Figure 23. Optional Specifiers on the INQUIRE Statement

ERR = stl

sti is the statement label of an executable statement in the same program

unit as the INQUIRE statement. If an error occurs, control Is transferred to
stI.

IOSTAT=/os

ios is an integer variable or integer array element of length 4. ios is set to
a positive value if an error is detected; it is set to zero is no error is
detected. VSAM return codes and reason codes are placed in ios.

EXIST=exs

exs is a logical variable or logical array element of length 4.

if you are using INQUIRE by file: exs is assigned the value true if the file of
the specified name exists; othenA/ise, it is assigned the value false, exs
becomes undefined if an error occurs.

If you are using INQUIRE by unit: exs is assigned the value true if the spec
ified unit exists; otherwise it is assigned the value false.

If you are using INQUIRE by unnamed file: exs is assigned the value true if
the unit exists and the unnamed file both exist; otherwise, exs is assigned
the value false, exs becomes undefined if an error occurs.

OPENED = opn

opn is a logical variable or logical array element of length 4. opn becomes
undefined if an error occurs.

If you are using INQUIRE by file: opn is assigned the value true if the file
specified is connected to a unit; otherwise, it is assigned the value false.

If you are using INQUIRE by unit: opn is assigned the value true if the unit
specified is connected to a file; otherwise, it is assigned the value false.

Note: For INQUIRE by unit on VM, opn is always assigned the value true,
regardless of whether the unit is connected to a file or not.

If you are using INQUIRE by unnamed file: opn is assigned the value true if
the unnamed file referred to by the FILE specifier is connected to a corre

sponding unit; otherwise, it is assigned the value false.

140 VS FORTRAN Version 2 Language and Library Reference

rs

INQUIRE

HAMED = nmd

nmd is a logical variable or logical array element of length 4.

If you are using INQUIRE by file: nmd is assigned the value true.

If you are using INQUIRE by unit; If the file connected to the unit is a

named file, then nmd is assigned the value true.

If you are using INQUIRE by unnamed file: nmd is always assigned the
value false.

NAME=nam

nam is a character variable or character array element.

If you are using INQUIRE by file: nam is assigned the value of either the

ddname, the CMS file identifier, or the MVS data set name, depending on
what name was used when the file was connected. The system dependent
names are returned in the following formats:

Under CMS:

'/filename filetype fiiemode' or '/filename filetype filemode {member)'

where filename, filetype, and member are 8 characters long and
filemode is two characters long.

Under MVS:

'/dsn' or '/dsn {member)'

where dsn is 44 characters long and member is 8 characters long.

Note: If filename, filetype, fiiemode, member or dsn are shorter than the

lengths stated above, they will be padded with blanks. If member is
returned, there will be one blank before the left parenthesis. The vari

able used to hold the name returned by INQUIRE {nam) must be
declared to be at least as long as 21 characters for CMS files (32 for

CMS files that include member) and at least as long as 45 characters for
MVS files (56 for MVS files that include member).

if you are using INQUIRE by unit: If the file connected to the designated
unit has a name, then nam is assigned the value of that name—either the
ddname, the CMS file identifier or the MVS data set name, depending on
what name was used when the file was connected, according to the formats
described for INQUIRE by file above. Otherwise, nam becomes undefined.

If you are using INQUIRE by unnamed file: nam becomes undefined.

SEQUENTIAL = sec7
seq is a character variable or character array element. It is assigned a
value of YES if the file can be connected for sequential access. NO if the file

cannot, and UNKNOWN if it is not possible to determine whether the file can
be connected for sequential access.

DIRECT = cf/r

dir is a character variable or a character array element. It is assigned a
value of YES if the file can be connected for direct access, NO if the file

cannot, and UNKNOWN if it is not possible to determine whether the file can

be connected for direct access.

KE\ED = kyd

kyd is a character variable or a character array element. It is assigned a
value of YES if the file can be connected for keyed access, NO if the file

Chapter 4. Statements 141

INQUIRE

cannot, and UNKNOWN if it is not possible to determine whether the file can
be connected for keyed access.

FORMATTED = /mf

fmt Is a character variable or a character array element. It is assigned a
value of YES if the file can be connected for formatted access, NO if the file

cannot, and UNKNOWN if it is not possible to determine whether the file can
be connected for formatted access.

UNFORMATTED =

unf \s a character variable or a character array element. It is assigned a
value of YES if the file can be connected for unformatted access, NO if the

file cannot, and UNKNOWN if it is not possible to determine whether the file
can be connected for unformatted access.

NUMBER = num

num is an integer variable or integer array element of length 4. num is
assigned the value of the unit identifier for the unit to which the file is con
nected.

ACCESS = acc

acc is a character variable or character array element, acc is assigned a
value that corresponds to the type of file connection: SEQUENTIAL: DIRECT;
or KEYED.

If the following three conditions are satisfied, acc is assigned the value
SEQUENTIAL:

1. You are using either INQUIRE by unit or INQUIRE by unnamed file
(where the unnamed file has a ddname of the form FTnnFmmm), and

2. The unit is preconnected, and
3. No OPEN, READ, or WRITE statement has been issued for the unit.

FORM = frm

frm is a character variable or character array element. It is assigned a
value that corresponds to the type of file connection; FORMATTED or

UNFORMATTED.

If the following three conditions are satisfied, frm is assigned the value
FORMATTED:

1. You are using either INQUIRE by unit or INQUIRE by unnamed file
(where the unnamed file has a ddname of the form FTnnFmmm). and

2. The unit is preconnected, and

3. No OPEN, READ, or WRITE statement has been issued for the unit.

RECL = rc/

rcl is a variable or integer array element of length 4 and Is set to the record
length of the file. The record length is measured in characters for formatted
records, and in bytes for unformatted records.

NEXTREC = nx/-

nxr is an integer variable or integer array element of length 4. nxr is set to
the value of n + 1, where n is the record number of the last record read or

written on the direct access file. If the file Is connected, but no records

have been read or written since the connection was established, nxr equals

1.

142 VS FORTRAN Version 2 Language and Library Reference

INQUIRE

BLANK = 6//f

bik is a character variable or character array element. It is assigned the
value NULL if blanks in arithmetic input fields are treated as blanks; ZERO if

they are treated as zeros.

If you are using INQUIRE by unit or INQUIRE by unnamed file, and the unit
is preconnected but no I/O statements other than INQUIRE, BACKSPACE, or
REWIND have been issued for that unit. bIk is assigned the value ZERO.

CHAR = c/)r

chr is a character variable or array element. If the file is connected, chr is

assigned the value DBCS, if CHAR= 'DBCS' was specified on the OPEN
statement; otherwise chr is assigned the value NODBCS. If the file is not
connected, chrwill become undefined.

ACTION = acf

act is a character variable or character array element that is assigned one
of the following values;

WRITE If the file is connected for writing records only

Note: For files connected for keyed access, act is assigned the
value WRITE if the file is connected to load records into an

empty file.

READ If the file is connected for reading records only

READWRITE

if the file is connected for reading and writing records

Note: For files connected for keyed access, act is assigned the
value READWRITE if the file is connected to allow retrieval and

update operations.

For all forms of the INQUIRE statement, a file must be connected for act to

become defined.

WRITE = wr/

wri is a character variable or character array element that is assigned the
value YES if the file is connected only to have records written to it; other

wise, wri is assigned the value NO.

For files connected for keyed access, wri is assigned the value YES if the
file is connected only to load records into the file; otherwise, wri is assigned
the value NO.

READ = ron

ron is a character variable or character array element whose value is YES if
the file is connected only for reading records. If the file is not connected
only for reading, ron is assigned the value NO.

READWRITE =rwr

rwr is a character variable or character array element whose value is YES if
the file is connected for reading and writing records. If the file is not con
nected for both reading and writing records, rwr is assigned the value NO.

For files connected for keyed access, rwr is assigned the value YES if the
file is connected for both retrieval and update operations. If the file is not
connected for both retrieval and update operations, rwr is assigned the
value NO.

Chapter 4. Statements 143

INQUIRE

PASSWORD = pwd
pwd is a character expression of up to eight characters in length. You must
specify the file's read password for pvvcf.

The PASSWORD= parameter is only necessary if the file is a VSAM file
that was password-protected when it was defined with the Access Method
Services program.

KEYID = /f/c/

kid is an integer variable or integer array element of length 4. The value of
kid is the relative position of the key of reference; that is, the key currently
in use. (If the file is connected for keyed access, and if the OPEN statement
for that file did not include a KEYS specifier, kid is assigned a value of 1.)

KEYLENGTH = /(/e

kle is an Integer variable or integer array element of length 4.

If the file is connected for keyed access, the value of kle is the length of the

leftmost character in the record of the key currently in use.

If the file is not connected for keyed access, but could be connected for
keyed access, the value of kle is the position of the leftmost character in the
record of the key of the file designated on the INQUIRE statement.

Otherwise, kle becomes undefined.

KEYSTART = ;(s/

kst is an Integer variable or integer array element of length 4.

If the file is connected for keyed access, the value of kst is the position of
the leftmost character In the record of the key currently in use.

If the file is not connected for keyed access, but could be connected for
keyed access, the value of kst is the position of the leftmost character in the
record of the key of the file designated on the INQUIRE statement.

Otherwise, kst becomes undefined.

KEYEND = /(er)

ken Is an integer variable or integer array element of length 4.

If the file is connected for keyed access, the value ot ken is the position of
the rightmost character in the record of the key currently in use.

If the file is not connected for keyed access, but could be connected for
keyed access, the value of ken is the position of the leftmost character in
the record of the key of the file designated on the INQUIRE statement.

Otherwise, ken becomes undefined.

LASTKEY = /;fy
Iky is a variable or array element of any data type. If the file is connected

for keyed access, Iky is assigned the value of the key of the last keyed file
record that was affected by a BACKSPACE, DELETE, READ, REWRITE, or

WRITE statement. The length of Iky should be at least as long as the key. If
it is shorter than the key, the value of the key is truncated on the right; if it
is longer, the value of the key is padded on the right with binary zeros.

LASTRECL = /r/

Irl is an integer variable or integer array element of length 4. If the file is
connected for keyed access, Irl is assigned the length of the last keyed file

record that was affected by a BACKSPACE. DELETE, READ. REWRITE, or
WRITE statement.

144 VS FORTRAN Version 2 Language and Library Reference

INQUIRE

If you are using
this form of INQUIRE

And if no error occurs and

these conditions are true

Then the variable or array
elements of these specifiers
become defined.

INQUIRE by Unit Unit exists

Unit is connected

NUMBER

NAMED

NAME 1

ACCESS

SEQUENTIAL
DIRECT

KEYED

FORM

FORMATTED

UNFORMATTED

CHAR

ACTION

WRITE

READ

READWRITE

Unit exists

File connected for direct access

RECL

NEXTREC

Unit exists

File connected for formatted I/O

BLANK

Unit exists

File connected for keyed access
KEYID

KEYLENGTH

KEYSTART

KEYEND

LASTKEY

LASTRECL

INQUIRE by File File is connected NUMBER

ACCESS

FORM

CHAR

ACTION

File exists NAMED

NAME

SEQUENTIAL
DIRECT

KEYED

FORMATTED

UNFORMATTED

WRITE

READ

READWRITE

File exists

File could be connected for

direct access

RECL

File exists

File connected for direct access

NEXTREC

File exists

File connected for formatted I/O

BLANK

File connected for keyed access KEYID

LASTKEY

LASTRECL

File exists

File could be connected for

keyed access

KEYLENGTH

KEYSTART

KEYEND

Figure 24 (Part 1 of 2). INQUIRE Optional Specifiers and Conditions under Which They
Become Defined

Chapter 4. Statements 145

INQUIRE

If you are using
this form of INQUIRE

And if no error occurs and

these conditions are true

Then the variable or array

elements of these specifiers
become defined.

INQUIRE by Unnamed File File is connected NUMBER

NAMED

ACCESS

SEQUENTIAL

DIRECT

KEYED

FORM

FORMATTED

UNFORMATTED

CHAR

ACTION

Unit and file exist NAMED

SEQUENTIAL

DIRECT

KEYED

FORMATTED

UNFORMATTED

WRITE

READ

READWRITE

Unit and file exist,
OR

File is connected

File could be connected for

direct access

RECL

Unit and file exist

File connected for direct access

NEXTREC

File connected for formatted I/O BLANK

File IS connected

File IS a keyed file
KEYID

LASTKEY

LASTRECL

Unit and file exist

File IS a keyed file
KEYLENGTH

KEYSTART

KEYEND

Figure 24 (Part 2 of 2). INQUIRE Optional Specifiers and Conditions under Which They
Become Defined

Note to Figure 24:

' If there is a named file connected to the unit being inquired about, then the
variable or array element given in the NAME specifier becomes defined.

Valid INQUIRE Statements;

INQUIRE (FILE=DDNAME, IOSTAT=IOS, EXIST=LEX, OPENEO=LOD,
NAMED=LNMD, NAME=FN, SEQUENTIAL=SEQ, DIRECT=DIR,
FORMATTED=FHT, UNFORHATTED=UNF, ACCESS=ACC, FORM=FRM,
NUMBER=INUM, RECL=IRCL, NEXTREC=INR, BLANK=BLNK)

INQUIRE (FILE='FT16K0I',LASTRECL=RECL)

INQUIRE (0, I0STAT=IACT(1), ERR=99999, EXIST=LACT(9),
OPENED=LACJ(a), NAMEO=LACT(7), NAME=ACTUAL(1),
SEQUENTIAL=ACTUAL(2), DIRECT=ACTUAL(3),
F0RMATTED=ACTUAL(4), UNF0RMATTED=ACTUAL(5),
ACCESS=ACTUAL(5), F0RM=ACTUAL(7), NUHBER=IACT(2),
RECL=IACT(3). NEXTREC=IACT(4), BLANK=ACTUAL(8))

INQUIRE (16,LASTKEY=LKEY,KEYSTART=START,KEYEND=END,
i(EYLENGTH=LENG)

146 VS FORTRAN Version 2 Language and Library Reference

O

INTRINSIC

INQUIRE (12,ACTI0N=ACT,KEYI0=ID)

I INQUIRE (FILE=7Y0URFILE DATA NAME=NAM)

I INQUIRE (FILE=7MYFILE OUTPUT A', EXIST=EX)

I INQUIRE (FILE=7MYPR0G.F0RTDATA.PAYMENT', OPENEO=OPN)

I INQUIRE (FILE='/MYPDS.ACCOUNT(ABC)', NAMED=NMD)

INTEGER Type Statement
See "Explicit Type Statement" on page 91.

INTRINSIC Statement
The INTRINSIC statement identifies a name as representing a procedure sup
plied by VS FORTRAN Version 2 (a function or subprogram), and permits a spe-
cific intrinsic function name to be used as an actual argument.

Syntax

INTRINSIC namel [, name2 ...]

name

is the generic or specific name of an intrinsic function.

The INTRINSIC statement is a specification statement and must precede state
ment function definitions and all executable statements.

Intrinsic functions are those functions known to the compiler. Intrinsic function
names are either generic or specific. A generic name does not have a type,
unless it is also a specific name.

Generic names simplify referring to intrinsic functions because the same func
tion name may be used with more than one type of argument. Only a specific
intrinsic function name may be used as an actual argument when the argument
is an intrinsic function.

For the complete list of intrinsic function names and usage information for each
function. Chapter 6, "Mathematical, Character, and Bit Routines" on page 263.

Appearance of a name in an INTRINSIC statement declares that name to be an
intrinsic function name. If a specific name of an intrinsic function is used as an
actual argument in a program unit, it must appear in an INTRINSIC statement in
that program unit.

Chapter4. Statements 147

NAMELIST

The following names of specific intrinsic functions must not be passed as actual
arguments:

AMAX0 INT

AMAXl LGE

AHI NO LGT

AMINl LLE

CHAR LLT

OMAXl MAX0

DHINl MAXl

FLOAT f4IN0

I CHAR MINI

IDINT REAL

IFIX SNGL

CMPLX QCMPLX

DBLE QEXT
DBLEQ QEXTD
DCMPLX QFLOAT
DFLOAT QMAXI

DREAL QMINl

HFIX QREAL

IQINT SNGLQ

The appearance of a generic function name in an INTRINSIC statement does not
cause the name to lose its generic property. Only one appearance of a name
in all the INTRINSIC statements of a program unit is permitted. The same name
must not appear in both an EXTERNAL and an INTRINSIC statement in a

program unit.

If the name of an intrinsic function appears in an explicit specification state
ment, the type must conform to its associated type.

If the name of an intrinsic function appears in the dummy argument list of a
subprogram, that name is not considered as the name of an intrinsic function in

that program unit.

Logical IF Statement
See "IF Statements" on page 127.

LOGICAL Type Statement
See "Explicit Type Statement" on page 91.

NAMELIST Statement
The NAMELIST statement specifies one or more lists of names for use in READ
and WRITE statements.

Syntax

NAMELIST InameU Iist1 [fname2l Iist2...]

name

is a NAMELIST name. It is a name, enclosed in slashes, that must not be

the same as a variable or array name.

148 VS FORTRAN Version 2 Language and Library Reference

NAMELIST

list

, is of the form a a2, ...

a

^ is a variable name or an array name.

The list of variables or array names belonging to a NAMELIST name ends with
a new NAMELIST name enclosed in slashes or with the end of the NAMELIST

statement. A variable name or an array name may belong to one or more
NAMELIST lists.

Neither a dummy variable nor a dummy array name may appear in a
NAMELIST list.

The NAMELIST statement must precede any statement function definitions and
all executable statements. A NAMELIST name must be declared in a

NAMELIST statement and may be declared only once. The name may appear
only in input/output statements.

The NAMELIST statement declares a name name to refer to a particular list of
^ variables or array names. Thereafter, the forms READ(un,name) and
! WRITE(on,name) are used to transmit data between the file associated with the

unit un and the variables specified by the NAMELIST name name.
»

The rules for input/output conversion of NAMELIST data are the same as the
rules for data conversion described in "General Rules for Data Conversion" on

page 97. The NAMELIST data must be in a special form, described in
"NAMELIST Input Data."

NAMELIST Input Data
, To be read using a NAMELIST list, input data must be in a special form. The

first character in each record to be read must be blank. The second character
in the first record of a group of data records must be an ampersand {&) imme
diately followed by the NAMELIST name. The NAMELIST name must be fol
lowed by a blank and must not contain any embedded blanks. This name is
followed by data items separated by commas. (A comma after the last item is
optional.) The end of a data group is signaled by &END.

The form of the data items in an input record is;

Name = Constant

' — The name may be an array element name or a variable name.

i — The constant may be integer, real, complex, logical, or character. (If the
I constants are logical, they may be in the form Tor .TRUE, and For

.FALSE.; if the constants are characters, they must be included between
^ apostrophes.)
I

' — Subscripts must be integer constants.
[

Array Name = Set of Constants (separated by commas)

- The set of constants consists of constants of the type integer, real,
^i—^ complex, logical, or character.

^ — The number ofconstants must be less than or equal to the number of
elements in the array.

Chapter 4. Statements 149

NAMELIST

— Successive occurrences of the same constant can be represented in the
form c*constant. where c is a nonzero integer constant specifying the
number of times the constant is to occur.

The variable names and array names specified in the input file must appear in
the NAMELIST list, but the order is not significant. A name that has been made
equivalent to a name in the input data cannot be substituted for that name in

the NAMELIST list. The list can contain names of items in COMMON but must

not contain dummy argument names.

Each data record must begin with a blank followed by a complete variable or
array name or constant. Embedded blanks are not permitted in names or con
stants. Trailing blanks after integers and exponents are treated as zeros.

Examples:

All records have a blank in column 1, and begin in column 2.

&NAM1 I(2,3)=5,J=4,B=3.2

A(3)=4.G,I=2,3,7*4,&END

where NAM1 is defined in a NAMELIST statement as:

NAMELIST /NAM1/A,B,I,J,L

and assuming that A is a 3-element array and I and L are 3X3 element arrays.

NAMELIST Output Data
When output data is written using a NAMELIST list, it is written in a form that
can be read using a NAMELIST list.

The data is preceded by &.name and is followed by &END.

All variable and array names specified in the NAMELIST list and their
values are written out, each according to its type.

Character data is included between apostrophes.

The fields for the data are made large enough to contain all the significant
digits.

»- The values of a complete array are written out in columns.

150 VS FORTRAN Version 2 Language and Library Reference

OPEN Statement

OPEN

An OPEN statement may be used to;

>• Connect an existing file to a unit.

Create a file that is preconnected.

»• Create a file and connect it to a unit.

Change certain specifiers of a connection between a file and a unit.

For more information on how to use the OPEN statement, see VS FORTRAN
Version 2 Programming Guide.

Syntax

OPEN

(tUNIT =]un [, ERR= sf/] [, STATUS= sfa]
[, FILE = frj] [, ACCESS = acc] [, BLANK = b//f]
[,CHAR = chr]

[, FORM =/rm] [, IOSTAT = /osl
[, RECL = rc/][, ACTION = acf]
[, PASSWORD =pwcf]
[, KEys = {start:end [, startiend] ...)])

Each of the specifiers of the OPEN statement may appear only once. The unit
identifier must be specified on the OPEN statement.

Before the OPEN statement is executed, the I/O unit specified by un may be
either connected or not connected to an external file.

To connect a file for direct or keyed access or to connect any VSAM file, an
OPEN statement is required.

The OPEN statement must not be used for internal files.

UNIT = t/n

specifies the external unit identifier, un is an integer expression of length 4
whose value must be either zero or positive.

un is required and can, optionally, be preceded by UNIT = . if UNiT= is not
specified, un must appear immediately following the left parenthesis, and
the other specifiers may appear in any order. If UNIT= is specified, all the
specifiers can appear in any order.

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the OPEN statement. If an error is detected, control is transferred to
stI. ERR = sf/is optional.

STATUS = sfa

sta is a character expression whose value (when any trailing blanks are
removed) must be NEW. OLD. SCRATCH, or UNKNOWN. If STATUS is
omitted, it is assumed to be UNKNOWN. STATUS = sfa is optional.

The status of the external file can be specified as:

Chapter 4. Statements 151

OPEN

NEW to create a file and connect it to a unit, or to create a precon-
nected file. (Successful execution of the OPEN statement changes the
status to OLD.)

OLD to connect an existing file to a unit.

*• SCRATCH to connect an existing file, or to create and connect a new
file, that will be deleted when it is disconnected. FILE = /h must not be

specified; that is. SCRATCH must not be specified for a named file. If

the file does not exist, STATUS= 'SCRATCH' opens the Tile as NEW. If
the file does exist, STATUS= 'SCRATCH' opens the file as OLD.

UNKNOWN to create and connect a new file, or to connect an existing
file, of unknown status to a unit. If the file does not exist.

STATUS = 'UNKNOWN' opens the file as NEW. If the file does exist,

STATUS = 'UNKNOWN' opens the file as OLD.

Note:

The run-time options OCSTATUS and NOOCSTATUS affect the operation of
an OPEN statement with either the STATUS = 'NEW' or STATUS 'OLD'.

For details on these options, see VS FORTRAN Version 2 Programming
Guide.

FILE = /n

fn is a character expression used to identify a file. It must be preceded by
FILE= . It may take one of the following formats:

ddname

a character expression whose value, when any trailing blanks are
removed, is the name by which VS FORTRAN identifies the file defi

nition. The expression must be 1 to 8 characters, the first one being a
letter, or @, and the other seven being letters or digits, including #
and @.

^ On VM: /filename Tiletype [Tiiemode] [{member-name)]

a character expression whose value, when any trailing blanks are
removed, is the file name, file type, and file mode on VM.

The slash (/) indicates that the file identifier is not a ddname; therefore,
it must appear as the first character of the expression if this format is
used.

filename Tiletype

each is a sequence of 1 to 8 characters chosen from letters, digits
and special characters (hyphen (-), colon (;), underscore (J, U.
and +).

filemode

from 1 to 2 characters whose first character ranges from A to Z and
whose second character ranges from 0 to 6.

— If the second character is not specified, 1 will be assumed.

— If niemode is omitted, A will be used as the file mode.

— If an asterisk (*) is specified for the file mode, the standard CMS
search order will be used to find an existing file; for new files,
the file will be created on the A disk.

152 VS FORTRAN Version 2 Language and Library Reference

OPEN

member

a member name, 1 to 8 characters long, and the parentheses are

required to indicate that it is a member name, member may be
used only when referring to a LOADLIB, MACLIB, or TXTLIB filetype.

You may not use this form of the OPEN statement to update or
create LOADLiB, MACLiB, orTXTLiB members.

Note: Lowercase letters are equivalent to uppercase letters. One or
more blanks must separate each part of the CMS file identifier.

If this form is used, the FiLEiNF service routine may be used to set up

the file characteristics prior to issuing the OPEN statement, if FILEINF is
not used, the unit attribute table values will be used instead. For more

information, see "FILEINF Subroutine" on page 283.

•• On MVS: /dsn [{member)]

a character expression whose value, when any trailing blanks are
removed, is the data set name on MVS. It may be the data set name

and member name for partitioned data sets.

The slash (/) is used to indicate that the file identifier is not a ddname;
therefore, it must appear as the first character of the expression if this

form is used.

dsn

a fully qualified MVS data set name. It consists of qualifiers, each of
which are 1 through 8 characters long, separated by periods to a

maximum length of 44 characters. Each qualifier may contain

letters, numbers and special characters {#. and @). The first char
acter must be a letter, # or @.

member

a member within a partitioned data set. Partitioned data set names

must be no longer than 54 characters (44 for the data set name and
8 for the member name plus the parentheses around the member

name). Partitioned data sets are valid only for non-VSAM files.

Note: Trailing blanks are ignored and lower case is equivalent to upper
case.

If this form is used, the FILEINF service routine may be used to set up
the file characteristics prior to issuing the OPEN statement. If FILEINF is
not used, the unit attribute table values will be used instead. For more
information, see "FILEINF Subroutine" on page 283.

If the FILE specifier is omitted, a default ddname is assumed. Default
ddnames must not be specified on the FILE specifier. Default ddnames take
the following forms:

• FTnnFmmm, where nn is the two-digit unit identifier and mmm is the
three-digit sequence number. Unnamed files connected for direct or
sequential access are assigned default ddnames of this form.
FTnnKkk, where nn is the two-digit unit identifier and kk is the two-digit
sequence number. Keyed files are assigned default ddnames of this
form.

FTERRsss. where sss is the three-digit MTF subtask number. For the
error message unit of an MTF subtask, the ddname defaults to this form.
FTPRTsss, where sss is the three-digit MTF subtask number. For the
PRINT/WRITE unit of an MTF subtask, the ddname defaults to this form.

Chapter 4. Statements 153

OPEN

{Ifthe PRINT/WRITE unit and the error message unit are the same, the
PRINT/WRITE unit's ddname is FTERRsss.)

In addition, the following default CMS file identifiers must not be specified
on the FILE specifier:

FILE FTnnFmmm, where nn is the two-digit unit identifier and mmm is
the three-digit sequence number. Unnamed files connected by dynamic
file allocation under CMS are assigned default CMS file identifiers of
this form.

• FILE FTnnKkk, where nn is the two-digit unit identifier and kk is the two-
digit sequence number. Unnamed files connected by dynamic file allo
cation for keyed access under CMS are assigned default CMS file
identifiers of this form.

ACCESS = acc

acc is a character expression whose value (when any trailing blanks are
removed) must be SEQUENTIAL, DIRECT, or KEYED. The values mean,
respectively, that access to the file will be sequential, direct, or keyed. If
ACCESS = acc is not specified, the file is connected for sequential access.

BLANK =

bik is a character expression whose value (when any trailing blanks are
removed) must be either NULL or ZERO. This specifier affects the proc
essing of the arithmetic fields accessed by READ statements with format
specification or with list-directed only. It is ignored for nonarithmetic fields,
for READ statements without format specification or with NAMELIST, and for
all output statements. If NULL is specified, all blank characters in arith-
metic formatted input fields on the specified unit are ignored, except that a ^
field of all blanks has a value of zero. If ZERO is specified, all blanks, other
than leading blanks, are treated as zeros. If the OPEN statement is speci
fied, the default is NULL. If the OPEN statement is not specified, the default
is ZERO. For information on how to control the treatment of blanks on a

particular FORMAT statement, see the discussions of BN and BZ format

codes under "BN Format Code" on page 114 and "BZ Format Code" on
page 114, respectively. This specifier Is only allowed for formatted I/O.

CHAR = c/jr

chr is a character expression whose value must be DBCS or NODBCS,

when trailing blanks are removed. DBCS must be specified In order for
bracketed double-byte characters to be interpreted correctly. Otherwise,
these characters are seen as single-byte characters, with possible undesir
able results. DBCS is required for the following:

List-directed input that might have double-byte characters in character
constants

*' NAMELIST input that contains double-byte characters in character con
stants

•• NAMELIST input with double-byte character names for variables or
arrays

Formatted 1/0 with run-time FORMAT statements that contain double-
byte characters in character constants

The default is NODBCS.

154 VS FORTRAN Version 2 Language and Library Reference

OPEN

FORM = frm

frm is a character expression whose value {when any trailing blanks are
removed) must be FORMATTED or UNFORMATTED. This specifier indicates
that the external file is being connected for formatted or unformatted

input/output. If this specifier is omitted and ACCESS= 'SEQUENTIAL', a
value of FORMATTED is assumed; otherwise, a value of UNFORMATTED is

assumed.

IOSTAT =/OS

ios is an integer variable or an integer array element of length 4. Its value
is set to positive If an error is detected; it is set to zero if no error is
detected. For VSAM files, return codes and reason codes are placed in ios.

ACTION = acf

act indicates the kind of processing to be done to a file. It can be used with
any files connected for sequential, direct, or keyed access. It is any char
acter expression whose value is one of the following:

WRITE To indicate that a file is to have records written to it and

that these records will not be read during the current con
nection. The file may or may not exist before the OPEN
statement is issued. ACTION ='WRITE' is not allowed

under VM for library members.

For VSAM files, WRITE is used to open an empty file con
nected for keyed access for the loading of records. The
records must be written in ascending key sequence.

READ To indicate that an existing file is to be read but not

updated in any way. If both ACTION = 'READ' and
STATUS= 'NEW' are specified, an error will be detected,
independent of the OCSTATUS | NOOCSTATUS run-time
options.

For files connected for keyed access, READ is used to open

a non-empty file for retrieval. Update operations cannot be
performed on the file.

READWRITE To indicate that a file may be both read from and written to
during the current connection. The file may or may not

exist before the OPEN statement is issued.

ACTION= 'READWRITE' is not allowed under VM for library

members.

For files connected for keyed access, READWRITE is used
to open a file and make retrieval and update operations
possible. For sequential and direct access files, you may
execute WRITE statements in addition to READ statements.

For keyed access files, you may execute REWRITE, DELETE,
and WRITE statements in addition to READ statements.

Using READWRITE, you can write to an empty keyed
access file, and you need not write the records in
ascending key sequence. READWRITE also enables you to
open a keyed access file and then read from it to deter
mine whether or not it contains any records.

Ifthe ACTION specifier is omitted, the default for keyed access is READ.
The default for sequential or direct access is READWRITE,

Chapter 4. Statements 155

OPEN

Specifier Used with ACCESS= 'DIRECT': The following specifier is used only if
ACCESS= 'DIRECT' and must be specified for such access.

RECL = /-c/

rcl Is an integer expression of length 4. It specifies the record length of the
file connected for direct access. The length is measured in characters for
files consisting of formatted records and in bytes for files consisting of
unformatted records.

Specifier Used for VSAM Files

PASSWORD=pwc/
pwd specifies the password required to access a VSAM file, if the file was

password-protected when it was defined with the Access Method Services

program. It can be any character expression; however, If the character
expression exceeds eight characters in length, only the first eight are used.
If ACTION —'READ', the file's read password is required; otherwise, its
update password is required.

Specifier Used with ACCESS = 'KEYED*

KEYS = (sfart;enc/ [, start'.end] ...)
gives the starting and ending positions, within keyed file records, of the
primary and alternate-index keys to be used when accessing the keyed file.

start is an integer expression of length 4 whose value (which must be
positive) represents the position in each record of a key's leftmost
character.

end is an integer expression of length 4 whose value (which must be
positive) represents the position in each record of the key's right
most character. This value must not be less than the value of start.

The length of the key specified by a start-end pair is end - start + 1, and
cannot exceed 255. Up to nine start-end pairs can be specified, each of
which must have been defined with the Access Method Services program
as the location of a key. If you have only one start-end pair to specify, you
can omit the KEYS specifier; the missing information for the file is taken
from the VSAM catalog. If you will be using multiple keys when accessing a
keyed file, the KEYS specifier is necessary.

If the file is being loaded (ACTION= 'WRITE'), only the primary key can be
specified.

Valid OPEN Statements:

OPEN (UNIT=2, IOSTAT=IOS, FILE='DDNAME', STATUS='NEW',
ACCESS='SEQU'//'ENTIAL ', FORH='FORMATTED',
BLANK='ZERO')

OPEN (0, I0STAT=IACT(1), FILE='DDNAME', STATUS='OLD',
ACCESS='SEQUENTIAL', FORM='FORMATTED',
BLANK='NULL')

OPEN (I0STAT=IACT(1), STATUS='UNKNOWN', ACCESS='DIRECT',
RECL=32, UNIT=IN+6)

OPEN (10,ACCESS='KEYED',ACTION='REAOWRITE')

156 VS FORTRAN Version 2 Language and Library Reference

r>
OPEN (8,ACCESS='KEYED',KEYS=(2:7,15:22))

OPEN (1,FILE=7MYFILE OUTPUT')

OPEN (1,FILE=7Y0URFILE DATA C4')

OPEN (1, FILE='/r^YPROG. FORTDATA. PAYMENT')

OPEN (l,FILE='/MVSIO.MYPDS.ACCaUNT(ABC)•;

OPEN

OPEN Statements for Non-Connected Units
Successful execution of the OPEN statement connects a unit to an external file
with the specifiers designated (or assumed) in the OPEN statement. (For the
specifiers allowed with the various definitions of data sets, see VS FORTRAN
Version 2 Programming Guide.)

A unit may be connected in one program unit of an executable program. Once
the unit is connected, It may be referenced from any other program unit in that
executable program.

OPEN Statements for Connected Units
An OPEN statement for a unit that is already connected to an existing file allows
you to change certain specifiers of a file and unit connection. The current file

and unit connection (for the unit identified by the UNIT specifier) remains intact
if there is no FILE specifier included on the OPEN statement.

If a unit is already connected to a file and you issue an OPEN statement for the
same unit but a different file, the OPEN statement is executed as a CLOSE

statement with no STATUS specifier followed by an OPEN.

In the instance of a preconnected unnamed file for which no file definition is
given and no READ or WRITE statements have been issued, the properties
specified by the OPEN statement become part of the connection.

For all other cases of connected units, only the BLANK specifier and the CHAR
specifier may designate values different from the original connection.

Execution of the OPEN statement is affected by the run-time options, OCSTATUS
and NOOCSTATUS. For more information on these options, and their effect on
OPEN processing, see VS FORTRAN Version 2 Programming Guide.

Conditions that Prevent a File from being Connected;
You specified an invalid unit identifier; that is a value that is outside the

range of unit identifiers defined at your installation.

You specified an invalid file name, a default ddname, or a default CMS file
identifier on the FILE specifier.

You specified invalid values; for example:

— The value given in the STATUS specifier is inconsistent with the file
existence property.

— The value given in the RECL = rc/ is not positive integer.

— The OPEN statement specifies a different unit than the one to which the

file is connected currently.

Chapter A. Statements 157

PARAMETER

— The KEYS specifier designates a start:end pair that does not represent
a key available for use with the keyed file.

OPEN processing encounters an error during file existence checking.

PARAMETER Statement
The parameter statement assigns a name to a constant.

Syntax

PARAMETER (namel = c/ [, name2 = c2 ...])

namel (name2...)
is a symbolic name. The name must be defined only once in a PARAM
ETER statement of a program unit.

c1 (c2...)
is a constant expression.

(Otherwise, the predefined conventions are used.) A PARAMETER statement
may not precede an IMPLICIT NONE statement.

The type and length of a name of a constant must not conflict with subsequent
specification statements, including IMPLICIT statements. The following is
invalid:

PARAMETER (INT=10)

IMPLICIT CHARACTER*5(I) ^ ^

If the length of a character constant represented by a name has been specified
as an asterisk, the length is considered to be the length of the value of the
character expression (c/, c2).

If the name {namel, name2) is of integer, real, double precision, or complex
type, the corresponding expression (c/, c2) must be a constant arithmetic
expression. The exponentiation operator is not permitted unless the exponent
is of integer type.

If the name {namel, name2) is of character type, the corresponding expression
{c1. c2) must be a character constant expression.

If the name {namel, name2) is of logical type, the corresponding expression {c1,
c2) must be a logical expression containing only logical constants or names of
logical constants.

Each {namel, name2) is the name of a constant that becomes defined with the
value of the expression {c1, c2) that appears to the right of the equal sign. The
value assigned is determined by the rules used for assignment statements (see
Figure 21).

Any name of a constant that appears in an expression (c/, c2) must already be
defined in this or a previous PARAMETER statement.

158 VS FORTRAN Version 2 Language and Library Reference

PAUSE

After it is defined, the name can be used in a subsequent expression or a DATA
statement instead of the constant it represents. It must not, however, be part of
a FORMAT statement or a format specification.

The name ofa constant must not be used to form part ofanother constant; for
example, any part of a complex constant.

Valid PARAMETER Statement:

CHARACTER*5 C1,C2
PARAMETER (C1='DATE ',C2='TIME ',RATE=2*1.414)

PAUSE Statement
The PAUSE statement temporarily halts the execution ofthe program and dis
plays a message. The program waits until operator intervention causes it to
resume execution. Program processing continues when the console operator
presses the ENTER key.

Syntax

PAUSE [n]

n

a string of 1 through 5 decimal digits, or a character constant of up to 72
characters in length.

Valid PAUSE Statements:

PAUSE

PAUSE 20200

PAUSE 'MOUNT TEMPORARY TAPE. TO RESUME, PRESS ENTER'

For the previous examples, the following messages would be displayed:
AFB001A PAUSE

AFB001A PAUSE 20200

AFB001A PAUSE MOUNT TEMPORARY TAPE. TO RESUME, PRESS ENTER

Chapter 4. Statements 159

PRINT (Formatted, Sequential Access)

PRINT Statements
The PRINT statement transfers data from internal storage to an external device.

Forms of the PRINT Statement:

1. "PRINT Statement—Formatted with Sequential Access"

2. "PRINT Statement—List-Directed I/O to External Devices" on page 161

3. "PRINT Statement—NAMELIST with External Devices" on page 162

Generally, each form of the PRINT statement has the same effect as that form
of the WRITE statement. In comparison to the WRITE statement, the PRINT
statement syntax is simpler, but its function is limited.

PRINT Statement—Formatted with Sequential Access
This statement transfers data from internal storage to an external device. The
user specifies in a FORMAT statement (or in a reference to a FORMAT state
ment) the conversions to be performed during the transfer. The unit used for
the data transfer is installation dependent.

Syntax

PRINT fmt [Jist]

fmt

is a required format identifier. It can be one of the following: _

The statement label of a FORMAT statement

An integer variable

A character constant

A character variable

•- A character array element

• A character array name

•- A character expression

An array name

For explanations of these format identifiers, see "READ
Statement—Formatted with Direct Access" on page 166.

list

is an I/O list. It can contain variable names, array elements, character sub
string names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. If the list is not present, the comma
must be omitted. See "Implied DO in an Input/Output Statement" on
page 81.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

Data Transmission: A PRINT statement with FORMAT starts data transmission
at the beginning of a record. The format codes in the format specification fmt
are taken one by one and associated with every item of the list in the order
they are specified. The data is taken from the item of the list, converted
according to the corresponding format code, and the number of character data
specified by the format code is transmitted onto the record of the external file.
Data transmission stops when data has been taken from every item of iht? list.

160 VS FORTRAN Version 2 Language and Library Reference

PRINT (List-Directed, External)

If the list is not specified and the format specification starts with an I. E, F, D. G,
L, Q, or Z. or is empty {that is, FORMAT()), a blank record is written out.

The PRINT statement can be used to write over an end of fiie and extend the

external file. An ENDFILE, BACKSPACE, CLOSE, or REWIND statement will then
reinstate the end of file.

After execution of a sequential PRINT, no record exists in the file following the
last record transferred by that statement.

For more information, see "WRITE Statement—Formatted with Sequential
Access" on page 223.

PRINT Statement—List-Directed I/O to External Devices

This statement transfers data from internal storage to an external device. The
type of the items specified in the I/O list determines the conversions to be per
formed. The unit used for the data transfer is installation dependent.

Syntax

PRINT * [Jist]

an asterisk (*) specifies that a list-directed PRINT has to be executed.

list

is an I/O list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 81.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

Data Transmission: A PRINT statement with list-directed I/O accessing an

external file starts data transmission at the beginning of a record. The data is
taken from each item in the list In the order they are specified and transmitted
onto the record of the external file. Data transmission stops when data has
been transferred from every item in the list.

After execution of a sequential PRINT statement, no record exists in the file fol
lowing the last record transferred by that statement.

The PRINT statement can write over an end of file and extend the external file.

An ENDFILE, CLOSE, or REWIND statement will reinstate the end of file.

An external file with sequential access written with list-directed I/O is suitable
only for printing, because a blank character Is always inserted at the beginning
of each record as a carriage control character.

For more information, see "WRITE Statement—List-Directed I/O to External

Devices" on page 228.

Chapter 4. Statements 161

PROGRAM

PRINT Statement—NAMELIST with External Devices

This statement transfers data from internal storage to an external device. The
type of the items specified in the NAMELIST statement determines the conver
sions to be performed. The unit used for the data transfer is installation
dependent.

Syntax

PRINT name

name

is a NAMELIST name. See "NAMELIST Statement" on page 148.

Data Transmission: A PRINT statement with NAMELIST starts data transmission

from the beginning of a record. The data is taken from each item in the
NAMELIST with name in the order in which they are specified and transmitted
onto the record of the external file. Data transmission stops when data has
been transferred from every item in the NAMELIST name.

After execution of a PRINT statement with NAMELiST, no record exists in the

file following the end of the NAMELIST just transmitted.

For more information, see "WRITE Statement—NAMELIST with External

Devices" on page 233.

PROGRAM Statement
The PROGRAM statement assigns a name to a main program. It must be the
first statement in the main program.

Syntax

PROGRAM name

rs

name

is the name of the main program in which this statement appears.

Ok
A main program cannot contain any BLOCK DATA, SUBROUTINE, FUNCTION,
or ENTRY statements.

A RETURN statement may appear; it has the same effect as a STOP statement.

The PROGRAM statement can only be used in a main program but is not

required. If it is used, it must be the first statement of the main program. If it is
not used, the name of the main program is assumed by this compiler to be
MAIN.

The name must not be the same as any other name in the main program or as
the name of a subprogram or common block in the same executable program.
The name of a program does not have any type and the other specification
statements have no effect on this name.

Execution of a program begins with the execution of the first executable state-
ment of the main program. A main program may not be referred to from a sub
program or from itself.

162 VS FORTRAN Version 2 Language and Library Reference

READ (Asynchronous)

READ Statements
READ statements transfer data from an external device to storage or from an
internal file to storage.

Forms of the READ Statement:

1. "READ Statement—Asynchronous"

2. "READ Statement—Formatted with Direct Access" on page 166

3. "READ Statement—Formatted with Keyed Access" on page 169

4. "READ Statement—Formatted with Sequential Access" on page 173

5. "READ Statement—Formatted with Sequential Access to Internal Files" on
page 176

6. "READ Statement—List-Directed I/O from External Devices" on page 179

_ 7. "READ Statement—List-Directed I/O with Internal Files" on page 181

8. "READ Statement—NAMELIST with External Devices" on page 183

9. "READ Statement—NAMELIST with Internal Files" on page 186

10. "READ Statement—Unformatted with Direct Access" on page 187

11. "READ Statement—Unformatted with Keyed Access" on page 189

12. "READ Statement—Unformatted with Sequential Access" on page 193

READ Statement—Asynchronous
The asynchronous READ statement transmits unformatted data from a direct-
access or tape device using sequential access. The asynchronous READ state
ment provides high-speed input. The statements are asynchronous because
other program statements may be executed while data transfer is taking place.
An OPEN statement is not permitted for asynchronous I/O.

Syntax

READ

rUNlT =]un,

ID = /c/)

UNIT = t;n

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT=. If UNIT= is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT = is included on the
READ statement, all the specifiers can appear In any order.

\D = id

id is an integer constant or integer expression of length 4. It is the identifier
for the READ statement.

Chapter 4. Statements 163

READ (Asynchronous)

list

is an asynchronous I/O list and may have any of four forms:

e

e1...e2

el...

...e2

where:

is the name of an array.

el and e2

are the names of elements in the same array. The ellipsis (...) Is an

integral part of the syntax of the list and must appear in the positions
indicated.

The unit specified by un must be connected to a file that resides on a direct-
access or tape device. The array (e) or array elements {e1 through e2) consti

tute the receiving area for the data to be read.

The asynchronous READ statement initiates a transmission. The WAIT state

ment, which must be executed for each asynchronous READ, ensures the con
clusion of the transmission cycle. When executed after an asynchronous READ,
the WAIT statement enables the program to refer to the transmitted data. This
process ensures that a program will not refer to a data field while transmission

to it is stili in progress.

The asynchronous READ statement differs from other READ statements in that it
requires the ID specifier which establishes a unique identification for the READ
statement.

Synchronous READ statements may be executed for the file only after all asyn
chronous READ and WRITE operations have been completed and a REWIND has
been executed for the file. Conversely, asynchronous READ statements may be
executed for a file previously read synchronously after a REWIND or CLOSE has
been executed.

Execution of an asynchronous READ statement initiates reading of the next
record on the specified file. The record may contain more or less data than
there are bytes in the receiving area. If there is more data, the excess is not
transmitted to the receiving area; if there is less, the values of the excess array

elements remain unaltered. The extent of the receiving area is determined as
follows:

If e is specified, the entire array is the receiving area. In this case, e may
not be the name of an assumed-size array.

If e1...e2 Is specified, the receiving area begins at array element el and
includes every element up to and including e2. The subscript value of el
must not exceed that of e2.

*- If el... is specified, the receiving area begins at eiement el and includes
every eiement up to and including the last eiement of the array, in this
case, e may not be the name of an assumed-size array.

If ...e2 is specified, the receiving area begins at the first element of the

array and includes every element up to and including e2.

164 VS FORTRAN Version 2 Language and Library Reference

r\

n

rs

READ (Asynchronous)

\f list is not specified, there is no receiving area, no data is transmitted, and a
record is skipped.

Subscripts in the list of the asynchronous READ must not be defined as array
elements in the receiving area. If a function reference is used in a subscript,
the function reference may not perform I/O on any file.

Given an array with elements of length len, transmission begins with the first
len bytes of the record being placed in the first specified {or implied) array
element. Each successive len byte of the record is placed in the array element
with the next highest subscript value. Transmission ceases after all elements
of the receiving area have been filled, or the entire record has been
transmitted—whichever occurs first. If the record length Is less than the

receiving area size, the last array element to receive data may receive fewer
than len bytes. If the record length is greater than the receiving area size, an
error is detected.

The specified array may be multidimensional. Array elements are filled sequen
tially. Thus, during transmission, the leftmost subscript quantity increases most
rapidly, and the rightmost least rapidly.

Any number of program statements may be executed between an asynchronous
READ and its corresponding WAIT, subject to the following rules;

»• No array element In the receiving area may appear in any such statement.
This and the following rules apply also to indirect references to such array
elements; that is, reference to or redefinition of any variable or array

element associated by COMMON or EQUIVALENCE statements, or argument

association with an array element in the receiving area.

*• No executable statement may appear that redefines or undefines a variable
or array element appearing in the subscript of el or e2. See "Valid and
Invalid Programs" on page 3.

•- If a function reference appears in the subscript expression of e1 or e2, the
function may not be referred to by any statements executed between the
asynchronous READ and the corresponding WAIT. Also, no subroutines or
functions may be referred to that directly or indirectly refer to the function in
the subscript reference, or to which the subscript function directly or indi
rectly refers.

*• No function or subroutine may be executed that performs input or output on
the file being manipulated, or that contains object-time dimensions that are
in the receiving area (whether they be dummy arguments or in a common
block).

Valid READ Statement:

READ (10=10, UNIT=3*IN-3} ACTUAL(3)...ACTUAL(7)

Chapter 4. Statements 165

READ (Formatted, Direct Access)

READ Statement—Formatted with Direct Access
This READ statement transfers data from an external direct-access device into
internal storage. A FORMAT statement {or a reference to a FORMAT state
ment) specifies the conversions to be performed during the transfer. The
record to be read is identified by its relative record number. The data must
reside on an external file that has been connected for direct access (see "OPEN
Statement" on page 151).

Syntax

READ

(tUNIT =]i;n,

[FMT =]/mf,
REC = rec

[, ERR = sf/]
[. IOSTAT = /os])
[list]

UNIT=un

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

it is required and can. optionally, be preceded by UNIT = . If UNIT= is
omitted, un must appear immediately following the left parenthesis, state
ment, The other specifiers may appear in any order. If UNIT= is included
on the READ statement FMT= must be used, and all the specifiers can
appear in any order.

FMT = fmt

fmt is a required format identifier and can, optionally, be preceded by
FMT=.

If FMT— is not specified, the format identifier must appear second. If both
UNIT= and FMT = are included on the READ statement all the specifiers,
except list, can appear in any order.

The format identifier (fmt) can be:

>• The statement label of a FORMAT statement

•- An integer variable

^ A character constant

A character variable

A character array element

A character array name
A character expression
An array name

The statement label must be the label of a FORMAT statement in the same
program unit as the READ statement.

The integer variable must have been initialized by an ASSIGN statement
with the label of a FORMAT statement. The FORMAT statement must be in
the same program unit as the READ statement.

The character constant must constitute a valid format. The constant must
be delimited by apostrophes, must begin with a left parenthesis, and end
with a right parenthesis. Only the format codes described in the FORMAT

166 VS FORTRAN Version 2 Language and Library Reference

r\

n

n

READ (Formatted, Direct Access)

statement can be used between the parentheses. An apostrophe in a con
stant enclosed in apostrophes is represented by two consecutive apostro
phes.

The character variable and character array element must contain character
data whose leftmost character positions constitute a valid format. A valid
format begins with a left parenthesis and ends with a right parenthesis.
Only the format codes described in the FORMAT statement can be used
between the parentheses. Blank characters may precede the left paren
thesis and character data may follow the right parenthesis. The length of
the format identifier must not exceed the length of the array element.

The character array name must contain character data whose leftmost char
acters constitute a valid format identifier. The length of the format identifier
may exceed the length of the first element of the array; it is considered the
concatenation of all the array elements of the array in the order given by
array element ordering.

The array name may be of type integer, real, double precision, logical, or
complex.

The data must be a valid format identifier as described under "character

array name" above.

The character expression may contain concatenations of character con
stants. character array elements, and character array names. Its value
must be a valid format identifier. The operands of the expression must
have length specifications that contain only integer constants or names of
integer constants. (See Chapter 3, "Expressions" on page 31.)

R EC = rec

rec is a relative record number, it is an integer expression whose value
must be greater than zero. It represents the relative position of a record
within the external file associated with un. The relative record number of

the first record is 1. This specifier is required.

ERR = sf/

sti Is the statement label of an executable statement in the same program
unit as the READ statement, if an error is detected, control is transferred to
stI.

IOSTAT = /os

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected and is set to zero if no error is detected. For
VSAM files, return and reason codes are placed in ios.

list

is an I/O list. It can contain variable names, array element names, char
acter substring names, array names (except the names of assumed-size
arrays), and implied DO lists. See "Implied DO in an Input/Output
Statement" on page 81.

An item in the list, or an Item associated with it through EQUIVALENCE,
COMMON, or argument passing, must not contain any portion of the format
identifier fmt.

If this READ statement is encountered, the unit specified must exist and the file
must be connected for direct access. If the unit is not connected to a file, it is

assumed to have been preconnected through job control language and an

Chapter 4. Statements 167

READ (Formatted, Direct Access)

implicit connection is established to an unnamed file. If the file is not precon-
nected, an error is detected.

This statement permits you to read records randomly from any location within
an external file. It contrasts with the sequential input statements that process
records, one after the other, from the beginning of an external file to its end.
With the direct access statements, you can go directly to any record in the
external file, process a record and go directly to any other record without
having to process all the records in between.

Each record in a direct access file has a unique number associated with it.
This number is the same as specified when the record is written. You must
specify in the READ statement not only the external unit identifier, but also the
number of the record to be read. Specifying the record number permits oper
ations to be performed on selected records of the file instead of on records in
their sequential order.

The OPEN statement specifies the size and form of the records in the direct
access file. All the records of a file connected for direct access have the same
length.

Data Transmission: A READ statement with FORMAT starts data transmission
at the beginning of the record specified by REC = rec. The format codes in the
format identifier fmt are taken one by one and associated with every item of the
list in the order they are specified. The number of character data specified by
the format code is taken from the record, converted according to the format
code, and transmitted into the storage associated with the corresponding item
in the list. Data transmission stops when data has been transmitted to every
item of the list or when the end of the record specified by rec is reached.

If the list is not specified and the format identifier starts with an I, E, F, D, G, L,
Q or Z format code, or is empty (that is. FORMATQ), the internal record number
is increased by one but no data is transferred.

Data and I/O List: The length of every record is specified in the RECL of the
OPEN statement. Ifthe record rec contains more data than is necessary to
satisfy all the items of the list and the associated format identifier, the
remaining data is ignored. If the record rec contains less data than is neces
sary to satisfy all the items of the list and the associated format identifier, an
error is detected. If the format identifier indicates (for example, slash format
code) that data be taken from the next record, then the internal record number
rec is increased by one and data transmission continues with the next record.
The INQUIRE statement can be used to determine the record number.

Control is transferred to the statement specified by ERR if a transmission error
is detected. No indication is given of which record or records could not be
read, only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these

168 VS FORTRAN Version 2 Language and Library Reference

n

rs

READ (Formatted, Keyed Access)

errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315)

READ Statement—Formatted with Keyed Access
This READ statement transfers data from an external direct access device into

internal storage. You specify In a FORMAT statement (or In a reference to a
FORMAT statement) the conversions to be performed during the transfer. The
data must reside on an external file that has been connected for keyed access.

(See "OPEN Statement" on page 151.)

There are two forms of this READ statement: the direct retrieval keyed request

and the sequential retrieval keyed request. In a direct retrieval keyed request,
you specify a full or partial key to be used in searching for the record to be
retrieved.

In a sequential retrieval keyed request, you do not specify a key; the key of the
record previously read or updated Is used as the starting point and the next
record in Increasing key sequence Is obtained. The key of reference from the
previous I/O statement remains the key of reference for a sequential retrieval.
If the file was just connected, the key of reference is the first key listed in the
KEYS specifier of the OPEN statement, and the file is positioned before the first
record with the lowest value for this key. A sequential retrieval keyed request
reads this record.

— Syntax for a Direct Retrieval Keyed Request

READ

([UUn =]un, [FMT =]fmt [, ERR = sf/]
[, IOSTAT= /os] {, KE\ = key\, KEYGE = ;fge|, KEYGT=/fgO
[, KEYID= /c/d] [, NOTFOUND = sf/]) [list]

Syntax for a Sequential Retrieval Keyed Request

READ

([UNIT=]un, [FMT =]/mf, [, ERR = sf/]
[, IOSTAT=/os] [, NOTFOUND = sf/ 1 , END = sf/])
[list]

mn=un

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT = . If UNIT= is
omitted, un must appear Immediately following the left parenthesis, state
ment. The other specifiers may appear in any order. If UNIT= is included
on the READ statement, FMT= must be used and all the specifiers can

appear in any order.

FMT = fmf

fmt is a required format identifier and can, optionally, be preceded by
FMT = .

Chapter 4. Statements 169

READ (Formatted, Keyed Access)

If FMT= is omitted, the format identifier must appear second. If both
UNIT= and FMT = are included on the READ statement, all the specifiers.
except list, can appear in any order.

The format identifier {fmt) can be:

»» The statement label of a FORMAT statement

• An Integer variable

^ A character constant

A character variable

A character array element

A character array name

A character expression

An array name

For explanations of these format identifiers, see "READ

Statement—Formatted with Direct Access" on page 166.

ERR =sf/ r>
sti is the statement label of an executable statement in the same program
unit as the READ statement. If an error is detected, control is transferred to

stI.

IOSTAT=/OS

ios is an integer variable or an integer,array element of length 4. ios is set
positive if ah error is detected; negative if an end of file Is detected; and is
set to zero if no error is detected. For VSAM files, return and reason codes

are placed in ios.

KEY = /(ey|KEYGE = /fge|KEYGT = /tgf
These specifiers cause a record to be retrieved by its key, and the file to be
positioned at the end of the record. They supply a full or partial key value,
which is used as a search argument.

KEY = key Specifies that the record to be retrieved is the first record
whose key value is identical to the search argument. If
the search argument is a partial key (shorter than the
keys in the file), the record retrieved is the first one with a
key whose leading part is identical to the partial key.

KEYGE = /cge Specifies the following search criterion for the record to ' '
be retrieved; If the file contains a record whose key value
is Identical to kge, the first such record is retrieved. If not,
the first record with the next greater key value is
retrieved. If kge is a partial key (shorter than the keys in
the file), the record retrieved is the first one with a key
value whose leading part is equal to or greater than the
partial key.

KEYGT=/fgf Specifies that the record to be retrieved is the first one

with a key value greater than kgt. If kgt is a partial key
(shorter than the keys in the file), the record retrieved is
the first one with a key value whose leading part is
greater than the partial key.

key, kge, and kgt can be a character expression or a data item (a constant,
variable, array element, or character substring) of an integer or character
type v/hose length does not exceed the length of the key that is the target of
the search. A shorter or partial key is called a generic key.

170 VS FORTRAN Version 2 Language and Library Reference

READ (Formatted, Keyed Access)

KEYID = /c/d

kid is an integer expression of length 4. Its value is the relative position of
a start-end pair in the list of such pairs in the KEYS specifier of the OPEN
statement. For example, KEYID = 3 would designate the third start-end pair,
and hence the third key, in the KEYS specifier. In this way, kid indicates
which of multiple keys will be used to retrieve a record. The selected key,
known as the "key of reference," remains in effect for all subsequent keyed
access I/O statements until a different one is designated in another READ
statement with a KEYID specifier.

Ifthe KEYID specifier is omitted on the first READ statement for a file
opened for keyed access, the first start-end pair on the KEYS specifier is
used. If no KEYS specifier was given on the OPEN statement, KEYID must
have a value of 1 or be omitted.

The KEYID specifier can be used only if the KEY, KEYGE, or KEYGT
specifier is also used.

NOTFOUND = sf/

sti is the statement label of an executable statement that is given control
when a record-not-found condition occurs. For an explanation of this condi
tion, see "Record Not Found," below.

END = sf/

St! is the statement label of an executable statement in the same program

unit as the READ statement. When the end of the external file is encount
ered, control is transferred to stI.

This specifier can be used only in a sequential retrieval keyed request.

is an I/O list. It can contain variable names, array element names, char
acter substring names, array names (except the names of assumed-size
arrays), and implied DO lists. See "Implied DO in an Input/Output
Statement" on page 81.

An item in the list, or an item associated with it through EQUIVALENCE,
COMMON, or argument passing, must not contain any portion of the format
identifier fmt.

Valid READ Statements:

READ (1Q,22,KEY='AC',N0TF0UND=97) AA,BB,CC
READ {UNIT=10,FMT=29,KEY='A01',NOTFOUND=32) AA, BB, CC
READ (10,29,KEYGE=CVAR,ERR=00) AA, BB, CC
READ (I0,FMT=29,END=37) AA, BB, CC
READ (10,29) AA, BB, CC
READ (10,29,END=37) AA, BB, CC
READ (UNIT=10,FMT=29,NOTFOUND=87) AA, BB, CC

If the formatted keyed READ statement is encountered, the unit specified must
exist and the file must have been connected for keyed access by means of an
OPEN statement. The ACTION specifier on that OPEN statement must not have
specified the value 'WRITE'. Ifthe file is not so connected, an error is
detected.

Data Transmission: For a direct retrieval keyed request, data transmission
begins at the beginning of the record that satisfies the search criterion defined
by the KEY, KEYGE, or KEYGT specifier. For a sequential retrieval keyed
request, data transmission begins at the beginning of the record at which the

Chapter 4. Statements 171

list

READ (Formatted, Keyed Access)

file is currently positioned. The format codes in the format identifier/imf are
taken one by one and associated with every item in the list in the order they
are specified. The number and character data specified by the format code is
taken from the record, converted according to the format code, and transmitted
into the storage associated with the corresponding item in the list. Data trans
mission stops when data has been transmitted to every item in the list or when
the end of the record has been reached.

Data and I/O List: if the record contains more data than is necessary to satisfy
ail the items of the list and the associated format specification, the extra data is
skipped over. The next sequential retrieval READ statement will start with the
next sequential record. {This is the record with the next higher key value if the
key value is unique or the next record with the same key If the key value is not
unique.) if the record contains less data than is necessary to satisfy all the
items of the list and the associated format identifier, an error is detected.

If the list is not specified and the format Identifier starts with an I, E, F, D, G, L,

Q, or Z format code or is empty (that is, FORMAT()), a record is skipped over.

Control is transferred to the statement specified by ERR if a transmission error
is detected. No indication is given of which record or records could not be
read, only that the error occurred during transmission of data, if iOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not

considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when the file is already positioned at the
end of the last record with the highest key value in the file and a sequential
retrieval keyed request is issued, if lOSTAT = ios was specified, a negative
integer value is assigned to ios when an end of file is detected. If ERR was

specified but END was not, control passes to the statement specified by ERR
when an end of file is detected. If neither END nor ERR was given, an error is
detected.

Record Not Found; Control Is transferred to the statement specified by
NOTFOUND under one of these conditions:

• You made a direct retrieval keyed request, and no record in the file satis
fied the search criterion defined by KEY. KEYGE, or KEYGT.

*• You made a sequential retrieval keyed request, and there are no more
records in which the leading portion of the key value Is identical to the
leading portion of the key value in the record retrieved by the last direct
retrieval operation. The length of what is called the "leading portion of the
key value" is equal to the length of the search argument (KEY = key.
KEYGE = kge, or KEYGT = kgt) on the direct retrieval statement. This length
may represent a full or partial key value.

172 VS FORTRAN Version 2 Language and Library Reference

O

READ (Formatted, Sequential Access)

The NOTFOUND specifier on the sequential retrieval keyed request is treated as
an END specifier under any of these conditions:

No direct retrieval keyed request has been made since the file was opened.

The previous direct retrieval keyed request was unsuccessful.

»• An operation that followed the previous direct retrieval keyed request did

not successfully retrieve a record.

A REWIND was issued after the previous direct retrieval keyed request.

After the last direct retrieval request, a WRITE statement added a record
whose key value differed in its leading positions from the key value being
used in the comparison.

A record-not-found condition is not detected for a sequential retrieval keyed
request that lacks a NOTFOUND specifier. In the absence of the NOTFOUND
specifier, successive sequential retrieval requests may read records until the

end of the file is reached.

If lOSTAT = ios was specified, a positive integer value is assigned to ios when a
record-not-found condition is detected. If ERR is specified but NOTFOUND is
not, control passes to the statement specified by ERR when a record-not-found

condition is detected, if neither NOTFOUND nor ERR was given, an error is

detected.

READ Statement—Formatted with Sequential Access
This READ statement transfers data from an external I/O device to storage. A
FORMAT statement {or a reference to a FORMAT statement) specifies the con
versions to be performed during the transfer. The data must reside in an
external file that is connected for sequential access to a unit. (See
"Input/Output Semantics" on page 46.)

The sequential I/O statements with format identifiers process records one after

the other from the beginning of an external file to its end.

Syntax

READ fmt [, list]

READ

([UNIT=]un, [FMT = 3frnf [, ERR = sf/]

[, END = sf/] [, IOSTAT=/os]) [list]

UNiT = un

un is the external unit identifier, un is one of the following:

An integer expression of length 4 whose value must be zero or positive,
or

An asterisk (*) representing an installation-dependent unit.

It is required in the first form of the READ statement and can, optionally, be
preceded by UNIT= . lfUNIT= is omitted, un must appear immediately fol
lowing the left parenthesis. The other specifiers may appear in any order.

Chapter 4. Statements 173

READ (Formatted, Sequential Access)

If UNIT = is included on the READ statement FMT = must be used and all

the specifiers can appear in any order.

In the form of the READ in which un is not specified, un is installation
dependent.

FMT=/mf

fmt is a required format identifier. It can, optionally, be preceded by FMT = .

If FMT = is omitted, the format identifier must appear second. If both
UNIT= and FMT = are included on the READ statement, all the specifiers,
except list, can appear in any order.

The format identifier {fmt) can be:

The statement label of a FORMAT statement

An integer variable

A character constant

A character variable

A character array element

A character array name

»• A character expression

An array name

For explanations of these format identifiers, see "READ
Statement—Formatted with Direct Access" on page 166.

ERR=sf/

sti is the statement label of an executable statement in the same program

unit as the READ statement. If an error Is detected, control is transferred to

stI.

END=sf/

stI is the statement label of an executable statement in the same program

unit as the READ statement. When the end of the external file is encount

ered, control is transferred to stI.

When an end-of-file is encountered on a named file, the END= branch is

taken, and the lOSTAT specifier, if present, is set to indicate an end-of-file.
Under these conditions, the only I/O statements allowed are CLOSE,
REWIND and BACKSPACE. If another READ is executed, message AFB217I
is given, the END= branch is not taken, and the lOSTAT specifier is not set.
The same sequence of instructions on a multiple file will cause the file to be
positioned to the next subfile in sequence.

IOSTAT =/OS

ios is an integer variable or an integer array element of length 4. los is set
positive if an error is detected, negative if an end of file is detected, and
zero if no error is detected. For VSAM files, return and reason codes are

placed in ios.

list

is an I/O list. It can contain variable names, array element names, char
acter substring names, array names {except the names of assumed-size
arrays), and implied DO lists. (See "Implied DO in an Input/Output
Statement" on page 81.) In the form of the READ where un is not specified,
if the list is not present the comma must be omitted. An item in the list, or

an item associated with it through EQUIVALENCE, COMMON, or argument
passing, must not contain any portion of the format identifier/mf.

174 VS FORTRAN Version 2 Language and Library Reference

READ (Formatted, Sequential Access)

Valid READ Statements:

READ (5,98) A,B,(C(I,K),1=1,lU)

READ (UNIT=2*IN-10, FMT='(19)', END=3600)

READ (10,22) AA,BB,CC

Invalid READ Statements:

READ ('(19)',08) ^ must appear before fmt

READ ('(19)',UNIT=08) FMT= must be used because UNIT= is specified.

When the NOOCSTATUS run-time option is in effect, the unit does not have to
be connected to an external file for sequential access. For more Information on
the NOOCSTATUS option, see VS FORTRAN Version 2 Programming Guide.

Data Transmission: A READ statement with FORMAT starts data transmission

at the beginning of a record. The format codes in the format identifier fmt are
taken one by one and associated with every item of the list in the order they
are specified. The number of character data specified by the format code is
taken from the record, converted according to the format code, and transmitted

into the storage associated with the corresponding item in the list. Data trans
mission stops when data has been transmitted to every item of the list, or when
the end of file is reached.

Data and I/O List: If the record contains more data than is necessary to satisfy

all the items of the list and the associated format specification, the extra data is
' skipped over. The next READ statement with FORMAT will start with the next

record if no other I/O statement is executed on that file. If the record contains

less data than is necessary to satisfy all the items of the list and the associated
format Identifier, an error message will be issued.

If the list is not specified and the format identifier starts with an I, E, F. D, G, L,
Q, or Z format code or is empty (that is, FORMAT()), a record is skipped over.

If a transmission error is detected, control is transferred to the statement speci-
fied by ERR. No indication is given of which record or records could not be
read, only that the error occurred during transmission of data. If lOSTAT Is
specified, a positive integer value is assigned to ios when the error is detected.

If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor transfer to be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315)

End of File: Control is transferred to the statement specified by END when the

end of the file is encountered: that is, when a READ statement is executed after

the last record on the file has already been read. No indication is given of the
number of list items read into before the end of the file was encountered. If

lOSTAT = ios is specified, a negative integer value is assigned to ios. Execution

continues with the statement specified with END, if present, or with the next

Chapter 4. Statements 175

READ (Formatted, Sequential Access, Internal)

statement if END is not specified. If END and lOSTAT are both omitted, program
execution is terminated when the end of the file is encountered.

READ Statement—Formatted with Sequential Access to Internal Files
This READ statement transfers data from one area of internal storage into
another area of internal storage. A FORMAT statement (or a reference to a
FORMAT statement) specifies the conversions to be performed during the
transfer. The area in internal storage that is read from is called an internal file.

An internal file is always

»- Connected to a unit

»- Positioned before data transmission at the beginning of the storage area
represented by the unit identifier

— Syntax

READ

([UNIT=]un, [FMT=]fmf [, ERR = sf/]
[, END = sf/] [, IOSTAT=/os]) {list]

UUVT=un

un is the reference to an area of internal storage called an internal file. It
can be the name of:

A character variable

A character array

A character array element

•- A character substring

It is required and can, optionally, be preceded by UNIT= . If UNIT= is
omitted, un must appear immediately following the left parenthesis. If
UNIT= is included in the READ statement, FMT= must be used and all the

specifiers can appear in any order.

FMT=/mf

fmt is a required format identifier. It can, optionally, be preceded by FMT = .

The format identifier can be:

The statement label of a FORMAT statement

An integer variable

*• A character constant

^ A character variable

A character array name

A character array element

A character expression

An array name

For explanations of these format identifiers, see "READ
Statement—Formatted with Direct Access" on page 166.

The format specification must not be:

^ In the area un, or

176 VS FORTRAN Version 2 Language and Library Reference

READ (Formatted, Sequential Access, internal)

Associated with un through EQUIVALENCE. COMMON, or argument
passing.

If FMT = is omitted, the format specification must appear second. If both
UNIT= and FMT= are included on the READ statement, all the specifiers,
except list, can appear in any order.

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the READ statement. If an error is detected, transfer is made to stI.

END=sf/

stI is the statement label of an executable statement in the same program
unit as the READ statement. When the end of the storage area {un) is
encountered, control is transferred to stI.

IOSTAT=/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected. For VSAM files, return and reason

codes are placed in ios.

list

is an I/O list and can contain variable names, array elements, character
substring names, array names {except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an Input/Output Statement" on
page 81.

An item in the list must not be:

Contained in the area represented by un, or

•- Associated with any part of un through EQUIVALENCE, COMMON, or argu
ment passing.

Valid READ Statements:

READ (5, 100) ((A(I,J),J=1,20),B(I),I=1,10)

READ (5, FMT=100) ((A(I,J),J=1,20),B(I),1=1,10)

READ (UNIT=5, FMT=1O0) ((A(I,J),J=1,20) ,B(I) ,1=1,10)

Invalid READ Statements:

READ (FMT=100, 5) ((A(I,J),J=1,20),B(I),1=1,10) ^ must appear first because
UNIT= is not specified.

READ (100, UNIT=5) ((A(I,J),J=1,20),B(I),1=1,10) FMT= must be used because
UNIT= is specified.

Data Transmission: An internal READ statement starts data transmission at the

beginning of the storage area specified by un. The format codes in the format
specification fmt are taken one by one and associated with every item of the list
in the order they are specified. The number of character data specified by a
format code is taken from the storage area un, converted according to the
format code, and moved into the storage associated with the corresponding
item in the list. Data transmission stops when data has been moved to every
item of the list or when the end of the storage area is reached.

Chapter 4. Statements 177

READ (Formatted, Sequential Access, Internal)

If un is a character variable, a character array element name, or a character
substring name, it is treated as one record only in relation to the format identi-
fier.

If un is a character array name, each array element is treated as one record in
relation to the format identifier.

Data and I/O List: The length of a record is the length of the character variable,
character substring name, or character array element specified by un when the
READ statement is executed.

If a record contains more data than is necessary to satisfy all the items in the
list and the associated format identifier, the remaining data is ignored.

If a record contains less data than is necessary to satisfy all the items in the list
and the associated format identifier, an error is detected.

If the format identifier (for example, slash format code) indicates that further
data is needed beyond the data contained in the character variable, character
substring, or the last array element of a character array, an end of file is
detected. If it is not the last array element in the character array, data is taken
from the next array element.

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be
read, only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when a READ statement is executed after
the last record on the file has already been read. No indication is given of the
number of list items read into before the end of the file was encountered. If

IOSTAT= /os is specified, a negative integer value is assigned to ios when an
end of file is detected. Execution continues with the statement specified with
END if present or with the next statement if END is not specified. If END and
lOSTAT are both omitted, program execution is terminated when the end of the
file is encountered.

Example:

1 CHARACTER* 120 CHARVR

2 READ (UNIT=5, FMT=100) CHARVR
100 FORMAT (A120)

3 ASSIGN 200 T0 J

4 IF (CHARVR (3:4).EQ. 'AB') ASSIGN 300 TO J
5 READ (UNIT = CHARVR, FMT=J) Al, A2, A3

200 FORMAT(4X,F5.1, F10.3, 3X, F12.8)
300 FORMAT (4X, F3.1, F6.3, 20X, F8.4)

178 VS FORTRAN Version 2 Language and Library Reference

READ (List-Directed, External)

Statement 1 defines a character variable. CHARVR, of fixed-length 120. State
ment 2 reads into CHARVR 120 characters of input. Statement 3 assigns the
format number 200 to the integer variable J. Statement 4 tests the third and
fourth characters of CHARVR to determine which type of input is to be proc
essed. If these two characters are AB, the format labeled 300 replaces the
format labeled 200 and is used for processing the data. This is done by
assigning statement label 300 to the integer variable J. Statement 5 reads from
the internal file, CHARVR, and performs the conversion, using the appropriate
FORMAT statement and assigning values to A1, A2, and A3.

READ Statement—List-Directed I/O from External Devices
This statement transfers data from an external device into internal storage. The
type of the items specified in this statement determines the conversion to be
performed. The data resides on an external file that is connected for sequential
access to a unit (For a general discussion of file and unit connection, see
"Input/Output Semantics" on page 46.)

— Syntax

READ * [, I/stJ

READ

([UNIT=]un, [FMT=]* [, ERR = sf/]
[, END= s//] [, IOSTAT=/os]) [//st]

UN1T=un

un is the external unit identifier, un is one of the following:

An integer expression of length 4 whose value must be zero or positive

An asterisk {*) representing an installation-dependent unit

un is required in the first form of the READ statement and can, optionally,
be preceded by UNIT = . If UNIT = is omitted, un must appear immediately
following the left parenthesis. The other specifiers may appear in any
order. If UNIT= is included on the READ statement, all the specifiers can
appear in any order.

In the form of the READ in which un is not specified, un is installation
dependent.

FMT=*

specifies that a list-directed READ is to be executed. It can, optionally, be
preceded by FMT = .

If FMT= is omitted, the format identifier must appear second. If both
UNIT= and FMT= are included on the READ statement, all the specifiers,

except list, can appear in any order.

ERR=sf/

sti is the statement label of an executable statement in the same program

unit as the READ statement. If an error is detected, control is transferred to
stI.

Chapter 4. Statements 179

READ (List-Directed, External)

END=sf/

sti is the statement label of an executable statement in the same program
unit as the READ statement. When the end of the external file is encount

ered, control is transferred to stI.

IOSTAT=/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected. For VSAM files, return and reason

codes are placed in ios.

list

is an I/O list and can contain variable names, array element names, char
acter substring names, array names (except names of assumed-size
arrays), and implied DO lists. See "Implied DO in an Input/Output
Statement" on page 81.

Valid READ Statements:

READ (10,*) A,B,(C(I),I=1,4),0(4)
READ (10,FMT=*) A,B,(C(I),1=1,4),D(4)
READ (FHT=*,UNIT=10) A,B,(C(I),1=1,4),D(4)
READ (*,*) A,B,(C(I),I=1,4),D(4)
READ * A,B,(C(I),I=1,4),D(4)
READ (I0STAT=IACT(1), UNIT=3*IN-2, FMT=*) ACTUAL(l)

Invalid READ Statements:

READ (FMT=*,10) A,B,(C(I),1=1,4),D(4) un must appear first because
UNIT= is not specified.

READ (*,UNIT=10) A,B,(C(I),1=1,4),D(4) FMT= must be used because
UNIT= is specified.

READ FMT=* A,B,(C(I),1=1,4),D(4) FMT= must not be specified in the
second form of syntax.

If this READ statement is encountered, the unit specified by un must be con
nected to a file for sequential access. If the unit is not connected to a file, it is
assumed to have been preconnected through job control language, and an
implicit OPEN is performed to a default file name. If the file is not precon
nected, an error is detected.

Data Transmission: A READ statement with list-directed I/O accessing an
external file starts data transmission at the beginning of a record. One value
on the external file is transferred to each item of the list in the order they are
specified. The conversion to be performed depends on the type and length of
the name of the item in the list. Data transmission stops when data has been
transmitted to every item in the list, when a slash separator is encountered in
the file or when the end of file is reached.

Data and I/O List: If the record contains more data than is necessary to satisfy
all the items of the list, the extra data is skipped over. The next READ state
ment with list-directed I/O will start with the next record if no other I/O state

ment is executed on that file. If the record contains less data than is necessary
to satisfy the list, and the record does not have a slash after the last element,
an error is detected. If the list has not been satisfied when a slash separator is

180 VS FORTRAN Version 2 Language and Library Reference

O

READ (List-Directed, Internal)

found, the remaining items in the list remain unaltered and execution of the
READ is terminated.

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be
read, only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.

If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when a READ statement is executed after

the last record on the file has already been read. No indication is given of the
number of list items read before the end of the file was encountered. If

lOSTAT = /os is specified, a negative integer value is assigned to ios when an
end of file is detected. Execution continues with the statement specified with

END, if present, or with the next statement if END is not specified. If END and
lOSTAT are both omitted, program execution is terminated when the end of the
file is encountered.

READ Statement—List-Directed I/O with Internal Files

This statement transfers data from one area of internal storage to one or more

other areas of internal storage. The area in internal storage that is read from is
called an internal file. The type of the items specified in this statement deter
mines the conversion to be performed.

Syntax

READ

([UNIT =]un, [FMT =]* [. ERR = sf/]
[, END = sf/] [, IOSTAT = /os]) [list]

UNIT = un

un is the reference to an area of internal storage called an internal file. It
can be the name of:

A character variable

" A character array

A character array element

*- A character substring

It is required and can, optionally, be preceded by UNIT = . If UNIT= is
omitted, un must appear immediately following the left parenthesis, If
UNIT^ is included on the READ statement, FMT- must be used and all the
specifiers can appear in any order.

FMT=*

* specifies that a list-directed READ is to be executed. It can. optionally, be
preceded by FMT=.

Chapter 4. Statements 181

READ (List-Directed, Internai)

If FMT= is omitted. * must appear second. If both UNIT= and FMT= are
included on the READ statement, all the specifiers, except list, can appear
in any order. ^

ERR=sf/

sti is the statement label of an executable statement in the same program

unit as the READ statement. If an error is detected, control is transferred to

stI.

END = sf/

stI is the statement label of an executable statement in the same program
unit as the READ statement. When the end of the storage area (un) is
encountered, control is transferred to stI.

IOSTAT=/os

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected.

list
r

is an I/O list and can contain variable names, array element names, char- -
acter substring names, array names (except names of assumed-size
arrays), and implied DO lists. See "implied DO in an Input/Output
Statement" on page 81.

Valid READ Statements:

READ (14,*) ACTUAL(l)
READ (14,FMT=*) ACTUAL(l)
READ (FMT=*,UNIT=14) ACTUAL(l)
READ (10STAT=IACT(1), UNIT=CHARVR, FMT=*) ACTUAL(l)

Data Transmission: An internal, list-directed READ statement starts data trans
mission at the beginning of the storage area specified by un. One value in the
internal file is transferred to each item of the list in the order they are specified.
The conversion to be performed depends on the type and length of the name of
the item in the list. Data transmission stops when data has been moved to
every item of the list or when the end of the storage area is reached.

If un is a character variable, a character array element name, or a character
substring name, it is treated as one record. \f un is a character array name, •
each array element is treated as one record.

Data and 1/0 List: The length ofa record is the length ofthe character variable,
character substring name, or character array element specified by un when the
READ statement is executed.

If a record contains more data than is necessary to satisfy all the items in the
list and the associated format identifier, the remaining data is ignored. The
next READ statement with list-directed I/O will start with the next record if no
other I/O statement Is executed on that file.

If a record contains less data than is necessary to satisfy the list and the record
does not have a slash after the last element, an error is detected. If the list has
not been satisfied when a slash separator is found, the remaining items in the
list remain unaltered and execution of the READ is terminated.

182 VS FORTRAN Version 2 Language and Library Reference

READ (NAMELIST, External)

If the list Indicates that more data items are to be moved and none remain in
the character variable, character substring, or last array element of a character
array, an end of file is detected. If an array element is not last and the list
requires more data items than that element contains, the items are taken from
the next array element.

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when there is insufficient data in the char
acter variable or array to satisfy the requirements of the I/O list. No indication
is given of the number of list items read into before the end of the file was
encountered. If IOSTAT = /os is specified, a negative integer value is assigned
to ios when an end of file is detected. Execution continues with the statement
specified with END if present or with the next statement ifEND is not specified.
If END and lOSTAT are both omitted, program execution is terminated when the
end of the file is encountered.

Example:

1 CHARACIER* 50 CHARVR

2 READ (UNIT=5, FMT=100) CHARVR
100 FORMAT (A5Q)

3 READ (UNIKHARVR, FMT=*) Al, A2, A3

Statement 1 defines a character variable, CHARVR, of fixed-length 50. State
ment 2 reads into CHARVR 50 characters of input. Statement 3 reads from
CHARVR, performs the conversion (depending on the type and length of the
names of the items in the list), and assigns values to A1, A2, and A3.

READ Statement—NAWIELIST with External Devices
This statement transfers data from an external I/O device into storage. The
type of the items specified in the NAMELIST determines the conversions to be
performed. The data resides on an external file that is connected for sequential
access to a unit (see "OPEN Statement" on page 151).

Syntax

READ name

READ

([UNIT =]un,
[FMT =]name
[, ERR = sf/]

[, END=sf/]
[, IOSTAT = /os])

UNIT=t/n

un is the external unit identifier, un is one of the following:

An integer expression of length 4 whose value must be zero or positive

An asterisk (*) representing an installation-dependent unit

un is required in the first form of the READ statement and can, optionally,
be preceded by UNIT = . lfUNlT= is omitted, un must appear immediately
following the left parenthesis. The other specifiers may appear in any

Chapter 4. Statements 183

READ (NAMELIST, External)

order. If UNIT = is included on the READ statement, all the specifiers can
appear in any order.

In the form of the READ in which un is not specified, un is installation
dependent.

FMT=name

name is a NAMELIST name. See "NAMELIST Statement" on page 148.

If FMT= is omitted, the NAMELIST name must appear second. If both
UNIT= and FMT= are included In the READ statement, all the specifiers
can appear in any order.

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the READ statement. If an error is detected, control is transferred to
stI.

END = sf/

stI is the statement label of an executable statement in the same program
unit as the READ statement. When the end of the external file is encount

ered, control is transferred to stI.

