
i-'

VS FORTRAN Version 2

Programming Guide

Release 3

sinh 3x sl'nh x(4 cosh® x 1)
sinh 4x sinh x cosh x(8 cosh® x 4)
sinh 5x sinh x{1 12 cosh® x • 16 cosh** x)
cosh 3x cosh x(4 cosh® X 3)
cosh 4x 1 8 cosh® x 8 cosh"* x

cosh 5x cosh xjS 20 cosh® x 16 cosh** x]

X=

+.

SC26-4222-3

4^
; -••.-iC..-

; - Sk

• -ri:^

-^4;4"-p

VS FORTRAN Version 2 3026^222-3

Programming Guide

Release 3

Fourth EdIUon (March 1988) _

This is a major revision of, and makes obsoiete, SC26-4222-2.

This edition appiies to Reiease 3 of VS FORTRAN Version 2, Program Numbers 5668-805 and 5668-806,
and to any subsequent reieases untii otherwise indicated in new editions or technicai newsietters.

The changes for this edition are summarized under "Summary of Changes" foiiowing the preface
("About This Manuai"). Specific changes are indicated by a verlicai bar to the left of the change.
These bars wiii be deieted at any repubiication of the page affected. Editoriai changes that have no
technicai significance are not noted.

Changes are made periodicaiiy to this pubiication; before using this publication in connection with the
operation of iBM systems, consult the latest IBM System/370, SOxx, 4300, and 9370 Processors Bibli
ography. GC20-0001, for the editions that are applicable and current.

References in this pubiication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this pubiication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality, ifyou request publications from the address given below, your order wiii be
delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication, ifthe form has been removed,
comments may be addressed to IBM Corporation, Programming Publishing, P. O. Box 49023, San Jose, ' 1
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986, 1987, 1988

About This Book

This book explains how to compile and run programs using VS FORTRAN
Version 2. It also contains information on advanced coding topics. This book is
not intended as a tutorial on the FORTRAN language. Rather, it assumes you
have basic FORTRAN knowledge and now want to learn to use VS FORTRAN
Version 2.

How This Book is Organized
This book is organized as follows:

Chapter 1, "Overview of VS FORTRAN Version 2," gives an overview of the
VS FORTRAN Version 2 language, compiler, library, and Interactive Debug.

Chapter 2, "Compiling Your Program," explains how to compile your
program under VM, MVS, and TSO.

Chapter 3, "Using the Compiler Options," describes the compiler options
and explains how to interpret the compiler listing.

Chapter 4, "Running Your Program," explains how to run your program
under VM, MVS, and TSO.

Chapter 5, "Using the Run-Time Options and Identifying Run-Time Errors,"
describes the run-time options and several VS FORTRAN Version 2 features
to help you identify run-time errors.

Chapter 6, "Performing Input/Output Operations," explains how to use
READ, WRITE, and other input/output statements.

Chapter 7, "Associating Data," explains how to associate data between
calling and called programs by means of passed arguments and common
data areas. It also explains how to use the intercompilation analysis
feature.

Chapter 8, "Optimizing Your Program," suggests ways to make your pro
grams run faster and the best way to use the OPTIMIZE compiler option.

Chapter 9, "Vectorizing Your Program," explains how to code programs
that make use of the IBM System 3090 Vector Facility.

Chapter 10, "Creating Reentrant Programs," explains the advantages and
limitations of reentrant programs and gives an overview of how to create
and use them.

Chapter 11, "Using VSAM with VS FORTRAN Version 2," discusses consid
erations for using VSAM files with VS FORTRAN Version 2.

Appendix A, "Assembler Language Considerations," explains how to call
FORTRAN subprograms and main programs from assembler programs.

Appendix B, "Object Module Records and Statement Table," describes the
structure of the object module and contents of the SYM object module
record. It also describes the statement table, which contains information on

the internal statement numbers in the program.

About This Book III

Appendix C, "Compatibility Considerations," discusses compatiblity of VS
FORTRAN Version 2 with VS FORTRAN Version 1 as well as with earlier
IBM FORTRAN products.

Appendix D, "Internal Limits in VS FORTRAN Version 2," describes the
specifications for the maximum sizes and lengths forvarious VS FORTRAN
statements and contructs.

Appendix E, "The Multitasking Facility (MTF)," explains how to use the VS
FORTRAN Version 2 multitasking facility (MTF) under MVS.

Appendix F, "Vector Report Diagnostic Messages," describes the diag
nostic messages that appear in the vector report listing.

Appendix G, "What Determines File Existence," describes the conditions
that VS FORTRAN Version 2 uses to determine the existence of input/output
files.

Appendix H, "Considerations for Specifying RECFM, LRECL, and BLKSIZE,"
describes how VS FORTRAN prioritizes record format, record length, and
block size values from different sources and gives the IBM-supplied defaults
for these values.

Appendix I, "Sample Compiler Listing with Double-Byte Characters," shows
a compiler listing containing double-byte Kanji characters.

How to Use This Book

Syntax Notation

For the task of application programming, you will need to use both this book
and VS FORTRAN Version 2 Language and Library Reference. This book con
tains information on how to compile and run your VS FORTRAN Version 2 pro
grams, as well as some information on advanced coding topics. VS FORTRAN
Version 2 Language and Library Reference contains more detailed, supplemen
tary information on the VS FORTRAN Version 2 language and library.

The following items explain how to interpret the syntax used in this manual:

Uppercase letters and special characters (such as commas and paren
theses) are to be coded exactly as shown, except where otherwise noted.
You can, however, mix lowercase and uppercase letters; lowercase letters
are equivalent to their uppercase counterparts, except in character con
stants.

•- Italicized, lowercase letters or words indicate variables, such as array
names or data types, and are to be substituted.

Underlined letters or words indicate IBM-supplied defaults.

Ellipses (...) Indicate that the preceding optional items may appear one or
more times in succession.

Braces {{ }) group items from which you must choose one.

Square brackets ([]) group optional items from which you may choose
none, one, or more.

OR signs (|) Indicate you may choose only one of the items they separate.

IV VS FORTRAN Version 2 Programming Guide

Blanks in FORTRAN statements are used to improve readability; they have
no significance, except when shown within apostrophes (' '). In
non-FORTRAN statements, blanks may be significant. Code non-FORTRAN
statements exactly as shown.

For example, given the following syntax:

CALL name [({argl l,arg2\ ...])]

these statements are among those allowed:

CALL ABCD

CALL ABCD ()
CALL ABCD (X)
CALL ABCD (X. Y)
CALL ABCD {X. Y, Z)

For double-byte character data, the following syntax notation is used:

•< represents the shift-out character (X'OE'), which indicates the start
of double-byte character data

> represents the shift-in character {X'OF'), which indicates the end of
double-byte character data

represents the left half of an EBCDIC double-byte character (X'42')

kk represents a double-byte character not in the EBCDIC double-byte
character set

About This Book V

Summary of the VS FORTRAN Version 2 Publications
The following table lists the VS FORTRAN Version 2 publications and the tasks
they support.

Task VS FORTRAN Version 2 Publications Order Numbers

Evaluation and

Planning

General Information

Licensed Program Specifications

GC46-4219

GC26-4225

Installation and

Customization

Installation and Customization for VM

Installation and Customization for MVS

SC26-4339

SC26-4340

Application
Programming

Language and Library Reference
Programming Guide
Interactive Debug Guide and Reference
Reference Summary

SC26-4221

SC26-4222

SC26-4223

SX26-3751

Diagnosis Diagnosis Guide LY27-9516

industry Standards
The VS FORTRAN Version 2 Compiler and Library licensed program is designed
according to the specifications of the following industry standards, as under
stood and interpreted by IBM as of March, 1988.

The following two standards are technically equivalent. In the publications, ref
erences to FORTRAN 77 are references to these two standards:

American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 (also known as FORTRAN 77)

International Organization for Standardization ISO 1539-1980 Programming
Languages-FORTRAN

The bit string manipulation functions are based on ANSI/ISA-S61.1.

The following two standards are technically equivalent. References to
FORTRAN 66 are references to these two standards:

»• American Standard FORTRAN, X3.9-1966

*• International Organization for Standardization ISO R 1539-1972 Program
ming Languages-FORTRAN

At both the FORTRAN 77 and the FORTRAN 66 levels, the VS FORTRAN Version
2 language also includes IBM extensions. References to current FORTRAN are
references to the FORTRAN 77 standard, plus the IBM extensions valid with it.
References to old FORTRAN are references to the FORTRAN 66 standard, plus
the IBM extensions valid with it.

Vi VS FORTRAN Version 2 Programming Guide

Documentation of IBM Extensions
In addition to the statements available in FORTRAN 77, IBM provides "exten-
sions" to the language. In VS FORTRAN Version 2 Language and Library Refer-

' ence, these extensions are printed in color.

About This Book Vil

^ Summary of Changes

Release 3, March 1988

Major Changes to the Product
Enhancements to the vector feature of VS FORTRAN Version 2

— Automatic vectorizatlon of user programs Is Improved by relaxing some
restrictions on vectorlzable source code. Specifically, VS FORTRAN
Version 2 can now vectorize MAX and MIN Intrinsic functions, COMPLEX
compares, more adjustably dimensioned arrays, and more DO loops
with unknown Increments.

— Ability to specify certain vector directives globally within a source
program.

— Addition of an option to generate the vector report in source order.

— Ability to collect tuning Information for vector source programs.

— Ability to record complle-tlme statistics on vector length and stride
and Include these statistics In the vector report.

— Ability to record and display run-time statistics on vector length and
stride. Two new commands, VECSTAT and LISTVEC, have been
added to Interactive Debug to support this function.

— Enhancements to Interactive Debug to allow timing and sampling of
DO loops.

— Inclusion of vector feature messages In the on-line HELP function of
Interactive Debug.

— Simplification of the VECTOR complle-tlme option.

— Vectorizatlon Is allowed at 0PTIMIZE(2) and 0PTIMIZE(3).

— Changes to the way In which the vector feature treats partial sum proc
essing result In a performance Improvement.

Enhancements to the language capabilities of VS FORTRAN Version 2

— Ability to specify the file or data-set name on the INCLUDE statement.

— Ability to write comments on the same line as the code to which they
refer.

— Support for the DO WHILE programming construct.

— Support for the ENDDO statement as the terminal statement of a DO
loop.

— Enhancements to the DO statement so that the label of the terminal

statement Is optional.

— Support for statements extending to 99 continuation lines or a maximum
of 6600 characters.

Summary of Changes IX

— Implementation of IBM's Systems Application Architecture (SAA)
FORTRAN definition; support for a flagger to indicate source language
that does not conform to the language defined by SAA.

— Support for the use of double-byte characters as variable names and as
character data in source programs, I/O, and for Interactive Debug input
and output.

— Support for the use of a comma to indicate the end of data in a for
matted input field, thus eliminating the need for the user to insert
leading or trailing zeros or blanks.

*• Enhancements to the programming aids in VS FORTRAN Version 2

— Enhancements to the intercompilation analysis function to detect con
flicting and undefined arguments.

— Support for the Data-In-Virtual (DIV) facility of MVS/XA. (You will find
the discussion of VS FORTRAN Version 2's support for DIV in the Lan
guage and Library Reference.)

— Ability to allocate certain commonly used files and data sets dynam
ically.

— Enhancements to the Multitasking Facility to allow large amounts of
data to be passed between parallel subroutines using a dynamic
common block.

— Support for named file I/O in parallel subroutines using the Multitasking
Facility.

Ability to determine the FORTRAN unit numbers that are available by using
the UNTANY and UNTNOFD service subroutines.

Enhancements to the full screen functions of Interactive Debug

Major Changes to This Manual
Documentation of the major product enhancements has been added.

Chapters have been reorganized to improve retrievability of information.

Editorial changes have been made throughout.

Release 2, June 1987

Major Changes to the Product
> Support for 31-character symbolic names, which can include the underscore

{_) character.

The ability to detect incompatibilities between separately-compiled program
units using an intercompilation analyzer. The ICA compile-time option
invokes this analysis during compilation.

• Addition of the NONE keyword for the IMPLICIT statement.

Enhancement of SDUMP when specified for programs vectorized at
LEVEL(2), so that ISNs of vectorized statements and DC-loops appear in the
object listing.

X VS FORTRAN Version 2 Programming Guide

• The ability of run-time library error-handling routines to identify vectorized
statements when a program interrupt occurs, and the ability under Interac
tive Debug to set breakpoints at vectorized statements.

• The ability, using the INQUIRE statement, to report file existence information
based on the presence of the file on the storage medium.

Addition of the OCSTATUS run-time option to control checking of file exist
ence during the processing of OPEN statements, and to control whether
files are deleted from their storage media.

• Under MVS, addition of a data set and an optional DO statement to be used
during processing for loading library modules and Interactive Debug.

Under VM, the option of creating during installation a single VSF2LINK
TXTLIB for use in link mode in place of VSF2LINK and VSF2F0RT.

The ability to sample CPU use within a program unit using Interactive
Debug. The new commands LISTSAMP and ANNOTATE have been added
to support this function.

The ability to automatically allocate data sets for viewing in the Interactive
Debug source window.

Major Changes to This Manual
Documentation of the major product enhancements has been added.

Release 1.1, September 1986

Major Changes to. the Product
Addition of vector directives, including compile-time option (DIRECTIVE) and
installation-time option (IGNORE)

Addition of NOIOINIT run-time option

Addition of support for VM/XA System Facility Release 2.0 (5664-169) oper
ating system

Major Changes to This Manual
Documentation of the above product enhancements has been added.

Summary of Changes XI

Contents

Parti. Introduction ^

Chapter 1. Overview ofVS FORTRAN Version 2 3
Compiler ^
Run-Time Library 3
Interactive Debug ^

Part 2. Compiling and Running Your Program 5

Chapter 2. Compiling Your Program 7
Compiling Your Program under VM 7

Requesting Compilation 7
Using the FORTRAN INCLUDE Directive 9
Compiler Output '•O

Compiling Your Program under MVS 12
Job Processing 12
Requesting Compilation Only 14
Defining Compiler Data Sets 15
Using the FORTRAN INCLUDE Directive 16
Compiler Output 17

Compiling Your Program under TSO 18
Allocating Compiler Data Sets 18
Req-uesting Compilation 20
Compiler Output 20

Chapter 3. Using the CompilerOptions 23
Available CompilerOptions 23
Modifying Compiler Options—@PROCESS Statement 36
Compiler Output 37
Using the Compiler Output Listing 38

Compilation Identification 38
Source Program Listing—SOURCE Option 38
Source Program Listing—SRCFLG Option 40
Diagnostic Message Listing—FLAG Option 40
Using the SXM Option 42
Using the MAP and XREF Options 42
Source Program Map—MAP Option 43
Cross Reference—XREF Option 44
End of Compilation Message 46

Using the Terminal Output Display—TERMINAL and TRMFLG Options 46
Using the Standard Language Flagger—FIPS Option 47

I Using the SAA Flagger—SAA Option 47
Using the Automatic Precision Increase Facility—AUTODBLOption 47

Precision Conversion Process 47
Programming Considerations with AUTODBL 49
Promotion of Single and Double Precision Intrinsic Functions 53

Chapter 4. Running Your Program 59

Contents XIII

Running Your Program Under VM 59
Selecting Load Mode or Link Mode 59
Creating an Executable Program and Running It 60
Specifying Run-Time Options 64
Relating Pliysical Files to FORTRAN I/O Files 65
VM/XA Considerations 68

Running Your Program Under MVS 73
Loading Library Modules at Run Time 73
Link-Editing Your Program 75
Using Partitioned Data Sets 84
Input/Output—System Considerations 85
Overlaying Programs—System Considerations 88
MVS/XA Considerations 89

Running Your Program under TSO 93
Selecting Link Mode or Load Mode 94
Link-Editing Your Program—TSO LINK Command 95
Running a Load Module under TSO 96
Fixing Run-Time Errors 98
Using OUSTS 99

Chapter 5. Using the Run-Time Options and identifying Run-Time Errors . 101
Available Run-Time Options 101
Establishing a Default Run-Time Options Table 106
Identifying Run-Time Errors 107

Using the Optional Traceback Map 107
Extended Error Handling 110
Static Debug Statements 112
Object Module Listing—LIST Option 114
Formatted Dumps 117

Identifying User Coding Errors 117

Parts. Advanced Coding Topics 119

Chapter 6. Performing Input/Output Operations 121
Concepts and Terminology 121

External and Internal Files 121

File Existence 122

File Definitions and Dynamic File Allocation 122
Named Files 123

Unnamed Files 123

Units and File Connection 125
Access Methods Used By FORTRAN 125
Access Methods Used By the Operating System 126
Records As Seen By FORTRAN 127
Records as Seen By the Operating System 127

Overview of Input/Output Statements 129
Reading and Writing Data 130

Reading and Writing Formatted Data 130
Reading and Writing Unformatted Data 142
Using Internal Files 145

Connecting, Disconnecting, and Reconnecting Files 147
Connecting Files 147
Disconnecting Files 154
Reconnecting Files 156

Xlv VS FORTRAN Version 2 Programming Guide

Gathering Useful information About Units and Files 158
Forms of INQUIRE 158
Summary ofWhat You Can Find Out 159
Where In Your Program You Can Code INQUIRE 164
Sample Program 1®^

I Dynamically Allocating Files 185
I How to Dynamically Allocate a File 185
I Gathering Information About Dynamically Allocated Files 171

Monitoring Errors 1^^
Considerations for Specific Access Methods 174

Input/Output Operations for Sequential Access 174
Input/Output Operations for Direct Access 180
Input/Output Operations for Keyed Access 181

I Considerations for Double-Byte Data 190

Chapter 7. Associating Data 193
Passing Arguments to Subprograms 193

General Rules for Arguments 193
Using Common Areas 184

Referencing Shared Data in Common 196
Efficient Arrangement of Variables in Common 196
EQUIVALENCE Considerations 198
Using Blank and Named Common (Static and Dynamic) 200

Intercompilation Analysis 201
Introduction 201
Types of Errors Detected by Intercompilation Analysis 202
When to Use the Intercompilation Analysis Feature 207
How to Use Intercompilation Analysis 208
Sample Programs Compiled with Intercompilation Analysis 212
Output from the Sample Program 214

Chapters. Optimizing Your Program 217
Optimization Levels 217

Optimization Level 0 217
Optimization Level 1 217
Optimization Levels 2 and 3 217

Debugging Optimized Programs 219
Increasing Optimization of Your Program 219

Optimization Recommendations 220
Programming Recommendations 220

Chapter9. Vectorizing Your Program 227
Terminology 227
Eligibility of DO Loops for Vectorization 234

Vectorizable Mathematical Functions 236
Producing Vector Reports 237

Displaying A Report on a Terminal 237
Printing Reports 238

I Gathering Run-Time Statistics 245
Examples of Vectorization 245
Techniques for Improving Vectorization 248
Using Vector Directives 253

Applications 254
Specifying Vector Directives 254
Verifying Correct Application of Directives 265

Contents XV

Considerations and Restrictions for Vectorization 267

Vector Versus Scalar Summation 267

Version 2 Versus Version 1 Math Library Routines 267
Subscript Values and Array Bounds 268
Interaction with Static Debug Statements 268 ^

Chapter 10. Creating Reentrant Programs 269
Comparing Reentrant and Nonreentrant Programs 269
Sharing a Reentrant Program 270
Advantages of Sharing Reentrant Programs 271
Limitations and Disadvantages of Rfeentrancy 271
Preparing to Use a Reentrant Program 271
Summary of Steps to Create and Use a Reentrant Program 276

Creating and Using a Reentrant Program under VM 277
Step 1: Design and Code 277
Step 2: Compile 277
Step 3: Separate the Two Parts 277
Step 4: Prepare an Executable Program from the Nonshareable Parts 280
Step 5: Link-edit the Shareable Parts 281
Step 6; Install the Shareable Parts in a DCSS 282
Step 7: Run the Program 285
CMS EXEC Files to Run the Separation Tool 285

Creating and Using a Reentrant Program under MVS 291
Step 1: Design and Code 291
Step 2: Compile 291
Step 3: Separate the Two Parts 291
Step 4: Prepare an Executable Program from the Nonshareable Parts 293
Step 5: Link-edit the Shareable Parts 294
Step 6; Install the Shareable Parts in an LPA 295
Step 7: Run the Program 295
MVS Cataloged Procedures for the Separation Tool 295

Link-Editing and Running a Reentrant Program under TSO 296

Chapter 11. Using VSAM with VS FORTRAN Version 2 299
Organizing Your VSAM File 299

VSAM Sequential File Organization 299
VSAM Direct File Organization 299
VSAM Keyed File Organization 299
VSAM Linear Data Set Organization 300

Processing VSAM Files 300

VSAM Terminology 300
Defining VSAM Files 301

Defining VSAM Files—General Considerations 302
Examples of Defining a VSAM File 302

Defining Alternate Indexes 305
Alternate Index Terminology 306
How to Build and Use Alternate Index Paths 306

Planning to Use Alternate Indexes 306
Cataloging and Loading Alternate Indexes 307

Loading Your VSAM KSDS 307
Using Operating System Data Definition Statements 308
Processing DEFINE Commands 309
Source Language Considerations—VSAM Files 310

Processing VSAM Sequential Files 311
Processing VSAM Direct Files 312

XVI VS FORTRAN Version 2 Programming Guide

Processing VSAM Keyed Files 315
I Processing VSAM Linear Files 315

Obtaining the VSAM Return Code—lOSTAT Option 316

Part 4. Appendixes 317

Appendix A. Assembler Language Considerations 319
Calling FORTRAN Subprograms from Assembler Programs 319

Initializing the Run-Time Environment 319
Register Conventions 321

Invoking a FORTRAN Main Program 323
Assembler Subprograms to Be Called from FORTRAN 323
Using FORTRAN Data in Assembler Subprograms 324

Requesting Compilation from an Assembler Program 325
Retrieving Arguments in an Assembler Program 326
Internal Representation of VS FORTRAN Version 2 Data 330

Appendix B. Object Module Records and Statement Table 335
SYM Record 335

Statement Table 339

Appendix C. Compatibility Considerations 341
VS FORTRAN Versions 1 and 2, and Earlier IBM FORTRANs Differences 342
Passing Character Arguments 344

Appendix D. Internal Limits in VS FORTRAN Version 2 347

Appendix E. The Multitasking Facility (MTF) 349
Introduction to MTF 349

What MTF Is 349

What MTF Does 349

The Concept of Computational Independence 351
Running a VS FORTRAN Version 2 Program without MTF 352
Running a VS FORTRAN Version 2 Program with MTF 353
Running with Only One Parallel Subroutine 353
Running with Two Different Parallel Subroutines 355
Running with Multiple Instances of the Same Parallel Subroutine 357

Designing and Coding Applications for MTF 358
An Example of Changing an Application to Use MTF 361

I Another Example of Changing an Application to use MTF 364
Coding Rules 367

Compiling and Linking Programs That Use MTF 367
Creating the Main Task Program Load Module 367
Creating the Parallel Subroutines Load Module 368
Link-Editing Considerations 368

Running Programs That Use MTF 369
Example of JCL 371
Debugging Programs that Use MTF 371
Using MTF with Load Mode 371

I What to Avoid When Using MTF 372

^^1^ Appendix F. Vector Report Diagnostic Messages 373
^ Message for Unanalyzable Loops (UNAN) 374

Messages about Recurrences (RECR) 385

Contents XVll

Messages for Unsupportable Constructs (UNSP) 405
Messages for Statements which Can Be Vectorized (ELIG or VECT) 415
Listing Clarification Messages (SCAL or VECT) 417
Vector Directive Messages (VDIR) 419

'

Appendix G. What Determines File Existence 433
Conditions that Apply to All Files 434
Conditions that Apply to All Unnamed Files 435
Additional Conditions Specific to Certain Files 435

Basic Conditions 435

MVS File Existence Tables 435

VM File Existence Tables 441

I Appendix H. Considerations for Specifying RECFM, LRECL, and BLKSiZE 445
I Priority of Processing under MVS 445
I Priority of Processing under CMS 446
I MVS and CMS Default Values 446

I Appendix I. Sample Compiler Listing with Double-Byte Characters 451

Index 453

O

XViii VS FORTRAN Version 2 Programming Guide

Figures

1. Compiler Data Sets 15
2. Compiler Data Set DCB Default Values 16
3. VS FORTRAN Version 2 Compiler Options 23
4. Conflicting Compiler Options 36
5. Source Program Listing Example—with IF, DO, and INCLUDE Flags . . 39
6. Source Program Listing Example—SOURCE and SRCFLG Options ... 40

/6. Source Program Listing Example—SOURCE and SRCFLG Options ... 40
7. Examples of Compiler Messages—FLAG Option 41
8. Example of a Storage Map—MAP Option 43
9. Example of Cross Reference—XREF Option 45

10. Example of Compile-Time Messages—TRMFLG Option 46
11. Results of the TERMINAL|NOTERMINAL and TRMFLG|NOTRMFLG

Options 46
12. Promotion of Single and Double Precision Intrinsic Functions for

LANGLVL{77) 53
13. Promotion of Single and Double Precision Intrinsic Functions for

LANGLVL{66) 55
14. VS FORTRAN Standard Input/Output Units 65
15. AMODE Values 70

16. Default Values for AMODE on the GENMOD Command 70

17. Default Values for AMODE on the LOAD Command 71

18. Default Values for AMODE on the LKED Command 71

19. RMODE Values 71

20. Linkage Editor Data Sets '. . . . 80
21. Loader Data Sets 81

22. Load Module Execution Data Sets 82

23. Load Module Execution Sequential Data Set DCB Default Values ... 82
24. IBM-Supplied Non-reentrant Cataloged Procedures 84
25. Sample Traceback Map 108
26. Using Static Debug Statements 113
27. Object Module Listing Example—LIST Compiler Option 115
28. VS FORTRAN Input/Output Statements 129
29. List-Directed Output Formats 131
30. WRITE Statement Specifiers for List-Directed Formatting 132
31. READ Statement Specifiers for NAMELIST Formatting 135
32. Some Format Codes and Their Meanings 139
33. WRITE Statement Specifiers When Specifying Your Own Format . . . 140
34. WRITE Statement Specifiers When Specifying Your Own Format ... 142
35. Sample Program—Transferring Data to an Internal File 146
36. OPEN statement specifiers 149
37. Overriding Defaults for Preconnected Files 152
38. CLOSE statement specifiers 154
39. Files That Can Be Deleted 155

40. Summary of the information you can get with INQUIRE 160
41. Characteristics that Determine Whether a File Can Be Connected for

Sequential, Direct, or Keyed Access 163
42. Characteristics that Determine Whether a File Can Be Connected for

Formatted or Unformatted I/O 163

43. Sample Program—Using the INQUIRE Statement 165
44. Parameters on CALL FILEINF 169

45. Formulas for Primary Space under MVS 171

Figures xix

I 46. Example of Using the FILEINF Routine with INQUIRE and OPEN
I Statements ''73

47. ENDFILE Statement Specifiers 175
48. REWIND Statement Specifiers 176
49. The WRITE Statement Positions the File to the Next Subfile 178
50. Values Returned for OPENED When You Code FILE = 'FTnnFmmm' . 179
51. Result of Attempting to Delete A Set of Subfiles for which Deletion Is

Not Allowed 179
52. Coding the ACTION Specifier on the OPEN Statement 182
53. REWRITE Statement Specifiers 187
54. REWIND Statement Specifiers 188
55. Transmitting Assignment Values between Common Areas 195

I 56. Intercompilation Analysis Messages 211
57. ICATEST Input Listing 213

I 58. Options Specified for ICATEST 213
I 59. ICATEST Output Listing - External Cross Reference 214
I 60. ICATEST Output Listing - Compilation Messages 215

61. How Vector Processing Speeds Run Time 227
62. Intrinsic Functions and Mathematical Operations that Use Vector

Hardware 236
63. Intrinsic Functions and Mathematical Operations Evaluated Using

Scalar Code 236
64. Sample Vector Report, Displayed on a Terminal 237

I 65. Printed Listing Including Vector Report 243
66. Sample Routine to Report an Invalid Directive 266
67. Sample Routine to Check Indexing Arrays for Duplicate Values . . . 266
68. Nonreentrant Program Requires Multiple Copies for Concurrent Use 269
69. Reentrant Program Saves Space for Concurrent Users 270
70. Using The Separation Tool on a Single Program 272
71. Using The Separation Tool on Multiple Programs with the Assigned

Name Form 273
72. Using the Separation Tool with the Default Name Form 275
73. VSF2RCS —Compile Reentrant Program and Separate the Parts . . 286
74. VSF2RSEP —Separate Nonshareable and Shareable Parts 288
75. IBM-Supplied Cataloged Procedures for the Separation Tool 296
76. CLIST to Invoke the Separation Tool 297
77. VSAM Terminology 301
78. FORTRAN Statements Valid with VSAM Files 311
79. Libraries Containing Mathematical Routines 341
80. Internal Limits in VS FORTRAN Version 2 347
81. Sample Code to Be Changed to Use MTF 361
82. The Sample Code as a Parallel Subroutine 361
83. Scheduling Two Instances of a Parallel Subroutine 362
84. Calculating Lower and Upper Bounds for Each Instance of the

Subroutine 362
85. Lowerand Upper Bounds for the K Loop 363
86. Scheduling a Variable Numberof Instances of a Parallel Subroutine 363
87. Passing the Value of the DO Variable to a Parallel Subroutine 364

I 88. Sample Code to be Changed to Use MTF 365
I 89. The Sample Code as Two Subroutines 366
I 90. Scheduling Two Different Parallel Subroutines 367

91. Sample JCL to Compile and Link Main Task Program 367
92. Sample JCL to Compile and Link Parallel Subroutines 368
93. Run-Time JCL for MTF 369
94. Example Run-Time JCL 371

XX VS FORTRAN Version 2 Programming Guide

95. File Existence Table for DASD (MVS) 436
96. File Existence Table for Reusable VSAM (MVS) 437
97. File Existence Table for Non-Reusable VSAM (MVS) 437
98. File Existence Table for PDS Member (MVS) 438
99. File Existence Table for Labeled Tape File (MVS) 438
100. File Existence Table for Unlabeled Tape File (MVS) 439
101. File Existence Table for Sysout Data Sets (MVS) 439
102. File Existence Table for Unit Record Output Devices (MVS) 440
103. File Existence Table for Files Whose File Definitions Specify DUMMY

(MVS) 440
104. File Existence Table for DASD Device (VM) 441
105. File Existence Table for Reusable VSAM (VM) 442
106. File Existence Table for Non-Reusable VSAM (VM) 442

I 107. File Existence Table for Library Member (VM) 443
108. File Existence Table for Tape File (VM) 443
109. File Existence Table for Unit Record Output Devices (VM) 444
110. File Existence Table for Files Whose File Definitions Specify DUMMY

(VM) 444
I 111. IBM-Supplied Installation Defaults for File Characteristics 449
I 112. Sample Compiler Listing with Double-Byte Characters 451

Figures XXi

Part 1. Introduction

Part 1. Introduction 1

Chapter 1. Overview of VS FORTRAN Version 2

Compiler

The VS FORTRAN Version 2 language is best suited to applications that involve
mathematical computations and other manipulation of arithrnetic data. The lan
guage consists of a set of characters, conventions, and rules that are used to
convey information to the compiler. The basis of the language is a statement
containing combinations of names, operators, constants, and words (keywords)
whose meaning is predefined to the compiler. For complete information on the
VS FORTRAN Version 2 language, see VS FORTRAN Version 2 Language and
Library Reference.

The VS FORTRAN Version 2 product consists of a compiler, an interactive
debugging facility, and an run-time library of subprograms.

The VS FORTRAN Version 2 compiler analyzes the source program statements
and translates them into a machine language program called the object
program. The object program can be combined with library routines to form a
program which you can then run. When the compiler detects errors in the
source program, it produces appropriate diagnostic messages.

The compiler operates under the control of an operating system that provides it
with input, output, and other services. Object programs generated by the com
piler also operate under operating system control and depend on it for similar
services.

Information on how to compile your source programs is contained in this book.

Run-Time Library
The VS FORTRAN Version 2 run-time library contains subprograms which can
be combined with compiled source code.

You can compile and add your own subprograms to furnish any commonly used
code sequences. These subprograms must reside in a private data set called
at load or link-edit time.

For complete information on the library, see VS FORTRAN Version 2 Language
and Library Reference.

Interactive Debug
VS FORTRAN Version 2 Interactive Debug is a flexible and efficient tool that
assists you in monitoring your VS FORTRAN programs as they run.

Interactive Debug allows you to:

Start, suspend, and continue program processing
Examine, change, and display values of variables

Chapter 1. Overview of VS FORTRAN Version 2 3

*- Gather and display program performance information
• Trace program transfers
• Control the action taken for run-time errors

Save output in a file ^

For information on how to use Interactive Debug, see VS FORTRAN Version 2
Interactive Debug Guide and Reference.

4 VS FORTRAN Version 2 Programming Guide

Part 2. Compiling and Running Your Program

Part 2. Compiling and Running Your Program 5

Chapter 2. Compiling Your Program

The VS FORTRAN Version 2 compiler translates FORTRAN source statements
Into object code and creates an object module for processing. With the fol
lowing exceptions, you can compile your source program under any supported
operating system and then run It under any of the other supported systems;

Programs with functions unique to MVS, such as Asynchronous I/O, Data-ln-
Vlrtual, or MTF, can be compiled under VM, but must be run under MVS.

Programs with system-dependent file names on I/O statements can be com
piled under any operating system but must be run on the appropriate
system.

Programs with a system-dependent file name on the INCLUDE compiler
directive must be compiled on the appropriate system.

This chapter explains how to compile your programs under VM. MVS batch, and
TSO.

•- If you are a VM user, begin with the section that Immediately follows.

If you are an MVS batch user, skip to page 12.

If you are a TSO user, skip to page 18.

Compiling Your Program under VM
The following sections discuss:

How to request compilation.

•- Using the INCLUDE statement to direct the compiler to read source state
ments from another file.

• Compiler output with the appropriate VS FORTRAN Version 2 library.

Requesting Compilation
You cannot compile your programs In the CMS/DOS environment. This Is
because processing of your program In a CMS virtual machine is done in
CMS's OS simulation mode; that Is, the VS FORTRAN Version 2 run-time
service subroutines use the MVS services that are simulated by CMS. If you
have been running other programs In CMS/DOS mode, you must Issue the
command

SET DOS OFF

^ before attempting to compile your VS FORTRAN Version 2 programs.

I To compile a source program on disk, specify F0RTVS2 followed by the
I filename of your program and, optionally, the flletype and fllemode.

Chapter 2. Compiling Your Program 7

Examples are;

F0RTVS2 MYPROG

F0RTVS2 MYPROG FORTRAN A

F0RTVS2 ABC PROGl *

F0RTVS2 ABC PROGl B

If you omit the filetype, the default Is FORTRAN. If you omit the filemode or
specify * for the filemode. VS FORTRAN refers to the First file name and file
type that is found on any disk through the standard search from A-Z disks.

Note: For a source program on disk, a FILEDEF command is not required.
However, ifyou do issue one and the filenames, filetypes, or filemodes speci
fied on F0RTVS2 and the FILEDEF command do not agree, F0RTVS2 overrides
the FILEDEF.

Specifying Compiler Options
You can specify most compiler options on either the F0RTVS2 command or the
©PROCESS statement (see "Modifying Compiler Options—©PROCESS
Statement" on page 36). The option for specifying the disposition of the listing
file can be specified only on the F0RTVS2 command. If a value for this option
is not specified, the default is DISK. The option values are:

DISK

The compiler places a copy of your LISTING file on a disk.

Abbreviation: Dl

NOPRINT

No LISTING file is produced, and any existing LISTING file with the same
name is erased.

Abbreviation: NOPRI

PRINT

The compiler prints your LISTING file on the spooled virtual printer.

Abbreviation: PRI

Specifying Compiie-Time Options
Options on the ©PROCESS statement override those of F0RTVS2. However, if
an option on F0RTVS2 conflicts with an option from another source, that is, a
default option or ©PROCESS option, the option assumed is that shown in
Figure 4 on page 36.

To specify options on F0RT\/S2, specify them within parentheses after the file
identifier. For example:

F0RTVS2 MYPROG (FREE FLAG(E) MAP)

Note: The final parenthesis, shown in the example above, is optional.

Source Files on Tape, on Punched Cards, or in Your Virtual Reader
If you have a source file on tape or punched cards, you must issue a FILEDEF
command whose ddname is FORTRAN, and which specifies the appropriate
device type. For example, for a source file on tape, issue the following
FILEDEF:

FILEDEF FORTRAN TAPn (options

8 VS FORTRAN Version 2 Programming Guide

where n is a number from 1 through 4 that corresponds to virtual tape untts 181
through 184, and options are the record format, the logical record length, and
the block size.

To use a source file from your virtual reader, issue the following FILEDEF:

FILEDEF FORTRAN READER (RECFM F LRECL 80 BLKSIZE 80

Note: After a source file is compiled from the virtual reader, it is erased from
the reader.

To invoke the compiler using the READER or TAPn as input, issue:

F0RTVS2 dummy (options

where dummy is the filename for listing or object output (a filename is
required), and options are the desired compiler options.

For information on invoking the VS FORTRAN compiler from an assembler
program see "Requesting Compilation from an Assembler Program" on
page 325.

Using the FORTRAN INCLUDE Directive
INCLUDE is a statement that you can code in your source program to direct the
compiler to read source statements from another file. When the end of the

included file is reached, the compiler resumes processing with the line fol
lowing the INCLUDE statement. Included files may reside on any accessed
minidisk.

The INCLUDE statement has two formats:

1. If you want your program to conform to the Systems Application Architec
ture, use the following format:

INCLUDE char-constant

where char-constant is a character constant whose value is a CMS file iden

tifier and, optionally, the name of a MACLIB member, as follows:

/w [ft [fm]] [{member-name)]

If you omit the file type, FORTRAN is the default, unless the file is a MACLIB
member, in which case MACLIB is the default file type. If you omit the file
mode, A1 is the default; or if you omit just the number on the file mode, 1 is
the default. You may specify an asterisk (*) for the file mode.

With this format of INCLUDE, you need not have a FILEDEF command in
effect for the included file (or in the case of a library member, you need not
have a FILEDEF or GLOBAL command for the library). The record formats
allowed are the same as those that are allowed for any VS FORTRAN
source file. Examples of INCLUDE statements coded in this format are:

INCLUDE 'CONSTANT'

INCLUDE 'COMMON PROJ_Or
INCLUDE 'MASKS-1 INCLUDE Zl'

INCLUDE 'OLDPROJ MACLIB (CONTROL)'

2. Alternatively, you can use the following format of the INCLUDE statement:

INCLUDE (member-name)

Chapter 2. Compiling Your Program 9

where member-name is the name of a MACLIB member. (For information
on how to create MACLIB members, see the appropriate CMS User's Guide
for your operating system.) The record formats allowed are fixed blocked
and fixed unblocked. An example of an INCLUDE statement coded in this
format is:

INCLUDE (CONST)

With this format, you need to take one of the following steps:

• Specify the macro library in a GLOBAL statement:

GLOBAL MACLIB filename ...

or:

• Define SYSLIB for use by the compiler:

FILEDEF SYSLIB DISK filename MACLIB A (PERM

Note that for the second format above, the set of characters allowed for the
member name is more restrictive than for the first format. Foradditional infor
mation on coding rules, see VS FORTRAN Version 2 Language andLibrary Ref
erence.

Conditionally Including Files
You can selectively activate INCLUDE statements ifthey are coded in the
second format shown above by assigning them an identification number and
referring to them on the Cl compiler option. The identification number is coded
after the member name, as shown below:

INCLUDE [member-name) n

For example:

INCLUDE (CONST) 1

INCLUDE (DATA) 2

INCLUDE (FORMULA) 3

If you wanted to include CONST and FORMULA but not DATA, you would
specify Cl(1,3) at compile-time.

Compiler Output
Depending on your site's compile-time defaults and the options you select in
your F0RTVS2 command, you may get oneor more ofthe following files as
output placed in your mini-disk storage:

• LISTING file

• TEXT file

• PIFfile

• Intercompilation Analysis file

10 VS FORTRAN Version 2 Programming Guide

LISTING File

TEXT File

PIF File

The LISTING file contains the compiler output listing, which may include a
source program listing, an object module listing, and other listings, depending
on the options in effect. For more information on the contents of the compiler
output listing, see "Using the Compiler Output Listing" on page 38 and "Object
Module Listing—LIST Option" on page 114.

The LISTING file has the filename of your source program, and the filetype
LISTING.

You can display the LISTING file at your terminal, using an editor. Or, you can
print a copy of the LISTING file by means of your virtual printer, using the
PRINT command:

PRINT MYPROG LISTING

Note: A LISTING file containing double-byte characters can be displayed or
printed only on a device with double-byte processing capability.

You may want to direct the compiler output listing to a file other than MYPROG
LISTING. If so, you can use a FILEDEF command with a ddname of LISTING that
specifies where you want the listing to be placed. To put a listing into MY FILE
A, for example, issue the following FILEDEF:

FILEDEF LISTING DISK MY FILE A

The TEXT file contains the object code the compiler created from your source
program.

If the OBJECT compiler option is specified, the file is written to your disk with
the filename of your source program and a filetype of TEXT. For example, the
file for MYPROG is MYPROG TEXT.

You may want to direct the compiler object code to a file other than MYPROG
TEXT. If so, you can use a FILEDEF command with a ddname of TEXT that spec
ifies where you want the object code to be placed. To put an object file into MY
FILE2 A, for example, issue the following FILEDEF:

FILEDEF TEXT DISK MY FILE2 A

If the DECK compiler option is specified, the object code goes to the virtual
punch. If you want to direct the object code to a different file, use a FILEDEF
command with a ddname of SYSPUNCH that specifies where you want the
object code to be placed. To put an object file into MY FILES A, for example,
issue the following FILEDEF:

FILEDEF SYSPUNCH DISK MY FILE3 A

The Program Information File is produced if VECTOR(IVA) is in effect. This file
is required by Interactive Debug for the Interactive Vectorization Aid functions
(see information about vector tuning in VS FORTRAN Version 2 Interactive
Debug Guide and Reference).

The Program Information File has the filename of your source program and the
filetype PIF. For example, the file for MYPROG is MYPROG PIF. It also has the
default ddname VSF2PIF.

Chapters. Compiling Your Program 11

I To direct the Program Information File to a file other than MYRROG PIP, use a
I FILEDEF command with a ddname of VSF2PIF.

I Ifyou accept the default naming conventions for the file. Interactive Debug is
I able to identify the file without user intervention: otherwise, you must explicitly
I define the file when you invoke Interactive Debug.

Refer to VS FORTRAN Version 2 Interactive Debug Guide and Reference for
more information on using PIF.

ICAFILE File
The Intercompilation Analysis file is produced if you specify the UPDATE sub-
option of the ICA compiler option. For information on intercompilation analysis,
see "Intercompilation Analysis" on page 201.

Compiling Your Program under MVS
The following sections discuss:

»• Job processing and coding the JOB, PROC, EXEC, and DD statements

How to request compilation

Defining data sets used by the compiler

*• Using the INCLUDE statement to direct the compiler to read source state
ments from another file

Compiler output

Job Processing
Three basic steps are taken to process a FORTRAN program:

1. Compiling

2. Link editing

3. Load module processing {go step)

The input to the compile step is called the source. The output from the compile
step is called an object module, which is the input to the link-edit step. The
output of the link-edit step is the load module, which is one or more object
modules with all external references resolved. The load module is the program
run in the go step. If the loader is used in place of the linkage editor, the last
two steps (link-edit and load module processing) are combined into one step.

Each step is called a Job step—the processing of one program. Each job step
may be run alone or in combination with other job steps as a job—an applica
tion involving one or more job steps. Hence, a job may consist of one step,
such as FORTRAN compiler processing, or of many steps, such as compiler
processing followed by linkage editor processing and load module processing.

You define the requirements of each job to the operating system through job
control statements. Job control statements provide a communication link
between your program and the operating system. The statements define a job,
a job step within a job, and data sets required by the job.

12 VS FORTRAN Version 2 Programming Guide

Some of the job control statements most often used are the JOB, PROC, EXEC,
and DD statements. The following sections give an overview of these state-
ments. For complete descriptions of these and other job control statements,
see one of the following system publications:

0S/VS2 MVS JCL {GC28-0692)
MVS/Extended Architecture JCL {GC28-1148)

Identifying a Job—JOB Statement
The JOB statement begins each MVS job you enter Into the system:

//jobname JOB [parameters]

The jobname Identifies this job to the system. The jobname must conform to
the standards defined In your appropriate JCL manual.

The parameters give accounting and processing Information that Is specific to
your site.

Assigning Default Values—PROC Statement
The PROC job control statement must mark the beginning of an In-stream pro
cedure and, optionally, may mark the beginning of a cataloged procedure. On
the PROC statement, you can assign default values to symbolic parameters.

//[name] PROC symbolic-parameter = value],...]

The name Identifies a procedure; name Is required for an In-stream procedure
and Is optional for a cataloged procedure, symbolic-parameter = value Identifies
the valuefs) assigned to a symbolic parameter. You assign a name to the pro
cedure when adding It to the procedure library, for example, SYS1.PR0CLIB.

You can modify a PROC statement parameter by specifying a change In the
EXEC statement that calls the procedure. For more Information, see your
appropriate JCL manual.

Requesting Execution of the Job Step—EXEC Statement
You use the EXEC job control statement to Invoke a program or procedure.

//[stepname] EXEC [PROC =]proc/7ame
[,PARM = 'opf/on[,opf/on] ... ']
[,other parameters]

The stepname Identifies this job step.

The procname Is the name of a procedure you want executed. The names of
the IBM-supplied cataloged procedures, which are In your appropriate system

I procedure library, are given In Figure 24 on page 84.

The PARM parameter lets you specify any compiler options.

The other parameters specify accounting and processing Information specific to
your site.

Chapter 2. Compiling Your Program 13

Defining Files—DD Statement
To define a file you may need, you must specify a DD statement:

//[ddname \ procstep.ddname] DD [data-set-name][other-parameters]

The ddname identifies the data set defined by this DD statement to the com
piler, linkage editor, loader, or to your program. The ddnames you can use for
VS FORTRAN Version 2 are shown in Figure 1 on page 15 below. Figure 2 on
page 16, and Figure 20 on page 80.

The procstep identifies the procedure step.

The data-set-name is the qualified name you've given the data set that contains
your file or files.

The other parameters specify additional information about the data set, such as
its location and space allocation.

Compiling and Running
The simplest way to compile and run your program is to use the IBM-supplied
catalog procedure VSF2CLG, as shown in the sample JCL below. VSF2CLG
compiles, link-edits, and runs your program.

//jobname JOB
// EXEC VSF2CLG
//FORT.SYSIN DD *
(source program)
/*
//

Note that other IBM-supplied cataloged procedures that combine compilation
with other job steps are available. For example, VSF2CL compiles and link-
edits your program, while VSF2C only compiles. For a list of all the cataloged
procedures, see Figure 24 on page 84. The cataloged procedures should be
located in your appropriate system procedure library.

The cataloged procedures, however, may not give you the programming flexi
bility you need for your more complex data processing jobs, in which case you
may need to specify your own job control statements, or write your own cata
loged procedures. For information on how to write your own job control state
ments or cataloged procedures, see the appropriate JCL manual for your
operating system.

Requesting Compilation Only
The simplest way to request compilation only is to use the IBM-supplied catalog
procedure VSF2C, as shown in the sample JCL below.

//jobname JOB
// EXEC VSF2C
//FORT.SYSIN DD *
(source program)
/*
If

For information on invoking the VS FORTRAN compiler from an assembler
program see "Requesting Compilation from an Assembler Program" on
page 325.

14 VS FORTRAN Version 2 Programming Guide

Defining Compiler Data Sets
Figure 1 lists the required and optional data sets used by the compiler. Many
of the data sets used by the compiler are defined in cataloged procedures; for
those that are not, you must supply DD statements. (Cataloged procedures are
discussed under "Requesting Compilation Only" on page 14.)

ddname Function Device Types Device Class Defined'

SYSIN Reading input source data set
(always required)

Direct access

Magnetic tape
Card reader

Input stream No
(defined as
DD *, DD
DSN = data-set-name,

or DD DATA)

SYSPRINT Writing source, object, and cross
reference listings, storage maps,
messages (always required)

Printer

Magnetic tape
Direct access

A

SYSSQ
SYSDA

Yes

SYSLIB Reading INCLUDE data sets
(required if INCLUDE statements
without fully-qualified data set
names are specified -see "Using
the FORTRAN INCLUDE Directive"

on page 16 for more information)

Direct access SYSDA No

SYSLIN ^ Creating an object module data set
as compiler output and linkage
editor input (required if OBJECT is
specified)

Direct access

Magnetic tape
Card punch

SYSDA

SYSSQ
SYSCP

Yes

SYSPUNCH^ Punching the object module deck
(required if DECK is specified)

Card punch
Magnetic tape
Direct access

B

SYSCP

SYSSQ

SYSDA

Yes

SYSTERM Writing error messajge and com
piler statistics (required if TERM or
TRMFLG is specified)

Printer

Magnetic tape
Direct access

A

SYSSQ
SYSDA

Yes

icafile^ Saving intercompilation information
(required if ICA suboption USE or
UPDATE is specified)

Direct access SYSDA No

VSF2PIF Saving information needed by
Interactive Debug for Interactive
Vectorization Aid functions

(required if VECTOR(IVA) is speci
fied)

Direct access SYSDA No

Figure 1. Compiler Data Sets

Notes to Figure 1:

1. The Defined column indicates whether or not the ddname is defined in cata

loged procedures calling the compiler.

2. SYSLIN and SYSPUNCH may not be directed to the same card punch.

3. The ddname for an ICA file is user-specified. A DD statement is required
for each ICA file.

Chapter 2. Compiling Your Program 15

DCB Default Values
The DCB subparameters define record characteristics of a data set. Figure 2
lists the DCB default values for compiler data set characteristics.

ddname LRECL RECFM BLKSIZE

SYSIN 80 - -

SYSPRINT 137 VBA 3429'

SYSLIN 80 FB 3200'

SYSPUNCH 80 FB 3440'

SYSTERM 240 VS —

icafile 2004 VB 6144

VSF2PIF 2004 VB 6144

Figure 2. Compiler Data Set DCB Default Values

Note to Figure 2:

^ These default block size values correspond to the BLKSIZE values speci
fied on the DD statements in the distributed cataloged procedures. As a
default, the compiler sets the BLKSIZE to be the longest record length
(LRECL).

Naming Conventions for the Program Information File
VSF2PIF is the ddname for the Program Information File, a file needed by Inter
active Debug for the Interactive Vectorization Aid functions.

Ifyou use the following naming conventions for the file. Interactive Debug is
able to identify the file without user intervention: otherwise, you must explicitly
define the file when you invoke Interactive Debug.

If the input to the compiler is in a sequential data set named:

userid.module-name.FORJRAU

the Program Information File should be named:

userid.module-name.PlF

If the input to the compiler is in a partitioned data set named:

usend.module-name.fORTRAU{member-name)

the Program Information File should be named:

usehd.member-name,P\f

Using the FORTRAN INCLUDE Directive
INCLUDE is a statement that you can code in your source program to direct the
compiler to read source statements from another file. When the end of the
included file is reached, the compiler resumes processing with the line fol
lowing the INCLUDE statement.

The INCLUDE statement has two formats:

1. Ifyou want your program to conform to the System Application Architecture,
use the following format:

INCLUDE char-constant

where char-constant is a character constant whose value is a fully-qualified
data set name or partioned data set member. The data set must be cata
loged. With the above format, you need not code a DD statement for the

16 VS FORTRAN Version 2 Programming Guide

/

included file. The record formats allowed are the same as those that are

allowed for any VS FORTRAN source file. Examples of INCLUDE statements
coded in this format are:

INCLUDE 'USER.HISTO.PACKAGE'

INCLUDE 'USER.PROJ1.FORT.INCL(COMMON)'
INCLUDE 'USER.PR0F2.FORT.CONST(MASKS)'

2. Alternatively, you can use the following format of the INCLUDE statement:

INCLUDE {member-name)

where member-name is the name of a partitioned data set member. With
this format a DD statement with the ddname SYSLIB must be in effect for

the partitioned data set. The record formats allowed are fixed blocked and
fixed unblocked. An example of an INCLUDE statement coded in this format
is:

INCLUDE (MASKS)

An example of a DD statement is:

//FORT.SYSLIB DD DSN=USER.LIB.FORT,DISP=SHR

where USER.LIB.FORT is the name of the partitioned data set of which
MASKS is a member.

For additional information on coding rules, see VS FORTRAN Version 2 Lan
guage and Library Reference.

Conditionally Including Files
You can selectively activate INCLUDE statements if they are coded in the
second format shown above by assigning them an identification number and
referring to them on the Cl compiler option. The identification number is coded
after the member name, as shown below:

INCLUDE {member-name) n

For example:

INCLUDE (CONST) 1

INCLUDE (DATA) 2

INCLUDE (FORMULA) 3

If you wanted to include CONST and FORMULA but not DATA, you would
specify Cl(1,3) at compile-time.

Compiler Output
The VS FORTRAN Version 2 compiler provides some or all of the following
output, depending on the options in effect for your compilation:

Compiler output listing

• Object module

Program Information File

• Intercompilation analysis file

Chapter 2. Compiling Your Program 17

Compiler Output Listing
The output listing is written to the data set defined by the SYSPRINT ddname.
The compiler output listing may include a source program listing, an object
module listing, and other listings, depending on the options in effect. For more
information on the contents of the compiler output listing, see "Using the Com
piler Output Listing" on page 38 and "Object Module Listing—LIST Option" on
page 114.

Object Module
Ifyou specified the OBJECT compiler option, the object module is directed to
the data set defined by the SYSLIN ddname. Ifyou specified the DECK compiler
option, the object module is directed to the data set defined by the SYSLIN
ddname.

Program information File
The Program Information File is produced if VECTOR(IVA) is in effect. This file
is required by Interactive Debug for the Interactive Vectorization Aid functions
{see information about vector tuning in VS FORTRAN Version 2 Interactive
Debug Guide and Reference).

The Program Information File is directed to the data set defined by the ddname
VSF2PIF.

intercompiiation Analysis File
This file is produced if you specify the ICA compiler option. For information on
intercompiiation analysis, see "Intercompiiation Analysis" on page 201.

Compiling Your Program under TSO
The following sections discuss:

•- How to request compilation

Allocating compiler data sets

Compiler output

For additional information on TSO, see:

0S/VS2 MVS TSO Command Language Reference (GC28-0646)
0S/\/S2 MVS TSO Terminal User's Guide (GC28-a645)

Allocating Compiler Data Sets
Before compiling, link-editing, or running your program, you must allocate the
files you'll need, using the ALLOCATE command. For example, you could allo
cate the files described below when processing a source program named
MYPROG.

For the Source Program as Compiler Input:

The following ALLOCATE command tells TSO that the file named
MYPROG.FORT is an existing data set (OLD), described in the SYSIN DD state
ment.

ALLOCATE DATASET(MYPROG.FORT) FILE(SYSIN) OLD

18 VS FORTRAN Version 2 Programming Guide

If you are using the form ofthe INCLUDE directive that doesn't specify a fully-
qualified data set name, a SYSLIB DO statement is required. The following
ALLOCATE command tells TSO that the SYSLIB DO statement describes the
library USER.LIB.FORT, which contains the library member specified on the
INCLUDE directive.

ALLOCATE FILE(SYSLIB) DATASET('USER.LIB.FORT') SHR

For information on the INCLUDE directive, see "Using the FORTRAN INCLUDE
Directive" on page 16.

For Compiler Output Listings:

The following ALLOCATE command tells TSO that the file named MYPROG.LIST
is a new file (NEW) described in the SYSPRINT DD statement. The line length is
133 characters; the primary space allocation is 60 lines.

ALLOCATE DATASET(MYPROG.LIST) FILE(SYSPRINT) NEW -
BL0CK(133) SPACE(60,10)

For an Object Deck:

The following ALLOCATE command tells TSO that the file named MYPROG.OBJ
is a new file (NEW) and is described in the SYSPUNCH DD statement. The
record length and block size are both 80 characters.

ALLOCATE DATASET(MYPROG.OBJ) FILE(SYSPUNCH) NEW -
BLOCK(80) SPACE (120,20)

For the Object Module:

The following ALLOCATE command tells TSO that the file named MYPROG.OBJ
is a new file (NEW) described on the SYSLIN DD statement. The record size
(and block size) must be 80 characters. The space you can specify as any size
you need.

ALLOCATE DATASET(MYPROG.OBJ) FILE(SYSLIN) -
NEW BLOCK(80) SPACE(100,10)

For Terminal Output:

The following ALLOCATE command tells TSO that the file identified by the
asterisk (*) is described on the SYSTERM DD statement. You can then use the
terminal to receive error message output. (The listing output is described on
the SYSPRINT DD statement.)

ALLOCATE DATASET(*) FILE(SYSTERM)

For an Intercompilation Analysis Data Set:

The following ALLOCATE command tells TSO that the file named MYPROG.ICA
is a new file described on the DD statement that has the ddname ICADD. (You
may specify any ddname on the DD statement.) The block size is 6144. An
ALLOCATE command and DD statement are required for each intercompilation
analysis file.

ALLOCATE DATASET(MYPROG.ICA) FILE(ICADD) NEW -
BL0CK(6144) SPACE(40,10)

Chapter 2. Compiling Your Program 19

For a Program Information File:

The following ALLOCATE command tells TSO that the file named
USER1.MYPR0G.PIF is a new file described on the VSF2PIF DD statement. The
block size is 6144. For information on naming Program Information Files, see
"Naming Conventions for the Program Information File" on page 16.

ALLOCATE DATASET('USERl.MYPRGG.PIF') FILE(VSF2PIF) NEW -
BL0CK(6144) SPACE(25,5)

For Program Data Sets:

The following ALLOCATE command tells TSO that the file identified by
USER1.MASS.DATA is available on the FT09F001 data set.

ALLOCATE OATASET('USER1.MASS.DATA') FILE(FT09F001)

Before you can load a direct data set, you must preformat it.

Requesting Compilation
To request compilation using the default compiler options, issue the CALL
command as follows;

CALL •SYS1.VSF2C0MP(F0RTVS2)'

or you can request one or more compiler options explicitly:

CALL 'SYS1.VSF2C0MP(F0RTVS2)' 'FREE,TERM,SOURCE,MAP,LIST,OBJECT'

Compiler Output
The VS FORTRAN Version 2 compiler provides some or all of the following
output, depending on the options in effect for your compilation:

Compiler output listing

Object module

Program Information File

Intercompilation analysis file

Compiler Output Listing
The data set containing the compiler output listing has the name of your source
program, and the qualifier LIST. For example, the qualified name for MYPROG
is MYPROG.LIST. The listing may include a source program listing, an object
module listing, and other listings, depending on the options in effect. For more
information on the contents of the compiler output listing, see "Using the Com-
piier Output Listing" on page 38 and "Object Module Listing-LIST Option" on
page 114.

Object Module
The data set containing the object module has the name of your source
program and the qualifier OBJ. For example, the qualified name for MYPROG
is MYPROG.OBJ.

20 VS FORTRAN Version 2 Programming Guide

Program Information File
The Program Information File is produced if VECTOR{IVA) is in effect. This file
is required by Interactive Debug for the Interactive Vectorization Aid functions
(see information on vector tuning in VS FORTRAN Version 2 Interactive Debug
Guide and Reference).

You need to allocate the data set by using an ALLOCATE command that speci
fies FILE(VSF2PIF). This allocation will set up the proper ddname for the data
set.

Intercompilation Analysis File
This file is produced if you specify the ICA compiler option. For information on
intercompilation analysis, see "Intercompilation Analysis" on page 201.

Chapter 2. Compiling Your Program 21

Chapter 3. Using the Compiler Options

VS FORTRAN Version 2 compiler options let you specify details about the input
source program and request specific forms of compilation output. This chapter
describes the options and the compiler output.

Available Compiler Options
Figure 3 lists the compiler options, their abbreviations, and the IBI^-supplied
defaults. Your system administrator may have changed these defaults for your
installation; there is a column in the figure where you can note any change.

Option Abbrevlallon

Installation

Default

AUTODBUva/ue I NONE) AD See note below

CHARLEN(nt/mfter | 500) CL

C\{number1 ,number2,...) None See note below

DECS 1 NODBCS None

DC(name1 ,name2....) None See note below

DECK 1 NODECK D 1 NOD

DIRECTIVE {trigger-constant)
1 NODIRECTIVE [{trigger-constant)]
1 NODIRECTIVE

DIR

NODIR

See note below

FIPS(S 1 F) 1 NOFIPS None

FLAG(I 1 W 1 E 1 S) None

FREE 1 FIXED None

GOSTMT1NOGOSTMT GS 1 NOGS

ICA

[(USE(namet ,name2....)
UPDATE(name)
MXREF 1 NOMXREF
CLEN 1 NOCLEN
CVAR 1 NOCVAR
MSG(NEW 1 NONE | ALL)
USGOli{numben ,number2,...) |
MSGOFF{number1 ,number2,...))]
1 NOICA

UPD

MON

MOFF

See note t)elow

IL(DIM 1 NODIM) None

LANGLVL (66 | 77) LVL

LlNECOUNTIaumber j 60) LC

LIST 1 NOLIST L 1 NOL

MAP 1 NOMAP None

NAME(/7ame j MAIN) None

OBJECT 1 NOOBJECT OBJ 1 NOOBJ

OPTIMIZEIO 11 1 2 1 3) 1 NOOPTIMI2E OPT 1 NOOPT

RENT 1 NORENT None

SAA 1 NOSAA None

Figure 3 (Part 1 of 2). VS FORTRAN Version 2 Compiler Options

Chapter 3. Using the Compiler Options 23

Option Abbreviation

Installation

Default

SDUMP[(ISN 1 SEQ)) | NOSDUMP SO 1 NOSD

SOURCE 1 NOSOURCE S 1 NOS

SRCFLG 1 NOSRCFLG SF 1 NOSF

SXM 1 NOSXM None

SYM 1 NOSYM None

TERMINAL 1 NOTERMINAL TERM 1 NOTERM

TEST 1 NOTEST None

TRMFLG 1 NOTRMFLG TF 1 NOTF

VECTOR

[(REPORT! (optionlist)] \ NOREPORT
INTRINSIC 1 NOINTRINSIC
IVA 1 NOIVA
REDUCTION 1 NOREDUCTION
SIZE(ANY 1 LOCAL | n)))
1 NOVECTOR

VEC

REP 1 NOREP
INT 1 NOINT

RED 1 NORED
SIZ

NOVEC

See note below

XREF 1 NOXREF X 1 NOX

Figure 3 (Part 2 of 2). VS FORTRAN Version 2 Compiler Options

Note: These options cannot be changed at installation time. The value is
always the IBM-supplied default, if any.

AUTODBL(va/ue | NONE)
Provides an automatic means of converting single-precision, floating-point
calculations to double precision, and converting double-precision calcu
lations to extended precision. For information on using AUTODBL, see
"Using the A.utomatic Precision Increase Facility—AUTODBLOption" on
page 47.

The value can be:

NONE

Indicates no conversion is to be performed.

DBL

Indicates that promotion of both single and double-precision items is to
take place. Items of REAL*4 and C0MPLEX*8 types are converted to
REAL*8 and C0MPLEX*16. Items of REAL*8 and C0MPLEX*16 types

are converted to REAL*16 and COMPLEX*32.

DBL4

Indicates that promotion of only single-precision items is to take place.

DBL8

Indicates that promotion of only double-precision items is to take place.

DBLPAD

Indicates that both promotion and padding are to take place for single
and double-precision items. REAL*4, REAL*8, C0MPLEX*8, and
C0MPLEX*16 types are promoted. Items of other types are padded if
they share storage space with promoted items. The DBLPAD option
thus ensures that the storage-sharing relationship that existed prior to
conversion is maintained.

Note: No promotion or padding is performed on character data type.

24 VS FORTRAN Version 2 Programming Guide

DBLPAD4

Indicates that promotion of single-precision items, such as REAL*4 and
C0MPLEX*8 items, is to take place. Items of other types are padded if
they share storage space with promoted items.

DBLPAD8

Indicates that promotion of double-precision items, such as REAL*8 and
C0MPLEX*16 items, is to take place. Items of other types are padded if
they share storage space with promoted items.

nnnnn

Indicates that the program is to be converted according to the value of
nnnnn, a five-position field. All five positions must be coded; if a func
tion is not required, the corresponding position must be coded 0.

Each position is coded with a numeric value specifying how a given
conversion function is to be performed. The leftmost position (position
1) specifies the promotion function, or whether promotion is to occur
and, if so, which items are to be promoted. The second position from
the left specifies the padding function, or whether padding is to occur
and, if so, where within the program (such as in the common area or in
argument lists) padding is to take place. The third, fourth, and fifth posi
tions from the left specify whether padding is to occur for particular
types (logical, integer, and real/complex, respectively) within the
program entities specified in the second position. The values for each
position are as follows:

Position 1 — Promotion Function

Value Meaning

0 No promotion

1 Promote REAL*4 and COMPLEX*8 items only.

2 Promote REAL*8 and COMPLEX*16 items only.

3 Promote all real and complex Items.

Position 2 — Padding Function

Value Meaning

0 No padding

1 Pad all COMMON statement variables and all argument list variables.

2 Pad EQUIVALENCE statement variables made equivalent to
promoted variables.

3 Pad all COMMON statement variables, pad EQUIVALENCE statement
variables made equivalent
to promoted variables, and pad all argument
list variables.

4 Pad EQUIVALENCE statement variables ttiat do not relate to variables
in COMMON statements.

5 Pad all variables.

Chapter 3. Using the Compiler Options 25

Position 3 — Padding Logical Variables

Value Meaning

0 Pad no logical variables.

1 Pad LOGICAL*1 variables only.

2 Pad LOGICAL*4 variables only.

3 Pad all logical variables.

Position 4 — Padding Integer Variables

Value Meaning

0 Pad no integer variables.

1 Pad INTEGER*2 variables only.

2 Pad INTEGER*4 variables only.

3 Pad all integer variables.

Position 5 — Padding Real and Complex Variables

Value Meaning

0 Pad no real or complex variables.

1 Pad REAL*4 and C0MPLEX*8 variables.

2 Pad REAL*8 and COMPLEX*16 variables.

3 Pad REAL*4, REAL*8, COMPLEX*8, and COMPLEX*16 variables.

4 Pad all REAL*16 and COMPLEX*32 variables.

5 Pad REAL*4, COMPLEX*8, REAL*16, and COMPLEX*32 variables.

6 Pad REAL*8, REAL*16, COMPLEX*16, and COMPLEX*32 variables.

7 Pad all real and complex variables.

Note that promotion overrides padding. If the first position specifies that
promotion is to occur for single-precision items. REAL*4 and C0MPLEX*8
items are promoted regardless of the padding function specified in position
5.

The following AUTODBL values are equivalent:

AUTODBL(NONE) is equivalent to AUTODBL(OOOOO)
AUTODBL(DBL) is equivalent to AUTODBL(30000)
AUTODBL(DBL4) is equivalent to AUTODBL(IOOOO)
AUTODBL(DBL8) is equivalent to AUTODBL(20000)
AUTODBL(DBLPAD) IS equivalent to AUTODBL(33334)
AUTODBL(DBLPAD4) is equivalent to AUTODBL(13336)
AUTODBL(DBLPAD8) is equivalent to AUTODBL(23335)

26 VS FORTRAN Version 2 Programming Guide

Examples;

AUTOOBL(12330)

All REAL*4 variables and arrays are promoted to REAL*8 and all
C0MPLEX*8 variables and arrays are promoted to C0MPLEX*16. Padding
is performed for all logical and integer type entities that are equivalenced to
promoted variables.

AUTODBL(01001)

No promotion is performed, but padding is performed for all REAL*4 and
C0MPLEX*8 variables in common blocks and argument lists. This code
setting permits a program not requiring double-precision accuracy to link
with a subprogram compiled with the option AUT0DBL{DBL4).

AUT00BL(01337)

No promotion is performed, but padding is performed for all logical, integer,
real, and complex variables that are in the common area or are used as
subprogram arguments. This code setting permits a non-converted
program to link with a program converted with the option
AUTODBL{DBLPAD).

CHARLENfnumber I 500)
Specifies the maximum length permitted for any character variable, char
acter array element, or character function, {where number is any number up
to and including 32767). Within a program unit, you cannot specify a length
for a character variable, array element, or function greater than the
CHARLEN specified.

C\{number1 ,number2,...)
Specifies the identification numbers of the INCLUDE statements to be proc
essed. For information on INCLUDE statements, see the correct section for

your operating system: "Using the FORTRAN INCLUDE Directive" on
page 9 (VM) or "Using the FORTRAN INCLUDE Directive" on page 16
(MVS).

number

Any integer from 1 to 255. Numberl, number2, ... can be specified in
any sequence and can be separated by blanks or commas.

DBCS I NODBCS
Specifies whether the source file may contain double-byte characters.
When DBCS is specified, the codes X'OE' and X'OF' are interpreted as the
shift-out and shift-in characters, which delimit double-byte characters from
single-byte EBCDIC characters.

DC{name1 ,name2,...)
Defines the names of common blocks that are to be allocated at run time.

This option allows the specification of very large common blocks that can
reside in the additional storage space available through the XA environ
ment. This option can be repeated; the lists of names are combined.

On an ©PROCESS statement, multiple names can be supplied as parame
ters to the DC option or on invocation of the compiler (EXECUTE options).

Chapter 3. Using the Compiler Options 27

Compiling Under VM: When you specify the DCoption in the F0RTVS2
command, you can pass up to 31 characters to VS FORTRAN Version 2 if:

the F0RTVS2 command is part of an EXEC written in either EXEC2 or
REXX, or

you enter the F0RTVS2 command on the command line at your ter
minal.

If the F0RTVS2 command is part of an EXEC written in the EXEC language,
only the first 8 characters immediately following the left parenthesis can be
passed. No error message is generated if truncation occurs.

No checking is done to see if the names specified are valid names of
common blocks.

DECK I NQDECK
specifies whether or not the compiler Is to write the object module to the
data set defined by the ddname SYSPUNCH.

DIRECTIVE {trigger-constant) \ NODIRECTIVE [{trigger-constant) 11
NODIRECTIVE

Specifies whether or not the processing of selected comments as vector
directive statements is enabled or disabled. Refer to "Using Vector
Directives" on page 253 for more information on vector directive state
ments.

This option may be specified only once for each compilation unit.

It is not possible to specify this option as a compiler invocation option; it
can be specified only on an ©PROCESS statement.

trigger-constant
is a character constant whose value is used to identify directives in
commeVit statements. The trigger-constant may contain alphameric
charact^S. All lowercase letters are treated as uppercase. Refer to
"Using Vector Directives" on page 253 for more information on vector
directives.

The optional specification of a trigger-constant with the NODIRECTIVE
option allows you to disable the processing of vector directive state
ments without deleting them from the source program.

FIPS (S I F) I NOFIPS
Specifies whether or not standard language flagging is to be performed,
and, if it is. the standard language flagging level: subset or full.

Items not defined in ANSI X3.9-1978 are flagged. Flagging is valuable only if
you want to write a program that conforms to FORTRAN 77. Ifyou specify
LANGLVL(66) and FIPS flagging at either level, the FIPS option is ignored.

FLAG (I I W I E I 8)
Specifies the level of diagnostic messages to be written: I (information) or
higher. W (warning) or higher, E (error) or higher, or S (severe) or higher.
FLAG allows you to suppress messages that are below the level desired.
Thus, if you want to suppress all messages that are warning or informa
tional, specify FLAG(E).

FREE I FIXED
Indicates whether the input source program is in free format or in fixed
format. These formats are described in more detail in VS FORTRAN

Version 2 Language and Library Reference.

28 VS FORTRAN Version 2 Programming Guide

GOSTMT I NOGOSTMT
Specifies whether or not internal statement numbers (for run-time error
debugging information) are to be generated for a calling sequence to a sub
program or to the run-time library from the compiler-generated code.

ICA

[(USE(name/,name2,...)
UPDATE(name)
MXREF I NOMXREF
CLEN I NOCLEN
CVAR I NOCVAR
MSG(NEW I NONE | ALL)
tASG0U(number1 ,number2,...) \ MSG0FF{number1,number2....))]
I NOICA

Specifies whether intercompilation analysis is to be performed, specifies the
files containing intercompilation analysis information to be used or updated,
and controls output from the intercompilation analyzer. Specify ICA when
you have a group of separately-compiled programs and subprograms that
you want to process together and you need to know if there are any con
flicting external references.

\JSE[name1.name2,...)
Specifies Ihe names of the ICA files against which a program unit is to
be checked. This option can be repealed any number of times as long
as the total number of files specified in USE and UPDATE suboptions
does not exceed forty (40). For more information about this option, see
"Notes on the USE and UPDATE Suboptions" on page 208.

name

The name of an ICA file containing entries describing interfaces
between program units. The /)^me must be a sequence of 1 to 8
alphameric characters, beginjting with a letter. Commas or blanks
can separate a list of names.

UPDATE(na/ne)
Specifies the name of the intercompilation analysis file that is to be
created or updated.

name

The intercompilation analysis file name, which must be a sequence
of 1 to 8 alphameric characters, beginning with a letter.

For more information about this option, see "Notes on the USE and
UPDATE Suboptions" on page 208.

MXREF I NOMXREF
Specifies whether to produce external cross-reference listings.

CLEN I NOCLEN
Specifies whether to check the length of named common blocks.

CVAR I NOCVAR
Specifies whether usage information for variables in a named common
block is to be collected.

Chapter3. Using the Compiler Options 29

MSG(NEW I NONE | ALL)
Specifles the type of diagnostic messages to be printed.

NEW specifies that only messages about the new compilations will
appear on the printout.

NONE specifies that only messages about deleting entries in an inter-
compilation analysis file will appear on the printout.

ALL specifies that all messages will be printed.

MSGOH{number1,number2....) \ MSGOFF(number1 ,number2,...)
Specifies the intercompilation analysis messages to be issued. MSGON
and MSGOFF are mutually exclusive. With MSGON, the messages you
specify are issued; all others are suppressed. Conversely, with
MSGOFF, the messages you specify are suppressed, all others are
issued. If you specify neither MSGON nor MSGOFF, all messages are
issued.

number

The message number; for example, 61 for message ILX0061I.

See "Using the MSGON and MSGOFF Suboptions to Suppress
Messages" on page 211 for a list of the message numbers and corre
sponding message texts.

ILfDIM I NGDIM)
Specifies whether the code for adjustably-dimensioned arrays is to be
placed inline — IL(DiM), or done via library call — IL(NODIM). Inline code
may result in faster processing, but it does not check for user dimensioning
errors. The library call method may result in slower processing, but it does
check for such errors. IL(NODIM) may also be specified as NOIL.

LANGLVL (66 | 77)
Specifies tb.^(anguage level in which the input source program is written:
the FORTRAN66 language level, or the FORTRAN77 language level. The VS
FORTRAN Version 2 manuals describe only the LANGLVL(77) processing.

LINECOUNTfnt/mber | 60
Specifies the maximum number of lines on each page of the printed source
listing. The number may be in the range 7 to 32765. The advantage of
using a large LINECOUNT number is that there are fewer page headings to
look through if you are using only a terminal. Your output, if printed, will
run together from page to page without a break.

LIST I NGLIST
Specifies whether or not the object module listing is to be written. The LIST
option allows you to see the pseudo-assembly language code that is similar
to what is actually generated. A full description of this output is given
under "Object Module Listing—LIST Option" on page 114.

MAP I NOMAP
Specifies whether or not a table of source program variable names, named
constants, and statement labels and their displacements is to be produced.
A complete description of the output is given under "Source Program
Map—MAP Option" on page 43.

NAME(/7ame i MAIN)
Can only be specified when LANGLVL(66) is specified. It specifies the name
of the CSECT generated in the object module. It only applies to main pro
grams.

30 VS FORTRAN Version 2 Programming Guide

OBJECT I NOOBJECT
Under VM, directs the compiler to write the object module to the file associ-
ated with the ddname TEXT.

Under MVS, directs the compiler to write the object module to the data set
associated with the ddname SYSLIN.

OPTIMIZE (0 I 1 I 2 I 3) I NOOPTIMIZE
Specifies the optimizing level to be used during compilation:

OPTIMIZE (0) OR NOOPTIMIZE specifies no optimization.

OPTIMIZE (1) specifies register and branch optimization.

OPTIMIZE (2) specifies full optimization with interruption localizing.

OPTIMIZE (3) specifies full optimization without interruption localizing.

Ifyou are debugging your program, it is advisable to use NOOPTIMIZE. To
create more efficient code and, therefore, a shorter run time at the price of
a longer compile time, use 0PTIMIZE{2) or (3). The different levels of opti
mization are described under Chapter 8, "Optimizing Your Program" on
page 217.

RENT I NORENT
Specifies that the object module generated be suitable for use in a
shareable area. Ifyou are not planning on running your program in a
shareable area, specify NORENT. Otherwise, see Chapter 10, "Creating
Reentrant Programs" on page 269.

I SAA I NOSAA
I Specifies whether flagging of language elements that are not part of the
I Systems Application Architecture (SAA) is to be performed.

SDUMP[(iSN I SEQ)] | NOSDUMP
Specifies that symbolic dump infornrcafibn is to be generated. The ISN/SEQ
information can be specified with either the usual compiler-generated
internal statement numbers, or the user-supplied sequence numbers in
columns 73 through 80 of the statement line.

SDUMP{ISN) specifies SDUMP tables be generated using internal state
ment numbers.

SDUMP(SEQ) specifies SDUMP tables be generated using sequence
numbers (columns 73-80 of fixed-form source).

Note; INCLUDE statements may make sequence numbers ambiguous
because Interactive Debug takes the first statement it finds when searching
the statement table.

Generation of the SDUMP table, as well as the line numbers (inserted along
with the debugging hooks by the TEST option) are affected by the SEQ sub-
option. These effects are described as follows:

Null sequence numbers are set to 1. Because the compiler does not
verify that numbers are unique or in a meaningful sequence, the user
must assume responsibility for insuring the integrity of the sequence
numbers. The alphabetic portion of the sequence field is ignored and
only the rightmost numeric field is used. For example, S2X00007 uses
the rightmost five characters ((K)007) for sequencing.

Chapter 3. Using the Compiler Options 31

SOURCE I NOSOURCE
Specifies whether the source listing is to be produced or not. By specifying
NOSOURCE, you can decrease the size of your listing. IfSRCFLG is speci-
fled with NOSOURCE, only the initial line of each source statement in error
and its associated error messages are printed on the listings.

SRCFLG I NOSRCFLG
Controls insertion of error messages in the source listing. SRCFLG allows
you to view error messages after the initial line of each source statement
that caused the error, rather than at the end of the listing. If SRCFLG is
specified with NOSOURCE, only the initial line of each statement in error
and its associated error message are printed on the listings. The
NOSRCFLG option causes error messages to appear at the end of the
listing.

SXM I NOSXM
Formats XREF or MAP listing output to a 72-character width. The NOSXM
option formats listing output for a printer. For more details, see "Using the
SXM Option" on page 42.

SYM I NOSYfVI
Invokes the production of SYM cards in the object text file. The SYM cards
contain location information for variables within a FORTRAN program. SYM
cards are useful to MVS users. For more information about SYM cards, see

"SYM Record" on page 335.

TERMINAL | NOTERMINAL
Specifies whether error messages and compiler diagnostics are to be
written on the SYSTERM data set and whether a summary of messages for
all the compilations is to be written at the end of the listing.

Specify the NOTERMINAL and NOTRMFLG options if you are running batch
jobs on MV^ and do not want output to a SYSTERM data set. See "Using
the TerminaLOutput Display—TERMINAL and TRMFLG Options" on page 46.

TEST I NOTEST
TEST overrides any optimization level above OPTIMIZE{0). It is required
only for debugging a reentrant program in a shared area {DCSS or LPA)
using Interactive Debug.

The TEST option adds run-time overhead.

TRMFLG I NOTRMFLG
Causes the initial line of source statements in error and their associated

error messages (formatted for the terminal being used) to be displayed at
the terminal. Specify the NOTERMINAL and NOTRMFLG options if you are
running batch jobs on MVS and do not want output to a SYSTERM data set.
See "Using the Terminal Output Display—TERMINAL and TRMFLG Options"
on page 46.

32 VS FORTRAN Version 2 Programming Guide

VECTOR

[(REPGRTl {optionUst)] | NOREPORT
INTRINSIC I NOINTRINSIC
IVA I NOIVA
REDUCTION I NOREDUCTION
SIZE(ANY I LOCAL | n))]
I NOVECTOR

Invokes the vectorizatjon process, which produces programs that can utilize
the speed of the IBM System 3090 Vector Facility. This option instructs the
compiler to transform eligible statements in DO loops into vector
instructions. As much of a loop as possible is translated into vector object
code and the remainder is translated into scalar object code.

Vectorization requires that the optimization level in effect be 0PT(2) or
0PT{3). If the optimization level is not 0PT(2) or 0PT{3), the compiler
upgrades the optimization level to 0PT(3) for you. However, certain
FORTRAN statements, such as DEBUG or invalid FORTRAN statements,
downgrade the optimization level after it has been set in the @PROCESS
statement or passed as a run-time option. As a result, the optimization
level may be downgraded to 0 and no vectorization occurs.

The vectorization process is described in detail in Chapter 9,
Your Program" on page 227.

'Vectorizing

The VECTOR compiler option includes the following suboptions:

REPORT[{optionlist)] | NOREPORT
Instructs the compiler to either display a report of vectorization informa
tion on a terminal screen, or provide the information in a printed report.

The format and content of the report varies, depending on the REPORT
options specified. In general, the'report consists of a listing of source
statements. Additional informat?o\i is supplied in the margins of the
listing and in tables at the end of the listing; for example, brackets that
indicate DO loop nesting, flags that identify vectorized and non-
vectorized loops, and messages that give more detailed information
about the vectorization process. See "Producing Vector Reports" on
page 237 for examples and a description of the content of the various
types of reports you can request.

optionlist
Where the options specified are one or more of the strings, TERM,
LIST, XLIST, SLIST, or STAT, separated by blanks or commas.
Acceptable abbreviations are:

TERM

LIST

XLIST

SLIST

STAT

TE

LI

XL

SL

ST

Following is a brief description of the options:

TERM produces a vector report at the terminal.

LIST produces a simple format of the vector report on a
printed listing.

Chapter 3. Using the Compiler Options 33

XLIST produces an extended format of the vector report on a
printed listing.

I SLIST produces a vector report, in a format similar to that '
I produced by the SOURCE compiler option, on a printed
I listing.

I STAT produces a vector statistics table on a printed listing.

You can specify the options in any order; however, in the printed
I listing, the sections of the report appear in the following order: LIST,
I XLIST, SLIST, STAT.

The above reports can be requested individually or in any combina
tion.

The IBM-supplied default is NOREPORT, but if REPORT is specified
I without the TERM, LIST, XLIST, or SLIST suboptions, XLIST is the
I IBM-supplied default.

INTRINSIC 1 NOINTRINSIC
Enables or disables the vectorization of out-of-line intrinsic function ref

erences.

The VS FORTRAN Version 2 math library routines {VSF2F0RT) have
been revised to be more accurate. The results generated by these new
routines may be different from the results generated by the old VS
FORTRAN Version 1 standard math routines (VSF2MATH).

For scalar out-of-line intrinsic function references in your program, you
can choose which math library to use by accessing libraries in the
desired order. If the intrinsic function references in your program are
vectorized, however, the new VS FORTRAN Version 2 math library rou
tines vyj// always be used, as there are no vector entry points in the old
routines.

Therefore, if you wish to always use the old math routines for compat
ibility of results, you should not allow out-of-line intrinsic function refer
ences to vectorize.

If you use the INTRINSIC suboption, out-of-line intrinsic function refer
ences in your program will be eligible for vectorization. If the new math
library routines are used, the scalar results will be the same as the
vector results. The new math routines yield the same results in both
vector and scalar.

If you use the NOINTRINSIC suboption, out-of-line intrinsic function ref
erences in your program will not vectorize. The scalar math routines of
the library you have accessed first will be used.

IVA I NOIVA
Produces a Program Information File. This file is required by Interactive
Debug if you use the Interactive Vectorization Aid functions (see infor
mation about vector tuning in VS FORTRAN Version 2 Interactive Debug
Guide and Reference). For information on the Program Information File
produced under CMS, see "Compiler Output" on page 10. For informa
tion on the Program Information File produced under MVS, see
"Defining Compiler Data Sets" on page 15. —

34 VS FORTRAN Version 2 Programming Guide

REDUCTION I NOREDUCTION
Enables or disables the vectorizatlon of reduction functions.

The translation of vectoroperations from scalar to vector code may
produce different results. Because vector code operations may not be
performed in scalar processing order, inherent variations in the data
that is accumulated cause the results to be dependent on the order of
accumulation.

You should be aware of this when using floating point data because
addition is not associative with this type of data.

SIZEfANY I LOCAL | n)
Specifies the section size to be used to perform vector operations.

Specifying SIZE{ANY) causes the compiler to generate object code to
use the section size of the computer on which the routine is running.
The code may not be as efficient as that generated by SIZE(LOCAL) or
SIZE{n) but you can move the program to a computer with a different
section size without recornpiling.

When you specify SIZE(LOCAL) the compiler uses the specified section
size of the computer that compiled the program. If the section size is 0
or -1, the compiler uses the IBM-supplied default, ANY.

SIZE{n) allows you to specify an explicit section size. Using LOCAL or n
produces efficient object code. However, if the specified section size is
different from that of the computer's actual section size the program ter
minates upon the first processing of the routine compiled with the
incompatible section size. The library issues a diagnostic message with
a return code of 16.

I If the specified section size is invalid—not a power of 2, or less than
I 8—the compiler issues an informational message and uses the

IBM-supplied default, ANY.

XREF I NOXREF
Specifies whether or not a source cross-reference listing is to be produced.
For a description of cross-reference output, see "Cross Reference—XREF
Option" on page 44.

Chapter 3. Using the Compiler Options 35

Conflicting Compiler Options
The following table lists conflicting compiler options. The table also lists those
options that are assumed when conflicting compiler options are specified.

Conflicting Compiler Options Options Assumed

DBCS PIPS DBCS NOPIPS

DBCS SAA DBCS NOSAA

PIPS PLAG = 1 PIPS PLAG = I

PIPS SAA Installation default Installation default

PREE SAA PREE NOSAA

PREE PIPS PREE NOPIPS

PREE SDUMP(SEQ) PREE SDUMP(ISN)

LANGLVL(66) PIPS LANGLVL(66) NOPIPS

LANGLVL(66) SAA LANGLVL(66) NOSAA

LANGLVL(66) DBCS LANGLVL(66) NODBCS

LANGLVL(77) NAME LANGLVL(77) Ignore NAME

NODECK SYM NODECK NOSYM

NOOBJ SYM NOOBJ NOSYM

NOTRMPLG VEC(REP(TERM...)) NOTRMPLG VEC(REP(...))

TEST NOSDUMP TEST SDUMP(ISN)

TEST OPT(1), OPT(2),
or OPT(3)

TEST OPT(O)

VEC

oifr
OPT(O) or OPT(1) VEC OPT(3)

VEC(IVA) NOSDUMP VEC(IVA) SDUMP(ISN)

Figure 4. Conflicting Compiler Options

Modifying Compiler Options—@PROCESS Statement
The options you specify when you request compilation remain in force for all
source programs you're compiling, unless you override them with the
©PROCESS statement.

Each source program requires its own ©PROCESS statement if you wish to
override the options specified at compiler invocation. If any source program
does not have its own ©PROCESS statement, it is compiled according to the
compiler-invocation specifications—NOT according to the ©PROCESS specifica
tions of the preceding source program in the job stream. {See
Chapter 2, "Compiling Your Program" on page 7 for information on how to
specify options when you invoke the compiler.)

36 VS FORTRAN Version 2 Programming Guide

\

If an option on the @PROCESS statement conflicts with an option from another
source, for example a default option or one you specify at compiler invocation,
the option assumed is that shown in Figure 4.

To change the compiler options, place the ©PROCESS statement before the
first line in the source program. The following coding rules apply:

©PROCESS must appear in columns 1 through 8 of the statement.

»- The ©PROCESS statement can be followed by compiler options in columns
9 through 72 of the statement. The options must be separated by commas
or blanks.

Up to 20 ©PROCESS statements can be supplied for a program unit.
Columns 9 through 72 of a following ©PROCESS statement are appended to
the previous ©PROCESS statement.

Intervening lines must not appear between ©PROCESS statements. A line
such as a blank, comment, or INCLUDE will terminate ©PROCESS state
ment input, and subsequent ©PROCESS statements will be ignored.

The following restrictions apply to the options you may specify:

" All compiler options except OBJECT, DECK, [DISK, PRINT, and NOPRINT]
are permissible (the latter three are available only to CMS users; for
details, see "Specifying Compiler Options" on page 8).

If NODECK or NOOBJ has been specified on the compiler invocation, you
cannot specify DECK or OBJ, respectively, on the ©PROCESS statement.

*' TERMINAL and TRMFLG cannot be specified on the ©PROCESS statement
if TERMINAL was not specified on the compiler invocation or in the installa
tion defaults.

*- Only the NOICA form of the ICA option can be specified in the ©PROCESS
STATEMENT.

Compiler Output
The VS FORTRAN Version 2 compiler provides some or all of the following
output, depending on the options in effect for this compilation:

Compiler output listing

Object module—a translation of your program in machine code

Program Information File (PIF)—a file required by Interactive Debug for the
Interactive Vectorization Aid functions (see information about vector tuning
in VS FORTRAN Version 2 Interactive Debug Guide and Reference)

Messages about the results of the compilation

For more details about the compiler output under your specific operating
system, see Chapter 2, "Compiling Your Program" on page 7.

Chapter 3. Using the Compiler Options 37

Using the Compiler Output Listing
If you use the IBM-supplied default compiler options, the compiler output listing
will have the following sections in the order listed:

• The date of the compilation—plus information about the compiler and this
compilation; for example, the release level of the compiler

• A listing of your source program

•- Diagnostic messages telling you of errors In the source program

Informative messages telling you the status of the compilation

All messages can also be displayed on your terminal output device.

The following sections describe the listing and the compiler options you can
use to modify it.

Compilation Identification
The heading on each page of the output listing gives the name of the compiler
and Its release level, the name of the source program, and the date and time of
the run in the format:

month day, year hour:minute:second

For example:

MAY 1, 1988 14:31:01

The TIME given Is the time the job was started. The TIME Is shown on a
24-hour clock; that Is, 14.31.01 Is the equivalent of 2:31:01 PM.

.1)1 .

The first page of the listing also shows the compiler options (default and
explicit) In effect for this compilation.

Note: An Installation option allows you to print the date as:

year month day

instead of the format shown above.

Source Program Listing—SOURCE Option
The statements printed In the source program listing are Identical to the
FORTRAN statements you submitted in the source program, with some addi
tional Information. Figure 5 on page 39 and Figure 6 on page 40 show exam
ples of the source program listing.

The listing format provides additional information on non-commentary source
lines. These are provided as interpretive and debugging aids for large or
complex programs:

A DO-level counter. The count under the DO heading, at the top of the
listing page, indicates the level of DO loop nesting for this statement. The
DO-level is defined as the number of DO loops that enclose a source state
ment as indicated below. (For purposes of counting, the labeled statement
that ends the DO loop is considered within the loop.) A blank under this
heading indicates the statement is not in a DO loop. The DO-level count

38 VS FORTRAN Version 2 Programming Guide

can be an aid in understanding a complex program where DO loops may
span several pages of the listing.

An IF-level counter. The count underthe IF heading Indicates the level of
nesting of block-IFs (not logical or arithmetic IFs). The count is incremented
for each IF-THEN statement encountered and decremented after each ENDIF
statement. The IF-level can be useful in locating "open" block-IF state
ments (those missing an ENDIF), as well as an aid to understanding
program logic.

Flagging of source statements which have been read from a source library
through the INCLUDE statement. A ' + ' to the immediate left of a source
statement indicates that the statement was read from an "included" file.

The brief example given in Figure 5 illustrates how the source listing flags
the IF and DO levels and the INCLUDE code.

IF DO ISN

1

2

3

4

.......1 2 3 4.
Subroutine AODOP(func,A,B,C,N,H)
Real*4 A(N,H),B(M,H),C(N,H)

* ,sgn
Integer*4 func,N,H

*

Include (codes)
A

* Definition of function codes.
*

Integer*4 fadd,fsub,fmul,fdiv
Parameter(

* fadd « 1

* ,fsub » 2
* ,fmul = 3
* ,fdiv = 4

*)

1

7 If (func .eq. fadd .or. func .eq. fsub) Then
8 If (func .eq. fadd) Then

2 9 sgn » 1.0
2 10 Else
2 11 sgn = -1.0
2 12 End if

* Process the matrices
1 13 Do 20 i = 1,N
1 1 14 Do 10 j = 1,M
1 2 15 A(i,j) » B(i,j) ♦ sgn*C(f,j)
1 2 16 10 Continue
1 1 17 20 Continue
1 18 Else
1 19 Call ErrMsgC Invalid fucntion specified for ,
1 20 End if

21 Return

22 End
STATISTICS SOURCE STATEMENTS = 22, PROGRAM SIZE = 1592 BYTES.
PROGRAM NAME = AODOP PAGE: 1.

STATISTICS NO DIAGNOSTICS GENERATED.

ABDOP END OF COMPILATION 1 ******

Figure 5. Source Program Listing Example—with IF, DO, and INCLUDE Flags

Chapter 3. Using the Compiler Options 39

IF 00 ISN

1

...*...1 2 3 4 5
Real Function Gauss*8 (x,sigma,mu,rangeJo,range_hi) t \

•k

* This function computes the value of a gaussian distribution
* considered over a finite range.
*

* Input:
* X- point to compute gauss(x)
* mu.sigma - mean and standard deviation of distribution
* Require si pa >0.
* range_lo,range_hi - the range over which the gaussian is
* to be normalized. Require range_hi > rangejo.
* Output:
* function value
*

*

2 Implicit NONE
3 Real*8 x,sipa,mu,range_lo,range_hi

* ,tjo,t_hi,root_2,root_pi,x_sq,total_area
4 Parameter(

* root_2 = 1.4142136
* ,root_pi= 1.77245385
*)

5 If (sigma .eq. O.OdO) Then
1 6 gauss = O.OdO
1 7 Else
j 8 t lo = (range_lo - mu)/(root_2*sigma)
j 9 t~hi = {range_hi - mu)/(root_2*sipa)
I 10 Xsq = (x - mu)**2/(2.0*sipa**2)
1 11 If (ABS(x_sq) .gt. 50.000) Then
2 12 gauss = O.OdO
2 13 Else
2 14 guass = EXP{-x sq)/(root_pi*root_2*sipa)

ERROR 1828(E) THE NAME -GUASS""hAS NOT APPEAREO IN AN EXPLICIT TYPE
STATEMENT.

2 15 total_area = (ERF(t_hi) - ERF(t_lo))*0.5D0
2 16 gauss = gauss/HAX(total_area,1.00-06)
2 17 y End If
1 18 End If

19 Return

20 End

Figure 6. Source Program Listing Example—SOURCE and SRCFLG Options

Note: When this program is compiled, the diagnostic messages shown in
Figure 7 on page 41 are produced.

Source Program Listing—SRCFLG Option r n «»h« miti^i
The SRCFLG option enables you to obtain error messages following the initial
line of statements in error. If SRCFLG is specified with NOSOURCE. only the
initial lines of the statements in error and their associated error messages will
be printed. Figure 6shows an example of an error that occurred at ISN 14.

Diagnostic Message Listing—FLAG Option
If the severity level of the message is greater than or equal to what you ve
specified in the FLAG option, and there are errors in your VS FORTRAN
Version 2 source program, the compiler detects them and gives you a
message. The messages are self-explanatory, making it easy to correct your
errors before recompiling your program. Examples of VS FORTRAN Version 2
messages are shown in Figure 7 on page 41.

40 VS FORTRAN Version 2 Programming Guide

NUMBER MODULE LEVEL ISN

ILX1828I DICP 8(E) 14

ILX0023I CNTL 0(1) 20

VS FORTRAN ERROR MESSAGES

THE NAME "GUASS" HAS NOT APPEARED IN AN
EXPLICIT TYPE STATEMENT.