When an end-of-file is encountered on a named file, the END= branch is
taken, and the lOSTAT specifier, if present, is set to indicate an end-of-file.
Under these conditions, the only I/O statements allowed is CLOSE, if
another READ is executed, message AFB217I is given, the END= branch is
not taken, and the lOSTAT specifier is not set. The same sequence of
instructions on a multiple file will cause the file to be positioned to the next
subfile in sequence.

IOSTAT = /os

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected. For VSAM files, return and reason
codes are placed in ios.

Valid READ Statements;

READ (5,NEW_NAME)

READ (IN-t-INt3, NAHEIN, IOSTAT=IOS) n
Invalid READ Statements:

READ (NAHEX,5) ^ must appear before name.

READ (5,NAMEX) A,B,C 11st must not be specified.

If this type of READ statement (NAMELIST with external devices) is encount
ered, the unit specified by un must exist and it must be connected to a file for
sequential access. If the unit is not connected to a file, it is assumed to have
been preconnected through job control language and an implicit OPEN is per
formed to a default file name. If the file is not preconnected, an error is
detected.

The NAMELIST I/O statements associate the name given to the data in the
program with the data itself. There Is no format identifier, but the data is con-
verted according to the type of data in the program. The data on the external
file must be in a specific format. See "NAMELIST Input Data" on page 149.

184 VS FORTRAN Version 2 Language and Library Reference

n

READ (NAMELIST, External)

The READ statement specifies the list of data to be transferred by referring to a
NAMELIST statement.

BACKSPACE and REWIND should not be used with NAMELIST I/O. If they are,
the results are unpredictable {see "BACKSPACE Statement" on page 57 and
"REWIND Statement" on page 198).

Data Transmission: A READ statement with NAMELiST starts data transmission

from the beginning of the NAMELIST with name name on the external file. The
names associated with the NAMELIST name in the NAMELIST statement are

matched with the names of the NAMELIST name on the external file. When a

match is found, the value associated with the name on the external file is con
verted to the type of the name and transferred into storage. If a match is not
found, an error is detected.

Data and NAMELIST: The NAMELIST name must appear on the external file.
The variable names or array names associated with the NAMELIST name name
in the NAMELIST statement must appear on the external file. They are read in
the order they are specified In the NAMELIST statement, but they can appear in
any order on the external file. (For the format of the input data, see "NAMELIST
Input Data" on page 149.)

If a transmission error is detected, control is transferred to the statement speci

fied by ERR. No indication is given of which record or records could not be
read, only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

End of File; Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when a READ statement is executed after
the last record on the file has already been read. No indication is given of the
number of list items read before the end of the file was encountered. If END Is

omitted, program execution is terminated when the end of the file is encount
ered.

Chapter 4. Statements 185

READ (NAMELIST, Internal)

READ Statement—NAMELIST with Internal Files

This statement transfers data from one area of internal storage to one or more
other areas of Internal storage. The area of internal storage that is read from is
called an internal file. The type of the items specified in an associated
NAMELIST list determines the conversions to be performed.

Syntax

READ

{ [UNIT=]t;n,

[FMT-]name
[, BRn = stl]
[, END=st/]
[, IOSTAT = /os])

UNIT = t/n

un is the reference to an area of internal storage called an internal file. It
can be the name of;

A character variable

•" A character array

A character array element

A character substring

It is required and can, optionally, be preceded by UNIT= . If UNIT= is
omitted, un must appear immediately following the left parenthesis. If
UNIT= is included on the READ statement, FMT = must be used and all the

specifiers can appear In any order,

FMT=name

name is a NAMELIST name. See "NAMELIST Statement" on page 148.

If FMT = is omitted, the NAMELIST name must appear second. If both
UNIT= and FMT= are included on the READ statement, all the specifiers
can appear in any order.

ERR = sfy

sti is the statement label of an executable statement in the same program
unit as the READ statement. If an error is detected, control is transferred to

stI.

END = sf/

stI is the statement label of an executable statement in the same program
unit as the READ statement. When the end of the external file is encount

ered, control is transferred to stI.

IOSTAT = /os

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected.

Valid READ Statements:

READ (12,NAME1)

READ (CHARVR, NAMEIN, IOSTAT=IOS)

186 VS FORTRAN Version 2 Language and Library Reference

r>

READ (Unformatted, Direct Access)

The NAMELIST I/O statements associate the name given to the data in the

program with the data itself. There is no format identifier, but the data is con
verted according to the type of data in the program. The data in the internal file
must be in a specific format. See "NAMELIST Input Data" on page 149.

The READ statement specifies the list of data to be transferred by referring to a
NAMELIST statement. This form of data transmission is useful for debugging
purposes.

Data Transmission: A READ statement with NAMELIST starts data transmission

at the beginning of the Internal file specified by un. The data items associated
with the NAMELIST name in the NAMELIST statement are matched with the

values associated with the NAMELIST name in the internal file. When a match

is found, the values associated with the name in the internal file are converted

to the types of the data items in the NAMELIST list and assigned to the data
items. If no match is found, an error is detected.

Data and NAMELIST: The NAMELIST name must appear in the internal file.
The data items associated with the NAMELIST name in the NAMELIST state

ment must appear in the internal file. They are read In the order they are spec
ified in the NAMELIST statement, but they can appear in any order in the
internal file. (For the format of the input data, see "NAMELIST Input Data" on
page 149.)

End of File; Control is transferred to the statement specified by END if:

The NAMELIST input data in the internal file does not have an &END delim
iter.

»• The specified NAMELIST name is not in the internal file.

No indication is given of the number of list items read before control is trans
ferred. If END is omitted, object program execution is terminated when the end
of the internal file is encountered.

CHARACTER*40 CHARVR

NAMELIST /NL1/A,B,C

READ (CHARVR,NLl)

Assume CHARVR contains;

Position 2

V

&NL1 A = 5,C = 10,B-6,&END

Then A is assigned the value 5. B the value 6, and C the value 10.

READ Statement—Unformatted with Direct Access
This READ statement transfers data without conversion from an external direct-

access device into internal storage. The data must reside on an external file
that has been connected for direct access. (See "OPEN Statement" on
page 151.) The record to be read is identified by a relative record number.

Chapter 4. Statements 187

READ (Unformatted, Direct Access)

Syntax

READ

([\JU\T-]un, REC = rec [, ERR = sf/]
[, IOSTAT=/OS]

[, NUM = n])
[list]

UNIT=iyn

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It Is required and can, optionally, be preceded by UNIT= . If UNIT= is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT = is included on the
READ statement, all the specifiers can appear in any order.

REC=rec

rec is a relative record number. It is an integer expression whose value
must be greater than zero. It represents the relative position of a record
within the external file associated with un. The relative record number of

the first record is 1. This specifier is required.

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the READ statement. If an error is detected, control is transferred to
stI. ERR = err is optional.

IOSTAT=/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected and zero if no error is detected. For VSAM
files, return and reason codes are placed in los. IOSTAT=/os is optional.

NUM = /7

n is an integer variable or an integer array element of length 4,

if NU[v1 = n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements speci
fied by the I/O list.

Coding the NUM specifier suppresses the indication of an error that would
occur if the number of data bytes represented by the I/O list is greater than
the number of bytes in the record. In this case, n is set to a value that is
the number of bytes In the record. Data from subsequent records is not
read into the remaining I/O list items.

list

is an I/O list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an Input/Output Statement" on
page 81.

Data Transmission: A READ statement without format starts data transmission

at the beginning of the record specified by REC = rec. The number of character
data specified by the type of each item in the list is taken from the record and
transmitted into the storage associated with the corresponding item in the list.

188 VS FORTRAN Version 2 Language and Library Reference

READ (Unformatted, Keyed Access)

Data transmission stops when data has been transmitted to every item of the
list.

If the list is not specified, the internal record number is increased by one but no

data is transferred. The INQUIRE statement can be used to determine the

record number.

Data and I/O List: The length of the records in the file is specified by RECL in

the OPEN statement. If the record rec contains more data than is necessary to

satisfy all the items of the list, the extra data is ignored. If the length of the
record rec is smaller than the total amount of data needed to satisfy the items
in the list, as much data as can be read from the record is read, and an error is

detected unless the NUM specifier is given.

Control is transferred to the statement specified by ERR if a transmission error
is detected. No indication is given of which record or records could not be
read, only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315)

READ Statement—Unformatted with Keyed Access
This READ statement transfers data without conversion from an external direct-

access I/O device into internal storage. The data must reside on an external
file that has been opened for keyed access. (See "OPEN Statement" on
page 151.)

There are two forms of this READ statement: the direct retrieval keyed request
and the sequential retrieval keyed request. In a direct retrieval keyed request,

you specify a full or partial key to be used in searching for the record to be
retrieved.

In a sequential retrieval keyed request, you do not specify a key; the key of the
record previously read or updated is used as the starting point and the next
record in increasing key sequence is obtained. The key of reference from the
previous I/O statement remains the key of reference for a sequential retrieval.
If the file was just opened, the key of reference is the first key listed in the
KEYS specifier of the OPEN statement, and the file is positioned before the Hrst
record with the lowest value for this key. A sequential retrieval keyed request

reads this record.

— Syntax for a Direct Retrieval Keyed Request

READ

([UNIT=]t;n, [, ERR = sf/] [, IOSTAT = /os]

{, KEY^key | , KEYGE = kge | . KEYGT = /rg/ }[, KEy\D= kid]
[, NOTFOUND=sf/] [, NUM = n]) [list]

Chapter 4. Statements 189

READ (Unformatted, Keyed Access)

Syntax for a Sequential Retrieval Keyed Request

READ

([UN!T =]t/n, [, ERR = sf/] [, IOSTAT = /os]
[, NOTFOUND=sf/ | , END = s//] [, NUM=n])
[list]

UUlT-un

un Is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT = . If UNIT = is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT = is included on the
READ statement, all the specifiers can appear in any order.

ERR = sf/

sti is the statement label of an executable statement in the same program

unit as the READ statement. If an error is detected, control is transferred to

stI.

IOSTAT=/os

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error is detected. For VSAfyi files, return and reason codes are
placed in ios.

KEY= key\KEyGB = kge\KEyGJ=kgt
These specifiers cause a record to be retrieved by its key, and the file to be
positioned at the end of the record. They supply a full or partial key value
which is used as a search argument.

KEY = key Specifies that the record to be retrieved is the first record
whose key value is identical to the search argument. If
the search argument is a partial key (shorter than the
keys in the file), the record retrieved is the first one with a
key whose leading part is identical to the partial key.

KEYGE = kge Specifies the following search criterion for the record to
be retrieved: If the file contains a record whose key value

is identical to kge, the first such record is retrieved. If not,
the first record with the next greater key value is
retrieved. Ifkge is a partial key (shorter than the keys in
the file), the record retrieved is the first one with a key
value whose leading part is equal to or greater than the
partial key.

KEYGT= /cgf Specifies that the record to be retrieved is the first one
with a key value greater than kgt. If kgt is a partial key
(shorter than the keys in the file), the record retrieved is
the first one with a key value whose leading part is
greater than the partial key.

key, kge, or kgt can be a character expression or a data item (a constant,
variable, array element, or character substring) of integer or character type
whose length does not exceed the length of the key that is the target of the
search. A shorter or partial key is called a generic key.

190 VS FORTRAN Version 2 Language and Library Reference

rs

READ (Unformatted, Keyed Access)

KEYlD = /c/d

kid is an integer expression of length 4. Its value is the relative position of
a start-end pair in the list of such pairs in the KEYS specifier of the OPEN
statement. For example, KEYID = 3 would designate the third start-end pair,
and hence the third key, in the KEYS specifier. In this way, kid indicates
which of multiple keys will be used to retrieve a record. The selected key,
known as the "key of reference." remains In effect for all subsequent keyed
access I/O statements until a different one is specified in another READ
statement with a KEYID specifier.

If the KEYID specifier is omitted on the first READ statement for a file
opened for keyed access, the first start-end pair on the KEYS specifier is
used. If no KEYS specifier was given on the OPEN statement. KEYID must
have a value of 1 or be omitted.

The KEYID specifier can be used only if the KEY, KEYGE, or KEYGT
specifier is also used.

NOTFOUND = sf/

sti is the statement label of an executable statement that is given control
when a record-not-found condition occurs. For an explanation of this condi
tion, see "Record Not Found," below.

END = sf/

stI is the statement label of an executable statement in the same program
unit as the READ statement. When the end of the external file is encount

ered, control is transferred to stI.

This specifier can be used only on a sequential retrieval keyed request.

NUM = n

n is an integer variable or an Integer array element of length 4.

If NUM =n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements speci
fied by the I/O list.

Coding the NUM specifier suppresses the indication of an error that would
occur if the number of data bytes represented by the I/O list is greater than
the number of bytes in the record. In this case, n is set to a value that Is
the number of bytes in the record. Data from subsequent records is not
read into the remaining I/O list items.

list

is an I/O list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an Input/Output Statement" on
page 81.

Valid READ Statements;

READ (IOSTAT-IACT(l),UtlIT=3*IN-2) ACTUAL(l)
READ (12,KEYGE=DEPTN0,N0TF0UND-86) DD,EE,FF
READ (UNIT=10,KEY='A01',NOTEOUND=32) AA, BB, CC
READ (10,KEYGT=CVAR,MUM-LEhG) AA, {B(I),I=1, 100)
READ (10,ENO=37) AA, BB, CC
READ (10,NUM=LENG,NOTEOUND=87) AA, 1=1, 100)

If an unformatted keyed READ statement is encountered, the unit specified must
exist and the file must have been connected for keyed access by means of an
OPEN statement. The ACTION specifier on that OPEN statement must not have

Chapter 4. Statements 191

READ (Unformatted, Keyed Access)

specified the value 'WRITE'. If the file is not so connected, an error is

detected.

Data Transmission: For a direct retrieval keyed request, data transmission
begins at the beginning of the record that satisfies the search criterion defined
by the KEY, KEYGE, or KEYGT specifier. For a sequential retrieval keyed
request, data transmission begins at the beginning of the record at which the
file is currently positioned. The data specified by the item in the list is taken

from the record and transmitted into the corresponding item in the list. Data
transmission stops when data has been transmitted to every item in the list or
when the end of file is reached.

If the list Is not specified, a record is passed over and no data is transmitted.

Data and I/O List: If the record contains more data than is necessary to satisfy

all the items In the list, the extra data is skipped over. The next sequential
retrieval keyed request will start with the next sequential record. (This is the
record with the next higher key value if the key value is unique or the next
record with the same key if the key value is not unique.) If the record contains
less data than is necessary to satisfy the list, an error is detected unless the

NUM specifier was given.

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be
read, only that the error occurred during transmission of data. If lOSTAT is

specified, a positive integer value is assigned to ios when the error is detected.

If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not

considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The

extended error handling subroutines may be used to detect and handle these
errors. {See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when the file is already positioned at the

end of the last record with the highest key value in the file and a sequential
retrieval keyed request was issued. If lOSTAT = ios was specified, a negative
integer value is assigned to ios when an end of file is detected. If ERR was

specified but END was not, control passes to the statement specified by ERR

when an end of file is detected. If neither END nor ERR was given, an error is
detected.

Record Not Found: Control is transferred to the statement specified by
NOTFOUND under one of these conditions;

•- You made a direct retrieval keyed request, and no record in the file satis
fied the search criterion defined by KEY, KEYGE, or KEYGT.

^ You made a sequential retrieval keyed request, and there are no more
records in which the leading portion of the key value is identical to the
leading portion ofthe key value in the record retrieved by the last direct
retrieval operation. The length ofwhat is called the "leading portion of the
key value" is equal to the length of the search argument {KEY^key,

192 VS FORTRAN Version 2 Language and Library Reference

READ (Unformatted, Sequential Access)

KEYGE = kge, or KEYGT = kgt) on the direct retrieval statement. This length
may represent a full or partial key value.

The NOTFOUND specifier on the sequential retrieval keyed request is treated as
an END specifier under any of these conditions:

No direct retrieval keyed request has been made since the file was opened.

»• The previous direct retrieval keyed request was unsuccessful.

An operation that followed the previous direct retrieval keyed request did
not successfully retrieve a record.

A REWIND was issued after the previous direct retrieval keyed request.

>• After the last direct retrieval request, a WRITE statement added a record
whose key value differed in its leading positions from the key value being
used in the comparison,

A record-not-found condition is not delected for a sequential retrieval keyed
request that lacks a NOTFOUND specifier. In the absence of the NOTFOUND
specifier, successive sequential retrieval requests may read records until the
end of the file is reached.

If lOSTAT = /os was specified, a positive integer value is assigned to ios when a
record-not-found condition is detected. If ERR is specified but NOTFOUND is
not, control passes to the statement specified by ERR when a record-not-found
condition is detected. If neither NOTFOUND nor ERR was given, an error is
detected,

READ Statement—Unformatted with Sequential Access
This READ statement transfers data without conversion from an external I/O

device into internal storage. The data resides on an external file that is con
nected for sequential access to a unit. (For a general discussion of file and unit
connection, see "Input/Output Semantics" on page 46.)

The sequential I/O statements without format control process records one after
the other from the beginning of an external file to its end.

Syntax

READ

([UNIT =]un [, ERR = sf/3 [, END = sf/]
[, NUM = n][, IOSTAT= /os])
[list]

UNIT = un

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It is required and can. optionally, be preceded by UNIT = . If UN1T= is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT= is included on the
READ statement, all the specifiers can appear in any order.

Chapter 4. Statements 193

READ (Unformatted, Sequential Access)

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the READ statement. If an error is detected, control is transferred to
stI.

Em=sti

is the statement label of an executable statement in the same program unit
as the READ statement. When the end of the external file is encountered,
control is transferred to stI.

When an end-of-file is encountered on a named file, the END= branch is
taken, and the lOSTAT specifier, if present, is set to indicate an end of file.
Under these conditions, the only I/O statements allowed are CLOSE,
REWIND, and BACKSPACE. If another READ is executed, message AFB2171
is given, the END= branch is not taken, and the lOSTAT specifier is not set.
The same sequence of instructions on an unnamed file will cause the file to

be positioned to the next subfile in sequence.

NUM = n

n is an integer variable or an integer array element of length 4.

If NUM=n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements speci
fied by the I/O list.

Coding the NUM specifier suppresses the indication of an error that would
occur if the number of data bytes represented by the I/O list is greater than
the number of bytes in the record, in this case, n is set to a value which is

the number of bytes in the record. Data from subsequent records is not
read into the remaining I/O list items.

IOSTAT=/os

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error Is detected, negative if an end of file Is encountered, and
zero if no error condition is detected. For VSAM files, return and reason

codes are placed in ios.

list

Is an I/O list. It can contain variable names, array element names, char
acter substring names, array names (except the names of assumed-size
arrays), and implied DO lists. See "Implied DO in an Input/Output
Statement" on page 81.

Ifthis READ statement is encountered, the unit specified by un must be con
nected to a file for sequential access. Ifthe unit is not preconnected, an error
is detected.

When the NOOCSTATUS execution time option is in effect, the unit does not
have to be connected. For more information on the NOOCSTATUS option, see
VS FORTRAN Version 2 Programming Guide.

Data Transmission: A READ statement without conversion starts data trans
mission at the beginning of a record. The data specified by the item in the list
is taken from the record and transmitted into the storage associated with the
corresponding item in the list. Data transmission stops when data has been
transmitted to every item of the list or when the end of file is reached.

If the list is not specified, a record is passed over without transmitting any data.

194 VS FORTRAN Version 2 Language and Library Reference

Data and I/O List; If the record contains more data than is necessary to satisfy
ail the items of the list, the extra data is skipped over. The next READ state
ment without format will start with the next record if no other I/O statement is
executed on that file. If the record contains less data than is necessary to
satisfy the list, an error is detected.

Ifa transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be
read, only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor transfer to be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when a READ statement is executed after
the last record on the file has already been read. No indication is given of the
number of list items read into before the end of the file was encountered. If
lOSTAT = /os is specified, a negative integer value is assigned to ios when an
end of file is detected. Execution continues with the statement specified with
END, if present, or with the next statement, if END is not specified. If END and
lOSTAT are both omitted, program execution is terminated when the end of the
file is encountered.

REAL Type Statement
See "Explicit Type Statement" on page 91.

Chapter 4. Statements 195

RETURN

RETURN Statement
The RETURN statement returns control to a calling program.

The RETURN statement can be used in either a function or a subroutine subpro
gram. A RETURN statement cannot terminate the range of a DO-loop.

RETURN Statement in a Function Subprogram
Function subprograms may contain RETURN statements. The RETURN state
ment signifies a logical conclusion of the computation and returns the computed
function value and control to the calling program. (See "FUNCTION Statement"
on page 120.)

— Syntax

RETURN

Execution of a RETURN statement terminates the association between the
dummy arguments of the subprogram and the current actual arguments. All
entities (that is, common blocks, variables, or arrays) within the subprogram
become undefined except:

Entities specified in SAVE statements (see "SAVE Statement" on page 203)

Entities given an initial value in a DATA or explicit specification statement
and whose initial values were not changed

Entities in a blank common block

• Entities in a named common block that appear in the subprogram and
appear in at least one other program unit that is referring either directly or
indirectly to the subprogram

All variables that are defined with a statement label become undefined regard
less of whether the variable is in a common block or specified in a SAVE state
ment.

A function subprogram must not be referred to twice during the execution of an
executable program without the execution of a RETURN statement in that sub
program. (See "END Statement" on page 83.)

RETURN Statement in a Subroutine Subprogram
Subroutine subprograms may contain RETURN statements. The RETURN state
ment signifies a logical conclusion of the computation and returns control to the
calling program. (See "SUBROUTINE Statement" on page 208.)

Syntax

RETURN [m]

m

is an integer expression. If m is not specified in a RETURN statement, or if
the value of m is less than one or greater than the number of asterisks in
the SUBROUTINE or subroutine ENTRY statement that specifies the CUT-
rently referenced name, control returns to the next statement following the
CALL statement that initiated the subprogram reference. This completes
the execution of the CALL statement.

196 VS FORTRAN Version 2 Language and Library Reference

RETURN

If 1 ^ m ^ n, where n is the number of asterisks in the SUBROUTINE or

subroutine ENTRY statement that specifies the currently referenced name,
the value of m identifies the mth asterisk in the dummy argument list.
There should be a one-to-one correspondence between the number of alter
nate return specifiers specified in the CALL statement and the number of
asterisks specified in the SUBROUTINE statement or ENTRY statement
dummy argument list. However, the alternate return specifiers need not be
unique. Control is returned to the statement identified by the alternate
return specifier in the CALL statement that is associated with the mth
asterisk in the dummy argument list of the currently referenced name. This
completes the execution of the CALL statement.

Execution of a RETURN statement terminates the association between the

dummy arguments of the subprogram and the current actual arguments. All
entities within the subprogram become undefined except:

Entities specified in SAVE statements {see "SAVE Statement" on page 203)

Entities given an initial value in a DATA or explicit specification statement
and where initial values were not changed

Entities in a blank common block

Entities in a named common block that appear in the subprogram and
appear in at least one other program unit that is referring either directly or
indirectly to the subprogram

All variables that are defined with a statement label become undefined regard-
less of whether the variable is in a common block or specified in a SAVE state
ment.

A subprogram must not be referred to twice during the execution of an execut
able program without the execution of a RETURN statement in that subprogram.

A CALL statement that is used with a RETURN m form may be best understood
by comparing it to a CALL and computed GO TO statement in sequence. For
example, the following CALL statement:

CALL SUB (P,*20,Q,*35,R,*22)

is equivalent to:

CALL SUB (P,Q,R,I)
GO TO (20,35,22),!

where the index I is assigned a value of 1, 2, or 3 in the called subprogram.

Chapter 4. Statements 197

REWIND

REWIND Statement
The REWIND statement repositions a sequentially accessed file at the beginning
of the first record of the file. The external file must be connected when you
execute the statement. (See "OPEN Statement" on page 151.)

For a keyed file, the file must have been previously connected using an OPEN
statement that specified an ACTION value of READ or READWRITE.

The REWIND statement positions the file to the beginning of the first record with
the lowest value of the key of reference.

Syntax

REWIND un

REWIND

([\JWT=]un
[, ERR = sf/]
[, IOSTAT=/OS])

UNIT=un

un Is the external unit Identifier, un is an integer expression of length 4
whose value must be zero or positive.

It is required and, if the second form of the statement is used, can,
optionally, be preceded by UNIT= . lfUNIT= Is omitted, un must appear
immediately following the left parenthesis. The other specifiers may appear
in any order. If UNIT = Is included on the READ statement, all the specifiers
can appear In any order.

ERR = sf/

is optional, sti Is a statement label. If an error occurs in the execution of
the REWIND statement, control Is transferred to the statement labered stI.

That statement must be executable and must be in the same program unit
as the REWIND statement. If ERR = sf/ is omitted, execution halts when an

error is detected.

IOSTAT =/OS

is optional, ios is an integer variable or an integer array element of length
4. ios is set positive if an error Is detected; it is set to zero if no error is

detected. For VSAM files, return and reason codes are placed in ios.

If the unit specified by un is connected, it must be connected for sequential or
keyed access. If the unit is not preconnected, an error is detected.

When the NOOCSTATUS run-time option Is in effect, the unit does not need to
be connected to an external file for sequential access. For more information on
the NOOCSTATUS option, see VS FORTRAN Version 2 Programming Guide.

An external sequential file connected to the unit specified by un may or may not
exist when the statement is executed. If the external sequential file does not
exist, the REWIND statement has no effect. If the external sequential file does

exist, an end-of-file is created, if necessary, and the file is positioned at the
beginning of the first record.

198 VS FORTRAN Version 2 Language and Library Reference

REWRITE (Formatted, Keyed Access)

For a sequential file, the REWIND statement causes a subsequent READ or
WRITE statement referring to un to read data from or write data into the first
record of the external file associated with un.

For a keyed file, a subsequent sequential retrieval keyed request will read the
first record with the lowest key. The key of reference remains the same as it
was before the REWIND statement was issued.

The REWIND statement may be used with asynchronous READ and WRITE state
ments provided that any input/output operation on the file has been completed
by the execution of a WAIT statement. A WAIT statement is not required to
complete the REWIND operation.

Transfer is made to the statement specified by the ERR specifier if an error is
detected. If the IOSTAT=/os is specified, a positive integer value is assigned to
ios when an error is detected. Then execution continues with the statement
specified with the ERR specifier, if present, or with the next statement ifERR is
not specified. If the ERR specifier and the lOSTAT specifier are both omitted,
program execution is terminated when an error is detected.

Valid REWIND Statements;

REWIND (5)

REWIND (3*IN-2.ERR=99999)

REWIND (UNIT=2*IN+2)

REWIND (I0STAT=I0S,ERR=99999,UNIT=2*IN-10)

REWRITE Statement—Formatted with Keyed Access
The REWRITE statement replaces a record in a keyed file. The record must
have been retrieved by an immediately preceding sequential, direct, or keyed
READ operation. No other operation, such as BACKSPACE or WRITE, can be
issued for the same file between the READ and REWRITE statements.

For a keyed file, the file must have been previously connected, using an OPEN
statement that specified an ACTION value of READWRITE.

Except for the key, any data in the retrieved record can be changed. If the
records in the file have multiple keys, neither the value of the key being used
for retrieval nor the value of the primary key can be changed.

Syntax

REWRITE

([UNIT = 3un,
[FMJ =]fmt

[, ERR = sf/]
[, IOSTAT = /os]
[, DUPKEY = sf/])
list

Chapter 4, Statements 199

REWRITE (Formatted, Keyed Access)

UNIT=un

un is the external unit identifier, un must be an Integer expression of length
4 whose value must be zero or positive. ^

un is required and can, optionally, be preceded by UNIT= . If UNIT= is
omitted, un must appear immediately following the left parenthesis. The
ether specifiers can appear in any order. If UNIT= is included on the
REWRITE statement, all the specifiers can appear in any order.

FMT = fmt

/mf is a format identifier. It can, optionally, be preceded by FMT= . If
FMT = fmt is not specified, data transmission is defined by the items of the
list. See "Data Transmission" on the following page.

If FMT is omitted, the formal identifier must appear second. If both UNIT =
and FMT= are included on the REWRITE statement, all the specifiers,
except list, can appear in any order.

The format identifier (fmt) can be:

The statement label of a FORMAT statement ^

*• An integer variable

•- A character constant

A character variable

*• A character array element

An array name

A character expression

For explanations of these format identifiers, see "WRITE
Statement—Formatted with Direct Access" on page 218.

ERR=s//

sti is the statement label of an executable statement in the same program
unit as the REWRITE statement. If an error is detected, control is trans

ferred to stI.

IOSTAT=/os

ios is an integer variable or an integer array element It is set to positive if
an error is detected; it is set to zero if no error condition is detected. For

VSAM files, return and reason codes are placed in ios

DUPKEY = sf/

stI is the statement label of a statement to which control is passed if a
keyed record is being written and there is already a record in the file with
the same key. This "duplicate key" condition can occur only if you tried to
write a record containing a duplicate primary key or an alternate-index key
that is defined to be unique.

list

is an I/O list. It can contain variable names, array elements, character sub
string names, array names {except the names of assumed-size arrays),
implied DO lists, and expressions. The list must represent all the data that
is to comprise the new record, not just the fields that have been changed.
The new copy of the record does not have to be the. same length as the
original; however, it must be long enough to include all the file's keys. {See
"Implied DO in an Input/Output Statement" on page 81.) A function must
not be referenced within an expression if such a reference causes an input
or output statement to be executed.

200 VS FORTRAN Version 2 Language and Library Reference

REWRITE (Unformatted, Keyed Access)

Valid REWRITE Statement;

REWRITE (12,15) AA,BB,CC

Data Transmission: A formatted REWRITE statement starts data transmission at

the beginning of a record. The format codes in the format specification fmt are
taken one by one and associated with every item of the list in the order they
are specified. The data is taken from the item of the list, converted according
to the corresponding format code, and the number of character data specified
by the format code is transmitted onto the record of the external file. Data
transmission stops when data has been taken from every item of the list.

If a transmission error is detected, control Is transferred to the statement speci
fied by ERR. If lOSTAT Is specified, a positive integer value is assigned to ios
when the error is detected. If ERR is not specified, execution continues with the
next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR, The
extended error handling subroutines can be used to detect and handle these
errors. (See Chapter 9. "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

REWRITE Statement—Unformatted with Keyed Access
The REWRITE statement replaces a record in a keyed file. The record must
have been retrieved by an immediately preceding sequential, direct, or keyed
READ operation. No other operation, such as BACKSPACE or WRITE, can be
issued for the same file between the READ and REWRITE statements.

For a keyed file, the file must have been previously connected, using an OPEN
statement which specified an ACTION value of READWRITE.

Except for the key, any data in the retrieved record can be changed. If the
records in the file have multiple keys, neither the value of the key being used
for retrieval nor the value of the primary key can be changed.

Syntax

REWRITE

([\JU\7 =]un

[, ERR=sf/]

[, IOSTAT = /os]
[, DUPKEY = sf/]

[,NUM = n])

list

UNIT = ur?

un is the external unit Identifier, un must be an integer expression of length
4 whose value must be zero or positive.

un is required and can, optionally, be preceded by UNIT= If UNIT = is
omitted, un must appear immediately following the left parenthesis. The

Chapter 4. Statements 201

REWRITE (Unformatted, Keyed Access)

other specifiers can appear in any order. If UNIT= is included on the
REWRITE statement, all the specifiers can appear In any order.

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the REWRITE statement. If an error is detected, control is trans
ferred to stI.

IOSTAT=/OS

ios is an integer variable or an integer array element of length 4. It is set to
positive if an error Is detected; it is set to zero if no error condition is
detected. For VSAM files, return and reason codes are placed in ios.

DUPKEY = sf/

stI is the number of a statement to which control is passed if a keyed record
is being written and there is already a record in the file with the same key.

This "duplicate key" condition can occur only if you tried to write a record
containing a duplicate primary key or an alternate-index key that is defined
to be unique. r ^

NUM = n

n is an integer variable or an integer array element of length 4.

If NUM = n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements speci

fied by the I/O list.

Coding the NUM specifier suppresses the indication of an error that would
occur if the number of bytes represented by the I/O list is greater than the
number of bytes that can be written into the record. In this case, n is set to

a value that is the maximum length record that can be written. Data from
remaining I/O list items is not written into subsequent records.

list

is an I/O list. It can contain variable names, array elements, character sub
string names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. The list must represent all the data that
is to comprise the new record, not just the fields that have been changed.
The new copy of the record does not have to be the same length as the
original; however, it must be long enough to include all the file's keys. (See
"Implied DO in an Input/Output Statement" on page 81.) A function must

not be referenced within an expression if such a reference causes an input
or output statement to be executed.

Valid REWRITE Statement:

REWRITE (12) AA,BB,CC

If the unit specified by un is connected, it must be connected for sequential
access. If it is not connected to a Tile, it is assumed to have been preconnected
through job control language and an implicit OPEN is performed to a default file

name. If the file is not preconnected, an error is detected.

Data Transmission; An unformatted REWRITE statement without conversion

starts data transmission at the beginning of a record. The data is taken from
the items of the list In the order in which they are specified and transmitted
onto the record of the external file. Data transmission stops when data has
been transferred from every item of the list.

n

202 VS FORTRAN Version 2 Language and Library Reference

SAVE Statement

SAVE

If a transmission error is detected, control is transferred to the statement speci

fied by ERR. If lOSTAT is specified, a positive integer value is assigned to ios
when the error is detected. If ERR is not specified, execution continues with the
next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines can be used to detect and handle these

errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

The SAVE statement retains the definition status of the name of a named

common block, variable, or array after the execution of a RETURN or END state

ment in a subprogram.

Because VS FORTRAN Version 2 saves these names without user action, the

SAVE statement serves only as a documentation aid.

Syntax

SAVE {namel [, name2 ...]]

name

is a named common block name preceded and followed by a slash, a vari
able name, or an array name. Redundant appearances of an item are not
permitted.

Dummy argument names, procedure names, and names of entities in a
common block must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it contained the names of
all common items in that program unit.

The appearance of a named common block in a SAVE statement has the effect
of specifying all entities in that named common block.

The execution of a RETURN statement or an END statement within a subpro

gram causes all entities within the subprogram to become undefined except for
the following:

Entities specified by SAVE statements.

•- Entities in a blank common block.

Initially defined entities that have neither been redefined nor become unde
fined.

>• Entities in named common blocks that appear in the subprogram and
appear in at least one other program unit that is referring, either directly or
indirectly, to that subprogram. The entities in a named common block may
become undefined by execution of a RETURN or END statement in another
program unit.

Chapter 4. Statements 203

statement Function

Within a function or subroutine subprogram, an entity (that is, a common block,
variable, or array) specified by a SAVE statement does not become undefined
as a result of the execution of a RETURN or END statement in the subprogram. 1

If a local entity that is specified by a SAVE statement and is not in a common
block is in a defined state at the time a RETURN or END statement is executed

in a subprogram, that entity is defined with the same value at the next refer
ence of that subprogram. An entity in a common block never becomes unde
fined as a result of the execution of a RETURN or END statement in a program
unit that does not reference that common block. The entities in a named

common block may become undefined or redefined by some other program
unit.

Statement Function Statement
A statement function definition specifies operations to be performed whenever
that statement function name appears as a function reference in another state
ment in the same program unit.

— Syntax

name ([argi [, arg2 ...]) = m

name

is the statement function name (see "Names" on page 7).

arg

is a statement function dummy argument. It must be a distinct variable,
that is, it may appear only once within the list of arguments.

m

is any arithmetic, logical, or character expression. Any statement function
reference appearing in this expression must have been defined previously.
In a function or subroutine subprogram, this expression can contain dummy
arguments that appear in the FUNCTION, SUBROUTINE, or ENTRY state
ments that are previously defined within the same program unit. (For eval
uation and restrictions of this expression, see Chapter 3, "Expressions" on
page 31.)

A statement function definition is a nonexecutable statement. All statement

function definitions to be used in a program must follow the specification state
ments and precede the first executable statement of the program.

The length of a character statement function must be an expression containing
only integer constants or names of integer constants.

The dummy arguments enclosed in parentheses following the function name
are dummy variables for which the arguments given in the function reference
are substituted when the function reference is encountered. The same dummy
arguments may be used in more than one statement function definition, and
may be used as variables of the same type outside the statement function defi
nitions, including dummy arguments of subprograms. The length specification
of a dummy argument of type character must be an arithmetic expression con
taining only integer constants or names of integer constants.

204 VS FORTRAN Version 2 Language and Library Reference

statement Function

An actual argument In a statement function reference may be any expression of
the same type as the corresponding dummy argument. It cannot be a character
expression involving concatenation of one or more operands whose length
specification is an asterisk.

If an actual argument is of character type, the associated dummy argument
must be of character type and the length of the actual argument must be
greater than or equal to the length of the dummy argument. If the length of the
actual argument is greater than the length of an associated dummy argument,
the leftmost characters of the actual argument are associated with the dummy
argument.

The actual argument of a statement function reference must not be changed by
the evaluation of the expression of that statement function. That is, an argu
ment of a statement function cannot be modified by appearing in an external
function reference that modifies it arguments.

The expression to the right of the equal sign defines the operations to be per
formed when a reference to this function appears in a statement elsewhere in
the program unit. The expression defining the function must not contain
{directly or indirectly) a reference to the function it is defining or a reference to
any of the entry point names (PROGRAM, FUNCTION, SUBROUTINE. ENTRY) of
the program unit where it is defined.

If the expression is an arithmetic expression, its type may be different from the
type of the name of the function. Conversions are made as described for the

assignment statement.

The name of a statement function must not appear in an EXTERNAL statement
and must not be used as an actual argument.

For example, the statement:

FUNC(A,B) = 3.*A+B**2.+X+Y+Z

defines the statement function FUNC, where FUNC is the function name and A

and B are the dummy arguments. The expression to the right of the equal sign
defines the operations to be performed when the function reference appears in
an arithmetic statement.

The function reference might appear in a statement as follows:

C = FUNC(D,E)

This is equivalent to:

C = 3.*D+E**2.+X+Y+Z

Notice the correspondence between the dummy arguments A and B in the func
tion definition and the actual arguments D and E in the function reference.

Chapter 4. Statements 205

statement Function

Valid Statement Function Definitions and References:

Definition

SUM(A,B,C,D) = A+ B+ C + D

FUNC(Z) = A + X*Y*Z

VAUD(A,B) = not. a .OR. B

VOLUME(R) = 4.0*PI/3.0 * R"3

Reference

NET = GROS-SUM(TAX,COVER,HOSP.STOC)

BIGSUM = SUM(A,B.SUM(C,D,E,F),G(I))

ANS = FUNC(RESULT)

VAL = TEST .OR. VAUD(D,E)

TOTVOL = VOLUME(R1) + VOLUME(R2)

Invalid Statement Function Definitions:

SUBPRG(3,J,K)=3*I+J**3 Arguments must be variables,

S0MEF(A(I),B)=A(I)/B+3.

3FUNC(D)=3.14*E

BAD(A,B)=A+B+BAD(C,D)

NOGOOD(A,A)=A*A

IFLUNK(I)=IDBLI(I)

Arguments must not be array
elements.

Function name must begin with
an alphabetic character.

A recursive definition is not

permitted.

Arguments are not distinct
variable names.

Function IDBLI changes the value
of argument I.

Invalid Statement Function References:

(The functions are defined as above.)

WRONG = SUM(TAX,COVER)

MIX = FUNC(I,J)

MYGRAD(I)=IFLUNK(I)+I

Number of arguments does not
agree with above definition.

Types of the arguments do not agree
with above definition.

I is modified by function IFLUNK(I).

206 VS FORTRAN Version 2 Language and Library Reference

STOP

Statement Labels
statement labels identify statements in your source programs. Any statement
can have a label, and may be written in either fixed form or free form. See
"Source Language Statements" on page 8.

Fixed-Form Statement Labels
Fixed-form statement labels have the following attributes:

They contain 1 to 5 decimal digits {not zero) and are on a non-continued
line.

*• Blanks and leading zeros are ignored.

They are in columns 1 through 5.

Free-Form Statement Labels

Free-form statement labels have the following attributes:

They must be the first nonblank characters (digits) on an initial line.

Blanks and leading zeros are ignored.

No blanks are needed between the statement label and the first nonblank

character following.

STOP Statement

See "ASSIGN Statement" on page 51.

The STOP statement ends the processing of the object program and may
display a message.

I Syntax

STOP [n]

STOP ['message']

is a string of 1 through 5 decimal digits.

'message'

is a character constant enclosed in apostrophes and containing alphameric
and/or special characters. Within the literal, an apostrophe is indicated by
two successive apostrophes.

If you are running under MVS and you use a decimal value for the STOP state
ment, the value is returned to the job as the condition code for the job step
being processed. Ifyou are running under CMS in an EXEC and you use a
decimal value for the STOP statement, the value is returned to your EXEC as
the contents of variable &RETCODE.

When the program processes the STOP statement, operator message AFB0002I
is displayed at the console.

Chapter 4. Statements 207

SUBROUTINE

Valid STOP Statements:

STOP

STOP 21212

STOP 'PROGRAM BACGAM EXECUTION COMPLETED'

A STOP statement cannot terminate the range of a DC-loop.

SUBROUTINE Statement
The SUBROUTINE statement identifies a subroutine subprogram.

— Syntax

SUBROUTINE name [(argi larg2...])]

name

is the subroutine name. (See "Names" on page 7.)

arg

is a distinct dummy argument (that is, it may appear only once within the
statement). There need not be any arguments, in which case the paren
theses may be omitted. Each argument used must be a variable or array
name, the dummy name of another subroutine or function subprogram, or
an asterisk, where the character * denotes a return point specified by a
statement label in the calling program.

Because the subroutine is a separate program unit, there is no conflict if the
variable names and statement labels within it are the same as those in other

program units.

The SUBROUTINE statement must be the first statement in the subprogram.

The subroutine subprogram may contain any FORTRAN statement except a
FUNCTION statement, another SUBROUTINE statement, a BLOCK DATA state

ment, or a PROGRAM statement. If an IMPLICIT statement is used in a subrou
tine subprogram, it must follow the SUBROUTINE statement and may only be
preceded by another IMPLICIT statement, or a PARAMETER, FORMAT, or
ENTRY statement.

The subroutine name must not appear in any other statement in the subroutine
subprogram. It must not be the same as any name in the program unit or as
the PROGRAM name, a subroutine name, or a common block name in any
other program unit of the executable program. The subroutine subprogram
may use one or more of its arguments to return values to the calling program.
An argument so used will appear on the left side of an arithmetic, logical, or
character assignment statement, in the list of a READ statement within the sub
program, or as an argument in a CALL statement or function reference that is
assigned a value by the subroutine or function referred to.

The dummy arguments {argi, arg2, arg3, ...) may be considered dummy names
that are replaced at the time of execution by the actual arguments supplied in
the CALL statement.

If a subroutine dummy argument is used as an adjustable array name, the
array name and all the variables in the array declarators (except those in

208 VS FORTRAN Version 2 Language and Library Reference

SUBROUTINE

common) must be in the dummy argument list. See "Size and Type Declaration
of an Array" on page 26.

The subroutine subprogram can be a set of commonly used computations, but it
need not return any results to the calling program. For information about using
RETURN and END statements in a subroutine subprogram, see "END
Statement" on page 83 and "RETURN Statement" on page 196.

Actual Arguments In a Subroutine Subprogram
The actual arguments in a subroutine reference must agree in order, number,
and type with the corresponding dummy arguments in the dummy argument list
of the referenced subroutine. The use of a subroutine name or an alternate

return specifier as an actual argument is an exception to the rule requiring
agreement of type.

If an actual argument is of character type, the associated dummy argument
must be of character type and the length of the actual argument must be
greater than or equal to the length of the dummy argument. If the length of the
actual argument is greater than the length of an associated dummy argument,
the leftmost characters of the actual argument are associated with the dummy
argument.

An actual argument in a subroutine reference must be one of the following:

An expression, except for a character expression involving concatenation of
an operand whose length specification is an asterisk in parentheses (unless
the operand is the name of a constant)

• An array name

An intrinsic function name

An external procedure name

A dummy procedure name

An alternate return specifier (statement label preceded by an asterisk)

An actual argument in a subroutine reference may be a dummy argument name
that appears in a dummy argument list within the subprogram containing the
reference. An asterisk dummy argument cannot be used as an actual argument
in a subprogram reference.

Dummy Arguments in a Subroutine Subprogram
The dummy arguments of a subprogram appear after the subroutine name and
are enclosed in parentheses. They are replaced at the time of execution of the
CALL statement by the actual arguments supplied in the CALL statement in the
calling program.

Dummy arguments must follow certain rules:

• None of the dummy argument names may appear in an EQUIVALENCE,
COMMON. DATA. PARAMETER. SAVE. INTRINSIC, or NAMELIST statement

except as common block names.

A dummy argument name must not be the same as the entry point name
appearing in a PROGRAM, FUNCTION. SUBROUTINE, ENTRY, or statement
function definition in the same program unit.

Chapter 4. Statements 209

SUBROUTINE

*- The dummy arguments must correspond in number, order, and type to the
actual arguments.

•- If a dummy argument Is assigned a value in the subprogram, the corre
sponding actual argument must be a variable, an array element, a sub
string, or an array. A constant, name of constant, subprogram name, or
expression should not be written as an actual argument unless the pro
grammer is certain that the corresponding dummy argument is not
assigned a value in the subprogram.

A referenced subprogram cannot assign new values to dummy arguments
that are associated with other dummy arguments within the subprogram or
with variables in common.

The subprogram reserves no storage for the dummy argument, using the
corresponding actual argument in the calling program for its calculations.
Thus the value of the actual argument changes as soon as the dummy
argument changes.

Valid SUBROUTINE statements:

1. Definition of subroutines SUB1 and SUB2: The following illustrates the two
ways to define a subroutine with no dummy arguments.

SUBROUTINE SUBl

END

SUBROUTINE SUB2()

END

The following are valid invocations of SUB1 and SUB2.

CALL SUBl

CALL SUB1()
CALL SUB2

CALL SUB2()

2. Definition of subroutine SLIB3: The following illustrates an adjustable array
and an explicitly dimensioned array as dummy arguments.

SUBROUTINE SUB3(A, B, C)
REAL A.

REAL B(*)
REAL C(2, 5)

END

The sample invocations of SLIB3 reference the following data declarations.

210 VS FORTRAN Version 2 Language and Library Reference

DIMENSION W(10), X(10), Z(5)
REAL Y

SUBROUTINE

CALL SUB3(Y, W, X) Call SUB3 with a variable and
2 array names

CALL SUB3(Z(3), X, W) Call SUB3 with an array element
and 2 array names

CALL SUB3(2.5, W, X) Call SUB3 with a constant and
2 array names

CALL SUB3(5*Y, X, Vl) Call SUB3 with an expression and
2 array names

3. Definition of subroutine SUB4: The following illustrates the use of a logical
variable as a dummy argument.

SUBROUTINE SUB4(L0GL)
^ LOGICAL LOGL

END

The sample invocations of SUB4 reference the following data declaration.

LOGICAL L

CALL SUB4(L) Call using a logical variable

CALL SUB4(.FALSE.) Call using a logical constant

CALL SUB4(X(5) .EQ. Y) Call using a logical expression

4. Definition of subroutine SUBS: The following illustrates the use of a char
acter variable of inherited length as a dummy argument.

SUBROUTINE SUBS(CHAR)
CHARACTER CHAR*(*)

END

The sample invocations of SUBS reference the following variable declara
tion.

CHARACTER*5 Cl, C2

CALL SUB5(C1) Call using a character variable

CALL SUB5(C1 // C2) Call using a character expression

5. Definition of subroutine SUBS: The following illustrates subroutine and func
tion subprogram names as dummy arguments.

SUBROUTINE SUB6(SUBX, X, Y, FUNCX)
Z = FUNCX(X, Y)
CALL SUB7(SUBX)

END

The following shows the invocation of SUBS. The CALL passes a subroutine
name and a function name.

Chapter 4. Statements 211

SUBROUTINE

EXTERNAL SUBA, FUNCA

CALL SUB6(SUBA, 1.0, 2.0, FUNCA)

6. Definition of subroutine SUBS; The following illustrates the use of * as
dummy arguments.

SUBROUTINE SUB8(A, B, *, *, *)

IF(A .LT. 0.0) RETURN 1
IF(A .EQ. 0.0) RETURN 2
RETURN 3

END

The following shows the invocation of subroutine SUBS. The CALL passes
statement numbers. Execution will continue at statement number 100, 200,
or 300 if the return code is 1, 2, or 3 respectively. Otherwise, execution will
continue at the statement after the call.

CALL SUB8(X(3), L0G(Z(2)), *100, *200, *300)

7. Definition of subroutine CLEAR: The following illustrates the use of an
adjustable multidimensioned array.

SUBROUTINE CLEAR (ARRY, M, N)
INTEGER M, N, ARRY(H, N)
DO 10 I = 1, H
DO 10 J = 1, N

10 ARRY(I,J) = 0
RETURN

END

The following is the invocation of CLEAR.

INTEGER ARRAY1(10,15)
CALL CLEAR(ARRAY1, 10, 15)

212 VS FORTRAN Version 2 Language and Library Reference
>

/

TRACE OFF Statement
The TRACE OFF statement stops the display of program flow by statement
label.

— Syntax

TRACE OFF

TRACE OFF may appear anywhere within a debug packet. After a TRACE ON
statement, tracing continues until a TRACE OFF statement is encountered.

TRACE ON Statement
The TRACE ON statement initiates the display of program flow by statement

label.

— Syntax

TRACE ON

TRACE ON is executed only when the TRACE option appears in a DEBUG
packet. (See "DEBUG Statement" on page 71.) Tracing continues until a
TRACE OFF statement is encountered. TRACE ON stays in effect through any
level of subprogram CALL or RETURN statement. However, if a TRACE ON
statement is in effect and control is given to a program in which the TRACE
option is not specified, the statement labels in that program are not traced.

Each time a statement with an external statement label is executed, a record of
the statement label is made on the debug output File.

For a given debug packet, the TRACE ON statement takes effect immediately
after the execution of the statement specified in the AT statement.

Unconditional GO TO
See "GO TO Statements" on page 125.

Chapter 4. Statements 213

WAIT

WAIT Statement
The WAIT statement synchronizes the completion of the data transmission
begun by the corresponding asynchronous READ or WRITE statement.

Syntax

WAIT

([UNIT =]un,
ID = /c/

[, COND = //]
[, NUM = /2])

[list]

UNIT=u/7

un is the external unit identifier, un is an unsigned integer expression of
length 4.

It is required and can, optionally, be preceded by UNIT= . If UNIT= is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT = is included on the WAIT
statement, all the specifiers can appear in any order.

ID = /d

is required, id is an integer constant or integer expression of length 4. and
is the identifier of a pending asynchronous READ or WRITE statement.

If the WAIT is completing an asynchronous READ, the expression id is
subject to the following rules;

No array element in the receiving area of the read may appear in the
expression. This also includes indirect references to such elements;
that is, reference to or redefinition of any variable or array element
associated by a COMMON or EQUIVALENCE statement, or argument
association with an array element in the receiving area.

^ If a function reference appears in the subscript expression of e1 or e2,
the function may not be referred to in the expression id. Also, no func
tions or subroutines may be referred to by the expression that directly
or indirectly refers to the subscript function, or to which the subscript
function directly or indirectly refers.

C0ND = /7

i1 is an integer variable name of length 4.

If COND = // is specified, the variable i1 Is assigned a value of 1 ifthe input
or output operation was completed successfully; 2 if an error condition was
encountered; and 3 If an end-of-file condition was encountered while
reading, in case of an error or end-of-file condition, the data in the
receiving area may be meaningless.

NUM = /2

/2 is an integer variable name of length 4.

If NUM =/2 is specified, the variable /2 is assigned a value representing the
number of bytes of data transmitted to the elements specified by the list. If
the list requires more data from the record than the record contains, this
specifier must be included on the WAIT statement. If the WAIT is com
pleting an asynchronous WRITE. /2 remains unaltered.

214 VS FORTRAN Version 2 Language and Library Reference

O

n

WAIT

list

an asynchronous I/O list as specified for the asynchronous READ and

WRITE statements.

If a list is included, it must specify the same receiving or transmitting area
as the corresponding asynchronous READ or WRITE statement. It must not
be specified if the asynchronous READ did not specify a list.

WAIT redefines a receiving area and makes it available for reference, or makes
a transmitting area available for redefinition. The corresponding asynchronous
READ or WRITE, which need not appear in the same program unit as the WAIT,
is the statement that:

Was not completed by the execution of another WAIT

Refers to the same file as the WAIT

> Contains the same value for id in the ID =id form as did the asynchronous

READ or WRITE when it was executed

The correspondence between WAIT and an asynchronous READ or WRITE holds
for a particular execution of the statements. Different executions may establish
different correspondences.

When the WAIT is completing an asynchronous READ, the subscripts in the list
may not refer to array elements In the receiving area. If a function reference is
used in a subscript, the function reference may not perform 1/0 on any file.

Valid WAIT Statements:

WAIT (8.ID=1) ARRAY(1O1)...ARRAY(500)

WAIT (9,ID=1,C0ND=ITEST)

WAIT (8,ID=1,NUM-N)

WAIT (9,ID=2)

Chapter 4. Statements 215

WRITE (Asynchronous)

WRITE Statements
WRITE statements transfer data from storage to an external device or from one
internal file to another internal file.

Forms of the WRITE Statement:

1. "WRITE Statement—Asynchronous"

2. "WRITE Statement—Formatted with Direct Access" on page 218

3. "WRITE Statement—Formatted with Keyed Access" on page 220

4. "WRITE Statement—Formatted with Sequential Access" on page 223

5. "WRITE Statement—Formatted with Sequential Access to Internal Files" on
page 225

6. "WRITE Statement—List-Directed I/O to External Devices" on page 228

7. "WRITE Statement—List-Directed I/O with Internal Files" on page 231

8. "WRITE Statement—NAMELIST with External Devices" on page 233

9. "WRITE Statement—NAMELIST with Internal Files" on page 235

10. "WRITE Statement—Unformatted with Direct Access" on page 236

11. "WRITE Statement—Unformatted with Keyed Access" on page 238

12. "WRITE Statement—Unformatted with Sequential Access" on page 240

WRITE Statement—Asynchronous
The asynchronous WRITE statement transmits data from an array in main
storage to an external file. An OPEN statement is not permitted for asynchro
nous I/O.

Syntax

WRITE ([UNIT =]un, ID = /cf) list

UNIT = un

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It Is required and can, optionally, be preceded by UNIT = . If UNIT= is
omitted, un must appear immediately following the left parenthesis. If
UNIT= is included on the WRITE statement, all the specifiers can appear in
any order.

\D = id

id is an integer constant or integer expression of length 4. It is the identifier
for the WRITE statement, and is used to identify the corresponding WAIT
statement.

list

is an asynchronous I/O list that may have any of four forms;

e

e1...e2

el...

...e2

216 VS FORTRAN Version 2 Language, and Library Reference

n

r\

WRITE (Asynchronous)

is the name of an array.

el and e2

are the names of elements in the same array. The ellipsis (...) is an

integral part of the syntax of the list and must appear in the positions
indicated.

The unit specified by un must be connected to a file that resides on a direct-
access or tape device. The array or array elements specified by e (or el and
e2) constitute the transmitting area for the data to be written. The extent of the
transmitting area is determined as follows:

If e is specified, the entire array Is the transmitting area. In this case, e
may not be the name of an assumed-size array.

If e1...e2 is specified, the transmitting area begins at array element el and
includes every element up to and including e2. The subscript value of e1
must not exceed that of e2.

*• If el... is specified, the transmitting area begins at element el and includes
every element up to and including the last element of the array. In this
case, e may not be the name of an assumed-size array.

If ...e2 is specified, the transmitting area begins at the first element of the
array and includes every element up to and Including e2.

If a function reference is used in a subscript of the iist, the function refer

ence may not perform I/O on any file.

Execution of an asynchronous WRITE statement Initiates writing of a record on
the specified file. The size of the record is equal to the size of the transmitting
area. All the data in the area is written.

Given an array with elements of len length, the number of bytes transmitted will
be len times the number of elements in the array. Elements are transmitted

sequentiaily from the smallest subscript element to the highest. If the array is
multidimensional, the leftmost subscript quantity increases most rapidly, and

the rightmost least rapidly.

Any number of program statements may be executed between an asynchronous

WRITE and its corresponding WAIT, subject to the following ruies:

No such statement may in any way assign a new value to any array
element in the transmitting field. This and the following rules apply also to
indirect references to such array eiements; that is, assigning a new value to
a variable or array elements associated by COMMON or EQUIVALENCE
statements, or argument association with an array element in the transmit
ting area.

No executable statement may appear that redefines or undefines a variable
or array element appearing in the subscript of e1 or e2.

•• If a function reference appears in the subscript expression of e1 or e2, the
function may not be referred to by any statements executed between the

asynchronous WRiTE and the corresponding WAIT. Also, no subroutines or
function may be referred to that directly or indirectly refer to the subscript

function, or to which the subscript function directly or indirectly refers.

Chapter 4. Statements 217

WRITE (Formatted, Direct Access)

No function or subroutine may be executed that performs input or output on
the file being manipulated.

Valid WRITE Statement:

WRITE [ID=10, UNIT=2*IN+2) ... EXPECT(9)

WRITE Statement—Formatted with Direct Access

This statement transfers data from internal storage onto an external device.
The user specifies In a FORMAT statement {or in a reference to a FORMAT
statement) the conversions to be performed during the transfer. The data must
be sent to an external file that has been connected for direct access. (For a
general discussion of file and unit connection, see "Input/Output Semantics" on
page 46.)

Syntax

WRITE

([UNIT=]t/n,

[FMT =

R EC = rec

[, ERR = sf/]

[, IOSTAT=/os])

[list]

UNIT=un

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT= . If UNIT= is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT = is included on the

WRITE statement, FMT = must be used and all the specifiers can appear in
any order,

FMT=/mf

fmt is a required format identifier. It can, optionally, be preceded by FMT = ,

If FMT = Is omitted, the format identifier must appear second. If both

UNIT = and FMT = are included on the WRITE statement, all specifiers,
except list, can appear in any order.

The format identifier {fmt) can be:

The statement label of a FORMAT statement

•- An integer variable

A character constant

A character variable

A character array element

A character array name

A character expression

An array name

For explanations of these format identifiers, see "READ
Statement—Formatted with Direct Access" on page 166.

218 VS FORTRAN Version 2 Language and Library Reference

n

r>

WRITE (Formatted, Direct Access)

REC=/'ec

rec is an integer expression. It represents the relative position of a record
within the file associated with un. Its value after conversion to integer, if
necessary, must be greater than zero. The internal record number of the
first record is 1. The INQUIRE statement can be used to determine the

record number.

If list is omitted, a blank record is transmitted to the output device unless
the FORMAT statement referred to contains, as its first specification, a char
acter constant or slashes. In this case, the record or records indicated by
these specifications are transmitted to the output device.

ERR = sf/

sti is the statement label of an executable statement in the same program

unit as the WRITE statement. If an error is detected, control is transferred

to stI.

IOSTAT=/OS

ios is an integer variable or an integer array element of length 4. Its value
is positive if an error is detected, zero if no error Is detected. For VSAM

files, return and reason codes are placed in ios.

list

is an I/O list and can contain variable names, array element names, char
acter substring names, array names (except the names of assumed-size

arrays), implied DO lists, and expressions. See "Implied DO in an
Input/Output Statement" on page 81.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

Valid WRITE Statements;

WRITE (REC=1, UNIT=11, FMT='(I9)'}

WRITE (0, 1030, REC=N) NAME, ADDR, PHON

If this WRITE statement is encountered, the unit specified must exist and the file

must be connected for direct access. If the file is not preconnected, an error is
detected.

Data Transmission: A WRITE statement with FORMAT starts data transmission

at the beginning of a record specified by REC = rec. The format codes in the
format specification fmt are taken one by one and associated with every item of

the list in the order they are specified. The data is taken from the item of the
list, converted according to the corresponding format code, and the number of
character data specified by the format code is transmitted onto the record of

the external file. Data transmission stops when data has been taken from every
item of the list, or when the end of the record specified by rec is reached.

If the list is not specified and the format specification starts with an I, E, F, D, G,

L, Q, or 2 or is empty (that is. FORMAT()), the record is filled with blank char
acters and the relative record number rec is increased by one.

Data and I/O List: The length of every FORTRAN record is specified in the
RECL specifier of the OPEN statement. If the length of the record rec is greater
than the total amount of data specified by the format codes used during trans

mission of data, an error is detected, but as much data as can fit into the record

Chapter 4. Statements 219

WRITE (Formatted, Keyed Access)

is transmitted. If the length of the record rec is smaller than the total amount of
data specified by the format codes used during transmission of data, an error is
detected, but as much data as will fit In the record Is transmitted. If the format

specification indicates {for example, slash format code) that data be transmitted
to the next record, then the relative record number rec is increased by one and
data transmission continues.

Executing the WRITE statement causes the value of the NEXTREC variable In a
preceding INQUIRE statement to be set to the relative record number of the last
record written, increased by one. If an error is detected, the NEXTREC variable

will contain the relative record number of the record being written.

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be

written: only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor transfer to be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

WRITE Statement—Formatted with Keyed Access
This statement transfers data from internal storage onto an external device.
The user specifies in a FORMAT statement (or in a reference to a FORMAT
statement) the conversions to be performed during the transfer. The data must
be sent to an external file that has been connected for keyed access.

— Syntax

WRITE

([UNIT =]u/7,

[FMT =]fmf

[, ERR=sf/]
[. lOSTAT =/OS]

[, DUPKEY = sf/])

list

UNIT=un

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It is required and can. optionally, be preceded by UNIT =. If UNIT = is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT = is included on the

WRITE statement, FMT = must be used and all the specifiers can appear in
any order.

FMT = fmt

fmt is a required format identifier. It can, optionally, be preceded by FMT =

If FMT = is omitted, the format identifier must appear second. If both

220 VS FORTRAN Version 2 Language and Library Reference

n

rs

n

r>

WRITE (Formatted, Keyed Access)

UNIT = and FMT = are included on the WRITE statement, all specifiers,
except list, can appear in any order.

The format identifier {fmt) can be:

The statement label of a FORMAT statement

*• An integer variable

»- A character constant

A character variable

A character array element

A character array name

A character expression

An array name

For explanations of these format identifiers, see "READ
Statement—Formatted with Direct Access" on page 166.

ERR = s^/

sti is the statement label of an executable statement in the same program
unit as the WRITE statement. If an error is detected, control is transferred

to stI.

IOSTAT =/OS

ios is an integer variable or an integer array element of length 4. Its value
is positive if an error is detected, zero if no error is detected. For VSAM
files, return and reason codes are placed in ios.

DUPKEY = s//

St! Is the statement label of an executable statement to which control is

passed when a duplicate-key condition occurs. For an explanation of this
condition, see "Duplicate Key," below.

list

is an I/O list and can contain variable names, array element names, char
acter substring names, array names (except the names of assumed-size
arrays), implied DO lists, and expressions. See "Implied DO in an
Input/Output Statement" on page 81.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

Valid WRITE Statements:

WRITE (10,18) AA,BB,CC

If this WRITE statement is encountered, the unit specified must exist and the file

must have been connected for keyed access by means of an OPEN statement.

The ACTION specifier of that OPEN statement must have specified the value
'READWRITE' or 'WRITE'. If the file is not so connected, an error is detected.

Data Transmission: If the WRITE statement was issued for a file connected by

an OPEN statement with an ACTION specifier of 'WRITE', data transmission
begins at the beginning of a new record. The new record will follow, in order of
key value, the last record written. If the file was connected by an OPEN state
ment with an ACTION specifier of 'READWRITE', data transmission also begins

at the beginning of a new record. In this case, however, the new record will be
inserted following the record with a lower key value and preceding the record

with a higher key value. If the new record has a key that is the same as a key
already in the file, the new record is added following the last record with the

Chapter 4. Statements 221

WRITE (Formatted, Keyed Access)

same key. The format codes in the format specification fmt are taken one by
one and associated with every item of the list in the order they are specified.
The data Is taken from the item of the list, converted according to the corre
sponding format code and the number of character data specified by the format

code is transmitted onto a single record of the external file. Data transmission

stops when data has been taken from every item of the list.

Data and I/O List: The amount of character data defined by all the format codes
used during the transmission of the data defines the length of the record. A
single WRITE statement can create only one record. The record must be long
enough to include all the keys that are defined for the file.

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be

written: only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.

If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

Duplicate Key: Control is transferred to the statement specified by DUPKEY

when a duplicate-key condition occurs; namely:

The file is connected by an OPEN statement with an ACTION specifier of

'READWRITE', or when ACTION^ 'WRITE', and

»• An attempt was made to write a record with a key whose values must be
unique, and

The key value would have duplicated one that already exists for the same
key in another record.

If IOSTAT =/os is specified, a positive integer value is assigned to ios when the 1^^
duplicate-key condition is detected. If ERR is specified but DUPKEY is not,

control passes to the statement specified by ERR when the duplicate-key condi
tion is detected. If neither DUPKEY nor ERR was given, an error Is detected.

Examples:

WRITE (UNIT=19,FMT=37) AA, BB, CC
WRITE (10,37) AA, BB, CC
WRITE (10,FMT=37,DUPKEY=77) AA, BB, CC

222 VS FORTRAN Version 2 Language and Library Reference

O

WRITE (Formatted, Sequential Access)

WRITE Statement—Formatted with Sequential Access
This statement transfers data from internal storage to a file. The user specifies
in a FORMAT statement {or in a reference to a FORMAT statement) the conver
sions to be performed during the transfer. The data must be sent to an external

file that is connected with sequential access to a unit. (For a general dis
cussion of file and unit connection, see "Input/Output Semantics" on page 46.)

Syntax

WRITE

([UNIT =]un,

[FMT = ymf
[, ERR = sf/]

t, iOSTAT=/OS])
[list]

UN1T = [v/7

un is the external unit identifier, un is either:

An integer expression of length 4 whose value must be zero or positive,
or

An asterisk (*) representing an installation-dependent unit.

It is required and can, optionally, be preceded by UNIT = . If UNIT = is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT = is included on the

WRITE statement, all the specifiers can appear in any order.

FMT = /mf

fmt is a required format identifier. It can, optionally, be preceded by FMT = ,

If FMT is ornitted, the format identifier must appear second. If both UNIT =
and FMT = are Included on the WRITE statement, all specifiers, except list,
can appear in any order.

The format identifier {fmt) can be:

The statement label of a FORMAT statement

An integer variable

*• A character constant

A character variable

A character array element

*• A character array name

A character expression

•- An array name

For explanations of these format identifiers, see "READ
Statement—Formatted with Direct Access" on page 166.

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the WRITE statement. If an error is detected, control is transferred

to sti.

Chapter 4. Statements 223

WRITE (Formatted, Sequential Access)

IOSTAT=/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is

detected. For VSAM files, return and reason codes are placed in ios.

list

is an I/O list. It can contain variable names, array elements, character sub
string names, array names {except the names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 81.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

Valid WRITE Statements:

WRITE{IOSTAT=IOS,ERR=99999, FMT=*,UNIT=2*IN+3)

WRITE(IN+8,NAME0T,I0STAT=IACT(1),ERR=99999) XRAY, CRYST, N, DELTA

If the unit specified by un is connected, it must be connected for sequential
access. If the unit is not preconnected, an error is detected.

When the NOOCSTATUS run-time option is in effect, the unit does not need to
be connected to an external file for sequential access. For more information on
the NOOCSTATUS option, see VS FORTRAN Version 2 Programming Guide.

Data Transmission: A WRITE statement with FORMAT starts data transmission

at the beginning of a record. The format codes in the format specification fmt ' i
are taken one by one and associated with every item of the list in the order
they are specified. The data is taken from the item of the list, converted
according to the corresponding format code, and the number of character data
specified by the format code is transmitted onto the record of the external file.
Data transmission stops when data has been taken from every item of the list.

If the list is not specified and the format specification starts with an I, E, F, D, G,
L, Q or 2^ or is empty (that is, FORMAT()), a blank record is written out.

The WRITE statement can be used to write over an end of file and extend the ^ '
external file. An ENDFILE, BACKSPACE, CLOSE, or REWIND statement will then

reinstate the end of file.

After execution of a sequential WRITE or PRINT, no record exists in the file fol
lowing the last record transferred by that statement.

Data and I/O List: The amount of character data specified by all the format
codes used during the transmission of the data defines the length of the
FORTRAN record (also called a logical record). A single WRITE statement may
create several FORTRAN records. This occurs when a slash format code is

encountered in the format specification, or when the I/O list exceeds the format
specification which causes the FORMAT statement to be used in full or part
again. (See "FORMAT Statement" on page 96.)

VS FORTRAN Version 2 Programming Guide describes how to associate
FORTRAN records (that is, logical records) and records in an external file.

224 VS FORTRAN Version 2 Language and Library Reference

WRITE (Formatted, Sequential Access, Internal)

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be
written; only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor transfer to be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

WRITE Statement—Formatted with Sequential Access to Internal Files
This statement transfers data from one or more areas in internal storage to
another area in internal storage. It can be used to convert numeric data to
character data and vice versa. The user specifies, in a FORMAT statement (or
in a reference to a FORMAT statement), the conversions to be performed during
the transfer. The receiving area in internal storage is called an internal file.

Syntax

WRITE

([UNIT=]iyn,
[FMT=]/mf
[, ERR=sf/]
[, lOSTAT=/OS])
[list]

UNIT=t/n

un is the reference to an area of internal storage called an internal file. It
can be the name of a character variable, character array, character array
element, or character substring.

It is required and can, optionally, be preceded by UNIT = . If UNIT= is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT= is included oh the

' WRITE statement, FMT= must be used, and all the specifiers can appear in
any order.

FMT=/mf

is the format specification. It may, optionally, be preceded by FMT= .

If FMT = is omitted, the format specification must appear second. If both
UNIT = and FMT = are included on the WRITE statement, all specifiers,
except list, may appear in any order.

The format specification can be:

The statement label of a FORMAT statement

An integer variable

*- A character constant

• A character variable

A character array name

• A character array element

A character expression
*- An array name

Chapter4. Statements 225

WRITE (Formatted, Sequential Access, Internal)

For explanations of these format specifications, see "WRITE
Statement—Formatted with Direct Access" on page 218.

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the WRITE statement. If an error is detected, control is transferred
to stI.

IOSTAT=/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is

detected. For VSAM files, return and reason codes are placed in ios.

list

is an I/O list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),

implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 81.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

Neither the format specification {fmt) nor an item in the list {list) can be:

•' Contained in the area represented by un, or

Associated with any part of un through EQUIVALENCE, COMMON, or argu
ment passing.

Valid WRITE Statements:

CHARACTER *5 CHAR

DIMENSION lACT (10)

WRITE (3,100) (A(I),I=1,5),B

WRITE (3,FMT=100) (A(I),1=1,5),B

WRITE (FMT=100,UNIT=3) (A(I),1=1,5),B

WRITE (IOSTAT=IOS, ERR=99999, FMT='(A5)', UNIT=CHAR(1:5)) '1 2 3'

WRITE (CHAR(1:5), '(A5)', I0STAT=IACT(1)) '456'

Invalid WRITE Statements:

WRITE (FMT=100,3) (A(I),1=1,5),B must appear first because
UNIT= is not specified.

WRITE (100,UNIT=3) (A(I),1=1,5),B FMT= must be used because UNIT=
is specified.

Data Transmission: A WRITE statement starts data transmission at the begin
ning of the area specified by un. The format codes in the format specification
fmt are taken one by one and associated with every item of the list in the order
they are specified. Data is taken from the item of the list, converted according

to the format code, and the number of character data specified by the format
code is moved into the storage area un. Data transmission stops when data

has been moved from every item of the list.

226 VS FORTRAN Version 2 Language and Library Reference

WRITE (Formatted, Sequential Access, Internal)

If un is a character variable, a character array element, or a character sub
string name, it is treated as one record only in relation to the format specifica
tion.

If un is a character array name, each array element is treated as one record in
relation to the format specification.

If the list is not specified and the format specification starts with an I. E, F, D, G,
L, Q, orZ or is empty (that is, FORMAT()), the record is filled with blank char
acters and the relative record number rec is increased by one.

Data and I/O List: The length of a record is the length of the character variable,
character substring name, or character array element specified by un when the
WRITE statement is executed.

If the length of the record is greater than the amount of data specified by the
items of the list and the associated format specification, the remainder of the
record is filled with blank characters.

If the length of the record is less than the amount of data specified by the items
of the list and the associated format specification, as much data as can fit in the
record is transmitted and an error is detected.

The format specification may indicate (for example, slash format code) that data
be moved to the next record of storage area un. If un specifies a character
variable, a character array element, or a character substring name, an error is
detected. If un specifies a character array name, data is moved into the next
array element unless the last array element has been reached. In this latter
case, an error is detected.

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be
written; only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

Valid Internal File Examples:

The following example illustrates how to use an internal READ of a character
variable to initialize an integer array.

CHARACTER*24 CHAR

INTEGER IARRY(3,4)

Initialize the character variable CHAR.

READ(5,'(A24)') CHAR

Assume that the data read into CHAR is;

010203040506070809101112

Chapter4. Statements 227

WRITE (List-Directed, External)

Now, the program will use CHAR as an internal file and read it to initialize
lARRY.

READ (CHAR,10) ((IARRY(I,J), I = 1,3),J=1,4)
10 FORMAT(1212)

WRITE (*) lARRY
STOP

END

The following example illustrates how to convert an integer number to its char
acter representation. This example also illustrates a technique for changing a
FORMAT statement dynamically; that is, the example initializes the specification
of the field width for the A edit descriptor.

CHARACTER*8 FHT

DATA FMT /'(IX.AYY)'/
I = 4

WRITE (FMT(6:7), 10) I
10 FORMAT (12)

WRITE (FMT) 'ABCD'

where YY can be any alphameric character, because YY is replaced by the -
character representation of the integer number.

WRITE Statement—List-Directed I/O to External Devices
This statement transfers data from internal storage to a file. The data must be
sent to an external file that is connected with sequential access to a unit. (See
"OPEN Statement" on page 151.) The type of the items specified in the state
ment determines the conversion to be performed.

Syntax

WRITE

([UNIT=]t7/7,
[FMT=]*
[, ERR = sf/]
[, IOSTAT=/OS])
[list]

UNIT=un

un is the external unit identifier, un is either:

An integer expression of length 4 whose value must be zero or positive,
or

An asterisk (*) representing an installation-dependent unit.

It is required and can, optionally, be preceded by UNIT = .

If UNIT= is omitted, un must appear immediately following the left paren
thesis. The other specifiers may appear in any order. If UNIT = is included
on the WRITE statement, FMT = must be used, and all the specifiers, except
list, can appear in any order.

FMT=*

An asterisk (*) specifies that a list-directed WRITE has to be executed. It
can, optionally, be preceded by FMT= if un is specified.

228 VS FORTRAN Version 2 Language and Library Reference

WRITE (List-Directed, External)

If FMT= is omitted, the format identifier must appear second. If both
UNIT= and FMT= are included on the WRITE statement, all specifiers,
except list, may appear in any order.

ERR=sf/

sti is the statement label of an executable statement in the same program
unit as the WRITE statement. If an error is detected, control is transferred
to stI.

IOSTAT=/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. For VSAM files, return and reason codes are placed in ios.

list

is an I/O list and can contain variable names, array elements, character
substring names, array names (except names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 81.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

Valid WRITE Statements;

WRITE (30,*) REDUCT, INDUCT

WRITE (30,FHT=*) DEDUCT, RAINDUCT

WRITE (FMT=*,UNIT=30) MYDUCK, YOURDUCK

WRITE (5,*)

WRITE (FMT=*,UNIT=*) DAFFY,DUCK

WRITE (IOSTAT=IOS, ERR=99999, FMT=*, UNIT=2*IN+3)
" "//EXPECT(1)//" "

Invalid WRITE Statements:

WRITE (*,23) DONALD,DUCK must appear first because
UNIT= is not specified.

WRITE (FMT=*,23) FIFTY5,ISEG ^ must appear first because
UNIT= is not specified.

WRITE (*,UNIT=*) FIFTY5,ISEG FMT= must be used because
UNIT= is specified.

Ifthe unit specified by un is encountered, it must be connected to a file for
sequential access. Ifthe unit is not connected to a file, it is assumed to have
been preconnected through job control language and an implicit OPEN is per
formed to a default file name. If the file is not preconnected, an error is
detected.

Data Transmission: A WRITE or PRINT statement with list-directed I/O
accessing an external file starts data transmission at the beginning of a record.
The data is taken from each item in the list in the order they are specified and
transmitted onto the record of the external file. Data transmission stops when
data has been transferred from every item in the list.

Chapter 4. Statements 229

WRITE (List-Directed, External)

After execution of a sequential WRITE or PRINT statement, no record exists in
the file following the last record transferred by that statement.

The WRITE or PRINT statement can write over an end of file and extend the
external file. An ENDFILE, CLOSE, or REWIND statement will reinstate the end
of file.

An external file with sequential access written with list-directed I/O is suitable
only for printing, because a blank character is always inserted at the beginning
of each record as a carriage control character.

Data and I/O List: The amount of character data specified by the items in the
list and the necessary data separators define the length of the FORTRAN record
(also called a logical record). A single WRITE or PRINT statement creates only
one FORTRAN record.

For information on how to calculate the size of a record needed to hold all the

converted list items, see Figure 25. It shows the width of the written field for
any item's data type and length. The size of the record will be the sum of the
field widths plus a byte to separate each field.

Data Type Length Field Width

Real 16 42 bytes
Real 6 25 bytes

Real 4 16 bytes

Logical 1 or 4 1 byte

Integer 2 6 bytes
Integer 4 11 bytes

Complex 32 84 bytes

Complex 16 51 bytes
Complex 8 25 bytes
Character •k 132 bytes (See Note)

Figure 25. Field Widths Needed for Data Types of Various Lengths

Note to Figure 25:

The number of bytes printed out is determined by the size of the character type
item. The number of characters per record is determined by the type of data
set being written to. The number of bytes per record is determined by the
logical record length. For output that is sent to a terminal, a carriage control
character is deleted at the beginning of each record. This is also true for a file
defined with a carriage control character. Character data can be split between
records. Numeric data cannot be split between records.

VS FORTRAN Version 2 Programming Guide describes how to associate
FORTRAN records (that is, logical records) and records in a file. In particular, a
logical record may span many physical records. A character constant or a
complex constant can be split over the next physical record if there is not
enough space on the current physical record to contain it all.

Character constants produced:

Are not delimited by apostrophes

Are not preceded or followed by any separators (including blanks)

Have each internal apostrophe represented externally by one apostrophe

230 VS FORTRAN Version 2 Language and Library Reference

WRITE (List-Directed, Internal)

Have a blank character inserted by the processor for carriage control at the
beginning of any record that begins with the continuation of a character
constant from the preceding record

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be
written: only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
IfERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause. lOSTAT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

WRITE Statement—List-Directed I/O with Internal Files
This statement transfers data from one or more areas of internal storage to
another area of internal storage. The receiving area is called an internal file.
This statement can be used to convert numeric data to character data. The
type of the items specified in the statement determines the conversion to be
performed.

Syntax

WRITE

([UNIT=lt;n,
[FMT =]*

[, ERR = sti}
[, lOSTAT =/OS])
[list]

UNIT = on

un is the reference to an area of internal storage called an internal file. It
can be the name of:

A character variable

•• A character array

A character array element

• A character substring

It is required and can, optionally, be preceded by UNIT = . IfUNIT= is
omitted, un must appear immediately following the left parenthesis. If
UNIT= is included on the WRITE statement, FMT = must be used and all
the specifiers can appear in any order.

FMT=*

* specifies that a list-directed WRITE is to be executed. It can, optionally,
be preceded by FMT = .

If FMT= is omitted, * must appear second. If both UNIT= and FMT= are
included on the WRITE statement, all the specifiers can appear in any order.

Chapter 4. Statements 231

WRITE (List-Directed, Internal)

ERR = sf/

sti is the statement label of an executable statement In the same program
unit as the WRITE statement. If an error is detected, control is transferred

to stI.

IOSTAT=/os

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected.

list

is an I/O list and can contain variable names, array element names, char
acter substring names, array names (except names of assumed-size

arrays), and implied DO lists. See "Implied DO in an Input/Output

Statement" on page 81.

Valid WRITE Statements;

WRITE [28, *) FIFTY5,ISEG
WRITE (28, Ff4T=*) FIFTY5,ISEG
WRITE (FMT=*,UNIT=2a) FIFTY5,ISEG
WRITE (I0STAT=IACT(1), UHIT=CHARVR, FMT=*) ACTUAL(l)

Data Transmission: An internal WRITE statement starts data transmission at

the beginning of the storage area specified by un. Each item of the list is trans
ferred to the internal file in the order it is specified. The conversion to be per

formed depends on the type and length of the name of the item in the list. Data
transmission stops when every item of the list has been moved to the internal

file or when the end of the internal file is reached.

Data and I/O List; If un is a character variable, a character array element
name, or a character substring name, it is treated as one record. If un is a

character array name, each array element is treated as one record. If a record
is not large enough to hold all the converted items, a new record is started for
any noncharacter item that will exceed the record length. For character items,
as much as can be put in the record is written there, and the remainder is

written at the beginning of the next record.

The length of a record is the length of the character variable, character sub

string name, or character array element specified by un when the WRITE state
ment is executed.

For information on how to calculate the size of a record needed to hold all the

converted list items, see Figure 25 on page 230. It shows the width of the
written field for any item's data type and length. The size of the record will be

the sum of the field widths plus a byte to separate each field.

CHARACTER* 120 CHARVR

WRITE (UNIT=CHARVR, FHT=*) Al, A2, A3

100 FORMAT (A120)

WRITE (UNIT=6, FMT=100) CHARVR

Statement 1 defines a character variable, CHARVR, of fixed-length 120. State
ment 2 writes the internal file represented by CHARVR by converting the values

232 VS FORTRAN Version 2 Language and Library Reference

WRITE (NAMELIST, External)

in A1. A2, and A3. Statement 3 writes the 120 characters of output onto an
external file.

WRITE Statement—NAMELIST with External Devices
This statement transfers data from internal storage to a file. The type of the
items specified in the NAMELIST statement determines the conversions to be
performed.

Syntax

WRITE

([UNIT=]un,
[FMT=]/7ame

[, ERR = sfy]

[, IOSTAT=/os])

UNIT=un

un is the external unit identifier, un is one of the following:

^ An integer expression of length 4 whose value must be zero or positive,
or

>• An asterisk (*) representing an installation-dependent unit.

un is required in the first form of the WRITE statement and can, optionally,
be preceded by UNIT= If UNIT= is omitted, un must appear immediately
following the WRITE statement. The other specifiers may appear in any
order. If UNIT= is included on the WRITE statement, all the specifiers can
appear in any order.

In the form of the WRITE where un is designated, un is installation
dependent.

FMT=name

name is a NAMELIST name. See "NAMELIST Statement" on page 148.

If fmT= is omitted, the NAMELIST name must appear second. If both

UNIT= and FMT= are included on the WRITE statement, all the specifiers
can appear in any order.

ERR = sf/

sti is the statement label of an executable statement in the same program

unit as the WRITE statement. If an error is detected, control is transferred

to stI.

IOSTAT =/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. For VSAM files, return and reason codes are placed in ios.