COMPILATION ERRORS HAVE CAUSED
OPTIMIZATION TO BE DOWNGRADED. FIX

ERRORS AND RECOMPILE.

STATISTICS SOURCE STATEMENTS = 20, PROGRAM SIZE = 1372 BYTES,
PROGRAM NAME=GAUSS PAGE: 1.

♦STATISTICS* 2 DIAGNOSTICS GENERATED. HIGHEST SEVERITY CODE IS 8.
GAUSS END OF COMPILATION 1 ******

Figure 7. Examples of Compiler Messages—FLAG Option

All VS FORTRAN Version 2 compiler messages are in the following format:

ILXnnnnI mmmm level [isn] message-text

where the areas have the following meanings:

ILX is the message prefix identifying all VS FORTRAN Version 2 com
piler messages

nnnn is the unique number identifying this message

mmmm identifies the compiler module issuing the message

level is the severity level of the condition flagged by the compiler.
Compiler messages are assigned severity levels as follows:

0(1) Indicates an informational message; it gives you
f ^ information about the source program and how it

was compiled.

The severity level is 0 (zero).

4(W) Is a warning message; it indicates a possible error
or gives information about the program that you
should consider more carefully than that given by a

level 0 message.

The severity level is 4.

If no messages are produced that exceed this
level, you can safely link-edit and run the compiled
object module.

8(E) Is an error message; it indicates a definite error,
but the compiler makes a corrective assumption
and completes the compilation.

The severity level is 8.

12(S) Is a serious error message; it indicates an error for
which the compiler can make no corrective
assumption.

The severity level is 12.

During compilation, if the compiler detects an
S-level error, it inserts a call for a library function
instead of generating the code for the statement.
During processing, if and when this statement in

Chapter 3. Using the CompilerOptions 41

the program is reached, an error message that
includes the internal statement number of the
statement in error is produced, and the program is
terminated.

16(U) Is an abnormal termination message; it indicates
an error that stopped the compilation before it
could be completed.

The severity level is 16.

£isn] gives the internal statement number of the statement in which the
error occurred, if the internal statement number can be deter
mined.

message-text explains the condition that was detected.

Using the SXM Option
You can use the SXM compiler option to improve the readability of the MAP
and XREF listing output at a terminal. If you specify SXM, the MAP and XREF
output is formatted to 72-character width.

Using the MAP and XREF Options • • ^
The MAP and XREF compiler options are useful in detecting compile-time and
potential run-time errors. XREF is also useful in the debugging of processing
errors.

Astorage map and cross reference show the use made of each variable, state
ment function, subprogram, or intrinsic function within a program. The cross
reference shows the names and statement labels in the source program,
together with the internal statement numbers in which they appear.

r t

You can use the storage map and cross reference to cross-check for these
common source program problems:

Are all variables defined as you expected?

Are variables misspelled?

If you've declared all variables, then check the following:

1. Unreferenced variables

2. Variables referenced in only one place

Are all referenced variables set? (Except for variables in common, parame
ters, initialized variables, etc.)

»- Are one or more variables unexpectedly equivalenced?

Are there unreferenced labels? (If there are, you may have entered an
incorrect label number.)

Have you accidentally redefined one of the standard library functions? (For
example, through a statement function definition or by using a variable with
the same name as a library function.)

42 VS FORTRAN Version 2 Programming Guide

Are the types and lengths of arguments correct across subroutine calls?
(You'll need both listings for this.)

^ Have you inadvertently altered a variable passed to the main entry of a sub
routine? (For example, at a subordinate entry point.)

Source Program Map—MAP Option
The following paragraphs describe each area of a storage map. such as that
shown in Figure 8 on page 43.

Name Column

Type Column

STORAGE IMP - TAGS DEFINED IN MAP ARE:

A-ARGUMENT

C-COMNON VARIABLE

E-EQUIVALENCED
F-REFERENCED

G-ASSIGNED

I-INTRINSIC FUNCTION

K-NAHED CONSTANT

H-ENTRY NAME

P-PROGRAM NAME

R-SUBPROGRAH NAME

S-SET

T-STATEHENT FUNCTION

V-DATA VALUE(S)
X-SUBPROGRAH

PROGRAM NAME: GAUSS SIZE OF PROGRAM: 55C HEX BYTES.

NAME TYPE TAG DISPL. NAME TYPE TAG DISPL.

ABS 1 ERF I

EXP I GAUSS R*8 SFR OOOIDO

GUASS R*4 SF 0001F8 MAX I

HU R*8 F 000208 RANGE HI R*8 F 00020C

RANGE LO R*8 F 000210 ROOT PI R*8 FK 184608

ROOT 2 R*8 FK 0001C8 SIGMA R*8 FA 000214

T HI R*8 SFA 000108 T LO R*8 SFA OOOIEO

TOTAL AREA R*8 SF 0001E8 X R*8 F 000218

X SO ~ R*8 SF OOOIFO

***** NO USER LABELS *****

Figure 8. Example of a Storage Ma|>—MAP Option

The first column is headed name—it shows the name of each item (for example,
variable, array, or subprogram) in the program. Note that names containing
double-byte characters are listed in binary value order before EBCDIC names.

The second column is headed type—it gives the type and (except for character
items) length of each name, in the format:

type*length

where the type can be:

C for complex

CHAR for character (length not displayed)

I for integer

L for logical

R for real or double precision

Chapter 3. tjsing the Compiler Options 43

Tag Column
The third column Is headed lAG-it displays use codes for each name and vari
able.

Displacement Column ^ o
The fourth column is headed displ- it gives the relative address assigned to a
name.

For unreferenced variables, or for intrinsic functions that are expanded inline,
this column contains the letters UNREFD instead of a relative address.

Common Block Maps—MAP Option
If your source program contains COMMON statements, you II also get a storage
map for each common block.

The map for a common block contains much the same kind ofinformation as for
the main program. The DISPL column shows the displacement from the begin
ning of the common block.

Any equivalenced common variable is listed with its name followed by (E); its
displacement (offset) from the beginning of the block is also given.

Statement Label Map—MAP Option
The MAP option also gives you a statement label map which is a table of state
ment labels used in the program.

It also gives you the internal statement number (ISM) for the statement in which
the label is defined and the address assigned to the label.

Cross Reference—XREF Option
The XREF option produces cross references for symbols and statement labels
used in the source program. Figure 9 on page 45 shows a cross reference for
symbols. The format of the cross reference for labels is essentially the same.

44 VS FORTRAN Version 2 Programming Guide

SYMBOL CROSS REFERENCE DICTIONARY
PROGRAM NAME: GAUSS

TAGS:

A-ARRAY

C-COMMON

D-DUMMY ARGUMENT

E-EQUIVALENCED
F-STATEHENT FUNCTION

G-GENERIC NAME

I-INTRINSIC FUNCTION

K-NAMED CONSTANT

N-ENTRY

P-PROMOTED

Q-PADDED
R-SUBPROGRAH NAME

S-ASSIGNED

T-EXPLICITLY TYPED

V-INITIAL VALUE

X-EXTERNAL SUBPROGRAM

Y-DYNAMIC COMMON

NAME TYPE TAG DECLARED REFERENCED

ABS GI 11

ERF GI 15 15

EXP GI 14

GAUSS R*8 RT 1 6 12 16 16

GUASS R*4 14

MAX GI 16

MU R*8 DT 1 3 8 9 10

RANGE_HI R*8 DT 1 3 9

RANGE LO R*8 DT 1 3 8

ROOT PI R*8 KT 3 4 14

ROOT 2 R*8 KT 3 4 8 9 14

SIGMA R*8 DT 1 3

14

5 8 9

T HI Ra8 T 3 9 15

T_LO R*8 T 3 8 15

TOTAL AREA R*8 T 3 15 16

X R*8 DT 1 3 10

X SQ R*8 T 3 10 11 14

**** NO USER LABELS ****

10

Figure 9. Example of Cross Reference—XREF Option

The columns in the cross reference give you the following information;

NAME Column: Names are listed in alphabetic order. Names containing
double-byte characters are listed in binary value order before EBCDIC names.

TYPE Column: Each name is listed in the same format as for the MAP option
described above.

TAG Column: The tag for each name shows its usage. The symbols used in
the TAG column are defined at the top of the cross reference.

DECLARED Column: The DECLARED column gives the internal statement
number where the data item is defined.

REFERENCED Field: The REFERENCED field gives the internal statement
number(s) of each statement in the source program in which the data item is
referenced.

If there are no references within the program, this column contains the word
UNREFERENCED.

If 0PT(1) or higher is specified for the compilation, the use of a variable within a
statement is indicated in the REFERENCED field. The Flag—F for fetched; S for
set; or B for both set and fetched— follows each internal statement number.

A listing of variables referenced, but not set, follows the normal variable cross-
reference listing.

Chapter 3. Using the Compiler Options 45

End of Compilation Message
The last entry ofthe compiler output listing is the informative message:

MAIN END OF COMPILATION n ****** TIME STAMP: YY.DDDHH.MM.SS

where MAIN is the program name and n is the number identifying this
program's sequence in a compilation.

Using the Terminal Output Display—TERMINAL and TRMFLG Options
TERMINAL specifies output to the terminal and produces a summary of mes
sages and statistics, for all the compilations, at the end of the listing. The error
message line includes the error number, the name of the compiler module
which detected the error, the severity level, the ISN of the statement in error,
and the message text. The format and content are shown in Figure 7 on
page 41

TRMFLG specifies output to the terminal and produces the initial lines of source
statements in error and their associated error messages. The error message
line includes only the severity level and the message text. No summary is
produced at the end of the listing. Figure 10 shows output produced with the
TRMFLG option specified.

VS FORTRAH VERSION 2 ENTERED. 09:29:12

ISN 14: guass = EXP(-x_sq)/(root pi *root_2*sigma)
(E) THE NAME "GUASS" HAS NOT APPEARED IN AN EXPLICIT TYPE
STATEHENT.

ISN 20: End

(I) COHPILATION ERRORS HAVE CAUSED OPTIMIZATION TO BE
DOVINGRADED. FIX ERRORS AND RECOMPILE.

6AUSS END OF COMPILATION 1 ******

VS FORTRAN VERSION 2 EXITED. D9:29:13

Figure 10. Example of Compile-Time Messages—TRMFLG Option

Figure 11 shows the results of different combinations of the
TERMIINAL|NOTERMINAL and TRMFLG|NOTRMFLG options.

Result

TERM

TRMFLG

NOTERM

TRMFLG

TERM

NOTRMFLG

NOTERM

NOTRMFLG

ENTERED and EXITED

messages on terminal
X X X

Full error messages on
terminal

— —
X

Source, truncated error

messages on terminal
X X —

—

Summary of all messages
and statistics at end of

listing

X X

Rgure 11. Results of the TERMINALjNOTERMINAL and TRMFLG|NOTRMFLG Options

Note: For output containing double-byte characters in message text, a terminal
capable of displaying double-byte characters must be used.

46 VS FORTRAN Version 2 Programming Guide

^ Using the Standard Language Flagger—FiPS Option
Through the FIPS option, you can help ensure that your program conforms to
the current FORTRAN standard—American National Standard Programming
Language FORTRAN. ANSI X3.9-1978.

You can specify standard language flagging at either the full language level or
the subset language level:

FIPS(F) Requests the compiler to issue a message for any language
element not included in full American National Standard FORTRAN.

FIPS(S) Requests the compiler to issue a message for any language
element not included in subset American National Standard

FORTRAN.

NOFIPS Requests no flagging for nonstandard language elements.

FIPS messages are all in the same format as other diagnostic messages
described under "Diagnostic Message Listing—FLAG Option" on page 40, and
are all at the 4{W) (warning) level.

Using the SAA Flagger—SAA Option
By using the SAA option, you can identify language elements that are not a part
of the System Application Architecture. Ifyou specify this option, the compiler

I issues diagnostic messages at the 4(W) (warning) level for the language ele-
^ ' ments that do not conform to SAA. For general information about VS FORTRAN

diagnostic messages, see "Diagnostic Message Listing—FLAG Option" on
page 40. For information about the SAA interface for FORTRAN, see Systems
Application Architecture Common Programming interface: FORTRAN Reference,
(SC26-4357).

Using the Automatic Precision increase Facility—AUTODBLOption
The AUTODBL compiler option provides an automatic means of converting
single-precision, floating-point calculations to double precision and/or double
precision calculations to extended precision. It is designed to be used to
convert programs where this extra precision may be of critical importance.

No recoding of source programs is necessary to take advantage of the facility.
Conversion is requested by means of the AUTODBL compiler option at compila
tion time. The automatic precision increase facility should be considered as a
tool for automatic precision conversion, but not as a substitute for specifying
the desired precision in the source program.

Precision Conversion Process
The conversion process includes two functions: promotion and padding.

— See "Available Compiler Options" on page 23 for the syntax of the AUTODBL
option and an explanation of each suboption. Promotion is the process of con
verting items from one precision to a higher precision; for example, from single
precision to double precision. Padding is the process of increasing the size of

Chapter 3. Using the Compiler Options 47

Promotion

nonpromoted items so as to maintain the same storage relationships. Padding
helps you to preserve the relationships between promoted and nonpromoted
items sharing storage.

You may request either or both of the following promotion conversions:

Single-precision items to be promoted to double-precision items, for
example, REALM to REALM and COMPLEXM to C0MPLEXM6.

Double-precision items to be promoted to extended-precision items, for
example, REALM to REALM6 and C0MPLEXM6 to C0MPLEXM2.

Note that single-precision items cannot be increased directly to extended-
precision items, and only real and complex items can be promoted.

Constants, variables and arrays, and intrinsic functions are promoted as
follows:

Constants: Single-precision real and complex constants are promoted to
double precision. Double-precision real and complex constants are promoted
to extended precision. Logical and integer constants are not affected.

Examples of promoted constants are:

Promoted Form

Constant of Constant

3.7 3.7D0

3.5E2 3.5D2

4.5D2 4.5Q2

(3.2,3.14E0) (3.200,3.1400)
(3,4) (3.00,4.00)
(3.201,4.200) (3.2Q1,4.2Q0)

Variables and Arrays: REALM and COMPLEXM variables and arrays are pro
moted to REAL'S and C0MPLEX*16, respectively. REALM and C0MPLEX*16
variables and arrays are promoted to REAL*16 and COMPLEX*32, respectively.

Examples of promoted variables are:

Promoted Form

Variable of Variable

REAL A,B,C REALM A,B,C
IMPLICIT REALM (S-U) IMPLICIT REALM6 (S-U)
C0MPLEX*16 Q(10) C0MPLEX*32 Q(10)

Intrinsic Functions: The correct higher-precision, FORTRAN-supplied function is
substituted when a program is converted; that is, if an argument to a
FORTRAN-supplied function is promoted, the higher-precision FORTRAN func
tion is substituted. For example, a reference to SIN causes the DSIN function to
be used if promotion from REALM to REALM is invoked; similarly, a reference _
to DINT causes the QINT function to be used if the promotion from REAL'S to
REAL*16 is invoked.

48 VS FORTRAN Version 2 Programming Guide

Padding

If a valid intrinsic function name is being passed as an argument, and if the
AUTODBL option is specified, then:

If promotion is requested for the result mode of the specific intrinsic func
tion name being passed, then the promoted function name {if it exists) is
passed. If there is no function name of higher precision corresponding to
the original intrinsic function name, the original intrinsic function name is
used and an informational message is issued.

• If the AUTODBL option specifies padding only (for a given mode), then the
intrinsic function name used as argument is not changed.

When a substitution of an intrinsic function is made in order to honor a pro
motion option, the actual name substituted is an alias; in the example above,
D#SIN is the name actually substituted. This ensures that, if the source
program contains an actual reference to a variable name such as DSIN, no con
flict arises as a result of the substitution of the promoted name.

See Figure 12 on page 53 and Figure 13 on page 55 for promotion of single
and double-precision intrinsic functions with LANGLVL(77) and LANGLVL(66),
respectively.

User Subprograms: Previously compiled subprograms must be recompiled to
convert them to the correct precision. If a calling program is compiled with the
option to promote REALM to REALM (and COMPLEXM to C0MPLEXM6), and
this calling program also references a user-defined function, say FCT, whose
precision is also to be increased, then the function FCT must also be compiled
with the promote option.

Integer and logical items (and non-promoted real or complex items) are padded
if they share storage space with promoted items in order to ensure that the
storage-sharing relationship that existed prior to conversion is maintained.

Note: No promotion or padding is performed on character data type.

The major use of the padding option is for programs whose precision does not
have to be increased, but which call or reference subprograms with increased
precision. The communication between these programs is by argument lists
and/or the common area. Therefore, you can pad all argument references and
all common variables in the nonpromoted program, and be assured that the
proper storage-sharing relationships will be maintained in the promoted
program.

Programming Considerations with AUTODBL
This section describes how use of the AUTODBL facility affects program proc
essing.

Effect on Common or Equivalence Data Values
Promotion and padding operations preserve the storage sharing relationships
that existed before conversion. However, in storage-sharing items, data values
are preserved only for variables having the same length, and for real and
complex variables having the same precision.

Chapter 3. Using the Compiler Options 49

For example, the following Items retain value-sharing relationships:

L0GICAL*4 and INTEGER*4 (same lengths)
REAL*4 and C0MPLEX*8 (same precision)

The following items do not retain value-sharing relationships:

INTEGER*? and INTEGER*4 (different lengths)
REAL*8 and C0MPLEX*8 (different precision)

Note that the character data type is not affected by the AUTODBL option; it is
neither promoted nor padded, but promoted or padded entities of other data
types may be equivalenced to character type variables and the inherent v?.lu0
sharing is, therefore, not maintained.

Effect on Initialization with Character Constants
Care should be exercised when specifying character constants as data initial
ization values for promoted or padded variables, as subprogram arguments, or
in NAMELIST input. For example, literals should be entered into arrays on an
element-by-element basis rather than as one continuous string.

Consider the following statements (compiled with LANGLVL(66)):

DIMENSION A(2), B(2)
DATA A/'ABCDEFGH'/, B(1)/'IJKL7,B(2)/'HN0P7

Array B is initialized correctly, but array A is not because padding takes place
at the end of each element; therefore, no spill occurs if array A is padded or
promoted. 'ABCDEFGH' initializes A(1) only.

Effect on Initialization with Hexadecimal Constants
Care should be exercised when using hexadecimal constants for initialization of
promoted or padded entities.

Consider the following example:

DIMENSION RAR5(4)
DATA RAR5 /Z4DFi£76B,ZC6FlF04B,ZF46BF2E7,26BC9F55D/
A = 1.2345

I = 25

3 PRINT RAR5,A,I

This example initializes the array RAR5 with hexadecimal constants so that the
contents of the array contain a valid format specification. In this case, the
format is (1X,F10.4,2X,I5) and the array RAR5 is used in statement 3 to print the
variables A and I.

However, if an AUTODBL option (such as AUTODBL{DBL)) were used for this
program, the array RAR5 would be promoted to a REAL'S array and the initial
ization performed by the DATA statement would affect only the low-order
portion of each element of the array. The high-order portions would, in fact, be
initialized with zeros, which are not valid for a format specification.

Therefore, you should not use an AUTODBL option in such a case and expect
results similar to those obtained without the AUTODBL option.

50 VS FORTRAN Version 2 Programming Guide

If the DATA statement were changed to;

DATA RAR5 /Z4DF1E76B4O4O4040,ZC6F1F04B40404040,
X ZF46BF2E740404040,Z6BC9F55D40404040/

the program would compile and run correctly for the AUTODBL option given.
In this case, the format specification would be:

(IX, F10. 4,2X ,15)

Effect on Called Subprograms
FORTRAN main programs and subprograms must be converted so that vari
ables in the common area retain the same relationship, to guarantee correct
linkage during processing. The recommended procedure is to compile all such
program units with AUTODBL(DBLPAD). If an option other than DBLPAD is
selected, be careful if the common area variables in one program unit differ
from those in another; common area variables not to be promoted should be
padded.

Any non-FORTRAN external subprogram called by a converted program unit
should be recoded to accept padded and promoted arguments.

Effect of Mode-Changing Intrinsic Functions
Care should be exercised when using intrinsic functions whose functional types
are different from their argument types; for example, the SNGL function expects
a REAL'S argument and returns a REAL*4 result. If the argument to SNGL was
a promoted REAL'S item, the function SNGLQ would be used, but the functional
result would still be a REAL*4.

The following example calls for the promotion of all REAL'4 items to REAL'S,
and all COMPLEX'S items to C0MPLEX'16. REAL'S items are not promoted.

EPROCESS AUT0DBL(DBL4)
REAL*S D

C0HPLEX*8 C

1 A = SNGL(D)
2 C = CMPLX(B,SNGL(D))

At statement 1, the function SNGL returns the high-order portion of its REAL'S
argument; that is, returns a REAL'4 result. This functional value is then
expanded with zeros and set into the promoted variable A.

At statement 2, the CMPLX intrinsic function is used. This function requires that
the modes of its two arguments must be the same (if two arguments are given).
In the above example, however, the first argument, B, is promoted to a REAL'S,
but the second argument is a REAL'4, because SNGL always returns a REAL'4
result.

Therefore, although this program would compile correctly if the AUTODBL
option were not used, a compilation error would result if AUTODBL(DBL4) were
specified.

Chapter 3. Using the Compiler Options 51

If statement 2 were changed to:

2 C = CMPLX(B,A)

the program would compile correctly for the AUTODBL option given in the
example.

Effect of Argument Padding on Arrays
When padding is requested with the second position of the AUTODBL option set
as either 1 or 3, then all non-promoted arguments of the type indicated by posi
tions 3, 4, and 5 are padded. Note that this must include all nonpromoted
arrays of the types indicated, because the compiler is not aware of the use of
an array name or an array element as an argument until it encounters such a
use. In other words, if such an array is used as an argument, all references to
that array are calculated on the basis that the array is padded.

Consider the following example:

EPROCESS AUTODBL(11030)
INTEGER 1(20), N/3/, L/10/

1 K = 1(5)
2 C = FCT(I(N),L)

In this case, when statement 1 is encountered and the displacement to the fifth

element of the array, I, is calculated, it is not known whether or not the array
will be used as an argument. The AUTODBL option calls for the promotion of
all REAL*4 and COMPLEX'S and the padding of all arguments of the integer
type. Therefore, the array, I, is padded and the calculation of the displacement
for the reference at statement 1 is made in terms of the padded array. Note
that the array would be padded even if it did not appear as an argument refer-
ence as it does here in statement 2.

Effect on CALL DUMP or CALL PDUMP

The AUTODBL option has no effect on the parameter specifying the requested
format for the DUMP/PDUMP subroutine. For example, if a CALL DUMP or
CALL PDUMP statement requests a dump format of variables of types REALM
or COMPLEX'S, output from a converted program is shown in single-precision
format. Each item is displayed as two single-precision numbers rather than as
one double-precision number.

For variables that are promoted, the first number is approximately the value of
the stored variable: the second number is meaningless.

For variables that are padded, the first number is exactly the value of the vari
able; the second number is meaningless.

Effect on Direct Access Input/Output Processing
When an OPEN statement has been specified (or a DEFINE FILE statement for
LANGLVL(66)), any record exceeding the maximum specified record length
causes record overflow to occur.

For converted programs, you should check the record size coded in the defining
statement to determine if it can handle the increased record lengths. If not suf
ficient, the size should be increased appropriately.

52 VS FORTRAN Version 2 Programming Guide

Effect on Asynchronous Input/Output Processing
Extreme care should be exercised In using AUTODBL for programs containing
asynchronous Input/output statements.

The asynchronous Input/output operation transmits the number of bytes as
specified by the transmitting or receiving areas. These areas for any given
data set must have the same characteristics regarding both promotion and
padding; that Is, both must be padded or both must be promoted.

Effect on Formatted Input/Output Data Sets
The AUTODBL option has no effect on the FORMAT statement. Formatted
Input/output Is controlled by the specifications In the FORMAT statement, and
does not reflect the Increased size and precision of any promoted variable.

Effect on Unformatted Input/Output Data Sets
Unformatted Input/output data sets which have not been converted are not
directly acceptable to converted programs If the I/O list contains promoted vari
ables.

To make an unconverted data set accessible to the converted program, you
should code BFALN = F in the DCB parameter at run time. (This can be used
only with MVS systems.)

The effect of writing promoted or padded Items to a data set with the BFALN= F
parameter Is to write the Items as If they were not promoted or padded; that Is,
only the most significant portion of the promoted Item Is written and only the
unpadded portion of the padded item Is written.

/

The effect of reading Into promoted or padded items from such a data set Is the
reverse; that Is, the unformatted data Is read Into the most significant portion of
the promoted Item, and the least significant portion Is skipped. For padded
Items, the unformatted data Is read Into the non-padded portion and the padded
portion is skipped.

The BFALN parameter should not be used for:

Programs and data sets having the same conversion characteristics.

»- Formatted data sets regardless of the conversion characteristics; the
FORMAT statement controls the transmission of data.

Promotion of Single and Double Precision intrinsic Functions
The following tables show the promotion of single and double precision Intrinsic
functions for LANGLVL(77) and LANGLVL(66).

Generic

Name

Single Precision
Function

Corresponding Double
Precision Function

Corresponding Extended
Precision Function

LOG ALOG (REALM)
CLOG (C0HPLEX*8)

DLOG (REALMS)
CDLOG (C0HPLEX*16)

QLOG (REAL*16)
CQLOG (C0HPLEX*32)

LCGIO ALOGIO (REALM) OLOGIO (REAL*8) QLOGIO (REAL*16)

EXP EXP (REALM)
CEXP (COMPLEXES)

OEXP (REALM)
CDEXP (C0HPLEX*16)

QEXP (REAL*16)
CQEXP (C0HPLEX*32)

Figure 12 (Part 1 of 2). Promotion of Single and Double Precision Intrinsic Functions for
LANGLVL(77)

Chapter 3. Using the CompilerOptions 53

Generic

Name

Single Precision
Function

Corresponding Double
Precision Function

Corresponding Extended
Precision Function

SQRT SQRT (REALM)
CSQRT (C0HPLEX*8)

DSQRT (REAL*8)
CDSQRT (COHPLEX'-ie)

QSQRT (REAL*16)
CQSQRT (CCHPLEXM2)

SIN SIN (REALM)
CSIN (C0HPLEX*8)

DSIN (REAL*8)
CDSIN (C0HPLEX*16)

QSIN (REAL*16)
CQSIN (C0HPLEXM2)

COS COS (REALM)
CCOS (COMPLEXES)

DCOS (REAL*8)
CDCOS (COMPLEX*16)

QCOS (REAL*16)
CQCOS (C0HPLEX*32)

TAN TAN (REAL*4) DTAN (REAL*8) QTAN (REAL*16)

ATAN2 ATAN2 (REALM) DATAN2 (REAL*8) QATAN2 (REAL*16)

COTAN COTAN (REALM) DCOTAN (REAL*8) QCOTAN (REAL*16)

SINH SINH (REALM) DSINH (REAL*8) QSINH (REAL*16)

COSH COSH (REALM) DCOSH (REAL*8) QCOSH (REAL*16)

TANH TANH (REALM) DTAHH (REAL*8) QTANH (REAL*16)

AS IN ASIN (REALM) DASIN (REALM) QARSIN (REAL*16)

ACOS ACOS (REALM) DACOS (REAL*8) QARCOS (REAL*16)

ATAN ATAN (REALM) DATAN (REAL*8) QATAN (REAL*16)

ABS ABS (REALM)
CABS (C0HPLEX*8)

DABS (REAL*8)
CDABS (C0MPLEX*16)

QABS (REAL*16)
CQABS (C0HPLEX*32)

ERF ERF (REALM) DERF (REALM) QERF (REAL*16)

ERFC ERFC (REALM) DERFC (REAL*8) QERFC (REAL*16)

GAMMA GAMMA (REAL*4) DGAMMA (REAL*8) Note 1

LGAMMA ALGAMA (REAL*4) DLGAMA (REAL*8) Note 1

INT INT (REALM)
Note 2 (COHPLEXM)
IFIX (REALM)
HFIX (REALM)

lOINT (REAL*8)
Note 3 (C0HPLEX*16)
IDINT (REAL*8)
Note 4 (REAL*8)

IQINT (REAL*16)

IQINT (REAL*16)

Note 5 FLOAT (REALM) DFLOAT (REAL*8) QFLOAT (REAL*16)

REAL Note 2 (REALM)
Note 2 (COMPLEXM)

SNGL (REALM)
DREAL (C0MPLEX*16)

SNGLQ (REAL*16)
QREAL (CCMPLEX*32)

OBLE DBLE (REALM)
Note 2 (COMPLEXES)

Note 2 (REALM)
Note 3 (CCHPLEX*16)

DBLEQ (REAL*16)

QEXT QEXT (REALM) QEXTD (REALM) Note 6 (REAL*16)

CHPLX CHPLX (REALM)
Note 2 (C0HPL-EX*8)

DCMPLX (REAL*8)
Note 3 (C0HPLEX*16)

QCHPLX (REAL*16)

I HAG AIHAG (COHPLEXM) DIMAG (C0HPLEX*16) QIHAG (C0HPLEX*32)

CONJG CONJG (CCHPLEX*8) DCONJG (C0HPLEX*16) QCONJG (C0HPLEX*32)

AINT AINT (REALM) DINT (REAL*8) QINT (REAL*16)

ANI NT ANINT (REALM) DMINT (REAL*8) Note 1

HINT HINT (REALM) IDNINT (REAL*8) Note 1

MOD AHOD (REAL''4) DHOO (REAL*8) QMOD (REAL*16)

SIGN SIGN (REALM) DSIGN (REAL*8) QSIGN (RCAL*16)

DIM DIM (REALM) DDIM (REAL*8) QDIH (REAL*16)

DPROD (REALM) Note 7 (REAL*8)

MAX

Note 8

AHAXl (REAL*4)
AHAXO (REAL*4)
HAXl (REALM)

DMAXl (REAL*8)
Note 8 (REAL*8)
Note 9 (REAL*8)

QMAXl (REAL*16)

MIN

Note 10

AHINl (REALM)
AMINO (REALM)
MINI (REALM)

DHINl (REAL*8)
Note 10 (REALM)
Note 11 (REALM)

QMINl (REAL*16)

Figure 12 (Part 2 of 2). Promotion of Single and Double Precision Intrinsic Functions for
LANGLVL(77)

Notes for Figure 12 follow Figure 13 because some notes apply to both figures.

54 VS FORTRAN Version 2 Programming Guide

Generic

Name

Single Precision
Function

Corresponding Double
Precision Function

Corresponding Extended
Precision Function

LOG

Note 12

ALOG (REALM)
CLOG (COMPLEXES)

DLOG (REALMS)
CDLOG (CCHPLEX*15)

QLOG (REAL^IS)
CQLOG (C0HPLEXM2)

L0G19

Note 13

ALOGIO (REALM) DLOGIO (REAL^B) QLOG10 (REAL*16)

EXP EXP (REALM)
CEXP (COMPLEXES)

DEXP (REAL*8)
CDEXP (C0HPLEX*16)

QEXP (REAL*16)
CQEXP (C0HPLEX*32)

SQRT SQRT (REALM)
CSQRT (COMPLEXES)

OSQRT (REAL*8)
CDSQRT (C0HPLEX*16)

QSQRT (REAL*16)
CQSQRT (C0HPLEXM2)

SIN SIN (REALM)
CSIN (COMPLEXM)

DSIN (REAL*8)
CDSIN (C0MPLEX*16)

QSIN (REAL*16)
CQSIN (C0MPLEXM2)

COS COS (REALM)
CCOS (C0HPLEX*8)

OCOS (REAL*8)
CDCOS (C0HPLEX*16)

QCOS (REAL*16)
CQCOS (C0HPLEXM2)

TAN TAN (REAL*4) DTAN (REAL*8) QTAN (REAL*16)

COTAN COTAN (REAL*4) DCOTAN (REAL*8) QCOTAN (REAL*16)

SINH SINH (REALM) DSINH (REALM) QSINH (REAL*16)

COSH COSH (REALM) DCOSH (REALM) QCOSH (REAL*16)

TANH TANH (REALM) DTANH (REALM) QTANH (REAL*16)

AS IN

Note 14

ARSIN (REALM) DARSIN (REALM) QARSIN (REAL*16)

ACOS

Note 15

ARCOS (REAL*4) DARCOS (REALM) QARCOS (REAL*16)

ATAN ATAN (REAL*4) OATAN (REAL*8) QATAN (REAL*16)

ATAN2 ATAN2 (REAL*4) 0ATAN2 (REALM) QATAN2 (REAL*16)

ABS ABS (REALM)
CABS (COMPLEXM)

DABS (REAL^B)
CDABS (C0HPLEX*16)

QABS (REAL*16)
CQABS (C0HPLEX*32)

ERF ERF (REALM) DERF (REALM) QERF (REAL*16)

ERFC ERFC (REALM) OERFC (REAL*8) QERFC (REAL*16)

GAHHA " GAMMA (REAL*4) DGAHMA (REAL*8) Note 1

LGAMMA

Note 16

ALGAilA (REAL*4) DLGAHA (REALM) Note 1

INT INT (REAL*4)
IFIX (REALM)
HFIX (REALM)

IDINT (REAL*8)
IDINT" (REALM)
Note 4 (REALM)

IQINT (REAL*16)

Note 5 FLOAT (REAL*4) DFLOAT (REALM) QFLOAT (REAL*16)

REAL REAL (COMPLEXM) DREAL (C0HPLEX*16) QREAL (C0HPLEX*32)

SNGL Note 18 SNGL (REALM) SNGLQ (REAL*16)

DBLE DBLE (REALM) Note 2 (REALM) DBLEQ (REAL*16)

QEXT QEXT (REAL*4) QEXTD (REAL*8) Note 6 (REAL*16)

CHPLX CMPLX (REALM) DCMPLX (REALM) QCHPLX (REAL*16)

IMAG

Note 17

AIHAG (COMPLEXM) DIMAG (C0HPLEX*16) QIHAG (C0HPLEX*32)

CONJG CONJG (COMPLEXM) OCONJG (C0HPLEXM6) QCONJG (C0HPLEX*32)

AINT AINT (REALM) DINT (REAL*8) QINT (REAL*16)

MOD AMOD (REAL*4) DMOD (REAL*8) QMOD (REAL*16)

SIGN SIGN (REALM) DSIGN (REAL^B) QSIGN (REAL*16)

DIM DIM (REALM) DDIH (REAL*8) QDIM (REAL*16)

MAX

Note 8

AHAXl (REAL*4)
AMAXO (REAL*4)
HAXl (REAL*4)

DMAXl (REAL*8)
Note 8 (REALM)
Note 9 (REALM

QMAXl (REAL*16)

Figure 13 (Part 1 of 2). Promotion of Single and Double Precision Intrinsic Functions for
LANGLVL(66)

Chapter 3. Using the CompilerOptions 55

Generic

Name

Single Precision
Function

Corresponding Double
Precision Function

Corresponding Extended
Precision Function

HIN AHINl (REALM) DHINl (REALMS) QHINl (REAL*16)

Note 10 AHINO (REAL*4) Note 10 (REALMS)
MINI (REALM) Note 11 (REAL*8)

Figure 13 (Part 2 of2). Promotion ofSingle and Double Precision Intrinsic Functions for
LANGLVL(66)

Notes to Figure 12 and Figure 13:

1. The extended-precision equivalent of this function does not exist. In pro
moting REAL*8 to REAL'16, the double-precision function is used. A
warning message is issued.

2. There is no specific function name corresponding to this argument value.

3. The corresponding double-precision function does not exist by name. In
promoting COMPLEX'8 to C0MPLEX'16, the single-precision function is
expanded as though the double-precision function existed.

4. The double-precision equivalent of this function does not exist. In pro
moting REALM to REAL*8, the single-precision function is used. Awarning
message is issued.

5. The argument mode for this function is integer, which is not promotable.
The alternate function names are chosen depending upon the mode of the
function result (listed in this table).

6. The extended-precision equivalent of this function does not exist. In pro
moting REAL*8 to REAL'16, the double-precision function is expanded as
though the extended-precision function existed.

7. The double-precision equivalent of this function does not exist. In pro
moting REALM to REALM, the single-precision function is expanded as
though the double-precision function existed.

8. The argument mode for this function is integer, which is not promotable. In
promoting REALM to REALM, the functional result is promoted; that is,
•FLOAT is used to float the maximum of the integer arguments.

9. The double-precision equivalent of this function does not exist. In pro
moting REALM to REALM, the double-precision function IDINT is used to fix
the maximum of the REALM arguments.

10. The argument mode for this function is integer, which is not promotable. In
promoting REALM to REALM, the functional result is promoted; that is.
•FLOAT is used to float the minimum of the integer arguments.

11. The double-precision equivalent of this function does not exist. In pro
moting REALM to REALM, the double-precision function I^INT is used to fix
the minimum of the REALM arguments.

12. LOG is also the specific name of the single-precision function (corre
sponding to ALOG).

13. LOG10 is also the specific name of the single-precision function (corre
sponding to ALOG10).

14. ASIN is also the specific name of the single-precision function (corre
sponding to ARSIN).

56 VS FORTRAN Version 2 Programming Guide

Operation Operand

LIBRARY ddname [{member-name
[,member-name],...)]
[,ddname[{member-name
[,member-name],...)]]

ddname indicates the name of a DD statement specifying a library.

member-name indicates the name of a member of the library.

Linkage Editor Data Sets
The linkage editor generally uses five system data sets; others may be neces
sary if secondary input is specified. Secondary input is defined by the pro
grammer; cataloged procedures do not supply the secondary input DD
statements.

Figure 20 on page 80 lists the function, device types, and allowable device
classes for each linkage editor data set.

ddname Function Device Types Device Class Defined*

SYSLIN Primary input data, gener
ally output of the compiler

Direct access

Magnetic tape

Card reader

SYSDA SYSSQ input
stream (defined as
DD * or DD DATA)

Yes

SYSLIB Automatic call library
(SYS1.VSF2FORT)

Direct access SYSDA Yes

SYSLMOD Link-edit output (load
module)

Direct access SYSDA Yes

SYSPRINT Writing listings, messages Printer

Magnetic tape
Direct access

A

SYSSQ
SYSDA

Yes

SYSUT1 Linkage, editor work, data
set

Direct access SYSDA Yes

User-defined Additional libraries and

object modules

Direct access

Magnetic tape

SYSDA

SYSSQ

No

Figure 20. Linkage Editor Data Sets

Note to Figure 20;

' The Defined column indicates whether or not the ddname is defined in cat
aloged procedures.

Linkage Editor Output
Output from the linkage editor is in the form of load modules in executable
form. The exact form of the output depends upon the options in effect when you
requested the link-edit, as described in the previous sections.

Using the Loader
You choose the loader when you want to combine link-editing into one job step
with load module processing. The loader combines your object module with
other modules into one load module, and then places the load module into
main storage and runs it.

The loader options you can use, and the loader data sets, are described in the
following paragraphs.

80 VS FORTRAN Version 2 Programming Guide

Using Linkage Editor Control Statements: You can use the INCLUDE and
LIBRARY linkage editor control statements as follows:

INCLUDE—used to specify additional object modules you want Included In
the output load module.

LIBRARY—used to specify additional libraries to be searched for object
modules to be included In the load module.

Linkage Editor Control Statements
Linkage editor control statements specify an operation and one or more oper
ands.

The first column of a control statement must be left blank. The operation field
begins In column 2 and specifies the name of the operation to be performed.
The operand field must be separated from the operation field by at least one
blank. The operand field specifies one or more operands separated by
commas. No embedded blanks may appear In the field. Linkage editor control
statements may be placed before, between, or after either modules or sec
ondary Input data sets.

The INCLUDE and LIBRARY control statements specify secondary Input.

INCLUDE Linkage Editor Control Statement: The INCLUDE statement specifies
additional programs to be Included as part of the load module.

Operation Operand

INCLUDE ddname{{member-name
(,member-name])]
[,ddname[{member-name
[,member-name],...)]]

ddname indicates the name of a DD statement specifying a library or a
sequential data set.

member-name Indicates the name of the member to be Included. When

sequential data sets are specified, member-name Is omitted.

LIBRARY Linkage Editor Control Statement: The LIBRARY statement specifies
additional libraries to be searched for object modules to be Included In the load
module.

The LIBRARY statement differs from the INCLUDE statement In that libraries

specified In the LIBRARY statement are not searched until all other references
(except those reserved for the automatic call library) are completed by the
linkage editor. A module specified In the INCLUDE statement Is Included Imme
diately.

Chapter 4. Running Your Program 79

VS FORTRAN Version 2 supplies you with cataloged procedures that let you
link-edit or load your programs easily. For details, see "Running the Load
Module" on page 83.

Using the Linkage Editor
When you use the linkage editor rather than the loader, you have many proc
essing options and optional data sets you can use, depending on the link-edit
processing you want done.

Linkage Editor Processing Options: Through the FARM option of the EXEC
statement, you can request additional optional output and processing capabili
ties:

MAP—specifies that a map of the load module is to be produced on
SYSPRINT, giving the length and location of the main program and all sub
programs.

XREF—specifies that a cross-reference listing of the load module is to be
produced on SYSPRINT, for the main program and all subprograms.

LET—specifies that the linkage editor is to allow the load module to run,
even when abnormal conditions have been detected that could cause the
program to fail.

NCAL—specifies that the linkage editor is not to attempt to resolve external
references.

LIST—specifies that the linkage editor control statements are to be listed in
the SYSPRINT data set.

OVLY—specifies that the load module is to be in overlay format. That is,
segments of the program share the same storage at different times during
processing. {For more details, see Chapter 7, "Associating Data" on
page 193.)

SIZE—specifies the amount of virtual storage to be used for this link-edit
job.

Required Linkage Editor Data Sets: Forany link-edit job, you must make certain
that at least the following data sets are available:

SYSLIB—direct access data set (in partitioned data set format) that makes
the automatic call library (SYS1.VSF2F0RT or VSF2MATH or both libraries,
and perhaps others) available.

SYSLIN—used for compiler output and linkage editor input.

SYSLMOD—used for linkage editor output.

SYSPRINT—makes the system print data set available, used for writing
listings and messages. This data set can be a direct access, magnetic
tape, or printer data set.

SYSUT1—direct access work data set needed by the link-edit process.

Optional Linkage Editor Data Sets: In addition, depending on what you want the
linkage editor to do for you, you can, optionally, specify the following data set:

SYSTERM—used for writing error messages. This data set can be on a
direct access, magnetic tape, or printer device.

78 VS FORTI^N Version 2 Programming Guide

s

//RECOMP EXEC VSF2CL,
// PGMLIB='mypds. 1oad',PGMNAME=my1 mod
//FORT.SYSIN DD DSN=mysrce,DISP=SHR
//LKEO.SYSLMOD DD DISP=OLD
//LKED.SAMPLIB DD DSN=SYS1.SAMPLIB,DISP=SHR
//LKED.SYSIN DD *

INCLUDE SAMPLIB(AFBVLKED)
INCLUDE SYSLMOD(mylmod)

/*

In the example, the selection of link mode or load mode is controlled by the
SYSLIB DD statement that is in the linkage editor step of the cataloged proce
dure VSF2CL

Notes:

1. You can use the REPLACE statements that are in the member AFBVLKED in

SYS1.SAMPLIB with input load modules that were created with any release
level of VS FORTRAN Version 1 or of VS FORTRAN Version 2.

2. The data sets that you supply in your linkage editor step control whether
the resulting load module runs in link or load mode, and whether it uses the
standard or the alternative mathematical routines. For example, your ori
ginal load module may have been created so that it runs in link mode, but,
using the REPLACE statements, you can link-edit it again so that it operates,
in load mode (and vice versa). Similarly, you can change between the
standard and the alternative mathematical routines. This requires only that
the proper data sets be specified as the SYSLIB input to the linkage editor.

3. Do not attempt to create and use your own set of REPLACE statements
based upon the run-time library modules that are in your load module.
(Certain modules must be replaced by using the form of the REPLACE state
ment that replaces a CSECT; others must be replaced by using the form of
the REPLACE statement that deletes a CSECT and by allowing the module
to be included by the automatic library-call mechanism.)

4. If you have previously tried to replace the run-time library modules using
your own set of REPLACE statements and if the resulting load module did
not work properly, then use the supplied set as described above, and create
your load module so that it runs in load mode. You will probably not be
able to link edit it again to run successfully in link mode, but, for load mode,
you can often create a usable load module.

Running a Link-Edit
You can use two different programs to perform the link-edit: the linkage editor
or the loader. Which you use depends upon the output you want produced.

Linkage Editor: Use the linkage editor when you want to reduce storage
requirements through overlays, or to use additional libraries as input, or to
define the structural segments of the program.

Loader: Use the loader when your input is a small object module that doesn't
require overlay, that doesn't require additional linkage editor control state
ments, and that you'll be running immediately.

Chapter 4. Running Your Program 77

Library Module Replacement Tool: When you must use one of your own load
modules as linkage editor input, the following procedures assist you in link-
editing your load modules. VS FORTRAN Version 2 supplies a set of linkage
editor REPLACE statements that you can use to replace all of the run-time
library modules in your load modules. You should replace these library
modules in this manner whenever your input to the linkage editor is an existing
load module containing these library modules.

If, on the other hand, you are able to recompile all of your own routines to
create new object modules or if you still have all of the object modules avail
able, then you can create your new load module from these object modules. In
this case, you do not have to use the set of REPLACE statements.

The set of linkage editor REPLACE statements is in the member AFBVLKED in
SYS1.SAMPLIB. In your linkage editor primary input data set, SYSLIN, include
this member immediately before you include the load module in which the
replacement is to occur. The run-time library modules from the data set
pointed to by the SYSLIB DD statement can then replace the previous ones and
become part of your new load module.

Examples:

The following example illustrates the replacement of all of the VS FORTRAN
Version 1 or Version 2 run-time library modules in one of your load modules
without replacing any of your own modules. You might do this to incorporate
into your load module the corrective service that has been applied to these
library modules in your product data sets. In this example, "mypds.load is the
name of your load module library that contains the load module with the name
"myImod."

//RELINK EXEC PGH=IEWL,PARM='LIST,MAP,XREF'
//SYSPRINT DD SYSOUT=A
//SYSLIB DD 0SN=SYS1.VSF2F0RT,DISP=SHR
//SAMPLIB DD DSN=SYS1.SAMPLIB,DISP=SHR
//SYSUTl DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSLM0D DD DSN=mypds.Ioad,DISP=OLD
//SYSLIN DD *

INCLUDE SAMPLIB(AFBVLKED)
INCLUDE SYSLMOD(mylmod)
NAME inylmod(R)

/*

In the example above, only SYS1.VSF2F0RT is provided in the SYSLIB DD
statement; therefore, running the resulting load module is in load mode.

The following example illustrates the use of the cataloged procedure VSF2CL to
recompile one of your modules, to retain all of yourother modules from an
existing load module, and to replace all ofthe run-time library modules with the
current ones. In this example, "mypds.load" is the name of your load module
library that contains the load module with the name "mylmod," and "mysrce" is
the name of the data set that contains the FORTRAN source program that you
want to recompile.

76 VS FORTRAN Version 2 Programming Guide

Link-Editing Your Program
You must link-edit any object module before you can run your program, com
bining this object module with others to construct an executable load module.

Note: FORTRAN 66 object programs are link-edited exactly the same as
FORTRAN 77 object programs.

Your input to the linkage editor is the object module produced by the compiler
using the DECK or OBJECT option. The object module consists of dictionaries,
text, and an end-of-module indicator. (For additional details, see
Appendix B, "Object Module Records and Statement Table" on page 335.)

The following sections discuss migration of load modules from previous
releases and how to run a link-edit.

Migration of VS FORTRAN Load Modules
The load modules that contain your FORTRAN programs nearly always contain
a number of VS FORTRAN Version 2 run-time library modules as well. These
library modules are subject to the following restrictions:

1. All of the run-time library modules in a load module must be at the same

release and modification level.

2. The run-time library modules in a load module must be at a release level
that is at least as high as the highest level of the compiler that was used to
create any of the object modules.

Usually when you link-edit a load module, your primary linkage editor input
consists of the object modules that you have just compiled. Another linkage
editor input, the SYSLIB data set. supplies the run-time library modules that
your load module needs. (The SYSLIB data set that you use should be from the
most recent level of VS FORTRAN Version 2 that has been installed at your
installation.) Link-editing your program in this manner satisfies the two require
ments listed above.

Sometimes you may have to create a new load module by using one of your
existing load modules (rather than only the object modules) as input to the
linkage editor. This can occur when:

1. You need to recompile some, but not all, of your own FORTRAN routines
that are within one of your load modules.

2. You have to upgrade one of your existing load modules so it contains the
run-time library modules at the latest release or maintenance level. A new
release or corrective service to these library modules is always installed in
your product data sets, but the changes are not reflected in any of your own
load modules unless you link-edit them again using the updated data sets.

3. You want to change the mode from link mode to load mode (or vice versa).

You might have to use your original load module rather than only your object
modules as linkage editor input in these cases either because you don't have
all of your routines available in source form for recompilation or because you
didn't retain the object modules. A problem occurs when you use your pre
vious load module as linkage editor input: The linkage editor retains the run
time library modules that are in your original load module while including
others from the current SYSLIB input; this may cause either or both of the two
requirements listed above to be violated.

Chapter 4. Running Your Program 75

Selecting Link Mode or Load Mode
During installation of the VS FORTRAN Version 2 library, your system pro
grammer may have specified the libraries to be used in link mode. {All proce
dures provided with the product are set up for load mode.) Asingle
environment may have been established for all users, or the selection of load
mode or link mode left up to the individual user. The procedures for specifying
libraries in link mode or load mode are described below. If you have compiled
RENT and separated your text and have link-edited the nonreentrant part for
link mode operation, the reentrant parts modules must still be loaded (from LPA
or a PDS).

Specifying Libraries in Load Mode

• For operation in load mode, provide VSF2F0RT but not VSF2LINK to the
linkage editor to use when including VS FORTRAN Version 2 library
modules. Specify only SYS1.VSF2F0RT in the DD statement for SYSLIB in
the linkage editor step:

//SYSLIB DO DSN=SYS1.VSF2F0RT,DISP=SHR

• To run a program link-edited in load mode, make VSF2L0AD available for
the processing step by performing one of the following steps.

1. Place the following JOBLIB DD statement in the JCL for the job which
runs the VS FORTRAN Version 2 program:

//JOBLIB DD DSN=SYS1.VSF2L0AD,DISP=SHR

2. Or. place one ofthe following DD statements in the JCL for the step
which runs the VS FORTRAN Version 2 program:

//STEPLIB DD DSN=SYS1.VSF2L0AD,DISP=SHR
// DD DSN=MY.USERLIB,DISP=SHR

or

//FORTLIB DD DSN=SYS1.VSF2L0AD,DISP=SHR
// DD DSN=MY.USERLIB,DISP=SHR

(If both FORTLIB and STEBLIB are specified. FORTLIB is searched first.)
This technique does not let you use reentrant modules that are in the
link pack area, because step libraries and job libraries are searched
before the link pack area. (Refer to 0S/VS2 MVS Supervisor Services
and Macro Instructions (GC28-1114). or MVS/Extended Architecture
System Programming Library: Supervisor Services and Macro
Instructions (GC28-1154), in the discussion of program management.)

Specifying Libraries in Link Mode

• For operation in link mode, concatenate VSF2LINK ahead of VSF2F0RT for
use by the linkage editor when it includes VS FORTRAN Version 2 library
modules. Specify both VSF2LINK and VSF2F0RT in the DD statement for
SYSLIB in the linkage editor step:

//SYSLIB DD DSN=SYS1.VSF2LINK,DISP=SHR
// DD DSN=SYS1.VSF2F0RT,DISP=SHR

• Aprogram link-edited in link mode does not require any VS FORTRAN
Version 2 libraries at run time.

If you are using shareable modules, you will have toaccess them with either a
FORTLIB DD statement or a STEPLIB DD statement.

74 VS FORTRAN Version 2 Programming Guide

Ifthe nonshareable parts of your program run in 31-bit addressing mode, you
can recreate the shareable modules under VM/XA so that they reside above the

I 16-megabyte line. To do this, use the LKED command, assigning the shareable
modules an RMODE value of ANY (this is the default.

Ifthe nonshareable parts run in 24-bit addressing mode, the shareable modules
must reside below the 16-megabyte line. Therefore, if you recreate the
shareable modules under VM/XA, you must assign an RMODE value of 24 or an
ORIGIN address below the 16-megabyte line.

Running Your Program Under MVS
The following sections discuss:

Loading library modules at run time

• Link-editing your program

^ Using partitioned data sets

Considerations for sequential files

•- Considerations for direct files

Considerations for I/O files

Cataloging and overlaying programs

•- Considerations for MVS/XA

Loading Library Modules at Run Time
Before you can run a program you must link-edit your object module with the
required library modules to create a load module. You can link-edit all library
modules except the mathematical routines using either of the following modes:

Mode Definition

Link Include all of the code for specified service subroutines in your execut
able module.

Load Include only the pointers for the required service subroutines in your
executable module. At run time, the code for the specified library
modules is loaded and run.

Running in load mode:

Reduces the amount of auxiliary storage required for the load
module

Expedites the com pile-link-go process
In an MVS/XA environment, allows some service subroutines to be
placed in the extended link pack area

Running Load Modules Created in Version 1, Releases 1 and 1.1
Any load module originally link-edited under VS FORTRAN Version 1, Releases
1 or 1.1 must be link-edited again using the current release library. The older
versions referred to the reentrant I/O service subroutines by the name
IFYVRENT; newer versions of VS FORTRAN refer to these routines under the

^ name AFBVRENT.

Chapter 4. RunningYour Program 73

case where you use LOAD and START to create a program and do not specify
the RMODE or ORIGIN option on the LOAD command. _

On the SET LOADAREA command, you can specify one of the following:

20000 This causes the LOAD command to start loading at address
20000. It overrides the RMODE value assigned at compile-time.

RESPECT In an XA-mode virtual machine, this causes the LOAD
command to respect the RMODE assigned at compile-time.

In a 370-mode virtual machine, this causes the LOAD command
to start loading below 16-megabyte.

Loading begins at the largest continguous area above or below
the 16-megabyte line, depending on the AMODE and RMODE
values. This area may not start at 20000 when loading below
the 16-megabyte line because of the way CMS organizes
storage. This applies for both XA-mode and 370-mode virtual
machines.

Compatibility with Programs Compiled Under Earlier Releases of VS FORTRAN and
CMS ,

All executable programs created with releases of VS FORTRAN before Version
1 Release 2 can run in only 24-bit addressing mode and must reside below the
16-megabyte line.

The extent of extended architecture support for programs created under CMS
before VM/XA SP Release 1 depends on how you stored the programs:

Programs stored as text files or text library members that were compiled
under VS FORTRAN Version 1 Release 2 or later have assigned to them the
values AMODE ANY and RMODE ANY. Therefore, they can run in 24-bit or
31-bit addressing mode and reside above or below the 16-megabyte line.

»- Programs stored as nonrelocatable module files or LOADLIB members can
run in only 24-bit addressing mode and reside below the 16-megabyte line.
To take advantage of31-bit addressing mode or program residence above
the 16-megabyte line, you must recreate these programs under VM/XA.

In order for your program to run in 31-bit addressing mode, all of its program
units must be capable ofrunning in 31-bit addressing mode. Therefore, if a par
ticular unit must run in 24-bit addressing mode (for example, ifyou call a sub
program that was compiled by the FORTRAN HExtended Compiler), you must
invoke the main program in 24-bit addressing mode.

Alternatively, you can switch the addressing mode while the program is running
by calling user-coded assembler language subroutines. However, if a subpro
gram must run in 24-bit mode, the entire module containing the subprogram
must reside below the 16-megabyte line. In addition, all the data areas,
including dynamic common blocks, that the subprogram uses must also reside
below the 16-megabyte line.

Shareable Load Modules: Shareable load modules created under VM/SP
Release 4 or 5 run in the same addressing mode as their corresponding
nonshareable parts. However, they always reside below the 16-megabyte line.

72 VS FORTRAN Version 2 Programming Guide

RMODE or ORIGIN Value AMODE Value Default

RMODE ANY 31

RMODE 24 Compile-time value assigned by VS FORTRAN

ORIGIN with an address above 31

16-megabyte

ORIGIN with an address below Compile-time value assigned by VS FORTRAN
16-megabyte

None (RMODE or ORIGIN not specified) Compile-time value assigned by VS FORTRAN

Figure 17. Default Values for AMODE on the LOAD Command

RMODE Value AMODE Value Defoult

RMODE ANY 31

RMODE 24 Compile-time value assigned by VS FORTRAN

None (RMODE not specified) Compile-time value assigned by VS FORTRAN

Figure 18. Default Values for AMODE on the LKED Command

Overriding the Compile-Time Value for RMODE: To override the RMGOE value
assigned to your program at compile-time by VS FORTRAN, you can specify:

The RMODE or ORIGIN option on the LOAD command

»- The RMODE option on the LKED command

The RMODE option on the GENMOD command

The RMODE and ORIGIN options are mutually exclusive. The RMODE option on
the GENMOD command overrides that of the LOAD command.

Note: If you use the LOAD and GENMOD commands In a 370-mbde machine,
you must also specify the RLDSAVE option on the LOAD command in order for
the program to reside above the 16-megabyte line.

On the RMODE option, you can specify 24 or ANY. as shown in Figure 19.

RMODE Value Program Residence

RMODE 24 Below the 16-megabyte line

RMODE ANY • Below the 16-megabyte line in a 370-mode virtual machine

*• Above the 16-megabyte line in an XA-mode virtual machine (unless the
virtual machine has less than 16 megabytes of storage, in which case
the program residence is below the 16-megabyte line)

Figure 19. RMODE Values

On the ORIGIN option, you can specify an address above or below the
16-megabyte line. If you specify an address above the 16-megabyte line,
RMODE ANY results; if you specify an address below the 16-megabyte line.
RMODE 24 results.

To allow compatibility with existing LOAD processing, you can use the SET
LOADAREA command. This command determines the default RMODE in the

Chapter 4. Running Your Program 71

I Figure 15 on page 70 shows the values you can specify for the AMODE option.

I AMODE Value Addressing Mode ofProgram
I AMODE 24 24-bit addressing mode

I AMODE 31 31-bit addressing mode in an XA-mode virtual machine
I 24-bit addressing mode in a 370-mode virtual machine

AMODE ANY 31-bit addressing mode in an XA-mode virtual machine
24-bit addressing mode in a 370-mode virtual machine

Figure 15. AMODE Values

For example, to specify 31-bit addressing mode, code one of the following:

LOAD MYPROG ...(AMODE 31 other options...

GENMOD MYPROG ...(AMODE 31 other options...

LKED MYPROG (LIBE libname NAME membname (AMODE 31 other options

The AMODE option of the GENMOD command overrides that of the LOAD
command. If you don't specify AMODE on the GENMOD command, the default
is determined by what RMODE you specify on the GENMOD command, and
what AMODE, ifany, you specified on the LOAD command, as shown In
Figure 16.

RMODE Value AMODE Value Default
•
RMODE ANY 31

RMODE 24 Value determined by LOAD command

Figure 16. Default Values for AMODE on the GENMOD Command

If you don't specify AMODE or RMODE on the GENMOD command, the default is
determined by the LOAD command.

If you don't specify the AMODE option on the LOAD or LKED command, the
default is determined by what you specify on the RMODE or ORIGIN option of
the LOAD or the RMODE option of the LKED command, and what was assigned
at compile-time by VS FORTRAN, as shown in Figure 17 on page 71 and
Figure 18 on page 71.

70 VS FORTRAN Version 2 Programming Guide

Creating New Programs
When you compile your program, the VS FORTRAN Version 2 compiler assigns
it an AMODE value of ANY, which means your program can run in either 24-bit
or 31-bit addressing mode. It also assigns your program an RMODE value of
ANY, which means your program can reside above or below the 16-megabyte
line.

When you create an executable program using LOAD and START commands,
the LOAD and GENMOD commands, or the LKED command, you can either
accept the compile-time values for AMODE and RMODE or override them, as
explained in the following sections.

Programs that reside below the 16-megabyte line can run in either 24-bit or
31-bit addressing mode and in either link mode or load mode. Programs
residing above the line must run in 31-bit addressing mode and in load mode.
Figure 15 shows the valid combinations of AMODE and RMODE values.

RMODE=24 RMODE=ANY

AMODE = 24 Valid Invalid

AMODE = 31 Valid Valid

AMODE=ANY Valid Valid

If you create a load module to be run in link mode, the module must reside
below the 16-megabyte line. This is because the required library routines
become part of the load module and several I/O service routines in the library
must reside below the line in order to run in 24-bit addressing mode. To make
use of storage above the line for your program as well as most of the library
routines, run your program in load mode.

Obtaining Storage for Dynamic Common Blocks: Whether the storage for a
dynamic common block is obtained above or below the 16-megabyte line
depends on the addressing mode of your program. The addressing mode in
effect upon the invocation of any program unit that refers to a given dynamic
common block determines the location of that block. If the program unit is
entered in 31-bit addressing mode, the storage for the dynamic common block
is obtained above the 16-megabyte line; if it is entered in 24-bit addressing
mode, the storage is obtained below the 16-megabyte line.

After the storage is obtained, the dynamic common block remains at the same
location until the program has finished running. Therefore, if storage for a
given dynamic common block is obtained above the 16-megabyte line, all sub
sequent program units that refer to that block must run in 31-bit addressing
mode.

Using Shareable Load Modules: For information on using shareable load
modules in a VM/XA environment, see "Special Considerations for VM/XA" on
page 281.

Overriding the Compile-Time Value for AMODE: You can override the AMODE
value that was assigned to your program at compile-time by specifying the
AMODE option on the LOAD, GENMOD, or LKED command (for general informa
tion about these commands, see "Creating an Executable Program and Running
It" on page 60).

Chapter 4. Running Your Program 69

For Printer Files:

FILEDEF FTxxFOOl PRINTER [(options]
or

FILEDEF XX PRINTER [(options]
or

FILEDEF fn PRINTER [(options]

You specify the FTxxFOOl field to agree with the FORTRAN unit numbers in the
source program:

For the xx field, see Figure 22 on page 82.

For the fn field, you specify the file name you specified on the OPEN state
ment FILE specifier.

The options are any FILEDEF options valid for the type ofunit record file you're
processing.

Defaults for the XTENT, LRECL, BLKSIZE, and RECFM Options
If you omit the XTENT option, which applies only to files connected for direct
access, the system provides a default of 50 for the number of records. For
dynamically allocated files, the MAXREC parameter of the FILEINF routine
determines the value. For information on dynamic file allocation, see "Dynam
ically Allocating Files" on page 165.

For information on defaults for LRECL, BLKSIZE, and RECFM, see
Appendix H, "Considerations for Specifying RECFM, LRECL, and BLKSIZE" on
page 445.

VM/XA Considerations
The extended architecture support described in this section is available under
VM/XA System Product with bimodal CMS. Under VM/XA, you can create VS
FORTRAN programs in either a 370-mode or XA-mode virtual machine.
However, if you want the programs to make use ofstorage above the
16-megabyte line, you must run them in an XA-mode virtual machine.

Note that in an XA-mode machine, VS FORTRAN does not support the following
files:

Files connected for keyed access

Files connected for sequential access that referto VSAM entry-sequenced
data sets or VSAM relative record data sets

Files connected for direct access that refer to VSAM relative record data
sets

The following section "Creating New Programs" on page 69 concern creating
new programs under VM/XA with VS FORTRAN Version 2. Compatibility with
Programs Compiled Under Earlier Releases ofVS FORTRAN and CMS" on
page 72 discusses existing programs compiled under earlier releases ofVS
FORTRAN and CMS.

68 VS FORTRAN Version 2 Programming Guide

You specify the FTxxFyyy field to agree with the FORTRAN unit numbers in the
source program:

•- For the xx field, see Figure 22 on page 82.

For the yyy field, specify 001 if you are not using multiple files. Ifyou are
using multiple files, you can specify GDI through 999.

For the n field, you specify any valid tape unit (1 through 4).

For the fn field, you specify the file name you specified on the OPEN state
ment FILE specifier.

The options are any FILEDEF options valid for tape files.

Defining Terminal Files: To define terminal files, you specify the FILEDEF
command as follows:

FILEDEF FTxxFGOl TERMINAL [(options]
or

FILEDEF XX TERMINAL [(options]
or

FILEDEF fn TERMINAL [(options]

You specify the FTxxFGOl field to agree with the FORTRAN unit numbers in the
source program.

For the xx field, see Figure 22 on page 82.

For the fn field, you specify the file name you specified on the OPEN state
ment FILE specifier.

The options are any FILEDEF options valid for terminal files.

For input terminal files, your program should always notify you when to enter
data; if it doesn't, you may inadvertently cause long system waits.

For terminal files, a null entry in response to a prompt is taken to be an end-of-
file. If you want to continue processing, a FILEDEF or an explicit OPEN is
required.

Defining Unit Record Files: To define unit record files, you specify the FILEDEF
command as follows:

For Card Reader Files:

FILEDEF FTxxFOOl READER [(options]
or

FILEDEF XX READER [(options]
or

FILEDEF fn READER [(options]

For Card Punch Files:

FILEDEF FTxxFOOl PUNCH [(options]
or

FILEDEF XX PUNCH [(options]
or

FILEDEF fn PUNCH [(options]

Chapter 4. Running Your Program 67

For a dynamically allocated file, no FILEDEF is necessary. For more information
on dynamic allocation, see "Dynamically Allocating Files" on page 165.

To define sequential and direct files on disk, specify the FILEDEF command as
follows:

FILEDEF FTxxFyyy DISK filename filetype [filemode] [(options]
or

FILEDEF XX DISK filename filetype [filemode] [(options]
if yyy = 001

You specify the FTxxFyyy field to agree with the FORTRAN unit numbers in the
source program.

For the xx field, see Figure 22 on page 82.

For the yyy field, specify 001 ifyou're not using multiple files. If you are
using multiple files, you can specify 001 through 999.

If you have specified the FILE specifier in the OPEN statement, specify the
FILEDEF command as follows:

FILEDEF fn DISK filename filetype [filemode] [(options]

where fn is the name specified in the FILE specifier.

For new sequential disk files defined with a record format other than undefined
or fixed unblocked, the file mode number should be specified as 4; for example,
A4. Otherwise, the record format will default to undefined or fixed.

For direct files with the UPDATE-IN-PLACE attribute (direct files to which you
write new records over existing records), specify the file mode number as 6; for
example, C6. The UPDATE-IN-PLACE attribute is available with CMS, Release 3
or later.

The options are any FILEDEF options valid for disk files. In particular, the
maximum LRECL and BLKSIZE that can be specified is 32760. See "Defaults for
the XTENT, LRECL, BLKSIZE. and RECFM Options" on page 68 for information
on defaults.

Warning: A FILEDEF command should not define a file for output on a unit that
VS FORTRAN Version 2 predefines for input (for example, terminal input). Like
wise. a FILEDEF command should not define an existing file for input on a unit
that VS FORTRAN Version 2 predefines for output. In this situation, running the
program could cause undesirable results, including destruction of data on an
existing file or loss of the file from the user's CMS directory.

Defining Tape Files: To define tape files, you specify the FILEDEF command as
follows:

FILEDEF FTxxFyyy TAPn [(options]
or

FILEDEF XX TAPn [(options] if yyy = 001
or

FILEDEF fn TAPn [(options]

66 VS FORTRAN Version 2 Programming Guide

Relating Physical Files to FORTRAN I/O Files
Running a VS FORTRAN program in VM may require reading and writing
several types of files. Chapter 6, "Performing Input/Output Operations" on
page 121 explains fully how to use VS FORTRAN I/O statements to process
input/output files. The discussion in this section is limited specifically to
relating physical files to FORTRAN input/output files under VM.

Files Preconnected to the Standard Input/Output Units
Before you can read or write a FORTRAN file, the file must be associated
with—that is, connected to— a unit. "Connecting Files" on page 147 contains a
general explanation of how files get connected to units.

Certain files are already defined and connected when the program begins to
run. These files are referred to as being preconnected. A subset of precon
nected files consists of the files that are read from the "standard input unit" or
written to the "standard output unit." "Preconnecting Files" on page 147 dis
cusses the preconnected files associated with the standard system input/output
units.

Each standard input/output unit has a fixed unit number. Unless they have
been changed when VS FORTRAN was installed at your site, unit numbers 5, 6,
and 7 are the default standard input/output unit numbers.

Figure 14 shows how each of the standard input/output units is used.

standard

I/O Unit Used For:

IBM-Supplied
Unit Number

VS FORTRAN

FILEDEF

Refers To:

Default

Record

Format and

Length

reader READ (*, ...) 5 TERMINAL RECFM F

BLOCK 80

printer WRITE (*, ...)
PRINT (*, ...)
(VS FORTRAN
Error Messages]

6 TERMINAL RECFM UA

BLOCK 133

punch PUNCH (*,...) 7 PUNCH RECFM F

BLOCK 80

Figure 14. VS FORTRAN Standard Input/Output Units

VS FORTRAN Version 2 supplies the default file characteristics as shown in
Figure 14. However, you can provide your own FILEDEF command for any of
the standard input/output units. The FILEDEF command you provide is used
instead of the default one.

FILEDEF Commands

The form of the FILEDEF command you use varies, depending on the type of file
you're processing: sequential or direct, tape, terminal, or unit record.

Ifyou do not use a FILEDEF command, the default filename, filetype, and
filemode for unit number xx are:

FILE FTxxFOOl A1

where xx is the unit number.

Note: If FILE=/h is specified in the OPEN statement and no FILEDEF has been
issued, the default filetype is fn instead of FTxxFOOl.

Chapter 4. Running Your Program 65

The first form causes the members listed as mname to be included in the load

module from the text library referred to by the ddname tlibdef. The second
form causes the TEXT file referred to by the ddname fexfdef to be included in
the load module.

The LIBRARY statement has the following form:

LIBRARY tlibdef(ename, ...)

This causes the library referred to by the ddname tlibdef io be searched for the
members listed as ename if the subprograms of those names are not already
included in the load module either from the TEXT file input to the LKED
command, or by having been specifically included with INCLUDE statements.

Prior to issuing the LKED command, you must have issued FILEDEF commands
as follows to correspond to the forms of the INCLUDE or LIBRARY statement
shown above:

FILEOEF tlibdef DISK tlibname TXTLIB fm

FILEDEF textdef DISK textname TEXT fm

Before running a program that was created with the LKED command in load
mode, you must issue the following GLOBAL command:

GLOBAL LOADLIB VSF2L0A0 libname

where libname is the filename of the CMS LOADLIB into which your load
module was placed as a member by the LKED command. You must also issue
the following GLOBAL command if the simulation of extended precision
(REAL*16 or COMPLEX*32) floating-point instructions is required on a machine
that does not have these instructions:

GLOBAL TXTLIB CMSLIB

Issue the following OSRUN command to run your program:

OSRUN membname

where membname is the name of the member that contains the load module
created with the LKED command.

Specifying Run-Time Options
The available run-time options are listed in "Available Run-Time Options on
page 101. You can specify a run-time option as follows:

• When running your program that was created with a LOAD command:
START * option [option ...]

>• When running a program that was created with a GENMOD command,
modname option [option ...]

where modname is the name of your VS FORTRAN Version 2 program, and
option is one of the run-time options.

• When running a program that is stored as a member ofa CMS LOADLIB:
OSRUN membname PARM='option[,option..'

64 VS FORTRAN Version 2 Programming Guide

IPyour program runs In load mode, issue the following command:
GLOBAL LOADLIB VSF2L0AD

—! To run your program that is stored as anonrelocatable (lylODULE) tile, issue the
following command:

modname

where modname is the filename of your lylODULE file as specified in the
GENMOD command.

using the LKED Command^^^^
that Is stored as a load module In a member of a CMS LOADLIB.

Using LKED for aprogram to be run in load mode: For aP''°9''3m to ^kEd" "
load mode, issue the following FILEDEF command before issuing the LKED
command:

FILEDEF SYSLIB DISK VSF2F0RT TXTLIB fm

where fm is the filemode of the CIYIS disk that contains the principal text library
VSF2F0RT.

Usina LKED for aprogram to be run in link mode; If the combined VSF2UNKwas ?ns!lned and the program is to be run in Hnk mode, use the followmg
FILEDEF command:

FILEDEF SYSLIB DISK VSF2LINK TXTLIB fm

where fm is theTilemode of the CfyiS disk that contains the principal text library
VSF2LINK.

Note: To use LKED for aprogram to run In link mode, the combined VSF2LINK
must be Installed. If It Is not Installed, the program can run only in load mode.

Issuing the LKED command After Issuing the appropriate FILEDEF COMMAND,
Issue the LKED command:

LKED myprog (LIBE libname NAME membname

In this command,

myprog is the filename of the TEXT file that contains your object code.
libname is the filename ofthe LOADLiB file into which the resulting load

module Is to be placed as a member.

membname Is the name ofthe member In the LOADLIB file designated by
libname, above, Into which the resulting load module Is to be
placed.

If your program calls subprograms with object code stored as a separate TEXT
file or as a member of a text library, your TEXT file, which Is the Input to the
LKED command, must contain linkage editor INCLUDE or LIBRARY statements
that specify the locations of the object code for these subprograms. The
INCLUDE statement has two forms:

INCLUDE tlibdef(mname,...)
INCLUDE textdef

Chapter 4. Running Your Program 63

Using the LOAD, INCLUDE, and GENMOD Commands
Use a series of LOAD. INCLUDE, and GENMOD commands to create an execut
able program that Is stored as a nonrelocatable (MODULE) file on your CMS
disk. Your object code from which the executable program is built may be
either in a TEXT file or in a member of a text library. First, you must provide
access to the appropriate VS FORTRAN Version 2 Library text libraries, as well
as to your own text libraries by means of a GLOBAL TXTLIB command. When
you run a program in link mode, use one of these forms of the GLOBAL TXTLIB
command:

If VSF2LINK and VSF2F0RT are separate libraries at your site, use:

GLOBAL TXTLIB VSF2LINK VSF2F0RT userlib ...

• If VS FORTRAN Version 2 has been installed at your site with the combined
LINK library, you do not need to specify VSF2FORT in the GLOBAL TXTLIB
command.

You can use the following coding:

GLOBAL TXTLIB VSF2LINK userlib ...

When you are running a program in load mode, use the following form of the
GLOBAL TXTLIB command:

GLOBAL TXTLIB VSF2F0RT userlib ...

You need to specify userlib only if any of your object code (that is, your main
program or any of the subprograms that you call) is stored as a member of a
text library rather than as a TEXT file.

Next, you must create a temporary copy of your executable program in virtual
storage. To do this, issue one LOAD command followed optionally by one or
more INCLUDE commands as follows:

LOAD MYPROG ...

INCLUDE subprog ...

The LOAD command and each INCLUDE command may specify the names of
TEXT files or of members of your text libraries that are to comprise your execut
able program in virtual storage. You must specify a name that refers to a main
program. You should not list subprograms if the filenames of any TEXT files or
the member names in the text libraries are identical to the names of the sub
programs; in this case, these subprograms are included automatically.

To create the nonrelocatable (MODULE) file on your CMS disk, issue the fol
lowing GENMOD command:

GENMOD modname

This command builds a file with a filename o! modname and a filetype of
MODULE. This program may be run at any time.

You may be required to issue one or more GLOBAL commands prior to running
your program. You must issue the following command if the simulation of
extended precision (REAL*16 or COMPLEX*32) floating-point instructions is
required on a machine that does not have these instructions:

GLOBAL TXTLIB CMSLIB

62 VS FORTRAN Version 2 Programming Guide

Ifyou are running a program in link mode, use one of the following sets of com
mands;

^ IfVSF2LINK and VSF2F0RT have been installed as separate libraries at
your site, use:

GLOBAL TXTLIB VSF2LINK VSF2F0RT CMSLIB userlib ...

IfVS FORTRAN Version 2 has been installed at your site with the combined
link mode library, you do not need to specify VSF2F0RT in the GLOBAL
TXTLIB command.

You can use the following coding:

GLOBAL TXTLIB VSF2LINK CMSLIB userlib ...

If you are running a program in load mode, use this form of the GLOBAL
TXTLIB statement:

GLOBAL TXTLIB VSF2F0RT CMSLIB userlib ...

The text library CMSLIB is part of the VM/SP product; you need to specify it
only if the simulation of extended precision (REAL*16 or COMPLEX*32) floating
point instructions is required on a machine that does not have these
instructions. You need to specify userlib only if any of your object code (that is,
your main program or any of the subprograms thai you call) is stored as a
member of a text library rather than as a TEXT file.

In order to create the temporary copy of your executable program in virtual
storage, issue one LOAD command, followed optionally by one or more
INCLUDE commands as follows:

LOAD MYPROG ...

INCLUDE subprog ...

The LOAD command and each INCLUDE command may specify the names of
TEXT files or of members of your text libraries that are to comprise your execut
able program in virtual storage. You must specify a name that refers to a main
program. You should not list subprograms if the filenames of any TEXT files or
the member names in the text libraries are identical to the names of the sub

programs; in this case, these subprograms are included automatically.

Before running the temporary copy of your executable program, you must issue
the following GLOBAL command if your program is to run in load mode:

GLOBAL LOADLIB VSF2L0AD

For your convenience, you may issue this GLOBAL command prior to issuing
the LOAD command.

To run the temporary copy of your program that has been built in virtual
storage, issue the following START command:

START *

Chapter 4. Running Your Program 61

making the appropriate combination of libraries available when you create your
executable program from your TEXT files.

Creating an Executable Program and Running It
You can use one of the following three methods to create an executable
program:

1. By using the LOAD, and possibly INCLUDE, commands to produce an exe
cutable program within virtual storage. You run the program using the
START command. No permanent copy of the executable program is made.
Processing can be in link mode or load mode.

2. By using the LOAD, possibly the INCLUDE, and the GENMOD commands to
build an executable program that is stored as a nonrelocatable (MODULE)
file on a CMS disk. You may run the program later by invoking the file
name of the MODULE file as a command. Processing can be in link mode
or load mode.

3. By using the LKED command to create—that is, to link-edit—an executable
program that is stored as a load module in a member of a CMS LOADLIB.
You may run the program later by using the OSRUN command.

The following paragraphs show how to use each of these three methods for cre
ating executable programs and running them. In order for you to do this, your
system programmer must have made the following libraries available to you:

^ VSF2LINK. the link mode text library that contains library modules used for
creating a program to operate in link mode.

Depending on how VS FORTRAN Version 2 is installed at your site, you may
be able to use this library as a self-contained library, or you may have to
use it in conjunction with VSF2F0RT.

^ VSF2F0RT, the principle text library that contains library modules used for
creating a program to operate in link mode, and for creating a program that
is to operate in load mode.

• VSF2L0AD, the load library; that is, a CMS LOADLIB that contains the
library modules to be loaded into virtual storage when your program runs,
and which contains the VS FORTRAN Version 2 Interactive Debug modules.

Your system programmer must tell you which CMS minidisk contains these
libraries so you can gain access to this minidisk. In addition, your system pro
grammer may have given these libraries names different from the standard
names listed above; the examples below assume that the standard names are
used.

Using the LOAD, INCLUDE, and START Commands
Use the LOAD and INCLUDE commands to create a temporary copy of your
executable program in virtual storage. Your object code from which the execut
able program is built may be either in a TEXT file or in a member of a text
library. You must first provide access to the appropriate VS FORTRAN Version
2 text libraries as well as your own text libraries, available by means of a
GLOBAL command.

60 VS FORTRAN Version 2 Programming Guide

_ Chapter 4. Running Your Program

When you run the load module, you can run it directly as output from the link-
edit (or loader) step, or specify that it be called from a library of load modules.

When you run a load module, you may need many different files. For informa
tion about these files, see the appropriate section that explains considerations
for your particular operating system:

If you are a VM user, begin with the section that immediately follows.

If you are an MVS batch user, skip to page 73.

If you are a TSO user, skip to page 93.

Running Your Program Under VM
Running your program in a CMS virtual machine is done in CMS's OS simu
lation mode; that is, the VS FORTRAN Version 2 run-time service subroutines

use the MVS services that are simulated by CMS. Because of this, you cannot
run your programs in the CMS/DOS environment. If you have been running
other programs in this mode, you must issue the command

SET DOS OFF

before attempting to run your VS FORTRAN Version 2 programs.

I Programs with functions unique to MVS, such as Asynchronous I/O, Data-ln-
I Virtual, or MTF cannot run under VM, nor can programs with MVS data set

names in I/O statements.

The following sections discuss:

Selecting load mode or link mode

»- Creating an executable program and running it

Specifying run-time options

*- Relating physical files to FORTRAN I/O files

I Considerations for VM/XA

Selecting Load Mode or Link Mode
All library modules, other than the mathematical routines, can be either
included as part of your executable program along with the compiler-generated
code, or loaded dynamically when your program is run. Run-time loading has
the advantages of reducing the time required to create an executable program,
and of reducing the auxiliary storage space required for your executable
program.

If you choose to have the necessary service subroutines included within your
executable program, you are operating in link mode. If, on the other hand, you
choose to have the service subroutines loaded when your program is run, you
are operating in load mode. You make the choice of link mode or load mode by

Chapter4. Running Your Program 59

15. ACOS is also the specific name of the single-precision function (corre
sponding to ARCOS).

16. LGAMMA is also the specific name of the single-precision function (corre
sponding to ALGAMA).

17. IMAG is also the specific name of the single-precision function (corre
sponding to AIMAG).

18. There is no intrinsic function for LANGLVL(66) for a REAL'4 argument.

Chapter 3. Using the Compiler Options 57

Loader Options: When you run the loader, you can specify the following options
through the PARM parameter of the EXEC statement:

MAPlNOMAP—specifies whether a map of the load module is to be
produced on SYSPRINT, giving the length and location of the main program
and all subprograms.

LET|NOLET—specifies whether the linkage editor is to allow load module to
run, even when abnormal conditions that could cause the program to fail
have been detected.

CALLlNCAL—specifies whether or not the loader is to attempt to resolve
external references.

EP—lets you specify the name of the entry point of the program being
loaded.

PRINT|NOPRINT—specifies whether or not loader messages are to be listed
in the data set defined by the SYSLOUT DD statement.

RES|NORES—specifies whether or not the link pack area is to be searched
to resolve external references.

SIZE—specifies the amount of storage to be allocated for loader processing:
this size includes the size of your load module.

Loader Data Sets: The loader generally uses six system data sets; other data
sets may be defined to describe libraries and load module data sets. For any
loader job, you must make certain that at least the SYSLIN data set (used for
compiler output) is available.

In addition, depending on what you want the loader to do for you, you can,
optionally, specify the data sets in Figure 21. This figure lists the function,
device types, and allowable device classes for each data set.

ddname Function Device Types Device Class Defined'

SYSLIN Input data to linkage function,
normally output of the compiler

Direct access

Magnetic tape
Card reader

SYSDA

SYSSQ

Input stream
(defined as DD *)

Yes

SYSLIB Automatic call library
(SYS1.VSF2FORT)

Direct access SYSDA Yes

SYSLOUT Writing listings Printer

Magnetic tape
Direct access

A

SYSSQ
Yes

FT07Fyyy Punched output data Card punch B Yes

FTxxFyyy^ User-defined data set Unit record

Magnetic tape
Direct access

SYSSQ A,B

SYSDA

No

Figure 21. Loader Data Sets

Notes to Figure 21:

^ The Defined column indicates whether or not the ddname is defined in cat
aloged procedures.

XX is the unit number (00 through 99), and
yyy is the file sequence number (001 through 999).

Chapter 4. Running Your Program 81

Load Module ExecuHon Data Sets The load module may be passed directly from
a preceding link-edit job step, it may be called from a library of programs, or i
may form part of the loader job step.: The load module processing lob step
may use many data sets. Figure 22 on page 82 lists the function and device
types for each data set.

FORTRAN

Reference

Number ddname Function Device Type

5 FTOSFyyy Input data set to load
module

Card reader

Magnetic tape
Direct access

6 FT06F001 Printed output data Printer

Magnetic tape
Direct access

7 FT07F001 Punched output data Card punch
Magnetic tape
Direct access

0-4

8-99

FTxxFyyy Sequential data set Unit record

Magnetic tape
Direct access

0-4

8-99

0-4

8-99

FTxxFyyy

FTxxFyyy

Direct access data set

Partitioned data set

member using sequential
access

Direct access

Direct access

Figure 22. Load Module Execution Data Sets

DCB Default Values:

Sequential Data Sets: Figure 23 iists the DCB default values for load module
execution sequential data sets. These default values also apply to dummy data
sets.

ddname RECFM' LRECL^ BLKSIZE DEN BUFNO

FTOSFyyy F 80 80 — 2

FTOSFyyy UA 133 133 — 2

FT07Fyyy F 80 80 — 2

all others U -
800 2 2

Figure 23. Load Module Execution Sequential Data Set DCB Default Values

Notes to Figure 23:

> For records not under FORMAT control, the default is VS. When a file is
opened by a FORTRAN 'ENDFILE' statement, the default is U.

2 For records not under FORMAT control, the default is 4 less than shown.

Direct Access Data Sets: For the DCB Default Values for all direct access data
sets during load module run time, the record form (RECFM) is F, the buffer
number (BUFNO) is 1. and the blocksize (BLKSIZE) or longest record
(LRECL) is the value specified as the maximum size of a record in the OP
statement.

The following sections describe the data sets you may need, and outline the job
control language you must use to run your programs.

82 VS FORTRAN Version 2 Programming Guide

Providing Access to the VS FORTRAN Version 2 Library at Run Time: A
program to be run under MVS must have access to the VS FORTRAN Version 2
library when you are:

• Operating In load mode

Using a load module that was created from a version of VS FORTRAN prior
to Version 1, Release 4 and used the reentrant I/O library facility

Using any load module linked at the Version 1, Release 3 or 3.1 level.

Operating in Load Mode:

You can run an executable module In load mode using any of the following DD
statements:

JOBLIB DD Statement: To provide access to the VS FORTRAN Version 2 library
for all job steps, place a JOBLIB DD statement for the load module Immediately
after the JOB statement.

//JOBLIB DD DSN=SYS1.VSF2L0AD,DISP=SHR

STEPLIB DD Statement: To provide access to the VS FORTRAN Version 2
library for a single job step, include a STEPLIB DD statement In the DD state
ments for that job step.

//STEPLIB DD DSN=SYS1.VSF2L0AD,DISP=SHR

If your load module was created using a version of VS FORTRAN before Version
1, Release 4 and used the reentrant I/O library facility, replace the
SYS1.VRENTLIB in the original STEPLIB DD statement with SYS1.VSF2L0AD.

FORTLIB DD Statement: To provide access to the VS FORTRAN Version 2
library for a single job step. Include a FORTLIB DD statement In the DD state
ments for the job step.

//FORTLIB DD DSN=SYS1.VSF2L0AD,DISP=SHR

Specifying Run-Time Options: A complete list of the available run-time options
Is In "Available Run-Time Options" on page 101. To specify a run-time option,
use the following method:

//GO EXEC PGM=MAIN,PARM='option[,option...]'

Running the Load Module: How you run the load module depends on the kind
of job you're running: run only, link-edit and run, or compile link-edit and run.

IBM-supplied cataloged procedures are available that let you compile, link-edit
or load, and/or run easily. A list of all the nonreentrant cataloged procedures
Is given in Figure 24 on page 84. The cataloged procedures should be located
in your appropriate system procedure library.

Chapter 4. Running Your Program 83

Action Procedure Name

Compile only VSF2C _

Compile and link-edit VSF2CL

Compile, link-edit, and run VSF2CLG

Link-edit and run VSF2LG

Run only VSF2G

Compile and load VSF2CG

Load only \/SF2L

Figure 24. IBM-Supplied Non-reentrant Cataloged Procedures

Requesting an Abnormal Termination Dump: Program interrupts causing
abnormal termination produce a dump, which displays the completion code and
the contents of registers and system control Fields.

To display the contents of main storage as well, you must request an abnormal
termination (ABEND) dump by including a SYSUDUMP DO statement in the
appropriate job step. The following example shows how the statement may be
specified for IBM-supplied cataloged procedures:

//GO.SYSUDUMP DO SYSOUT=A

Information on interpreting dumps is found in the appropriate debugging guide
for your system.

Using Partitioned Data Sets
A partitioned data set (PDS) consists of groups of sequential data called
members of the data set. Partitioned data sets are used to contain libraries of

related data. For example, the results obtained from running a FORTRAN
program might be written to a PDS in which each member would contain the
output data corresponding to one set of input data.

Partitioned data set members can be created, retrieved, and rewritten with VS
FORTRAN Version 2, using I/O statements for formatted sequential access files.

Creating Members of a New PDS: For formatted sequential access files, the
WRITE statement and the REWIND or CLOSE statements create PDS members.

The FORTRAN program must handle each member written as if it were a sepa
rate sequential file. After a member is written, a CLOSE or REWIND statement
must be specified for the unit representing the member before another member
is written. This closes the PDS after each member is created so that the end-

of-file (EOF) record is supplied correctly for that member. A different DD state
ment with a different unit (FORTRAN reference number) is required for each
member created in the same program.

Retrieving Members from an Existing PDS: For formatted sequential access
files, the READ statement with the END= parameter retrieves multiple
members of a PDS under one unit number, when the PDS is referenced only for
input. The end-of-data transfer specified by the END= statement label
increases the file sequence number. Thus, members can be read, one-by-one.
as if they were sequential tape files. A separate DD statement is required for
each member being read with the appropriate file sequence number. Also, _
specify the LABEL parameter and its subparameter IN in the DD statement ^ 'A
when reading members as described in the following material.

84 VS FORTRAN Version 2 Programming Guide

Rewriting Members of an Existing PDS: Existing members of a PDS can be
rewritten, or new members can be written in an existing PDS, by using the
method described in "Creating Members of a New PDS." Members can be
read, written, and/or rewritten in the same FORTRAN program unit, if:

The PDS is closed between references to different members by either a
CLOSE or a REWIND statement.

Each PDS member is represented by a different unit and DD statement.

Processing Mode and PDS Input/Output: The JCL parameter LABEL and its
subparameters IN and OUT may be used to preset the processing mode to
INPUT or OUTPUT in the DD statements for a PDS. This usage is recommended
because it enforces correct PDS member handling. As described in "Creating
Members of a New PDS" on page 84, correct handling occurs when each PDS
member is fully processed and its unit closed before another member is
opened and processed.

When the JCL does not preset the processing mode, VS FORTRAN Version 2
assumes:

INOUT, if the statement that opened the data set is a READ

OUTIN, if the statement that opened the data set is a WRITE

Input/Output—System Considerations

Tape Labels
You specify magnetic tape labels through the LABEL parameter of the DD state
ment; through this parameter, you can specify the position of the file on the
tape, the type of label, if the data set is password protected, and the type of file
processing allowed.

For more information about job control statements, see "Job Processing" on
page 12.

For additional detail on magnetic tape label processing, see OSJVS Tape Labels
{GC26-3795).

Direct Access Labels

You specify direct access labels through the LABEL parameter of the DD state
ment; through this parameter, you can specify the position of the file on the
volume, the type of label, if the data set is password protected, and the type of
file processing allowed.

For additional details on direct access label processing, see the appropriate
Data Management Services Guide.

Defining FORTRAN Records
Your FORTRAN programs must define the characteristics of the data records it
processes: their formats, their record length, their blocking, and the type of
device upon which they reside.

I You can define data record characteristics through the DCB parameter of the

I DD statement or, for certain dynamically allocated files, through the FILEINF
I routine. For information on the FILEINF routine, see "Overriding File Character-

Chapter 4. Running Your Program 85

I Istic Defaults" on page 168. VS FORTRAN also supplies defaults for I/O data
I sets, as described under "Installation Defaults for I/O Data Set Characteristics"
I on page 88.

I Through the DCB parameter, you can specify:

Record format—fixed length, variable length, or undefined

Record length—either the exact length (fixed or undefined), or the length of
the longest record (variable)

" Blocking information—such as the block size

Buffer information—the number of buffers to be assigned

Whether the data set is encoded in the EBCDIC or the ISCII/ASCII character

set

Special information for tape files

Special information for direct access files

•' Information to be used from another data set

Record Formats: Under VS FORTRAN Version 2, you can specify the format of
the data records as:

Fixed-Length Records
All the records in the file are the same size and each is wholly contained
within one block. Blocks can contain more than one record, and there is

usually a fixed number of records In each block. The maximum LRECL and
the maximum BLKSIZE is 32760.

Variable-Length Records
The records can be either fixed or variable in length. Each record must be
wholly contained within one block. Blocks can contain more than one
record.

Each record contains a segment-descriptor word, and each block contains a
block-descriptor word. These descriptor fields are used by the system; they
are not available to FORTRAN programs. The maximum BLKSIZE Is 32760,
the maximum LRECL is 32756, and, assuming one record per block, the
maximum amount of data is 32752.

When variable-length records are blocked, the blocks may not be filled to
the maximum block size specified, even though it appears that another
record can be contained in the block. The block-descriptor word (BDW)
occupies the first 4 bytes (word) of a block. A segment-descriptor word
(SDW) occupies the first word of each variable-length record. Both must be
considered when defining BLKSIZE and LRECL parameters. If the
remainder of the block is not large enough to contain another complete
record, as defined by the record size (LRECL), the current buffer is written
and a new block is started for the next record.

Example (all numbers are given in decimal):

RECFM=VB LRECL=50 BLKSIZE=100

In the above example, if you write three records, each of length 30. you
might expect all three records to be written in one block. However,
FORTRAN writes records 1 and 2 in block 1, after the BDW, for a length of
64 bytes. Record 3 is written in block 2. Although the third record of length

86 VS FORTRAN Version 2 Programming Guide

30 will fit in the first block, it is not included because the test for record
length is done using LRECL (length 50). VS FORTRAN Version 2 does not
know the actual length of the record until after the data is transferred. The
following diagram shows how the records are stored in the blocks:

BOW

-record 1-

SDW| (26 bytes)

BOW

-record 3-

SOW| (26 bytes)

-100 bytes-

-block 1-

•* record 2

SOW| (26 bytes)

block 2

(36 unused bytes)

(66 unused bytes)

Spanned Records
The records can be either fixed or variable in length and each record can
be larger than a block. If a record is larger than the remaining space in a
block, a segment of the record is written to fill the block. The remainder of
the record is stored in the next block (or blocks, if required). Only complete
records are made available to FORTRAN programs.

Each segment in a block, even if it is the entire record, includes a segment-
descriptor word, and each block includes a block-descriptor word. These
descriptor fields are used by the system; they are not available to
FORTRAN programs.

Undefined-Length Records
The records may be fixed or variable in length. There is only one record
per block. There are no record-descriptor, block-descriptor, or segment-
descriptor words.

Sequential EBCDIC Data Sets: You can define FORTRAN records in an EBCDIC
data set (which may contain double-byte character data) as formatted or unfor
matted; that is, you may or may not define them in a FORMAT statement. List-
directed I/O statements are considered formatted.

Formatted Records: You can specify formatted records as fixed length (blocked
or unblocked), variable length (blocked or unblocked), or undefined length.

Unformatted Records: Unformatted records are those not described by a
FORMAT statement. The size of each record is determined by the input/output
list of READ and WRITE statements.

Unformatted records can be specified as fixed, fixed block, undefined, variable,
and spanned.

If you're processing records using asynchronous input/output, the records must
be variable spanned and unblocked.

Use blocked records wherever possible; blocked records reduce processing
time substantially.

Sequential ISCII/ASCII Data Sets: ISCII/ASCII data sets may have sequential
organization only. For system considerations, see the documentation for the
system you're using.

Chapter 4. Running Your Program 87

FORTRAN records in an ISCII/ASCII data set must be formatted and unspanned
and may be fixed-length, undefined-length, or variable-length records.

Direct-Access Data Sets: FORTRAN records may be formatted or unformatted,
but must be fixed in length and unblocked only.

The OPEN statement specifies the record length and buffer length for a direct
access file. This provides the default value for the block size.

Installation Defaults for I/O Data Set Characteristics
When you code the data set characterstics on the DO statement, the values you
specify override the existing values for that file. When you omit any character
istics, the values are obtained from the old file if they are available.

When values are not available from an old file, or if you are creating a new file,
the missing values are obtained from installation defaults and other, fixed
defaults, based on the information available. The IBM-supplied installation
default for the device for units other than 5, 6, and 7 is SYSDA. For information
on the defaults for record format, record length, and block size, see
Appendix H, "Considerations for Specifying RECFM, LRECL, and BLKSIZE" on
page 445.