Valid WRITE Statements:

WRITE (101,DALMATIANS)

WRITE (IN+8, NAMEOUT, I0STAT=IACT(1), ERR=99999)

Chapter 4. Statements 233

WRITE (NAMELIST, External)

Invalid WRITE Statements:

VJRITE (APOLLO, 12) mi must appear before name.

WRITE (5,G0LDEN_RINGS) Q1,Q2,Q3 list must not be specified.

If the unit specified by un is encountered, it must exist and must be connected
to a nie for sequential access. If the unit is not connected to a file, it is
assumed to have been preconnected through job control language and an
implicit OPEN is performed to a default file name. Ifthe file is not precon
nected, an error is detected.

A BACKSPACE or REWIND statement should not be used for a file that is

written using NAMELIST. If it is, the results are unpredictable (see "BACK
SPACE Statement" on page 57).

Data Transmission; A WRITE statement with NAMELIST starts data trans
mission from the beginning of a record. The data is taken from each item in
the NAMELIST with name in the order in which they are specified and trans
mitted onto the record of the external file. Data transmission stops when data
has been transferred from every item in the NAMELIST name.

After execution of a WRITE statement with NAMELIST. no record exists in the
file following the end of the NAMELIST just transmitted.

Data and NAMELIST: The NAMELIST name must appear on the external file.

The number of characters specified by the items in the NAMELIST name and
the necessary data separators and identifiers are placed on trie external file.

For information on how to calculate the size of the record on the external file,
see Figure 25 on page 230. It shows the width of the written field for any item's
data type and length. The size of the record will be the sum of the field widths
plus;

The number of bytes needed for each item's name and an equal sign (these
are prefixed to each field), and

A byte to separate each field

If a transmission error is detected, control Is transferred to the statement speci
fied by ERR. No Indication is given of which record or records could not be
written; only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

234 VS FORTRAN Version 2 Language and Library Reference

rs

rs

WRITE (NAMELIST, Internal)

WRITE Statement—NAIVIELIST with Internal Files

This statement transfers data from one or more areas of Internal storage to

another area of internal storage. The receiving area is called an internal file.
This statement can be used to convert numeric data to character data. The

type of the items specified in an associated NAMELIST list determines the con
versions to be performed.

— Syntax

WRITE

([UNIT=]un,
[FMT=]name

[, ERR = sf/]

[, IOSTAT=/OS])

UNIT=un

un is the reference to an area of internal storage called an internal file. It
must be the name of a character array with at least three elements.

It is required and can, optionally, be preceded by UNIT = . If UNIT = is not
omitted, un must appear immediately following the left parenthesis. If
UNIT= is included on the WRITE statement, FMT= must be used and all

the specifiers can appear in any order.

FMT=name

name is a NAMELIST name. See "NAMELIST Statement" on page 148.

If FMT = is omitted, the NAMELIST name must appear second. If both

UNIT= and FMT= are included on the WRITE statement, all the specifiers

can appear in any order.

ERR = sf/

sti is the statement label of an executable statement in the same program
unit as the WRITE statement. If an error is detected, control is transferred

to stI.

10STAT=/os

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected.

Valid WRITE Statements:

WRITE (77,SUNSET_STRIP)

WRITE NAMOUT, I0STAT=IACT(1), ERR=99999)

Data Transmission: A WRITE statement with NAMELIST starts data trans

mission from the beginning of the internal file. The data is taken from each
item in the list associated with the NAMELIST name, in the order in which the

items are specified, and transmitted to the internal file. Data transmission
stops when data has been transferred from every item in the list.

Data and NAMELIST: The NAMELIST name must appear in the internal file.

The number of characters specified by the items in the NAMELIST name and
the necessary data separators and identifiers are placed in the internal file.

Chapter 4. Statements 235

WRITE (Unformatted, Direct Access)

For information on how to calculate the size of the internal file, see Figure 25
on page 230. it shows the width of the written field for any item's data type and
length. The size of the internal file will be the sum of the field widths plus:

»• The number of bytes needed for each item's name and an equal sign (these
are prefixed to each field), and

*- A byte to separate each field.

Example:

NAMELIST /NL1/I,J,C
CHARACTER*40 CHAR(3}
CHARACTER*5 C

INTEGER*2 I,J
1=12045

J=12047

C='BACON'

VJR1TE(CHAR,NL1)

After execution of the WRITE statement:

Position 2

V

CHAR{1) contains &NL1

CHAR(2) contains 1= 12046.J= 12047.C='BACON'
CHAR(3) contains &END

WRITE Statement—Unformatted with Direct Access

This statement transfers data without conversion from internal storage to a file.
The data must be sent to an external file that is connected with direct access to

a unit. (See "OPEN Statement" on page 151.)

Syntax

WRITE

([UNIT=]un,

REG = rec

[, ERR=s//]

[, IOSTAT = /os]

[, NUM= n])
[list]

UNIT = un

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It is required and can. optionally, be preceded by UNIT= . If UNIT= is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT = is included on the
WRITE statement, all the specifiers can appear in any order.

REG = rec

rec is an integer expression. It represents the relative position of a record
within the file associated with un.

236 VS FORTRAN Version 2 Language and Library Reference

rs

WRITE (Unformatted, Direct Access)

Its value after conversion to integer, if necessary, must be greater than
zero. The internal record number of the first record is 1. The INQUIRE

statement can be used to determine the record number.

This specifier is required. (Note that, if list is omitted, a blank record is
transmitted to the output device.)

ERR = s//

sti is the statement label of an executable statement in the same program

unit as the WRITE statement. If an error is detected, control is transferred

to stl.

IOSTAT=/os

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. For VSAM files, return and reason codes are placed in ios.

NUM = n

n is an integer variable or an integer array element of length 4.

If NUM = n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements speci
fied by the I/O list.

Coding the NUM specifier suppresses the indication of an error that would
occur if the number of bytes represented by the I/O list is greater than the
number of bytes that can be written into the record. In this case, n is set to
a value that is the maximum length record that can be written. Data from
remaining I/O list Items is not written into subsequent records.

list

is an I/O list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 81. If list is omitted, a blank record is transmitted to
the output device.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

Valid WRITE Statements:

WRITE (IOSTAT=IOS, ERR=99999, REC=IN-3, UNIT=IN+6)

WRITE (I0STAT=IACT(1), REC=2*IN-7, UNIT=2*INi-l) EXPECT(3)

WRITE (REC=1, UNIT=n) EXPECT(l)

If the unit specified by un is encountered, it must exist and the file must be con
nected for direct access.

Data Transmission: A WRITE statement without conversion starts data trans

mission at the record specified by rec. The data is taken from the items of the
list in the order in which they are specified and transmitted onto the record rec
of the external file. Data transmission stops when data has been transferred
from every item of the list.

Data and I/O List: The length of every FORTRAN record is designated by the
RECL specifier of the OPEN statement. If the length of the record rec is greater
than the total amount of data transmitted from the items of the list, the

Chapter 4. Statements 237

WRITE (Unformatted, Keyed Access)

remainder of the record is filled with zeros. If the length of the record rec is
smaller than the total amount of data transmitted from the items of the list, as

much data as can fit in the record is written, and an error is detected unless the

NUM specifier is given.

If a transmission error is detected, control is transferred to the statement speci

fied by ERR. No indication is given of which record or records could not be
written; only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not

considered transmission errors. These errors do not cause lOSTAT to be set

positive nor transfer to be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these

errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

WRITE Statement—Unformatted with Keyed Access
This statement transfers data without conversion from internal storage to a file.
The data must be sent to an external file that is connected with keyed access to
a unit (see "OPEN Statement" on page 151).

— Syntax

WRITE

([UNIT =]u/i

[, ERR = sf/]

[, IOSTAT=/os]
[, DUPKEY = sf/]
[, NUM = n])
list

UNIT=L/n

un is the external unit identifier, un is an integer expression of length 4
whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is

omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT = is included on the

WRITE statement, all the specifiers can appear in any order.

ERR=sf/

sti is the statement label of an executable statement in the same program
unit as the WRITE statement. If an error Is detected, control is transferred

to stI.

lOSTAT =/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. For VSAM files, return and reason codes are placed in ios.

DUPKEY = sf/

stI is the statement label of a statement to which control is passed when a

duplicate-key condition occurs. For an explanation of this condition, see
"Duplicate Key," below.

238 VS FORTRAN Version 2 Language and Library Reference

n

WRITE (Unformatted, Keyed Access)

NUM=n

n is an integer variable or an integer array element of length 4.

If NUM =n is specified, the variable or array element n is assigned a value

representing the number of bytes of data transmitted to the elements speci
fied by the I/O list.

Coding the NUM specifier suppresses the indication of an error that vwouid
occur if the number of bytes represented by the I/O list is greater than the

number of bytes that can be written into the record. In this case, n is set to
a value that is the maximum length record that can be written. Data from
remaining I/O list items is not written into subsequent records.

list

is an I/O list and can contain variable names, array elements, character
substring names, array names {except the names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output

Statement" on page 81.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

Valid WRITE Statements:

WRITE (12) GG,HH,II

WRITE (12,DUPKEY=55) DD,EE,FF

If this WRITE statement is encountered, the unit specified must exist and the file

must have been connected for keyed access by means of an OPEN statement.

The ACTION specifier of that OPEN statement must have specified the value

'READWRITE' or 'WRITE'. If the file is not so connected, an error is detected.

Data Transmission: If the WRITE statement was issued for a file connected by

an OPEN statement with an ACTION specifier of 'WRITE', data transmission
begins at the beginning of a new record. The new record will follow, in order of

key value, the last record written, if the file was connected by an OPEN state

ment with an ACTION specifier of 'READWRITE', data transmission also begins

at the beginning of a new record. In this case, however, the new record will be
inserted following the record with a lower key value and preceding the record

with a higher key value. If the new record has a key that is the same as a key
already in the file, the new record is added following the last record with the

same key. The data is taken from the items in the list in the order they are
specified: the data is transmitted onto a single record of the file. Data trans
mission stops when data has been transferred from every item in the list.

Data and I/O List: The amount of data specified by the items of the list defines

the length of the record to be written. A single WRITE statement creates only
one record. The record must be long enough to include all the keys that are
defined for the file.

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be
written; only that the error occurred during transmission of data. If lOSTAT is

specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Chapter 4. Statements 239

WRITE (Unformatted, Sequential Access)

Errors caused by the length of the data record or the value of the data are not

considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. (See Chapter 9, "Extended Error-Handling Subroutines and Error

Option Table" on page 315.)

Duplicate Key: Control is transferred to the statement specified by DUPKEY
when a duplicate-key condition occurs: namely:

•• The file is connected by an OPEN statement with an ACTION specifier of

'READWRITE', or when ACTION = 'WRITE', and

•• An attempt was made to write a record with a key whose values must be
unique, and

The key value would have duplicated one that already exists for the same
key in another record.

If lOSTAT = ios is specified, a positive integer value is assigned to ios when the
duplicate-key condition is detected. If ERR Is specified but DUPKEY is not,
control passes to the statement speclHed by ERR when the duplicate-key condi
tion is detected. If neither DUPKEY nor ERR was given, an error is detected.

Examples:

WRITE (UNIT=10) AA, BB, CC
WRITE (10,DliPKEY=77) AA, BB, CC
WRITE (10,NUM=LENG) AA, BB, CC

WRITE Statement—Unformatted with Sequential Access
This statement transfers data without conversion from internal storage to a file.
The data must be sent to an external file that is connected with sequential
access to a unit (see "Input/Output Semantics" on page 48).

Syntax

WRITE

([UNIT=]un
[, ERR = sf/]

I, IOSTAT=/os]
[, NUM = n])

[list]

UNIT=un

un is the external unit identifier, un Is an integer expression of length 4
whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT= . If UNIT= is
omitted, un must appear immediately following the left parenthesis. The
other specifiers may appear in any order. If UNIT= is included on the
WRITE statement, all the specifiers can appear in any order.

ERR = s//

sti is the statement label of an executable statement in the same program
unit as the WRITE statement. If an error is detected, control is transferred

to stI.

240 VS FORTRAN Version 2 Language and Library Reference

WRITE (Unformatted, Sequential Access)

10STAT =/OS

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. For VSAM files, return and reason codes are placed in ios.

UUM = n

n is an integer variable or an integer array element of length 4,

If NUM =n Is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements speci
fied by the I/O list. Coding the NUM specifier suppresses the indication of
an error that would occur if the number of bytes represented by the I/O list

is greater than the number of bytes that can be written into the record. In
this case, n is set to a value which is the maximum length record that can
be written. Data from remaining I/O list items is not written into subsequent
records.

list

is an I/O list and can contain variabie names, array elements, character

substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 81.

A function must not be referenced within an expression if such a reference
causes an Input or output statement to be executed.

Valid WRITE Statements:

WRITE (16) G,N,P

WRITE (UNIT=16) TAXES(l)

WRITE(5) EXPECT(4)

Invalid WRITE Statement:

WRITE 5, EXPECT(4) un must be in parentheses.

Data Transmission: A WRITE statement without conversion starts data trans

mission at the beginning of a record. The data is taken from the Items of the
list in the order In which they are specified and transmitted onto the record of
the external file. Data transmission stops when data has been transferred from

every item of the list.

After execution of a sequentiai WRITE statement, no record exists in the file fol
lowing the last record transferred by that statement.

The WRITE statement writes over an end of file and extends the external file.

An END FILE, BACKSPACE, CLOSE, or REWIND statement will then reinstate the

end of file.

Data and I/O List: The amount of character data specified by the items of the

list defines the length of the FORTRAN record (also called a logical record). A
single WRITE statement creates only one FORTRAN record.

VS FORTRAN Version 2 Programming Guide describes how to associate
FORTRAN records (that is, logical records) and records in an external device.

Chapter 4. Statements 241

WRITE (Unformatted, Sequential Access)

If a transmission error is detected, control is transferred to the statement speci
fied by ERR. No indication is given of which record or records could not be
written: only that the error occurred during transmission of data. If lOSTAT is
specified, a positive integer value is assigned to ios when the error is detected.
If ERR is not specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOSTAT to be set

positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these
errors. {See Chapter 9, "Extended Error-Handling Subroutines and Error
Option Table" on page 315.)

242 VS FORTRAN Version 2 Language and Library Reference

Chapter 5. Intrinsic Functions

Intrinsic functions are procedures supplied in VS FORTRAN Version 2 for
standard mathematical computations, character manipulations, and bit manipu
lations. A function is invoked by including its name in an arithmetic or char
acter expression accompanied by one or more arguments. The compiler
recognizes the function by its name, checks the syntax of the arguments, and
generates code that performs the desired function.

The general format for referring to an intrinsic function is

name (argl[,arg2...])

where name is the function name and argi, arg2, ... are the actual arguments.

For example, the source statement

SINRAD=SIN(RADIAN)

causes the sine function (SIN) to be invoked. The value of the argument
RADIAN is given to the sine function, which computes the sine of that value.
The result is stored in the variable SINRAD.

Nearly all the mathematical functions have both generic and specific names.
Use of the generic name simplifies the referencing of the functions, because the
same name may be used for the entire range of argument types permitted. The
appropriate specific entry name is chosen (by the compiler) when the generic
name is used, based on the type of argument(s) presented.

Figure 33 on page 259 lists all the generic function names and gives the valid
range of argument types and function values for them.

The intrinsic functions provided by VS FORTRAN Version 2 are described in
detail in the following figures, grouped by function:

Function Figure

Logarithmic and Exponential Figure 26 on page 246

Trigonometric Figure 27 on page 248

Hyperbolic Figure 28 on page 250

Miscellaneous Mathematical Figure 29 on page 250

Conversion and Maximum/Minimum Figure 30 on page 253

Character Manipulation Figure 31 on page 256

Bit Manipulation Figure 32 on page 257

All the specific function names listed in Figure 26 through Figure 29, and in
Figure 32, can be passed as actual arguments. None of the function names
listed in Figure 30 or Figure 31 (except for LEN and INDEX) can be passed as
actual arguments. (An INTRINSIC statement for a specific function name must
appear in any program unit that passes the name as ah actual argument.)

References to the functions are either resolved from the library or inserted in
the object module. That is, the code generated by VS FORTRAN Version 2 for
the reference contains either instructions to link to the function in the library

Chapter 5. Intrinsic Functions 243

(out-of-line) or instructions to perform the function directly (in-line). Notes with
the figures state whether the functions are performed in-line or out-of-line.

For a small subset of the mathematical functions, alternative functions are
available that under certain conditions provide greater accuracy and faster
computation. These functions are identified in footnotes to the figures. For
more information, see Chapter 6, "Mathematical, Character, and Bit Routines"
on page 263.

The following information is provided for each entry name in Figure 26 on
page 246 through Figure 32 on page 257:

General Function: This column states the nature of the computation performed
by the function.

Generic Name: This column gives the generic name of the function (if any).

Entry Name: This column gives the specific entry names of the function. A
function may have more than one entry name; the particular entry name used
depends on the computation to be performed. For example, the sine and
cosine function has two entry names: SIN and COS. If the sine is to be com
puted, entry name SIN is used; if the cosine is to be computed, entry name COS
is used.

Definition: This column gives a mathematical equation that represents the com
putation. An alternative equation is given in those cases in which there is
another way of representing the computation in mathematical notation. For
example, the square root can be represented either as:

y=\/^ ory=x^^^

Argument Number: This column states how many arguments the programmer
must supply.

Argument Type: This column describes the type and length of each argument.
INTEGER, REAL, COMPLEX, LOGICAL, and character represent the type; the
notations *1, *4, *8, *16, *32, and *n represent the size of the argument in ^ ^
number of storage locations. (The notation *n describes character data.)

Argument Range: This column gives the valid range for arguments. If an argu
ment is not within the range, an error message is issued (see Error Code
column).

Function Value Type and Range: This column describes the type and range of
the function value returned by the subprogram. Type notation used is the same
as that for the argument type. The range symbol is

Y=16" (1-16"®)

for regular precision routines;

Y=16®^ (1-16"^"^)

for double-precision; and

244 VS FORTRAN Version 2 Language and Library Reference

1^63 1c""28\Y=16 (1-16)

for extended precision.

Error Code: This column gives the number of the message issued when an
error occurs. Appendix D, "Library Procedures and Messages" on page 375
contains descriptions of the error messages.

Throughout these figures, the following approximate values are represented by

and {2^^*n):

= .82354966458264280 + 06

(25®-;i) = .35371188760142200 + 16

Chapter 5. Intrinsic Functions 245

General

Function*^
Entry
Name Definition Number

Argument{s)
Type' Range

Function Value

Type and Range'/
Error

Code

Common

and

natural

logarithm

ALOG y = log^ or
y = Inx
Notes

1 REAL*4 X > 0 REAL*4

y > - 180.218
y < 174.673

2S3

ALOG10 y = logiox
Notes

1 REAL*4 X > 0 REALM

y > - 78.268
y 5 7S.8S9

2S3

DLOG y = log^jX or
y = Inx
Notes

1 REAL*8 X > 0 REAL*8

y S -180.218
y < 174.673

263

DLOG10 y = logiox
Notes

1 REAL*8 X > 0 REAL*8

y > - 78.268
y < 7S.8S9

263

CLOG y = PV log,, (z)
Note 2

1 COMPLEX*8 z 0 + 0; COMPLEX*8

y, > - 180.218
y, < 17S.021
- n < y2 S 71

273

CDLOG y = PV log„ (z)
Note 2

1 COMPLEX*16 z ^ 0 -r Oi COMPLEX*16

y, ^ - 180.218
y, < 17S.021
- 71 < y2 < n

283

QLOG

IIII
3O

o

1 REAL*16 X > 0 REAL*16

y > - 180.218
y < 174.673

293

QLOG10 y = log^o X 1 REAL*16 X > 0 REAL*16

y > - 78.268
y < 17S.8S9

293

CQLOG y = PV loge (z)
Note 2

1 COMPLEX*32 Z 0 + 0/ COMPLEX*32

y, > - 180.218
y, < 17S.021
- 7t < y2 ^ 71

278

Exponential EXP y = e"

Notes

1 REAL*4 X < 174.673 REAL*4

0 < y < 7

252

DEXP y = e*

Note S

1 REAL*8 X < 174.673 REAL*8

0 < y < 7

262

CEXP y - e'

Note 3

1 COMPLEX*8 x, < 174.673
1X2 1< (2'8 . n)

COMPLEX*8

- 7 ^ yi. Xz 2 7

271,

272

CDEXP y = gZ

Note 3

1 COMPLEX*16 Xi < 174.673

Uz 1< (250 . n)
COMPLEX*16

- 7 ^ Xi. Xz ^ 7

281,

282

QEXP y = e* 1 REAL*16 X > - 180.218

X < 174.673

REAL*16

0 < y < 7
292

CQEXP y =

Note 3

1 COMPLEX*32 Xi < 174.673
Xj < 2'00

COMPLEX*32

- 7 ^ Xi, Xz ^ 7
276,

277

Figure 26. Logarithmic and Exponential Functions

246 VS FORTRAN Version 2 Language and Library Reference

Notes to Figure 26:

' REAL*4, REAL*8, and REAL*16 arguments correspond to REAL, DOUBLE PRECISION, and
EXTENDED PRECISION arguments, respectively, in VS FORTRAN Version 2.

^ PV = principal value. The answer given (y, + y^i) is that one whose imaginary part (Vg) lies
between - n and + n. More specifically: - n < ^ n, unless x.| < 0 and X2 = - 0, in
which case, yj = - n.

' z is a COMPLEX number of the form x, + Xj/.

* 7 = 16®3(1 - 16"®) for regular precision routines, 16®®(1 - for double precision rou
tines, and 16®®(1 - 16~2®) for extended precision.

' Available also in the alternate mathematical library.

® All functions are generated as out-of-line library calls.

Chapter 5. Intrinsic Functions 247

General

Function®
Entry
Name Definition Number

Argument(s)
Type' Range

Function Value

Type and Range', ®
Error

Code

Arcsine

and

arccosine

ASIN y = arcsin(x)
Note 7

1 REAL*4 1x1^1 REAL*4 (in radians)
< JL

2^2

257

ACOS y = arccos(x)
Note 7

1 REAL*4 |x| ^ 1 REAL*4 (in radians)
0 S y < II

257

DAS IN y = arcsin(x)
Note 7

1 REAL*8 |X| ^ 1 REAL*8 (in radians)
- JL < y < JL

2 - y - 2

267

DACOS y = arccos(x)
Note 7

1 REAL*8 |x| < 1 REAL *8 (in radians)
0 < y < n

267

QARSIN y = arcsin(x) 1 REAL*16 |x| < 1 REAL*16
- JL < y < JL

2 - y - 2

297

QARCOS y = arcos(x) 1 REAL*16 |x| < 1 REAL*16

0 < y < n
297

Arctangent ATAN y = arctan(x)
Note 7

1 REAL*4 any REAL

argument

REAL*4 (in radians)
E. < y < JL
2 - y - 2

None

ATAN2

y =arctan{ ^
Note 7 V 2 /

2 REAL*4 any REAL argu
ments

(except 0, 0)

REAL*4 (in radians)
- n < y < It

255

DATAN y = arctan(x)
Note 7

1 REAL*8 any REAL

argument

REAL*8 (in radians)
_ JL < y < JL

2 - y - 2

None

DATAN2

y =arctanf]
Note 7 \ 2 /

2 REAL*8 any REAL

arguments

(except 0, 0)

REAL*8 (in radians)
- n < y < It

265

QATAN y = arctan(x) 1 REAL*16 any REAL

argument
REAL*16 (in radians)
- JL < y < JL

2 - y - 2

None

QATAN2 y=arctan(i) 2 REAL*16 any REAL

arguments

(except 0, 0)

REAL*16 (in radians)
- n < y < K

295

Sine and

cosine

SIN y = sin(x)
Note 7

1 REAL*4

(in radians)
1X 1 < (2'® • n) REAL*4

- 1 < y < 1
254

COS y = cos(x)
Note 7

1 REAL*4

(in radians)
1X 1 < (2'®• n) REALM

- 1 < y < 1

254

DSIN y = sin(x)
Note 7

1 REAL*8

(in radians)
1X1 < (2®° • n) REALM

- 1 5 y < 1
264

•COS y = cos(x)
Note 7

1 REAL*8

(in radians)
1X1 < (250» ?l) REAL*8

- 1 < y < 1
264

CSIN y = sin(z)
Note 2

1 COMPLEX*8

(in radians)
|x, 1 < (2'®-n)
Ixjj < 174.673

COMPLEX*8

- Y ^ yi. Yz 5 Y
274,

275

CCOS y = cos(2)
Note 2

1 COMPLEX*8
(in radians)

1Xi 1 < (2'® • n)
1X2 1 < 174.673

COMPLEX*8

- Y ^ yi. Yz S Y
274,
275

CDSIN y = sin(z)
Note 2

1 COMPLEX*16
(in radians)

1x, 1 < (2®® • n)
|X2 1 < 174.673

COMPLEX*16

- Y 2 yi. Yz ^ Y
284,

285

CDCOS y = cos(z)
Note 2

1 C0MPLEX*16

(in radians)
1X, 1 < (2®° • n)
|X2 1 < 174.673

COMPLEX*16

- Y ^ yi. Yz ^ Y
284,

285

QSIN y = sin(x) 1 REAL*16

(in radians)
1X 1 < 2'00 •REAL*16

- 1 < y < 1
294

Figure 27 (Part 1 of 2). Trigonometric Functions

248 VS FORTRAN Version 2 Language and Library Reference

General

Function'
Entry
Name Definition

Argumentfs)
Number Type' Range

Function Value

Type and Range', '
Error

Code

QCOS y = cos(x) 1 REAL*16

(In radians)
1X1 < 2'®° REAL*16

-1 S y < 1

294

CQSIN y = sin(z)
Note 2

1 COMPLEX*32

(in radians)
1Xi 1< 2'00
1Xg 1 < 174.673

COMPLEX*32

- 7 ^ Vv Hi ^ 7

279,
280

CQCOS y = cos(z)
Note 2

1 COMPLEX*32

(in radians)
1x, 1< 2i®o
1Xg 1 < 174.673

COMPLEX*32

- 7 ^ yi.y2 ^ 7

279,
280

Tangent
and

cotangent

TAN y = tan(x)
Note 7

1 REALM

(in radians)
1X 1 < (2''® • It)
Note 4

REALM

- 7 < y S 7
258

COTAN y = cot(x)
Note 7

1 REALM

(in radians)
|x 1 < (2'® • 7l)
Note 4

REALM

- 7 5 y < 7

258,

259

DTAN y - tan(x)
Note 7

1 REAL*8

(in radians)
1X1< (2®° • n)
Note 4

REAL*a

- 7 < y < 7

268

DCOTAN y = cot(x)
Note 7

1 REAL*8

(in radians)
1X1 < (2®° • n)
Note 4

REALM

- 7 < y < 7

268,

269

QTAN y = tan(x) 1 REAL*16

(in radians)
1X 1< 2'°°
Note 3

REAL*16

- 7 < y < 7

298,

299

QCOTAN y = cot(x) 1 REAL*16

(in radians)
1X 1 < 2i®o
1X1 > 16"®®
Note 3

REAL*16

- Y < y < y

298,

299

Figure 27 (Part 2 of 2). Trigonometric Functions

Notes to Figure 27:

REAL*4, REAL*8, and REAL*16 correspond to REAL, DOUBLE PRECISION, and EXTENDED
PRECISION arguments, respectively, in VS FORTRAN Version 2.

z is a complex number of the form x, x^/.

Xmay not be such that one can find a singularity within 8 units of the last digit value of the
floating-point representation of x. Singularities are ± (2n + 1)n/2, n = 0,1,2,... for tangent,
and ± nn, n = 0,1,2,... for cotangent.

The argument for the cotangent functions may not approach a multiple of n; the argument
for the tangent functions may not approach an odd multiple of n/2.

7 = 16"(1 - 16"®) for regular precision routines, 16®^(1 - 16"''^) for double-precision rou
tines and 16®^(1 - 16"^®) for extended precision.

All functions are generated as out-of-line library calls.

Available also in the alternate mathematical library.

Chapter 5. Intrinsic Functions 249

General Entry Argument(s)
Function^ Name Definition Number Type' Range

Function Value Error

Type and Range*, ^ Code

Hyperbolic SINH - e"* 1 REALM jx 1 < 175.366 REALM 256
sine and

cosine

y

Note 4
2 - 7 < y < 7

COSH e* + e~* 1 REALM jx 1 < 175.366 REAL*4 256
y

Note 4
2 1 < y < 7

DSINH - e"* 1 REAL*8 |x 1 < 175.366 REAL*8 266
V -y

2

VI

is

VI

1

7

DCOSH + e"* 1 REAL*8 jx 1 < 175.366 REAL*8 266
V -y

2

?-

VI

is

VI

QSINH - e"* 1 REAL*16 jx 1 < 175.366 REAL*16 296
V -y

2 - 7 < y ^ 7

QCOSH e* + e"* 1 REAL*16 |x| < 175.366 REAL*16 296
y

2

?-

VI

VI

Hyperbolic TANH - e~* 1 REALM any REAL REAL*4 None
tangent V -^ e*

Note 4

-f e ~ * argument

VI

is

VI

1

1

DTANH - e"* 1 REAL*8 any REAL REAL*8 Noney-

-r e"* argument - 1 < y < 1

QTANH - e"* 1 REAL*16 any REAL REAL*16 None
ir -

+ e"* argument - 1 < y < 1

Figure 28. Hyperbolic Functions

Notes to Figure 28:

REAL*4, REAL*8, and REAL*16 arguments correspond to REAL, DOUBLE PRECISION, and
EXTENDED PRECISION arguments, respectively. In VS FORTRAN Version 2.

7 = 16®3(1 - 16"®) for regular precision routines, 16®3(1 - 16"'®) for double-precision rou
tines, and 16®®(1 - 16"^®) for extended precision.

All functions are generated as out-of-line library calls.

Available also in the alternate mathematical library.

General

Function

Entry
Name Definition

Argument(s)
Number Type' Range

Function Value

Type and Range', ®
Error

Code

Absolute

value

lABS

II

1 INTEGERM any INTEGER

argument

INTEGERM

0 < y < 7
None

Note 9

ABS y = |x| 1 REALM any REAL

argument

REALM

0 < y < 7

None

Note 9

DABS y = |x| 1 REAL*8 any REAL

argument

REAL*8

0 < y < 7

None

Note 9

QABS y = |x| 1 REAL*16 any REAL

argument
REAL*16

0 < y ^ 7

None

Note 9

CABS y = jzj = (Xi2 -f
Note 11

1 COMPLEX*8 any COMPLEX

argument

Note 2

II>
lA

None

Note 10

CDABS y - |2| = (Xi2 + X2 2)"2
Note 11

1 COMPLEX*16 any COMPLEX

argument

Note 2

REAL*8

0 < y, < 7
y? = 0

None

Note 10

Figure 29 (Part 1 of 4). Miscellaneous Mathematical Functions

250 VS FORTRAN Version 2 Language and Library Reference

General

Function

Entry
Name Definition Number

Argument(s)
Type' Range

Function Value

Type and Range', ®
Error

Code

CQABS y = 1Z 1= (Xi 2 + X2 2)1'2 1 COMPLEX*32 any COMPLEX REAL*16 None

argument
Note 2 yj = 0

Note 10

Error

function

ERF y = —^ f*e~ "^du
•Jn •'o

1 REAL*4 any REAL
argument

REALM

- 1 < y < 1

None

Note 10

ERFC
y =

y = 1 - ERF(x)

1 REALM any REAL
argument

REALM

0 < y < 2
None

Note 10

DERF y = -|=rf*e- "^du 1 REAL*8 any REAL
argument

REALM

- 1 ^ y < 1

None

Note 10

DERFC
y = e- "^du

•JI
y = 1 - ERF(x)

1 REAL*8 any REAL
argument

REAL*8

0 < y < 2

None

Note 10

QERF y=-^l'e-"^du
v7l

1 REAL*16 any REAL
argument

REAL*16

- 1 ^ y < 1

None

Note 10

QERFC
y = e"

Vn
y = 1 - ERF(x)

1 REAL*16 any REAL
argument

REAL*16

0 < y < 2
None

Note 10

Gamma GAMMA y = foo y*~1e~"du 1 REALM X > 2~ 252 and REALM 290

and X < 57.5744 0.88560 ^ y ^ 7 Note 10

log
gamma

ALGAMA y = iog^ r(x) or
y = iog<,j^ u*~

1 REALM X > 0 and

X < 4.2913' 1023
REALM

-0.12149 ^ y ^ 7

291

Note 10

DGAMMA y = L" 1 REALM X > 2"252 and
X < 57.5744

REAL*8

0.88560 < y < 7
300

Note 10

DLGAMA y = log^ r(x) or
y = log^yf^ u*~''e""du

1 REAL*8 X > 0 and

X < 4.2913' 1023
REAL*8

- 0.12149 ^ y S 7

301

Note 10

Square
root

SQRT y = Vx or
y = x^'2
Note 11

1 REALM X > 0 REALM

0 < y ^ 7"2
251

Note 10

DSQRT y = -Jx or
y = xi'2
Note 11

1 REAL*8 X > 0 REAL*8

0 < y < 7"2
261

Note 10

CSQRT y = -Jz or
y = z^'2
Note 7

1 COMPLEX*8 any COMPLEX
argument

COM P LEX M

0 < yi < 1.0987(7"2)
jygj < 1.0987(7"^)

None

Note 10

CDSQRT y = n/F or
y = zi'2
Note 7

1 COMPLEX*16 any COMPLEX
argument

COMPLEX*16

0 < y, < 1.0987(7"2)
jyzi < 1.0987(7"2)

None

Note 10

QSQRT y = -fx or
y = xi'2

1 REAL*16 X > 0 REAL*16

0 ^ y s y"2
289

Note 10

CQSQRT y = ^/F or
y = zi'2
Note 7

1 COMPLEX*32 any COMPLEX
argument

COMPLEX*32

0 < y, < 1.0987(7"2)
y2 < 1.0987(7^2)

None

Note 10

Modular MOD y = x, (modulo Xj) 2 INTEGER Xg 5^ 0 INTEGERM None

arith Note 3 Note 4 Note 9

metic

AMOD 2 REALM Xg 0
Note 4

REALM None

Note 9

DMOD 2 REAL*8 Xj 0
Note 4

REAL*8 None

Note 9

Figure 29 (Part 2 of 4). Miscellaneous Mathematical Functions

Chapter 5. Intrinsic Functions 251

General

Function

Entry

Name Definition Number

Argument(s)
Type' Range

Function Value

Type and Range', ®
Error

Code

QMOD 2 REAL*16 X2 5^ 0
Note 4

REAL*16 None

Note 9

Trun

cation

AINT y = (sign of x) • n
where n = (j x j J
Note 6

1 REAL*4 any REAL
argument

REAL*4 None

Note 9

DINT 1 REAL*8 any REAL
argument

REAL*8 None

Note 9

QINT 1 REAL*16 any REAL
argument

REAL*16 None

Note 9

Obtain

imagi
nary

part of a
complex
argu

ment

AIMAG 1 COMPLEX*8 any COMPLEX

argument

REAL*4 None

Note 9

DIMAG 1 COMPLEX*16 any COMPLEX
argument

REAL*8 None

Note 9

QIMAG 1 COMPLEX*32 any COMPLEX
argument

REAL*16 None

Note 9

Obtain

conju
gate

of a

complex
argu

ment

CONJG y = Xf - Xj/ for
argument = x, + Xj/

1 COMPLEX*8 any COMPLEX

argument

COMPLEX*8 None

Note 9

DCONJG 1 COMPLEX*16 any COMPLEX
argument

COMPLEX*16 None

Note 9

QCONJG 1 COMPLEX*32 any COMPLEX
argument

COMPLEX*32 None

Note 9

Nearest

whole

number

ANINT

DNINT

y = (sign of x) • v
where v = [j x -r .5 j 1
ifx S Oor

V = [j X - .5 11
ifx < 0.

Note 6

1

1

REAL*4

REAL*8

any REAL
argument

any REAL
argument

REAL*4

REAL*8

None

Note 9

None

Note 9

Nearest

Integer
NINT

IDNINT

y = (sign of x) • n
where n = (J x + .5 j]
ifx 2: Oor

n = (1 X - .5 1)
if X < 0.

Note 8

1

1

REAL*4

REAL*8

any REAL
argument

any REAL*8
argument

INTEGER*4

INTEGER*4

None

Note 9

None

Note 9

Positive

differ

ence

IDIM y = x, - X2
ifx, > Xj
y = 0 ifXi < X2

2 INTEGER*4 any INTEGER
argument

INTEGER*4 None

Note 9

DIM 2 REAL*4 any REAL
argument

REAL*4 None

Note 9

DDIM 2 REAL*8 any REAL

argument

REAL*8 None

Note 9

QDIM 2 REAL*16 any REAL

argument
REAL*16 None

Note 9

Transfer

of sign
ISIGN y = 1x, 1if X2 ^ 0

y = - 1X, 1
ifX2 < 0

2 INTEGER*4 any INTEGER
argument

INTEGER*4 None

Note 9

Figure 29 (Part 3 of 4). Miscellaneous Mathematical Functions

252 VS FORTRAN Version 2 Language and Library Reference

General

Function

Entry

Name Definition Number

Argument(s)
Type' Range

Function Value

Type and Range', ^
Error

Code

SIGN 2 REALM any REAL
argument

REAL*4 None

Note 9

DSIGN 2 REALM any REAL
argument

REAL*8 None

Note 9

QSIGN 2 REAL*16 any REAL
argument

REAL*16 Note 9

Double

preci
sion

product

DPROD y = Xi* X2 2 REALM any REAL
argument

REAL*8 None

Note 9

Figure 29 (Part 4 of 4). Miscellaneous Mathematical Functions

Notes to Figure 29:

REALM, REAL*8, and REAL*16 arguments correspond to REAL, DOUBLE PRECISION, and
EXTENDED PRECISION arguments, respectively, in VS FORTRAN Version 2.

Floating-point overflow can occur.

The expression Xi(modulox2) is defined as x^ - [Xi/Xj] • X2, where the brackets indicate that
an integer is used. The largest integer whose magnitude does not exceed the magnitude of
x^/Xg is used. The sign of the integer is the same as the sign of X1X2.

If X2 = 0, the modulus function is mathematically undefined. In addition, a divide exception is
recognized and an interruption occurs.

Y = 16®3(1 - 16"®) for regular precision routines, 16®®(1 - 16"''^) for double-precision rou
tines, and 16®®(1 - 16" 2®) for extended precision routines.

I IX II is such that v = | m j, where m is the greatest integer satisfying the relationship
1m I 5 IX I, and the resulting v is expressed as a real value.

2 is a complex-number of the form x^ + X2/.

(IX 11 is such that n = \m\, where m is the greatest integer satisfying the relationship
jmj < jxj.

This function is generated in-line.

This function is generated as an out-of-line library call.

Available also in the alternate mathematical library.

General Generic

Function Name

Entry Name

Name® Definition Number

Argument(s)
Type Range

Function Value

Type and Range

Conversion INT

to integer
Note 1 y = (sign of x) • n

where n is the

largest
integer s j x j

1 INTEGERM any INTEGER
argument

INTEGERM

INT

Note 2

1 REAL*4 any REAL
argument

INTEGERM

IDINT 1 REAL*8 any REAL
argument

INTEGERM

IQINT 1 REAL*16 any REAL
argument

INTEGERM

Note 1 forz = x, -f- Xji,
y = INT(Xi)

1 COMPLEX*8 any COMPLEX
argument

INTEGERM

Figure 30 (Part 1 of 3). Conversion and Maximum/Minimum Functions

Chapter 5. Intrinsic Functions 253

General

Function

Generic

Name

Entry Name
Name^ Definition

Argument(s)
Number Type Range

Function Value

Type and Range

Note 3 HFIX y = (sign of x) • n
where n is the

largest
integer ^ | x |

1 REAL*4 any REAL
argument

INTEGER*2

Conversion

to real

REAL REAL

Note 4

1 INTEGER*4 any INTEGER
argument

REALM

Note 1 1 REAL*4 any REAL
argument

REAL*4

SNGL 1 REAL*8 any REAL
argument

REAL*4

SNGLQ 1 REAL*16 any REAL
argument

REALM

Note 1 (or z = Xi + Xj/,
y - REAL(x,)

1 COMPLEX*8 any COMPLEX
argument

REALM

•REAL 1 COMPLEX*16 any COMPLEX
argument

REAL*8

QREAL 1 COMPLEX*32 any COMPLEX
argument

REAL*16

Conversion

to double

DBLE DFLOAT 1 INTEGER*4 any INTEGER
argument

REAL*8

DBLE 1 REALM any REAL
argument

REAL*8

Note 1 1 REAL*8 any REAL
argument

REAL*8

DBLEQ 1 REAL*16 any REAL
argument

REAL*8

Note 1 forz = Xi Xj/,
y = DBLE(x,)

1 CQMPLEX*8 any COMPLEX

argument

REAL*8

Conversion

to extended

precision

QEXT QFLOAT 1 INTEGERM any INTEGER
argument

REAL*16

QEXT 1 REAL*4 any REAL
argument

REAL*16

QEXTD 1 REAL*8 any REAL
argument

REAL*16

Conversion

to complex
CMPLX Note 1 y = x, + Xj/ where

x•^ = REAL(arg)
and Xj = 0.

1 INTEGERM any INTEGER
argument

COMPLEX*8

CMPLX 1 REALM any REAL
argument

COMPLEX*8

Note 1 1 REAL*8 any REAL
argument

COMPLEX*8

QCMPLX y = x, + Xg/
where X, = arg
and Xg = O.QO

1 REAL*16 any REAL
argument

COMPLEX*32

Note 1 y = Xy + Xj/
for arg = x^ + x^i

1 COMPLEX*8 any COMPLEX

argument
COMPLEX*8

Note 3 DCMPLX y = Xy + Xg/
where x, = arg
andXj = 0.

1 REAL*8 any REAL
argument

COMPLEX*16

Figure 30 (Part 2 of 3). Conversion and Maximum/Minimum Functions

254 VS FORTRAN Version 2 Language and Library Reference

General

Function

Generic

Name

Entry Name

Name^ Definition Number

Argumentfs)
Type Range

Function Value

Type and Range

CMPLX Note 1 y = x, + Xj/ where
Xi = REAL(argl)
andX2 = REAL(arg2)

2 INTEGER *4 any INTEGER

argument
COMPLEX*8

CMPLX 2 REAL*4 any REAL
argument

COMPLEX*8

Note 1 2 REAL*8 any REAL
argument

COMPLEX*8

QCMPLX y = Xi + Xj/
where Xi = argi
andXj = arg2

2 REAL*16 any REAL

argument
COMPLEX*32

Note 3 DCMPLX y = Xi -F Xj/
where x^ = arg1
andX2 = arg2

2 REAL*8 any REAL
argument

COMPLEX*16

Maximum

value

MAX MAXO y = max(xi,...x„) ^ 2 INTEGER*4 any INTEGER
arguments

INTEGER*4

AMAX1 > 2 REAL*4 any REAL

arguments
REAL*4

DMAX1 > 2 REAL*8 any REAL
arguments

REAL*8

QMAX1 > 2 REAL*16 any REAL
argument

REAL*16

Note 3 AMAXO > 2 INTEGER*4 any INTEGER
arguments

REAL*4

Note 3 MAX1 > 2 REAL*4 any REAL
arguments

INTEGER*4

Minimum

value

MIN MINO y = min(xi,...x„) > 2 INTEGER*4 any INTEGER
arguments

INTEGER*4

AMIN1 > 2 REAL*4 any REAL
argument

REAL*4

DMIN1 > 2 REAL*8 any REAL
arguments

REAL*8

QMIN1 > 2 REAL*16 any REAL
arguments

REAL*16

Note 3 AMINO > 2 INTEGER*4 any INTEGER
arguments

REAL*4

Note 3 MINI S: 2 REAL*4 any REAL
arguments

INTEGER*4

Figure 30 (Part 3 of 3). Conversion and Maximum/Minimum Functions

Notes to Figure 30:

No specific name exists for this case. Tfie generic name must be used for ttils argument type.

IFIX is an alternative specific name for triis function.

Specific name must be used to obtain function value of tfiis type.

FLOAT is an alternative specific name for ttiis function.

All functions in all parts of ttiis figure are in-line functions. None of the function names can be
passed as arguments. There are no library error codes because there are no library rou
tines.

Chapter 5. Intrinsic Functions 255

General

Function^

Entry
Name Definition

Argument

Number

Argument
Type

Function Value

Type and Range

Error

Code

Convert

character

to integer

ICHAR Position of

character in

EBCDIC collating
sequence

1 CHARACTER INTEGERM None

Convert

integer to
character

CHAR Character

corresponding to
position of argument
in EBCDIC

collating sequence

1 INTEGER*4 CHARACTER*1 188

Length of
character

item

LEN Length of
character

entity

1 CHARACTER INTEGER*4 None

Index of

character

item

INDEX Location of

substring dj
in string

2 CHARACTER INTEGER*4 189,
190

Alphamerically
greater than
or equal

LGE a, ^ a2
Note 1

2 CHARACTER LOGICAL*4 191,

192

Alphamerically
greater than

LGT 3^ ^ ^2
Note 1

2 CHARACTER LOGICAL*4 191,

192

Alphamerically
less than or

equal

LLE a•^ < 32
Note 1

2 CHARACTER LOGICAL*4 191,

192

Alphamerically
less than

LLT a^ ^ a^
Note 1

2 CHARACTER LOGICAL*4 191,

192

Figure 31. Character Manipulation Functions

Notes to Figure 31:

Comparison Is made using the ASCII collating sequence.

All functions are generated as out-of-line library calls.

256 VS FORTRAN Version 2 Language and Library Reference

General

Function

Entry

Name Definition Number

Argument(s)
Type Range

Function Value

Type and Range
Error

Code

Logical
AND

lAND k = and (i,j) 2 INTEG£R*4 any INTEGER
arguments

INTEGERM None

Logical
OR

lOR k = or (i.j) 2 INTEGER*4 any INTEGER
arguments

INTEGERM None

Logical
exclusive

OR

lEOR k = xor (],]) 2 INTEGER *4 any INTEGER
arguments

INTEGERM None

Logical
complement

NOT k = not (i) 1 INTEGER*4 any INTEGER
argument

INTEGERM None

Shift

operation
ISHFT k = shift (i,m)

1 is shifted by m
where

for m < 0, shift is
right; m > 0, shift is
left; and m = 0, no
shift

2 INTEGER*4 i is any
INTEGER

argument:
- 32 5 m < 32

INTEGERM 159

Bit testing
and setting

BTEST 1 = bitset (i,m)
tests m-th bit of

argument i

2 INTEGER*4 i is any
INTEGER

argument;
0 S ^ 31

Note 3

LOGICALM 159

IBSET k = bitset (i,m)
sets m-th bit of

argument i to 1

2 INTEGERM INTEGERM 159

IBCLR k = bitclear (i,m)
sets m-th bit of

argument i to 0.

2 INTEGERM INTEGERM 159

Figure 32. Bit Manipulation Functions

Notes to Figure 32:

There are no generic names for the bit manipulation functions. All specific names may be
passed as actual arguments.

The first four functions are always in-line. The second four are in-line if the second argument
is an integer constant; a library function is called if the second argument is an integer variable
or expression.

The bits in the first argument (i) are numbered from right to left, beginning at zero. Thus m =
0 corresponds to the right-most bit of the argument i.

Chapter 5. Intrinsic Functions 257

Examples of Bit Manipulation Functions

Examples

I = lAND (K + 3,-1)

J = IOR(J,K)

L = IEOR(5,-1)

M = NOT(J)

K2 = -5

I = ISHFT(J + K.K2)

DIMENSION J(5),IAR(10)
J(KL) = IBSET (IBCLR
(IAR(10),4) ,5)

Explanations

The variable K and the constant 3 are added; a logical AND is performed on their sum and the
constant -1; the result is stored in variable I.

A logical OR is performed of variables J and K; the result is stored in variable J (replacing its
previous value).

A logical exclusive OR is performed on constants 5 and -1; the result is stored in variable L

A logical NOT is performed on variable J; the result is stored in variable M.

The variables J and K are added; a right shift of 5 bits is performed on their sum; the result is
stored in variable I. (Five existing bits were shifted off at the low-order (right) end, and 5 zero bits
were shifted in at the high-order (left) end.)

The value of the tenth element of array lAR is obtained; bit 4 of this value is set to 0: then bit 5 of
this value is set to 1; this value is then stored in the element of array J that is identified by the
value of variable KL.

258 VS FORTRAN Version 2 Language and Library Reference

Genetic

Naine Definition

Arguments',"
1M RM R'-a

Arguments',
R-'ie CB

4

C*16 0*32

Function Value

Type^
Function Value

Length^

ABS Absolute value X X X X Argument Argument

X X X Real 1/2 Argument

ACOS Arc cosine X X X Real Argument

AINT Truncation X X X Real Argument

ANINT Nearest whole number X X Real Argument

ASIN Arc sine X X X Real Argument

ATAN Arc tangent X X X Real Argument

ATAN2 Arc tangent(2 argu
ments)

X X X Real Argument

CMPLX Conversion to complex X X X X Complex 8

Note 3 X Complex 32

X X X Complex 8

X Complex 32

CONJG Conjugate X X X Complex Argument

COS Cosine X X X X X X Argument Argument

COSH Hyperbolic cosine X X X Real Argument

COTAN Cotangent X X X Real Argument

DBLE Express as R*8 X X X X X Real 8

DIM Positive difference X X X X Argument Argument

ERF Error function X X X Real Argument

ERFC 1 - Error function X X X Real Argument

EXP Exponentiation X X X X X X Argument Argument

GAMMA Gamma function X X Real Argument

IMAG Imaginary part X X X Real 1/2 Argument

INT Express as 1*4 X X X X X Integer 4

LGAMMA Log of gamma function X X Real Argument

LOG Natural logarithm X X X X X X Argument Argument

LOGIC Common logarithm X X X Real Argument

MAX Maximum value X X X X Argument Argument

MIN Minimum value X X X X Argument Argument

MOD Remainder X X X X Argument Argument

MINT Nearest integer X X Integer 4

QEXT Express as R*16 X X X Real 16

REAL Conversion to real X X X X Real 4

X X X Real 1/2 Argument

SIGN Transfer of sign X X X X Argument Argument

SIN Sine X X X X X X Argument Argument

SINH Hyperbolic sine X X X Real Argument

SQRT Square root X X X X X X Argument Argument

TAN Tangent X X X Real Argument

TANH Hyperbolic tangent X X X Real Argument

Figure 33. Generic Names for Intrinsic Functions

Chapter 5. Intrinsic Functions 259

Notes to Figure 33:

' "X" indicates a permissible mode of argument.

^ "Argument" indicates that the type or length of the result is the same as that of the
argument(s).

' The specific name DCMPLX must be used to convert an R*8 argument to a C*16 value (or to
convert and express two R*8 arguments as a C*16 value).

** If more than one argument is permitted, all arguments must be of same type and length.

260 VS FORTRAN Version 2 Language and Library Reference

^ Part 2. Library Reference

The following topics are discussed in Part 2:

Mathematical, Character, and Bit Routines

Service Subroutines

Data-in-Virtual Subroutines

Extended Error Handling Subroutines and Error Option Table

Multitasking Facility (MTF) Subroutines

For related error messages, see Appendix D, "Library Procedures and
Messages" on page 375.

Part 2. Library Reference 261

Chapter 6. Mathematical, Character, and Bit Routines

The mathematical, character, and bit routines are supplied by the VS FORTRAN
Version 2 library. They perform commonly used computations and conver
sions. These routines are called either explicitly or implicitly.

Explicitly Called Routines
All the explicitly called routines are intrinsic functions. Each of these functions
performs a mathematical, character, or bit manipulation. For detailed informa
tion about these functions, see Chapter 5, "Intrinsic Functions" on page 243.

Implicitly Called Routines
The implicitly called routines are used to implement certain FORTRAN oper
ations. The compiler generates the instructions necessary to call the appro
priate routine. For example, for the following source statement:

ANS = BASE**EXPON

where BASE and EXPON are REAL*4 variables, the compiler generates a refer
ence to FRXPR#, the entry name for a routine that raises a real number to a
real power.

The implicitly called mathematical and character routines in the VS FORTRAN
Version 2 library are described in Figure 35 on page 265 and Figure 36 on
page 266. The column headed "Implicit Function Reference" shows a repre
sentation of a source statement that might appear in a FORTRAN source
module and cause the routine to be called. The rest of the column headings
have the same meaning as those used with the explicitly called routines.
Implicitly called service routines are in Figure 37 on page 267.

For routines that involve exponentiation, the action taken within a routine
depends upon the types of the base and exponent used. Figure 38 on
page 267 through Figure 41 on page 268 show the result of an exponentiation
performed with the different combinations and values of base and exponent. In
these figures, / and j are integers; a and b are real numbers; and c is a
complex number.

Detailed information for calling the routines from assembler language is given
in Appendix B, "Assembler Language Information" on page 343.

Alternative Mathematical Library Subroutines
For a small subset of the standard mathematical routines, alternative routines

are available. These routines are identical to those in VS FORTRAN Version 1.

In VS FORTRAN Version 2, they are referred to as the alternative mathematical
_ library. Alternative routines are available for the intrinsic functions ALOG,

ALOG10, DLOG, DLOG10, SQRT, DSQRT, CABS, CDABS, SIN, COS, DSIN,
•COS, ACOS, DACOS, ASIN, DASIN, ATAN, ATAN2, DATAN, DATAN2, TAN.
COTAN, DTAN, DCOTAN, EXP, and DEXP, and for the implicitly called functions

Chapter 6. Mathematical, Character, and Bit Routines 263

FDXPD# and FRXPR#. These alternative routines are documented in VS
FORTRAN: Language and Library Reference, SC26-4119. VS FORTRAN
Version 2 Instaliation and Customization for VM and VS FORTRAN Version 2 '

Installation and Customization for MVS describe how these routines can be

installed for your use.

Figure 34 shows which libraries contain the various scalar mathematical rou
tines for each version.

Version 1 Version 2
Routines Library Library

New scalar math routines
- VSF2FORT

Old standard scalar math routines VFORTLIB VSF2MATH

Old alternative math routines VALTLIB Not available

Figure 34. Libraries Containing Mathematical Routines

264 VS FORTRAN Version 2 Language and Library Reference

General

Function

Entry

Name'

Implicit Function
Reference^

Argument(s)
Number

Argument(s)
Type'

Function

Value Type'
Error

Code

Multiply and CDMPY# y = z^*Z2 2 COMPLEX*16 C0MPLEX*16

divide complex
numbers

CDDVD# y = ZylZi 2 C0MPLEX*16 COMPLEX * 16

CMPY# y = Zi * Z2 2 COMPLEX*8 COMPLEX*8

CDVD# y = Zi/^2 2 C0MPLEX*8 COMPLEX*8

CQMPY# y = Zi * Z2 2 COMPLEX*32 COMPLEX*32

CQDVD# y = Zi/Z2 2 COMPLEX*32 COMPLEX*32

Compare of
complex

CXMPR#
Note 4

y = z-i compop Zj

Note 5

2 COMPLEX

(of all lengths)
LOGICAL*4

numbers

Raise an

integer to an
FIXPI# y = / ** y 2 i = INTEGER*4

j = INTEGER*4
INTEGER*4 241

integer power

Raise a real

number to an

FRXPI# y = a ** i 2 a = REAL*4

j = INTEGER*4
REALM 242

integer power

FDXPI# y = a ** j 2 a = REAL*8

j = INTEGER*4
REAL*8 243

FQXPI# y = a ** j 2 a = REAL*16

j = INTEGER*4
REAL*16 248

Raise a real

number to a

FRXPR#
Note 6

y = a **b 2 a = REAL*4

b = REAL*4

REALM 118,

244

real power

FDXPD#
Note 6

y = a ** b 2 a = REAL*8

b = REAL*8

REAL*8 119,
245

FQXPQ# y = a **b 2 a - REAL*16

b = REAL*16

REAL*16 249

250

Raise 2 to a FQXP2# y = 2 **b 1 b = REAL*16 REAL*16 260

real power

Raise a

complex

FCDXI# y = z **j 2 z = COMPLEX*16

j = INTEGER*4
COMPLEX*16

247

number to an

integer power

FCXPl# y = z **j 2 z = COMPLEX*8

j = INTEGER*4
COMPLEX*8

246

FCQXI# y = z **j 2 Z = COMPLEX*32

j = INTEGER*4
COMPLEX*32

270

Figure 35. Implicitly Called Mathematical Routines

Notes to Figure 35:

This name must be used in an assembler language program to call the routine: the # char
acter is a part of the name and must be included.

This is only a representation of a FORTRAN statement; it is notthe only way the routine may
be called.

REAL*4, REAL*8, and REAL*16 arguments correspond to real, double precision, and
extended precision arguments, respectively, in VS FORTRAN Version 2.

CXMPR# is an entry name in the library module AFBCCMPR, which is also used for a
compare of character arguments.

compop is one ofthe following relational operators: equal or not equal (.EQ. or .NE.).

Available also in the alternative mathematical library.

Chapter 6. Mathematical, Character, and Bit Routines 265

266

Entry Implicit Function Argument(s) Argument(s) Function Error
Name Reference Number Type Value Type Code

CCMPR^ y = compop Xj 6 CHARACTER Any CHAR 193
Note 2 Note 1 ACTER 194

argument

CMOVE U y = X 4 CHARACTER Any CHAR 195

Note 2 ACTER 196

argument 197

CNCAT# y = XiZ/Xj.. jf^/x„ ^ 2 CHARACTER Any CHAR 198

ACTER 199

argument

Figure 36. Implicitly Called Character Routines

Notes to Figure 36:

Where compop is one of the following relational operators:

equal .EQ.
not equal .NE.

greater than .GT.
less than .LT.

greater than or equal .GE.
less than or equal .LE.

Each character argument implies a pointer to the location and a pointer to the length. The
argument list for CCMPR# also has a pointerto the relational operator [compop) and a pointer
for return of result.

For programs produced by Release 4.0 of theVS FORTRAN Version 1 Compiler, the library
functions used for the comparison ofcharacter type items and for the assignment ofcharacter
type items are not invoked. All these operations are performed in-line. These routines
remain in the VS FORTRAN Version 2 library to support programs compiled with releases of
the compiler earlier than VS FORTRAN Version 1 Release 4.0.

VS FORTRAN Version 2 Language and Library Reference

Entry Error

Name Function Arguments Code

DSPAN# Calculate dimension factors and Array 187

DSPN2# span of adjustable dimension description

DSPN4# array.

DYCMN# Obtain storage and relocate adcons COMMON and 156

for DYNAMIC COMMON. adcon informa 158

tion

Figure 37. Implicitly CalledService Routines

Exponent (J) Exponent(J) Exponent (J)

Base (1) J > 0 J = 0 J < 0

1 > 1 Compute the Function Function

function value value = 1 value = 0

1 = 1 Compute the Function Function

function value value = 1 value = 1

1 = 0 Function Error message Error message

value = 0 241 241

1 = -1 Compute the Function If J is an odd number.

function value value = 1 function value = -1.

If J is an even number.

function value = 1.

1 < -1 Compute the Function Function

Function value value = 1 value = 0

Figure 38. Exponentiation with Integer Base and Exponent

Exponent (J) Exponent(J) Exponent (J)

Base (A) J > 0 J = 0 J < 0

A > 0 Compute the Function Compute the

function value value = 1 function value

A = 0 Function Error message Error message

value = 0 242 or 242 or

243 243

A < 0 Compute the Function Compute the

function value value = 1 function value

Figure 39. Exponentiation with Real Base and Integer Exponent

Exponent(B) Exponent(B) Exponent(B)

Base (A) B > 0 B = 0 B < 0

A > 0 Compute the Function Compute the

function value value = 1 function value

A = 0 Function Error message Error message

value = 0 244 or 244 or

245 245

A < 0 Error message Function Error message

118 or value = 1 118 or

119 119

Figure 40. Exponentiation with Real Base and Exponent

Chapter 6. Mathematical, Character, and Bit Routines 267

Base (C)
C = P + Qi

Exponent (J)
J > 0

Exponent (J)
J = 0

Exponent(J)
J < 0

P > 0 and

Q > 0
Compute the
function value

Function

value = 1 + 0 /

Compute the
function value

P > 0 and

Q = 0
Compute the
function value

Function

value = 1 + 0 /

Compute the
function value

P > 0 and

Q < 0
Compute the
function value

Function

value = 1 + 0 /

Compute the
function value

P = 0 and

Q > 0
Compute the
function value

Function

value = 1 + 0/

Compute the
function value

P = 0 and

Q = 0
Function value

0 + 0/

Error message
246 or

247

Error message
246 or

247

P = 0 and

Q < 0
Compute the
function value

Function

value = 1 + 0/

Compute the
function value

P < 0 and

Q > 0
Compute the
function value

Function

value = 1 + 0 i

Compute the
function value

P < 0 and

Q = 0
Compute the
function value

Function

value = 1 + 0/

Compute the
function value

P < 0 and

Q < 0
Compute the
function value

Function

value = 1 + 0/

Compute the
function value

Figure 41. Exponentiation with Complex Base and Integer Exponent

268 VS FORTRAN Version 2 Language and Library Reference

Chapter 7. Service Subroutines

The VS FORTRAN Version 2 Library provides subroutines for general program
ming tasks. The subroutines are called by the appropriate entry name in a
CALL statement. The following VS FORTRAN Version 2 service routines are
described in this chapter:

Mathematical Exception Test Subroutines

DVCHK

OVERFL

Tests for divide-check exception

Tests for exponent overflow or underflow

Storage Dump Subroutines

DUMP/PDUMP Provides a symbolic dump of a specified area of storage

CDUMP/CPDUMP Provides a symbolic dump of a specified area of storage containing character
data

SDUMP Provides a symbolic dump of all variables in a program unit

Return Code Subroutines

SYSRCS

SYSRCT

SYSRCX

Saves a return code value for future termination

Obtains the value of the currently saved return code

Ends processing of the program using either the saved return code or a sup
plied return code

Other Service Subroutines

ASSIGNM

CLOCK/CLOCKX

CPUTIME

DATIM/DATIMX

EXIT

FILEINF

SYSABN/SYSABD

Moves a character string containing double-byte data to a character variable,
substring or array element, preserving balanced shift codes

Provides the value of the time-of-day clock

Lets you determine the amount of CPU time used by a program or a portion
of a program

Provides extended information about the date and time

Ends processing of the program

Sets up file characteristics that will be used by an OPEN or an INQUIRE state
ment

Specifies abnormal termination of your job,with or without an accompanying
storage dump

UNTNOFD/UNTANY Identifies FORTRAN unit numbers that are available

XUFLOW Allows or suppresses a program interrupt caused by exponent underflow

For information on data-in-virtual subroutines, see Chapter 8, "Data-in-Virtual
Subroutines" on page 293.

For information on extended error-handling subroutines, see
Chapter 9, "Extended Error-Handling Subroutines and Error Option Table" on
page 315.

For information on multitasking facility subroutines, see Chapter 10, "Multi
tasking Facility (MTF) Subroutines" on page 335.

Chapter 7. Service Subroutines 269

Mathematical Exception Test Subroutines
These routines test the status of indicators and may return a value to the
calling program. In the following description of the routines, k represents an
integer value.

DVCHK Subroutine
The DVCHK subroutine tests for a divide-check exception and returns a value
indicating the existing condition.

Syntax

CALL DVCHK (/c)

is an integer or real variable in the program unit.

The values of k returned have the following meanings:

Value Meaning

The divide-check indicator is on.

The divide-check indicator is off.

OVERFL Subroutine
The OVERFL subroutine tests for exponent overflow or underflow, and returns a
value indicating the existing condition. After testing, the overflow indicator is
turned off.

Syntax

CALL OVERFL {k)

is an integer variable defined within this program unit.

The values of k returned have the following meanings:

Value Meaning

1 Floating-point overflow occurred last.
2 No overflow or underflow condition is current.
3 Floating-point underflow occurred last.

Note: The values for 1 and 3 indicate the iast one to occur; if the same state
ment causes an overflow followed by an underflow, the value returned is 3
{underflow occurred last).

270 VS FORTRAN Version 2 Language and Library Reference

\

\

-

DUMP/PDUMP

Storage Dump Subroutines

DUMP/PDUMP Subroutines
The DUMP/PDUMP subroutine dynamically dumps a specified area of storage
onto the system output data set. When you use DUMP, the processing stops
after the dump; when you use PDUMP, the processing continues after the dump.

Syntax

CALL {DUMP I PDUMP} (a^,b^,k^,a2,b2,k2,...)

a and b

are variables in the program unit. Each indicates an area of storage to be
dumped.

Either a or b can represent the upper or lower limit of the storage area.

specifies the dump format to be used.

The values that can be specified for k and their meanings are:

Value Format Requested

0 Hexadecimal

1 LOGICAL* 1

2 LOGICAL*4

3 INTEGER*2

4 INTEGER*4

5 REAL*4

6 REAL*8

7 COMPLEX*8

8 COMPLEX*16

9 CHARACTER

10 REAL*16

11 COMPLEX*32

Programming Considerations for DUMP/PDUWIP
A load module or phase may occupy a different area of storage each time it is
executed. To ensure that the appropriate areas of storage are dumped, the fol
lowing conventions should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification
of limits for the array should be from the first element in the array to the last
element. For example, assume that A is a variable in common, B is a real
number, and TABLE is an array of 20 elements. The following call to the
storage dump routine could be used to dump TABLE and Bin hexadecimal
format, and stop the program after the dump is taken:

CALL DUHP(TABLE(1),TABLE(20),0,B,B,0)

If an area of storage in common is to be dumped at the same time as an area
of storage not in common, tt.e arguments for the area in common shou dbe
given separately. For example, the foiiowing call to the storage dump ro

Chapter 7. Service Subroutines 271

DUMP/PDUMP

could be used to dump the variables A and B in REAL*8 format without stop
ping the program:

CALL PDUMP(A,A,6,B,B,6)

If variables not in common are to be dumped, each variable must be listed sep
arately in the argument list. For example, if R, P, and Q are defined implicitly in
the program, the statement

CALL P0UMP(R,R,5,P,P,5,Q,Q,5)

should be used to dump the three variables in REAL*4 format. If the statement

CALL PDUMP(R,Q,5)

is used, all main storage between R and Q is dumped, which may or may not
include P, and may include other variables.

If an array and a variable are passed to a subroutine as arguments, the argu
ments in the call to the storage dump routine in the subroutine should specify
the parameters used in the definition of the subroutine. For example, if the sub
routine SUBI is defined as:

SUBROUTINE SUBI(C,Y)
DIMENSION X (10)

and the call to SUBI within the source module is:

DIMENSION A (10)

CALL SUBI (A,B)

then the following statement should be used in SUBI to dump the variables in
hexadecimal format without stopping the program:

CALL PDUMP (X(1),X(10),0,Y,Y,0)

272 VS FORTRAN Version 2Language and Library Reference

•r

f

CDUMP/CPDUMP

CDUMP/CPDUMP Subroutines
The CDUMP/CPDUMP subroutine dynamically dumps a specified area of
storage containing character data. When you use CDUMP, the processing stops
after the dump; when you use CPDUMP the processing continues after the
dump.

Syntax

CALL {CDUMP \ CPDUMP} (ai.bi.aa.bj. ••)

a and b

variables in the program unit. Each indicates an area of storage to be
dumped.

Either a or b can represent the upper or lower limit of each storage area.

The dump is always produced in character format. {A dump format type (as for
DUMP/PDUMP) must not be specified.)

Programming Considerations for CDUMP/CPDUMP
A load module may occupy a different area of storage each time it is executed.
To ensure that the appropriate areas of storage are dumped, the following con
ventions should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification
of limits for the array should be from the first element in the array to the last
element. For example, assume that A is a variable in common, B is a real
number, and TABLE is an array of 20 elements. The following call to the
storage dump routine could be used to dump TABLE and B in hexadecimal
format, and stop the program after the dump is taken:

CALL CDUMP(TABLE(1),TABLE(20),0,B,B,0)

Chanter 7 Service Subroutines 273

SDUMP

SDUMP Subroutine
The SDUMP subroutine provides a symbolic dump that is displayed in a format
dictated by variable type as coded or defaulted in your source. Data is dumped
on the error message unit. The symbolic dump is created by program request,
on a program unit basis, using CALL SDUMP. (In addition, variables can be
dumped automatically upon abnormal termination using the compile-time option
SDUMP. For more information on the compile-time option, see VS FORTRAN
Version 2 Programming Guide.)

Items displayed are;

All referenced, local, named variables in their FORTRAN-defined data repre
sentation

*- All variables contained in a blank common, named common, or a dynamic
common area in their FORTRAN-defined data representation

Nonzero or nonblank character array elements only

Array elements with their correct indexes

Note that the amount of output produced can be very large, especially if your
program has large arrays, or large arrays in common blocks. For such pro
grams, you may want to avoid calling SDUMP.

Syntax

CALL SDUMP [{rtnurtn.,...)]

Values for uninitialized variables are unpredictable. Arguments in uncalled
subprograms or in subprograms with argument lists shorter than the
maximum may cause the SDUMP subroutine to fail.

The display of data can also be invoked automatically. If the run-time
option ABSDUMP is in effect and your program abends (abnormally termi-

274 VS FORTRAN Version 2 Language and Library Reference

rtn^,rtn2,...
are names of other program units from which data will be dumped. These
names must be listed in an EXTERNAL statement.

Programming Considerations for SDUMP
To obtain symbolic dump information and location of error information,
compilation must be done either with the SDUMP option or with the TEST
option.

Calling SDUMP and specifying program units that have not been entered
gives unpredictable results.

Calling SDUMP with no parameters produces the symbolic dump for the
current program unit:

CALL SDUMP

*• An EXTERNAL statement must be used to identify the names being passed
to SDUMP as external routine names.

At higher levels of optimization (1, 2, and 3), the symbolic dump may show
incorrect values for some variables because of compiler optimization tech
niques.

SDUMP

nates) in a program unit compiled with the SDUMP option or with the TEST
option, all data In that program unit is automatically dumped.

Additionally, all data in any program unit in the save area traceback chain
compiled with the SDUMP option or with the TEST option is also dumped.
Data occurring in a common block is dumped at each occurrence, because
the data definition in each program unit may be different. The display of
data follows the AFB240I message and the traceback messages on the
object time error unit.

Examples follow of calling SDUMP from the main program and from a subpro
gram.

In the main program, the statement

EXTERNAL PGH1,PGM2,PGM3

would make the address of subprograms PGM1, PGM2, and PGM3 available for
a call to SDUMP:

CALL SDUMP (PGM1,PGM2, PGM3)

that would cause variables in PGM1, PGM2, and PGM3 to be printed.

In PGM1, the statement

EXTERNAL PGM2,PGM3

makes PGM2 and PGM3 available. (PGM1 is missing because the call is in
PGM1.)

The statements

CALL SDUMP

CALL SDUMP (PGM2,PGM3)

will dump variables for PGM1, PGM2, and PGM3.

For information about output from symbolic dumps, see VS FORTRAN Version 2
Programming Guide.

Chapter 7. Service Subroutines 275

Return Code

Return Code Subroutines

The return code subroutines let you manipulate a return code that will be
issued when your application program terminates normally. The CALL EXIT or
CALL SYSRCX statement stops the program and supplies the saved value of
the return code to the operating system.

SYSRCS Subroutine
You can set or modify the saved value of the return code by issuing a call to
SYSRCS. The initial value of the saved return code is 0.

Syntax

CALL SYSRCS (n)

is an integer expression that must be within the range 0 to 4095, inclusive.
This value is saved and used as the return code for completion of the
program when a CALL EXIT is issued. This value will also be returned by
SYSRCX if no parameter is specified there.

SYSRCT Subroutine
SYSRCT obtains the value of the currently saved return code. The initial value
of the saved return code is 0.

Syntax

CALL SYSRCT (m)

m

is an integer variable. SYSRCT stores the current value of the saved return
code into the integer variable m, and returns to the calling program.

SYSRCX Subroutine
SYSRCX stops the processing using either the saved return code or the return
code supplied in this call {k). The initial value of the supplied return code is 0.

Syntax

CALL SYSRCX [(/c)]

is an integer expression that must be within the range 0 to 4095, inclusive.
If k is specified, processing stops normally, and control is returned to the
operating system with the return code specified by k. Any previously saved
return code is ignored.

If no parameter is specified, the processing is stopped normally. If a return
code was set by a previous call to SYSRCS, control is returned to the operating

276 VS FORTRAN Version 2 Language and Library Reference

ASSIGNM

system with the saved return code. If no return code was previously set,
control is returned to the operating system with a return code of 0.

Other Service Subroutines

ASSIGNM Subroutine
The ASSIGNM subroutine will move a character string containing double-byte
data to a character variable, substring or array element, preserving the bal
anced shift codes.

Syntax

CALL ASSIGNM (input, output, rcode, rsncode)

input
is a character variable, array element, or character expression containing
the characters to be moved.

output
is a character variable, character substring or character array element in
which is placed the moved characters.

rcode

is an integer variable or array element of length 4 which will contain the
return code from the ASSIGNM subroutine.

rsncode

is an integer variable or array element of length 4 which will contain the
reason code from the ASSIGNM subroutine.

Return Reason

Codes Codes

0 0

4 3

8 120

12 No value

returned

Explanation

Successful completion

Warning; output string truncated

Error; Output string overlaps input string
Error is detected before data is moved; output is never performed.

Severe Error, required parameter is missing

Programming Considerations for ASSIGNM
The input string will be moved to the output storage location. The length of the
input string and the output area need not be the same. Ifthe input string is
shorter than the output area, the input string will be moved to the output area
and padded on the right with EBCDIC blank characters {X'40'). Ifthe input
string is longer than the output area, the input string will be truncated and
moved to the output area. Truncation will occur using the following rules:

EBCDIC characters will be truncated at any position

Double-byte characters will be truncated after the second byte of the
double-byte character. A shift-in character will be added after the double-
byte character.

Chapter 7. Service Subroutines 277

CLOCK/CLOCKX

If the truncation will not leave enough room for a shift-in character to be
added, the last double-byte character will be truncated and a shift-in char-
acter plus a pad character will be added to the output string.

Figure 42 shows how ASSIGNM pads the output string and Figure 43 shows
how ASSIGNM truncates the output string.

Column: 1

CHARACTER* 10 DBCSJTUFF
CHARACTER*15 STUFF

INTEGER*4 RTCOOE.RSNCODE
DBCSJTUFF = 'HOUSE<kk>'
CALL ASSIGNH (OBCS_STUFF,STUFF,RTCODE.RSNCODE)

* These are the results of the CALL:

* STUFF = HOUSE<kk>bbbbbb (where "b" is a blank character)
* RTCODE = 0

* RSNCODE = 0 (indicates padding with EBCDIC blanks)

Figure 42. Example of ASSIGNM Padding

Column: 1 6

CHARACTER*24 DBCS STUFF

CHARACTER*14 STUFFl

CHARACTER*11 STUFF2

INTEGER*4 RTCOOE,RSHCODE
DBCSJTUFF = •<.W.H.A.T .A .L.I.F.E>'
CALL~ASSI6HH (DBCSJTUFF,STUFFl,RTCODE,RSMCODE)

* These are the results of the CALL:

* STUFFl = <.V/.H.A.T .A>

* RTCODE = 4

* RSIiCODE = 3 (indicates truncating)

CALL ASSIGMH (DBCSJTUFF,STUFF2,RTCODE,RSNCODE)
These are the results of the CALL:

STUFF2 = <.V/.H.A.T>b (where "b" is a blank character)
RTCODE = 4

RSNCODE = 3 (indicates truncating)

Figure 43. Example of ASSIGNM Truncation

CLOCK/CLOCKX Subroutines
The values of CLOCK and CLOCKX are derived from the time-of-day clock. The
values are returned in INTEGER*4 variables (to the nearest second) for CLOCK,
or in REAL*8 variables for CLOCKX.

Note: You cannot use the value returned in CLOCK or CLOCKX to derive the

date or time returned from DATIM or DATIMX. The value of the abbreviated

time-of-day clock is not synchronized with the date and time values.

CLOCK

CLOCK returns values of the time-of-day clock to the nearest second. The least
significant bit of the time-of-day clock value returned by CLOCK is incremented
every 1.048576 seconds.

CLOCK conforms to Industrial Real Time FORTRAN (IRTF) standards.

278 VS FORTRAN Version 2 Language and Library Reference

CLOCKX

CLOCK/CLOCKX

Syntax

CALL CLOCK (cpuclk [,count [,max }])

cpuclk
is the value of the time-of-day clock expressed as a positive integer.

count

is the amount by which the time-of-day clock value is increased per second.
The clock value is incremented by 1 for every second, so the count is 1.

max

is the maximum value of the INTEGER*4 time-of-day clock. (In
hexadecimal, this value is 7FFFFFFF.)

CLOCKX returns an abbreviated version of the time-of-day clock in a REAL*8
variable. The least significant bit of this abbreviated version is incremented
every microsecond.

Syntax

CALL CLOCKX (cpuckx [,xcount i,xmax]])

cpuckx
is the value of the time-of-day clock expressed as a REAL*8 variable.

xcount

is the amount by which the time-of-day clock value is increased per second.
The clock value is incremented by 1000000 for every second, so xcount is
always 1000000.

xmax

is the maximum value of the REAL*8 time-of-day clock. (In hexadecimal,
this value is 4D7FFFFFFFFFFFF0.)

Chapter 7. Service Subroutines 279

CPUTIME

CPUTIME Subroutine
The CPUTIME subroutine allows you to determine how much CPU time a
program or a portion of a program has used.

Syntax

CALL CPUTIME (accumcpu, rcode)

accumcpu

a real variable or array element of length 8 in which is placed a value
representing the number of microseconds of CPU time that has accumu
lated since some arbitrary base. This base generally remains unchanged
across successive CPUTIME calls {a non-zero return code indicates other
wise).

On VM, the CPU time returned by the subroutine is in virtual processor
time; that is, the time used directly by the user's virtual machine. On MVS,
the CPU time returned by the subroutine is in task time; that is, the time
accumulated while the task is in execution

rcode

an integer variable or array element of length 4 in which is placed the
return code upon return from CPUTIME.

Return

Code Explanation

0 Successful completion. The value In accumcpu can be used for either of the following:

• As a starting value

• As a value for computing the CPU time used since a previous CPUTIME call

4 Accumulated value reset. The value In accumcpu can be used only as a starting
value. This situation occurs, on MVS only, when the timing information base Is
changed by an Interactive Debug function that is no longer in use.

8 No accumulated value, accumcpu becomes undefined and its value should not be
used. This situation occurs, on MVS only, when the timing information base Is
changed by an Interactive Debug function that Is now In use.

Programming Considerations for CPUTIME:

To obtain the amount of CPU time used in a portion of a program, simply follow
these steps:

1. Code two CPUTIME calls, one before the portion of the program and one
after it.

2. Calculate the difference between the values returned by the two calls.

An example of calculating the CPU time used by a portion of a program follows.

280 VS FORTRAN Version 2 Language and Library Reference

Using CPUTIME Calls:

Column: 1 6

REALMS ACCUH_A, ACCUH_B, USED_TIHE

CALL CPUTIHE (ACCUtt_A, IRCODE_A) ! Call "A"

. (Portion of the program you are interested in)

CALL CPUTIHE (ACCUH_B, IRCODE_B) ! Call "B"
*

* Calculating the CPU time used
*

IF (IRCOOE A .NE. 8 .AND. IRCODE B .EQ. 0) THEN
USEO_tThE = ACCUM_A - ACCUH_B
PRINT *, USED_TIHE,' microseconds of CPU time were used.

END IF

END

CPUTIME

MVS Considerations:

When using Interactive Debug under MVS, the CPUTIME subroutine will not
provide information during any of the following situations:

While a program unit is being timed (TIMER command)

While program sampling is in effect (SAMPLE option of ENDDEBUG
command)

While animation is in progress (STEP command)

If CPUTIME is invoked and one of these Interactive Debug functions either is
being used or has been used, a non-zero return code indicates that the accu
mulation of CPU timing information has been interrupted and the base has been
changed.

Chapter 7. ServiceSubroutines 281

DATIM/DATIMX

DATIM/DATIMX Subroutines
The date and time routine provides the current local date and time. To obtain
date and time information, you need to call either DATIM or DATIMX. The time
value is accurate to the nearest hundredth of a second for MVS, and to the
nearest second for VM.

DATIM

DATIMX

DATIM provides information about the date, time of day, and processor clock.
DATIM conforms to Industrial Real Time FORTRAN (IRTF) standards.

The processor clock value is provided in an abbreviated version, to the nearest
second. The least significant bit of this abbreviated version is incremented
every 1.048576 seconds.

Syntax

CALL DATIM(now)

now

is an integer array of at least 8 INTEGER*4 values. The values returned in
the first 8 elements of the array are as follows;

Element Contents

1 The value of the clock expressed as a positive integer,
the clock is invalid.

2 Milliseconds (0-930) precise to the hundredths position,
the value of time is accurate to the nearest second.)

3 Seconds (0-59)
4 Minutes (0-59)
5 Hour using a 24-hour clock (0-23)
6 Day of the month (1-31)
7 Month of the year (1-12)
8 Year (4 digits, for example: 1986)

A value of -1 indicates that

(For MVS only. Under CMS,

DATIMX provides you with date and time information that can be used by your
program to produce printable or formatted data.

DATIMX obtains values for the processor clock, milliseconds, second, minute,
hour on a 24-hour clock, day of the month, month of the year, 4-digit year, hour
on a 12-hour clock with AM or PM indicator, day of the week, day of the year,
and 2-digit year. You can modify the presentation style of the date and time
information to suit your needs.

The processor clock value is provided in an abbreviated version. The least sig
nificant bit of this abbreviated version is incremented every 1.048576 seconds.

Syntax

CALL DATIMX now)

282 VS FORTRAN Version 2 Language and Library Reference

EXIT Subroutine

now

is an integer array of at least 14 INTEGER*4 values,
the first 14 arguments of the array are as follows:

FILEINF

The values returned in

Element Contents

1 The value of the clock expressed as a positive integer. A value of -1 indicates that

the clock is invalid.

2 Milliseconds (0-990) precise to the hundredths position. (For MVS only. Under CMS,
the value of time is accurate to the nearest second.)

3 Seconds (0-59)
4 Minutes (0-59)
5 Hour using a 24-hour clock (0-23)
6 Day of the month (1-31)
7 Month of the year (1-12)
8 Year (4 digits, for example: 1986)
9 Reserved. Value returned is -1.

10 Hpur using a 12-hour clock (1-12)
11 AM/PM indicator. 1 is returned for AM, 2 for PM.
12 Day of the week (1-7, beginning with Sunday)
13 Day of the year (1-366)
14 Year (2 digits, for example: 86)

The EXIT subroutine terminates the executable program and returns control to
the operating system.

Syntax

CALL EXIT

CALL EXIT performs a function similar to that of the STOP statement, except
that no operator message is produced.

FILEINF Subroutine
The FILEINF subroutine can be used to set up the file characteristics prior to
issuing an OPEN or an INQUIRE statement.

Syntax

CALL FILEINF [(rcode [, parami, valuel, param2, value2, ...j)]

rcode

a four-byte integer variable or array element in which is placed the return
code upon return from FILEINF. If coded, rcode must appear first in the
parameter list.

Chapter 7. Service Subroutines 283

FILEINF

Return

Code Explanation

0 Successful completion

4 Argument list is in incorrect format

8 Argument list contains invalid keyword parameter

12 Parameter DEVICE has an incorrect value

16 Parameter VOLCNT has an incorrect value

20 Parameter VOLSER has an incorrect value

24 Parameter VOLSERS has an incorrect value

28 Parameter CYL has an incorrect value

32 Parameter TRK has an incorrect value

36 Parameter MAXBLK has an incorrect value

40 Parameter MAXREC has an incorrect value

44 Parameter SECOND has an incorrect value

48 Parameter DIR has an incorrect value

52 Parameter RECFM has an incorrect value

56 Parameter LRECL has an incorrect value

60 Parameter BLKSIZE has an incorrect value

param

a character expression whose value when any trailing blanks are removed
can be one of the following:

DEVICE CYL 1 TRK | MAXBLK 1 MAXREC RECFM
VOLCNT SECOND LRECL

VOLSER DIR BLKSIZE

VOLSERS

value

either a character expression, a character array, or an integer expression.
depending on the parameter to which it corresponds.

DEVICE The value that corresponds to DEVICE is a character expression
{1 to 8 characters long) whose value, when any trailing blanks
are removed, is the type of the device. It can be the unit
address such as 123, an IBM-supplied name such as 3380, or a
user-assigned group name such as SYSDA.

VOLCNT The value that corresponds to VOLCNT is an integer expression
of length 4. The expression's value specifies a maximum
number of volumes an output data set requires (valid number is
from 1 to 255).

VOLSER The value that corresponds to VOLSER is a character expression
whose value, when trailing blanks are removed, is a volume
serial number with a length of 1 to 6 characters. Valid charac
ters include letters, numbers, national characters ($, #, (s) and
the hyphen. Special characters are not allowed.

VOLSERS This parameter is used when there are more than one volume
serial numbers needed. The maximum number of serial

numbers is 225. The value that corresponds to VOLSERS is a
character array whose elements, when trailing blanks are

284 VS FORTRAN Version 2 Language and Library Reference

FILEINF

removed, are volume serial numbers with lengths of 1 to 6 char
acters. Each element in the array contains a volume serial
number, except for the last element, which must contain an
asterisk {*) in the first position to indicate the end of the list.

If you want to specify two different volume serial numbers, for
example, volserl and volser2, the correct way to do it is as
follows:

DIMENSION ARRAY(3)
ARRAY(1) = 'volserl'
ARRAY(2) = 'volser2'
ARRAY(3) = '*'
CALL FILEINF (..., 'VOLSERS', ARRAY, ...)

Duplicate volume serial numbers and special characters are not
allowed.

CYL I TRK I MAXBLK | MAXREC
These parameters are mutually exclusive. The value that corre
sponds to them is an integer expression of length 4. The value
of the integer expression is the amount of primary space
required to allocate the new data set. This space information
may be in cylinders, tracks, blocks, or records.

If MAXBLK is specified, the value specified or defaulted for
BLKSIZE will become the block length. If MAXREC is specified,
the value will be converted into blocks. If this parameter is
omitted, the space information will be obtained from the unit

attribute table.

SECOND The value that corresponds to SECOND is an integer expression
of length 4. The expression's value is the amount of additional
space which will be allocated if more space is needed to create
a new data set.

DIR The value that corresponds to DIR is an integer expression of

length 4. Its value is the number of 256-byte records to be con
tained in the directory of a new partitioned data set. If this
parameter is omitted, and the FILE specifier on the OPEN state
ment refers to a member of a new partitioned data set, a value
of 5 will be used.

RECFM The value that corresponds to RECFM is a character expression
whose value, when trailing blanks are removed, must be F, FA,
FB, FBA, V. VA, VB, VBA, VS, VBS, U or UA. RECFM specifies
the record format of the file connected for sequential access.
Direct access files always have a record format of F. If RECFM
is not specified, the value from the default attribute table will be
used.

LRECL The value that corresponds to LRECL is an integer expression of
length 4. The expression's value is the logical record length of
the file. If the record format (RECFM) is variable, the record
length (LRECL) has to include 4 bytes for the record length field.
A value of-1 indicates that the logical record length is unlimited.

BLKSIZE The value corresponding to BLKSIZE is an integer expression of
length 4. The expression's value is the block size length of the
file connected for sequential access. The valid block size range

Chapter 7 Service Subroutines 285

FILEINF

is from 1 to 32760. If BLKSIZE is not specified for a file con
nected for sequential access, the value from the default attribute
table will be used. If the record format is not blocked and the

block size is specified, BLKSIZE will be ignored.

Programming Considerations for FiLEiNF
The parameters can be specified in any order and the CALL can contain none,
some or all of the parameters. If no parameters are used, the file's space and
DCB information will be obtained from the unit attribute table instead. For more

information, see VS FORTRAN Version 2 Programming Guide.

If any parameter is specified more than once on the CALL, the last one will be
used. This rule also applies to the mutually exclusive parameters CYL, TRK,
MAXBLK, and MAXREC.

If an integer parameter is given the value of zero or a character parameter is
given the value of blanks, it will be treated as if the parameter were not coded
on the CALL.

The information provided on the CALL will be applied to a certain OPEN or
INQUIRE statement that follows the CALL. The following OPEN and INQUIRE
statements use the information from the FILEINF routine:

Any OPEN or INQUIRE that indicates an MVS data set name or a CMS file
identifier on the FILE specifier. (Information provided on the CALL will not
be used for an OPEN or INQUIRE that specifies a ddname.)

Any OPEN that specifies STATUS = 'SCRATCH' when there is no explicit file
definition for that file.

The information provided on the FILEINF call is available only for the OPEN or
INQUIRE statement that immediately follows it. To specify file information for a
subsequent OPEN or INQUIRE statement, you must code another FILEINF call.
READ, WRITE, and other FORTRAN statements do not use any of the informa
tion given on the CALL.

Multiple FILEINF Calls: If FILEINF is called with just the return code or without
any parameters, all of the information set up by the previous call will become
ineffective.

If FILEINF is called with any parameters, all of the information set up by the pre
vious call will be replaced.

VM Considerations: Only the following parameters are applicable to VM:
MAXREC, RECFM, LRECL, and BLKSIZE. If the remaining parameters are spec
ified, they will be ignored. The values corresponding to those parameters will
not be verified, but the keywords will be verified.

MVS Considerations: For INQUIRE statements on MVS, only DEVICE, VOLSER
(or VOLSERS), and RECFM are meaningful. If you specify the remaining param
eters, they will be verified and ignored.

Error Conditions: If an error is detected in the CALL, the following OPEN or
INQUIRE statement that is coded to use the FILEINF information will get an error

message also, and the statement will be ignored.

286 VS FORTRAN Version 2 Language and Library Reference

Examples of Valid FILEINF Calls

Example 1:

Column: 1 6

SYSABN/SYSABD

CALL FILEINF(IRCODE, 'TRK', 20, 'SECOND', 10, 'DIR', 5,
1 'RECFM', 'FB', 'LRECL', 80, 'BLKSIZE', 3200)

Example 2:

Column: 1 6

CHARACTER*10 DEV, VOL
DEV='3380'

VOL='J76V0L'

CALL FILEINF(IRCODE, 'DEVICE', DEV, 'V0LSER', VOL,
1 'RECFM', 'FB', 'LRECL', 80, 'BLKSIZE', 3200)

SYSABN/SYSABD Subroutines
The two abend routines allow you to specify abnormal termination of your job,
with or without an accompanying storage dump. If the run-time option STAE is
in effect, the requested abnormal termination occurs after the message
AFB240I, the traceback, and, optionally, the post-abend dump are printed. If
NOSTAE is in effect, the job is terminated immediately.

SYSABN

SYSABD

SYSABN causes abnormal termination of your job without a dump.

Syntax

CALL SYSABN (compl-code)

compl-code
is an INTEGER*4 expression used as the user completion code when the
abend occurs. Valid values are:

1 through 239
241 through 499
501 through 899

1000 through 4095

{Completion code values 240, 500, and 900 through 999 are reserved for VS
FORTRAN Version 2.)

SYSABD causes abnormal termination of your job with a dump. A SYSUDUMP
DD statement is required to produce the dump. If the DO statement is not
present, the abend occurs without a dump.

Syntax

CALL SYSABD (compl-code)

compl-code

is an INTEGER*4 expression used as the user completion code when the
abend occurs.

Chapter 7. Service Subroutines 287

UNTNOFD/UNTANY

Valid values are:

1 through 239
241 through 499
501 through 899

1000 through 4095

(Completion code values 240, 500, and 900 through 999 are reserved for VS
FORTRAN Version 2.)

UNTNOFD/UNTANY Subroutines
The unit checking subroutines allow you to identify the FORTRAN unit numbers
that are available, within a specified range of unit numbers. For these subrou
tines, an available unit number is one that is:

• not currently connected to any file, or

preconnected, but for which no I/O statements other than INQUIRE have
been issued.

UNTNOFD returns the lowest available unit number that does not have a file

definition; UNTANY returns the lowest available unit number, regardless of the
file definitions in effect.

UNTNOFD

Within a specified range, UNTNOFD will return the lowest unit number that does
not have a user-specified file definition associated with it (with a ddname of
FTnnFOOl or FTnnKOI, where nn is the unit number) and that is available.

Syntax

CALL UNTNOFD {rcode, startnum, endnum, unitnum)

rcode

a four-byte integer variable or array element that will contain the return
code upon return from UNTNOFD.

Return

Code

0

8

12

16

20

24

Explanation

Successful completion. A unit number is being returned.

No unit within the specified range meets the criteria.

The argument list has an incorrect number of arguments.

The value specified for startnum exceeds the largest allowable unit number, or is a
negative value.

The value specified for endnum exceeds the largest allowable unit number.

The value specified for endnum is smaller than the value specified for startnum.

startnum

a four-byte integer expression that specifies the first unit number of a range
of unit numbers. The value of startnum must be zero or a positive integer
less than the largest unit number set up by the installation.

endnum

a four-byte integer expression that specifies the last unit number of a range
of unit numbers. The value of endnum may be one of the following:

288 VS FORTRAN Version 2 Language and Library Reference

UNTANY

UNTNOFD/UNTANY

*- a positive integer greater than startnum but less than or equal to the
largest unit number set up by the installation, or

a negative value, which indicates the largest unit number set up by the
installation.

unitnum

a four-byte integer variable or array element in which is placed the value of
the lowest unit number that does not have a file definition in effect and that

is available, within the range specified by startnum and endnum. If no unit
number within the range meets the criteria, unitnum becomes undefined.

The following unit numbers will never be returned by UNTNOFD:

The standard I/O unit number for the error messages and PRINT/WRITE
statements (usually unit 6)

On VM, the standard I/O unit numbers for the reader and punch (usually
units 5 and 7, respectively)

If no parameters are specified, the call will be ignored.

Examples of Valid UNTNOFD Calls

Example 1:

Assume the following:

• There is a file definition in effect with the ddname FT01F001.

There is no file definition in effect with ddname FT02F001 or FT02K01.

No I/O statements have been issued.

After the following UNTNOFD call:

CALL UNTNOFD (IRCGDE, 1, 10, lUNIT)

lUNIT will contain the value 2, since unit 2 is the lowest unit within the range
(from 1 to 10) that does not have a file definition, that is not currently connected
to a file, and for which no I/O statements have been issued.

Example 2:

The following UNTNOFD call will identify the lowest unit, in the range from 50 to
the largest unit number allowed, that does not have a file definition in effect and
that is available.

CALL UNTNOFD (IRCODE, 50, -1, lUNIT)

Within a specified range, UNTANY will return the lowest unit number of a unit
that is available, regardless of the file definitions in effect.

— Syntax

CALL UNTANY [rcode, startnum, endnum, unitnum)

rcode

a four-byte integer variable or array element which will contain the return
code upon return from UNTANY.

Chapter 7. Service Subroutines 289

UNTNOFD/UNTANY

Return

Code Explanation

0 Successful completion. A unit number is being returned.

8 No unit within the specified range meets the criteria.

12 The argument list has an incorrect number of arguments.

16 The value specified for startnum exceeds the largest allowable unit number, or is a
negative value.

20 The value specified for endnum exceeds the largest allowable unit number.

24 The value specified for endnum is smaller than the value specified for startnum.

startnum

a four-byte integer expression that specifies the first unit number of a range
of unit numbers. The value of startnum must be zero or a positive integer
less than the largest unit number set up by the installation.

endnum

a four-byte integer expression that specifies the last unit number of a range
of unit numbers. The value of endnum may be one of the following:

•- a positive integer greater than startnum but less than or equal to the
largest unit number set up by the installation, or

a negative value, which indicates the largest unit number set up by the
installation.

unitnum

a four-byte integer variable or array element in which is placed the value of
the lowest unit number that is available, if any, within the range specified by
startnum and endnum. If no unit number within the range meets the cri
teria, unitnum becomes undefined.

The following unit numbers will never be returned by UNTANY:

The standard I/O unit number for the error messages and PRINT/WRITE
statements (usually unit 6)

• On VM, the standard I/O unit numbers for the reader and punch (usually
units 5 and 7, respectively)

If no parameters are specified, the call will be ignored.

Examples of Valid UNTANY Calls

Example 1:

Assume the following:

There is a file definition in effect with the ddname FT01F001.

There is no file definition in effect with ddname FT02F001 or FT02K01.

No I/O statements have been issued.

After the following UNTANY call:

CALL UNTANY (IRCODE, 1, 10, lUNIT)

lUNIT will contain the value 1, since unit 1 is the lowest unit within the range

(from 1 to 10) that is available. The file definition for the ddname FT01F001 does
not affect the value returned by the UNTANY subroutine.

290 VS FORTRAN Version 2 Language and Library Reference

XUFLOW

Example 2:

The following UNTANY call will identify the lowest unused unit, in the range
from 0 to the largest unit number allowed, regardless of the file definitions in
effect for the units.

CALL UNTANY (IRCODE, 0, -1, lUNIT)

XUFLOW Subroutine
The XUFLOW subroutine changes the exponent underflow mask in the program
mask to allow or suppress program interrupts that could result from an expo
nent underflow exception.

k

is an integer expression that may have the values 0 or 1. 0 suppresses
program interrupts caused by exponent underflow and the result register is
set to 0. 1 allows program interrupts caused by exponent underflow to
occur. The interrupt causes message AFB208I to be produced, followed by
the standard or user corrective action. The standard corrective action is to

set the result register to 0. Because of the time required by the operating
system to handle the interrupt, and the time spent in the library to issue the
message and perform the corrective action, you may notice some degrada
tion in performance when underflows occur and interrupts are allowed.

Syntax

CALL XUFLOW (A)

Chapter 7. Service Subroutines 291

Chapter 8. Data-in-Virtual Subroutines

Overview

VS FORTRAN Version 2 provides callable subroutines that allow you to use the
Data-in-Virtual facility under MVS/XA 2.2.0 with Data Facility Product 2.3.0.
Because the subroutines use character type arguments, they are supported
only by VS FORTRAN Language Level 77, not Language Level 66.

For a complete description of Data-in-Virtual, see MVS/XA Supervisor Services
and Macro instructions, GC28-1154. Also, the technical bulletin An Introduction
to Data-in-Virtual, GG66-0259, provides background information on using the
Data-in-Virtual facility functions under MVS/XA.

Data-in-Virtual provides a specialized form of access to external data. It is
similar to other means of I/O in that it is a way of making external data avail
able to your program, but different primarily in that the actual movement of the
data from external storage is deferred until your program requires it.

To use the Data-in-Virtual functions from your VS FORTRAN program, you must
first create a VSAM linear data set. Information on defining VSAM linear data
sets is given in VS FORTRAN Version 2 Programming Guide.

Then, in your VS FORTRAN program, you code the VS FORTRAN subroutines
described in this chapter to map a dynamic common to all or part of the data
set. You can think of the dynamic common as a "window" that enables you to
"view" and make changes to the data set, which is commonly called a data
object. (The term data object is preferred because you can ignore the complex
record management interfaces generally associated with other types of data
sets.)

The window begins at a virtual storage location and occupies a contiguous
virtual address range where yourVS FORTRAN program can refer to it and
update it directly. Thus, you can replace complex I/O statements with ordinary
references to variables.

Moreover, for applications that process large amounts of data, Data-in-Virtual
can reduce the amount of virtual storage and processing time required by your
program. Using other means of I/O (such as READ and WRITE statements),
your program might read an entire data set into storage, process a part of the
data, and write the entire data set back out to the permanent storage device.
This approach can impact the availability of virtual storage if the data set is
very large. Or, your program might read one record, process it, and write it out
to the device. For large data sets, especially if access to the records is random
or nonsequential, record processing can be very time-consuming.

In contrast, with Data-in-Virtual, only the parts of the data object that your
program actually refers to are brought into virtual storage and, when you want
to save changes, only those parts that your program actually changes are
saved on permanent storage.

Chapter 8. Data-in-Virtual Subroutines 293

Fixed-View Versus Varying-View Subroutines
You can use one of two methods to refer to the data object: the fixed-view
method or the varying-view method. With the fixed-view method, you map a
single dynamic common, the window, to a given data object (see Figure 44).

Data

Object
Virtual

Storage

Experiment 1
Data

Experiment 2
Data

Experiment 2
Data

Experiment 3
Data

Experiment 4
Data

Dynami c
Common

Figure 44. Fixed-View Method

With the varying-view method, you can map any number of dynamic commons
to the data object and can simultaneously view different parts of it (see
Figure 45 on page 295).

294 VS FORTRAN Version 2 Language and Library Reference

Data

Object

Experiment 1
Data

Group A

Experiment 1

Data

Group B

Experiment 1
Data

Group C

Experiment 2
Data

Group A

Experiment 2
Data

Group B

Experiment 2
Data

Group C

Virtual

Storage

Experiment 1
Data

Group A

Experiment 1
Data

Group C

Experiment 2
Data

Group B

Dynamic
Common A

Dynamic
Common C

Dynamic
Common B

Figure 45. Varying-View Method

For both the fixed- and varying-view methods, the basic procedure for refer
encing a data object is;

1. Associate the data object and access it for reading or both reading and
writing.

2. Map the dynamic common to the data object.

3. View, and possibly change, the data.

4. Save the changes, if any.

At this point, you can repeat steps 3 and 4 as often as needed. You can also go
back to step 2 and remap the common to another part of the data object.

5. Disassociate the common block from the data object.

It might help if you picture the data object as an "array" and the different parts
of it as "array elements." Mapping a dynamic common to specific part of a data
object is similar to referencing an array element. With the fixed-view method,
the mappings are all the same length {because you reference each one using
the same dynamic common), whereas with the varying-view method the map-

Chapter8. Data-in-Virtual Subroutines 295

DIVINF

I pings can vary in length. With the fixed-view method, you can reference one
I mapping at a time; with the varying-view method, you can reference any
I number of mappings at a time.

I For both methods, each mapping that you reference begins at a page (4096
I bytes) boundary because Data-in-Virtual transfers data between the data object
I and virtual storage in units of pages. How to take this into account when you
I map the dynamic common is discussed under "Sample Program with Fixed-
I View Subroutines" on page 307, "Sample Program with Varying-View
I Subroutines" on page 308, and "Ensuring Data Integrity" on page 313.

I Syntax of the Subroutines
I The following sections give the syntax of the Data-in-Virtual subroutines:

I ^ DIVINF, DIVVWF, and DIVTRF, which are for the fixed-view method

I DIVINV, DIVVWV, and DIVTRV, and DIVCML which are for the varying-view
I method

I DIVSAV and DIVRES, which are for both the fixed- and varying-view
I methods

I Syntax of Fixed-View Subroutines
I These fixed-view subroutines give you the ability to treat a data object as one
I or more instances of a single dynamic common.

I DIVINF Subroutine
I The DIVINF subroutine allows you to associate a data object with a dynamic
I common for reading or for reading and writing.

Syntax

CALL DIVINF (rcode, dyncom, objsize commons, divobj, type, access)

rcode

is a four-byte integer variable or array element that will contain the return
code upon return from DIVINF.

Return

Code Explanation

0 Successful completion

4 Successful completion, but ttie length of the dynamic common Is not an exact multiple
of 4096. Unless you expect to modify the dynamic common and reuse the data object,
you may Ignore this return code.

8 Not a dynamic common for dyncom

12 Not DDNAME, DSNAME or DSN for type

16 Not READ or READWRITE for access (or blank with DDNAME type)

20 An attempt was made to access an empty data object for reading

296 VS FORTRAN Version 2 Language and Library Reference

24

28

32

36

40

44

48

128

DIVINF

An attempt was made tosimultaneously access thesame data object via different
ddnames

Thedivobj specified does not refer to a VSAM linear data set

Invalid value specified for divobj

Divobj specified conflicts with type specified

Unable to dynamically allocate the VSAM linear data set specified

An attempt was made to use a dynamic common name already associated with
another data object

Language level 66 CALL is not supported, an invalid parameter list was specified, or
Data-in-Virtual is not supported on the operating system

Data-in-Virtual services failed

dyncom

is a character expression whose value is the name of a dynamic common,
when trailing blanks are removed and when folded to upper case.

objsizejcommons
is a four-byte integervariable or array element that will contain the size of
the data object in units of the size of the dynamic common specified by
dyncom. This value is returned by DIVINF.

divobj
is the name of the data object. It must be either a ddname or a data set
name in one of the following forms:

ddname

dsn or /dsn

is a character expression, one to eight characters long,
whose value, when trailing blanks are removed and when
folded to upper case, is the ddname that identifies the
VSAM linear data set. The default format of a ddname
{FTnnFmmm, FTnnKkk, FTERRsss, or FTPRTsss) is not
allowed.

is a character expression whose value is the data set name
of an existing VSAM linear data set. The data set name
must conform to OS naming conventions. Trailing blanks
will be ignored, and lower case will be folded to upper
case. The slash {/), which is not considered part of the
data set name, can be used to indicate that the value spec
ified is not a ddname.

The data set name may be specified instead of the ddname
to dynamically allocate the VSAM linear data set at exe
cution time without a DD statement. However, if the data
set name is used, you must code READ or READWRITE for
access.

type

is a character expression whose value, when any trailing blanks are
removed and when folded to upper case, is DDNAME, DSNAME, or DSN to
indicate the type ofdivobj. DDNAME indicates that the name ofthe VSAM
linear data set is given in a DD statement. DSNAME or DSN indicates a
data set name, and that the VSAM linear data set is to be dynamically allo
cated.

access

is a character expression whose value, when any trailing blanks are
removed and when folded to upper case, is READ or READWRITE to indl-

Chapter 8. Data-in-Virtual Subroutines 297

DIVVWF

cate the access intent. If a value of all blanks is supplied {except when the
data set is to be dynamically allocated), the DISP parameter on the DD
statement will control the access intent. For DISP= SHR, access will be
READ. For DISP = OLD, access will be READWRITE.

Programming Notes:

A given data object may be associated with only one dynamic common at a
time, and a given dynamic common may be associated with only one data
object at a time. The DIVTRF subroutine must be called to disassociate a
dynamic common previously associated by DIVINF.

Once the data object has been accessed through this subroutine, the DIVVWF
subroutine must be called. This will establish what part of the data object is to
be processed in virtual storage.

DIVVWF Subroutine

The DIVVWF subroutine establishes the part of the data object the dynamic
common will map.

Syntax

CALL DIVVWF (rcoc/e, dyncom, mapnum)

rcode

is a four-byte integer variable or array element that will contain the return
code upon return from DIVVWF.

Return

Code

0

8

48

52

64

72

128

Explanation

Successful completion

Not a dynamic common for dyncom

Language level 66 CALL is not supported, an invalid parameter list was specified, or
Data-in-Virtual is not supported on the operating system

The specified range overlaps a range that is already mapped for the specified data
object. The value mapnum should have been changed.

The specified dynamic common is not associated with a data object.

Zero or a negative value specified for mapnum

Data-in-Virtual services failed

dyncom
is a character expression whose value is the name of a dynamic common,
when trailing blanks are removed and when folded to upper case.

mapnum

is an integer expression containing a number that represents the relative
position of the part of the data object being mapped. The beginning of the
dynamic common is mapped at that relative position in the data object.

A value of 1 indicates the beginning of the first mapping (first in position,
not chronological order) in the data object, the value 2 indicates the second
mapping, and so on. For example, for the data object shown in Figure 44
on page 294, the value 1 indicates Experiment 1 Data and the value 2 indi
cates Experiment 2 Data.

298 VS FORTRAN Version 2 Language and Library Reference

DIVTRF

Each mapping must begin at a page (4096 bytes) boundary; thus, ifthe
length ofa mapping is not exactly divisible by 4096, the length is rounded
up to the next page boundary. For instance, if the actual data in the first
mapping is 8000 bytes, the mapnum value 2 indicates an offset at byte 8,192
and the value 3 indicates an offset at byte 16,384.

Programming Notes:

Agiven dynamic common can be mapped to only one data object at a time, and
a given data object can be mapped to only one dynamic common at a time.

If you request that a mapped dynamic common be mapped again on the same
data object, the first mapping will be implicitly unmapped with no changes
being made to the permanent data. To make changes to the permanent data,
you must explicitly save the changes by calling DIVSAV before attempting to
remap the dynamic common via the DIVVWF call.

DIVTRF Subroutine
The DIVTRF subroutine terminates the association of the data object to the
dynamic common.

Syntax

CALL DIVTRF (rcode, dyncom)

rcode

is a four-byte integer variable or array element that will contain the return
code upon return from DIVTRF.

Return

Code

0

8

48

64

128

Explanation

Successful completion

Invalid value specified for dyncom

Language level 66CALL is not supported, an invalid parameter list was specified, or
Data-in-Virtual is not supported on the operating system

The specified dynamic common is not associated with a data object.

Data-in-Virtual services failed

dyncom

is a character expression whose value is the name of a dynamic common,
when trailing blanks are removed and when folded to upper case.

Programming Notes:

DIVTRF must be called to terminate access to a data object before the same
dynamic common {dyncom) can be specified in another DIVINF call.

Chapter 8. Data-in-Virtual Subroutines 299

DIVINV

Syntax of Varying-View Subroutines
The varying-view subroutines provide you with a more flexible method for refer
ring to a data object. These routines let you map the data object to any
number of dynamic commons of possibly differing lengths.

I DIVINV Subroutine

I
The DIVINV subroutine lets you associate a data object with a data object ID for
reading or for reading and writing.

Syntax

CALL DIVINV {rcode, obj-id, objsize_pages, divobj, type, access)

rcode

is a four-byte integer variable or array element that will contain the return
code upon return from DIVINV.

Return

Code

0

12

16

20

24

28

32

36

40

48

128

Explanation

Successful completion

Not DDNAME, DSNAME or DSN for type

Not READ or READWRITE for access (or blank with DDNAME type)

An attempt was made to access an empty data object for reading

An attempt was made to simultaneously access the same data object via different
ddnames

The ddname specified does not refer to a VSAM linear data set

Invalid value specified for divobj

Divobj specified conflicts with type specified.

Unable to dynamically allocate the VSAM linear data set specified

Language level 66 CALL is not supported, an invalid parameter list was specified, or
Data-in-Virtual is not supported on the operating system

Data-in-Virtual services failed

obj-id
is an eight-byte character variable that will contain the ID returned to iden
tify the association between mappings and the data object.

obJsIze_pages
is a four-byte integer variable or array element that will contain the
returned current size of the data object in units of pages (4096 bytes per
page).

divobj
is the name of the data object. It must be either a ddname or a data set
name in one of the following forms;

ddname is a character expression, one to eight characters long,
whose value, when trailing blanks are removed and when
folded to upper case, is the ddname that identifies the
VSAM linear data set. The default format of a ddname
(FTnnFmmm, FTnnKkk, FTERRsss, or FTPRTsss) is not
allowed.

300 VS FORTRAN Version 2 Language and Library Reference

DIVINV

dsn or /dsn is a character expression, whose value is the data set
name of an existing VSAM linear data set. The data set
name must conform to OS naming conventions. Trailing
blanks will be ignored, and lower case will be folded to
upper case. The slash {/), which is not considered part of
the data set name, can be used to indicate that the value
specified is not a ddname.

The data set name may be specified instead of the ddname
to dynamically allocate the VSAM linear data set at exe
cution time without a DD statement. However, if the data
set name is used, READ or READWRITE must be coded for
access.

type

is a character expression whose value, when any trailing blanks are
removed and when folded to upper case, is DDNAME, DSNAME, or DSN to
indicate the type of divobj specified. DDNAME indicates that the name of
the VSAM linear data set is given in a DD statement. DSNAME or DSN indi
cates a data set name, and that the VSAM linear data set is to be dynam
ically allocated.

access

is a character expression whose value, when any trailing blanks are
removed and when folded to upper case, is READ or READWRITE to indi
cate the access intent. If a value of all blanks is supplied, except when the
data set is to be dynamically allocated, the DISP parameter on the DD
statement will control the access intent. For DISP = SHR, access will be

READ. For DISP = OLD. access will be READWRITE.

Programming Notes:

Ifyou attempt a DIVINV call for a dynamic common that has access to another
data object, an error results. The DIVTRV subroutine must be called before
DIVINV to disassociate the dynamic common from the first data object.

Once the data object has been accessed through DIVINV, the DIVVWV subrou
tine must called. DIVVWV will establish what part of the data object is to be
processed in virtual storage.

Chapter 8. Data-in-Virtual Subroutines 301

DIVVWV

DIVVWV Subroutine

The DIVVWV subroutine establishes the part of the data object the dynamic
common will map.

Syntax

CALL DIVVWV {rcode, dyncom, offset, obj-id)

rcode

is a four-byte integer variable or array element that will contain the return
code upon return from DIVVWV.

Return

Code Explanation

0 Successful completion

4 Successful completion, but the length of the dynamic common is not an exact multiple
of 4096. Unless you expect to modify the dynamic common and reuse the data object,
you may ignore this return code.

8 Not a dynamic common for dyncom

44 An attempt was made to use a dynamic common name already associated with
another data object

48 Language level 66 CALL is not supported, an invalid parameter list was specified, or
Data-in-Virtual is not supported on the operating system

52 The specified range overlaps a range that is already mapped for the specified data
object.

56 The obj-id specified is not associated with any data object.

60 Negative value specified for offset

128 Data-in-Virtual services failed

dyncom

is a character expression whose value, when any trailing blanks are
removed and when folded to upper case, is the name of the dynamic
common.

offset

is an integer expression containing the offset value in units of pages, at
which the dynamic common specified by dyncom is to start mapping in a
data object. A value of 0 indicates the beginning of the object.

The offset can be calculated using the results from the DIVCML calls. The
offset is the number of pages between the beginning of the data object and
the beginning of the part of the data object mapped by the window.

obj-id

is a character variable or character array element whose value is the ID
returned from the DIVINV call. It is used to associate the different mappings
with the data object.

Programming Notes:

A given dynamic common can be mapped to only one data object at a time.

To make changes to the data object, you must explicitly save the changes
before attempting to remap the dynamic common.

302 VS FORTRAN Version 2Language and Library Reference

DIVCML

Multiple calls to DIVVWV can be made on the same data object to simultane
ously associate multiple dynamic commons with different parts of the data
object. However, these dynamic commons may not overlap.

DIVCML Subroutine

The DIVCML subroutine obtains the length of a dynamic common. The lengths
from this subroutine will provide sufficient information to enable you to map dif
ferent parts of the data object, and to help you avoid overlapping mappings.
You will need to keep track of the current mapping status.

Syntax

CALL DIVCML (rcode, dyncom, length)

rcode

is a four-byte integer variable or array element that will contain the return
code upon return from DIVCML.

Return

Code Explanation

0 Successful completion

4 Successful completion, but the length of the dynamic common is not an exact multiple
of 4096. Unless you expect to modify the dynamic common and reuse the data object,
you may ignore this return code.

8 Not a dynamic common for dyncom

48 Language level 66 CALL is not supported, an invalid parameter list was specified, or
Data-in-Virtual is not supported on the operating system

dyncom
is a character expression whose value, when any trailing blanks are
removed and when folded to upper case, is the name of the dynamic
common.

length
is a four-byte integer variable or array element that will contain the
returned length of the dynamic common in pages (4096 bytes per page).
For example, if the dynamic common is 5000 bytes long, the length returned
is 2.

Programming Note:

For an example of how length can be used to calculate the offset value for
the DIVVWV subroutine, see the sample programs in Figure 48 on page 309
and Figure 49 on page 311.

Chapter 8. Data-in-Virtual Subroutines 303

DIVTRV

DIVTRV Subroutine

The DIVTRV subroutine terminates the association between the data object ID ^
and the data object.

Syntax

CALL DIVTRV (rcode, obj-id)

rcode

is a four-byte integer variable or array element that will contain the return
code upon return from DIVTRV.

Return

Code Explanation

0 Successful completion

48 Language level 66 CALL is not supported, an invalid parameter list was specified, or
Data-in-Virtual is not supported on the operating system

56 Invalid value specified for obj-id

128 Data-in-Virtual services failed

obj-id
is a character variable or array element of at least eight bytes long which
contains the ID value returned by DIVINV for the data object.

Programming Notes: -

DIVTRV must be called to terminate access to a data object before it can be
specified in another DIVINV call.

All dynamic commons that are mapped to a data object when a DIVTRV call is
made will automatically be unmapped.

304 VS FORTRAN Version 2Language and Library Reference

DIVRES

I Syntax of Common Subroutines
I The DIVSAV and DIVRES subroutines can be used with both the fixed-view or
I varying-view methods.

DIVSAV Subroutine
The DIVSAV subroutine saves changes made in the dynamic common to the
data object that has been accessed for READWRITE.

Syntax

CALL DIVSAV (rcode, dyncom)

rcode

is a four-byte integer variable or array element that will contain the return
code upon return from DIVSAV.

Return

Code Explanation

0 Successful completion

8 Invalid value specified for dyncom

48 Language level 66 CALLis not supported, an invalid parameter list was specified, or
Data-in-Virtual is not supported on the operating system

64 The specified dynamic common is not associated with a data object.

68 DIVSAV requested, but the specified data object is not accessed in READWRITE mode.

128 Data-in-Virtual services failed

dyncom

Is a character expression whose value is the name of a dynamic common,
when trailing blanks are removed and when folded to upper case.

DIVRES Subroutine

The DIVRES subroutine resets the data in the dynamic common to the values in
the mapped part of the data object, eliminating any changes that have been
made in the dynamic common, either initially or since the last DIVSAV.

Syntax

CALL DIVRES (rcode, dyncom)

rcode

is a four-byte integer variable or array element that will contain the return
code upon return from DIVRES.

Chapter 8. Data-in-Virtual Subroutines 305

Return

Code

0

8

48

64

128

Explanation

Successful completion

Invalid value specified for dyncom

Language level 66 CALL is not supported, an invalid parameter list was specified, or
Data-in-Virtual is not supported on the operating system

The specified dynamic common is not associated with a data object.

Data-in-Virtual services failed

dyncom

is a character expression whose value is the name of a dynamic common,
when trailing blanks are removed and when folded to upper case.

Interface to the Data-in-Virtual Functions

Figure 46 shows the Data-in-Virtual functions to which the subroutines for the
fixed- and varying-view subroutines interface. The Data-in-Virtual functions are
described in MVS/XA Supervisor Services and Macro Instructions, GC28-1154.

FIXED-VIEW

SUBROUTINES

VARYING-VIEW

SUBROUTINES DESCRIPTION

DIV

FUNCTION

DIVINF DIVINV Associates the data object with a
dynamic common and Indicates
whether the data object is to be
accessed for reading or for both
reading and writing.

IDENTIFY

and ACCESS

DIWWF DIWWV Establishes the relative location In
the data object where the
dynamic common Is to be
mapped. In the case of remap
ping, also unmaps the previous
mapping.

MAP and

UNMAP

DIVSAV DIVSAV Saves changes made In the
dynamic common to the data
object.

SAVE

DIVRES DIVRES Resets the dynamic common to
the data contained In the data

object, discarding any changes.

RESET

DIVTRF DIVTRV For the fixed-view method, termi
nates the association between the

data object and the dynamic
common.

For the varylng-vlew method, ter
minates the association between

the data object and the data
object ID.

UNMAP,

UNACCESS,

and UNIDEN-

TIFY

None DIVCML Obtains the length of a dynamic
common.

None

Figure 46. Data-in-Virtual Subroutines

306 VS FORTRAN Version 2 Language and Library Reference

Sample Program with Fixed-View Subroutines
The use of the fixed-view subroutines is shown in Figure 47. The figure illus
trates the following basic process:

The data object is accessed for update (DIVINF).
^ The dynamic common is mapped to part of the data object (DIVVWF).

The window contents are saved into the previously empty data object
(DIVSAV).

>• The dynamic common is unmapped and is remapped to another part of the
data object (DIVVWF).
The window contents are saved into the data object (DIVSAV).

Access to the data object is terminated (DIVTRF).

Note that to indicate where in the data object you want to map the dynamic
common, you simply specify, with the mapnum parameter on the DIVVWF sub
routine, the relative position of the area. For example, for the data object
shown in Figure 44 on page 294, the value 1 indicates Experiment 1 Data, the
value 2 indicates Experiment 2 Data, and so on.

If the dynamic common size is not an integral number of pages in size, a return
code of 4 will be returned by DIVINF.

(aPROCESS DC(DIVOCl)
C

C Example of Fixed-View Subroutines
C

C The data object (accessed via the ddname 'DIVOBJ') contains one
C style of data organization, described by the dynamic common DIVDCl.
C

Program Example
Common /DIVOCl/ MyArray

IntegerM RC/0/, HaxInst/0/
Real*8 llyArray(512)
Character's Oivdd/'DIVOBJ'/i Comnam/'DIVDCl'/

C Assign some values to the array, then write them to the data object.
C The array is 4096 bytes long.

Print *, HyArray(l), MyArray{256), llyArray(5I2)
Call DIVINF (RC, Comnam, Haxinst, Divdd, 'DDIIAHE', "READV/RITE")

C Check the return code.

If (RC .ME. 0) Call Error(RC, 'DIVItIF")

C Hap the dynamic common to the first mapping of the data object.

Call DIVVV/F (RC, Comnam, 1)

C Check the return code.

If (RC .HE. 0) Call Error(RC, 'DIVVl'fF')

C Assign values to the array.

MyArray(1) = l.ODO
MyArray(256) = 2.ODD
MyArray(512) = 3.ODD

Figure 47 (Part 1 of 2). Example 1 of Data-in-Virtual Subroutines: Fixed-View Method

Chapter 8. Data-in-Virtual Subroutines 307

C Save the window contents into the object.

Call DIVSAV (RC, Comnam)

C Check the return code.

If (RC .NE. Q) Call Error(RC, 'DIVSAV')

Print *, Maxinst, HyArray(l), HyArray(256), HyArray(512)

C Map the dynamic common to the second mapping of the data object.

Call DIVW/F (RC, Comnam, 2)

C Check the return code.

If (RC .NE. 0) CairError(RC, 'DIWlfF')

C Assign values to the array.

MyArray(1) = 4.ODD
HyArray{256) = 5.ODD
HyArray(512) = 6.0D0

C Save the windov/ contents into the object.

Call DIVSAV (RC, Comnam)

C Check the return code.

If (RC .HE. 0) Call Error(RC, 'DIVSAV')

Print *, Maxinst, HyArray(l), MyArray(256), HyArray(512)

C V/e do not plan to do any more processing on this object.

Call DIVTRF (RC, Comnam)

C Check the return code.

If (RC .HE. 0) Call Error(RC, 'DIVTRF')

End

EPROCESS

Subroutine Error(Code, Rtn)

C Print a message if a DIV subroutine Call was not successful.

IntegerM Code
Character*(*) Rtn
V/rite (6, 1) Rtn, Code

1 Formate Routine ', A, ' returned non-zero code ', 14)
Stop
End

Figure 47 (Part 2 of 2). Example 1 of Data-In-Virtual Subroutines: Fixed-View Method

Sample Program with Varying-View Subroutines
The varying-vlew subroutines let you map any number of dynamic commons to
different parts of the data object, as long as the parts do not overlap. Each
dynamic common can be mapped to only one part of the data object at a time;
if you try to simultaneously map it to another part, the first part is unmapped,
discarding any changes that you haven't saved.

308 VS FORTRAN Version 2 Language and Library Reference

This method is more complex than the fixed-view method and it does require
you to provide and maintain more detailed information. Unlike the fixed-view
method, which has a one-to-one association between a dynamic common and a
data object, the varying-view method permits multiple dynamic commons.
Therefore, a parameter on the DIVINV subroutine is provided for assigning an
identifying token to the data object. You then refer to this token on the call to
the mapping routine, DIVVWV, for each dynamic common.

Because the dynamic commons may vary in length, mapping them to the data
object also requires more user control than with the fixed-view method because
you do the storage management. On the DIVVWV call, you must indicate the
offset, in units of pages, from the beginning of the data object to the beginning
of the part of the object to be made visible in the window. You can calculate
this offset with the length returned by the DIVCML subroutine. The DIVCML
subroutine will give you the length, in units of pages, of a dynamic common.

The objsize_pages value obtained from the DIVINV call indicates how much of
the data object has been used at the time of the call. With this information, you
know the next available offset for new output, as well as how far you can go
with previously stored data. This, in effect, is your end-of-data indication.

Figure 48 and Figure 49 on page 311 illustrate the use of the varying-view sub
routines.

ePROCESS OC(COH_A,COH_B,COII_C)

C Example of simple use of Varying-View Subroutines

C The data object (accessed via the ddname 'HYOBJECT') contains three
C styles of data organization. The styles are described by the
C three dynamic commons C0I1_A, C0I1_B, and COH_C.

C In this example, there is only a single occurrence in the data
C object of each type of mapped data. Mote that no checking of
C return codes is performed. In an actual program, this checking
C should be performed.

Common / COM_A / NAD, ADATA(5OG0)
Comnon / COH_B / NBD, NBI, BITEtl(200), BDATA(20G0)
Common / COM_C / NCD, CTEHP(40,75), CDATA(8000)

Character*8 Token

Integer LengthA, Length_B, Length_C
Integer Offset_A, Offset_B, Offset_C, TotCom, Size

C Determine the length of each dynamic common, to determine the
C offset into the data object of the data each one maps.

Call UlVCHLdRet, 'COH_A', Length_A)
Call DIVCHLdRet, •COM_B', Length_B)
Call DIVCHLdRet, 'COM_C', Length_C)

Offset_A = 0
Offset_B = Offset_A + Length_A
Offset_C = Offset_B + Length_B

TotCom = Offset_C + Length_C

Figure 48 (Part 1 of 2). Example 2 of Data-in-Virtual Subroutines: Varying-View Method

Chapter 8. Data-in-Virtual Subroutines 309

C Obtain access to the OIV data object.

Call DIVINVdRet, Token, Size, 'MYOBJECT', 'DONAHE', 'READWRITE')

C Assume we don't want to extend the size of the object.

IF (TOTCOH .GT. Size) THEN
Call DIVTRVdRet, Token)
Stop 'Object size is too small.'

ENDIF

C Now, provide a view for each dynamic common onto its associated
C portion of the data object.

Call DIV\A/VdRet, 'COH_A', Offset A, Token)
Call DIVVWVdRet, 'COH_B', Offset~B, Token)
Call DIWl-A/(IRet, 'COH_C', Offset^C, Token)

C Now, call subroutine V/ORK to use the data in the dynamic commons.

Call WORK

C Save changed data in the dynamic commons back into the data object.

Call DIVSAV(IRet, 'COM A')
Call OIVSAVdRet, 'COh'B')
Call DIVSAVdRet, 'COlfC')

C Terminate the associations with the data object.

Call DIVTRVdRet, Token)
End

Figure 48 (Part 2 of 2). Example 2 of Data-In-Virtual Subroutines: Varying-View Method

310 VS FORTIRAN Version 2 Language and Library Reference

ePROCESS DC(COII_A,COH_B,COH_C)

C Example of more elaborate use of Varying-View Subroutines

C The data object (accessed via the ddname 'HYOBJECT') contains three
C styles of data organization. The styles are described by the
C three dynamic commons COH_A, COH_B, and COH_C.

C In this example, there are multiple occurrences in the data
C object of each type of mapped data, in repeating groups of
C (COII_A, COH_B, COH_C).
C Note that insufficient checking of return codes is performed.

Conmon / COII_A / MAO, ADATA(5000)
Coitmon / C0I1_B / NBO, NBI, BITEH(200), BDATA(2000)
Comnon / COM_C / NCO, CTEMP(40,75), CDATA(8CG0)

Character*8 Token

Integer Length_A, Length_B, Length_C
Integer Offset_A, Offset_B, 0ffset_C, TotCom, Size
Integer Inst_A, Inst_B, Inst_C

C Determine the length of each dynamic common, to determine the
C offset into the data object of the data each one maps.

Call OIVCtlL(IRet, 'COItA', Length_A)
Call OIVCHLdRet, 'COlfB', Length_B)
Call DIVCML(IRet, 'COM_C', Length_C)

0ffset_A = 0
0ffset_B = Offset_A + Length_A
Offset_C = Offset_B + Length_B

TotCom = Offset_C + Length_C

C 0btain access to the DIV data object.

Call DIVIMVdRet, Token, Size, 'HYOBJECT', 'DDIIAHE', 'READV/RITE'
IF (IRet .ME. 0) THEM

Print *, 'Return code is ',IRet
Stop 1

ENDIF

C Suppose we have determined that we v/ant to viev/ the 5th instance of
C C0H_A, the 17th instance of C0M_B, and the 41st instance of COM_C.

Inst_A = 5
Inst B = 17

Inst^C = 41

C Mow, provide a view for each dynamic common onto its associated
C portion of the data object. Calculate the needed offsets.

100 ITemp = (Inst_A - 1) * TotCom + Offset_A
Call DIVVV/V(IRet, 'COII_A', ITemp, Token)

ITemp = (lnst_B - 1) TotCom + Offset_B
Call DIVVWV(IRet, 'COH_B', ITemp, Token)

ITemp = (Inst_C - 1) * TotCom + Offset_C
Call DIVVWV(IRet, 'C0ll_C', ITemp, Token)

Figure 49 (Part 1 of 2). Example 3 of Data-in-Virtual Subroutines: Varying-View Method

Chapters. Data-in-Virtual Subroutines 311

C Now, call subroutine WORK to use the data in the dynamic commons.

Call l-iORK

C Save changed data in the dynamic commons back into the data object.

Call DIVSAVdRet, 'COM A')
Call DIVSAV(IRet, 'CGirB')
Call DIVSAV(IRet, 'CGirC')

C At this point, we would normally choose new values for Inst A,
C Inst_B, and Inst_C, and loop back to statement IGO to establish
C the new views.

C Terminate the associations with the data object.

Call DIVTRV(IRet, Token)
End

Figure 49 (Part 2 of 2). Example 3 of Data-in-Virtual Subroutines: Varying-View Method

Remapping a Dynamic Common to Different Parts of the Data Object
With either the fixed-view method or the varying-view method, you can remap a
dynamic common to view and update different parts of the data object. In other
words, you can map the dynamic common to one part of the data object,
process the data and save your changes, then remap the dynamic common to _
another part of the data object to process more data.

In the fixed-view example shown in Figure 50, different parts of the data object,
mapped by the dynamic common /USAGE/, are accessed sequentially by
varying the parameter K (the mapnum parameter).

gPRGCESS DC(USAGE)
Subroutine SUB3

Conrmon /USAGE/ A(5G0), il(5GG)
Rea 1 A

Integer K, RetCod

Call DIVIHF(RetCod, 'USAGE', NOccur,
X 'DIVOBJ', 'DDIIAIIE', 'READ')

If (RetCod .GT. 4) Stop 'Access Failed'
Do 8 K = 1, NOccur

Call DlVVWFfRetCod, 'USAGE', K)
If (RetCod .HE. G) Stop 'Viewing Unavailable'
— process the data in dynamic common USAGE —

8 Continue

End

Figure 50. Example of Remapping: Fixed-View Method

312 VS FORTRAN Version 2 Language and Library Reference

/^s

Resetting a Dynamic Common
Based on processing performed by your program, you may determine that the
data in the window is not what you intended. You can use the DIVRES subrou
tine to reset the window with data in the data object since the last DIVSAV.

Ensuring Data Integrity
Because of the way that Data-in-Virtual accesses a data object, it is strongly
recommended that you explore potential impacts to your application program
when you use different mappings of commons.

Data-in-Virtual requires that all references and accesses to data in data objects
be managed in units of pages (4096 bytes per page), starting on an address
boundary evenly divisible by 4096. MVS provides this management of each
independent common. So when you establish a dynamic common that has a
length that is not an exact multiple of 4096, there is some unused space in the
last page at the end of the common. This unused space will appear in the data
written to your data object in the form of gaps of undefined data at the end of
the last page.

Dependence on the page organization of Data-in-Virtual will not be a problem
for your application if you use the same dynamic commons when you first Write
data to the data object and every time you access it later. To facilitate this, you
can place the COMMON specification statements in INCLUDE files.

Also, keep in mind that data in the dynamic common window is lost anytime the
window is reset, remapped, or terminated; therefore, it is a good practice to
avoid using the window to pass arguments to Data-in-Virtual subroutines.

Performance and Storage Factors
In evaluating the various organization and mapping alternatives, you will want
to consider the available virtual storage and the performance measurements of
your application as it runs in your environment.

For example, whether you view an entire entire data object all at once or view
parts of it separately will likely depend on the amount of virtual storage avail
able.

Note that because dynamic commons are allocated in units of pages (4096
bytes per page), using dynamic commons much smaller than 4096 bytes can
result in much unused space.

Will your program's data access patterns be rapid and random? If so, you
might decide to create a single large common to accommodate more of the
data in storage. This way, you will have to do little or no remapping to access
the data. On the other hand, if all parts of the data can be accessed independ
ently of each other and a fairly large amount of computation is performed
before the next part is required, you may decide to view only one part at a time
with a single dynamic common, or else view each part simultaneously with dif
ferent dynamic commons.

Chapters. Data-in-Virtual Subroutines 313

Effect on Optimization
Because the Data-in-Virtual functions are requested through the call interface,
optimization by the VS FORTRAN compiler might be impacted. This is because
loops with these Data-in-Virtual calls are not as fully optimizable. Loops with
Data-in-Virtual calls are also not vectorizable.

You should keep Data-in-Virtual calls outside of the inner loops as much as
possible in order to obtain the highest possibility of optimized code when using
0PT(2). 0PT(3), or VECTOR.

Using Data-In-Virtual in an MTF Environment
If you are running your applications in a Multitasking Facility (MTF) environ
ment, you must make all Data-in-Virtual subroutine calls from your main task
program. However, a dynamic common that is shared by the main task
program and the parallel subroutines may be used to supply access to the data
object for all of the routines.

When sharing a dynamic common among several parallel subroutines, do not
have the main task reset, terminate, or remap the dynamic common until all
subroutines have completed. Otherwise, the results will be unpredictable. See
VS FORTRAN Version 2 Programming Guide for information on sharing dynamic
commons under MTF.

314 VS FORTRAN Version 2 Language and Library Reference

Chapter 9. Extended Error-Handling Subroutines and Error
Option Table

Extended Error Handling
Five subroutines are provided by VS FORTRAN Version 2 for use in extended
error handling: ERRMON, ERRSAV, ERRSET, ERRSTR, and ERRTRA. These
subroutines enable you to alter the error option table dynamically. Existing
error conditions can be changed and user exits can be supplied.

The error option table is a list of errors detected by the VS FORTRAN Version 2
library. Each error is represented by an entry in the option table, which con
tains values for information related to the error. The option table (as shipped in
the library, module AFBUOPT) is preset with information for IBM-designated
error conditions.

Changes made dynamically to the option table, using the error-handling subrou
tines, are in effect for the duration of the program that made the change. That
is, the copy of the option table in the executing program is changed, but the
copy in the library remains unchanged.

The option table is generated by the macro VSF2U0PT, and the macro may be
used to customize the error option table for your environment. Your system
administrator will know whether and how the error option table has been modi

fied for your environment.

The syntax for each of the error-handling subroutines is shown below, under
"Error-Handling Subroutines." The details of the error option table and its
preset information are given under "Error Option Table" on page 322. For an
explanation of how to use extended error handling, see VS FORTRAN Version 2
Programming Guide.

Chapter 9. Extended Error-Handling Subroutines and Error Option Table 315

ERRMON

Error-Handling Subroutines

ERRMON Subroutine
The ERRMON subroutine calls the error monitor routine, the same routine used
by VS FORTRAN Version 2 when it detects an error.

Syntax

CALL ERRMON (imes, iretcd, ierno i,data1] [,data2 ...])

imes

The name of an array, aligned on a fullword boundary, that contains, in
EBCDIC characters, the text of the message. The number of the error con
dition should be included as part of the text, because the error monitor
prints only the text passed to it. The first element of the array contains an
integer whose value is the length of the message. Thus, the first 4 bytes of
the array are not printed, imes must point to the integer * 4 length. Imme
diately following that is the text of the message in EBCDIC characters. If
the message length is greater than the record length of the error message
unit, the message is printed on two or more lines of printed output.

iretcd

An integer variable made available to the error monitor for setting the fol
lowing return codes:

0 The option table or user-exit routine indicates that standard correction
is required.

1 The option table indicates that a user exit to a corrective routine has
been executed. The function is to be reevaluated using arguments
supplied in the parameters: datal,data2...

For input/output type errors, the value 1 indicates that standard cor
rection is not wanted.

ierno

The error condition number in the option table. If any number specified is
not within range of the option table, an error message is printed.

datal,data2...

Variable names in an error-detecting routine for the passing of arguments
found to be in error. One variable must be specified for each argument.
Upon return to the error-detecting routine, results obtained from corrective
action are in these variables. Literals and variables which you do not want
altered should not be in a CALL statement because there they are subject
to change.

Because datal and data2 are the parameters that the error monitor passes
to a user-written routine to correct the detected error, care must be taken to

make sure that these parameters agree in type and number in a call to
ERRMON and/or in a call to a user-written corrective routine, if one exists.

ERRMON examines the option table for the appropriate error number and its
associated entry and takes the actions specified. If a user-exit address has
been specified, ERRMON transfers control to the user-written routine indicated

316 VS FORTRAN Version 2 Language and Library Reference

ERRSAV

by that address. Thus, the user has the option of handling errors in one of two
ways:

• Call ERRMON without supplying a user-written exit routine.

*• Call ERRMON and providing a user-written exit routine.

Example:

CALL ERRMON (MYMSG,ICODE,315,01,D2)

The example states that the message to be printed is contained in an array
named MYMSG; the field named ICODE is to contain the return code; the error

condition number to be investigated Is 315; and arguments to be passed to the
user-written routine are contained in fields named D1 and D2.

ERRSAV Subroutine
The ERRSAV subroutine copies an option table entry into an 8-byte storage
area accessible to the FORTRAN programmer.

Syntax

CALL ERRSAV (ierno, tabent)

lerno

The error number in the option table. Should any number not within the
range of the option table be used, an error message will be printed.

tabent

The name of an B-byte storage area in which the option table entry is to be
stored.

Example:

CALL ERRSAV (213,ALTERX)

The example states that the entry for error number 213 is to be stored in the
area named ALTERX.

Chapter 9. Extended Error-Handling Subroutines and Error Option Table 317

ERRSET

ERRSET Subroutine
The ERRSET subroutine permits the user to control execution when error condi-
tions occur. For a range of error messages, the user can specify:

>• How many errors can occur before execution ends

*- How many error messages can be printed

Whether a traceback is to be printed

Whether a user exit routine is to be executed

Syntax

CALL ERRSET (ierno, inoal [, inomes] [, itrace] [, iusadr] [, irange])

lerno

The error number. Should any number not within the range of the option
table be used, an error message will be printed. (If ierno is specified as
212, there is a special relationship between the lerno and irange parame
ters. See the explanation of irange, following.)

inoal

An integer specifying the number of errors permitted before each execution
is terminated. If inoal is specified as either 0 or a negative number, the
specification is ignored, and the number-of-errors option is not altered. If a
value of more than 255 is specified, an unlimited number of errors is per
mitted.

The value of inoal should be set at 2 or greater if transfer of control to a
user-supplied error routine is desired after an error. If this parameter is
specified with a value of 1, execution is terminated after only one error.

inomes

An integer indicating the number of messages to be printed. A negative
value specified for inomes suppresses all messages; a specification of zero
indicates that the number-of-messages option is not to be altered. If a value
greater than 255 is specified, an unlimited number of error messages is
permitted.

itrace

An integer whose value may be 0, 1, or 2. A specification of 0 indicates the
option is not to be changed; a specification of 1 requests that no traceback
be printed after an error; a specification of 2 requests a traceback be
printed after each error occurrence. (If a value other 1 or 2 is specified, the
option remains unchanged.)

iusadr

Specifies one of the following:

•- The value 1, indicating that the option table is to be set to show no
user-exit routine (that is, standard corrective action is to be used when
continuing execution).

The name of a closed subroutine that is to be executed after the occur

rence of the error identified by ierno. The name must appear in an
EXTERNAL statement in the source program, and the routine to which
control is to be passed must be available at link-editing time.

318 VS FORTRAN Version 2 Language and Library Reference

ERRSET

The value 0, indicating that the table entry is not to be altered.

See "Coding the User Exit Routine," below.

irange
An error number higher than that specified in ierno. This number indicates
that the options specified for the other parameters are to be applied to the
entire range of error conditions encompassed by ierno and irange. {If
irange specifies a number lower than ierno, the parameter is ignored.)

If this parameter is omitted, only the options for the single error number ierno
are applied.

Example:

CALL ERRSET (310,20,5,0,MYERR,320)

This example specifies the following:

Error condition 310 (ierno).

The error condition may occur up to 20 times (inoai).

>• The corresponding error message may be printed up to 5 times (inomes).

The current action for traceback information is to remain in force (itrace).

• The user-written routine MYERR is to be executed after each error (iusadr).

The same options are to apply to all error conditions from 310 to 320
(irange).

Coding the User Exit Routine
When a user exit routine address is supplied in the option table entry for a
given error number, the error monitor calls the specified subroutine for correc
tive action. The subroutine is called by assembler language code equivalent to
the following statement:

CALL X (iretcd,ierno,datal,data2...)

where x is the name of the routine whose address was placed in the option
table by the iusadr parameter of the CALL ERRSET statement. The parameters
iretcd, ierno, datal, data2... correspond to the parameters specified for each
error message in Figure 53 on page 326 through Figure 55 on page 331.

If an error occurs during input/output, subroutine x must not execute any
FORTRAN I/O statements, for example. OPEN, CLOSE, INQUIRE, READ, WRITE,
BACKSPACE. ENDFILE. REWIND, REWRITE, DEBUG, or PAUSE, or any calls to
PDUMP or ERRTRA. Subroutine x must not call the library routine that detected
the error, or any routine that uses that library routine. For example, a state
ment such as:

R = A**B

cannot be used in the exit routine for error number 252, because the library
subroutine FRXPR# uses EXP, which detects error number 252.

Chapter 9. Extended Error-Handling Subroutines and Error Option Table 319

ERRSET

Standard or user-supplied corrective action is indicated by setting the return
code {iretcd), as follows:

1. \f iretcd is set to 0, standard corrective action is requested; datal and data2
must not be altered by the routine. If datal and data2 are altered when
Iretcd is set to 0, the operations that follow will have unpredictable results.

2. If iretcd is set to 1, the execution-time library reacts to the user-supplied
correction action specified in Figure 53 on page 326 through Figure 55 on
page 331.

3. Only the values 0 and 1 are valid for iretcd. A user exit routine must
ensure that one of these values is used if it changes the return code setting.

The user-written exit routine can be written in FORTRAN or in assembler lan
guage. In either case, it must be able to accept the call to it as shown above.
The user exit routine must be a closed subroutine that returns control to the
caller. Caution should be used when changing the values of any variables in
the common area while in a closed user error-handling routine under optimiza
tion level 1, 2, or 3. Certain control flow and variable usage information will not
be known to the optimizer.

If the user-written exit routine is written in assembler language, the end of the
parameter list can be checked. The high-order bit of the last parameter will be
set to 1. Standard register linkage conventions are followed, using registers 13,
14, 15, and 1.

If the routine is written in FORTRAN, the parameter list must match in length
the parameter list passed in the CALL statement issued to the error monitor.

Actions that users may take if they want to correct an error are described in
Figure 53 on page 326 through Figure 55 on page 331.

320 VS FORTRAN Version 2 Language and Library Reference

ERRSTR Subroutine
The ERRSTR subroutine stores an entry in the option table.

Syntax

CALL ERRSTR (ierno, tabent)

ERRTRA

lerno

The error number for which the entry is to be stored in the option table.
Should any number not within the range of the option table be used, an
error will be printed.

tabent

The name of an 8-byte storage area containing the table entry data.

Example:

CALL ERRSTR (213,ALTREX)

The example states that an entry for error number 213, stored in ALTREX, is to
be restored to the option table.

ERRTRA Subroutine
The ERRTRA subroutine dynamically requests a traceback and continued exe
cution.

Syntax

CALL ERRTRA

The CALL ERRTRA statement has no parameters.

Chapter 9. Extended Error-Handling Subroutines and Error Option Table 321

Error Option Table
The structure of option table entries is shown in Figure 51. Figure 52 on
page 324 lists the preset information for each error condition. Figure 52
through Figure 55 on page 331 summarize the preset information for standard
or user-supplied corrective action. The preset entries that cannot be altered
are identified in Figure 52.

Field

Contents

Field

Length

Default

Value' Field Description

Number of

error occur

rences

1 byte 10 ^ Number of times this error condition should t)e allowed to occur. When

the value of the error count field (below) equals this value, job processing
is terminated. Number may range from 0 to 255. A value of 0 means an
unlimited number of occurrences. '

Number

messages to
print

1 byte 5 " Number of times the corresponding message is to be printed before
message printing is suppressed. A value of 0 means no message is to be
printed.

Error count 1 byte 0 The number of times this error has occurred. A value of 0 indicates that

no occurrences have been encountered.

Option bits 1 byte 42 (hex) Eight option bits defined as follows (the default setting has an asterisk):

Bit Setting Explanation

0 0*

1

Error condition is not an I/O error.

Error condition is an I/O error. Occurrences are not to

be counted if ERR or lOSTAT parameter is given.

1 0

1*

Table entry cannot be modified. '

Table entry can be modified.

2 0*

1

Fewer than 256 errors have occurred.

More than 256 errors have occurred. (Add 256 to error
count field above to determine the number.)

3" 0*

1

Do not print buffer with error messages.

Print buffer contents.

4 0* Reserved.

5 0*

1

Print messages default number of times only.

Unlimited printing requested; print for every occurrence
of error.

6' 0

1*

Do not print traceback map.

Print traceback map.

7 0* Reserved.

User exit 4 bytes 1 Indicates where a user corrective routine is available. A value other than

1 specifies the address of the user-written routine.

Figure 51. Error Option Table Entry

322 VS FORTRAN Version 2 Language and Library Reference

n

Error

Code

Parameters

Passed To

User Exit

Standard

Corrective Action

User-Supplied
Corrective Action

214 A,B,D Input Ignore remainder of I/O list.
Ignore input/output request if
for ASCII tape.

Output If unformatted write initially requested,
change record format to VS. If formatted
write initially requested, ignore
input/output request.

If user correction is requested,
the remainder of the I/O list

is ignored.

215 a.b.e Substitute zero for the invalid character. The character placed in E will be
substituted for the invalid character;

input/output operations may not be
performed. See Note 3.

217 a.b.d Increase sequence number
and read next file.

Note 1

218 A,B,D,F Ignore remainder of I/O list. Note 1

219-

224

A,B,D Ignore remainder of I/O list. Note 1

225 A.B.E Substitute 0 for the invalid

character.

The character placed In E will
be substituted for the invalid

character. See Note 3.

226 A,B,R R = 0 for input number too small.
R = 16**63 -1 for input number
too large.

User may alter R.

227 A,B,D Ignore remainder of I/O list. Note 1

231 A.B.D Ignore remainder of I/O list. Note 1

232 A,B,D,G Ignore remainder of I/O list. Note 1

233 A.B.D Change record number to list maximum
allowed (32000).

Note 1

234,

236

A.B.D Ignore remainder of I/O list. Note 1

237 A.B,D,F Ignore remainder of I/O list. Note 1

238 A,B,D Ignore remainder of I/O list. Note 1

240 Note 4 Program termination None

286 A.B.D Ignore request Note 1

287 A,B,D Ignore request Note 1

288 A,B,D Implied wait Note 1

Figure 53 (Part 2 of 2). Corrective Action after Error

Chapter 9. Extended Error-Handling Subroutines and Error Option Table 327

Notes to Figure 53:

The alphabetic characters used in the "Parameters Passed to User" column have the following
meanings:

Parameter Meaning

A Address of return code field (INTEGER*4)
B Address of error number (INTEGER*4)
C Address of invalid format character {see Note 5)
D Address of data set reference number (INTEGER*4)
E Address of invalid character (see Note 5)
F Address of DECS

G Address of record number requested (INTEGER*4y
I Result after conversion (INTEGER*4)
J Address of value of key argument
K Address of length of key argument supplied
L Address of KEYID value

M Address of beginning of record
N Address of length of record
O Address of VSAM return code

P Address of error or feedback code

Q Address of key in record previously read
R Result after conversion (REAL*4)

' If the error was not caused during asynchronous input/output processing, the user exit-routine
cannot perform any asynchronous I/O operation and, in addition, may not perform any
REWIND, BACKSPACE, or ENDFILE operation. If the error was caused during asynchronous
input/output processing, the user cannot perform any Input/output operation. On return to the
library, the remainder of the input/output request will be ignored.

If error condition 218 (input/output error detected) occurs while error messages are being
written to the object error data set, the message is written to the console and the job is termi
nated. If no DD card has been supplied for the object error data set, error message AFB219I
is written out at the console and the job is terminated.

^ The user exit routine may supply an alternative answer for the setting of the result register.
The routine should always set an INTEGER*4 variable and the VS FORTRAN Version 2
library will load fullword or halfword depending on the length of the argument causing the
error.

' Alternatively, the user can set the return code to 0, thus requesting a standard corrective
action.

Code 240 generates a message showing the system or program code causing program termi
nation, the address of the STAE control block, and the contents of the last PSW when
abnormal termination occurred. Further information appears under message code AFB240 in
Appendix D, "Library Procedures and Messages" on page 375.

If LANGLVL(66), then LOGICAL*1.

If LANGLVL(77), then CHARACTER*1.

328 VS FORTRAN Version 2 Language and Library Reference

Parameters Standard User Supplied

Error Passed to Reason for Corrective Corrective

Code User Exit ^ Interrupt ^ Action Action

207 A,B,D.I Overflow For exponent overflow, the result For exponent overflow, the user may alter
register is set to the largest D^

Integer overflow floating-point number. The sign of
(Interrupt code 8) the result register is not altered.

No standard fixup for other inter
Exponent overflow rupts.

(Interrupt code C)'*

208 A,B,D,I Underflow The result register is set to zero. The user may alter D'.

Exponent underflow
(Interrupt code D).

209 A,B,D,I Divide check For floating-point divide, where For floating-point divide, the user may
N/0 and N =0, the result register alter D^

Integer divide is set to 0. Where N 0, the

(Interrupt code 9) result register is set to the largest
possible floating point number.

Decimal divide No standard fixup for other inter
(Interrupt code B) rupts.

Floating-point divide
(Interrupt code F)**

210 A,B Operation exception No special corrective action other Note®

(Interrupt code 1) than correcting boundary misa
lignment for some specification

Specification excep exceptions.

tion

(Interrupt code 6)

Data exception
(Interrupt code 7)

Figure 54. Corrective Action after Program Interrupt

Notes to Figure 54:

The variable types and meanings are as follows:

Variable Type Meaning®
A INTEGER*4 The return code field.

B INTEGER*4 The error number.

D REAL*16 The result register after the interrupt.
I INTEGER*4 The exponent is an integer value for the number in D. The value in I is

not the true exponent, but what was left in the exponent field of the
floating-point number after the interrupt.

Chapter 9. Extended Error-Handling Subroutines and Error Option Table 329

Program interrupts are descrit>ed in the appropriate Principles of Operations publication, listed
in the preface.

The user exit routine may supply an alternative answer for the setting of the result register.
This is accomplished by replacing the value in D. Although the interrupt may be caused by a
short, long, or extended floating-point operation, the user exit routine need not be concerned
with this. The user exit routineshould always set the correct length, but may set a REAL*16
variable and the VS FORTRAN Version 2 library will load the correct length data item,
depending on the floating-point operation that caused the interrupt. For interrupts other than
floating point, the user exit routine does not have the ability to change the result register and
any data placed in D is ignored.

For floating-point interrupts, the result register is shown in the message. For interrupts other
than floating point, the result register contains zeros.

The boundary alignment adjustments are informative messages: there is nothing to alter
before execution continues.

These are returned in a parameter list.

Ifa program is going to use them, the SUBROUTtNE statement may be specified as:

SUBROUTINE HYEXIT(IRC,lERR.DREG,lEXP)

where IRC, lERR, DREG, and lEXP correspond to A, B, D, and I, respectively, and DREG is
given a type of REAL* 16.

Ifan assembler language program is going to use them, they are pointed to by register 1 in
the standard OSA/S convention of a list of addresses, each of which points to A, B, D, and I.

/

/'

330 VS FORTRAN Version 2 Language and Library Reference

Error

Code

FORTRAN

Reference'

Invalid

Argument Range

Options Standard
Corrective Action^, '

Options Parameters
Passed to User Exif*

118 XA=X**Y X < 0, Y 5^0 XA=IX|**Y A, B, X, Y

119 DA = D**DB D < 0, DB 56 0 DA=|D|**DB A, B, D, DB

241 K = I**J 1= 0, J<0 K = 0 A, B, 1, J

242 ' Y = X**I X=0. I<0 If 1= 0, Y = 1

If 1 < 0, Y=»

A, B, X, 1

243 ® DA = D**I 0=0, l<0 If 1=0, Y=1
IF 1 < 0, Y = »

A, B, D, 1

244 xa=x**y X=0, YSO If Y = 0, XA=1 If Y<0,
XA = *

A, B, X. Y

245 DA = D**DB 0 = 0, DB <0 If DB = 0, DA = 1 If

DB<0, DA=*

A, B, D, DB

246 CA = C**I C = 0 + Oi, l<0 If 1= 0, C = 1 + Oi
IF 1 < 0, C = « + 01

A, B, C, 1

247 CDA=CD 1 C=0 + Oi, l<0 If 1= 0, C = 1 + Oi
If 1 < 0, C = '+ Oi

A, B, CD, 1

248 ' Q = QA**J QA = 0, J<0 J < 0, Q = «
J=0, Q = 1

A, B, QA, J

249 Q = QA**QB QA = 0, QBSO QB < 0, Q = *
QB = 0, Q = 1

A, B, QA, QB

QA < 0, QBsiO Q= |QA|**QB

250 Q = QA**QB loggiQA) X QB 2 252 Q = . A, B, QA. QB

251 Y= SQRT (X) X < 0 Y=|X|1'2 A, B, X

252 Y=EXP (X) X > 174.673 Y« A, B. X

253 Y = ALOG (X)

XX
0

X
O)•0

IIII>->-

A, B, X
A, B, X

Y = ALOG10 (X) X=0

X It 0

Y = -.

Y=iogiolX|
A, B, X

254 Y = COS (X)
Y = SIN (X)

jXj > (2'8)„

II

>-

255 Y = ATAN2 (X,XA) X = 0, XA = 0 Y = 0 A, B, X. XA

256 Y = SINH (X)
Y = COSH (X)

|H|> 175.366 Y= (SIGN of X)
Y = *

A, B, X

257 Y= ASIN (X) jXj > 1 If X > 1.0, ASIN (X) = n/2
If X < - 1.0. ASIN (X) =
- n/2

Y=ACOS (X) If X > 1.0, ACCOS = 0
If X <- 1.0, AC0S = 71

258 Y = TAN(X)
Y= COTAN(X)

|X| > (218)11 Y=1

Y = COTAN (X) X = 0 Y = .

260 Q = 2 QA QA >252 Q = . A. B, QA

261 DA=DSQRT (D) D < 0 DA=|D|1'2 A. B, D

262 DA + DEXP (D) D > 174.673 • = • A. B, D

263 DA = DLOG (D) D = 0

D < 0

00>>
IIII

s°(Q
X

DA = DLOG10 (D) D = 0

D < 0

DA = -«

DA= logiolX|
A, B, D

Figure 55 (Part 1 of 3). Corrective Action after Mathematical Subroutine Error

Chapter 9. Extended Error-Handling Subroutines and Error Option Table 331

Error

Code

FORTRAN

Reference*

Invalid

Argument Range
Options Standard
Corrective Action^, ®

Options Parameters
Passed to User Exit®

264 DA = DSIN (D)
DA = DCOS (D)

o

IV

o

da=V27F A, B, D

265 DA = DATAN2 (D.DB) D = 0, DB = 0

0
II

<
Q

A, B. D, DB

266 DA=DSINH (D)
DA=DCOSH (D)

iD|> 175.366 DA = (SIGN Of X)*
DA = «

A, B, D

267 DA= DASIN (D) |D| > 1 If D > 1.0, DASIN = n/2
If D < -1.0, DASIN =

- n/2

DA=DACOS (D) If D > 1.0, DACOS
(D) = 0
If D < - 1.0, DACOS
{D) = 71

268 DA = DTAN (D)
DA = DCOTAN (D)

jXj^ (2^)n DA = 1 A, B, D

DA = DCOTAN (D)

o
II

o

•'
II

<
Q

A, B, D

270® CQ = CQA**J CQA = 0 + Oi
J< 0

J=0, CQ = 1 + 0,1
J < 0, CQ = --I- 0,1

A, B, CQA, J

271' Z = CEXP (C) X, < 174.673 Z = *(cos X2 iSIN X2) A, B, C

272 Z = CEXP (C) jXzi S (2*8)n Z = e* + Oi A, B, C

273 Z = CLOG (C) C = 0 + 01 Z = -« -1- Oi A, B, C

274 Z = CSIN (C) |Xil S (2*8)11 Z = 0 + SINH (X2)jx A, B, C

Z = CCOS (C) Z = COSH (Xj) + Oi A, B, C

275 Z=CSIN (C) Xj < 174.673 Z=-^(SINXi ^ 1COSX1) A, B, C

Z = CCOS (C) Z=-^(COSXi - 1SINX1) A, B, C

275 Z = CSIN (C) Xj < - 174.673 z =

-^(SINX, - iCOSX,)
A, B, C

Z = CCOS (C) z =

-^(COSX, + iSIN Xi)
A, B, C

276® Z = CQEXP (CQ) X, > 174.673 Z = *(COS X2 - iSIN X2) A, B, CQ

277 Z = CQEXP (CQ) jX^j > 2ioo Z = e,,i - 0/ A, B, CQ

278 Z = CQLOG (CQ) CQ = 0 + Oi Z = -* -1- Oi A, B, CQ

279 Z = CQCOS (CQ)
Z = CQCOS (CQ)

|Xi| > 2*00 Z = 0 -1- DSINH (X2)i
Z = DCOSH (X2) + Oi

A, B, CQ

280 Z = CQSIN (CQ) X2 > 174.673 Z=-^(SIN Xi -f iCOSX,) A, B, CQ

Z = CQCOS (CQ) Z=-^(COSXi = iSIN X,) A, B, CQ

Z=CQSIN (CQ) Xj < - 174.673 Z=-^(COSX, - iSIN X,) A, B, C Q

Z = CQCOS (CQ) Z=-^(COSX, =iSIN X,)

281' Z = CDEXP (CD) X, > 174.673 Z = *(COS X2 - iSIN X2) A, B, CD

282 Z = CDEXP (CD) 1X2! > (250)n Z = e''i -i- 0/ A, B, CD

283 Z = CDLOG (CD) CD = 0 + 01 Z = - • + Oi A, B, CD

284 Z=CDSIN (DC)

IV

cn
0

Z = 0 + SINH (X2)| A, B, CD

Figure 55 (Part 2 of 3). Corrective Action after Mathematical Subroutine Error

332 VS FORTRAN Version 2 Language and Library Reference

Error

Code

FORTRAN

Reference'

invalid

Argument Range

Options Standard
Corrective Action^, '

Options Parameters
Passed to tJser Exit"

Z = CDCOS (CD) Z = COSH (X2) + Oi A, B, CD

285 Z = CDSIN (CD) Xg > 174.673 Z=-^(SINXi + iCOSX,) A, B, CD

Z = CDCOS (CD) Z=-^(COSXi - iSIN Xi) A, B, CD

Z = CDSIN (CD) Xj < - 174.673 Z=y(SINXi - iCOSX,) A, B, CD

Z = CDCOS (CD) z=y (COSX1 + iSINXi) A, B, CD

289 QA = QSQRT (Q) Q < 0 QA= |Q|1'2 A, B, Q

290 Y = GAMMA (X) X< 2-2SZ or
X5 57.5744

Y=« A, B, X

291 Y = ALGAMA (X) X< 0 or

X > 4.2937 X 10"

Y=» A, B, X

292 QA = QEXP (Q) Q > 174.673 QA = - A, B, Q

293 QA = QLOG (Q) Q = 0
Q < 0

QA = -»
QA=log|X|

A. B, Q

QA = QLOG10 (Q) Q = 0
Q < 0

QA = »

QA= logio|X|
A, B, Q
A, B, Q

294 QA = QSIN (Q)
QA = QCOS (Q)

IQIS 2^°° QA=V27F A, B, Q

295 QA = QATAN2 (Q, QB) Q = 0, QB = 0 QA = 0 A, B, Q, QB

296 QA = QSINH (Q)
QA = QCOSH (Q)

|Q|> 175.366 QA = *(SIGN Q)
QA = -

A, B, Q

297 QA = QARSIN (Q) IQI > 1 If Q > 1.0, QARSIN = n/2
If Q < -1.0, QARSIN = /t/2

A, B, Q

A, B, Q

QA = QARCOS (Q) If Q > 1.0, QARCOS

(Q) = 0
If Q < -1.0, QARCOS
(Q) = 71

298 QA = QTAN (Q)
QA = QCOTAN (Q)

IQI > 2'°° QA = 1 A, B, Q

299 QA = QTAN (Q) Q is too close to an
odd multiple of n/2

QA = * A, B, Q

QA = QCOTAN (Q) Q is too close to a

multiple of n

QA = - A, B, Q

300 DA = DGAMMA (D) D < 2 ~ 252or
D> 57.5774

DA = * A, B, D

301 DA = DLGAMA (D) D< Oor

D> 4.2937 10"

DA = »

Figure 55 (Part 3 of 3). Corrective Action after Mathematical Subroutine Error

Chapter 9. Extended Error-Handling Subroutines and Error Option Table 333

Notes to Figure 55:

' The variable types are as follows;

Variable Type
A.B INTEGER*4

l,J,K INTEGER*4
X,XA.Y REAL*4

D,DA,DB REAL*8
C.CA COMPLEX*8

Q,QA,QB REAL*16
CQ.CQA COMPLEX*32

Z,X,,X2 Complexvariables to be given the length of the function argument when they
appear.

CD.CDA COMPLEX*16

' The largest number that can be represented in floating point is indicated bythe symbol •.
' The value e= 2.7183 (approximately).

The user-supplied answer is obtained by computation of the function using the value set by
the user routine for the parameters listed.

® The values of the base and exponent are limited to values where BASE**exponent and
BASE**(-exponent) are representable.

® Forerror 270, CQA = X, + 1X3

' For errors 271 through 275, C = X, + iXj

® For errors 276 through 280, CQ = X^ + iXj

' For errors 281 through 285, CD = X, + iXj

334 VS FORTRAN Version 2 Language and Library Reference

NTASKS

Chapter 10. Multitasking Facility (MTF) Subroutines

The MTF subroutines are supplied as part of the VS FORTRAN Version 2
Library. When accessed in a main task program by the appropriate entry name
in a CALL statement, they perform the multitasking functions. The multitasking
capability provided by MTF is available only when running under the MVS or
MVS/Extended Architecture (MVS/XA) operating systems.

For more information on coding parallel subroutines for multitasking, see VS
FORTRAN Version 2 Programming Guide.

NTASKS Subroutine
The NTASKS subroutine returns the number of subtasks specified with the
AUTOTASK keyword in the FARM parameter of the EXEC statement for the job
step.

Syntax

CALL NTASKS(a7)

n

is an integer variable or an integer array element of length 4 in the program
unit.

The values returned in n have the following meanings:

Value Meaning

0 The AUTOTASK keyword was not specified.

1-99 The number of subtasks specified with the
AUTOTASK keyword.

Notes:

1. NTASKS may be called in a main task program as often as desired.
However, it will always return the same value, because the number of sub-
tasks does not change during the execution of a program.

2. NTASKS may be called only from a main task program. If it is called from a
parallel subroutine, the program will be terminated with a return code of 16.

3. If NTASKS is called by a program running under CMS, n will be set to 0.

Chapter 10. Multitasking Facility (MTF) Subroutines 335

DSPTCH

DSPTCH Subroutine
The DSPTCH subroutine schedules a parallel subroutine for execution in a
subtask. You may call DSPTCH as many times as necessary. Eventually, you
must call SYNCRO to wait for all the parallel subroutines to finish executing.

Syntax

CALL DSPTCH (subrname [, arg, [, arg,]...])

subrname

specifies the 1- to 8-character name of the parallel subroutine to be sched
uled.

Ifthe subroutine is a FORTRAN subroutine, and the name is longer than 7
characters, subrname must be the shortened form of the subroutine name.
For a description of the shortened form of long global names, see the note
on page 8.

For FORTRAN Language Level 77, subrname is a character expression.

For Language Level 77, the character expression subrname may be longer
than the subroutine name it will contain. If it is, the name must be left-
adjusted within the field and padded on the right with blanks to at least 8
characters. The value, after trailing blanks are removed, must be 8 charac
ters in length.

For FORTRAN Language Level 66, subrname must be specified as a char
acter constant of 8 or more characters. The name must be left-adjusted
within the field and padded on the right with blanks to a length of 8 charac
ters. The value, after trailing blanks are removed, must be 8 characters in
length.

[,arg,[,arg2]...]
specifies the actual arguments that are being supplied to the parallel sub
routine.

Each argument may be:

A variable

An array element

An array name

" A constant

The following must not be used for the actual arguments being supplied to
the parallel subroutine subprogram:

• Expressions requiring evaluation: for example, A + 2*B**3

Function names

Subroutine names

Alternate return specifiers; that is, the form *n, where n is a statement
label.

336 VS FORTRAN Version 2 Language and Library Reference

SYNCRO

Notes:

1. You may call DSPTCH from your main task program as often as necessary
to schedule parallel subroutines for execution. However, if, prior to calling
SYNCRO you call DSPTCH more times than there are subtasks available,
each call in excess of the number of subtasks will cause your main task
program to wait until one of the previously-scheduled parallel subroutines
has flnished executing.

2. DSPTCH usually returns to the main task program before the scheduled
parallel subroutine has completed execution. Therefore, you must call
SYNCRO to ensure that your parallel subroutines have completed exe
cution.

3. DSPTCH may be called only from a main task program. Ifyou call it from a
parallel subroutine, the program will be terminated with a return code of 16.

4. If DSPTCH is called by a program executing under MVS or MVS/XA and the
AUTOTASK keyword was not specified, the program will be terminated with
a return code of 16.

5. If DSPTCH is called by a program running under CMS, the program will be
terminated with a return code of 16.

SYNCRO Subroutine
The SYNCRO subroutine causes the main task program to wait until all sched
uled parallel subroutines have completed execution.

Syntax

CALL SYNCRO

SYNCRO has no arguments.

Notes:

4.