Overlaying Programs—System Considerations
When you use the overlay features of the linkage editor, you can reduce the
main storage requirements of your program by breaking the program up into
two or more segments that don't need to be in main storage at the same time.
These segments can then be assigned the same storage addresses and can be
loaded at different times while the program runs.

You must specify linkage editor control statements to indicate the relationship
of segments within the overlay structure.

Keep in mind that, although overlays reduce storage, they also can drastically
increase program run time. In other words, you probably shouldn't use over
lays unless they're absolutely necessary. In addition, modules compiled with
the RENT compiler option are not executable in MVS as overlays.

The SAVE statement has no effect on overlaid programs. That is, when a
program is overlaid by another, variable values in the overlaid program
become undetermined.

Specifying Overlays: Overlay is initiated at run time when a subprogram not
already in main storage is referred to. The reference to the subprogram may
be either a FUNCTION name or a CALL statement to a SUBROUTINE subpro
gram name. When the subprogram reference is found, the overlay segment
containing the required subprogram is loaded—as well as any segments in its
path not currently in main storage.

When a segment is loaded, it overlays any segment in storage with the same
relative origin. It also overlays any segments that are lower (farther from the
root segment) in the path of the overlaid segment.

Whenever a segment is loaded it contains a fresh copy of the program units
that it comprises: any data values that may have been established or altered

88 VS FORTRAN Version 2 Programming Guide

during previous processing are returned to their initial values each time the
segment is loaded.

For this reason, you should place subprograms whose data values must be
retained for longer than a single load phase into the root segment.

The linkage-editor control statements you use to process an overlay load
module in OS are:

OVERLAY linkage-editor control statement—which indicates the beginning of
an overlay segment and gives the symbolic name of the relative origin.

OVERLAY control statements are followed by object decks, INSERT control
statements, or INCLUDE control statements.

INSERT linkage-editor control statement—which positions previously com
piled routines, when the object decks are not available, within the overlay
structure.

The INSERT control statement gives the names of one or more control
sections (CSECTs) that are to be inserted.

To place the control section in the root segment, position the INSERT
control statement before the first OVERLAY control statement.

INCLUDE linkage-editor control statement—which includes control sections
from libraries, if the control sections reside in partitioned data sets or
sequential data sets.

When you use an INCLUDE control statement in an overlay program, you
should position it in the input stream at the point where the control section
to be included is required.

The control sections added by an INCLUDE control statement can be manip
ulated through use of the INSERT control statement.

ENTRY linkage-editor control statement—which specifies the first instruction
of the program to be run, giving the name of an instruction in the root
segment. Usually, that name will be either MAIN or the name you've given
it in the PROGRAM statement {if specified).

These control statements appear in the input stream after the //SYSLIN DD
statement (or after the //LKED.SYSLIN DD statement if you use a cataloged pro
cedure).

MVS/XA Considerations
Every program that runs under MVS/XA is assigned two new attributes:
AMODE (addressing mode) and RMODE (residency mode).

AMODE is a program attribute that indicates which addressing mode can be
supported at a particular entry into a program. Addressing mode refers to
the length of an address, either 24 bits or 31 bits, used by the processor.
Generally, the program is also designed to run only in that mode, although
an assembler language program can switch the addressing mode. There
are three possible values for AMODE: 24, 31, and ANY.

RMODE is a program attribute that indicates which residence mode can be
supported at a particular entry into a program. Residence mode refers to
where a program is expected to reside in virtual storage: above or below
16 megabytes. The boundary line is called the 16-megabyte line, which per-

Chapter 4. Running Your Program 89

tains to the range addressable by a 24-bit address. There are two possible
values for RMODE: 24 and ANY.

Program units compiled by VS FORTRAN Version 1, Release 2 and later, or with
Version 2, can run in 24- or 31-bit addressing mode in the MVS/XA operating
system. These program units can reside either above the 16-megabyte line or
below the 16-megabyte line. With 31-bit addressing, there is more freedom to
define or reference larger data areas, files, tables, and to create a larger
overall program. The program unit and its data are no longer constrained to fit
in a 16-megabyte address space, but can refer to addresses anywhere in virtual
storage, up to the 2-gigabyte maximum address.

Program units compiled by FORTRAN G1, HX, HX (Enhanced), F, or VS
FORTRAN Version 1, Releases 1 and 1.1, have addressing and residence
dependencies which allow only 24-bit addressing mode (AMODE = 24), and can
reside only below the 16-megabyte line (RMODE= 24) when running under
MVS/XA. These program units can still be used by themselves or link-edited
with VS FORTRAN Version 2 subprograms to be run under MVS/XA. The
resulting load module can run only with an addressing mode of 24-bit
(AMODE= 24), and must reside below the 16-megabyte line (RMODE = 24).

MVS/XA Linkage Editor Attributes
To take advantage of 31-bit addressing, a program must be link-edited by the
MVS/XA linkage editor and have no 24-bit addressing dependencies. The
MVS/XA linkage editor provides the means for changing the addressing mode
(AMODE) and residence mode (RMODE) specification. The valid linkage editor
AMODE and RMODE specifications are listed below.

Attribute Meaning

AMOOE = 24 24-bit data addressing mode

AMODE = 31 31-bit data addressing mode

AMODE=ANY Either 24-bit or 31-bit addressing mode

RMODE = 24 The module must reside in virtual storage
below 16 megabytes. Use RMODE = 24 for
31-bit programs that have 24-bit dependencies.

RMODE=ANY Indicates that the module can reside anywhere
in virtual storage.

The linkage editor validates the combination of the AMODE value and the
RMODE value when specified in either the PARM field of the EXEC statement,
or the linkage editor MODE control statement, according to the following table:

RMODE=24 RMODE = ANY

AMODE = 24 Valid Invalid

AMODE = 31 Valid Valid

AMODE=ANY Valid Invalid

90 VS FORTRAN Version 2 Programming Guide

FORTRAN and MVS/XA Linkage Editor and Loader Interaction
VS FORTRAN Compiler Version 1 Release 2 or later creates object code that is
given the attributes AMODE = ANY and RMODE = ANY in each CSECT produced.
By default, all previous FORTRAN object code CSECTs are given the attributes
AMODE = 24 and RMODE = 24. These attributes are then modified at link-edit

time by default values, or by values set in the PARM field of the EXEC state
ment or the linkage editor MODE control statement, as discussed under
"MVS/XA Linkage Editor Attributes" on page 90.

The default action of the linkage editor is to check each CSECT of the entire
load module, and set the RMODE to the lowest mode encountered. It then

checks the AMODE of the main entry point, and sets the AMODE for the entire
load module to the AMODE of the entry point CSECT. This means that:

*• All FORTRAN main programs compiled prior to VS FORTRAN Version 1,
Release 2 have the default AMODE and RMODE of 24. The linkage editor
will set the AMODE and RMODE of the load module to 24 by default. The
created load module resides below the 16-megabyte line, and is invoked in
24-bit addressing mode.

All VS FORTRAN main programs compiled with VS FORTRAN Version 1,
Release 2 and later have the AMODE set to ANY. The linkage editor sets
the AMODE of the load module to ANY by default.

The load module will be entered in the AMODE that the linkage editor
stored it in. You can force AMODE to be any valid value that you wish, but
if there are any dependencies, your program will fail. There is no compiler
option that can change the AMODE value in the Input to the linkage editor.

If fh© "Tialn routine is originally RMODE = 24, AMODE = 31, and calls a VS
FORTRAN subroutine compiled by VS FORTRAN Version 1, prior to Release
2, or a FORTRAN subroutine compiled by any other FORTRAN compiler or
an Assembler routine with 24-bit addressing dependencies, the program
may abnormally terminate while running. To prevent this, the default
AMODE attribute of the subroutine must be overridden in the link-edit step
to set AMODE = 24.

The RMODE of the load module is based upon whether the load module is
created to be run in link mode or load mode. For complete details con
cerning link mode and load mode of the VS FORTRAN Version 2 Library,
see "Loading Library Modules at Run Time" on page 73.

A program that is link-edited to operate in link mode is always given an
RMODE of 24. Overriding this value to ANY is not permissible because
there are some service subroutines in the created load module that must

reside below the 16-megabyte line.

A program that is link-edited to operate in load mode can, except for the
cases noted above, have any valid combination of AMODE and RMODE
values. The service subroutines that are loaded during run time are
loaded either above or below the 16-megabyte line, based upon their indi
vidual residence mode requirements. Because of the scattered loading of

individual VS FORTRAN Version 2 Library modules, the run-time library
always switches to 31-bit addressing mode while in the service subroutines,
and to the addressing mode of the caller of the service subroutine upon
return.

Chapter 4. Running Your Program 91

The control program Invokes the load module created by the linkage editor
according to Its AMODE, and places the module above or below the
16-megabyte line according to Its RMODE. For more Information about AMODE
and RMODE, see MVS/Extended Architecture System Programming Library:
Supervisor Services and Macro Instructions (GC28-1154).

Overriding AMODE/RMODE Attributes
To override the default link-edit attributes, specify AMODE and/or RMODE as
follows:

The linkage editor or loader EXEC statement

//LKED EXEC PGM=programname,
// PARM='AMODE=xxx,RHODE=yyy'

For additional detail, see MVS/Extended Architecture Linkage Editor and
Loader {GC26-4011).

The linkage editor MODE control statement

AMODE(xxx),RMODE(yyy)

For additional detail, see MVS/Extended Architecture Linkage Editor and
Loader, GC26-4011.

The TSO commands LIMK or LOADGO

LINK (dsn-list) AMODE(xxx) RMODE(yyy)

or

LOADGO (dsn-list) AMODE(xxx) RMODE(yyy)

Using Dynamic Common above the 16-Megabyte Line
The linkage editor limits the size of a load module to 16 megabytes. To over
come this limit, VS FORTRAN Version 2-named common areas can be declared

so that they will occupy storage outside of the load module. The storage Is
dynamically obtained and made available to the object code by the VS
FORTRAN Version 2 Library at run time For details concerning dynamic
common areas, see "Using Blank and Named Common (Static and Dynamic)"
on page 200.

92 VS FORTRAN Version 2 Programming Guide

In order to use the extra storage available with MVS/XA, the load module must
run in 31-bit addressing mode. In particular, the module cannot contain subrou-
tines compiled under FORTRAN G1, HX or prior to VS FORTRAN Version 1,
Release 2. The storage for dynamic common areas is obtained above the
16-megabyte line only when the program is running in 31-bit addressing mode
{regardless of the residence mode) and storage is available; storage is
obtained below the 16-megabyte line when the program is running in 24-bit
addressing mode.

Example:

(apROCESS DC(CMN1,
EPROCESS CMN2)

COMMON /CMN1/XARRAY(1000,1000,1000)
COMMON /CMN2/YARRAY(5000000)
COMMON /CMN3/ZARRAY(100,100,100)

Storage for common areas CMN1 and CMN2 is dynamically obtained at run
time. The storage for COMMON CMN3 is part of the load module, and takes up
part of the 16-megabyte maximum module size. Note the continuation of the
DC option across two (^PROCESS statements.

Extended Architecture Hints for FORTRAN Users
The following list contains helpful information for VS FORTRAN Version 2 users.

>• All modules that perform input and output and all input/output buffers and
control blocks must reside below the 16-megabyte line, because Data Man
agement does not support callers in 31-bit addressing mode.

The VS FORTRAN Version 2 Library run-time I/O routines switch addressing
mode when system services are needed. The addressing mode can be
switched only in a program residing below the 16-megabyte line.

»- The maximum size of a load module is 16 megabytes.

*• Unless you specifically force an AMODE value of 24, do not mix object
modules compiled with VS FORTRAN Version 1 Release 2 and later with:

— Object modules compiled with compilers prior to VS FORTRAN Version
1 Release 2

— Assembler code with 24-bit dependencies

Running Your Program under TSO

To link-edit and run your program under TSO, use the LINK command to create
a load module from one or more object modules (plus any needed VS
FORTRAN Version 2 library modules), and then use the CALL command to run
the load module.

The input object module must be OBJ data sets; for example:

userid.name.CBJ

The following sections discuss:

Selecting link mode or load mode

»- Link-editing your program

Chapter 4. Running Your Program 93

*- Running a load module

Fixing run-time errors

*- Using CLISTs

Note: The + at the end of the ISO command lines indicate a continuation on
the next line.

Selecting Link Mode or Load Mode
As in MVS, you can run your program in either link mode or load mode. See
"Loading Library Modules at Run Time" on page 73.

The following example illustrates sample TSO coding to run a program in link
mode. The coding in the first example calls in the standard mathematical rou
tines. In the second example, the coding calls alternative mathematical rou
tines.

Example 1; Using standard mathematical routines

LINK myprog LOAD(myprog(T)) PRINT(myprog) LET LIST MAP+
LIB ('SYS1.VSF2LINK','SYSl.VSF2F0RT')

ALLOCATE FILE(FT06f001) DA(*)
CALL myprog(T)

Example 2: Using alternative mathematical routines

LINK myprog LOAD(myprog(A)) PRINT(myprog) LET LIST MAP+
LIB('SYS1.VSF2MATH', •SYS1.VSF2LINK', 'SYSLVSF2F0RT')

ALLOCATE FILE(FT06f001) DA(*)
CALL myprog(A) ' T

When you run a program in load mode, the executable, or load, module does
not include the code for the required library modules. The program must
provide access to the SYS1.VSF2L0AD modules in one of the following ways:

The systems programmer can

— Add SYS1.VSF2L0AD to your system link list.

— Concatenate SYS1.VS2L0AD with the data sets named in the STEPLIB

DD statement in your logon procedure.

or

" You can

— Associate the data set SYS1.VSF2L0AD with FORTLIB in an ALLOCATE

command.

The following examples show the TSO coding you can use to link-edit and run a
program in load mode. The coding in the first example calls in the standard
mathematical routines. In the second example, the coding calls alternative
mathematical routines.

94 VS FORTRAN Version 2 Programming Guide

Example 1: Using standard mathematical routines

LINK myprog LOAD(myprog(T)) PRINT(myprog) LET LIST MAP+
LIB('SYS1.VSF2F0RT')

ALLOCATE FILE(FT06F001) DA(*)
ALLOCATE FILE(FORTLIB) DA('SYSl.VSFZLOAD') SHR
CALL myprog(T)

Example 2; Using alternative mathematical routines

LINK myprog LOAD(myprog(A)) PRINT(myprog) LET LIST MAP+
LIB('SYS1.VSF2MATH','SYS1.VSF2F0RT')

ALLOCATE FILE(FT06F001) DA(*)
ALLOCATE FILE(FORTLIB) DACSYS1.VSF2L0AD') SHR
CALL myprog(A)

Link-Editing Your Program—TSO LINK Command
You use the LINK command to create and run a load module. The input you
use consists of your object module, VS FORTRAN Version 2 service subrou
tines, and any other secondary input (such as OBJ data sets of called subpro
grams).

For example, if you want to load and run the OBJ data sets for myprog and its
subprogram subprog, you specify:

For load mode:

link (myprog,subprog) LOAD(myprog) LIB('SYS1.VSF2F0RT')

or

LINK (myprog,subprog) LOAD(myprog)+
LIB(•SYSl.VSF2MATH',•SYSl.VSF2F0RT')

For link mode:

LINK (myprog,subprog) LOAD(myprog)+
LIB('SYSl.VSF2LINK','SYSl.VSF2F0RT')

or

LINK (myprog,subprog) LOAD(myprog)+
LIB('SYS1.VSF2LINK',•SYSl.VSF2MATH','SYS1.VSF2F0RT•)

When the commands are run, the OBJ data sets for myprog and subprog are
link-edited together into a load module.

You must request the linkage editor to search the library to resolve external
references. In the last example, you are, therefore, requesting a search of
SYS1.VSF2MATH and SYS1.VSF2F0RT.

Linkage Editor Listings—TSO LINK Command
You can also use the LINK command to specify linkage editor options. In the
above example, you can request the listings to be printed, either on the system
printer or at your terminal:

On the System Printer:

LINK (myprog,subprog) LIB('SYSl.VSF2F0RT') LOAD(myprog) PRINT

Chapter 4. Running Your Program 95

The qualified name of the data set to be sent to the system printer Is
userid.myprog.hnklist. To print the data set, you must use a print command, or
the ISPF HARDCOPY command.

At Your Terminal:

LINK (myprog,subprog) LIB('SYS1.VSF2F0RT') LOAD(myprog) PRINT(*)

When you specify PRINT(*), the linkage editor listings are displayed at your ter
minal.

Running a Load Module under TSO
You can run a program under TSO using either of the following commands:

TSO CALL command—to run the load module.

• TSO LOADGO command—to Invoke the loader program to link-edit and run
your program In one step

Required Library Modules: Depending on the version of VS FORTRAN you used
to link-edit the original load module, your TSO load module must have access
to the following library modules:

If you are using a VS FORTRAN Version 1, Release 2 or Release 3 or 3.1 load
module with the VS FORTRAN Version 2 library (that is, you have not link-edited
your object files with the Version 1, Release 4 library or with the Version 2
library), then

AFBVASUB (with alias of IFYVASUB) and AFBVPOST (with alias of
IFYVPOST) must be installed in a library on the system link list (see
SYS1.PARMLIB member LNKLSTOO for the libraries on the list).

If you are using the IFYVRENT routines, AFBVRENT (with alias of IFYVRENT)
must also be In a library on the system link list.

If you are using the IFYVRENT routines and IfAFBVRENT (with alias of
IFYVRENT) Is In the link pack area (LPA), then AFBVPOST and AFBVASUB
(AFBVASUB may go into the LPA) must be in a library on the system link
list.

If you are uncertain whether your executable module has access to the
correct library modules, see your system programmer.

Using the TSO CALL Command to Run the Load Module
The following example assumes that you have a load module named
MYPROG.LOAD. You can run the load module with the following set of TSO
commands. The ALLOCATE commands Identify the Input and output data sets,
as well as any work data sets used by the program. The CALL command
causes TSO to run program tempname from the file MYPROG.LOAD.

ALLOCATE DATASET(myprog.indata) FILE(FT05F001) (as needed)
ALLOCATE DATASET(myprog.outdata) FILE(FT06F001) (as needed)
ALLOCATE DATASET(myprog.workfi1) FILE(FT10F001) (as needed)
ALLOCATE FILE(FORTLIB) DA('SYS1.VSF2L0AD') SHR
CALL myprog

96 VS FORTRAN Version 2 Programming Guide

After the program has run, you should delete any data sets that you won't be
. using again. Use the TSO DELETE command to delete unneeded data sets
\ named in the ALLOCATE and CALL commands. See the following command.

DELETE (myprog.indata myprog.outdata myprog.workfil)

Specifying Run-Time Options: The same run-time options that are available in
l\/IVS are available in TSO. "Available Run-Time Options" on page 101 contains
a list of these options and describes how to use each option. In TSO. you
specify run-time options with the TSO CALL command. This command has the
following form:

CALL pgmname 'option[,option.'

where pgmname is the name of your VS FORTRAN Version 2 program, and
option is a run-time option.

TSO Considerations for Terminal Files: For terminal files, the end-of-File signal
is 7*'. Another ALLOCATE command or an explicit OPEN is required to con
tinue processing.

When you use a terminal for list-directed I/O, do not specify the IN parameter
with the ALLOCATE command. The IN parameter forces the terminal data set
to be opened for input only; its use may cause input records to be skipped.

Using the System Loader Program to Load and Run a Program
The LOADGO command invokes the system loader program to load and run
your compiled program. This load function is equivalent to the link-edit and run
function, providing the capability for link-editing and running your program in
one step. When the program has run, TSO automatically deletes the load
module created by LOADGO.

Allocating Data Sets With LOADGO Use the following procedure to allocate the
data sets you want to use with LOADGO.

1. Allocate the required data sets as described in "Allocating Compiler Data
Sets" on page 18.

2. Provide access to the library modules in SYS1.VSF2L0AD using one of the

following methods.

The system programmer can

— Add SYS1.VSF2L0AD to your system link list.

— Concatenate SYS1.VSF2L0AD with the data sets named in the

STEPLIB DD statement.in your logon procedure.

or

You can

— Associate the data set SYS1.VSF2L0AD with FORTLIB in an ALLO

CATE command.

3. Run the LOADGO command.

Chapter 4. Running Your Program 97

Examples of LOADGO Commands: This section contains exampies of the form
of the LOADGO command to use when running a program. The examples shovv
the LOADGO command as you can use it to link-edit and run an object module^
name myprog

Running a Program in Link Mode: Example 1:

LOADGO (myprog) LIB('SYS1.VSF2LINK','SYS1.VSF2F0RT')

Example 2:

LOADGO (myprog) LIB('SYS1.VSF2MATH',•SYS1.VSF2LINK','SYS1.VSF2F0RT')

Running a Program in Load Mode: Example 1

ALLOCATE FILE(FORTLIB) DA('SYS1.VSF2L0A0')
LOADGO (myprog) LIB('SYS1.VSF2F0RT')

Example 2;

ALLOCATE FILE(FORTLIB) DA('SYS1.VSF2L0AD')
LOADGO (myprog) LIB('SYSl.VSF2MATH','SYS1.VSF2F0RT')

In these examples the LIB operand provides access to the required data sets.
The loader program resolves any external references in myprog and loads the
required object modules.

Using LOADGO for a Link-Edited Module: You can also use LOADGO to run a
link-edited load module; for example:

LOADGO myprog(tempname)

Using LOADGO to Specify Options: You can use LOADGO to specify loader
options. The following form of LOADGO specifies that a load module map and
listings are to be printed, either on the system printer or at your terminal;

On the System Printer

LOADGO (myprog) MAP PRINT

The output data set sent to the system printer has the qualified name
MYPROG.LOADLIST.

At Your Terminal

LOADGO (myprog) MAP PRINT(*)

Specifying PRINT(*)causes the loader listings to display on your terminal.

Fixing Run-Time Errors
In TSO you can use all the FORTRAN debugging aids described in
Chapter 4, "Running Your Program" on page 59. You can also use the TSO
TEST command with its associated subcommands to debug your object
program. Using TEST, you can determine exactly where in the program the
abnormal termination occurred.

98 VS FORTRAN Version 2 Programming Guide

Using CLISTS
— You can use a CLIST to write a set of TSO option commands to be used when-

^ ^ ever you want to run a VS FORTRAN Version 2 program under TSO. Running
the CLIST runs your program with all of the options specified in the CLIST. You
can use CLISTS to process your VS FORTRAN Version 2 programs either in the
foreground or background.

CLISTS for Foreground Processing
The following CLISTS will link-edit and run a VS FORTRAN Version 2 program in
the foreground.

CLIST 1:

PROC 1 NAME

ALLOCATE FILE(FT06F001) DA(*)
ALLOCATE FILE(FORTLIB) DA('SYS1.VSF2L0A0')SHR
LOADGO &NAME LIB('SYS1.VSF2F0RT')

CLIST 2:

PROC 1 NAME-

LINK &NAME LOAD(temp(MAIN)) LIB('SYS1.VSF2F0RT') LET MAP
ALLOCATE FILE(FT06F001) DA(*)
ALLOCATE FILE(FORTLIB) DA('SYS1.VSF2L0AD') SHR
CALL &NAME(MAIN)
DELETE temp

CLISTS for Background Processing
Although foreground processing can be convenient if you are running a small

' source program, running long source programs can take a long time. It may be
more desirable to batch process such programs in the background thus freeing
your terminal for other tasks. For information about cataloged procedures for
background processing, see "Running the Load Modi/le" on page 83.

Chapter 4. Running Your Program 99

^ Chapter 5. Using the Run-Time Options and Identifying
Run-Time Errors

This chapter describes the run-time options and explains how to Identify run
time-errors.

Available Run-Time Options
The following run-time options are available:

The default values for the options described below may be established for a
single program or for an entire installation by establishing default options
tables. See "Establishing a Default Run-Time Options Table" on page 106 for
instructions on how to set up this table for a single program. The Installation-
wide default options table is set up by your systems programmer. If the
IBM-supplied defaults are not overridden, the defaults are those defaults given
in the following option descriptions.

If you code conflicting run-time options (for example, STAE and NOSTAE), the
last value specified takes precedence.

For more information on using the run-time options, see "Specifying Run-Time
Options" on page 64 (VM), "Specifying Run-Time Options" on page 83
(MVS), "Specifying Run-Time Options" on page 97 (TSO), or VS FORTRAN
Version 2 Interactive Debug Guide and Reference.

ABSDUMP I NOABSDUMP
These options specify whether post-ABEND symbolic dump Information will
be printed in the event of an abnormal termination.

AUTOJASK{loddmod.ntasks) | NOAUTOTASK (MVS only)
These options specify whether the multitasking facility (MTF) Is enabled for
your program. See Appendix E, "The Multitasking Facility (MTF)" on
page 349 for more information on the multitasking facility.

AUTOTASK{loadmod,ntasks)

loadmod

is the name of the load module that contains the parallel subrou
tines, which are to be run in the subtasks that are created by MTF.

ntasks

is the number of subtasks created by MTF. This value may range
from 1 through 99.

NOAUTOTASK

nullifies the effects of previous specifications of AUTOTASK parameters
so that MTF will not be enabled.

DEBUG I NODEBUG
These options specify whether VS FORTRAN Version 2 Interactive Debug
will be invoked. They can be specified by CMS and TSO users at runtime.
For more Information, see VS FORTRAN Version 2 Interactive Debug Guide
and Reference.

Chapter 5. Using the Run-Time Options and Identifying Run-Time Errors 101

DEBUNIT(s/[,s2,...]) | NODEBUNIT (MVS Format)

DEBUNIT(s/[s2 s3]) | NODEBUNIT (VM Format)

DEBUNIT allows you to specify a list of FORTRAN units that are to be
treated like terminal units for debugging. VS FORTRAN Version 2 Interac
tive Debug is able to capture terminal input and output and merge It with
the debugging input and output. However, in batch mode (on MVS), units
cannot be allocated to the terminal. DEBUNIT, therefore, provides the
means for selecting certain units to be considered as terminal units for
debugging purposes.

The list of units may consist of a single FORTRAN unit number and/or a
range of unit numbers (x, or yy-zz).

The VS FORTRAN Version 2 Interactive Debug TERMIO command specifies
whether I/O for these units are to be handled by Interactive Debug or by the
VS FORTRAN Version 2 library in its normal manner. See VS FORTRAN
Version 2 Interactive Debug Guide and Reference for details.

NODEBUNIT nullifies the effects of the previous specifications of DEBUNIT
parameters.

INQPCOPN I NOINQPCOPN
These options control whether the OPENED specifier on an INQUIRE by unit
can be used to determine whether a preconnected unit has had any I/O
statements directed to it.

INQPCOPN
causes the execution of an INQUIRE by unit to provide the value true in
the variable or array element given in the OPENED specifier if the unit
is connected to a file. This includes the case of a preconnected unit,
which can be used in an I/O statement without executing an OPEN
statement, even if no I/O statements have been executed for that unit.

NOINQPCOPN

causes the execution of a INQUIRE by unit to provide the value false for
the case of a preconnected unit for which no I/O statements other than
INQUIRE have been executed.

lOINIT I NOIOINIT
These options specify whether the normal initialization for I/O processing
will occur during initialization of the run-time environment. Ifyou choose
NOIOINIT:

• The error message unit will not be opened during initialization of the
run-time environment. However, this does not prevent I/O from occur
ring on this or on any other unit. (Such I/O may fail if proper DD state
ments or FILEDEF statements are not given.)

• Under VM, the CMS FILEDEF commands for the reader, punch, and
printer will not be issued. Should subsequent I/O be directed to these
units, the default FILEDEFS that are provided by CMS. not by VS
FORTRAN, will be used.

OCSTATUS I NOOCSTATUS
These opfPAns control whether the OPEN and CLOSE status specifiers will
be verified.

102 VS FORTRAN Version 2 Programming Guide

OCSTATUS

specifies that file existence will be checked with each OPEN statement
to verify that the status of the file is consistent with STATUS = 'OLD'
and STATUS= 'NEW; and specifies that file deletion will occur with
each CLOSE statement with STATUS = 'DELETE' for those devices
which support file deletion. Preconnected files are included in these
verifications. Some exceptions follow:

OCSTATUS consistency checking applies to DASD files, PDS
members, VSAM files, MVS labeled tape files, and dummy files only.
For dummy files, the consistency checking occurs only if the file was
successfully opened previously in the current program.

On devices where deletion is not possible, CLOSE with
STATUS = 'DELETE' will close the file as if STATUS = 'KEEP' had
been specified. If the ERR or lOSTAT specifiers are not used, a
warning message will be given to indicate that the requested
deletion is not allowed.

In addition, when a preconnected file is disconnected by a CLOSE state
ment, an OPEN statement is required to reestablish the connection
under OCSTATUS. Following the CLOSE statement, the INQUIRE state
ment parameter OPENED will indicate that the unit is disconnected.

NOOCSTATUS

bypasses file existence checking with each OPEN statement and
bypasses file deletion with each CLOSE statement.

IfSTATUS ='NEW, a new file is created; if STATUS ='OLD', the existing
file is connected.

If STATUS='UNKNOWN' or 'SCRATCH', the following occurs:

If the file exists, it is connected; if the file does not exist, a new file is
created.

In addition, when a preconnected file is disconnected by a CLOSE state
ment, an OPEN statement is not required to reestablish the connection
under NOOCSTATUS. A sequential READ, WRITE, BACKSPACE,
REWIND, or ENDFILE will reestablish the connection to a unit. Before

the connection is reestablished, the INQUIRE statement parameter
OPENED will indicate that the unit is disconnected; after the connection
is reestablished, the INQUIRE statement parameter OPENED will indi
cate that the unit is connected.

SPIE I NOSPIE
These options specify whether the run-time environment will take control in
the event of program interrupts.

SPIE

causes a SPIE (or ESPIE) macro instruction to be run during initializa
tion of the run-time environment in order to allow the run-time environ
ment to take control in the event of program interrupts.

NOSPIE

suppresses running ofthe SPIE^^tpr ESPIE) macro insstruction. If
NOSPIE is specified, various rim-time functions that are dependent on
control being returned for a program interrupt are not available.

Chapter 5. Using the Run-Time Options and Identifying Run-Time Errors 103

These include:

• Messages and corrective action for a floating-point overflow

Messages and corrective action for a floating-point underflow inter
rupt (unless the underflow is to be handled by the hardware based
on the XUFLOW option)

Messages and corrective action for a floating-point or fixed-point
divide exception

Simulation of extended precision floating-point operations on
processors that do not have these instructions

*- Realignment of vector operands which are not on the required
storage boundaries and the re-running of the failing instruction

Instead of the corrective action indicated, abnormal termination results.
In this case, either the STAE or NOSTAE option, whichever is in effect,
governs whether the run-time environment gains control at the time of
the ABEND.

VS FORTRAN Version 2 Interactive Debug requires a SPIE exit for some
of its operations and will continue to use a SPIE exit even though
NOSPIE has been specified; however, unpredictable results may occur.

STAE I NOSTAE
These options specify whether the run-time environment takes control in the
event of an abnormal termination.

STAE

causes a STAE (or ESTAE) macro instruction to be run during initialize-
tion of the run-time environment in order to allow the run-time environ

ment to take control in the event of abnormal termination.

NOSTAE

suppresses running of the STAE (or ESTAE) macro instruction. If
NOSTAE is specified, abnormal termination is handled by the operating
system rather than by the run-time environment. In this case:

Message AFB240I, which shows the PSW and register contents at
the time of the ABEND, is not printed. However, some of this infor
mation may be provided by the operating system.

• Internal statement number (ISN), or the sequence number of the
last-run FORTRAN statement, is not printed.

*• The traceback of called routines is not printed.

The post-ABEND symbolic dump is not printed, even with the
ABSDUMP option in effect.

*• Certain exceptional conditions that are handled by the run-time
environment or by the debugging device causes system ABENDs
rather than VS FORTRAN Version 2 messages. For example, some
errors that occur during the processing of an OPEN statement result
in a system ABEND rather than the printing of message AFB219I,
which allows possible continuations of program processing.

While using TSO Test to debug your program, if you use the QUIT
command in an attention exit to terminate the program, a user

104 VS FORTRAN Version 2 Programming Guide

ABEND 500 occurs instead of the normal termination of the run-time
environment.

•• An MTF subtask that terminates unexpectedly causes a user ABEND
922 in the main task, rather than message AFB922I.

There is an exception to the above list of items to be printed during ter
mination of the run-time environment. If the NOSTAE and SPIE options
are both in effect and a program interrupt occurs, then the following
items are printed:

Message AFB240I

• Internal statement number (ISN) or sequence number of the last-run
FORTRAN statement

Traceback of called routines

Post-ABEND symbolic dump {if allowed by the ABSDUMP option)

XUFLOW I NOXUFLOW
These options specify whether an exponent underflow should cause a
program interrupt. (An exponent underflow is produced when a floating
point number becomes too small to be represented.)

XUFLOW

allows an exponent underflow to cause a program interrupt, followed by
a rnessage from the VS FORTRAN Version 2 run-time library, followed
by standard fix-up.

NOXUFLOW

suppresses the program interrupt caused by an exponent underflow.
The hardware provides the fix-up.

Both the standard fix-up done by the run-time library and the fix-up done by
the hardware for the exponent underflow set the result to zero. However, if
the library processes the error, the run time consumed is considerable
during interrupt handling. This is true for all occurrences of an exponent
underflow even though messages are printed only for the first few occur
rences. Therefore, if exponent underflows and the corresponding fix-up are
acceptable, you should specify the NOXUFLOW option to save processor
time.

VS FORTRAN Version 2 provides a subroutine that allows you to suppress
or enable the program interrupt that occurs because of exponent underflow.
This subroutine, XUFLOW, can be used at any point in your program.
Calling XUFLOW as follows:

CALL XUFLOW (0)

suppresses the program interrupt and is equivalent to the action taken by
the NOXUFLOW option. Calling XUFLOW as follows:

CALL XUFLOW (1)

allows the program interrupt to occur and is equivalent to the action taken
by the XUFLOW option.

jiriv

Chapter 5. Using the Run-Time Options and Identifying Run-Time Errors 105

Establishing a Default Run-Time Options Table
There are three ways to specify run-time options. They are listed in the order
of the priority taken when there are conflicting options present. Run-time
options can be specified as follows:

1. On the control statement that invokes your program. For MVS, see "Speci
fying Run-Time Options" on page 83; for VM, see "Specifying Run-Time
Options" on page 64; and for TSO, see "Specifying Run-Time Options" on
page 97.

2. In the default run-time options table (AFBVLPRM) used for a single
program, as assembled by the VSF2PARM macro.

3. In the default run-time options table established for your installation.

Only the default run-time options table for a single program, AFBVLPRM, will be
discussed in detail in this book. The installation-wide default options table may
have been established by your systems programmer.

You can create a default run-time options table for a single program by coding
the desired options in a VSF2PARM macro instruction. When assembled, this
produces an object module called AFBVLPRM. This object module is to be
included with your program. To generate and use this options table, use the
following steps:

1. Code the macro instruction in the following format:

VSF2PARH option[,option...]

One or more run-time options can be specified if you wish to override your
installation's default values. The possible options are listed in the pre
ceding pages.

2. Assemble the AFBVLPRM module using the VSF2PARM macro instruction
you have written in step 1. To assemble the module, make the VS
FORTRAN Version 2 library that contains the VSF2PARM macro definition
available to the assembler.

If you are running under MVS and have Assembler HVersion 2 available,
then do the assembly as follows:

PGM=IEV90,PARM=•OBJECT,NOOECK'
SYSOUT=A

DSN=SYS1.AFBLBS,DISP=SHR
UNIT=SYSOA,SPACE=(CYL,(1,1))
DSN=&&VLPRM1,DISP=(NEW,PASS),
UNIT=SYSDA,SPACE=(TRK,(1,1)),
DCB=BLKSIZE=320O

'SYSIN DO *

VSF2PARM option[,option]
/*

Ifyou are running on a non-XA version of MVS and do not have Assembler
H Version 2 available, use IFOXOO as the name of the assembler rather than
IEV90. In this case, also add DD statements to define work files for SYSUT2
and SYSUT3.

Under VM, place your VSF2PARM macro instruction in a file with a file
name of your choice and a file type of ASSEMBLE. If, for example, your file

//ASSEM EXEC

//SYSPRINT DD

//SYSLIB DD

//SYSUTl DD

//SYSLIN DD

//
//
//SYSIN DD

106 VS FORTRAN Version 2 Programming Guide

is called VLPRM1 ASSEMBLE, then you can do the assembly as follows:

GLOBAL MACLIB VSF2MAC

HASM VLPRMl

This produces a text file called VLPRM1 TEXT.

3. Include the object module produced from the assembly of the VSF2PARM
macro instruction when you create your executable program.

If you are running under MVS, you must provide the object module as link
editor input so that it will be included in your load module. For example,
continuing the example in step 2 above, you can perform a compile and
link-edit as follows:

//CL EXEC PR0C=VSF2CL
//FORT.SYSIN DO Your source program
//LKEO.SYSIN DO DSN=&&VLPRM1,0ISP={0LD,DELETE)

If you are running under VM, include the text file of the options table when
you issue the LOAD command. For example, if you have a text file called
VLPRM1 as in step 2 above, then issue the following command:

LOAD myprog VLPRMl

where myprog is the name of the text file that contains your program.

Identifying Run-Time Errors
VS FORTRAN Version 2 has a number of features that help you find errors.
One feature, VS FORTRAN Version 2 Interactive Debug, is described in the VS

f N FORTRAN Version 2 InteractiveDebug Guide and Reference. Other debugging
aids are described in the following sections. For information on run-time mes
sages, see VS FORTRAN Version 2 Language and Library Reference.

Using the Optional Traceback Map
Whenever you get a library diagnostic message, you can, optionally, get a
traceback map. Your site may have set this as the default whenever a library
message is generated. If not, you can request a traceback map for any
message, using the ERRSET subroutine.

You can also get a traceback map at any point in your source program by using
the ERRTRA subroutine.

For more information on these subroutines, see "Controlled Extended Error

Handling—CALL Statements" on page 111.

To cause ISNs to appear in a traceback map, you must have compiled with the
GOSTMT or the SDUMP compiler option (see "Available Compiler Options" on
page 23).

The traceback map is a tool to help you find where an error occurred in your
program. The information in the map starts from the most recent instruction
run, and ends with the origin of the program.

The sample traceback map in Figure 25 lists the names of called routines,
internal statement numbers (ISNs) within routines, and the arguments received
by each subroutine.

Chapter 5. Using the Run-Time Options and Identifying Run-Time Errors 107

TRACEBACK OF CALLING ROUTINES; NODULE ENTRY ADDRESS = 020000

SUBB (020830) CALLED BY SUBA (0205C8) AT ISN 4 AT OFFSET 0001C2.
ARGUMENT LIST AT 020760.

ARG. NO. ADDRESS INTEGER REAL CHAR HEXADECIMAL
1 00020330 ; 0 O.OOOOOOE+OO '....' 00000000
2 80020330 ; 0 O.COOOOOE+00 ' ' 00000000

SUBA (0205C8) CALLED BY MAIN (020000) AT ISN 10 AT OFFSET 000442.
ARGUMENT LIST AT 0201E4.

ARG. NO. ADDRESS INTEGER REAL CHAR HEXADECIMAL
1 00020330 : 0 O.OOOOOOE+OO '....' 00000000
2 80020330 : 0 O.OOOOOOE+OO ' ' OOOOOOCO

MAIN (020000) CALLED BY OPERATING SYSTEM.

Figure 25. Sample Traceback Map

MODULE ENTRY ADDRESS = address

shows the entry point of the earliest routine entered.

routine {address)
lists the names of all routines entered in the current calling sequence with
the routine entry address. In Figure 25, the final routine that ran is SUBB,
which begins at hexadecimal address 00020830.

Names are shown with the last routine called at the top and the first routine
called at the bottom of the listing.

CALLED BY routine {address)
CALLED BY OPERATING SYSTEM

lists the calling routine. The starting address of the calling routine follows
the routine name. In Figure 25, SUBA, which began at address 000205C8,
called routine SUBB. which began at address 00020830. Calls to the main
program from the operating system are indicated by the CALLED BY OPER
ATING SYSTEM format.

AT ISN nnnn

lists the FORTRAN internal statement number (ISN) of the calling statement
in the CALLED BY routine. ISN information is only available if a program
unit has been compiled with SDUMP or, for some errors, GOSTMT.

OFFSET {address)
lists the hexadecimal offset within the routine that made the call.

ARGUMENT LIST AT {address)
shows the address of the argument list passed to the called routine or the
message, NO ARGUMENT PASSED TO SUBROUTINE.

ARG. NO. ADDRESS INTEGER REAL CHAR HEXADECIMAL

lists the arguments by number, address, and content. A maximum of 99
arguments can be displayed in a traceback map. The contents of the first
four bytes of each argument is displayed in four types of notation.

integer

0

real

0.000000E+00

108 VS FORTRAN Version 2 Programming Guide

character

• hexadecimal

oooeoooo

The control program runs Its own routine to recover from the error, and dis
plays the following message:

STANDARD CORRECTIVE ACTION TAKEN, EXECUTION CONTINUING

If your program uses its own error recovery routine, the word USER replaces
STANDARD in this message.

Alter the error recovery, the program continues to run.

The summary of errors printed at the end of the listing tells you how many
times an error was encountered.

Traceback Map Procedure: To use the traceback map for error detection:

1. Look at the message text in the first line of the AFB message. If you need
more explanation than the text provides, see VS FORTRAN Version 2 Lan
guage and Library Reference.

2. Find the last routine called by the program. It should be the first item under
the traceback heading.

3. Use the ISN, SEQ. NO. or OFFSET on the same line to locate the statement

within the CALLED BY routine in your source code.

4. Investigate the statement for proper use. and continue by analyzing the
arguments within the routine.

If the statement is still not found, go through this procedure again, using the
next oldest routine and so on, until the error is found.

The traceback map lists the internal statement number {ISN) calling each
routine. For an example using ISNs, see Figure 6 on page 40. Using the ISN,
you can locate the source statement within the calling module.

Requesting an Abnormal Termination Dump
How you request an abnormal termination dump depends on the system you're
using.

For system considerations when requesting a dump, see "Requesting an
Abnormal Termination Dump" on page 84 (MVS).

Information on interpreting dumps can be found in the appropriate debugging
guide for your system.

Chapter 5. Using the Run-Time Options and Identifying Run-Time Errors 109

Operator Messages
Operator messages are generated when your program issues a PAUSE or
STOP n statement. Operator messages are written on the system device speci
fied for operator communication, usually the console. The message can guide
you In determining how far your FORTRAN program has run.

The operator message may take one of the following forms:

yyn

'message'

0

Character Meaning

yy message Identification number assigned by the system.

n string of 1 through 5 decimal digits you specified In the PAUSE or
STOP statement. For the STOP statement, this number Is placed
In register 15.

'message' character constant you specified in the PAUSE or STOP state
ment.

0 printed when a PAUSE statement containing no characters Is run.
(Nothing Is printed for a similar STOP statement.)

A PAUSE message causes the program to stop running pending operator
response. The format of the operator's response to the message depends on
the system being used.

A STOP message causes program termination.

Extended Error Handling
Extended error handling can operate with default values, or you can control the
values, using service subroutine.

Extended Error Handling by Default
Your Installation has a default value preset In the VS FORTRAN Version 2 error
option table for the following run-time conditions associated with each error:

•- The number of times an error can occur before the program is terminated.

• The maximum number of times an run-time message Is printed.

• Whether a traceback map Is to be printed with the message.

Whether a user error exit routine Is to be called.

The actions of error handling are controlled by these settings In the error option
table. IBM provides a standard set of option table entries; your system admin
istrator may have provided additional entries for your site.

The following actions take place when an error occurs:

1. The FORTRAN error monitor (ERRMON) receives control.

110 VS FORTRAN Version 2 Programming Guide

2. The error monitor prints the necessary diagnostic and informative mes
sages:

A short message, along with an error identification number.

The data in error (or some other associated information) is printed as
part of the message text. For more information on run-time messages,
see VS FORTRAN Version 2 Language and Library Reference.

*' The error count, telling you how many times each error occurred.

A traceback map (optional), tracing the subroutine flow back to the main
program, after each error occurrence.

3. Then the error monitor takes one of the following actions:

Terminates the job.

•- Returns control to the calling routine, which takes a standard corrective
action and then continues to run.

Calls a user-written closed subroutine, possibly to correct the data in
error, and then returns to the routine that detected the error, which then

continues to run.

Controlled Extended Error Handling—CALL Statements
To make changes to the option table dynamically at load module run time, you
can use the service subroutines, summarized here.

The service subroutines let you change the extended error handling information

in your copy of the option table, so that you get control that you specify over
load module errors while your program runs:

The ERRMON subroutine calls the error monitor routine, the same routine

used by VS FORTRAN Version 2 when it detects an error.

The ERRTRA subroutine dynamically requests a traceback and continued
processing (see "Using the Optional Traceback Map" on page 107).

*• The ERRSAV subroutine copies an option table entry into an area acces
sible to your program.

The ERRSTR subroutine stores an entry in the option table.

The ERRSET subroutine allows you to control processing when an error
condition occurs.

For detailed reference documentation about the error option table and the
service subroutines, see VS FORTRAN Version 2 Language and Library Refer
ence.

Usage Notes for User-Controlled Error Handling:

1. The default settings of the error option table may be changed in the VS
FORTRAN Version 2 library permanently by reassembling a macro and
replacing the table in the library. Also, entries may be added to the table
for installation-designated errors. If this has been done for your installation,
your system administrator has information about it.

2. When you set option table entries, allow no more than 255 occurrences of
any error; otherwise, infinite program looping can result.

Chapter 5. Using the Run-Time Optionsand Identifying Run-Time Errors 111

3. If an error entry is set to allow no corrective action (neither standard nor
user-exit-provided), the entry must also allow only one occurrence of the
error before program termination.

4. Caution should be used when changing the values of any variables in the
common area while in a closed user error handling routine under optimiza
tion levels of 1, 2, or 3. Certain control flow and variable usage information
are not known to the optimizer, since the user error handling routine is
called indirectly, not directly, when an error is encountered.

For example:

COMMON /A/ RETCDE
EXTERNAL ERRSUB

INTEGER RETCDE

CALL ERRSET(215,0,-1,1,ERRSUB)
1 READ(5,*,END=1O0)I

IF (RETCDE.GT.O) GO TO 100
WRITE(6,*)I
GOTO 1

100 STOP

END

In the above example, RETCDE may be changed in ERRSUB when an
invalid data error is encountered in the READ statement; however, this fact
is hidden from the optimizer in the context of the program. Therefore, the
optimizer assumes that RETCDE is not changed between the READ and the
GOTO 1 in the above example. It is kept in a register that causes an incor
rect result. Ifyou specify lOSTAT in the READ statement, as follows:

1 READ(5,*,END=100,I0STAT=RETCDE) I

the optimizer can optimize it correctly.

Effects of VS FORTRAN Version 2 Interactive Debug on Error Handling
Ifyou are running with VS FORTRAN Version 2 Interactive Debug, error han
dling is modified as follows:

*- Traceback maps are not produced for any error.

• The interactive debug error routine operates instead of the library error
monitor (ERRMON).

Ifyour program calls ERRSET to provide a user exit routine, that user exit
routine operates instead of the interactive debug error routine.

Ifyou are debugging in ISPF or line mode, unlimited error occurrences are
allowed for all errors and error counts are not maintained.

For more information on error handling by Interactive Debug, see information
on the ERROR commmand in VS FORTRAN Version 2 Interactive Debug Guide
and Reference.

Static Debug Statements
The debug statements help you locate errors in your source program that are
not diagnosed by the library. The debug statements, when used, must be the
first statements in your program. Ifdebug statements are used, the RENT com-
piler option is ignored.)

112 VS FORTRAN Version 2 Programming Guide

If you use a debug packet in your source program and compile it using
0PTIMIZE(1). 0PTIMIZE{2). 0PTIMIZE{3), or VECTOR, the compiler changes the
optimization parameter to NOOPTIMIZE and NOVECTOR.

Figure 26 shows how you can use VS FORTRAN Version 2 debug statements to
obtain the information you specify for your use in determining the cause of an
error.

Program Code with Debug Statements:

DEBUG SUBCHK(ARRAYl), TRACE, INIT(ARRAYl)
AT 10

TRACE ON

(procedural code for debugging)
AT 40

TRACE OFF

DISPLAY I, J, K, L, M, N, ARRAYl
END DEBUG

10 BO ... (program tracing begins here; procedural
debugging code run)

30 CONTINUE

40 WRITE ... (program tracing ends here; values
of I, J, K, L, H, N, and ARRAYl are displayed)

How Each Debug Statement Is Used: The DEBUG statement precedes
the first debug packet and specifies the following:

SUBCHK(ARRAYI) requests validity checking for the values
of ARRAYl subscripts.

TRACE specifies that tracing is to be allowed within debug packets.

INIT(ARRAYI) specifies that ARRAY1 is to be displayed
when values within it change.

AT 10 begins the first debug packet.

TRACE ON turns on program tracing at statement label 10,
so that subsequent statements with FORTRAN labels are traced.

(Procedural debugging code contains valid FORTRAN statements
to aid in debugging; for example, to initialize variables.)

AT 40 ends the first debug packet and begins the second.

TRACE OFF turns off program tracing at statement label 40,
so that subsequent statements after 40 are not traced.

The DISPLAY statement writes the values of I, J, K, L.
M, N, and ARRAYl.

END DEBUG ends the second (and last) debug packet.

Figure 26. Using Static Debug Statements

Chapter5. Using the Run-Time Options and Identifying Run-Time Errors 113

In debug packets you can use the following statements:

DEBUG

AT

TRACE ON I TRACE OFF
DISPLAY

END DEBUG

In addition to these specific debug statements (valid only in a debug packet),
you can also use most FORTRAN procedural statements to gather information
about what's happening while the program runs.

Object Module Listing—LIST Option
The object module listing shows you (in pseudo-assembler format) the machine
code the compiler generated from your source statements.

A sample object module listing is shown in Figure 27 on page 115. (Some of
the information in the listing has been realigned to fit the dimensions of the
page.)

If the SDUMP or TEST option has been specified, in addition to the LIST option,
the ISN number is printed before each source statement in the pseudo-
assembler listing, including statements in vectorized DO loops.

Each line of the listing is formatted (from left to right) as follows:

*• The relative address of the instruction or the data item in hexadecimal.

*- The next area shows the storage representation of the instruction or initial
ized data item, in hexadecimal format.

The next area (not always present) shows names and statement labels,
which may be either those appearing in the source program or those gener
ated by the compiler (compiler-generated labels are in the form nn nnn
nnnnnnn).

The next area shows the pseudo-assembler language format for each state
ment.

The last area shows the source program items referred to by the instruc
tion, such as entry points of subprograms, variable names, or other state
ment labels.

Figure 27 on page 115 shows an example of an object module listing for which
the reentrant feature has not been invoked.

The object module listing with the reentrant feature contains the same sections
as those shown in Figure 27 on page 115; in addition, there can be one table in
the reentrant listing that is not in the listing for nonreentrant: ADCONS
(address constants) FOR REENTRANT RELOCATION.

114 VS FORTRAN Version 2 Programming Guide

ENTRY CODE

000000 47F0 F020 GAUSS BC 15,32(0,15)
000004 17 DC XLri7'

000005 C7C1E4E2E240404040 DC CL9'GAUSS

OOOOOE F8F74BF0F7F7 DC CL6'87.077'

000014 F1F04BF3F54BF3F4 DC CL8'10.36.34'

OOOOIC OS A(PIB)
000020 90EC OOOC STM 14,12,12(13)
000024 1840 LR 4,13
000026 98C0 F034 LM 12,13,52(15)
00002A 5040 0004 ST 4,4(0,13)
00002E 5000 4008 ST 13,8(0,4)
000032 07FC BR 12

000034 OS A(PROLOG)
000038 OS A(SAVEAREA)

ENTRY TABLE

00003C OS 9F

PROGRAM INFORMATION BLOCK

000060 OS 22F

COMPILER PROPERTIES TABLE

OOOOCO OS 2F

IAD WORK AREA

0000C8 OS 4F

SAVE AREA

0000D8 OS 18F

REGISTER 12 AOCOH

000120 OS A(REG12)
LOCATION OF EPILOG ADDRESS

000124 OS A

IAD WORK AREA

00012C OS 23 F

TEMPORARY FOR FIX/FLOAT OR NOT
000188 0000000000000000 DC XL8'0000000000000000'

CONSTANTS

000190 4F08000000000000 DC XL8'4F08000000000000'

000198 3C10C6F7A0B5ED80 DC XL8'3C10C6F7A0B5ED8D'

OOOIAO 4080000000000000 DC XL8•4080000000000000•

0001A8 41281826263AEOOO DC XL8'41281B26263AE000'

ARITHMETIC AND LOGICAL VARIABLES

OOOIDO NO INITIAL DATA TOTAL AREA

OS 0

000108 NO INITIAL DATA X SO OS 0

000lEO NO INITIAL DATA T HI OS 0

0001E8 NO INITIAL DATA T LO OS 0

OOOIFO NO INITIAL DATA GAUSS OS D

0001F8 NO INITIAL DATA GUASS OS F

3C0NS FOR EXTERNAL REFERENCES

000208 00000000 DC AL4(00000000) RAN GE HI

00020C 00000000 DC AL4(00000000) RAN ge!AO
000210 00000000 DC AL4(00000000) MU

000214 00000000 DC AL4(00000000) SIG MA

000218 00000000 DC AL4(00000000) X

0002IC 00000000 DC AL4(00000000) D#E RF

000220 00000000 DC AL4(00000000) D#E XP

PROGRAM CODE

ISN

C0026C

000270

000274

000278

00027C

5870 DI3C

6800 7000

6900 D0E8

5850 D17C

0775

2.001 L

LD

CD

L

BCR

7,316(0,13)
0,0(0,7)
0,232(0,13)
5,380(0,13)
7,5

SIGMA

00000000 0000000

7.000#

Figure 27 (Part 1 of 3). Object Module Listing Example—LIST Compiler Option

Chapter 5. Using the Run-Time Options and Identifying Run-Time Errors 115

ISN 6

00027E 6800 D0E8

000282 6000 0118

000286 5850 D18C

00028A 07F5

6.000 LD

STD

L

BCR

0,232(0,13)
0,280(0,13)
5,396(0,13)
15,5

EPILOGUE CODE

000406 0700 BCR 0,0
000408 0700 BCR 0,0
00040A 6800 0118 LO 0,280(0,13)
00040E 5800 D004 L 13,4(0,13)
000412 58E0 DOOC L 14,12(0,13)
000416 92FF DOOC MVI 12(13),255
00041A 982C DOIC LH 2,12,28(13)
0004IE 07FE BCR 15,14

PROLOGUE CODE

000420 987A 1000 LM 7,10,0(1)
000424 5070 0140 ST 7,320(0,13)
000428 5080 D13C ST 8,316(0,13)
00042C 5090 0138 ST 9,312(0,13)
000430 50A0 0134 ST 10,308(0,13)
000434 5870 1010 L 7,16(0,1)
000438 5070 0130 ST 7,304(0,13)
00043C 58F0 0170 L 15,368(0,13)
000440 07FF BCR 15,15

ADCON FOR PROLOGUE

000034 00000420 DC XL4'00000420•

AOCON FOR SAVE AREA

000038 00000008 DC XL4'00000008'
AOCON FOR EPILOGUE

000124 00000406 OC XL4'00000406 •

ADCONS FOR PARAMETER LISTS

OOOIFC 80000228 DC AL4(X'80000228')
000200 800001EO OC AL4(X'800001EO')
000204 800001E8 OC AL4(X'800001E8')

TEMPORARIES AND GENERATED CONSTANTS

000224 00000000 OC XL4'00000000'

000228 00000000 OC XL4'00000000'

00022C 00000000 OC XL4'00000000•

000230 00000000 OC XL4'00000000'
000234 00000000 OC XL4'00000000'
000238 00000000 OC XL4'00000000'

ADCONS FOR 8 BLOCK LABELS

000248 0000026C OC XL4'0000026C'
00024C 0000026C OC XL4'000C026C'
000250 0000027E OC XL4'0000027E'
000254 0000028C OC XL4'0C00028C'
000258 00000350 OC XL4'00000350'

00025C 000003SE DC XL4'0000035E'

000260 000003EE OC XL4'000003EE'
000264 000003F2 OC XL4'000003F2'
000268 000003FE OC XL4'000003FE'

PROGRAM CODE TABLE

000442 04 OC XLr04'

000443 89 OC XLl'BO'
000444 B7 OC XLrB7'

000445 82 DC XLrB2'

000446 C018 OC XL2'C018'

000448 C018 OC XL2'C018'

00008000 0000000

GAUSS

18.000#

X

SIGHA

HU

RAN6E_L0

RANGE HI

.SO 001

T_H 1
T L 0

Figure 27 (Part 2 of 3). Object Module Listing Example—LIST Compiler Option

116 VS FORTRAN Version 2 Programming Guide

SYMBOL DICTIOHARY

000460 40407BE2E804E5E2
000468 05C7C1E4E2E20000

000470 10000000

000474 00000420

PROGRAM INFORMATION BLOCK

000060 7BD7C9C2E3C1C27B

000068 0060

0Q006A 0000

ENTRY TABLE LIST

00003C 00000000

000040 C7CIE4E2E2404040

000048 00000420

COMPILER PROPERTIES TABLE
OOOOCO 1000000000000000

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

CL8' iSfSYHVS'

CL8' GAUSS •

XL4'10000000'

XL4'00000420'

CL8'#PIBTAB#'

XL2'0060'

XL2'0000'

XL4'00000000'

CL8'GAUSS •

XL4'00000420'

XL8'1000000000000000'

Figure 27 (Part 3 of 3). Object Module Listing Example—LIST Compiler Option

Formatted Dumps
You can request various dumps while your program runs using the VS
FORTRAN Version 2 dump subroutines: PDUMP, DUMP, CPDUMP, CDUMP,
and SDUMP. For descriptions of these subroutines, see VS FORTRAN Version 2
Language and Library Reference.

Identifying User Coding Errors
The VS FORTRAN compiler cannot identify all possible coding errors. Ifyour
program compiles successfully but does contain an error, it may not run suc
cessfully or it may provide an erroneous result. The following list identifies
several coding errors, not detected by the compiler, that are likely to result in
run-time problems.

1. Forgetting to assign values to variables and arrays before using them in
your program.

2. Specifying subscript values that are not within the bounds of an array. In
particular, ifyou assign data outside the array bounds you may
inadvertantly destroy data and instructions.

3. Moving data into an item that's too small for it, resulting in truncation.

4. Making invalid data references to equivalenced items of differing types (for
example, integer and real).

5. Transferring control into the range of a DO loop from outside the range of
the loop. The compiler will issue a warning message for all such branches
if you specify 0PT(2), 0PT(3), or VECTOR.

Chapter 5. Using the Run-Time Options and Identifying Run-Time Errors 117

6. Using arithmetic variables and constants that are too small to give the pre
cision you need in the result. For example, if you want to obtain more than
six decimal digit floating point results, you should use double precision.

7. Failing to call the entry point VFEIN# or VFEIL# when your main program is
not a FORTRAN program. See Appendix A, "Assembler Language
Considerations" on page 319.

8. Concatenating character strings in such a way that overlap can occur.

9. Trying to access services not available on the run-time operating system or
hardware.

The XREF compiler option and Intercompilation Analysis (ICA) are VS FORTRAN
features that can help you identify many coding errors. See "Using the MAP
and XREF Options" on page 42 and "Intercompilation Analysis" on page 201.

118 VS FORTRAN Version 2 Programming Guide

Part 3. Advanced Coding Topics

Part 3. Advanced Coding Topics 119

^ Chapter 6. Performing Input/Output Operations

This chapter explains how to perform input/output (I/O) operations in VS
FORTRAN. It is divided into the following main sections:

"Concepts and Terminology" explains concepts and terms unique to FORTRAN
input/output, as well as several operating system terms.

"Overview of Input/Output Statements" on page 129 gives an overview of the
VS FORTRAN statements used for I/O.

"Reading and Writing Data" on page 130 discusses how to read and write for
matted and unformatted data.

"Connecting, Disconnecting, and Reconnecting Files" on page 147 explains how
to connect a file to a unit, how to disconnect it, and, if necessary, how to recon
nect it within the same program.

"Gathering Useful Information About Units and Files" on page 158 shows how
to use the INQUIRE statement to find out certain characteristics about a unit or
nie.

I "Dynamically Allocating Files" on page 165 explains how to dynamically alio-
I cate files.

"Monitoring Errors" on page 174 explains how to check for errors and branch to
error routines.

"Considerations for Specific Access Methods" on page 174 gives an overview
of the access methods used by FORTRAN and explains coding of the I/O state
ments that Is specific to each access method.

I "Considerations for Double-Byte Data" on page 190 explains coding ofthe I/O
I statements that is specific to files containing double-byte character data.

For detailed information on the syntax of the VS FORTRAN statements dis
cussed in this chapter, see VS FORTRAN Version 2 Language and Library Refer
ence.

Concepts and Terminology
This section explains several concepts and terms associated with FORTRAN
files and I/O processing that are used within this chapter.

External and Internal Files
To your FORTRAN program, a Tile is a sequence of records that can be proc
essed as a single entity. FORTRAN deals with two types of files: external files
and internal files.

An external file is a file that is stored on an input/output device, such as a tape,
disk, or terminal. However, a file from the FORTRAN pointof view doesn't nec-

Chapter 6. Performing Input/Output Operations 121

File Existence

essarily correspond to what the operating system views as a file or even to
what is stored on some physical storage medium. For example, your FORTRAN
program could read records from a file for which you enter the data at a ter
minal. The records aren't really stored on the terminal, but since the data that
you enter is available to your program as a sequence of records, that data is
seen as a FORTRAN file. Similarly, your program could read data from a file
that is a concatenation of several collections of records that the operating
system might view as individual files (or data sets). Because all of the records
are available to your program as a sequence of records, they constitute a
FORTRAN file.

An internal file is located in main storage and is a character variable, character
array element, character array, or character substring. It can contain either
data that you create with your program or data that you transfer from an
external file.

Internal files are useful when you don't know the arrangement of data within the
records of an external file. Transferring the data into an internal file allows
your program to examine a part of a record and, based on some condition
within the record, process the rest of the record accordingly. Furthermore, the
record can be reread many times, if required, without the need to backspace
and read from the physical device again.

At a very simple conceptual level, those external files that are available to your
program for reading or that have been created within your program are said to
exist for your program. However, in reality a number of factors, such as what
kind of device the file is on and whether the file contains any data, play a role
in determining a file's existence.

Before referring to a particular file in your program, you can use the INQUIRE
statement to determine whether that file exists. More details about existence

and the use of INQUIRE are discussed in in "Gathering Useful Information About
Units and Files" on page 158 and Appendix G, "What Determines File
Existence" on page 433.

File Definitions and Dynamic File Allocation
In order to refer to a file on its storage medium and establish the linkage
between your program and the file, a file definition must be in effect.

How you code a file definition depends on your operating system;

For VM, you use the FILEDEF command for non-VSAM data sets and the
DLBL command for VSAM data sets. Or, for non-VSAM data sets, you may
depend on a default file definition when you don't provide one of your own.
The FILEDEF command is explained under "FILEDEF Commands" on
page 65. The DLBL command is explained in Virtual Machine/System
Product CMS User's Guide, SC19-6210.

For MVS, you use the DD statement as explained under "Defining Files—DD
Statement" on page 14.

For TSO, you use the ALLOCATE command as explained under "Allocating
Compiler Data Sets" on page 18.

122 VS FORTRAN Version 2 Programming Guide

Named Files

t
Unnamed Files

For certain types of files, you can omit coding file definitions and VS FORTRAN
will supply ttiem to tlie system for you. This is called dynamic file allocation.
With dynamic file allocation, file characteristics are determined from several
possible sources; parameters you supply by means of the FILEINF service
routine, the existing data set, or installation and other defaults.

Besides eliminating the need for coding file definitions, dynamic file allocation
provides the additional advantage of allowing you to allocate, that is assign
resources to, files as they are required by your program, rather than at the time
the program is loaded into storage.

Dynamic file allocation is discussed in detail under "Dynamically Allocating
Files" on page 165.

A named file is a file whose name you supply in the FILE specifier of the OPEN
statement. For dynamically allocated files, the file name must be the MVS data
set name or CMS file identifier. For example:

Open statement with MVS data set name:

OPEN (UNIT=9, FILE='/WRITER.DATA')

Open statement with CMS file identifier:

OPEN (UNIT=9, FILE='/WRITER DATA'}

For files not dynamically allocated, the file name must be the ddname of the
corresponding file definition for that file. Following is an example of an OPEN
statement for a file that is not dynamically allocated. Also shown are the corre
sponding MVS and CMS file definitions. The ddname is MYINPUT.

OPEN statement with ddname:

OPEN (UNIT=9, FILE='MYINPUT')

MVS file definition:

//MYINPUT DD DSNAME=WRITER.DATA,DISP=OLD

CMS file definition:

FILEDEF MYINPUT DISK WRITER DATA A

Note that VS FORTRAN identifies a dynamically allocated named file only
through its file name. Thus, if another file definition refers to the same MVS
data set name or CMS file identifier as that specified on the OPEN statement for
a dynamically allocated file, the file might be treated as two different files. For
an example of this, see "Dynamically Allocating Files" on page 165.

An unnamed file is a file that you never refer to by name in an OPEN statement
in your program (that is, you omit the FILE specifier). Before FORTRAN 77, all
files were unnamed. For such files, instead of referring to a file name or
ddname, you refer only to a particular unit.

Chapters. Performing Input/Output Operations 123

For unnamed files that are not dynamically allocated, the access method used
for the file, and other factors, determine which ddname is used.

The ddname for an unnamed file takes one of the following forms:

For sequential and direct access: FTnnFOOI. where nn is the 2-digit unit
number. (For a file connected for sequential access, there can be addi
tional subfiles; the forms FTn/?F002. FTnnF003. and so on. are used in this

case.)

For keyed access: FJnnKkk, where nn is the 2-digit unit number and kk is a
2-digit number that represents one of the keys that you intend to use.
There must be as many file definitions as there are keys to be used, with
ddnames FTnnKOI. FT/7nK02. and so on.

For the error message unit, or the standard output unit if it is the same as
the error message unit, for an MTF subtask: FTERRsss. where sss is the
MTF subtask number.

• For the standard output unit, if it is different from the error message unit, for
an MTF subtask: FTPRTsss where sss is the MTF subtask number.

Thus, if you code the following OPEN statement:

OPEN (UNIT=9, ACCESS='SEQUENTIAL')

the ddname FT09F001 is used.

Access methods are discussed under "Access Methods Used By FORTRAN" on
page 125.

Note that VS FORTRAN identifies an unnamed file only through the file's
ddname. Thus, if two file definitions refer to the same physical file. FORTRAN
sees these as different files.

Unnamed files that can be dynamically allocated include only the following:

*- Temporary files (that is, STATUS ='SCRATCH' is coded on the OPEN state
ment) that are connected for sequential or direct access, and which do not
have a file definition specified.

For these files, the default ddname FTnnFOOl is used. You may also supply
file characteristics by means of the FILEINF service routine. Under MVS. VS
FORTRAN creates a file definition with file characteristics that are deter

mined by installation defaults. Under VM. the normal VM default file defi
nition is used.

" Under VM. preconnected files directed to any of the standard I/O units (see
"Units and File Connection" on page 125 for an explanation of connecting
files to units).

For these files, the default ddname FTnnFOOl is used. VS FORTRAN creates

a file definition with file characteristics that are determined by installation
defaults.

Under MVS. preconnected files directed to the error message unit (and
standard output unit for WRITE and PRINT statements if different).

For these files, the default ddname FTn/iFOOl Is used. VS FORTRAN creates

a file definition with file characteristics that are determined by installation
defaults.

124 VS FORTRAN Version 2 Programming Guide

Units and File Connection
FORTRAN uses units as a means of referring to files. Before you can write data
to or read data from a file, the file must be associated with—that is, connected
to—a unit. There are two ways to connect a file to a unit. You can connect a
file to a unit within your program by coding an OPEN statement or you can pre-
connect a file, in which case it is automatically connected when your program
begins to run.

A file may be connected to only one unit at a time, and a unit may be con
nected to only one file at a time. You can, however, disconnect a file from a
unit and connect it to a different unit in the same program.

Once a file has been connected to a unit, you refer to that file indirectly by
referring to the unit. Every I/O statement, except INQUIRE, must have a UNIT
specifier. The UNIT specifier has the form \JH\J = un, where un is the unit iden
tifier.

I For external files, un is either an integer expression or an asterisk (*). When
I an integer expression is given, its value is the unit number. The asterisk {*)

specifies the standard input or output unit. For a READ statement, the
IBM-supplied default for the standard input unit is unit 5. For a WRITE state
ment, the IBM-supplied default for the standard output unit is unit 6.

For internal files, un is the name of an internal storage area containing the file.

In the following example, the external file TAXRATES is connected to unit 14
with the OPEN statement. It is then referred to only by the unit number in the
READ statement.

OPEN (UNIT=14, FILE='TAXRATES')
READ (UNIT=14, FMT=100) A, B, C

To disconnect a file, you usually code a CLOSE statement. A file is automat
ically disconnected from a unit if you connect a different file to the same unit
using the OPEN statement with the FILE specifier. In addition, all files that
remain connected at program termination are automatically disconnected.

Access Methods Used By FORTRAN
The term access method refers to the means used by FORTRAN to find a spe
cific record in a file to be read or written. VS FORTRAN supports three access
methods: sequential access, direct access, and keyed access. You specify the
access method for a file in the ACCESS specifier of the OPEN statement as
SEQUENTIAL, DIRECT, or KEYED. Preconnected files are always connected for
sequential access.

This section provides a brief description of each access method. Later in this
chapter a separate section for each access method describes the access
method in detail.

r

: ^
.oil I

Chapter 6. Performing Input/Output Operations 125

Sequential Access

Direct Access

In a file connected for sequential access, records are read or written consec
utively, from the first record in the file to the last. Files for tapes, terminals,
printers, card readers, and punches are always accessed sequentially; in addi
tion, many disk files can be accessed sequentially.

To read records in a sequential file, you could code the following:

22 READ (UNIT=14, END=99) A, B, C

GO TO 22

The READ statement will read from the file connected to unit 14. When this
group of statements is processed, all of the records in the file— beginning with
the first one—will be read, one at a time. When the endfile record is read,
control transfers to the FORTRAN statement labeled 99.

Records in a file connected for direct access are arranged in the file according
to their relative record numbers. All records are the same size and each
record occupies a predefined position in the file, determined by its record
number. You can access any record in the file directly by specifying its number
in a READ or WRITE statement. For example:

READ (UNIT=14, REC=28) A, B, C

This statement retrieves the record whose record number is 28.

Files connected for direct access must be stored on disks.

Keyed Access
In a file connected for keyed access, each record contains a primary key whose
value uniquely identifies that record. In addition, a record can contain one or
more alternate keys whose values identify the record. You must use keyed
access I/O statements to access records in a file organized for keyed access.
"Input/Output Operations for Keyed Access" on page 181 explains how to use
keyed access.

An example of a READ statement for reading a keyed access file is:

READ (UNIT=14, KEY='SHITHBROOK', N0TF0UND=88) A, B, C

This statement retrieves the record with a key of SMITHBROOK. If there is no
such record in the file, control transfers to the FORTRAN statement labeled 88.

Access Methods Used By the Operating System
Related to the three access methods that you specify in FORTRAN, but not the
same, are the access methods used by the operating system. Examples
include the virtual storage access method (VSAM), basic direct access method
(BDAM), and basic sequential access method (BSAM).

Normally you need not be concerned with these, except for certain consider
ations you must take into account with VSAM files. For information about
VSAM files, see Chapter 11. "Using VSAM with VS FORTRAN Version 2" on
page 299.

126 VS FORTRAN Version 2 Programming Guide

Records As Seen By FORTRAN
FORTRAN recognizes three types of records: formatted records, unformatted
records, and endflle records.

A formatted record is a sequence of characters. It is written with a formatted
output statement and is read with a formatted input statement. (Formatted
input/output statements will be discussed later in this chapter.) Because data
is usually not in character form within main storage, it must be converted to
character form when a formatted record is written, and converted to its internal

form when a formatted record is read. The main purpose of formatting data is
so that you can easily examine it, for example in a listing.

If you don't need to examine the records, for example when you write records
and subsequently read them within the same program, you can save file space
and the processing time required by data conversion by using unformatted
records. An unformatted record is a sequence of data in its internal form and
involves no conversion of data between main storage and the file. It is written
with an unformatted output statement and, similarly, read with an unformatted
input statement.

A flle cannot contain both formatted and unformatted records.

An endnie record is a special record that contains no data and occurs only as
the last record of a file. When a file is read sequentially (see "Access Methods
Used By FORTRAN" on page 125), the endfile record allows your program to
easily determine when the end of the file has been reached.

Records as Seen By the Operating System
The system term record format unfortunately has nothing to do with the
FORTRAN term formatted record! Instead, it is concerned with the length of the
records and their arrangement within a non-VSAM file. (For information about
VSAM files, see Chapter 11, "Using VSAM with VS FORTRAN Version 2" on
page 299.)

The record format of a file can be fixed-length, variable-length, or undefined. In
a file with fixed-length records, all the records in the file have the same length.
In a file with variable-length records, the records may have different lengths.
The length of each record is stored along with the data. Similarly, in a file with
undefined records, the records may have different lengths, but the length of
each record is not stored with the data.

Records may also be blocked or unblocked. Blocking is the process of
grouping records before they are written to a file. The group of records that is
written to the file is called a block. Only fixed-length and variable-length
records can be blocked.

A variable-length record can be spanned: that is, it can be contained in more
than one block.

Chapter 6. Performing Input/Output Operations 127

In most cases, you need not specify a record format and Instead can accept the
default values for files supplied by VS FORTRAN. These are:

^ For direct access: fixed-length unblocked

^ For sequential access:

— for unformatted I/O: variable-length spanned

— for formatted I/O, under MVS, Including TSO: undefined

— for formatted I/O, under VM: fixed-length or undefined, depending on
which was chosen when VS FORTRAN was Installed

If you don't want to accept these defaults, specify the record format as follows:
For MVS, use the DCB parameter on the DD statement. For VM, use the
RECFM option on the FILEDEF command. For TSO, use the RECFM option on

I the ALLOCATE or ATTRIBUTE command. For dynamically allocated files, use
I the RECFM parameter on the FILEINF service routine.

The following restrictions apply:

Only files with fixed-length unblocked records (RECFM specifies F) can be
connected for direct access.

Files with variable-length spanned records (RECFM specifies VS or VBS)
cannot be used with formatted Input/output.

Only files that allow unblocked variable-length spanned records (RECFM
specifies VS) can be used for asynchronous I/O.

128 VS FORTRAN Version 2 Programming Guide

Overview of input/Output Sfatements
Figure 28 shows the input/output statements available in VS FORTRAN, the
access methods to which they apply, and the operations they perform.

I/O statement

BACKSPACE

CLOSE

DELETE

ENDFILE

INQUIRE

OPEN

PRINT

READ

REWIND

REWRITE

WAIT

WRITE

Access Method

Sequential and keyed

Sequential, Direct, and
Keyed

Keyed

Sequential

Sequential, Direct, and
Keyed

Sequential, Direct, and
Keyed

Sequential

Sequential, Direct, and
Keyed

Sequential and keyed

Keyed

Sequential

Sequential, Direct, and
Keyed

Operation

For sequential access, positions a file at
the beginning of the last record that was
written or read.

For keyed access, positions a file at a point
before the current record.

Disconnects a file from a unit

Removes a record from a file.

Writes an endfile record on an external file.

Provides information about a file or unit.

Connects a file to a unit; creates a file that

Is preconnected: creates a file and connects
it to a unit: changes certain specifiers of the
connection between a file and a unit.

Transmits data from an area of main

storage to an external file.

Transmits data from an external or internal

file to an area of main storage.

For sequential access, positions a file at
the beginning of the first record in the file.

For keyed access, positions a file at the
first record with the lowest value of the key
of reference.

Replaces a record in a file.

Completes the data transmission begun by
the corresponding asynchronous READ or
WRITE statement.

Transmits data from an area of main

storage to an external or internal file.

Figure 28. VS FORTRAN Input/Output Statements

Chapters. Performing Input/Output Operations 129

Reading and Writing Data
The statements available for reading and writing data are:

READ

PRINT

WRITE

REWRITE

You can process formatted records with the PRINT statement and either for
matted or unformatted records with the READ, WRITE, and REWRITE state
ments.

Formatted records are always in character form. Because data is usually not in
character form within main storage, it must be converted to character form
when you write formatted records and converted to its internal form when you
read formatted records.

Ifyou don't require the records to be in character form, you can save the over
head of conversion by reading and writing unformatted records. An unfor
matted record is a sequence of data in its internal form.

A file cannot contain both formatted and unformatted records.

The following sections explain the different ways you can read and write for
matted and unformatted records. Also, "Using Internal Files" on page 145
explains how to read from and write to internal files.

Reading and Writing Formatted Data
To format data for input or output, you can rely on either list-directed or
NAMELIST formatting, or you can specify your own format.

Using List-Directed Formatting
With list-directed formatting, the records read or written consist of a series of
constants. The format of the constants is controlled by the type of data that you
read or write.

You can use list-directed formatting with files connected for sequential access
only.

Writing Data: To write data using list-directed formatting, you can use either
the PRINT or WRITE statement. The PRINT statement is the simpler of the two
statements. It has the form:

PRINT *, list

where the asterisk specifies list-directed formatting and list is a list of output
items, such as variable names or array elements, and implied DO lists. (For
information about acceptable output items and implied DO lists, see V$
FORTRAN Version 2 Language and Library Reference.) If you omit the list, a
blank record is written.

Data from the items in the list are written to the output record as constants in
the order that they appear in the list. The type and length of the data deter-

130 VS FORTRAN Version 2 Programming Guide

mine how they will be formatted {see Figure 29 on page 131). Real numbers
are written in G format (see Figure 32 on page 139). For noncharacter data,
the constants are each followed by one space.

If the data

type and
length are:

The

field

width

will be:

The

fraction

will be:

The

scale

factor

will be:

The

exponent
will be:

The minimum

number of

digits written
will be:

Real, length of
4

16 characters 9 digits 0 2 digits N/A

Real, length of
8

25 characters 18 digits 0 2 digits N/A

Real, length of
16

42 characters 35 digits 0 2 digits N/A

Logical, length
ofl or 4

1 character N/A N/A N/A N/A

Integer, length
of 2

6 characters N/A N/A N/A 1 digit

Integer, length
of 4

11 characters N/A N/A N/A 1 digit

Complex,
length of 8

35 characters 9 digits 0 2 digits N/A

Complex,
length of 16

53 characters 18 digits 0 2 digits N/A

Complex,
length of 32

87 characters 35 digits 0 2 digits N/A

Character,

length of n
n characters N/A N/A N/A N/A

Figure 29. List-Directed Output Formats

If you code the following PRINT statement

PRINT *, R4VAR, I2ARR, CH4

and you have declared the data types for the variables and arrays as follows:

REAL*4 R4VAR / -12.5E+12 /
INTEGER*2 I2ARR(2) / 33, -44 /
CHARACTER*4 CH4 / 'TWO' /

the following record will be written:

-0.125000000E+14 33 -44 TWO

The WRITE statement can perform the same function as the PRINT statement
and more. While PRINT has certain defaults built into it, the WRITE statement
gives you more control and flexibility with additional specifiers. The form of the
WRITE statement is:

WRITE {specifiers) list

Chapters. Performing Input/OutputOperations 131

where specifiers are the specifiers shown in Figure 30 on page 132 and list is a
list of output items and implied DO lists. As with the PRINT statement, if you
omit the list, a blank record is written.

UNIT = un

FMT = *

IOSTAT =/OS

ERR = sf

Figure 30. WRITE Statement Specifiers for List-Directed Formatting

For an external file, the UNIT specifier is for indicating the unit to which the file
is connected (connecting files to units is discussed under "Connecting Files" on
page 147). With the PRINT statement, you do not specify the unit because the
standard output unit is always used by default. However, with the WRITE state
ment. you can specify the standard output unit as well as others. To specify the
standard output unit for the WRITE statement, you code UNIT= *. To specify
another unit, you code the unit number; for example. UNIT= 2.

For an internal file, you use the UNIT specifier to code the name of an internal
storage area containing the file; for example. UNIT= DATA1. Internal files are
discussed in more detail under "Using Internal Files" on page 145.

If UNIT is the first specifier, you can omit UNIT = .

FMT = * specifies list-directed formatting. If you omitted UNIT= for the first
specifier, you can also omit FMT = . Thus, the following WRITE statements are
acceptable and equivalent;

WRITE (UNIT=2, FMT=*) R4VAR, I2ARR, CH4

WRITE (2, FMT=*) R4VAR, I2ARR, CH4

WRITE (2, *) R4VAR, I2ARR, CH4

Note that the following PRINT and WRITE statements are equivalent:

PRINT *, R4VAR, I2ARR, CH4

WRITE (*, *) R4VAR, I2ARR, CH4

The lOSTAT and ERR specifiers are available for error checking. These are dis
cussed under "Monitoring Errors" on page 174.

Reading Data: To read data using list-directed formatting, you use the READ
statement.

The READ statement has the same specifiers as the WRITE statement, shown in
Figure 30. plus an optional END specifier, which allows you to branch to
another statement in the same program when the endfile record is encount
ered.

When you use a list-directed READ statement at a terminal, you will be
prompted for input with a question mark (?). or a question mark followed by the
statement label of the READ statement (for example. ? 00020).

132 VS FORTRAN Version 2 ProgrammingGuide

Input records contain a series of constants with separators between them. The
first constant is placed in the first item of your input list, the second constant in
the second item, and so forth.

Following are the rules for specifying constants and separators:

^ Each constant must agree in type with its corresponding item in the input
list, as shown below:

If the data type in
the input list is: The constant must be:

Integer Integer
Real Real or Integer
Complex Complex
Character Character

Logical Logical

Character constants must be entered within apostrophes. To include an
apostrophe within the character data, use two consecutive apostrophes.
Note that in a file written with list-directed formatting, character constants
are not written within apostrophes. Therefore, you cannot read character
constants that have been written with list-directed formatting.

A noncharacter constant may not contain any embedded blanks

Each separator can be:

— one or more blanks

— a comma

— a slash {/)

If more than one record is read, there is an implied separator between
records.

A combination of more than one separator, except for the comma, repres
ents one separator.

A slash {/) separator indicates that no more data is to be transferred during
the current READ operation:

— Any items following the slash are not retrieved during the current READ
operation.

— If all the items in the list have been filled, the slash Is not needed.

— If there are fewer items in the record than in the data list, and you
haven't ended the list with a slash separator, data from subsequent
records, if any, are used to satisfy this list.

— If there are more items in the record than in the data list, the excess
items are ignored.

A null constant is represented by two successive commas. For example:

1, , 3

Note that when you specify a null constant, If the corresponding Item In your
Input list has a value before the READ statement Is run. that value Is not
changed.

Chapters. Performing Input/Output Operations 133

• A repetition factor can be specified for any constant, including a null con
stant. For example, specifying

3*2.6

is equivalent to specifying

2.6, 2.6, 2.6

For a null constant, specifying

2*, 3

is equivalent to specifying

, , 3

An example of reading data using list-directed formatting is the following: If
your input is:

-12.5E12, 33, -44, 'TWO'

running a program with these statements:

REAL*4 R4VAR

INTEGER*2 I2ARR(2)
CHARACTER*4 CH4

READ (11, *) R4VAR, I2ARR, CH4

causes the variables and array elements to be set to the values shown:

R4VAR -0.125E + 14

I2ARR{1) 33
I2ARR(2) -44
CH4 TWO

Using NAMELIST Formatting
With NAMELIST formatting, the records read or written consist of a series of
constants, each preceded by the name of the corresponding variable or array in
your program. The format of the constants is controlled by the type of data that
you read or write.

An advantage of NAMELIST formatting is that you can specify input items in any
order, regardless of the order in which you declare them in your NAMELIST
statements. Furthermore, you don't need to code anything for input items that
you don't supply.

You can use NAMELIST formatting only with files connected for sequential
access.

Reading Data: To read data with NAMELIST formatting, you use a NAMELIST
statement in addition to a READ statement.

The NAMELIST statement has the form:

NAMELIST / name / list

134 VS FORTRAN Version 2 Programming Guide

where name Is the identifier of an I/O list and is sometimes called a NAMELIST
name, and list is a list of variable or array names. The name must not be the
same as a variable or array name. Also, the variable or array names must not
contain any embedded blanks.

The READ statement that you code then refers to the NAMELIST statement.

The form of the READ statement is:

READ {specifiers)

where specifiers are the specifiers shown in Figure 31. Note that you do not
supply an input list on the READ statement because you have already supplied
it on the NAMELIST statement.

UNIT=un

FMT = name

IOSTAT=/OS

ERR=sf

Figure 31. READ Statement Specifiers for NAMELIST Formatting

For an external file, the UNIT specifier is for indicating the unit to which the file
is connected (connecting files to units is discussed under "Connecting Files" on
page 147). To specify the standard input/output unit, you code UNIT = *. To
specify another unit, you code the unit number; for example, UNIT = 2.

For an internal file, you use the UNIT specifier to code the name of an internal
storage area containing the file; for example, UNIT= DATA1. Internal files are
discussed in more detail under "Using Internal Files" on page 145.

If UNIT is the first specifier, you can omit UNIT = .

In the FMT specifier, you specify the same name that you coded in the
NAMELIST statement. If you omitted UNIT = for the first specifier, you can also
omit FMT = .

The lOSTAT and ERR specifiers are available for error checking. These are dis
cussed under "Monitoring Errors" on page 174.

The following example shows a NAMELIST statement and a READ statement
that refers to it;

NAMELIST / MYDATA / R4VAR, I2ARR, CH4

READ (9, MYDATA)

The input records for NAMELIST formatting must be in a particular form. The
first record must begin with a blank, followed by an ampersand (&) immediately
followed by the NAMELIST name and another blank. Following the name, you
code the input data, separated by commas. To signal the end of the data, you
code &END. All records must begin with a blank.

Chapter 6. Performing Input/Output Operations 135

You must code the input data in a special form. The input data must consist of
constants identified by the name of their corresponding variable, array element,
or array. For a variable or array element, code the name of the variable or
array element, followed by an equal sign, followed by the constant. The fol
lowing example shows the input data for a variable and an array element:

R4VAR=12.5E12, I2ARR(2)=-44

For an array, code the array name, followed by an equal sign, followed by a
series of constants. For example:

I2ARR=33, -44

The constants in the input data may be integer, real, complex, logical, or char
acter. Listed below are the rules for coding them:

•- Each constant must agree in type with its corresponding item in the
NAMELIST statement, as shown below:

If the data type in
the Input list is: The constant must be:

Integer Integer
Real Real or Integer
Complex Complex
Character Character

Logical Logical

Note that for integers and exponents, embedded blanks or trailing blanks
between the constant and the following comma, if any, are treated as zeros
if BLANK ='NULL' is not specified on the OPEN statement.

Character constants must be entered within apostrophes. To include an
apostrophe within the character data, use two consecutive apostrophes.

If the constant is logical, it may be in the form T or .TRUE, and F or .FALSE..

For an array element, subscripts must be integer constants.

For an array, the number of constants must be less than or equal to the
number of elements in the array.

• You can specify a repetition factor for any constant. For example:

3*2.6

The names of the data items must appear in the NAMELIST list, but you can
specify them in any order that you wish.

For example, if your input data is the following:

&MYOATA I2ARR= 33, -44, CH4='TW0', R4VAR=-12.5E12 &ENO

136 VS FORTRAN Version 2 Programming Guide

and you run a program with these statements:

REAL*4 R4VAR

INTEGER*2 I2ARR(2)
CHARACTER*4 CH4

NAMELIST / MYOATA / R4VAR, I2ARR, CH4

READ (12, MYDATA)

the variables and array elements are set to the values shown:

R4VAR -0.125E + 14

I2ARR(1) 33
I2ARR(2) -44
CH4 TWO

Writing Data: To write data with NAMELIST formatting, you use a NAMELIST
statement in addition to a WRITE or PRINT statement.

The WRITE statement has the same form as the READ statement, except that it
does not have an END specifier.

The form of the PRINT statement is:

PRINT name

When you format data using NAMELIST, the data is written in a form that can be
read using NAMELIST.

For example, if you run a program with these state ments:

REAL*4 R4VAR / -12.5E+12 /
INTEGER*2 I2ARR(2) / 33, -44 /
CHARACTER*4 CH4 / 'TWO' /
NAf-IELIST / MYDATA / R4VAR, I2ARR, CH4

WRITE (2, MYDATA)

the following records are generated:

&MYDATA

R4VAR=-0.125000000E+14,I2ARR= 33, -44,CH4='TW0 '

&END

The constants are formatted in the same way as they are for list-directed for
matting, as shown in Figure 29 on page 131.

Specifying Your Own Format
If you require a different format than what list-directed and NAMELIST format
ting offer, you can specify your own. The records must contain series of con
stants, but you can control their length and format, as well as their positions in
the record.

Chapters. Performing Input/Output Operations 137

You can specify your own format for a file connected for sequential, direct, or
keyed access.

Writing Data: When writing data, you can specify your own format on the
PRINT, WRITE, or REWRITE statement.

The PRINT statement has the following form:

PRINT fmt, list

where fmt is a format identifier and list is a list of output items and implied DO
lists. If you omit the list, a blank record is written.

The format identifier can be any of the following:

A statement label

A character constant

A character variable

An integer variable

A character array element

A character array name

A character expression

An array name

The most commonly used format identifiers, which are discussed here, are the
statement label, character constant, and character variable. For information on
the other format identifiers, see VS FORTRAN Version 2 Language and Library
Reference.

The statement label refers to a FORMAT statement, in which you specify the
format in which the data is to be written. You code the FORMAT statement as
follows:

FORMAT (/•;, f2. ... fn)

where f1, f2, and so on are format codes and correspond to the items in the
output list. The format code f1 specifies the format for the first item in the
output list, f2 specifies the format for the second item, and so forth. Note that
FORMAT statement must always have a label so you can refer to it from other
statements. More than one PRINT, WRITE, or REWRITE statement can refer to
the same FORMAT statement.

Some of the format codes and their meanings are shown in Figure 32 on
page 139. For a complete list, see VS FORTRAN Version 2 Language and
Library Reference.

138 VS FORTRAN Version 2 Programming Guide

Format

Code

AiV

\w

a\w

Iw.m

Ew.dEe

Fw.d

Cw.dBe

wX

Meaning

The next w characters in the output record will contain
character data.

The next w characters in the output record will contain
an integer.

This is equivalent to coding the Iw format code
a times.

The next w characters in the output record will contain
an integer, displaying at least m digits.

The next w characters in the output record will contain
a real number, with d decimal places, and e
digits in the exponent field.

The next w characters in the output record will contain
a real number, with d decimal places, but with no exponent.

Depending on the magnitude of the number, the next w
characters in the output record will contain a real number in
either the E format or F format described above.

Data transfer on current record is ended. Continue data

transfer on next record if more items are in the I/O list.

(For sequential and direct access only)

For output, fill the next w characters with blanks.
For input, skip past the next w characters.

Figure 32. Some Format Codes and Their Meanings

An example of writing formatted data using the FORMAT and PRINT statements
is the following: If you run a program with these statements:

REAL*4 R4VAR / -12.5E+12 /
INTEGER*2 I2ARR(2) / 33, -44 /
CHARACTER*4 CH4 / 'TWO' /

PRINT 5, R4VAR, I2ARR, CH4
5 FORMAT (IX, E11.4E2, 214.3, A4)

the following record is written:

character position 1

character position 2

character position 13

character position 17

I character position 21

-0.1250E+14 033-044TWO

Note that in the above FORMAT statement, the format code 1X inserts a blank
as a carriage control character.

Chapter 6. Performing Input/Output Operations 139

If you plan to use a particular format only once, you can code it right in the
PRINT statement as a character constant. When you specify a character con
stant. you must delimit it by apostrophes. Within the character constant, the
format codes must be within parentheses. You can use any of the format codes
that are valid for the FORMAT statement. For example.

PRINT '(E11.4E2, 214.3, A4)', R4VAR, I2ARR, CH4

is equivalent to:

PRINT 5, R4VAR, I2ARR, CH4
5 FORMAT (E11.4E2, 214.3, A4)

If you need the flexibility of being able to change the format at run time, you
can specify a character variable containing the format codes. Again, you can
specify any of the format codes that are valid for the FORMAT statement. You
must include them within parentheses. Blank characters can precede the left
parenthesis. Any data following the right parenthesis is ignored. In the fol
lowing example, the character variable named FORMS is specified on the
PRINT statement:

PRINT FORMS, R4VAR, I2ARR, CH4

The form of the WRITE statement is:

WRITE {speciHers) list

where specifiers are the specifiers shown in Figure 33, plus additional
specifiers used for specific access methods. The additional specifiers are dis
cussed under "Considerations for Specific Access Methods" on page 174. The
list is a list of output items and implied DO lists. If you omit the list, a blank
record is written.

UNIT = un

FMT = /mf

IOSTAT =/OS

ERR=sf

Figure 33. WRITE Statement SpecifiersWhen Specifying Your Own Format

For an external file, the UNIT specifier is for indicating the unit to which the file
is connected {connecting files to units is discussed under "Connecting Files" on
page 147). To specify the standard input/output unit, you code UNIT = *. To
specify another unit, you code the unit number; for example. UNIT = 2.

For an internal file, you use the UNIT specifier to code the name of an internal
storage area containing the file; for example, UNIT = DATA1. Internal files are
discussed in more detail under "Using Internal Files" on page 145.

If UNIT is the first specifier, you can omit UNIT = .

In the FMT specifier, you code the format identifier, fmt, which can be any of
those listed on page 138 for the PRINT statement. If you omitted UNIT= for the
first specifier, you can also omit FMT = .

140 VS FORTRAN Version 2 Programming Guide

The lOSTAT and ERR specifiers are available for error checking,
cussed under "Monitoring Errors" on page 174.

These are dis-

For a file connected for keyed access, the FMT specifier and the same format
identifiers are also available on the REWRITE statement. This statement is dis

cussed under "Considerations for Specific Access Methods" on page 174.

Reading Data: When reading data, you can specify your own format on the
READ statement. The specifiers are the same shown in Figure 33 on page 140,
plus additional specifiers used for specific access methods. The additional
specifiers are discussed under "Considerations for Specific Access Methods"
on page 174.

The format identifiers you code on the FMT specifier can be any of those men
tioned above for writing data.

Most of the format codes are the same as those used for writing, except that
they, of course, determine how the data will be read rather than written. A few
format codes are specific to writing or reading. For example, the format code
BN means ignore blanks in input.

With edit codes F, E, D. Q, Z, I, and G, you can use the comma as an input
delimiter to indicate the end of data in a formatted input field. This will elimi
nate the need for inserting leading and trailing zeroes and blanks. For

example, if you have used a format code of 110 in your program, but you
specify the following input:

7,

then the input field is limited to one character, instead of the ten characters

specified in the format code. In the case of the A format code, which is used
for character data, a comma is a valid character; therefore, the comma will not

limit the input field of an A type format code.

An example of reading formatted data using the FORMAT and READ statements
is the following: If your input is:

-12.5E12 33-44 TWO

character posi tion 1

character posi tion 12

- character posi tion 16

character posi tion 20

Chapters. Performing Input/Output Operations 141

running a program with these statements:

REAL*4 R4VAR

INTEGER*2 I2ARR(2)
CHARACTER*4 CH4

READ (10, 5) R4VAR, I2ARR, CH4
5 FORMAT (BN, E11.5E2, 214.3, A4)

causes the variables and array elements to be set to the values shown:

R4VAR

I2ARR{1)
I2ARR(2)
CH4

-0.125E + 14

33

-44

TWO

Reading and Writing Unformatted Data
The following sections explain how to read and write unformatted data and.
under MVS, how to perform asynchronous I/O.

Unformatted data can be read from or written to files connected for sequential,
direct, or keyed access. Asynchronous I/O is allowed only for sequentially
accessed files.