You may call SYNCRO in a main task program as often as necessary. If
there are no parallel subroutines scheduled when SYNCRO is called, the
call is ignored.

SYNCRO may be called only from a main task program. If you call it from a
parallel subroutine, the program will be terminated with a return code of 16.

If SYNCRO is called by a program executing under MVS or MVS/XA and the
AUTOTASK keyword was not specified, the call is ignored.

If SYNCRO is called by a program running under CMS, the call is ignored.

Chapter 10. Multitasking Facility (MTF) Subroutines 337

SHRCOM

SHRCOM Subroutine
The SHRCOM subroutine allows you to designate a dynamic common block as
shareable among the main task program and the parallel subroutines.

Syntax

CALL SHRCOM {dyncom)

dyncom

is a character expression whose value, when trailing blanks are removed is
the name of a dynamic common block. The dynamic common, dyncom,
must be defined within some program unit in the main task program that
has been entered at least once before SHRCOM is called. If dyncom has
not been defined, an error will be detected.

Notes:

1. If a parallel subroutine is to use a shared copy of a dynamic common
block, the main task program must designate that common block as
shareable before the subroutine is scheduled.

2. If a program unit within a parallel subroutine refers to a dynamic
common block that has not been designated as shareable, a dynamic
common block will be acquired for the exclusive use of that subtask,
which will be available to all program units within that subtask.

3. If SHRCOM is called by the main task program to make shareable a
dynamic common block that has already been acquired for the exclu
sive use of a subtask, an error will be detected.

4. A dynamic common block that is shared among the main task program
and the parallel subroutines may be the virtual storage window that cor
responds to part of a data-in-virtual object. However, all of the DIV
service calls are restricted to the main task program.

5. Static common blocks cannot be shared among the main task program
and parallel subroutines.

338 VS FORTRAN Version 2 Language and Library Reference

Appendix A. Source Language Flaggers

ANS Language (FIPS) Flagger
The VS FORTRAN Version 2 compiler can flag FORTRAN statements that do not
conform to the syntax of the Full or Subset ANS FORTRAN Standard (FORTRAN
77). The FIPS compiler option specifies whether this flagging is to be per
formed.

Systems Application Architecture Flagger
The VS FORTRAN Version 2 compiler can also flag FORTRAN statements that
are not a part of the Systems Application Architecture (SAA) Common Program
ming Interface (CP!) FORTRAN language definition. The SAA compiler option
specifies whether this flagging is to be performed.

For more information about the compiler options, see the VS FORTRAN
Version 2 Programming Guide.

Items Flagged for FIPS and SAA

The table in Figure 56 lists the major elements of the VS FORTRAN Version 2 language. The table
shows whether:

An element is flagged for not conforming to the FORTRAN 77 standard (FIPS)
An element is flagged for not conforming to the Systems Application Architecture FORTRAN defi
nition (SAA)

Statement or

Feature Use

Ragged
by FIPS?

Flagged
by SAA?

Ampersand (&) As special character Yes Yes

ASSIGN Assigns GOTO targets No No

Assigns FORMAT labels No No

Assignment statements Assign values to arithmetic and logical data items No No

Assign values to character data items No No

Asynchronous I/O Read/write in asynchronous mode Yes Yes

AT Specifies beginning of debugging packet Yes Yes

BACKSPACE Repositions file at previous record No No

BLOCK DATA Identifies a data subprogram No No

CALL Transfers control to a subroutine No No

Character data type For character (string) data No No

Figure 56 (Part 1 of 4) Major Elements of the VS FORTRAN Version 2 Language

Appendix A. Source Language Flaggers 339

Statement or

Feature Use
Ragged
by HPS?

Ragged
by SAA?

CLOSE Disconnects file from a program No No

Columns 1 to 5 Non-blank on continuation line Yes Yes

COMMON Defines storage shared between programs No No

Both character and noncharacter data in one block No No

Complex data type Complex numbers of single precision No No

Complex numbers of double and extended precision Yes No

CONTINUE Non-operational executable statement for programming convenience No No

Currency symbol ($) In names Yes Yes

DATA Initializes variables and array elements No No

Initializes variables and arrays with implied DO loops if desired No No

DEBUG and END

DEBUG

Delimit the debugging packet portion of a program Yes Yes

DEFINE FILE Specifies a direct-access file Yes Yes

DELETE Deletes record from a KSDS file Yes Yes

DIMENSION Defines arrays of up to three dimensions No No

Defines arrays of up to seven dimensions No No

Defines arrays with adjustable size No NO

Defines arrays with explicit lower bounds (which can be positive or
negative)

Yes No

Direct-access I/O Read/write by record number No No

DISPLAY Displays data within a debugging packet Yes Yes

DO Gives a convenient way to program loops (using integer DO vari
ables)

No No

Real and double precision DO variables are allowed; negative Incre
ment parameter is allowed

No No

DO WHILE Initiates processing of program loops based on evaluation of a
logical expression

Yes Yes

EJECT Starts new page of source listing Yes Yes

END Marks end of program unit No No

Terminates program processing No No

END DO Terminates processing of a DO or DO WHILE loop Yes Yes

end of line commentary The "1" indicates the beginning of a comment Yes Yes

ENDFILE Writes end-of-file record No No

ENTRY Specifies alternate entry points Into subprograms No No

EQUIVALENCE Defines shared storage No No

Relates character and noncharacter data No No

Explicit type statements Define data types of specific variables No No

Expressions Manipulate arithmetic, relational, or logical items, or other
expressions

No No

Manipulate character items or arithmetic double precision or
complex Items

No No

Figure 56 (Part 2 of4). Major Elements of the VS FORTRAN Version 2 Language

340 VS FORTRAN Version 2 Language and Library Reference

statement or

Feature Use

Ragged
by FIPS?

Ragged
by SAA?

EXTERNAL Defines linked subprograms No No

FIND Locates next Input record Yes Yes

FORMAT Defines record formats No No

Character constants and run-time formats allowed No No

Free-form source Relaxes format rules for source program Yes Yes

FUNCTION Identifies a function subprogram No No

GENERIC Automatic function selection Yes Yes

GO TO Specifies transfers of control No No

Hexadecimal constants For initializing data values Yes Yes

Hollerith constants For initializing integer variables Yes Yes

As arguments in CALL statements Yes Yes

As character strings in FORMAT statements Yes No

IF Specifies alternate paths of processing, using arithmetic and logical
IF versions

No No

Block IF version, using ELSE, ELSE IF, and END IF No No

IMPLICIT Types groups of variables No NO

INCLUDE Copies pre-written source statements into program Yes No

Integer data type For integer numbers No No

INQUIRE Retrieves Information about a file No NO

Internal files Easy data conversion No NO

Intrinsic functions Supply arithmetic and generic functions No No

Supply character and bit functions No No

INTRINSIC Explicitly defines intrinsic functions NO No

I/O status indicator Determine success of Input/output statement No NO

Keyed I/O Read/write by record key value Yes Yes

Length fields Optional specification for data types Yes No

List-directed I/O Read/write formatted data without FORMAT statement No No

' Literal constants' Literal constants enclosed in apostrophes No No

Logical data type True/false values No No

Mixed-mode

expressions
For mixing of data types No No

NAMELIST Read/write referencing named list Yes Yes

OPEN Connects files to a program; error routines can be specified NO No

PARAMETER Establishes names for constants No No

PAUSE Suspends program processing temporarily No No

PRINT Installation-dependent write statement No No

PROGRAM Names a main program No NO

PUNCH Installation-dependent write statement Yes Yes

Quotation mark Double quote (") as special character Yes Yes

READ Reads a record from a file No No

Figure 56 (Part 3 of 4). Major Elements of the VS FORTRAN Version 2 Language

Appendix A. Source Language Flaggers 341

Statement or

Feature Use

Flagged
by FIPS?

Ragged
by SAA?

Real data type Single precision floating-point numbers No No

Double precision floating-point numbers No No

Extended precision floating-point numbers Yes Yes

Real subscripts Expressions with floating-point numbers can be used as subscripts Yes Yes

RETURN Returns control to a calling program No No

REWIND Repositions to beginning of file No No

REWRITE Rewrites record in a KSDS file Yes Yes

SAVE Saves values after a called program completes executing No No

Sequential I/O Read/write sequential files No No

Statement functions Convenient programming of expressions No No

STOP Terminates program processing No No

SUBROUTINE Identifies a subroutine subprogram No No

Symbolic names 31 characters long Yes No

TRACE ON/OFF Traces specific portions of a program Yes Yes

Underscore character

L)

In names Yes No

VSAM I/O Supports ESDS, RRDS, and KSDS files Yes Yes

WRITE Writes a record into a file No No

Figure 56 (Part 4 of 4). Major Elements of the VS FORTRAN Version 2 Language

342 VS FORTRAN Version 2 Language and Library Reference

Appendix B. Assembler Language Information

The mathematical and service routines {including the vector intrinsic elemen
tary functions) in the VS FORTRAN Version 2 library can be used by the assem
bler language programmer. To be successful, you need to do three things:

Make the library available to the linkage editor or loader.

Set up proper calling sequences.

Supply correct parameters.

Library Availability
The assembler language programmer must arrange for the desired routines
(modules) to be taken from the VS FORTRAN Version 2 library and brought into
main storage, usually as a part of the programmer's load module. This can be
done by employing the techniques described in the appropriate publications for
your operating system.

For example, in MVS, the VS FORTRAN Version 2 library could be made part of
the automatic call library for the linkage editor by using the following job
control statements. Note that, to assemble vector mnemonics, you must use
Assembler H Version 2 Release 1.0 with the appropriate Program Temporary
Fixes (RTFs).

In Link Mode:

//jobname JOB ...operands
//ASH EXEC ASMHCLG,PARM.L='LET,LIST,MAP'
//C.SYSIN DD *

(assembler language program source deck)

I*
//L.SYSLIB DD DSNAHE=SYS1.VSF2LINK,DISP=SHR
// DD DSNAHE=SYS1.VSF2F0RT,DISP=SHR

/*

Appendix B. Assembler Language Information 343

In Load Mode:

//jobname JOB ...operands
//ASM EXEC ASMHCLG,PARM.L='LET,LIST,MAP'
//C.SYSIN DO *

(assembler language program source deck)

/*
//L.SYSLIB DD DSNAME=SYS1.VSF2F0RT,DISP=SHR
//G.STEPLIB DD DSNAME=SYS1.VSF2F0RT,DISP=SHR
/*

Library routines requested in the source program would then be made avail
able to the linkage editor for inclusion in the load module. This is made pos
sible by using the name of the library as the data set name in the SYSLIB DD
statement.

Initializing the Execution Environment
Ifyour main program is not written in FORTRAN and it calls VS FORTRAN
Version 2 library routines or other FORTRAN routines, the calling program must
first initialize the execution environment. For more information on how to do

this, see VS FORTRAN Version 2 Programming Guide.

Calling Sequences
Two general methods of calling are possible:

Code an appropriate macro instruction, such as CALL.

Code assembler language branch instructions.

In all cases, a save area must be provided that:

>• Is aligned on a fullword boundary

• Is 18 words (72 bytes) in length

Has its address in general register 13 at the time of the CALL macro
instruction or branch

344 VS FORTRAN Version 2 Language and Library Reference

Figure 57 on page 348 through Figure 61 on page 350 contain assembler infor
mation for VS FORTRAN Version 2 routines:

Assembler Information Figure

Explicitly called mathematical routines Figure 57

Implicitly called mathematical routines Figure 58

Implicitly called character routines Figure 59

Service routines Figure 60

Explicitly called bit functions Figure 61

Figure 62 on page 351 is an example of Assembler language calling sequence
with CALL macro. Figure 63 on page 351 is an example of Assembler lan
guage calling sequence with BALR.

For vector intrinsic elementary functions, the result registers are listed in
Figure 64 and Figure 65 on page 352, and Figure 66 on page 352.

Figure 67 on page 354 contains assembler information for vector intrinsic ele
mentary functions.

Figure 68 on page 355 and Figure 69 on page 356 show calling sequences for
a specific example: how to find the square root of a vector of 10 arguments
using vector registers. Figure 68 shows the sequence with vector mask mode
off, and Figure 69 with vector mask mode on. The library square root routine
{entry name V#SQRT or W#SQRT) is invoked, using assembler language state
ments.

Notes:

1. For performance reasons, VS FORTRAN Version 2 routines use certain
floating-point registers (see Figure 58 on page 349), but do not save and
restore original register contents. If you want floating-point register con
tents retained, you must save them before calling the routine and restore it
on return.

2. Performance Hint: To speed up save area loads and stores, align the save
area within your routine on a doubleword boundary, as shown below:

CNOP 4,8
SAV DC 18F'0'

Execution of the STM 14,12,12(13) instruction in a called routine will be
faster using this alignment.

Appendix B. Assembler Language Information 345

Assembler Language Calling Sequence
When a branch instruction, rather than a CALL macro instruction, is used to
invoke a routine, several additional conventions must be observed:

»- An argument (parameter) address list must be assembled on a fullword
boundary. It consists of one 4-byte address constant for each argument,
with the last address constant containing a 1 in its high order bit.

The address of the first item in this argument address list must be in
general register 1.

The address of the entry point of the called routine must be in general reg
ister 15.

>• The address of the point of return to the calling program must be in general
register 14.

The address of the save area (72 bytes) must be in general register 13.

Supplying Correct Parameters
Arguments must be of the proper type, length, and quantity, and, in certain
cases, within a specified range, for the routine called.

For mathematical and character routines, this information can be found in
Figure 26 on page 246 through Figure 32 on page 257.

INTEGER*4 denotes a signed binary number 4 bytes long.

REAL*4, REAL*8, and REAL*16 are normalized floating-point numbers 4, 8,
and 16 bytes long, respectively.

- C0MPLEX*8, C0MPLEX*16, and COMPLEX*32 are complex numbers 8, 16.
and 32 bytes long, respectively, represented by a pair of floating-point
numbers whose first half contains the real part, and whose second half con
tains the imaginary part. Each part is a normalized floating-point number.

>• Four-byte argument types must be aligned on fullword boundaries; 8-byte,
16-byte, and 32-byte types must be aligned on doubleword boundaries.

Argument information for nonmathematical routines can be found under

Chapter 7, "Service Subroutines" on page 269.

Error messages resulting from incorrect arguments are explained in
Appendix D, "Library Procedures and Messages" on page 375.

346 VS FORTRAN Version 2 Language and Library Reference

Mathematical Routine Results
Each mathematical routine returns a single answer of a type listed in Figure 26
on page 246 through Figure 32 on page 257.

Integer answers are returned in general register 0.

f Real answers are returned in floating-point register 0.

• Complex answers are returned in floating-point registers 0 and 2.

Result registers are listed by routine entry name in Figure 57 on page 348 and
Figure 58 on page 349.

For vector intrinsic elementary functions, the result registers are listed in
Figures 64, 65, and 66.

For extended-precision mathematical routines, results are always returned in
the floating-point registers:

0 and 2 for REAL*16 results

0 and 2, 4 and 6 for COMPLEX*32 results

The location and form of the service subroutine results can be determined from

the discussion under Chapter 7, "Service Subroutines" on page 269.

Space Considerations

Many of the mathematical routines require other mathematical routines for
some of their calculations. In addition, most of the routines use the

input/output, error processing, and interruption library subroutines. In case of
errors, the vector mathematical routines use the scalar routines to locate the

incorrect element of the vector.

Appendix B. Assembler Language Information 347

Floating Point Registers Used by Routiners

Routine

Entry Name

ABS.DABS,IABS,QABS
ACOS,ASIN
ACOS,ASIN'
AIMAG.DIMAG.QIMAG
AINT.DINT.qiNT
ALGAMA.GAMMA.LGAMMA

ALOG.LOG
ALOG.LOG'
ALOG10,LOG10
ALOGIO.LOGIO'
AMOD,DMOD,QMOD
ANINT.DNINT.NINT.IDNINT
ATAN

ATAN2

ATAN,ATAN2*
CABS

CABS'
CCOS.CSIN

CDABS

CDABS'
CDCOS.CDSIN

CDEXP

CDLOG

CDSQRT

CEXP

CLOG

CONJG.DCONJG.QCONJG

COS

COS'

COSH,SINK
COTAN.TAN

COTAN.TAN'
CQABS
CQCOS.CQSIN
CQEXP
CQLOG
CQSQRT
CSQRT
DACOS.DASIN

DACOS.DASIN'
DATAN,DATAN2

DATAN,DATAN2'
DCOS

DCOS'
DCOSH.DSINH

DCOTAN.DTAN
DCOTAN.DTAN'
DDIM,DIM,1DIM,QDIM

DERF.DERFC
DEXP

DEXP'
DGAMMA,DLGAMA

DLOG

DLOG'
DLOG10

DLOG10'
DPROD

•SIGN,ISIGN,SIGN,QSIGN

Resu It

Registers

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0,2

0,2

0

0,2

0,2

0,2

0,2

0,2

0,2

0,2
0

0 I
0

0

0 I
0 I
0,2,4,6
0,2,4,6

0,2,4,6

0,2,14,6
0,2,^4,6
0,2 j
0

0 I
0

0 I
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Intermediate

Registers

2

2,4,6

2,4

2,4,6

2,4,6
2,4,6

2

2,4,6

2

2,4,6

2,4,6

2,4,6

2,4,6

2,4

2,4,6

2,4,6
6

4

2,4,6

4,6

4,6

4,6

4,6

4,6

4,6

4,6

2,4,6

2,4

2,4

2,4

2,4,6
2,4

4,6

2,4,6

2,4

2,4,6

2,4,6

2,4.6

2,4

2,4,6

2,4,6

2,4,6

2,4,6

2,4,6

2,4

2

2,4,6

2,4,6

2,4,6

2,4,6

2,4,6

2

2,4,6

Figure 57 (Part 1 of 2). Explicitly Called Mathematical RoutineAssembler Information

348 VS FORTRAN Version 2 Language and Library Reference

Routine Result Intermediate

Entry Name Registers Registers

DSIN 0 2,4,6

DSIN' 0 2.4

DSQRT 0 2,4,6

DSQRT' 0 2,4

DTANH 0 2,4,6

ERF.ERFC 0 2,4,6

EXP 0 2

EXP' 0

MOD 0^

QARCOS.QARSIN 0,2 4,6

QATAN,QATAN2 0,2 4,6

QCOS.QSIN 0,2 4,6

QCOSH.QSINH 0,2 4,6

QCOTAN.QTAN 0,2 4,6

QERF.QERFC 0,2 4,6

QEXP,QLOG,QLOG10 0,2 4,6

QSQRT 0,2 4,6

QTANH 0,2 4,6

SIN 0 2.4

SIN' 0 2,4

SQRT 0 2,4

SQRT' 0 2

TANH 0 2,4,6

Figure 57 (Part 2 of 2). Explicitly Called Mathematical Routine Assembler Information

Notes to Figure 57:

' Alternative mathematical library subroutines

^ General register

Routine Result Intermediate

Entry Name Registers' Registers'

CDDVD# 0,2 4,6

CDMPY# 0,2 4,6

CDVD# 0,2 4,6

CMPY# 0,2 4.6

CQDVD#,CQMPY# 0,2,4,6

CXMPR# 0^

FCDCD# 0,2,4,6

FCDXI# 0,2

FCQCQ# 0,2,4,6

FCQXI# 0,2,4,6

FCXPC# 0,2,4.6

FCXPl# 0,2

FDXPD# 0 2,4,6

FDXPD#' 0

FDXPI# 0

FIXPI# 0^

FQXPl# 0,2 4,6

FQXPQ#,FQXP2# 0,2 4,6

FRXPI# 0

FRXPR# 0 2,4,6

FRXPR#' 0

Figure 58. Implicitly Called Mathematical Routine Assembler Information

Notes to Figure 58:

* Alternative mathematical library subroutines

^ General register

Appendix B. Assembler Language Information 349

Routine

Entry Name(s)

CCMPR#

CHAR, ICHAR, LEN
CMOVE#

CNCAT#
INDEX

LGE, LGT, LLE, LLT

Figure 59. Implicitly Called Character Routine Assembler Information

Notes follow Figure 61. I

Routine

Entry Name(s) [

ASSIGNM

CDUMP, CPDUMP j
CLOCK, CLOCKX I

DATIM, DATIMX
•SPAN#, DSPN2#, DSPN4# |
DUMP, PDUMP

DVCHK I

DYCMN#
EXIT I
FILEINF

OVERFL

SDUMP I
SYSRCS, SYSRCT, SYSRCX, SYSABD, SYSABN
XUFLOW

Figure 60. Service Routine Assemble^ Information

Routine

Entry Name(s)

IBCLR, IBSET, BTEST, ISHFT
ICR, lEOR, NOT, lAND

Figure 61. Explicitly Called Bit Function Assembler Information
I
I

Notes to Figures 59, 60, and 61:

No floating-point registers are uspd in:
*- Implicitly called character roiitines

I
Service routines

I

Explicitly called bit functions [

350 VS FORTRAN Version 2 Language and Library Reference

The following instructions show the use of a CALL
macro to call the library square root routine.

CALL SQRT,(AMHT),VL (See Notes 1, 2)
STE 0,ANSWER

AUNT DC E'144'

ANSWER DC E'O'

Figure 62. Example of Assembler Language Calling Sequence with CALL Macro

Notes to Figure 62:

Notes:

1. The VL operand in CALL Indicates that the macro expansion should flag the
end of the parameter list.

2. If you expect to execute your program on an MVS/XA system, you must
assemble your program to make the MVS/XA version of the CALL macro
available.

A The following instructions show the use of a BALR
A sequence to call the library square root routine.

LA l.ARG

L 15,ENTRY
BALR 14,15
STE 0,ANSWER2

ENTRY DC V(SQRT)
ANSWER2 DC E'O"

ARC DC A(AMNX+X'80000000")

AMIIX DC E'144"

Figure 63. Example of Assembler Language Calling Sequence with BALR

Calling Vector Intrinsic Elementary Functions
The vector Intrinsic elementary functions can be called using either the CALL
macro, or a BALR sequence. Both methods are shown In Figure 68 on
page 355 and Figure 69 on page 356. No parameter list Is passed to these
routines. Instead, all data Is passed through vector hardware registers.

Appendix B. Assembler Language Information 351

Required Contents of Registers
The following sections describe the required contents of these registers:

• Vector registers

• Vector count register

Vector mask register

Vector interruption index

Vector Registers: The vector registers in which arguments are passed and in
which results are returned by the vector intrinsic elementary functions depend
on the number and data types of the arguments. Figures 64, 65. and 66 indicate
which vector registers are used.

Function

Type

Vector Registers
Real Part imaginary Part

REAL*4 0

REAL*8 0-1

COMPLEX*8 0 2

COMPLEX*16 0-1 2-3

INTEGER*4 0

LOGICAL*4 0

Figure 64. Vector Intrinsic Elementary Function Result Vector Registers

Argument Real Imaginary
Type Part Part

REALM 14

REAL*8 14-15

COMPLEX*8 12 14

COMPLEX*16 12-13 14-15

Figure 65. Argument Vector Registers for Functions of One Argument

Arg. 1 Real Imaginary Arg. 2 Real Imaginary

Type Part Part Type Part Part

REALM 12 REAL*4 14

REALM 12 INTEGER*4 14

REAL*8 12-13 REAL*8 14-15

REAL*8 12-13 INTEGER *4 14

COMPLEX*8 8 10 COMPLEX*8 12 14

C0MPLEX*8 10 12 INTEGER*4 14

COMPLEX*16 8-9 10-11 COMPLEX*16 12-13 14-15

COMPLEX*16 10-11 12-13 INTEGER*4 14

INTEGER *4 12 INTEGER*4 14

Figure 66. Argument Vector Registers for Functions of Two Arguments

The vector registers containing the arguments and results are not preserved
across calls to these functions. Furthermore, the odd half of the vector register
pairs used for short precision, integer, or logical arguments or results are not
preserved.

Some vector registers are used for intermediate calculations. This information
is indicated in the figures that follow. The vector registers used for interme
diate calculations are preserved across the call if the caller passes a byte in
the rightmost part of general register 0. indicating which vector registers are to

352 VS FORTRAN Version 2 Language and Library Reference

Program Mask

Error Handling

be preserved across the call. The i-th bit in the byte should be set to 1 if the
following vector register pair is to be preserved:

2i - 2i+l, i=0, 7

For example, if vector register pairs 2 and 3 and 6 and 7 must be saved across
a call to VD#TAN, byte 01010000 should be passed. Registers containing the
arguments and results are not preserved, regardless of the byte passed in
general register 0.

Note that, if X'FF' is passed, all but the argument and result vector registers
are preserved. The byte X'OO' should be passed if the contents of the vector
registers on return from the function are irrelevant.

Vector Count Register: The vector count register must contain the number of
elements on which the function is to be performed. The vector count register is
preserved across the call to the function.

Vector Mask Register: Each vector intrinsic elementary function has two entry
points, one that is called with the vector mask mode off, and one that is called
with the vector mask mode on.

When the mask mode is off, the entry name beginning with "V" in the following
figures should be called. In this case, the vector mask mode will be off on
return, and the vector mask register is undefined on return. If the entry name
beginning with "W" is called, the vector mask mode must be on and the vector
mask register will be preserved across the call. When the vector mask mode is
on, the computations are performed only on those elements corresponding to
true values in the vector mask register. The values corresponding to false
values will be undefined on return from the function.

Vector Interruption index: The vector interruption index should be set to 0 on
calls to either type of entry. It will be 0 on return.

In some of the routines, fixed point overflow can occur during the calculations if
the fixed point overflow exception is enabled. Initialization of the VS FORTRAN
Version 2 run-time environment disables this exception.

If an element of the argument vector register is not within the argument range
of the function, or if the result will underflow or overflow, the corresponding
scalar routine will be called to perform the function. The scalar routine then
issues the error message.

Vector Registers Used by Vector Intrinsic Elementary Functions
For each of the mathematical functions listed in column 1 of Figure 67 on
page 354, there is a corresponding vector intrinsic elementary function that
receives its arguments and returns its results in vector registers.

Those functions marked with an asterisk {*) take advantage of vector hardware
to compute the results. The remaining functions facilitate vectorization in the
compiler. In all cases, the vector intrinsic function returns the same results as

Appendix B. Assembler Language Information 353

would be obtained by passing the arguments to the scalar routine one by one.
The argument ranges are identical to those of the scalar routines.

Each vector intrinsic elementary function has two entry points, one that is called
with the vector mask mode off, and one that is called with the vector mask

mode on.

Equivalent Vector Entry Vector Entry Intermediate

Scalar If Mask If Mask Vector Registers

Function Mode Off Mode On Used

ACOS V#ACOS W^ACOS

ASIN V#ASiN W^ASIN

ATAN * V#ATAN W^ATAN

ATAN2 * V#ATAN2 W#ATAN2

BTEST V#BTEST W#BTEST

CABS * VC#ABS WC#ABS 2-3, 4-5

CCOS VC#COS WC#COS

CDABS * VCD^ABS WCD/^ABS 2-3, 4-5

CDCOS VCD#COS WCD#COS

CDDVD# VCDDVD# WCDDVD#

CDEXP VCD#EXP WCD^EXP

CDLOG VCD#LOG WCD^LOG

CDSIN VCD#SIN WCD#S1N

CDSQRT VCD#SQR WCD#SQR

coyou VCDVD# WCDVD#.

CEXP VC#EXP WC^EXP

CLOG VC#LQG WC^LOG

COS * V#COS yiffcos 2-3

COSH V#COSH W#COSH

COTAN V#COTAN W#COTAN

CSIN VC#SIN WC#SIN

CSQRT VC#SQRT WC#SQRT

DACOS VD#ACOS WD#ACOS

DAS IN VD#ASIN WD#ASIN

datan * VD#ATAN WD#ATAN 2-3, 4-5

DATAN2 * VD#ATAN2 WD#ATAN2 2-3, 4-5

•COS * VD#COS WD#COS 2-3, 4-5

•COSH VD#COSH WD#COSH

DCOTAN * VD#COTN WD#COTN 2-3, 4-5, 6-7

DERF VD#ERF WD^ERF

DERFC VD#ERFC WD#ERFC

DEXP * VD#EXP WD#EXP 2-3, 4-5

•GAMMA VD#GAMMA WD#GAMMA

DLGAMA VD#LGAMA WD#LGAMA

•LOG * VD#LOG WD#LOG 2-3, 4-5

DLOG10 * VD^LOGIO WD#LOG10 2-3, 4-5

•SIN * VD#SIN WD^SIN 2-3, 4-5

DSINH VD#SiNH WD#SINH

DSQRT * VD#SQRT WD^SQRT 2-3

•TAN * VD#TAN \NDtfTM 2-3, 4-5, 6-7

DTANH VD^TANH WD#TANH

ERF V#ERF W#ERF

ERFC V#ERFC W^^ERFC

EXP * V#EXP W#EXP 2-3

FCDCD# VCDCD# WCDCD#

FCDXI# VCDXI# WCDXI#

FCXPC# VCXPC# WCXPC#

FCXRI# VCXPl# WCXPI#

FDXPCy# * VDXPD# WDXPD# 2-3, 4-5

FDXPI# VDXPi# WDXPI#

FlXPIj^ VIXPI# WIXPI#

FRXPI# VRXPI# WRXPI#

Figure 67 (Part 1 of 2). Vector Entry Points and Intermediate Vector Registers Used

354 VS FORTRAN Version 2 Language and Library Reference

Equivalent Vector Entry Vector Entry Intermediate

Scalar If Mask If Mask Vector Registers
Function Mode Off Mode On Used

FRXPRff * VRXPR# WRXPR/f 2-3

GAMMA V^AMMA WffGAMMA

IBCLR V#IBCLR W#IBCLR

IBSET VfflBSET W#IBSET

LGAMMA V#LGAMMA W#LGAMMA

LOG * V#LOG W#LQG 2-3

LOG10 * V#LOG10 W#LOG10 2-3

SIN * V#SIN W#SIN 2-3

SINH V#SINH W#SINH
SQRT * V#SQRT WffSQRT 2-3

TAN V#TAN W#TAN

TANH V#TANH W#TANri

Figure 67 (Part 2 of 2). Vector Entry Points and Intermediate Vector Registers Used

AUNT

ANSWER

The follovnng instructions show the use of a BALR
sequence to call the library vector square root
routine to compute the square root of 10 arguments.
All vector registers except 0, 1, 14, and 15 are
preserved across the call.
Vector mask mode is off.

VRCL 0 Clear vector interrupt index
VSVMH 0 Set vector mask mode off

VLVCA 10 Set vector count register
LA l.AMHT Load address of argument array
VLE 14,1 Load argument vector register
IC 0,=X'FF' Save scratch vector registers
L 15,=V{V#SQRT) Load address of entry point
BALR 14,15 Call vector entry
LA 1,ANSWER Load address of result vector

VSTE 0,1 Store results

DC E'1',E'2',E'3'',E"4',E"5'
DC E'6',E'7',E'8' ,E'9',E'10'
DC lOE'O'

DC V(VFVIXI!')

Figure 68. Assembler Language Calling Sequences with Vector Mask Mode Off

Notes to Figure 68:

1. The L and BALR sequence can be replaced by a CALL statement:

CALL V#SQRT

2. The code sequences will take the square root values, no matter what the
value of the argument.

3. If an argument is invalid (for example, negative),the vector mathematical

routine will pass the values to a special routine, which will then pass the
arguments one by one to the scalar routine. The scalar routine will then
identify the failing argument and issue a warning message. Results
returned to the Assembler caller will be in vector register 0.

Appendix B. Assembler Language Information 355

The following instructions show the use of a CALL
macro to call the vector library square root
routine to compute the square roots of the
nonnegative elements of a vector of length 10.
All vector registers except 0, 1, 14, and 15 are
preserved across the call. Vector mask mode is on.

VRCL 0 Clear vector interrupt index
VSVHH 1 Set vector mask mode on

VLVCA 10 Set vector count register
LA l.AIINT Load address of array
VLE 14,1 Load argument vector register
SER 0,0 Set comparand for vector compare
VCEQ 4,0,14 Set vector mask register to 1 if

* array elements are nonnegative
IC O,X'O0' Don't save scratch registers
CALL W#SORT Call vector routine

LA 1,ANSWER Load address of result vector

VSTHE 0,1 Store square roots of
4r nonnegative elements only

VSVHH 0 Reset vector mask mode off

AHNT DC E'r,E'-2' ,E'3',E'-4',E'5'
DC E'-6',E'7' ,E'-8',E'9',E'-10'

ANSWER DC lOE'O'

Figure 69. Assembler Language Calling Sequences with Vector Mask Mode On

Notes to Figure 69:

1. The CALL statement can be replaced by a BALR sequence:

L 15,=V(W#SQRT)
BALR 14,15

2. The code sequence sets the vector mask register to indicate which argu
ments are greater than or equal to zero. Only those arguments are proc
essed.

356 VS FORTRAN Version 2 Language and Library Reference

Appendix C. Sample Storage Printouts

Output from Symbolic Dumps

Output Format

SDUMP output is produced, upon abnormal termination of your program, if the
program units were compiled with the TEST option or without the NOSDUMP
option and if the run-time option ABSDUMP was specified. The SDUMP output
contains information on all variables and arrays in each program unit on the
save area chain, as well as those in the program currently being processed.

In general, the output shows variable items (one line only) and array (more
than one line) items, variable and array items can contain either character or
noncharacter data, but not both.

In addition, variable and array items both identify valid variable types (shown
as yyy in the formats).

Variable Noncharacter
The variable value printing scheme for noncharacter data is as follows:

xxxxxxxxxxxxxxxxxx yyy zzzzzzzz

where:

xxxxxxxxxxxxxxxxxx is the variable name area.

If the variable name is longer than 18 characters, the name is
printed on a separate line above the type and data information.

yyy is the data type.

zzzzzzzz is the area for the formatted output.

The data type field (yyy) can have one of the following values:

Code Represents Length
14 Integer (4 bytes)
12 Integer (2 bytes)
L4 Logical (4 bytes)
L1 Logical (1 byte)
R4 Real (4 bytes)
R8 Real (8 bytes)
R16 Real (16 bytes)
C8 Complex (8 bytes, 4+4)
C16 Complex (16 bytes, 8 + 8)
C32 Complex (32 bytes, 16+16)

Figure 70. Valid Values for Data Type 1

Appendix C. Sample Storage Printouts 357

Variable Character
The variable value printing scheme for character data is as follows:

xxxxxxxxxxxxxxxxxx CHR

where:

xxxxxxxxxxxxxxxxxx is the variable name.

If the variable name is longer than 18 characters, the name is
printed on a separate line above the type information.

Character Data Format

The character data format is as follows:

xxxxxxxx aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa *bbbbbbbbbbbbbbbb*

where:

Array

xxxxxxxx. is the count of the next character displayed—the value is the
decimal number of the character.

aaaaaaaa is the hexadecimal representation of up to 4 bytes of char
acter data—as many aa's are used as are needed to display
the internal form of the data.

bbbbbbbbbbbbbbbb is the EBCDIC representation of up to 16 bytes of character
data—as many b's are used as are needed to display the
data.

Note: Unprintable characters are translated to the character period (.); aster
isks {*) are the delimiters of the EBCDIC character area.

The array value printing scheme is as follows:

ARRAY: xxxxxxxx TYPE:yyy

where:

xxxxxxxx is the array name.

yyy is the data type.

Valid values for yyy are listed in Figure 70 on page 357.

Array Specification
DIMENSION x: (yyyyyyyy:zzzzzzzz)aaa

where:

X is the dimension (from 1 to 7).

yyyyyyyy is the lower bound,

zzzzzzzz is the upper bound.

aaa is either blank or * ASSUMED SIZE ARRAY*.

Note: * ASSUMED SIZE ARRAY* appears only for the last dimension—there is
one dimension line for each dimension of the array.

358 VS FORTRAN Version 2 Language and Library Reference

Array Contents

Array Message

For the display of the contents of an array, the output is divided into two parts:
Part 1 describes the array name and the current element indexes, and part 2
displays the contents of the array.

The following shows how part 1 is formatted:

xxxxxxxX(dim1,dini2, dim3, dim4, dim5, di m6, dim7)

where:

is the array name.xxxxxxxx

dinil-dim7 are the indexes of the element value. The last dimension

for the array is displayed by the special character, #. This
line is printed whenever the previous dimension changes or
every 50 lines.

The second part of the output describes the contents of the array. The data line
has the following format:

= nnnn data

where:

is the last dimension index value for the array elementnnnn

data is the data value for the array element.

A line of hyphens in the output marks the end of output for each variable or
array item {not an array element).

The following message is issued if some array elements are missing from the
printed dump output:

ARRAY ELEMENTS WITH A VALUE OF ZERO, BLANK, OR FALSE ARE NOT
PRINTED.

Control Flow Information
The following shows the printing scheme of the portion of symbolic dump output
that indicates where a call originated and what other routines the program
calls, if applicable;

MODULE xxxxxxxx VJAS CALLED BY yyyyyyyy.

OP/SYS message fragment for OPERATING SYSTEM.

FROM OFFSET aaaaaa AT ISN. NO. bbbbbbbbbb.

wiiere:

xxxxxxxx identifies the caller module.

yyyyyyyy identifies the called routine.

OP/SYS is the operating system: DOS, MVS, VS1, or CMS.

aaaaaa is the offset into the program unit. If blanks appear, then the offset
is not available.

bbbbbbbbbb is the internal statement number (ISN). If double asterisks appear,
the ISN information is unavailable.

Appendix C. Sample Storage Printouts 359

Note: The message fragment is used in conjunction with other fragments to
identify the CALLs and RETURNS of the program units.

MODULE xxxxxxxx LAST CALLED yyyyyyyy

where:

xxxxxxxx is the calling module name,

yyyyyyyy is the called module name.

Note: The message fragment is used in tracing the control flow of program
units.

MODULE xxxxxxxx DID NOT CALL ANY OTHER ROUTINES,

where:

xxxxxxxx is the routine that did not call any other routines.

Note: The message fragment completes the group of fragments identifying the
control flow scheme.

I/O Unit information
The following messages appear only for post-ABEND processing (VPOST or
VPOSA):

1. Default units

DATA SET REFERENCE NUMBER TABLE. NUMBER OF ENTRIES IS xxx.

Indicates the number ofunits available to the FORTRAN program is xxx. ^

DEFAULT UNIT FOR THE PRINTER IS xxx.

Indicates the default output device is xxx.

DEFAULT UNIT FOR THE READER IS xxx.

Indicates the default input device is xxx.

DEFAULT UNIT FOR THE PUNCH IS xxx.

Indicates the default punch output device is xxx.

DEFAULT UNIT FOR THE OBJECT TIME ERROR MESSAGES IS xxx.

Indicates that error messages issued by the FORTRAN program will go
to unit xxx. This includes messages issued by AFBVPOSA (abnormal
termination) or AFBSDUMP (SDUMP).

2. Active units

FILE ON UNIT xxx IS ACTIVE.

Indicates that input/output activity has been proceeding on unit xxx.

3. Inactive (or formerly used) units

FILE IS INACTIVE. LAST CONNECTED UNIT IS xxx.

Indicates that file on unit xxx has been the object of a CLOSE or
REWIND statement.

360 VS FORTRAN Version 2 Language and Library Reference

I/O Unit Status Information
The following message fragments describe the identified unit. The messages

^ may not appear in this sequence, and not all may appear.
FILE IS USED FOR ASYNCHRONOUS SEQUENTIAL I/O.
FILE IS USED FOR SYNCHRONOUS SEQUENTIAL I/O.
FILE IS USED FOR DIRECT I/O.
FILE USES VSAM ACCESS METHOD.

FILE IS NAMED.

FILE STATUS IS OLD.

FILE STATUS IS UNKNOWN.

FILE IS FORMATTED.

FILE IS UNFORMATTED.

FILE HAS PERMANENT OPEN ERROR.

FILE HAS HAD FIRST I/O ERROR.
FILE NAME USED IS xxxxxxxx.

where xxxxxxxx is the ddname.

Examples of Sample Programs and Symbolic Dump Output
The following are three examples of sample programs and symbolic dump
output. The first two examples show the two types of output, the first for vari
able items and the second for array items. Be aware, however, that if your
program assigns values to both variable and array items, the output formats
will be mixed. The third example is a sample of what you might get after a
non-recoverable failure.

Appendix C. Sample Storage Printouts 361

Example 1. Variable Items
This program assigns values to variable Items.

9

0PROCESS

20

C

C

C

C

10

SAMPLE PROGRAM TO DEMONSTRATE SDUMP OF SCALAR VARIABLES

SPECIFY THE VARIABLE TYPES

C0MPLEX*8 C2,C1
COMPLEX*16 C3

C0HPLEX*32 C4

CHARACTER CH1,CH2*8
REAL*8 A,B
REAL* 16 YYYY.ZZZZ
INTEGER*2 JJJ,KKK,000,PPP
L0GICAL*1 P

L0GICAL*4 Q

ASSIGN THE VALUES

P=.TRUE.

Q=.FALSE.
CH2='ABCDEFGH'

CHl='r

R=32.3733

A = 5.5

NUHLTS=7

IABLSE=6

ZZZZ=4.0E5

1111=1111

JJJ=222

000=32767

PPP=-32768

6=222.222

KKK=999

LLL=121212

MMM = 2147483647

NNN = -2147483647

YYYY=25252525

Cl=(l.,l.)
C2=(2.,2.)
C3=(3.D0,3.D0)
C4=(4.Q0,4.Q0)

PRINT MESSAGE AND INVOKE SDUMP

V/RITE(6,*)
CALL SDUMP

STOP

END

CALL SDUMP WITH SCALAR VARIABLES OF VARIOUS TYPES

Figure 71. Example 1—Source Program

362 VS FORTRAN Version 2 Language and Library Reference

00001000

00002000

00003000

00004000

00005000

00006000

00007000

00008000

00009000

00010000

00011000

00012000

00013000

00014000

00015000

00016000

00017000

00018000

00019000

00020000

00021000

00022000

00023000

00024000

00025000

00026000

00027000

C0028000

00029000

00030000

00031000

00032000

00033000

00034000

00035000

00036000

00037000

00038000

00039000

00040000

00041000

00042000

00043000

00044000

00045000

00046000

00047000

00048000

00049000

Example 1. Output
The output is as follows:

ISDUHP - SYMBOLIC DUMP FOR MODULE: MAIM
0 MODULE MAIN WAS CALLED BY OP/SYS .
0 MODULE MAIM LAST CALLED AFBSDUMQ.

FROM OFFSET 000438 AT ISN. NO. 33.
ONNN 14 -2147483647

HMH 14 2147483647

LLL 14 121212

IIII 14 1111

lABLSE 14 6

NUHLTS 14 7

R R4 0.323733E+02

Q L4 F

P LI T

PPP 12 -32768

000 12 32757

KKK 12 999

JJJ 12 222

ZZZZ R16 0.4OO0OOO0O0OOGO00OO000OO0OOOOOOOOQ+O5

YYYY R16 0.252525250DOOOOOOOOOOOOOOOOOOOOOOQ+08

B R8 0.22222200012207D+03

A R8 0.55GGOOOOOOOOOOD+01

CH2

1

CHR

C1C2C3C4 C5C6C7C8 *ABCOEFGH *

CHI

1

CHR

F1 *1 *

C4 C32 0.4GGGGOOGOOOOOGGOOGGOOOGGOOGOOOGGQ+G1 0.40GGOGOOGGOGG

C3 C16 G.300GOOOOGOOOOOD+01 G.30O00GG00GO0OOD+G1

C1 C8 O.lOOOGGE+01 O.IGOOOGE+Ol

C2 C8 O.2GO0OGE+OI G.200000E+01

END OF SYMBOL DUMP PROCESSING FOR MAIN

Figure 72. Example 1—Output

Appendix C. Sample Storage Printouts 363

Example 2. Array Items
This program assigns values to array items.

:ess 00000100

00000200
SAMPLE PROGRAM TO DEMONSTRATE SDUHP OF ARRAY VARIABLES 00000300

00000400

00000500
SPECIFY THE VARIABLE TYPES 00000600

00000700
COMPLEX-8 C2(5),C1(5) 00000800
COMPLEX*16 C3(5) 00000900
C0MPLEX*32 C4(5) 00001000
CHARACTER CH1(5),CH2(5)-8 00001100
REAL-8 A(5),B(5) 00001200
REAL-16 YYYY(5),ZZZZ(5) 00001300
INTEGER-2 JJJ(5),KKK(5) 00001400
INTEGER KUHLTS(5),IABLSE(5),1111(5),LLL(5) 00001500
LOGICAL-1 P(5) 00001600
LOGICAL'4 Q(5) 00001700

00001800
ASSIGN THE VALUES 00001900

00002000
P(1)=.TRUE. 00002100
P(2)'.FALSE. 00002200

P(3)=.TRUE. 00002300
P(4)«.FALSE. 00002400

P(5)=.TRUE. 00002500
Q(1)=.TRUE. 00002600

Q(2)=.FALSE. 00002700
Q(3)=.FALSE. 00002800

Q(4)=.FALSE. 00002900

Q(5)=.TRUE. 00003000

CH2(1)(:)='ABCDEFGH' 00003100

CH2(2)(;)='ABCIJKLH' 00003200

CH2(3)(:) ='ABCII0PQR' 00003300

CH2(4)(:) =*ABCSTUW/' 00003400

CH2(5)(:)='ABCXYZAB' 00003500
CH1(1)(:) =T 00003600
CH1(Z)(:)="2' 00003700

CH1(3)(:)='3' 00003800

CH1(4)(:)='4' 00003900

CHI(5)(:)='5' 00004000
A(l) = 5.5 00004100
A(2) = 4.5 00004200
A(3) = 3.5 00004300
A(4) = 2.5 00004400

A(5) = 1.5 00004500

HUHLTS(1)=7 00004600

NUHLTS(2)=6 00004700
MUHLTS(3)=5 00004800
NUHLTS(4)=4 00004900
NUHLTS(5)=3 00005000
IABLSE(1)=6 00005100
IABLSE(2)=7 00005200

IABLSE(3)=8 00005300

IABLSE(4)=9 00005400

IABLSE(5)=10 00005500

Figure 73 (Part 1 of 2). Example 2—Source Program

364 VS FORTRAN Version 2 Language and Library Reference

ZZZZ(1)=4.0E5 00005600

ZZZZ(2)=4.0E3 00005700

ZZZZ(3)=4.0E2 00005800

ZZZZ(4)=4.0E1 00005900

ZZZZ(5)=4.0E0 00006000

00006100

IIII(2)=3211 00006200

IIII(3)=4311 00006300

IIII(4)»6511 00006400

IIII(5)=1541 00006500

JJ0(1)=212 00006600

JJJ(2)=242 00006700

JJJ(3)=232 00006800

JJJ(4)=252 00006900

JJJ(5)=262 00007000

B(l)=111.222 00007100

B(2)=222.222 00007200

B(3)=333.222 00007300

B(4)=444.222 00007400

B(5)=555.222 00007500

KKK(1)=899 00007600

KKK(2)=799 00007700

KKK(3)=699 00007800

KKK(4)=599 00007900

KKK(5)=499 00008000

LLL(1)=212 00008100

LLL(2)=312 00008200

LLL(3)=412 00008300

LLL(4)=512 00008400

LLL(5)=612 00008500

YYYY(1)=15151515 00008600

YYYY(2)=25252525 00008700

YYYY(3)=35353535 00008800

YYYY(4)=45454545 00008900

YYYY(5)=55555555 00009000

Cl(l)=(5..1.) 00009100

Cl(2)=(4.,2.) 00009200

Cl(3)=(3.,3.) 00009300

Cl(4)=(2.,4.) 00009400

Cl(5)=(l.,5.) 00009500

C2(l)=(2.,10.) 00009600

C2(2)=(4..8.) 00009700

C2(3)=(6.,6.) 00009800

C2(4)=(8.,4.) 00009900

C2(5)=(10.,2.) 00010000

C3(1)=(3.DO,13.00) 00010100

C3(2)=(6.D0,11.00) 00010200

C3(3)=(9.00,9.DO) 00010300

C3(4)=(12.DO,7.D0) 00010400

C3(5)=(15.00,5.00) 00010500

C4(1)=(4.QO,4.Q0) 00010600

C4(2)={3.QO,5.Q0) 00010700

C4(3)=(2.QO,6.Q0) 00010800

C4(4)=(1.Q0,7.Q0) 00010900

C4(5)=(O.QO,8.Q0) 00011000

00011100

PRINT MESSAGE AND INVOKE SOUHP 00011200

00011300

WRITE(5,*) ' CALL SDUHP WITH ARRAY VARIABLES OF VARIOUS TYPES ' 00011400

CALL SOUHP 00011500

STOP 00011600

END 00011700

Figure 73 (Part 2 of 2). Example 2—Source Program

Appendix C. Sample Storage Printouts 365

Example 2. Output
The output is as follows; ^

CALL SDUHP WITH ARRAY VARIABLES OF VARIOUS TYPES i

t

ISOUHP - SYMBOLIC DUMP FOR MODULE: MAIM ^
0 MODULE MAIN WAS CALLED BY OP/SYS . !
0 MODULE MAIN LAST CALLED AFBSOUMQ. I

FROM OFFSET OO0CF8 AT ISN. NO. 102. '
OARRAY: Q TYPE:L4
0 DIMENSION 1: (1: 5) ^

Q(#)
= 1 T

S = 2 F

= 3 F

= 4 F

= 5 T

OARRAY: P TYPE:LI

0 DIMENSION 1: (1: 5)
P(#)

1 T

= 2 F

= 3 T

= 4 F

= 5 T

OARRAY: LLL TYPE:14

0 DIMENSION 1: (1: 5)
LLL(«)

= 1 212

CM

tl

312

= 3 412

!? = 4 512

= 5 612

OARRAY: 1111 TYPE:14

0 DIMENSION 1: (1: 5)
IIII(#)

= 1 nil

(f = 2 3211

= 3 4311

= 4 6511

if = 5 1541

OARRAY: lABLSE TYPE:14

0 DIMENSION 1: (1: 5)
IABLSE(#)

= 1 6

§ = 2 7

a = 3 8

if = 4 9

= 5 10

OARRAY: NUMLTS TYPE:14

0 DIMENSION 1: (1: 5)
NUMLTS(a)

S = 1 7

a = 2 6

a = 3 5

if = 4 4

= 5 3

Figure 74 (Part 1 of 4). Example 2—Output

366 VS FORTRAN Version 2 Language and Library Reference

/

Z'

OARRAY; KKK TYPE:12

0 DIMENSION 1: (
KKK{ #)

1: 5)

OARRAY: JJJ

0 DIMENSION

JJJ(#)
= 1

= 2

= 3

jS* = 4

= 5

TYPE:

: (

899

799

699

599

499

12

212

242

232

252

262

5)

OARRAY: ZZZZ

0 DIMENSION 1:

ZZZZ(S)
n = 1

= 2

» = 3

TYPE:R16

(1: 5)

O.4OOO0OOOOOO0OOOOO0OOGOOOOOO0OOO0Q+O6
O.4OOOOOOOQOOOOOO0OOOOO0OOOOOOOOOOQ+O4
0.400000000000000000000000000000000^03

0.4OO0O0O0OOQ0OOO0OOOO0O0OO0G0O0O0Q+O2
0.4OO000OO0O000OO0ODO0OOOQOOOO00OOQ+O1

OARRAY: YYYY

0 DIMENSION

YYYY(»)
» = 1

TYPE:R16

5)

OARRAY: B

0 DIMENSION

B(if)
H = 1

= 2

= 3

= 4

= 5

OARRAY: A

0 DIMENSION

A(ff)
» = 1

i? = 2

S = 3

)? = 4

= 5

1: (1:

O.15151515OOO0OO0OOOOO00O00OO0O0GOQ+08
0.252525250000000000000000000000000+08

0.353535350000000000000000000000000+08
0.454545450000000000000000000000000+08
0.555555550000000000000000000000000+08

1: 5)
TYPE:R8

1: (

0.

0

0

0

111222000122070+03

222222000122070+03

333221923828130+03

,444221923828130+03

0.55522192382813D+03

TYPE:R8

1: (1: 5)

0.550000000000000+01

0.450000000000000+01

0.350000000000000+01

0.250000000000000+01

0.150000000000000+01

Figure 74 (Part 2 of 4). Example 2—Output

Appendix C. Sample Storage Printouts 367

0ARRAY: CH2 TYPE:CHR
0 DIMENSION 1: (1; 5)

CH2(d)
d = 1

1 C1C2C3C4 C5C6C7C8 *ABCDEF6H *

= 2

1 C1C2C3C9 D1D2D3D4 *ABCIJKLH it

= 3

1 C1C2C3D5 D6D7D8D9 *ABCNOP0R *

= 4

1 C1C2C3E2 E3E4E5E6 *ABCSTUVW *

= 5

1 C1C2C3E7 E8E9C1C2 *ABCXYZAB *

lARRAY: CHI TYPE:OMR

1 DIMENSION]I: (1: 5)
CH1(d)

d = 1

1 F1 *1 *

d = 2

1 F2 *2 *

d = 3

1 F3 *3 *

= 4

1 F4 *4 *

d = 5

1 F5 *5 *

OARRAY

0

C4 TYPE:C32

(DIMENSION 1:

C4(»)
» = 1

1; 5)

O.4OOOOOOOOOOOOOOOOOOOOOOOOOOOQO0OQ+O1
0.3OOOOO0OOOOOOOOOOOO0OOOOOOOOOOOOQ+O1
0.2OOO0000000OO00OOO0O0OOO0OOO0O0OQ-f01
0.100000000000000000000000000000000+01
0.000000000000000000000000000000000+00

OARRAY

0

C3 TYPEtCie

(1: 5)

0.400000000000000000000000000000000+01
0.500000000000000000000000000000000+01
0.600000000000000000000000000000000+01
0.700000000000000000000000000000000+01
0.800000000000000000000000000000000+01

DIMENSION 1

C3(#)
0 = 1

» =

0.3OO0OOOOOOOO00D+01

O.600OOOOO0OO0O0D+01

O.90OOOO0O0000OOD+O1

0.120000000000000+02
0.15000O0OO0OO00D+02

0.130000000000000+02

0.11OO00OO0O0000D+O2

0.9OO000O0OOO00OD+O1

0.7O00OO0OOO0O00D+01

0.500000000000000^01

OARRAY: C1

0 DIMENSION

Cl(#)
» = 1

TYPE:C8

1: (1:

0.50OOOOE+O1

0.4OO00OE+O1

O.300OO0E+O1

0.2O0OOOE+01

O.100OO0E+0I

5)

0.1OOO0OE+01

0.2O00OOE+O1

0.3OO0OOE+O1

0.4OO0OOE+O1

0.50O0OOE+O1

Figure 74 (Part 3 of 4). Example 2—Output

368 VS FORTRAN Version 2 Language and Library Reference

/

/

GARRAY: C2 TYP£:C8

0 DIMENSION 1: (1: 5)
C2(#)

= 1 O.2QOOOOE+01 O.1OOQO0E+O2

2 O.40OOO0E+O1 0.800O80E-t'Ol

» = 3 O.60OO0OE+01 0.6OO000E+01

= 4 0.8O0OO0E-)-01 0.4OOO0OE+01

g " 5 0.100800E+02 0.20OO0OE«01

END OF SYMBOL DUMP PROCESSING FOR MAIN

Figure 74 (Part 4 of 4). Example 2—Output

Example 3. Non-recoverable Failure
This program will attempt to store data, but will fail because the index into the
array has a number that is too large, and the program attempts to store the
array in an area that doesn't belong to the program.

DIMENSION A(10) 00000900

A(5)=3.2 00001000

1=99999999 00001400

A(I)=2.3 00001800

STOP 00001900

END 00002000

Figure 75. Example 3—Source Program

The output you get will vary, depending on the compiler options
GOSTMT/NOGOSTMT, SDUMP/NOSDUMP, and TEST/NOTEST, as follows:

*- The lines of the AFB240I message following the register contents are option
dependent. For details on AFB240I, see Appendix D, "Library Procedures
and Messages" on page 375.

Traceback information appears next and is dependent on the GOSTMT
option. When the traceback includes one or more subprograms compiled
with GOSTMT, ISNs appear in those lines for those programs; otherwise, **
appears. For details on traceback, see VS FORTRAN Version 2 Program
ming Guide.

*• I/O unit and unit status information appears next and is option independent.
This unit information is produced only if the program abnormally termi
nates. For details on unit status, see "I/O Unit Information" on page 360.

Control flow information appears last and is dependent on the SDUMP or
TEST option. For a program unit active at abend that was compiled with
SDUMP or TEST, the control flow information contains ISNs/line numbers;
otherwise, it contains ** in those fields. For details on control flow, see
"Control Flow Information" on page 359.

To get post-abend data, the object error Unit must be directed to a disk or
SYSOUT file. No output will be sent to the object error unit if it is directed to a
terminal device.

Sample output from running this program follows. The first sample output is
obtained when the program is run without any any run-time options specified.

Ann^^Hiy c F!''tip'p Qtor-jrje Printouts 369

Example 3. Output

The second sample output is obtained when the program is run with
ABMODLST specified. The third sample output is obtained when the program
is run with ABMODLST and ABSDUMP specified.

This first sample output is obtained when the program is run without any any
run-time options specified.

AFB210I VFNTH : PROGRAM INTERRUPT - ADDRESSING EXCEPTION

VFNTH ; PSW FFE400059202020C

VFNTH ; LAST EXECUTED FORTRAN STATEMENT IN PROGRAM MAIN AT ISN 4 (OFFSET 00020C).

TRACEBACK OF CALLING ROUTINES; MODULE ENTRY ADDRESS = 020000.

MAIN (020000) CALLED BY OPERATING SYSTEM.

STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

AFB240I VABEX : ABEND CODE IS; SYSTEM DCS, USER 0. '
VABEX : PSW=FFE400D59202020C ENTRY P0INT=02G000.

VABEX : REGS 0 - 3 05F5E0FF 00000000 0002021C 00020008

VABEX : REGS 4-7 OOF61362 00000006 17D783FC OB000850

VABEX : REGS 8-11 40F79BB8 00F7ABB8 E3404040 00F79BB8

VABEX : REGS 12-15 00020000 000200D8 40020226 000201EC

VABEX : FRGS 0 & 2 4124CCCD 00000000 00000000 00000000

VABEX : FRGS 4 & 6 00000000 00000000 00000000 00000000

VABEX : ABEND IN MODULE MAIN AT ISN 4 (OFFSET 0000020C).
DMSABN155T USER ABEND 0240 CALLED FROM 02F0D8.

Figure 76. Example 3—Output Without Run-Time Options

370 VS FORTRAN Version 2 Language and Library Reference

This second sample output Is obtained when the program is run with run-time
option ABMODLST specified.

AFB210I VFNTH : PROGRAM INTERRUPT - ADDRESSING EXCEPTION
VFNTH : PSW FFE4GOO5920202GC

VFNTH : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM MAIN AT ISN 4 (OFFSET OO02OC).

TRACEBACK OF CALLING ROUTINES; MODULE ENTRY ADDRESS = 020000.

MAIN (020000) CALLED BY OPERATING SYSTEM.

STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

AFB240I VABEX : ABEND CODE I[S: SYSTEM 0C5, USER 0.

VABEX ; PSV/=FFE400059202020C ENTRY POINT=02GOOO.

VABEX : REGS 0 - 3 05F5EOFF 00000000 0002021C 00020008

VABEX : REGS 4 - 7 00F61362 00000006 17D783FC 0BG00850

VABEX : REGS 8 -11 40F79BB8 OOF7ABB8 E3404040 00F79BB8

VABEX : REGS 12-15 00020000 000200D8 40020226 000201EC

VABEX ; FRGS 0 & 2 4124CCCD 00000000 00000000 00000000

VABEX : FRGS 4 & 6 00000000 00000000 00000000 00000000

VABEX : ABEND IN MODULE MAIN AT ISN 4 (OFFSET 0000020C).
VABEX : DATA AT PSW ADDR(020208) = 7006D0CC 58F0D0F8 1B1105EF
VABEX : LOADED LIBRARY MODULES

VABEX : AFBVNREN AT 02GBE8 T299R30B AT 420000

VABEX : AFBVMSKL AT 027B50 AFBVLOCA AT 02E058

VABEX : AFBVABEX AT 02E780

VABEX : AFBVBLNT AT 425EB8

VABEX : AFBVCLOP AT 4260C0

VABEX : AFBCSTIO AT 425AF0

VABEX : AFBVCOMH AT 426378

VABEX : AFBVC0II2 AT 022848

VABEX :: AFBVEMGN AT 429820

VABEX :: AFBVEMGl AT 429A0C

VABEX :: AFBVERRE AT 42AAE0

VABEX ;; AFBVFNTH AT 023078

VABEX :: AFBVGHFM AT 421EC0

VABEX :; AFBVIOFP AT 42AD38

VABEX :; AFBVIOLP AT 42B508

VABEX :; AFBVIOUP AT 42C908

VABEX !; AFBCLOAD AT 0221D8

VABEX !; AFBVLOCA AT 02E058

VABEX !; AFBVOPEP AT 42E4E0

VABEX :; AFBVSIOS AT 4222F0

VABEX !; AFBVSPIE AT 024FC0

VABEX :: AFBVSTAE AT 025118

VABEX :: AFBVTRCH AT 42D8D0

VABEX :; AFBCLCIO AT 0204FO

VABEX !i AFBVPARM AT 0247FO

VABEX i; AFBVGPRM AT 022740

VABEX :; AFBVEMGN AT 429820

VABEX :: AFBUATBL AT 025468

VABEX ;: AFBUOPT AT 025DC0

DIISABN155T USER ABEND 0240 CALLED FROM 02F0D8.

Figure 77. Example 3—Output for ABMODLST

Appendix C. SampleStorage Printouts 371

This third sample output is obtained when the program is run with run-time
options ABMODLST and ABSDUMP specified.

AFB210I VFNTH : PROGRAM INTERRUPT - ADDRESSING EXCEPTION
VFNTH ; PSW FFE4G0059202020C

VFNTH : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM MAIN AT ISN 4 (OFFSET 00020C).

TRACEBACK OF CALLING ROUTINES; MODULE ENTRY ADDRESS = 020000.

MAIN (020000) CALLED BY OPERATING SYSTEM.

STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

AFB240I VABEX : ABEND CODE IS: SYSTEM 0C5, USER 0.
VABEX : PSW=FFE400059202020C ENTRY P0INT=020000.

VABEX ;: REGS 0-3 05F5E0FF 00000000 0OO2O21C 00020008
VABEX :: REGS 4-7 00F61362 00000006 17D783FC OB000850

VABEX ;: REGS 8 -11 40F79BB8 00F7ABB8 E3404040 OOF79BB8

VABEX ;: REGS 12-15 00020000 000200D8 40020226 000201 EC

VABEX ;: FRGS 0 & 2 4124CCCD 00000000 00000000 00000000

VABEX ;; FRGS 4 & 6 00000000 00000000 00000000 00000000

VABEX ;: ABEND IN MODULE MAIN AT ISN 4 (OFFSET 0000020C).
VABEX :: DATA AT PSH ADDR(020208) = 7006D0CC 58FODOF8 1B1105EF
VABEX ;: LOADED LIBRARY MODULES

VABEX i: AFBVNREN AT 020BE8 T299R30B AT 420000

VABEX ;; AFBVMSKL AT 027B50 AFBVLOCA AT 02E058

VABEX i: AFBVABEX AT 02E780

VABEX ;: AFBVBLNT AT 425EBB

VABEX :; AFBVCLOP AT 4260CO

VABEX ;; AFBCSTIO AT 425AF0

VABEX :; AFBVCOMH AT 426378

VABEX :; AFBVC0M2 AT 022848

VABEX :; AFBVEHGN AT 429820

VABEX :: AFBVEHGl AT 429A0C

VABEX :; AFBVERRE AT 42AAE0

VABEX : AFBVFNTH AT 023D78

VABEX : AFBVGHFM AT 421ECO

VABEX : AFBVIOFP AT 42AD38

VABEX : AFBVIOLP AT 42B508

VABEX ; AFBVIOUP AT 42C908

VABEX : AFBCLOAO AT 022108

VABEX : AFBVLOCA AT 02E058

VABEX : AFBVOPEP AT 42E4E0

VABEX : AFBVSIOS AT 4222F0

VABEX : AFBVSPIE AT 024FC0

VABEX : AFBVSTAE AT 025118

VABEX : AFBVTRCH AT 42D8D0

VABEX : AFBCLCIO AT 0204F0

VABEX : AFBVPARH AT 0247F0

VABEX : AFBVGPRH AT 022740

VABEX : AFBVEHGN AT 429820

VABEX : AFBUATBL AT 025468

VABEX : AFBUOPT AT 025DC0

DATA SET REFERENCE NUMBER TABLE. NUMBER OF ENTRIES IS 99.

DEFAULT UNIT FOR THE OBJECT TIME ERROR MESSAGES IS 6.

DEFAULT UNIT FOR THE READER IS 5.

DEFAULT UNIT FOR THE PRINTER IS 6.

DEFAULT UNIT FOR THE PUNCH IS 7.

Figure 78 (Part 1 of 2). Example 3—Output for ABMODLST and ABSDUMP

372 VS FORTRAN Version 2 Language and Library Reference

FILE ON UNIT 6 IS ACTIVE.

FILE IS USED FOR SYNCHRONOUS SEQUENTIAL I/O.
FILE STATUS IS OLD.

FILE IS FDRHATTED.

FILE NAME USED IS FT06F001.

VPOSA - POST ABEND SYtlBOLIC DUMP FOR MODULE: MAIN

MODULE MAIN WAS CALLED BY OP/SYS .

MODULE MAIN LAST CALLED VFEIMf? .

FROM OFFSET 000226.

14

ARRAY: A TYPE:R4

DIMENSION 1: (
A(#)

= 5 0.320000E+01

99999999

1: 10)

ARRAY ELEMENTS WITH A VALUE OF ZERO OR BLANK ARE NOT PRINTED.

END OF SYMBOL DUMP PROCESSING FOR MAIN

PROGRAM UNIT NOT COMPILED FOR SYMBOLIC DUMP PROCESSING. PROGRAM UNIT IS VFEIH#

MODULE VFEIU# WAS CALLED BY NAIN

FROM OFFSET 000226.

NODULE VFEII# LAST CALLED AFBVSIOS.

FROM OFFSET 000560.

PROGRAM UNIT NOT COMPILED FOR SYMBOLIC DUMP PROCESSING. PROGRAM UNIT IS AFBVSIOS
DHSABN155T USER ABEND 0240 CALLED FROM 02FOD8.

Figure 78 (Part 2 o' 2). Example 3—Output for ABMODLST and ABSDUMP

Appendix C. Sample Storage Printouts 373

Appendix D. Library Procedures and Messages

This appendix contains explanations of the
program-interruption and error procedures used
by the VS FORTRAN Version 2 library. The mes
sages generated by that library are also given.
A full description of program interrupts is given
in IBM System/370 Principles of Operation,
GA22-7000. and IBM System/370 Extended Archi
tecture Principles of Operation, SA22-7085. For
detailed information about error processing and
message formats, see VS FORTRAN Version 2
Programming Guide.

Library Interruption Procedures

The VS FORTRAN Version 2 library processes
those interrupts that are described below; all
others are handled directly by the system super
visor;

1. When an interrupt occurs, indicators are set

to record exponent overflow, underflow,
fixed-point, floating-point, or decimal divide
exceptions. These indicators can be interro
gated dynamically by the subprograms
described under Chapter 7, "Service
Subroutines" on page 269.

2. A message is printed on the object program
error unit when each interrupt occurs. The
old Program Status Word (PSW) printed in
the message indicates the cause of each
interrupt.

3. Result registers are changed when exponent
overflow or exponent underflow (codes C
and D) occurs. Result registers are also set
when a floating-point instruction is refer
enced by an assembler language execute
(EX) instruction.

4. Condition codes set by floating-point addition

or subtraction instructions are altered for

exponent underflow (code D).

5. After the foregoing services are performed,
execution of the program continues from the
instruction following the one that caused the
interrupt.

Library Error Procedures

During execution, the mathematical subpro
grams assume that the argument(s) is the
correct type. However, some checking is done
for erroneous arguments (for example, the
wrong type, invalid characters, and the wrong
length); therefore, a computation performed with
an erroneous argument has an unpredictable
result. However, the nature of some mathemat

ical functions requires that the input be within a
certain range. For example, the square root of a
negative number is not permitted. If the argu
ment is not within the valid range given in
Figures 26 through 31, an error message is
written on the object program error unit data set
defined by the installation during system gener
ation. The execution of the program is con
tinued with the standard corrected argument
value of 0.0; however, the user can specify a
user exit routine for this particular error, and in
that routine specify a new argument to be used
to recalculate the square root. The user exit
routine is part of the extended error-handling
capability of the VS FORTRAN Version 2 Library.
This facility provides for standard corrective
action by the user. (For a full description of
extended error handling, see VS FORTRAN
Version 2 Programming Guide.)

Library Messages

The VS FORTRAN Version 2 Library generates
three types of messages:

•- Operator messages

Program-interrupt messages

• Execution error messages

Operator messages are listed under "Operator
Messages" on page 376, There are seven
program-interrupt messages: AFB112I, AFB116I,
AFB117I, AFB207I, AFB208I, AFB209I, and
AFB210I, listed in "Program-Interrupt Messages'
on page 377. Execution errors are listed
sequentially in "Execution Error Messages" on
page 379.

Appendix D. Library Procedures and Messages 375

AFB001A

All library messages are numbered. Operator
messages are written when a STOP n or PAUSE

statement is executed. Program-interrupt mes
sages are written when an exception to a system
restriction occurs, such as dividing by 0 or gen
erating a result too large to contain in a floating
point register. Execution error messages are
written when a library function or subroutine is
misused or an I/O error occurs.

Except for operator and informational messages,
all library messages are followed by additional
information that identifies the name of the last-

executed FORTRAN program and the location of
the last-executed statement in that program unit.
The additional information is indicated in one of

three formats, based on how the program unit
was compiled:

Program unit compiled with NOSDUMP and
NOTEST:

LAST EXECUTED FORTRAN STATEMENT IN PRCGRAf-l name
(OFFSET 00000000).

»- Program unit compiled with TEST and
NOSDUMP under Version 1, or TEST and
SDUMP(SEQ) under Version 2:

LAST EXECUTED FORTRAN STATEMENT IN PROGRAM name
AT ISN nnnnnn (OFFSET 00000000).

Program unit compiled with SDUMP or, for
some errors, GOSTMT:

LAST EXECUTED FORTRAN STATEMENT IN PROGRAM name
AT ISN nnnnnn (OFFSET 00000000).

where:

name

00000000

nnnnnn

is the name of the failing program
unit (shareable part name if compiled
with RENT).

is the hexadecimal offset from the

beginning of the program to the last-
executed statement.

is the compiler-generated internal
statement number (ISN).

This additional information is invaluable in deter

mining the source of the error. It should be
noted, however, that, if the last-executed
FORTRAN program unit called an assembler
routine that invoked the VS FORTRAN Version 2

Library routine that caused the error, the source
of the error may be the user-coded assembler
routine.

The additional information identifying the source
of the error is not produced if no FORTRAN
program units are encountered in the active
chain of program units that caused issuance of
the error message.

If a problem recurs after you have performed the
specified programmer response for the message
received, see VS FORTRAN Version 2 Diagnosis
Guide.

Operator Messages

Operator messages for PAUSE and STOP state
ments may be generated during load module
execution as follows:

yy AFB001A PAUSE x.

Explanation: A PAUSE statement has been exe
cuted. The yy is an identification number
assigned to the message by the operating
system. The x can be:

»• An unsigned 1- to 5-digit integer constant
specified in the PAUSE statement

»• A character constant specified in the PAUSE
statement

*• A zero to indicate that the PAUSE statement

contained no constant

System Action: The program enters the wait
state.

Operator Response: Follow the instructions
given by the programmer when the program was
submitted for execution; these instructions
should indicate the action to be taken for any
constant printed in the message text or for a
PAUSE statement without a constant.

To resume execution, reply to the outstanding
console message after performing the oper
ations requested.

AFB002I STOP x.

Explanation: A STOP statement has been exe
cuted. The X can be:

•• An unsigned 1- to 5-digit integer constant
specified in the STOP statement

A character constant specified in the STOP
statement

376 VS FORTRAN Version 2 Language and Library Reference

System Action: The STOP statement caused the
program to terminate.

Operator Response: None.

Program-Interrupt Messages

AFB112I VBALG : PROGRAM INTERRUPT -

VECTOR BOUNDARY MISALIGN

MENT, PSW xxxxxxxxxxxxxxxx.

Explanation: An attempt was made to use an
array that was not properly aligned (not aligned
on an integral boundary) as an operand of a
vector instruction.

Standard Corrective Action: For vector store

instructions, the contents of the source vector

register will first be stored in an aligned tempo
rary location, and scalar instructions will then be
used to move the data to the target storage
locations. For other vector instructions, the

section of elements of the source storage array
will first be moved to an aligned temporary
location, and the vector instruction will then be

executed, using the aligned temporary as the
source storage operand. Execution then con
tinues with the next instruction.

Programmer Response: Make sure all arrays
used in vector instructions are properly aligned.
INTEGER*2 arrays should be aligned on halfword
boundaries; INTEGER*4, L0GICAL*4, REAL*4,

and C0MPLEX*8 arrays should be aligned on
fullword boundaries; REAL*8 and C0MPLEX*16

arrays should be aligned on doubleword bounda
ries.

AFB116I VUNIN : PROGRAM INTERRUPT -

VECTOR UNNORMALIZED OPERAND

ON DIVIDE, PSW xxxxxxxxxxxxxxxx.

Explanation: An attempt was made to perform a
vector floating-point divide instruction using an
operand that contained data other than a nor
malized floating-point number.

Standard Corrective Action: None. The program
will be abnormally terminated.

Programmer Response: Make sure all floating
point operands used in vector divide instructions
are properly normalized. This exception is often
caused by mistakenly passing INTEGER or
LOGICAL data to a vectorized subprogram
instead of floating-point data.

AFB207I

AFB117I VUNIN : PROGRAM INTERRUPT -

VECTOR UNNORMALIZED OPERAND

ON MULTIPLY,

PSW xxxxxxxxxxxxxxxx.

Explanation: An attempt was made to perform a

vector floating-point multiply instruction using an
operand that contained data other than a nor
malized floating-point number.

Standard Corrective Action: None. The program
will be abnormally terminated.

Programmer Response: Make sure all floating
point operands used in vector multiply
instructions are properly normalized. This
exception is often caused by mistakenly passing
INTEGER or LOGICAL data to a vectorized sub

program instead of floating-point data.

AFB207I VFNTHIVINTH : PROGRAM INTER
RUPT - [VECTOR] FLOATING-POINT
OVERFLOW EXCEPTION,

PSW xxxxxxxxxxxxxxxx

REGISTER CONTAINS nnnnnnnn.

Explanation: This message indicates that an
overflow exception has occurred. This exception
occurs when the magnitude of the result opera
tion is greater than or equal to 16®3 (approxi
mately 7.2 X 1075).

Supplemental Data Provided: The floating-point
number (nnnnnnnn) before alteration for an
exponent-overflow exception.

Standard Corrective Action: Execution continues

at the point of the interrupt. For an exponent
overflow in a scalar register, the result register
is set to the largest possible correctly signed
floating-point number that can be represented:

Short precision (16^^*(1-16 ®))

Long precision (16®^*(1-16-i'*))

Extended precision (16®^*(1-16-28))

For an exponent overflow in a vector register,
the element in the result vector register on
which the exception occurred is set to the
largest possible correctly-signed floating-point
number.

Programmer Response: Make sure a variable or
variable expression does not exceed the allow
able magnitude. Verify that all variables have
been initialized correctly in previous source

Appendix D. Library Procedures and Messages 377

AFB208I

statements and have not been inadvertently

modified.

AFB208I VFNTH 1 VINTH : PROGRAIVI INTER
RUPT - [VECTOR] FLOATING-POINT
UNDERFLOW EXCEPTION,

PSW xxxxxxxxxxxxxxxx

REGISTER CONTAINS nnnnnnnn.

Explanation: The message indicates that an
exponent-underflow exception has occurred.
This exception occurs when the result of a
floating-point arithmetic operation is less than
16-®5 (approximately 5.4 x 10-79).

Supplemental Data Provided: The floating-point
number (nnnnnnnn) before alteration.

Standard Corrective Action: Execution continues

at the point of the interrupt, with the result reg
ister or element of the result vector register set
to a true zero of correct precision.

Programmer Response: Make sure that a vari
able or variable expression is not smaller than
the allowable magnitude. Verify that all vari
ables have been initialized correctly in previous
source statements and have not been inadvert

ently modified.

AFB209I VFNTH | VINTH : PROGRAM INTER
RUPT - yyyyyy EXCEPTION,
PSW xxxxxxxxxxxxxxxx

REGISTER CONTAINS nnnnnnnn.

Explanation: This message indicates that an
attempt to divide by 0 has occurred.

Supplemental Data Provided: Floating-point
number (nnnnnnnn) before alteration, for a
floating-point interrupt. The type of interruption

(yyyyy)-

standard Corrective Action: For floating-point-

divide, execution continues at the point of the
interrupt with the result register, or element of
the result vector register, set to:

True zero of correct precision for case of
n/0, where n = 0.

Largest possible floating-point number of
correct precision for case of n/0 where n^^O.
For fixed-point-divide, leave registers
unmodified and continue execution.

Programmer Response: Either correct the
source where division by 0 is occurring, or

modify previous source statements to test for the
possibilities, or bypass the invalid division.

AFB210I VFNTH : PROGRAM INTERRUPT -

yyyyyy exception,
PSW xxxxxxxxxxxxxxxx.

Explanation: A program interruption occurred.

Standard Corrective Action: The operation is
suppressed and message AFB240I is issued.

Supplemental Data Provided: The type of inter
ruption (yyyyyy) and the PSW at the time of the
interruption (xxxxxxxxxxxxxxxx). When it
appears that a vector instruction has been used
by the program unit, an extra note—(VECTOR
INSTRUCTION)—will be added to the message.

The type of interruption will be one of the fol
lowing:

Operation exception
Privileged-operation exception
Execute exception

Protection exception
Addressing exception
Specification exception
Data exception
Fixed-point-overfiow exception
Fixed-point-divide exception
Decimal-overflow exception
Decimal-divide exception
Exponent-overflow exception
Exponent-underflow exception
Significance exception
Floating-point-divide exception

The causes of these interruptions are explained
in IBM Systeml370 Extended Architecture Princi
ples of Operation, SA22-7085.

Programmer Response:

Most likely, one of the following happened:

Your program addressed a point outside the
bounds of an array and possibly wrote over
program code. Make sure you refer to all
arrays within the declared bounds.

A subroutine was passed the wrong number
of arguments or arguments of the wrong
data type. Make sure all subroutine and
function calls are passed the correct number
and type of arguments.

>• A call or reference was made to an external

subroutine or function that has not been

378 VS FORTRAN Version 2 Language and Library Reference

resolved by the linkage editor or loader.
When a program refers to an unresolved
subroutine or function, an operation excep
tion usually occurs. VS FORTRAN Version 2
indicates the location of the unresolved call

or reference in the information it adds to this

error message.

The PSW will probably show that the failing
address is in low storage. If so, check the
link-edit map and look for loader diagnostics.
Make sure that external routines are avail

able when link-editing or loading.

A library routine caused the interruption.
The information added to this message gives
the name of the library routine and the offset
within the routine at which the interruption
occurred. If a user-coded assembler subrou

tine called the library routine, make sure the
correct number and type of arguments were
passed.

• If the note "(VECTOR INSTRUCTION)" is
included on the message, then the hardware
was unable to support a vector instruction.
Either recompile without the VECTOR option,
or run the program as compiled on a
machine that supports vector processing.

Execution Error Messages

Each of these has the form:

AFBxxxl zzzzz : message text

where:

XXX is the number of the library
message.

zzzzz is the last five characters of the

module named AFBzzzzz.

message text describes the error.

Each message contains the error number, the
abbreviated module name for the origin of the
error, and a description of the error with supple
mental data. In addition, a full explanation of the
error is given and the standard action for cor
recting it is described.

Several messages have more than one format.

Variable information in the message is shown in
lowercase letters. In the corrective action

descriptions. • denotes the largest possible

AFB096I

number that can be represented for a floating
point value.

AFB096I VFINP : FILEINF ARGUMENT LIST IS

IN AN INCORRECT FORMAT.

AFB096I VFINP : FILEINF ARGUMENT NO. nn

CONTAINS AN INVALID KEYWORD.

AFB096I VFINP : AN INCORRECT VALUE WAS

GIVEN FOR THE FILEINF PARAMETER

'PPPPPPP*.

Explanation: The argument list for the service
routine FILEINF specified incorrect data.

For the first format of the message, one of the
following conditions was detected:

The argument list had an even number of
arguments

The argument list was not in the format that
is generated by the VS FORTRAN compiler
when character arguments are provided.

For the second format of the message, argument
nn was not one of the keyword parameters that
are recognized by the FILEINF service routine.

For the third format of the message, the argu
ment that immediately followed the keyword
ppppppp contained a value not allowed for
ppppppp.

Supplemental Data Provided;

nn indicates the position in the argument
list of an incorrect keyword param
eter. For example, in the following
statement:

CALL FILEINF (IRETCODE, 'CYL', 50, 'S', 5)

the "S" is not an acceptable keyword
parameter, and nn would be 4 to indi

cate the third argument in the argu
ment list.

ppppppp is the keyword parameter whose cor
responding value was incorrectly
specified.

Standard Corrective Action: The file information

provided is ignored, and an error (error number
219) will be detected during execution of a sub
sequent OPEN or INQUIRE statement.

Programmer Response:

For the first format of the message, assure that
the argument list contains an odd number of

Appendix D. Library Procedures and Messages 379

AFB099I

arguments and that the even-numbered argu
ments are character expressions whose values
are the permissible keyword parameters.

For the second format of the message, correct
argument nn by coding one of the keyword
parameters that is recognized by the FILEINF
service routine. Be sure that the keyword
parameter is coded as a character expression.

For the third format of the message, in the argu
ment following the keyword parameter ppppppp,

provide a value in the form that is allowed for
the parameter ppppppp.

AFB099I DDCMP : DYNAMIC COMMON

aaaaaaaa NOT AVAILABLE IN MAIN

TASK PROGRAM FOR SHARING IN

PARALLEL SUBROUTINE.

Explanation: A dynamic common block was not
defined in the main task program before the
service routine SHRCOM was called.

Supplemental Data Provided:

aaaaaaaa dynamic common block name

Standard Corrective Action: The request to
share the dynamic common block is ignored and
execution proceeds.

Programmer Response: Define the dynamic
common within some program unit in the main
task program that has been entered at least
once before SHRCOM is called.

AFB100I VOPEP : OPEN STATEMENT

ATTEMPTED WITH INVALID

SPECIFIER FOR OPEN TO ERROR

MESSAGE UNIT. UNIT nn.

Explanation: An OPEN statement for the error
message unit was issued with a specifier other
than the UNIT, ERR, lOSTAT or CHAR specifier.

Supplemental Data Provided:

nn the unit number of the error message

Standard Corrective Action: The OPEN state

ment is ignored and execution continues. If the
ERR specifier was coded on the OPEN state
ment, control is passed to the indicated state
ment.

Programmer Response: Change the program to
request I/O to a unit not being used for error
messages or remove all specifiers that should
not have been specified.

AFB101I VSIOS : MULTIPLE SUB-FILES

CANNOT BE DYNAMICALLY ALLO

CATED, UNIT nnn.

Explanation: An attempt was made to read or
write data beyond the first sub-file which was
dynamically allocated. Scratch files which do
not have an explicit file definition are allocated
by FORTRAN dynamically. If the scratch file is to
be a multiple sub-file, each sub-file must have
an explicit file definition.

Supplemental Data Provided:

nnn the unit number of the file

Standard Corrective Action: The file is closed

and the READ or WRITE operation is ignored.

Programmer Response: Do not attempt to create
multiple sub-files for a dynamically allocated
scratch file. Supply file definitions for all sub
files including the first sub-file or change the
STATUS specifier on the OPEN statement to
NEW, OLD or UNKNOWN, as appropriate.

AFB102I VOPEP : A CMS FILE IDENTIFIER OR

MVS DATA SET NAME IS NOT

ALLOWED FOR THE FILE SPECIFIER

FOR A FILE TO BE CONNECTED FOR

KEYED ACCESS, FILE fffffff.

Explanation: A file to be connected for keyed
access cannot specify a CMS file name, file type,
file mode or a MVS data set name in the FILE

specifier on the OPEN statement.

Supplemental Data Provided:

fffffff the name specified by the FILE
specifier on the OPEN statement

Standard Corrective Action: The OPEN state

ment is ignored and execution continues.

Programmer Response: Provide a file definition
statement for the ddname, and connect the file
by the ddname of the file definition.

AFB103I VDYNA : ALLOCATION FAILED. NOT

ENOUGH SPACE AVAILABLE ON

VOLUME TO CREATE A NEW DATA

SET. FILE ffffffff.

AFB103I VDYNA : ALLOCATION FAILED.

REQUEST FOR EXCLUSIVE USE OF A
ShXrED DATA SET CANNOT BE
HONORED. FILE ffffffff.

380 VS FORTRAN Version 2 Language and Library Reference

AFB103I VDYNA : ALLOCATION FAILED.

REQUESTED DATA SET NOT AVAIL

ABLE. ALLOCATED TO ANOTHER

JOB. FILE ffffffff.

AFB103I VDYNA : ALLOCATION FAILED.

SPECIFIED VOLUME IS NOT

MOUNTED. FILE ffffffff.

AFB103I VDYNA : ALLOCATION FAILED.

INCORRECT DEVICE NAME SUP

PLIED. FILE ffffffff.

AFB103I VDYNA : ALLOCATION FAILED.

VOLUME DOES NOT HAVE ENOUGH

SPACE FOR THE DIRECTORY.

FILE ffffffff.

AFB103I VDYNA : ALLOCATION FAILED.

DIRECTORY SPACE REQUESTED IS
LARGER THAN THE PRIMARY.

FILE ffffffff.

AFB103I VDYNA : ALLOCATION FAILED.

REQUIRED CATALOG IS NOT AVAIL

ABLE. FILE ffffffff.

AFB103I VDYNA : ALLOCATION FAILED.

INSUFFICIENT SPACE IN CATALOG.

FILE ffffffff.

AFB103I VDYNA : ssssssss FAILED.

ERROR CODE xxxx,

INFORMATION CODE yyyy.
FILE ffffffff.

Explanation: An OPEN or INQUIRE statement
was being executed for one of the following:

an MVS data set name specified in the FILE
specifier

a scratch file without an explicit file definition

However, an error condition was detected while

running under MVS in dynamic allocation or
deallocation of the data set.

For format 1 of this message, the volume allo
cated does not have enough space left for the
creation of the new data set.

For format 2 of this message, the ACTION
specifier on the OPEN statement indicated

WRITE or READWRITE, so DISP = OLD was used

in the allocation request. However, the same
data set was already allocated by another user
with DISP = SHR, so the request could not be
honored. This error condition is detected if

running in batch only.

For format 3 of this message, the requested data
set was already allocated by another user with

AFB103I

DISP = OLD for exclusive use, so the request
could not be honored. This error condition is

detected if running in batch only.

For format 4 of this message, the volume serial
number specified may be invalid or does not
exist.

For format 5 of this message, the device name
specified may be invalid or does not exist on
your system.

For format 6 of this message, there was not
enough space for the directory on the volume to
satisfy the request in allocating a new parti
tioned data set.

For format 7 of this message, space requested
for the directory was greater than the primary
amount specified in the service routine FILEINF
call or calculated by VS FORTRAN. The space
used for the directory must be less than the
primary amount since the system decreases this
by the amount of space allocated for the direc
tory.

For format 8 of this message, the catalog was
not available for the specified data set.

For format 9 of this message, there was not
enough space available in the catalog when a
new data set was being created and cataloged.

For format 10 of this message, an error occurred
other than those described in the other formats

for this message when allocating or deallocating
a data set.

Supplemental Data Provided:

ffffffff

ssssssss

xxxx

yyyy

file name or data set name

ALLOCATION or DEALLOCATION

error code

information code

Standard Corrective Action: The I/O request is
ignored and execution continues.

Programmer Response:

For format 1 of this message, specify a different
volume which has more space left, or reduce the
space requested, or delete unneeded data sets
from the volume.

For format 2 of this message, wait until the data
set has been freed or request read-only access
to the data set.

Appendix D. Library Procedures and Messages 381

AFB104I

For format 3 of this message, wait until the data
set has been freed or allocate a different data

set.

For format 4 of this message, correct the volume
serial number specified.

For format 5 of this message, supply the correct
device name on the call to the service routine

FILEINF.

For format 6 of this message, reduce the direc
tory space requirements or allocate the data set
on another volume having more space.

For format 7 of this message, either increase the
primary amount or decrease the directory size
requirement.

For format 8 of this message, a JOBCAT or
STEPCAT statement must be supplied in your job
before you refer to the cataloged data set.

For format 9 of this message, define another
catalog or remove unneeded data sets from the
existing catalog.

For format 10 of this message, refer to SVC 99
return codes in MVS/XA Programming Library:
System Macros and Facilities. Volume 1,
GC28-1150, or 0S/VS2 MVS System Program
ming Library: Job Management, GC28-1303. If
the information code, yyyy, is 0, the test

'INFORMATION CODE yyyy' will not be printed
out.

AFB104I VOREP : AN INVALID VALUE WAS

GIVEN FOR THE CHAR SPECIFIER ON

THE OPEN STATEMENT, UNIT nn.

Explanation: A value other than the character

expressions 'DBCS' or 'NODBCS' was speci
fied on the CHAR specifier of the OPEN state
ment.

Supplemental Data Provided:

nn unit number for which the OPEN was

issued

Standard Corrective Action: The OPEN state

ment is ignored and processing continues. If the
ERR specifier was coded on the OPEN state
ment, control is passed to the indicated state
ment.

Programmer Response: Change the CHAR
specifier to CHAR = ' DBCS' or
CHAR= 'NODBCS' as appropriate.

AFB105I VDIOS | VSIOS | WIGS | CVIOS |
VKIOS : FILE DELETION NOT

ALLOWED FOR xxxxx, FILE ffffffff.

Explanation: STATUS ='DELETE' may not be
specified for close operations for certain types of
files, when the OCSTATUS execution-time option
is in effect or if the file has been dynamically
allocated.

Supplemental Data Provided: xxxxx describes
the file characteristics of file ffffffff. The file char

acteristics may be one of the following:

NON-REUSABLE, NON-EMPTY VSAM FILE

FILE OPENED WITH ACTION OF READ

UNLABELED TAPE FILE

CMS TAPE FILE

SYSIN FILE

• SYSOUT FILE

TERMINAL FILE

UNIT RECORD INPUT FILE

UNIT RECORD OUTPUT FILE

• SUBSYSTEM FILE

CONCATENATED FILE

- KEYED FILE WITH AN ALTERNATE INDEX

- INPUT ONLY FILE

• FILE SPECIFIED ON THIS DEVICE

FILE WITH MULTIPLE SUB-FILES

Standard Corrective Action: The file is discon

nected, but not deleted, as if STATUS = 'KEEP'
had been specified, and execution continues.

Programmer Response: Modify program so that
file deletion is not attempted for these types of
files, when the OCSTATUS execution-time option
is in effect or if the file has been dynamically
allocated.

AFB106I VINQP : FILE SPECIFIER WITH A
BLANK VALUE IS NOT ALLOWED ON

THE INQUIRE STATEMENT WITHOUT
THE UNIT SPECIFIER.

Explanation: The UNIT= un specifier was
omitted from the INQUIRE by unnamed file.

Standard Corrective Action: I/O request is
ignored and execution proceeds.

Programmer Response: Make sure that you
include a UNIT = un specifier on an INQUIRE by
unnamed file.

382 VS FORTRAN Version 2 Language and Library Reference

AFB107I VOPEP : FILE NAME OF ffffffff NOT

ALLOWED ON THE OPEN STATE

MENT.

Explanation:
opened.

Unnamed files cannot be explicitly

Supplemental Data Provided:

ffffffff the default ddname or file name used

(FTnnFmmm, FTnnKkk, FTERRsss, or
FTPRTsss, or FILE FTnnFmmm, FILE

FTnnKkk. FILE FTERRsss or FILE

FTPRTsss)

Standard Corrective Action: I/O request is
ignored and execution proceeds.

Programmer Response; Make sure that your
program does not include OPEN statements for
unnamed files.

AFB108I name1 : STATUS OF 'NEW IS NOT

ALLOWED ON THE OPEN STATEMENT

FOR AN EXISTING FILE, FILE fffffff.

AFB108I name2 : STATUS OF 'NEW IS NOT

ALLOWED ON THE OPEN STATEMENT

FOR A FILE ON A DEVICE THAT IS

RESTRICTED TO INPUT ONLY, FOR

FILE fffffff.

AFB108I name1 : STATUS OF 'OLD' IS NOT

ALLOWED ON THE OPEN STATEMENT

FOR A FILE WHICH DOES NOT EXIST,

FILE fffffff.

AFB108I name1 : ACTION OF 'READ' IS NOT

ALLOWED ON THE OPEN STATEMENT

FOR A FILE WHICH DOES NOT EXIST,

FILE fffffff.

AFB108I name2 : ACTION OF 'READ' IS NOT

ALLOWED ON THE OPEN STATEMENT

FOR A FILE ON A DEVICE THAT IS

RESTRICTED TO OUTPUT ONLY,
FILE fffffff.

AFB108I name2 : ACTION OF 'WRITE' IS NOT

ALLOWED ON THE OPEN STATEMENT

FOR A FILE ON A DEVICE THAT IS

RESTRICTED TO INPUT ONLY,
FILE fffffff.

AFB108I VSIOS : AN OUTPUT OPERATION IS

BEING ATTEMPTED FOR A FILE ON A

DEVICE THAT IS RESTRICTED TO

INPUT ONLY,

FILE fffffff.

AFB108I names : ACTION OF 'READ' IS NOT

ALLOWED ON THE OPEN STATEMENT

WITH STATUS OF 'NEW, FILE fffffff.

AFB108I

Explanation:

For format 1 of this message, the OCSTATUS
option is in effect and you attempted to connect
an existing file {or you tried to reconnect an
empty file, which was previously closed during

the same program) with STATUS = 'NEW speci
fied on the OPEN statement. (In the recon-
nection case, the empty file is considered by VS
FORTRAN to still exist even after it has been

closed.

For format 2 of this message, STATUS = 'NEW
was specified on the OPEN statement but the file
is on a device that is restricted to input only.
Under CMS, an attempt was made to connect a
file to a read-only disk. Under MVS, an attempt
was made to connect a reader, system input
(SYSIN) or in-stream data set, or a file for output
whose JCL specifies LABEL = (,,,IN).

For format 3 of this message, the OCSTATUS
option is in effect and you attempted to connect

a nonexistent file with STATUS = 'OLD' specified
on the OPEN statement.

For format 4 of this message, the OCSTATUS
option is in effect and you attempted to connect
a nonexistent file with ACTION = 'READ' speci
fied on the OPEN statement.

For format 5 of this message, ACTION = ' READ'
was specified on the OPEN statement for a file
that can be used for output only, such as a
printer. Under MVS, an attempt was made to
connect for read operations a system output
(SYSOUT) data set, or a file whose JCL specifies
LABEL = (,„OUT).

For format 6 of this message, ACTION = 'WRITE'
was specified on the OPEN statement, but the
file can be used for input only. Under MVS, an
attempt was made to connect for write oper

ations a reader, SYSIN or in-stream data set. or
a file whose JCL specifies LABEL = {,„IN).

For format 7 of this message, an I/O request
conflicts with how the device is accessed or con

nected. Under CMS, an attempt was made to
write to a read-only disk. Under MVS, an
attempt was made to write to a file whose JCL

specifies LABEL = („,IN).

For format 8 of this message, ACTION = 'READ'
was specified on the OPEN statement, but this

conflicts with the specifier STATUS= 'NEW.
You attempted to connect a new file, that is, one

Appendix D. Library Procedures and Messages 383

AFB108I

that did not exist prior to connection, with the
intent to read from it.

Supplemental Data Provided:

name1 VSiOS, VDIOS, or VKIOS

name2 VSIOS or VDIOS

names VOPEP or VSIOS

fffffff file name

Standard Corrective Action: The I/O request is
ignored and execution continues.

Programmer Response:

For format 1 of this message, make sure the
STATUS specifier accurately reflects the exist
ence property of the file you are attempting to
connect. Refer to VS FORTRAN Version 2 Pro

gramming Guide for the types of files for which
verification of consistency between file existence
and the STATUS specifier is done.

Under CMS, if the file already exists on a mini
disk, either erase it, or change the STATUS
specifier on the OPEN statement to OLD. Under
MVS, if the data set already exists on a volume
and it is not empty, either empty it, remove it
from the volume, or change the STATUS
specifier on the OPEN statement to OLD.

When you want to reconnect a file after it has
been closed previously during the current

program, be sure to specify STATUS = 'OLD'
whether the file is empty or not.

For format 2 of this message, either change the
OPEN statement so that it does not specify
STATUS = 'NEW', or do one of the following,
depending on the system you are using: When
running under CMS, find a READ/WRITE disk on
which the file is to reside when it is connected.

When running under MVS. change the JCL so
that it does not refer to a file which can be used

for input only; that is, remove the LABEL= (,,,IN)
statement from the JCL. or do not use SYSIN or
in-stream data sets.

For format 3 of this message, make sure the
STATUS specifier accurately reflects the exist
ence property of the file you are attempting to
connect. Refer to VS FORTRAN Version 2 Pro

gramming Guide for the types of files for which
verification of consistency between file existence
and the STATUS specifier is done. Under CMS,
make sure the file exists on a mini-disk, or

change the STATUS specifier on the OPEN state
ment to NEW or UNKNOWN.

For format 4 of this message, make sure the
STATUS specifier accurately reflects the exist
ence property of the file you are attempting to
connect. Since the file does not exist in this

case, the ACTION specifier on the OPEN state
ment should be changed to WRITE or
READWRITE.

For format 5 of this message, find a READ/WRITE
disk on which to connect the file when running
under CMS. When running under MVS, remove
the LABEL = (,„OUT) statement from the JCL, or
do not use SYSOUT data sets.

For format 6 of this message, either change the
ACTION specifier on the OPEN statement to
READ, or do one of the following, depending on
the system you are using: When running under
CMS, find a READ/WRITE disk on which the file
is to reside when it is connected. When running
under MVS, remove the LABEL = (,,,OUT) state
ment from the JCL, or do not use SYSIN or in-
stream data sets.

For format 7 of this message, when running
under CMS. either change the program so that it
does not perform output operations to the input-
only file, or find a READ/WRITE disk on which to
connect the file. When running under MVS.
either change the program so that it does not
perform output operations to the input-only file,
or remove the LABEL= (...IN) statement from the
JCL, or do not use the SYSIN or in-stream data
sets.

For format 8 of this message, change the
ACTION or the STATUS specifier to be consistent
with the request. Under CMS, if the file already
exists on a mini-disk, or under MVS. if the data

set exists on a volume and is not empty, then
change the STATUS specifier on the OPEN state
ment to OLD. Otherwise, change the ACTION
specifier to WRITE or READWRITE.

AFB109I VINQP : A FILE NAME IS NOT
ALLOWED ON THE INQUIRE STATE

MENT WITH THE UNIT SPECIFIER,

FILE=ffffffff.

Explanation: An INQUIRE statement with both a
FILE specifier with a non-blank value and a UNIT
specifier is given.

Supplemental Data Provided: ffffffff is the file
name given on the FILE specifier.

384 VS FORTRAN Version 2 Language and Library Reference

Standard Corrective Action: I/O request is
ignored and execution proceeds.

Programmer Response: Modify your program to
use one of the three valid forms of the INQUIRE

statement, that is, INQUIRE by unit, file, or
unnamed file.

AFB110I VSIOS : THE I/O STATEMENT

REFERS TO A UNIT THAT IS NOT

CONNECTED, UNIT nn.

Explanation: A READ, WRITE, BACKSPACE,
REWIND, or ENDFILE statement is given for a
disconnected file.

Supplemental Data Provided:
number.

nn is the unit

Standard Corrective Action: I/O request is
ignored and execution proceeds.

Programmer Response: Use an INQUIRE state
ment to determine the file connection status

prior to reading from or writing to a file or use
an OPEN statement to reconnect the file.

AFB111I name : FILE DELETION FAILED.

SYSTEM COMPLETION CODE ccc-rr.

FILE ffffffff.

AFB111I name : FILE DELETION FAILED.

READ-ONLY DISK. FILE ffffffff.

AFB111I name : FILE DELETION FAILED.

UNEXPECTED ERASE RETURN CODE

rc. FILE ffffffff.

AFB111I name : FILE DELETION FAILED.

VSAM OPEN MACRO RETURN CODE

vrc, ERROR CODE X'hc' (dc).

Explanation: The file could not be deleted for the
reason specified. One of the following caused
the file deletion to be attempted:

A CLOSE statement with STATUS = 'DELETE'

was specified.

A CLOSE statement was issued for a file that

was connected with STATUS = 'SCRATCH'.

Program termination caused an implicit
CLOSE operation for a file that was con

nected with STATUS = 'SCRATCH'.

Supplemental Data Provided:

name VSIOS, VDIOS, CVIOS, VVIOS, or

VKIOS

ffffffff file name

rr reason code

AFB113I

rc CMS ERASE error return code

vrc VSAM return code

he VSAM error feedback code in

hexadecimal

dc VSAM error feedback code in decimal

Standard Corrective Action: The file is discon

nected, but not deleted, as if STATUS = 'KEEP'

had been specified, and execution proceeds.

Programmer Response: Modify program by
removing the STATUS = 'DELETE' specifier from
the CLOSE statement, or by connecting the file
with a status of NEW, OLD, or UNKNOWN.

For format 1 of the message (MVS only), the file
may have been RACF protected. Check the
system completion code. For more information
on system completion codes, see MVS/370
Message Library System Codes, GC38-1008, or
MVS/XA Message Library: System Codes,
GC28-1157.

For format 2 of the message (CMS only), issue
the CP LINK command to reset the disk linkage
to read/write mode, then reaccess the disk.

For format 3 of the message (CMS only), infor
mation on on the ERASE command return codes

can be found in VM/SP CMS Command and

Macro Reference, SC19-6209, or VM/SP System
Messages and Codes, SC19-6204.

For format 4 of the message, an attempt was
made to delete a VSAM file. For an explanation
of VSAM codes, see MVS/XA VSAM Adminis

tration: Macro Instruction Reference, GC26-4016

(for DFP Version 1) or GC26-4152 (for DFP
Version 2).

AFB112I

Explanation: For information on this message,
refer to "Program-Interrupt Messages" on
page 377.

AFB113I VIADI : THE RECONNECT COMMAND

REFERS TO A UNIT WHICH CANNOT

BE RECONNECTED TO FILE ffffffff.

Explanation: The IAD RECONNECT command
was issued to reconnect a unit to a VSAM or

non-sequential file.

Supplemental Data Provided:

Appendix D. Library Procedures and Messages 385

AFB113I

ffffffff The file name

Standard Corrective Action: The RECONNECT

command is ignored and execution continues.

Programmer Response: Change the operating
system file definition statement refers to a VSAM
or non-sequential file.

AFB114I VDIOS : A FILE BEING CONNECTED

FOR DIRECT ACCESS CAN RESIDE

ONLY ON DASD, FILE ffffffff.

AFB114I VDIOS : A FILE BEING CONNECTED

FOR DIRECT ACCESS CANNOT BE IN

A PDS MEMBER, FILE ffffffff.

Explanation: The FILEDEF command, ALLOCATE
command, or DD statement used for direct
access I/O was determined to be connected to

an unusable device type. The only acceptable
device type is DASD, non-PDS. Files such as
terminal, reader, SYSIN, and SYSOUT are not
acceptable.

Supplemental Data Provided:

ffffffff file name

Standard Corrective Action: The OPEN request

is ignored and execution continues. If the ERR
specifier was coded on the OPEN statement,
execution begins at the statement indicated on
the ERR specifier.

Programmer Response: Change the system file
definition statement to point to a DASD file.

AFB115I CFIST : PROGRAM INTERRUPT

WHILE USING VSAM. VSAM NOT

ACTIVE. FILE ffffffff.

Explanation: There was a DLBL command in
effect for the file ffffffff, but a program interrupt
occurred during an attempt to refer to the file.
The probable cause of this error is that VSAM is
not active because no DLBL command was

issued to refer to the VSAM master catalog.

Supplemental Data Provided:

ffffffff file name

Standard Corrective Action:

The I/O request is ignored and processing con
tinues.

Programmer Response: Make VSAM active by
accessing the disk that contains the VSAM
master catalog. Then provide a DLBL command

I with a ddname of IJSYSCT to refer to the VSAM
I master catalog.

AFB116I

Explanation: For information on this message,
refer to "Program-Interrupt Messages" on
page 377.

AFB117I

Explanation: For information on this message,
refer to "Program-Interrupt Messages" on
page 377.

AFB118I FRXPR : REAL*4 BASE = base LESS

THAN ZERO, REAL*4

EXPONENT=exponent

Explanation: For an exponentiation operation
{R**S) in the subprogram AFBFRXPR (FRXPR#),
where R and S represent REAL*4 variables or
REAL*4 constants, R is less than zero.

Standard Corrective Action: Result =

|base|**exponent.

Programmer Response: Make sure that both the
real variable or constant base and exponent for
an exponentiation operation are within the allow
able range during program execution, then
either modify the operands or insert source code
to test for the situation and make appropriate
compensation. Bypass the exponentiation oper
ation if necessary.

AFB119I FDXPD : REAL*8 BASE = base LESS

THAN ZERO, REAL*8
EXPONENT=exponent

Explanation: For an exponentiation operation
(D**P) in the subprogram AFBFDXPD (FDXPD#),
where D and P represent REAL*8 variables or
REAL*8 constants, D is less than zero.

Standard Corrective Action: Result =

|base|**exponent.

Programmer Response: Make sure that both the
real variable or constant base and exponent for
an exponentiation operation are within the allow
able range during program execution, then
either modify the operands or insert source code
to test for the situation and make appropriate
compensation. Bypass the exponentiation oper
ation if necessary.

386 VS FORTIRAN Version 2 Language and Library Reference

AFB120I VOPEP : OPEN STATEMENT

ATTEMPTED TO CHANGE pppppppp
FOR FILE fffffff WHICH IS ALREADY

OPEN. ONLY 'BLANK' OR 'CHAR'

MAY BE CHANGED.

Explanation; An OPEN statement was issued for
a file that is already connected. The OPEN
statement contains a specifier whose value has
already been set and cannot be changed. When
a file is already connected, only the BLANK and
CHAR specifier can be specified on an OPEN
statement.

Supplemental Data Provided:

PPPPPPPP fhe specifier on the OPEN statement
whose value cannot change. It can

be ACCESS, FORM, ACTION, KEYS,

STATUS, RECL or PASSWORD.

fffffff the name of the file that is already
connected.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: If you want to change
the value of the BLANK or CHAR specifier, first
remove the specifiers that should not have been
specified. Otherwise, remove the OPEN state
ment or connect a different file with it.

AFB121I VKIOS : OPEN STATEMENT FOR FILE

fffffff SPECIFIES ACTION = 'WRITE'

BUT HAS MORE THAN ONE KEY IN

'KEYS' SPECIFIER.

Explanation: An OPEN statement has conflicting
specifiers: ACTION = 'WRITE', which implies you
are loading a file, and KEYS with more than one
key listed.

Supplemental Data Provided: fffffff is the name of
the file you tried to open.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: If you want to load the
file, remove the KEYS specifier or specify only
the primary key of the file. If you want to
process a file that is not empty, change the

AFB123I

value of the ACTION specifier to READ or
READWRITE.

AFB122I VSIOS | VDIOS | WIGS | CVIOS |
VKIOS : ssssssss STATEMENT IS

NOT ALLOWED WHEN THE FILE IS

OPEN WITH AN ACTION OF

'dddddddd'. FILE fffffff.

Explanation: The value of the ACTION specifier
on an OPEN statement conflicts with a statement

that follows the OPEN statement for the con

nected file. For an ACTION specifier with the

value of WRITE, the READ statement is not

allowed. For an ACTION specifier with the value
of READ, the WRITE statement is not allowed.

In addition, for files connected for keyed access,
for an ACTION specifier with the value of WRITE,
the REWRITE. DELETE, REWIND, or BACKSPACE

statement is not allowed. For an ACTION

specifier with the value of READ, the REWRITE or
DELETE statement is not allowed.

Supplemental Data Provided:

ssssssss is the name of the incompatible
statement.

dddddddd is the value of the ACTION

specifier that is in use.

fffffff is the name of the file.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Change the value of the
ACTION specifier or remove the incompatible
statement.

AFB123I VKIOS : ssssssss STATEMENT IS NOT

ALLOWED FOLLOWING ssssssss

STATEMENT WHICH RESULTED IN

cccccccccccccccc CONDITION.

FILE fffffff.

Explanation: A statement was not allowed
because a previous statement caused an error
and the loss of position in the file being proc
essed. You cannot read records sequentially or

use a BACKSPACE, DELETE, or REWRITE state

ment until you have reestablished file position.

Supplemental Data Provided:

Appendix D. Library Procedures and Messages 387

AFB123I

ssssssss {first occurrence) the name of the
statement that was not allowed

ssssssss (second occurrence) the name of the
earlier statement that caused the

error

cccccccccccccccc

RECORD NOT FOUND. DUPLICATE

ERROR. END OF FILE. VSAM I/O

ERROR, or PROGRAM LOGIC ERROR

fffffff the name of the file

Standard Corrective Action: Execution con

tinues. but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Code either a REWIND
or a direct-access READ statement after the

statement that caused the error. This will rees

tablish a position in the file and enable other
input/output statements to be processed.

AFB124I VKiOS : KEYID SPECIFIER ON THE

READ STATEMENT CONFLICTS WITH

THE NUMBER OF KEYS IN THE KEY

SPECIFIER ON OPEN STATEMENT

FOR FILE fffffff.

Explanation: The value of the KEYID specifier is
larger than the number of start-end pairs in the
KEYS specifier. Therefore, no pair (and hence
no key) can be associated with the KEYID
specifier. This conflict can arise even if no KEYS
specifier is coded: a default of one key is
assumed, so if KEYID has a value greater than 1.

an error exists.

Supplemental Data Provided:

fffffff is the name of the file for which the

READ statement was issued.

Standard Corrective Action: Execution con

tinues. but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Change the value of the
KEYID specifier so that it is no larger than the
number of start-end pairs in the KEYS specifier,
or remove the KEYID specifier.

AFB125I VKIOS : KEY ARGUMENT ON READ

STATEMENT HAS A LENGTH OF

nnnnnnnn WHICH IS GREATER THAN

THE KEY LENGTH OF mmmmmmmm

[(KEYID IS k).] FILE fffffff.

Explanation: The argument to be used in
searching for a key was given in the KEY,
KEYGE, or KEYGT specifier of a READ statement.
This argument is longer than the key being
searched for.

Supplemental Data Provided:

nnnnnnnn is the length in bytes of the search
(or key) argument.

k is the relative position in a list of keys of
the key of reference—the key currently in
use. The list of keys is in the KEYS specifier
of the OPEN statement. ("KEYID IS k" is
omitted if the KEYS specifier of the OPEN
statement specifies only one key or was not
coded.)

mmmmmmmm is the length in bytes of the
key being used.

fffffff is the name of the file for which the

READ statement was issued.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Specify a search argu
ment in the KEY, KEYGE, or KEYGT specifier
whose length does not exceed that of the key
you are searching for. If you want to search with
a different key of reference, specify a different
value for the KEYID specifier.

AFB126I VKIOS : RECORD NOT FOUND WITH

SPECIFIED KEY. FILE fffffff.

[KEYID IS k: sssss:eeeee.]
xxxxx SPECIFIER VALUE IS

wvvvvvvvv.

Explanation: There was no record in the file
meeting the search argument in the KEY,
KEYGE, or KEYGT specifier of the READ state
ment. The search was based on the key speci
fied in the KEYID specifier of the READ
statement. (If there was no KEYID specifier in
the READ statement, the search was based on
the KEYID specifier last used. If no KEYID
specifier has been used since the file was

388 VS FORTRAN Version 2 Language and Library Reference

opened, the first key specified in the KEYS
specifier of the OPEN statement was used for the
search.)

Supplemental Data Provided:

fffffff is the name of the file for which the

READ statement was issued.

k is the relative position in a list of keys of
the key of reference—the key currently in
use. The list of keys is in the KEYS specifier
of the OPEN statement. (This part of the
message and the sssssieeeee information
are omitted if the KEYS specifier of the OPEN
statement specified only one key or was not
coded.)

sssss is the starting position in each record
of the key being used, and eeeee is the
ending position.

xxxxx is KEY, KEYGE, or KEYGT—whichever

specifier was used in the READ statement.

vvvvvvvvvv is the value of the specifier.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the

indicated statement.

Programmer Response: Change the value of the

KEY, KEYGE, or KEYGT specifier so that the
appropriate record will be found. If you want to
allow for the possibility of a "record not found"
condition, add a NOTFOUND specifier to your
program. It specifies the statement to be given
control when this condition occurs.

AFB127I VIOUF | VIOFM : THE ssssssss
STATEMENT REFERS TO UNIT nn

WHICH IS NOT CONNECTED.

Explanation: An input/output statement referred
to a unit that was not opened with an OPEN
statement.

Supplemental Data Provided;

ssssssss is the name of the input/output
statement—for example, READ, REWRITE,
DELETE.

nn is the unit number referred to in the

input/output statement.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

AFB129I

Programmer Response: Change the program to

issue an OPEN statement with the

ACCESS = 'KEYED' specifier before issuing the
input/output statement.

AFB128I VKIOS : THE ssssssss STATEMENT

REFERS TO FILE fffffff WHICH IS NOT

A VSAM KSDS.

Explanation: An input/output statement was
issued that can apply only to a VSAM file. The
file, however, was opened as a non-VSAM file.

Supplemental Data Provided:

ssssssss is the name of the input/output
statement.

fffffff is the name of the file.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: If you want to access a
VSAM file, change the operating system's data
definition statement to specify a VSAM file.

AFB129I VKIOS : THE KEYED FILE RECORD

SUPPLIED BY THE ssssssss STATE

MENT HAD A LENGTH OF 0. FILE

fffffff.

AFB129I VKIOS : THE KEYED FILE RECORD

SUPPLIED BY THE ssssssss STATE

MENT HAD A LENGTH OF nnnnn

WHICH IS TOO SHORT. FILE fffffff.

Explanation: Either a WRITE or REWRITE state
ment built a record that was too short to contain

all the keys that are available (as specified by
the KEYS specifier of the OPEN statement or
implied by the operating system's data definition
statement).

Supplemental Data Provided:

ssssssss is either WRITE or REWRITE.

nnnnn is the length of the record that was
built.

fffffff is the name of the file involved in the

input/output operation.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Appendix D. Library Procedures and Messages 389

AFB129I

Programmer Response: Change the output list
of the WRITE or REWRITE statement so that it

builds a record that is long enough to include all
the keys.

AFB130I VKIOS : ERROR ON VSAM FILE

WHILE PROCESSING ssssssss

STATEMENT FOR FILE fffffff. VSAM

mmmmm MACRO, RETURN CODE re,

ERROR CODE X'hC (do), FUNCTION
CODE fc.

Explanation: VSAM detected an error while
processing an input/output statement.

Supplemental Data Provided:

ssssssss is the name of the statement being
processed.

fffffff is the name of the file involved in the

input/output operation.

mmmmm is the name of the VSAM macro

that was issued (GET, PUT, POINT, and so
on).

rc is the VSAM return code.

he is the VSAM error feedback code in

hexadecimal.

dc is the same code in decimal.

fc is the function code in hexadecimal.

You can find an explanation of the codes in
OS/VS Virtual Storage Access Method (VSAM)
Programmer's Guide, GC26-3838.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Take the action given in
the appropriate manual.

AFB131I VKIOS : CONFLICTING DDNAMES

WOULD BE REQUIRED FOR FILE

ffffffff SINCE THERE ARE k KEYS

LISTED IN THE KEYS SPECIFIER ON

THE OPEN STATEMENT.

Explanation: When opening files for multiple-key
processing, VS FORTRAN Version 2 generates
unique names for the files not named explicitly
in the OPEN statement. It does this by
appending a number (beginning with 1) to the
end of the file name specified in the OPEN state

ment. If this file name has a maximum length of
7-characters, a number cannot be appended, so
the last character is overlaid by a number. An
error occurred in this case because the file

name is 7-characters long and ends in a number
that is smaller than the number of keys specified
in the OPEN statement. If VS FORTRAN

Version 2 proceeded to generate file names, it
would duplicate the file name given in the OPEN
statement.

Supplemental Data Provided:

fffffff is the name of the file.

k is the number of key specified in the KEYS
specifier of the OPEN statement.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the

indicated statement.

Programmer Response: Change the file name in
the OPEN statement to one that has:

• Fewer than 7 characters, or

An alphabetic character in the last position,
or

A number in the last position that is not less
than k.

AFB132I VKIOS : FILE ffffff HAS A RECORD

LENGTH OF r, BUT RELATED FILE f2
HAS A DIFFERENT LENGTH OF r2.

Explanation: In attempting to open VSAM files
for multiple-key processing, VS FORTRAN
Version 2 found that the files had different

maximum record lengths. Therefore, the data
definition statements for the files must contain

an error or inconsistency. For example, a state
ment may refer to an alternate-index file rather
than to a path from the alternate-index file to the
base cluster. Or statements may point to
alternate-index files for different base clusters.

Or they may mistakenly refer to two base clus
ters and no alternate-index files.

Supplemental Data Provided:

ffffff is the file name.

f2 is the related file.

r is the record length of the file.

r2 is the record length of the related file.

390 VS FORTRAN Version 2 Language and Library Reference

Standard Corrective Action: Execution con

tinues, but the I/O request Is ignored. If the ERR
specifier was coded, control Is passed to the
indicated statement.

Programmer Response: Change the data defi
nition statements (DD statements in OS/VS,
DLBL statements in VM) to refer to the VSAM

files that represent the same base cluster.

AFB133I VKIOS : MORE THAN ONE KEY SPEC

IFIED IN OPEN STATEMENT FOR

VSAM KSDS, BUT FILE fffffff IS

EMPTY AND CANNOT BE PROC

ESSED.

Explanation: While opening VSAM files for
multiple-key processing, VS FORTRAN Version 2
found that one of the files was empty.

Supplemental Data Provided: fffffff is the ddname
of the empty file.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Be sure that the correct
VSAM files are specified in the operating
system's data definition statements. Also, be
sure that the base cluster (the file with the
primary key) has been loaded and that the other
files (those with alternate-index keys) have had
their alternate indexes built successfully using

the Access Method Services BLDINDEX

command.

AFB134I VKIOS : OPEN STATEMENT FOR THE

KEYED FILE fffffff SPECIFIES A KEY

OF sssss:eeeee, BUT NONE OF THE
DDNAMES FOR THIS FILE CORRE

SPOND TO A VSAM FILE WITH THIS

KEY.

Explanation: A key specified on the OPEN state
ment does not correspond to any of the files,
specified by ddnames, that were opened for
keyed access.

Supplemental Data Provided:

fffffff is the name of the file, specified explic

itly or taken by default, in the OPEN state
ment.

AFB135I

sssss is the starting position in each record
of the key to be used; eeeee is the ending
position.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Correct the starting and
ending positions of the keys in the KEYS
specifier; each key must correspond to a file that
is identified in a data definition statement (a DD
statement in OS/VS, a DLBL statement in VM).

(The keys need not be listed in the order of the
data definition statements, however.) In calcu
lating the starting and ending positions,
remember that the first position in a record is
position 1. This differs from the way the starting
position of a key is calculated in the KEYS
specifier of the Access Method Services DEFINE
command. There, the first position in a record is
position 0.

AFB135I VKIOS : ATTEMPT MADE TO ADD A

RECORD WITH A DUPLICATE KEY TO

A KEYED FILE. FILE fffffff. THE KEY

OF REFERENCE HAS A KEYID OF k, A

POSITION OF sssss:eeeee, AND A

VALUE OF vvvvvvvvvv (HEX).

Explanation; A keyed file was opened with an
ACTION value of READWRITE, and a WRITE

operation tried to add a record with a duplicate
key. The key duplicates either a primary key or
an alternate-index key that does not allow dupli
cate keys. The duplicate key is not necessarily
the key of reference, the key currently in use
and described in the message. The duplicate
key may not even be among the keys listed in
the KEYS specifier of the OPEN statement for the
file.

Supplemental Data Provided:

fffffff is the name of the file.

k indicates the key of reference—that is, the
start-end pair in the KEYS specifier of the
file's OPEN statement that was used in

writing the record..

sssss:eeeee is the position in the record of
the key of reference.

vvvvvvvvvv is the value of the key of refer
ence.

Appendix D. Library Procedures and Messages 391

AFB135I

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Change the value of the
item in the I/O list that represents the key to be
written. If you want to allow for a "duplicate
key" condition in your program, code a DUPKEY
specifier. It identifies the statement to be given
control if the condition occurs.

AFB136I VOREP : AN INVALID VALUE WAS

GIVEN FOR THE ACTION SPECIFIER

ON THE OPEN STATEMENT. UNIT nn.

Explanation: The ACTION specifier on the OPEN
statement specified a value other than READ,
WRITE, or READWRITE.

Supplemental Data Provided: nn is the unit
number specified in the OPEN statement.

Standard Corrective Action: Execution con

tinues. but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Change the value of the
ACTION specifier to READ, WRITE, or
READWRITE.

AFB137I VOPEP : KEYS SPECIFIER ON AN

OPEN STATEMENT IS NOT ALLOWED

EXCEPT FOR KEYED ACCESS. UNIT

nn.

Explanation: The OPEN statement has a KEYS
specifier, but has either no ACCESS specifier or
one whose value is incompatible with KEYS.
(Only the value KEYED is compatible.)

Supplemental Data Provided: nn is the unit

number specified on the OPEN statement.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: If the file to be open has
keys, specify ACCESS = 'KEYED'. Otherwise,
remove the KEYS specifier from the OPEN state
ment.

AFB138I VKIOS : ATTEMPT WAS MADE TO

CONNECT AN EMPTY KEYED FILE

USING A VALUE OF READ FOR THE

ACTION SPECIFIER. VSAM ERROR

CODEX'BE' (110). FILEfffffff.

Explanation: VSAM does not allow an empty file
to be opened for input operations.

Supplemental Data Provided: fffffff is the name of
the file for which the OPEN statement was

issued.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored. If the ERR
specifier was coded, control is passed to the
indicated statement.

Programmer Response: Be sure that the correct
VSAM file was specified in the operating
system's data definition statement. If the file is a

base cluster (the file with the primary key), be
sure that it was loaded. If the file is a path for
an alternate index, be sure the alternate index

was built successfully using the Access Method
Services BLDINDEX command.

If you want to process the base cluster and open
it for retrieval operations, use

ACTION = 'READWRITE'. This causes a dummy
statement to be loaded and deleted, and VSAM

then does not consider the file to be empty.

AFB139I VKIOS : ATTEMPT MADE TO

REWRITE A RECORD IN WHICH THE

VALUE OF THE KEY OF REFERENCE

DIFFERS FROM THE VALUE OF THAT

KEY IN THE RECORD JUST READ.

THE KEY OF REFERENCE HAS A

KEYID OF k. FILE fffffff.

Explanation: You read a record and, in trying to
rewrite it, wrote a key of reference whose value
differed from that in the original record.

Supplemental Data Provided: The name of the
file (fffffff) and, if the file has multiple keys, the
KEYID (k) of the key of reference.

Standard Corrective Action: Execution con

tinues, but the I/O request is ignored.

Programmer Response: If you did not intend to
write a new key value, make sure that:

The I/O list contains all the fields of the

record to be rewritten, and

392 VS FORTRAN Version 2 Language and Library Reference

Changes in the order or length of non-key
fields have not caused the position of the key
of reference to change.

If, however, you intended to replace the record
with one having a new key value, delete the
record and then add a new record with the

WRITE statement.

AFB140I VKIOS : KEY SEQUENCE ERROR
LOADING A KEYED FILE. FILE fffffff.

THE KEY OF REFERENCE IN THE

REJECTED RECORD HAD A VALUE

OF vwwvvvvv.

Explanation: You attempted to load a record in
which the value of the primary key was not
greater than the value of the primary key in the
previous record.

Supplemental Data Provided: The name of the
file (fffffff) and the value of the key of reference
in the record that could not be written

(vvvvvvvvvv).

Standard Corrective Action: Execution con

tinues, but the record has not been written.

Programmer Response: Change the logic of
your program or the order of the records being
loaded so that the records are loaded in

increasing sequence of their primary key values.
Be sure that the key of reference is actually the
file's primary key.

AFB141I VC0M2 : RESIDENCY ABOVE 16 MB

NOT POSSIBLE RUNNING IN LINK

MODE.

Explanation: You are running your program in
link mode, and your program resides at an
address greater than 16 Mb in an MVS/XA
system. Execution is impossible in this case,
because several library routines must run at an
address below 16 Mb.

Supplemental Data Provided: None.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Either:

1. Do not supply the library SYS1.VLNKMLIB
(or the equivalent at your installation) in the
SYSLIB DD statement in the linkage editor

AFB142I

step when link-editing your program for exe
cution in load mode, or

When executing in link-mode, be sure that
your load module is given an RMODE value
of 24 when it is link-edited. You probably
specified an RMODE of ANY; either remove
this linkage editor specifier or specify an
RMODE value of 24.

AFB142I VC0M2 : AFBVLBCM IS AT LEVEL

Ibcm-lvl BUT mod-name IS AT LEVEL

mod-lvl.

Explanation: You were running your program in
load mode, which requires loading the com
posite module mod-name. However, the module
loaded was from a different release level of the

Library than the rest of the executing library rou
tines (in particular, different from the release
level of the composite module AFBVLBCM). If
you are running under CMS, the composite
module mod-name may be in a discontiguous
shared segment.

Supplemental Data Provided: The name of the
loaded composite module {mod-name), its level
{mod-lvl), and the level of the executing version
of AFBVLBCM {Ibcm-lvl). The levels are in the
form vvrrmm, where vv is the version number, rr
is the release number, and mm is the modifica

tion number.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Be sure that you are
specifying for execution the correct libraries that
contain the VS FORTRAN Version 2 Library.
Specify:

•- A JOBLIB or STEPLIB DD statement in MVS,

or

»• A GLOBAL LOADLIB command in CMS.

In addition, be sure that any shareable copies of
the composite module are at the same level as
the rest of the Library you are using for exe
cution. These shareable copies are in:

>• A link pack area in MVS

*• A discontiguous shared segment in CMS

For further assistance, refer the problem to the
people at your installation who give system
support for VS FORTRAN Version 2.

Appendix D. Library Procedures and Messages 393

AFB143I

AFB1431 VDIVP : DATA-IN-VIRTUAL SERVICE

dddddd FAILED FOR DYNAMIC

COMMON aaaaaaaa. ABEND CODE

ccc, REASON CODE rr.

AFB143I VDIVP : DATA-IN-VIRTUAL SERVICE

dddddd FAILED FOR DYNAMIC

COMMON aaaaaaaa. COMPLETION

CODE ccc, REASON CODE rr.
AFB143I VDIVP : DATA-IN-VIRTUAL SERVICE

dddddd FAILED FOR LACK OF HARD

WARE SUPPORT.

Explanation:

For format 1 of this message, a DIV utility sub
routine (dddddd) was invoked and a failure was
detected by the system that resulted in a system
abend.

For format 2 of this message, a DIV utility sub
routine (dddddd) was invoked and a failure was
detected by the library data-in-virtual processing
routine.

For format 3 of this message, a DIV utility sub
routine (dddddd) was invoked and a failure was
detected by the system that resulted in a
program exception that indicated that the
required machine instructions were not avail
able.

Supplemental Data Provided:

dddddd DIV macro name (UNIDENTIFY, IDEN
TIFY, MAP, SAVE, RESET, UNMAP, or

ACCESS)

ccc abend code (for format 1) or com
pletion code/return code (for format

2)

rr reason code

aaaaaaaa dynamic common block name or

(NONE), which indicates that no
dynamic common was associated
when the DIV service was being proc
essed.

Standard Corrective Action: Execution of the DIV

service terminates with a return code of 128,
when the failure is not interpretable. Data in a
traceback listing may be inaccurate depending
upon how far along system services were when
the abend occurred.

Programmer Response: Take the appropriate
action based on the explanation of the abend or

return codes found in MVS/XA Supervisor Ser
vices and Macro Instructions, GC28-1154, or in
MVS/XA Message Library: System Codes,
GC28-1157.

AFB144I VDIVP : DATA-IN-VIRTUAL SERVICES

ARE NOT AVAILABLE ON THIS

SYSTEM.

AFB144I VDIVP : DATA-IN-VIRTUAL SERVICES

ARE NOT ALLOWED IN A PARALLEL

SUBROUTINE.

Explanation:

For format 1 of this message, a DIV utility sub
routine was invoked on a system that does not
support Data-in-Virtual (that is, on VM or on
non-XA MVS).

For format 2 of this message, a DIV utility sub
routine was invoked by a parallel subroutine
(using MTF).

Supplemental Data Provided: None.

Standard Corrective Action: Processing resumes
and the service call is ignored.

Programmer Response:

For format 1 of this message, remove the DIV
utility subroutine calls or run the program on an
MVS /XA system which has Data-in-Virtual
support.

For format 2 of this message, remove the Data-
in-Virtual utility subroutine calls from any par
allel subroutines if using the multitasking facility
(MTF). All of the DIV subroutine calls must be

made from the main task program.

AFB145I VC0M2 : COMPOSITE MODULE mod-

name IS NOT IN THE EXPECTED

FORMAT.

Explanation: You were running your program in
load mode, which requires loading the com
posite module mod-name. However, the module

loaded was not recognized as a valid composite
module. If you are running under CMS, this
composite module may be in a discontiguous
shared segment that was not built properly.

Supplemental Data Provided: The name of the
composite module {mod-name.)

Standard Corrective Action: Execution termi

nates with a return code of 16.

394 VS FORTRAN Version 2 Language and Library Reference

Programmer Response: Be sure you are speci
fying for execution the correct libraries con
taining the VS FORTRAN Version 2 Library with:

• A JOBLIB or STEPLIB DD statement in MVS.
or

A GLOBAL LOADLIB command in CMS.

Be sure that the composite module has been
built properly. Building composite modules is
explained in VS FORTRAN Version 2 Installation
and Customization for VM and VS FORTRAN
Version 2 Installation and Customization for

MVS.

If you are executing under CMS and the system
name of a discontiguous shared segment has
been defined, be sure the shared segment has
been built properly.

For further assistance, refer the problem to the
people at your installation who give system
support for VS FORTRAN Version 2.

AFB146I VLINP : THE SHAREABLE LOAD

MODULE module-name WAS LOADED

ABOVE THE 16MB VIRTUAL

STORAGE LINE BY THE

NONSHAREABLE PART OF

PROGRAM program-name, WHICH
WAS RUNNING IN 24-BIT

ADDRESSING MODE.

Explanation: The shareable load module con
tains the program's shareable part, but, because
of the module's location and the program's
addressing mode, the program can never branch
to that part. An abend would occur if it tried to
branch.

Supplemental Data Provided: The names of the
load module and the program.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Either

>• Run the program in 31-bit addressing mode
by link-editing it with an AMODE value of 31,
or

Link-edit the shareable load module with an

AMODE value of 24.

AFB149I

AFB147I VLINP : THE SHAREABLE LOAD
MODULE module-name LOADED BY

THE NONSHAREABLE PART OF
PROGRAM program-name HAS AN
INCORRECT FORMAT.

Explanation: A program's nonshareable part
loaded a load module containing the program's
shareable part. The load module, however, was
not in the correct format, because the parts were
not correctly separated after the program was
compiled.

Supplemental Data Provided: The names of the
load module and the program.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Use the object-deck
separation tool to separate the shareable and
nonshareable parts of the program. Then link-
edit the shareable part to create the load
module.

AFB148I VLINP : THE SHAREABLE LOAD

MODULE module-name LOADED BY

THE NONSHAREABLE PART OF

PROGRAM program-name DOES NOT
CONTAIN THE SHAREABLE PART

shareable-part-name AT AN ACCES
SIBLE LOCATION.

Explanation: A program's nonshareable part
loaded a load module that does not contain the
program's shareable part.

Supplemental Data Provided: The names of the
load module, the program, and the parts.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Link-edit the shareable
part (produced by the object-deck separation
tool) into the load module.

AFB149I VLINP : THE SHAREABLE LOAD
MODULE module-name LOADED BY

THE NONSHAREABLE PART OF

PROGRAM program-name HAS A
TIMESTAMP IN THE SHAREABLE

PART shareable-part-name WHICH
DIFFERS FROM THAT IN

NONSHAREABLE PART non-

shareable-part-name.

Appendix D. Library Procedures and Messages 395

AFB149I

THE shareable-part-name TIMESTAMP
IS xxxxxxxxxxxxxx, AND THE

shareable-part name TIMESTAMP IS

Explanation: A program's nonshareable part
loaded a load module containing the program's
shareable part, but the timestamps of the parts
were found to be different. The parts were
therefore compiled at different times and are
assumed to be incompatible.

Supplemental Data Provided: The names of the
load module, the program, and the parts, and
the timestamps {xxxxxxxxxxxxxx,

yyyyyyyyyyyyyy) of the parts.

standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Make the load module
containing the shareable part available at exe
cution time. Tell your system programmer that
the shared segment (in VM) or the link pack
area (in MVS) may have to be updated.

AFB150I VLOAD : THE LOAD LIST, WHICH
HAS nn ENTRIES, IS FULL. A TOTAL

OF mm LOADED MODULES WAS NOT

ENTERED INTO THE LIST. SUCH

MODULES ARE NOT DELETED.

Explanation: While one module was loading
another, the load list was found to be full. Con

sequently, the name and address of the loaded
module cannot be added to the list.

Supplemental Data Provided: The number of
entries (nn) in the load list and the number of
modules (mm) whose names could not be
entered into the load list.

Standard Corrective Action: Execution continues

normally, but the loaded module will not be

deleted when the program terminates.

Programmer Response: None.

AFB151I VDIOS : nnnn RECORDS OF LENGTH

nil FORMATTED ON FILE fffffff.

Explanation: The message tells how many
records were formatted on a file and how long
the records are. This action was taken in

response to an OPEN statement in a program
accessing a new direct-access file for the first
time.

Supplemental Data Provided:

nnnn is the number of records formatted on

the file.

nil is the length of the records,

fffffff is the name of the file.

Standard Corrective Action: None.

Programmer Response: None.

AFB152I VSIOS | VDIOS : FILE IS UNUSABLE,
PERMANENT ERROR HAS BEEN

DETECTED. FILE fffffff.

Explanation: An attempted I/O operation on a
file resulted in a permanent I/O error. The
message that precedes this one describes the
error.

Supplemental Data Provided: fffffff is the name of
the unusable file.

Standard Corrective Action: The interrupted
instruction and the I/O request are ignored.
After the traceback is completed, control is
returned to the call routine statement designated
in the ERR specifier of an I/O statement, if that
specifier was specified. Also, the lOSTAT vari
able is set to 152 if lOSTAT was specified in the
I/O statement.

Programmer Response: Check the previous
error message and correct the situation.

AFB153I VCOM2 : THE SPECIFIER LIST

RECEIVED FROM rrrrrr IS INCON

SISTENT WITH THE ARGUMENTS

EXPECTED BY ssssss. INHERITED

LENGTH OF A CHARACTER ARGU

MENT IS REQUIRED. EXECUTION IS

TERMINATED.

Explanation: A dummy argument within a sub
program (ssssss) is of character type with an
inherited length; that is, it is defined as
CHARACTER*(*). Such a dummy argument
requires a secondary argument list that contains
the lengths of the character data passed to the
routine. However, this secondary argument list
was not available. This situation could occur

either because the calling program (rrrrrr) was
compiled with a FORTRAN compiler whose level
is earlier than VS FORTRAN Version 1 Release

3, or because the calling program was not a
FORTRAN program. In either case, the routine
was compiled with VS FORTRAN Version 1

396 VS FORTRAN Version 2 Language and Library Reference

Release 3 or later or with VS FORTRAN Version

2.

Supplemental Data Provided: The name of the
calling program (rrrrrr) and the name of the
called routine (ssssss).

Programmer Response:

1. If the calling program is a FORTRAN
program at the FORTRAN 77 language level,
then recompile it with VS FORTRAN
Version 1 Release 3 or later or with VS

FORTRAN Version 2.

2. If the calling program is a FORTRAN
program at the FORTRAN 66 language level,
then it does not generate the secondary
argument list with the character lengths. To
correct this situation, either convert the

calling program to the FORTRAN 77 lan
guage level and compile it with VS
FORTRAN Version 1 Release 3 or later or

with VS FORTRAN Version 2, or change the
routine so the character data in the dummy
argument list is known, rather than of inher
ited length.

3. If the calling program is written in an Assem
bler language, provide both a secondary
argument list with the character lengths, and
the identifier that precedes the argument list.
For the expected format for this information,
refer to the section on character argument
linkage conventions in VS FORTRAN
Version 2 Programming Guide.

4. Ifthe calling program is neither a FORTRAN
nor an Assembler language program, the
secondary argument list cannot be gener
ated. In this case, change the routine so the
character data in the dummy argument list is
of known, rather than of inherited, length.

AFB154I VDIVP : BAD ARGUMENT LIST
PASSED TO DATA-IN-VIRTUAL

PROCESSING ROUTINE.

Explanation: A Data-in-Virtual utility subroutine
was invoked with an argument list that could not
be used.

Supplemental Data Provided: None.

Standard Corrective Action: Processing

resumes, the service call is ignored, and, if pos

AFB156I

sible, a return code is passed to the caller in the
first argument.

Programmer Response: Argument lists that do
not contain enough arguments, argument lists
that were generated with the LANGLVL{66) com
piler option, and argument lists that were com
piled with the LANGLVL{77) compiler option but
without character expressions in the argument
list must be converted to use the character

expressions required and the LANGLVL(77) com
piler option.

AFB155I VOPEP : RECL SPECIFIER IS NOT

ALLOWED WHEN CONNECTING A

SEQUENTIAL ACCESS|KEYED
ACCESS FILE, UNIT nn.

AFB155I VOPEP : RECL SPECIFIER IS

REQUIRED WHEN CONNECTING A

DIRECT ACCESS FILE, UNIT nn.

Explanation: For the first form of the message,
the RECL specifier is specified for a sequential
file. With the second form of the message, the
RECL specifier was not specified for a direct file.

Supplemental Data Provided: nn is the number
of the unit specified on the OPEN statement.

Standard Corrective Action: The IOSTAT= vari

able is set positive and/or the ERR exit is taken.
If neither the lOSTAT nor ERR specifier is speci
fied, the program is terminated.

Programmer Response: Correct the program to
specify the correct combination Of the ACCESS
and RECL specifiers.

AFB158I DDCMP : UNABLE TO OBTAIN
STORAGE FOR COMMON

'common-name'.

Explanation: There is insufficient storage avail
able to allow allocation for the named common.

Supplemental Data Provided: The name of the
common.

Standard Corrective Action: The request is
ignored. Processing continues. Any reference
to variables in this common will result in termi
nation of this job.

Programmer Response: Rerun the program with
larger storage or recompile the program with a
smaller common.

Appendix D. Library Procedures and Messages 397

AFB157i

AFB157I DDCMP : SHRCOM REQUEST WAS

MADE FROM A PARALLEL SUBROU

TINE FOR DYNAMIC COMMON

aaaaaaaa.

AFB157I DDCMP : AN INVALID VALUE WAS

GIVEN FOR THE DYNAMIC COMMON

NAME ON THE SHRCOM CALL,

aaaaaaaa.

AFB157I DDCMP : SHRCOM ARGUMENT LIST

IS IN AN INCORRECT FORMAT.

Explanation:

For format 1 of this message, the SHRCOM
service routine was called by a parallel subrou
tine. A dynamic common block must be made
shareable from the main task program.

For format 2 of this message, the dynamic
common name was an invalid VS FORTRAN

name. The name may not begin with blanks or a
digit, and must be 1 to 31 characters long.

For format 3 of this message, the argument list
for the SHRCOM service routine specified incor
rect data. One of the following conditions was
detected:

Too many or no arguments were specified in
the argument list.

The argument list was not in the format that
is generated by the VS FORTRAN compiler
when character arguments are provided (the
argument list contains other than character

expressions).

Supplemental Data Provided:

aaaaaaaa dynamic common name or the invalid

value given for the dynamic common
name in the SHRCOM request

Standard Corrective Action: The SHRCOM
request is ignored and processing continues.

Programmer Response:

For format 1 of this message, remove the
SHRCOM request from the parallel subroutine
and put it in the main task program.

For format 2 of this message, be sure the char
acter expression for the dynamic common name
evaluates to a valid VS FORTRAN name.

For format 3 of this message, ensure that you
have only coded one argument and that the
argument is in the form of a character
expression.

AFB158I DDCMP : LENGTHS OF COMMON

'common-name' ARE NOT CON

SISTENT IN ALL MODULES OF THIS

PROGRAM.

Explanation: A dynamic common must have the
same length in all segments of a program.

Supplemental Data Provided: Name of the
common.

Standard Corrective Action: Invocation of a sub

program containing a dynamic common whose
length differs from that defined in the calling
program will result in termination of this job.

Programmer Response: Specify length of the
common to be the same in all segments.

AFB159I BTSHS : SECOND ARGUMENT TO

function-name FUNCTION IS INVALID.

Explanation: The second argument is not in the
valid range for this bit function.

Supplemental Data Provided: The name of the
bit function.

Standard Corrective Action: For ISHFT, the
result = 0; for IBSET and IBCLR, the result is
the first operand; for BTEST, the result is false.

Programmer Response: Specify the second
argument within allowable range.

AFB160I VCOMH : FORMAT NESTED PAREN
THESES TABLE OVERFLOW. REDUCE

NUMBER OF NESTED PARENTHESES
IN PROGRAM AND RECOMPILE.

Explanation: The format contains more nested
parentheses than the library table can hold.

Supplemental Data Provided: None.

Standard Corrective Action: Parenthesis group
is ignored. Processing continues. Results are
unpredictable.

Programmer Response: Reduce the number of
parenthesis groups to 50 or less.

398 VS FORTRAN Version 2 Language and Library Reference

O

AFB161I VASYP : ASYNCHRONOUS I/O IS
SUPPORTED ONLY ON THE MVS

OPERATING SYSTEM.

Explanation: A program called the asynchronous
I/O scheduling routine while running in a CMS
environment.

Supplemental Data Provided: None.

Standard Corrective Action: The asynchronous
I/O request is ignored and the ARRAY expected
to be modified, if a READ (IN#) request, is
unchanged. The ARRAY isn't saved or written if
it is a WRITE (OUT#) request.

Programmer Response: Run the program on an
MVS system, or rewrite the program to use syn
chronous I/O (unformatted).

AFB162I WIGS | CVIOS : WRITE STATEMENT
CANNOT BE ISSUED TO SEQUEN

TIALLY ACCESSED VSAM RRDS FILE

fffffff.

Explanation: An attempt was made to add a
record to a sequentially accessed VSAM relative
record file that was not empty when the file was
opened.

Supplemental Data Provided: The name of the
file (ffffffO upon which the request was made.

Standard Corrective Action:

terminated.

The execution is

Programmer Response: Ifa record must be
added to a nonempty VSAM relative record file,
use the access mode of DIRECT.

AFB163I VVIOS I CVIOS : FILE POSITIONING
I/O STATEMENT IS NOT ALLOWED IN

THE DIRECT ACCESS MODE.

Explanation: A file positioning input/output state
ment (REWIND, BACKSPACE, or ENDFILE) was
issued to a VSAM direct file.

Supplemental Data Provided: None.

Standard Corrective Action: The execution is
terminated.

Programmer Response: Correct the program so
that no file positioning input/output statements
are issued for VSAM direct files.

AFB165I

AFB164I VVIOS | CVIOS : RECORD LENGTH
OF FILE fffffff IS LONGER THAN THE
ONE DEFINED IN VSAM CATALOG.

Explanation: The maximum record length for the
file found in the VSAM catalog (that is. the value
specified in the RECORDSIZE specifier when the
VSAM cluster is defined using Access Method
Services) is less than the length of the record to
be written.

Supplemental Data Provided: The name of the
file (ffffffO upon which the request was made.

Standard Corrective Action: The execution is
terminated.

Programmer Response: Either correct the
program so that the length of the record to be
written is not greater than the one in the VSAM
catalog, or change the record length in the
VSAM catalog by redefining the cluster.

AFB165I VVIOS | CVIOS : FILE fffffff. WHICH IS
BEING OPENED FOR SEQUENTIAL
ACCESS, MUST BE AN ENTRY
SEQUENCED VSAM DATA SET.

AFB165I VVIOS | CVIOS : FILE fffffff, WHICH IS
BEING OPENED FOR DIRECT

ACCESS, MUST BE A RELATIVE
RECORD VSAM DATASET.

Explanation: An attempt was made to open a
VSAM file with a file format other than what is

required. The correct VSAM file format is listed
in the message.

Supplemental Data Provided:

fffffff name of the file for which the OPEN
statement was issued.

Standard Corrective Action: The OPEN state

ment is ignored.

Programmer Response: Ifyou want to use the
VSAM KSDS file, you must code
ACCESS = 'KEYED' on the OPEN statement. If
you want to use the VSAM linear data set, you
must use the data-in-virtual routines. Otherwise,
change the data definition statement to refer to a
file of the appropriate format (ESDS or RRDS).

Appendix D. Library Procedures and Messages 399

AFB166I

AFB166I WIOS I CVIOS : ENDFILE STATE
MENT IS TREATED AS DOCUMENTA

TION FOR VSAM FILE fffffff.

Explanation: A request was made to write an
end-of-file mark on a VSAM or VSAM-managed
sequential file.

Supplemental Data Provided: The name of the
file (fffffff) for which the request was made.

Standard Corrective Action: The request is
ignored.

Programmer Response: Remove the statement
after carefully checking the effect of removing
the statement.

AFB167I WIOS I CVIOS : ERROR ON VSAM
FILE: fffffff WHEN ATTEMPTING TO

PROCESS A(N) xxxxxxxxxx OPERA
TION RC = yy ERROR C0DE=Z22.

Explanation: An error was detected by VSAM
while an input or output statement, indicated by
xxxxxxxxxx, was being processed. The return
code and the error code returned by VSAM were
yy and zzz, respectively.

Supplemental Data Provided: The name of the
operation that caused the error and the return
and error codes from VSAM. fffffff is the name of

the file.

Standard Corrective Action: The execution is

terminated.

Programmer Response: Determine the cause of
the error by examining the VSAM return and
error codes.

AFB168I VVIOS I CVIOS : xxxxxxxxxx IS
ISSUED TO UNOPENED VSAM FILE

ON UNIT nn.

Explanation: An input or output request was
made to an unopened VSAM file.

Supplemental Data Provided: The name of the
operation (xxxxxxxxxx) issued to an unopened
file, and the number of the unit (nn).

Standard Corrective Action: The execution is

terminated.

Programmer Response: Make sure that the
OPEN statement for the file was successfully
executed.

AFB169I CDYNA : FILEDEF FAILED. DISK IS

NOT ACCESSED, DISK d. FILE ffffffff.
AFB169I CDYNA : FILEDEF FAILED. ALL

DDNAME COMBINATIONS HAVE

BEEN EXHAUSTED. FILE ffffffff.

FILE MODE fm.

AFB169I CDYNA : FILEDEF FAILED. UNEX

PECTED ERROR CODE FROM

FSSTATE, ERROR CODE nnn.
FILE ffffffff.

AFB169I CDYNA : aaaaaaaa FAILED. UNEX

PECTED RETURN CODE FROM

FILEDEF, RETURN CODE nnn.
FILE ffffffff.

Explanation: An OPEN or INQUIRE statement
was being executed for one of the following:

a CMS file specified by its file identifier
(filename, filetype, filemode)

a scratch file without an explicit file definition

However, an error condition was detected while

running under CMS in issuing a file definition or
in clearing a file definition.

For format 1 of this message, the disk to which
the file identifier refers is not accessed. The

disk is the file mode is specified on the FILE
specifier in an OPEN statement, or, if the file
mode is not specified, is the default disk.

For format 2 of this message, all possible
ddname combinations have been issued to the

system in trying to generate a ddname for the
indicated file.

For format 3 of this message, an error other than
file-not-found or disk-not-accessed occurred

when an FSSTATE macro instruction was exe

cuted.

For format 4 of this message, an unexpected
error occurred when a FILEDEF or FILEDEF

CLEAR command was issued.

Supplemental Data Provided:

ffffffff file name or data set name

aaaaaaaa FILEDEF or FILEDEF CLEAR

d CMS disk specified in the FILE
specifier or the default disk

rrr record format of CMS file

fm file mode (CMS)

400 VS FORTRAN Version 2 Language and Library Reference

nnn system return code for FILEDEF or

error code for FSSTATE

Standard Corrective Action: The I/O request is
Ignored and execution continues.

Programmer Response:

For format 1 of this message, access the disk to
which the file Identifier refers before executing
your program.

For format 2 of this message, clear unused or
unnecessary file definitions with the formats
sDFnnnnn or DFsnnnnn, where s Is #, or $,
and nnnnn Is In the range from 00000 to 99999.

For format 3 of this message, a non-zero error
code was returned from an FSSTATE macro

Instruction that was Issued Internally. The code
Indicates an error other than file-not-found or
disk-not-accessed. For more Information on
these error codes, refer to VM/SP Command and
Macro Reference, SC19-6209, or consult with
your system programmer.

For format 4 of this message, refer to the infor
mation on the error code In VM/SP Command
and Macro Reference, SC19-6209, or consult with
your system programmer.

AFB170I VSiOS : CLOSE STATEMENT NOT

ALLOWED FOR ERROR MESSAGE

UNIT, UNIT nn.

Explanation: A CLOSE statement was directed to
the unit upon which run-time error messages are
being directed.

Supplemental Data Provided:

nn unit number of the error message unit

Standard Corrective Action: The CLOSE state
ment Is Ignored and execution continues. If the
ERR specifier was coded on the CLOSE state
ment, control Is passed to the Indicated state
ment.

Programmer Response: Change the program to
request I/O to a unit not being used for error
messages.

AFB173I

AFB171I VDIOS I VSIOS : CLOSE WITH
STATUS OF KEEP IS NOT ALLOWED

FOR A FILE THAT WAS CONNECTED

WITH A STATUS OF SCRATCH, FILE
fffffff.

Explanation: The file connected to the unit speci
fied In the CLOSE statement was opened as a
SCRATCH file and cannot be kept at close time.

Supplemental Data Provided: The name of the
file (fffffff) connected to the unit specified In the
CLOSE statement.

Standard Corrective Action: The CLOSE status
Is changed to DELETE and execution proceeds.

Programmer Response: Change either the OPEN
or CLOSE STATUS specifier to agree with the file
usage.

AFB172I VDIOS | VSIOS : FILE fffffff ALREADY
CONNECTED TO A UNIT, OPEN
REQUEST IGNORED.

Explanation: A file Is already connected to a unit
that Is different from the unit specified In the
OPEN statement.

Supplemental Data Provided: The name of the
file (fffffff) specified In the OPEN statement.

Standard Corrective Action: The OPEN request
Is Ignored.

Programmer Response: Change the program to
specify a different unit In the OPEN request, or
change the logic to use the current unit to which
the file Is connected.

AFB173I VDIOS | VSIOS : I/O STATEMENT
SPECIFYING UNFORMATTED I/O

ATTEMPTED ON FORMATTED FILE

fffffff.

Explanation: FORMATTED and UNFORMATTED
I/O requests are not allowed on the same file.

Supplemental Data Provided: The name of the
file {fffffff) for which the request was made.

Standard Corrective Action: The I/O operation Is
ignored.

Programmer Response: Correct the program to
direct FORMATTED and UNFORMATTED I/O to

different files.

Appendix D. Library Procedures and Messages 401

AFB173I

AFB174I VDIOS | VSIOS : I/O STATEMENT
SPECIFYING FORMATTED I/O

ATTEMPTED ON UNFORMATTED FILE

ffffffff.

Explanation: FORMATTED and UNFORMATTED
I/O requests are not allowed on the same file.

Supplemental Data Provided: The name of the
file (ffffffO for which the request was made.

Standard Corrective Action: The I/O operation is
ignored.

Programmer Response: Correct the program to
direct FORMATTED and UNFORMATTED I/O to

different files.

AFB175I name : I/O OPERATION IGNORED.

UNIT NUMBER EXCEEDS THE

MAXIMUM ALLOWED FOR UNNAMED

FILES, UNIT nnnn.

Explanation: A READ, WRITE or OPEN was
attempted for a unit number that is higher than
99 (but not higher than the limit specified for unit
numbers when VS FORTRAN was installed at

your site).

One of the following caused this message to be
issued:

»- A READ or WRITE statement referred to a

unit number higher than 99 when there was
no previous OPEN statement specified for
that unit.

An OPEN statement specified a unit number
higher than 99, and there was no FILE
specifier.

The limit of the unit number to two digits for
unnamed files is due to the default ddname

format: FTnnFOOl for files being connected for
sequential or direct access, and FTnnKkk for
files being connected for keyed access, where
nn is the unit number, and kk is 01, 02, ..., 99, for
each key specified in the KEYS specifier on the
OPEN statement.

Supplemental Data Provided:

name VSIOS, VDIOS, VKIOS, or VOPEP

nnnn unit identifier

Standard Corrective Action: The statement is

ignored, and processing continues.

I Programmer Response: Correct the invalid unit
1 number.

AFB180I VINQP | VOPEP : AN INVALID VALUE
WAS GIVEN FOR THE FILE SPECIFIER

ON THE XX STATEMENT, UNIT nn,

FILE fffffff.

Explanation: The FILE specifier on an OPEN or
INQUIRE statement specified a name of longer
than 8 characters, specified a name that did not
start with an alphabetic character, or specified a
default file name.

Supplemental Data Provided:

nn unit number for which the OPEN

statement was issued.

XX OPEN or INQUIRE

ffffffff file name

Standard Corrective Action: The OPEN state

ment is ignored.

Programmer Response:- Correct the program to
specify a correct file name.

AFB181I VOPEP : AN INVALID VALUE WAS

GIVEN FOR THE STATUS SPECIFIER

ON THE OPEN STATEMENT, UNIT nn.

Explanation: The STATUS specifier did not
specify NEW, OLD, SCRATCH, or UNKNOWN as
the status of the file being opened on the unit.

Supplemental Data Provided: The unit number
(nn) for which the command was issued.

Standard Corrective Action: STATUS is set to

UNKNOWN, and processing continues.

Programmer Response: Correct the program to
specify a correct STATUS specifier.

AFB182I VOPEP : AN INVALID VALUE WAS

GIVEN FOR THE ACCESS SPECIFIER

ON THE OPEN STATEMENT, UNIT nn.

Explanation: The ACCESS specifier did not
specify SEQUENTIAL or DIRECT for the type of
file access to be employed on the unit.

Supplemental Data Provided: The unit number
(nn) for which the OPEN statement was issued.

Standard Corrective Action: The OPEN request
is ignored.

402 VS FORTRAN Version 2 Language and Library Reference

Programmer Response: Correct the program to
specify a correct ACCESS specifier.

AFB183I VOREP : AN INVALID VALUE WAS

GIVEN FOR THE BLANK SPECIFIER

ON THE OPEN STATEMENT, UNIT nn.

Explanation: The BLANK specifier did not
specify ZERO or NULL for the treatment of
blanks on a FORMATTED I/O request.

Supplemental Data Provided: The unit number
(nn) for which the OPEN statement was issued.

Standard Corrective Action: The BLANK

specifier is assigned the value NULL.

Programmer Response: Correct the program to
specify a correct BLANK specifier.

AFB184I VOPEP : AN INVALID VALUE WAS

GIVEN FOR THE FORM SPECIFIER

ON THE OPEN STATEMENT, UNIT nn.

Explanation: The FORM specifier did not specify
FORMATTED or UNFORMATTED for the file.

Supplemental Data Provided: The unit number
(nn) for which the OPEN statement was issued.

Standard Corrective Action: The OPEN request

is ignored.

Programmer Response: Correct the program to
specify the correct formatting technique.

AFB185I VOPEP : STATUS OF SCRATCH IS

NOT ALLOWED WHEN CONNECTING

A NAMED FILE, FILE fffffff.

Explanation: An OPEN specified FILE and
STATUS ='SCRATCH' at the same time. The

STATUS value is not allowed.

Supplemental Data Provided: The name of file
(fffffff) for which the request was made.

Standard Corrective Action: The STATUS value

is set to UNKNOWN and processing continues.

Programmer Response: Correct the program to
make the two specifiers consistent with each
other.

AFB188I

AFB186I VCLOP : AN INVALID VALUE WAS

GIVEN ON THE STATUS SPECIFIER

ON THE CLOSE STATEMENT, UNIT

nn.

Explanation: The STATUS specifier did not
specify KEEP or DELETE, or a STATUS of KEEP
was specified on the CLOSE statement for a file
that was opened with a STATUS of SCRATCH.

Supplemental Data Provided: The unit number
(nn) for which the CLOSE statement was issued.

Standard Corrective Action: The STATUS value

is set to DELETE if the file was opened as
SCRATCH: otherwise, the status is set to KEEP

Programmer Response: Correct the program to
specify the correct status values, or make the
status of the OPEN and CLOSE consistent with

each other.

AFB187I VSPAP : (program-name) CALLED
SUBROUTINE (program-name) WITH
AN ARRAY (array-name (l:u,...))
HAVING LOWER BOUND(S) GREATER

THAN UPPER BOUND(S).

Explanation: When one program unit called
another, the called program unit was found to
have an array with at least one dimension with a
lower bound greater than the upper bound.

Supplemental Data Provided: The names of the
calling and called program units, the name of
the array, and the lower (I) and upper (u) bound
of each dimension in the array.

Standard Corrective Action: Execution con

tinues, but invalid results are probable if a refer
ence is made to the dimension(s) in error.

Programmer Response: Correct the specification
of dimensions whose lower bound is greater
than the upper bound.

AFB188I CITFN : ARGUMENT TO CHARACTER

FUNCTION GREATER THAN 255 OR

LESS THAN 0.

Explanation: A value greater than 255 (highest
EBCDIC representation) or a value less than 0
has been specified for the CHAR function.

Supplemental Data Provided: None.

Appendix D. Library Procedures and Messages 403

AFB188I

Standard Corrective Action: The function is not

evaluated, and execution continues. The value
of the character function is unpredictable.

Programmer Response: Specify correct value.

AFB189I INDEX : INVALID LENGTH FOR INDEX

OPERAND III, VALUE = vw; VALUE
SHOULD BE BETWEEN 1 AND 32767.

Explanation: The length specified for the second
operand of the index function is not in the range
1 to 32767, inclusive.

Supplemental Data Provided: The length (III)
specified for the operand and its value (vvv).

Standard Corrective Action: The function is not

evaluated, and execution continues.

Programmer Response: Specify the correct
length.

AFB190I VMOPP : THE ERROR NUMBER nnnn

DOES NOT FALL WITHIN THE RANGE

OF A KNOWN ERROR OPTION

TABLE.

Explanation: An error option table that describes
the error number (nnnn) could not be found.

Supplemental Data Provided: The error number
(nnnn).

System Action: The request is ignored, and exe
cution continues.

For information on the error handling subrou
tines, refer to Chapter 9, "Extended Error-
Handling Subroutines and Error Option Table"
on page 315.

Programmer Response:

If you incorrectly specified a number that you did
not intend, change the error number to fall
within the range of entries in an error option
table. For VS FORTRAN Version 2, valid
numbers are 96 through 301 (VS FORTRAN
Version 2 Library) and 302 through 899 (user-
defined). Refer to the documentation for your
auxiliary product for the range of error numbers
for any auxiliary product you might have used.

If you specified the correct number and the
number falls within the range 302 through 899,
the range of standard error option table entries
should be extended to include the user error

number (nnnn). Refer the problem to the people

at your installation who give system support for
VS FORTRAN Version 2.

If the number you specified falls within the range
of an auxiliary product, make sure your product
has been initialized. Refer to the documentation

for your auxiliary product for information about
initializing it.

AFB191I LXCMP : INVALID LENGTH FOR

LEXICAL COMPARE, OPERAND xxx.
LENGTH VALUE IS: III.

Explanation: The length specified for the second
operand of the LGE, LGT, LLE, or LLT function is

not in the range 1 to 32767, inclusive.

Supplemental Data Provided: The operand (xxx)
and its length (III).

Standard Corrective Action: The function is not

performed, and execution continues.

Programmer Response: Specify the correct
length.

AFB192I VASYP: ASYNCHRONOUS I/O

DDNAME ffffffff IS NOT AVAILABLE

FOR USE.

Explanation: The ddname for asynchronous I/O
was not associated with a disk or a tape file.
Asynchronous I/O will not work correctly on a
file of any other type.

Supplemental Data Provided: The ddname
(ffffffff) of the incorrect type of file.

Standard Corrective Action: The I/O operation is
not performed, and execution terminates with a
return code of 20.

Programmer Response: Allocate the ddname to
a disk or a tape file.

AFB193I CCMPR : INVALID LENGTH FOR

CHARACTER COMPARE, OPERAND
xxx. LENGTH VALUE IS: III.

Explanation: The length of the second operand
of a character relational compare (.EQ., .LT)
not in the range 1 to 32767, inclusive.

Supplemental Data Provided: The operand (xxx)
and its length (III).

Standard Corrective Action: The function is not

performed, and execution continues.

404 VS FORTRAN Version 2 Language and Library Reference

Programmer Response:
length.

Specify the correct

AFB194I VASYP : ASYNCHRONOUS I/O

DDNAME ffffffff, IS LINKED TO xxx. A
SEQUENTIAL FILE WITH RECFM = VS
IS REQUIRED.

Explanation: The ddname used for asynchro
nous I/O was determined to be connected to an

unusable device type. The only acceptable
device types are disk and tape. Terminals,
SYSIN, SYSOUT, etc., files are not acceptable.

Supplemental Data Provided: The ddname

(fffffffO of the file on which asynchronous I/O was
to be attempted,
xxx may one of the following:

A non-DASD device

A partitioned data set member
A VSAM file

Standard Corrective Action: Execution of the

program terminates with a return code of 20.

Programmer Response: Connect the file used
for asynchronous I/O to an acceptable device
type.

AFB195I CMOVE : CHARACTER MOVE

INVALID - TARGET AND SOURCE

OVERLAP DESTRUCTIVELY.

Explanation: The storage locations assigned to
the target and source are such that source data
will be destroyed by the requested assignment.

Supplemental Data Provided: None.

Standard Corrective Action: The assignment is

not performed, and execution continues.

Programmer Response: Check storage MAP for
storage assignments. Also check EQUIVALENCE
statements.

AFB196I CMOVE : TARGET LENGTH FOR

CHARACTER MOVE GREATER THAN

32767 OR LESS THAN 1.

Explanation: The length of the target (left of
equal variable) is not in the range 1 to 32767,

inclusive.

Supplemental Data Provided: None.

Standard Corrective Action: The assignment is

not performed, and execution continues.

AFB199I

Programmer Response: Specify the correct
length.

AFB197I CMOVE : SOURCE LENGTH FOR

CHARACTER MOVE GREATER THAN

32767 OR LESS THAN 1.

Explanation: The length of the source (right of
equal expression) is not in the range 1 to 32767,
inclusive.

Supplemental Data Provided: None.

Standard Corrective Action: The assignment is

not performed, and execution continues.

Programmer Response: Specify the correct
length.

AFB198I VMOPP : ATTEMPT TO CHANGE

UNMODIFIABLE MESSAGE TABLE

ENTRY. MESSAGE NUMBER nnnn.

Explanation: The option table specifies that no
changes may be made in this entry, but a
change request has been made by use of CALL
ERRSET or CALL ERRSTR.

For information on the error-handling subrou
tines, refer to Chapter 9, "Extended Error-
Handling Subroutines and Error Option Table"
on page 315.

Supplemental Data Provided: The message
number.

System Action: The request is ignored and exe
cution continues.

Programmer Response: Make sure that no
attempt has been made to dynamically alter an
unmodifiable entry in the option table.

AFB199I CNCAT : LENGTH FOR CONCAT

ENATION OPERAND GREATER THAN

32767 OR LESS THAN 1.

Explanation: The length of one of the operands
of a concatenation operation is not in the range
1 to 32767, inclusive.

Supplemental Data Provided: None.

Standard Corrective Action: The concatenation

operation is not performed.

Programmer Response: Specify the correct
length.

Appendix D. Library Procedures and Messages 405

AFB200I

AFB200I VIIOS : END OF INTERNAL FILE,

PROCESSING ENDS.

Explanation: The end of an internal file was
reached before the completion of an internal I/O
request.

Supplemental Data Provided: None.

Standard Corrective Action: Return to END label

if the request is a READ; otherwise, the job is
terminated.

Programmer Response: Either keep a counter to
avoid exceeding the end of the internal record or
file, or insert an END specifier on the READ
statement for appropriate transfer of control on
end of data.

AFB201I VIOUP : UNFORMATTED VARIABLE

SPANNED RECORD IS LONGER THAN

THE RECORD LENGTH OF Irecl. THE

FILE IS NOT COMPATIBLE WITH

, NON-FORTRAN ACCESS METHODS.

FILE ffffffff.

AFB201I VIOUP : UNFORMATTED DIRECT

ACCESS DATA IS LONGER THAN THE

RECORD LENGTH OF Irecl. THE

REMAINING DATA IS TRANSFERRED

FROM I TO THE NEXT RECORD. FILE
ffffffff.

Explanation: Your I/O list items represent a
record longer than that defined for the file in
your unformatted READ or WRITE statement. For
the first format of the message, you are writing a
variable spanned record longer that the logical
record length (LRECL value). For the second
format of the message, you are reading or
writing from a direct access file and are speci
fying more data than can be contained in the

fixed-length records in the file.

Supplemental Data Provided: The record length
(LRECL) defined for the records in the file and
the file name ffffffff.

Standard Corrective Procedure: For the first

format of the message, a record of the size indi
cated by your I/O list is written, even though this

length exceeds the length defined for the
records in the file. If you attempt to read this file
using non-FORTRAN access methods, you may
encounter unexpected results. For the second
format of the message, the next higher num

bered record in your direct access file is used to
complete the data transfer to or from the items
in your I/O list, even though this is in violation of
the current FORTRAN standard. For either

format of this message, execution then continues
with no further indication that an error occurred.