Writing Unformatted Data
To write unformatted data, you use the WRITE statement. For files connected
for keyed access, you can also use the REWRITE statement. Each WRITE or
REWRITE statement processes only one record, writing the data items without
conversion.

The form of the WRITE statement is:

WRITE (speciriers) list

where specifiers are the specifiers shown in Figure 34, plus additional
specifiers used for specific access methods. The additional specifiers are dis
cussed under "Considerations for Specific Access Methods" on page 174. The
list is a list of output items and implied DO lists.

um=un

IOSTAT=/OS

ERR=s/

NUM = n

Figure 34. WRITE Statement Specifiers When Specifying Your Own Format

The UNIT specifier is for indicating the unit to which the file is connected (con
necting files to units is discussed under "Connecting Files" on page 147). If
UNIT is the first specifier, you can omit UNIT= .

The lOSTAT and ERR specifiers are available for error checking,
cussed under "Monitoring Errors" on page 174.

142 VS FORTRAN Version 2 Programming Guide

These are dis-

If you code NUM=/7, the integer variable or integer array element n is assigned
a value representing the number of bytes transmitted to the output items.

An example of writing unformatted data is the following; If you run a program
with these statements:

REAL*4 R4VAR / -12.5E+12 /
INTEGER*2 I2ARR(2) / 33, -44 /
CHARACTER*4 CH4 / 'TWO' /

WRITE (3) R4VAR, I2ARR, CH4

the following record, shown in hexadecimal representation, is written:

CBB5E6210021FFO4E3E6O640

byte position 1

byte position 5

byte position 7

byte position 9

The REWRITE statement is discussed under "Input/Output Operations for Keyed
Access" on page 181.

Reading Unformatted Data
To read unformatted data, you use the READ statement. As with the WRITE and
REWRITE statements, each READ statement processes only one record.

Similarly, the READ statement has the same specifiers shown in Figure 34 on
page 142, plus additional specifiers used for specific access methods. The
additional specifiers are discussed under "Considerations for Specific Access
Methods" on page 174.

If you code NUM = /7 on the READ statement, the integer variable or Integer

array element n is assigned a value representing the number of bytes trans
mitted to the input items.

An example of reading unformatted data is the following: If your input record,
shown in hexadecimal representation, is:

byte position 1

byte position 5

byte position 7

I byte position 9

CBB5E6210021FFD4E3E6D640

Chapters. Performing Input/Output Operations 143

running a program with these statements:

REAL*4 R4VAR

INTEGER*2 I2ARR(2)
CHARACTER*4 CH4

INTEGER*4 LENGTH

READ (13, ftUM=LENGTH) R4VAR, I2ARR, CH4

causes the variables and array elements to be set to the values shown

R4VAR -0.125E + 14

I2ARR(1) 33

r2ARR(2) -44

CH4 TWO

LENGTH 12

Performing Asynchronous I/O
Under MVS, you can transfer unformatted data between external files and
arrays in main storage, and while the transfer is taking place, continue other
processing within your program. The files must be preconnected and must
allow variable-length spanned records. In the Multitasking Facility environment,
asynchronous I/O is not allowed in parallel subroutines.

To transfer data from an external file to an array, you code the READ statement
in addition to a WAIT statement. Between the READ and the WAIT statements,
you can use any other statements so long as they do not refer to the input
items specified on the READ statement.

Similarly, to transfer data from an array to an external file, you code a WRITE
and a WAIT statement. Any statements that you use between the WRITE and
WAIT statements can refer to the output items, but should not modify them.

Each READ or WRITE statement transfers only one record.

The form of the READ statement is:

READ (UNIT = un, \D= id) list

Ifyou code the UNIT specifier first, you can omit UNIT = . In the ID specifier,
you code an integer constant or expression that is used to identify the READ
statement.

In the input list you can specify an entire array or part of an array. To specify
an entire array, you code the array name. In the following example, the entire
array named DATA is retrieved.

READ (9, 10=1) DATA

You can specify part of an array in three ways, as shown in the examples
below. In the first example, the array element DATA(5) and all the array ele
ments up to and including DATA{30) are retrieved. In the second example, the
array element DATA{30) and all the array elements following it are retrieved. In
the third example, the array element DATA{30) and all the elements preceding
it are retrieved. The ellipsis (...) is an integral part of the syntax and must
appear in the positions shown.

144 VS FORTRAN Version 2 Programming Guide

READ (9, ID=1) DATA(5) ... DATA(30)

READ (9, ID=1) DATA(30) ...

READ (9, ID=1) ... DATA(30)

To retrieve just one array element, you must specify It In the first way shown
above. For example:

READ (9, ID=1) DATA(5) ... DATA(5)

The WRITE statement has the same form as the READ statement.

On the WAIT statement, you specify the same unit and Identifier that you speci
fied on the pending READ or WRITE statement.
For Instance:

READ (9, ID=1) DATA

other processing

WAIT (9, ID=1)

In addition, the WAIT statement has the optional specifiers COND and NUM. If
you specify C0ND = /1, the Integer variable /1, Is assigned a value of 1 If the
operation completed successfully, a value of 2 If an error was detected, or a
value of 3 If the endflle record was reached. If you specify NUM = /2, the Integer
variable /2 Is assigned a value Indicating the number of bytes transmitted.

Using Internal Files
As explained earlier under "Concepts and Terminology" on page 121, an
internal file Is located In main storage and Is a character variable, character
array element, character array, or character substring.

Internal files allow you to move data from one Internal storage area to another
while converting It from one format to another. This gives you a convenient and
standard method of making such conversions.

To read from and write to internal files, you use the READ and WRITE state
ments. Internal files always contain formatted data. To format the data, you
can use list-directed or NAMELIST formatting, or you can specify your own
format.

The only difference In coding the READ and WRITE statements Is that in the
UNIT specifier. Instead of coding a unit Identifier, you code the name of the
character variable, character array element, character array, or character sub
string.

Chapter 6. Performing Input/Output Operations 145

The following is an example of writing data to an internal file using list-directed
formatting:

If you run a program with these statements:

REAL*4 R4VAR / -12.5E+12 /
INTEGER*2 I2ARR(2) / 33, -44 /
CHARACTER*4 CH4 / 'TWO' /
CHARACTER*35 OLSTDIR

WRITE (OLSTDIR, *) R4VAR, I2ARR, CH4

the internal file, that is, the character variable OLSTDIR, is set to this value:

-0.125000000E+14 33 -44 TWO

Internal files are especially useful when you don't know the arrangement of
data within the records of an external file. Transferring the data into an internal
file allows your program to examine a part of a record and, based on some
condition within the record, process the rest of the record accordingly. Further
more, the record can be reread many times, if required, without the need to
backspace and read from the physical device again.

For example, in the sample program in Figure 35, an unformatted record is
read from an external file. The data is placed in the character variable
RECORD. The first character of the variable is then examined to determine the

type of data that follows. If the data type is integer and the record is long
enough to contain five integer values, the data is transferred to the array INTE
GERS by means of a READ statement, which treats the variable RECORD as an
internal file. If the data type is real and the record is long enough to contain
five real values, the data is transferred to the array REALS.

CHARACTER*80 RECORD

REAL*4 REALS(5)
INTEGER*4 INTEGERS(5)
INTEGER*4 LEN

1 READ (1, NUH=LEN, END=2) RECORD
C

IF (REC0RD(1:1) .EQ. 'I' .AND. LEN .GE. 26) THEN
READ (RECORD, '(IX, BN, 515)') INTEGERS

. Process integer values

ELSE IF (REC0RD(1:1) .EQ. 'R'-.AND. LEN .GE. 51) THEN
READ (RECORD, '(IX, BN, 5E10.3)') REALS

. Process real values

ELSE

. Process other types of records

ENDIF

GO TO 1

2 CONTINUE

END

Figure 35. Sample Program—Transferring Data to an Internal File

146 VS FORTRAN Version 2 Programming Guide

Connecting, Disconnecting, and Reconnecting Files

Connecting Files

This section explains how to connect, disconnect, and reconnect files within
your program.

Aprogram cannot read or write to a file unless that file has been connected to
a unit. Afile can be connected to a unit while the program runs by means of
an OPEN statement or it can be preconnected, that is, automatically connected

I when your program begins to run. In either case, If a file is not dynamically
I allocated, a file definition must be in effect for it. Afile may be connected to

only one unit at a time and, similarly, a unit may be connected to only one file
at a time.

Preconnecting Files
Before the OPEN statement was introduced in FORTRAN 77, all files were pre
connected. To maintain compatability, preconnection is still allowed, but only
for certain files. Only unnamed non-VSAM files that are accessed seguentially
can be preconnected.

To preconnect a file, you code a file definition with a ddname ofFTnnFOOl,
where nn is the 2-digit number ofthe unit to which you want to connect the file.
For CMS, you can rely on a default FILEDEF command with the ddname
FT/7/7F001.

That's all you have to do. When your program begins to run. the file will be
automatically connected to the unit.

By default, preconnecled files are connected for sequential access and for
matted input/output. In addition, all blanks, other than leading blanks, within
arithmetic formatted input fields are treated as zeros. If you wish, you can
change these connection properties, as explained under "Changing Connection
Properties" on page 152.

Asubset of preconnected files are those that are read from the standard input
unit" or written to the "standard output unit." The standard input unit is a unit
defined during installation ofVS FORTRAN to be used as the default unit for
input. On your READ statement, you can specify the standard input unit by an
asterisk rather than its unit number. For example, if unit 5 is the standard input
unit,

READ (*, FMT=100) A,B,C

is equivalent to

READ (5, FMT=100) A,B,C

Chapter 6. Performing Input/Output Operations 147

Similarly, you can specify a standard output unit (on a WRITE or PUNCH state
ment by using an asterisk rather than the unit number. (The PRINT statement
is always directed to a standard output unit.) During installation, either two or
three standard output units were defined:

Two Standard Output Units

1. One standard unit for the PUNCH statement

2. One standard unit for all other output (including VS FORTRAN error
messages, WRITE statements and PRINT statements.) This unit is often
called the error message unit.

Three Standard Output Units

1. One standard unit for the PUNCH statement

2. One standard unit for VS FORTRAN error messages

3. One standard unit for WRITE and PRINT statements

The IBiyi-supplied defaults for the standard input/output units are:

Unit 5 READ statement, with * as the unit identifier

Unit 6 WRITE statement with * as the unit identifier, PRINT statement, and
VS FORTRAN error messages

Unit 7 PUNCH statement

Only files connected for sequential access can be directed to the standard
input/output units. In addition, only formatted I/O is allowed for the error
message unit.

For dynamically allocated files, VS FORTRAN supplies defaults for the specific
devices that will be used for these units. For more information about these

defaults, see "Dynamically Allocating Files" on page 165.

Also, under VM, if you don't code a file definition for a file that is not dynam
ically allocated, VS FORTRAN supplies defaults for specific devices. For more
details, see "Files Preconnected to the Standard Input/Output Units" on
page 65.

Connecting Files to Units with the OPEN Statement
For any file that is not preconnected, you must use the OPEN statement to
connect it to a unit before you can read from it or write to it.

The specifiers available on the OPEN statement are shown in Figure 36 on
page 149.

1 The PUNCH statement is a FORTRAN 66 statement that is still supported by VS
FORTRAN, but only under the compiler option l_ANGLVL(66). It is described in IBM
System/360 and System/370 FORTRAN IV Language, GC28-6515.

148 VS FORTRAN Version 2 Programming Guide

UNIT = un

FlLE = /h

STATUS = sfa

ACCESS = acc

FORM =/rm

BLANK = /)//f

ACTION = acf

PASSWORD =pwd
RECL = re/

KEYS = (s/arf;enc/(,s/arLend] ...)
IOSTAT=/OS

ERR = sf

CHAR = c/7r

Figure 36. OPEN statement specifiers

Identifying the Unit and File: For named files, you identify the unit and file to be
connected by specifying the unit number with the UNIT specifier and the file
name with the FILE specifier.

The unit number may be any valid unit number, which is determined at installa
tion time. An exception is that you cannot specify the error message unit
(usually unit 6), unless you are running the OPEN statement just to change the
CHAR specifier. (Changing the CHAR specifier is discussed under "Changing
Connection Properties" on page 152.)

What you specify for the file name depends on how the file is allocated. For
dynamically allocated files, the file name must be the CMS file identifier or the
MVS data set name, preceded by a slash (/). For example, the following OPEN
statement connects the file having the CMS file identifier MYDATA OUTPUT A4
to unit 9;

OPEN (UNIT=9, FILE=7MYDATA OUTPUT A4')

The following OPEN statement connects the file having the MVS data set name
MYDATA.ON.MVS to unit 9:

OPEN (UNIT=9, FILE=7MYDATA.0N-.MVS')

For files not dynamically allocated, the file name must be the ddname of the file
definition. For example the following OPEN statement connects the file referred
to by the ddname REPORT to unit 9:

OPEN (UNIT=9, FILE='REPORT')

For unnamed files, you omit the FILE specifier. If the file is being connected for
sequential or direct access, the ddname FT/?/)F001 is used. If the file is being
connected for keyed access, the ddnames of the form flnnKkk are used (where
kk is 01, 02, etc., for each key specified in the KEYS specifier). To indicate the
access method, you code the ACCESS specifier. Ifyou don't code the ACCESS
specifier, sequential access is the default.

In the following example, the file referred to by the ddname FT09F001 is con
nected to unit 9;

OPEN (UNIT=9)

Chapter 6. Performing Input/Output Operations 149

When connecting an unnamed file, you must first disconnect any file that is
already connected to the unit; otherwise, the OPEN statement will refer to the
file that is already connected. Disconnecting files is discussed in "Discon-
necting Files" on page 154. •

Indicating Whether the File Exists: The STATUS specifier helps prevent acci
dental overwriting of existing data. For a file that does not exist, you specify
STATUS ='NEW', in which case the file will be created and connected to the
unit. For a file that does exist, you specify STATUS ='OLD', in which case the
existing file will be connected to the unit. If you don't know whether the file
exists, you can either omit the STATUS specifier or specify
STATUS ='UNKNOWN': in either case the file's existence will be checked, and it

will be connected as NEW or OLD, accordingly.

The fact that a file doesn't exist does not necessarily mean that you will be able
to create it. For example, the file or device that you refer to in your file defi
nition may have some characteristic that prevents you from writing on it. For
VM, an example of this would be a minidisk that you have been linked to in
read-only status. Under MVS, the LABEL parameter of your DD statement could
specify input-only processing, or the file might have RACF protection that pre
vents you from writing on it. In these cases, you will be unable to connect the
file at all if it doesn't already exist.

If the run-time option OCSTATUS is in effect, the consistency between file exist
ence and STATUS ='NEW' or STATUS ='OLD' is verified. {For more information
on run-time options, see "Available Run-Time Options" on page 101.) If
STATUS ='NEW' is coded for an existing file or STATUS ='OLD' is coded for a
nonexistent file, the OPEN statement will fail. However, be aware that this ver-

ification is done only for the following: ' »

" DASD files, including:

— PDS members under MVS.

— TXTLIB, MACLIB, and LOADLIB members under CMS.

— VSAM files.

*• Labeled tape files under MVS.

Files whose file definitions specify DUMMY. For these files, the verification
is done only if the file was successfully opened previously in the current
program.

A system message may be issued showing some certain x13 abend codes.
This is normal processing and should be ignored unless a VS FORTRAN
message is issued.

The verification is not done when you specify STATUS ='SCRATCH' or
STATUS ='UNKNOWN', or omit the STATUS specifier.

If NOOCSTATUS is in effect, consistency between existence and the STATUS
specifier is not verified for any file.

Connecting Temporary Files: To connect a temporary file (that is, a file that can
be used only within the current program and will be deleted when the file is
disconnected), you specify STATUS ='SCRATCH'. File existence will be
checked to determine whether the file already exists or should be created.

150 VS FORTRAN Version 2 Programming Guide

The FILE specifier Is not allowed with STATUS ='SCRATCH'.

Choosing the Access Method: To indicate whether you want the file to be con
nected for sequential, direct, or keyed access, you code the ACCESS specifier.
Sequential access is the default.

If you choose direct access, you must also code the RECL specifier to indicate
the record length.

For keyed access, the KEYS specifier allows you to give the starting and ending
positions of the primary and alternate keys to be used. This is discussed in
more detail under "Input/Output Operations for Keyed Access" on page 181.

Choosing Formatted or Unformatted I/O: To specify formatted or unformatted
I/O, you use the FORM specifier. FORM ='FORMATTED' specifies formatted I/O
and FORM ='UNFORMATTED' specifies unformatted I/O. The default is for
matted I/O for sequential access and unformatted I/O for direct access and
keyed access.

Choosing How Input Blanks Will Be Treated: For a formatted input file, you
have the option of specifying how blanks in arithmetic fields will be treated. If
you specify BLANK ='NULL', all blanks are ignored, except that a field of all
blanks has a value of zero. If you specify BLANK='ZERO', all blanks, other
than leading blanks, are treated as zeros. For preconnected files, the default is
BLANK ='ZERO'. For files connected with the OPEN statement, the default is
BLANK ='NULL'.

Indicating the Processing To Be Done: You can specify ACTION ='READ' to
indicate that the file is being connected for reading only, ACTION ='WRITE' to
indicate writing only, or ACTION = 'READWRITE' for both reading and writing.
{For more specific meanings of ACTION ='WRITE' and ACTION ='READWRITE'
for files connected for keyed access, see "Connecting Files" on page 182. For
information on using the ACTION specifier in an MTF environment, see
Appendix E, "The Multitasking Facility (MTF)" on page 349.)

Under VM, ACTION ='WRITE' and ACTION ='READWRITE' are not allowed for

TXTLIB, MACLIB, and LOADLIB members.

The default is READ for keyed access and READWRITE for sequential access
and direct access.

Specifying VSAM Passwords: For VSAM files that are password-protected, you
must specify a password with the PASSWORD specifier. If ACTION ='READ' is
specified, the file's read password is required; otherwise, its update password
is required.

Error Checking: The lOSTAT and ERR specifiers allow for error checking during
processing of the OPEN statement. These specifiers are discussed under
"Monitoring Errors" on page 174.

Indicating Whether the File Contains Double-Byte Characters: If a file may
contain data in a language, such as Japanese, that has characters belonging to
the double-byte character set, specify CHAR = 'DBCS'; otherwise, specify
CHAR = 'NODBCS'. The default is CHAR = 'NODBCS'. For more information on

Chapter 6. Performing Input/Output Operations 151

double-byte characters, see "Considerations for Double-Byte Data" on
page 190.

Changing Connection Properties
After a file has been connected, either by preconnection or by the OPEN state
ment, you can use the OPEN statement to change certain connection properties.

Preconnected Files: Preconnected files are connected with the following
defaults;

ACCESS='SEQUENTIAL'
FORM='FORMATTED'

BLANK='ZERO'

CHAR='NODBCS'

Figure 37shows which of these defaults you can override, depending on which
I/O statement you use first.

If your first The access The form Blanks The file But with

I/O statement method will be: will be: may contain subsequent

for the pre- will be: double-byte I/O state

connected characters: ments, you

file is: can change:

OPEN Sequential or Formatted or Ignored or Yes or no as How blanks

direct access, unformatted, treated as given in the are treated.

as given in as given in zeros, as CHAR by issuing an

the ACCESS the FORM given in the specifier. OPEN state

specifier. specifier. Bl^NK ment.

Sequential is Unformatted
specifier.

Whether the

the default. is the default

for direct

access. For

matted IS the

default for

sequential
access.

The default is

for blanks to

be ignored.

file may or
may not
contain

double-byte

characters, by
issuing an
OPEN state

ment.

PRINT, for Sequential. Formatted. Treated as No How blanks

matted READ, zeros. are treated.

or formatted by issuing an

WRITE OPEN state

ment.

Figure 37 (Part 1 of 2). Overriding Defaults for Preconnected Files

152 VS FORTRAN Version 2 Programming Guide

Whether the

file may or
may not
contain

double-byte
characters, by
issuing an
OPEN State

ment.

If your first
I/O statement

for the pre
connected

file is:

The access

method

will be:

The form

will be:

Blanks

will be:

The file

may contain
double-byte
characters:

But with

subsequent
I/O state

ments, you
can change:

Unformatted

READ or

unformatted

WRITE

Sequential. Unformatted. N/A N/A Nothing.

BACKSPACE

or REWIND

ENDFILE

Sequential. Formatted.

Sequential Unformatted

Treated as

zeros.

N/A

No

N/A

Ttie form, by
issuing an
OPEN, unfor
matted READ,
or unfor

matted WRITE

statement.

How blanks

are treated,
by issuing an
OPEN state

ment.

Whether the

file may or
may not
contain

double-byte
characters, by
issuing an
OPEN state

ment.

Nothing

Figure 37 (Part 2 of 2). Overriding Defaults for Preconnected Files

The following example shows how to change the access method from sequen
tial to direct, using the OPEN statement. As shown in Figure 37 on page 152,
this can be done only if no I/O statements have referred to the preconnected
file.

OPEN (UNIT=12, ACCESS='DIRECT', RECL=80)

Note that you cannot use the OPEN statement to change the access method to
keyed access. If you specify ACCESS = 'KEYED', the statement will refer to a
different Eile. Remember that for files connected for sequential or direct access,
the ddname FTnnFOOl is used, and for files connected for keyed access, the
ddname FTnnKkk is used.

Files Connected with OPEN: After you've connected a file with an OPEN state
ment, you can change only the BLANK and CHAR specifiers. You can change
the specifier by coding another OPEN statement, such as the following:

OPEN (UNIT=12, BLANK='NULL')

Note that for a named file, you do not have to code the FILE specifier on this
OPEN statement.

Chapter 6. Performing Input/Output Operations 153

Disconnecting Files
You can disconnect a file from a unit in more than one way. The usual way is
to use a CLOSE statement for the particular unit. Another way is to use an
OPEN statement for a different, named file, which causes the file already con
nected to the unit to be disconnected. Or, you can allow a file to be automat
ically disconnected at program termination.

Disconnecting Files with the CLOSE Statement
Figure 38 shows the specifiers available on the CLOSE statement.

UNIT = t7n

STATUS = sfa

IOSTAT =/OS

ERR = sf

Figure 38. CLOSE statement specifiers

Identifying the Unit: On the UNIT specifier, you specify the number of the unit to
be disconnected. For example:

CLOSE (UNIT=14)

The unit number may be any valid unit number, which is determined at installa
tion time, except for that of the error message unit {usually unit 6).

You do not specify a file on the CLOSE statement; whichever file is connected
to the unit at the time will be disconnected.

Retaining Files After Disconnection: The STATUS specifier allows you to specify
what should happen to the file after it is disconnected. You can specify either
STATUS ='KEEP' or STATUS ='DELETE'. In most cases, if you specify KEEP,
the file will be retained and will continue to exist in the VS FORTRAN environ

ment during the remainder of the current program and after program termi
nation.

However, in the case of an empty DASD file (including VSAM files, but
excluding PDS members), the file will be seen as existing only during the
remainder of the current program. Therefore, if you want to reconnect it during
the current program, and OCSTATUS is in effect, you must specify
STATUS ='OLD' or STATUS ='UNKNOWN' on the OPEN statement. But if you
want to reconnect it during a subsequent program you must specify
STATUS = 'NEW' or STATUS = 'UNKNOWN'.

Note: Under MVS, a CLOSE with STATUS ='KEEP' for a dynamically-allocated
file causes a FREE; that is, the physical data set is unallocated. If the file is
connected again by a FORTRAN statement, the data set is reallocated.

The default for STATUS is KEEP, except for those files connected with a status
of SCRATCH, in which case the default is DELETE. If OCSTATUS is in effect or

the file is dynamically allocated, even if you specify KEEP for a temporary file,
the file will be deleted and an error will be detected.

154 VS FORTRAN Version 2 Programming Guide

Deleting Files After Disconnection: Ifyou specify STATUS ='DELETE', and the
run-time option OCSTATUS is in effect or the file is dynamically allocated, the
file will be deleted and will cease to exist within the VS FORTRAN environment.
For files that are not dynamically allocated, if NOOCSTATUS is in effect and you
specify DELETE, no file will be deleted; the file will only be disconnected, as
though you had specified KEEP.

DELETE is not allowed for files connected with ACTION ='READ'. In addition,
you can specify DELETE for only certain types of files.Figure 39 lists these files
and explains how they are actually deleted.

Type of File

DASD file under CMS

(excluding files with
filetype TXTLIB, LOADLIB,
or MACLIB)

DASD file under MVS

(excluding VSAM files and
PDS members)

PDS member

Reusable VSAM file

Labeled tape file under
MVS

File whose file definition

specifies DUMMY

How It Is

Deleted

The file is erased from the minidisk.

If dynamically allocated: The file is removed
from the volume and uncataloged.

If not dynamically allocated: The file is
emptied, making it appear as though it were
just allocated, without any records in it.

The member's name Is removed from the PDS

directory.

The file is emptied, making it appear as though
it were just defined, without any records in it.

The file is recreated with no data records and

with a block size and record size of 0 in the

header label. Any files that follow the deleted
file on the tape are lost.

Deletion is recorded internally by VS FORTRAN
for the duration of time the program runs.

Figure 39. Files That Can Be Deleted

Note that once you delete a file, it will not exist unless you reconnect It by
issuing an OPEN statement with STATUS ='NEW or STATUS ='UNKNOWN'.

An exception, which applies to all files but those whose file definitions specify
DUMMY, occurs when a routine, such as an assembler language routine, that is
unknown to the VS FORTRAN environment, writes records into the file in the
interim between the CLOSE and OPEN statements. This causes the file to exist
again, which in turn will cause an OPEN with STATUS ='NEW to fail if
OCSTATUS is in effect. In order to successfully reconnect the file, you must use
an OPEN statement that specifies STATUS='OLD' or STATUS='UNKNOWN', or
omits the STATUS specifier.

You cannot delete any type of file not listed in Figure 39. For example, you
cannot delete a file whose file definition refers to one of the following:

*• An in-stream (DD * or DD DATA) data set (MVS only)

A system output (sysout) data set (MVS only)

A unit record device

A terminal

A nonreusable VSAM data set

Chapter 6. Performing Input/Output Operations 155

*- A tape file (VM only)

*- An unlabeled tape data set

A file with the file type TXTLIB, LOADLIB, or MACLIB {VM only)

Nor can you delete the following:

A concatenation of data sets within a single ddname {MVS only)

A set of subfiles, that is, files referred to by ddnames FTnnFOOl, FTn/?F002,
and so on.

If you attempt to delete a set of subfiles and you have not read or written
data beyond the first subfile {ddname FTnnFOOl) during the current con
nection, only the first subfile is deleted and no error is detected. This is
discussed in more detail under "Processing SubHIes" on page 177.

If OCSTATUS is in effect or the file is dynamically allocated and you specify
DELETE for an existing file that cannot be deleted, the file will only be discon
nected, as if you had specified KEEP, and an error will be detected.

Error Checking: The lOSTAT and ERR specifiers allow for error checking during
processing of the CLOSE statement. These specifiers are discussed under
"Monitoring Errors" on page 174.

Disconnecting Fiies With the OPEN Statement
If you use an OPEN statement for a named file, and a different file is already
connected to the specified unit, that file will be disconnected. In such case, you
need not use a CLOSE statement for the file that is automatically disconnected,
although it is good documentation practice to do so.

In the following example, the file named AT0M1 is disconnected when the
OPEN statement for AT0M2 is used.

OPEN (13, FILE='AT0M1')
READ (13, FMT=10) A, B
OPEN (13, FILE='AT0M2')
WRITE (13, FMT=10) A, B

Files are disconnected with the status of KEEP, except for temporary files,
which are disconnected with the status of DELETE.

Disconnecting Files at Program Termination
When your program terminates, all files that remain connected are discon
nected.

Files are disconnected with the status of KEEP, except for temporary files,
which are disconnected with the status of DELETE.

Reconnecting Files
Sometimes it is necessary to reconnect a file that you have disconnected in the
current program. How you reconnect a file depends on whether the file is
named or unnamed. For preconnected files, it also depends on whether
OCSTATUS or NOOCSTATUS is in effect.

156 VS FORTRAN Version 2 Programming Guide

Named Files

Unnamed Files

To reconnect a named file, you simply use another OPEN statement with the
same file name given in the FILE specifier. The same rules that you followed
for coding the original OPEN statement apply.

Keep in mind, however, that status of the file might have changed. If you did
not delete the file when you disconnected it, you should code STATUS ='OLD'
on the OPEN statement; but if you did delete it, you should code
STATUS ='NEW. If OCSTATUS is In effect, an inconsistency between actual
existence and what you code on the STATUS specifier will cause the processing
of the OPEN statement to fail. If you are unsure of the existence of a file, you
can code STATUS = 'UNKNOWN' or omit the STATUS specifier.

As with a named file, you reconnect an unnamed file by using the OPEN state
ment. In this case, however, you must not code the FILE specifier.

Before reconnecting an unnamed file, you must first use a CLOSE statement to
disconnect any file that is already connected to the unit. The following example
illustrates what happens if you do not use the CLOSE statement.

OPEN (8, BLANK='NULL')
READ (8, FMT=10) A, B, C
OPEN (8, FILE='MYDATA', STATUS='OLD', ACCESS='SEQUENTIAL')
READ (8, FMT=10) D, E
OPEN (8, BLANK='ZERO')
READ (8, FMT=10) F, G, H

Assuming that no previous I/O statements have been directed to unit 8, the first
READ statement is directed to the unnamed file associated with unit 8. The
second OPEN statement breaks the connection and associates unit 8 with the

file named MYDATA. The third OPEN acts only on the connected file, which is
MYDATA, and the file position remains unchanged; that is, the file does not get
repositioned to the beginning. Therefore, the Igst READ is directed to MYDATA.
and not to the unnamed file.

The following example is the same as the above except that a CLOSE statement
disconnects the named file. Therefore, the final OPEN statement reconnects the
unnamed file and the last READ statement is directed to that file:

OPEN (8, BLANK='NULL')
READ (8, FMT=10) A, B, C
OPEN (8, FILE='MYDATA', STATUS='OLD', ACCESS='SEQUENTIAL')
READ (8, FMT=10) D, E
CLOSE (8)
OPEN (8, BLANK='ZERO')
READ (8, FMT=10) F, G, H

Preconnected Files: If OCSTATUS is in effect, you must use the OPEN state
ment with no FILE specifier to reconnect a preconnected file. However, if
NOOCSTATUS is in effect, you can reconnect a preconnected file by issuing any
of the following statements:

OPEN

READ

WRITE

BACKSPACE

ENDFILE

Chapter 6. Performing Input/Output Operations 157

As with all unnamed files, you must first disconnect any file already connected
to the unit before using any of the above statements.

The example below illustrates how to reconnect a preconnected file using an
OPEN statement. In this case, OCSTATUS or NOOCSTATUS can be in effect.

1 READ (2, '(BN, 3E10.3)', END=2) A, B, C
GO TO 1

2 CLOSE (2)
C

OPEN (2)
3 READ (2, '(BN, 3E10.3)', END=4) A, B, C

GO TO 3

4 CLOSE (2)
END

The following example illustrates how to reconnect a preconnected file using a
READ statement. In this case, NOOCSTATUS must be in effect.

1 READ (2, '(BN, 3E10.3)', END=2) A, B, C
GO TO 1

2 CLOSE (2)
C

3 READ (2, '(BN, 3E10.3)', END=4) A, B, C
GO TO 3

4 CLOSE (2)
END

Gathering Useful information About Units and Files
At times you may want to find out certain characteristics of a unit or file and,
based on them, take alternative actions. You can get such information by using
the INQUIRE statement.

Forms of INQUIRE
The INQUIRE statement has three different forms;

INQUIRE by file name

INQUIRE by unit

INQUIRE by unnamed file

The first form is for inquiring about a particular named file. If you select this
form, you specify the file name on the FILE specifier, in the same manner as
you do on the OPEN statement. For files not dynamically allocated, specify the
ddname; and, for dynamically allocated Files, specify the MVS data set name or
CMS file identifier preceded by a slash (/).
For example:

Nondynamically allocated file:

INQUIRE (FILE='MYFILE', other specifiers)

Dynamically allocated file under CMS:

INQUIRE (FILE='/MYDATA OUTPUT A4', other specifiers)

158 VS FORTRAN Version 2 Programming Guide

Dynamically allocated file under MVS:

INQUIRE (FILE='/MYDATA.ON.MVS', other specifiers)

You can use the second form to find out whether a particular unit exists and
whether any file is connected to it. If a file is connected to the unit at the time,
you can also find out selective characteristics of that file. For example, to
inquire about a file connected to unit 9, you specify:

INQUIRE (UNIT=9, other specifiers)

The third form allows you to gather information about an unnamed file. In this
form, for the FILE specifier, you code either the file's default ddname or a char
acter expression whose value is blanks (this can be a character constant).
For example:

INQUIRE (FILE='FT09F001', other specifiers)

or:

INQUIRE (UNIT=9, FILE=' other specifiers)

Note that when you provide a blank value in the FILE specifier, you must also
code the UNIT specifier. The following conditions, in the order they are listed,
determine which file is referred to:

1. If the unit is currently connected to an unnamed file that is internally open,
the characteristics for that file are returned.

Internally open means that a file either has been connected by the OPEN
statement; or, in the case of a preconnected file, a READ, WRITE, PRINT, or
ENDFILE statement has been successfully issued for the file.

2. If the above condition is not met, and a file definition is in effect for the
default ddname FTnnKOI, the characteristics for that file are returned.

3. Otherwise, the characteristics for the file with the default ddname FTnnFOOl
are returned.

For unnamed files that are dynamically allocated under VM, you may also code
the INQUIRE statement as follows. However, in this case, you can inquire only
about file existence.

INQUIRE (FILE=7FILE FTnnF001 fm', EXIST=EX)

A system message may be issued showing some certain x13 abend codes.
This is normal processing and should be ignored unless a VS FORTRAN
message is issued.

Summary of What You Can Find Out
Figure 40 summarizes the information you can get and the corresponding
INQUIRE specifiers.

For VSAM files that are password-protected, you must also code the PASS
WORD specifier if you have not already connected the file. Only the file's read
password is required.

Other specifiers available on the INQUIRE statement are lOSTAT and ERR.
These are discussed in "Monitoring Errors" on page 174.

Chapters. Performing Input/Output Operations 159

If you want to know this: Use this specifier:

Whether the file or unit exists EXIST=exs

Whether the file or unit is connected OPENED=opn

Which unit the file is connected to NUMBER = num

Whether the file has a name NAMED=n/77Cf

What the name of the file is NAME=nam

Whether the file may contain double-byte characters CHAR = c/jr

Whether the file is currently connected for sequential, direct, or ACCESS = acc

keyed access

Whether the file can be connected for sequential access SEQUENTIAL=seq

Whether the file can be connected for direct access DIRECT = d/r

Whether the file can be connected for keyed access KEYED = /fycf

Whether a file is currently connected for writing only, reading ACTION = act

only, or both writing and reading

Whether a file is currently connected for reading only READ = ro/7

Whether a file is currently connected for writing only WRITE = wr;

Whether a file is currently connected for both reading and READWRITE = rwr

writing

Whether the file is currently connected for formatted or for FORM = frm

unformatted I/O

Whether the file can be connected for formatted I/O FORMATTED = fmt

Whether the file can be connected for unformatted I/O UNFORMATTED = t/nf

Whether input blanks are treated as zeros or ignored (for for Bl-ANK = t)/k

matted I/O)

What the record length is (for files connected for direct access) RECL = rc/

What the record number of the next record is (for files con NEXTREC=nxr

nected for direct access)

Which key is in use (for files connected for keyed access) KEyiD = /f/d

Figure 40 (Part 1 of 2). Summary of the information you can get with INQUIRE

160 VS FORTRAN Version 2 Programming Guide

^ I

If you want to know this: Use this specifier:

What the length of the key is (for files that can be connected for KEYLENGTH = kle
keyed access)

Where the key starts (for files that can be connected for keyed KEYSTART = kst
access)

Where the key ends (for files that can be connected tor keyed
access)

What the length of the last record affected by a BACKSPACE,
DELETE, READ, REWRITE, or WRITE statement is (for files con
nected for keyed access)

What the value of the key of the last record that was affected by
a BACKSPACE, DELETE, READ, REWRITE, or WRITE statement
is (for files connected tor keyed access)

KEYEND=ken

LASTRECL=/r/

LASTKEY=/ky

Figure 40 (Part 2 of 2). Summary of the information you can get with INQUIRE

The EXIST specifier allows you to check whether a particular unit or file exists
for your program. For INQUIRE by unit, the existence of the specified unit is
determined. A unit exists if its unit number is within the range of allowable unit
numbers at your site. For INQUIRE by file or INQUIRE by unnamed file, the
existence of the specified file is determined. File existence depends on a
number of factors, such as what type of device the file is on.
Appendix G, "What Determines File Existence" on page 433 discusses these
factors in detail. If the unit or file exists, the value true is returned. If it doesn't
exist, the value false is returned.

The OPENED specifier is for checking whether a unit or file is connected, either
by the OPEN statement or by preconnection.

When you execute an INQUIRE by unit, the value that will be returned for a unit
that is preconnected but for which no I/O statements other than INQUIRE have
been executed depends on which of the run-time options, INQPCOPN or
NOINQPCOPN, is in effect. When INQPCOPN is in effect, a value of true will be
returned if the unit is connected (by an OPEN statement or by preconnection):
that is, if an I/O statement other than OPEN, CLOSE, or INQUIRE can be exe
cuted without first executing an OPEN statement. When NOINQPCOPN is in
effect, a value of false will be returned, even for a preconnected unit, if no I/O
statements other than INQUIRE have been executed for that unit.

When you specify a default ddname in the FILE specifier, the value true will be
returned only if the following conditions are met:

*• For the form Flnnfmmm, the unit number (nn) is within the range allowed
for your installation and the sequence number (mmm) is equal to the
number of the particular subfile to which the file is positioned. Subfiles are
discussed in more detail under "Processing Subfiles" on page 177.

For the form FTnnK/c/c, the unit number (nn) is within the range allowed for
your installation and the key number (kk) is within the range of the number
of keys for the file that is connected.

• For the form FTERRsss or FTPRTsss, MTF is active and the subtask number
(sss) is within the range of the number of active MTF subtasks.

Chapter 6. Performing Input/Output Operations 161

The NUMBER, NAMED, and NAME specifiers help you to identify a file.
NUMBER gives you the unit number to which the file is connected; NAMED tells
you whether the file is named or unnamed; and, NAME gives you the name of
the file if it has one. For dynamically allocated named files, NAME returns the
CMS file identifier or MVS data set name in the following format;

Under CMS:

Ifn ft fm' or 'Ifn ft fm (member)'

where fn, ft, and member are 8 characters and fm is 2 characters

Under MVS:

'/dsn' or '/dsn (member)'

where dsn is 44 characters and member is 8 characters

Note: If fn, ft, fm, dsn, and member are shorter than the lengths stated above,
they will be padded with blanks. The variable used to hold the name returned
by INQUIRE (nam) must be declared to be at least as long as 21 characters for
CMS files (32 for CMS files that include member) and at least as long as 45
characters for MVS files (56 for MVS files that include member).

The CHAR specifier is for checking whether a connected file may contain data
in a language, such as Japanese, that has double-byte characters. If you coded
CHAR = 'DBCS' on the OPEN statement, the value DBCS is returned: if you
coded CHAR = 'NODBCS', did not code the CHAR specifier, or did not use an
OPEN statement, the value NODBCS is returned.

Some INQUIRE specifiers allow you to find out how a file is currently connected,
whereas others allow you to find out how a file can be connected. By coding
the ACCESS specifier, you can check which access method is being used for
the currently connected file. By coding the SEQUENTIAL. DIRECT, or KEYED
specifier, you can find out whether a file can be connected for sequential,
direct, or keyed access. Based on the file's characteristics, the character vari
able or array element given in the specifier is set to the value YES or NO, as
shown in Figure 41 on page 163. If the file's characteristics cannot be deter
mined by VS FORTRAN, a value of UNKNOWN is returned.

162 VS FORTRAN Version 2 Programming Guide

Specifier
File Characteristics

that Result in YES

SEQUENTIAL Non-VSAM file

VSAM entry-sequenced data set

VSAM relative record data set

DIRECT

KEYED

Non-VSAM file with fixed unblocked

records

VSAM relative record data set

VSAM key-sequenced data set

File Characteristics

that Result in NO

VSAM key-sequenced data set

Non-VSAM file with other than fixed

unblocked records

VSAM entry-sequenced data set

VSAM key-sequenced data set

Non-VSAM file

VSAM entry-sequenced data set

VSAM relative record data set

Figure 41. Characteristics that Determine Whether a File Can Be Connected for Sequen
tial, Direct, or Keyed Access

Similarly, to find out whether the currently connected file is connected for for
matted or unformatted I/O, you code the FORM specifier. To check whether a
file can be connected for formatted or unformatted I/O, you use the FOR
MATTED or UNFORMATTED specifier. Based on the file's characteristics, the
character variable or array element given in the specifier is set to the value
YES or NO, as shown in Figure 42. If the file's characteristics cannot be deter
mined by VS FORTRAN, a value of UNKNOWN is returned.

Specifier
Specifier

File Characteristics

that Result in YES

File Character-

File Characteristics

that Result in NO

File Character-

FORMATTED Non-VSAM file with other than Non-VSAM file with variable-length
variable-length spanned records spanned records

Any VSAM file

UNFORMATTED Any file None

Figure 42. Characteristics that Determine Whether a File Can Be Connected for For
matted or Unformatted I/O

If a file is connected for formatted I/O, you can use the BLANK specifier to
inquire how blanks in arithmetic input fields are treated. If they are ignored,
the value NULL is returned. If they are treated as zeros, the value ZERO is
returned.

The ACTION specifier allows you to check whether a currently connected file is
connected for reading, writing, or both reading and writing. The value returned
is READ, WRITE, or READWRITE. Instead of the ACTION specifier, you could
code the READ, WRITE, or READWRITE specifier, for which the value YES or NO
is returned.

RECL and NEXTREC are for files connected for direct access. RECL supplies
the record length of the file and NEXTREC supplies the number of the next
record.

Chapters. Performing Input/Output Operations 163

The remaining specifiers are for files connected for keyed access. KEYID lets
you find out which key is currently in use for a file. KEYLENGTH, KEYSTART,
and KEYEND return more details about that key: its length, where it starts, and
where it ends. However, if you use INQUIRE before connecting a file,
KEYLENGTH, KEYSTART, and KEYEND return information about the keys in the
file referred to by the file definition. LASTRECL and LASTKEY allow you to
obtain the record length and KEYID of the last record affected by a BACK
SPACE, DELETE, READ, REWRITE, or WRITE statement.

For more detailed information about the INQUIRE specifiers, see VS FORTRAN
Version 2 Language and Library Reference.

Where In Your Program You Can Code INQUIRE
You can code an INQUIRE statement anywhere in your program, for instance
before a file is connected, while it is connected, and after it is disconnected.
However, for most of the specifiers, certain conditions must be true in order for
the information to be obtained. For instance, to find out the number of the unit
to which a file is connected, you can use the NUMBER specifier. However, the
result will be valid only if the File is connected to a unit. Therefore, you should
also code the OPENED specifier to determine
whether the file is connected, as shown in the following example:

INQUIRE (FILE='MYFILE', OPENED=CONNECTED, NUMBER=UNITNO)

In this example, if the variable CONNECTED contains the value true, the vari
able UNITNO will contain the unit number to which MYFILE is connected.
However, if the variable CONNECTED contains the value false, the value
assigned to UNITNO will be unpredictable.

A complete table of all the required conditions for each of the specifiers is
given under INQUIRE in VS FORTRAN Version 2 Language and Library Refer
ence.

Sample Program
In Figure 43 on page 165 is a sample program that uses the INQUIRE state
ment. The purpose of the program is to combine the data from three files
(SEATTLE, SANFRAN, and SANDIEGO) into a single file (WESTERN). The
INQUIRE statement is used to check whether each of the three files exists
before attempting to connect to and read from it.

164 VS FORTRAN Version 2 Programming Guide

PROGRAM GATHER

CHARACTER*8 FILE_NAHE(3)
1 / 'SEATTLE', 'SANFRAN', 'SANDIEGO' /

L0GICAL*4 FILE EXISTS

CHARACTER*80 RECORD

C

OPEN (1, FILE='WESTERN', STATUS='HEW',
1 FORH='UNFORMATTED', ERR=40)

DO 30 I = I, 3
INQUIRE {FILE=FILE_NAIIE(I),

1 EXIST=FILE_EXISTS, ERR=40)
IF (FILE_EXISTS) THEN

OPEN (2, FILE=FILE_NAHE(I), STATUS='0LD',
1 FORH='UNFORMATTED', ERR=40)

10 READ (2, END=20, ERR=40) RECORD
WRITE (1, ERR=40) RECORD
GO TO 10

20 CLOSE (2, ERR=40)
ENDIF

30 CONTINUE

CLOSE (1, ERR=40)
STOP

40 STOP 'ERROR HAS OCCURRED.'

END

Figure 43. Sample Program—Using the INQUIRE Statement

Dynamically Allocating Files
For certain types of files, you can omit coding file definitions and VS FORTRAN
will supply them for you to the system. This is called dynamic file allocation.
Dynamic file allocation allows you to allocate, that is assign resources to, files
as they are required by your program, rather than at the time the program is
loaded into storage.

The types of files you can dynamically allocate are:

DASD, named files connected by the OPEN statement with the exception of:

— VSAM files connected for keyed access under MVS

- All VSAM files under VM

•- Temporary files (connected with STATUS ='SCRATCH'), excluding subfiles

Under VM, preconnected files directed to any of the standard I/O units. The
IBM-supplied defaults are units 5, 6, and 7.

Under MVS, preconnected files directed to the error message unit (and
standard output unit for WRITE and PRINT statements if different): the
IBM-supplied default is unit 6.

How to Dynamically Allocate a File
To dynamically allocate a file, you omit the file definition for it. In addition, for
named files, you must specify the MVS data set name or CMS file identifier,
rather than a ddname, on the FILE specifier of the OPEN statement. For tempo
rary files and preconnected files, you code nothing different on the I/O state
ments.

Chapter 6. Performing Input/Output Operations 165

For preconnected files under both MVS and VM, and for temporary files under
MVS, VS FORTRAN creates a file definition with the ddname FTnnFOOI. The file
characterstics are determined by installation defaults, discussed below under
"File Characteristic Defaults" on page 167, and by the FILEINF service routine,
discussed below under "Overriding File Characteristic Defaults" on page 168.
For temporary files under VM, the normal VM default file definition is used.

Following are some examples of OPEN statements for named files:

Under MVS:

OPEN (9, FILE=7MILLER.HYPDS.ACC0UNT(ABC)')

OPEN (9, FILE=7MILLER.BALANCE.YEAR')

Under VH:

OPEN (9, FILE='/CALC DATA')

OPEN (9, FILE='/CALC MACLIB A(DATAMBR)'

Note that from a VS FORTRAN point of view, the MVS data set name or CMS
file identifier specified on a file definition is logically different from the name
you specify on the FILE specifier, even if the names are the same and both
point to the same physical file. Thus, in the following example, the name on the
second OPEN statement is not checked against the one in the first OPEN state
ment even though DDI refers to the same physical file; therefore, no error is
detected for connecting the same file to two different units at a time.

Under MVS:

//DDI DD DSN=MYFILE.FORT,DISP=OLD

OPEN (1, FILE='DD1')

OPEN (2, FILE='A1YFILE.F0RT')

Under VH:

FILEDEF DDI DISK MYFILE FORT A1

OPEN (1, FILE='DDr)

OPEN (2, FILE='/HYFILE FORT Al')

MVS Notes

If referring to a VSAM file, you can use only a data set that has already
been defined by access method services; that is, you should specify
STATUS ='OLD' on the OPEN statement.

»• If you specify STATUS ='OLD' on the OPEN statement for an uncataloged
data set and do not specify a volume serial number by means of the
FILEINF service routine, an error is detected.

»• Ifyou specify STATUS ='NEW or STATUS ='UNKNOWN' on the OPEN state
ment for a data set that does not exist yet, a new non-VSAM data set Is

166 VS FORTRAN Version 2 Programming Guide

created and cataloged. The IBM-supplied default for the device is SYSDA;
however, it may have been changed for your site at installation time, or it
may be overridden by the FILEINF service routine. The device is released
when the file is disconnected. Ifprocessing of the OPEN statement fails, the
newly created data set is physically deleted and the device is released.

If the data set is cataloged or on the specified volume, VS FORTRAN refers
to that file. The file may or may not exist to VS FORTRAN. If the data set is
not physically on the volume, an error is detected.

If you specify ACTION='WRITE'. ACTION = 'READWRITE', or omit the
ACTION specifier on the OPEN statement, the data set is made available
with a disposition of OLD, which means no other programs can refer to the
same data set at the same time. If you specify ACTION='READ', the data
set is made available with a disposition of SHR, which means other pro
grams can refer to the same data set at the same time.

Specifying FILE = '/NULLFILE' on the OPEN statement is equivalent to speci
fying DUMMY on a file definition.

VM Notes

The mini disk specified by the file mode must be accessed; otherwise, an
error is detected.

You may omit the file mode from the file name, in which case the default A
is used.

If you specify * for the file mode, VS FORTRAN refers to the first file name
and file type that is found on any disk through the standard search from A-Z
disks. If the file name and file type are not found on any of the accessed
disks, the default A is used.

For new sequential disk files defined with a record format other than unde
fined or fixed unblocked, the file mode number should be specified as 4; for
example, A4. Otherwise, the record format will default to undefined or
fixed.

File Characteristic Defaults

Most of the defaults for file characterstics (such as block size) that are used for
dynamically allocated files are set up at installation time and may be modified
for your site. Different defaults may be assigned to different units. The
IBM-supplied installation defaults are the same as those used when you omit
file characteristics on a file definition, as shown in Appendix H, "Consider
ations for Specifying RECFM, LRECL, and BLKSIZE" on page 445. Another
installation default, available only for dynamically allocated files, indicates the
number of records to allocate for a new DASD file. Under VM, this default is
equivalent to the XTENT option on the FILEDEF command. The IBM-supplied
default value under VM is 50. Under MVS, this default is used to calculate the
primary space, as explained under "Calculation of Primary, Secondary, and
Directory Space Under MVS" on page 170. The IBM-supplied default value
under MVS is 100.

In addition to the installation defaults, there are fixed defaults that cannot be
modified at installation time (but may be modified by means of a file definition).

Chapters. Performing Input/Output Operations 167

These are:

• The device for files directed to the standard I/O units. The default devices
are:

- ForVM:

— Standard input unit: TERMINAL

— Standard output unit{s) for error messages, WRITE, and PRINT state
ments: TERMINAL

— Standard output unit for PUNCH statement: PUNCH

- For MVS:

— Standard output unit{s) for error messages, WRITE, and PRINT state
ments: SYSOUT = A for batch, TERMINAL for TSO

The default devices for other units under VM. Under VM, the default device
for all other units is DISK.

Overriding File Characteristic Defaults
You can override certain defaults and supply additional characteristics for a
dynamically-allocated named file or temporary file by calling the FILEINF
service routine immediately before an OPEN statement for that file. For named
files, the FILE specifier on the OPEN statement must refer to an MVS data set
name or CMS file identifier. (OPEN statements for preconnected files do not
use information given by the FILEINF routine; nor do READ, WRITE, or PRINT
statements.) This section gives an overview of the routine; for more details
about the syntax, see VS FORTRAN Version 2 Language and Library Reference.

The syntax of the CALL statement used to call FILEINF is:

CALL FILEINF [{rcode [,parm-name, value, parm-name, value, ...])]

where rcode is an integer variable or array element in which the return code
from FILEINF is placed; and the parameters and associated values specify
certain file characteristics. For example, in the statement below, FRC is the
name of the integer variable for the return code, the parameter RECFM and
associated value F specify the record format as fixed, and the parameter LRECL
and associated value 80 specify the record length as 80.

CALL FILEINF (FRC, 'RECFM', 'F', 'LRECL', 80)

Figure 44 on page 169 shows the file characterstics you can specify and the
corresponding parameters on the CALL FILEINF statement. A value of 0 for an
integer-type parameter or a blank value for a character-type parameter causes
the parameter to be ignored.

168 VS FORTRAN Version 2 Programming Guide

File Characteristic

VM and MVS:

Record format

Logical record length

Block size

Number of records

MVS Only:

Primary space in cylinders

Primary space in tracks

Primary space in blocks

Secondary space

Number of 256-byte records in partitioned-data-set directory

Type of device (unit address such as 123, generic name such
as 3380, or esoteric name such as SYSDA)

Maximum number of volumes an output data set requires

Volume serial number

Multiple volume serial numbers

Parameter on

CALL RLEINF

RECFM

LRECL

BLKSIZE

MAXREC

CYL

IRK

MAXBLK

SECOND

OIR

DEVICE

VOLCNT

VOLSER

VOLSERS

Figure 44. Parameters on CALL FILEINF

Information given on the CALL FILEINF statement is used only for the first fol
lowing OPEN or INQUIRE statement that requires dynamic allocation. {The
INQUIRE statement is under "Gathering Information About Dynamically Allo
cated Files" on page 171.) The parameters on the CALL FILEINF statement
become ineffective after the next OPEN or INQUIRE statement is issued, regard
less of whether the information given is used. That is, the information on the
CALL FILEINF cannot be used for subsequent OPEN or INQUIRE statements.

If you code CALL FILEINF without any parameters, as follows:

CALL FILEINF

the values are reset to the installation defaults. This is necessary only if a
CALL FILEINF statement with parameters has been processed (for example, in
a main program that calls your routine) and you want to nullify the values it set.

If an error is detected in a CALL FILEINF statement, an error is also detected
for the following OPEN or INQUIRE statement if the information on the CALL
FILEINF statement applies, and the OPEN or INQUIRE statement is ignored.

Considerations for VOLSER(S): If you omit the VOLSER or VOLSERS parameter
for a file, VS FORTRAN uses the catalog to locate the data set. If the data set is
not cataloged and you specified STATUS ='NEW or STATUS ='UNKNOWN' on
the OPEN statement, a new data set is created on a public or storage volume
assigned by the system and is cataloged. If the data set is not cataloged and
you specified STATUS='OLD', an error is detected. If you specified
STATUS ='SCRATCH', a temporary data set is created on a public or storage
volume assigned by the system and is not cataloged.

Ifyou do code the VOLSER or VOLSERS parameter. VS FORTRAN attempts to
locate the file on the specified volume. (Ifyou specify multiple volumes,
VS FORTRAN attempts to locate the file only on the first one; however, all the
volumes are used for allocation.)

Chapters. Performing Input/Output Operations 169

VS FORTRAN attempts to locate the file only on the first one; however, all the
volumes are used for allocation.)

If the file is found on the volume, VS FORTRAN refers to it and the STATUS
specifier on the OPEN statement operates as usual.

• If the file is not found on the volume, the following processing occurs,
regardless of the OCSTATUS \ NOOCSTATUS run-time option:

- Ifyou specified STATUS ='OLD', an error is detected.

- If you specified STATUS = 'NEW or STATUS = 'UNKNOWN' and the file is
not in the catalog, a new file is created on the specified volume and is
cataloged.

- If you specified STATUS = 'NEW or STATUS = 'UNKNOWN' and the file is
in the catalog, a new file is created on the specified volume and is not
cataloged.

Caution: Be aware that in this case, you will have two files with the
same name, which is strongly discouraged. Later, if you intend to use
the new data set but do not specify the volume, you will inadvertently
access the cataloged file instead.

- If you specified STATUS ='SCRATCH', a temporary data set is created
on the specified volume and is not cataloged.

Considerations for RECFM, LRECL, and BLKSIZE: Refer to Appendix H, "Con
siderations for Specifying RECFM, LRECL, and BLKSIZE" on page 445 for infor
mation on how these values are processed and the defaults that are supplied.

Considerations for MAXREC: Under VM. MAXREC corresponds to the XTENT
option of the FILEDEF command. Under MVS, MAXREC is used to calculate
space, as described in the next section.

Calculation off Primary, Secondary, and Directory Space Under MVS
To specify primary space for a new file, use the CYL, TRK, MAXBLK, or
MAXREC parameter on CALL FILEINF.

The CYL and TRK parameters are equivalent to the CYL and TRK subparame-
ters on a DO statement. The MAXBLK parameter is equivalent to the
blocklength subparameter on a DD statement. In addition, ifyou specify
MAXBLK, the value specified or defaulted for BLKSIZE becomes the block
length.

If you specify the numberof records for a file, either by coding the MAXREC
parameter or by accepting the installation default for numberof records, VS
FORTRAN allocates primary space in blocks. Using the information from the
MAXREC, RECFM, LRECL, and BLKSIZE parameters on the CALL FILEINF state
ment, or from the installation defaults, VS FORTRAN uses the formulas in
Figure 45 to calculate the primary space. The formulas use the following JCL
SPACE parameter options:

Option Meaning

Block length The average block length of the data.

Primary Quantity The numberof blocks of data that can be contained in the
data set.

170 VS FORTRAN Version 2 Programming Guide

RECFM Formulas for Space

F, FA, V, or block length = record length
VA

primary quantity = number of records

FB, FBA, VB, block length = block size
or VBA

primary quantity = (number of records * record length) / block size
U, UA, VS, or block length = block size
VBS

primary quantity = number of records

Figure 45. Formulas for Primary Space under MVS

To specify secondary space, use the SECOND parameter of CALL FILEINF. If
you do not code the SECOND parameter, no secondary space Is allocated.

To specify directory space, use the DIR parameter. If you omit the DIR param
eter, and the FILE specifier on the OPEN statement refers to a member of a new
partitioned data set, a value of 5 is used.

Gathering Information About Dynamically Allocated Files
To inquire about a dynamically allocated file by file name, supply the CMS file
identifier or MVS data set name, preceded by a slash {/), on the FILE specifler.
Examples are:

Under HVS:

INQUIRE (FILE=7PR061.F0RTDATA.RATES', EXIST=EX)

INQUIRE (FILE='/HILLER.MYPDS.ACCOUNT(ABC)', OPENED=OPN)

Under VH:

INQUIRE (FILE='/DEPTJ76 OATAFILE', ACCESS=ACC)

INQUIRE (FILE='/OURFILE MACLIB A(OURMBR)', OPENED=OPN)

The form INQUIRE by unit is the same as for nondynamically allocated files.
For example:

INQUIRE (UNIT=9, other specifiers)

Likewise, the form INQUIRE by unnamed file is the same as for nondynamically
allocated files; you do not code a preceding slash. For example:

INQUIRE (FILE='FT09F001', other specifiers)

INQUIRE (UNIT=9, FILE=' other specifiers)

Under VM. the form shown below for inquiring by unnamed file is also allowed.
However, you can use this form only to determine file existence.

INQUIRE (FILE='/FILE FTnnF001 fm', EXIST=EX)

Chapter 6. Performing Input/Output Operations 171

MVS Notes

• If the file is cataloged or is on the speciFied volume. VS FORTRAN refers to
that file; the file may or may not exist to VS FORTRAN.

• If the file is not cataloged or is not on the specified volume, it is considered
not to exist.

VM Notes

• You may omit the Hie mode from the file name, in which case the default A
Is used. If the file can't be found on the Adisk, it is considered not to exist.

If you specified *as the file mode, VS FORTRAN refers to the first file
having the file name and file type that is found on any disk through the
standard search from A-Z disks. If no such file is found, the file is consid
ered not to exist.

• If you specify *as the file mode on the OPEN statement, the NAME specifier
on the INQUIRE statement returns the actual file mode of the file.

From a VS FORTRAN point of view, the MVS data set name or CMS file identi
fier specified on a file definition is logically different from the name you specify
on the FILE specifier of the INQUIRE statement, even if the names are the same
and both point to the same physical file. For instance, in the following example,
the name on the INQUIRE statement is not checked against the name in the first
OPEN statement even though DD1 refers to the same physical file; therefore,
the variable OPN will contain the value false. (However, if the MVS data set
name or CMS file identifier were coded on the OPEN statement, the value
would be true.)

Under MVS:

//DDI DD DSN=MYFILE.FORT,DISP=OLD

OPEN (1, FILE='DD1')

INQUIRE (FILE=7MYFILE.F0RT', OPENED=OPN)

Under VM:

FILEDEF DDI DISK MYFILE FORT A1

OPEN (1, FILE='DD1')

INQUIRE (FILE=7MYFILE FORT Al', OPENED=OPN)

^72 VS FORTRAN Version 2 Programming Guide

Referring to Values Set by the FILEINF Routine
The INQUIRE statement can refer to the values set by the following parameters
specified on the CALL FILEINF statement:

RECFM

- DEVICE

• VOLSER

VOLSERS

For example, in Figure 46, the first CALL FILEINF statement sets the RECFM
value to FB. The INQUIRE statement then checks whether the file named

DEPTJ76 DATAFILE exists and whether it can be connected for formatted I/O.

VS FORTRAN uses the RECFM value to determine the appropriate value for the
FORMATTED specifier. For instance, if RECFM = VS, 'NO' is returned for the
FORMATTED specifier because RECFM =VS is valid only for unformatted files.
(The RECFM value is used in the same way for the UNFORMATTED specifier.)
The second CALL FILEINF statement resets RECFM to FB (because processing
of the INQUIRE statement caused it to become ineffective) and also sets values
for LRECL, BLKSIZE, and MAXREC.

* Set record format
*

CALL FILEIHF(IRET,'RECFir,'FB')
*

* Check whether the file DEPTJ76 DATAFILE exists and whether it
* can be connected for fonnatted 1/0
*

INQUIRE {FILE=7DEPTJ76 DATAFILE EXIST=EXT,FCRHATTED=FHT)
*

* If the file exists, connect it as old
*

IF (EXT) THEN
OPEN (1, FILE=7DEPTJ76 DATAFILE STATUS='OLD')

*

* Otherwise, connect it as new:
*

* Set record format, logical record length, block size, and number of
* records

ELSE

CALL FILEINF(IRET,'RECFM',*FB','LRECL', 80,'BLKSIZE',3200,
2 'HAXREC',500)

*

* If the file can be connected for fonnatted I/O, connect it that way
*

IF (FHT .EQ. 'YES') THEN
OPEN (1, FILE='/DEPTJ76 DATAFILE *', STATUS='NEW,

2 FORH='FORMATTED')
*

* Otherwise, connect it for unformatted I/O
*

ELSE

OPEN (1, FILE='/0EPTJ76 DATAFILE STATUS='HEW,
2 FORH='UNFORMATTED')

ENDIF

ENDIF

Figure 46. Example of Using the FILEINF Routine with INQUIRE and OPEN Statements

Chapters. Performing Input/Output Operations 173

Considerations for VOLSER(S): If you omit the VOLSER or VOLSERS parameter
for a file, VS FORTRAN uses the catalog to locate the data set. If the data set Is
cataloged. VS FORTRAN refers to It. If the data set Is not cataloged, the data
set Is considered not to exist.

If you do code the VOLSER or VOLSERS parameter. VS FORTRAN attempts to
locate the file on the specified volume. (If you specify multiple volumes. VS
FORTRAN attempts to locate the file only on the first one; however, all the
volumes are used for allocation.) If the file Is found on the volume. VS
FORTRAN refers to It. If the file Is not found, the file Is considered not to exist.

Monitoring Errors
Two specifiers that are available with most I/O statements that allow for error
checking are lOSTAT = /os and ERR= s//.

When you use the lOSTAT specifier, ios Is set to one of the following values
after the I/O statement has been processed:

Zero. If no transmission error was detected

Positive, If an error was detected

Negative, at sequential end-of-file

•» VSAM return and reason codes, for a VSAM file

The ERR specifier allows you to branch to a section of code beginning with the
FORTRAN statement labeled sti when an error occurs. The section of code that

you branch to could close any other open files and display Information useful In
debugging, such as accumulated totals or current values in selected data items.

Not all VS FORTRAN Version 2 errors set the lOSTAT field, nor do they all
branch to the ERR label. For a complete list, see the figure on option table
defaults In VS FORTRAN Version 2 Language and Library Reference.

Extended error handling Is also available. For a description of this aid, see
"Extended Error Handling" on page 110.

Considerations for Specific Access Methods
This section gives an overview of the access methods used by FORTRAN and
explains coding of the I/O statements that Is specific to each access method.

Input/Output Operations for Sequential Access
In a file connected for sequential access, records are read or written consec
utively, from the first record In the file to the last.

174 VS FORTRAN Version 2 Programming Guide

Reading Data

Writing Data

The types of physical files you can connect for sequential access are:

Non-VSAM files (For example, files on tape, terminals, printers, card
readers, and punches are always accessed sequentially. In addition, many
disk files are accessed sequentially. An exception is a disk file created by
a language other than FORTRAN and that was not written sequentially.)

VSAM entry-sequenced data sets

VSAM relative-record data sets

In many of the above types of files, the records may vary in length.

The following sections discuss special processing that applies to files con
nected for sequential access.

On the READ statement, the optional END specifier is available to branch to
another statement in the same program when the endfile record is encount
ered. For example, after the following READ statement is processed and the
end of file is reached, control transfers to the statement labeled 200.

READ (*, *, END=2Q0) R4VAR, I2ARR, CH4

You can use the END specifier on all forms of the READ statement, except for
asynchronous I/O.

When you write a record to a file connected for sequential access, that record
becomes the last record in the file. If any records previously existed after this
last written record, they are lost.

"Repositioning Files" on page 176 explains how to extend a file by using the
BACKSPACE statement together with the WRITE statement.

To write an endfile record, you use the ENDFILE statement. The specifiers for
the ENDFILE statement are shown in Figure 47.

UNIT = un

ERR = sf/

lOSTAT = ios

Figure 47. ENDFILE Statement Specifiers

For example, the following ENDFILE statement:

ENDFILE (UNIT=10, IOSTAT=INT, ERR=300)

performs these actions:

Writes an endfile record on the file connected to unit 10.

Returns a positive or zero value in INT to indicate failure or success.

Transfers control to statement label 300 if an error occurs.

Chapters. Performing Input/Output Operations 175

After you use the ENDFILE statement, the endfile record becomes the last
record in the file. The file remains connected to the unit. Ifyou are processing _
a set of subfiles, and you write additional records after the ENDFILE statement,
the records are written to the next subfile. Subfiles are discussed under "Proc
essing Subfiles" on page 177.

Repositioning Files
To reposition a file to the beginning of its first record, you use the REWIND
statement. When processing a set of subfiles, the REWIND statement repo
sitions the file to the beginning of the first subfile.

The specifiers for the REWIND statement are shown in Figure 48.

UNIT = un

ERR = sf/

IOSTAT =/OS

Figure 48. REWIND Statement Specifiers

The following REWIND statement:

REWIND (UNIT=11, IOSTAT=INT, ERR=3O0)

performs these actions:

Positions the file connected to unit 11 to its beginning point.

• Returns a positive or a zero value in INT to indicate failure or success.

*- Transfers control to statement label 300 if an error occurs.

After you use the REWIND statement, the file remains connected to the unit.

To reposition a file to the beginning of the previous record, you use the BACK
SPACE statement.

Note: The BACKSPACE statement must not be used with list-directed or
NAMELIST formatting. It also must not be used for internal files.

The BACKSPACE statement specifiers are the same as those shown in
Figure 48.

The following example shows how to use the BACKSPACE statement to
reprocess a record that was just written. The first READ statement retrieves
the record from the file. The BACKSPACE statement positions the file at the
beginning of the record just retrieved. The second READ statement retrieves
the same record again for reprocessing.

READ (UNIT=11, FMT=500) A, B
BACKSPACE (UNIT=11)
READ (UNIT=11, FMT=600) C, D

The following example shows how to use the BACKSPACE statement to replace
a record in a file on tape or DASD. The READ statement retrieves the record to
be replaced. The BACKSPACE statement positions the file at the beginning of
the record just retrieved. The WRITE statement writes the new record. After

176 VS FORTRAN Version 2 Programming Guide

this WRITE is processed, no records exist in the file following this record. Any
records that did exist are lost.

READ (UNIT=11, FMT=500) A, B
BACKSPACE (UNIT=11)
WRITE (UNIT=11, FMT=500) A, B

A file becomes positioned after the endfile record when you use an ENDFILE
statement or use a READ statement that encounters the endfile record. When

the file is so positioned, you must take the endfile record into account when
backspacing. A single BACKSPACE statement positions the file only to the
beginning of the endfile record. At this point, you can extend the file by using a
WRITE statement. For example:

READ (8, END=30) A, B, C

30 BACKSPACE (8)
WRITE (8) D, E, F

If you want to position the file to the beginning of the last record containing
data, you must use another BACKSPACE statement, as shown below:

READ (8, END=30) A, B, C

30 BACKSPACE (8)
BACKSPACE (8)
WRITE (8) D, E, F

In the above example, the WRITE statement replaces the last record containing
data.

Gathering Information About Files
On the INQUIRE statement, the SEQUENTIAL specifier is available to find out
whether a file can be connected for sequential access. The characteristics that
determine whether a file can be connected for sequential access are shown in
Figure 41 on page 163.

Processing Subfiles
An unnamed file connected for sequential access can be composed of subfiles.

Do not confuse a set of subfiles with a set of concatenated data sets under

MVS. In either case, FORTRAN treats each set as a single file. However,
whereas with concatenated data sets, you do not need to code anything special
when writing your program, with subfiles, you do.

To begin with, each subfile must have a separate file definition. The file defi
nition for the first subfile must have the ddname FTnnFOOl, the file definition for
the second subfile must have the ddname FTnnF002, and so on.

To read or write data to the first subfile, you use READ or WRITE statements in
the normal manner.

To write data to the second subfile, you use an ENDFILE and a WRITE state
ment. For example:

WRITE (8) A, B, C
ENDFILE (8)
WRITE (8) D, E, F

Chapters. Performing Input/Output Operations 177

Note that the ENDFILE statement only writes an endfile record and does not
position the file to the next subfile. It is the WRITE statement that positions the
file to the next subfile (see Figure 49 on page 178).

Subfile at Which

File Is Positioned

Statements Before Statement Subfile Acted On

WRITE (8) A, B, C 001 001
ENDFILE (8) 001 001
WRITE (8) A, B, C 001 002

Figure 49. The WRITE Statement Positions the File to the Next Subfile

To read data from the second subfile, you must first read through all the
records in the first subfile. When the endfile record is encountered, control
passes to the statement indicated by the END specifier. Now, if you use
another READ statement, you will read data from the second subfile. For
example:

10 READ (8, EN0=20) A, B, C

GO TO 10

20 REAO (8, END=30) A, B, C

The second READ statement positions the file to the second subfile and reads
data from it.

To read from and write to subsequent subfiles, you follow the same procedures.

To reposition the file to the beginning of the first subfile, you can use a REWIND
statement.

To determine which subfile the file is positioned to, you can use the OPENED
specifier on the INQUIRE statement. On the INQUIRE statement, you must code
the ddname of the subfile in the FILE specifier. Figure 50 on page 179 shows,
for a sample program, how the change in file position affects the value
assigned to the variable given in the OPENED specifier.

178 VS FORTRAN Version 2 Programming Guide

Statements

111

C

10

222

C

20

333

C

30

OPEN (8)
READ (8, FHT=100, END=10) A
GO TO 111

CONTINUE

READ (8, FHT=10O, END=20) 8
GO TO 222

CONTINUE

READ (8, FI1T=100, END-30) C
GO TO 333

CONTINUE

INQUIRE (FILE='FT08F00r, 0PENED=0PN1)
INQUIRE (FILE='FT08F002', 0PENED=0PH2)
INQUIRE (FILE='FT08F003', 0PENED=0PN3)
INQUIRE (FILE='FT08F004', 0PENED=0PN4)

REWIND (UNIT=8)

INQUIRE (FILE='FT08F00r, 0PENED=0PN5)
INQUIRE (FILE='FT08F002', 0PENED=0PN5)
INQUIRE (FILE='FT08F003', 0PENED=0PH7)
INQUIRE (FILE=*FT08F004', 0PENED=0PN8)

Subfile at Whicli

File Is Positioned

001

002

003

003

003

003

003

001

001

001

001

001

Value Returned

for OPNn

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

FALSE

FALSE

Figure 50. Values Returned for OPENED When You Code FILE ='FTnnFmmm'

Finally, ifyou have read or written data beyond the first subfile during the
current connection, you cannot delete the file. However, ifyou attempt to do
so, an error is detected and the file is disconnected as though STATUS = KEEP
were specified. If you have not read or written data beyond the first subfile,
only the first subfile is deleted and no error is detected.

Forexample, in the code shown in Figure 51, an error is detected for the first
CLOSE statement because data has been read from the second subfile.
However the second CLOSE statement causes the first subfile to be deleted and
no error is detected.

Statements

Subfile

Acted On

OPEN (8) 001
5 READ (8, •(219)', END=10) I, J 001

GO TO 5

10 READ (8, '(219)') 1, J 002
CLOSE (8, STATUS '̂DELETE')

OPEN (8) 001
READ (8, '(219)', END=20) I, J 001

CLOSE (8, STATUS='DELETE")

Result

Error

First subfile deleted

Figure 51. Result ofAttempting to Delete ASet ofSubfiles for which Deletion Is Not
Allowed

Chapters. Performing Input/Output Operations 179

Note that when the first subfile is deleted, a subsequent INQUIRE statement
inquiring about the existence of FTnnFOOl will indicate that it does not exist.
However, if the other subfiles existed before the CLOSE statement was proc-
essed, subsequent INQUIRE statements for these files will indicate that they do
exist.

Input/Output Operations for Direct Access
Records in a file connected for direct access are arranged in the file according
to their relative record numbers, which you specify when you write the records.
All records are the same size and each record occupies a predefined position
in the file, determined by its relative record number. You can read and write
the records in any order. You cannot delete records, but you can replace them.
When you replace a record, you do not affect any other records in the file, as
you would with sequential access.

The types of physical files you can connect for direct access are:

Non-VSAM disk files with fixed-length unblocked records
VSAM relative-record data sets

If the file has an endfile record (any file created by a FORTRAN program has an
endfile record), the endfile record is not considered to be part of the file when
the file is connected for direct access.

The following sections discuss special processing that applies to files con
nected for direct access.

Connecting Files
To connect a file for direct access, you must use an OPEN statement. In the
OPEN statement, you must specify RECL = rc/, where rcl is the record length.
Measure the length in characters for formatted records and in bytes for unfor
matted records.

The OPEN statement may connect an existing file or create a new file. When a
new file is created, dummy records are written throughout the space allocated
for the file. The dummy records contain X'FF' in the first position and X'OO' in
the remaining positions.

Reading and Writing Data
On the READ and WRITE statements, you must specify REC = rec, where rec is
the relative record number. For the first record, this number is 1. Following is
an example of a READ statement that retrieves record number 28.

READ (UNIT=14, REC=28) A, B, C

When reading or writing formatted records, you can use the slash {/) format
code, which allows data transfer to or from multiple records. In this case, data
transfers to or from the records n, n + ^, and so on, where n is the record

number given in the REC specifier.

180 VS FORTRAN Version 2 Programming Guide

Gathering information About Fiies
To find out whether a file can be connected for direct access, you can use the

>^11^ DIRECT specifier on the INQUIRE statement. The characteristics that determine
whether a file can be connected for direct access are shown In Figure 41 on
page 163.

Other specifiers on the INQUIRE statement that are unique to direct access are
the RECL and NEXTREC specifiers. The RECL specifier supplies the length of
the records. The NEXTREC specifier supplies the record number of the next
record, that Is, the record following the one just read or written. Note that more
than one record may have been read or written as a result of using the slash (/)
format code. In this case, the record number returned Is not n + ^, where n Is
the number given In the REC specifier.

Input/Output Operations for Keyed Access
In a file connected for keyed access, records are identified by a field, called a
primary key, that contains a unique value, such as an employee number.

In addition, the records In the file may be Identified by other fields, called alter
nate keys, whose values need not be unique, but can be restricted to be unique
If necessary.

Each key Is In the same relative position In each record. For example, all the
records might have a primary key In positions 16 through 19 and an alternate
key In positions 1 through 3. The records can vary In length, but must be long
enough to contain the primary key and all alternate keys that are defined for
the file, regardless of whether your program refers to them.

You can directly retrieve a record anywhere In the file by referring to Its
primary key or one of Its alternate keys.

In addition, once you retrieve a record, you can retrieve other records, based
on the same key. In the sequential order of their key values.

Keyed access offers the flexibility of direct access with the additional flexibility
of being able to retrieve records based on specific fields. Moreover, because
you can Identify records by more than one key, you don't need to store multiple
copies of the same Information for different applications.

Only a VSAM key-sequenced data set (KSDS) can be connected for keyed
access. Before you can refer to a VSAM KSDS In your FORTRAN program, the
data set must be defined using the Access Method Services utility program.
When the data set Is defined, all of Its characteristics are specified. These
characteristics include the position and length of the primary and any alternate
keys, and whether the values for specific alternate keys must be unique. You
cannot change any of these characteristics In your program.

The following sections explain special processing that applies to files connected
for keyed access.

Chapter 6. Performing Input/Output Operations 181

Connecting Files
To connect a file for keyed access, you must use the OPEN statement.

On the OPEN statement, you code ACCESS='KEYED' to specify that the file is
to be connected for keyed access.

To indicate the kind of processing you will do with the file, you code the
ACTION specifier, as shown in Figure 52. If you omit the ACTION specifier, the
default is ACTION ='READ'.

If you want to: You must specify:

Load new records into a file that doesn't ACTION ='WRITE'

exist, that is, an empty VSAM KSDS

Write new records onto the end of an ACTION = 'WRITE' or

existing file ACTION= 'READWRITE* (" Loading
New Records Into a File" on

page 183 explains when to
specify each of these)

Retrieve records ACTION = 'READ'

Just update or both update and retrieve ACTION ='READWRITE'
records

Figure 52. Coding the ACTION Specifier on the OPEN Statement

In the KEYS specifier, you give the starting and ending positions of the keys you
will use during the current connection. If you are loading new records into a
file {ACTION ='WRITE'), you can specify only the primary key. However for
retrieval and update operations (ACTION ='READ' or ACTION ='READWRITE'),
you can specify any key or keys; you don't have to specify the primary key.
You also don't have to specify the keys in any particular order. If you want to
use only one key (for example, when loading new records into a file), you can
omit the KEYS specifier.

In the example below, one key starts at position 16 of the record and ends at
position 19. Another key starts at position 1 and ends at position 3.

OPEN (8, ACCESS='KEYED', ACTION='READWRITE', KEYS=(16:19, 1:3))

For files that are password-protected, you must specify a password with the
PASSWORD specifier. If you specify ACTION = 'READ', the file's read password
is required; otherwise, its update password is required.

For each key that you specify in the KEYS specifier of your OPEN statement,
you must supply a separate file definition. Each file definition refers to a VSAM
path or base cluster that represents one of the keys. (For information about
VSAM paths and base clusters, see Chapter 11, "Using VSAM with VS
FORTRAN Version 2" on page 299.)

The ddnames for the file definitions must be of a special form. For a named
file, you add the suffix 1. 2, 3, and so on to the ddname for each additional key.
For example, if the name of the file is NEWDATA and you specify one key, the
ddname for its file definition must be NEWDATA. If you specify two additional
keys, the ddnames for their file definitions must be NEWDATA1 and NEWDATA2.

182 VS FORTRAN Version 2 Programming Guide

O

For an unnamed file, ifyou specify one key, tlie the ddname of its file definition
must be FTnnKOI, where nn is the 2-digit unit number. Ifyou specify additional
keys, the ddnames of their file definitions must be FTn/iK02, FT/7/7K03, and so
on.

Loading New Records Into a File
Loading new records means writing new records into the file in ascending col
lating sequence by the primary key value. Ifyou have a file that doesn't exist,
that is, an empty VSAM KSDS, you must load new records into it before you
can do any other processing. (This may be only one record.) If you have an
existing file, you can also load new records onto the end of it. In either case,
you must specify ACTION ='WRITE' on the OPEN statement. With
ACTION='WRITE', loading the new records is the only operation you can
perform during the current connection.

You can also write new records onto the end of an existing file by using
ACTION = 'READWRITE'. If you specify ACTION = 'READWRITE', you do not have
to ensure that the records are in ascending sequence. However, the proc
essing time will be greater because VSAM must order the records.

In all of the above cases, you write the records by using a WRITE statement for
each record. (If you are writing formatted records, you cannot use the slash (/)
format code to advance to the next record.)

The DUPKEY specifier on the WRITE statement allows you to transfer control to
another statement when a key value duplicates one that already exists in
another record. If you omit the DUPKEY specifier, control passes to the state
ment indicated by the ERR specifier, and the integer variable or array element
specified by the lOSTAT specifier, if any, is given the value 135. If you also omit
the ERR specifier, an error is detected.

Below is a a sample program that loads records. The records contain three
fields, to which data is written from the variables DEPTN, NAM, and EMPN. The
third field, which occupies positions 16 through 19, is the key given in the KEYS
specifier of the OPEN statement. Therefore, in order for the loading to complete
successfully, the records must be supplied in ascending order based on the
value contained in EMPN. If a key value duplicates one that already exists in
the file, control transfers to statement 40.

INTEGER*4 EMPN

CHARACTER*3 DEPTN

CHARACTER*12 NAM

OPEN (8, ACCESS='KEYED', ACTION='WRITE', KEYS=(16:19))
10 READ (1, FMT=99, END=20) NAM, EMPN, DEPTN

WRITE (8, FMT=98, DUPKEY=40) DEPTN, NAM, EMPN
GO TO 10

20 CLOSE (8)

98 FORMAT (A3, A12, 14.4)
99 FORMAT (A12, 14, A3)

Chapter 6. Performing Input/Output Operations 183

Reading Data
To retrieve records, you use a READ statement for each record. {Ifyou are
reading formatted records, you cannot use the slash (/) format code to advance
to the next record.) Before you can successfully retrieve records from a file, '
the file must have been loaded.

On the OPEN statement, you must specify ACTION ='READ' (the default) or
ACTION = 'READWRITE'. If you don't intend to update the file, specify
ACTION ='READ'.

If you specify multiple keys in the KEYS specifier of the OPEN statement, you
indicate the key to be used for the retrieval by coding the KEYID specifier on
the READ statement. In the KEYID specifier, you code the relative position that
the key occupies in the list of keys given in the KEYS specifier. For example, if
you code the following OPEN statement:

OPEN (8, ACCESS='KEYED', ACTION='READ', KEYS=(16:19, 1:3))

and want to retrieve a record based on the second key given in the KEYS
specifier (that is, the key in positions 1 through 3 of the record), you specify
KEYID = 2 on your READ statement.

The key that you use in a particular I/O statement is called the key of reference.
The key of reference remains the same for all subsequent I/O operations on the
file until you change it by using another READ statement with the KEYID
specifier.

While the file is connected for keyed access, you can retrieve a record either
directly or sequentially. For direct retrieval, you specify a search argument that
is compared with key values in the file's records in order to find the record. f]
The record can be anywhere in the file. To specify the search argument, you
use the KEY, KEYGE. or KEYGT specifier. You cannot use more than one of
these on a single READ statement.

To retrieve a record with a key value that identically matches your search argu
ment, use the KEY specifier. For example, assuming that the key of reference
is three characters long, if you specify KEY = 'D51' the first record encountered

whose key contains the value D51 will be retrieved. You can also specify a
search argument that is shorter than the key value. In this case, the leading
portion of the key value in the record must match the search argument. For
example, assuming that the key of reference has a length greater than two. if
you specify KEY = 'D5'. the first record encountered whose key value begins
with D5 will be retrieved.

The KEYGE specifier allows you to retrieve the first record whose key value is
equal to or greater than your search argument. If the file contains a record
whose key value is identical, the first such record is retrieved. If not, the first
record with the next greater key value is retrieved. If your search argument is
shorter than the key, the record retrieved is the first one in which the leading
portion of the key value is equal to or greater than your search argument.

The KEYGT specifier allows you to retrieve the first record whose key value is
greater than your search argument. If the key argument is shorter than the key,
the record retrieved is the first one in which the leading portion of the key value
is greater than your search argument.

184 VS FORTRAN Version 2 Programming Guide

Note that for the purpose of comparing key values, the data, regardless of
whether you transferred it from character or noncharacter data items, is used in
its internal representation (with no editing or conversion) and is interpreted as
a string of characters. The value of that string of characters is dependent upon
the internal representation of any noncharacter data. Therefore, when you use
noncharacter data to form a key in a record, two key values may not have the
same relationship to each other when compared as keys as they do when their
numeric values are compared. For example, if the key is an integer field in the
record, a value of -1 is interpreted as a greater key value than 1.

To handle the situation when no record in the file satisfies the search argument,

you can code the NOTFOUND specifier, which allows you to branch to another
statement when there is no record that satisfies your search criterion.

For sequential retrieval, you do not specify a search argument on the READ
statement: the key value of the record previously read or updated is used as
the starting point and the next record, in increasing sequence of the whole key
value, is obtained. The key of reference from the previous I/O statement
remains the key of reference for the sequential retrieval.

If the file was just connected, sequential retrieval begins with the record with
the lowest key value, using as the key of reference the first of the keys indi
cated by the OPEN statement.

For formatted records, the order of the key values is the order defined by the
EBCDIC collating sequence for the string of characters that forms the key.

For unformatted records, the order of the key values is the order defined by the
EBCDIC collating sequence for the data that forms the key on the external
medium.

If the key of reference is an alternate key that has duplicate values, you cannot
control the order in which records with the same key value are returned.

If you want to retrieve a group of records based on the same value in the key
or in the first part of the key (for example, a group of records whose 3-position
key values begin with D5), you can combine direct and sequential retrieval.
First, you use direct retrieval to obtain the first record. Then, you use a series
of sequential retrievals to obtain the rest of the records. On your sequential
READ statements, you provide the NOTFOUND specifier, which specifies the
label of a statement to which control transfers when there are no more records

whose leading key values are the same. An example of this scenario is:

OPEN (8, FORM='FORMATTED', ACCESS='KEYED', KEYS=(16:ig, 1:3))
1=1

READ (8, FMT=99, KEYGT='D5', KEYID=2, NOTFOUND=100)
DEPTNO(I), NAME(I), EMPNO(I)

30 1=1+1

READ (8, FMT=99, NOTFOUND=30O)
DEPTNO(I), NAME(I), EMPNO(I)

GO TO 30

The initial READ statement directly retrieves the first record with a value
greater than D5 in the first two positions of the key. If there is no such record,
control transfers to statement 100. Assuming that the direct retrieval obtains a
record whose key value begins with D6, the sequential READ statement in the

Chapters. Performing Input/Output Operations 185

Updating Files

loop that Is subsequently processed then retrieves all the remaining records
whose key values begin with D6. Because the NOTFOUND specifier is given,
control transfers to statement 300 when there are no more records whose key
values begin with D6.

If you don't use the NOTFOUND specifier, the logic of your program must deter
mine when to stop reading more records; otherwise, successive sequential
retrieval operations continue to the end of the file (that is, to the record with the
highest key). Control then passes to the statement indicated by the END
specifier.

You cannot code both the END and NOTFOUND specifiers on the same READ
statement.

You can update files by adding new records, replacing existing records, and
deleting records.

To update a file, you must specify ACTION = 'READWRITE' on the OPEN state
ment.

Adding New Records: To add records to a file, you use the WRITE statement.
You must use a single WRITE statement for each record. {If you are writing
formatted records, you cannot use the slash (/) format code to advance to the
next record.)

The key of reference is determined by the last direct retrieval. Or. if you have
not used a direct retrieval, the first key in the KEYS specifier of the OPEN state
ment is used.

The record will be inserted in the file following the record with a lower key
value and preceding the record with a higher key value. If the new record has
a key value that doesn't have to be unique and it duplicates the key value of
one or more existing records, the new record is written following the last record
having the same key value.

The DUPKEY specifier on the WRITE statement allows you to transfer control to
another statement when a key value that must be unique duplicates one that
already exists in another record. If you omit the DUPKEY specifier, control
passes to the statement indicated by the ERR specifier, and the integer variable
or array element specified by the lOSTAT specifier, if any, is given the value
135. If you also omit the ERR specifier, an error is detected.

Note that even for a key that you don't specify in the OPEN statement, a dupli
cate key value can be detected. For example, if your program refers only to
alternate keys and you write a record that causes a duplication of a primary key
value, this error is detected.

An example of the WRITE statement is:

WRITE (8, FMT=98, DUPKEY=40) DEPTN, NAM, EMPN

This statement writes data from variables DEPTN, NAM, and EMPN. In order for

the record to be written successfully, the value in the variable EMPN must not

be duplicated as a key value in the file. If it is, control transfers to statement
40.

186 VS FORTRAN Version 2 Programming Guide

Replacing Records: By using the REWRITE statement, you can replace a record
that you successfully retrieved by an Immediately preceding sequential or direct
READ statement. (You may not use any other I/O statements, such as BACK
SPACE or WRITE, for the same file between the READ and REWRITE state
ments.) You can change any data In the record just read except for the values
of the primary key and the key of reference.

The specifiers on the REWRITE statement are shown In Figure 53.

UNIT = un

ERR = sti

lOSTAT = /os

FMT = /mf

NUM = n

DUPKEY = sf/

Figure 53. REWRITE Statement Specifiers

When coding the REWRITE statement, you must specify In the output list each
Item, changed or unchanged, that Is to appear In the record.

The following statements demonstrate updating several records by means of a
READ, REWRITE sequence.

READ (8, 96, KEY='F10', KEYID=2) DEPTN, NAM, EMPN
40 REWRITE (8, 95) DEPTN, NAM, EMPN, 'M0VING TO BLDG. 10'

READ (8, 96, N0TF0UND=120) DEPTN, NAM, EMPN
GO TO 40

The direct retrieval obtains the Initial record for the key F10, and this record Is
then replaced.

The sequential retrieval then obtains the next record and control passes to the
REWRITE statement, which replaces It. This continues until no more records
with the key value of F10 are found, at which point control passes to statement
120, as indicated by the NOTFOUND specifier.

Deleting Records: By using the DELETE statement, you can erase a record that
was successfully retrieved by the Immediately preceding direct or sequential
READ operation. No other I/O operations, such as BACKSPACE or WRITE, may
be issued for the same file between the READ and DELETE statements.

The specifiers on DELETE statement are the same as those shown In Figure 54
on page 188.

Repositioning Files
To reposition a file, you can use the REWIND and BACKSPACE statements. You
must code ACTION ='READ' or ACTION ='READWRITE' on the OPEN statement.

By using the REWIND statement, you can position the the file to the record
having the lowest value for the key of reference; you can then use a sequential
READ statement to retrieve that record.

The specifiers on the REWIND statement are shown In Figure 54 on page 188.

Chapter 6. Performing Input/Output Operations 187

UNIT = un

ERR=sf/

IOSTAT =/OS

Figure 54. REWIND Statement Speclflers

By using one or more BACKSPACE statements, you can reestablish the position
of a file to a point prior to the current file position. You can then use a sequen
tial READ statement to retrieve the record at which the file is positioned.

The specifiers on the BACKSPACE statement are the same as those shown in
Figure 54.

If the key of reference has unique key values, the first BACKSPACE statement
following a READ, WRITE, or REWRITE statement positions the file to the begin
ning of the same record that was just read or written.

A BACKSPACE statement following a DELETE statement positions the file to the
beginning of the record with the next lower key value. Subsequent BACK
SPACE statements position the file to the beginning of the records with succes
sively lower key values.

If the key of reference has nonunique key values, the first BACKSPACE state
ment following a READ, WRITE, or REWRITE statement positions the file to the
first record with the same key value that appeared in the record that was just
read or written. A BACKSPACE statement following a DELETE statement that
deleted a record which was not the first record with that same key value, also
positions the file to the first record with that key value.

However, if the DELETE statement deleted the first record with a given key
value, then the BACKSPACE statement positions the file to the first record with
the next lower key value. Each subsequent BACKSPACE statement finds suc
cessively lower key values and positions the file to the beginning of the first
record with those different key values.

Therefore, when the key of reference has nonunique key values, a series of
BACKSPACE statements does not position the file to all of the records that
would be read with a series of sequential retrieval statements.

For example, a sequence of records in a file might be:

Record Key Value

n D47

n + 1 D47

n + 2 F10

n+3 F10

n+4 F10

188 VS FORTRAN Version 2 Programming Guide

Assume you have just read record n+4. Then, two consecutive backspaces
would position the file as follows:

Record Key Value

n + 2 F10 (first backspace)

n D47 (second backspace)

Because key value is not unique, backspacing causes movement through a
group of records to the first record of the group having a specific nonunique key
value, and not to the next previous record, as it would if the key were unique.

You may use BACKSPACE to locate the last record, that is, the record with the
highest key value in the file. First, you must position the file beyond the last
record. You can do this in one of two ways:

By using a sequential READ statement with the END specifier after having
already read the last record in the file. In this case, control will pass to the
statement indicated by the END specifier.

»- By using a direct READ statement with a KEYGE or KEYGT specifier which
specifies a search argument so large that no record in the file satisfies the
search criterion. In this case, control passes to the statement indicated by
the NOTFOUND specifier.

A BACKSPACE statement issued when the file is positioned beyond the last
record repositions the file to the beginning of the record with the highest key
value. (If there is more than one record with this key value, the file is posi
tioned to the first such record.) You can then perform a sequential retrieval to
read the record with the highest key value.

Issuing the BACKSPACE statement has no effect if the file is positioned at the
beginning of the first record in the file (such as after an OPEN or REWIND state
ment has been processed). It is not permitted if the previous retrieval or
update operation failed for any reason other than reaching the end of the file.

Gathering Information About Files
The specifiers on the INQUIRE statement that pertain to keyed access are:

KEYED

KEYID

KEYLENGTH

KEYSTART

KEYEND

LASTRECL

LASTKEY

The KEYED specifier allows you to inquire whether the file can be connected for
keyed access. The character variable or array element is set to YES ifthe file
is a VSAM KSDS, NO if the file is not a VSAM KSDS, and UNKNOWN if this
cannot be determined.

The KEYID specifier gives you the key of reference.

If you use the INQUIRE statement after you have connected the file, the
KEYLENGTH, KEYSTART, and KEYEND specifiers return information about the

Chapter 6. Performing Input/Output Operations 189

key of reference. The KEYLENGTH specifier gives you the length of the key, the
KEYSTART specifier gives you its beginning position, and the KEYEND specifier
gives you its ending position.

If you use the INQUIRE statement before connecting the file, KEYLENGTH,
KEYSTART, and KEYEND return information about the keys in the file referred to
by the file definition.

The LASTRECL specifier gives you the record length of the last record affected
by a BACKSPACE, DELETE, READ, REWRITE, or WRITE statement.

The LASTKEY specifier gives you the key of reference of the last record affected
by a BACKSPACE, DELETE, READ, REWRITE, or WRITE statement.

Considerations for Double-Byte Data
If your data is in a language, such as Japanese, that has double-byte charac
ters, you can read and write both formatted and unformatted data. For for
matted data, all types of external I/O are supported; You can use list-directed
formatting, use NAMELIST formatting, or specify your own format. However,
you cannot use internal I/O.

To ensure proper processing of formatted data, connect your file using the
OPEN statement, specifying CHAR = 'DBCS'. CHAR = 'DBCS' is required for the
following:

^ List-directed input that might have double-byte text in character constants.

NAMELIST input that contains double-byte text in character constants.

NAMELIST input with double-byte names for variables or arrays

•• Formatted I/O with run-time FORMAT statements

For unformatted data, the CHAR specifier has no effect because unformatted
data is transferred without conversion.

To enable double-byte character support for the error message unit, code an
OPEN statement for the unit, as follows. (Unit 6 is the IBM-supplied default for
the error message unit; if it is changed to a different number at your site,
specify that number.)

OPEN (UNIT=6, CHAR='DBCS')

In order for the data to be displayable or printable, the output device must have
double-byte processing capability. In addition, the double-byte portion of the
data must be enclosed by the shift-out character and the shift-in character. The
shift characters may be truncated by the assignment operation or the character
substring operation, resulting in an invalid double-byte data string. For the
assignment operation, you can ensure that the data is displayable or printable
by using the ASSIGNM service routine to preserve the balanced shift charac
ters. For information about the ASSIGNM service routine, see VS FORTRAN
Version 2 Language and Library Reference.

Note that I/O processing does not check whether your file contains valid
double-byte data. For information on valid double-byte data, see VS FORTRAN
Version 2 Language and Library Reference.

190 VS FORTRAN Version 2 Programming Guide

Ifyou need to check whether a connected file may contain double-byte charac
ters, use the INQUIRE statement with the CHAR specifer. If CHAR= 'DBCS' was
coded on the OPEN statement, the value DBCS is returned: otherwise, the value
NODBCS iis returned.

For files connected for keyed access, ifa primary or alternate key contains
double-byte data, the entire portion of the key that contains double-byte data,
including the shift codes, must be part of the key. Be aware that the shift codes
are processed as any other characters.

Following are some examples of I/O with double-byte data. For an example of
a compiler listing containing double-byte characters, see Appendix I, "Sample
Compiler Listing with Double-Byte Characters" on page 451. The syntax nota
tion is described under "Syntax Notation" on page iv.

Specifying Your Own Format with Double-Byte Data
If you run a program with these statements:

CHARACTER*15 MIXED_STUFF
CHARACTER*50 FMT

FORMAT (A50)
READ (1,10) FMT ! Read format specifier to be used for write

! FMT = (214,IX,'WHERE IS < F.R.E.D.' .S> ' ,A15)
I = 10

J = 15

MIXEDSTUFF = 'HOUSE<kk>'
OPEN (2,CHAR='DBCS')
WRITE (2,FMT) I,J,HIXED_STUFF

the following record is written:

10 15 WHERE IS <.F.R.E,D.'.S> HOUSE<kk>

List-Directed I/O with Double-Byte Data
If you run a program with these statements:

CHARACTERn2 STR

CHARACTER*6 STR1,STR2
I = 10

J = 15

STR = 'FR<.E.D. '.S> '
OPEN (10,CHAR='DBCS')
WRITE (10,*) I,J,STR
STRl = • <kkkk> '

STR2 = •A< .B>C'

WRITE (10,*) STRl STR2

The following records are written:

10 15 FR<.E.D.'.S>

<kkkk> A<.B>C

Chapter 6. Performing Input/Output Operations 191

NAMELIST I/O with Double-Byte Data
Ifyour Input data Is the following:

&NAM1 <kk> = ' < .A> < .B> B = 'AB< .C. '.S> ' &END

and you run a program with these statements:

CHARACTER*10 <kk>,B
NAMELIST /NAMl/ <kk>,B
OPEN (10, CHAR='DBCS')
READ (10,NAMl)

the variables are set to the values shown:

Variable

<kk>

B

Value

<.A> <.B>bb

AB<.C/.S>

192 VS FORTRAN Version 2 Programming Guide

^ Chapter 7. Associating Data

In FORTRAN, there are two ways to share data; by passing arguments between
the programs and by using common data areas (areas that can be shared by
more than one program).

Passing Arguments —You can pass data values between a calling program
and a called program through the use of paired lists of actual and dummy
arguments. The paired lists must contain the same number of items, and
be in the same order; in addition, items paired with each other must be of
the same type and length. You can use such paired lists in both subroutine
and function subprograms.

•- Using Common Storage — You can use the COMMON statement to specify
shared data storage areas for two or more program units, and to name the
variables and arrays occupying the shared area.

This chapter discusses both of these ways to share data. It also discusses the
intercompilation analysis feature (ICA), which VS FORTRAN provides to help
you verify that passed arguments have been specified correctly.

Passing Arguments to Subprograms
You can use actual and dummy arguments to pass data between a calling
program unit and a subprogram. For example, in the following CALL statement:

CALL HAXNUM(PMAX,P1,P2)

PMAX, PI. and P2 are actual arguments; they contain values you want to make
available to the subroutine subprogram.

The MAXNUM subprogram, in order to make the values available, must contain
a matching list of dummy arguments:

SUBROUTINE MAXNUM(XMAX,X1,X2)

Dummy arguments of subroutine subprogram MAXNUM are XMAX, X1, and X2.

When the CALL statement is run, the actual arguments are associated with the
matching dummy arguments:

PMAX is associated with XMAX
P1 is associated with X1

P2 is associated with X2

When control returns to the calling program, the current values in XMAX, X1,
and X2 are also the current values of PMAX, P1, and P2 in the calling program.

General Rules for Arguments
You must define dummy arguments to correspond in number, order, and type
with the actual arguments.

Chapter 7. Associating Data 193

Actual arguments are passed by reference; if you alter the value ofan argu
ment in the subprogram, you're altering the value in the calling program as
well.

If you define an actual argument as an array, then the size of your paired
dummy array must not exceed the size ofthe actual array.

If you define a dummy argument as an array, you must define the corre
sponding actual argument as an array or an array element.

If you define the actual argument as an array element, your paired dummy
array must not be larger than the part of the actual array that follows and
includes the actual array element you specify.

If your subprogram assigns a value to a dummy argument, you must ensure
that its paired actual argument is a variable, an array element, or an array.
Never specify a constant or expression as an actual argument, unless you are
certain that the corresponding dummy argument is not assigned a value in the
subprogram. The intercompilation analysis feature will detect this type oferror.

Your subprograms should not assign new values to dummy arguments that are
associated with either other dummy arguments in the subprogram or variables
in the common area. For example, if you include the following elements in the
calling program:

COMMON B

CALL DERIV (A, B, A)

and you define the subprogram DERIV as:

SUBROUTINE DERIV (X,Y,Z)
COMMON W

the DERIV subprogram should not assign new values to:

X and Z because they are both associated with the same argument, A.

Y because it is associated with argument B, which Is in the common area.

»- W because it is also associated with B.

If you do assign new values, you may get unexpected results; but, in the case of
dummy arguments associated with other dummy arguments, the intercompila
tion analysis feature will give you a warning message.

Using Common Areas

Items shared in a common area are subject to the same rules as arguments
passed in a subprogram argument list {see "General Rules for Arguments" on
page 193).

For example, you define a common area in a main program and in three sub
programs, as follows:

Main Program: COMMON A,B,C (A and B are 8 storage locations,
C is 4 storage locations)

194 VS FORTRAN Version 2 Programming Guide

Subprogram 1: COMMON D,E,F (D and E are 8 storage locations,
F Is 4 storage locations)

Subprogram 2: COMMON Q,R,S,T,U {4 storage locations each)

Subprogram 3: COMMON V,W,X,Y,Z (4 storage locations each)

How these variables are arranged within common storage Is shown In
Figure 55. Each column of variables starts at the beginning of the common
area. Variables on the same line share the same storage locations.

Displacement Main Subprogram Subprogram Subprogram
(Bytes) Program 12 3

0

4

8

12

16

20

Figure 55. Transmitting Assignment Values between Common Areas

The main program can safely transmit values for A, B, and C to subprogram 1,
provided that

A is of the same type as D.

•- B Is of the same type as E.

C Is of the same type as F.

However, the main program and subprogram 1 should not, by assigning values
to the variables A and B, or D and E, respectively, transmit values to the vari

ables Q, R, S, and T In subprogram 2, or V, W, X, and Y in subprogram 3,
because the lengths of these common variables differ.

In the same way, subprogram 2 and subprogram 3 should not transmit values
to variables A and B, or to D and E.

Values can be transmitted between variables C, F, U, and Z If each Is the same

data type as the others.

Also, If each Is the same data type, values can be transmitted between A and
D, between B and E, and between Q and V, R and W, S and X, and T and Y.

However, any assignment of values to A or D destroys any values assigned to
Q, R, V, and W (and vice versa); and any assignment to B or E destroys the
values of S, T, X, and Y (and vice versa).

Chapter7. Associating Data 195

Referencing Shared Data In Common
In general, shared data in the common area should be referenced with the
same descriptions in different sharing program units. While the name of the
common area must be the same, the names of corresponding variables and
arrays in the common area may be different.

The examples shown previously for passing arguments in common also illus
trate sharing data in the common area. The same rules for preserving data
values also apply; see especially "General Rules for Arguments" on page 193.

Shared data in the common area can be referenced with different descriptions,
provided the different descriptions are not contradictory. Describing the data
differently for different uses may be advantageous in the application you are
programming. But you must be careful to maintain the identity of the data itself
within the differing descriptions.

Character-type data, for instance, can be referenced as strings of differing
lengths. For example, in subprogram 1, you could write

COMMON CHV2

CHARACTER CHV2 * 20

and in subprogram 2, you could write

COMMON CHA2

CHARACTER CHA2 * 5(4)

Subprogram 1 references the 20 bytes of character data as a single character
variable, CHV2. Subprogram 2 references the same 20 bytes as a character
array, CHA2, having four elements of five bytes each.

You can ascertain whether different descriptions of the same data are contra
dictory by considering the format of the data itself, as represented in the
running program. For example, a complex number is represented as two adja
cent real numbers. Thus, you can correctly write in subprogram 1:

COMMON CV

C0MPLEX*8 CV

and in subprogram 2:

COMMON RV1,RV2

This allows subprogram 2 to reference the real and imaginary parts of the
complex variable CV as two separate real numbers, RV1 and RV2.

For detailed information on the formats of the various types of data in the
running program, see "Internal Representation of VS FORTRAN Version 2 Data"
on page 330.

Efficient Arrangement of Variables in Common
Your programs lose some run-time efficiency unless you ensure that all of the
common variables have proper boundary alignment. You need not align
complex, integer, logical, or real variables to have your program run success
fully. However, if an array is not on an appropriate boundary, a vectorized
program will not run and a scalar program will run inefficiently.

196 VS FORTRAN Version 2 Programming Guide

You can ensure proper alignment either by arranging the noncharacter type
variables in a fixed descending order according to length, or by defining the
block so that dummy variables force proper alignment.

Using a Fixed Order of Variables: If you use the fixed order, noncharacter type
variables must appear in the following order:

Length Type
32 COMPLEX

16 COMPLEX or REAL

8 REAL

8 COMPLEX or DOUBLE PRECISION

4 REAL, INTEGER, or LOGICAL

2 INTEGER

1 LOGICAL

Using Dummy Variables: If you don't use the fixed order, you can ensure
proper alignment by constructing the block so that the displacement of each
variable can be evenly divided by the number of bytes in the boundary align
ment requirement associated with the variable. (Displacement is the number of
storage locations, or bytes, from the beginning of the block to the first storage
location of the variable.) The boundary alignment requirement for each type of
variable is as follows:

Type Length Boundary

Specification Specification Alignment Requirement
LOGICAL 4 Word

INTEGER 4 Word

REAL 4 Word

DOUBLE PRECISION 8 Doubleword

COMPLEX 8 Word

LOGICAL 1 Byte
INTEGER 2 Halfword

REAL 8 Doubleword

REAL 16 Doubleword

COMPLEX 16 Doubleword

COMPLEX 32 Doubleword

The first variable in every common block is positioned as though its length
specification were 8. Therefore, you can assign a variable of any length as the
first in a common block.

To obtain the proper alignment for the other variables in the same block, you
may find it necessary to add a dummy variable to the block.

For example, your program uses the variables A, K, and CMPLX (defined as
REAL*4, INTEGER*4, and C0MPLEX*8, respectively) in a common block defined
as:

COMMON A, K, CMPLX

Chapter 7. Associating Data 197

The displacement of these variables within the block is:

Displacement (Bytes)
Variable in the Common Area

CHPLX

16

The displacements of Kand CMPLX are evenly divisible by the number of bytes
in their boundary alignment requirements.

However, ifyou define Kas an integer of length 2, then CMPLX is no longer
properly aligned (its displacement of6 is not evenly divisible by 4). In this
case, you can ensure proper alignment by inserting a dummy variable (DV) of
length 2 either between A and Kor between Kand CMPLX.

Displacement (Bytes)
Variable in the Common Area

0

A

2

DV
4

K

8

CMPLX

16

EQUIVALENCE Considerations
When you use the EQUIVALENCE statement together with the COMMON state
ment, there are additional complications resulting from storage allocations.
The following examples illustrate programming considerations you must take
into account.

Your program contains the following items:

REAL R4A, R4B, R4M(3,5), R4N(7)
DOUBLE PRECISION R8A, R8B, R8M(2)

LOGICAL*! LIA

LOGICAL L4A

198 VS FORTRAN Version 2 Programming Guide

which are deflned in the common area as follows:

COMMON R4A, R8M, LIA, R8A, L4A, R4M

and which results in the following inefficient displacements:

Name Displacement Boundary
R4A 0 Doubleword

R8M 4 Word (should be doubleword)

LIA 20 Word

R8A 21 Byte (should be doubleword)
L4A 29 Byte (should be word)
R4M 33 Byte (should be word)

Now add an EQUIVALENCE statement to this inefficient COMMON statement:

1. First Example (valid but inefficient):

EQUIVALENCE (R4M(1,1), R4B)
EQUIVALENCE (R4B, R8B)

This results in the following additional inefficiencies:

Name Displacement Boundary

R4B 33 Byte (same as R4M(1,1))
R8B 33 Byte (same as R4M(1,1) and R4B)

which means that both R4B and R8B are now also inefficiently aligned.

2. Second Example (illegal):

EQUIVALENCE (R8A, R4N(7))

The seventh element of R4N has the same displacement as R8A, or 21.
This means that the first element of R4N is located 24 bytes (4*6) before
this, at displacement -3. This is illegal since it causes the common area to
be extended to the left.

3. Third Example (valid but inefficient):

EQUIVALENCE (R8A, R4N(2))
EQUIVALENCE (R4M, R4N(5))

Name Displacement Boundary

R4N(2) 21 Byte
R4N(3) 25 Byte
R4N(4) 29 Byte
R4N(5) 33 Byte
R4M 33 Byte (same position as R4N(5))

These results are valid because the EQUIVALENCE statement places R4M
at displacement 33, the same displacement as that specified in the
COMMON statement. However, it is inefficient because both R4N and R4M
begin at byte boundaries.

Chapter 7. Associating Data 199

4. Fourth Example (illegal);

EQUIVALENCE (R8A, R4N(2))
EQUIVALENCE (R4M, R4N(4)) ' ^
This has the following illegal results:

Name Displacement Boundary

R4N(2) 21 Byte
R4N(3) 25 Byte
R4N(4) 29 Byte
R4N(5) 33 Byte
R4M 29 Byte (same position as R4N(4))

These results are illegal, because the EQUIVALENCE statement (which
places R4M at displacement 29) contradicts the COMMON statement (which
places R4M at displacement 33). The COMMON statement controls the dis
placement of R4M, not the EQUIVALENCE statement.

Using Blank and Named Common (Static and Dynamic)
There are two forms of common storage you can specify: blank common and
named common.

Blank Common — An unnamed common storage area (common block) is a
blank common area, when you have not specified a name for the storage
area.

Named Common - When you name common storage areas (or blocks of
storage)—they are known as named common. Blocks given the same name
occupy the same space. f 1

For more information, see "Using Dynamic Common above the 16-Megabyte
Line" on page 92.

You can define only one blank common block in an executable program
(although you can specify many COMMON statements defining items in
blank common). You cannot assign blank common a name.

You can define many named common blocks, each with its own name.

You can define blank common as having different lengths in different
program units. You must define a given named common block with the
same length in every program unit that uses it.

You can't initialize values in variables or array elements in blank common
using DATA statements.

*- In named common, you can initialize values in variables and array ele
ments, through a block data subprogram that contains DATA statements or
explicit specification statements.

Dynamic common is useful in the MVS/XA and VM/XA environments for utilizing
the expanded address capability. Also, the size of a load module is reduced
when dynamic common is used because no space is allocated for the dynamic
common in the object modules that make up the load module.

Ifa named common is declared as dynamic common, all program units sharing
that common must declare it as dynamic in order for correct program refer
ences to the common to be established when the program is run.

200 VS FORTRAN Version 2 Programming Guide

For information on using dynamic common with MTF, see Appendix E, "The
Multitasking Facility (MTF)" on page 349.

Initializing Named Common: The following example shows how a block data
subprogram might be coded:

BLOCK DATA

COMMON /ELJ/JC,A,B/OAL/Z,Y
REAL B(4)/1.0,0.9,2*1.3/,Z*8(3)/3*5.42311849D0/
INTEGER*2 JC(2)/74,77/
END

This program initializes items in two named common areas, ELJ and DAL:

*• The REAL type statement assigns the type of and initializes array B in ELJ
and array Z in DAL.

The INTEGER type statement initializes array JC in ELJ.

Because they're not included in either type statement or in a DATA state
ment, item A in ELJ and item Y in DAL are assigned default types and are
not initialized.

Intercompilaiion Analysis

Introduction

Intercompilation analysis provides a way to identify incompatibilities between
program units—particularly in the specification of parameters passed to external
procedures.

An executable FORTRAN program may consist of multiple program units. Each
program unit may compile successfully; however, when you combine several
program units and attempt to run them together, they may fail to run success
fully because of inconsistencies in the way actual and dummy arguments are
specified. Often these inconsistencies show up only as incorrect program
results. It is very difficult to detect such inconsistencies without some way of
analyzing the program units as a group.

The VS FORTRAN intercompilation analysis feature detects these inconsisten
cies at compile time so that you can correct them before running the program,
thus saving time in debugging large, complex programs.

Some common problems are:

*- Use of conflicting actual and dummy arguments in subroutine calls and
function references

Specification of conflicting lengths for named common blocks

Use of conflicting external names

A list of intercompilation messages (see Figure 60 on page 215), identifying the
discrepancies detected during compilation is produced, as well as an external
cross reference list containing the names of subprograms and common blocks
referenced by each program unit. (See Figure 59 on page 214.)

Chapter 7. Associating Data 201

Types of Errors Detected by Intercompilation Analysis
Specifying the ICA option for a group of program units causes the actual argu
ments specified in external references to be checked against the dummy argu-
ments specified for these subprograms. In addition, the lengths of named
common blocks and the usage of external names are checked for consistency
throughout the group of program units.

Conflicting Argument Usage
One of the most common interprocedural errors is the incorrect use of argu
ments in subroutine calls or function references. The intercompilation analysis
feature detects violations of the following conditions:

Conflicting Type and Length: The length and data type of the actual arguments
in the calling program unit must agree with the length and data type of the
dummy arguments in the called subprogram.

This example illustrates conflicting data types:

Calling Program Unit:

REAL*4 A, B

CALL SUB (A, B)

Called Subprogram:

SUBROUTINE SUB (I, J)
INTEGER*4 I, J

Conflicting Array Specifications: Array specifications should conform to the fol
lowing conditions:

»- The number of dimensions in an array passed by the calling program unit
should be the same as the number of dimensions specified in the called
subprogram.

In this example, the number of dimensions in the calling program unit is
different from the number specified in the called subprogram.

Calling Program Unit:

REAL*4 A(2, 7)
CALL SUB (A)

Called Subprogram:

SUBROUTINE SUB (X)
REAL*4 X(14)

The shape of an array passed by the calling program unit should agree with
that of the array as it is specified in the called subprogram. In other words,
the number of elements in each dimension of an array of the calling
program unit must agree with the number of elements in the corresponding
dimension of the array as specified in the called subprogram.

202 VS FORTRAN Version 2 Programming Guide

The following example illustrates inconsistencies in specifying the shapes of
arrays in the calling program unit and called subprogram.

Calling Program Unit:

REAL*4 A(4, 7)
CALL SUB (A)

Called Subprogram:

SUBROUTINE SUB (X)
REAL*4 X(7, 4)

The size of an array passed by the calling program unit should agree with
the size of the array as specified in the called subprogram.

Conflicting Character Variable Lengths: The length of a character variable
passed by the calling program unit must agree with that specified in the called
subprogram.

The following example illustrates conflicting character variable lengths:

Calling Program Unit:

CHARACTER*8 B

CALL SUB (B)

Called Subprogram:

SUBROUTINE SUB (Y)
CHARACTER*35 Y

Array Misalignment: A REAL*8 array passed by the calling program unit must
be aligned on a double-word boundary when VECTOR is specified in the called
subprogram.

The following example illustrates incorrect array alignment. If array A is
aligned on a double-word boundary, array B will be aligned on a single-word
boundary.

Calling Program Unit:

Called Subprogram:

REALM A(7)
REALM B(3)
EQUIVALENCE (A(2), B(I))
CALL SUB (B)

SUBROUTINE SUB (Y)
REALM Y(3)

Conflicting Number of Arguments: The number of arguments specified in the
calling program unit should match that specified in the called subprogram.

In the following example, the number of arguments specified in the calling

Chapter 7. Associating Data 203

program unit does not match the number of arguments specified in the called
subprogram.

Calling Program Unit:

CALL SUB (A, B, C)

Called Subprogram:

SUBROUTINE SUB(X, Y)

Conflicting Number of Alternate Returns: The number of alternate returns in the
calling program unit should match that specified in the called subprogram.

The following example illustrates conflicting numbers of alternate returns:

Calling Program Unit:

CALL SUB (A, B, *10)

Called Subprogram:

SUBROUTINE SUB (X, Y, *, *)

Conflicting Argument Class: The argument class—that is, whether the argument
is an array or scalar variable—specified in the calling program unit should
match that specified in the called subprogram; for example, an actual scalar
argument should not be passed to a dummy array name.

The following example illustrates conflicting argument classes:

Calling Program Unit:

REAL*4 A

CALL SUB (A)

Called Subprogram:

SUBROUTINE SUB (X)
REAL*4 X(7)

The compiler cannot diagnose certain ambiguous situations; for example, if the
calling program unit passes XYZ(1), the compiler cannot tell whether XYZ(1) is
a scalar or the beginning of an array.

l\/lodification of Constants and Expressions: Constants or expressions must not
be modified in the called subprogram.

The following example illustrates invalid modification of constants and
expressions:

Calling Program Unit:

Called Subprogram:

CALL SUB (1.7, B+2.6)

SUBROUTINE SUB (X,Y)
X = 32.8*Y + 17.3

Y = SQRT(X)

Invalid A/lodiflcation of Arguments: If the calling program unit causes a dummy
argument to share the same storage as another dummy argument, neither
dummy argument can be defined in the called subprogram.

204 VS FORTRAN Version 2 Programming Guide

In the following example, the EQUIVALENCE statement in the calling program
unit causes the dummy arguments, X and Y, in the called subprogram to share
the same storage. Therefore, the modification of the dummy argument Y is
invalid.

Calling Program Unit:

Called Subprogram:

EQUIVALENCE (Q,R)
CALL SUB(Q,R)

SUBROUTINE SUB (X,Y)
Y = X + C

Undefined Arguments: Arguments referenced in a called subprogram must be
defined in the calling program unit.

In the following example, the actual arguments, Q and R, are not defined.
Therefore, references to the corresponding dummy arguments, X and Y, are
invalid.

Calling Program Unit:

Called Subprogram:

CALL SUB(Q,R)
END

SUBROUTINE SUB (X,Y)
C = X + Y

Conflicting Function Type
The type specified for a function in a program unit that references it should be
the same as the type specified in the function subprogram. A function refer
enced as REAL when the function type is specified as INTEGER is listed as an
error.

An example of conflicting function typing is:

Calling Program Unit:

REAL TRANSLATE

XPOSN = TRANSLATE(XI,X2)

Called Subprogram:

FUNCTION TRANSLATE(I1,I2)
INTEGER TRANSLATE

Conflicting External Name Usage
External names in the calling program unit and called subprograms are
checked jto ensure that the names are used consistently across compilations.
For example, a name used as a function in one subprogram should not be
defined as a subroutine in another. If this condition occurs within a single com
pilation unit, it is diagnosed when that program unit is compiled.

Chapter 7. Associating Data 205

The following examples Illustrate inconsistent external name usage:

Calling Program Unit:

CALL ABCD(3.4)

Called Subprogram:

SUBROUTINE SUB(X)
COHMON /ABCD/A,B,C,D

Calling Program Unit:

CALL WXYZ(3.2)

Called Subprogram:

FUNCTION WXYZ(X)

Calling Program Unit:

X=WXYZ(3.2)

Called Subprogram:

SUBROUTINE WXYZ(X)

Conflicting Common Biock Lengths
The lengths specified for named common blocks should agree in all program
units within an executable program. Although violation of this rule may not
always produce errors at run time, it is dubious programming practice.

The following example illustrates conflicting common lengths:

Calling Program Unit:

COMMON /COMl/ A, B, C
REAL*4 A, B, C

Called Subprogram:

COMMON /COMl/ A, B, C
REAL*4 A, B
REAL*8 C

Confiicting Common Biock Storage Assignment
Ifa named common is declared as dynamic common, all program units sharing
that common must declare it as dynamic.

In the following example, the called subprogram declares the common block
ABC as dynamic but the calling program does not.

Calling Program Unit:

Called Subprogram:

@F

COMMON /ABC/ A, B, C

206 VS FORTRAN Version 2 Programming Guide

EPROCESS

COMMON /ABC/ A, B, C
REAL*4 Q, R
CALL SUB(Q,R)

©PROCESS DC (ABC)
SUBROUTINE SUB (X,Y) '

When to Use the Intercompilation Analysis Feature
This section suggests several Instances when you might want to use the Inter-
compilation analysis feature.

Suppose your installation is developing a large application containing program
units written by many programmers. When a clean compilation of a program
unit is produced, that program unit is added to the data base containing the
rest of the coded program units.

In spite of the fact that a single program unit compiled successfully, there may
be incompatibilities between the actual argument lists passed to other subpro
grams and the dummy arguments specified for those subprograms. There may
even be incompatibilities in the way a subprogram is referenced and the way it
is specified; for instance, it may be called as a subroutine, but it may have been
defined as a function. In addition, even though all programmers use the same
named common definitions, inconsistencies may exist in the types specified for
some of the variables in a common. An example of the kind of error that would
cause different common lengths is typing a REAL variable as length 8 instead of
length 4.

In order to detect such errors before combining all program units to be run, you
can use the intercompilation analysis feature to check them before adding them
to the data base. First make sure, however, that none of the program units
have compilation errors of level 8 or higher; such errors prevent the program
units from being analyzed.

Once all the errors detected by the intercompilation analysis feature are cor
rected, the data defining the interfaces between this program unit and other
program units in the application can be incorporated into an intercompilation
analysis file for other programmers to use as they finish coding their program
units.

Time spent in the testing cycle can be reduced significantly by eliminating many
of these types of errors—errors that can be very difficult and time-consuming to
identify.

Managing Large Programs with Intercompilation Analysis
A group of program units that make up a common library—a collection of matrix
handling subroutines, for example—can be compiled and the entries describing
their interfaces added to a single intercompilation analysis file using the
UPDATE suboption. There can be separate intercompilation analysis files for
each such library.

Those entries for program units which are specific to a single application
program can be saved in another intercompilation analysis file. Several pro
grammers may share this file, or create their own private copies of it, as they
update old program units or create new ones. When final changes are applied
to the production version of the program, the shared intercompilation analysis
file(s) can then be updated.

Chapter 7. Associating Data 207

Managing Small Programs with Intercompllatlon Analysis
Small programs, consisting of only a few program units, can be easily main
tained using a single intercompilation analysis file. Whenever a program unit is
updated and recompiled, the intercompilation analysis file can be updated by
specifying the name of the file in the UPDATE suboption. A module cross-
reference can be generated for documentation by using the MXREF suboption.

How to Use Intercompilation Analysis
To use intercompilation analysis, specify the ICA compiler option, as well as
any suboptions you want, when you invoke the compiler. Ifyou do not want to
analyze certain program units, specify NOICA on an @PROCESS statement for
each of those program units.

Notes on the USE and UPDATE Suboptions
The USE suboption specifies the names of intercompilation analysis files con
taining entries from previous compilations. The file name in the UPDATE sub-
option may be the name of a new file, or it may be the name of a file containing
information from previous compilations.

Your installation may have a number of files containing information derived
from compilations using the intercompilation analysis feature. One file may
contain entries describing the defined interfaces for a set of general-purpose
program units used by many projects; another may have entries for program
units used by a single application.

Before attempting to run new program units for the application, you can analyze
the program units to detect discrepancies in the use of arguments, in the use of
external names, or in the lengths specified for named common blocks. At the
same time, you can update the intercompilation analysis file containing entries
for program units associated with that application.

The following example shows you how to use the USE and UPDATE suboptions:

Assume that your installation has a collection of subprograms that are used by
all the developers. Before these subprograms were made available for general
use, they were analyzed to ensure that there were no inconsistencies in argu
ment specification and usage that would prevent them from running together
successfully.

An intercompilation analysis file, containing information describing interfaces to
these subroutines and functions, was created by compiling all the subprograms
with the UPD suboption as follows:

ICA (UPD (GENERAL))

Until the compilation was run, the intercompilation analysis file GENERAL did
not exist; the file was created at the end of the compilation.

To compile the subprograms, issue the command:

F0RTVS2 GENSUB (ICA (UPD (GENERAL))

208 VS FORTRAN Version 2 Programming Guide

GENSUB FORTRAN contains:

SUBROUTINE GENSUB1(A, B, C)

END

SUBROUTINE GENSUB2(A, B)

END

FUNCTION GENFUN1(A, B, C, D)

END

FUNCTION GENFUN2(A)

These compilations create the file, GENERAL As new subprograms are com
pleted, entries describing their interfaces can be added to the file by compiling
them with the same option:

ICA (UPD (GENERAL))

Records describing the interface for a specific subprogram can be replaced by
recompiling that subprogram.

As programmers develop and code additional program units, they can use the
intercompilation analysis feature to check their coded interfaces against the
interfaces in the intercompilation analysis file GENERAL by compiling the
program units with the option:

ICA (USE (GENERAL))

To save entries that describe subprograms unique to specific projects, they
compile those subprograms with:

ICA (USE (GENERAL) UPD (MINE))

With this option, the interfaces between the new subprograms and the subpro
grams whose interfaces are described in GENERAL are checked. A new inter
compilation analysis file named MINE with entries describing the interfaces of
the new subprograms for a specific project is created.

To create the intercompilation analysis file, MINE, the new subprograms are
compiled with:

F0RTVS2 MYSUB (ICA (USE (GENERAL) UPD (MINE))

MYSUB FORTRAN might contain:

SUBROUTINE MINE(A)

END

SUBROUTINE MINE2(A,B)

END

FUNCTION MINEF1(A,B)

END

In this instance, the intercompilation analysis file GENERAL is used to compare
the Interfaces for the new subprograms with interfaces for existing subpro-

Chapter 7. Associating Data 209

grams. In addition, entries for new interface specifications are added to the
intercompilation analysis file MINE.

Search Order for Intercompilation Analysis Files: The sequence in which the
file names appear in the USE and UPDATE suboptions determines the search
order used during the search for duplicate external name definitions—that is,
program unit names, entry names, and common names. You will probably
want to specify the UPDATE suboption first; however, ifyou want another
search order, you may place the UPDATE suboption anywhere in the sequence.
You can, for instance, place the UPDATE suboption between two USE sub-
options.

ICA (USE (FlLEl) UPO (FILE2) USE (FILE3,FILE4))

The first occurrence of the external name definition is considered to be the
valid one; however, names in newly-compiled programs are given priority. The
search order for external name definitions is;

1. New compilations
2. Names specified in the USE and UPDATE suboptions

Use care in the way you specify USE and UPDATE to be sure that the external
name definition you want to be considered the valid name is either a name in
one of the newly-compiled programs, or is the first name encountered in the
files specified in the USE and UPDATE suboptions.

Considerations for Intercompilation Analysis Files in CMS: The intercompilation
analysis file name is the file name specified in the USE or UPDATE suboption;
the file type is ICAFILE; and the file mode is determined as follows:

If the file is a new file, the UPDATE file is written to the same disk as the

source.

If the file is an existing file, it is written to the disk containing the file to be
updated.

If the source program or a file specified in the UPDATE suboption resides on a
read-only disk, the compiler looks for a disk that can be written to and writes
the new or updated intercompilation analysis file to that disk.

Considerations for Intercompilation Analysis Files in MVS: An intercompilation
analysis file name used in an MVS environment is a ddname. At compilation
time, there must be a valid DD statement for the ddname.

Allocating Space for an Intercompilation Analysis File: When you are creating a
new intercompilation analysis file, you must be sure to allocate enough space
for the file. The following information should help you determine how much
space you will need.

The intercompilation analysis file contains one record for each definition, refer
ence, or COMMON definition. The amount of space each record requires

210 VS FORTRAN Version 2 Programming Guide

depends on the number and class of the arguments and the lengths of the argu
ment names as follows:

Each definition, reference, or COMMON block requires 60 bytes.

Each argument requires 13 bytes, plus the length of the argument name. If
the argument represents an array, you will need an additional 4 bytes for
each dimension.

If you use the CVAR suboption you will need an additional 10bytes, plus the
length of the name, for each CVAR entry.

Figure 1 on page 15 shows the device type and device class for intercomplla-
tion analysis files; Figure 2 on page 16 shows the default values for data set
characteristics for intercompilation analysis files.

Using the MSGON and MSGOFF Suboptions to Suppress Messages
When using intercompilation analysis for a program in which you both expect
and allow certain error conditions to occur, you may want to suppress the
related messages. You can do so by using either the MSGON or MSGOFF sub-
option. With the MSGON suboption, you can specify that only certain messages
be issued; or, conversely, with the MSGOFF suboption, you can specify that
certain messages not be issued. MSGON and MSGOFF are mutually exclusive:
you cannot specify both.

Figure 56 lists the message numbers that you can specify for each MSGON and
MSGOFF suboption, the corresponding message text, and an explanation of
each message.

Number Text Explanation

61 CONFLICTING NAME USAGE Same name referred to as a subprogram
and common

62 INCORRECT NO. OF ARGS. Number of arguments do not agree

63 CONFLICTING ARGUMENT CLASS For example, scalar vs. array

(SECONDARY ENTRY)
For example, real vs. Integer64 INCORRECT FUNCTION TYPE

65 CONFLICTING ARGUMENT CLASS For example, scalar vs. array

(MAIN ENTRY)
Subroutine vs. Function67 CONFLICTING NAME USAGE

68 CONFLICTING NAME USAGE Subroutine vs. Function entry

71 CONFLICTING COMMON LENGTH Named common lengths differ

72 MODIFIED CONSTANT ARGUMENT Subprogram modifies a constant passed as
an argument

73 ARGUMENT SIZE (STRING) Length of character string or Hollerith con
stant doesn't match dummy argument

74 ARRAY DIMENSIONS/SHAPE Number of dimensions or shape don't agree

75 MISALIGNED ARRAY Not on required boundary

76 IGNORED NAME Ignored because of conflicts

77 REMOVED NAME Entries replaced in the intercompilation anal
ysis file

78 CONFLICTING NAME USAGE Name defined as both a common and sub
program

80 REMOVED NAME See 77 (intercompilation analysis file not
saved)

81 REMOVED NAME Replaced in analysis by prior intercompila
tion analysis file

83 CONFLICTING COMMON USAGE Static vs. dynamic

84 UNDEFINED ARGUMENT Referenced in called: undefined in caller

86 INVALID ARGUMENT MODIFICATION Modification of arguments sharing storage

Figure 56 (Part 1 of2). Intercompilation Analysis Messages

Chapter 7. Associating Data 211

Number Text Explanation
90 INCORRECT NO. OF ALT. RETURNS Number of alternate entries do not agree
91 CONFLICTING TYPE (ENTRY) For example, real vs. Integer
92 CONFLICTING TYPE (MAIN ENTRY) For example, real vs. integer
93 ARGUMENT SIZE (ARRAY) Sizes of arrays do not agree

Figure 56 (Part 2 of 2). Intercompilation Analysis Messages

Using intercompliation Analysis With Non-FORTRAN Program Units
Program units In your application that are written in languages other than VS
FORTRAN—in assembler, for instance—can still be included in the analysis.

First, create a FORTRAN subroutine or function with the same name and
dummy arguments as those of the actual assembler program unit, thus creating
a FORTRAN interface describing the assembler program unit. Then, compile
this subroutine/function and add it to the intercompilation analysis file, thus
making it available for intercompilation analysis.

Suppose, for example, you want to use an assembler program unit called
SCNR2L to scan a string, from right to left, for a certain character. Invoke
SCNR2L from a FORTRAN subprogram as follows:

CALL SCNR2L(STRING,CHAR,POSITION)

A FORTRAN subroutine which describes the assembler procedure might be:

SUBROUTINE SCNR2L(STRING,CHAR,POSITION)
*

* Scan a character STRING from right to left for the
* character CHAR. Return the POSITION of the character.

*

CHARACTER*(*) " STRING
CHARACTER*! CHAR

INTEGER*4 POSITION

RETURN

END

Sample Programs Compiled with Intercompilation Analysis
Figure 57 on page 213 shows the source language coding for a group of
program units to be compiled together, with ICA specified.

212 VS FORTRAN Version 2 Programming Guide

I LEVEL 2.3.0 (MAR 1988)

EPROCESS

C

C PROGRAM TO ILLUSTRATE USE OF THE ICA OPTION
C

PROGRAM ICATEST

REAL*8 R8S, R8A(8,3)
C0MPLEX*8 CX8

CALL ICASUBl (0,R8S)
CALL ICASUB2 (CX8,4,R8A)
CALL ICASUB3 (R8S,4)
END

©PROCESS

C

SUBROUTINE ICASUBl(X,Y,Z)
COMMON /ICACOHM/ ARRAY(3,8), C16
COMPLEX*16 C16

REAL*8 Y

IF (Z .EQ.O) THEN
X = SIN(Y)

ELSE

X = SIN(Y/X)
ENDIF

Y = ICASUB2{C16,3,ARRAY) + X
RETURN

END

©PROCESS

C

REAL FUNCTION ICASUB2(X,lA,Z)
COMMON /ICACOHM/ ARRAY(3,8), CI6
REAL*8 ARRAY

C0MPLEX*8 X

REAL*4 Z(8,3)
DO 10 I = 1, lA

10 Z(!,2) = REAL(X) + ARRAY(IA,3)
1CASUB2 = Z(8,3)
RETURN

END

Figure 57. ICATEST Input Listing

Figure 58 shows the options specified for ICATEST.

VS FORTRAN JAN 12, 1988 07:40 :36 PAGE:

REQUESTED OPTIONS (EXECUTE): ICA NOTERM

REQUESTED OPTIONS (PROCESS):

OPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE HOTERM OBJECT FIXED TRMFLG SRCFLG NOSYM MORENT
SBUHP(ISN) NOSXM NOVECTOR IL(OIH) NOTEST NODC ICA NODIRECTIVE NODBCS NOSAA

OPT(O) LANGLVL(77) NOFIPS FLAG(I) AUTODBL(NONE) NAHE(HAIN) LINEC0UNT(60) CHARLEN(500)

I Figure 58. Options Specified for ICATEST

As you can see, ICA was specified, with no suboptions; therefore, no intercom-
pilation analysis files were used in the analysis. The group was analyzed only
for consistency of the external references within the group.

Chapter?. Associating Data 213

Output from the Sample Program
As no suboptions were specified, the default suboption MXREF was in effect and
produced the External Cross Reference listing shown in Figure 59.

LEVEL 2.3.0 (HAR 1988) VS FORTRAN JAN 12, 1988 11:29:36

EXTERNAL CROSS REFERENCE

PAGE:

ARGUMENT USAGE: (ONE CHAR/ARGUMENT) A-ARGUMENT PASSED
B-SET & FETCHED

C-SET & PASSED AS ARGUMENT

D-FETCHED & PASSED AS ARGUMENT

E-SET & FETCHED & PASSED AS ARGUMENT

F-FETCHED

S-SET

NOTES: NO.

REFERENCE

NAME I MO. I TYPE

NMN: COMPILATION NUMBER FN: ICA FILE NUMBER

TRAILING ASTERISK: THIS NAME IGNORED IN ERROR ANALYSIS AND NOT WRITTEN TO AN ICA FILE

(NUN): MULTIPLE REFERENCES

I ARGUMENT USAGE REFERENCES

ICASUBl 2 SUBROUTINE BBF ICASUB2

ICASUB2 3 FUHCTICN(RM) FFB

ICATEST 1 MAIN PROGRAM ICASUBl ICASUB2 ICASUB3

NAME TYPE IS REFERENCED BY

ICACOMM COMMON ICASUBl(B) ICASUB2(F)

ICASUBl SUBROUTINE ICATEST

ICASUB2 FUNCTI0H(R*4) ICASUBl ICATEST

ICASUB3 SUBROUTINE ICATEST

I Figure 59. ICATEST Output Listing - External Cross Reference

The external cross reference consists of two tables. The first, at the top of the
page, shows;

Column Heading Contents

NAME

NO.

TYPE

ARGUMENT USAGE

REFERENCES

Truncated names of all analyzed program units

Number indicating the sequence of the module in the compi
lation. If the number is preceded by F. it identifies the inter-
compilation analysis file containing the entries for the name
in the NAME column.

Program unit type

Argument usage (see the top of the listing for a description
of the symbols).

Truncated names of the program units referenced by each
module

214 VS FORTRAN Version 2 Programming Guide

The second cross-reference table, the bottom half of the page, shows:

Column Heading Contents

NAME

TYPE

IS REFERENCED BY

Names of subroutines, functions, entry points, block datas,
and commons

Type of program unit. If the referenced name Is an entry
in a subprogram, it is so indicated.

Truncated names of the program units that reference the
program unit specified in NAME

The messages in Figure 60 were generated during the analysis and indicate
problems which can produce incorrect results when the application is run.

I LEVEL 2.3.0 (HAR 1988) VS FORTRAN JAM 12, 1988 07:40 :36 NAHE:NAIN PAGE:

I

*** IHTERCOHPILATICN MESSAGES. ***

NUMBER MODULE LEVEL ISH VS FORTRAN ERROR MESSAGES

ILX00711

ILX0062I

ICIM

ICIM

1LX0072I ICIH

ILX0092I ICIM

ILX0068I ICIM

ILX0084I

ILX0065I

ILX0093I

ILX0064I

ILX0084I

ICIM

ICIM

ICIM

ICII-I

icin

ILX0065I ICIM

4(H)

4(H)

4(H)

4(H)

4(W)

4(H)

4(H)

4(W)

4(V/)

4(H)

4(W)

ILX0074I ICIH 4(M)

CONFLICTING COMMOH LENGTH -- THE LENGTHS OF COMMON BLOCK ICACOHH IN ICASUBl(COMPILATION 2), AND
ICASUB2(COMPILATION 3) DO NOT AGREE. THE LENGTHS ARE 112 AND 196 BYTES.

INCORRECT NO. OF ARGUMENTS -- THE NUMBER OF ARGUMENTS FOR ICASUBl IN ICATEST(COMPILATION 1) AT
ISM 4 IS 2. IN COMPILATION 2 IT IS SPECIFIED AS 3.

MODIFIED CONSTANT ARGUMENT -- ARGUMENT NO. 1 TO ICASUBl AT ISM 4 IN ICATEST(COMPILATION 1) IS
PASSED AS A CONSTANT OR EXPRESSION. ICASUB1(C0HPILATI0N 2) MAY MODIFY THIS ARGUMENT, "X".

CONFLICTING TYPE -- AT THE MAIN ENTRY TO SUBROUTINE, ICASUBl(COMPILATION 2), ARGUMENT NO. 1, "X",
IS EXPECTED TO BE REAL*4; HOWEVER, ICATEST (COMPILATION I), AT ISM 4 PASSES THIS ARGUMENT, "A
CONSTANT", AS INTE6ER*4.

CONFLICTING NAME USAGE -- THE NAME, ICASUB2, HAS BEEN REFERENCED AS A SUBROUTINE IN
ICATEST(COHPILATION 1). IT IS DEFINED AS A FUNCTION IN ICASUB2(C0HPILATI0N 3).

UNDEFINED ARGUMENT -- ARGUMENT NO. 1, "X", TO ICASUB2 IS REFERENCED BUT THE ARGUMENT PASSED AS
"CX8" AT ISN 5 IN ICATEST MIGHT HOT BE DEFINED.

CONFLICTING TYPE -- AT THE MAIN ENTRY TO FUNCTION, ICASUB2(C0IIPILATI0H 3), ARGUMENT NO. 3, "Z",
IS EXPECTED TO BE REAL*4; HOWEVER, ICATEST (COMPILATION 1), AT ISN 5 PASSES THIS ARGUMENT,
"R8A", AS REAL*8.

ARGUMENT SIZE -- THE SIZE OF THE ARRAY IN ARGUMENT NO. 3, "R8A", TO ICASUB2 AT ISN 5 IN
ICATEST(COMPILATION 1) DOES NOT AGREE WITH THE SIZE SPECIFIED IN COMPILATION 3 FOR "Z".

FUNCTION TYPE -- FUNCTION, ICASUB2, REFERENCED IN ICASUBl (COMPILATION 2) AT ISN 10 IS
IHTEGER*4. IN COMPILATION 3 IT IS SPECIFIED AS REAL*4.

UNDEFINED ARGUMENT -- ARGUMENT NO. 1, "X", TO ICASUB2 IS REFERENCED BUT THE ARGUMENT PASSED AS
"C16" AT ISH 10 IN ICASUBl MIGHT NOT BE DEFINED.

CONFLICTING TYPE -- AT THE MAIN ENTRY TO FUNCTION, ICASUB2(COMPILATION 3), ARGUMENT NO. 1, "X",
IS EXPECTED TO BE COMPLEXES; HOWEVER, ICASUBl (COMPILATION 2), AT ISN 10 PASSES THIS
ARGUMENT, "C16", AS C0MPLEX*16.

ARRAY DIMENSIONS -- THE SHAPE OF THE ARRAY IN ARGUMENT NO. 3, "ARRAY", TO ICASUB2 AT ISN 10 IN
ICASUBl (COMPILATION 2) DOES NOT AGREE WITH THAT SPECIFIED IN COMPILATION 3 FOR "Z".

******* INTRACOMPILATION STATISTICS ******* 0 DIAGNOSTICS GENERATED. HIGHEST SEVERITY CODE IS 0.

******* INTERCOHPILATION statistics *(ICA)* 12 DIAGNOSTICS GENERATED.

I Figure 60. ICATEST Output Listing - Compilation Messages

Chapter 7. Associating Data 215

Chapter 8. Optimizing Your Program

Optimization requires additional compile time but usually results in reduced run
time.

The OPTIMIZE compiler option permits selection of no optimization or one of
three higher optimization levels. The number of times the compiled program is
to be run can help determine which optimization level to use. If a program is to
be run more than a few times, use the highest workable optimization level,
either 0PT(2) or 0PT{3).

When you use these higher optimization levels, certain programming practices
can help or hinder optimization.

This chapter discusses the optimization levels, debugging optimized programs,
and programming practices that affect optimization.

Optimization Levels
Four optimization levels are available.

Optimization Level 0
OPTIMIZE{0) or NOOPTIMIZE is the recommended level of optimization for a
program being debugged, or compiled to check syntax. While it provides the

^ fastest compile time, it produces programs with the least efficient run time. The
compiler may perform some minor optimizations: however this is suppressed if
the SDUMP option is in effect.

Optimization Level 1
0PTIMIZE{1) performs register and branch optimization, a modest level of opti
mization for programs without nested loops. Variables are retained in registers
where possible to eliminate unnecessary loads and stores. Branching is
improved using RX format branch instructions. Loop structure is not consid
ered.

Optimization Levels 2 and 3
0PTIMIZE(2) and 0PTIMIZE(3) perform the most optimization. Control and data
flow analysis is done for the entire program. This analysis allows optimizations
such as common expression elimination, strength reduction, code motion, and
global register assignment. Particular attention is paid to innermost loops and
to subscript address calculations.

Optimization Level 2: This option performs full text and register assignment. It
is identical to optimization level 3, except that certain optimization procedures
are suppressed to provide interruption localizing. The rule in interruption local
izing is: do not move any code out of a loop that might cause an interruption.

Chapters. Optimizing Your Program 217

An example is division by zero within a loop. If the division were moved out of
the loop by the optimizer, it is no longer checked for a zero divisor. For
example, in the loop:

DO 2 J=1,N
IF (K.NE.G) M(J)=N/K

2 CONTINUE

code evaluating the expression N/K could be moved outside the loop, because
it is invariant for each iteration of the loop. However, at 0PTIMIZE(2), it will not
be moved.

Invariant computations involving floating-point arithmetic or integer division
(including the MOD function), or intrinsic function calls with invariant argu
ments, are not moved out of a loop.

Optimization Level 3: This is the highest level of optimization performed by the
compiler. Invariant computations are moved outside loops wherever possible.
This may result in unanticipated interruptions, but incorrect answers are not
generated from a legal program. The only difference from 0PTIMIZE(2) is that
an extra error signal is possible.

If the preceding example is compiled at 0PTIMIZE(3), the invariant computation
N/K is moved outside the loop as follows:

itemp=N/K
DO 2 J=1,N

IF (K.NE.0) M(J)=itemp
2 CONTINUE

where itemp is a compiler-generated temporary.

If K is zero, an unanticipated interruption (for integer division by zero) occurs in
calculating itemp. However, values stored in the elements of array M remain
the same.

Optimization Techniques
Several techniques are used by the optimizer. The more general techniques
used by 0PTIMIZE(2) and 0PTIMIZE(3) are:

Subscript collecting: Subscript collection rearranges the sequence of calcu
lations in a subscript expression producing more candidates for common
expression elimination.

Common expression elimination: In common expressions the same value is
recalculated in a subsequent expression. The duplicate expression can be
eliminated by using the previous value. This is done even for intermediate
expressions within expressions. For example, if your program contains the
following statements:

10 A=C+D

20 F=C+D+E

the common expression C + D is saved from its first evaluation at 10, and is
used at 20 in determining the value of F.

218 VS FORTRAN Version 2 Programming Guide

Instruction Ellmlnation: The compiler may eliminate code for calculations
found to be unnecessary. Loads and stores are often eliminated by register
optimization.

Constant propagation and constant folding: Constants used in an
expression are combined and new ones generated. Some mode conver
sions are done and evaluation of some intrinsic functions.

Strength reduction: Less efficient instructions are replaced with more effi
cient ones. For example, in array addressing, an add instruction replaces a
multiply.

Code motion: If variables used in a computation within a loop are not
altered within the loop, it may be possible to perform the calculation outside
of the loop and use the results within the loop.

Global register assignment: The variables and constants most frequently
used within a loop can often be assigned to registers. The registers are
initialized before entry to the loop, and if necessary, stored on exit from the
loop.

Section oriented branching: The number of required program address reg
isters is reduced by dividing the executable code in a very large program
into sections.

Debugging Optimized Programs
Debugging optimized programs presents special problems. Changes made by
optimization can be confusing.

Use debugging techniques that rely on examining values in storage with
caution. A common expression evaluation may have been deleted or moved.
A variable may be in a register, not yet stored, when storage is examined or
the abend dump occurs. Variables temporarily assigned to registers may not
have been saved in a storage location at the time that an abend dump occurs.

Programs that appear to work properly when compiled with OPT{0) may fail
when compiled at 0PT{3). This is often caused by program variables that have
not been initialized. Ifa program that worked at OPT(O) fails when compiled at
0PT(1), 0PT(2), or 0PT{3), it is a good idea to look at the cross-reference
listing. Check for variables that are fetched but never set, and for program
logic that allows a variable to be used before being set.

See Interactive Debug for more information on debugging optimized code.

Increasing Optimization of Your Program
The following section contains suggestions on how to use the optimization fea
tures.

Chapters. Optimizing Your Program 219

Optimization Recommendations
*- Use OPT{0) during program development for syntax checking, testing and

debugging purposes. Debugging programs at OPT{0) with the Interactive
Debugger is straightforward, with none of the side effects of optimization.

Use the higher optimization levels 0PT(2) or 0PT(3) once a program has
been debugged. If the program is to be run more than once, or if the
program takes more than a few CPU seconds to run, then optimization
savings at run time will exceed the costs of compiling at 0PT(2) or 0PT(3).

More storage and longer compilation times are required at higher optimiza
tion levels. Depending on the complexity and number of loops in the
program (opportunities for optimization), the compilation time may increase
greatly. You may have to compile larger programs at OPT(O) or 0PT(1) if
they fail to compile at higher optimization levels.

Programming Recommendations
*• Programs can be either too large or too small to produce efficient code.

— Program units may be so large that the compiler must use an extra
base register as a program address register that would otherwise be
used for register optimization at higher optimization levels.

— Be careful when designing a program in a top-down (modular) fashion.
If a subroutine or function is small, the implicit cost of the call overhead
may exceed the value of having the code separate from the main
program. After identifying the smaller, most frequently called subrou
tines and functions, consider moving the code into the main program.
This allows the compiler to optimize the combined code and run faster.

Input/Output
Optimization has little effect on the run time of I/O statements. It is important to
write efficient I/O statements at all optimization levels. Here are some guide
lines to improve I/O run time performance:

Blocking a file can result in significant improvements.

Unformatted I/O takes less processing time and uses less storage than for
matted I/O. Unformatted I/O also maintains the precision of the data items
being processed.

When coding a block of I/O statements, place as many list items on one
READ or WRITE statement as is practical. The compiler "bundles" together
up to 20 such items, and makes just one call to the I/O library.

To save processing time, code implied DO loops in I/O statements to
produce partial short-lists. The compiler is able to recognize certain combi
nations of implied-DOs and combine them into a partial short-list. Some
examples of I/O statements recognized as partial short-lists are:

DIMENSION A(10), B(10,20)
READ(5,10) (A(I), 1=1, 10, N)
WRITE(4) ((B(I,J), 1=1,10), J=l,20)
READ(3) (A(K), K=L, M, N)
WRITE(6,20) (A(J), (B(I,J),I=1, 10), J=l, 10)

In the last example, the implied-DO level containing B is a partial short-list,
while the outer level containing A generates conventional DO loop code.

220 VS FORTRAN Version 2 Programming Guide

In certain cases, a simple implied-DO may be recognized as an array name
and code will be generated as such. For example:

DIMENSION A(100)
WRITE(3) (A(I), 1=1, 100)

writes 100 elements of array A. starting with element A{1). The following
example:

READ(5,10) (A(J), J=N, M)

reads (M-N + l) elements Into array A, starting with element A(N).

Character Manipulations
To generate an efficient code sequence for character move and comparison:

Make the character length for both operands constant, less than or equal to
256, and greater than 0.

For character moves, make the character length of the target operands less
than or equal to the source operand. For character comparison, make the
character length for both operands the same.

In the following example, an efficient code sequence (including MVC or CLC) is
generated for the first three statements (1 through 3). A less efficient code
sequence (including MVCL or CLCL) is generated for the last three statements
(4 through 6):

CHARACTER*400 C1,C2
CHARACTER*10O C3(5),C4,C5(10)

1 C4 = C5(I)
2 C3(J) = C2
3 IF(C2(300:3O5).EQ.C3(J)(50:55))PRINT*,'MATCH'

4 C1 = C2

5 C2 = C3(J)
6 IF(C2(I:I+5).NE.C3(J)(J:J+5))PRINT*,'N0T MATCH'

Variables

Use logical variables of length 4 because they can be accessed directly
without clearing a register. Avoid using L0GICAL*1 variables.

Always use integer variables of length 4 for DO loop indexes. Integer vari
ables of length 4 are optimized by strength reduction; they're also gener
ated into branch-on-index instructions. Avoid using INTEGER*2 variables.

Certain variables cannot always be optimized:

— Control variables for direct access input/output data sets cannot be opti
mized.

— Variables in input/output statements and in CALL statement argument
lists cannot be optimized by register optimization in the loops that
contain the statements.

— Equivalenced variables cannot be optimized.

— Variables in COMMON blocks cannot be optimized across subroutine
calls.

— Variables received as dummy arguments are difficult to optimize.
Assign frequently referenced scalar dummy arguments to local vari-

Chapter 8. Optimizing Your Program 221

ables. Remember that changing a local variable does not change the
argument.

Do not use DO loop indexes in any of the above ways.

Each reference to a variable in common requires that the address of the
common block be in a register. This is the basis for the following recomm
endations.

1. Minimize the number of common blocks. Group concurrently refer
enced variables into the same common block. For example:

Three Registers Required One Register Required

COMMON /X/ A COMMON /Q/ A,B,C
COMMON /Y/ B A=B+C
COMMON /Z/ C
A=B+C

2. Place scalar variables before arrays in a given common block. For
example:

Two Registers Required One Register Required

COMMON /Z/ X(5000),Y COMMON /Z/ Y, X(5000)
X(1)=Y X(1)=Y

3. Place small arrays before large ones. All the scalar variables and the
first few arrays can then be addressed through one address constant.
The subsequent larger arrays probably each need a separate address
constant.

4. Assign frequently referenced scalar variables in a common block to a
local variable. References to the local variable will not require the
common block address to be in a register. You should be sure to
assign the value back to the common variable at the end of processing.

•- When you're accumulating intermediate summations, keep the result in a
scalar variable rather than in an array. Array accumulators require load
and store instructions; scalar variable accumulators can be maintained in a
register.

Subroutine Arguments
Pass subroutine arguments in a common block rather than as parameters;
you'll avoid the overhead of processing parameter lists. You must evaluate the
effect of placing parameters into common for both the calling and the called
routine.

Entry into a subprogram associates actual arguments with the dummy argu
ments of the referenced ENTRY statement. Thus, all appearances of these
arguments in the whole subprogram become associated with actual arguments.
New values will not be transmitted for arguments not listed in the ENTRY state
ment.

The only way to guarantee, under all optimization levels, that you'll get the
current value of an argument is to have the argument listed on the ENTRY
statement through which you invoke the subprogram.

222 VS PORTRAIT Version 2 Programming Guide

Constant Operands
Define constant operands as local variables. The compiler recognizes only
local variables as having a constant value. (Operands In common or in a
parameter list can change, and cannot be optimized as fully.)

Arrays
Expand some smaller arrays to match the dimensions of the arrays they
Interact with. If arrays In a subprogram, block of code, loop, or nest of
loops have the same shape, the compiler calculates one subscript and uses
It for all the arrays. The compiler can maintain one Index for all the arrays
defined as having the same dimensions.

•• Subscripting of adjustable dimensioned arrays requires additional Indexing
computations. Using an adjustable dimensioned array as a subroutine
parameter, requires an additional calculation on each entrance Into the sub
routine. To lessen the amount of extra processing, use the following tech
niques:

1. If Indexing can be varied In the low-order dimensions, make the adjust
able dimensions of an array the high-order dimensions. This reduces
the number of computations needed for Indexing the array, as shown:

Computation not Computation (i*N)
Required Required

SUBROUTINE EXEC(Z,N) SUBROUTINE EXEC(Z,N)
REAL *8 Z(9,N) REAL *8 Z(N,9)
Z(I,5)=A Z(5.I)=A

2. If your array boundary dimensions are correct, (that Is. lower bounds
never exceed corresponding upper bounds), perform all adjustable
array calculations Inline (rather than by a library call). To select this
use the IL(DIM) compiler option. Such Inline code usually causes the
program to run faster.

In the example:

SUBROUTINE SUB(A,I,J,K,L)
DIMENSION A(I:J, K:L)

the compiler does not check that I Is not larger than J and K Is not
larger than L. To request error checking, use the IL(NODIM) option.

Initialize large arrays using a DO loop. You get faster overall run time and
use less storage than If you Initialize using a DATA statement. For
example, the following statements:

DOUBLE PRECISION A(5000)
DATA A/5000*0.0D0/

generate 40000 bytes of object module Information—more than 500 TXT
records. The 5000 zeros are placed In the object module, placed In the load
module, and fetched Into storage when you run the program.

Chapter 8. Optimizing Your Program 223

Expressions

Critical Loops

If components of an expression are duplicate expressions, code them
either: at the left end of the expression, or within parentheses. For
example:

Duplicates Recognized

A=B*(X*Y*Z)
C=X*Y*Z*D

E=F+(X+Y)
6=X+Y+H

No Duplicates Recognized

A=B*X*Y*Z

C=X*Y*Z*0

E=F+X+Y

G=X+Y+H

the compiler can recognize X'VZ and X+ Y as duplicate expressions
because they're either coded in parentheses or coded at the left end of the
expression.

When components of an expression in a loop are constant, code the
expressions either: at the left end of the expression, or within parentheses.

If C, D, and E are constant and V, W, and X are variable, the following
examples show the difference in evaluation:

Constant Expressions
Recognized

V*W*X*(C*D*E)
C+D+E+V+W+X

Constant Expressions
Not Recognized

Vn'/*X*C*D*E

V+W+X+C+D+E

If your program contains a short, heavily-referenced DO loop, consider
removing the loop and expanding the code inline in the program. Each loop
iteration runs faster.

Scalar Computations in Loops
Factor calculations involving constant scalar operands out of loops, when pos
sible. You can save run time by factoring, as the following example shows:

Conversions

Not Using Factoring

SUM=0.0

DO 1 1=1,9
1 CONTINUE

SUM=SUM+FAC*ARR(I)

Using Factoring

SUM=0.0

DO 1 1=1,9
1 CONTINUE

SUM=SUM+ARR(I)
SUM=SUM*FAC

In many programs, you can factor extensively.

Avoid forcing the compiler to convert numbers between integer and
floating-point internal representations. Conversions require several
instructions, including some double-precision floating-point arithmetic,
example:

No Conversions Needed Multiple Conversions Needed

X=1.0

DO 1 1=1,9
A(I)=A(I)*X
CONTINUE

X=X+1.0

DO 1 1=1,9
CONTINUE

A(I)+A(I)*I

224 VS FORTRAN Version 2 Programming Guide

For

When you must use mixed-mode arithmetic, code the fixed-point and
floating-point arithmetic in separate computations as much as possible.

Converting data between single and double precision requires two, or even
three, instructions, so avoid conversions if possible.

Arithmetic Constructions

In subtraction operations, if only the negative is required, change the sub
traction operations into additions, as follows:

Efficient Inefficient

Z=-2.0

DO 1 1=1,9 DO 1 1=1,9
1 CONTINUE 1 CONTINUE

A(I)=A(I)+Z*B(I) A(I)=A(I)-2.0*B(I)

In division operations, do the following:

*• For constants, use one of the following constructions:

X*(l.0/2.0)
0.5*X

rather than the construction X/2.0.

For a variable used as a denominator in several places, use the same tech
nique.

IF Statements

Use a block or logical IF statement rather than an arithmetic IF statement. If
you must use an arithmetic IF statement, try to make the next statement one of
the branch destinations.

In block or logical IF statements, if your tests involve a series of AND/OR opera
tors, try to:

Put the simplest tested conditions in the leftmost positions. Put complex
conditions (such as tests involving function references) in the rightmost
positions.

*• Put tests most likely to be decisive in the leftmost positions.

Chapter 8. Optimizing Your Program 225

— Chapter 9. Vectorizing Your Program

The VS FORTRAN Version 2 compiler can produce programs that use the IBM
3090 Vector Facility, a hardware feature that provides high-speed computation
particularly suitable for scientific and engineering applications. The compiler
transforms eligible statements in DO loops into vector instructions resulting in
significantly faster run time.

The characteristic feature of vector instructions is that they process multiple
array elements. In effect, they group and overlap the function of different iter
ations of a DO loop, and can reduce run time dramatically. Figure 61 illustrates
this reduction in run time.

DO 8 K = 1, 90
8 CONTINUE

A(K)=A(K)+B(K)

Traditional scalar (non-vector) processing requires each element of the
array A to be computed in sequence, one after the other:

A(1)=A(1)+B(1) A(2)=A(2)+B(2) A(3)=A(3)+B(3) A(90)=A(90)+B(90)
run time *•!

In comparison, vector processing allows the computation of multiple
elements of array A to be overlapped, speeding up processing:

A(1)=A(1)+B(1)
A(2)=A(2)+B(2)

A(3)=A(3)+B(3)

Terminology

A(90)=A(90)+B(90)
run time •!

Figure 61. How Vector Processing Speeds Run Time

To make use of the IBM 3090 Vector Facility, you must specify the VECTOR
compiler option. In addition, you must specify optimization at the OPTIMIZE(2)
or OPTIMIZE(3) level. (0PTIMIZE(3) is the default.) If an optimization level is
not specified. 0PTIMIZE{3) will be assumed.

This chapter presents information on vector terminology, coding suggestions,
sample output listings, and instructions on using vector directives. For addi
tional information on the compiler options, see Chapter 2, "Compiling Your
Program" on page 7. For information on vector report diagnostic messages,
see Appendix F, "Vector Report Diagnostic Messages" on page 373.

Some of the terms used in discussing vectorization are defined as follows:

vector

a group of elements of an array that are referenced in a well-defined
sequence, and on which identical operations are to be performed. In
a FORTRAN program, a vector is obtained by referring to an array

Chapter9. Vectorizing Your Program 227

inside a DO loop in such a way that a different element is selected
on each iteration of the loop.

Examples of vectors are:

A one-dimensional array where A{K)'s—A(1),A(2),...,A{200)—form a
vector:

REAL A(2G0)
DO 10 K = 1, 200

A(K) = 0.0
10 CONTINUE

A matrix where the rows and columns—B(K,1),B{K,2),...,B(K,300) and
B(1,M),B(2,M) B(200,M)—form vectors:

REAL 6(200,300)
DO 10 K = 1, 200
DO 10 H = 1, 300

B(K,M) = B(K,M) * A(K)
10 CONTINUE

vector length
The number of elements contained in a vector. This is equal to the
number of iterations of the DO loop that defines the vector. For
example:

DO 50 I = 1,100 DO 60 J = 1,100,10
50 B(I) = 0.060 60 A(J) = 0.0

The DO 50 loop defines a vector of length 100, while the DO 60 loop
defines a vector of length 10.

vector section

a vector segment containing a fixed number of elements. This
number is referred to as the vector section size and is sometimes

represented as the letter "Z." A vector is automatically partitioned
into these sections to run on vector hardware.

stride

the interval between elements as they are fetched and stored. It is
the distance between successive data elements.

Arrays in FORTRAN are stored in column-major order. That means
that consecutive elements are accessed in storage when the left
most subscript is varied by 1. Addressing FORTRAN arrays in
column order is stride 1. If the array is an N x M array, the stride on
the second subscript is N. Addressing FORTRAN arrays in row
order is stride N.

Suppose you have a 4 x 3 array, A(i,j), represented as follows:

A(1,1) A(1,2) A(1,3)
A(2,1) A(2,2) A(2,3)
A(3.1) A(3.2) A(3.3)
A(4,1) A(4,2) A(4.3)

228 VS FORTRAN Version 2 Programming Guide

The elements of the array are stored in ascending locations in
column-major order, as shown below:

Location Array Element
1 A(1,1)
2 A(2,1)

3 A(3,1)
4 A(4,1)
5 A(1.2)
6 A(2,2)
7 A(3,2)
8 A(4,2)
9 A(1,3)

10 A(2,3)
11 A(3.3)
12 A(4,3)

Element A(2,1) is stored immediately after A(1,1). Element A(3,1) is
stored immediately after A(2,1), and so on. If you address the ele
ments in column order, the stride is 1. If you address the elements
in row order, the stride is 4.

dependence
a relationship involving one or two FORTRAN statements. A depend
ence exists when a storage location is used more than once, either
by successive statements or by a single statement during different
iterations of a DO loop.

For example, a dependence exists from statement S to statement T
when S stores a value later fetched by T. If there is a dependence
from S to T, then T is dependent on S.

recurrence

a group of one or more statements forming a cycle of dependences.
If a recurrence exists, vectorization is not performed. A recurrence
exists when the processing of a statement may in some way affect
its processing on a later iteration. For example, statements S and T
form a recurrence if there is a dependence from S to T and also a
dependence from T to S. A recurrence is said to be carried by a
loop if all dependences involved in the recurrence are caused by
that loop or by some loop at a deeper level of nesting.

A statement that is dependent on itself forms a single statement
recurrence. For example, consider the following DO loop.

DO 99 J = 1, 10
A(J+1) = A(J) + B(J)

99 CONTINUE

The processing order of this loop is:

A(2) = A(l) + B(l)
A(3) = A(2) + 8(2)

A(ll) = A(10) + 8(10)

The input on one iteration of the loop always requires the element of
A, computed on the previous iteration. Therefore, the statement
A(J + 1) = A(J) + B(J) is dependent on Itself and forms a recurrence
preventing vectorization.

Chapter 9. Vectorizing Your Program 229

Recurrences can also involve multiple statements as in the example
below:

DO 100 1=1,100
80 A(I+1)=B(I-1)
90 B(I)=A(I)
100 CONTINUE

Statement 90 is dependent on statement 80 because of variable A.
Statement 80 is dependent on statement 90 because of variable
B—this forms a recurrence.

loop distribution
the compiler's process of automatically restructuring DO loops so
that statements originally contained within a single DO loop are
placed into multiple loops, each with the same induction parameters
as the original. Loop distribution is possible only when the state
ments involved are not part of a recurrence carried by the loop
being distributed.

unanalyzable loop
a DO loop that is ineligible for vectorization because it contains
some statement or construct that prevents the compiler from gath
ering the information needed for vectorization analysis. For a list of
the types of DO loops that are unanalyzable, see "Analysis Eligibility
Stage" on page 234.

unsupportable loop
a DO loop or portion of a DO loop that cannot be vectorized because
it contains a statement or construct that cannot be run on the vector
hardware or would require a special sequence of vector instructions
that the compiler does not generate. For a list of the types of DO
loops that are unsupportable, see "Operations Support Stage" on
page 235.

Induction variable

any INTEGER*4 variable that is incremented (or decremented) by a
fixed amount each time a loop iterates. Induction variables that are
not DO loop variables (that is, their increments are controlled by
assignment statements within a loop) are referred to as auxiliary
induction variables.

noninductive subscript
a subscript expression in which the array elements referenced on
successive iterations of a DO loop are not separated by a constant
number of bytes. Examples are:

DO 10 I = 1,N
10 A(I*I) = 0.0

and

DO 20 J = 1,N
20 B(INDEX(J)) = 0.0

scalar expansion
the compiler's process of automatically replacing references to a
scalar variable with references to a vector temporary, thereby
allowing the statement containing the scalar variable to be
vectorized. (A vector temporary is equivalent to a one-dimensional

230 VS FORTRAN Version 2 Programming Guide

array whose number of elements is the same as the vector section
size.) For an example of scalar expansion, see page 247.

Classification of Dependences
Dependences can be classified according to characteristics. These categories
are:

Mode

Type

The mode of a dependence indicates whether it results from sharing of data or
because of the flow of control.

Data dependences occur when two statements use or define identical storage
locations. In the following example:

DO 3 I = 1,N
1 B(I) = C(I) + 1.0
2 A(I) = B(I) + 2.0
3 CONTINUE

there is a data dependence from statement 1 to statement 2. The value com
puted by statement 1 is used as input to statement 2.

Control dependences occur when the processing of one statement determines if
another statement will be processed. In the following example:

DO 3 I = 1,N
1 IF (A(I) .GT. 0.0) GO TO 3
2 A(I) = B(I) + 1.0
3 CONTINUE

there is a control dependence from statement 1 to statement 2: The results of
the test in statement 1 determine whether statement 2 is processed. The com
piler converts the control dependence to a data dependence using a technique
called IF-conversion.

The type of a dependence indicates whether a variable is used or defined by
each of the statements involved. The three types of dependence that are con
sidered during vectorization are:

True dependence — If S defines a value and T references it. statement T
depends upon statement S.

S: X =

T: = X

S must be processed before T, because S defines a value used by T. The proc
essing of T depends upon the processing of S being completed.

Antidependence — If S references a value and T defines it. statement T
depends upon statement S.

S: = X

T: X =

S must be processed before T. or T stores the variable X and S would use the
wrong value. Processing of T depends upon the processing of S being com
pleted.

Chapter 9. Vectorizing Your Program 231

Direction

Output dependence —If S stores a value also stored by T, statement T depends
upon statement S.

X =

X =

S must be processed before T or the wrong value is left behind in the variable
X. The processing of T depends upon the processing of S being completed.

The direction of a dependence indicates the relative position of the statements
involved in that dependence. There are two possible directions:

Forward dependence —Statement 8 precedes statement T, and 8 references a
value later referenced by T.

DO 3 I = 1,N
S: A(I) =
T: = ... A(I) ...

3 CONTINUE

Backward dependence —Statement 8 precedes statement T, and T references
a value later referenced by 8.

DO 3 I = 1,N
S: = ... A(I-l) ...
T: A(I) =

3 CONTINUE

Ifa statement depends on itself, the direction of the dependence is determined
by the dependence type. True and output dependences that involve only one
statement are considered backward in direction, while antidependences that
involve only one statement are considered forward. The reason is that a state
ment that depends on itself is treated as if it were written as two statements.
The first assigns the value computed on the right into a temporary, and the
second copies that temporary into the variable on the left. For example, in the
following code:

DO 3 I = 1,N
S: A(I) = ... A(I-l) ...

3 CONTINUE

there is a true backward dependence. The loop can be rewritten exposing the
dependence from statement 82 to a preceding statement 81.

DO 3 I = l.N

SI: temp = ... A(I-l) ...
S2: A(I) = temp

3 CONTINUE

8imilarly, in the case of single statement antidependences:

DO 3 I = 1,N
S: A(I-l) = ... A(I) ...

3 CONTINUE

232 VS FORTRAN Version 2 Programming Guide

Level

interchange

The direction is considered to be forward since the dependence would go from
statement S1 to statement S2 when the loop is rewritten:

00 3 I = 1,N
SI: temp = ... A(I) ...
S2: A(I-l) = temp

3 CONTINUE

The level of a dependence indicates the loop whose iteration causes the
dependence to occur. In the following example there is a dependence at level
3 since a single element of the array is referenced on different iterations of the
innermost (level 3) loop.

DO 30 I = 1,N
DO 30 J = 1,N
DO 30 K = 1,N

A(K,J,I) = ...
A(K-1,J,I) = ...

30 CONTINUE

In the following example, a single array element is used twice even if none of
the loops are iterated. This is referred to as a loop independent dependence.

DO 30 I = 1,N
DO 30 J = 1,N
DO 30 K = 1,N

A(K,J,I) = ...
A(K,J,I) = ...

30 CONTINUE

For an outer loop to be vectorized, it must be movable to the innermost nesting
level without changing the results of the program. Dependences preventing the
reordering of two loops are known as interchange-preventing dependences. In
the following example, statement 30 has an interchange-preventing antidepend-
ence at level I.

DO 40 I = 1,2
DO 40 J = 1,2

30 A(I-1,J+1) = A(I,J)
40 CONTINUE

The statements are processed in the following order:

1=1, J=l:
1=1, J=2:

1=2, J=l:
1=2, J=2:

A(0,2) = A(l,l)
A(0,3) = A(l,2)

A(l,2) = A(2,l)
A(l,3) = A(2,2)

At the end of processing, the value originally in A(1,2) is stored into A{0,3). If
the two loops are reordered placing the I loop at the innermost level:

DO 40 J = 1,2
DO 40 I = 1,2

30 A(I-1,J+1) = A(I,J)
40 CONTINUE

Chapter 9. Vectorizing Your Program 233

the processing order of the statements becomes:

J=l, 1=1: A(0,2) = A(l,l)
J=l, 1=2: A(l,2) = A(2,l)

J=2, 1=1: A(0,3) = A(l,2)
J=2, 1=2: A(l,3) = A(2,2)

In this case, A(2,1) is initially stored into A(1,2) and that value is stored into
A(0,3). A{0,3) acquires a value different than the one it had after the original
loops were processed.

Sectioning for Vector Processing: Although a loop must be movable to the
innermost position for it to be vectorized, you do not need to physically move
the loop. The compiler's vector instructions access groups (or sections) of Z
elements for a loop all at once instead of one at a time as in scalar mode.
Loop controls for the loop are modified to increment by the number of elements
in the groups processed by the individual instructions. Suppose the outermost
loop (with index K), in the following example, is selected for vectorization. The
nest:

DO 10 K = 1, N
DO 10 J = 1, N
DO 10 I = 1, N

A(K,J,I) = B(K,J.I)
10 CONTINUE

is first conceptually rewritten by the compiler as:

DO 10 J = 1, N
DO 10 I = 1, N
DO 10 K = 1, N

A(K,J,I) = B(K,J,I)
10 CONTINUE

to determine if the K-loop can be vectorized. Since it can, the nest is conceptu
ally rewritten by the compiler as:

DO 10 K = 1, N, Z
DO 10 J = 1, N
DO 10 I = 1, N
DO 10 KK = K, K+MIN(N-K,Z-1)

A(KK,J,I) = B(KK,J,I)
10 CONTINUE

The innermost loop (the loop with index KK) is not physically present; it repres
ents processing of the vector instructions on the groups (or sections) of Z ele
ments. In the outermost DO loop, the loop controls are left in place, but
changed to increment by Z instead of by 1.

Eligibility of DO Loops for Vectorization
ADO loop must pass four qualification stages before it can be compiled into
code which can be run in vector mode:

Analysis Eligibility Stage: The compiler determines whether a DO loop can be
analyzed. The compiler analyzes only DO loops. Aloop can have more than
one inner loop at the next level; however, only the eight innermost levels of a
nest are analyzed.

234 VS FORTRAN Version 2 Programming Guide

A loop cannot be analyzed If it contains;

Any branches out of a loop, around an inner loop, or backwards within a
loop.

Loops other than DO loops
• Loops with a loop index or iteration control expression other than

INTEGER*4

^ Loops with induction variables mentioned in EQUIVALENCE statements
I/O statements

ASSIGN, ENTRY, RETURN. PAUSE, or STOP statements

Computed or assigned GO TO statements

Subroutine calls

External, non-intrinsic function references

CHARACTER data

Recurrence Detection Stage: The compiler determines the vectorization eligi
bility of statements within any DO loop not previously rejected. The statements

I are grouped into regions. Each region consists of a group of statements
I forming a recurrence carried by a particular DO loop. (The extent of these
I regions is indicated in the XLIST vector report.) A loop is rejected if it contains:

^ Interchange-preventing dependences. This restriction does not apply if the
loop Is already at the innermost level.

An induction variable modifying inner DO loop parameters or inner auxiliary
induction variables.

I Unbreakable recurrences. A recurrence may be breakable if some of its
dependences involve variables that are eligible for scalar expansion.

I Operations Support Stage: The compiler determines the vectorization eligibility
I of any region not previously rejected. It bases its decision on whether the con-
I structs found in the region have vector support in the compiler and hardware.
I Any region that uses in any of the following operations or constructs is rejected

for vector processing.

L0GICAL*1 fetches or stores

- INTEGER*2 fetches or stores governed by an IF-statement

REAL*16 or COMPLEX*32 operations
Noninductive subscripts governed by an IF-statement

Noninductive subscripts to an INTEGER*2 array

I *• Intrinsic in-line functions from the following families: DIM, MOD, SIGN,
I NINT, ANINT, or BTEST.
I Some occurrences of intrinsic in-line MIN and MAX functions using
I INTEGER

Intrinsic functions using REAL*16 or COMPLEX*32

*• Intrinsic functions when NOINTRINSIC is specified

*• Relational expressions that need to be stored (for example, L= A.GE.B)

*• Misaligned data

Vectorization Selection Stage: The compiler selects for vectorization some of
the regions not rejected as ineligible by the above criteria. Selection is based
on cost estimates (in CPU cycles) of processing each region in vector and
scalar mode. Some regions, though eligible for vectorization, will be run in
scalar mode because it is more economical to do so.

Chapter 9. Vectorizing Your Program 235

Vectorizable Mathematical Functions
Most VS FORTRAN Version 2 intrinsic functions and mathematical operations
can be vectorized. The INTRINSIC | NOINTRINSIC suboption of the VECTOR
compiler option allows you to specify whether out-of-line intrinsic functions are
to be vectorized. Note that the results returned by the vector intrinsic functions
are identical to those of the corresponding scalar intrinsic functions in the VS
FORTRAN Version 2 library, but may be different from those obtained using VS
FORTRAN Version 1. For more information, see the description of the
INTRINSIC I NOINTRINSIC suboption on page 34.

Some of the intrinsic functions and mathematical operations take advantage of
the vector hardware {see Figure 62), while others are evaluated using scalar
code but accept vector arguments and return vector results (see Figure 63).

Cut-of-lJne Intrinsic Functions: SQRT DLOG DTAN CDABS

DSQRT SIN DCOTAN ALOG10

EXP DSIN ATAN DLOG10

DEXP COS DATAN ATAN2

ALOG DCOS CABS DATAN2

In-Une Intrinsic Functions: HFIX IFIX COMPLX SNGL

lABS INT DCMPLX DBLE

ABS lOR CONJG AMAX1

DABS ISHFT DCONJG DMAX1

lAND NOT FLOAT MAX1

IBCLR AIMAG DFLOAT AMIN1

IBSET DIMAG DPROD DMIN1

IDINT AINT REAL MINI

lEOR DINT DREAL

Mathematical Operations; REAL*4 raised to a REAL*4 power

REAL*0 raised to a REAL*8 power

Figure 62. Intrinsic Functions and Mathematical Operations that Use Vector Hardware

Out-of-Une Intrinsic Functions:

Mathematical Operations:

ACOS ERF DTANH CDLOG

DACOS DERF TAN CSQRT

ASIN ERFC CCOS CDSQRT

DASIN DERFC CDCOS IBCLR

COTAN GAMMA CSIN IBSET

COSH DGAMMA CDSIN ISHFT

DCOSH ALGAMMA CEXP

SINH DLGAMA CDEXP

DSINH TANH CLOG

INTEGER raised to an INTEGER power
REAL*4 raised to an INTEGER power

REAL*8 raised to an INTEGER power
COMPLEX*8 raised to an INTEGER power
COMPLEX*16 raised to an INTEGER power
COMPLEX*8 raised to a COMPLEX*8 power
COMPLEX*16 raised to a COMPLEX*16 power
COMPLEX*8 divide

COMPLEX* 16 divide

Figure 63. Intrinsic Functions and Mathematical Operations Evaluated Using Scalar
Code

236 VS FORTRAN Version 2 Programming Guide

^ Producing Vector Reports
I This section describes the main features of the output reports produced using
I the REPORT suboption on the VECTOR compiler option. The VECTOR compile

option is discussed on page 33.

Reports can contain several different sections and can be displayed on a ter
minal or printed, depending on what you specify on the VECTOR option.

Displaying A Report on a Terminal
To display a report on your terminal, specify the REPORT{TERM) suboption on
the VECTOR option. The TRMFLG option must also be in effect.

The terminal report, an example of which is shown in Figure 64, displays only
selected portions of the vectorized program. These portions include all DO
statements and all statements contained within analyzable loops. The state
ments are displayed in the same order as that of the generated object code.

To the far left of the DO statements are flags indicating the following:

VECT Loop was selected for vectorization.

SCAL Loop was analyzed and chosen to run in scalar mode.

UNAN Loop was unanalyzable.

Also to the left of the statements are nested brackets that mark the beginning
and end of each loop in every block of DO loops that was analyzable for
vectorization. The brackets indicate how the statements were grouped after the
vectorization selection stage (see "Vectorization Selection Stage" on page 235).
These brackets are the only way to accurately determine the relative nesting of
the statements in the vector report. In a typical report, the DO loop distribution
(which involves displaying multiple copies of a single DO statement) makes it
impossible to express the nesting level using normal FORTRAN rules. There
fore, to avoid confusion, labels for these statements are not printed.

SCAL ♦ DO 200 J=l,100
SUH=0.0

VECT

*OIR IGNORE REORDERS(B)
DO 100 1=1,100,2

A(I,J) = B(I+N,J+M) + B(I+N,J-N)
0(1,J) = B(I-N,JtN) ♦ B(I-N,J-N)
B(I,J) = A(1,J) + 0(1,J)
SUM = sun ♦ ABS(A(I,J)-0(I,J))

DIFSUM(J) = SUM

UNAH 003000=1,100

THE DO-LOOPS HAVE BEEN PROCESSED AS INDICATED.

Figure 64. Sample Vector Report, Displayed on a Terminal

Chapter 9. Vectorizing Your Program 237

Printing Reports
Figure 65 on page 243 shows a printed listing with a vector report produced by
specifying the following suboptions on the VECTOR option. In addition, the f]
IGNORE directive, discussed on page 258, was present.

VECTOR(REPORT(LIST XLIST SLIST STAT)

You can specify the suboptions on the VECTOR option in any order but the
sections ofthe report will always be printed in the ordershown in the figure.

The listing shown in Figure 65 on page 243 has the following sections:

Q The options requested and the options in effect.

Q Avectorization analysis report produced by REPORT{LIST) on the VECTOR
option.

This report offers an overview of the transformations performed. From this
report you can Find out how the statements and loops in a program were
restructured and which loops were chosen for vectorization.

Note that optimization takes place before vectorization and alters parts ofthe
program. As a result, when the vector report is constructed, some of the infor
mation does not appear on the report or may be in another location. This con
dition results, for example, when GO TO statements occur in a loop. It can also
happen with statements lacking array references.

The report contains the following information:

Internal statement numbers. These are helpful for mapping statements in
the vector report to statements in the source program listing.

Flags next to DO statements, indicating the following:

VECT Loop was selected for vectorization.

SCAL Loop was analyzed and chosen to run in scalar mode.

UNAN Loop was unanalyzable.

Nested brackets marking the beginning and end of each loop in every block
of DO loops that was analyzable for vectorization. The brackets indicate
how the statements were grouped after the vectorization selection stage
(see "Vectorization Selection Stage" on page 235). These brackets are the
only way to accurately determine the relative nesting of the statements in
the vector report. In a typical report, the DO loop distribution (which
involves printing multiple copies of a single DO statement) makes it impos
sible to express the nesting level using normal FORTRAN rules. Therefore,
to avoid confusion, labels for these statements are not printed. Labels are
printed with statements that are not analyzable.

Source statements.

Q An extended vectorization analysis report produced by REPORT(XLIST) on
the VECTOR option.

This report is similar to that produced by REPORT(LIST) but gives you diag
nostic messages as well as more detailed information about why loops were
not vectorized. It also differs from the REPORT(LIST) report in that statements

238 VS FORTRAN Version 2 Programming Guide

and loops may be structured differently. For REPORT{LIST), the loop structure
corresponds to the structure of the generated code, whereas for
REPORT{XLIST), each loop that appears In the listing corresponds to a strongly
connected region identified during the recurrence detection stage of
vectorization analysis (for information on the stages of vectorization analysis,
see "Eligibility of DO Loops for Vectorization" on page 234).

For example, it is possible that two statements will appear in different loops in
the REPORT(XLIST) output, but will be in the same loop in the REPORT(LIST)
output. This means that those two statements were independent of one another
from the point of view of vectorization analysis, but were grouped together into
a single loop for run-time processing.

The report contains the following information:

Internal statement numbers. These are helpful for mapping statements in
the vector report to statements in the source program listing.

Flags next to DO statements, indicating the following:

VECT Loop was selected for vectorization.

ELIG Loop was eligible for vectorization but was chosen to run in
scalar mode (usually because of cost determination).

RECR Loop was not vectorized because it carries a recurrence.

UNSP Loop was not vectorized because it contains operations not sup
ported by either the compiler or the vector hardware.

UNAN Loop was unanaflyzable.

• Nested brackets marking the beginning and end of each loop in every block
of DO loops that was analyzable for vectorization. The brackets indicate
how the statements were grouped after the recurrence detection stage (see
"Recurrence Detection Stage" on page 235). These brackets are the only
way to accurately determine the relative nesting of the statelnents in the
vector report. In a typical report, the DO loop distribution (which involves
printing multiple copies of a single DO statement) makes it impossible to
express the nesting level using normal FORTRAN rules. Therefore, to avoid
confusion, labels for these statements are not printed. Labels are printed
with statements that are not analyzable.

• Source statements.

*• Short forms of diagnostic messages. The last 3 columns of each message
contain a hyphen (-) followed by the last two digits of the message number.
REPORT(XLIST) also produces the long forms of diagnostic messages;
these appear later in the listing.

I Q A vectorization analysis report showing the entire source program. This is
I produced by REPORT(SLIST) on the VECTOR option. Note that syntax and
I semantic messages that appear in the source program listing are not displayed
I in the REPORT(SLIST) report.

Chapter 9. Vectorizing Your Program 239

This report contains the following information;

• Flags indicating whether the statements were vectorized. In the first
column are characters, indicating the following:

V Loop was partially or completely vectorized.

S Loop was run in scalar mode.

U Loop was unanalyzable.

V Statement was vectorized.

s Statement was run in scalar mode.

In the second column are numbers, indicating the vector analysis depth of
the loop (or for statements, of the loop chosen as the vector sectioning loop
for the statement). The vector analysis depth is 1 for each outermost
analyzable loop and increases by 1 for each nested loop up to a maximum
depth of 8.

Nesting levels of IF and DO statements.

»- Internal statement numbers.

Plus signs (+) next to lines that were included in the source program by
means of the INCLUDE directive.

•- Source statements.

Short forms of diagnostic messages. The last 3 columns of each message
contain a hyphen (-) followed by the last two digits of the message number.
REPORT(SLIST) also produces the long forms of diagnostic messages;
these appear later in the listing. See below for information about these
messages.

Q Long forms of the vector report messages. These are produced by either
REPORT(XLIST) or REPORT(SLIST) on the VECTOR option.

The long form of the message consists of a message number (with the prefix
ILX), one or two internal statement numbers to identify the statement or range
of statements to which the message applies, a status flag, and the complete
message text.

Most of the messages explain why a statement caused a loop not to be
vectorized. However, some messages, issued for loops that were vectorized,
highlight situations where vectorization may change the result of a computation.
Other messages clarify certain ambiguities in the vector report listing. Mes
sages also appear when vector directives are specified: each message identi
fies the loops and statements affected by the directive.

It is possible for seemingly contradictory messages to be associated with a
single statement. For example, a statement may be nested in two loops, where
the outer loop carries a recurrence and the inner loop is vectorizable. A
message explaining why the statement failed to vectorize, and another indi
cating vectorization occurred might both be produced. The former message
indicates how the statement may have caused the recurrence in the outer loop
to exist.

See Appendix F, "Vector Report Diagnostic Messages" on page 373 for a com
plete list of the short and long forms of the messages, possible responses, and

240 VS FORTRAN Version 2 Programming Guide

additional information. Note that under the possible responses, certain code
transformations that might help increase vectorization are discussed. Be
careful when applying these transformations because it is possible that they
may degrade scalar performance without increasing vectorization. It is also
possible that applying a transformation may change the results of a program.

Explanations of the messages are also available online under Interactive
Debug. For more information about the online messages, see VS FORTRAN
Version 2 Interactive Debug Guide and Reference.

Q Avector statistics table produced by REPORT{STAT) on the the VECTOR
option. The table displays the iteration count for each analyzable DO loop
along with the strides for each array reference in the loop. The table contains
the following information:

Internal statement numbers. These are helpful for mapping statements in
the vector report to statements in the source program listing.

Array name or DO loop induction variable.

• Up to eight columns, one for each level of DO loop nesting. In these
columns, one of the following is given, depending on whether the reference
under the heading array/induction is to an array name or DO loop
induction variable:

- For a reference to an array name, the stride is given at each possible
level of vectorization. For loops that are actually chosen for
vectorization, the stride is followed by "V." Strides that cannot be fully
determined at compile time are followed by "?."

or;

— For a reference to a DO loop induction variable, the iteration count of
the loop is given under the column corresponding to the nesting level of
that loop. Values that are estimated because they cannot be deter
mined at compile time are followed by "?."

Q A table that identifies dependences that have been eliminated or modified
as a result of the IGNORE directive. (For a discussion of the IGNORE directive,
see "IGNORE DIRECTIVE" on page 258.) This table can help you understand
how the IGNORE directive was applied and whether it is used correctly. It is
produced by specifying an IGNORE directive and the REPORT(XLIST) on the
VECTOR option.

The table contains the following information:

*• Flags indicating the type of IGNORE directive used and the action taken:

BACKDEP A potential backward dependence that has been eliminated
because of an IGNORE REORDERS directive.

PREVDEP A forward dependence that was assumed not to be interchange
preventing because of an IGNORE REORDERS directive.

EQUDEP A potential dependence between two variables in an EQUIV
ALENCE relationship that has been eliminated because of an
IGNORE EQUDERS directive.

• The names of arrays carrying dependences.

Chapter 9. Vectorizing Your Program 241

• The names of other arrays involved in dependences that have been elimi
nated by an IGNORE EQUDEPS directive.

Internal statement numbers of the statements where the dependences origi- ' l
nated and ended.

The dependence types (TRUE, ANTI, or OUTPUT).

The subscript positions (relative to the leftmost position) that are varied by
the loops carrying dependences. Asubscript position is varied by a loop
when either the loop variable or an auxiliary induction variable of that loop
is used in that position. Usually, this involves only a single dimension.
However, ifthe loop varies more than one subscript position, the table will
contain a list of positions.

The induction variables of the loops carrying dependences.

Q General diagnostic and informative messages.

242 VS FORTRAN Version 2 Programming Guide

a
LEVEL 2.3.8 (AUG 1988) VS FORTRAN AUG 24, 1988 13:28:37
REQUESTED OPTIONS (PROCESS): VEC(REP(TERM LIST XLIST SLIST STAT) IVA) 0PT(3) DIR('DIR')
OPTIONS IH EFFECT: NOLIST HOMAP NOXREF H060STHT HODECK BOSOURCE TERM OBJECT FIXED TRMFLG SRCFLG HOSYM NORENT

SDUMPdSH) HOSXH IL(OIH) NOTEST HODC BOICA DIRECTIVE HODBCS NOSAA
0PT(3) UBGLVL(77) NOFIPS FU6(I) AUTODBL(MOHE) HAME(HAIN) LIHEC0UHT(6e) CHARLEH(588)
VECTOR (IVA IMTRIHSIC REDUCTION SIZE(AHY) REPORT(LIST TERM XLIST SLIST STAT))

PAGE:

LEVEL 2.3.8 (AUG 1988) VS FORTRAN AUG 24, 1988 13:28:37 BAME:EXP81
REPORT(LIST) VECTORIZATIOH ANALYSIS

ISN FLAG NESTING •.

8881

8882

8883

8884

6885

8886

8887 SCAL +

8888

8889 VECT

8818

8811

8812

8813

8814

8815 UNAN

8816

8818

8819

SUBROUTINE EXP81(B,IMAX,JHAX,H)
REAL*8 A(188,188)
REAL*8 B(-IHAX:IHAX,-JMAX:JHAX)
REAL*8 C(ie8,168)
REAL*8 0IFSUM(188),SUH
INTEGER*4 IMAX,JMAX.N

C

DO 288 J«l.ie8
SUH«8.e

*OIR IGNORE RECRDEPS(B)
DO 188 1=1,188,2

A(I,J) = B(I*H,J*H) ♦ B(I*H,J-N)
C(I,J) = B(I-H,J*N) ♦ BO-H.J-H)
B(I,J) = A(I,J) + C(I,J)
SUM = SUM + ABS(A(I.J)-C(I,J))

DIFSUM(J) » SUM
"c

00 388 3=1,188

368 IF (DIFSUH(J).GT.1.8) PRINT •,J.OIFSUH(J)
RETURN

END

LEVEL 2.3.8 (AUG 1988) VS FORTRAN AUG 24, 1988 13:28:37 NAME:EXP81
REPORT(XL1ST) VECTORIZATIOH ANALYSIS

PAGE: 2

PAGE: 3

1 ^ FUG NESTING ,5 6 7.* 8 MESSAGES

8881

8882

8883

8884

8885

8886

8887 ELIG

8888

8889 VECT

8813

8814

8887 RECR ^-

8889 VECT

8818

8811

8812

8815 UNAH

8816

8818

8819

*DIR

SUBROUTINE EXP81(B,IHAX.JHAX,H}
REAL*8 A(188,188)
REAL»8 B(-IHAX:IMAX.-JHAX:JMAX)
REAL'S C(188,188)
REAL'S 0IFSim(188),SUH
INTEGER'4 INAX,JNAX,N

DO 288 J=l,188
SUM=8.8

IGNORE RECRDEPS(B)
DO 188 1=1,188,2

SUM = SUM ♦ ABS(A(I.J)-C(I,J))
OIFSUH(J) = SUM

DO 288 J=1,188

*DIR IGNORE RECKOEPS(B)
DO 188 1=1,188,2

A(I,J) = B(I-m,J+H) ♦ B(I+H,J-H)

C(I,J) » B(I-N.J*H) * B(I-H,J-N)

B(I,J) = A(I.J) ♦ C(I,J)

DO 388 0=1,188

388 IF (DIFSUH(J).GT.1.8) PRINT •,J,DIFSUH(J)
RETURN

END

Figure 65 (Part 1 of 3). Printed Usting Including Vector Report

SCALAR FASTER THAN VECTOR -48

"IGNORE RECRDEPS" USED -72
VECTOR SUM REDUCTION -58

-IGNORE RECRDEPS- USED -72
OFFSET UNKNOWN -18

INTERCHANGE PREVENTING OEP -23
POTENTIAL RECRDEP ELIMINATEO-77
OFFSET UNKNOWN -18
INTERCHANGE PREVENTING DEP -23

POTENTIAL RECROEP ELIHIHATEO-77

OFFSET UNKNOWN -18
INTERCHANGE PREVENTING DEP -23

POTENTIAL RECRDEP ELIMIHATED-77

I/O OPERATION -84

Chapter 9. Vectorizing Your Program 243

LEVEL 2.3,0 (AUG 1988)

SI

V2

v2

v2

v2

v2

s

IF DO ISN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

»D!R

100

200

300

LEVEL 2.3.0 (AUG 1988)
NUMBER ISII FLAG

I ILX0M3I 0007 ELIG

I ILXei72l 0009 VUIR

ILX0118I 0010-0012 REOR

I ILX0123I 0010-0012 REOR

ILX0177W 0010-0012 VDIR

ILXOISOW 0013 VEOT

VS FORTRAN AUG 24, 1988 13:20:37 HAHE:EXP01

REPORT(SLIST) VECTORIZATI OH ANALYSIS

3 4 5 6 7.» 8 MESSAGES
SUBROUT HIE EXPOl (B, IMAX. JHAX, N)

REAL*8 A(16O,100)
REAL*8 B(-!MAX:IHAX,-JMAX:JMAX)
REAL*8 0(100,100)
REAL*8 DIFSUH(100).SUM
IIITEGERM 1MAX,JMAX,H

00 200 J-1,106
SUM=0.0

IGNORE RECROEPS(B)
DO 100 I°l,100,2

A(I.J) = B(I+n,J+n) + B(I+II,J-II)

0(1,J) = B(I-H,J*N) ♦ B(I-N,J-N)

B(I,J) = A(I,J) ♦ 0(1,J)

SUM = sun t ABS(A(l,J)-0(l,J))
OIFSUH(J) = SUM

DO 300 0=1,100

IF (l)IFSUII(J).GT.l.O) PRINT ',J,I)IFSUM(J)
RETURN

END

VS FORTRAN AUG 24, 1988 13:20:37 IIAIIE:£XP01
VS FORTRAN VECTOR REPORT MESSAGES

PAGE:

SCALAR FASTER THAN VECTOR -48

"IGNORE REORDERS" USED -72

OFFSET UNKNOWN -18

IIITEROIIANGE PREVENTING DEP -23

POTENTIAL REORDER ELIHINATED-77

OFFSET UNKNOWN -18

IIITEROIIAIIGE PREVENTING DEP -23

POTENTIAL REORDEP ELIMIIIATED-77

OFFSET UNKNOWN -18

INTEROIIAIIGE PREVENTING DEP -23

POTENTIAL REORDEP ELIMIIIATED-77

VECTOR SUM REDUCTION -50

I/O OPERATION -01

PAGE:

CODE THAT WAS ELIGIBLE TO EXECUTE IN VECTOR MODE WAS DETERMINED TO EXECUTE MORE EFFICIENTLY IN SCALAR.