Programmer Response: To prevent this
message from being printed, you can do one of
the following:

(On MVS or VM): Omit the LRECL specifica
tion

(On MVS only): Specify LRECL = X

*- Increase the record length of your file so it is
large enough to hold all the data specified
by your I/O list. Note, however, that for the

second format of this message, which
involves a direct access file, increasing
record length means you will be able to
write or read from only one direct access
record at a time

AFB202I VCIA4 : PROGRAM CANNOT BE

DEBUGGED WITH RELEASE 1 LEVEL

OF IAD.

Explanation: You specified DEBUG as an
execution-time specifier that causes Interactive
Debug to be invoked. However, that program
product was found to be at the Interactive Debug
Release 1 level, which is not compatible with the
current release of the VS FORTRAN Version 2

Library.

Your program was link-edited with VS FORTRAN
Version 1 Release 4 for execution in link mode.

Supplemental Data Provided: None.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Remove the DEBUG
specifier from your execution-time specifiers so
that you will not invoke Interactive Debug. You
can then run your program without it. Other
wise, remove references to Interactive Debug
Release 1 in your JCL, CLIST, or EXEC so you
can use VS FORTRAN Version 2 Interactive

Debug with VS FORTRAN Version 2. If this is
not successful, refer the problem to the people
at your installation who give system support for
VS FORTRAN Version 2.

406 VS FORTRAN Version 2 Language and Library Reference

AFB203I IBCOP ; INVALID COMBINATION OF

INITIAL, TEST, AND INCREMENT

VALUE FOR READ/WRITE

IMPLIED-DO, FILE fffffff; INIT = xxx,

TEST = yyy, INCR = zzz.

Explanation: A READ or WRITE statement with
an implied DO had an invalid combination of
initial, test, and increment values {11. 12, and 13,
respectively) for one of its levels of nesting:

13 = 0, or

12 < II and 13 ^ 12-11, or

II < 12 and 13 < 0.

Supplemental Data Provided:

fffffff name of the file used in the READ or

WRITE operation.

xxx initial value

yyy test value

zzz increment value

Standard Corrective Action: The implied-DO in

the I/O list is ignored, and processing continues.

Programmer Response: Check the statements
that set the initial, test, and increment variables.

AFB204I VIOLP : ITEM SIZE EXCEEDS BUFFER

LENGTH, FILE fffffff.

Explanation: For a non-complex number, the
number is longer than the buffer. For a complex
number, half the length of the number plus one
(for the comma) is longer than the buffer.

Supplemental Data Provided: The name of the
file (ffffffO.

Standard Corrective Action: The remainder of

the I/O list is ignored.

Programmer Response: Make sure that the

record length specified is large enough to
contain the longest item in the I/O list.

AFB205I VASYP : I/O SUBTASK ABENDED.

Explanation: The asynchronous I/O subtask
resulted in an abnormal termination.

Supplemental Data Provided: None.

Standard Corrective Action: Processing is termi

nated.

AFB210I

Programmer Response: Verify that all DD state
ments are coded correctly and refer to the
appropriate data sets. Check all READ and
WRITE statements and any END FILE, REWIND,
and BACKSPACE statements. Check the system
completion code for assistance in determining
the type of error that caused abnormal termi
nation. Increase storage size as a possible sol
ution.

AFB206I VCVTH : INTEGER VALUE OUT OF

RANGE (nnnnnnnn).

Explanation: An input integer was too large to fit
into the integer data item. (The largest integer
that can be processed is 2**15-1 for INTEGER*2
and 2**31-1 for INTEGER*4.)

Supplemental Data Provided: The input integer
(nnnnnnnn).

Standard Corrective Action: The maximum posi

tive or negative value will be returned for the
size (2 or 4 bytes) of the receiving field.

Programmer Response: Make sure that all
integer input data used is within the required
range for the integer variable size.

AFB207I

Explanation: For information on this message,
refer to "Program-Interrupt Messages" on
page 377.

AFB208I

Explanation: For information on this message,
refer to "Program-Interrupt Messages" on
page 377.

AFB209I

Explanation: For information on this message,
refer to "Program-Interrupt Messages" on
page 377.

AFB210I

Explanation: For information on this message,
refer to "Program-Interrupt Messages" on
page 377.

Appendix D. Library Procedures and Messages 407

AFB211I

AFB211I VCOMH : ILLEGAL field FORMAT

CHARACTER SPECIFIED (character),
FILE fffffff.

Explanation: An invalid character has been
detected in a FORMAT statement.

Supplemental Data Provided: The field con
taining the character in error, the character
specified, and the file name (ffffffQ.

Standard Corrective Action: Format field treated

as an end of format.

Programmer Response: Make sure that all
object-time format specifications are valid.

AFB212I VCOMH : FORMATTED I/O, END OF

RECORD, FILE fffffff.

Explanation: An attempt has been made to read
or write a record, under FORMAT control, that

exceeds the buffer length.

Supplemental Data Provided: The name of the
file {ffffffO.

Standard Corrective Action: For a read opera
tion, the remainder of the I/O list is ignored; for
a write operation, a new record is started with
no control character.

Programmer Response: If the error occurs on
input, verify that a FORMAT statement does not
define a FORTRAN record longer than the record
supplied by the data set. No record to be
punched should be specified as longer than 80
characters. For printed output, make sure that
no record length is longer than the printer's line
length.

AFB213I VCOMH | VIOLP | VIOUP | VASYP |
VKIOS : rrrr END OF RECORD, FILE

fffffff.

Explanation: For VCOMH: The input list for an
I/O statement with a FORMAT specification is
larger than the logical record.

Supplemental Data Provided: The name of the

file {fffffff) and the operation (rrrr).

Standard Corrective Action:

the I/O list is ignored.
The remainder of

Programmer Response: Make sure the length of
the number of elements in the I/O list matches

the length of the number of items in the record.

Explanation: For VIOLP: A list-directed READ
statement attempted to read more items from a
variable spanned logical record than were
present in the record. (This message can be
issued only when the record format is variable
spanned.)

Supplemental Data Provided:
file (ffffffO-

Standard Corrective Action:

the I/O list is ignored.

The name of the

The remainder of

Programmer Response: Make sure that the
number of items in the I/O list and the input data
agree. Either delete extra variable names or
supply additional logical records.

Explanation: For VIOUP and VASYP: The input
list in an I/O statement without a FORMAT spec
ification is larger than the logical record.

Supplemental Data Provided: The name of the
file {fffffff) and the operation {rrrr).

Standard Corrective Action:

the I/O list is ignored.
The remainder of

Programmer Response: Make sure the number
of elements in the I/O list matches the number of

items in the record.

Explanation: For VKIOS: An attempt was made
to read or write more than one record in a keyed
file with a single READ, WRITE, or REWRITE
statement. For keyed files, only one record may
be read or written with a single I/O statement.

Supplemental Data Provided: The name of the
file {ffffffO and the operation {rrrr).

Standard Corrective Action: The remainder of

the I/O list is ignored.

Programmer Response: Modify your I/O state
ment and your I/O list so the I/O statement proc
esses only one keyed file record.

AFB214I VSIOS | VASYP : RECORD FORMAT
INVALID FOR UNFORMATTED OR

ASYNCHRONOUS I/O, FILE fffffff.

Explanation: FOR VSIOS: For unformatted

records read or written in EBCDIC sequentially
organized data sets, the record format specifica
tion must be variable spanned and can be
blocked or unblocked. This message appears if
the programmer has not specified variable

spanned, or if an ASCII tape was specified.

408 VS FORTRAN Version 2 Language and Library Reference

Supplemental Data Provided:
file (fffffff).

The name of the

Standard Corrective Action: For non-ASCII

output data sets, the record format is changed to
variable spanned if variable was not specified,
or spanned is added to the record format if

either variable or variable blocked was speci
fied.

Programmer Response: Correct the record
format to variable spanned.

For VASYP: For unformatted records in an asyn
chronous I/O operation, the record format spec
ification (RECFM) did not include the characters
VS.

Supplemental Data Provided: The name of the
file (fffffff).

Standard Corrective Action: For an input opera
tion, the read request is ignored; for an output
operation, VS is assumed.

Programmer Response: Change the record
format specification to VS.

AFB215I VCVTH : ILLEGAL DECIMAL CHAR

ACTER (character).

Explanation: An invalid character was found in
the decimal input corresponding to an I, E, F, or
D format code.

Supplemental Data Provided: The record in
which the character appeared.

Standard Corrective Action: 0 replaces the char
acter encountered.

Programmer Response; Make sure that all
decimal input is valid. Correct any FORMAT
statements specifying decimal input where char
acter input should be indicated. Check FORMAT
specifications to ensure that correct field widths
are specified.

AFB217I name : END OF DATA SET, FILE fffffff.

Explanation: An end-of-data set was sensed
during a READ operation, or during a WRITE
operation after an ENDFILE; that is, a program
attempted to read or write beyond the end of the
data. For a named file, a READ may have been
attempted after an end-of-file was encountered
and an END path was executed.

Supplemental Data Provided:

AFB218I

name CVIOS, VSIOS, VASYP, or VVIOS.

fffffff the file name

Standard Corrective Action: The next file is

read, that is, the data set sequence number is
increased by 1 in the MVS and VM environ
ments.

Programmer Response:
statements.

Check all job control

For READ operations, either keep a counter to
avoid exceeding the end of record or file or
insert an END specifier on the READ statement
for appropriate transfer of control on end-of-
data-set. On a named file, avoid a READ past an
end-of-file after an END path was taken.

For WRITE operations, either remove the
ENDFILE or insert a BACKSPACE statement after

the ENDFILE to position the file at the beginning
of the end-of-file record before extending the file
with one or more WRITE operations.

AFB218I name : I/O ERROR, FILE fffffff,
cccccccccc ERROR OCCURRED

WHILE PROCESSING STATEMENT

nnnn.

Explanation: An I/O error occurred, usually for
one of the following reasons:

A permanent I/O error has been encount
ered.

For sequential I/O, the length of a physical
record is inconsistent with the default block

size or the block size specified on the job
control statement, or the program has
attempted to read an empty file.

An attempt has been made to read or write a
record that is less than 18 bytes long on
magnetic tape.

End-of-tape was encountered while writing a
tape file.

For VM only, the program arrived at the end
of the medium.

For VM only, the user did not use the correct
file mode number for a file.

Note: If a permanent I/O error has been

detected while writing in the object error unit
data set, the error message is written to the pro
grammer either at the terminal or the SYSOUT

data set, and job execution is terminated.

Appendix D. Library Procedures and Messages 409

AFB218I

If two consecutive I/O operations against the
same FORTRAN I/O unit result in error message

AFB218I, then upon the third I/O operation,
depending on the type of I/O operation per
formed, error message AFB152I may be issued.

Supplemental Data Provided:

name VSIOS, VASYP, or VDIOS.

fffffff The file name

cccccccccc The type of I/O error

nnnn Statement label number or ISN

The short form gives I/O error, file f, and c. The
long form gives I/O error, file f, error occurred,
but nnnn is not present.

Standard Corrective Action: The I/O request is
ignored. After the traceback is completed,
control is returned to the call routine statement
designated in the ERR= n specifier of an I/O
statement, if that specifier was specified.

Programmer Response: For sequential I/O,
make sure that the length of the physical record
is consistent with the default or specified block
size. Check all job control statements. For VM,
make sure the disk is defined with a valid file
mode. Make sure that no attempt has been
made to read or write a magnetic tape record
that is fewer than 18 bytes in length.

AFB219I name : ssssssss FAILED. MISSING
OR INVALID CONTROL STATEMENT.
SYSTEM COMPLETION CODE ccc-rr.

FILE fffffff.

AFB219I CFIST : ssssssss FAILED. DISK NOT
ACCESSED. FILE fffffff.

AFB219I CFIST : ssssssss FAILED. TAPE NOT
ATTACHED. FILE fffffff.

AFB219I CFIST : ssssssss FAILED. UNEX
PECTED FSSTATE ERROR CODE fr.

FILE fffffff.

AFB219I CFIST : ssssssss FAILED.
EIGHT-CHARACTER FILE IS INVALID

WHEN REFERRING TO A VSAM FILE.

FILE fffffff.

AFB219I VASYP : IMPLICIT OPEN FAILED.
MISSING OR INVALID CONTROL

STATEMENT. ASYNCHRONOUS I/O

IS NOT AVAILABLE. FILE fffffff.

AFB219I VIADI : IMPLICIT OPEN FAILED.

MISSING OR INVALID CONTROL

STATEMENT. FILE fffffff.

AFB219I VOPEP | VINQP : ssssssss FAILED.
ERROR DETECTED IN PREVIOUS
INVOCATION OF FILEINF. FILE fffffff.

Explanation: In all cases except for the last two
formats of this message, an internal OPEN
macro was either attempted and failed, or was
not allowed under the given conditions.

Ifyou receive the last format of this message,
then an I/O request other than INQUIRE, OPEN,
or CLOSE was issued for a preconnected file.

For format 1 (MVS), the DD statement or ALLO
CATE command may have specified an incorrect
data set name. When the message indicates a
missing or invalid control statement, a file may
have been referred to in the program but had no
corresponding DD statement or ALLOCATE
command.

For format 2 (CMS only), the disk on which the
file was to be found was not accessed.

For format 3 (CMS only), the tape drive at the
virtual address referred to by the symbolic name
(TAPn) for the tape device specified on the
FILEDEF command is not attached to your

userid.

For format 4 (CMS only), an error (other than
disk not accessed) occurred when an FSSTATE
macro instruction was executed.

For format 5 (CMS only), the 7-character
program ddname specified on the DLBL
command is the same as the first 7 characters of
the 8-character file name indicated on the FILE
specifier of the OPEN statement. Ifa FILEDEF
was issued for the 8-character name, and a
DLBL command was issued for the 7-character

ddname, the DLBL command takes precedence
and it is assumed that the FILEDEF statement
refers to a VSAM file.

For format 6, an asynchronous READ or WRITE
statement failed due to a missing DD statement.
The file indicated cannot be used for asynchro
nous I/O for the remainder of this program exe

cution.

For format 7, a failure occurred during proc
essing of the VS FORTRAN IAD command,
RECONNECT. The failure was probably caused
by a missing or invalid operating system file
definition statement, or because the file defi
nition statement or DLBL command points to a
VSAM file. VS FORTRAN Version 2 does not

allow VSAM files to be preconnected.

410 VS FORTRAN Version 2 Language and Library Reference

For format 8, the OPEN or INQUIRE statement

was not processed due to errors in the values of

the arguments in the FILEINF call.

Supplemental Data Provided:

name

ssssssss

ccc

rr

fr

fffffff

VSIOS, VDIOS, CFIST, or VFIST.

OPEN. CLOSE. INQUIRE. IMPLICIT

OPEN (IMPLICIT OPEN indicates that
an internally performed OPEN opera
tion failed.)
System completion code (For an
explanation of the system completion
code and reason code, refer to OS/\/S

Message Library: VS2 System Codes,
GC28-1008. or MVS/XA Message
Library: System Codes, GC28-1157.)
Reason code

FSSTATE error code

File name

Standard Corrective Action: The I/O request is
ignored and execution continues.

Programmer Response: Either provide the
missing operating system file definition state
ment or correct any erroneous file definition
statement. Refer to VS FORTRAN Version 2 Pro

gramming Guide for more information.

For ISCII/ASCII data sets on MVS. be sure that
the LABEL specifier on the DD statement speci
fies AL (or NL. provided that the DCB
subspecifier OPTCD = Q is also specified). Also,
be certain that your operating system permits
the use of ASCII data sets.

For format 2 of this message, access the disk
which holds or will hold the file indicated in the

message text. Be certain the disk is linked in
the proper mode.

For format 3 of this message, issue a CP QUERY
command on the virtual address for the tape
device. Check that the virtual address returned

by the query corresponds to the symbolic name
used in the FILEDEF command. If necessary,
have your VM/SP operator issue the commands
to attach the tape drive to your userid at the
desired virtual address.

For format 4 of this message, check the
FSSTATE error return code. For more informa

tion on these error codes, see VM/SP Command
and Macro Reference, SC19-6209.

AFB220I

For format 5 of this message, be sure that any
8-character names in your program are unique
through the first 7 characters. If you intend to
refer to a VSAM file, specify a file name of 1 to 7
characters that corresponds to the name on the
DLBL command.

For format 6 of this message, refer to the
response for missing or invalid control state
ments. Provide or correct the file definition

statements and rerun the job.

For format 7 of this message, use the IAD
command SYSCMD to issue the operating
system file definition statement to define the
missing control statements or to correct the
existing control statements. (Refer also to the
response for missing or invalid control state
ments.) If you intend to refer to a VSAM file, the
RECONNECT command may not be used. If you
did not intend to refer to a VSAM file, and you
are on CMS. then use the IAD SYSCMD

command to clear the DLBL definition and issue

the correct FILEDEF command. If you are on
MVS. and the file definition stateinent points to a
VSAM file, use the SYSCMD command to correct

the file definition statement. In both environ

ments. if the SYSCMD command is successful,
reissue the RECONNECT command.

I For format 8 of this message, correct illegal
I parameter specifiers in the FILEINF call. Refer
I to message 96 which preceded this message for
1 information on what the errors were.

AFB220I name : UNIT NUMBER OUT OF

RANGE, UNIT nn.

Explanation: A unit number exceeds the limit
specified for unit numbers when the library was
installed.

Supplemental Data Provided:

name

nn

VSIOS. VDIOS. DIOCS. CVIOS. VVIOS.

or VASYP

unit identifier

Standard Corrective Action: The statement is

ignored, and execution continues.

Programmer Response: Correct the invalid unit
number.

Appendix D. Library Procedures and Messages 411

AFB221I

AFB221I VIONP : NAME FOUND IN NAMELIST

INPUT FILE IS TOO LONG.

NAME=name.

Explanation: A NAMELIST dictionary name is
longer than 31 characters: a variable name is
longer than 31 characters (with VS FORTRAN
Version 2 Release 2) or longer than 6 characters
(with VS FORTRAN Version 2 Release 1.1 or
earlier).

Supplemental Data Provided: The first six or 31
characters of the name specified.

Standard Corrective Action: The remainder of

the NAMELIST request is ignored.

Programmer Response: Correct the invalid
NAMELIST input variable, or provide any missing
delimiters.

AFB222I VIONP : NAME NOT IN NAMELIST

DICTIONARY NAME = name.

Explanation: An input variable name is not in
the NAMELIST dictionary, or an array is speci
fied with an insufficient amount of data.

Supplemental Data Provided:
tied.

The name speci-

Standard Corrective Action: The remainder of

the NAMELIST request is ignored.

Programmer Response: Make sure that a
correct NAMELIST statement is included in the

source module for all variable and array names
read in using NAMELIST.

AFB223I VIONP : END OF RECORD ENCOUNT

ERED BEFORE EQUAL SIGN.
NAME = name.

Explanation: An input variable name or a sub
script has no delimiter.

Supplemental Data Provided: The name of the
item.

Standard Corrective Action: The remainder of

the NAMELIST request is ignored.

Programmer Response: Make sure that all
NAMELIST input data is correctly specified and
all delimiters are correctly positioned. Check all
delimiters.

AFB224I VIONP : SUBSCRIPT FOR

NON-DIMENSIONED VARIABLE OR

SUBSCRIPT OUT OF RANGE.

NAME = name.

Explanation: A subscript is encountered after an
undimensioned input name, or the subscript is
too large.

Supplemental Data Provided: The name of the
item.

Standard Corrective Action: The remainder of

the NAMELIST request is ignored.

Programmer Response: Insert any missing
DIMENSION statements, or correct the invalid
array reference.

AFB225I VCVTH : ILLEGAL HEXADECIMAL

CHARACTER char.

Explanation: An invalid character is encountered
on input for the Z format code.

Supplemental Data Provided: A display of the
record in which the character appeared.

Standard Corrective Action: 0 replaces the
encountered character.

Programmer Response: Either correct the
invalid character, or correct or delete the Z
format code.

AFB226I VCVTH : REAL VALUE OUT OF

RANGE (characters).

Explanation: A real number was too large or too
small to be processed by the load module. (The
largest number that can be processed is 16®^ - 1;
the smallest number that can be processed is
16-65)

Supplemental Data Provided: The field of input
characters.

Standard Corrective Action: If the number was

too large, the result is set to 1063 - 1. if the
number was too small, the result is set to 0.

Programmer Response: Make sure that all real
input is within the required range for the number
specified. Check the format statement used;
trailing blanks may be mistaken for zeros in the
exponent.

412 VS FORTRAN Version 2 Language and Library Reference

AFB227I VIOLP : ERROR IN REPEAT COUNT,
FILE fffffff.

Explanation: An invalid condition was detected
while scanning for a (k*—):

An invalid character was found at the start of

the scan,

^ A secondary repeat count was detected
while under the control of a primary repeat
count, or

The numeric value of the repeat count was
invalid.

Supplemental Data Provided: The name of the
file (fffffff).

Standard Corrective Action: The remainder of

the I/O list is ignored.

Programmer Response: Make sure that all
repeat counts are correctly specified.

AFB228I VASYP : LAST ITEM IN THE I/O LIST

HAS A LOWER ADDRESS THAN THE

FIRST ELEMENT, FILE fffffff.

Explanation: An I/O list contained an element
having a lower storage address than the first
element in the list.

Supplemental Data Provided: The name of the
file (ffffffO.

Standard Corrective Action: The interrupted
instruction is ignored, and execution continues.

Programmer Response: Make sure that all ele
ments in the I/O list are specified in the correct
order.

AFB229I VPARM : THE AUTOTASK KEYWORD

WAS SPECIFIED BUT THE PROGRAM

DOES NOT USE ANY MULTITASKING

FACILITY FUNCTIONS. THE

AUTOTASK KEYWORD IS IGNORED.

Explanation: The application program does not
use any multitasking facility functions, but the
AUTOTASK keyword was specified in the PARM
parameter. This condition is detected only when
the load module for the program was link-edited
for execution in link mode.

Supplemental Data Provided: None.

Standard Corrective Action: The AUTOTASK

keyword is ignored. The multitasking facility is

AFB231I

not initialized and execution of the program con
tinues.

Programmer Response: Remove the AUTOTASK
keyword from the PARM parameter to prevent
the printing of this message.

AFB230I VSERH : SOURCE ERROR AT ISN

nnnn-EXECUTION TERMINATED.

THE PROGRAM NAME IS

"program-name".

Explanation: An attempt to run a program con
taining compile errors has been intercepted at
the execution of the statement in error.

Supplemental Data Provided: The ISN (nnnn) of
the statement in the compiled program that is in
error, and the name of the routine or subroutine

in which the ISN is located.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Correct the source
program statement, and rerun the job.

AFB231I VSIOS : SEQUENTIAL I/O

ATTEMPTED ON A aaaaaa FILE. UNIT

nn.

AFB231I VDIOS : DIRECT ACCESS I/O

ATTEMPTED BEFORE AN OPEN OR A

DEFINE FILE.

Explanation: Sequential I/O statements were
used for a file that is open for keyed or direct
access. A program unit cannot use sequential
I/O statements.

Supplemental Data Provided:

nn unit number

aaaa direct or keyed

Standard Corrective Action: The I/O request is
ignored.

Programmer Response:

Either include the necessary DEFINE FILE or
OPEN statement for direct access or delete

the OPEN statement for a sequential file.
Make sure that all job control statements are
correct.

Make sure the same file name is not used

twice within the same program unit for dif
ferent types of access.

Appendix D. Library Procedures and Messages 413

AFB231I

• If you opened the file for direct access and
intend to do direct I/O processing, specify a
record number in the READ or WRITE state

ment.

For a file opened for sequential or keyed access,
the READ or WRITE statement must not contain

a number specification.

AFB232I name : RECORD NUMBER nnnnnn

OUT OF RANGE, FILE fffffff.

Explanation: The relative position of a record is
not a positive integer, or the relative position
exceeds the number of records in the data set.

Supplemental Data Provided: The last 5 charac
ters in the name of the module that issued the

message: VDIOS, WIGS, or CVIOS. The record
number (nnnnnn) and the name of the file (ffffffO-

Standard Corrective Action: The I/O request is
ignored.

Programmer Response: Make sure that the rela
tive position of the record on the data set has
been specified correctly. Check all job control
statements.

AFB233I VDIOS : RECORD LENGTH GREATER

THAN 32760 SPECIFIED, FILE fffffff.

Explanation: The record length specified in the
DEFINE FILE or OPEN statement exceeds the

capabilities of the system and the physical limi
tation of the volume assigned to the data set in
the job control statement.

Supplemental Data Provided: The name of the
file {fffffff).

Standard Corrective Action: The record length is
set to 32000.

Programmer Response: Make sure that appro
priate parameters of the job control statement
conform to specifications in the DEFINE FILE or
OPEN statement; the record length in both must

be equivalent and within the capabilities of the
system and the physical limitations of the
assigned volume.

AFB234I DIOCS | VDIOS : ATTEMPT TO USE
OBJECT ERROR UNIT AS A DIRECT

ACCESS DATA SET, UNIT nn.

Explanation: The data set assigned to print exe
cution error messages cannot be a direct access
data set.

Supplemental Data Provided: The unit number
(nn).

Standard Corrective Action: The request for
direct I/O is ignored.

Programmer Response: Make sure that the
object error unit specified is not direct access.

AFB235I VSIOS : DIRECT I/O ATTEMPTED ON
A aaaaaaaaaa FILE. UNIT nn.

Explanation: Direct I/O statements were used for
a file open for sequential or keyed access. A
program unit cannot use direct I/O statements in
such a case.

Supplemental Data Provided:

nn is the unit number specified in the I/O
statement.

aaaaaaaaaa is either SEQUENTIAL or

KEYED.

Standard Corrective Action: The I/O request is
ignored.

Programmer Response:

•- If you want to do direct I/O processing, state
ment include the necessary DEFINE FILE or
OPEN for direct access.

»• Make sure the same file name is not used

twice within the same program unit for dif
ferent types of access.

AFB236I VDIOS : DIRECT ACCESS READ
REQUESTED BEFORE FILE WAS
CREATED, FILE fffffff.

Explanation: A READ is executed for a direct
access file that has not been created.

Supplemental Data Provided: The name of the
file (ffffffO-

Standard Corrective Action: The I/O request is
ignored.

Programmer Response: Make sure that either a
file utility program has been used, or appro-

414 VS FORTRAN Version 2 Language and Library Reference

priate parameters have been specified on the
associated job control statement. For further
information, see VS FORTRAN Version 2 Pro
gramming Guide.

AFB237I VDIOS : INCORRECT RECORD

LENGTH SPECIFIED, FILE fffffff.

Explanation: The length of the record did not
correspond to the length of the record specified
in the DEFINE FILE or the OPEN statement.

Supplemental Data Provided:
file (fffffff).

The name of the

Standard Corrective Action: The I/O request is

ignored.

Programmer Response: Make sure that the
length of the records supplied matches the
length specified in the DEFINE FILE or the OPEN
statement. If necessary, change the statement

to specify the correct record length.

AFB238I VIOLP : INCORRECT DELIMITER IN

COMPLEX OR LITERAL INPUT, FILE

fffffff.

Explanation: A literal string in the input
record(s) was not closed with an apostrophe (or
was longer than 256 characters): alternatively, a

complex number in the input record(s) contained
embedded blanks, no internal comma, or no

closing right parenthesis..

Supplemental Data Provided: The name of the
file (ffffffO.

Standard Corrective Action:

the I/O list is ignored.
The remainder of

Programmer Response: Supply the missing
apostrophe, or amend the literal data to keep
within the 256-character limit if the error was in

the literal input. Check complex input numbers
to see that they contain no embedded blanks,
and that they contain an internal comma and a
closing right parenthesis.

AFB239I VASYP : BLKSIZE IS NOT SPECIFIED

FOR AN INPUT FILE, FILE fffffff.

Explanation: The block size for an input file was
not specified in the JCL or was specified as

zero.

Supplemental Data Provided: The name of the
file (ffffffO for which the error occurred.

AFB240I

Standard Corrective Action: The I/O request is
ignored.

Programmer Response: Make sure the block
size is specified on the JCL for a new file.

AFB240I VABEX : ABEND CODE IS: SYSTEM

sss, USER uuu.

SCB/SDWA=aaaaaaaa

10 ccccccccc.

PSW = xxxxxxxxxxxxxxxx

ENTRY POINT=eeeeeeee.

REGS 0-3 nnnnnnnn nnnnnnnn

nnnnnnnn nnnnnnnn

REGS 4-7 nnnnnnnn nnnnnnnn

nnnnnnnn nnnnnnnn

REGS 8 -11 nnnnnnnn nnnnnnnn

nnnnnnnn nnnnnnnn

REGS 12-15 nnnnnnnn nnnnnnnn

nnnnnnnn nnnnnnnn

FRGS 0 & 2 nnnnnnnn nnnnnnnn

nnnnnnnn nnnnnnnn

FRGS 4 & 6 nnnnnnnn nnnnnnnn

nnnnnnnn nnnnnnnn

DATA AT ADDRESS (xxxxxxxx)

yyyyyyyy yyyyyyyy yyyyyyyy-

DYNAMIC COMMON MAP

dddddd AT ffffffff (gggggggg)
ddddddd AT ffffffff(gggggggg)

MAP FOR SHAREABLE LOAD

MODULE: bbbbbbbb

hhhhhhhh AT ffffffff

hhhhhhhh AT ffffffff

LOADED LIBRARY MODULES

jjjijjjj AT fffffff
jjjjijij at ffffffff

Explanation: An abnormal program termination
has occurred. Message AFB240I is printed on
the object program error unit and included in the

message class for the job. The AFB240I
message may be preceded by an AFB210I
message that is printed on the object program
error unit.

Supplemental Data Provided: sss is the com
pletion code when a system code caused termi
nation; uuu is the completion code when a
program code caused termination.

For specific explanations of the completion
codes, see the messages and codes manual that
applies to your operating system.

The SCB/SDWA field gives the address
(aaaaaaaa) of the system diagnostic work area,

which contains the old PSW (xxxxxxxxxxxxxxxx)

Appendix D. Library Procedures and Messages 415

AFB240I

and the contents of the general and floating
point registers at the time of the abend. These
fields have been copied from the SDWA into this
message.

The status of input/output operations is shown in
the field 10 ccccccccc. The variable part of the
field contains the word QUIESCED, HALTED,

CONTINUED, or NONE. The meanings of these
words are:

QUIESCED—All I/O operations have been
completed; no I/O operation is outstanding.

HALTED—Some I/O operations may not have
been completed. If records were being
written, you should check that all of them
were actually written.

CONTINUED—I/O operations were not com
pleted. The program can continue, but
FORTRAN does not allow it.

NONE—No I/O operation was active when the
abend occurred.

The ENTRY POINT field gives the entry point.
address (eeeeeeee) of the module in which the
abend occurred.

I The following items are controlled by the run-
I time option ABMODLST.

If dynamic common blocks have been used, a
map of obtained COMMON areas is provided
where dddddd is the name of the COMMON,

ffffffff is the starting address of the COMMON,
and gggggggg is the length in hexadecimal. If
shareable FORTRAN routines have been loaded,

a map of the shareable parts is provided, where
bbbbbbbb hhhhhhhh is the shareable part name

and ffffffff is the starting address of the execut
able code. If LOAD MODE has been used, a

map of LOADED library modules is provided,
where jjjjjjjj is the library module name and ffffffff
is the address of the module.

I The failure point address (xxxxxxxx) and the four
I bytes of data around the failure point address
I (yyyyyyyy) ^'so displayed.

Two more lines can appear at the end of the
message. The line TRACEBACK MAY NOT
BEGIN WITH ABENDING ROUTINE is added if VS

FORTRAN Version 2 finds an error in the save-

area chain. The line ABEND OCCURRED IN

FORTRAN PROCESSING ORIGINAL ABEND is

added if a second abend occurs during the proc
essing of the original abend. In this case.

message AFB240I is issued again, and its con
tents pertain to the second abend.

If the abending module or any module in the
traceback chain was compiled with the SDUMP
or TEST options, SDUMP output is produced for
the module.

Standard Corrective Action: None.

Programmer Response: Use the abend code,
the contents of the SDWA and PSW, and any
accompanying system messages, to determine
the nature of the error.

AFB241I FIXPI : INTEGER BASE = 0, INTEGER
EXPONENT=exponent, LESS THAN
OR EQUAL TO ZERO.

Explanation: For an exponentiation operation
(l**J) in the subprogram AFBFIXPI (FIXPI#),
where I and J represent integer variables or
integer constants, I is equal to 0 and J is less
than or equal to 0.

Supplemental Data Provided: The exponent
specified.

Standard Corrective Action: Result = 0.

Programmer Response: Make sure that integer
variables and/or integer constants for an
exponentiation operation are within the allow
able range. If the base and exponent may or
will fall outside that range during program exe
cution, then either modify the operands, or insert
source code to test for the situation and make

the appropriate adjustments. Bypass the
exponentiation operation if necessary.

AFB242I FRXPI : REAL*4 BASE = 0.0, INTEGER
EXPONENT=exponent, LESS THAN
OR EQUAL TO ZERO.

Explanation: For an exponentiation operation
(R**J) in the subprogram AFBFRXPI (FRXPI#),
where R represents a REAL*4 variable or
REAL*4 constant and J represents an integer
variable or integer constant, R is equal to 0 and
J is less than or equal to 0.

Supplemental Data Provided: The exponent
specified.

Standard Corrective Action:

If BASE = 0.0,EXP<0,RESULT = «;

If BASE = O.O.EXP = 0,RESULT = 1.

416 VS FORTRAN Version 2 Language and Library Reference

Programmer Response: Make sure that both the

real variable or constant base and the integer
variable or constant exponent for an
exponentiation operation are within the allow
able range. If the base and exponent may or
will fall outside that range during program exe
cution, then either modify the operand{s), or
insert source code to test for the situation and

make the appropriate adjustments. Bypass the
exponentiation operation if necessary.

AFB243I FDXPI : REAL*8 BASE = 0.0, INTEGER

EXPONENT=exponent, LESS THAN
OR EQUAL TO ZERO.

Explanation: For an exponentiation operation
(D**J) in the subprogram AFBFDXPI (FDXPI#),
where D represents a REAL*8 variable or
REAL*8 constant and J represents an Integer
variable or Integer constant, D is equal to 0 and
J is less than or equal to 0.

Supplemental Data Provided:
specified.

The exponent

Standard Corrective Action: The* is the correctly
signed largest representable floating-point
number.

If BASE = 0.0,EXP<0,RESULT = *;

If BASE=0.0.EXP = 0.RESULT=1.

Programmer Response: Make sure that both the
real variable or constant base and the integer
variable or constant exponent for an
exponentiation operation are within the allow
able range. If the base and exponent may or
will fall outside that range during execution, then
either modify the operand(s), or insert source
code to test for the situation and make the

appropriate compensation. Bypass the
exponentiation operation if necessary.

AFB244I FRXPR : REAL*4 BASE = 0.0, REAL*4

EXPONENT=exponent, LESS THAN
OR EQUAL TO ZERO.

Explanation: For an exponentiation operation
(R**S) in the subprogram AFBFRXPR (FRXPR#),
where R and S represent REAL*4 variables or
REAL*4 constants, R is equal to 0 and 8 is less
than or equal to 0.

Supplemental Data Provided: The exponent
specified.

Standard Corrective Action:

AFB246I

If BASE = 0.0,EXP < 0.0,RESULT = •;

If BASE = 0.0,EXP = 0,RESULT = 1.

Programmer Response: Make sure that both the
real variable or constant base and exponent for
an exponentiation operation are within the allow
able range. If the base and exponent may or
will fall outside that range during program exe
cution, then either modify the operand(s). or
insert source code to test for the situation and

make appropriate compensation. Bypass the
exponentiation operation if necessary.

AFB245I FDXPD : REAL*8 BASE = 0.0, REAL*8

EXPONENT=exponent, LESS THAN
OR EQUAL TO ZERO.

Explanation: For an exponentiation operation
(D**P) in the subprogram AFBFDXPD (FDXPD#),
where D and P represent REAL*8 variables or
REAL*8 constants, D is equal to 0 and P is less
than or equal to 0.

Supplemental Data Provided:

specified.

Standard Corrective Action:

The exponent

If BASE = 0.0,EXP<0.0,RESULT = *;

If BASE = 0.0,EXP = 0,RESULT = 1.

Programmer Response: Make sure that both the
real variable or constant base and exponent for
an exponentiation operation are within the allow

able range. If the base and exponent may or
will fall outside that range during program exe
cution, then either modify the operand(s), or
insert source code to test for the situation and

make appropriate compensation. Bypass the
exponentiation operation if necessary.

AFB246I FCXPC : C0MPLEX*8 BASE =

(0.0,0.0), REAL PART OF COMPLEX*8

EXPONENT=exponent, LESS THAN
OR EQUAL TO 0.

AFB246I FCXPI : C0MPLEX*8 BASE =

(0.0,0.0), INTEGER

EXPONENT = exponent, LESS THAN
OR EQUAL TO 0.

Explanation: For an exponentiation operation
(Z**P) where the complex*8 base Z equals 0,
either in the subprogram AFBFCXPC (FCXPC#),
the real part of the C0MPLEX*8 exponent P, or
in the subprogram AFBFCXPI (FCXPI#), the
integer exponent P, is less than or equal to 0.

Appendix D. Library Procedures and Messages 417

AFB246I

Supplemental Data Provided: The exponent
specified.

Standard Corrective Action:

If BASE = 0.0.0.0,exponent < 0,RESULT = - + 0i;
If BASE = 0.0,0.0,exponent = O.RESU LI = 1+01

Programmer Response: Make sure that both the
base and exponent for an exponentiation opera
tion are within the allowable range during
program execution. If the base and exponent
may or will fall outside that range during
program execution, then either modify the
operand(s), or Insert source code to test for the
situation and make the appropriate compen
sation. Bypass the exponentiation operation If
necessary.

AFB247I FCDCD : C0MPLEX*16 BASE =

(0.0,0.0), REAL PART OF
C0MPLEX*16 EXPONENT=exponent,
LESS THAN OR EQUAL TO 0.

AFB247I FCDXI : C0MPLEX*16 BASE =

(0.0,0.0), INTEGER
EXPONENT=exponent, LESS THAN
OR EQUAL TO 0.

Explanation: For an exponentiation operation
(Z**P) where the C0MPLEX*16 base Z equals 0,
either In the subprogram AFBFCDCD (FCDCD#),
the real part of the C0MPLEX*16 exponent P, or
In the subprogram AFBFCDXI (FCDXI#), the
Integer exponent P, Is less than or equal to 0.

Supplemental Data Provided: The exponent
specified.

Standard Corrective Action:

If BASE = (0.0,0.0)exponent < 0,RESULT = «+ 0l:
If BASE = (0.0,0.0)exponent = O.RESULT = 1+01.

Programmer Response: Make sure that both the
base and exponent for an exponentiation opera
tion are within the allowable range during
program execution. If the base and exponent
may or will fall outside that range during
program execution, then either modify the
operand(s), or Insert source code to test for the
situation and make the appropriate compen
sation. Bypass the exponentiation operation if
necessary.

AFB248I FQXPI : REAL*16 BASE = 0.0,

INTEGER EXPONENT=exponent,

LESS THAN OR EQUAL TO 0.

Explanation: For an exponentiation operation
(Q**J) In the subprogram AFBFQXPI (FQXPI#),
where Q represents a REAL*16 variable or con
stant and J represents an Integer variable or
constant, Q Is equal to 0 and J Is less than or
equal to 0.

Supplemental Data Provided: The exponent
specified.

Standard Corrective Action:

If BASE = O.O.EXP < 0,RESULT = -:

If BASE = 0.0.EXP = 0.RESULT = 1.

Programmer Response: Make sure that both the
real variable or constant base and the Integer
variable or constant exponent for an
exponentiation operation are within the allow
able range. If the base and exponent may or
will fall outside that range during execution, then
either modify the operand(s), or insert source
code to test for the situation and make the

appropriate compensation. Bypass the
exponentiation operation If necessary.

AFB249I FQXPQ : REAL*16 BASE = base,
REAL*16 EXPONENT=exponent,
BASE = 0.0 AND EXPONENT LESS

THAN OR EQUAL TO 0 OR BASE

LESS THAN 0 AND EXPONENT NOT

EQUAL TO 0.

Explanation: For an exponentiation operation
(X**Y) In the subprogram AFBFQXPQ (FQXPQ#),
where X and Y represent REAL*16 variables or
constants. If X equals 0, Y must be greater than
0; If X Is less than 0, Y must equal 0. One of
these conditions has been violated.

Supplemental Data Provided: The base and
exponent specified.

Standard Corrective Action:

If BASE = 0.0 and EXP<0,RESULT = -:

If BASE = 0.0 and EXP = O.RESULT = 1;

If BASE= < 0.0 and EXP9«iO.RESULT = 1X1**Y.

Programmer Response: Make sure that both the
real variable or constant base and exponent for
an exponentiation operation are within the allow
able range. If the base and exponent may or
will fall outside that range during program exe-

418 VS FORTRAN Version 2 Language and Library Reference

cution, then either modify the operand{s), or
insert source code to test for the situation and

make appropriate adjustments. Bypass the
exponentiation operation if necessary.

AFB250I FQXPQ : REAL*16 BASE = base,

REAL*16 EXPONENT=exponent,
ARGUMENT COMBINATION

EXP0NENT*L0G2(BASE) GREATER
THAN OR EQUAL TO 252.

Explanation: For an exponentiation operation in
the subprogram AFBFQXPQ, (FQXPQ#) the argu
ment combination of Y*log2{X) generates a
number greater than or equal to 252.

Supplemental Data Provided: The arguments
specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the base
and exponent are within the allowable range. If
necessary, restructure arithmetic operations.

AFB251I SSQRT : ARG = argument, LESS THAN
ZERO.

Explanation: In the subprogram AFBSSQRT
(SQRT), the argument is less than 0.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = jXjV^.

Programmer Response: Make sure that the

argument is within allowable range. Either
modify the argument, or insert source code to

test for a negative argument and make the nec
essary adjustments. Bypass the function refer
ence if necessary.

AFB252I SEXP : ARG = argument, GREATER
THAN 174.673.

Explanation: In the subprogram AFBSEXP (EXP),
the argument is greater than 174.673.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action; Result = •.

Programmer Response: Make sure that the
argument to the exponentiation function is within

AFB254I

allowable range. If the argument may or will
exceed that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB253I SLOG : ARG = argument, LESS THAN
OR EQUAL TO ZERO.

Explanation: In the subprogram AFBSLOG
(ALOG and ALOG10), the argument is less than
or equal to 0. Because this subprogram is
called by an exponential subprogram, if the
alternative library is used, this message may
also indicate that an attempt has been made to
raise a negative base to a real power.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action:

If X = 0, RESULT = -•;

IfX < 0, RESULT = log|X| or log JX|.

Programmer Response: Make sure that the
argument to the logarithmic function is within the
allowable range. If the argument may or will be
outside that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB254I SSCN : ABS(ARGUMENT) = argument
GREATER THAN OR EQUAL TO

Pl*(2**18)

Explanation: In the subprogram AFBSSCN (SIN
and COS), the absolute value of an argument is

greater than or equal to 2**18 * pi (2**18 *
pi = .823 550 E+ 06).

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = SQRT(2)/2.

Programmer Response: Make sure that the

argument (in radians where 1 radian is equiv
alent to 57.298°) to the trigonometric sine or
cosine function is within the allowable range. If
the argument may or will exceed that range
during program execution, then provide code to
test for the situation and, if necessary, modify
the argument or bypass the source referencing
the function subprogram.

Appendix D. Library Procedures and Messages 419

AFB255I

AFB255I SATN2 : ARGUMENTS = 0.0.

Explanation: In the subprogram AFBSATN2,
when the entry name ATAN2 is used, both argu
ments are equal to 0.

Supplemental Data Provided: None.

Standard Corrective Action: Result = 0.

Programmer Response: Make sure that both
arguments do not become 0 during program
execution, or are not inadvertently initialized or
modified to 0. Provide code to test for the situ

ation and, if necessary, modify the arguments or
bypass the source referencing the function sub
program.

AFB256I SSCNH : ARC = argument, GREATER
THAN OR EQUAL TO 175.366.

Explanation: In the subprogram AFBSSCNH
(SINN or COSH), the argument is greater than or
equal to 175.366.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action:

COSH(X) = «
SINH(X)=±

Programmer Response: Make sure that the
argument to the hyperbolic sine or cosine func
tion is within the allowable range. If the argu
ment may or will exceed that range during
program execution, then provide code to test for
the situation and, if necessary, modify the argu
ment or bypass the source referencing the func
tion subprogram.

AFB257I SASCN : ARG = argument, GREATER
THAN 1.

Explanation: In the subprogram AFBSASCN
(ASIN or ACOS), the absolute value of the argu
ment is greater than 1.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action:

Ifx > 1.0, ACOS{x) = 0;
If X < -1.0, ACOS{x) = pi;
Ifx > 1.0, ASIN{x) = pi/2:
Ifx < -1.0, ASIN{x) = -pi/2.

Programmer Response: Make sure that the
argument to the arcsine or arccosine function is
between -1 and +1, inclusive. If the argument
may or will fall outside that range during
program execution, then provide code to test for
the situation and, if necessary, modify the argu
ment or bypass the source referencing the func
tion subprogram.

AFB258I STNCT : ARG = argument,
(HEX= hexadecimal), GREATER THAN
OR EQUAL TO Pl*(2**18).

Explanation: In the subprogram AFBSTNCT (TAN
or COTAN), the absolute value of the argument
is greater than or equal to 2**18*pi
(2**18*pi = .823 550E + 6).

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = 1.

Programmer Response: Make sure that the
argument (in radians, where 1 radian is equal to
57.2958°) to the trigonometric tangent or
cotangent function is within the allowable range.
If the argument may or will exceed that range
during program execution, then provide code to
test for the situation and, if necessary, modify
the argument or bypass the source referencing
the function subprogram.

AFB259I STNCT : ARG = argument, (HEX =
hexadecimal), APPROACHES
SINGULARITY.

Explanation: In the subprogram AFBSTNCT (TAN
or COTAN), the argument value is too close to
one of the singularities (±pi/2, ±3pi/2, ... for the
tangent or ±pi, ±2pi, ... for the cotangent).

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the
argument (in radians, where 1 radian is equal to
57.2958°) to the trigonometric tangent or
cotangent function is within the allowable range.
If the argument may or will approach the corre
sponding singularities for the function during
program execution, then provide code to test for
the situation and, if necessary, modify the argu
ment or bypass the source referencing the func
tion subprogram.

420 VS FORTRAN Version 2 Language and Library Reference

AFB260I FQXPR : REAL*16 EXPONENT =
exponent, GREATER THAN OR EQUAL
TO 252.

Explanation: In the subprogram AFBFQXPR
(FQXP2#), the exponent exceeds 2**252.

Supplemental Data Provided: The exponent
specified.

Standard Corrective Action: Result ==*.

Programmer Response: Make sure that the
exponent Is within the allowable range.

AFB261I LSQRT : ARC = argument, LESS
THAN ZERO.

Explanation: In the subprogram AFBLSQRT
(DSQRT), the argument Is less than 0.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = |X|V^.

Programmer Response: Make sure that the
argument is within the allowable range. Either
modify the argument, or insert source code to
test for a negative argument and make the nec
essary compensation. Bypass the function refer
ence if necessary.

AFB262I LEXP : ARG = argument, GREATER
THAN 174.673.

Explanation: In the subprogram AFBLEXP
(DEXP), the argument is greater than 174.673.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the
argument to the exponential function is within
allowable range. If the argument may or will
exceed that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB265I

AFB263I LLOG : = argument, LESS THAN OR
EQUAL TO ZERO.

Explanation: In the subprogram AFBLLOG
(DLOG and DLOG10), the argument is less than
or equal to 0. Because the subprogram is called
by an exponential subprogram, if the alternative
library is used, this message may also indicate
that an attempt has been made to raise a nega
tive base to a real power.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action:

IfX = 0 ,RESULT=-«:

lfX<O.RESULT = loglX| or log |X|.
10

Programmer Response: Make sure that the
argument to the logarithmic function is within the
allowable range. If the argument may or will be
outside that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB264I LSCN : ABS(ARG) = argument,
GREATER THAN OR EQUAL TO

PI *(2* *50).

Explanation: In the subprogram AFBLSCN (DSIN
and DCOS), the absolute value of the argument
is greater than or equal to .353 711 870 600 806
396 D + 16.

Supplemental Data Provided: None.

Standard Corrective Action: Result = SQRT{2)/2.

Programmer Response: Make sure that the
argument (in radians where 1 radian is equiv
alent to 57.295 779 513 1°) to the trigonometric
sine or cosine function is within the allowable

range. If the argument may or will exceed that
range during program execution, then provide
code to test for the situation and, if necessary,
modify the argument or bypass the source refer
encing the function subprogram.

AFB285I LATN2 : ARGUMENTS = 0.0.

Explanation: In subprogram AFBLATN2, when
entry name DATAN2 is used, both arguments are
equal to zero.

Supplemental Data Provided: None.

Appendix D. Library Procedures and Messages 421

AFB265I

Standard Corrective Action: Result=0.

Programmer Response: Make sure that both
arguments do not become zero during program
execution, or are not inadvertently initialized or
modified to zero. Provide code to test for the sit

uation and, if necessary, modify the arguments
or bypass the source referencing the function
subprogram.

AFB266I SCNH : ARC = argument, GREATER
THAN OR EQUAL TO 175.366.

Explanation: In the subprogram AFBSCNH
(DSINH or PCOSH), the absolute value of the
argument is greater than or equal to 175.366.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action:

DCOSH{X) = -
DSINH(X) = ±

Programmer Response: Make sure that the
argument to the hyperbolic sine or cosine func
tion is within the allowable range. If the argu
ment may or will exceed that range during
program execution, then provide code to test for
the situation and, if necessary, modify the argu
ment or bypass the source referencing the func
tion subprogram.

AFB267I LASCN : ARC = argument, GREATER
THAN 1.

Explanation: In the subprogram AFBLASCN
(DASIN or DACOS), the absolute value of the
argument is greater than 1.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action:

Ifx > 1.0 DACOS(x) = 0;
If X < -1.0 DACOS{x) = pi;
Ifx > 1.0 DASIN{x) = pi/2;
If X < -1.0 DASIN(x) = -pi/2.

Programmer Response: Make sure that the
argument to the arcsine or arccosine function is
between -1 and +1, inclusive. If the argument
may or will fall outside that range during exe
cution, then provide code to test for the situation

and, if necessary, modify the argument or
bypass the source referencing the function sub
program.

AFB268I LTNCT : ARG = argument, (HEX =
hexadecimal), GREATER THAN OR
EQUAL TO PI*(2**50).

Explanation: In the subprogram AFBLTNCT
(DTAN or DCOTAN), the absolute value of the
argument is greater than or equal to 2**50*pi
(2**50*pi = .353 711 887 601 422 01D + 16).

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = 1.

Programmer Response: Make sure that the
argument (in radians, where 1 radian is equal to
57.295 779 513 1°) to the trigonometric tangent or
cotangent function is within the allowable range.
If the argument may or will exceed that range
during program execution, then provide code to
test for the situation and, if necessary, modify
the argument or bypass the source referencing
the function subprogram.

AFB269I LTNCT : ARG = argument, (HEX =
hexadecimal), APPROACHES
SINGULARITY.

Explanation: In the subprogram AFBLTNCT
(DTAN or DCOTAN), the argument value is too
close to one of the singularities (±pi/2, ±3pi/2,
... for the tangent; ± pi, ± 2pi, ... for the
cotangent).

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the
argument (in radians where 1 radian is equiv
alent to 57.295 779 513 1°0) to the trigonometric
tangent or cotangent function is within the allow
able range. If the argument may or will
approach the corresponding singularities for the
function during program execution, then provide
code to test for the situation and, if necessary,
modify the argument or bypass the source refer
encing the function subprrogram.

422 VS FORTRAN Version 2 Language and Library Reference

AFB270I FCQCQ ; COMPLEX*32 BASE =
(0.0,0.0), REAL PART OF
COMPLEX*32 EXPONENT = expo

nent, LESS THAN OR EQUAL TO 0.
AFB270I FCQXI : C0MPLEX*16 BASE =

(0.0,0.0), INTEGER EXPONENT =
exponent, LESS THAN OR EQUAL TO
0.

Explanation: For an exponentiation operation
{Z**P) where the COMPLEX*32 base Z equals 0,
either in the subprogram AFBFCQCQ (FCQCQ#)
the real part of the COMPLEX*32 exponent P, or
in the subprogram AFBFCQXI (FCQXI#) the
integer exponent P, is less than or equal to zero.

Supplemental Data Provided: The exponent
specified.

Standard Corrective Action:

If BASE = (0.0,0.0), exponent<0. RESULT= - + Oi:
If BASE = (0.0,0.0), exponent = 0, RESULT= 1+01.

Programmer Response: Make sure that both the
base and exponent for an exponentiation opera
tion are within the allowable range during
program execution. If the base and exponent
may or will fall outside the range during
program execution, then either modify the
operand(s), or insert source code to test for the
situation and make the appropriate compen
sation. Bypass the exponentiation operation if
necessary.

AFB271I CSEXP : REAL PART OF ARGUMENT

= argument GREATER THAN 174.673.

Explanation: In the subprogram AFBCSEXP
(CEXP), the value of the real part of the argu
ment is greater than 174.673.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result ='(COS X +
iSIN X), where X is the imaginary portion of the
argument.

Programmer Response: Make sure that the
argument to the exponential function is within
the allowable range. If the argument may or will
exceed that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB274I

AFB272I CSEXP : IMAGINARY PART OF
ARGUMENTI = |argument| GREATER
THAN OR EQUAL TO PI*(2**18).

Explanation: In the subprogram AFBCSEXP
(CEXP), the absolute value of the imaginary part
of the argument is greater than or equal to
2**18*pi (2**18*pi = .823 550E + 6).

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: If x is the real part
of the argument, then
Result = e'<+0*i, where e is the base of natural
logarithms.

Programmer Response: Make sure that the
argument to the exponential function is within
the allowable range. If the argument may or will
exceed that range during program execution,
then provide code to test for the situation, and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB273I CSLOG : ARGUMENT = (0.0,0.0).

Explanation: In the subprogram AFBCSLOG
(CLOG), the real and imaginary parts of the
argument are equal to zero.

Supplemental Data Provided: None.

Standard Corrective Action: Result = -» + 0i.

Programmer Response: Make sure that both the
real and imaginary parts of the argument do not
become zero during program execution, or are
not inadvertently initialized or modified to zero.
Provide code to test for the situation and, if nec

essary, modify the argument or bypass the
source referencing the function subprogram.

AFB274I CSSCN : |REAL PART OF ARGU
MENTI = jargumentj GREATER THAN
OR EQUAL TO Pl*(2**18).

Explanation: In the subprogram AFBCSSCN
(CSIN or CCDS), the absolute value of the real
part of the argument is greater than or equal to
2**18*pi (2**18*pi = .823 550E + 6).

Supplemental Data Provided: The argument
specified. The real part is set to zero and the
computations are redone.

Appendix D. Library Procedures and Messages 423

AFB274I

Standard Corrective Action: The real part is set
to zero and the computations are redone. If
argument is x + iy, then

COOS Result = COSH{y)+0*i:
CSIN Result=0 + SINH(y)*i

where y is the imaginary part of the original
argument.

Programmer Response: Make sure that the real
part of the argument (in radians, where 1 radian
is equivalent to 57.2958°) to the trigonometric
sine or cosine function is within the allowable

range. If the real part of the argument may or
will exceed the range during program execution,
then provide code to test for the situation and. if
necessary, modify the real part of the argument
or bypass the source referencing the function
subprogram.

AFB275I CSSCN : IIMAGINARY PART OF
ARGUMENTI = |argument| GREATER
THAN 174.673.

Explanation: In the subprogram AFBCSSCN
(CSIN or CCOS), the absolute value of the imagi
nary part of the argument is greater than
174.673.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: If imaginary part >
0 (X is real portion of argument);

For sine, result = -/2*(SIN X + iCOS X).
For cosine, result = »/2*{C0S X - iSIN X).

If imaginary part < 0 (X is real portion of argu
ment):

For sine, result = */2*{SIN X - iCOS X).
or cosine, result = */2*{C0S X + iSIN X).

Programmer Response: Make sure that the
imaginary part of the argument (in radians,
where 1 radian is equivalent to 57.2958°) to the
trigonometric sine or cosine function is within
the allowable range. If the imaginary part of the
argument may or will exceed that range during
program execution, then provide code to test for
the situation and, if necessary, modify the imagi

nary part of the argument or bypass the source
referencing the function subprogram.

AFB276I CQEXP : REAL PART OF ARGUMENT

= argument GREATER THAN 174.673.

Explanation: In the subprogram AFBCQEXP
(CQEXP), the value of the real part of the argu
ment is greater than 174.673.

Supplemental Data Provided:
specified.

The argument

Standard Corrective Action: Result = •(COS X +
iSIN X), where X is the imaginary portion of the
argument.

Programmer Response: Make sure that the real
part of the argument to the exponential function
is within the allowable range. If the real part of
the argument may or will exceed the range
during program execution, then provide code to
test for the situation, and, if necessary, modify
the real part of the argument or bypass the
source referencing the function subprogram.

AFB277I CQEXP : |IMAGINARY PART OF
ARGUMENTI = jargumentj GREATER
THAN Pl*(2**100).

Explanation: In the subprogram AFBCQEXP
(CQEXP), the absolute value of the imaginary
part of the argument is greater than 2**100*pi

(2**100*pi = .398 244 181 299 569 74D + 31)

Supplemental Data Provided:
specified.

The argument

Standard Corrective Action; If x is the real part
of the argument, then

Result = ex + 0*i, where e is the base of natural

logarithms.

Programmer Response; Make sure that the
imaginary part of the argument to the exponen
tial function is within the allowable range. If the
imaginary part of the argument may or will
exceed that range during program execution,
then provide code to test for the situation and, if
necessary, modify the imaginary part of the
argument or bypass the source referencing the
function subprogram.

424 VS FORTRAN Version 2 Language and Library Reference

AFB278I CQLOG : ARGUMENT = (0.0,0.0).

Explanation: In the subprogram AFBCQLOG
(CQLOG), the real and imaginary parts of the
argument are equal to 0.

Supplemental Data Provided: None.

Standard Corrective Action: Result=-• + 01.

Programmer Response: Make sure that both the
real and imaginary parts of the argument do not
become 0 during program execution, or are not
inadvertently initialized or modified to 0. Provide
code to test for the situation and, if necessary,
modify the argument or bypass the source refer
encing the function subprogram.

AFB279I CQSCN : |REAL PART OF ARGU-
MENTl = largumenti GREATER THAN
OR EQUAL TO 2**100.

Explanation: In the subprogram AFBCQSCN
(CQSIN or CQCOS), the absolute value of the
real part of the argument is greater than or
equal to 2'°°

Supplemental Data Provided:
specified.

The argument

Standard Corrective Action: If the argument is X
-f- iY, for CQSIN, result = 0 + DSINH(Y)*i and,
for CQCOS, result = DCOSH(Y)+ 0*i.

Programmer Response: Make sure that the real
part of the argument (in radians, where 1 radian
is equal to 57.295 779 513 1°) to the trigonometric
sine or cosine function is within the allowable

range. If the part of the argument may or will
exceed the range during program execution,
then provide code to test for the situation and, if
necessary, modify the real part of the argument
or bypass the source referencing the function
subprogram.

AFB280I CQSCN : |IMAGINARY PART OF
ARGUMENTI = |argument| GREATER
THAN 174.673.

Explanation: In the subprogram AFBCQSCN
(CQSIN or CQCOS), the absolute value of the
imaginary part of the argument is greater than

174.673.

Supplemental Data Provided: The argument
specified.

AFB282i

Standard Corrective Action: If imaginary part >
0 (X is real portion of argument):

For sine, result = */2*(SIN X + iCOS X).
For cosine, result = «/2*(C0S X - iSIN X).

If imaginary part <0, (X is real portion of argu
ment):

For sine, result = «/2*(SIN X - iCOS X).
For cosine, result = */2*(C0S X + iSIN X).

Programmer Response: Make sure that the
imaginary part of the argument (in radians,
where 1 radian is equal to 57.2957795131°) to the
trigonometric sine or cosine function is within
the allowable range. If the imaginary part of the
argument may or will exceed that range during
program execution, then provide code to test for
the situation and, if necessary, modify the imagi
nary part of the argument or bypass the source
referencing the function subprogram.

AFB281I CLEXP : REAL PART OF ARGUMENT

= argument GREATER THAN 174.673.

Explanation: In the subprogram AFBCLEXP
(CDEXP), the value of the real part of the argu
ment is greater than 174.673.

Supplemental Data Provided:
specified.

The argument

Standard Corrective Action: Result =-(COS X +
iSIN X), where X is the imaginary portion of the
argument.

Programmer Response: Make sure that the real
part of the argument to the exponential function
is within the allowable range. If the real part of
the argument may or will exceed that range
during program execution, then provide code to
test for the situation and, if necessary, modify
the real part of the argument or bypass the
source referencing the function subprogram.

AFB282I CLEXP : |IMAGINARY PART OF
ARGUMENTI = jargumentj GREATER
THAN OR EQUAL TO Pl*(2**50).

Explanation: In the subprogram AFBCLEXP
(CDEXP), the absolute value of the imaginary
part of the argument is greater than or equal to
2**50*pi (2**50*pi =0.353 711 887 601 422
01D + 16).

Supplemental Data Provided: The argument
specified.

Appendix D. Library Procedures and Messages 425

AFB282I

Standard Corrective Action: If X is the real part
of the X argument, then Result = e+0*i, where e
is the base of natural logarithms.

Programmer Response: Make sure that the
imaginary part of the argument to the exponen
tial function is within the allowable range. If the
imaginary part of the argument may or will
exceed that range during program execution,
then provide code to test for the situation, and, if
necessary, modify the imaginary part of the
argument or bypass the source referencing the
function subprogram.

AFB283t CLLOG : ARGUMENT = (0.0,0.0).

Explanation: In the subprogram AFBCLLOG
(CDLOG), the real and imaginary parts of the
argument are equal to 0.

Supplemental Data Provided: None.

Standard Corrective Action: Result = -* + 0i.

Programmer Response: Make sure that both the
real and imaginary parts of the argument do not
become 0 during program execution, or are not
inadvertently initialized or modified to 0. Provide
code to test for the situation and, if necessary,
modify the argument or bypass the source refer
encing the function subprogram.

AFB284I CLSCN : |REAL PART OF ARGU-
MENTI = largumenti GREATER THAN
OR EQUAL TO PI *(2**50).

Explanation: In the subprogram AFBCLSCN
(CDSIN or CDCOS), the absolute value of the

real part of the argument is greater than or
equal to 2**50*pi (2**50*pi = 0.353 711 887 601
422 010 + 16).

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: If the argument is X
+ iY, for CDSIN, the result = 0 + DSINH{Y) +i;
for CDCOS, the result = DCOSH(Y)+0*i.

Programmer Response: Make sure that the real

part of the argument (in radians, where 1 radian
is equal to 57.295 779 513 1°) to the trigonometric
sine or cosine function is within the allowable

range. If the part of the argument may or will
exceed the range during program execution,
then provide code to test for the situation, and, if
necessary, modify the real part of the argument

or bypass the source referencing the function
subprogram.

AFB285I CLSCN : IMAGINARY PART OF
ARGUMENTI = |argument| GREATER
THAN 174.673.

Explanation: In the subprogram AFBCLSCN
(CDSIN or CDCOS), the absolute value of the
imaginary part of the argument is greater than
174.673.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: If imaginary part
>0, (X is real portion of argument):

For sine, result = -/2*(SIN X + iCOS X).
For cosine, result = */2*(C0S X - iSIN X).

If imaginary part <0, (X is real portion of argu
ment):

For sine, result = «/2*(SIN X - iCOS X).
For cosine, result = »/2*(C0S X + iSIN X).

Programmer Response: Make sure that the
imaginary part of the argument (in radians,
where 1 radian is equal to 57.295 779 513 1°) to
the trigonometric sine or cosine function is
within the allowable range. If the imaginary part
of the argument may or will exceed that range
during program execution, then provide code to
test for the situation and, if necessary, modify
the imaginary part of the argument or bypass
the source referencing the function subprogram.

AFB286I VSIOS | VASYP : ATTEMPT TO ISSUE
SYNCHRONOUS AND ASYNCHRO

NOUS I/O REQUESTS WITHOUT AN

INTERVENING REWIND, FILE fffffff.

Explanation; A file that has been using one
mode of I/O operations (that is, either synchro

nous or asynchronous) must be rewound before
changing modes. An attempt was made to
change the mode without rewinding the file.

Supplemental Data Provided: The name of the
file (ffffffO.

Standard Corrective Action: The I/O request is
ignored, and execution continues.

Programmer Response: Insert a REWIND state
ment at an appropriate point in the program.

426 VS FORTRAN Version 2 Language and Library Reference

AFB287I VASYP : A WAIT ISSUED WITH NO

OUTSTANDING I/O REQUEST, FILE

fffffff.

Explanation: A WAIT statement was Issued with
no corresponding READ or WRITE request.

Supplemental Data Provided: The name of the

file (ffffffO.

Standard Corrective Action: The WAIT statement

is ignored, and execution continues.

Programmer Response: Remove the WAIT state
ment, or include a corresponding READ or

WRITE statement.

AFB288I VASYP : NO WAIT ISSUED FOR AN

OUTSTANDING I/O REQUEST FILE

fffffff.

Explanation: No WAIT statement was issued for
an outstanding READ or WRITE request.

Supplemental Data Provided: The name of the

file {ffffffO-

Standard Corrective Action: Execution continues

with an implied WAIT.

Programmer Response: Include the WAIT state
ment, or remove the READ or WRITE statement.

AFB289I QSQRT : NEGATIVE ARGUMENT =

argument.

Explanation: In the subprogram AFBQSQRT
{QSQRT#), the argument is less than zero.

Supplemental Data Provided:
specified.

The argument

Standard Corrective Action: Result = jxjV^

Programmer Response: Make sure that the
argument is within the allowable range. Either
modify the argument, or insert source code to

test for a negative argument and make the nec
essary compensation. Bypass the function refer
ence if necessary.

AFB290I SGAMA : ARG = argument, (HEX =
hexadecimal), LESS THAN OR EQUAL
TO 2**-252 OR GREATER THAN OR

EQUAL TO 57.5744.

Explanation: In the subprogram AFBSGAMA

(GAMMA), the value of the argument is outside
the valid range (2**-252 < x < 57.5744).

AFB292I

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the
argument to the gamma function is within the
allowable range. If the argument may or will be
outside that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB291I SGAMA : ARG = argument, (HEX =
hexadecimal), LESS THAN OR EQUAL
TO ZERO OR GREATER THAN OR

EQUAL TO 4.2937*10**73.

Explanation: In the subprogram AFBSGAMA
(ALGAMA), the value of the argument is outside
the valid range (0 < < 4.2937x10**73).

Supplemental Data Provided: The argument

specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the
argument to the ALGAMA function is within the
allowable range. If the argument may or will be
outside that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB292I FQXPR : ARG = argument, GREATER
THAN 174.673.

Explanation: In the subprogram AFBFQXPR
(QEXP), the argument is greater than 174.673.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the
argument to the exponential function is within
the allowable range. If the argument may or will
exceed that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

Appendix D. Library Procedures and Messages 427

AFB293I

AFB293I QLOG : ARG = argument, LESS
THAN OR EQUAL TO ZERO.

Explanation: In the subprogram AFBQLOG
(QLOG and QLOG10), the argument is less than
or equal to 0. Because the subprogram is called
by an exponential subprogram, this message
may also indicate that an attempt has been
made to raise a negative base to a real power.

Supplemental Data Provided: The argument
specified. Standard Corrective Action:

lfX = 0, result=-*: ifX<0.

result = log|X| or log^olXI.

Programmer Response: Make sure that the
argument to the logarithm function is within the
allowable range. If the argument may or will be
outside that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB294I QSCN : ARG = argument, GREATER
THAN OR EQUAL TO 2**100.

Explanation: In the subprogram AFBQSCN (QSIN
and QCOS), the absolute value of the argument
is greater than or equal to 2'°°.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = SQRT{2)/2.

Programmer Response: Make sure that the
argument (in radians, where 1 radian is equal to
57.295 779 513 1°) to the trigonometric sine or
cosine function is within the allowable range. If
the argument may or will exceed that range
during program execution, then provide code to
test for the situation and, if necessary, modify
the argument or bypass the source referencing
the function subprogram.

AFB295I QATN2 : ARGUMENTS = 0.0.

Explanation: In subprogram AFBQATN2, when
entry name QATAN2 is used, both arguments
are equal to zero.

Supplemental Data Provided: None.

Standard Corrective Action: Result = 0.

Programmer Response: Make sure that both
arguments do not become zero during program
execution, or are not inadvertently initialized or
modified to zero. Provide code to test for the sit

uation and, if necessary, modify the arguments
or bypass the source referencing the function
subprogram.

AFB296I QSCNH : ARG = argument, GREATER
THAN 175.366.

Explanation: In the subprogram AFBQSCNH
(QSINH or QCOSH), the absolute value of the
argument is greater than (or equal to) 175.366.

Supplemental Data Provided:
specified.

The argument

Standard Corrective Action: QSINH(X) = ± •;
QCOSH(X) = -.

Programmer Response: Make sure that the
argument to the hyperbolic sine or cosine func
tion is within the allowable range. If the argu
ment may or will exceed that range during
program execution, then provide code to test for
the situation and, if necessary, modify the argu
ment or bypass the source referencing the func
tion subprogram.

AFB297I QASCN : ARG = argument, GREATER
THAN 1.

Explanation: In the subprogram AFBQASCN
(QARSIN or QARCOS), the absolute value of the
argument is greater than 1.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action:

IfX < 1.0 QARCOS(X) = 0;
If X < -1.0 QARCOS(X) = pi;
lfX> 1.0 QARSIN(X) = pi/2;
IfX < -1.0 QARSIN(X) = -pi/2.

Programmer Response: Make sure that the
argument to the arcsine or arccosine function is
between -1 and +1, inclusive. If the argument
may or will fall outside that range during
program execution, then provide code to test for
the situation and, if necessary, modify the argu
ment or bypass the source referencing the func
tion subprogram.

428 VS FORTRAN Version 2 Language and Library Reference

AFB298I QTNCT : ARG = argument, GREATER
THAN OR EQUAL TO 2**100.

Explanation: In the subprogram AFBQTNCT
(QTAN or QCOTAN), the absolute value of the
argument is greater than or equal to 2**100.

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = 1.

Programmer Response: Make sure that the
argument (in radians, where 1 radian is equal to
57.295 779 513 1°) to the trigonometric tangent or
cotangent function is within the allowable range.
If the argument may or will exceed that range
during program execution, then provide code to
test for the situation and, if necessary, modify
the argument or bypass the source referencing
the function subprogram.

AFB299I QTNCT : ARG = argument,
APPROACHES SINGULARITY.

Explanation: In the subprogram AFBQTNCT
(QTAN or QCOTAN), the argument value is too
close to one of the singularities (±pi/2, ±3pi/2,
for the tangent: ±pi. ±2pi, for the cotangent).

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the
argument (in radians, where 1 radian is equiv
alent to 57.295 779 513 1°) to the trigonometric
tangent or cotangent function is within the allow
able range. If the argument may or will
approach the corresponding singularities for the
function during program execution, then provide
code to test for the situation and, if necessary,
modify the argument or bypass the source refer
encing the function subprogram.

AFB300I LGAMA : ARG = argument, (HEX =
hexadecimal), LESS THAN OR EQUAL
TO 2* *-252 OR GREATER THAN OR

EQUAL TO 57.5744.

Explanation: In the subprogram AFBLGAMA
(DGAMMA), the value of the argument is outside
the valid range (2**-252 < x < 57.5744).

AFB900I

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the
argument to the DGAMMA function is within the
allowable range. If the argument may or will be
outside the range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the
source referencing the function subprogram.

AFB301I LGAMA : ARG = argument, (HEX =
hexadecimal), LESS THAN OR EQUAL
TO 0 OR GREATER THAN OR EQUAL

TO 4.2937*10**73.

Explanation: In the subprogram AFBLGAMA
(DLGAMA), the value of the argument is outside
the valid range (0 < x < 4.2937x10**73).

Supplemental Data Provided: The argument
specified.

Standard Corrective Action: Result = •.

Programmer Response: Make sure that the
argument to the DLGAMA function is within the
allowable range. If the argument may or will be
outside that range during program execution,
then provide code to test for the situation and, if
necessary, modify the argument or bypass the

source referencing the function subprogram.

AFB900I VEMGN : EXECUTION TERMINATING

DUE TO ERROR COUNT FOR ERROR

NUMBER nnnn.

Explanation: This error has occurred frequently
enough to reach the count specified as the
number at which execution should be termi

nated.

Supplemental Data Provided: The error number.

Standard Corrective Action: No corrective action

is implemented.

System Action: The job step is terminated with
a completion code of 16.

Programmer Response: Make sure that occur
rences of the error number indicated are elimi

nated.

Appendix D. Library Procedures and Messages 429

AFB901I

AFBS01I VEMGN : EXECUTION TERMINATING

DUE TO SECONDARY ENTRY TO

ERROR MONITOR FOR ERROR

NUMBER nnnn WHILE PROCESSING

ERROR NUMBER nnnn.

Explanation: In a user's corrective action
routine, an error has occurred that has called
the error monitor before it has returned from

processing a previously diagnosed error.

Supplemental Data Provided: The error
numbers.

Standard Corrective Action: No corrective action

is attempted.

System Action: The job step is terminated with
a completion code of 16.

Note: If a traceback follows this message, it may
be unreliable.

Programmer Response: Make sure that the
error monitor is not called prior to processing
the diagnosed error.

Example: A statement such as R = A**B (where
A and B are REAL*4) cannot be used in the exit
routine for error 252, because FRXPR# uses EXP,
which detects error 252.

For information on the error-handling subrou
tines, refer to Chapter 9, "Extended Error-
Handling Subroutines and Error Option Table"
on page 315.

AFB902I VEMGN : ERROR NUMBER nnnn

DOES NOT FALL WITHIN THE RANGE

OF A KNOWN ERROR OPTION

TABLE.

Explanation: A call to an internal VS FORTRAN
Version 2 library routine from an auxiliary
product resulted in a search that failed to find an
error option table containing the error number.

Supplemental Data Provided: The error number
(nnnn).

System Action: The request is ignored, and exe
cution continues.

Programmer Response:

If the number falls within the range of valid VS
FORTRAN Version 2 error numbers (112 through
999), the internal library call resulted in a search
that failed to find an error option table containing
the error number. Refer the problem to the

people at your installation who give system
support for VS FORTRAN Version 2.

If the number falls within the range of an auxil
iary product, make sure your product has been
initialized. Refer to the documentation for the

auxiliary product for information about initializing
it.

If the number falls within the range of an auxil
iary product and the auxiliary product has been
initialized, refer the problem to the people at
your installation who give support for the auxil
iary product.

For other numbers, refer the problem to the
people at your installation who give system
support for VS FORTRAN Version 2.

AFB904I name : ATTEMPT TO DO I/O DURING

FIXUP ROUTINE FOR AN I/O TYPE

ERROR, OR FROM A FUNCTION REF
ERENCE IN AN I/O STATEMENT, FILE

fffffff.

Explanation: The user may not issue another I/O
statement or call a routine that issues an I/O

statement, when attempting to correct an I/O
error or from a function referenced in an I/O

statement. A reference to a function is not

allowed in the list of an I/O statement.

For information on the error-handling subrou

tines, refer to Chapter 9, "Extended Error-
Handling Subroutines and Error Option Table"
on page 315.

Supplemental Data Provided: The last 5 charac
ters in the name of the module that issued the

message: VSCOM, IBCOM, VIOFP, VIOCP,
VIOUP, or VC0M2. The name of the file (fffffff).

System Action: The job step is terminated with
a completion code of 16.

Programmer Response: Make sure that, if an I/O
error is detected, the user exit routine does not
attempt to execute any FORTRAN I/O statement.

AFB905I VCOM2 : SECONDARY ENTRY INTO

MAIN ROUTINE, EXECUTION TERMI

NATED. "IDENTIFY" GAVE RETURN

CODE rr.

Explanation: A user program tried to initialize
the VS FORTRAN run-time environment a second

time. No program can call a FORTRAN main
program or issue an unconditional request to ini-

430 VS FORTRAN Version 2 Language and Library Reference

tialize the VS FORTRAN run-time environment if

there is a run-time environment already active.

Supplemental Data Provided: The last line of the

message, which contains a return code (rr), is
provided only if this condition was detected
during execution of the IDENTIFY macro instruc
tion in MVS. The return code is obtained when

the MVS IDENTIFY macro instruction is used to

identify the entry name #VSFTASK, the task list,
to the system.

System Action: The job step is terminated with
a completion code of 16.

Programmer Response: Make sure that no
routine attempts to reenter the main FORTRAN
program.

AFB906I VEMGN : ERROR NUMBER nnn, LINE
NO. II, REQUESTED BY MODULE mod-

name HAS NO MESSAGE SKELETON.

Explanation: The text for line II of error message
number nnn could not be found in the message
skeleton, which is supposed to contain all such
text.

Supplemental Data Provided: The error number
(nnn), the line number (II) of the message, and
the name (mod-name) of the library module that
tried to print the message.

Standard Corrective Action: The message is not
printed, but execution continues.

Programmer Response: Refer the problem to
the people at your installation who give system
support for VS FORTRAN Version 2.

AFB915I CLCIO : MODULE AFBVNREN NOT

FOUND. A "GLOBAL LOADLIB" IS

NEEDED.

AFB915I VLCIO : MODULE AFBVLBCM NOT

FOUND. A "STEPLIB" OR "FORTIB"

IS NEEDED.

AFB915I CLCIO : ABEND nnn LOADING

AFBVNREN.

AFB915I VLCIO : ABEND nnn-rr LOADING

AFBVLBCM.

Explanation: The load module AFBVLBCM
(under MVS) or AFBVNREN (under CMS), which

AFB916I

is needed to begin running in load mode, could
not be loaded. For the first two forms of the

message, either the statement identifying the
run-time library in which the module resides was

not supplied, or else the module is missing from
the library. For the last two forms of the

message, the condition indicated by the abend
code prevented to module from being loaded.

Supplemental Data Provided: The abend code
(nnn) from the VM or MVS system, and for MVS.
the reason code (rr) associated with the abend
code.

Standard Corrective Action: The program is
abnormally terminated.

Programmer Response: For the first two forms
of the message, make the run-time library avail
able by supplying one of the following:

Under VM, a CMS GLOBAL LOADLIB

command

Under MVS. a DD statement with a ddname

of JOBLIB, STEPLIB, or FORTLIB

Under TSO, an ALLOCATE command with a

ddname of FORTLIB

For the last tow forms of the message, correct
the problem (such as insufficient region size)
indicated by the abend. If the problem reoccurs,
see the system programmer at your installation
who give system support for VS FORTRAN
Version 2.

AFB916I VPARM : THE AUTOTASK KEYWORD

IS NOT VALID ON THIS SYSTEM.

Explanation: The AUTOTASK keyword was spec
ified as an run-time parameter. This keyword
requests initiaiization of the multitasking facility.
The multitasking facility is only supported on
MVS or MVS/XA systems, but it was requested
when running under VM.

Supplemental Data Provided: None.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Remove the AUTOTASK
keyword as an run-time parameter or run the
application program on an MVS or MVS/XA
system.

Appendix D. Library Procedures and Messages 431

AFB917I

AFB917I VMPRM : THE AUTOTASK KEYWORD

SUBPARAMETER STRING IS

MISSING.

AFB917I VMPRM | VPARM : THE AUTOTASK
KEYWORD SUBPARAMETER STRING

IS INVALID.

Explanation: The subparameters of the
AUTOTASK keyword in the PARM parameter of
the EXEC statement were either missing or in an
incorrect format.

Supplemental Data Provided: None.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Correct the subparame
ters for the AUTOTASK keyword and rerun the
job. The required format for the AUTOTASK
keyword is:

AUTOTASK(stlmod,nn)

where stimod is the name of the MVS load

module that contains the application program's
parallel subroutines and nn is the number of
subtasks to be created, stimod must be a valid

MVS load module contained in the load library

specified by the AUTOTASK DO statement, nn
must be a decimal number between 1 and 99.

No blanks are allowed in the subparameter
string.

AFB918I VMMAA : THE AUTOTASK DD STATE

MENT IS MISSING OR INVALID.

AFB918I VMMAA : THE AUTOTASK DD STATE
MENT DOES NOT SPECIFY A VALID

LOAD LIBRARY.

Explanation: The multitasking facility (MTF)
detected either a missing AUTOTASK DD state
ment, or a reference to other than a load library.

Supplemental Data Provided: None.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Provide an AUTOTASK
DD statement that refers to a data set containing
the parallel subroutines load module. This is the
load module whose name is given in the
AUTOTASK subparameter of the PARM param
eter.

AFB919I VMMAA : THE PARALLEL SUBROU

TINE LOAD MODULE 'nnnnnnnn'

REQUESTED IN THE AUTOTASK
KEYWORD DOES NOT EXIST IN THE

LOAD LIBRARY SPECIFIED BY THE

AUTOTASK DD STATEMENT.

AFB919I VMMAA : THE PARALLEL SUBROU

TINE LOAD MODULE 'nnnnnnnn'

REQUESTED IN THE AUTOTASK
KEYWORD IS NOT A VALID LOAD

MODULE.

AFB919I VMMAA : THE PARALLEL SUBROU

TINE LOAD MODULE 'nnnnnnnn'

REQUESTED IN THE AUTOTASK
KEYWORD IS MARKED

NOT-EDITABLE. PARALLEL SUB

ROUTINES CANNOT BE LOCATED.

AFB919I VMMAA : THE PARALLEL SUBROU

TINE LOAD MODULE 'nnnnnnnn'

REQUESTED IN THE AUTOTASK
KEYWORD DOES NOT CONTAIN

LIBRARY MODULE VFEIS#.

AFB919I VMMAA : THE PARALLEL SUBROU

TINE LOAD MODULE 'nnnnnnnn'

REQUESTED IN THE AUTOTASK
KEYWORD DOES NOT HAVE

LIBRARY MODULE VFEIS# AS THE
ENTRY POINT.

AFB919I VMINI : THE PARALLEL SUBROUTINE

LOAD MODULE 'nnnnnnnn'

REQUESTED IN THE AUTOTASK
KEYWORD DOES NOT HAVE THE

SAME LINK/LOAD MODE AS THE

MAIN TASK PROGRAM LOAD

MODULE.

Explanation: The load module, whose name is
given in the AUTOTASK subparameter and
which is referred to by the AUTOTASK DD state
ment, was not available in the proper format for
use as a parallel subroutine load module.

Supplemental Data Provided: nnnnnnnn is the
load module name specified with the AUTOTASK
keyword.

Standard Corrective Action: Execution termi

nates with a return code of 16.

•Programmer Response: Be sure that the
AUTOTASK DD statement' refers to a load library
that contains your parallel subroutine load
module. In addition, for the following formats of
the message:

432 VS FORTRAN Version 2 Language and Library Reference

Format 1—The load module could not be found In

the data set. Provide the correct load module

name in your AUTOTASK subparameter.

Format 2—Link-edit your parallel subroutines as
a load module in the data set referred to by the
AUTOTASK DD statement.