AN "IGNORE RECRDEPS" DIRECTIVE HAS BEEN SPECIFIED FOR THIS LOOP.

THE OFFSET IIEEDEIl TO ADDRESS THE ARRAY(S) "B" COULD NOT BE ANALYZED. THERE HAY BE AN UNKNOWII TERM IN A
SUBSCRIPT OR IN A LOOP LOWER BOUND, OR THE ARRAY(S) MAY HAVE ADJUSTABLE DIMENSIONS. THE COMPILER HAS
ASSUMED THAT THESE ARRAYS CARRY DEPEIIDEIICES III LOOP(S) AT NESTING LEVEL(S) "1".

THE ARRAY(S) "B" CARRY FORWARD DEPENDENCES AT NESTING LEVEL(S) "1" THAT HAY BE INTERCHANGE PREVENTING.

POTENTIAL BACKWARD DEPEHDENCE(S) INVOLVING THE ARRAY(S) "B" HAVE BEEN IGNORED BECAUSE OF AN "IGNORE
RECRDEPS" DIRECTIVE APPLIED TO THE LOOP(.S) AT NESTING L£VEL(S) "2".

VECTORIZATION WAS DONE USING SUM OR PRODUCT REDUCTION ON THE VARIABLE(S) "SUM". RESULTS HAY DIFFER FROM
SCALAR CODE.

ILXOIOAI 0015 UNAII ONE OR MORE I/O STATEMENTS OCCUR AT ISN(S) "17"

I Figure 65 (Part 2 of 3). Printed Listing Including Vector Report

244 VS FORTRAN Version 2 Programming Guide

•
LEVEL 2.3.e (AUG 1988) VS FORTRAIl AUG 24, 1988 13:20:37

VECTOR STATISTICS TABLE

ISN ARRAY/INDUCTION LEVEL 1 LEVEL 2

7 J COUNTS100

9 1 COUNT=50

10 B 65? 2V

B 65? 2V

A 100 2V

11 B 65? 2V

B 65? 2V

C 100 2V

12 B 65? 2V

A 100 2V

C 100 2V

13 A 100 2V

C 100 2V

14 DIFSUH

IIAME:EXPei

LEVEL 2.3.0 (AUG 1938) VS FORTRAN AUG 24. 1988 13:20:37 NAME:EXPOI

DIRECTIVE

TYPE

BACKDEP

BACKDEP

TABLE OF nCPEIIDENCES ELIMINATED M IGNORE DIRECTIVES

ARRAY NAME FROM

(EQUIV NAME) ISN
TO

ISN

DEP

TYPE

10 TRUE

11 TRUE

VS FORTRAN

AFFECTED

DIMENSIONS

1

1

LOOP

VARIABLES

AUG 24. 1988 13:20:37 NAME:EXP01

PAGE:

PAGE:

PAGE:
LEVEL 2.3.0 (AUG 1988)

NUMBER IIOIiULL LEVEL

ILX1976I ASRT 0(1)

ISII

8

« FORLRAII ERROR MESSAGES

AN IGNORE DIRECTIVE HAS BEEN SPECIFIED. IF THE INFORMATION PROVIDED BY THIS DIRECTIVE IS
INCORRECT. INVALID VECTORIZATION HAY OCCUR AND WRONG RESULTS MAY BE PRODUCED AT EXECUTION TIME.

•STATISTICS' SOURCE SIATEHEIITS = 18. PROGRAM SIZE = 162683 BYTES, PROGRAM NAME = EXPOl
•STATISTICS' 1 DIAGNOSTIC GENERATED. SEVERITY CODE IS 0.
"EXPOl" END OF COMPILATION 1 •""•

I Figure 65 (Part 3 of 3). Printed Listing Including Vector Report

PAGE: 1.

TIME: 13:20:37

Gathering Run-Time Statistics
By using the Interactive Vectorization Aid function of Interactive Debug, you can
collect run-time statistics on the vector length and stride of each DO loop. The
timing and sampling facilities provide information on the relative efficiency of
each DO loop.

To malEe use of the Interactive Vectorization Aid. you must specify the IVA sub-
option on the VECTOR compiler option, described on page 34. and the SDUMP
compiler option, described on page 31. For more information, see vector tuning
information in VS FORTRAN Version 2 Interactive Debug Guide and Reference.

Examples of Vectorization
The following examples show how the compiler vectorizes typical sequences of
FORTRAN statements. The associated vector reports were produced using the
REPORT(LIST) suboption.

Chapter 9. Vectorizing Your Program 245

Compound Instructions
Instructions such as MULTIPLY AND ADD are important, because only by using
them can the full potential of the Vector Facility be realized. In this program, a
form of matrix multiplication, the compound instruction MULTIPLY AND ADD is
the only vector instruction in the inner loop. The program achieves a floating
point operation rate approaching the limit of the hardware.

REAL*8 A(100,100),B(100,100),C(100,100)

DO 3 1=1,100
DO 2 J=1,1O0

C(I,J) = 0.0
DO 1 K=l,100

C(I,J)=C(I,J)+B(K,J)*A(I,K)

0002

0003 VECT +

0004 SCAL

0005

0006 SCAL

0007

0011

Loop Selection

Loop Distribution

END

When an inner loop cannot be vectorized, it is possible that an outer loop can.
In the following example the inner loop cannot be vectorized because the inner
most subscript carries a dependence. As you can see, the l-loop is run in
vector hardware.

0001

0002 VECT +-

0003 SCAL

0004

0007

DIMENSION X(10O,100), Z(100,100)
DO 110 I = 1,100
DO 100 J = 1,99
Z(I,J+1) = Z(I,J) * X(I,J)

END

Statements occurring within a single DO loop in the original program may end
up in separate loops after vectorization.

REAL A(2O0), B(200)
DO 20 I = 2, 100, 2

A(I) = A(I) + 2.
B(I+2) = B(I) + 2.

20 CONTINUE

The following vector report shows how vectprization produces the separation:

0001

0002 VECT +•

0003 I

0002 SCAL +-

0004 I
0006

REAL A(200), B(200)
DO 20 I = 2, 100, 2

A(I) = A(I) + 2.

DO 20 I = 2, 100, 2
B(I+2) = B(I) + 2.

END

Because there is no dependence between the two assignment statements, the
compiler can place them in separate loops. The first statement can be
vectorized: the second statement cannot be vectorized because of recurrence.

246 VS FORTRAN Version 2 Programming Guide

Scalar Expansion

IF Conversion

The following example demonstrates scalar expansion. In the original source
code, the scalar variable T is used to hold the value of an element of B and
assign it to the corresponding element ofarray A. In the transformed code, the
scalar variable T is expanded into a temporary array {appearing only in a
vector register). As you can see, the entire loop has been vectorized. Scalar
expansion cannot occur ifa scalar variable uses a value set before the loop, or
if it computes a value needed after the loop.

0001

0002 VECT

0003

0004

0005

DIMENSION A(100),B(100)
DO 300 I = 1,100

T = B(I)
B(I) = A(I)
A(I) = T

IF-conversion can be used to convert control dependences into data depend
ences, allowing analysis for possible vectorization. Following is an example of
a vector report with IF-conversion:

0001 REAL A(128,128), B(128,128), C(128,128)
0002 SCAL + DO 10 K = 1,128

+ DO 10 J = 1,128
+ DO 10 I = 1,128

IF(I.EQ.J) C(I,J) = 0.
IF(I.GT,J) C(I,J) = C(I,J) + A(I,K) * B(K,J)

0003 SCAL

0004 VECT

0005

0007

0010 END

Statement Reordering
The statement processing order may be changed to permit vectorization.

DIMENSION A(100),B(100),C(100)
DO 500 I = 2,100

A(I) = B(I-l) * 3.0
B(I) = C(I) * 3.0

500 CONTINUE

As a result of vectorization, the following vector report is produced:

0001 DIMENSION A(100),B(100),C(100)
0002 VECT +

0004

0003

DO 500 I = 2,100
B(I) = C(I) * 3.0
A(I) = B(I-l) * 3.0

Reordering is possible because all of the values of B(l) are stored before they
are required in the second statement of the loop. Statement reordering does
not affect the results of the program.

Reduction Operations
Some statements of the form: S = ...+S+.... show an accumulation or
reduction. Reduction includes such common operations as:

• Sum of vector elements

Sum of squares

Vector inner product

Chapter 9. Vectorizing Your Program 247

Intrinsic Functions

The translation of reduction operations from scalar to vector code may produce
different results, as explained under "Vector Versus Scalar Summation" on
page 267.

An example of reduction operation recognition is given below. Vector code will
be generated for the DO loop.

0001 DIMENSI0N A(100), B(100)
0002 SUHEL = 0.0

0003 SUMSQ = 0.0
0004 SUMPR = 0.0

0005 VECT + DO 500 I = 1,N
0006

0007

0008

0010 END

SUMEL = SUMEL + A(I)
SUMSQ = SUMSQ + A(I) * A(I)
SUMPR = SUMPR + A(I) * B(I)

To prevent vectorization of reduction operations, you can specify
VECTOR(NOREDUCTION).

The following examples show vectorizable loops containing references to the
MIN and SIN intrinsic functions:

0001 REAL A(500),B(500),C(500)
0002 VECT + DO 10 1=1,500
0003 I B(I) = MIN(A(I),B(I),C(I))

0001 DIMENSION A(1O0), B(100), 0(100)
0002 VECT + DO 500 I = 1,N
0003 I A(I) = B(I) * SIN(C(I))
0005 END

Techniques for improving Vectorization
Most of the programming techniques used for writing optimized FORTRAN pro
grams apply to vectorization. The following suggestions can make your
program run faster in both scalar and vector mode.

The use of vector directives can also improve vectorization. For more informa
tion, refer to "Using Vector Directives" on page 253.

Statements Preventing Vectorization
Inside DO loops, avoid using any of the statements or constructs listed under
"Eligibility of DO Loops for Vectorization" on page 234.

Subscripts
When the same array is either both fetched and stored or stored more than
once in a loop, make sure that subscripts are simple functions of DO loop
induction variables. To vectorize programs, it is important that the compiler
be able to analyze the values taken on by subscripts in an array reference.
Even a trivial change, such as adding a variable to a DO loop index, can
make the loop impossible to vectorize.

248 VS FORTRAN Version 2 Programming Guide

*• When writing programs to be run on a vector processor, consider the
effects of the following indirect subscripts (subscripted subscripts):

DO 20 N=l,10 DO 20 N=l,10
A(M(N))=A(M(N))+1 A(M(N))=B(M(N))+1

20 CONTINUE 20 CONTINUE

The program on the left cannot be vectorized because two elements of
array M may have the same value. The program on the right can be
vectorized because, although two elements may have the same value, none
of the arrays subscripted by these elements is both fetched and stored in
the loop: they are only fetched or only stored.

Provided that subscript calculations are written consistently, it is better to
write them directly as subscripts than indirectly through temporaries. The
code on the left may be more efficient on a vector processor.

A(I+5,J-3,K*2) 15=1+5
J3=J-3

K2=K*2

A(I5.J3,K2)

This is especially true when the variables in the subscript dimensions (I, J,
and K above) are DO loop indexes.

Avoid using variables mentioned in EQUIVALENCE statements.

Avoid using variables that are not induction variables in subscript
expressions.

DO loops
»- The compiler analyzes only DO loops for veclorization. However, the com

piler can recognize some auxiliary induction variables as well as the DO
loop control variable. Vectorization of a loop is prevented when it contains
an induction variable:

— Modifying inner DO loop parameters or auxiliary induction variables
— Whose increment cannot be proven to be non-zero
— Mentioned in EQUIVALENCE statements

• The compiler does not vectorize any loop with a backward branch, a branch
out of the loop, a branch around an inner loop, or branches caused by com
puted or assigned GOTO statements. Other types of conditional or uncondi
tional forward branches may be used in the loop.

*- Veclorization requires preservation of the meaning (semantics) of the ori
ginal DO loop. If a value computed on one iteration of a loop is needed on
a later iteration, vectorization may not be possible. The example below
illustrates the problem of overwriting an operand on iteration J to be used
on iteration J + 1.

REAL+4 A(50)
DO 20 J = 1 , 49

A(J+1) = A(J)
20 CONTINUE

In the previous example, when processed serially (in scalar hardware),
element A(1) is copied through all subsequent elements of array A. Ifthe
loop were vectorized, the elements on the right, A(1) through A(49), are
fetched before being stored in locations A(2) through A(50), producing a

Chapter 9. Vectorizing Your Program 249

Program Logic

shift of the array by one storage unit. Because the semantics of the original
loop are not preserved, the loop would not be vectorized.

Unrolled loops are often seen in programs optimized for scalar processors.
The code on the left, in the following example, is much more efficient on a
vector processor.

DO 1 N=l,32,4
A(N+0) =B (N+0) *C (N+0) +D (N+0)
A(N+1)=B(N+1)*C(N+1)+D(N+1)

DO 1 N=l,32 A(N+2)=B(N+2)*C(N+2)+D(N+2)
1 A(N)=B(N)*C(N)+D(N) 1 A(N+3)=B(N+3)*C(N+3)+D(N+3)

When a short DO loop is heavily referenced in a program, it may be worth
your effort to unroll the loop, {expand the code in-line) assuming it is too
short for efficient vectorization.

Avoid using DO loops that have an iteration count that cannot be deter
mined at compile time. When the compiler cannot determine the number of
iterations that a loop makes, it cannot accurately judge the relative costs of
vector or scalar processing.

If the compiler cannot determine the iteration count, and the ASSUME
COUNT directive {discussed on page 256) is not specified, the compiler
attempts to estimate the count based on the dimensions of the arrays in the
loop. If the array dimensions are all unknown, the compiler uses the fixed
default value 65. For example:

REAL*4 A(20,1O0,*)
REAL*4 6(50,500,200)

DO 100 1=1,N1 <== assumed count is 20
DO 100 J=1,N2 <== assumed count is 10
DO 100 K=1,N3 <== assumed count is 65 (the default)

A(I,J,K) = 0.0
B(I,J*50,K*M) = 0.0

100 CONTINUE

If the upper limit of an array is large but the actual size is significantly
smaller than the limit, it is best to specify the ASSUME COUNT directive to
make effective use of vector cost analysis.

Revisions to the original logic can be made to allow vectorization of the
program. This example illustrates a simple revision:

DO 1 I=ILOW,IHIGH
C(I)=A(I)+B(I)
C(I+INC)=A{I)+B(I+INC)

1 CONTINUE

Because the compiler does not know the values of the variables ILOW, IHIGH,
or INC, it cannot determine whether the loop involves computations overlapping
the range of subscripts of the variable C. Therefore, the loop will not be
vectorized. If the value of INC is greater than IHIGH and IHIGH + INC is within
the range of the dimensions of B and C, you might split the loop into two loops
that can be vectorized:

250 VS FORTRAN Version 2 Programming Guide

DO 1 I=ILOW,IHIGH
C(I)=A(I)+B(I)

1 CONTINUE

DO 2 I=ILOW,IHIGH
C(I+INC)=A(I)+B(I+INC)

2 CONTINUE

Temporary Variables
Scalar variables, used to hold intermediate results, can be vectorized as long
as the scalars are local to the loop in which they are used. This means that
they are not in COMMON, do not use values that could have been set before
the loop, and do not define values that may be used after the loop.

Storage
Use Virtual Memory — While floating-point arithmetic calculations are per
formed faster by vector processors, the time used by I/O operations may not
change and can account for an increasing percentage of the total time required
by an application.

The IBM 3090 Vector Facility and its additional extended memory permit large
amounts of data to be maintained in central electronic storage, rather than on
paging devices. Take advantage of this feature by using large arrays and
letting the operating system do the management.

Use the Smallest Stride — The sequence in which the various elements of an
array are referenced within a nest of loops can have significant impact on the
performance of that nest. (This sequence is sometimes referred to as the
memory reference pattern.) The principal reason for this is that, on the 3090,
data is moved between the registers and main memory by way of a high speed
buffer, or cache. If the memory reference pattern is such that data remains in
the cache for as long as it is needed, good performance will be achieved. If, on
the other hand, data must be moved between cache and main memory multiple
times during processing of a nest of loops, some performance degradation may
be seen.

Optimizing the memory reference pattern for a nest of loops can be extremely
complicated. In general, it is a good idea to minimize the stride of the most
rapidly varying loop in a nest. For scalar code, the most rapidly varying loop is
always the innermost loop. For vector code, it is the vectorized loop that varies
most rapidly, regardless of its relative position.

The compiler takes the memory reference pattern into account in deciding
which loop to vectorize, and will usually chose the loop that results in the
greatest performance benefit. Sometimes, however, this is not possible, either
because the compiler is missing some important information (such as the
number of iterations of a loop), or because the layout of the data or the struc
ture of the loops does not lend itself to optimal vectorization. For example,
examine the following code:

REAL*8 A(10,10,1000),B(10,10,1000)
DO 5 1=1,1000
DO 5 J=l,10
DO 5 K=l,10

5 A(K,J,I) = B(K,J,I)

Chapter 9. Vectorizing Your Program 251

Loop Structure

The outer loop is the best candidate for vectohzatlon because it would result in
the longest vector length. However, due to the data layout, this would result in
a stride of 100 elements, thus reducing (or possibly negating) the benefits of
vectorization. If you restructure the data, as in the following example, better
performance is likely to result.

REAL*8 A(1000,10,10),B(1000,10,10)
DO 5 1=1,1000
DO 5 J=l,10
DO 5 K=l,10

5 A(I,J,K) = B(I,J,K)

Note that even though the declarations and the subscript expressions have
been modified, the structure of the nest of loops has not been changed.
Remember that after vectorization, the vectorized loop will be the loop that iter
ates most rapidly. Thus, if the outer loop is vectorized, we will have the largest
possible vector length along with the shortest possible stride.

In some cases, non-unit stride vectorization is unavoidable. Depending on the
overall memory usage pattern, this may be acceptable. However, it should be
noted that certain large strides should always be avoided. Due to the mech
anism that determines how long a piece of data will remain in the cache,
strides that are multiples of large powers of 2 usually lead to particularly poor
performance. (For single precision data, strides that are a multiple of 128 or
any larger power of 2 will probably result in very poor performance. For double
precision data, this degradation will probably be seen for strides that are a mul
tiple of 64.)

To minimize the stride, vectorize the loop corresponding to the leftmost sub- ' T
scripts of the majority of the arrays referenced in the nest of loops. The
vectorized loop need not be the innermost loop; in fact there are several advan
tages to vectorizing an outer loop. These include:

Reducing the overhead of initializing the vector hardware (because a vector
instruction in an outer loop is processed less frequently than one in an
inner loop)

Eliminating vector storage references from an inner loop

You do not have to do anything special to vectorize an outer loop. The com
piler selects the best loop to vectorize. Some examples may help to illustrate
these points. Try compiling the following programs with the VECTOR and LIST
options and then look at the generated code:

Reducing vector overhead:

REAL*8 A(200,200),8(200,200)
DO 10 1=1,200

DO 10 J=l,200
A(I,J)=B(I,J)

10 CONTINUE

In the above simple program to copy one matrix to another, the outer loop
is vectorized. There are only two vector instructions, LOAD and STORE, in
the inner, scalar loop. The vector instructions that control sectioning are
either in the outer, sectioning loop or are not inside a loop at all. Another
benefit of outer loop vectorization is that the iteration count of the
vectorized loop is reduced by a factor of the section size. This means that

252 VS FORTRAN Version 2 Programming Guide

the number of times that any nested scalar loops need to be initialized is
reduced by that same factor.

*- Eliminating vector storage references from an inner loop:

REAL*8 A(200,200),B(200)
DO 10 1=1,200

DO 10 J=l,200
A(I,J)=B(I) * A(I,J)

10 CONTINUE

In the above program, which multiplies the columns of a matrix with a
vector, the term B{l) is invariant in the inner loop. It is thus computed in a
vector register in the outer loop and then used, without referencing storage,
in the inner loop.

Section Size
The SIZE suboption specifies the section size used to perform vector operations
when the compiled program is processed. Section size determines the number
of vector elements that the program can operate on at one time. The size is a
power of two and is machine-specific.

There are three parameters for the SIZE suboption: ANY, LOCAL, and n. Using
a specific section size-SIZE{LOCAL) and SIZE(n)-can generate more efficient
object code than the variable section size specified by SIZEfANY). However,
you may have to recompile the routine ifyou want to move it to another com
puter. See Chapter 2, "Compiling Your Program" on page 7 for a full dis
cussion of the SIZE suboption.

Using Vector Directives
Occasionally the VS FORTRAN Version 2 compiler does not make the desired
vectorization decisions. You can use vector directives to override or influence
the compiler's decisions. However, while vector directives can improve
vectorization, you must use them with caution. If the vectorization performed
by the compiler is sufficient, or you can improve vectorization by recoding, do
not use vector directives.

The vector directives are:

ASSUME COUNT specifies a value that is to be used for vector cost anal
ysis when a DO loop iteration count cannot be deter
mined at compile time.

IGNORE instructs the compiler to ignore specified dependences in
a DO loop.

PREFER specifies that a DO loop be processed in vector, if eli
gible, or scalar mode, regardless of decisions made by
vector cost analysis.

Chapter 9. Vectorizing Your Program 253

Applications
Problem areas that might benefit from the use of vector directives are:

1. When the iteration count of a loop cannot be determined at compile time,
vector cost analysis algorithms might make an incorrect estimate of the
loop count. Use the ASSUME COUNT vector directive to specify a value.

2. In determining whether to process a loop in vector or scalar mode, vector
cost analysis algorithms might make an undesirable decision. Use the
PREFER vector directive to request that particular loops be run in vector or
scalar mode.

It may be necessary to study the timing of several different runs to know the
best way to apply the ASSUME COUNT and PREFER directives.

3. The compiler may lack sufficient information to apply dependence testing
algorithms. In such cases it must assume that dependences exist. In the
example:

00 10 I = 1,100
10 A(I+IBASE) = A(I)

the subscript offset is unknown. A recurrence may exist, depending on the
value of IBASE. (When IBASE is negative or greater than or equal to 100,
no recurrence exists.) Use the IGNORE vector directive to indicate that
certain dependences do not exist.

Using the IGNORE directive requires an understanding of the dependences
that are ignored, and of the run-time conditions that could make those
dependences exist.

Interactions between Vector Directives

The effects of combinations of directives are discussed below.

ASSUME COUNT and PREFER affect the application of cost analysis. ASSUME
COUNT assists analysis by providing additional information while PREFER com
pletely overrides the process. If both of these directives are applied to a single
nest of loops, PREFER overrides any effects of ASSUME COUNT.

IGNORE and PREFER VECTOR operate independently of one another. Using
IGNORE makes a loop more likely to be eligible for vectorization. If the com
piler still decides not to vectorize the loop because of economic considerations,
PREFER VECTOR can be used to override the compiler.

IGNORE and PREFER SCALAR — Using IGNORE makes a loop more likely to be
eligible for vectorization, but PREFER SCALAR prevents the loop from being
chosen. If both directives are applied to a single nest of loops, PREFER
SCALAR overrides any effects that IGNORE may have.

Specifying Vector Directives
To specify vector directives, you code them in your source program, preceding
the DO loops to which they apply. In addition, you must specify the DIRECTIVE
compiler option using an ©PROCESS statement. The DIRECTIVE compiler
option is discussed on page 28 in Chapter 2, "Compiling Your Program."

254 VS FORTRAN Version 2 Programming Guide

To code a vector directive:

1. Begin with a comment symbol (C or * for FIXED format input, or •* for FREE
format input).

2. Immediately following the comment symbol, code a character string that
matches the trigger-constant specified on the DIRECTIVE compiler option.
To use a single quote (') in the character string, specify two consecutive
single quotes in the trigger-constant.

3. Code at least one blank, followed by the vector directive. The syntax for
each vector directive is given in the following sections.

The vector directive must be coded within the first 72 columns. If it refers to

any array names, it must appear after the statements declaring those names to
be arrays.

The following example shows a DIRECTIVE compiler option, in which *VDIR: is
the trigger-constant, and an ASSUME COUNT vector directive:

OPROCESS DIRECTIVE('*VDIR:')

C*VDIR: ASSUME C0UNT(3)

Local and Global Vector Directives
A vector directive that affects only the first DO loop that follows it is called a
local vector directive. A vector directive that affects multiple DO loops is called
a global vector directive. Only the ASSUME COUNT and PREFER SCALAR
vector directives can be used as global vector directives.

Global directives are specified with the additional keywords ON and OFF. For
example:

C*VDIR: PREFER SCALAR ON

C»VOIR: PREFER SCALAR OFF

If you specify the ASSUME COUNT or PREFER SCALAR vector directive with the
ON keyword, it will apply to all loops until either the end of the program unit or
a matching directive with the OFF keyword is reached.

On the ASSUME COUNT global directive, you can specify multiple values,
where each value is associated with particular loop induction variable. For
example:

C*VDIR: ASSUME C0UNT(I=4, J=200) ON

Rules for Specifying Multiple Vector Directives
The following rules apply when you have multiple vector directives in your
program:

Local directives take precedence over global directives. If a local directive
is specified for a loop where a global directive is already in effect and the
two directives conflict, the local directive will be used for that loop, and will
continue to be in effect for subsequent loops.

• Multiple ASSUME COUNT and PREFER local directives are not allowed for a
single DO loop. If two ASSUME COUNT local directives or two PREFER
local directives are specified for the same DO loop, the first one is used and

Chapter9. Vectorizing Your Program 255

the second one is ignored,
single loop.

Multiple IGNORE directives are allowed for a

If two ASSUME COUNT global directives are used where one specifies a list
of variables associated with values and the other specifies a single value,
the latter is used for all loops whose induction variables are not on the list
of the former. The rule applies regardless of the order in which the two
directives appear.

If there is a conflict between two ASSUME COUNT global directives, where
a variable is associated with one value on the first directive but with

another value on the second directive, the first value is used until the
second one is encountered, at which point the second one is used from
there on.

ASSUME COUNT OFF cancels all preceding ASSUME COUNT ON directives.

For an example of values used when multiple ASSUME COUNT directives are
specified, see page 258.

ASSUME COUNT Directive

ASSUME COUNT specifies a value that is to be used for vector cost analysis
when DO loop iteration counts cannot be determined at compile time.

If you specify ASSUME COUNT for a loop with a known iteration count, the
vector directive is ignored and a warning message is issued.

Using the ASSUME COUNT directive has no effect on program results. If you
specify an incorrect count, the results are identical to those produced by scalar
code. At worst, an incorrectly specified ASSUME COUNT directive results in
increased run time.

ASSUME COUNT only affects the vector cost analysis phase of the compiler.
The information is not used to determine the existence of dependences or
recurrences.

— Syntax

Local Directive:

ASSUME COUNT (va/)

Global Directive:

ASSUME COUNT{{val | var=val [,var=va/] ...» ON

ASSUME COUNT OFF

ASSUME COUNT (val)
begins an ASSUME COUNT local directive.

val

is an integer constant, or a named constant with an integer value, indi
cating the iteration count.

256 VS FORTRAN Version 2 Programming Guide

If a named constant Is used, the PARAMETER statement that defines

that constant must precede the directive.

ASSUME COUNT {{val | var=val lvar=val]...» ON
begins an ASSUME COUNT global directive.

vaf

is an integer constant, or a named constant with an integer value, indi
cating the iteration count.

If a named constant is used, the PARAMETER statement that defines

that constant must precede the directive.

var

is the name of a four-byte integer variable that is used as the enumer
ation variable for one or more loops in the range of the directive.

ASSUME COUNT OFF

cancels all preceding ASSUME COUNT ON statements.

Examples of ASSUME COUNT

Example 1: In this example, knowledge of a short loop helps the compiler avoid
uneconomical vectorizalion.

C*VDIR: ASSUME C0UNT(3)
DO 95 J = 1, N

A(J) = B(J)/C(J)
95 CONTINUE

Example 2: In this example, information about the relative size of each loop
may affect the compiler's choice of a loop to vectorize.

C*VDIR: ASSUME COUNT(10)
DO 95 J = 1, N

A(J) = 0.0
C*VDIR: ASSUME C0UNT(450)

DO 96 K = 1, M
A(J) = A(J) + B(K,J) * C(J,K)

96 CONTINUE

95 CONTINUE

Example 3: In this example, a named constant with an integer value is used for
the assumed iteration count.

PARAMETER (NLIM=300,MLIM=5)

C*VDIR: ASSUME COUNT(NLIM)
DO 100 1=1,N

C*VDIR: ASSUME COUNT(MLIM)
DO 100 J=1,M

<== assumed count is 300

<== assumed count is 5

Chapter 9. Vectorizing Your Program 257

Example 4: In this example, two global directives and one local directive are
specified.

C*VDIR ASSUME COUNT(50) ON
C*VDIR ASSUME C0UNT(I=4, J=200) ON

DO 100 1=1,N1 <== assumed count is 4

DO 100 J=1,N2 <== assumed count is 200

DO 100 K=1,N3 <== assumed count is 50

C*VDIR ASSUME COUNT(500)
DO 200 1=1,N4 <== assumed count is 500

DO 200 J=1,N5 <== assumed count i s 200

DO 200 L=1,N6 <== assumed count is 50

C*VOIR ASSUME COUNT OFF

DO 300 1=1,N7 <== assumed count is 65 (by default)
DO 300 J=1,N8 <== assumed count is 55 (by default)

IGNORE DIRECTIVE

IGNORE instructs the compiler to ignore specified dependences in a loop.
compiler accepts the IGNORE directive only when the compiler lacks enough
information to determine the existence of dependences. After the compiler
accepts the IGNORE directive, vectorization may still not occur, for the following
reasons:

•- The existence of dependences that can not be overridden.

• The existence of unanalyzable and unsupportable constructs.

Outer loops affecting the iteration parameters of inner loops.

Cost analysis (although cost analysis can be influenced by use of the
PREFER and ASSUME COUNT directives).

Use IGNORE with extra caution. Incorrectly specifying IGNORE can produce
erroneous program results.

An installation option determines whether the IGNORE directive is enabled or
disabled. See your systems programmer to check whether the IGNORE direc
tive is enabled for your installation.

By specifying REPORT(XLIST) on the VECTOR compiler option, you can produce
a table of ignored dependences in the vector report. This table can help you
understand how the IGNORE directive was applied and whether you used it cor
rectly. For more information about this table, see page 241.

258 VS FORTRAN Version 2 Programming Guide

— Syntax

IGNORE { RECRDEPS[(array-//sO][EQUDEPS[{array-list)]] |
EQUDEPS[(array-list)] [RECRDEPS [(array-list)]] }

RECRDEPS

requests that, in cases where the compiler is not certain whether a depend
ence that might be part of a recurrence is present, the compiler should
assume that the dependence does not occur. RECRDEPS acts on every
applicable array in the loop unless qualified by an array-list.

Backward and interchange-preventing dependences can be ignored. For
more information on dependences, see "Classification of Dependences" on
page 231.

Loops identified by the flag "RECR" in the XLIST vector report are candi
dates for using this directive to increase vectorization. However, use
IGNORE RECRDEPS only if the specified dependences are perceived by the
compiler but do not in fact occur when your program runs.

array-list

is an optional list of array variable names separated by commas. The
names must fit on one line and must not extend beyond column 72. If
you cannot fit all the names on one line, you can continue coding them
on an additional IGNORE directive for the same loop.

An array-list restricts the directive to the specified arrays. If you omit
the array-list, the directive applies to all applicable arrays within the
loop.

Examples of IGNORE RECRDEPS

The examples below include code to check for correct application of the direc
tive at run time. Such code is useful when testing and debugging loops using
directives.

You must check run-time relationships to determine whether dependences
exist. While this requires extensive analysis of the application, it is necessary
because incorrect usage of the IGNORE directive can cause unexpected results.

In the examples, a routine (DIRERR) is invoked to report instances where a

directive application is incorrect. This subroutine is defined in "Verifying
Correct Application of Directives" on page 265.

Example 1: Unknown loop index upper bound
may depend on vector length.

IF (.NOT.(N -LE. 77))
+ CALL DIRERR(20, 1, '(N .LE. 77)')

C*VDIR: IGNORE RECRDEPS(A)
DO 20 K = 1, N

20 A(K+77) = A(K) * B(K)

Correct directive application

Chapter 9. Vectorizing Your Program 259

Example 2: Unknown auxiliary induction variable increment Correct directive
application depends on the direction of the increment.

IF (.NOT.(M .GT. 0))
+ CALL DIRERR(40, 41, '(H .GT. 0)')

C*VDIR: IGNORE RECRDEPS(A)
J = 200

DO 40 I = 1, 1000
A(I) = A(J) * B(I)

40 J = J + M

It would also be safe to vectorize this loop when M is less than or equal to -200.
However, a simplified test reduces the amount of computation involved in verifi
cation. The test chosen insures that incorrect vectorization is detected.

Example 3: Unknown subscript offsets (simple case) Correct directive applica
tion prohibits subscript overlap.

IF (.NOT.(Ml .LE. 0 .OR. Ml .GE. 1000))
+ CALL DIRERR(50, 71, '(0.LE.M1 .OR. Ml.GT.1000)')

C*VDIR: IGNORE RECRDEPS(A)
DO 50 I = 1, 1000

50 A(I+M1) = A(I) * B(I)

Example 4: Unknown subscript offsets (full generality)

IF (.N0T.(M2.GE.M1 .OR. ABS(M1-M2).GE.1000))
+ CALL DIRERR(60,72,
+ '(M2.GE.M1 .OR. ABS(M1-M2).GT.1000)')

C*VDIR: IGNORE RECRDEPS(A)
DO 60 I = 1, 1000

60 A(I+M1) = A(I+M2) * B(I)

Example 5a: Indirect Addressing When indirect addressing is used, it is diffi
cult to verify correct directive application. In the example, a logical function
(DUPIND) checks the indexing array for duplicate values and returns .TRUE, if
any are found. (DUPIND is defined on page 266.) Verification is possible in this
case because the same indexing array is used on both sides of the equation.

IF (DUPIND(J, 1000, 0))
X CALL DIRERR(70,72,'Independent Indirect Indexes')

C*VDIR: IGNORE RECRDEPS(A)
DO 70 I = 1, 1000

70 A(J(I)) = A(J(I)) * B(I)

260 VS FORTRAN Version 2 Programming Guide

Example 5b: Indirect Addressing In the following example, the left side refer
ence to A uses indirect addressing, while the right side reference does not.
You must check that no duplicates exist in the indexing array, and that a value
stored on one iteration is not referenced on a later iteration. An added loop
checks that no value of J(l) matches a value of I on a later iteration.

IF (DUPIND(J, 1000, 0))
X CALL DIRERR(80,72,'Independent Indirect Indexes')

DO 79 I = 1, 1000
IF (J(I).GT.I .AND. J(I).LE.1000)

X CALL DIRERR(80,72,'Independent Indirect Indexes')
79 C0NTINUE

C*VOIR: IGNORE RECRDEPS(A)
DO 80 I = 1, 1000

A(J(I)) = A(I) * B(I)80

Example 5c: Indirect Addressing In the following example, two different
indexing arrays are used.

C*VDIR: IGNORE RECRDEPS(A)
DO 90 I = 1, 1000

90 A(JLEFT(I)) = A(JRIGHT(I)) * B(I)

The IGNORE directive is valid only when no entry in the JLEFT array matches a
later entry in the JRIGHT array. For example,

JLEFT = (1,3,5, ... 2*k-l)
JRIGHT = (2,4,6, ... 2*k)

can be vectorized, while the following example can not.

JLEFT = (1,2,3, ... ,n)
JRIGHT = (n,n-l,n-2, ... 1)

It is possible to write a subroutine similar to DUPIND that checks whether there
is a dependence in this case.

Example 6: Interchange-preventing dependence In the following example, the
compiler assumes that there are two interchange-preventing dependences
carried by the outer loop:

Atrue, forward dependence from statement 10 to statement 20 carried by
array A.

An anti, backward dependence from statement 20 to statement 10, also
carried by array A.

Using IGNORE RECRDEPS permits vectorization by modifying the forward
dependence so that it is no longer considered to be preventing.
C*VDIR: IGNORE RECRDEPS

D0 100 I = 1,N
DO 100 J = 1,M

10 A(I+L,J) = B(I,J)
20 C(I,J) =A(I,J)

100 CONTINUE

Chapter 9. Vectorizing Your Program 261

Example 7: A/ested loops When IGNORE REORDERS is used on one loop
within a nest of loops, it only applies to the specified loop. In the following
example, using IGNORE REORDERS makes the outer loop eligible for
vectorization, but does not change the eligibility of the inner loop.

IF (.N0T.(L2 .GE. 0))
+ CALL DIRERR(95, 71, '(L2.GE.0)')

C*VDIR: IGNORE RECRDEPS(B)
DO 95 J = 1, N

DO 97 K = 1, M
B(K,J) = B(K+L1,J) + B(K,J+L2)

97 CONTINUE

95 CONTINUE

Example 8: Statement reordering Backward dependences causing statement
reordering are ignored if IGNORE REORDERS is used. No reordering occurs if
the loop is subsequently vectorized. The following example contains a loop
(where Nis known to be positive) requiring reordering to vectorize properly.
Reorder statements 10 and 20 before using IGNORE REORDERS on this loop.

DO 100 I = 1, 100
10 A(I) = B(I)
20 B(I+N) = C(I)

100 CONTINUE

Example 9: Multiple IGNORE directives In the following example, the array-list
is too long to fit on one directive. The list is continued on an additional direc
tive.

C*VDIR: IGNORE RECRDEPS(ADDRESS,BYTE,CODE,EXTENT,FIELD,GRAPH,HM,IMAGE)
C*VDIR: IGNORE RECRDEPS(JOB,KB,LOG,MESSAGE)

DO 100 I=N,M
ADDRESS(I) = ADDRESS(I+K1)

100 CONTINUE

EQUDEPS

instructs the compiler to assume that no dependences arise between vari
ables in an EQUIVALENCE group. Two variables in an EQUIVALENCE group
may share common storage. This causes the compiler to assume that
every reference to one of the variables is dependent on every reference to
the other. IGNORE EQUDERS instructs the compiler to ignore such depend
ences.

IGNORE EQUDERS acts on every applicable array in the loop unless quali
fied by an array-list.

array-list
is an optional list of array variable names separated by commas. The
names must fit on one line and must not extend beyond column 72. If
you cannot fit all the names one line, you can continue coding them on
an additional IGNORE directive for the same loop.

An array-list restricts the directive to the specified arrays and to arrays
that are EQUIVALENCEd to specified arrays. (Thus, to cause a depend
ence to be ignored, you need specify only one of the arrays involved in

262 VS FORTRAN Version 2 Programming Guide

I the dependence.) if you omit the array-list, the directive applies to all
I applicable arrays within the loop.

^ Examples ofIGNORE EQUDEPS

Example 1: In the following example, the subscript expressions are such that a
value stored into variable A will never be fetched later through variable B.

DIMENSION A(100O), B(1000)
EQUIVALENCE (A(l), B(l))

I C*VDIR: IGNORE EQUDEPS(A)
DO 120 K = 1, 100

120 A(K) = B(K+1) * 10.0

Example 2: In the following example, because the loop is too short to reference
the storage locations where variables A and B overlap, no vectorization pre
venting dependence can occur.

DIMENSION A(100), B(1000)
EQUIVALENCE (A(l), B(101))

I C*VDIR: IGNORE EQUDEPS(A)
DO 130 K = 1, 100

130 A(K) = B(K) * 10.0

Example 3: In the following example, a dependence exists if the upper bound of
the loop is large enough for variable B to refer to a storage location assigned to
it on a previous iteration through variable A. To guard against this situation,
use verification code as shown in the IGNORE RECRDEPS examples.

DIMENSION A(100), B(1000)
EQUIVALENCE (A(l), B(l,01))

IF (.NOT.(N .LE. 100)
+ CALL DIRERR(140, 73, 'N .LE. 100')

I C*VDIR: IGNORE EQUDEPS(A)
DO 140 K = 1, N

140 A(K) = B(K) * 10.0

Chapter 9. Vectorizing Your Program 263

PREFER Directive

PREFER specifies that particular DO loops be run in vector or scalar mode,
regardless of decisions made by vector cost analysis.

Use PREFER only after carefully studying run times of a loop in vector and
scalar modes. Do not use PREFER if the same result can be achieved using the
ASSUME COUNT directive because PREFER can make a program hardware
dependent.

— Syntax

Local Directive;

PREFER {SCALAR | VECTOR}

Global Directive:

PREFER SCALAR ON

PREFER SCALAR OFF

PREFER {SCALAR | VECTOR)
begins a PREFER SCALAR or PREFER VECTOR local directive.

SCALAR

specifies that the following loop be run in scalar mode. This request
will always be honored regardless of any other considerations.

VECTOR

specifies that the following loop be run in vector mode. This request
will be honored only if the loop is eligible for vectorization. If a loop is
not eligible for vectorization, the directive will be ignored and normal
vectorization processing will be applied to the remaining loops within
the nest.

Ifyou specify PREFER VECTOR for more than one loop in a nest, it will
be honored only for the most deeply nested loop that is eligible for
vectorization.

Misuse of PREFER VECTOR may cause inefficient code to be generated,
but loop results remain the same.

PREFER SCALAR ON

begins a PREFER SCALAR global directive, which specifies that following
loops be run in scalar mode.

PREFER SCALAR OFF

cancels the preceding PREFER SCALAR ON statement.

264 VS FORTRAN Version 2 Programming Guide

rs

Examples of PREFER

Example 1: In this example, PREFER VECTOR Is used to vectorize a loop that
the compiler might run in scalar mode.

REAL X(INCX,N), Y(INCY,N), A

C*VDIR; PREFER VECTOR

DO 10 1=1,100000
Y(1,I) = Y(1,I) + A*X(1,I)

10 CONTINUE

Example 2: In this example, PREFER SCALAR Is used to prevent vectorlzatlon
of a loop.

C*VDIR: PREFER SCALAR

DO 100 I = 1, N
100 IF(B(I).NE.0) THEN A(I) = B(I)*C(I)* ...

Example 3: In this example, both a global and a local directive are specified.
The global directive, PREFER SCALAR ON, applies to the first two loops. The
local directive, PREFER VECTOR, takes precedence over the global directive so
it is used for the third loop. PREFER SCALAR ON resumes effect for the fourth
loop. PREFER SCALAR OFF cancels the global directive and the last two loops
are processed as normal.

C*VDIR PREFER SCALAR ON

DO 100 1=1,100
DO 100 J=1,100

C*VDIR PREFER VECTOR

DO 200 1=1,N3
DO 200 J=1,N4

c*VDIR PREFER SCALAR OFF

DO 300 1=1,N4
DO 300 J=1,N5

<== will not be vectorized

<== will not be vectorized

<== will be vectorized if eligible
<== will not be vectorized

<== normal vectorization processing will be applied
<== normal vectorization processing will be applied

Verifying Correct Application of Directives
To verify that a vector directive Is applied correctly, you can write a subroutine
similar to the one In Figure 66 on page 266. The subroutine generates a
message and invokes one of the return code subroutines (SYSRCX) listed In
VS FORTRAN Version 2 Language and Library Reference. The entry point
shown here causes processing to terminate with the specified return code. The
routine could be rewritten to allow processing to continue by replacing the call
to SYSRCX with a call to SYSRCS.

Chapter 9. Vectorizing Your Program 265

SUBROUTINE OIRERR (ISTHT, ICODE, TEXT)
C Print text and ISTHT, terminate with ICCDE

CHARACTER *(*) TEXT
C

WRITE (*,1) TEXT, ISTHT, ICOOE
I FCRHAT('-*** Loop Vectorization Assumption "',A,/

X ' Failed at Statement ',16,
X 'with Error Code',112)

CALL SYSRCX(ICODE)
END

Figure 66. Sample Routine to Report an Invalid Directive

The example in Figure 67 is of a logical function, DUPIND. It checks indexing
arrays for duplicate values and returns .TRUE, ifany are found.

LOGICAL FUNCTION DUPiriD(J, N, JBASE)
C

C Routine to check for independent indirect-index values.
C Returns FALSE if no duplicates, TRUE if duplicates.
C

C J is the IMTEGER*4 array of indirect subscripts.
C N is the number of such values.
C JBASE is the minimum index value possible.
C All J(*) values are greater than or equal to JBASE.
C

C Bit array B used to check index values:
C dimension is BSIZE, 32 bits per word.

INTEGER BSIZE

PARAHETER (BSIZE = 1000)
C Allow for 32000 distinct values.

INTEGER B(BSIZE)
INTEGER J(M)

C

OUPINO = .FALSE.

C Initialize Bit array
DO 1 K = 1, BSIZE

1 B(K) = 0
C Now, test each value of J(*) in turn

DO 2 K = 1, N

IF (J(K) .LT. JBASE) THEN
WRITE (*,7) K, JBASE

7 FORHAT('- *** Indirect index No.',16,' is below',112)
STOP 'DUPIND 1'

ENDIF

C Calculate word number H and bit number L
H = 1 ♦ (J(K) - JBASE) / 32
IF (H .GT. BSIZE) THEN

WRITE (*,8) K, 32*BSIZE+JBASE
8 FCRHAT('- *** Indirect index No.',16,

X ' exceeds Hax',112)
STOP 'DUPIND 2'

ENDIF

L = HOD((J(K) - JBASE), 32)

Figure 67 (Part 1of 2). Sample Routine to Check Indexing Arrays for Duplicate Values

266 VS FORTRAN Version 2 Programming Guide J
I

C See if that value has been previously observed
IF (BTEST(B(H),L)) THEN

OUPIND = .TRUE.

WRITE (*,9) K
9 FORHATC- *** Indirect index Ho.',16,' is repeated')

RETURN

ELSE

C Indicate that value has been observed

B(ll) = IBSET(B{H),L)
ENDIF

2 CONTINUE

END

Figure 67 (Part 2 of 2). Sample Routine to Check Indexing Arrays for Duplicate Values

Considerations and Restrictions for Vectorization

Restrictions limiting vectorization are discussed in the following sections.

Vector Versus Scalar Summation
Results from vectorized programs may differ from those produced by programs
compiled and run using VS FORTRAN (Version 1 or Version 2) with
VECTOR(NOREDUCTION) or (NOVECTOR) specified.

Summing on the scalar hardware is performed sequentially: each number is
added in turn. However, summing is done differently on the vector hardware:
every n-th element is added (where n is dependent on the vector hardware).
These partial sums are added to form the total.

Differences can occur because floating-point addition is not associative; that is,
the sum depends upon the order of addition. The floating-point numbers
produce one result if added sequentially on scalar hardware. When added
using vector accumulate instructions, the floating-point numbers produce a dif
ferent result. The two sums, however, are algebraically equivalent even though
they are not computationally equivalent.

The result of summation is also affected by the loop selected for vectorization.
When the sum is driven by several loops, as in the example:

DO 1 K = 1,N
DO 1 J = 1,N
DO 1 I = 1,N

1 S = S + A(K,J,I)

different sums are possible in scalar, and vector processing for each of the I, J,
or K loops. All are algebraically equivalent.

Version 2 Versus Version 1 Math Library Routines
Results generated by the VS FORTRAN Version 2 math library routines
(VSF2F0RT) may be different from the results generated by the VS FORTRAN
Version 1 standard math routines (VSF2MATH) because the Version 2 routines
have been revised to be more accurate.

For scalar out-of-line intrinsic function references in your program, you can
choose which math library to use by accessing libraries in the desired order. If

Chapter 9. Vectorizing Your Program 267

the intrinsic function references in your program are vectorized, however, the
new VS FORTRAN Version 2 math library routines will always be used, as there
are no vector entry points in the old routines.

Therefore, if you wish to always use the old math routines for compatibility of
results, you should specify the NOINTRINSIC suboption on the VECTOR option.
The NOINTRINSIC suboption disables vectorization of out-of-line intrinsic func
tions. For more information, see the INTRINSIC | NOINTRINSIC suboption on
page 34.

Subscript Values and Array Bounds
The VS FORTRAN Version 2 compiler assumes that subscripts remain inside
array dimensions. LANGLVL(77) requires that every array subscript be within
its corresponding dimension declaration. LANGLVL(66) only requires that the
total subscript value be within the range of the array. In particular, addressing
of the following type is permitted:

REAL A(10,1O)
DO 1 I = 1,20

1 A(I,2) = A(I,1)

However, if vectorization is requested, the loop above will be vectorized with no
check for array bounds being exceeded. Although the program may produce
the correct results when run in scalar mode, it is likely that unexpected results
will be obtained when the program is vectorized.

Interaction with Static Debug Statements
The use of static debug statements inhibits vectorization because static debug
requires that the optimization level be 0.

I Vectorization requires that the optimization level in effect be 0PTIMIZE(2) or
I 0PTIMIZE{3). If it is not, the compiler upgrades the optimization level to
I 0PTIMIZE{3). However, certain FORTRAN statements, such as DEBUG or

invalid FORTRAN statements, downgrade the optimization level to OPT{0) and
no vectorization occurs.

268 VS FORTRAN Version 2 Programming Guide

Chapter 10. Creating Reentrant Programs

This chapter explains the concept of reentrant programs and why you might
want to use them. It also discusses the advantages and limitations of reentrant
programs, and gives you a brief overview of the process involved in creating
such programs.

Detailed information about creating reentrant programs under VM is found in
"Creating and Using a Reentrant Program under VM" on page 277. Detailed
information for MVS is found in "Creating and Using a Reentrant Program
under MVS" on page 291.

Comparing Reentrant and Nonreentrant Programs
It is possible that several users may want to run a particular program at the
same time. Usually, in such a case, each user is given a separate, private copy
of it. A nonreentrant program can only be used in this way. Thus, if there are
three concurrent users, there will be three copies of the program in main
storage; if there are twenty concurrent users, there will be twenty copies.
Figure 68 shows this.

program

i L

User One

program program

i k L

User Two User N

Figure 68. Nonreentrant Program Requires Multiple Copies for Concurrent Use

Private copies are necessary when the program is nonreentrant because con
current users of a single copy would interfere with the values of each other's
variables. Sharing a single copy of a nonreentrant program would result in
erroneous processing and output.

To understand this, suppose that several users are allowed to share a single
copy of a program containing a variable A. In this program. A is initially zero,
and gets set to other values as processing proceeds. User One starts running
the single copy of the program, reads a data item from a file, and adds that
value (say 8.3) to variable A. A is now 8.3. At this moment. User Two starts
running the program. User Two reads a data item (with a value of say 6.6) and
adds it to A. But instead of A being 6.6, as expected, A is now actually 14.9.
User Two's subsequent actions or output based on A will now be incorrect.
And any other concurrent users trying to share the program would have similar
problems.

Reentrant programs in VS FORTRAN Version 2 are programs that are struc
tured so they can overcome this difficulty. Several users are allowed to share a
single copy of the code, but each user has a private copy of the nonshareable

Chapter 10. Creating Reentrant Programs 269

data. By specifying the RENT compiler option, you request a program struc
tured this way. Figure 69 on page 270 shows the concept of sharing.

operating system's shared storage area

copy of
nonshareable

part of
program

i k

User One

shareable part
of program

n

automatic linkage
by VS FORTRAN

copy of
nonshareable

part of
program

copy of
nonshareable

part of
program

k i k

User Two User N

Figure 69. Reentrant Program Saves Space for Concurrent Users

Sharing a Reentrant Program
Sharing is made possible by dividing the program into two parts:

1. A nonshareable part —variables and other information whose values can
be altered during processing

2. A shareable part —information and instructions that are not modified during
processing

Each concurrent user is given a private copy of the nonshareable part of the
program. Thus, altering these values does not affect other users. The
shareable part of the program contains the program's instructions. This
shareable part can be placed in a special area of storage that allows sharing
and protects against modification. Communication between the two parts of the
program is established automatically by VS FORTRAN. From your perspective
as a user, running a reentrant program is no different than running a regular,
nonreentrant one, and run-time results are the same.

270 VS FORTRAN Version 2 Programming Guide

Advantages of Sharing Reentrant Programs
Because it allows sharing, reentrancy has the following advantages:

Less main storage usage {the more users sharing the program concur
rently, the greater the savings).

•- Performance improvement (less paging to auxiliary storage, and higher pri
ority paging).

Dividing a program unit compiled with the RENT option into its nonshareable
and shareable parts has another potential advantage that has nothing to do
with sharing. It can provide a type of dynamic loading capability.

If a subprogram is not always called during processing, it can be compiled as
reentrant and separated into its nonshareable and shareable parts. The
nonshareable part would be part of your executable program (and would
always be in main storage when the program was running, whether called or
not). However, the shareable part could be kept in a library on auxiliary
storage, and would only be loaded and run if the subprogram were called.
When the program is run but the subprogram is not called, the shareable part
is not loaded, and the main storage requirement is reduced.

This loading of the shareable part is done automatically by the VS FORTRAN
Version 2 run-time library, as is the communication between the program parts,
so no special coding or assembler language interface is necessary — only the
normal FORTRAN CALL to the subprogram.

Limitations and Disadvantages of Reentrancy
Reentrancy is not valuable or practical in all cases.

First, separating a program into its two parts and installing the shareable part
in the system's shareable area is most advantageous if the program will have
multiple concurrent users. (However, it is possible that there will be a minor
improvement in performance even if the program will have only one user.) Fur
thermore, only programs with a large amount of executable code lend them
selves to sharing, since it is only the executable code that is shared.

Even if a program has a large amount of shareable executable code and will
have multiple concurrent users, you should weigh the advantages of sharing
against the extra preparation work involved: separating the shareable and
nonshareable parts, preparing the shareable area of the operating system, and
re-IPLing the operating system.

Another limitation is that dynamic loading of the shareable part is practical only
if the program logic does not always require its loading, and if the shareable
part is relatively large.

Preparing to Use a Reentrant Program
Before looking at the detailed steps involved in creating and running a reen
trant program on your system, it may help to look at the process in general and
to examine one of the most important steps: separating the nonshareable and
shareable parts of a program.

Chapter 10. Creating Reentrant Programs 271

To create a reentrant program unit, you code it as usual and then compile it
with the RENT compiler option. The object module produced by the compiler
must then be separated into its nonshareable and shareable parts. To do this,
VS FORTRAN Version 2 supplies you with a program called the separation tool.
Figure 70 on page 272 shows the input to and output from the separation tool
program in the case of a single object module.

source program

compile with RENT option

I

object module

separate the parts
using separation tool

shareable part
in a file

nonshareable part
in a file

Figure 70. Using The Separation Tool on a Single Program

Figure 70 shows a very simple case. However, your applications will probably
involve more than one source program unit, and may also involve nonreentrant
program units as well. For such cases, the separation tool can accept multiple
object files. Figure 71 on page 273 shows a more complex situation, and pro
vides greater detail about the input to and output from the separation tool.

272 VS FORTRAN Version 2 Programming Guide

object module SUBA
shareable/nonshareable

object module SUBB
shareable/nonshareabl e

object module C
nonreentrant

separation tool

shareable SUBA

shareable SUBB

NAME shrpart-name(R)

nonshareable SUBA

nonshareable SUBB

object module C

Figure 71. Using The Separation Tool on Multiple Programs with the Assigned Name
Form

Notice that, In this example, the input to the separation tool includes two reen
trant program units with nonshareable and shareable parts (SUBA and SUBB,
compiled with the RENT option), and one nonreentrant program unit (C). The

shareable and nonshareable parts are again divided into two output files. The
separation tool adds a linkage editor NAME statement; in Figure 71. the fol
lowing is added to the shareable output file:

NAME shrpart-name(R)

For this discussion, nonreentrant program units are either FORTRAN program
units compiled without the RENT option, or non-FORTRAN program units. If
your executable program needs to contain nonreentrant program units, these
can either be supplied as input to the separation tool in the same run as the
reentrant program units, or they can be merged with the nonshareable parts
before preparing the program to be run.

The separation tool automatically places any nonreentrant program units
together with the nonshareable parts of the reentrant program units in one file

Chapter 10. Creating Reentrant Programs 273

(or data set) as output. Later, you may want to break this file into separate
pieces so you can link-edit them separately, as needed.

You can choose the form in which the shareable parts of the output will be
produced. The output will take one of two forms:

Assigned Name Form
The output file containing the shareable parts will contain one
linkage editor NAME statement. You supply the name for the linkage
editor NAME statement when you invoke the separation tool. Later,
the linkage editor will create one member, using the assigned name,
containing all the shareable parts in this file.

Figure 71 on page 273 shows the output from the separation tool in
the assigned name form.

Default Name Form

In the output file from the separation tool, each shareable part will
be followed by a linkage editor NAME statement. The name on each
statement is the name of the original program unit preceded by the
character @. Later, the linkage editor will create an individual
member for each of the shareable parts. The name of each member
is the default name (program unit name preceded by @).

Figure 72 on page 275 shows the output from the separation tool in the default
name form. In our example, the program unit names would be used to build
the default names @SUBA and @StJBB, respectively.

274 VS FORTRAN Version 2 Programming Guide

object module SUBA
shareable/nonshareable

object module SUBB
shareable/nonshareabl e

object module C
nonreentrant

separation tool

shareable SUBA

NAME @SUBA(R)

shareable SUBB

nonshareable SUBA

nonshareable SUBB

NAME 0SUBB(R) object module C

Figure 72. Using the Separation Too! with the Default Name Form

It is important to understand the entire process of creating a reentrant program
before beginning. As you plan how you will create your reentrant program,
keep in mind that all the program units you need do not have to be sent
through the separation tool at once, as shown above. For example, ifyou know
you will be installing the shareable parts in a DCSS and plan to use the default
name form, you may want to consider compiling and separating each program
unit individually. This will save you time later on.

After the separation tool has produced its output, you can complete the process
of creating a reentrant program:

• Link-edit the shareable parts and prepare the nonshareable parts to be run.

To share the shareable parts, install them in a discontiguous shared
segment (DCSS) for VM, or link pack area (LPA) for MVS.

To run the program, invoke the nonshareable part just as you would invoke
any nonreentrant program. The corresponding shareable part will be auto
matically located and used.

Note that the nonshareable and shareable parts of a program unit compiled
with RENT are synchronized to work only with each other. Ifyou have to

Chapter 10. Creating Reentrant Programs 275

change your source program for any reason, you must rebuild both parts by
recompiling the program unit and running the separation tool again. Otherwise,
the program will not work correctly.

Summary of Steps to Create and Use a Reentrant Program
To prepare a reentrant program for sharing, complete all the steps below. If
you do not want to share the shareable part of the program but want to take
advantage of the dynamic loading capability of reentrancy, you can omit step 6.

Detailed information about the procedures for each step under VM is included
in "Creating and Using a Reentrant Program under VM" on page 277. Detailed
information for MVS is included in "Creating and Using a Reentrant Program
under MVS" on page 291.

1. Design and Code

Design and code your program as you would normally. You need do
nothing different for a program that will be reentrant.

2. Compile

When you compile your program unit, request a reentrant version of your
object module by specifying the RENT compiler option. The compiler then
produces an object module composed of two parts: the shareable code and
the nonshareable code.

Using the RENT option does not alter the result of running your program.

Before proceeding to the next step, debug your program in the usual way to
make sure that it is error-free. Ifyou wait until later to do this, you will
have to repeat the following steps. Furthermore, once you install the
program in a shareable area, you will not be able to use the Interactive
Debug to debug it unless you have compiled it with the TEST option.
However, a program compiled with the TEST option generally has poor per
formance because the code is not optimized and because there are many
additional calls to run-time library subroutines.

3. Separate the Two Parts

This step is not done when preparing a regular, nonreentrant program, but
is necessary if you want to share a reentrant program or use the shareable
part for dynamic loading.

Using the separation tool program provided as part of the VS FORTRAN
Version 2 product, separate the object modulo into its nonshareable and
shareable parts.

4. Prepare an Executable Program from the Nonshareable Parts

The nonshareable parts of the program need to be prepared as usual to be
run. These parts can be regular nonreentrant program units as well as the
nonshareable parts of reentrant program units.

Under MVS, you must link-edit the parts. Under VM, you have two options:
putting the text files into a TXTLIB or creating a member in a CMS
LOADLIB.

5. Link-edit the Shareable Parts

Under MVS, link-edit the shareable parts into a library. Under VM, use the
LKED command to put the shareable parts into one or more members of a

276 VS FORTRAN Version 2 Programming Guide

CMS LOADLIB. Only the shareable parts produced by the separation tool
can be link-edited in this step.

6. Install the Shareable Parts in a DOSS or LPA

This, too. is an extra step not done when preparing a nonreentrant
program. Ifyou do not want to share the shareable part of your program,
you can skip this step and go on to the next one.

To be shared, the shareable part of the program must be placed in the
operating system's shareable area. Under MVS, this is the LPA. Under VM,
this is the DCSS. This is a relatively involved step that requires system pro
grammer assistance.

7. Run the Program

Invoke the program in the normal way by specifying the name of the
nonshareable module. From your perspective as a user, there is no differ
ence between running a reentrant program and a regular, nonreentrant
one.

Creating and Using a Reentrant Program under VM
This section explains the steps you must complete to create and use a reen
trant program.

Step 1: Design and Code
Design and code your program as you would normally. Nothing different need
be done for a program that will be reentrant.

Step 2: Compile
When you compile your program unit, specify the RENT compiler option. The
compiler will produce an object module composed of two parts: the
nonshareable code and the shareable code.

Using the RENT option does not alter the result of running your program.

Before proceeding to the next step, debug your program in the usual way to be
sure that it is error-free. If you wait until later to do this, you will have to repeat
the following steps. Furthermore, once you install the program in a shareable
area, you will not be able to use the Interactive Debug to debug it unless you
have compiled it with the TEST option. However, a program compiled with the
TEST option generally has poor performance because the code is not optimized
and because there are many additional calls to run-time service subroutines.

Step 3: Separate the Two Parts
The separation tool is supplied as part of the VS FORTRAN Version 2 product.
You will use the separation tool to separate your compiler-produced object
modules into their shareable parts and nonshareable parts.

This step consists of two parts:

"3a. Choosing the Assigned or Default Name Form" on page 278

"3b. Invoking the Separation Tool" on page 279

Chapter 10. Creating Reentrant Programs 277

3a. Choosing the Assigned or Defauit Name Form
Before you invoke the separation tool, you must make a decision about whether
or not to override the default names for the linkage editor NAME statements for
the shareable parts.

If you choose the assigned name form, the file containing the shareable parts
will contain one linkage editor NAME statement. You supply the name for the
linkage editor NAME statement when you invoke the separation tool. The
linkage editor, invoked with the LKED command, will later create one LOADLIB
member with this name. The LOADLIB will contain all the shareable parts from
the file produced by the separation tool. The assigned name will also become
the name of the DCSS if you share the parts.

If you choose the default name form, each shareable part in the file will be fol
lowed by a linkage editor NAME statement. The name on each statement is the
name of the respective program unit, preceded by the character @. The names
on the linkage editor NAME statements will later become the names of the

members of a LOADLIB. If you decide to share the shareable parts, these must
later be the names of the DCSSs.

If you are supplying multiple reentrant programs as input to the separation tool,
your decision about the assigned or default name form has some important
consequences.

Assigned Name Form
If you choose the assigned name form, there will be only one
LOADLIB member or DCSS containing the shareable parts of all the
program units processed by the separation tool. If you plan to share
the shareable parts, this option creates less work for the system pro-
grammer who must define the DCSS because there will be only one
DCSS to build. This option is also more efficient if your executable
program consists of many program units that will always be used
together. In addition, performance may be better with this option,
especially if the modules will be loaded from a LOADLIB, because
you will be loading fewer modules.

If the shareable parts of multiple reentrant program units will later
be installed in a DCSS for sharing, you must divide the program
units into groups of fewer than 255 and run each group through the
separation tool. Each group will be installed in its own DCSS. You
cannot use the assigned name form for 255 or more routines in a
single run of the separation tool if you plan to place them into a
DCSS.

Choosing the assigned name form also means that it will be more

difficult for you to change any program unit in the group. To change
one program unit, you will have to run the object modules for all the
program units in the group through the separation tool again in a
single run. (For this reason, it is a good idea to keep a copy of the
object modules produced by the compiler.)

Default Name Form

If you specify the default name form, there will be multiple LOADLIB
members, one for each shareable part. If you plan to install the
shareable parts of multiple program units in DCSSs for sharing, you
must first edit the shareable parts file to break it into separate files,

278 VS FORTRAN Version 2 Programming Guide

with one shareable object module per file. You will have to build a
separate DCSS for each shareable part to be shared.

This option is preferable if you will be using shareable parts in many
varying combinations with the dynamic loading capability. This
allows you to be more flexible, loading only the parts you need.
Also, if you have many program units, it will be easier to change
them later because you can rerun each object module to be changed
through the separation tool individually, without rerunning the
others.

3b. Invoking the Separation Tool
When you invoke the separation tool, you must provide FILEDEF statements
with the following ddnames:

SYSIN Input to the separation tool. These are the object modules
produced by the compiler.

SYSPRINT A file containing messages from the separation tool. You
normally direct this either to your terminal or to your disk.

SYSUT1 A file produced by the separation tool containing the
nonshareable parts of the reentrant program units, and any
nonreenlrant program units.

SYSUT2 A file produced by the separation tool containing the shareable
parts of the reentrant program units.

SYSUT3 A work file used internally by the separation tool.

After you have provided the necessary FILEDEF statements, invoke the sepa
ration tool with the AFBVRSEP command. If you want the shareable parts file to
take the assigned name form, include a name on the AFBVRSEP command as
follows:

AFBVRSEP shrpart-name

Ifyou do not include a name on the AFBVRSEP command, you have chosen the
default name form for the shareable parts file.

For example, your command sequence to invoke the separation tool might be
similar to this:

FILEOEF SYSIN DISK MYPROG TEXT A

FILEDEF SYSPRINT DISK MYPROG SEPLIST A

FILEDEF SYSUTl DISK MYPROG TEXTNSHR A

FILEDEF SYSUT2 DISK shrpart-text TEXT A

FILEDEF SYSUT3 DISK MYPROG TEMP A

AFBVRSEP shrpart-name
ERASE HYPROG TEMP A

ERASE MYPROG TEXTORIG A

RENAME MYPROG TEXT A MYPROG TEXTORIG A

RENAME MYPROG TEXTNSHR A MYPROG TEXT A

Notice that, in this example, the output file MYPROG TEXT Acontains only the
nonshareable part of the program unit after the separation tool has been run. If
you need to rerun the separation tool, remember that MYPROG TEXTORIG Acon-
tains the original object modules used as input to the separation tool.

Chapter 10. Creating Reentrant Programs 279

"CMS EXEC Files to Run the Separation Tool" on page 285 shows examples of
two EXECs that can be used to perform this separation step. VSF2RCS com
piles a FORTRAN program with the RENT compiler option and then separates
the nonshareable and shareable parts. VSF2RSEP separates the nonshareable '
and shareable parts from a TEXT file that was created previously by a compila
tion with the RENT compiler option. {The input may also include object
modules from nonreentrant program units.)

Step 4: Prepare an Executable Program from the Nonshareable Parts
The separation tool groups all the nonshareable parts and any nonreentrant
program units in a single TEXT file. This file can be used to create an execut
able program which, when invoked, will automatically locate and use the corre
sponding shareable parts.

If the TEXT file contains multiple program units that you want to make available
individually to other users, see "Dividing the File into Individual Members,"
below.

As with any program, you have several options of preparing a program to be
run:

Command to Create an

Form of the Stored Program Executable Program

TEXT files or TXTLIB members LOAD MYPROG ...

Nonrelocatable MODULE file GENHOD MYPROG

CMS LOADLIB member LKED MYPROG

MYPROG is the name of the file containing the nonshareable parts and any
nonreentrant program units. For more information about each of these
methods, see "Creating an Executable Program and Running It" on page 60.

Note: Your choice of link mode or load mode is not related to the fact that you
are using reentrant program units. You can load the shareable parts of
program units from a DCSS or from a CMS LOADLIB regardless of whether
your program is run is in link mode or load mode. The terms link mode and
load mode refer to whether the VS FORTRAN Version 2 service subroutines are

link-edited with the compiler-generated code, or whether these routines are
loaded as needed during processing of the program.

Dividing the File into Individual Members: If the TEXT file with the nonshareable
parts contains multiple program units that you want to make available to other
users, you might want to create individual members in a TXTLIB for each of the
program units. To do this, first edit the file to add a linkage editor NAME state
ment after the object module for each program unit. The statement must be
preceded by at least one blank and must have the following form:

NAME sub-name(R)

Then use this file as input to the TXTLIB ADD command. For example, the fol
lowing command produces a TXTLIB member for each program unit:

TXTLIB ADD LIBNAME MYPROG

280 VS FORTRAN Version 2 Programming Guide

where LIBNAME is the file name of the TXTLIB, and MYPR06 is the name of the

TEXT file containing the nonshareable parts produced by the separation tool.

Step 5; Link-edit the Shareable Parts
Ifyou are using reentrant program units for the dynamic loading capability, this
step allows you to later load the shareable parts as you need them.

Ifyou plan to share the shareable parts in a DCSS, this step is not required, but
is recommended. The output of the LKED command will be used later to deter
mine the size required for your DCSS. In addition, after completing this step,
the LOADLIB members will always be available, even if the copies installed in
the DCSSs are not.

To link-edit the shareable parts of your program into a CMS LOADLIB, use the
LKED command. Only the shareable parts produced by the separation tool can
be link-edited in this step.

If you chose the default name form, the LKED command will produce one CMS
LOADLIB member for each program unit. The member names will always be
the program unit names preceded by (Note that these default names cannot
be changed except by renaming the source program unit, recompiling, and
rerunning the separation tool.)

Ifyou chose the assigned name form, the LKED command will produce a single
member. Its name will be the name you specified when you invoked the sepa
ration tool. The member name will always be the name originally produced by
the separation tool on the linkage editor NAME statement. (Note that the only
way to change the assigned name is to rerun the separation tool, specifying a
new assigned name.)

For example, you might issue this command;

LKEO shrpart-text (RENT MAP NCAL LIBE libname

where:

shrpart-text is the name of the TEXT file produced by the separation tool that
contains the shareable parts of your program units.

libname is the file name of the CMS LOADLIB that will hold the shareable parts

of your program units.

Special Considerations for VM/XA
Shareable load modules of reentrant programs run in the same addressing
mode as their corresponding nonshareable parts.

Ifyou place the shareable load modules in a CMS LOADLIB using the LKED
command, they will be assigned the default value ANY for RMODE, allowing
them to reside above the 16-megabyte line.

If for any reason the nonshareable parts of your program must run in 24-bit
addressing mode, you must override the default on the LKED command so that

- , the shareable load modules reside below the 16-megabyte line.

Chapter 10. Creating Reentrant Programs 281

Discontiguous shared segments (DCSSs) in which you store shareable load
modules can reside above or below the 16-megabyte line. However, if the
nonshareable parts of your program must run in 24-bit addressing mode, the _
segments must reside below the line. You need not worry if the segments
overlap your virtual machine, but they must not overlap storage that CMS has
already allocated for other use {such as loaded modules or acquired virtual
storage).

Step 6: Install the Shareable Parts in a DCSS
For the shareable parts of a program to to be shared, they must be in the oper
ating system's shareable area, called a discontiguous shared segment {DCSS).
If you only want to take advantage of the dynamic loading capability of reen
trant programs, you can skip this step and go on to the next one, "Step 7: Run
the Program" on page 285.

This step consists of three parts:

"6a. Gathering the Necessary Information"
"6b. Defining the DCSS to VM/SP" on page 283
"6c. Storing the Parts in the DCSS" on page 284

If you change one or more programs after completing this step, you need to
reinstall the updated module in the same DCSS by repeating "6c. Storing the
Parts in the DCSS."

Some of the procedures in this step are the responsibility of your VM/SP
system programmer. Others require that you be a Class E privileged user.

6a. Gathering the Necessary Information
Before your VM/SP system programmer can prepare the DCSS for you, you will
need to work together to determine the following information about the DCSS:

Name of the DCSS

If you chose the assigned name form for your shareable file, you
must build one DCSS whose name is the name you specified when
you invoked the separation tool.

If you chose the default name form of the shareable file, you must
build one DCSS for every reentrant program that you want to share.
Each DCSS name must be the program name prefixed by @. If there
are multiple shareable parts in the file produced by the separation
tool, you will have to edit the file to create multiple files with only
one shareable part in each file. From each file, you will build a sep
arate DCSS whose name is the program name prefixed by @.

Size of the DCSS

You can determine the size needed for your DCSS by looking at the
link-edit map produced by the LKED command in step 5. The link-
edit map is in a file whose file name is the same as that of the
shareable TEXT file produced by the separation tool, and whose file
type is LKEDIT.

The map provides the length of the shareable load module. Your
DCSS must have at least the same length. However, defining a
DCSS larger than is actually needed will allow you to expand your
program {within limits) without redefining the DCSS.

282 VS FORTRAN Version 2 Programming Guide

starting address of the DCSS
With the assistance of your VM/SP system programmer, choose this
address using the following guidelines;

• The address should be at least as large as the virtual machine
size of any of the users you expect to use this DCSS.

>• The address should not be unnecessarily high; if it is, storage is
wasted for unreferenced CP segment table entries.

The addresses should not allow any DCSS to overlap any other
saved segment that may be used at the same time. For
example, if you run the program from an ISPF panel, the DCSS
should not overlap any saved segments that contain parts of
ISPF. Your VM/SP system programmer can help you determine
a potential overlap.

6b. Defining the DCSS to VM/SP
Your VM/SP system programmer must complete the following steps before the
shareable parts can be installed in the DCSS:

1. Allocate permanent space on a CP-owned DASD volume to contain the
DCSS. Determine the number of pages required by dividing the size of the
shareable load module (found in the link-edit map, above) by 4K, or
X'1000'. and rounding upward to the next page. (Refer to VM/SP Planning
Guide and Reference, SC19-6201, for information on the amount of disk
space needed.)

2. Define the DCSS by adding a NAMESYS macro instruction to your
installation's DMKSNT ASSEMBLE module. (See VM/SP Planning Guide
and Reference, SCI 9-6201, and VM/SP System Programmer's Guide,
SC19-6203.) If more than one DCSS is to be built to hold copies of the
shareable parts of various programs, there must be a NAMESYS macro
instruction defining each DCSS. The following example of the NAMESYS
macro instruction defines a DCSS named SHRPART. The sample numbers
given illustrate a possible set of numbers and are not intended as the only
location or size for a DCSS.

NAHESYS SYSNAME=SHRPART, x
SYSSIZE=128K, x
SYSHRSG=(48,49), x
SYSPGNM=(768-799), x
VSYSADR=IGNORE, x
SYSVOL=VMSRES, x
SYSSTRT=(072.1)

In the example:

• The SYSNAME parameter specifies the name of the DCSS (SHRPART in
this example).

The SYSHRSG parameter provides a list of consecutive segment
numbers. (Specifying these numbers allows the segments to be shared
by all users.) Determine the number of segments required by dividing
the size of the shareable load module by 64K, or X'10000', and
rounding upward to the next segment. Compute the first segment
number by dividing the starting address of the DCSS by 64K. In this
example, the starting address is X'300000', or 3072K. Dividing this by
64K gives a starting segment number of 48.

Chapter 10. Creating Reentrant Programs 283

The SYSPGNM parameter specifies the range of page numbers that
comprise the DCSS. Compute the first page number by dividing the
starting address of the OCSS by 4K. In this example, dividing ^
X'300000', or 3072K, by 4K gives a starting page number of 768. A
range of 32 pages is specified here to correspond to the 2 segments.

The SYSVOL parameter gives the volume serial number of the
CP-owned volume which will hold the DCSS.

The SYSSTRT parameter gives the starting cylinder and page address
(on the volume specified by the SYSVOL parameter) which will hold the
DCSS.

3. Assemble the new system name table (DMKSNT) and regenerate the CP
nucleus by using the GENERATE EXEC procedure as described in VM/SP
Installation Guide, SC24-5237.

4. Re-IPL the VM/SP system.

6c. Storing the Parts in the DCSS
You must have Class E privileges to complete the installation of the shareable
parts into a DCSS.

1. Bring the shareable part of the program into your virtual machine using the
LOAD command. Remember that the size of your virtual machine (ifyou
are issuing this command) must be large enough to contain the shareable
part at the desired address.

LOAD shrpart-text (CLEAR ORIGIN dcss-address

where:

shrpart-text is the file name of the TEXT file containing the shareable parts.
and

dcss-address is the starting address of the DCSS.

For example, if the shareable parts of your program are in a TEXT file
named SHRPART and the DCSS begins at the address 300000. you would
issue this command:

LOAD SHRPART (CLEAR ORIGIN 300000

2. Save the shareable parts in the DCSS by issuing the command:

SAVESYS dcss-name

where

dcss-name is the name of the DCSS.

For example, you might issue this:

SAVESYS SHRPART

Note: If the character is defined as the "character delete" symbol for
your terminal, you will have to use the escape character to enter the default
names of the shareable parts, or issue the command:

TERMINAL CHARDEL OFF

before issuing the SAVESYS command.

284 VS FORTRAN Version 2 Programming Guide

step 7: Run the Program
To run the program, invoke the nonshareable part just as you would any
regular (nonreentrant) program. The shareable part of the program will be
automatically located and used by VS FORTRAN Version 2.

You should always include a GLOBAL LOADLIB statement that refers to the
CMS LOADLIB containing the shareable parts, even if they are also installed in
a DCSS. If the shareable parts are in a DCSS and if the starting address of the
DOSS does not overlap your virtual machine, the DCSS copy will be used. Oth
erwise, the GLOBAL LOADLIB command will ensure that you can still access
the copy in the CMS LOADLIB.

To run a program in link mode from TEXT files on your disk, you could use one
of the following sets of commands:

•- If VSF2LINK and VSF2F0RT are separate libraries at your site, use:

GLOBAL LOADLIB libname

GLOBAL TXTLIB VSF2LINK VSF2F0RT CMSLIB

LOAD MYPROG

START

»- If VS FORTRAN Version 2 has been installed at your site with the combined
LINK library, you do not need to specify VSF2F0RT in your GLOBAL TXTLIB
command.

You can use the following coding:

GLOBAL LOADLIB libname

GLOBAL TXTLIB VSF2LINK CMSLIB

LOAD MYPROG

START

You must also provide whatever FILEDEF commands the program requires.

CMS EXEC Files to Run the Separation Tool
VS FORTRAN Version 2 provides two EXEC files to help compile reentrant
program units and separate them into their shareable and nonshareable parts.

These EXEC files are:

VSF2RCS

Action Procedure Figure

Compile and separate VSF2RCS Figure 73

Separate VSF2RSEP Figure 74

The VSF2RCS EXEC, shown below, compiles a reentrant program unit and then
invokes the separation tool to separate the nonshareable and shareable parts.
To run the EXEC, issue the following command.

VSF2RCS ftnname shrpart (options ...

Figure 73 on page 286 explains all of the parameters and their possible values.
The options ASGNNAME or DEFNAME control your choice of assigned name
form or default name form, respectively. For example, you might use the fol-

Chapter 10. Creating Reentrant Programs 285

lowing command to compile the program unit MYPROG and separate it using
the assigned name form:

FOVSRCS MYPROG SHRPART (ASGNNAME

&CGHTROL OFF HOHSG

&GOTO -START
A

COMPILE A REENTRAMT FORTRAN PROGRAM AND SEPARATE THE NONSHAREABLE
* AND SHAREABLE PARTS
A

-RULES

&BEGTYPE

This EXEC performs the following functions:
1. Compiles a VS FORTRAFI program using the RENT option.
2. Separates the object deck from the compilation into its

nonshareable and shareable parts.

Run it as follows:

&EKO

&TYPE SEXEC ftnname shrpart (options, ...
&BEGTYPE

ftnname

shrpart

options

Is the file name of the FORTRAN source program,
must have a file type of FORTRAN.

This file

is the file name of the TEXT file into which all of the
shareable parts are to be placed. This name must be
different from "ftnname," above. If the assigned name
form of this file is chosen (ASGNtlAME option, below), then
this TEXT file name also becomes the name of the LOADLIB
member or of the DCSS that will be built later to contain
the shareable parts.

may be any VS FORTRAN compiler options. RENT need not be
given since it is provided automatically by this EXEC.
In addition, one of the following may be coded to specify
the fonn of the shareable parts file. This controls the
names of the LOADLIB members or of the DCSSs that will
contain the shareable parts. If neither form is given,
the assigned name form is assumed.

ASGNNAME specifies the assigned name fonn. In this
case, the shareable parts file will be
structured such that the shareable parts of
all of the reentrant programs will be combined
into one LOADLIB member or one DCSS with a

name of "shrpart," above.

DEFNAME specifies the default name form. In this
case, the shareable parts file will be
structured such that a separate LOADLIB
member or DCSS will be created for each

reentrant program that is compiled. These
metnber or DCSS names consist of the program
names prefixed by 0.

Following separation of the nonshareable and shareable parts, the
shareable parts file must be used to build one or more LOADLIB
members and, optionally, to build one or more DCSSs.

&END

&EXIT &RCVALUE

-START

Figure 73 (Part 1 of 2). VSF2RCS —Compile Reentrant Program and Separate the Parts

286 VS FORTRAN Version 2 Programming Guide

* CHECK FOR VALID OR OHITTED PARAMETERS
A

&RCVALUE = 0

&SEPPARH = ASGNNAHE

&1F .&! EQ .? &GOTO -RULES
&IF .&I EQ . &GOTO -RULES
&IF &INDEX LT 2 &GOTO -BADINP

&1F SilNDEX EQ 2 &GOTO -EHDOPT
&IF .&3 NE &GOTO -BADINP

&IF &IHDEX EQ 3 &60T0 -ENDOPT
*

* LOOK FOR THE OPTIONS ASGNNAHE OR DEFNAHE
*

&P = 4

-NEXTOPT

&IF &P GT &INDEX &GOTO -ENDOPT

&IF &&P EQ ASGNHAME &GOTO -CLRPARM

SIF &&P EQ ASSGNNAM &GOTO -CLRPARM

&IF &&P EQ ASGNAME &GOTO -CLRPARM

&IF &&P EQ ASSGNAME &GOTO -CLRPARM

&IF &&P ME DEFNAME &GOTO -INCRPAR

-SETPARH

&SEPPARII = &&P

-CLRPARM

&&P =

-INCRPAR

SP ' &P ♦ 1

&GOTO -MEXTOPT

-ENDOPT
A

* ENSURE THAT THE INPUT SOURCE FILE IIAHE DIFFERS FROM THE
* SHAREABLE TEXT FILE NAME
A

&IF &1 NE &2 &GOTO -IIIOUT

&BEGTYPE

The input FORTRAN file name must differ from the output shareable
TEXT file name.

&END

&EXIT 12

-INOUT
A

* COMPILE THE PROGRAM
A

&F = F0RTVS2

&R = RENT

&F &I (SR &4 &5 &6 &7 &8 &9 &10 &11 &12 SI3 fil4 &15 &16 &17 &18 SI9 &20 &21 &22
&IF &RETC0DE GT 4 &EXIT &RETCODE
A

* SEPARATE THE NONSHAREABLE AND SHAREABLE PARTS
A

EXEC VSF2RSEP &1 &2 (&SEPPARM
&EXIT SRETCODE
A

* INCORRECT INPUT PARAMETERS
A

-BAOINP

&BEGTYPE

invalid input parameter format.

&END

SRCVALUE = 8

&GOTO -RULES

Figure 73 (Part 2 of 2). VSF2RCS —Compile Reentrant Program and Separate the Parts

Chapter 10. Creating Reentrant Programs 287

VSF2RSEP

The VSF2RSEP EXEC invokes the separation tool to separate the nonshareable
and shareable parts of an existing TEXT file. To run the EXEC, issue the fol
lowing command.

VSF2RSEP inptext shrpart (option

Figure 74 explains all of the parameters and their possible values. The options
ASGNNAME or DEFNAME control your choice of assigned name form or default
name form, respectively. For example, you might use the following command
to separate a TEXT file using the assigned name form:

VSF2RSEP PROGTEXT SHRPART (ASGNNAME

&CQNTROL OFF IIOHSG

&GOTO -START
it

SEPARATE THE HONSHAREABLE AND SHAREABLE PARTS THAT ARE IN A

* TEXT FILE CREATED BY A PREVIOUS VS FORTRAM COMPILATION THAT

* MAS DONE WITH THE "RENT" OPTION
*

-RULES

&BEGTYPE

This EXEC separates a TEXT file produced by the VS FORTRAN compiler
into two parts: one with the nonsTiareable parts and the other with
the shareable parts. Run it as follows:

&END

&TVPE &EXEC inptext shrpart (option
&BEGTYPE

inptext is the file name of the input TEXT file on your A-disk.
It is the contents of this file that are to be separated.
This file is updated to contain the nonshareable parts of
the reentrant VS FORTRAN programs plus all of the non-
reentrant programs that are found in the input.

shrpart is the file name of the TEXT file into which all of the
shareable parts are to be placed. This name must be
different from "inptext," above. If the assigned name
foim of this file is chosen (ASGNNAME option, below), then
this TEXT'file name also becomes the name of the LOADLIB

member or of the OCSS that will be built later to contain

the shareable parts.

option may be either of the following to specify the form of the
shareable parts file. This controls the names of the
LOAOLIB members or of the DCSSs that will contain the

shareable parts. If neither form is specified, the
assigned name fora is assioned.

ASGNNAME specifies the assigned name form. In this
case, the shareable parts file will be
structured such that the shareable parts of
all of the reentrant programs found in the
input will be combined into one LOAOLIB member
or one DCSS with a name of "shrpart," above.

DEFNAME specifies the default name fom. In this
case, the shareable parts file will be
structured such that a separate LOADLIB
member or DCSS will be created for each

reentrant program that is found in the input
TEXT file. These member or DCSS names

consist of the program names prefixed by 9.

Figure 74 (Part 1 of 3). VSF2RSEP —Separate Nonshareable and Shareable Parts

288 VS FORTRAN Version 2 Programming Guide

Following separation of the nonshareable and shareable parts, the
shareable parts file must be used to build one or more LOAOLIB
members and, optionally, to build one or more DCSSs.

&EMO

SEXIT &RCVALUE

-START
*

* CHECK FOR VALID OR OMITTED PARAMETERS
*

&RCVALUE = 0

SSEPPARM = ASGNNAME

SIF .SI EQ , 7 SGOTO -RULES

SIF .SI EQ . SGOTO -RULES

SIF SINDEX LT 2 SGOTO -BADINP

SIF SINDEX EQ 2 SGOTO -EMDOPT

SIF S3 NE (SGOTO -BADINP

SIF SINDEX EQ 3 SGOTO -EMDOPT

" LOOK FOR THE OPTIONS ASGMHAME OR DEFHAME
*

&P = 4

-MEXTOPT

aiF SP GT &INDEX SGOTO -ENDOPT

&IF &&P EQ ASGMMAME &GOTO -INCRPAR
&1F &&P EQ ASSCMMAM SGOTO -IMCRPAR
SIF SSP EQ ASGMAME SGOTO -IMCRPAR
SIF SSP EQ ASSGMAME SGOTO -IMCRPAR
SIF SSP EQ DEFMAME SGOTO -SETPARM

SGOTO -BADIMP

-SETPARM

SSEPPARM = SSP

-IMCRPAR

SP = SP + 1

SGOTO -MEXTOPT

-EMDOPT

" ASSURE THAT THE IMPUT TEXT FILE EXISTS
A

STATE SI TEXT A

SIF SRETCODE EQ 0 SGOTO -ITEXTOK
STYPE The file SI TEXT A does not exist.

SEXIT 12

-ITEXTOK

* ENSURE THAT THE INPUT TEXT FILE NAME DIFFERS FROM THE SHAREABLE

* TEXT FILE NAME
A

SIF SI NE S2 SGOTO -INOUT

SBEGTYPE

The input TEXT file name must differ from the output shareable
TEXT file name.

SEND

SEXIT 12

-IMOOT

Figure 74 (Part 2 of 3). VSF2RSEP —Separate Nonshareabie and Shareable Parts

Chapter 10. Creating Reentrant Programs 289

* OETERHINE WHETHER TO USE THE ASSIGHED NWTE —^

&IF &SEPPARH NE ASGNNAHE &6GT0 -ENDRPAR

&LHNAME = &2

-ENDRPAR
A

* FILES NEEDED BY THE SEPARATION TOOL PROGRAM
A

LEOEF SYSIN DISK SI TEXT A

LEOEF SYSPRINT DISK &1 SEPLIST A

LEDEF SYSUTl DISK &1 TEXTNSHR A

LEDEF SYSUT2 DISK &2 TEXT A

LEDEF SYSUT3 DISK &1 TEMP A
A

* RUN THE SEPARATION TOOL PROGRAM
A

AFBVRSEP SLMNAME
A

* ENSURE THAT SEPARATION WAS SUCCESSFUL
A

&IF &RETCODE EQ 0 &GOTO -SEPOK
&BEGTYPE

Errors occurred while running the separation tool.
SEND

SRCVALUE = &RETCODE

ERASE SI TEXTNSHR A

ERASE &2 TEXT A

ERASE SI TEMP A

SGOTO -FINAL

-SEPOK
A

" LEAVE REQUIRED OUTPUT FILES IF SEPARATION WAS SUCCESSFUL
A

ERASE SI TEMP ' A
ERASE SI TEXTORIG A

RENAME SI TEXT A SI TEXTORIG A

RENAHE SI TEXTNSHR A SI TEXT A
A

* CLEAR FILEDEFs THAT WERE SET AND THEN STOP
A

-FINAL

FILEDEF SYSIN CLEAR

FILEDEF SYSPRINT CLEAR

FILEDEF SYSUTl CLEAR

FILEDEF SYSUT2 CLEAR

FILEDEF SYSUT3 CLEAR

SEXIT SRCVALUE
A

* INCORRECT INPUT PARAMETERS
A

-BADIHP

SBEGTYPE

Invalid input parameter fonnat.

SEND

SRCVALUE = 12

S6DT0 -RULES

Figure 74 (Part 3 of 3). VSF2RSEP —Separate Nonshareable and Shareable Parts

290 VS FORTRAN Version 2 Programming Guide

Creating and Using a Reentrant Program under MVS
This section explains the steps you must complete to create and use a reen

trant program. Before beginning the procedures listed here, be sure you have
read Chapter 10, "Creating Reentrant Programs" on page 269. The proce
dures below assume you have read and understood the information explained
there.

Step 1: Design and Code
Design and code your program in the usual ways. Nothing different need be
done for a program that will be reentrant.

Step 2: Compile
When you compile your program unit, specify the RENT compiler option. The
compiler will produce an object module composed of two parts: the shareable
code and the nonshareable code.

Using the RENT option does not alter the result of processing your program.

Before proceeding to the next step, debug your program in the usual way to be
sure that it is error-free. If you wait until later to do this, you will have to repeat
the following steps. Furthermore, once you install the program in a shareable
area, you will not be able to use the Interactive Debug to debug it unless you
have compiled it with the TEST option. However, a program compiled with the
TEST option generally has poor performance because the code is not optimized
and because there are many additional calls to run-time service subroutines.

Step 3: Separate the Two Parts
The separation tool is supplied as part of the VS FORTRAN Version 2 product.
You will use the separation tool to separate your compiler-produced object
modules into their shareable parts and nonshareable parts.

This step consists of two parts:

"3a. Choosing the Assigned or Default Name Form"

"3b. Invoking the Separation Tool" on page 292

3a. Choosing the Assigned or Defauit Name Form
Before you invoke the tool, you must make a decision about whether or not to
override the default names for the linkage editor NAME statements for the
shareable parts.

If you choose the assigned name form, the data set containing the shareable
parts will contain one linkage editor NAME statement. You supply the name for
the linkage editor NAME statement when you invoke the separation tool. The
linkage editor will later create one member containing all the shareable parts in
this data set.

If you choose the default name form, each shareable part in the data set will be
followed by a linkage editor NAME statement. The name on each statement is
the name of the respective program unit, preceded by the character @.

Chapter 10. Creating Reentrant Programs 291

The names on the linkage editor NAME statements will later become the names
of the shareable load modules.

If you are supplying multiple reentrant programs as input to the separation tool,
your decision about the assigned or default name form has some important
consequences.

Assigned Name Form
If you choose the assigned name form, there will be only one load
module containing the shareable parts of all the program units proc
essed by the separation tool. This option is more practical if your
executable program consists of many program units that will always
be used together. In addition, performance may be better with this
option, especially if the shareable load modules will not be in the
LPA, because you will be loading fewer modules.

Choosing the assigned name form also means that it will be more
difficult for you to change any program unit in the shareable load
module. To change one program unit, you will have to run the
object modules for all the program units through the separation tool
again in a single run. (For this reason, it is a good idea to keep the
object modules produced by the compiler.)

Default Name Form

If you specify the default name form, there will be multiple shareable
load modules, one for each shareable part.

This option is preferable if you will be using shareable parts in many
varying combinations. This allows you to be more flexible, loading
only the parts you need. Also, if you have many program units, it
will be easier to later change them because you can rerun each
object module through the separation tool individually.

3b. Invoking the Separation Tool
When you invoke the separation tool, you must provide DD statements with the
following ddnames:

SYSIN Input to the separation tool. These are the object modules
produced by the compiler.

SYSPRINT A data set containing messages from the separation tool.

SYSUT1 A data set produced by the separation tool containing the
nonshareable parts of the reentrant program units, and any
nonreenlrant program units.

SYSUT2 A data set produced by the separation tool containing the
shareable parts of the reentrant program units.

SYSUT3 A data set used internally by the separation tool.

Invoke the separation tool by running the program AFBVSFST, which is in
SYS1.VSF2L0AD. If you want the data set containing the shareable part to take
the assigned name form, include a name on the FARM parameter of the EXEC
statement. If you omit the FARM parameter, you have chosen the default name
form for the data set. _

292 VS FORTRAN Version 2 Programming Guide

For example, to invoke the separation tool in batch mode, you might code the
JCL for the separation tool as follows:

//SEP EXEC PGM=AFBVSFST,PARM='shnnocl-name'
DSN=SYS1.VSF2L0AD,DISP=SHR
SYSOUT=A

DSN=&&NONSHR,DISP=(NEW,PASS),UNIT=SYSDA,
SPACE=(32G0,(25,1)),DCB=BLKSIZE=3200
DSN=&&SHRPART,DISP=(NEW,PASS),UNIT=SYSDA,
SPACE=(3200,(25,1)),DCB=BLKSIZE=32G0
DSN=&&JEMP,DISP=(NEW,DELETE),UNIT=SYSDA,
SPACE=(3200,(25,1)),DCB=BLKSIZE=3200
DSN=myprog.OBJ,DISP=SHR

This JCL separates the input data set identified by ddname SYSIN. It will put
your nonshareable parts in the temporary data set &&NONSHR, and your
shareable parts in the temporary data set &&SHRPART.

You may wish to combine this separation step with other steps in the prepara
tion process. Examples of several cataloged procedures are provided to help
you do this. They are listed in "MVS Cataloged Procedures for the Separation
Tool" on page 295. VFT2RCL compiles a program unit with the RENT option,
separates the nonshareable and shareable parts, and link-edits your modules.
VFT2RCLG compiles a program unit with the RENT option, separates the parts,
link-edits the modules, and runs them. VFT2RLG separates the
nonshareable and shareable parts from a previous compilation, link-edits the
modules, and runs them.

Step 4: Prepare an Executable Program from the Nonshareabte Parts
The separation tool groups all the nonshareable parts and any nonreentrant
program units in a single data set. You can use this data set to create an exe
cutable load module by link-editing it just as you would for any nonreentrant
program. When invoked, this executable load module will then load and use
the corresponding shareable parts.

For example, to create a load module that runs in load mode from the
nonshareable parts of the program, use the following JCL:

//LKEDNSHR EXEC PGM=IEWL,PARM='XREF,LIST'
//SYSPRINT DD SYSOUT=A
//SYSUTl DD UNIT=SYSDA,SPACE=(TRK,(10,1))
//SYSLIN DD DSN=&&NONSHR,DISP=(OLD,DELETE)
//SYSLIB DD DSN=SYS1.VSF2F0RT,DISP=SHR
//SYSLMOD DD DSN=MYLIB(MYPROG),DISP=OLD

Note: Your choice of link mode or load mode is not related to the fact that you
are using reentrant program units. You can load the shareable parts of
program units regardless of whether your program is run in link mode or load
mode. The terms link mode and load mode refer to whether the VS FORTRAN
Version 2 service subroutines are link-edited with the compiler-generated code,
or whether these routines are loaded as needed when running the program.

//SEP EXEC

//STEPLIB DD

//SYSPRINT DD
//SYSUTl DD

//
//SYSUT2 DD

//
//SYSUT3 DD

//
//SYSIN DD

Chapter 10. Creating Reentrant Programs 293

step 5: Link-edit the Shareable Parts
You must link-edit the shareable parts of your program into a library. Only the
shareable parts file produced by the separation tool can be link-edited in this
step.

If you chose the default name form, the link-edit step will produce one
shareable load module for each program unit. The member names in the
library will be the program unit names preceded by (Note that these default
names cannot be changed except by renaming the source program unit, recom
piling, and rerunning the separation tool.)

If you chose the assigned name form, this step will produce one shareable load
module. Its member name will be the name you specified when you invoked
the separation tool. The member name will always be the name originally
produced by the separation tool on the linkage editor NAME statement. {Note
that the only way to change the assigned name is to rerun the separation tool,
specifying a new assigned name.)

For example, you might use the following JCL:

//LKEDSHR EXEC PGH=IEWL,PARM='MAP,LIST,RENT,NCAL'
//SYSPRINT DD SYSOUT=A
//SYSUTl DD UNIT=SYSDA,SPACE=(TRK,(10,1))
//SYSLIN DD DSN=&&SHRPART,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=SYS1.TESTLIB,DISP=0LD

Ifyou plan to put your shareable load modules in the link pack area (LPA) for
sharing, be sure to put these load modules in a library that will not be referred
to in a JOBLIB or STEPLIB when you run the program. (However, if you will not
be placing the shareable load modules in the LPA, it may be more practical to
use the same library for both the nonshareable and shareable load modules.)

Special Considerations for MVS/XA
Ifyou will be running your reentrant program on an MVS/XA system, you must
pay special attention to the residence mode of the shareable load module.

Unless you override the default, the residence mode assigned to the shareable
load module by the linkage editor will be ANY. and the load module will be
loaded above the 16-megabyte line. This means that the corresponding
nonshareable parts of the program must run in 31-bit addressing mode to reach
the shareable parts.

However, if the nonshareable parts must run in 24-bit addressing mode for any
reason, you must be sure that the shareable load module is assigned a resi
dence mode of 24. This causes the load module to be loaded below the
16-megabyte line, so it can be reached by the nonshareable part.

To assign a residence mode of 24 for the shareable load module, add the fol
lowing to the PARM parameter in the JCL for this step, above.

RM0DE=24

You need not worry about the addressing mode for the shareable load module,
because it will be invoked in the same addressing mode as its corresponding
nonshareable part.

294 VS FORTRAN Version 2 Programming Guide

step 6: Install the Shareable Parts in an LPA
_ If you only want to take advantage of the dynamic loading capability of reen-

trant programs, you can skip this step and go on to the next one, "Step 7: Run
the Program."

To enable the shareable parts of your program to be shared, your MVS systems
programmer must place each shareable load module, created In the previous
step. Into the operating system's shareable area, called the link pack area
(LPA). For example, to put the shareable parts In a modified link pack area,
your MVS systems programmer would complete the following steps:

1. Add entries to a SYS1.PARMLIB member (for example, IEALPA09) to Indi
cate the library containing the shareable load module, and the name of the
shareable load module to be loaded when the link pack area Is created.
For example:

SYSl.TESTLIB SHRMOO

2. Re-IPL MVS to make the shareable part of the program available In the link
pack area. In response to the IEA101A message, specify that the link pack
area be created and that the SYS1.PARMLIB member (for example,
IEALPA09) be used. For example:

R 00,MLPA=09

Step 7: Run the Program
To run the program, Invoke the nonshareable part just as you would any
regular (nonreentrant) program. The shareable part of the program will be
automatically loaded and used by VS FORTRAN Version 2.

For example, you can Invoke the executable program, created In "Step 4:
Prepare an Executable Program from the Nonshareable Parts" on page 293,
with the following JCL:

//GO EXEC PGM=MYPROG
//STEPLIB DO DSN=MYLIB,DISP=SHR
// DO DSN=SYS1.VSF2L0A0,DISP=SHR
//FT06F001 DD SYSOUT=A

This example assumes that either:

*- Both the nonshareable and shareable load modules are In the same library
(MYLIB), or

The shareable load module Is In the LPA.

MVS Cataloged Procedures for the Separation Tool
Figure 75 shows cataloged procedures that you can use to compile, separate,
llnk-edit, and runyour VS FORTRAN Version 2 programs. The procedures
create programs that run In load mode. These procedures should be located In
your appropriate system procedure library.

Chapter 10. Creating Reentrant Programs 295

Action

Compile, separate, and link

Compile, separate, link, and go

Separate, link, and go

Figure 75. IBM-Supplied Cataloged Procedures for the Separation Tool

If you want the data set containing your shareable parts to take the assigned
name form, specify a name on the FVNAME parameter when you run the proce
dure. (In the procedures. SHRMOD is used as the assigned name.) If you want
the data set containing your shareable parts to take the default name form, you
must nullify the FVNAME parameter when you run the procedure. For example:

//RCL EXEC VFT2RCL,FVNAME=

Supply your own DD statements, which refer to the input required by the cata
loged procedures:

Procedure

VFT2RCL

VFT2RCLG

VFT2RLG

Figure

Procedure ddname Contents of Data Set

VFT2RCL FORT.SYSIN FORTRAN source program.

LKEDNSHR.SYSIN Linkage editor control statements.

VFT2RCLG FORT.SYSIN FORTRAN source program.

LKEDNSHR.SYSIN Linkage editor control statements.

VF2RLG SEP.SYSIN Object modules resulting from a compilation with the
RENT option. This data set may also contain object
modules for nonreentrant programs.

LKEDNSHR.SYSIN Linkage editor control statements for link-editing the
nonshareable parts (optional).

Note: In the procedures that contain an processing step (GO), the shareable
load module is made available in a private library, not in the link pack area.
You can use these procedures to test your separated programs, but ifyou want
to share them, you will have to put them in the LPA, as described in "Step 6:
Install the Shareable Parts in an LPA" on page 295.

Link-Editing and Running a Reentrant Program under TSO
You can link-edit a reentrant program in TSO using one of the following
methods:

Link-edit the object file as if it were a nonreentrant program.

•• Use the separation tool to divide the reentrant object file into its shareable
and nonshareable parts. Only the nonshareable part requires the VS
FORTRAN Version 2 library.

Perform the separation using the following CLIST. This CLIST creates a
single load module; to create multiple load modules, eliminate the param
eter list '&RENTPART' in the CALL statement.

296 VS FORTRAN Version 2 Programming Guide

PROC 2 INPUT RENTPART

FREE F(SYSIN SYSPRIHT SYSUTl SYSUT2 SYSUT3)
FREE ATTR(DCBPARHS)
ATTR OCBPARHS BLKSIZE(3120) LRECL(80) RECFH(F,B)
RENAME &INPUT..OBJ &INPUT..0BJ2

ALLOC F(SYSIN) DA(&IHPUT..0BJ2) SHR
ALLOC F(SYSPRINT) DA(*)
ALLOC F(SYSUTl) DA(&INPUT..OBJ) NEW SP(10,2) +

TRACK USIIIG(DCBPARIIS)
ALLOC F(SYSUT2) OA(&RENTPART..OBJ) NEW SP(10,2) +

TRACK REUSE USIHG(DCBPARHS)
ALLOC F(SYSUT3) SP(I0,2) TRACK NEW USING(DCBPARHS)
CALL 'SYS1.VSF2L0AD(AFBVSFST)' "SREHTPART.'
FREE F(SY$IN SYSPRINT SYSUTl SYSUT2 SYSUT3)
FREE ATTR(OCBPARHS)

Figure 76. CLIST to Invoke the Separation Tool

Note: The CLIST doesn't link either the shareable or nonshareable parts,
and assumes that the input object file does not have an associated 0BJ2.
file.

*• Provide access to the shareable load modules by placing them in a
shareable library and using one of the access procedures described in
"Selecting Link Mode or Load Mode" on page 94.

For example, the following coding link-edits the contents of the object file
represented by shrpart with the library SHRLIB.

LINK shrpart LOAD(SHRLIB) PRINT(Ml) XREF LET LIST RENT

The actual names of the modules placed into SHRLIB are generated by the
separation tool on NAME control records.

Insert the shrpart modules into the link pack area (LPA). The procedure for
loading modules into the LPA varies among installations and can only be
performed by someone with the proper authorization. Ask your system
administrator for the procedure.

Once you have link-edited a reentrant program, you can run It with a CALL
statement that specifies the name of the link-edited program. In this case
noshrpgm, for example:

CALL myl ib(noshrpgni)

Chapter 10. Creating Reentrant Programs 297

^ Chapter 11. Using VSAM with VS FORTRAN Version 2
VS FORTRAN Version 2 lets you use VSAM to process the following kinds of
files:

VSAM Entry Sequenced Data Sets (ESDS), which can be processed only
sequentially

VSAM Relative Record Data Sets (RRDS), which can be processed either
sequentially or directly by relative record number

VSAM Key Sequenced Data Sets (KSDS), which can be processed sequen
tially or directly by keys

VSAM Linear Data Sets, which can be used by the Data-in-Virtual facility

Organizing Your VSAM File
The physical organization of VSAM data sets differs considerably from those
used by other access methods. Except for relative record data sets, records
need never be of a fixed length. VSAM data sets are held in control intervals
and control areas; the size of these is normally determined by the access
method and the way in which they are used is not visible to you. VSAM files
can only exist on direct access devices.

VSAM Sequential File Organization
In a VSAM sequential file (ESDS). records are stored in the order they were
entered. The order of the records is fixed.

Records in sequential files can only be accessed (read or written) sequentially.

VSAM Direct File Organization
A VSAM direct file (RRDS) is a series of fixed-length slots in storage into which
you place records. The relative key identifies the record—the relative key being
the relative record number of the slot the record occupies.

Each record in the file occupies one slot, and you store and retrieve records
according to the relative record number of that slot. When you load the file,
you have the option of skipping over slots and leaving them empty.

VSAM Keyed File Organization
In a VSAM keyed file (KSDS), the records are ordered according to the collating
sequence of an embedded prime key field, which you define. The prime key is
one or more consecutive characters taken from the records. The prime key
uniquely identifies the record and determines the sequence in which It is
accessed with respect to other records. A prime key for a record might be. for
example, an employee number or an invoice number.

You can also specify one or more alternate keys to use to retrieve records.
Using alternate keys, you can access the file to read records in some other
sequence than the prime key sequence. For example, you could access the file
through employee department rather than through employee number. Alternate

Chapter 11. Using VSAM with VS FORTRAN Version 2 299

keys need not be unique. More than one record can be accessed, given a
department number as a key. This is permitted if alternate keys are specified
to allow duplicates.

To use an alternate index, you need to define a data set called the alternate
index (AIX). This data set contains one record for each value of a given alter
nate key: the records are in sequential order by alternate-key value. Each
record contains corresponding primary keys of all records in the associated
KSDS that contain the alternate key value. For instructions on how to define an
alternate index, see the appropriate access methods services manual.

I VSAM Linear Data Set Organization
I A VSAM Linear Data Set stores data so that it can be accessed or updated in
I units of 4096 bytes. It contains only data; it does not have imbedded logical
I records or other control information.

Processing VSAM Files
VSAM is an access method for files on direct access storage devices. Like
non-VSAM files. VSAM can be used in three basic ways:

To load a data set

»- To retrieve a data set

To update a data set

VSAM processing has these advantages:

*• Data protection against unauthorized access, including password protection
for VSAM files

Cross-system compatibility

Device independence, because there is no need to be concerned with block
size and other control information

VSAM processing is the only way for your FORTRAN program to use keyed
access.

Ifyou have complex requirements or are going to be a frequent user of VSAM,
you should review the VSAM publications for your operating system. (VS
FORTRAN Version 2 does not support all VSAM functions.)

VSAM Terminology
VSAM terminology is different from the terminology used for MVS files, as
shown in Figure 77 on page 301, for example.

300 VS FORTRAN Version 2 Programming Guide

O

VSAM Term Similar Non—VSAM Term

ESDS QSAM data set

KSDS ISAM data set

RRDS BDAM data set

Control Interval Size (CISZ) Block size

Buffers (BUFNI/BUFND) BUFNO

Access Method Control Block (ACB) Data Control Block (DCB)

Cluster (CL) Data set

Cluster Definition Data set allocation

AMP parameter of JCL DD statement DCB parameter of JCL DD statement

Record size Record length

Figure 77. VSAM Terminology

Defining VSAM Fiies
VSAM entry-sequenced, key-sequenced. relative-record, and linear data sets
can be processed by VS FORTRAN Version 2 only after you define tfiem by
means of access method services.

A VSAM cluster is a logical definition for a VSAM data set and has one or two
components:

»• The data component of a VSAM cluster contains the data records.

The index component of a VSAM key-sequenced cluster consists of the
index records.

You use the access method services DEFINE CLUSTER command to define your
VSAM data sets (clusters). This process includes creating an entry in a VSAM
or ICR catalog without any data transfer. Specify the following information
about the cluster:

Name of the entry

• Name of the catalog to contain this definition and its password (may use
default name)

File organization—ESDS (NONINDEXED), RRDS (NUMBERED), KSDS
(INDEXED), and linear (LINEAR)

Volumes the file will occupy

Space required for the data set

Record size and Control Interval Size (CISZ)

Passwords (if any) required for future access

For KSDS, length and position of the prime key within the records

For KSDS, how index records are to be stored

For further information, see your access method services manual.

Chapter 11. Using VSAM with VS FORTRAN Version 2 301

Defining VSAM Fiies—Generai Considerations
Generally speaking, VSAM files are best used as permanent files, that is, as
files that are processed again and again by one or more application programs.
You shouldn't try to use VSAM files as "scratch" files, because VSAM files are
more difficult to allocate and erase than other files.

The following general programming considerations apply to VSAM files:

*- Use VSAM KSDSs for applications in which you want to access data in a
number of ways, and want to update or insert records at any point.

• Use VSAM ESDSs for applications in which you create a complete file, one
in which you'll never update any records or insert new ones but to which
you may add records at the end.

• Use VSAM RRDSs for work files, or for files in which records must be
created and later updated in place.

I •' VSAM linear data sets are used exclusively by Data-In-Virtual (DIV) support
I on MVS/XA 2.2.0 or later.

A VSAM file may be suballocated or unique. A suballocated file shares a data
space with other files; a unique file has a data space to itself.

VSAM treats all files as clusters. For key-sequenced files, a cluster consists of
a data component and an index component. For entry-sequenced or relative-
record files, a cluster consists of a data component only. Besides setting up a
catalog entry for each component of a cluster, VSAM sets up a catalog entry for
the cluster as a whole. This entry is the cluster name specified in the DEFINE
command.

To define a suballocated VSAM file, first define a data space; then use the
DEFINE command with the CLUSTER parameter. VSAM suballocates space for
the file in the data space set up and enters information about the file in a VSAM
catalog. A file can be stored in more than one data space on the same volume
or on different volumes.

A unique VSAM file is defined by specifying the parameter UNIQUE and
assigning space to the file with a space allocation parameter and the job
control statements. The data space is acquired and assigned to the file concur
rent with the file definition. However, no other file can occupy its data space{s).

Examples of Defining a VSAM File
To define and use a VSAM file, you must first define a catalog entry for the file,
using access method services commands. When you use the commands, you
create a VSAM catalog entry for the file. The form of the entry depends upon

I the kind of file you'll be creating: a VSAM KSDS, a VSAM ESDS, a VSAM
I RRDS, a VSAM-managed sequential file, or a VSAM linear data set.

I For VSAM keyed, sequential, direct, and linear files, the following examples
I assume that the data space your file is using has already been defined as

VSAM space by the system administrator.

For more information about the DEFINE commands, see the appropriate access
method services manual.

302 VS FORTRAN Version 2 Programming Guide

Defining a VSAM Keyed File
To define a VSAM keyed file (KSDS), you can specify:

DEFINE CLUSTER -

(NAME(myfilei)
FILE(ddname)
VOLUMES(666666)
KEYS(10,5)
INDEXED -

RECORDS(180) -
RECORDSIZE(80 200))
DATA(NAME(myfilel.data))
INDEX(NAME(myfilei.index))
CATALOG(USERCAT)

which defines a file named myHlel as a VSAM KSDS.

INDEXED

specifies that the file is a VSAM keyed file (KSDS).

VOLUMES(666666)
specifies that the file is contained on volume 666666.

RECORDS(180)
specifies that there can be a maximum of 180 records in the space.

RECORDSIZE(80 200)
specifies that the average length of the records in the file is 80 bytes, and
the maximum length of any record is 200 bytes.

DATA(NAME(myfile1 .data))
specifies the data component name.

INDEX(NAME(myflle1 .index))
specifies the index component name.

CATALOG(USERCAT)

specifies the catalog in which this file is entered.

Defining a VSAM Direct File
To define a VSAM direct file (RRDS), you can specify:

DEFINE CLUSTER -

(NAME(myfile2)
FILE(ddname)
VOLUMES(666666)
NUMBERED

RECORDS(200) -
RECORDSIZE(80 80)) -
CATALOG(USERCAT)

which defines a file named myfile2 as a VSAM RRDS.

NUMBERED

specifies that the file is a VSAM direct file (RRDS).

VOLUMES(666666)
specifies that the file is contained on volume 666666.

RECORDS(200)
specifies that there can be a maximum of 200 records allowed in the space.

Chapter 11. Using VSAM with VS FORTRAN Version 2 303

RECORDSIZE(80 80)
specifies that all the records in the file are 80 bytes long.

CATALOG(USERCAT)
specifies the catalog in which this file is entered.

Defining a VSAM Sequential File
To define a VSAM sequential file (ESDS), you can specify:

DEFINE CLUSTER -

(NAME(myfile3)
FILE(ddname) -
VOLUMES(666666)
NONINDEXED

REC0RDS(180) -
REC0RDSIZE(80 200))
CATALOG(USERCAT)

which defines a file named mynieS as a VSAM ESDS.

NONINDEXED

specifies that this is a VSAM sequential file (ESDS).

VOLUMES(666668)
specifies that the file is contained on volume 666666.

RECORDS(180)
specifies that there can be a maximum of 180 records in the space.

RECORDSIZE(80 200)
specifies that the average length of the records in the file is 80 bytes, and
the maximum length of any record is 200 bytes.

CATALOG(USERCAT)
specifies the catalog in which this file is entered.

Defining a VSAM Linear Data Set
To define a VSAM linear data set, you can specify:

DEFINE CLUSTER

(NAf-1E(DIV.EXAMPLE) -
VOLUMES(DIVVOL)
TRACKS(1,1)
SHAREOPTIONS(1,3) -
LINEAR)

which defines a file named DIV.EXAMPLE.

VOLUMES(DIVVOL)
specifies that the file is contained on volume DIVVOL

TRACKS(1,1)
specifies that one track is to be initially allocated for the file and one track
is to be allocated for each extent

SHARE0PTI0NS(1,3)

specifies that one of the following file-sharing capabilities is enforced:

1. Asingle user can access the data set for update, or ^̂ ^
2. Several users can access the data set for read-only

304 VS FORTRAN Version 2 Programming Guide

If SHARE0PTI0NS(1,3) is not specified, Data-in-Virtual does not provide data
set integrity when multiple programs update the data object concurrently.

I Therefore, you should avoid using other options on the SHAREOPTIONS param-
' eter when you create a linear data set.

LINEAR

specifies that the file is a VSAM linear data set

For additional information on the creation of VSAM linear data sets and the

alteration of entry-sequenced VSAM data sets, see MVS/XA Integrated Catalog
Administration: Access Method Services Reference, GC26-4135.

Defining Alternate Indexes
By means of alternate indexes, keyed VSAM files can be arranged for access in
as many different ways as desired. VS FORTRAN Version 2 can access a
KSDS file through either its prime index or through any alternate index.
(However, an ESDS file alternate index cannot be accessed by VS FORTRAN
Version 2, although VSAM allows such indexing.)

For example, an employee file might be indexed by personnel number, by
name, and also by department number.

When an alternate index has been built, you access the data set through an
object known as an alternate index path that acts as a connection between an
alternate index and the data set.

Two types of alternate indexes are allowed: unique key and nonunique key.

For a unique key alternate index, each record must have a different key.

For a nonunique key alternate index, within limits of index record size
defined, any number of records can have the same key.

In the example suggested above, the alternate index using the names could be
a unique key alternate index (provided each person had a different name), and
the alternate index using the department number would be a nonunique key
alternate index because more than one person could be in each department. A
data set accessed through a unique key alternate index path can be treated, in
most respects, like a KSDS accessed through its prime index. The records may
be accessed by key or sequentially, records may be updated, and new records
may be added. If the data set is a KSDS, records may be deleted and the
length of updated records altered. When records are added or deleted, all
indexes associated with the data set are by default altered to reflect the new
situation if it's an "upgrade" set (see "Alternate Index Terminology" on
page 306).

In data sets accessed through a nonunique key alternate index path, the record
accessed is determined by the key and the sequence. The key can be used to
establish positioning so that sequential access may follow. The use of the key
accesses the first record with that key.

^ The alternate index may be password protected, as for a normal VSAM data
set.

Chapter 11. Using VSAM with VS FORTRAN Version 2 305

Alternate Index Terminology
An alternate index is, in practice, a VSAM data set that contains a series of
pointers to the keys of a VSAM data set. When you use an alternate index to
access a data path, you use an entity known as an alternate index path, or
simply a path, that establishes the relationship between the index and the data
set.

The data set to which the alternate index gives you access is known as the
base data set, and is usually referred to in VSAM manuals as the base cluster.

If the indexes are defined "upgrade." alternate indexes are automatically
updated. All indexes so connected are known as the index upgrade set of the
base cluster.

Base cluster

A data component of KSDS and primary (prime) index.

Prime Index

The index used in creating the data set and used when access is made
through the base cluster.

Alternate indexes

Other indexes to the same base data.

Paths

Establish a path through the base data other than that implied by the prime
index in a KSDS and the sequence in an ESDS. Paths connect the alternate
index with the base data.

Index upgrade set
That set of indexes (always including the prime index) that will be automat
ically updated when the data is changed. Indexes can exist outside this set.

How to Build and Use Alternate Index Paths
If you are using alternate indexes, knowledge of how to use them is required at
four stages of the programming process, as it is with normal data sets. These
stages are:

1. When planning and coding the program

2. When creating the alternate indexes

3. When running the program that accesses the data set through the alternate
indexes

4. When deleting the alternate index, if you wish to delete it at a different time
from the associated data set

Discussions of what to do at these stages follow.

Planning to Use Alternate Indexes
When planning to use an alternate index, you must know:

*- The type of base data set with which the index will be associated

• Whether the keys will be unique or nonunique

Whether the index is to be password protected

• Some of the performance aspects of using alternate indexes

306 VS FORTRAN Version 2 Programming Guide

The type of base cluster and the use of unique or nonunique keys determine
the type of processing that you can perform with the alternate index, and so
determine the FORTRAN statements you may use.

You use an alternate index path as if it were a separate data set.

Cataloging and Loading Alternate Indexes
Ifyour VSAM keyed file will have one or more alternate indexes, specify a
DEFINE ALTERNATEINDEX and DEFINE PATH for each one. These are VSAM

commands.

DEFINE ALTERNATEINDEX identifies and builds a catalog entry for the alternate
index. In it, you specify:

The name of the catalog entry

*' The name of the alternate index and whether it is unique or can be dupli
cated

*- Whether or not alternate indexes are to be updated when the file is modi
fied

The name of the VSAM base cluster it relates to

The name of the catalog {may use default name) to contain this definition
and its password

The maximum number of times you can try entering a password in
response to a prompting message

DEFINE PATH relates an alternate index with its base cluster.

After you have defined the alternate index and the path, and you have loaded
the base cluster, you can specify a BLDINDEX command to load the alternate
index with index records.

Loading Your VSAM KSDS

Before a VSAM KSDS can be accessed by any retrieval or update operations, it
must have been successfully defined and loaded. A file that has been defined
but which has never had records loaded into it is called an empty file.

An empty file may be loaded in one of the following ways:

1. With an access method services command {such as REPRO).

2. By a VS FORTRAN Version 2 program which opens the file with an ACTION
of WRITE, writes one or more records that are in ascending key sequence
by the primary key. and then closes the file.

3. For KSDS only, by an implicit load in a VS FORTRAN Version 2 program.
This occurs when an empty keyed file is opened with an ACTION of

READWRITE. In this case, the file is automatically opened for loading, a

single dummy record is loaded into it, and the file is closed. The file is then
reopened and the dummy record is deleted.

4. By a program written in some other language that has the capability of
loading records into an empty VSAM file.

Chapter 11. Using VSAl^ with VS FORTRAN Version 2 307

After a VSAM file has been defined and loaded, it is called a nonempty file. (In
VSAM terminology, it is still called a nonempty file even if all the records
loaded into it have been deleted.)

Using Operating System Data Definition Statements
Opening a VSAM KSDS requires that one or more operating system data defi
nition statements be supplied to relate the FORTRAN unit number to the actual
file. These data definition statements are the DD statement in an MVS system
and the DLBL statement in a VM system. The name that identifies a particular
data definition statement is called a ddname in MVS and VM.

This section discusses the names that are required to access a VSAM KSDS.
These names depend upon the operating system, whether or not the FILE
parameter was specified on the OPEN statement, and the number of KEYS
listed in the KEYS parameter of the OPEN statement.

If a file has no KEYS parameter given on its OPEN statement or if only one key
is listed in the KEYS parameter, then only a single data definition statement is
required. However, if the KEYS parameter lists more than one key, then the
FORTRAN VSAM KSDS support routines actually open more than one VSAM file
and a separate data definition statement (and, therefore, a different name) is
required for each one. The table below indicates the required names.

There must be a data definition statement corresponding to each key, either the
primary key or an alternate index key, listed in the KEYS parameter of the
OPEN statement. If the primary key is listed in the KEYS parameter, then there
must be a data definition statement which refers to the base cluster. If an alter
nate index key is listed in the KEYS parameter, then there must be a data defi
nition statement which refers to that alternate index path. It is important to
note that the data definition statement corresponding to an alternate index key
must refer to the alternate index path and not to the alternate index itself. All
the data definition statements which are used to open one FORTRAN keyed file
must refer to the same base cluster.

In the event that there is no KEYS parameter on the OPEN statement, which
ever primary or alternate index key is referred to by the data definition state
ment becomes the only possible key of reference for access to the file.

Separate FORTRAN keyed files (that is, those that are opened with different unit
numbers) must not involve the same base cluster, either through the primary
key or through one of its alternate index keys, if any of the files which are to
remain open at the same time were opened with an ACTION parameter having
a value other than READ. Violation of this restriction may cause unexpected or
undesirable results when file updates are made.

n

308 VS FORTRAN Version 2 Programming Guide

The following table lists the names required to open a single FORTRAN keyed
file.

DDNAME

No.

VM MVS

FILE = f/J No FILE = FILE = rn No FILE =

1 fn FlnnKOi fn FTnnKOI

i

(/ > 1)

Note 1.

fn suffixed

with m

Note 2.

FTnnKO/ fn suffixed

with m

FTnnKO;

In the table:

nn is the unit number specified in the OPEN statement.
fn is the file name, if any, specified in the OPEN statement.
rn is /• - 1

Notes:

1. The ddname or filename numbers do not have to correspond to the posi
tions of the associated keys in the key list {KEYS parameter of the OPEN
statement). For example, the last key listed in the KEYS parameter need
not correspond to the highest numbered name.

2. In a VM system, if the filename {fn) given in the FILE parameter is seven
characters long, it is not possible to suffix the name as indicated above for
other than the first ddname. In this case, the last character of the name is

overlaid instead.

Processing DEFINE Commands

After you've created your DEFINE command, you must run it, using access
method services, to create an entry in a VSAM catalog.

For MVS: You specify the following job control statements to catalog your
VSAM DEFINE commands:

//VSAMJOB JOB
//STEP EXEC PGM=IDCAMS
//SYSPRINT OD SYSaUT=A
//ddname DO VOL=SER=myvol,UNIT=SYSDA,DISP=OLD
//SYSIN DO *

(The DEFINE command as data)

/*
If

When you run a FORTRAN program to create or process a VSAM file, you
define the file in a DD statement.

Chapter 11. Using VSAM with VS FORTRAN Version 2 309

For example, to process the file myfilel in a FORTRAN load module called
myprog, you specify:

//VSAMl JOB
11 EXEC PGM=myprog
//ddname DD DSN=myfilel,DISP=SHR
//

When myprog is run, the DD statement makes myfilel {and the information in its
catalog entry) available to the program. In the FORTRAN OPEN statement,
ddname is the name specified in the FILE parameter. For information about job
control statements, see "Job Processing" on page 12.

For VM: To define a VSAM file to VM, you specify the following commands:

The XEDIT command (or the edit command of your choice), to create a file
with a filetype of AMSERV containing the DEFINE CLUSTER command.

The AMSERV command, to run the DEFINE CLUSTER command in the file

you've created; this creates the VSAM catalog entry. For example:

AMSERV defname

This command sends the DEFINE CLUSTER command to access method

services for processing.

Source Language Considerations—VSAM Files
While a VSAM sequential file (ESDS) is similar to other sequential files and a
VSAM direct file (RRDS) is similar to other direct files, their organizations are
actually different from other sequential and direct files, and the same source
language can give different results. You must take these differences into
account to get the results you expect.

In addition, a VSAM keyed file (KSDS) has special language keywords and con
structs that affect the OPEN, READ, and WRITE statements. When you are proc
essing VSAM files, you can use all the VS FORTRAN Version 2 input/output
statements, but REWRITE and DELETE can be used only with KSDS.

For VSAM files, the STATUS specifier of an OPEN statement may not be NEW or
SCRATCH, and the STATUS specifier of a CLOSE statement may not be
DELETE.

Note; If your program contains an ENDFILE statement and processes a VSAM
file, you'll get a warning message to inform you that ENDFILE has no meaning
for a VSAM file and is treated as documentation.

Figure 78 summarizes the FORTRAN input/output statements you can use with
each form of access.

310 VS FORTRAN Version 2 Programming Guide

Access Mode

and FORTRAN

I/O Statements

VSAM

Sequential
(ESDS)

VSAM

Direct

(RRDS)

VSAM

Direct

(RRDS)

VSAM

Keyed
(KSDS)

Sequential
Access

Sequential
Access

Direct

Access

Keyed
Access

OPEN Yes' Yes' Yes Yes

WRITE Yes*^ Yes Yes" Yes'

REWRITE No No No Yes

DELETE No No No Yes

READ Yes No^ Yes^" Yes Yes

BACKSPACE Yes Yes' Yes^ No Yes

REWIND Yes Yes' Yes^ No Yes

CLOSE Yes Yes Yes Yes

Figure 78. FORTRAN Statements Valid with VSAM Files

Notes to Figure 78 on page 310:

Sequential OPEN
Empty file
Nonempty file
Update or replace
For a file that was empty when opened, has the effect of CLOSE
Add a new record to the end of the file

Add or insert a new record

In some instances, the VSAM input/output statements have a different effect
than they have for other file processing techniques. The differences are docu
mented in the following sections.

Processing VSAM Sequential Files
VSAM sequential files use VSAM entry sequenced data sets (ESDS); processing
of such files by VS FORTRAN Version 2 can only be sequential.

When you're processing VSAM sequential files, there are special considerations
for the OPEN, CLOSE, READ, WRITE, BACKSPACE, and REWIND statements, as
described in the following paragraphs. For general information, see
Chapter 6, 'Performing Input/Output Operations" on page 121.

Using OPEN Statement—VSAM Sequential Files
When your program processes a VSAM sequential file, you must specify the
OPEN statement. For VSAM sequential files, specify:

ACCESS ='SEQUENTIAL'

Using READ Statement—VSAM Sequential Files
The READ statement for a VSAM sequential file has the same effect it has for
other sequential files; records are retrieved in the order they are placed in the
file. Therefore, you must use the sequential forms of the READ statement.

Chapter 11. Using VSAM with VS FORTRAN Version 2 311

Using WRITE statement—VSAM Sequential Files
For VSAM sequential files, the WRITE statement places the records into the file
in the order that the program writes them. If a VSAM sequential file is non
empty when your program opens it, a WRITE statement always adds a record at
the end of the existing records in the file; thus you can extend the file without
first reading all the existing records in the file.

After you've written a record into a VSAM sequential file, you can only retrieve
it; you cannot update it. Thus, when processing a VSAM sequential file, you
can't update records in place. That is, if you code the following statements:

READ ...

BACKSPACE ...

WRITE ...

the WRITE statement does not update the record you have just retrieved.
Instead, it places the updated record at the end of the file. (If you want to
update records, you should define the VSAM file as direct or keyed.)

Using BACKSPACE Statement—VSAM Sequential Files
For VSAM sequential files, you can use the BACKSPACE statement to make the
last record processed the current record:

»- For a READ statement followed by a BACKSPACE statement, the current
record is the record you've just retrieved. You can then retrieve the same
record again.

*• For a WRITE statement followed by a BACKSPACE statement, the current
record is the record you've just written, that is, the last record in the file.
You can then retrieve the record at this position.

Using REWIND Statement—VSAM Sequential Files
The REWIND statement for VSAM sequentially accessed files has the same
effect it has for other sequential files: the first record in the file becomes the
current record.

For VSAM sequential files, this means that you can rewind the file and then
process records for retrieval only. If you attempt to update the records, you'll
simply add records at the end of the file.

After a BACKSPACE or REWIND statement is run, you cannot update the
current record. If you attempt it, you'll simply add another record at the end of
the file.

Processing VSAM Direct Files
VSAM direct files use VSAM relative record data sets (RRDS). You can process
VSAM direct files using either direct or sequential access.

Using direct access, you supply the relative record number. You should use
direct access for RRDS when there are gaps in the relative record sequence for
the file, or when you want to update records in place.

If you are using sequential access, accessing each record in turn, one after
another, you have no control over the relative record number. For this reason,

if you use sequential access to load the file, there should be no gaps in the
relative record number sequence.

312 VS FORTRAN Version 2 Programming Guide

When you're processing VSAM direct files, there are special considerations for
the OPEN statement as well as for sequential, direct, and keyed access, as
described in the following paragraphs. For general information, see
Chapter 6, "Performing Input/Output Operations" on page 121.

Using OPEN Statement—VSAM Direct Files
When your program processes a VSAM direct file, you must specify the OPEN
statement. The options you can use are:

ACCESS = 'DIRECT' for direct access

ACCESS = 'SEQUENTIAL' for sequential access

Using Sequential Access—VSAM Direct Files
You can use sequential access to load (place records into) an empty VSAM
direct file using the WRITE statement, or to retrieve records from a VSAM direct
file using the READ statement. The records are processed sequentially, one
after the other, exactly as a sequential file is processed, and the relative record
numbers of the records are ignored. In other words, when you're loading the
file, there should not be any gaps in the relative record number sequence,
because space for any missing records is not reserved in the file. The OPEN
statement option to use is

ACCESS='SEQUENTIAL'

For a direct file opened in the sequential access mode, you can use the WRITE
statement only to load (place records into) a file that is empty when the file is
opened. During loading, if you specify a BACKSPACE or REWIND statement,
you cannot specify any more WRITE statements.

If the sequentially accessed VSAM direct file already contains one or more
records when it is opened and you issue a WRITE statement, your program is
terminated. In other words, for a VSAM direct file opened in the sequential
access mode, once the file is loaded, you cannot add or update records with
FORTRAN programs. (For updating and adding records, you must use direct
access.)

The READ statement for a sequentially accessed VSAM direct file retrieves the
records in the order they are placed in the file. The VS FORTRAN Version 2
program gives you no way of determining the relative record number of any
particular record you retrieve. (If you need to use the relative record number,
you must use direct access.)

Except during file loading, the REWIND statement for a sequentially accessed
VSAM direct file has the same effect it has for VSAM sequential files: the first
record in the file becomes the current record, which is then available for

retrieval. During file loading, the REWIND statement has the same effect as a
CLOSE statement followed by an OPEN statement; the first record in the file is
then available for retrieval.

Except during file loading, the BACKSPACE statement for a sequentially
accessed VSAM direct file has the same effect it has for VSAM sequential files;
the last record processed becomes the current record, which is then available
for retrieval. During file loading, the BACKSPACE statement has the same
effect as a CLOSE statement, followed by an OPEN statement, followed by file

Chapter 11. Using VSAM with VS FORTRAN Version 2 313

positioning to the last record written; the last record in the file is then available
for retrieval.

Using Direct Access—VSAM Direct Files
You can place records into a VSAM direct file using the WRITE statement, or
retrieve records from a VSAM direct file using the READ statement. The OPEN
statement option to use is

ACCESS='DIRECT'

For VSAM direct files, if the relative record numbers for the file are not strictly
sequential—for example, if there are gaps in the key sequence:

1, 2, 3, 10, 12, 15, 16, 17, 20

—you must load (create records in) the file, using direct access WRITE state
ments to provide the relative record number for each record you write.

Otherwise (if the relative record numbers for the file are strictly sequential—no
gaps), you should sort the records according to the ascending order of their
record numbers and then load them into the file using sequential access. This
is because sequential access is faster than direct access.

For a VSAM direct file opened in the direct access mode, a WRITE statement

uses the relative record number you supply to place a new record into the file,
or to update an existing record.

The method you follow, either for record insertion or record update, is as
follows:

1. In the OPEN statement, specify ACCESS = 'DIRECT' for the file.

2. Set the REC variable to the relative record number of the record to be

inserted or updated.

3. Then code the WRITE statement, using the preset REC variable.

4. Repeat steps 2 and 3 until you ve processed all the records you need to
process.

The following example illustrates the first three steps above:

OPEN (ACCESS='DIRECT',UN IT=10,RECL=80)
IREC = 45

WRITE (10,REC=IREC)

When you are loading (initially placing records into) a file, you must not use
duplicate record numbers during processing. In other words, you are not
allowed to update records while you are loading the file. If you use direct
access WRITE statements to load a file initially and you want to change from
initial load processing to update processing, issue a direct access form of the
READ statement.

To retrieve records from a directly accessed VSAM direct file, use the direct

access forms of the READ statement. You cannot open the same file in the
same programming unit for both sequential and direct access processing.

Don't use the BACKSPACE or REWIND statements with a directly accessed
VSAM direct file; if you do, your program is terminated.

314 VS FORTRAN Version 2 Programming Guide

Processing VSAM Keyed Files
VSAM keyed files use VSAM key sequenced data sets (KSDS). The access
mode is keyed, and record retrieval is accomplished by means of either direct
or sequential READ statements, while record output is by direct WRITE or
REWRITE statements.

For VS FORTRAN Version 2 users, probably the most significant property of a
VSAM keyed file is the ability to process the file in more than one order within
the same program. This is accomplished in VS FORTRAN Version 2 by means
of the KEYS parameter in the OPEN statement, and the KEYID parameter in the
READ statement.

The KEYS parameter in the OPEN statement names the established VSAM keys
for the KSDS file that you will use in your program. The KEYID parameter
names the key applicable to the READ statement containing it, and sets up that
key as the current key of reference. Provided the key or keys you want to use
is identified in the most recent OPEN statement for the file, the KEYID param
eter in a later READ statement can identify any of those keys as the key of ref
erence at any point in the program. Or, after the file is closed, another OPEN
can establish another group of keys.

In working with a key, you will have to associate it with some FORTRAN data
type when a record is retrieved, for example, if the key is put into a FORTRAN
variable or array element by a READ. Regardless of the FORTRAN data types
by which you may recognize or manipulate a key, VSAM considers the key to
be a single string of one or more characters. VSAM always compares the keys
using the EBCDIC collating sequence. If the key is seen by VS FORTRAN
Version 2 as some data type other than character (as integer or real, for
instance), the VSAM key comparisons may not be equivalent to the FORTRAN
internal values. This does not mean that the key must be character data type,
but it does mean that the key data type must be consistent with what VSAM
expects when a record is written.

Another aspect of key processing important to VS FORTRAN Version 2 users is
that a key may logically consist of more than one data item, with the same or
different FORTRAN data types. But to VSAM, the key must form a contiguous
character string in its file record. Therefore, the key used as an argument in a
direct retrieval (READ with KEY =) must refer to a single data item. If you do
divide the key into more than one item, an EQUIVALENCE statement can be
used to define a variable that provides a single name for the composite items,
and then that name can be used for the key value in the retrieval.

For specific information about VS FORTRAN Version 2 statement usage in proc
essing VSAM KSDS files, see 'Input/Output Operations for Keyed Access" on
page 181.

Processing VSAM Linear Files
After you have created a data object and defined it to the system, you must
provide a DD statement to identify it, unless the data set is to be dynamically
allocated. (For more information on identifying the linear data set, see VS
FORTRAN Version 2 Language and Library Reference.)

Chapter 11. Using VSAM with VS FORTRAN Version 2 315

The following JCL example will run an application program named EXAMPLE. The
system will connect the actual data set name, DIV.EXAt^PLE, to the program

through the ddname DIVOBJ.

n*
//* RUN A DATA-IN-VIRTUAL APPLICATION

n*
//MYPROG EXEC PGM=EXAMPLE

//STEPLIB DD DSN=MYDIV.LOAD.JOBS,DISP=SHR

// DD DSN=SYS1.FORTRAN.VSF2F0RT,DISP=SHR
//DIVOBJ DD DSN=DIV.EXAMPLE,DISP=OLD
//SYSABEND DD SYSOUT=*

//FT06F001 DD SYSOUT=A

/*

Obtaining the VSAM Return Code—lOSTAT Option
If you specify the lOSTAT option for VSAM input/output statements, and an error
occurs while VSAM is processing it, you receive the VSAM error information for
the operation attempted in the lOSTAT data item.

(If the error occurs while FORTRAN Is processing it, you receive an lOSTAT
value that is the same as the VS FORTRAN Version 2 error code.)

The VSAM error information is formatted in the lOSTAT data item as follows:

1. The VSAM return code is placed in the first two bytes.

2. The VSAM reason code is placed in the second two bytes.

To inspect the codes, you can equivalence the lOSTAT variable with two integer
items, each of length 2. After a VSAM input/output operation, you can then
write out the two integer items that contain the pair of VSAM codes. For
example:

INTEGER*2 12(2)
INTEGER*4 I

EQUIVALENCE (12,1)
OPEN (10,ACCESS='DIRECT',RECL=1O0)
WRITE (10,REC=99,IOSTAT=I,ERR=1000)

1000 WRITE (6,*) 'VSAM ERROR: RETURN CODE=', 12(1),
2 'REASON CODE=', 12(2)

The VSAM documentation for the system you're operating under gives the
meaning of these return and reason codes. For more information, see the
appropriate VSAM publications for your system.

316 VS FORTRAN Version 2 Programming Guide

Part 4. Appendixes

Part 4. Appendixes 317

^ Appendix A. Assembler Language Considerations
FORTRAN and assembler language can both be used In the same application,
either as a FORTRAN main program with assembler subprograms or vice
versa.

In FORTRAN programs, you can invoke the assembler subprogram in either of
two ways: through CALL statements or through function references in arith
metic expressions. In assembler programs, you can invoke the FORTRAN sub
program by initializing the run-time environment (if it has not previously been
initialized) and then calling the subroutine.

This appendix describes calling FORTRAN subprograms from assembler pro
grams, invoking a FORTRAN main program, requesting compilation of a
FORTRAN program from an assembler program, and retrieving arguments in an
assembler program. This appendix also describes the representation of data in
VS FORTRAN.

Calling FORTRAN Subprograms from Assembler Programs

Initializing the Run-Time Environment
If your main program is not written in FORTRAN and it calls VS FORTRAN
Version 2 service subroutines or other FORTRAN routines, the calling program
must initialize the run-time environment.

No program can call a FORTRAN main program or issue an unconditional
request to initialize the VS FORTRAN run-time environment if there is a run
time environment already active. You must terminate the first run-time environ
ment before initializing another.

VFEIN# and VFEIL# Entry Points
You can use the standard entry point VFEIN# when you know that initialization
is necessary. You can use the entry point VFEIL# in dynamically loaded rou
tines when you do not know if initialization has occurred in the original module.

Before Release 4 of FORTRAN Version 1, the call to initialize the run-time envi

ronment was made to a special entry point within VSCOM#. The call to
VSCOM# is still supported, but you might significantly reduce the size of the
load module by calling VFEIN# or VFEIL# instead.

VFEIN# or VFEIL#, to which the initialization instructions branch, initializes
return coding and prepares routines to handle interruptions. If this initialization
is omitted, an interruption or error may cause abnormal termination. After
initialization, the routines return to the instruction following the call.

The load module that contains the call for initialization must remain in virtual

storage during the entire time that the VS FORTRAN Version 2 run-time library
remains active. In other words, the module must not be deleted. For VFEIL#,

this requirement applies only if initialization occurs because of the call and not
if a previous initialization occurred.

Appendix A. Assembler Language Considerations 319

VFEIL# allows for initialization wittiin a dynamically loaded module. A dynam
ically loaded module is a module in wtiicti the FORTRAN program is in a dif
ferent load module than the one from which the VS FORTRAN run-time

environment was initialized.

Unlike a call to VFEIN#, a call to VFEIL# does not result in job termination, even
if the run-time environment was previously established. However, a level of
initialization still occurs in a dynamically loaded module to allow the vector-
valued mathematical functions to operate regardless of whether or not a pre
vious initialization has occurred. Therefore, the use of VFEIL# allows you to

perform initialization without having to determine whether or not it has already
been done.

VFEIN# and VFEIL# both accept a parameter string containing run-time options.
Register 1 points to a word that has the high-order bit on and that has a pointer
to the parameter area. The parameter area consists of a halfword that is the
length of the parameter string. Following the length is the actual parameter
string. The parameter string contains the run-time options in the same format
in which they are coded in the compiler invocation. That is, the options are
separated by commas and the parameter string contains no embedded blanks.

The assembly language calls for VFEIN# and VFEIL# with run-time options are:

LA l,parameter-list
L 15,=V(VFEIN# or VFEIL/^)
BALR 14,15

parameter-list DC A(parameter-area+X'80000000')
parameter-area DC Y(L'parameter-string)
parameter-string DC C'option,'

The assembly language calls for VFEIN# and VFEIL# with no run-time options
are:

SR 1,1
L 15,=V(VFEIN# or VFEIL#)
BALR 14,15

Vector Interrupt Support
If you are running in a vector environment and have initialized the run-time
environment, you may still want interrupt support. If your load module contains
no vector mathematical routines and no vectorized FORTRAN programs, you

must provide a strong external reference for the label VFVIX#. For example:

DC V(VFVIX#)

This informs the VS FORTRAN Version 2 Library that you are using vector
instructions, and that you require vector interrupt support. If the strong external
reference is missing, then any vector interrupt you encounter will be interpreted
as a terminating error.

When to Terminate the Run-time Environment

To ensure that any partially-filled output buffers get written, include instructions
in your program to terminate the run-time environment if the program:

runs any I/O statements, or

^ produces any error messages

320 VS FORTRAN Version 2 Programming Guide

The run-time environment can be terminated by a:

*" STOP statement from a FORTRAN program
CALL EXIT statement

• CALL SYSRCx statement

When the run-time environment is terminated, control returns to the routine that

invoked the routine that effected initialization. This may be the operating
system, or it may be another subprogram. Regardless of the reason the run
time environment was terminated, do not attempt to call another FORTRAN sub
routine.

Considerations for MVS Subtasks

If you have two MVS subtasks running programs that require the VS FORTRAN
run-time library, you must terminate the run-time environment of one subtask
before you can run the second. You cannot have two such subtasks active in
the same region at the same time.

The only way you can run FORTRAN programs in different MVS subtasks in the
same region is to use the VS FORTRAN Multitasking Facility (MTF).

Register Conventions
When you call a FORTRAN subprogram, you must follow the standard linkage
conventions. In particular:

Register 13 must contain the address of an 18-word save area. The second
word of the save area should contain the address of the previous caller's
save area until the previous save area is reached.

»• Register 14 must contain the address at which control is to return when the
subroutine is completed.

Register 15 must contain the address of the subroutine entry point.

»- Register 1 must contain the address of the argument address list. If there
are no character arguments, register 1 points to a list of consecutive words,

each containing the address of an argument to be passed. The last word in
the list should have a 1 in the high-order (sign) bit.

Assuming that register 13 already points to a save area, your call should look
similar to this:

LA Ijparnilist
L 15,=V(fortran-subprogram)
BALR 14,15

parmlist DC A(argunientl)

DC A(argumentn+X'8G000O00')

If the FORTRAN subroutine processes a RETURN statement, register 15 will
contain a zero on return to the calling routine. If a "RETURN i" statement is

processed, register 15 will contain the value 4*i.

Appendix A. Assembler Language Considerations 321

Passing Character Arguments
The linkage convention for passing character arguments between subprograms
is different from the linkage convention for passing noncharacter arguments.
FORTRAN 77 standards specify two attributes for each character argument;

*- address, required of all arguments

length, required of character arguments

The convention for supplying the address argument is the same for character
and noncharacter arguments. In the calling subprogram, a sequence of
addresses is entered in the order of the called subprogram's argument list; one
word containing an address for each argument in the list. The high-order bit is
set to 1 in the last address to signify the end of the address list.

To supply the length argument, enter a sequence of one-word addresses
pointing to the length attributes of each argument in the list. There is a
one-to-one correspondence of addresses and lengths. The high-order bit is set
to 1 in the last address to signify the end of the length list.

Note: In cases with both character and noncharacter arguments, address and
length attributes must be supplied for each argument.

Address and length lists are arranged contiguously in storage. Two words
precede these lists. The first, X'C2E90000', identifies this list as one with char
acter arguments. The second word contains the length, in bytes, of the argu
ment address list. The value is used as an offset from each entry in the
address list to point to its corresponding entry in the length list.

The following example illustrates the linkage convention of a call to a subpro
gram with three character arguments.

The following example is given under the assumption that the VS FORTRAN
environment has already been initialized and that register 13 is already pointing
to an 18-word save area.

LA 1,PL
L 15,=V{subroutine)
BALR 14,15

DS OF

DC X'C2E90000'

DC A(PLL-PL)
PL DC A(A)

DC A(B)
DC A(C+X'80000000':

PLL DC A{LA)
DC A(LB)
DC A(LC+X'80000000

A DS CL5

B DS CLll

C DS CLll

LA DC A(L'A)
LB DC A(L'B)
LC DC A(L'C)

322 VS FORTRAN Version 2 Programming Guide

Invoking a FORTRAN Main Program
There may be times when you wish to invoke a FORTRAN main program. In
this case, you should not attempt to initialize the FORTRAN environment: the
FORTRAN main program will do that. The instructions for invoking a FORTRAN
main program are shown below:

LA Ijparmlist
L 15,=V(fortran-program)
BALR 14,15

parmlist DC A(parmdata+X'80000000')
parnidata DC Y(L'options)
options DC C'execution-options'

This calling sequence is similar to the one used for initializing the FORTRAN
environment. Register 1 points to a word that has a 1 in the high-order bit and
points to the parameter area. The parameter area consists of a halfword that
contains the length of the parameter string. The parameter string immediately
follows the length halfword and contains the run-time options separated by
commas. There should be no embedded blanks in the parameter string.

Multiple Copies of Load Modules
You cannot reuse a virtual storage copy of any executable program or load
module that interacts with the VS FORTRAN run-time library after the library
environment has been terminated. To run the program again, load a new copy
into virtual storage.

Assembler Subprograms to Be Called from FORTRAN
When you write an assembler language subprogram to be called from
FORTRAN, it should expect the same register conventions as previously
described in "Register Conventions " on page 321. That is, when the assembler
language program is entered:

•- Register 13 is pointing to an 18-word save area.

Register 14 is pointing to the location to which control should be returned
when the subprogram has completed.

»- Register 15 is pointing to the entry point of the subprogram.

>• Register 1 is pointing to an argument address list. If there is no argument
list, register 1 contains zero.

The instructions at the subprogram entry point must save the registers in the
given save area, establish addressability, and establish a new save area if this
subprogram will call other subprograms.

Appendix A. Assembler Language Considerations 323

The usual form of these instructions is as follows:

routine SAVE (14,12),.*
DROP 15

LR 12,15
USING routine,12

LA 15,save-area
ST 15.8(,13)
ST 13.4(,15)
LR 13,15

A function subprogram must return its function value as indicated under
"Returning a Function Value from an Assembler Program" on page 328.

Using FORTRAN Data in Assembler Subprograms
Your assembler language subprograms can use data defined in FORTRAN sub
programs, data that is contained either in common areas or in argument lists.

Arrays used in FORTRAN programs should be efficiently aligned. Alignment is
described in the section on COMMON and EQUIVALENCE statements. If an
inefficiently aligned array is passed to a subroutine as a dummy argument,
each time the actual array is referenced in a vectorized statement a vector
boundary misalignment error message is issued and the library performs cor
rective action. The time consumed in fielding the interrupt and performing the
corrective action seriously degrades performance.

Floating point data should be normalized. If unnormalized data is used by the
vector hardware, an unnormalized operand exception can occur, resulting in
abnormal termination of the program.

Using Common Data In Assembler Subprograms
Assembler language subprograms can access data in both blank and named
common areas.

Using Blank Common Data in Assembler Programs: To refer to the blank
common area, the assembler language program must also define a blank
common area, using the COM assembler instruction. Only one blank common
area is generated; the data it contains is available both to the FORTRAN
program containing the blank COMMON statement and to the assembler lan
guage program containing the COM statement.

In the assembler language program, you can specify the following linkage:

L ll,=A(name)
USING name,11

COM

name DS OF

Using Named Common Data in Assembler Programs: To refer to named
common areas, your assembler program should use an external A-type address
constant:

EXTRN name-of-coiranon-area

comaddr DC A(name-of-common-area)

324 VS FORTRAN Version 2 Programming Guide

Requesting Compilation from an Assembler Program
VS FORTRAN Version 2 can be invoked through the use of the CALL, ATTACH,
or LINK macro instructions that are used as part of an assembler language
program.

The program must supply to the FORTRAN compiler;

^ The information usually specified in the PARM parameter of the EXEC state
ment (under MVS) or the compiler invocation (under VM).

The ddnames of the MVS data sets or VM files to be used during proc
essing by the FORTRAN compiler. These can be any valid ddnames.

Name Operation Operand

[name] LINK £.P=compi ler-name,
PARAM={optionaddr[,ddnameaddr]),

ATTACH VL=1

[name] CALL F0RTVS2, (aptionaddr[yddnameaddr]),
VL

compiler-name
specifies the program name of the compiler to be invoked. F0RTVS2 is
specified for VS FORTRAN Version 2.

optionaddr

specifies the address of a variable-length list containing information usually
specified in the PARM parameter.

The option list must begin on a halfword boundary. The two high-order
bytes contain a count of the number of bytes in the remainder of the list. If
there are no parameters, the count must be zero. The option list is free
form, with each field separated by a comma. No blanks should appear in
the list.

ddnameaddr

specifies an alternate list of ddnames to be used to refer to data sets used
during FORTRAN compiler processing. This address is supplied by the
invoking program. If standard ddnames are used, this operand may be
omitted.

The ddname list must begin on a halfword boundary. The two high-order
bytes contain a count of the number of bytes in the remainder of the list.
Each name of fewer than eight bytes must be left-justified and padded with
blanks. If an alternate ddname is omitted from the list, the standard name
is assumed. If the name is omitted from within the list, the 8-byte entry
must contain binary zeros. Names can be completely omitted only from the
end of the list.

Appendix A. Assembler Language Considerations 325

The sequence of the 8-byte entries in the ddname list is as follows:

Entry Alternate Name

1 SYSLIN (under WVS), TEXT (under VM)
2 00000000

3 00000000

4 00000000

5 SYSIN (under MVS), FORTRAN (under VM)
6 SYSPRINT (undr MVS), LISTING (under VM)
7 SYSPUNCH

8 00000000

9 00000000

10 SYSTERM

11 SYSLIB

VL = 1 or VL

specifies that the sign bit of the last fullword of the address parameter list is
to be set to 1.

Link Macro Instruction Example:

LINK CSECT

USING M2
STM 14,12,12(13)
LR 12,15
ST 13,SAVE+4
LA 15,SAVE
ST 15,8(,13)
LR 13,15

IMVOKE THE COMPILER

OPEN (COMPILER)
LINK EP=F0RTVS2, PARAII= (OPTIOMS,DDIIAHES), VL= 1, DCB=COMPILER
CLOSE (COMPILER)
L 13,4(,13)
LH 14,12,12(13)
SR 15,15

BR 14

* CONSTANTS AND SAVE AREA
*

SAVE DC IBF'O'

OPTIONS DC H'24',C'XREF,LIST,G0STHT,NAP,0BJ'
DDNAMES DC H'88'.CLB'MYSYSL',3XL8'0000000000000000'

DC CL8•MYSYSI',CL8'MYSYSPRT',CL8'MYSYSPU'
DC 2XL8'0000000000000000'

DC CLB'MYSYST'

DC CLB'MYSYSLIB'

COMPILER DCB DONAIIE=VSFORT,DSORG=PO,IIACRF=R
END

Retrieving Arguments in an Assembler Program
Retrieving Variables from the Argument List: The argument list contains the
address of a variable. The assembler program can retrieve the variable, using
the following instructions:

L

MVC

Q,x(0,l)
LOC(y),z(Q)

326 VS FORTRAN Version 2 Programming Guide

where:

Q is any general register except 0. 1, 13. or the program's base reg
ister.

LOC is the location that will contain the variable.

X is the displacement ofthe address ofthe variable from the start of
the argument list.

y is the length of the variable itself.

2 is either 0or the correct displacement for an array element. (Note
that z must lie in the range 10,4095]; ifthe displacement of the
desired array element lies outside this range, you must take addi
tional steps to calculate the displacement at run time.)

For example, if a REAL*8 variable is the second item in the argument list, you
could code the following assembler instructions to retrieve it:

L 5,4(0.1)
MVC LOC(8),0(5)

Retrieving Arrays and Array Elements from theArgument List: The address of
the first element of an array is placed in the argument list. If you must retrieve
any other elements in the array, you may need to specify the displacement for
that element from the beginning ofthe array in a separate instruction:

L Q,x(l)
L R.disp

L S.0(Q.R)
ST S.LOC

where:

Q. R. S Any general registers except 0. 1. 13. or the program s base register
X The displacement of the address of the variable from the start ofthe

argument list

disp The displacement of the element within the array
LOC The location that will contain the array element

Retrieving Character Variables from an Argument List: The argument list con
tains the address of the character variable and the address of the length of the
character variable. The assembler program can retrieve the variable using the
following instructions:

L Q,x(0,l) (Get data address)
LR S,1
S S,=F'4'
L S,0(0,S)
AR S,1
L R,x(0,S) (Get character length pointer)
L R,O(0,R) (Get character length)

where:

Q. R, S Any general registers except 0. 1. 13. or the program s base register
X The displacement ofthe address of the variable from the start ofthe

argument list

Appendix A. Assemlsler Language Considerations 327

After the above Instructions run, Q will contain the address ofthe character var
iable and R will contain the length of the character variable.

Returning a Function Value from an Assembier Program: The FUNCTION name
must be declared with a type that corresponds to the type of the value returned
(for example. INTEGER TIMER). The method of returning the value depends on
whether the function is a CHARACTER function or a noncharacter function.

For noncharacter functions, the value is returned in one ofthe following regis
ters:

General Register 0
INTEGER or LOGICAL value

Floating-point Register 0
REAL {REAL*4) or DOUBLE PRECISION {REAL*8) value

Floating-point Registers 0,2
Extended-precision REAL (REAL*16), C0MPLEX*8, or C0MPLEX*16. For
COMPLEX values, the real part goes in Register 0 and the imaginary part in
Register 2.

Floating-point Registers 0,2,4,6
COMPLEX*32; the real part goes in Registers 0 and 2; the imaginary part
goes in Registers 4 and 6.

For character functions, the function value is returned in storage. Acharacter
function is always passed the character form of an argument list (as described
in "Passing Character Arguments" on page 322). The last argument in this list
provides the address and length of the storage area in which the function value
will be returned.

The assembler function can return a character value using the following
instructions (assuming it is at most 256 characters long):

(Get data address)L Q,x(0,l)
LR s,i
S S,=F'4'
L S,0(0,S)
AR s,i
L R,x(0,S)
L R,0(0,R)
BCTR R,0
EX R,MOVE

(Get character length pointer)
(Get character length)

MOVE MVC 0(0,Q),LOC

where:

Q. R. S Any general registers except 0 or 1

X The displacement of the last entry in the argument list

LOC The address of the character string to be returned

328 VS FORTRAN Version 2 Programming Guide

Following is an alternative solution to moving the character string (especially
when it is greater than 256 bytes):

L 14,x(0,l) (Receiving field)
(Receiving length)

L 14,x(0,l)
LR 15,1
S 15,=F'4'
L 15,0(0,15)
AR 15,1
L 15,x(0,15)
L 15,0(0,15)
LA 2, LOC
LR 3,15
MVCL 14,2

(Character string to move)
(Length same as receiving--see Note)

MVCL 14,2

where:

X The displacement of the last entry in the argument list

LOC The address of the character string to be returned

Note: If the length of the character string in the subprogram is less than the
receiving length, then, in place of the load register (LR 3,15) entry, use:

L 3,LCLLEN (Length of local character string)
ICM 3,X'8',BLANK (Inserts pad character)

BLANK DC C ' or X'40'

where:

LCLLEN a fullword containing the length of the local character string.

Returning to Alternative Return Points: When a statement number is an argu-
menl in a CALL to an assembler subprogram, the subprogram cannot access
the statement number argument.

To accomplish the same thing as the FORTRAN statement RETURN i (used in
FORTRAN subprograms to return to a statement other than that immediately
following the CALL), the assembler subprogram must place 4*1 in register 15
before returning to the calling program.

For example, when the statement:

CALL SUB(A,B,&10,&20)

is used to call an assembler subprogram, the following instructions would
cause the subprogram to return to the proper point in the calling program:

LA 15,4 (to return to 10)

BCR 15,14

LA 15,8 (to return to 20)

BCR 15,14

Appendix A. Assembler Language Considerations 329

Internal Representation of VS FORTRAN Version 2 Data
If you are using VS FORTRAN Version 2 data in your assembler language pro
grams, you should be aware ofthe formats VS FORTRAN Version 2 uses within
the computer.

For REAL and COMPLEX items in internal storage, a nonzero floating point
number is said to be normalized if the first hexadecimal digit of its fraction is
not zero. The normalized representation of a floating point zero has sign, char
acteristic, and fraction all equal to zero.

The following examples show how VS FORTRAN Version 2 data items appear in
internal storage.

Character Items In Internal Storage: Character items are treated internally as
one EBCDIC character for each character in the item.

Logical Items in Internal Storage: Logical items are treated internally as items
either 1 byte or 4 bytes in length. Theirvalue can be "true" or "false."

Their internal representation in hexadecimal notation is:

01

00

1 byte

00 00 00 01

00 00 00 00

-4 bytes-

330 VS FORTRAN Version 2 Programming Guide

"true"

"false"

"true"

"false"

Integer Items in Internal Storage: Integer items are treated internally as two's
complement binary fixed-point signed operands, either 2 bytes or 4 bytes in
length.

Their internal representation is:

INTEGER *2

-2 bytes-

INTEGER *4

-4 bytes-

S = the sign bit

Real Items in Internal Storage: The compiler converts real items into 4-byte,
8-byte, or 16-byte floating-point numbers.

Their internal representation is:

REAL *4

-4 bytes-

DOUBLE PRECISION (REAL *8)

-8 bytes:-

For REAL *4 and DOUBLE PRECISION items, the codes shown are:

8 = sign bit (bit 0)
C = characteristic, in bit positions 1 through 7
F = fraction, which occupies bit positions as follows:

REAL *4 positions 8 through 31
DOUBLE PRECISION positions 8 through 63

Appendix A. Assembler LanguageConsiderations 331

REAL *16 (Extended Precision)

64 72

•16 bytes

For Extended Precision Items, the codes are;

F =

sign bit (sign for the item in bits 0 and 64)
characteristic, in bit positions 1 through 7

and 65 through 71 (the value in bit positions 63 through 71
is 14 less than that in bit positions 1 through 7)
fraction, in bit positions 8 through 63, and 72 through 127

Complex Items In Internal Storage: The compiler converts complex items into a
pair of real numbers. The first number in the pair represents the real part; the
second number in the pair represents the imaginary part.

The internal representations of complex numbers are:

COMPLEX *8

-4 bytes-

(real)

(imag.)

For COMPLEX *8 items, the codes shown are:

S = sign bit (bit 0)
C = characteristic, in bit positions 1 through 7
F = fraction, which occupies bit positions 8 through 31

COMPLEX *16

-8 bytes-

(real)

(imag.)

For COMPLEX *16 items, the codes shown are:

S = sign bit (bit 0)
C = characteristic, in bit positions 1 through 7
F = fraction, which occupies bit positions 8 through 63

332 VS FORTRAN Version 2 Programming Guide

COMPLEX *32

64 72

•16 bytes

For COMPLEX *32 Items, the codes are:

F =

sign bit (sign for the item in bits 0 and 64)
characteristic, in bit positions 1 through 7
and 65 through 71 {the value in bit positions 63 through 71
is 14 less than that in bit positions 1 through 7)
fraction, in bit positions 8 through 63, and 72 through 127

Appendix A. Assembler Language Considerations 333

^ Appendix B. Object Module Records and Statement Table

SYM Record

The object module consists of five types of records, identified by the characters
ESD, TXT, RLD, SYM, or END in columns 2 through 4. The first position of each
record contains X'02': positions 73 through 80 contain the first 4 characters of
the program name followed by a 4-digit sequence number. The remainder of
the record contains program information.

This appendix describes the SYM record only. For information on the other
records, see Assembler H Version 2 Application Programming: Guide,
SC26-4036.

The statement table is also described.

Ifyou request it with the SYM compiler option, VS FORTRAN Version 2
produces SYM records containing symbolic information for products like TSO
TEST. SYM records are similar in form and content to those described in
Assembler H Version 2 Application Programming: Guide, SC26-4036.

SYM records are built for variables and arrays only. The locations of the vari
ables or arrays are either in a LOCAL area {to the module) or in a common
area. Note that if the common area is redefined from program unit to program
unit, then the SYM records for the common area vary to match the definition in
the program unit.

The format of the SYM records is as follows:

Columns Contents

1 X'02'

2-4 SYM

5-10 Blank

11-12 Number of bytes of text in variable or array field (columns 17 through
72)

13-16 Blank

17-72 Variable field (see below)

73-80 Deck ID and/or sequence number. The deck ID is the program name.
The name can be 1 to 8 characters long. If the name is fewer than 8
characters long or if there is no name, the remaining columns contain
a card sequence number.

Appendix B. Object Module Records and Statement Table 335

The variable field (columns 17 through 72) contains up to 20 bytes of text. The
contents of the fields within an individual entry are as follows;

1. Nondata-type SYM card

Type Displacement Name

XX 000000 yyyyyyy

1 byte 3 bytes 1-7 bytes

Type can identify a CSECT or a common area, and type codes used
include the length of the name.

XX values for CSECTs are:

10'

11'

12'

15'

16'

indicates

indicates

indicates

13' indicates

14' indicates

indicates

indicates

CSECT and a

CSECT and a

CSECT and a

CSECT and a

CSECT and a

CSECT and a

CSECT and a

name 1 byte long

name 2 bytes long

name 3 bytes long
name 4 bytes long

name 5 bytes long

name 6 bytes long

name 7 bytes long

yyyyyy 'S the name of the program (for example, MAIN, A, SUMM, FLEX,
and so on).

XX values for COMMON are:

X'30'

X'31'

X'32'

X'33'

X'34'

X'35'

X'36'

X'38'

indicates

indicates

indicates

indicates

indicates

indicates

indicates

indicates

COMMON

COMMON

COMMON

COMMON

COMMON

COMMON

COMMON

COMMON

and a name 1 byte long

and a name 2 bytes long

and a name 3 bytes long

and a name 4 bytes long

and a name 5 bytes long

and a name 6 bytes long

and a name 7 bytes long

and no name (blank COMMON)

yyyyyy 'S the name of the COMMON (for example, X, AAAA, YYYY,
FFFF, and so on).

2. Data-type SYM card

Type Displacement Name Variable Portion

XX wwwwvim yyyyyyy ZZZZ2ZZZ2ZZZ

1 byte 3 bytes 1-7 bytes 5-6 bytes

336 VS FORTRAN Version 2 Programming Guide

Type can be for a SCALAR or an ARRAY variable.

Type codes used include the length of the name and multiplicity.

XX values for scalars are:

X'80' indicates data, no multiplicity,
X'81' indicates data, no multiplicity,
X'82' indicates data, no multiplicity,
X'83' indicates data, no multiplicity,
X'84' indicates data, no mulliplicity,
X'85' indicates data, no multiplicity,
X'86' indicates data, no multiplicity,

and a 1-byte name

and a 2-byte name

and a 3 byte name

and a 4-byte name

and a 5-byte name

and a 6-byte name
and a 7-byte name

XX values for array variables are:

X'CO

X'C1

X'C2

X'C3

X'C4

X'C5

X'C6

ndicates data,

ndicates data,

ndicates data,

ndicates data,

ndicates data,

ndicates data,

ndicates data.

multiplicity,

multiplicity,

multiplicity,

multiplicity,

multiplicity,

multiplicity,

multiplicity.

and a name 1 byte long

and a name 2 bytes long

and a name 3 bytes long

and a name 4 bytes long

and a name 5 bytes long

and a name 6 bytes long

and a name 7 bytes long

wwwwww is the displacement of the variable or array into the module.

yyyyyy is the name of the variable or array {for example, X, Y, Z,
SUMM, FLEX, and so on).

Z2Z2ZZZ2ZZZZ is the variable portion, which contains the length of the
data and the multiplicity (1 for a scalar).

zzzzzzzzzzzz is the variable portion, which contains the length of the
data array element and the multiplicity (number of elements in the
array). There is no information concerning dimensionality.

zzzzzzzzzzzz is further divided as follows:

Data Type Length Multiplicity

bb

1 byte

cccc

1 or 2

bytes

dddddd

3 bytes

Appendix B. Object Module Records and Statement Table 337

The data type field may contain the following values;

bb = X'OO' which means CHARACTER

X'04' which means LOGICAL *1 (hexadecimal)

X'04' which means LOGICAL *4 (hexadecimal)

X'14' which means INTEGER *2 (halfword)
X'10' which means INTEGER *4 (word)

X'18' which means REAL *4 (E-type)

X'1C' which means REAL *8 (D-type)

X'38' which means REAL *16 (L-type) (extended precision)
X'18' which means COMPLEX *8 (E-type) (2 E-types)
X'lC which means COMPLEX *16 (D-type) (2 D-types)
X'38' which means COMPLEX *32 (L-type) (2 L-types)

The length value is actually the length code or the actual length minus
one. Character and logical items have lengths of 2 bytes. The length
field may contain the following values:

cccc = X'llll' which means CHARACTER with a length of llll + 1,
where 'llll' is the hexadecimal length

X'OOOO' which means LOGICAL *1 (hexadecimal)

X'0003' which means LOGICAL *4 (hexadecimal)

X'01'which means INTEGER *2 (halfword)

X'03' which means INTEGER *4 (word)

X'03' which means REAL *4 (E-type)

X'07' which means REAL *8 (D-type)

X'OF' which means REAL *16 (L-type) (extended precision)
X'03' which means COMPLEX *8 (E-type) (2 E-types)
X'07' which means COMPLEX *16 (D-type) (2 D-types) ^ '
X'OF' which means COMPLEX *32 (L-type) (2 L-types)

dddddd = the number of elements of an array (only valid for
an array).

3. Punched output format

The SYM record output is part of the text/object file. Each SYM record con
tains the information for one item. There is one segment of information per
record. For example, the information concerning the CSECT is on one
record. The information for one variable (scalar or array) is on a record.
All the information is tightly packed on each record. The format of the
punched record is similar to that provided by the Assembler (F or H) (see
general SYM record format above).

A sample hexadecimal representation of a nondata CSECT record is as
follows:

02E2E8D4404040404040000A4040404015000000C1C2C3C4C5C6

338 VS FORTRAN Version 2 Programming Guide

where:

02 = X'02'

E2E9D4 = SYM

Statement Table

404040404040 = blanks

OOOA = 10

40404040 = blanks

15 = CSECT (or FORTRAN program) with a 6-character name
000000 = displacement from beginning of the CSECT/FORTRAN
program

C1C2C3C4C5C6 = CSECT/program name 'ABCDEF'

Note: The normal record is 80 characters long. The rest is not shown
because it is blank, or sequence numbers.

A sample hexadecimal representation of a data variable record is as
follows:

02E2E8D4404040404040000A40404040850001 COD 1D2D3D4D5D61003000001

where:

02 = X'02'

E2E8D4 = SYM

404040404040 = blanks

OOOA = 10

40404040 = blanks

85 = scalar with a 6-character name

0001C0 = displacement from beginning of the CSECT/FORTRAN
program

D1D2D3D4D5D6 = JKLMNO, scalar variable name

10 = INTEGER *4

03 = length of 3 bytes
000001 = multiplicity of 1

The Statement Table (also known as the Program Code Table) contains infor
mation on the ISNs in the program unit. The Statement Table is pointed to by
the fifteenth word of the RIB (Program Information Block), and the PIB itself is
pointed to by the eighth word of the program unit's main entry code.

The Statement Table consists of a variable number of fields, each of which

range in length from 1 to 5 bytes. Each user-written executable statement will
always have at least one record to indicate the number of halfwords of code
generated. The entries in the Statement Table are generated in the order in
which the statements appear in memory. The individual fields for a statement,
however, may appear in any order.

ISN values are assumed to start with 1 and be incremented by 1 for each state
ment. When this is not true, as in the case of an intervening FORMAT state
ment, then one or more special fields are placed in the Statement Table to
indicate how many numbers are being skipped (not counting the normal skip of
one between statements), except when the count of skipped numbers is greater
than 64.

There is a special field to indicate the end of the Statement Table.

Appendix B. Object Module Records and Statement Table 339

The format of each field is as follows (bit locations are origin 0):

bit 0: is 0 if there is another field after this one for the statement: otherwise

this bit is 1. Always 1 if this field represents the ending entry for the current
statement or the end of the Statement Table.

bits 1 to 7: indicate the type of field. The possible values are:

OOOxxxx: indicates that this is a 1-byte field where bits 4 to 7 are the
count of skipped ISN values. More than one field of this type is required
to skip more than 15 ISNs. For example to indicate a skip of 20
numbers requires one field showing a skip of 15 numbers and a second
field showing a skip of 5 numbers.

OOlxxxx: indicates that this is a 2-byte field where bits 4 to 15 contain
the label of the statement. This type of field may be used only for state
ments with labels less than or equal to 4095.

OlOxxxx: indicates that this is a 3-byte field where bits 4 to 23 contain
the label of the statement. This type of field may be used for state
ments with labels greater than 4095.

Ollxxxx: indicates that this is a 1-byte field where bits 4 to 7 specify the
size of the generated code for the statement in halfwords. This type of
field may be used only for statements whose generated code is less
than or equal to 15 halfwords (30 bytes).

lOOxxxx: indicates that this is a 2-byte field where bits 4 to 15 specify
the size of the generated code for the statement in halfwords. This type
of field may be used only for statements whose generated code is less
than or equal to 4095 halfwords (8190 bytes).

lOlxxxx: indicates that this is a 5-byte field where bits 8 to 39 specify
the size of the generated code for the statement in halfwords. This type
of field may be used when more than 4095 halfwords are generated.

IIOxxxx: indicates that this is a 4-byte field where bits 4 to 31 are the
sequence number or ISN of the statement. This type of field may be
used when the count of skipped ISNs or sequence numbers is greater
than 64 or the numbers are out of sequence or for the END statement.

1110000 through 1111110: reserved.

1111111: indicates the end of the Statement Table.

340 VS FORTRAN Version 2 Programming Guide

Appendix C. Compatibility Considerations

VS FORTRAN Version 2 produces programs that utilize the IBM 3090 Vector
Facility. VS FORTRAN Version 1 programs can be run on the IBM 3090 hard
ware; however, they cannot utilize the Vector Facility feature of that system.
See Chapter 9, "Vectorizing Your Program" on page 227 for a description of
this feature.

Mathematical routines with improved precision and greater speed are incorpo
rated with VS FORTRAN Version 2. For compatibility of results of mathematical
computations between VS FORTRAN Version 1 and Version 2. you may want to
use the VS FORTRAN Version 2 copies of the standard mathematical routines
provided with the VS FORTRAN Version 1. The Version 1 service subroutines
displaced by the new routines are provided with Version 2 in the VSF2MATH
library and are called the Alternative Mathematical Library Routines. The rou
tines that were in the Alternative Mathematical library (VALTLIB) in VS
FORTRAN Version 1 are no longer available in VS FORTRAN Version 2.
Figure 79 shows which libraries contain the various scalar mathematical rou
tines for each version.

Version 1 Version 2

Routines Library Library

New scalar math routines — VSF2F0RT

Old standard scalar math routines VFORTLIB VSF2MATH

Old alternative math routines VALTLIB Not available

Figure 79. Libriiries Containing Mathematical Routines

See VS FORTRAN Version 2 Language and Library Reference, for a description
of the new mathematical routines.

VECTOR(REDUCTION) under Version 2 Release 3 has been enhanced to
improve performance. This change may alter the order in which operations are
performed and therefore may affect program results.

Callable routines to provide a return code, the current date, and the current
time were added to the VS FORTRAN-Version 2 library. They are new capabili
ties not available with earlier VS FORTRANs. See VS FORTRAN Version 2 Lan
guage and Library Reference for a description of these routines.

In VS FORTRAN Version 2, mixed case source input is allowed. The compiler
interprets it as upper case. Wherever character data is entered that is inter
preted by the compiler or library, its value is recognized independent of case.
As an extension of the FORTRAN-77 standard. FIPS flagging is provided. See
VS FORTRAN Version 2 Language and Library Reference for more information.

VS FORTRAN Version 2 relieves size constraints on address constants for refer
enced labels, computed GO TO statements, and CALL arguments. This allows
larger programs to be compiled, specifically at OPT{0). See VS FORTRAN
Version 2 Language and Library Reference, which describes the limits of these
compiler entities.

Appendix C. Compatibility Considerations 341

The Multitasking Facility (MTF) was provided with VS FORTRAN Version 1.4.1
SPE, and support for it is carried forward with VS FORTRAN Version 2. MTF
allows users to get improved run-times on multiprocessors and attached-
processor systems. See Appendix E, "The Multitasking Facility (MTF)" on
page 349 for a description of this feature.

VS FORTRAN Version 2 specifies that an ©PROCESS statement must be placed
before all other source statements in a compilation unit. Flexibility is provided
by allowing an ©PROCESS to be preceded by comment lines, EJECT state
ments, or certain INCLUDE statements. Release 3 of VS FORTRAN Version 2

restricts some of this flexibility by ignoring the following compiler options, and
providing a level 4 message, if they appear in an ©PROCESS statement pre
ceded by comments, EJECT statements, or INCLUDE statements:

EXCLAM

- DBCS

SAA

- FIPS

LANGLVL

• CHARLEN

- NAME

VECTOR

FREE|FIXED
DIRECTIVE

Previous to VS FORTRAN Version 2 Release 3, defaults for RECFM, LRECL, and
BLKSIZE could not be modified at installation time. If you previously relied on
defaults for these options and your site modified the defaults when installing
Release 3, your programs may run incorrectly. For such programs, be sure to
code these options on the file definition or CALL FILEINF statement in order to
avoid problems.

In the case of LRECL for files with record format FB. FBA, VB, or VBA, the
IBM-supplied default for formatted I/O differs from previous releases if the block
size is greater than 800 for MVS or 80 for VM. In previous releases, the LRECL
value for such data sets was always made equal to the block size; in Release 3,
the default for LRECL is 800 for MVS and 80 for VM. For more information on

installation defaults, see Appendix H. "Considerations for Specifying RECFM,
LRECL, and BLKSIZE" on page 445.

VS FORTRAN Versions 1 and 2, and Earlier IBM FORTRANs
Differences

In VS FORTRAN Versions 1 and 2, logical variables may contain only logical
values and should appear only in logical expressions. Logical variables may
not contain numeric or character values and may not appear in arithmetic
expressions (and an error or serious error message is issued). This is true for
both LANGLVL (66) and LANGLVL (77). Under LANGLVL (66) only, logical vari
ables may appear in relational expressions (and a warning message is issued).
This nonstandard usage of logical variables was permitted in FORTRAN H
Extended and FORTRAN H.

Some of the Extended Language features permitted with the use of the XL
option from FORTRAN H and FORTRAN H Extended are similar to functions in

342 VS FORTRAN Version 2 Programming Guide

VS FORTRAN Versions 1 and 2. For a description of the bit functions, see VS
FORTRAN Version 2 Language and Library Reference.

In VS FORTRAN Versions 1 and 2, the DEBUG statement and the debug packets
precede the program source statements. The new END DEBUG statement
delimits the debug-related source from the program source. For FORTRAN G1,
the DEBUG statement and the debug packets are placed at the end of the
source program.

In VS FORTRAN Versions 1 and 2, evaluation of arithmetic expressions
involving constants is performed at compile time (including those containing
mixed-mode constants).

In VS FORTRAN Versions 1 and 2. the number of arguments is checked in state

ment function references. The mode of arguments is checked for statement
function references under LANGLVL(77) option only.

In VS FORTRAN Versions 1 and 2, the form of the compiler option to name a
program is NAME(nam) under LANGLVL(66).

Arguments are received only by location (or name) in LANGLVL(77). The
default in LANGLVL(66) and for FORTRAN H and FORTRAN H Extended is
receipt by value with the facility, to allow receipt by name by the use of slashes
around the dummy argument in the SUBROUTINE, FUNCTION, or ENTRY state
ments.

The appearance of an intrinsic function name in a conflicting type statement
has no effect in LANGLVL(77). but is considered user-supplied under
LANGLVL(66) and FORTRAN H and FORTRAN H Extended.

The extended range of a DO loop is not part of the VS FORTRAN Versions 1 and
2 language. It is a valid construction under LANGLVL(66). Under LANGLVL(77),
branches into the range of a DO loop from outside the range of the loop are
diagnosed by the compiler with a warning message issued at OPT(2), 0PT(3), or

I VECTOR.

In VS FORTRAN Versions 1 and 2, when a variable has been initialized with a
DATA statement, that variable cannot appear in a subsequent explicit type
statement and a level 12 diagnostic is issued. FORTRAN H and FORTRAN H
Extended allow typing following the data initialization. This is nonstandard
usage. FORTRAN G1 issues a level 8 error diagnostic.

The record designator for direct-access I/O is required to be an integer
expression for both LANGLVL(66) and LANGLVL(77). If it is not, VS FORTRAN
Versions 1 or 2 diagnoses with a level 12 error message. FORTRAN H and
FORTRAN H Extended permit this designator to be of real type. FORTRAN G1
diagnoses with a level 8 error message.

In VS FORTRAN Versions 1 and 2, all calculations for arrays with adjustable
dimensions are performed by a service subroutine called at all entry points that
specify such arrays. This method was required for LANGLVL(77) because it
permits redefinition of the parameters with adjustable dimensions in the sub-
program but requires that the array properties do not change from those
existing at the entry point.

Appendix C. Compatibility Considerations 343

In previous implementations, the output form for a real datum whose value was
exactly zero was shown as 0.0 (or .0 if the field width specified was not wide
enough to contain the leading zero). The VS FORTRAN Versions 1 and 2
libraries follow the ANSI standard exactly and, for a format edit descriptor of
kPEw.d or kPGw.d (which is, for this data value, equivalent to kPEw.d), produces
the form required for this edit descriptor. For example, for either kPG13.6 or
kPE13.6 edit descriptors, VS FORTRAN Versions 1 and 2 produce the form:

0.0O0000E+0O

(The scale factor has no effect for this data value.)

In previous implementations, the interpretation of the effect of a positive scale
factor did not follow the ANSI standard. For a scale factor, k, where 0 < k <

d +2 (d is the number of digits specified in the E, D, or Q edit formats), the
output field contains exactly k significant digits to the left of the decimal point
and d-k + 1 significant digits to the right of the decimal point. In previous
implementations, for k>0, only d-k significant digits appeared to the right of
the decimal point. For example, for a datum value of .0000137 and a format
descriptor of 2PE13.6, VS FORTRAN Versions 1 and 2 produce:

13.70000E-06

The previous implementation produces:

13.7000E-06

FORTRAN G1, FORTRAN H Extended, and VS FORTRAN Versions 1 and 2 use

slightly different techniques to raise integer and real variables to integer con
stant powers:

FORTRAN G1 generates inline code for integer constant powers up through
6 and calls the service subroutine for all values greater than 6.

FORTRAN H Extended generates inline code for all integer constant powers
except when the base is an INTEGER*2 variable, in which case the service
subroutine is used.

VS FORTRAN Versions 1 and 2 generate code inline for all cases.

These differences in implementation yield the same results provided the values
produced are valid. For example, the result of raising an INTEGER*2 variable
to a constant power must not exceed the value that can be contained in an

INTEGER*2 entity.

The VS FORTRAN Version 2 compiler uses the OS FORTRAN H Extended archi
tecture for rounding infinite binary expansions. The OS FORTRAN G1 compiler
also rounds, but the DOS FORTRAN F compiler truncates. If you recompile pro
grams originally written for the DOS FORTRAN F compiler, you may see dif
ferent results from when you run the programs.

Passing Character Arguments
In releases prior to Release 3 of VS FORTRAN Version 1 for LANGLVL(77), char
acter arguments are passed to a subprogram with both a pointer to the char
acter string and a pointer to the length of the character string. This is required
because the receiving program may have declared the dummy character argu
ments to have inherited length (that is, the length of the dummy argument is the

344 VS FORTRAN Version 2 Programming Guide

length of the actual argument). The parameter list is therefore longer than for
LANGLVL{66), because every character argument generates two items in the
parameter list. For LANGLVL(66):

»- Literal constants passed as arguments generate only one item in the
parameter list.

Hollerith constants may be passed as subroutine or function arguments.

In LANGLVL(77), a level 8 message is received if Hollerith constants are passed
as arguments.

In both languages, only one item is generated in the parameter list for Hollerith
arguments.

Every program that had been compiled with versions of VS FORTRAN Version 1,
prior to Release 3, and that either references or defines a user subprogram
which has character-type arguments or is itself of character type, must be
recompiled with VS FORTRAN Version 1, Release 3 or later, or with VS
FORTRAN Version 2.

The reason for this is a change in the construction of parameter lists. The new
construction provides a means of passing arguments to functions and subrou
tines in such a manner that the information needed for character-type argu
ments is "transparent"; that is, the parameter list can be referenced without
any regard to the character-type argument information.

The method is to provide a double parameter list for all argument lists that
contain any character-type argument, or for any reference to a character-type
function. The primary list consists of pointers to the actual arguments; the sec
ondary list consists of pointers to the lengths of the actual arguments. The
high-order bit in the last argument position of each part of the parameter list
will be set on. If there are no character-type arguments, or if the function being
referenced is not character-type, only a primary list is passed.

The doubling of all parameter lists, except for intrinsic functions that do not
involve character arguments, and for implicitly invoked function references, not
only implies that the parameter lists themselves are different, but that the pro
logues of FORTRAN subprograms are different in order to process these
changed parameter lists. Therefore, if any FORTRAN program compiled prior
to VS FORTRAN Version 1, Release 3, and that references subprograms with
character-type arguments (or is a character-type function itself), is to be used
with a FORTRAN program that is compiled with VS FORTRAN Version 1,
Release 3 or later, or with Version 2, then the old program must also be recom
piled with VS FORTRAN Version 1, Release 3 or later, or with VS FORTRAN
Version 2.

Appendix C. Compatibility Considerations 345

Appendix D. Internal Limits in VS FORTRAN Version 2

The internal limits of VS FORTRAN Version 2 are given in Figure 80.

Language Item Limit

Levels of nested DO loops and implied DO
loops

25

Expression Evaluation The maximum depth of the push-down stack for
expression evaluation is 660. This means that,
for any given expression, the maximum numtrer
of operator tokens that can be considered
before any intermediate text can be put out is
660. For example, if an expression starts with
660 left parentheses before any right paren
theses, this expression exceeds the push-down
stack limit.

Levels of nested statement function references 50

Statement function arguments in a nested refer
ence

50

Arguments in a statement function definition 20

Levels of nested INCLUDE directives 16

Levels of nested block IF statements: that is,

the number of IF... THEN, ELSE, and ELSEIF...
THEN statements occurring before the occur
rence of an ENDIF.

125

Length of character constants in a FORMAT
statement

255 characters (255 bytes)

Length of character constants in a PAUSE or
STOP statement

72 characters (72 bytes)

Length of Hollerith constants 255 characters (255 bytes)

Number of ICA file names 40

Referenced variables in a program unit 2000

Nested parentheses groups in a format 51

Statement labels The limit is 2000 user source labels and

compiler-generated labels. However, if table
overflow occurs at optimization level 2 or 3, you
may be able to alleviate the problem by
removing all unreferenced user labels.

DISPLAY statements in a program unit Unlimited; however, only 100 unique namelist
names will be available. After the 100th name

(NM.L99), the compiler will recycle names
starting with NM.LOO, but will display the
desired items in the display list.

Number of times a format code can be repeated 255

Figure 80. Internal Limits in VS FORTRAN Version 2

Appendix D. Internal Limits in VS FORTRAN Version 2 347

Appendix E. The Multitasking Facility (MTF)

Introduction to MTF

What MTF Is

What MTF Does

MTF is a VS FORTRAN Version 2 facility that can be used by computationally-
intensive application programs to improve turnaround time on tightly-coupled
System/370 multiprocessor (MP) and attached-processor (AP) configurations
(for example, the 3090-200 or 3090-400). When a program uses MTF on such a
system, the elapsed time required to run the program can be reduced.

MTF is easy to use and requires very little knowledge of the MVS multitasking
capabilities upon which it depends. From the programmer's perspective, MTF
is simply four VS FORTRAN Version 2-supplied subroutines, and a subparam-
eter on the EXEC statement. Because of this simplicity, it is easy to introduce
MTF to existing applications and code new MTF applications to gain the benefits
of multitasking.

MTF takes advantage of the multitasking capabilities of the MVS and
MVS/Extended Architecture (MVS/XA) operating systems to allow a single VS
FORTRAN Version 2 application program to use more than one processor of a
multiprocessing configuration simultaneously. (MTF provides multitasking only
on the MVS or MVS/XA operating systems.) MVS operating systems organize
all work into units called tasks. These tasks are used by the operating system
to assign work to the processors of the multiprocessor configuration.

MTF's facilities allow a single VS FORTRAN Version 2 application to be organ
ized so it can be run in a "main task" and in one or more "subtasks." As a
result of this organization, the system can schedule these individual tasks to
run simultaneously. This can significantly reduce the elapsed time needed to
run the program.

When a VS FORTRAN Version 2 program is organized in this manner, the main
task runs the part of the program that controls the overall processing. This part
is referred to as the main task program throughout this manual.

The subtasks run the portions of the program that can run independently of the
main task program and of each other. These portions of the program are
referred to as parallel subroutines. The functions provided by MTF allow the
main task program to schedule and all the parallel subroutines to run independ
ently.

The parallel subroutines are coded the same as normal FORTRAN subroutines,
with the exception of a few rules discussed under "Designing and Coding Appli
cations for MTF" on page 358. They can perform I/O and can share large
amounts of data with the main task program by means of dynamic common
blocks.

Appendix E. The Multitasking Facility (MTF) 349

Initialize

Schedule

Synchronize

MTF can be thought of as three functions that do the following:

Initialize the MTF environment

Schedule parallel subroutines to run

Synchronize their completion

The VS FORTRAN Version 2 Library creates the MTF environment required to
run the separate parts of a program in parallel. This initialization occurs when
the keyword AUTOTASK is specified in the PARM parameter of the EXEC state
ment used to run the program. The AUTOTASK keyword has two subparame-
ters associated with it. The first subparameter is the name of a load module
that contains the program's parallel subroutines. The second subparameter is
the number of subtasks that should be created for the program. The
AUTOTASK keyword is specified as:

AUTOTASK(1oadmodname,n)

The main task program schedules a parallel subroutine to run by calling the
MTF subroutine DSPTCH.

CALL DSPTCH(subname [,argl[,arg2]...])

subname is a character variable or literal that specifies the name of the parallel
subroutine to be scheduled. The parallel subroutine is assigned to a subtask
and is run in parallel with the main task program, argi, arg2, ... are arguments
passed to the parallel subroutine.

subname can be 8 characters long. If subname is a FORTRAN subprogram or
has more than 8 characters, you must provide the 7-character name external
name created during compilation. (The external name is formed by concat
enating the first three characters and last four characters.) This name appears
on the External Symbol Summary produced by the compiler. See VS FORTRAN
Version 2 Language and Library Reference for examples.

The main task program can schedule multiple instances of a parallel subroutine
for parallel processing by repeating the call to DSPTCH using the same parallel
subroutine name, but passing different arguments with each call. Alternatively,
it can schedule several different parallel subroutines.

A program can determine the number of subtasks specified with the AUTOTASK
keyword by calling the MTF subroutine NTASKS.

CALL NTASKS(n)

n is an integer*4 variable in which the number of subtasks is returned.

The main task program synchronizes its own processing with the completion of
the parallel subroutines by calling the MTF subroutine SYNCRO.

CALL SYNCRO

SYNCRO causes the main task program to wait until all of the currently-
scheduled parallel subroutines finish running.