Format 3—Link-edit your parallel subroutines, but
do not specify the linkage editor attribute NE.

Format 4—Link-edit your parallel subroutines and
include the library routine VFEIS# in the load
module.

Format 5—Be sure that you do not have a
FORTRAN main program or any other program
that overrides the entry point name VFEIS#.
Link-edit your parallel subroutines and be sure
that you include the library routine VFEIS# in the
load module. Also, be sure that VFEIS# is the
entry point of the parallel subroutine load
module.

Format 6—Link-edit either your main task
program load module or your parallel subroutine
load module so that both execute in link mode,
or both execute in load mode.

AFB920I VMEXP | VMSYP I VMNTP : CALL TO
MULTITASKING FACILITY FUNCTION

ffffff INVALID. THIS FUNCTION WAS

CALLED FROM A PARALLEL SUB

ROUTINE.

AFB920I VMEXP | VMNTP : CALL TO MULTI
TASKING FACILITY FUNCTION ffffff

INVALID. THIS FUNCTION WAS

CALLED WITHOUT ARGUMENTS.

AFB920I VMEXP : CALL TO MULTITASKING

FACILITY FUNCTION ffffff INVALID.

THIS FUNCTION WAS CALLED WHEN

THE MULTITASKING FACILITY WAS

NOT ACTIVE.

AFB920I VMEXP : CALL TO MULTITASKING

FACILITY FUNCTION ffffff INVALID.

THE MULTITASKING FACILITY IS

NOT SUPPORTED ON THIS SYSTEM.

Explanation: A call to one of the multitasking
facility functions was invalid for the reason
given.

Supplemental Data Provided:
SYNCRO or NTASKS.

ffffff is DSPTCH or

Standard Corrective Action; Execution termi

nates with a return code of 16.

AFB922I

Programmer Response: Refer to the appropriate
format of the message, described below:

Format 1—Change the logic of your parallel sub
routine so it does not call DSPTCH, SYNCRO, or
NTASKS.

Format 2—Provide the proper arguments for
DSPTCH or NTASKS.

Format 3—Specify the AUTOTASK keyword in the
PARM parameter of your EXEC statement, which
invokes your program.

Format 4—Run your MTF application on an MVS
or MVS/XA system.

AFB921I VMEXP : THE PARALLEL SUBROU

TINE LOAD MODULE DOES NOT

CONTAIN THE PARALLEL SUBROU

TINE nnnnnn.

Explanation: The parallel subroutine that you
requested in your DSPTCH call was not in your
parallel subroutine load module.

Supplemental Data Provided: nnnnnn is the
name of the parallel subroutine requested.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response; Verify and correct the
following items as necessary:

That the AUTOTASK DD statement specifies
the correct load library.

That the AUTOTASK keyword in the PARM
field specifies the correct load module.

That the correct parallel subroutine was
requested in the call to DSPTCH.

That the requested parallel subroutine was
included when the parallel subroutine load
module was link-edited.

That the subroutine name was more than

eight characters long.

AFB922I VMTRM : MULTITASKING FACILITY

SUBTASK NO. xx FAILED DURING

INITIALIZATION.

AFB922I VMTRM : MULTITASKING FACILITY

SUBTASK NO. xx FAILED DURING

EXECUTION OF PARALLEL SUBROU-

TINE nnnnnnnn.

AFB922I VMTRM : MULTITASKING FACILITY

Appendix D. Library Procedures and Messages 433

AFB922I

SUBTASK NO. xx ENDED DUE TO

STOP STATEMENT OR A CALL TO

EXIT DURING EXECUTION OF PAR

ALLEL SUBROUTINE nnnnnn.

Explanation: The multitasking facility subtask
number xx failed or ended as indicated by the
message. Information about the failure can be
found in the file specified by the FTERROxx DD
statement.

Supplemental Data Provided: xx is the subtask
number and nnnnnnnn is the name of the par

allel subroutine.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Look in the file speci
fied by the FTERROxx DD statement to determine
the cause of failure. Take corrective action as

required.

AFB923I name : ssssssss STATEMENT WAS

EXECUTED FROM A PARALLEL SUB

ROUTINE FOR AN UNNAMED FILE ON

UNIT nn. I/O IN A PARALLEL SUB

ROUTINE IS RESTRICTED TO NAMED

FILES OR TO SEQUENTIAL OUTPUT

ON THE ERROR MESSAGE OR PRINT

UNIT.

Explanation: The I/O statement in a parallel sub
routine was executed for an unnamed file which

was not the error message or print unit.

Supplemental Data Provided:

name VDIGS, VKIGS, or VSIGS

ssssssss BACKSPACE, REWIND, ENDFILE,
DELETE, READ, OPEN, CLOSE, I/O,
DRIECT I/O, KEYED ACCESS I/O, or

INQUIRE

nn device unit number

Standard Corrective Action: Processing termi
nates with a return code of 16

Programmer Response: Provide the name of the
file with a FILE specifier on the OPEN statement.

AFB924I VMMAA : ATTACH OF MULTI

TASKING FACILITY SUBTASK

FAILED. RETURN CODE = dd.

Explanation: The MVS ATTACH macro failed
while initializing the multitasking facility.

Supplemental Data Provided: dd is the return
code from the MVS ATTACH macro.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Report the problem to
the people at your installation who give system
support for VS FORTRAN Version 2. Supply the
return code and a dump of the program if pos
sible.

AFB925I VMMAA : BLDL FOR MULTITASKING

FACILITY SUBTASK LOAD MODULE

FAILED, RETURN CODE = rtc,
REASON CODE = rsc.

Explanation: The MVS BLDL macro used during
initialization of the multitasking facility failed. If
the return code is 8 and the reason code is 0, a

permanent I/O error was detected when the
system attempted to search the directory. If the
return code is 8 and the reason code is 4, insuffi

cient virtual storage was available.

Supplemental Data Provided: rtc and rsc are
respectively the return code and reason code
returned by the MVS BLDL macro.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: If BLDL failed because
of to a permanent I/O error, report the problem
to the people at your installation who give
system support. If BLDL failed because of insuffi
cient virtual storage, specify a larger region for
your job.

AFB926I VAMTP : ERROR NUMBER nnnnn IN

ERROR OPTION TABLE XXXUOPT IS

IN THE RANGE OF ERROR OPTION

TABLE yyyuoPT.

Explanation: An attempt to chain the error
option table of an auxiliary product with the
component ID "XXX" has failed. The error
option table, XXXUOPT, defines a range of error
numbers for table yyyUOPT already in the

434 VS FORTRAN Version 2 Language and Library Reference

chain. The conflict begins at error message
number nnnnn.

Supplemental Data Provided: The error message
number (nnnnn), and the names of the con
flicting tables (XXXUOPT and y/YUOPT).

System Action: The request is ignored, and exe
cution continues.

Programmer Response: Refer the problem to
the people at your installation who give system
support for VS FORTRAN Version 2 or the auxil
iary products used by your program.

AFB927I VMEXP : THE MAIN TASK PROGRAM

AND THE PARALLEL SUBROUTINE

LOAD MODULE HAVE INCOMPAT

IBLE ADDRESSING MODES.

Explanation: Your main task program was oper
ating in 31-bit addressing mode when it called
DSPTCH to schedule a parallel subroutine, but
the parallel subroutine load module indicates
24-bit addressing mode.

Supplemental Data Provided: None.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Correct the addressing
mode of either the program unit in the main task
program or the parallel subroutine load module
so they are compatible.

AFB928I VMINI : THE MAIN TASK PROGRAM

LOAD MODULE AND THE PARALLEL

SUBROUTINE LOAD MODULE ARE

NOT OPERATING WITH THE SAME

LEVEL OF THE VS FORTRAN

LIBRARY.

Explanation: The load module for the main task
and the load module for the parallel subroutines
have been link-edited with different release

levels of the VS FORTRAN library.

Supplemental Data Provided: None.

Standard Corrective Action: Execution termi

nates with a return code of 16.

Programmer Response: Re-link either the main
task or the parallel subroutine load modules, or
both, so they both use the same release level of

the library.

AFB931I

AFB929I VLCIO : INITIALIZATION WAS NOT

DONE IN THIS TASK. TCB AT

xxxxxxxx.

Explanation: The address of the TCB for the exe
cuting task could not be found in the list of TCBs
for which initialization has been performed. This
initialization occurs in a main task by executing
a FORTRAN main program or in a parallel sub
routine created by the multitasking facility. You
invoke this facility by specifying the run-time
parameter AUTOTASK. Unless the multitasking
facility is used, VS FORTRAN Version 2 does not
support execution of FORTRAN programs in
tasks other than the one in which the main

program runs.

Supplemental Data Provided: xxxxxxxx is the
address of the TCB.

Standard Corrective Action: Execution is termi

nated with an user abend code of U929.

Programmer Response: Change the program to
run as a single task, or create parallel subrou
tines and use the multitasking facility.

AFB930I VMTRM : PROGRAM TERMINATED

WHILE MULTITASKING FACILITY

SUBTASK NO. dd WAS ACTIVE EXE

CUTING PARALLEL SUBROUTINE

nnnnnn.

Explanation: The main task program terminated
while the parallel subroutine nnnnnn was exe
cuting in the MTF subtask dd.

Supplemental Data Provided: dd is the subtask
number; nnnnnn is the name of the parallel sub
routine active under subtask dd.

Standard Corrective Action: None.

Programmer Response: Determine the reason
why the main task program terminated. If this
program terminated prior to its normal com
pletion, correct the cause of the termination. If
the program terminated normally, add a final call
to SYNCRO to ensure that all parallel subrou
tines have completed execution prior to termi
nation of the program.

AFB931I VMEXP | VMTRM : MULTITASKING
FACILITY INTERNAL ERROR CONDI

TION dd.

Explanation: The multitasking facility has
detected an internal error condition.

Appendix D. Library Procedures and Messages 435

AFB931I

Supplemental Data Provided: dd is the code for
the error condition detected.

Standard Corrective Action; Execution termi

nates with a return code of 16.

Programmer Response: Report the problem to
the people at your installation who give system
support for VS FORTRAN Version 2. Supply the
error code and a dump of the program if pos
sible.

AFB932I VLCIO : ABEND nnn-rr LOADING

#VSFTASK. NO LIBRARY INITIALIZA
TION WAS DONE.

Explanation: The entry name #VSFTASK, an
internally-identified name that is needed to con

tinue execution in load mode, could not be

located. This indicates that successful initializa

tion of the run-time environment did not occur

before an attempt was made to use some library
function.

Supplemental Data Provided: The abend code
{nnn) and the reason code {rr) from the MVS
system in response to a LOAD macro instruction
that requested the entry name #VSFTASK.

Standard Corrective Action: Execution is termi

nated with system abend code nnn.

Programmer Response: If your main program is
not a FORTRAN program, change the logic of
your program to call the VS FORTRAN Version 2
Library initialization routine VFEIN# once before
you call any FORTRAN subroutines. (A
FORTRAN main program, when executed, auto
matically causes initialization of the run-time
environment. No subsequent call to VFEIN# is
permitted in this case.)

AFB933I VSPIP : VECTOR COMMON AREA

ADDRESS IS ZERO. LINKEDIT HAS

FAILED.

Explanation: The supplemental copy of the
address of the vector common area is zero.

Because the vector common area is needed for

proper processing, the program is terminated.

Standard Corrective Action: The user program

is terminated.

Programmer Response:

On MVS—Review the link-edit listing and supply
access to the necessary library. If you are using

the loader, supply access to the necessary
library.

On VM-Use the GLOBAL TXTLIB or FILEDEF

statement to access the necessary library.

When you are finished rebuilding the load
module, rerun the program.

AFB934I VSPIP : SECTION SIZE PASSED DOES

NOT MATCH THE SYSTEM VALUE.

Explanation: The compiler-generated section
size did not match the section-size value

obtained from the operating system. The values
must match for proper functioning on the hard
ware.

Standard Corrective Action:

is terminated.

The user program

Programmer Response: Determine the correct
value of the section size, and pass this value to
the compiler, or use the default compilation
option for any section size.

AFB935I VSPIP : SPILL AREA CHAIN TERMI

NATED BEFORE ALL AREAS WERE

ASSIGNED. USER PROGRAM HAS

DAMAGED THE CHAIN POINTER.

Explanation: The routine to obtain compiler-
required spill areas has determined that it has to
provide more spill areas than it has in its list.
This can only happen when the chain pointer
connecting the spill areas has been damaged.
This damage only occurs if storage has been
inadvertently modified by the user program.

Standard Corrective Action: The user program

is terminated.

Programmer Response: The most likely reason
for this problem is the generation of an invalid
array index. Review the source code for pos
sible bad array indexes. The bad array index
will lead to storing of data in the wrong place
when the assignment is done. ^

AFB936I CSTIO : FILEDEF FOR FTnnFOOl

FAILED, EXECUTION TERMINATED.
AFB936I VSTIO : FILE ALLOCATION FOR ffffffff

FAILED, ERROR CODE xxxx, INFOR
MATION CODE yyyy. EXECUTION
TERMINATED.

AFB936I VSTIO : FILE DEALLOCATION FOR

ffffffff FAILED, ERROR CODE xxxx.

436 VS FORTRAN Version 2 Language and Library Reference

INFORMATION CODE yyyy. EXE
CUTION TERMINATED.

Explanation:

For format 1 of this message, a FILEDEF issued
internally by VS FORTRAN to define the indi
cated standard I/O unit failed.

For format 2 of this message, the allocation for
the standard error message and print unit failed.
These units are allocated to a terminal if running
under TSO, and to SYSOUT = A if running in
batch. Refer to MVS/XA Programming Library:
System Macros and Facilities, Volume 1,

GC28-1150, or to 0S/VS2 MVS System Program
ming Library: Job Management, GC28-1303, for
more information on the error and information

codes.

For format 3 of this message, the deallocation
for the standard error message and print unit
failed. Refer to MVS/XA Programming Library:
System Macros and Facilities, Volume 1,
GC28-1150, for more information on the error

and information codes. If the information code

yyyy is 0, the text 'INFORMATION CODE yyyy'
will not be printed.

Supplemental Data Provided:

nn external unit identifier

ffffffff ddname for the standard error

message and print units (for example,
FT06F001, FTERRnnn, FTPRTnnn)

xxxx system error code returned by the
allocation routine

yyyy information code returned by the allo
cation routine

Standard Corrective Action:

nated.

Execution is termi-

AFB937I

Programmer Response: Report the problem to
the person who provides system support for VS
FORTRAN at your site.

AFB937I CLOAD | VLOAD : MODULE xxxxxxxx
NOT AVAILABLE IN LINK MODE FOR

USE BY PRODUCT MODULE yyyyyyyy.

Explanation: While executing in link mode, the

VS FORTRAN Library module yyyyyyyy tried to
use the module xxxxxxxx, which was not

included as part of the executable program.
This problem can occur because library modules

from more than one level of the product are
included within the executable program or
because the modules that are included are a

mixture of those needed for link mode or load

mode.

Supplemental Data Provided:

xxxxxxxx the name of the VS FORTRAN Library
module that was not available

yyyyyyyy fhe name of the VS FORTRAN Library
module that tried to load xxxxxxxx

because it was not available

Standard Corrective Action: Execution is termi

nated with a return code of 16

Programmer Response: Be sure that the proper
libraries for either link mode or load mode were

used when the executable program was created
and that all VS FORTRAN Library modules, that
is, those whose names begin with AFB, are from
the same level of VS FORTRAN.

If the problem recurs, refer the problem to the
person who provides system support for VS
FORTRAN at your site.

Appendix D. Library Procedures and Messages 437

Glossary

This glossary includes definitions developed by the
American National Standards Institute (ANSI).

An asterisk (*) to the left of a term indicates that the
entire entry is reproduced from the American National
Dictionary for Information Processing, copyright 1977
by the Computer and Business Equipment Manufac
turers Association, copies of which may be purchased
from the American National Standards Institute, 1430
Broadway, New York, New York 10018.

•. • is used in this manual to represent the maximum
floating-point value.

I allocation. See "dynamic allocation."

alphabetic character. A character of the set A, B,
C,...,Z. See also "letter,"

In VS FORTRAN, the currency symbol ($) is consid
ered an alphabetic character. The lowercase letters
a,b,...z are equivalent to their uppercase counterparts.

alphanumeric. A letter or digit.

alphanumeric character set. A character set that con
tains both letters and digits.

argument. A parameter passed between a calling
program and a SUBROUTINE subprogram, a FUNC
TION subprogram, or a statement function within the
calling program.

arithmetic constant. A constant of type integer, real,
double precision, or complex.

arithmetic expression. One or more arithmetic opera
tors and/or arithmetic primaries, the evaluation of
which produces a numeric value. An arithmetic
expression can be an unsigned arithmetic constant,
the name of an arithmetic constant, or a reference to
an arithmetic variable, array element, or function ref
erence, or a combination of such primaries formed by
using arithmetic operators and parentheses.

arithmetic operator. A symbol that directs VS
FORTRAN to perform an arithmetic operation. The
arithmetic operators are:

+ addition

subtraction

• multiplication
/ division

" exponentiation

array. A nonempty sequence of data.

array declarator. The part of a statement that
describes an array used in a program unit. It indi
cates the name of the array, the number of dimen
sions it contains, and the size of each dimension. An

array declarator may appear in a DIMENSION,
COMMON, or explicit type statement.

array element. A data item in an array, identified by
the array name followed by a subscript indicating its
position in the array.

array name. The symbolic name of an array.

assignment statement. A statement that assigns a
value to a variable or array element. It is made up of
a variable or array element, followed by an equal sign
(=), followed by an expression. The variable, array
element, or expression can be character, logical, or
arithmetic. When the assignment statement is exe
cuted, the value of the expression to the right of the
equal sign replaces the value of the variable or array
element to the left.

B

basic real constant. A string of decimal digits con
taining a decimal point, and expressing a real value.

blank common. An unnamed common block.

I character. An entity which can be stored in one byte.

I character context. Characters within the scope of
I character constant delimiters (apostrophes) or within
I a Hollerith constant.

character constant. A string of one or more charac
ters enclosed in apostrophes. The delimiting apostro
phes are not part of the constant.

character expression. An expression in the form of a
single character constant, variable, array element,
substring, function reference, or another expression
enclosed in parentheses. A character expression is
always of type character.

character operator. A symbol that directs VS
FORTRAN to perform a character operation. The only
character operator, //, directs VS FORTRAN to
perform the concatenation of character strings.

I character storage unit. A character datum has one
I character storage unit in a storage sequence for each

Glossary 439

character in the datum. In VS FORTRAN, a character
storage unit is one byte.

character type. A data type that represents charac
ters. Each character occupies one byte of storage.

common block. A storage area that may be referred
to by a calling program and one or more subpro
grams.

compiler directive. An instruction to the compiler to
assist processing of FORTRAN source statements,
such as input and display. In VS FORTRAN, INCLUDE
and EJECT are the only compiler directives.

complex constant. An ordered pair of signed or
unsigned real or integer constants separated by a
comma and enclosed in parentheses. The first con
stant of the pair is the real part of the complex
number; the second is the imaginary part.

complex type. An approximation of the value of a
complex number, consisting of an ordered pair of real
data items separated by a comma and enclosed in
parentheses. The first item represents the real part
of the complex number; the second represents the
imaginary part.

connected file. A file is connected when it refers to a

unit. The terms connected file and connected unit are

equivalent.

connected unit. A unit is connected when it refers to

a file. The terms connected unit and connected file

are equivalent.

constant. An unvarying quantity. The four classes of
constants specify numbers (arithmetic), truth values
(logical), character data (character), and hexadecimal
data.

control statement. Any of the statements used to
alter the normal sequential execution of statements,
or to terminate the execution of a program.
FORTRAN control statements are any of the forms of
the GO TO, IF, DO and DO WHILE statements, or the
PAUSE. CONTINUE, and STOP statements.

data. Constants, variables, and arrays.

data-in-virtual object. An external storage area con
taining a linear string of permanent data that is
created, read or updated by a DIV macro request.
The external storage area becomes a data-in-virtual
object when it is accessed.

data item. A constant, variable, array element, or
character substring.

data set. The major unit of data storage and retrieval
consisting of data collected in one of several pre
scribed arrangements and described by control infor
mation to which the system has access. See also
'file.'

data set reference number. A constant or variable in

an input or output statement that identifies a data set
to be processed; the unit number.

data type. The properties and internal representation
that characterize data and functions. The basic types
are integer, real, complex, logical, double precision,
and character.

ddname. Data definition name specified on the file
definition statement.

deallocation. Disassociation of a data set and the

device on which it resides from a program. The data
set is no longer available to the FORTRAN program
unless another allocation is performed.

default file name. A name of the form FTnnFmmm,
FTnnKkk, PTERRsss or FTPRTsss, where n, m, k. and
s, each represent single digits.

dependence. A relationship among FORTRAN state
ments, which indicates that the order in which state

ments are executed is important to the results of a

program or subroutine. Dependence occurs when a
particular storage location is used more than once,
either by successive statements or by a single state
ment during different iterations of a DO loop.

* digit. One of the characters 0 to 9. See

character."

numeric

dimension. The attribute of size given to arrays in
DIMENSION, COMMON, and specification statements.
An array may have 1 to 7 dimensions.

disconnected file. A file that is not connected to an

external unit is disconnected. If a file is disconnected,
no VS FORTRAN I/O statements except INQUIRE,
OPEN, or CLOSE can be successfully executed on that
file until an open operation successfully connects the
file and a unit.

disconnected unit. A unit that is not connected to a

file is disconnected. If a unit is disconnected, no VS
FORTRAN I/O statements except INQUIRE, OPEN, or
CLOSE can be successfully executed on the file asso
ciated with the file until an open operation success
fully connects the unit and file.

DO loop. A range of statements executed repetitively
by a DO statement. See also "range of a DO."

double-byte character. An entity that requires two
character storage units (in a FORTRAN file, a double-
byte character occupies two columns).

440 VS FORTRAN Version 2 Language and Library Reference

double-byte character set. Characters represented by

a two byte-code, where each byte is in the range
X'41' to X'FE', except for the double-byte blank

(X'4040') These characters are used for very targe
character sets such as Chinese, Japanese, and
Korean.

DO WHILE loop. A range of statements executed
repetitively by a DO WHILE statement. See also
"range of a DO WHILE."

DO variable. A variable, specified in a DO statement,
that is initialized or increased prior to each execution
of the statement or statements within a DO range. It
is used to control the number of times the statements

within the range are executed. See also "range of a
DO."

double precision. The standard name for real data of
storage length 8.

dummy argument. A variable within a subprogram or
statement function definilion with which actual argu
ments from the calling program or function reference
are positionally associated. Dummy arguments are
defined in a SUBROUTINE or FUNCTION statement, or
in a statement function definition.

dummy procedure. A dummy argument that is identi
fied as a procedure. It may be associated only with
an actual argument that is an intrinsic function,
external function, subroutine, or another dummy pro
cedure.

dynamic allocation. The process by which data sets
or files are allocated during processing of a program,
without reference to JCL or other file definition state

ments. With dynamic allocation, VS FORTRAN (not
the user) assigns system resources to a program at
the time the program is executed.

EBCDIC double-byte character. A double-byte char

acter that has X'42' as the first byte.

empty file. A DASD (non-VSAM) file for which no I/O
statement resulting in a data transfer to the file has
ever been successfully executed.

executable program. A program that can be executed
as a self-contained procedure. It consists of a main
program and, optionally, one or more subprograms or
non-FORTRAN-defined external procedures, or both.

executable statement. A statement that moves data,
performs an arithmetic, character, logical, or rela
tional operation, or alters the sequential execution of
statements.

execution instance. A single execution of a program
beginning when the program is dispatched until its
execution is terminated.

existing file. A file that has been defined (by a DD
statement on MVS systems, an ALLOC command on
TSO systems, or a FILEDEF command on CMS
systems), and, conceptually, resides on the medium.

existing unit. A valid unit number in FORTRAN'S
internal unit assignment table, as specified at installa
tion.

explicit file definition. A user-provided statement that
describes the characteristics of a file to a user

program. See "file definition statement."

expression. A notation that represents a value; a
constant or a reference appearing alone, or combina
tions of constants and/or references with operators.
An expression can be arithmetic, character, logical, or
relational.

external file. A sequence of records in external
storage.

external function. A function defined outside the

program unit that refers to it.

external procedure. A SUBROUTINE or FUNCTION
subprogram written in FORTRAN or any other lan
guage accessible to FORTRAN calls.

external symbol. A control section name, entry point
name, or external reference that is defined or
referred to in a particular program unit.

file. A set of records which can be processed as a
single unit after the file is opened. Access to these
records is gained through the file definitions (i.e., MVS
DD statements or CMS FILEDEFs). If the file is
located in internal storage, it is an internal file; if it is
on an input/output device, it is an external file.

file connection. A file is connected if it is referred to

by a unit.

file definition statement. A statement that describes

the characteristics of a file to a user program. For
example, the OS/VS DD statement for batch proc
essing, or the FILEDEF command for CMS processing.
Note that CMS provides a default file definition state
ment if none is specified.

file existence. See "existing file."

file reference. A reference within a program to a file.
It is specified by a unit identifier.

Glossary 441

formatted record. (1) A record, described in a
FORMAT statement, that is transmitted, when neces

sary with data conversion, between internal storage
and internal storage or to an external record. (2) A
record transmitted with list-directed READ or WRITE

statements and an EXTERNAL statement.

FORTRAN-supplied procedure. See "intrinsic
function."

function reference. A source program reference to an
intrinsic function, to an external function, or to a

statement function.

function subprogram. A subprogram invoked through
a function reference, and headed by a FUNCTION
statement. It returns a value to the calling program
unit at the point of reference.

H

hexadecimal constant. A constant that is made up of
the character Z, followed by two or more hexadecimal
digits.

hierarchy of operations. The relative order used to
evaluate expressions containing arithmetic, logical, or
character operations.

Hollerith constant. A string of any characters capable
of representation in the processor and preceded by
wH, where w is the number of characters in the

string.

I

implied DO. An indexing specification (similar to a
DO statement, but without specifying the word DO)
with a list of data elements, rather than a set of state

ments, as its range. In a DATA statement, the list can
contain integer constants or expressions containing
integer constants, in input/output statements, the list
can contain integer, real, or double precision arith
metic expressions.

induction variable. A variable in a loop that is altered
at only one place within the loop by the addition or
subtraction of a constant. The value of an induction

variable proceeds through an orderly sequence as the
loop is executed. DO-loop indexes are the most
common example of induction variables.

integer constant. A string of decimal digits containing
no decimal point and expressing a whole number.

integer expression. An arithmetic expression whose
values are of integer type.

integer type. An arithmetic data type capable of
expressing the value of an integer. It can have a pos
itive, negative, or zero value.

internal file. A sequence of records in internal
storage.

intrinsic function. A function, supplied by VS
FORTRAN, that performs mathematical, character,
logical, or bit-manipulation operations.

* I/O. Pertaining to either input or output, or both.

I/O list. A list of variables in an input or output state
ment specifying which data is to be read or which
data is to be written. An output list may also contain
a constant, an expression involving operators or func
tion references, or an expression enclosed in paren
theses.

labeled common. See "named common."

length specification. A source language specification
of the number of bytes to be occupied by a variable
or an array element.

letter. One of the characters from A, B 2, or $.

linear data set. A type of VSAM data set in which
data is stored such that it can be retrieved or updated
in 4096 byte blocks.

list-directed. An input/output specification that uses a
data list instead of a FORMAT specification.

logical constant. A constant that can have one of two
values; true or false.

logical expression. A combination of logical primaries
and logical operators. A logical expression can have
one of two values: true or false.

logical operator. Any of the set of operators; .NOT.,
.AND., OR.. .EOV. or .NEOV.

logical primary. A primary that can have the value
true or false. See also "primary."

logical type. A data type that can have the value true
or false. See also "data type."

looping. Repetitive execution of the same statement
or statements. Usually controlled by a DO or a DO
WHILE statement.

M

main program. A program unit, required for exe
cution. that can call other program units but cannot
be called by them.

442 VS FORTRAN Version 2 Language and Library Reference

o

N

name. A string of one to six alphanumeric characters,
the first of which must be alphabetic. Also known as
a symbolic name. A string of 1 to 31 alphanumeric
characters and the underscore (_) character.

named common. A separate common block con
sisting of variables, arrays, and array declarators, and
given a name.

named file. A file whose corresponding file definition
name is not a system-assigned default file name.

non-empty file. A file for which at least one output
statement, which resulted in data transfer to the file,

has been successfully executed on the file.

nonexecutable statement. A statement that describes

the characteristics of the program unit, of data, of
editing information, or of statement functions, but
does not cause an action to be taken by the program.

nonexistent file. A file that has not been defined by a
FILEDEF command or by job control statements.

* numeric character. One of the digits 0 to 9.

numeric constant. A constant that expresses an

integer, real, or complex number.

parallel subroutine. A subroutine which is concur
rently executed with one or more other subroutines.

preconnected file. A unit or file that was defined at
installation time. However, a preconnected file does
not exist for a program if the file is not defined by a
FILEDEF command or by job control statements.

preconnected unit. A unit is preconnected if it is con
nected at the instant in which the user program
begins to run (before any OPEN statements are given
for the file). Preconnected units must refer to
non-VSAM, physical sequential files with default file
names. A preconnection is broken through the suc
cessful execution of an OPEN or CLOSE statement.

predefined specification. The implied type and length
specification of a data item, based on the initial char
acter of its name in the absence of any specification
to the contrary. The initial characters I through N
type data items as integer; the initial characters A
through H, O through Z, and $ type data items as real.
No other data types are predefined. For VS
FORTRAN, the length for both types is 4 bytes.

primary. An irreducible unit of data; a single con
stant, variable, array element, function reference, or
expression enclosed in parentheses.

procedure. A sequenced set of statements that may
be used at one or more points in one or more com
puter programs, and that usually is given one or more
input parameters and returns one or more output
parameters. A procedure consists of subroutines,
function subprograms, and intrinsic functions.

procedure subprogram. A function or subroutine sub
program.

program unit. A sequence of statements constituting
a main program or subprogram.

range of a DO. Those statements that physically
follow a DO statement, up to and including the state
ment specified by the DO statement as being the last
to be executed; also called a "DO loop."

range of a DO WHILE. Those statements that phys
ically follow a DO WHILE statement, up to and
including the terminating END DO statement; also
called a "DO WHILE loop."

real constant. A string of decimal digits that
expresses a real number. A real constant must
contain either a decimal point or a decimal exponent
and may contain both.

real type. An arithmetic data type, capable of approx
imating the value of a real number. It can have a
positive, negative, or zero value.

record. A collection of related items of data treated

as a unit.

recurrence. A group of statements in which every
member is dependent on some other statement in the
group. The group is said to contain a "cycle" of
dependences. The analysis of dependences and
recurrences is important In the vectorizalion of scalar
code sequences. See also "dependence."

reduction. An operation that takes one or more
vector operands and returns a scalar result. Common
examples of reduction operations are vector inner (or
"dot") products and vector norm.

relational expression. An expression that consists of
an arithmetic expression, followed by a relational
operator, followed by another arithmetic expression
or a character expression, followed by a relational
operator, followed by another character expression.
The result is a value that is true or false.

relational operator. Any of the set of operators:

.GT. greater than

.GE. greater than or equal to

.LT. less than

Glossary 443

.LE. less than or equal to

.EQ. equal to

.NE. not equal to

scalar. (1) A variable that can hold only a single
datum. (2) Instructions whose operands are single
pieces of data are said to be "scalar."

scale factor. A specification in a FORMAT statement,
which changes the location of the decimal point in a
real number (and, on input, if there is no exponent,
the magnitude of the number).

shift-in character. The character (SI) which indicates
the end of double-byte character text. It has an

internal representation ofX'OF'.

shift-out character. The character (SO) which indi
cates the beginning of double-byte character text. It

has an internal representation ofX'OE'.

specification statement. One of the set of statements
that provides the compiler with information about the
data used in the source program. In addition, the
statement supplies the information required to allo
cate data storage.

specification subprogram. A subprogram headed by a
BLOCK DATA statement and used to initialize vari

ables in named common blocks.

statement. The basic unit of a FORTRAN program,
that specifies an action to be performed, or the nature
and characteristics of the data to be processed, or
information about the program itself. Statements fall
into two classes: executable and nonexecutable.

statement function. A name,- followed by a list of
dummy arguments, that is equated to an arithmetic,
logical, or character expression. In the remainder of
the program the name can be used as a substitute for
the expression.

statement function definition. A statement that

defines a statement function. Its form is a name, fol

lowed by a list of dummy arguments, followed by an
equal sign (=), followed by an arithmetic, logical, or
character expression.

statement function reference. A reference in an arith

metic, logical, or character expression to the name of
a previously defined statement function.

statement label. A number of from one through five
decimal digits that is used to identify a statement.
Statement labels can be used to transfer control, to

define the range of a DO or aDO WHILE , or to refer
to a FORMAT statement.

statement number. See "statement label."

stride. The distance between successive elements of

a vector, in units of the array element size. From the
definition of vector, it follows that the stride of a
vector is a constant.

subprogram. A program unit that is invoked by
another program unit in the same program. In VS
FORTRAN, a subprogram has a FUNCTION, SUBROU
TINE, or BLOCK DATA statement as its first state

ment.

subroutine subprogram. A subprogram whose first
statement is a SUBROUTINE statement. It optionally
returns one or more parameters to the calling
program unit.

* subscript. A subscript quantity or set of subscript
quantities, enclosed in parentheses and used with an
array name to identify a particular array element.

subscript quantity. A component of a subscript: an
integer constant, an integer variable, or an expression
evaluated as an integer constant.

In VS FORTRAN, a subscript quantity may also be a
real constant, variable, or expression.

terminal statement. The statement which indicates

the end of a DO loop or aDO WHILE loop . For a DO
loop, the terminal statement may be any executable
statement except the following: unconditional GO TO,
assigned GO TO, arithmetic IF, block IF, ELSE IF,
ELSE, END IF, RETURN, STOP, END, or DO. For a DO

WHILE loop, the terminal statement must be an END
DO statement.

type declaration. The specification of type for the
name of a constant, variable, array, or function by use
of an explicit type specification statement.

u

undefined. The condition of a variable or array that is
not initialized and not assigned a value.

unformatted record. A record that is transmitted

unchanged between internal storage and an external
record.

unit. A means of referring to a file in order to use
input/output statements. A unit can be connected or
not connected to a file. If connected, it refers to a

file. The connection is symmetric: that is, if a unit is
connected to a file, the file is connected to the unit.

unit connection. A unit is connected if it refers to a

file.

444 VS FORTRAN Version 2 Language and Library Reference

unit existence. See "existing unit."

unit identifier. The number that specifies an external
unit or an internal file.

unnamed file. A file whose corresponding file defi
nition name is a system-assigned default file name.

variable. A data item, identified by a name, that is
not a named constant, array, or array element, and
that can assume different values at different times

during program execution. In FORTRAN, the term
variable is more restrictive than in other program
ming languages.

vector. An ordered sequence of elements of an array
obtained by subscripting the array in a linear manner.
Successive elements of the sequence are spaced
equidistant in terms of storage locations within the
array.

Glossary 445

Index

Special Characiers
(blank) 6

' (apostrophe) 6, 20
. (period) v, 6
+ (plus sign) 6
! (exclamation point) 9, 12
$ (currency symbol) 6
* (asterisk) 11,27
- (minus sign) 6, 9
/ (slash) 6
, (comma) 6
()(parentheses)
_ (underscore) 6
: (colon) 6
[](brackets)
= (equal sign) 6

" (quotation mark) 6, 9
• (floating-point value) 439

See Glossary for definition

A
A format code 110

abend data, post 369
abnormal termination subroutines

SYSABN and SYSABD 287

ABS/DABS/IABS/OABS 250

registers used 349
ABS/IABS error message 419
absolute value routines, registers used 349
absolute value subprograms 250
ACOS 248

error message 420
ACTION specifier

error messages 383
actual argument

array name 27
in a function subprogram 122
in a subroutine subprogram 209
in an ENTRY statement 88

actual arguments in a function subprogram
AIMAG 251

registers used 349
AINT 251

registers used 349
ALGAMA

See GAM MA/ALGA MA

allocation of a file, dynamic 137, 152
A LOG/A LOG 10 248

error message 419
registers used 349

alphabetic character
See letter

122

alphabetic primary
See primary

alternate return parameter 88
alternative mathematical library subroutines

documentation 263

register usage 348
AMOD/DMOD 251

registers used 349
ANINT 252

registers used 349
ANSI definitions 439

apostrophe 6
with character constant 20

arccosine routines, registers used 348
arcsine and arccosine subprograms 248
arcsine routines, registers used 348
arctangent routines, registers used 348
arctangent subprograms 248
argument

actual

in ENTRY statement 88

in subroutine subprogram 209
dummy

in ENTRY statement 88

in subroutine subprogram 209
number 244

range 244
type 244

argument vector registers 352
arguments

assembler language 346
arithmetic assignment statement 52

conversion rules

complex 53
integer 53
real 53

arithmetic constant

See also digit
complex 18
integer 15
primary 32
real 16

arithmetic expression 32, 340
examples 36
rules for constructing 32
type and length of

complex 36
integer 35
real 35

use of parentheses in 34
arithmetic IF statement 127

arithmetic operation
addition 32

division 32

evaluation of functions 33

Index 447

arithmetic operation (continued)
exponentiation 32
first operand

complex 34
integer 34
real 34

multiplication 32
order of computation 33
subtraction 32

unary 32
arithmetic operator

in logical expression 42
kinds of 32

arithmetic routines (modular), registers used 348
array 24

actual argument 26, 27
assumed-size 27

character 28

declarator 26

definition 24

DIMENSION statement 76

dimensions 26, 76
dummy argument 27
elements 24

examples 25
output format 358
size and type declaration 26
subscripts 25
upper dimension bound as asterisk 27

array dimension error message 403
array items, sample program and output 364
AS IN 248

error message 420
registers used 349

assembler language
calling sequence 344

assign a name to a main program 162
ASSIGN statement 51

assigned GO TO statement 125
ASSIGNM subroutine

examples 278
rules 277

assignment statement
arithmetic 52

character 54

logical 54
associating in Data-in-Virtual 298, 302
assumed-size array 27
asterisk 6

asynchronous
READ statement 163

WRITE statement 216

asynchronous I/O error message 399, 404
asynchronous input/output 339
AT statement

debugging 56
in debug packet 72

ATAN 248

registers used 349

ATAN/ATAN2 error message 420
ATAN2 248

automatic function selection 341

B
BACKSPACE statement 57

basic real constant 16

bit function error message 398
bit functions, explicitly called 345
bit manipulation functions 257
bit manipulation routines

assembler information 350

manipulation routines 269
blank 6

common blocks 67

format code 114

named common blocks 67

blank FORMAT statement 114

blanks, leading 99
BLOCK DATA statement 59

block IF statement

ELSE 129

ELSE IF 130

END IF 129

BN format code 114

BTEST 257

BTSHS error message 398
BZ format code 114

c
CABS 250

registers used 349
CALL macro instruction 344

for vector intrinsic functions 351

CALL statement 60

ASSIGNM 277

CDUMP/CPDUMP 273

CLOCK 278

CLOCKX 278

CPUTIME 280

DATIM 282

DATIMX 282

DIVCML 303

DIVINF 296

DIVINV 300

DIVRES 305

DIVSAV 305

DIVTRF 299

DIVTRV 304

DIWWF 298

DIWWV 302

DUMP/PDUMP 271

DVCHK 270

ERRMON 316

ERRSAV 317

ERRSET 318

ERRSTR 321

448 VS FORTRAN Version 2 Language and Library Reference

CALL statement (continued)
ERRTRA 321

EXIT 283

FILEINF 283

OVERFL 270

SDUMP 274

SYSABD 287

SYSABN 287

SYSRCS 276

SYSRCT 278

SYSRCX 278

UNTANY 288

UNTNOFD 288

XUFLOW 291

calling routines in assembler language 345
COM PR# 288

error message 404
CDABS 250

CDDVD#/CDMPY# 285
registers used 349

CDMPY#
See CDDVD#/CDMPY#

CDSIN/CDCOS 248

error message 428
registers used 349

CDVD#/CMPY# 285
registers used 349

CEXP/CDEXP 248

error messages 423, 425
registers used 349

change options 318
CHAR function 258

CHAR specifier
on INQUIRE statement 143

on OPEN statement 154

character array element
READ statement

direct access, formatted 187
character array name

READ statement

direct access, formatted 187
character assignment statement 54
character constant

definition 19

length of 20
mixed 19, 30
READ statement

direct access, formatted 188
transmission 111

uses of 19

character data dump 273
character data transmission 110

character data type 339
character expression

operators 37
READ statement

direct access, formatted 187
use of parentheses in 38

character manipulation functions 256
character manipulation routines

assembler information 350

character operators in logical expressions 42
character set, collating sequence 5
character skipping 111
character substring 28
CHARACTER type statement 91
character variable

READ statement

direct access, formatted 187
storage length 22
substring 28

characters

double-byte 8
source statement 5

special 5
CHARLEN compiler option 94
Cl compiler option 134
CITFN error message 403
CLCIO error message 431
CLEXP error message 425
CLLOG error message 428
CLOCK subroutine 278

CLOCKX subroutine 278

CLOG/CDLOG 248

error messages 423, 428
registers used 349

CLOSE statement 84

error messages 401, 403
CLSCN error messages 428
CMOVE error messages

source length for character move invalid 405
target length for character move invalid 405

CMOVE# 288
error message 405

CMPLX 253

CMPY#
See CDVD#/CMPY#

CNCAT# 288
error message 405

coding the user exit routine 319
colon 8

colon format code 118

comma 8

comma in formatted I/O 99

comments

definition 8

fixed-form 11, 13
free-form 9, 12
in-line 12, 13

valid placement 13
common block 87

named 87

common block to initialize variables 59

common logarithmic routines, registers used 348
COMMON statement 88, 88
compare complex numbers 285

Index 449

compiler directives
EJECT statement 48

INCLUDE statement 48

compiler-directed statement
EJECT 83

INCLUDE 134

complex constant 18
examples 18

complex data type 340
COMPLEX format 271, 357
complex multiply and divide subprograms

CDDVD#/CDMPY# 265
CDVD#/CMPY# 265
COMPY#/CODVD# 265

COMPLEX type statement 91
complex variable, storage length 22
complex-to-integer 265
compop 266
computed GO TO statement 126
concatenation

operation 38
with double-byte characters 38

concatenation operand error message 405
CONJG 251

registers used 349
conjugate of a complex number routines, registers

used 348

connected file

BACKSPACE statement 58

definition 440, 441

determining properties of a 136
ENDFILE statement 85

general description 46
INQUIRE statement 136

OPEN statement 151

preconnection 47
READ statement

formatted with direct access 168

formatted with keyed access 171
list-directed with external devices 180

NAMELIST with external devices 184

unformatted with keyed access 191
unformatted with sequential access 194

REWIND statement 198

REWRITE statement 199

WRITE statement

formatted with direct access 219

formatted with keyed access 221
formatted with sequential access 224
list-directed with external devices 229

NAMELIST with external devices 234

unformatted with direct access 237

unformatted with keyed access 239
unformatted with sequential access 241

connected unit

See also connected file

definition 440, 444
general description 46

connection

file

definition 441

determining 136
file/unit

general description 46
unit

definition 444

determining 136
considerations when using debug 72
constant

arithmetic 15

assign a name to 158
character 19

classes 15

complex 18
definition 15

hexadecimal 21

Hollerith 20

integer 15
logical 19
mixed character 19

real 16

constant name, assigning 158
continuation line

fixed-form 11

free-form 10

CONTINUE statement 68

continued line, free-form 9
control flow information 369

output format 359
control statement 45

assigned GO TO 125
CALL 60

computed GO TO 126
CONTINUE 68

DO 77

DO WHILE 82

ELSE 129

ELSE IF 130

END 83

END DO 84

ENDIF 129

execution 45

GOTO 125

IF 127

PAUSE 159

RETURN 196

STOP 207

unconditional GO TO 126

conversion functions 253

conversion rules 53

data 97

corrective action

after error 325

after mathematical subroutine error 331
after program interrupt 330

COS 248

error message 419

450 VS FORTRAN Version 2 Language and Library Reference

COTAN 249

CPUTIME subroutine 280

COABS 250

registers used 349
CODVD#

See COMPY#/CODVD#
COEXP 246

error messages 424
registers used 349

COLOG 246

error message 425
registers used 349

COMPY#/CODVD# 265
registers used 349

COSCN error messages 425
COSIN/COCOS 248

error message 425
registers used 349

COSORT 251

registers used 349
create a file/preconnected file 151
CSEXP error messages 423
CSm/CCOS 248

error message 423
registers used 349

CSLOG error message 423
CSORT/CDSORT 251

registers used 349
CSSCN error messages 423
CSTIO error messages 437
currency symbol 6
CVIOS error messages

end of data set 409

ENDFILE statement 400

file positioning I/O statement in direct access
mode 399

I/O request made to unopened VSAM file 400
I/O statement 400

key sequenced data set 399
OPEN statement ACTION specifier conflict 387
record addition conflict 399

record length too long 399
record number 414

unit number out of range 411
CXMPR# 265

registers used 349

D
D format code 102

DABS 250

registers used 349
DAGOS 248

error message 422
DAS IN 248

error message 422
registers used 349

data

conversion rules 97

data (continued)
definition 15

kinds of 15

DATA statement 46, 69
character data in 69

implied DO in 80
data transfer 112

data type
character 339

complex 340
double precision 342
extended precision 342
integer 341
logical 341
real 342

data types
field widths needed 230

data types and lengths 22
data types and valid lengths 22
Data-in-Virtual subroutines

error messages 394, 397
fixed-view 296

Multitasking Facility, using with 314
page-alignment requirements 313
varying-view 300

data, double-byte
moving 277

DATAN 248

error message 421
registers used 349

DATAN2 248

error message

date subroutines

DATIM 282

DATIMX 282

DATIM subroutine

DATIMX subroutine

DBCS

with INOUIRE 143

with OPEN 154

DBCS compiler option 10, 12
DBCS names 8, 24
DBCS support 10, 154
DBLE 253

DCONJG 251

registers used 349
DCOS 248

error message 421
DCOTAN 249

error message 422
DDCBP error messages 398
DDCMP error message 398
DDIM 252

registers used 349
ddnames

default naming conventions 139
for named/unnamed files 46

DEBUG statement 46, 71
AT statement 56, 72

421

282

282

Index 451

DEBUG statement (continued)
DISPLAY statement 72, 77
END DEBUG statement 72, 84

examples 73
SUBCHK function 72

TRACE OFF statement 72, 213
TRACE ON statement 72, 213

debugging
starting 56

decimal point in format codes 99
default ddname conventions 139

default options 325
define values of

array elements
DATA statement 69

EXPLICIT type statement 91
arrays

DATA statement 69

EXPLICIT type statement 91
substrings 69
variables

DATA statement 69

EXPLICIT type statement 91
DELETE specified on CLOSE statement" 64
DELETE statement 75

deleting records 75
DERF/DERFC 251

registers used 349
DEXP 246

error message 421
registers used 349

DGAMMA/DLGAMA 251

error message 429
registers used 349

digit 6
DIM 252

registers used 349
DIMAG 251

registers used 349
dimension boundary

specified as asterisk 27
DIMENSION statement 76

array declaration 26
examples 26

dimensions, object-time 28
DINT 251

registers used 349
DIOCS error messages

unit number out of range 411
DIOCSA/DIOS error message 414
direct access

error messages 379, 413
files 155

READ statement

formatted 166

unformatted 187

WRITE statement

formatted 218

unformatted 236

direct access input/output 340
directives, compiler 48
disconnect an external file 64

DISPLAY statement 77

in debug packet 72
DIV facility

See Data-in-Virtual subroutines

DIVCML subroutine 303

divide complex numbers 265
divide-check exception test 270
divide-check subroutine

See also DVCHK

error message 378
DIVINF subroutine 296

DIVINV subroutine 300

DIVRES subroutine 305

DIVSAV subroutine 305

DIVTRF subroutine 299

DIVTRV subroutine 304

DIWWF subroutine 298

DIWWV subroutine 302

DLOG/DLOG10 246

error message 421
registers used 349

DMOD

See AMOD/DMOD

DNINT 252

registers used 349
DO loop

See also range of a DO
nested 79

DO statement

labeled 77

unlabeled 77

DO WHILE loop 82
DO WHILE statement

labeled 82

unlabeled 82

DO-loop 77
documentation of IBM extensions vi

double precision
data editing 102
storage length 22
type 91, 133

double precision data type 342
DOUBLE PRECISION type statement 91
double-byte character

moving strings 277
double-byte character data

documentation v

double-byte character set 11
character constant 19

in continued source lines 10, 12

names 8

representation 6
with INOUIRE 143

with OPEN 154

DP

assign 53

452 VS FORTRAN Version 2 Language and Library Reference

DP (continued)
extend 54

float 54

DPROD 252

registers used 349
•SIGN 252

registers used 349
OS IN 248

error message 421
registers used 349

DSINH/DCOSH 250

error message 422
registers used 349

DSPAN#/DSPN2# 267
assembler language requirements 350

DSPTCH subroutine 336

DSORT 251

error message 421
registers used 349

DTAN 249

error message 422
registers used 349

DTANH 250

registers used 349
dummy argument

array name 27
in a function subprogram 123
in a subroutine subprogram 209
in an ENTRY statement 88

dummy arguments in a function subprogram 123
dump an area of storage 271, 273
DUMP/PDUMP subroutine 271

assembler language requirements 350
format specifications 271
output 271
programming considerations 271

dump, symbolic
See symbolic dump 274

dumping storage 271
DVCHK subroutine 270

DYCMN# 267
error message 397

dynamic file allocation 47
error messages 437
with FILEINF subroutine 283

with INQUIRE statement 137

with OPEN statement 152

E
E format code 102

EBCDIC double-byte character
EBCDIC names 8

EJECT statement 48, 83
ELSE IF block 130

ELSE IF statement 130

ELSE statement 129

END DEBUG statement 84

in debug packet 72

6, 8

END DO Statement 84

in a DO loop 84
in a DO WHILE loop 84

end execution error message 429
END IF statement 129

end of data set error message 409
end of line comments 13

end page 98
END statement 83

in a function subprogram 84
in a subroutine subprogram 84

end-of-line comment 11

ENDFILE statement 85

error message 400
ENTRY statement

equal sign 6
EQUIVALENCE statement 89

ERF/ERFC 251

registers used 349
ERR parameters honored for I/O errors 325
ERRMON subroutine 316

error function routines, registers used 348
error function subprograms 251
error handling subroutines 315
error message unit 401
error messages

execution 379

library 375
operator 376
program interrupt 375

error monitor routine 316

error option table 315
error-handling subroutines 270
error, corrective action after 325

ERRSAV subroutine 317

ERRSET subroutine 318

ERRSTR subroutine 321

ERRTRA subroutine 321

exclamation point 9, 13
executable program

definition 4

names 8

executable statement, definition 4

execution environment, initialization 344
execution error message 379
execution termination 283

execution-time

EXIT subroutine 283

assembler language requirements 350
EXP 246

error message 419
registers used 349

explicit type statement 91
explicitly called routines

assembler information 348

bit function 350

registers used 348
explicitly called subprograms

absolute value 250

Index 453

explicitly called subprograms (continued)
arcsine and arccosine 248

arctangent 248
error function 251

exponential 246
gamma and log gamma 251
hyperbolic sine and cosine 250
hyperbolic tangent 250
logarithmic 246
sine and cosine 248

square root 251
tangent and cotangent 249

exponent overflow exception 270
exponent testing 270
exponent, real 17
exponential routines, registers used 348
exponential subprograms

explicitly called 246
implicitly called 267

exponentiation 267
expression

arithmetic 32

character 37

evaluation of 31

examples 32
kinds of 31

logical 40
relational 38

type of primary in 32
expressions 31, 340
extended error handling 315
extended precision data type 342
extended precision routine results 347
extensions, IBM

documentation of vi

external

file

position 198
sequential 85

function name 86

I/O unit connected to 157

procedure, definition 4
unit not connected to 157

EXTERNAL statement 95

F format code 102

FALSE 19

FCDCD#
error message 418
registers used 349

FCDXI# 265
error message 418
registers used 349

FCOCO#
error message 423
registers used 349

FCOXI# 265
error message 423
registers used 349

FCXPC#
error message 417
registers used 349

FCXPI# 265
error message 417
registers used 349

FDXPD# 265
error message 417
registers used 349

FDXPI# 265
error message 417
registers used 349

field widths needed for data types 230
file

connection 47

determining 138
existence 47

named 46

preconnection 47, 138
status 151

unnamed 46

file allocation, dynamic
error messages 437
with FILEINF subroutine 283

with INQUIRE statement 137

with OPEN statement 152

file characteristics 283

file connection 440

definition 441

determining
for an named file 136

for an unnamed file 138

file deallocation

error messages 437
file deletion error message 382
file existence

determining
for an named file 136

for an unnamed file 138

file information 283

FILEDEF

error messages 437
FILEINF subroutine 283

error messages 379,410
examples 287
rules 286

with INQUIRE statement 137

with OPEN statement 152

FIPS flagger 339
fix 53

fixed-form source

comments 11, 13

continuation line 11

example 12
identification 12

initial line 11

454 VS FORTRAN Version 2 Language and Library Reference

fixed-form source (continued)
label 11

number 207

fixed-length records 5
fixed-view Data-in-Virtual subroutines 294

FIXPI# 265
error message 418
registers used 349

flagger, source language 339
float 54

See also REAL

floating-point
information, saving 346
registers 346

format

with comma as delimiter 99

format codes

begin data transmission (T) 112
blanks, interpretation of (BN) 114
blanks, interpretation of (BZ) 114
character constant transmission (H) 111
character data transmission (A) 110
character skipping (X) 111
comma 99

complex data editing (D,E,0) 102
decimal point 99
double precision data editing (D',E,0) 102
end-of-record indication (slash) 115
format control termination (colon) 116
format specification reading 116
group format specification 112
hexadecimal data transmission (Z) 106
integer data editing (I) 101
list-directed formatting 117
logical variable transmission (L) 109
numeric 107

plus character control (S, SP, SS) 113
real data editing (D,E,0) 102
real data editing (F) 102
real data transmission (G) 103
rules for conversion 97

scale factor specification (P) 104
with comma as delimiter 99

with decimal point 99
format control 98

format identifier (FMT)
READ statement

direct access 166

keyed access 169
sequential access 174

WRITE statement

direct access 218

keyed access 220
sequential access 223

FORMAT statement 96

A code 110

BNcode 114

BZ code 114

colon code 116

FORMAT statement (continued)
comma 99

D code 102

E code 102

error messages

F code 102

forms of 100

G code 103

H code 111

I code 101

Lcode 109

numeric code

output 97
P code 104

printing 97
O code 102

rules for conversion

S code 113

slash code 115

SP code 113

113

112

111

106

FORTRAN-supplied procedure
See intrinsic function

FOXPI# 265
error message 418
registers used 349

FOXPO# 265
error messages 418, 419
registers used 349

FOXPR error messages
exponent out of range
invalid argument value

F0XP2# 265
error message 421
registers used 349

free-form source

comments 9, 12

continuation line

continued line 9

example 10
initial line 9

maximum length
minus sign 9
statement label

FRXPI^ 265
error message

registers used
FRXPR# 265

error message

registers used
function

entry name 244
error code 245

evaluating 31
generic name 244
mathematical 244

SS code

T code

X code

Z code

408

107

97

10

421

427

10

9, 207

416

349

417

349

Index 455

function (continued)
reference 204

value, type, and range 244
FUNCTION statement 120, 204
function subprogram 48

actual arguments 122
dummy arguments 123
END statement 84

ENTRY statement 86

RETURN statement 198

G
G format code 103

gamma and log gamma subprograms 251
gamma routines, registers used 348
GAMMA/ALGAMA 251

error message 427
registers used 349

general rules for data conversion 97
general service subroutines 269
generic functions 341
generic names for Intrinsic functions 259
global name 7

shortened form 8

glossary 439
GO TO statement 125

assigned 125
computed 126
unconditional 126

group format
nesting 98
specification 112

H
H format code 111

hexadecimal constant 21

hexadecimal data transmission 106

hierarchy of operations
arithmetic 33

logical 42
Hollerith constant 20

Hollerith constants 341

hyperbolic cosine routines, registers used 348
hyperbolic functions 250
hyperbolic sine and cosine subprograms 250
hyperbolic tangent routines, registers used 348
hyperbolic tangent subprograms 250

I
I format code 101

I/O error messages 402
lABS 250

lAND 257

IBCLR 257

IBOOM error messages
I/O fixup routine 430

IBOOM error messages (continued)
secondary entry Into main routine 430

IBCOP error message 407
IBM extensions

documentation of vl

IBSET 257

ICHAR function 256

Identification, fixed-form 12
Identify

statements 207

user-supplied subprogram 95
Identifying a VSAM linear data set 296
Identifying In Data-ln-Vlrtual 296, 300
IDIM 252

registers used 349
IDNINT 252

IDNINT/IFIX/INT

registers used 349
lEOR 257

IF statement 127

arithmetic 127

block 128

level 128

logical 132
IF-block 128

IFIX

See INT

IMPLICIT statement 133

with double-byte characters 133
Implicitly called routines 263

assembler Information 349

Implicitly called subprograms
exponential 267

Implied DO
error message 407
In DATA statement 80

In PRINT statement 81

In READ statement 81

In WRITE statement 81

In-line comment 11

INCLUDE statement 48,134

examples 136
rules 135

INDEX

error message 404
INDEX function 256

Industry standards v
Initial line

fixed-form 11

free-form 9

initializing the execution environment 344
input format

fixed-form 4

free-form 4

Input records 4
Input/output error messages

asynchronous I/O not supported 399
direct 414

direct access mode 399

456 VS FORTRAN Version 2 Language and Library Reference

input/output error messages (continued)
end of record 408

fixup routine 430
parallel subroutine 434
record format invalid 408

referring to an unopened unit 389
referring to non-VSAM KSDS file 389
rewinding the file 426
sequential 413
statement processing 390
subtask abended 407

unopened VSAM file 400
VSAM file 400

WAIT statement 427

input/output semantics 46
input/output statement 46

BACKSPACE 57

CLOSE 64

ENDFILE 85

FORMAT 96

implied DO 81
INQUIRE 136

OPEN 151

PRINT 160

R-EAD 163

REWIND 198

underlying semantics 46
WAIT 214

WRITE 216

input/output unit
connected to external file 157

information, output format 360
not connected to external file 157

PRINT statement 81

READ statement 81

status information, output format 361
WRITE statement 81

INQUIRE statement 141

by file 136
by unit 138
by unnamed file 138
default ddnames 139

error messages

FILE specifier 402
examples 146
optional specifiers 139, 144
with double-byte characters 143
with dynamic allocation 137

INT 253

integer constant 15
integer data editing 101
integer data type 341
INTEGER type statement 91
integer value error message 407
integer variable

READ statement

direct access, formatted 166
storage length 22

integer-to-integer 265
intermediate vector register 354
internal file error message 406
interruption procedures 375
intrinsic function

definition 4

explanation 243
format 243

generic names for 259
intrinsic functions 341

INTRINSIC statement 147

invalid VS FORTRAN Version 2 programs 3
lOR 257

lOSTAT parameters honored for I/O errors 325
ISHFT 257

ISIGN 252

registers used 349
ISO definitions 439

K
KEEP 64

key sequenced data set error message 399
keyed access

INQUIRE statement 141

READ statement

formatted 169

unformatted 189

WRITE statement

formatted 220

unformatted 238

keyed access input/output 341
keywords 13

L
L format code 109

labeled DO statement 77

labeled DO WHILE statement 82

language flagger 339
language reference 1
language syntax 4
LASCN error message 422
LATN2 error message 421
LEN function 256

length of statement 10, 11
length specification

IMPLICIT statement 133

length, statement 10
lexical compare error message 404
LEXP error message 421
LGAMA error message 429
LGE function 256

LGT function 256

library
availability 343
error procedures 375
interruption procedures 375
messages 375

Index 457

library (continued)
procedure messages 375

library messages 375
library procedures 375
library reference 261
linear data set, identifying 296
list-directed

formatting 117
PRINT statement 160

READ statement

external 179

internal 181

WRITE statement

external 228

internal 231

list-directed input/output 341
literal constants 341

LLE function 256

LLOG error message 421
LLT function 256

load module processing termination
local name 7

log-gamma routines
registers used 349

logarithmic subprograms 246
logical assignment statement 54
logical constant 19
logical data type 341
logical expression 40

order of computations 42
use of parentheses in 43

logical IF statement 132
logical operation, result 44

types 45
logical operator 40
logical primary

See primary
LOGICAL type statement 91
logical variable

storage length 22
transmission 109

LSCN error message 421
LSORT error message 421
LTNCTerror message 422
IJ<CMP error message 404

M
main program

assign a name to 162
definition 3

PROGRAM statement 162

statement (PROGRAM) 48
mathematical exception tests 270
mathematical library subroutines

explicitly called 348
implicitly called 265
result registers 347
use in assembler language 343

283

mathematical library subroutines (continued)
use in VS FORTRAN Version 2 263

mathematical library subroutines, registers used
mathematical library, alternative 263
mathematical routine results 347

mathematical subroutine errors 331

MAX 253

maximum/minimum functions 253

message fragment 359
messages

execution error 379

library 375
operator 376
program interrupt 375

MIN 253

minus sign 6, 9
miscellaneous mathematical functions 250

mixed character constant

definition 19

invalid 30

substring 30
mixed-mode arithmetic expressions 341
MOD 251

registers used 349
modular arithmetic routines, registers used 348
multiply complex numbers 265
Multitasking Facility (MTF) 335

error unit 139,153

print unit 139, 153
sharing a common block 338

N
named common block 67

named files 46

NAMELIST input data 149
NAMELIST statement 148

error messages 412
examples 150
input data 149
output data 150
READ statement

external 183

internal 186

WRITE statement

external 233

internal 235

names

array 66, 76
block data subprogram 8
block of data 59

CALL statement 86

common-block 8

constant 99

DBCS 8

ddname

definition

EBCDIC

46

8

8

elements of a program 7

458 VS FORTRAN Version 2 Language and Library Reference

348

/

names (continued)
example 8
external procedure 8
file 46

function reference 86

function subprogram 8
generic 147
global 7
invalid 8

local 7

main program 8
specific 147
subroutine subprogram 8
valid 8

variable 22, 66
naming conventions

default ddnames 139

natural logarithmic routines, registers used 348
new page 98
MINT 252

registers used 349
non-recoverable failure, sample program and

output 369
nonexecutable statement 4

nonmathematical arguments 270
NOT 257

NTASKS subroutine 335

numeric character

See arithmetic constant

numeric format code examples 107
numeric input field 118

object-time dimensions 28
obtaining a dynamic common length 303
OPEN statement 151

connecting for loading records 155
connecting for reading records 155
connecting for retrieving records 155
connecting for writing records 155
error messages

ACCESS specifier 402
BLANK specifier 403
conflicting specifiers 387
duplicate file name 390
empty file 391
FILE specifier 402
FORM specifier 403
invalid ACTION specifier 392
issued for file already open 387
KEYS specifier 388, 392
no available file 391

status of scratch 403

STATUS specifier 402
examples 156
for connected units 157

for non-connected units 157

with double-byte characters 154

OPEN statement (continued)
with dynamic allocation 152

operator messages 376
operators, arithmetic 32
option default 325
option table

default values 325

entry 322
error 315

order of statements in a program unit 49
output format

array 358
control flow information 359

I/O unit information 360

I/O Unit Status Information 361

variable character 358

variable noncharacter 357

output from symbolic dumps 357
OVERFL subroutine 270

overflow

error message 377
indicator service routine 270

P format code 104

packets, debug 72
page control 98
parallel subroutine

DSPTCH subroutine 336

NTASKS subroutine 335

SHRCOM subroutine 338

SYNCRO subroutine 337

PARAMETER statement 158

parameters, correct 346
parentheses

error message 398
in arithmetic expressions 34
use in character expressions 38
use in logical expressions 43

PAUSE statement 159

error message 376
period v, 6
plus sign 6
preconnected file

definition 4

OPEN statement 47

WRITE statement

formatted with direct access 219

formatted with sequential access 224
list-directed with external devices 229

NAMELIST with external devices 234

unformatted with direct access 237

unformatted with sequential access 241
preserving shift codes 277
primary 32

logical 40
PRINT statement 160

implied DO in 81

Index 459

printouts, sample storage 357
procedure

definition 3

external 4

processing termination 283
program

basic elements of 3

executable 4

main 3

program interrupt error 378
program mask 353
PROGRAM statement 48, 162
program unit

definition 3

order of statements in 49

program-interrupt messages 330, 375

0 format code 102
OABS 250

registers used 349
OARCOS

See OARSIN/OARCOS

OARSIN/OARCOS 248
error message 428
registers used 349

OASCN error message 428
0ATAN/0ATAN2 248

error message 428
registers used 349

OCONJG 251

registers used 348
ODIM 252

registers used 349
OERF/OERFC 251

registers used 349
OEXP 246

error message 427
registers used 349

OEXT 253

01 MAG 251

registers used 349
OINT 251

registers used 349
OLOG/OLOG10 246

error message 428
registers used 349

OMOD 251

registers used 349
OP

extend 54

float 54

OSCN error message 428
OSCNH error message 428
OSIGN 252

registers used 349
OSIN/OCOS 248

error message 428

OSIN/OCOS (continued)
registers used 349

OSINH/OCOSH 250

error message 428
registers used 349

OSORT 251

error message 427
registers used 349

OTAN/OCOTAN 249

error message 429
registers used 349

OTANH 250

registers used 349
OTNCT error message 429
quotation mark 6, 9

R
READ statement

asynchronous 163
error messages 388

file not created 414

implied DO 407
KEY argument 388

formatted with

direct access 166

keyed access 169
sequential access 173
sequential access, internal 176

forms of 163

implied DO in 81
list-directed I/O with

external devices 179

internal files 181

NAMELIST with

external devices 183

internal files 186

unformatted with

direct access 187

keyed access 189
sequential access 193

REAL 253

real assign 53
real constant 16

examples 17
real data of length 8 23
real exponent 17
REAL type statement 91
real variable, storage length 22
real-to-integer 265
real-to-real 265

record length error message 399
record number error message 414
record, fixed length 5
record, variable length 5
relational expression 38-, 340
relational operator 38
reposition a file 57

460 VS FORTRAN Version 2 Language and Library Reference

request traceback 321
resetting In Data-In-Virtual 305
return code subroutines

SYSRCS 276

SYSRCT 278

SYSRCX 276

RETURN statement

In a function subprogram 196
In a subroutine subprogram 196

REWIND statement 198

REWRITE statement

formatted 199

unformatted 201

rewriting records 199
routines

explicitly called 263
Implicitly called

character 266

mathematical 265

service 267

rules

arithmetic expression construction 32
data conversion 97

language 3
run-time termination 283

S format code 113

SAA flagger 339
sample programs and output

array Items 364
non-recoverable failure 369

variable Items 362

sample storage printout 357
SASCN error message 420
SATN2 error message 420
save option table entry 317
SAVE statement 203

saving changes In Data-ln-Vlrtual 305
scale factor 104

SCNH error message 422
SDUMP subroutine

description 274
format specifications 274
message fragment 359
output 274
output format 357
output of symbolic dump 361
programming considerations 274
sample printouts 357

sequential access
INQUIRE statement 141

READ statement

formatted 173

unformatted 193

WRITE statement

formatted 223

unformatted 240

sequential access Input/output 342
service routines

assembler Information 345

ASSIGN M 277

CDUMP/CPDUMP 273

CLOCK 278

CPUTIME 280

Data-ln-Vlrtual subroutines 293

DIVCML 303

DIVINF 296

DIVINV 300

DIVRES 305

DIVSAV 305

DIVTRF 299

DIVTRV 304

DIWWF 298

DIWWV 302

DATIM 282

DUMP/PDUMP 271

end processing 283
error-handling subroutines 315

ERRMON subroutine 316

ERRSAV subroutine 317

ERRSET subroutine 318

ERRSTR subroutine 321

ERRTRA subroutine 321

EXIT 283

FILEINF 283

mathematical exception test 270
Multitasking Facility (MTF) Subroutines 335

DSPTCH 336

NTASKS 335

SHRCOM 338

SYNCRO 337

return code subroutines 276

SYSRCS 276

SYSRCT 276

SYSRCX 276

SDUMP 274

sizes 345

storage dump 271
SYSABD 287

SYSABN 287

UNTANY 288

UNTNOFD 288

XUFLOW 291

service subprograms
assembler Information 350

service subroutines 269

SEXP error message 419
SGAMA error message 427
shareable load 395, 396

sharing a common block 338
shift-out/shlft-ln characters

definition 444

documentation v

I/O support 154
In character set 5

In continued source lines 10, 12

Index 461

shift-out/shift-in characters (continued)
in source 11

SHRCOM subroutine 338

error messages 398
SIGN 252

registers used 349
SIN 248

error message 419
registers used 349

SIN/COS error message 419
sine and cosine subprograms 248
sine routines, registers used 348
SINH/COSH 250

error message 420
registers used 349

size and type declaration of an array 26
skip a line 98
slash 6

slash format code 115

SLOG error message 419
source language flagger 339
source language statement

fixed-form 11

free-form 9

source statement characters

digit 6
letter 6

special characters 6
BP format code 113

space considerations 347
special characters 6
specification statement 48

CHARACTER type 91
COMMON 66

COMPLEX type 91
DIMENSION 76

DOUBLE PRECISION type 91
EOUIVALENCE 89

explicit type 91
EXTERNAL 95

IMPLICIT 133

INTEGER type 91
INTRINSIC 147

LOGICAL type 91
NAMELIST 148

PARAMETER 158

REAL type 91
SAVE 203

SORT 251

error message 419
registers used 349

square root routines
example with vector registers 355
examples 351
registers used 348

square root subprograms 251
SS format code 113

SSCN error message 419

SSCNH error message 420
SSORT error message 419
statement

categories 45
descriptions 50
executable 4

explicit 23
fixed-form number 11,207

free-form label 207

functions of 45

implicit 23
inserting with INCLUDE 134
label 13, 207

fixed-form 11

free-form 9

maximum length 10
nonexecutable 4

number 51, 207
specification 23

statement function 342

statement function statement 204

statement label

READ statement

direct access, formatted 166
statement length 10, 11
statement order 49

status of a file 151

STNCT error message 420
stop display 213
stop program 83
STOP statement 207

error message 376
storage dump 271

See also utility routines
storage dump service routines 271
storage estimates, extended precision routines 345
storage printout, sample 357
storage, shared 66, 89
store entry in option table 321
SUBCHK function of DEBUG 72

subprogram
BLOCK DATA statement 48, 59

calling in assembler 345
definition 3

ENTRY statement 86

FUNCTION statement 48, 120
initialization instructions 344

SUBROUTINE statement 48, 208

subprogram statements 48
subprograms, explicitly called 263

absolute value 250

arcsine and arccosine 248

arctangent 248
bit manipulation 257
character manipulation 256
conversion 253

error function 251

exponential 246
gamma and log gamma 251

462 VS FORTRAN Version 2 Language and Library Reference

subprograms, explicitly called (continued)
hyperbolic sine and cosine 250
hyperbolic tangent 250
logarithmic 246
maximum/minimum 253

sine and cosine 248

square root 251
tangent and cotangent 249

subprograms, implicitly called
exponential 267

SUBROUTINE statement 208

subroutine subprogram
actual arguments 209
dummy arguments 209
END statement 84

ENTRY statement 86

RETURN statement 196

service and utility subroutines 269
subroutines for programming tasks 269
subroutines, general service 269
subscript

definition 25

examples 25
identify array element 25
in DATA statement 69

subscripts 25
substring

character 28

expression 28
in DATA statement 69

symbolic dump
array items 364
examples 361
how to call 274

non-recoverable failure 369

output format 357
variable items 361

symbolic dumps, output 357
symbolic name

See names

SYNCRO subroutine 337

syntax 4
SYSABD subroutine 287

SYSABN subroutine 287

SYSRCS subroutine 276

SYSRCT subroutine 276

SYSRCX subroutine 276

Systems Application Architecture flagger 339

T
T format code 112

table, error option 315
TAN 249

registers used 349
TAN/COTAN error message 420
tangent and cotangent subprograms 249
tangent routines

registers used 349

TANH 250

registers used 349
task subroutines 269

terminate processing (EXIT) 283
terminating access in Data-in-Virtual 299, 304
test

exponents 270
for divide-check exception 270

time subroutines

CLOCK and CLOCKX 278, 282
DATIM 282

DATIMX 282

TRACE OFF statement 213

in debug packet 72
TRACE ON statement 213

in debug packet 72
traceback 369

traceback request 321
trigonometric functions 248
trigonometric subprograms, error message 419
TRUE 19

truncation routines

registers used 349
two-to-real 265

type declaration
DBCS names 24

declaration of an array 26
EXPLICIT statement 24

IMPLICIT statement 24

predefined 23
type declaration by predefined specifications 23
type specification 133

u
unary signs 33
unconditional GO TO statement 126

underflow error message 378
underscore 6

unformatted I/O error message 408
unit

connected 138

connected to external file 157

INQUIRE statement 138

not connected to external file 157

number 138, 151
OPEN statement 151

unit connection 440

unit connection, determining 138
UNIT specifier

error messages 402
on the INQUIRE statement 138, 139

unlabeled DO statement 77

unlabeled DO WHILE statement 82

unnamed files 46

UNTANY subroutine 288

UNTNOFD subroutine 288

updating records 199

Index 463

user exit routine, coding the 319
utility and service subroutines

CDUMP/CPDUMP 273

DUMP/PDUMP 271

EXIT 283

SDUMP 274

XUFLOW 291

V
valid VS FORTRAN Version 2 programs 3
value separator 118
VAMTP error message 434
variable

character 28

declaration 23

definition 22

lengths 22
names 22

types 22
variable character, output format 358
variable items, sample program and output 382
variable noncharacter, output format 357
variable-length records 5
varying-view Data-in-Virtual subroutines 294
VASYN error messages

unit number out of range 411
VASYP error messages

asynchronous I/O ddname 404, 405
asynchronous I/O not supported 399
asynchronous I/O subtask 407
blocksize not specified 415
end of data set 409

end of record 408

I/O error 409

invalid address 413

no wait issued for outstanding I/O request 427
REWIND statement 426

unformatted I/O 408

WAIT statement 427

VCIA4 error message 406
VCLOP error message 403
VCOMH error messages

end of record 408

invalid character in FORMAT statement 408

nested parentheses overflow 398
VC0M2 error messages

address conflict in link mode 393

composite module conflict 393
I/O fixup routine 430
module loaded not recognized 394
secondary entry into main routine 430
specifier list conflict 396

VCTVH error messages
illegal decimal character 409
illegal hexadecimal character 412
integer value out of range 407
real value out of range 412

VDIOS error messages
direct access data set 414

direct access I/O 413

direct access read 414

direct/keyed access I/O statement 434
FORMATTED and UNFORMATTED I/O

requests 401
I/O error 409

incorrect record length specified 415
OPEN request ignored 401
OPEN statement ACTION specifier conflict 387
record length 414
record number 414

record number and length 396
SCRATCH file 401

unit number out of range 411
VDIVP error messages 394
vector

count register 353
error handling 353
interruption index 353
intrinsic function

calling sequence 351
result registers 347

mask register 353
registers, passing arguments in 351

vector entry points 354
vector register, intermediate 354
VEMGN error message 430

error count 429

VEMGN error messages
error monitor 430

text for error message 431
VFNTH error messages

divide by zero 378
overflow 377

program interruption 378
underflow 378

VIIOS error message 406
VINOP error message 402
VINOP error messages 410
VIOCP error message 430
VIOFP error message 430
VIOLP error messages

end of record 408

error in repeat count 413
incorrect delimiter 415

item size exceeds buffer length 407
VIONP error messages

end of record 412

invalid subscript 412
NAMELIST statement 412

VIOUF/VIOFM error message 389
VIOUP error messages 406

end of record 408

I/O fixup routine 430
VKIOS error messages

add record with duplicate key 391
direct/keyed access I/O statement 434

464 VS FORTRAN Version 2 Language and Library Reference

VKIOS error messages (continued)
file name 390

I/O statement processing 390
I/O statement refers to non-VSAM KSDS file 389

inconsistent record lengths 390
key argument length too long 388
key of reference conflict 392
key specifies no available file 391
KEYID specifier conflict 388
loss of file position 387
open an empty file 392
OPEN statement ACTION specifier conflict 387
OPEN statement with conflicting specifiers 387
record loading 393
record not found with specified key 388
record too short 389

VLCIO error messages
abend 431

library initialization 436
task initialization 435

VLINP error messages
load module does not contain shareable part 395
load module has incorrect format 395

part timestamp conflict 396
unable to branch to nonshareable part 395

VLOAD error message 396
VMEXP error messages

addressing mode conflict 435
multitasking facility 435
multitasking facility function 433
parallel subroutine load module 433

VMINI error messages
main task/load module conflict 435

parallel subroutine load module 432
VMMAA error messages

autotask dd statement 432

multitasking facility subtask 434
parallel subroutine load module 432

VMNTP error messages
multitasking facility function invalid 433
multitasking facility function without

arguments 433
VMOPP error messages

error number out of range 404
unmodifiable message table entry 405

VMPRM error message 432
VMSYP error message 433
VMTRM error messages

multitasking facility 435
multitasking facility subtask 434
parallel subroutine 435

VOPEP error messages 410
ACTION specifier 392
invalid access specifier 402
invalid blank specifier 403
invalid file specifier 402
invalid form specifier 403
invalid status specifier 402
KEYS specifier conflict 392

VOPEP error messages (continued)
OPEN statement issued for file already open 387
reel specifier conflict 397
status of scratch not allowed 403

VPARM error messages
autotask keyword 413
autotask keyword subparameter 432
invalid autotask keyword 431

VSAM error messages 399
VSAM linear data set, identifying 296
VSCOM error messages

I/O fixup routine 430
secondary entry into main routine 430

VSERH error message 413
VSIOS error messages

CLOSE statement 401

direct I/O 414

end of data set 409

FORMATTED and UNFORMATTED I/O

requests 401
I/O error 409

I/O in a parallel subroutine 434
OPEN request ignored 401
OPEN statement ACTION specifier conflict 387
REWIND statement 426

SCRATCH file 401

sequential I/O 413
unformatted I/O 408

unit number out of range 411
VSIOS/VDIOS error message 396
VSPAP error message 403
VSPIP error message 436
VSTAE error message 415
VSTIO error messages 437
WIOS error messages 409

ENDFILE statement 400

file positioning I/O statement in direct access
mode 399

I/O request made to unopened VSAM file 400
I/O statement 400

key sequenced data set 399
OPEN statement ACTION specifier conflict 387
record addition conflict 399

record length too long 399
record number 414

unit number out of range 411

w
WAIT statement 214

error messages 427
valid 215

write an end-of-file record 85

WRITE statement 216

asynchronous 216
error messages 399, 407
formatted with

direct access 218

keyed access 220
sequential access 223

Index 465

WRITE statement (continued)
formatted with (continued)

sequential access, internal 225
forms of 216

implied DO in 81
list-directed I/O with

external devices 228

internal files 231

NAMELIST with

external devices 233

internal files 235

unformatted with

direct access 236

keyed access 238
sequential access 240

X
X format code 111

XUFLOW subroutine 291

z
Z format code 21, 106

466 VS FORTRAN Version 2 Language and Library Reference

O

E

"c £

3 —
CT O
0) ^

e E
o E

'Zi 3
o

E h

m •->

E'm

0) V
— (0
Q. O
O O

55 0-

VS FORTRAN Version 2

Language and Library
Reference

SC26-4221-3

Reader's

Comment

Form

This manual Ispartofa library that servesas a reference source for system analysts, programmers, andoperators ofIBM systems.
You may use this form to communicate yourcomments aboutthis publication. Itsorganization, or subject matter, with the under
standing that IBM may use ordistribute whatever Information you supply In anyway It believes appropriate without Incurring any
obligation to you. Your comments will besenttotheauthor's department for whatever review and action. If any, are deemed appro
priate.

Note: Do not usethisform to request IBM publications. If you do, your orderwill bedelayed because publications are not stocked at
the address printed onthe reverse side. Instead, you should direct any requests for copies of publications, orfor assistance In using
yourIBM system,to yourIBM representative or to the IBM branchoffice serving yourlocality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Comments:

Ifyou want a reply, please complete the following Information.

Name

Company.

Address

Page No.

Phone No. {.

Thank you for your cooperation. No postage isnecessary If mailed In theU.S.A. (Elsewhere, an IBM office or representative will be
happy toforward your comments or you may mail them directly to the address In the Edition Notice on the back of the title page.)

SC26-4221 -3

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023
San Jose, OA 95161-9023

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE

UNITED STATES

iMilliiiililiillliiiiiilliiliililiiiiiliiiiilililii

Please do not staple Fold and tape

c

.9-5
*3 —
or O
0) Q)

O*
c q

_L
"5 o
6 E
o E

o ^

u

5 >

(/) CL

VS FORTRAN Version 2

Language and Library
Reference

SC26-4221-3

Reader's

Comment

Form

This manual is part of a librarythat serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication. Its organization, or subject matter, with the under
standing that IBM may use or distribute whatever information yousupply inany way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever reviewand action, ifany, are deemed appro
priate.

Note: Donot use this formto request IBM publications. If you do, your order will be delayed because publications are not stocked at
the address printedon the reverse side. Instead,youshoulddirectany requests forcopies ofpublications, or forassistance Inusing
your IBM system, to your IBM representative or to the IBM branch officeserving your locality.

If youhave applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Comments:

Ifyou want a reply, please complete the following information.

Name

Company.

Address

Page No.

Phone No. (.

Thank you foryourcooperation. No postage is necessary ifmailed inthe U.S.A. (Elsewhere, an IBM office or representative will be
happy toforward your comments or you may mail them directly totheaddress in the Edition Notice ontheback ofthetitle page.)

SC26-4221 -3

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023
San Jose, OA 95161-9023

ln.li..l.l.l..lll

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Fold and tape

3 —

CT O
0) V

6 E
o E

'Zi 3
o cn

5 >

Q. «

o o

to Q-

VS FORTRAN Version 2

Language and Library
Reference

SC26-4221-3

Reader's

Comment

Form

This manual is part of a librarythat serves as a reference source for system analysts, programmers, and operators of IBM systems.
Youmay use this form to communicate your comments about this publication. Its organization, or subject matter, withthe under
standing that IBM may use or distribute whatever information you suppiy in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, ifany, are deemed appro
priate.

Note: Do not use this form to request IBM publications. Ifyou do, your order will be delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Ifyou have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Comments:

If you want a reply, please complete the following information.

Name

Company.

Address

Page No.

Phone No. (.

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Noticeon the back of the title page.)

SC26-4221 -3

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023
San Jose, OA 95161-9023

I...II..I.I.I..III

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE

UNITED STATES

Fold and tape

••

Printed in U.S.A.

Program Number
5668-805
5668-806

The VS FORTRAN Version 2 Library

Diagnosis Guide

General Ir formatlon

Installatio 1 and Customization for MVS

Instailatio 1 and Customization for VM

Interactivd Debug Guide and Reference

Language and Library Reference

Licensed Program Specifications

Programming Guide

Reference Summary

. i .
/ . * •

File Number
S370-40

LY27-9516

GC26-4219

SC26-4340

SC26-4339

SC26-4223

SC26-4221

GC26-4225

SC26-4222

SX26-3761

m

m