350 VS FORTRAN Version 2 Programming Guide

The Concept of Computational Independence
To successfully use multitasking, the parallel subroutines must have computa
tional independence. This means that no data modified by either the main task
program or a parallel subroutine is examined or modified by a parallel subrou
tine that might be running simultaneously.

In the figure below, you see a graphic example of some hypothetical data in an
array subscripted by I, J, and K. Each of the three divisions of the box repres
ents a section of the array that could be operated on independently of the other
sections. The same parallel subroutine could be scheduled three times, with
each instance of the subroutine processing one of the three sections of the
array.

Your application may not have computational independence along the same
subscript axis of K, as in this picture. The divisions might have been along one
of the other subscript axes, I or J. Also, the computational independence in
your application may not fall into neat, box-like divisions.

It is also possible to have computational independence that is not based on
sections of the same array, but rather on separate arrays (perhaps with com
pletely different types of data), the values of which do not depend on each
other. In this case, separate parallel subroutines could be scheduled, with each
subroutine processing its own unique data.

Computational independence also applies to input/output files. One parallel
subroutine should not use a file while another is updating it. However, different
subroutines can successfully read the same file.

Appendix E. The Multitasking Facility (MTF) 351

Running a VS FORTRAN Version 2 Program without MTF
The following diagrams illustrate the way a FORTRAN program runs without
multitasking. The program and its subroutines must run in a strictly sequential
manner, routine following routine, using one processor at a time. Conse
quently, your program takes more elapsed time to complete than it would if it
could use several processors at the same time.

In the following example, without multitasking, your FORTRAN program and all
its subroutines can only use one processor. Processor 1...

Processor 1
n

Your FORTRAN

program

Subroutine SUBA

Subroutine SUBB

Subroutine SUBN

Processor 2

.or the other processor, Processor 2.

Processor 1 Processor 2
•

Your FORTRAN

program

Subroutine SUBA

Subroutine SUBB

...

Subroutine SUBN

While running, your program may be switched back and forth between the
processors, but it can only run on one processor at a time.

352 VS FORTRAN Version 2 Programming Guide

Running a VS FORTRAN Version 2 Program with MTF
To illustrate the concept of multitasking, this section shows three examples of
running a VS FORTRAN Version 2 program with MTF. These examples show
programs using:

- One parallel subroutine

Two different subroutines

>• Two or more instances of the same subroutine

Each example provides illustrations of how the processors are used and how
the program is organized to accomplish the particular use of the processors.

Running with Only One Parallel Subroutine
If your FORTRAN program uses MTF, the main task program and a computationally-independent par
allel subroutine can run concurrently.

Processor Use

Processor 1

FORTRAN main

program

Subroutine SUBB

Subroutine SUBN

Processor 2

Subroutine SUBA

Parallel Subroutine

Main Task Program

In the drawing to the left, only subroutine SUBA has computations that can be
done independently of the main task program, which includes the FORTRAN
main program plus its subroutines.

With the appropriate MTF request, the parallel subroutine, SUBA, is scheduled
to run in a subtask.

The arrows to Processor 1 and Processor 2 are for illustration only. The main
task program could have run on Processor 2 and the parallel subroutine, SUBA,
on Processor T, in fact, while they run, they may be switched among the
processors.

Appendix E. The Multitasking Facility (MTF) 353

Sample Program

AUTOTASK(lmod,l)

CALL DSPTCH

(•SUBA'.arglist)

CALL SUBB

CALL SUBN

CALL SYNCRO

Subroutine SUBB

Subroutine SUBN

Main Task Program

Subroutine SUBA

Parallel Subroutines

What the MTF functions do;

Q The AUTOTASK keyword, in the PARM parameter of the EXEC state
ment which runs the job, specifies one subtask.

Q DSPTCH schedules the parallel subroutine, SUBA, to run. SUBA is
computationally independent of the main task.

Q SYNCRO makes the main task program wait until SUBA finishes before
the main task program continues.

A few lines of JCL and two calls to MTF subroutines accomplish this.

354 VS FORTRAN Version 2 Programming Guide

Running with Two Different Parallel Subroutines
If your FORTRAN program uses MTF, the main task program and several different computationally-
independent parallel subroutines can run concurrently.

Processor Use

Processor 1

FORTRAN

mai n

program

Processor 2

Subroutine

SUBA

Processor 3

Subroutine

SUBC

Parallel Subroutines

Subroutine

SUBB

Main Task Program

In the drawing to the left, subroutines SUBA and SUBC are independent of each
other and of the main task program.

As with "Running with Only One Parallel Subroutine" on page 353, the arrows
to Processors 1, 2, and 3 are for illustration only. The main task program and
the parallel subroutines could run on any of the processors.

Appendix E. The Multitasking Facility (MTF) 355

Sample Program

AUT0TASK(lmod,2)

CALL DSPTCH

('SUBA',arglistl)

CALL DSPTCH

('SUBC',arglist2)

CALL SUBB

CALL SYNCRO

Subroutine SUBB

B

B

B

Subroutine SUBA

Subroutine SUBC

Parallel Subroutines

Main Task Program

What the MTF functions do:

The logic is similar to that for only one parallel subroutine and can be extended
to as many parallel subroutines as necessary to complete the logic of the
program.

Q The AUTOTASK keyword in the PARM parameter of the EXEC state
ment which runs the job specifies two subtasks.

Q Each call to DSPTCH schedules one of the parallel subroutines,
passing different data to each for processing. SUBA and SUBC are
computationally-independent parallel subroutines.

Q SYNCRO makes the main task program wait until both SUBA and
SUBC finish before the main task program continues its processing.

356 VS FORTRAN Version 2 Programming Guide

Running with Multiple Instances of the Same Parallel Subroutine
If your FORTRAN program uses MTF, the main task program and multiple instances of the same par
allel subroutine can run concurrently.

Processor Use

Sample Program

Processor 1

FORTRAN

main

program

Processor 2

Subroutine

SUBA

Processor 3

Subroutine

SUBA

Parallel Subroutines

Subroutine

SUBB

Main Task Program

In the drawing to the left, parallel subroutine SUBA has data you can divide, so
two instances of SUBA run independently of the main task program and of each
other.

AUT0TASK(lmod,2)

CALL DSPTCH

('SUBA',arglistl)

CALL DSPTCH

('SUBA',arglist2)

CALL SUBB

CALL SYNCRO

Subroutine SUBB

Main Task Program

Subroutine SUBA

Subroutine SUBA

Parallel Subroutines

B

Appendix E. The Multitasking Facility (MTF) 357

What the MTF functions do:

D The AUTOTASK keyword in the PARM parameterof the EXEC statement
which runs the job specifies two subtasks.

Q Each call to DSPTCH schedules one instance of the parallel subroutine
to run and supplies separate data to be processed by that instance of
SUBA. The data to be processed by each instance of the parallel sub
routine could be two different sections of the same array. Both
instances of SUBA in the loop are computationally independent of the
main task program and each other, since each instance of SUBA proc
esses different data.

Q SYNCRO makes the main task program wait until all instances of SUBA
finish before the main task program continues.

Designing and Coding Applications for MTF
The following steps may be used when preparing a VS FORTRAN Version 2
application to work with MTF:

1. Identify Computationally-Independent Code

2. Create Parallel Subroutines

3. Insert Calls to Parallel Subroutines

New programs can be designed to use MTF, and existing programs can be
reconstructed.

Step 1: Identify Computationally-Independent Code
The first step in adapting an application program for MTF is to identify groups of
computations that can be performed in parallel. In order to produce correct
results, the computations that are done in parallel must be computationally
independent. Computational independence is explained under "The Concept of
Computational Independence" on page 351.

Step 2: Create Parallel Subroutines
After the segments of code that are computationally independent are identified,
they are separated from the main task program and placed in parallel subrou
tines. A parallel subroutine is coded as a normal FORTRAN subroutine that
follows several rules required for proper operation with MTF. In addition to
data independence, the rules are:

Calling Other Subroutines

A parallel subroutine may actually be coded as a series of subroutines
which call one another. All of these subroutines operate in the parallel
subroutine's subtask environment and must follow the rules of a parallel
subroutine. However, a subroutine that is called within this environment
can use alternate return specifiers.

A parallel subroutine cannot call the MTF subroutines NTASKS, DSPTCH,
SYNCRO, and SHRCOM. Such calls can only be used in the main task
program.

When a parallel subroutine receives control, the program mask, including
the exponent underflow mask, is set to the value that was in effect in the

358 VS FORTRAN Version 2 Programming Guide

main task program at the time DSPTCH was called to schedule the parallel
subroutine. A parallel subroutine may change this setting by calling the
subroutine XUFLOW; however, the change is effective only for the current
instance of the parallel subroutine.

Passing Data

A parallel subroutine Is always Invoked In Its last-used state. If, for
example, a parallel subroutine has initialized a variable with a DATA state
ment, then the variable has that value the first time that copy of the parallel
subroutine is used. Should the value be modified, the modification is avail
able the next time that copy of the parallel subroutine is run. You cannot,
however, control which copy of a parallel subroutine is used when the par
allel subroutine is scheduled. Therefore, your parallel subroutine must not
depend upon residual values from previous uses of a copy of itself.

Data can be passed between the main task program and parallel subrou
tines, and between parallel subroutines, only by means of shared dynamic
common blocks or argument lists, or common files on disk.

•• The dummy argument list of a parallel subroutine cannot contain an alter
nate return specifier (asterisk).

If a parallel subroutine is to use a shared copy of a dynamic common block,
the main task program must designate that common block as shareable
before the subroutine is scheduled. The main task program designates a
dynamic common block as shareable by calling the MTF subroutine
SHRCOM. For information on the SHRCOM subroutine, see VS FORTRAN
Version 2 Language and Library Reference.

A dynamic common block that is shared among the main task program and
the parallel subroutines may be the virtual storage window that corre
sponds to part of a data object. However, all of the Data-in-Virtual calls are
restricted to the main task program.

If a parallel subroutine refers to a dynamic common block that has not been
designated shareable or to a static common block, a copy of the common
block is acquired for the exclusive use of the subroutine and is made avail
able to all program units within the subroutine. The common block cannot
be shared with the main task program or other parallel subroutines.

If the main task program designates as shareable a dynamic common block
that has already been acquired for the exclusive use of a parallel subrou
tine. an error is detected.

Input/Output

*' For unnamed files, the only VS FORTRAN I/O statements allowed in a par
allel subroutine are:

- INQUIRE

— PRINT and WRITE directed to the error message unit (or directed to the
standard output unit for WRITE and PRINT statements if it is different
from the error message unit at your site). The IBM-supplied default for
this unit is 6.

For named files, all VS FORTRAN I/O statements are allowed. Each parallel
subroutine processes the file as if it had complete control over the file;
therefore, one subroutine should not use a file while another is updating it.

Appendix E. The Multitasking Facility (MTF) 359

However, different subroutines can successfully read the same file. The
ACTION specifier on the OPEN statement may be used to indicate whether
a flle is to be updated.

A named file must be connected within each subroutine that uses it. The
connection does not remain after the subroutine finishes running— when a
subroutine finishes running, any named files that remain connected are
automatically disconnected.

All forms of the INQUIRE statement are allowed in parallel subroutines. The
INQUIRE statement provides information about the unit or file only as it is
seen within the main task program or parallel subroutine in which the
INQUIRE statement is processed. For example, if a file is connected in sub
routine A but not in subroutine B, an INQUIRE statement in subroutine B will
report that the file is not connected.

Asynchronous I/O is not allowed in parallel subroutines.

Step 3: Insert Calls to Parallel Subroutines
In the original program, replace each segment of code that was identified for
parallel computation with a call to DSPTCH which schedules the corresponding
parallel subroutine. If parallel operation is to be achieved by scheduling the
same subroutine multiple times with different data, the CALL statement may be
placed within a DO loop.

The following items must not be used as the actual arguments supplied to the
parallel subroutine using the CALL DSPTCH statement:

Expressions requiring evaluation; for example, A+ 2*B**3

Function names

*- Subroutine names

Alternate return specifiers; that is, the form *n, where n is a statement label

•- A DO variable if its value might be incremented before you call the
SYNCRO subroutine

After inserting calls to the parallel subroutines, insert a call to SYNCRO wher
ever the program requires that all previously-scheduled parallel subroutines
have finished running.

The next sections show examples of how to change existing FORTRAN pro
grams to use MTF following the steps just outlined.

360 VS FORTRAN Version 2 Programming Guide

An Example of Changing an Application to Use f\ATF

Identify Computationally-Independent Code
Figure 81 shows a computation that performs a number of operations on three
dimensional arrays of data. The processing within the loop structure may be
separated in the K dimension. This is because each iteration of the K loop can
be performed without requiring the results computed in any other iteration of
the K loop. The iterations are therefore computationally independent of each
other.

DO 10 K^l.KH
VS{1,1,K) = 0.0
DO 10 J=2,JH

DO 10 I°2,IH

VS(I,J,K)=VX(1,J,K)**2*VT(I,J,K)**2+VR(I,J,K)**2
P(I,J,K) =0.5*RHO(I,J,K)*VS(I-1,0-1,K)

10 CONTINUE

Figure 81. Sample Code to Be Changed to Use MTF

Create Parallel Subroutines

The segments of the program that have been identified to run as parallel sub
routines are then receded as new VS FORTRAN Version 2 subroutines. In this

case, there will be one parallel subroutine, multiple instances of which will be
scheduled. The parallel subroutine corresponding to the code in Figure 81 now
looks like Figure 82.

SUBROUTINE SUB (KLIM1,KLIM2,VX,VT,VS,VR,RK0,P,IM.JH)
REAL VX(50,100,50), VT(50,100,50), VR(50,100,50)
REAL RH0(50,100,50), P(50,100,50), VS(50,100,50)

DO 10 K>'KLIItl,KLIM2
VS(1,1,K)=0.0
DO 10 J=^2,JH

DO 10 Io2,IM

VS(I,J,K)=VX(I,J,K)**2+VT(I,J,K)**2*VR(I,J,K)**2
P(I,J,K) =0.5*RH0(I,J,K)*VS(I-1,J-1,K)

10 CONTINUE

RETURN

END

Figure 82. The Sample Code as a Parallel Subroutine

The dummy arguments KLIM1 and KLIM2 are used to specify the loop limits on
the K loop so that the subroutine SUB operates over any specified range of K
index values.

Appendix E. The Multitasking Facility (MTF) 361

Insert Calls to Parallel Subroutines
The segments ofthe program that have been removed to form parallel subrou-
tines are replaced by calls to them. For the sample code in Figure 81 on
page 361, an instance of subroutine SUB is scheduled for each subtask that will
be used at run time. In order to do this, the computations controlled by the K
index must be divided so that each instance of the subroutine SUB operates on
a different part of the original range of the K DO variable. See Figure 83 for an
example of how two instances of a parallel subroutine can be scheduled.

C SCHEDULE 2 IHSTAHCES OF PARALLEL SUBROUTlllE SUB
KH=KII/2
KHS=KH+1

CALL DSPTCHCSUBM,KH,VX,VT,VS,VR,RHO,P,ni,JII)
CALL OSPTCH('SUB•,KHS,KM,VX,VT,VS,VR,RHO,P,III,JH)

C WAIT FOR BOTH INSTAIICES OF SUB TO FIHISH RUIIHING
CALL SYNCRO

Figure 83. Scheduling Two Instances of a Parallel Subroutine

In the JCL that runs this program, code an AUTOTASK keyword (in the FARM
parameter of the EXEC statement) that specifies at least two subtasks.

If you want to make your program sensitive to the actual number of subtasks
that are available when the program runs, then you may call the subroutine
NTASKS to determine the number of subtasks and use that value to calculate
the lower and upper bounds of the K loop for each instance of the subroutine.
To do this, see Figure 84. (This figure shows only a portion of the program's
use of MTF.)

INTEGER*4 KLB(IO),KUB(10),NT
C DETERHIHE NUMBER OF SUBTASKS AVAILABLE

CALL NTASKS(NT)
NT = IIIN(NT,10)
IF(NT .LT. I) THEN

PRINT *,• HTF HOT INITIALIZED.'
PRINT SPECIFY AUTOTASK KEYWORD.'

STOP 20

ENDIF

C COMPUTE BOUNDS FOR EACH INSTANCE OF THE SUBROUTINE
KLB(1)=1
KUB(NT)=KM

DO 25 I=1,NT-1
KUB(I)=KM*I/NT

25 KLB(in)=KUB(I)M

END

Figure 84. Calculating Lower and Upper Bounds for Each Instance of the Subroutine

362 VS FORTRAN Version 2 Programming Guide

As an example, assume there are three subtasks available; that Is, NT is set to
3 by the NTASKS subroutine. Also assume the dimension of the K loop (that is,
KM) is 10000. The upper and lower bounds are then computed as follows in
Figure 85 on page 363.

3333 3334 6666 6667 KM=10000

KLB(1)=1
KUB(1)=3333

KLB(2)=3334
KUB(2)=6666

KLB(3)=6667
KUB(3)=10000

Figure 85. Lower and Upper Bounds for the K Loop

Based on the computation of the bounds in Figure 84 on page 362, the code
that schedules the variable number of instances, NT, of the parallel subroutine
SUB, and waits for them to finish running, would look like Figure 86.

C Run MT INSTANCES OF PARALLEL SUBROUTINE SUB

DO 10 1=1,NT
CALL DSPTCH('SUB *,KLB(I),KUB(I),VX,VT,VS,VR,RHO,P,IM,JH)

10 CONTINUE

C WAIT FOR ALL INSTANCES OF SUB TO FINISH RUNNING

CALL SYNCRO

Figure 86. Scheduling a Variable Number of Instances of a Parallel Subroutine

Computational independence must be maintained between the parallel subrou
tines and the main task program, as well as among all of the parallel subrou
tines. The requirements for computational independence between the main
task and the parallel subroutines would be violated if variables that are used as
parallel subroutine arguments were reassigned, either within the scheduling DO
loop or before SYNCRO is called by the main task program.

This violation of computational independence would have occurred in the above
example if, instead of placing the lower and upper bounds in array elements,
each bound were stored in a single variable and the calls to DSPTCH were
included in the same loop that computed the bounds. This would result in each
instance of the parallel subroutine using the same variables even though the
values were intended to be different for each instance of the parallel subrou
tine.

For the same reason, if the DO variable of the scheduling loop is needed in the
subroutine, then it must be placed in a separate storage location for each
instance of the subroutine. That value can be passed as an argument to the
subroutine in an array element, as shown in Figure 87 on page 364.

Appendix E. The Multitasking Facility (MTF) 363

C RUN NT INSTANCES OF PARALLEL SUBROUTINE XYZ

DO 10 1=1,NT
IX(I)=I
CALL DSPTCH('XYZMX(I),...)

10 CONTINUE

Figure 87. Passing the Value of the DO Variable to a Parallel Subroutine

Another Example of Changing an Application to use MTF
Not all application programs contain parallelism within the iterations of a DO
loop structure. The following example illustrates parallel computations that
appear as different segments of code in the original program. Also illustrated is
the use of shared dynamic common areas for passing data, and I/O operations
to named files in parallel subroutines.

Identify Computationally-Independent Code
Figure 88 on page 365 shows two nested loops that perform operations on two-
dimensional arrays of data. The maximum loop iteration values for both loops
are read from a file, and a record is written after each of the two loops is proc
essed to different files. The computation of each iteration of the loops requires
the results computed in the previous iteration. Therefore, they cannot be sepa-
rated and scheduled as multiple instances of the same parallel subroutine.
However the entire first nested loop is computationally independent of the
entire second nested loop. The two loops can be run simultaneously in two
different parallel subroutines.

364 VS FORTRAN Version 2 Programming Guide

DIHEHSICH VX(100,100),VY(100,100),VA(100,100),VB(100,100)
DIltEHSION A(100,100),B(100,100),C(100,100),0(100,100)
OPEN (1,FILE=7HAXVAL.INPUT *,ACCESS='DIRECT',RECL=4)
OPEN (2,FILE='/VA.0UTPUT')
OPEN (3,FILE='/VB.0UTPUT')
READ (l.REC=l) JH
READ (1,REC=2) III

C The following three lines represents code to initilize array values

DO 10 J=2,JII
00 10 1=3,111

VX(I,J) = A(I,J) + B(I,J)
VA(I,J) = VA(I-2,J-1) t VX(I,J)**3

10 CONTINUE

v;rite(2,fht=*) VA(IH,JH)
READ (1,REC=3) LH
DO 20 L=3,LH

DO 20 1=2,111
VY(I,L) = C(I,L) + D(I,L)
VB(I,L) = VB(I-l,L-2) + VY(I,L) * 1.3

20 CONTINUE

WRITE (3,FHT=*) VB(IH,LI-I)
V.'RITE (*,*) 'Program has completed'
STOP

END

Figure 88. Sample Code to be Changed to Use MTF

Create Parallel Subroutines

The two loops identified as parallel computations are recoded as new
FORTRAN subroutines. Data is passed from the main routine to the parallel
subroutines by means of dynamic common areas. The parallel subroutines cor
responding to the code in Figure 88 are shown in Figure 89 on page 366.

Appendix E. The Multitasking Facility (MTF) 365

EPROCESS DC(DYHCOHA)
SUBROUTINE SUBA

CGHHON /OYHCOHA/ VX(1CD,100),VA(1C0,100),
C A(100,1Q0),B(100,100)

OPEN (1,FILE=7HAXVAL. INPUT' ,ACCESS= 'DIRECT' ,RECL=4,
C ACTICN='READ')

OPEN (2,FILE='/VA.0UTPUT')
READ (l,REC=l) JH
READ (1,REC=2) III
DO 10 J=2,JII

DO 10 lO.IH
VX(I,J) = A(I,J) + B(I,J)
VA(I,J) => VA(I-2.J-1) + VX(I,J)**3

10 CONTINUE

HRITE{2,FHT=*) VA(Ili,JH)
RETURN

END

ePROCESS DC{DYNCOHB)
SUBROUTINE SUBB

COimOH /DYNCOHB/ VY(100,100),VB(100,100),
C C(100,100),0(100,100)

OPEN (1,FILE=•/HAXVAL.INPUT',ACCESS='DIRECT',RECL=4,
C ACT 1011='READ')

OPEN (2,FILE='/VB.0UTPUT')
READ (1,REC=3) LH
READ (1,REC=2) IN
00 20 L=3,LM

DO 20 1=2, III
VY(I,L) = C(I,L) + D(I,L)
VB(I,L) » VB(I-l,L-2) ♦ VY(I,L) * 1.3

20 CONTINUE

VmiTE(2,FIIT=*) VB(III,LH)
RETURN

END

Figure 89. The Sample Code as Two Subroutines

In this example there Is no need to use new dummy arguments to specify the
loop limits because multiple instances of each parallel subroutine are not used.
Note that each subroutine must issue an OPEN statement for the shared input
file "MAXVALINPUT". The ACTION ='READ' parameter is added to the OPEN
statement for this file to indicate that the file is not to be updated. Because
each subroutine routine has different output files, the default READWRITE action
may be used for these files.

Insert calls to parallel subroutines
The segments of the program that have been removed to form parallel subrou
tines are replaced by calls to those parallel subroutines. For the sample code
in Figure 88 on page 365 and in Figure 89. the code that schedules the two
parallel subroutines SUBA and SUBB and waits for them to finish running is
shown in Figure 90 on page 367.

366 VS FORTRAN Version 2 Programming Guide

Coding Rules

©PROCESS OC(DYMCOIIA,DYHCOMB)
COHHON /DYHCOHA/ VX(100,100),VA(100,100),

C A(100,100),B{100,100)
COHMOH /DYNCOHB/ VY{100,100),VB(100,100),

C C(100,100),0(100,100)
C The following three lines represents code to initilize array values

C ALLOW DYIIAHIC COMHONS TO BE SHARED

CALL SHRCOIlCDYNCOHA')
CALL SHRCOIICDYHCOHB')

C RUM PARALLEL SUBROUTINES SUBA AND SUBB

CALL DSPTCH('SUBA')
CALL DSPTCH('SUBB')

C WAIT FOR THE TWO PARALLEL SUBROUTINES TO COMPLETE

CALL SYNCRO

V/RITE (*,*) 'Program has completed'
STOP

END

Figure 90. Scheduling Two Different Parallel Subroutines

For complete information on the rules for coding calls to the MTF subroutines,
consult VS FORTRAN Version 2: Language and Library Reference.

Compiling and Linking Programs That Use MTF
Programs that use MTF. run using two MVS load modules: a load module that
contains the main task program, and a load module that contains the parallel
subroutines. The standard VS FORTRAN Version 2 cataloged procedure
VSF2CL can be used to do the compilations and link-edits needed to produce
each of these two load modules.

Creating the Main Task Program Load Module
The main task program load module is the load module that first receives
control when MVS starts running your program. It is the load module named in
the PGM keyword of the EXEC statement. This load module contains your
application's FORTRAN main program and all subprograms which are to run as
part of the main taskprogram.

The procedures that you normally use to compile and link-edit a VS FORTRAN
Version 2 program can be used to create the main task program load module.
For example, the following JCL sequence (see Figure 91) uses the standard VS
FORTRAN Version 2 cataloged procedure VSF2CL to compile the FORTRAN
source for the main task program (stored in data set
USERPGM.FORTRAN(MTASKPGM)) and create a main task program load
module named MTASKPGM in data set USERPGM.LOAD.

//MTASKPGH EXEC VSF2CL,FVP0PT=3
//FORT.SYSIN DD DSN=USERPGH.FORTRAN(HTASKPGH) ,DISP=SHR

^ //LKED.SYSLHOD DD DSN=USERPGH.LOAD(MTASKPGM),DISP=OLD

Figure 91. Sample JCL to Compile and Link Main Task Program

Appendix E. The Multitasking Facility (MTF) 367

Creating the Parallel Subroutines Load Module
The parallel subroutines load module is the load module named in the MTF
AUTOTASK keyword. This single load module contains all of your main task
program's parallel subroutines. It must not contain any FORTRAN main pro
grams. The entry point of this load module must be a VS FORTRAN
Version 2-supplied entry point named VFEIS#, which controls processing of the
parallel subroutines when you schedule them by calling the DSPTCH subrou
tine.

The procedures that you normally use to compile and link-edit a VS FORTRAN
Version 2 program must be modified to cause library module VFEIS# to be the
entry point of the parallel subroutines load module. When link-editing this load
module, the following linkage editor control statements will cause the module
VFEIS# to be included:

INCLUDE SYSLIB(VFEIS#)
ENTRY VFEIS#

For example, the following JCL sequence uses the standard VS FORTRAN
Version 2 cataloged procedure VSF2CL to compile the FORTRAN source for the
parallel subroutines (stored in data set USERPGM.FORTRAN(SUBTASK)) and
create a parallel subroutines load module named SUBTASK in data set
USERPGM.LOAD. This load module contains the module VFEIS^, and has

VFEIS# as the load module's entry point.

//SUBTASK EXEC VSF2CL,FVP0PT=3
//FORT.SYSIH DD DSM=USERPGH.FORTRAU(SUBTASK),DISP=SHR
//LKEO.SYSLHOD DD DSH=USERPGH.LOAD(SUBTASK),DISP=OLD
//LKEO.SYSIH DD *

lUCLUDE SYSL1B(VFEIS#)
EMTRY VFEIS#

/*

Figure 92. Sample JCL to Compile and Link Parallel Subroutines

Under MVS/XA, the AMODE attribute of the parallel subroutine load module
determines the addressing mode for a parallel subroutine. If the parallel sub
routine load module attribute is AM0DE(31) or AMODE(ANY), the parallel sub
routine will receive control in 31-bit addressing mode. If the attribute is
AMODE(24), the parallel subroutine will receive control in 24-bit addressing
mode.

Link-Editing Considerations
1. Both the main task program load module and the parallel subroutines load

module must be link-edited to operate in the same mode: either load or link
mode. If you link-edit the main task program load module to operate in link
mode (by concatenating SYS1.VSF2LINK ahead of SYS1.VSF2F0RT), be sure
to link-edit the parallel subroutines load module to operate in link mode as
well.

2. If you are using link mode, then both the main task program load module
and the parallel subroutines load module must be link-edited using the
same release of the VS FORTRAN Version 2 library. In this case, if later
releases of the VS FORTRAN Version 2 library become available and you
relink either load module, then you have to be sure to relink the other load
module as well.

368 VS FORTRAN Version 2 Programming Guide

3. Do not specify the NE linkage-editor option when link-editing the parallel
_ subroutines load module. MTF cannot schedule parallel subroutines that

are contained in a load module link-edited with the NE option.

Running Programs That Use MTF
To run your program, you use the usual MVS JCL for VS FORTRAN Version 2
programs, plus a few additional JCL statements that are required for MTF to
run. This additional JCL is shown in Figure 93. This figure shows only the
additional JCL required for MTF. You must also supply any other JCL required
to run your program.

//GO EXEC ... ,PARH='.. .AUTOTASK(loa(lmo(lnaine,subtasks)'
//AUTOTASK DO DSM=USERPGH.LOAD,OISP=SHR
//FTERROOl 00
//FTERR002 00

//FTERRO.. 00
//FTERROnn DO

Figure 93. Run-Time JCL for MTF

AUTOTASK Keyword in the EXEC Statement
The AUTOTASK keyword in the EXEC statement PARM parameter causes the
VS FORTRAN Version 2 library to create the environment that MTF uses to run
a program in parallel. Ifyou do not use the AUTOTASK keyword, calls to the
MTF subroutine DSPTCH will fail.

//GO EXEC ...,PARII='...AUTOTASK(loaclmodname,subtasks)'

AUTOTASK

indicates that you are using MTF. The AUTOTASK keyword has two subpa-
rameters:

loadmodname

is the name of the load module that contains the main task program's
parallel subroutines. This load module must be a member of the load
module library specified in the AUTOTASK DO statement.

subtasks

is the number of subtasks to create.

Range: 1 through 99.

Note: Generally, the number of subtasks should be close to the number
of processors available on the configuration where the program
runs. MVS can simultaneously run only as many tasks as there
are processors. Scheduling more parallel subroutines than
processors may increase system overhead.

Appendix E. The Multitasking Facility (MTF) 369

AUTOTASK DD Statement

The AUTOTASK DD statement specifies the load module library that contains
the load module with the parallel subroutines.

//AUTOTASK DD DSN=user.dsn,DISP=SHR

user.dsn

is the name of the load module library that contains the parallel subroutines
load module.

The parallel subroutines load module "loadmodname" named in your
AUTOTASK keyword in your EXEC statement must be contained in this data
set.

DD Statements for Unnamed Files

For unnamed files, MTF assigns a unique object-time output file to each parallel
subroutine. These output files contain diagnostic messages that the tibrary may
issue while the parallel subroutines are running. They also contain output that
is the result of any DEBUG packets, PRINT statements, or WRITE statements.

If the installation defaults at your site have been changed such that output from
PRINT and WRITE statements is directed to a unit other than the one for diag
nostic messages, MTF assigns an additional output file for each subtask con
taining PRINT or WRITE statements.

Because these files are automatically allocated while the program runs time,
you need not supply DD statements for them unless you wish to override the
default device type or other file characterstics. The default device type is a ter
minal in TSO or SYSOUT = A in batch.

If you do supply DD statements, use the following ddnames;

FTERRsss for files containing diagnostic messages and possibly output from
PRINT or WRITE statements

FTPRTsss for files containing output from PRINT or WRITE statements (if
PRINT and WRITE statements are directed to a different output unit than
diagnostic messages)

where sss is the subtask number; that is, 001, 002, 003, and so on. Thus, for
example, if your site used the same unit for diagnostic messages and WRITE or
PRINT statements, and your program had four subtasks and the first two used
PRINT statements, you would use the ddnames FTERR001, FTERR002,
FTERR003, FTERR004. If your site used a different unit for PRINT or WRITE
statements, you would use the ddnames FTERR001, FTERR002, FTERR003,
FTERR004, FTPRT001, and FTPRT002.

370 VS FORTRAN Version 2 Programming Guide

Example of JCL
An example of the run-time JCL to run a program that uses MTF is shown in
Figure 94. This figure shows the JCL that is unique to running MTF. as well as
the other JCL the program would typically require. (Some programs might
require additional DD statements.)

//GO EXEC PGHMITASKPGH, PARtl=' AUTOTASK(SUBTASK, 4)'
//STEPLIB DD DSN=USERPGM.LOAD,DISP=SHR

// OD DSN=SYS1.VSF2F0RT,DISP=SHR

//AUTOTASK DO DSH=USERPGH.LOAD,DISP=SHR

//FTERROOl DD SYSOUT=A,DCB=(RECFH=F)
//FTERR002 DD SYSCUT=A,DCB=(RECFH=F)
//FTERR003 DD SYSOUT=A,DCB=(RECFH=F)
//FTERR004 DD SYSOUT=A,DCB=(RECFH=F)

//FT05F001 DD DSH=USERPGH.INPUT,DISP=SHR

//FT06F001 DD SYSDUT=A,DCB=(RECFII=F)

Figure 94. Example Run-Time JCL

MTASKPGM is the name of the main task program load module, and is the load
module that gets control when MVS first starts running the program. In this
example, this load module is contained in data sot USERPGM.LOAD, which is
referred to by the STEPLIB DD statement.

SUBTASK is the name of the load module that contains all of the main task
program's parallel subroutines. This load module is contained in data set
USERPGM.LOAD, which is referred to by the AUTOTASK DD statement.

This program has four subtasks.

The FTERR001 through FTERR004 DD statements specify that the run-time error
messages and other printed output from all four subtasks are to be written to
SYSOUT class A and that the record format is to be fixed-length. These DD
statements are necessary only ifyou do not want to accept the defaults.

The FT05F001 DD statement specifies the data set that contains the program's
Input data.

The FT06F001 DD statement speciHes that the main task program's run-time
error messages and other printed output are to be written to SYSOUT class A
and the record format is to be fixed-length. This DD statement is necessary
only if you do not want to accept the defaults.

Debugging Programs that Use MTF
VS FORTRAN Version 2 Interactive Debug can be used to debug your main task
program. It cannot, however, be used to debug your parallel subroutines.

Using MTF with Load Mode
When using the Multitasking Facility with load mode, the VSF2L0AD library
must be concatenated in STEPLIB or JOBLIB instead of with SYS1.LINKLIB in
the system link list. For more information, see "Specifying Libraries in Load
Mode" on page 74.

Appendix E. The Multitasking Facility (MTF) 371

What to Avoid When Using MTF
To prevent undesirable results, be aware of the following concerns;

^ Do not update a file with one task if the other tasks read the same file.
Files may be destroyed if this is attempted.

Synchronization between tasks by the operating system may cause the data
in a shared dynamic common to to be corrupted or to be presented in a
different order.

^ If using Data-in-Virtual subroutines, do not terminate or view a data object
in the main task prior to synchronizing the tasks to completion. If a data
object is terminated or viewed in this way, Data-in-Virtual spaces may be
lost, and this loss may not be noticable.

372 VS FORTRAN Version 2 Programming Guide

Appendix F. Vector Report Diagnostic Messages

The messages In this appendix are those that may appear In the vector report
listing when either the VECTOR{REPORT(XLIST)) or the
VECTOR(REPORT{SLIST)) option Is requested.

Each message has two versions: a short form and a long form. The short form
Is printed In the right margin on the same line as the statement to which It
applies. The long form, which contains a more detailed explanation of the
reason for the message, appears In a message summary listing following the
program listing.

The messages In this appendix are ordered according to message number.
Each entry gives the short and long forms of the message, a brief explanation
of what the message means, and a description of any supplemental data (such
as lists of variable names or ISN's) that might be inserted Into the long form of
the message. Where appropriate, there may also be examples of situations
that cause the message along with suggestions for rewriting programs to
improve vectorization.

The messages are grouped Into six categories. The first four groups are
divided according to the vectorization status flags that mark the loops printed
on the program listing portion of the vector report. The fifth group consists of
special messages that clarify certain ambiguities in the vector report program
listing. The last group consists of messages that describe the effects of vector
directives on the vectorization process.

Unanalyzable Messages (UNAN flag)

Recurrence Detection Messages (RECR flag)

Unsupported Operation Messages (UNSP flag)

•- Vectorlzable Messages (ELIG and VECT flags)

Listing Clarification Messages (SCAL and VECT flags)

Vector Directive Messages (VDIR flag)

For a complete description of the status flags, see the section "Printing
Reports" on page 238.

Appendix F. Vector Report Diagnostic Messages 373

Message for Unanalyzable Loops (UNAN)
These messages appear whenever a DO loop contains some construct that is 1^^
considered to be unanalyzable. In general, these are control structures and
language constructs that make it difficult or impossible for the compiler to
gather the information needed to perform correct vectorization.

The vectorization status flag used for these messages is UNAN.

ILX0101I

Short Form: NON-INTEGER LOOP CONTROL

Long Form: A LOOP CONTROL PARAMETER IS NOT INTEGER*4.

Explanation: Indicates that a variable that is not INTEGER*4 is used as part
of an expression controlling the iteration of a loop or as a DO loop variable.

Possible Response: If the lower bound, upper bound, or increment
expressions are not INTEGER*4, replace these expressions with INTEGER*4
variables that have been assigned the appropriate values prior to the loop.

If the DO loop variable is not INTEGER*4 and it can be replaced by one that
is, do so.

ILX0102I

Short Form: MORE THAN 8 NESTED LOOPS

Long Form: ANALYSIS IS RESTRICTED TO LOOPS AT THE INNERMOST

EIGHT LEVELS OF NESTING.

Explanation: Indicates that a loop has not been considered for vectorization
because it contains nested loops more than eight levels deep.

»• ILX0103I

Short Form: NESTED LOOP NOT ANALYZABLE

Long Form: SOME NESTED LOOP WAS FOUND TO BE UNANALYZABLE.

Explanation: Indicates that a loop contains a nested loop which was not eli
gible for vectorization analysis.

Example:

C EXAMPLE

C NESTED LOOP UNANALYZABLE

REAL*4 A(1O0,1OO)

DO 10 I = 1,100
DO 10 J = 1,100
A(I,J) = A(I,J) ** 2.1
WRITE(6,*) A(I,J)

10 CONTINUE

In this case, the inner loop is unanalyzable because it contains an I/O state
ment. The outer loop is marked as unanalyzable since it surrounds the
unanalyzable inner loop.

Possible Response: Identify the loop causing the rejection and attempt to
recode it to eliminate the problem.

374 VS FORTRAN Version 2 Programming Guide

Modified Example:

C POSSIBLE RESPONSE

C NESTED LOOP UNANALYZABLE
REAL*4 A(100,100)

DO 10 I = 1,100
DO 10 J = 1,100
A(I,J) = A(I,J) ** 2.1

10 CONTINUE

WRITE(6,*) A

ILX0104I

Short Form: I/O OPERATION

Long Form: ONE OR MORE I/O STATEMENTS OCCUR AT ISN(S) <iiist>.

Explanation: Indicates that a loop contains one or more I/O statements.

Supplemental Data:

<ilist> is a list of ISNs (Internal Statement Numbers) that indicate the
locations of the statement or statements responsible for the rejection.

Example:

C EXAMPLE

C I/O OPERATION
REAL*4 A(100),B(100)

DO 10 I = 1,100
A(I) = 8(1) * 3.3
WRITE(6,*) A(I)

10 CONTINUE

Possible Response: Break the loop into two or more loops, so that any I/O
statements are separated from the portions of the original loop that are eli
gible for vectorization analysis.

Modified Example:

C POSSIBLE RESPONSE

C I/O OPERATION
REAL*4 A(100),B(100)

DO 10 I = 1,100
A(I) = B(I) * 3.3

10 CONTINUE

DO 11 I = 1,100
WRITE(6,*) A(I)

11 CONTINUE

This should be done only when you are absolutely certain that the transfor
mation will not alter the results produced by your program.

Appendix F. Vector Report Diagnostic Messages 375

ILX0106I

Short Form: CHARACTER DATA

Long Form: ONE OR MORE STATEMENTS USING CHARACTER DATA
OCCUR AT ISN(S) <liist>.

Explanation: Indicates the presence of character data.

Supplemental Data:

<lllst> is a list of ISNs (Internal Statement Numbers) that indicate the
locations of the statement or statements responsible for the rejection.

Possible Response: Break the loop into two or more loops, so that any
statements that reference character data are separated from the portions of
the original loop that are eligible for vectorization analysis. This should be
done only when you are absolutely certain that the transformation will not
alter the results produced by your program.

ILX0107I

Short Form: STOP, RETURN, OR EXIT BRANCH

Long Form: STOP OR RETURN STATEMENTfS) OR LOOP EXIT
BRANCH(ES) HAVE BEEN USED AT ISN(S) <ilist>.

Explanation: Indicates that a loop was rejected because of the presence of
a STOP or RETURN statement or because there is a branch out of the loop.
(The reason that these three separate situations are identified by a single

message is that they all result in the abnormal termination of a loop. The
compiler docs not distinguish between the specific causes of the abnormal
termination when deciding whether a loop is eligible for vectorization anal
ysis.)

Supplemental Data:

<ilist> is a list of ISNs (Internal Statement Numbers) that indicate the

locations of the statement or statements responsible for the rejection.

Example:

C EXAMPLE

C STOP, RETURN, OR EXIT BRANCH
REAL*4 A(20),B(2O),C(20)

D0 10 I = 1,20
IF (C(I) .EQ. 0.0) STOP
A(I) = A(I) ** 2.1
B(I) = B(I) ** 2.1

10 CONTINUE

Possible Response: Insert a new loop to determine the number of iterations
that will be processed before the original loop terminates. Then rewrite the
original loop to remove the test that causes the loop to terminate and
change the upper bound to the number of iterations that has just been com
puted. After the loop, add a new test to determine whether the STOP (or
RETURN or exit branch) should be used.

376 VS FORTRAN Version 2 Programming Guide

Modified Example:

C POSSIBLE RESPONSE

C STOP, RETURN, OR EXIT BRANCH
REAL*4 A(20),B(20),C(20)

DO 8 I = 1,20
IF (C(I) .EQ. 0.0) GOTO 9

8 CONTINUE

9 ISTOP=I

DO 10 I = 1,MIN(ISTOP,20)
A(I) = A(I) ** 2.1
B(I) = B(I) ** 2.1

10 CONTINUE

IF (ISTOP.LE.20) STOP

Note that this transformation will only be valid if the test that determines
whether the loop should terminate is independent of the values that are
being computed by the loop. Also note that if the test is not the first state
ment of that loop, some special processing may be necessary.

ILX0108I

Short Form: BRANCH AROUND INNER LOOP

Long Form: THE BRANCH(ES) ORIGINATING AT ISN(S) <ilist>
BYPASS ONE OR MORE NESTED LOOPS.

Explanation: Indicates that a loop was rejected because some branch
within the loop causes an inner loop to be bypassed.

Supplemental Data:

<ilist> is a list of ISNs (Internal Statement Numbers) that indicate the
locations of the statement or statements responsible for the rejection.

Example:

C EXAMPLE

C BRANCH AROUND INNER LOOP
REAL*4 A(100),B(100)

DO 6 I = 1,100
A(I) = A(I) / 2.0
IF (A(I) .EQ. 0.0) GO TO 5
DO 4 J = 1,100

B(J) = B(J) ** 2.1
4 CONTINUE

5 CONTINUE

6 CONTINUE

Possible Response: Break the loop into two or more loops, so that any
unanalyzable branches are separated from the portions of the original loop
that are eligible for vectorization analysis. This should be done only when
you are absolutely certain that the transformation will not alter the results
produced by your program.

Appendix F. Vector Report Diagnostic Messages 377

Modified Example:

C POSSIBLE RESPONSE

C BRANCH AROUND INNER LOOP

REAL*4 A(100),B(100)

DO 3 I = 1,100
A(I) = A(I) / 2.0

3 C0NTINUE

C

DO 6 I = 1,100
IF (A(I) .EQ. 0.0) GO TO 5
DO 4 J = 1,100

B(J) = B(J) ** 2.1
4 CONTINUE

5 CONTINUE

6 CONTINUE

ILX0109I

Short Form: EXIT BRANCH

Long Form: ONE OR MORE EXIT BRANCHES ORIGINATE AT ISN(S)
<llist>.

Explanation: Indicates that a loop was rejected because it contains an exit
branch.

Supplemental Data:

<ilist> is a list of ISNs (Internal Statement Numbers) that indicate the
locations of the statement or statements responsible for the rejection.

Example:

C EXAMPLE

C EXIT BRANCH

REAL*4 A(20),B(20),C(20)

DO 10 I = 1,20
IF (C(I) .EQ. 0.0) GOTO 500
A(I) = A(I) ** 2.1
B(I) = B(I) ** 2.1

10 CONTINUE

500 CONTINUE

Possible Response: Insert a new loop to determine the number of iterations
that will be processed before the original loop terminates. Then rewrite the
original loop to remove the test that causes the loop to terminate and
change the upper bound to the number of iterations that has just been com
puted. After the loop has completed, add a new test to determine whether
the branch should be taken.

378 VS FORTRAN Version 2 Programming Guide

Modified Example:

C POSSIBLE RESPONSE

C EXIT BRANCH

REAL*4 A(20),B(2O),C(20)

DO 8 I = 1,20
IF (C(I) .EQ. 0.0) GOTO 9

8 CONTINUE

9 IEXIT=I

DO 10 I = 1,MIN(IEXIT,20)
A(I) = A(I) ** 2.1
B(I) = B(I) ** 2.1

10 CONTINUE

I=IEXIT

IF (IEXIT.LE.20) GOTO 500

500 CONTINUE

Note that this transformation will only be valid if the test for the loop exit
branch is independent of the values that are being computed by the loop.
Also note that if the loop exit branch is not the first statement of that loop,
some special processing may be necessary.

- ILX0110I

Short Form: LOOP NOT OPTIMIZABLE

Long Form: VECTORIZATION IS INHIBITED BECAUSE This LOOP IS NOT
OPTIMIZABLE. THIS MAY BE CAUSED BY AN INDUCTION

VARIABLE THAT MAY BE RESET INSIDE THE LOOP OR BY

COMPLEX BRANCHING OUTSIDE THE LOOP.

Explanation: Indicates situations where optimization and vectorization of
loops are inhibited. This can happen for a variety of reasons:

— When DO loop variables are not guaranteed to behave like standard DO
loop variables. For example, this occurs when a DO loop variable is
used as a parameter to a subroutine invoked within the loop in such a
way that its value could be changed by the subroutine.

— When a DO loop variable is referenced in an EQUIVALENCE statement.

— When certain complicated patterns of branching are used around a DO
loop.

Example 1:

C EXAMPLE 1

C LOOP NOT OPTIMIZABLE

EQUIVALENCE (K1,K2)
REAL*4 A(100)

DO 10 K1 = 1,100
A(K2) = A(K2) ** 2.1

10 CONTINUE

Possible Response 1: When a loop is not optimizable because the induction
variable is used in an EQUIVALENCE statement, attempt to use a different
DO loop variable to control the loop iteration.

Appendix F. Vector Report Diagnostic Messages 379

Modified Example 1:

C POSSIBLE RESPONSE 1

C LOOP NOT OPTIMIZABLE

EQUIVALENCE (K1,K2)
REAL*4 A(100)

DO 10 K = 1,100
A(K) = A(K) ** 2.1

10 CONTINUE

Example 2:

C EXAMPLE 2

C LOOP NOT OPTIMIZABLE

REAL*4 X(100),Y(100)

DO 20 K = 1,100
CALL SUB2(K)
X(K) = Y(K) ** 2.1

20 CONTINUE

Possible Response 2: When a loop Is not optimizable because the Induction
variable Is passed as an argument to a subroutine, split the original loop
Into two or more loops so that the vectorlzable statements are not In the
same loop as the non-vectorlzable statements (In this case, the CALL state
ment.)

Modified Example 2;

C POSSIBLE RESPONSE 2

C LOOP NOT OPTIMIZABLE

REAL*4 X(100),Y(100)

DO 19 K = 1,100
CALL SUB2(K)

19 C0NTINUE

00 20 K = 1,100
X(K) = Y(K) ** 2.1

20 CONTINUE

This should be done only when you are absolutely certain that the transfor
mation will not alter the results produced by your program.

Example 3:

C EXAMPLE 3

C LOOP NOT OPTIMIZABLE

REALM Q(100,100),R(100,100)

DO 160 J=l,100
00 160 1=1,100
L=1

IF (L.GT.LLIM) GO TO 140
100 DO 120 K=l,100

Q(J,I) = R(L,K)
120 CONTINUE

L=L+1

IF (L.LE.LLIM) GO TO 100
140 CONTINUE

160 C0NTINUE

380 VS FORTRAN Version 2 Programming Guide

The inner loop Is not eligible for optimization due to the complex pattern of
branches around that loop.

Possible Response 3: For cases such as this, attempt to redesign the algo
rithm using structured programming constructs whenever possible.

Modified Example 3;

C POSSIBLE RESPONSE 3

C LOOP NOT OPTIMIZABLE

REAL*4 Q(10O,10O),R(100,1O0)

DO 160 J=l,100
DO 160 1=1,100
DO 120 L=1,LLIM

100 DO 120 K=l,100
Q(J,I) = R(L,K)

120 CONTINUE

160 CONTINUE

• ILX0111I

Short Form: BACKWARD BRANCH

Long Form: ONE OR MORE BACKWARD BRANCHES TO THE STATEMENT
LABEL(S) <llist> HAVE BEEN FOUND.

Explanation: Indicates the presence of a backward branch or a DO WHILE
loop within a DO loop.

Supplemental Data:

<llist> is a list of user defined statement labels that are used to indi-
N cate the targets of any backward branches that occur in the loop.

Example:

C EXAMPLE

C BACKWARD BRANCH

REAL*4 A(100),B(1000,100)

DO 20 I = 1,100
A(I) = 0.0
K = 1

10 A(I) = A(I) + B(K,I)
K = K + 1

IF (K .LE. 1000) GO TO 10
20 CONTINUE

Possible Response: Attempt to replace the backward GOTO with an equiv
alent DO loop.

Appendix F. Vector Report Diagnostic Messages 381

Modified Example:

C POSSIBLE RESPONSE

C BACKWARD BRANCH

REAL*4 A(100),B(1000,100)

DO 20 I = 1,100
A(I) = 0.0
DO 15 K = 1,1000

10 A(I) = A(I) + B(K,I)
15 CONTINUE

20 CONTINUE

ILX0112I

Short Form: INTRINSIC CHARACTER FUNCTION

Long Form: THE CHARACTER MANIPULATION FUNCTION(S) <filst> ARE
NOT ANALYZABLE.

Explanation: Indicates that a loop Is rejected because it uses one or more
of the character manipulation functions (CHAR or LEN, for example) con
tained in the VS FORTRAN library.

Supplemental Data:

<flist> is a list consisting of function names and the ISNs (Internal
Statement Numbers) of the statements in which they are used.

Possible Response: Break the loop into two or more loops, so that any
statements using character manipulation functions are separated from the
portions of the original loop that are eligible for vectorization analysis. This
should be done only when you are absolutely certain that the transforma
tion will not alter the results produced by your program.

ILX0113I

Short Form: RESTRICTED CONSTRUCT

Long Form: THE LANGUAGE CONSTRUCT(S) <cllst> ARE NOT ANA-
LYZED FOR VECTORIZATION.

Explanation: Indicates that a loop is rejected because it contains some lan
guage construct that cannot be analyzed by the compiler. These constructs
include assigned and computed GOTO statements and NAMELIST state
ments.

Supplemental Data:

<cllst> is a list consisting of the names of the language constructs
responsible for the rejection along with the ISNs (Internal Statement
Numbers) of the statements in which they are used.

382 VS FORTRAN Version 2 Programming Guide

Example:

C EXAMPLE

C RESTRICTED CONSTRUCT

INTEGER*4 TEST(100)
REAL*4 W(100),X(100),Y(100),Z(100)

DO 1000 I = 1,100
GOT0 (400,500.600),TEST(I)
W(I) =0.0
GOT0 1000

400 W(I) = X(I)
G0TO 1000

500 W(I) = Y(I)
G0TO 1000

600 W(I) = Z(I)
1000 CONTINUE

Possible Response: In the case of an assigned or computed GOTO state
ment, it may be possible to recode the loop so that the same logic structure
is achieved using logical and arithmetic IF statements.

Modified Example:

C POSSIBLE RESPONSE

C RESTRICTED CONSTRUCT

INTEGER*4 TEST(100)
REAL*4 W(1G0),X(100),Y(100),Z(100)

DO 1000 I = 1,100
IF (TEST(I).LT.l .OR. TEST(I).GT.3) THEN
W(I) = 0.0
ELSE IF (TEST(I).EQ.l) THEN

400 W(I) = X(I)
ELSE IF (TEST(I).EQ,2) THEN

500 W(I) = Y(I)
ELSE IF (TEST(I).EQ.3) THEN

600 W(I) = Z(I)
ENDIF

1000 CONTINUE

You should be careful when doing this, since if the transformed code fails to
vectorize, the resulting scalar program may run more slowly than the ori
ginal program.

ILX0114I

Short Form: USER FUNCTION OR SUBROUTINE

Long Form: THE USER FUNCTION(S) OR SUBROUTINE(S) <flist> ARE
NOT ANALYZABLE.

Explanation: Indicates that a loop contains a subroutine call or a reference
to an external user defined function.

Supplemental Data:

<flist> is a list consisting of function and subroutine names and the
ISNs (Internal Statement Numbers) of the statements in which they are

used.

Possible Response: Break the loop into two or more loops, so that any
statements containing a subroutine call or a reference to an external user

Appendix F. Vector Report Diagnostic Messages 383

deflned function are separated from the portions of the original loop that
are eligible for vectorization analysis. This should be done only when you
are absolutely certain that the transformation will not alter the results
produced by your program.

ILX0115I

Short Form: NON-MATHEMATICAL IMPLICIT

Long Form: THE IMPLICITLY CALLED NON-MATHEMATICAL
SUBPROGRAM(S) <flist> HAVE BEEN USED. THESE SUB
PROGRAMS ARE NOT ANALYZABLE.

Explanation:

Indicates that some statement in the loop will generate a reference to an
implicitly invoked character subprogram {CCMPR#, CMOVE#, or CNCAT#)
or to an implicitly invoked service subprogram {DSPAN#, DSPN2#, DSPN4#,
or DYCMN#). These subprograms are described in VS FORTRAN Version 2
Language and Library Reference.

Supplemental Data:

<flist> is a list consisting of function names and the ISNs (Internal
Statement Numbers) of the statements in which they are used.

Possible Response: Break the loop into two or more loops, so that any
statements resulting in compiler call(s) to implicitly invoked character sub
programs or to implicitly invoked service subprograms are separated from
the portions of the original loop that are eligible for vectorization analysis.
This should be done only when you are absolutely certain that the transfor
mation will not alter the results produced by your program.

384 VS FORTRAN Version 2 Programming Guide

Messages about Recurrences (RECR)
These messages appear with statements that are found to be In a recurrence.
Some of these messages point out situations where the compiler has had to
presume dependences between statements that reference a particular array
because the subscript computations were too complex to be analyzed in detail.
In these cases, it may be possible to rewrite the statements so that the com
piler can gather more precise information. There is no guarantee that the
removal of the indicated dependences will allow the statements to be
vectorized.

The vectorization status flag used for these messages is RECR.

ILX0117I

Short Form; EQUIVALENCE USED

Long Form: THE VARIABLE(S) <vllst> ARE EQUIVALENCED OR ARE IN
A COMMON BLOCK THAT CONTAINS AN EQUIVALENCED
VARIABLE. THE COMPILER HAS ASSUMED THAT THESE

ARRAYS CARRY DEPENDENCES IN LOOP(S) AT NESTING
LEVEL(S) <levlist>.

Explanation: Whenever there is a potential for overlap between variables
contained in an equivalence group, the compiler presumes the existence of
recurrent dependences between statements that reference those variables.

Note that the analysis the compiler does to determine whether there is a
potential overlap is not very detailed. This means that in these cases the
compiler may assume a dependence exists, even though it is obvious to
you that this is not the case.

Supplemental Data:

<vlist> is a list of the names of the variables that carry the presumed
dependences.

<levllst> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Example:

C EXAMPLE

C EQUIVALENCE USED

COMMON // A(200)
REAL*4 B(100)
EQUIVALENCE (A(101),B(1))

00 10 I = 1,20
A(I) = A(I) * B(I) ** 2.1

10 CONTINUE

Possible Response 1: It is sometimes possible to avoid these dependences
by rewriting all references to variables in a given equivalence group in
terms of a single variable in that group.

Appendix F. Vector Report Diagnostic Messages 385

Modified Example 1:

C POSSIBLE RESPONSE 1

C EQUIVALENCE USED
COMMON 11 A(200)
REAL*4 B(1O0)
EQUIVALENCE (A(101),B(1))

DO 10 I = 1,20
A(I) = A(I) * A(I+100) ** 2.1

10 CONTINUE

Possible Response 2: It is also possible to eliminate this dependence by
using the IGNORE EQUDEPS vector directive. Before using this directive,
you should analyze the storage mapping and subscript expressions of the
variables involved and make sure that the different variables do not refer

ence identical storage locations while the loop is running.

Modified Example 2:

©PROCESS DIRECTIVE('DIR')
C POSSIBLE RESPONSE 2

C EQUIVALENCE USED
COMMON // A(200)
REAL*4 B(10O)
EQUIVALENCE (A(101),B(1))

*DIR IGNORE EQUDEPS
DO 10 I = 1,20
A(I) = A(I) * B(I) ** 2.1

10 CONTINUE

ILX0118I

Short Form: OFFSET UNKNOWN

Long Form: THE OFFSET NEEDED TO ADDRESS THE ARRAY(S) <vlist>
COULD NOT BE ANALYZED. THERE MAY BE AN UNKNOWN

TERM IN A SUBSCRIPT OR IN A LOOP LOWER BOUND, OR

THE ARRAY(S) MAY HAVE ADJUSTABLE DIMENSIONS. THE
COMPILER HAS ASSUMED THAT THESE ARRAYS CARRY

DEPENDENCES IN LOOP(S) AT NESTING LEVEL(S) <levlist>.

Explanation: This message occurs when some additive term in a subscript
computation for a particular array is not an induction variable or a constant.
It can also appear when the DO loop in which an array reference is con
tained has a variable lower bound. In these situations, recurrent depend

ences are presumed to exist between the statement in which the subscript
computation is used and all other statements that reference the array.

Note that sometimes a variable will be defined only once inside the
program unit in which it is used, and will therefore have a constant value.
However, since the compiler performs vectorization analysis on a DO loop
basis, it may not be able to recognize that such a variable is actually a con
stant.

Supplemental Data:

<vllst> is a list of the names of the variables that carry the presumed
dependences.

386 VS FORTRAN Version 2 Programming Guide

<levllst> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Example 1:

C EXAMPLE 1

C OFFSET UNKNOWN - ADDITIVE TERM

REAL*4 A(1GO),B(1O0)

DO 10 I = 1,19
A(I) = A(I+ISKIP) * B(I) ** 2.1

10 CONTINUE

Possible Response 1: Identify the expression or expressions involved and
replace them with references to values that are known at compile time
whenever possible.

Modified Example 1:

C POSSIBLE RESPONSE 1

C OFFSET UNKNOWN - ADDITIVE TERM

REAL*4 A(100),B(100)

DO 10 I = 1,19
A(I) = A(I+4) * B(I) ** 2.1

10 CONTINUE

Example 2:

C EXAMPLE 2

C OFFSET UNKNOWN - LOWER BOUND

REAL*4 C(IOO)

DO 20 I = ISTART,50
C(I) = C(3) ** 2.1

20 CONTINUE

Possible Response 2: If it can be determined that the indicated depend
ences will not occur at run time, it is possible to cause the compiler to
ignore them by using the IGNORE REORDERS directive with the loops at the
indicated levels.

Modified Example 2:

EPROCESS DIRECTIVE('DIR')
C POSSIBLE RESPONSE 2

C OFFSET UNKNOWN - LOWER BOUND

REAL*4 C(IOO)

*DIR IGNORE RECRDEPS

DO 20 I = ISTART,50
C(I) = C(3) ** 2.1

20 CONTINUE

Care should be used in applying IGNORE RECRDEPS since if this directive
is used and if the dependences really do exist, wrong results may be
produced. In this case, the IGNORE RECRDEPS directive is valid only if the

value of the variable ISTART is greater than 3. See the section "Using

Appendix F. Vector Report Diagnostic Messages 387

Vector Directives" on page 253 for details on how to correctly specify and
verify this directive.

ILX0119I

Short Form: STRIDE UNKNOWN

Long Form: THE STRIDE NEEDED TO ADDRESS THE ARRAY(S) <vlist>
COULD NOT BE ANALYZED, EITHER BECAUSE OF AN
UNKNOWN MULTIPLIER IN THE SUBSCRIPT OR AN

UNKNOWN LOOP INCREMENT. THE COMPILER HAS

ASSUMED THAT THESE ARRAYS CARRY DEPENDENCES IN

LOOP(S) AT NESTING LEVEL(S) <levlist>.

Explanation: This message occurs when the multiplier of some induction
variable within a subscript computation for a particular array is not a con
stant. It can also appear when the loop in which an array reference is con
tained has a variable increment value. In these situations, recurrent

dependences are presumed to exist between the statement in which the
subscript computation is used and all other statements that reference the
array.

Note that sometimes a variable will bo defined only once inside the
program unit in which it is used, and will therefore have a constant value.
However, since the compiler performs vectorization analysis on a DO loop
basis, it may not be able to recognize that such a variable is actually a con
stant.

Supplemental Data:

<vllst> is a list of the names of the variables that carry the presumed
dependences.

<levlist> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Example:

C EXAMPLE

C STRIDE UNKNOWN

REAL*4 A(IO0),B(100)
INTEGER*4 ISKIP

I = 1

00 10 K = 1,19
A(I) = A(I) * B(K) ** 2.1
1=1+ ISKIP

10 C0NTINUE

Possible Response 1: Identify the expression or expressions involved and
replace them with references to values that are known at compile time
whenever possible.

388 VS FORTRAN Version 2 Programming Guide

Modified Example 1:

C POSSIBLE RESPONSE 1

C STRIDE UNKNOWN

REAL*4 A(100),8(100)
INTEGER*4 ISKIP

PARAMETER (ISKIP=4)

I = 1

DO 10 K = 1,19
A(I) = A(I) * B(K) ** 2.1
1=1+ ISKIP

10 CONTINUE

Possible Response 2: If it can be determined that the indicated depend
ences will not occur at run time, it is possible to cause the compiler to
ignore them by using the IGNORE REORDERS directive with the loops at the
indicated levels.

Modified Example 2:

©PROCESS DIRECTIVE('DIR')
C POSSIBLE RESPONSE 2

C STRIDE UNKNOWN

REAL*4 A(100),8(100)
INTEGER*4 ISKIP

I = 1

*DIR IGNORE RECRDEPS(A)
DO 10 K = 1,19

^ A(I) = A(I) + B(K) ** 2.1
' ^ 1=1+ ISKIP

10 C0NTINUE

Care should be used in applying IGNORE REORDERS since if this directive
is used and if the ignored dependences really do exist, wrong results may
be produced. (In this case, the dependence exists only if the value of the
variable ISKIR is 0.) See the section "Using Vector Directives" on page 253
for details on how to correctly specify and verify this directive.

ILX0121I

Short Form: COMMON OR EQUIVALENCE USED

Long Form: THE SCALAR VARIABLE(S) <vlist> ARE NOT ELIGIBLE FOR
EXPANSION BECAUSE THEY ARE IN COMMON OR ARE IN

AN EQUIVALENCE GROUP.

Explanation: Variables that are in COMMON or in an EQUIVALENCE group
are not eligible for scalar expansion because the compiler cannot tell
whether they are local to the loops in which they are used. (A scalar vari
able is local to a given loop if the values that it holds while the loop is
running could not have been set before the loop began to run and will
never be used after the loop terminates. Scalar expansion can only be per
formed on variables which the compiler knows to be local.)

Supplemental Data:

<vllst> is a list of the names of the scalar variables that are ineligible
for expansion.

Appendix F. Vector Report Diagnostic Messages 389

Example 1:

C EXAT^PLE 1

C SCALAR EXPANSION - COMMON USED
COMMON 11 T
REAL*4 A(50),B(50)J

DO 10 I = 1,50
T = B(I)
B(I) = A(I)
A(I) = T

10 CONTINUE

Possible Response: It is sometimes possible to avoid this situation simply
by replacing references to the original scalar with references to a new
scalar variable that is never referenced outside the loop. Note that if the
original scalar variable is needed later, you should be careful to make sure
that it is assigned the correct value after the loop has completed.

Modified Example 1:

C POSSIBLE RESPONSE 1

C SCALAR EXPANSION - COMMON USED
COMMON // T
REAL*4 A(50),B(5O),T,T1

00 10 I = 1,50
11 = B(I)
B(I) = A(I)
A(I) = T1

10 CONTINUE

T= A(50) ^
Example 2:

C EXAMPLE 2

C SCALAR EXPANSION - EQUIVALENCE USED
REAL*4 X(50),Y(5O),Z(5O),O(50),S
EQUIVALENCE (S,D(50))

D(50) = 1.1
DO 20 I = 1,50

Z(I) = S
S = X(I) + Y(I)

20 CONTINUE

Possible Response: Another possible action is to replace the original scalar
variable with an array whose dimension ranges from zero to the number of
iterations of the loop in which the scalar resides. The loop should be trans
formed in the following manner:

— Prior to entering the loop, set the zero element of the array to the value
held by the scalar.

— Prior to the first statement that defines the scalar within the loop,
replace all references to the scalar with references to the element of
the array whose position is one less than the current iteration count.

— All other references to the scalar within the loop should be replaced by
references to the element of the array that corresponds to the current
iteration count.

390 VS FORTRAN Version 2 Programming Guide

- Following the loop, set the scalar to the value held by the last element
of the array.

Modified Example 2:

C POSSIBLE RESPONSE 2

C SCALAR EXPANSION - EQUIVALENCE USED
REAL*4 X(50),Y(50),Z(50),O(50),S
EQUIVALENCE (S,D(50))
REAL*4 SS(0:50)

0(50) = 1.1
SS(0) = S
DO 20 I = 1,50
Z(I) = SS(I-l)
SS(I) = X(I) + Y(I)

20 C0NTINUE

S = SS(20)

Note that this transformation is only valid if the first assignment to the ori
ginal scalar variable is not a conditionally processed statement. Also note
that you should use these transformations with care since they may not
always increase the vectorizability of your program and may result in
increased scalar run time.

iLX0123l

Short Form: INTERCHANGE PREVENTING DEP

Long Form: THE ARRAY(S) <vlist> CARRY FORWARD DEPENDENCES
AT NESTING LEVEL(S) <levlist> THAT MAY BE INTER-
CHANGE PREVENTING.

Explanation: This message identifies certain dependences, known as "inter
change preventing dependences." that restrict vectorization of outer DO
loops. When an interchange preventing dependence exists, the reordering,
or interchange, of two loops would cause different results to be produced.
Since vectorization of an outer loop has the same effect as moving that loop
to the innermost position, the existence of an interchange preventing
dependence carried by an outer loop prevents vectorization.

To understand how an interchange preventing dependence comes about,
study the following example:

DO 10 1=1,2
DO 10 J=l,2

10 A(I-1,J+1)=A(I,J)

In this code, the element A(1,2) is fetched when 1= 1 and J = 2 and is stored
into when I= 2 and J = 1. When these loops are processed, the fetch will
occur before the store. However, if the loops were interchanged, the store
would come first and different results would probably be produced.

It is not always possible for the compiler to determine whether or not a
dependence is interchange preventing. Unless it can prove otherwise, the
compiler will always assume that a given dependence is interchange pre
venting. This will insure that correct results are always produced after
vectorization, even though some potential vectorization may be missed.

This message identifies dependences that were assumed to be interchange
preventing because the compiler did not have sufficient information to
perform a complete and accurate analysis.

Appendix F. Vector Report Diagnostic Messages 391

Note that this message often occurs when variables are used for the lower
or upper bound of a loop or when variables that are not inductions are used
inside of subscripts. Sometimes, such a variable will be defined only once
inside the program unit in which it is used, and will therefore have a con
stant value. However, since the compiler performs vectorization analysis
on a DO loop basis, it may not be able to recognize that such a variable is
actually a constant.

Supplemental Data:

<vlist> is a list of the names of the variables that carry the depend
ences that are presumed to be interchange preventing.

<levlist> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Example:

C EXAMPLE

C INTERCHANGE PREVENTING DEPENDENCY
REAL*4 U(50,50)

DO 190 J = 1, JUPPER
DO 190 I = 1, lUPPER
U(I,J) = U(I+N,J) + U(I,J+N)

190 CONTINUE

Possible Response 1: If it is possible to write the loop bounds and subscript
expressions in terms of compile-time constants and induction variables, this
may give the compiler enough information to do an accurate analysis.

Modified Example 1:

C POSSIBLE RESPONSE 1

C INTERCHANGE PREVENTING DEPENDENCY
REAL*4 U(50,50)

DO 190 J = 1, 50
DO 190 I = 1, 50
U(I,J) = 0(1+1,J) + U(I,J+1)

190 CONTINUE

Possible Response 2: It is also possible to increase vectorizability by using
the IGNORE REORDERS vector directive. Before using this directive, you
should analyze the dependences involved to verify that they really are not
interchange preventing.

392 VS FORTRAN Version 2 Programming Guide

Modified Example 2:

ePROCESS DIRECTIVE('DIR')
C POSSIBLE RESPONSE 2

C INTERCHANGE PREVENTING DEPENDENCY

REAL*4 U(5O,50)

*DIR IGNORE RECRDEPS

DO 190 J = 1, JUPPER
DO 190 I = 1, lUPPER
U(I,J) = U(I+N,J) + U(I,J+N)

190 CONTINUE

ILX0124I

Short Form: OPTIMIZER INDUCED DEPENDENCE

Long Form: A COMPILER TEMPORARY INTRODUCED DURING SCALAR

OPTIMIZATION HAS CAUSED ONE OR MORE DEPENDENCES

IN THE LOOP(S) AT NESTING LEVEL(S) <levlist>.

Explanation: This message is produced when a statement becomes part of a
recurrence solely because of some optimization that had been performed
prior to vectorization (for example, common sub-expression elimination).

Supplemental Data:

<levlist> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Example:

C EXAMPLE

C OPTIMIZER INDUCED DEPENDENCE

REAL*4 C(100),D(100),F(100)

DO 100 J = 2,100
C(J) = D(J-l)
D(J) = C(J)
F(J) = D(J) + 2

100 CONTINUE

In the DO loop shown above, the first two statements form a recurrence and
cannot be vectorized while the last statement would normally be
vectorizable. However, vectorization of this statement may be restricted
due to some transformations that have been applied by the compiler prior
to vectorization analysis.

In optimizing this loop, the compiler will attempt to reduce the number of
load instructions that must be processed. As a result, during vectorization
analysis, it will appear as if this loop were rewritten as:

DO 100 J = 2,100
.temp = D(J-l)

_ C(J) = .temp
D(J) = .temp
F(J) = .temp + 2

100 CONTINUE

Appendix F. Vector Report Diagnostic Messages 393

where ".temp" is a compiler generated scalar temporary. In order to
vectorize the last statement, it would be necessary to split the original loop
into two loops so that this statement is separated from the other, non-
vectorizable. statements. The presence of the scalar temporary shared by ^
all the statements in the loop prohibits loop splitting and thus prevents
partial vectorization.

Possible Response 1: Since the presence of statement labels inhibits opti
mization to some degree, it is sometimes possible to achieve partial
vectorization in cases such as this simply by introducing additional labels.

Modified Example 1:

C POSSIBLE RESPONSE 1

C OPTIMIZER INDUCED DEPENDENCE
REAL*4 C(10O),D(100),F(100)

DO 100 J = 2,100
C(J) = D(J-l)
D(J) = C(J)

99 F(J) = D(J) + 2
100 CONTINUE

Be careful when using this type of transformation since it may inhibit some
important optimizations. Ifyou make this change and partial vectorization
still does not occur, the resulting scalar code may run more slowly than the
original.

Possible Response 2: The transformation suggested above may or may not
increase vectorization. If it is not effective, you should try to replace the
original loop with two separate loops, where one loop contains the non-
vectorizable portion while the other loop contains the vectorizable portion of
the original loop.

Modified Example 2:

C P0SSIBLE RESPONSE 2

C OPTIMIZER INDUCED DEPENDENCE

REAL*4 C(100),D(100),F(100)

DO 100 J = 2,100
C(J) = D(J-l)
D(J) = C(J)

100 CONTINUE

DO 101 J = 2,100
F(J) = D(J) + 2

101 CONTINUE

This should be done only when you are absolutely certain that the transfor
mation will not alter the results produced by your program.

ILX0125I

Short Form: SUBSCRIPT TOO COMPLEX

Long Form: THE ARRAY(S) <vlist> USE SUBSCRIPT COMPUTATIONS
THAT COULD NOT BE ANALYZED. THEY MAY INCLUDE

INDIRECT ADDRESSING, DATA CONVERSIONS. UNKNOWN
STRIDES, OR AUXILIARY INDUCTION VARIABLES. THE
COMPILER HAS ASSUMED THAT THESE ARRAYS CARRY ' ^
DEPENDENCES IN LOOP(S) AT NESTING LEVEL(S) <levlist>.

394 VS FORTRAN Version 2 Programming Guide

Explanation: Indicates the use of subscript computations for which the com
piler could not perform accurate dependence analysis. These cases include
the constructs listed below. {In each of the examples given. "K" is an
induction variable for some DO loop that contains the indicated array refer
ence.)

— Indirect addressing, as in "A(INDEX(K))," where "INDEX" is an array of
integers.

— Subscripts requiring data conversions, as in "A(K + X)," where "X" is a
real variable.

— Subscripts whore the stride is not known at compile time, as in
"A(K*KSTEP)," where "KSTEP" is an integer variable. (An unknown
stride may also occur if the increment expression of some DO loop is
not a compile-time constant.)

— Auxiliary induction variables, as in "A(IVAR)," where "IVAR" is incre
mented explicitly within the DO loop by some statement of the form
"IVAR = IVAR+ INCR."

When an array uses any of the above types of subscript, recurrent depend
ences are often presumed to exist between the statement in which the sub
script computation occurs and all other statements that reference the array.

This message often occurs when variables are used for the lower bound,
upper bound, or increment of a loop or when variables that are not
inductions are used inside of subscripts. Sometimes, such a variable will
be defined only once inside the program unit in which it is used, and will
therefore have a constant value. However, since the compiler performs

/^\ vectorization analysis on a DO loop basis, it may not be able to recognize
that such a variable is actually a constant.

Supplemental Data:

<vlist> is a list of the names of the variables that carry the presumed
dependences.

<levlist> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Example 1:

C EXAMPLE 1

C SUBSCRIPT TOO COMPLEX

REAL*4 A(20)
INTEGER*4 INDEX(20)

00 10 I = 1,20
A(INDEX(I)) = A(INDEX(I)) ** 2.1

10 CONTINUE

Possible Response 1: For cases involving indirect addressing, it may be
possible to introduce additional arrays to hold intermediate results. The
loop should be transformed as follows:

— Select elements of the original array using the non-inductive subscript
expression and copy them into a new array.

Appendix F. Vector Report Diagnostic Messages 395

— Replace the non-inductive references to the original array with refer
ences to the corresponding elements of the new array.

— Copy the contents of the new array back into the correct positions in the
original.

This should be done only if it is absolutely certain that the non-inductive
subscript expression never selects any element more than once.

Modified Example 1:

C POSSIBLE RESPONSE 1

C SUBSCRIPT TOO COMPLEX

REAL*4 A(20),NEW A(20)
INTEGER*4 INDEX(20)

00 9 I = 1,20
NEW_A(I) = A(INDEX(I))

9 CONTINUE

DO 10 I = 1,20
NEW_A(I) = NEW_A(I) ** 2.1

10 CONTINUE

DO 11 I = 1,20
A(INDEX(I)) = NEW_A(I)

11 CONTINUE

Due to the overhead involved in copying data to and from the new version
of the array, this transformation may not result in any performance benefits,
even if vectorization is achieved. You should carefully analyze the perform
ance of this code before and after the transformation is applied to make
sure that it is worthwhile.

Example 2:

C EXAMPLE 2

C SUBSCRIPT TOO COMPLEX

REAL*4 B(20),X

DO 20 I = 1,20
B(I+X) = B(I+X) ** 2.1

20 CONTINUE

Possible Response 2: For cases involving data conversions inside of sub
script calculations, recode the computations so that all the inputs hold
INTEGER values, whenever possible.

Modified Example 2:

C POSSIBLE RESPONSE 2

C SUBSCRIPT TOO COMPLEX

REALM B(20),X
INTEGER*4 INT_X

INT_X = X
DO 20 I = 1,20

B(I+INT_X) = B(I+INT_X) ** 2.1
20 CONTINUE

396 VS FORTRAN Version2 Programming Guide

Example 3:

C EXAMPLE 3

C SUBSCRIPT TOO COMPLEX

REAL*4 C(20),Y
INTEGER*4 KSTEP

DO 30 I = 1,20
KSTEP = KSTEP + INC

C(KSTEP*I) = Y ** C(I*KSTEP)
30 CONTINUE

Possible Response 3: For cases involving unknown strides, identify the
expressions involved and replace them with references to values that are
known at compile time whenever possible.

Modified Example 3:

C POSSIBLE RESPONSE 3

C SUBSCRIPT TOO COMPLEX

REAL*4 C(20),Y
INTEGER*4 KSTEP

PARAMETER (KSTEP=4)

DO 30 I = 1,20
C(KSTEP*I) = Y ** C(I*KSTEP)

30 CONTINUE

Example 4:

C EXAMPLE 4

C SUBSCRIPT TOO COMPLEX

REAL*4 D(400)

DO 40 J = 1,20
D(J) = D(J*J) ** 2.1

40 CONTINUE

Possible Response 4: For cases none of the previous transformations is
appropriate, an IGNORE RECRDEPS directive may be used to cause the
compiler to assume that no dependence exits.

Modified Example 4:

OPROCESS DIRECTIVE('DIR')
C POSSIBLE RESPONSE 4

C SUBSCRIPT TOO-COMPLEX

REAL*4 D(400)

*DIR IGNORE RECRDEPS(D)
DO 40 J = 1,20
D(J) = D(J*J) ** 2.1

40 CONTINUE

Care should be used in applying IGNORE RECRDEPS since if this directive
is used and if the ignored dependences really do exist, wrong results may
be produced. See the section "Using Vector Directives" on page 253 for
details on how to correctly specify and verify this directive.

Appendix F. Vector Report Diagnostic Messages 397

ILX0126I

Short Form: SCALAR DEFINED BEFORE LOOP

Long Form: THE SCALAR VARIABLE(S) <vlist> ARE NOT ELIGIBLE FOR
EXPANSION BECAUSE THEY MAY USE VALUES THAT WERE

SET BEFORE THE EXECUTION OF THE CONTAINING LOOP

AND THEIR VALUES MAY BE USED AFTER THE EXECUTION

OF THE CONTAINING LOOP.

Explanation: in order to vectorize a scalar variable that is modified within a
loop, the compiler must use a process known as scalar expansion. This
involves replacing the scalar variable with a vector register.

Scalar expansion can only be performed on variables which the compiler
knows to be local. A variable is local to a given loop if the values that it
holds while the loop is running could not have been set before the loop
began to run and will never be used after the loop terminates.

Supplemental Data:

<vlist> is a list of the names of the scalar variables that are ineligible
for expansion.

Example:

C EXAMPLE

C SCALAR DEFINED BEFORE LOOP

REAL*4 A(20),B(2O),C(20),T

T = 1.1

DO 11 I = 1,20
C(I) = T
T = A(I) + B(I)

11 CONTINUE

Possible Response: It may be possible to replace the original scalar vari
able with an array whose dimension ranges from zero to the number of iter
ations of the loop in which the scalar resides. The loop should be
transformed in the following manner:

— Prior to entering the loop, set the zero element of the new array to the
value held by the scalar.

— Prior to the first statement that defines the scalar within the loop,
replace all references to that scalar with references to the element of
the new array whose position is one loss than the current iteration
count.

— All other references to the scalar within the loop should be replaced by
references to the element of the array that corresponds to the current
iteration count.

— Following the loop, set the scalar to the value held by the last element
of the new array.

398 VS FORTRAN Version 2 Programming Guide

Modified Example:

C POSSIBLE RESPONSE

C SCALAR DEFINED BEFORE LOOP

REAL*4 A(20),B(2O),C(20),T
REAL*4 TT(0:20)

T = I.l

TT(0) = T
DO 11 I = 1,20
C(I) = TT(I-l)
TT(I) = A(I) + B(I)

11 CONTINUE

T = TT(20)

Note that this transformation is only valid if the first assignment to the ori
ginal scalar variable is not a conditionally processed statement.

Also be aware that this transformation may not necessarily increase the the
vectorizability of your program and could result in a scalar program that
runs more slowly than the original.

ILX0127I

Short Form: SCALAR NEEDED AFTER LOOP

Long Form: THE SCALAR VARIABLE(S) <vlist> ARE NOT ELIGIBLE FOR
EXPANSION BECAUSE THEY MAY BE SET TO VALUES THAT

WILL BE USED AFTER THE EXECUTION OF THE CONTAINING

LOOP.

Explanation: In order to vectorize a scalar variable that is modified within a

f' ^ loop, the compiler must use a process known as scalar expansion. This
involves replacing the scalar variable with a vector register.

Scalar expansion can only be performed on variables which the compiler
knows to be local. A variable is local to a given loop if the values that it
holds while the loop runs could not have been set before the loop began to
run and will never be used after the loop terminates.

Supplemental Data:

<vllst> is a list of the names of the scalar variables that are ineligible
for expansion.

Example:

C EXAMPLE

C SCALAR NEEDED AFTER LOOP

REAL*4 A(20),B(20),T

DO 22 I = 1,20
T = ACI)
A(I) = B(I)
B(I) = T

22 CONTINUE

WRITE(6,*) T

Possible Response 1: It may be possible to replace the original scalar vari-
able with a new scalar variable that is local to the loop. If this Is done, it
will be necessary to insert an additional assignment after the loop to set the
original scalar to its appropriate final value.

Appendix F. Vector Report Diagnostic Messages 399

Modified Example 1:

C POSSIBLE RESPONSE 1

C SCALAR NEEDED AFTER LOOP

REAL*4 A(20),B(20),T
REAL*4 T_LOCAL

DO 22 I = 1,20
T_LOCAL = A(I)
A(I) = B(I)
B(I) = T_LOCAL

22 CONTINUE

T=B(20)

WRITE(6,*) T

Possible Response 2: It may be possible to replace the original scalar vari
able with an array whose dimension ranges from one to the number of iter
ations of the loop in which the scalar resides. The loop should be
transformed in the following manner:

— If the first occurrence of the scalar within the loop is a reference rather
than definition, prior to entering the loop, set the first element of the
array to the value held by the scalar.

— Replace all occurrences of the scalar within the loop with references to
the element of the array that corresponds to the current iteration count.

— Following the loop, set the scalar to the value held by the last element
of the array.

Modified Example 2:

C POSSIBLE RESPONSE 2

C SCALAR NEEDED AFTER LOOP

REAL*4 A(20),B(2O),T
REAL*4 TT(20)

DO 22 I = 1,20
TT(I) = A(I)
A(I) = B(I)
B(I) = TT(I)

22 CONTINUE

T = TT(20)

WRITE(6,*) T

Note that this transformation is only valid if the first assignment to the ori
ginal scalar variable is not a conditionally processed statement.

Also be aware that this transformation may not necessarily increase the the
vectorizability of your program and could result in a scalar program that
runs more slowly than the original.

400 VS FORTRAN Version 2 Programming Guide

ILX0128I

Short Form: NESTED SINGLE TRIP LOOP

Long Form: SOME NESTED LOOP CONSISTS OF A SINGLE ITERATION.
VECTORIZATION OF THIS LOOP IS INHIBITED.

Explanation: When the upper and lower bound expressions for a particular
loop are identical constant expressions, vectorization of all outer loops is
restricted.

Note: If two or more copies of a particular DO statement are printed in the
vector report, this message may appear with each copy, even though it may
not be applicable in all cases.

Example 1:

C EXAMPLE

C NESTED SINGLE TRIP LOOP

REAL*4 A(100,100)

DO 11 I = 1,20
D0 11 J = 2*3+5,2*3+5
A(I,J) = A(I,J) ** 2.1

11 CONTINUE

Possible Response: Identify the loop causing the rejection and replace the
DO statement with an assignment statement that sets the loop variable to
the value that was being used as the lower bound.

Modified Example:

C POSSIBLE RESPONSE

C NESTED SINGLE TRIP LOOP

REAL*4 A(10O,10O)

DO 11 I = 1,20
J = (2*3+5)
A(I,J) = A(I,J) ** 2.1

11 CONTINUE

J=J+1

(Note that an extra statement has been added after the loop to insure that
the variable J is set to the correct value in case it is referenced later.)

ILX0129I

Short Form: NESTED NONCONSTANT INDUCTION

Long Form: THE LOOP VARIABLE OF THIS LOOP OR OF SOME NESTED
LOOP AFFECTS THE LOOP VARIABLE OR AN AUXILIARY

INDUCTION VARIABLE USED BY SOME OTHER NESTED

LOOP.

Explanation: When the DO loop parameters of an inner loop are modified by
an outer loop, or when the initialization or iteration of an auxiliary induction
variable is modified by an outer loop, the outer loop is not eligible for
vectorization.

The reason for this restriction is that in these cases, the behavior of the

inner loop depends on the value of the induction variable of the outer loop.
If the outer loop were vectorized, it would be replaced by a sectioning loop.
The induction variable of the sectioning loop would take on a different set of

Appendix F. Vector Report Diagnostic Messages 401

values than those of the original loop, and therefore, the inner loop would
behave differently {and would probably produce different results.)

The same situation can arise with auxiliary induction variables. An auxil-
iary induction variable can be either a user variable that is explicitly incre
mented within a loop or an internal compiler temporary that has been
generated to hold certain subscript computations. When a compiler tempo
rary is used it may be difficult to pinpoint the statement or statements for
which it was generated. Usually, however, they are associated with partic
ularly complex subscript expressions (for example, subscript computations
where two loop variables are multiplied together).

Note: Iftwo or more copies of a particular DO statement are printed in the
vector report, this message may appear with each copy, even though it may
not be applicable in all cases.

Example 1:

C EXAMPLE 1

C NESTED NON-CONSTANT INDUCTION
REAL*4 A(128,128)

DO 10 I = 1,128
DO 10 J = 1,128
A(I,J) = A(I,J) * 2.1

10 CONTINUE

Possible Response 1: For cases where the induction variable of an outer
loop is used as part of the initial or final calculations for an inner DO loop, it
may be possible to rewrite the inner loop so that the range of that loop is
independent of the outer loop. This can sometimes be done by introducing
IF statements inside the loop to exclude the iterations which would not have ' 1
been processed in the original code.

Modified Example 1:

C POSSIBLE RESPONSE 1

C NESTED NON-CONSTANT INDUCTION
REALM A(128,128)

DO 10 I = 1,128
DO 10 J = 1,128

IF (J.LT.I) GOT0 11
A(I,J) = A(I,J) * 2.1

10 C0NTINUE

Be careful when using this transformation. Even though it may increase
vectorization, the additional overhead of the conditional code may result in
increased run time.

Example 2:

C EXAMPLE 2

C NESTED NON-CONSTANT INDUCTION
REAL*4 8(500,10),C(5000)

D0 20 I = 1,500
00 20 J = 1,10
8(1,J) = C(IM) * 2.1

20 CONTINUE

402 VS FORTRAN Version 2 Programming Guide

Possible Response 2: For cases where this message is generated because
of non-linear expressions inside of subscripts, if vectorization of an outer
loop is desired, it may be possible to switch the loops so that the outer loop
is moved to the innermost position.

Modified Example 2:

C POSSIBLE RESPONSE 2

C NESTED NON-CONSTANT INDUCTION

REAL*4 B(500,10),C(5000)

DO 20 J = 1,10
DO 20 I = 1,500
B(I,J) = C(I*J) * 2.1

20 CONTINUE

Be careful when using this transformation since switching loops might
change the results produced by the loops. You must be certain that this is
not the case before you make this type of change.

ILX0130I

Short Form: UNKNOWN UPPER BOUND

Long Form: THE ARRAY(S) <vlist> MAY OR MAY NOT BE INVOLVED IN
DEPENDENCES, DEPENDING ON THE UPPER BOUND OF
SOME CONTAINING LOOP. SINCE THE UPPER BOUND IS

NOT KNOWN, THE COMPILER HAS ASSUMED THAT THESE
ARRAYS CARRY DEPENDENCE(S) IN LOOP(S) AT NESTING
LEVEL(S) <!Gvlist>.

Explanation: This message occurs when a variable is specified as the
upper bound of a loop and when the existence of a dependence depends on
the value of the upper bound. In these cases, dependence will always be
assumed.

Note that sometimes a variable will be defined only once inside the
program unit in which it is used, and will therefore have a constant value.
However, since the compiler performs vectorization analysis on a DO loop
basis, it may not be able to recognize that such a variable is actually a con
stant.

Supplemental Data:

<vlist> is a list of the names of the variables that carry the presumed
dependences.

<levlist> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Appendix F. Vector Report Diagnostic Messages 403

Example 1:

C EXAMPLE

C UNKNOWN UPPER BOUND

REAL*4 A(-20:20)

00 10 I = 1,N
A(I) = A(I-20) * 22.1

10 CONTINUE

Possible Response 1: Identify the loop that carries the dependence and
replace the upper bound of the loop with a compile-time constant, if pos
sible.

Modified Example 1:

C POSSIBLE RESPONSE 1

C UNKNOWN UPPER BOUND

REAL*4 A(-20:20)
PARAMETER (N=20)

DO 10 I = 1,N
A(I) = A(I-20) * 22.1

10 CONTINUE

Possible Response 2: If it can be determined that the indicated depend
ences will not occur at run time, it is possible to cause the compiler to
ignore them by using the IGNORE RECRDEPS directive with the loops at the
indicated levels.

Modified Example 2:

OPROCESS DIRECTIVE('DIR')
C POSSIBLE RESPONSE 2

C UNKNOWN UPPER BOUND

REAL*4 A(-20:20)

*DIR IGNORE RECRDEPS

DO .10 I = 1,N
A(I) = A(I-20) * 22.1

10 CONTINUE

Care should be used in applying IGNORE RECRDEPS since if this directive
is used and if the dependences really do exist, wrong results may be
produced. In this case, the directive is correct only if the value of the vari
able N is always loss than 21. See the section "Using Vector Directives" on
page 253 for details on how to correctly specify and verify this directive.

404 VS FORTRAN Version 2 Programming Guide

Messages for Unsupportable Constructs (UNSP)
These messages indicate usages of data types and constructs for which no
support (either in the compiler or in the vector hardware) currently exists.

The vectorization status flag used for these messages is UNSP.

ILX0133I

Short Form: IMPLICIT LIBRARY FUNCTION

Long Form: THE IMPLICITLY CALLED MATHEMATICAL
SUBPROGRAM(S) <flist> HAVE BEEN USED. THESE
SUBPROGRAMS ARE NOT SUPPORTED FOR VECTOR.

Explanation:

Indicates that a statement requires the use of an implicitly called mathemat
ical library subprogram that use REAL*16 or COMPLEX*32 arguments
(FQXPQ#, PQXP2#, or FCQXI#). These subprograms are outlined in VS
FORTRAN Version 2 Language and Library Reference.

Supplemental Data:

<flist> is a list consisting of names of the entry points for each implicit
subprogram that has been used.

Example:

C EXAMPLE

C IMPLICIT LIBRARY FUNCTION

REAL*8 8(128),C(128)

00 19 I = 1,128
8(1) = QEXTD(C(I)) ** 2.1

19 CONTINUE

In this example, the library subroutine FQXPQ^ is used to calculate the
exponentiation of an extended precision REAL value.

• ILX0134I

Short Form: LOGICAL*! DATA

Long Form: THE LOGICAL*! VARIABLE(S) <vllst> CANNOT BE
VECTORIZED.

Explanation: Indicates the presence of LOGICAL*! data.

Supplemental Data:

<vlist> is a list of the names of the variables with the unsupportable
data type.

Possible Response: Replace the indicated variables with L0GICAL*4 data
whenever possible.

Appendix F. Vector Report Diagnostic Messages 405

ILX0135I

Short Form: UNSUPPORTABLE DEPENDENCE

Long Form: THIS CODE IS CONSIDERED UNSUPPORTABLE BECAUSE
IT IS LINKED TO SOME UNSUPPORTABLE STATEMENT(S)
THROUGH MUTUAL DEPENDENCES.

Explanation: This message is produced when a statement does not contain
any unsupportable constructs but is forced into an unsupportable loop
because it is tied to some other unsupportable statement through recurrent
dependences. These dependences can come about in a number of ways:

— The indicated statement may use a scalar variable that is also used in
some other statement that contains an unsupportable construct.

— There may be some control flow that creates a control dependence that
involves both the indicated statement and some unsupportable state
ment.

— There may be a dependence between the indicated statement and some
unsupportable statement that came about because the two statements
share some common subexpression.

Example:

C EXAMPLE

C UNSUPPORTABLE DEPENDENCE

REAL*8 A(512),8(512),C(512)
REAL*16 D(512)

DO 10 I = 1,512
A(I) = B(I)/C(I) ^
D(I) = B([)/C(I)

10 CONTINUE

In this example, the second statement uses the REAL*16 array, D, and
therefore is not eligible for vectorizalion, while the first statement would
normally be vectorizable. However, the two statements share a common
sub-expression, and during vectorization analysis, this loop would appear to
the compiler as if it were written:

DO 10 I = 1,512
.temp = B(I)/C(I)
A(I) = .temp
D(I) = .temp

10 CONTINUE

where ".temp " is a scalar temporary generated by the compiler. In order to
vectorize the first statement, it would be necessary to split this loop into two
separate loops. However, the presence of the scalar temporary prevents
the compiler from doing this.

Possible Response: If it is possible to replace the unsupportable part of the
loop with equivalent supportable constructs, do so.

Otherwise, try to separate the vectorizable statements which are linked to
unsupportable statements by restructuring the original loop into two or
more loops.

406 VS FORTRAN Version 2 Programming Guide

Modified Example:

C POSSIBLE RESPONSE

C UNSUPPORTABLE DEPENDENCE

REAL*8 A(512),B(512),0(512)
REAL*16 D(512)

DO 10 I = 1,512
A(I) = B(I)/C(I)

10 CONTINUE

DO 11 I = 1,512
D(I) = B(I)/C(I)

11 CONTINUE

This type of restructuring should only be done ifyou are absolutely certain
that it will not alter the results produced by your program.

ILX0136i

Short Form: CONDITIONAL INTEGER*2 DATA

Long Form: THE USE OF INTEGER*2 VARIABLE(S) <vlist> IN CONDI
TIONALLY EXECUTED CODE CANNOT BE VECTORIZED.

Explanation: Indicates the presence of INTEGER*2 data in conditionally
processed code.

Note: Some statements that affect the flow of control within a loop may not
be reproduced in the vector report listing produced by the
VECTOR(REPORT(XLIST)) option. It may be necessary to refer to the source

^0^ listing or to the output produced by the VECTOR(REPORT(SLIST)) option to
f determine the correct control flow.

Supplemental Data:

<vlist> is a list of the names of the variables with the unsupportable
data type

Example:

C EXAMPLE

C CONDITIONAL INTEGER*2 DATA
INTEGER*4 A(512)
INTEGER*2 B(512)

DO 9 I = 1,512
IF (A(I) .LT. 128) B(I) = B(I) ** 2.1

9 CONTINUE

In this case, the array B cannot be vectorized because it is an INTEGER*2
variable that is referenced under the control of an IF statement.

Possible Response: Replace the indicated variables with INTEGER*4 data
whenever possible.

Appendix F. Vector Report Diagnostic Messages 407

• ILX0137I

Short Form: EXTENDED PRECISION DATA

Long Form: THE EXTENDED PRECISION VARIABLE(S) <vlist>
CANNOT BE VECTORIZED.

Explanation: Indicates the presence of REAL*16 and COMPLEX*32 data.

Note: Extended precision data may occur as the result of the specification
of the AUTODBL option.

Supplemental Data:

<vllst> is a list of the names of the variables with the unsupportable
data type

Possible Response: Replace the indicated variables with REAL*8 or
C0MPLEX*16 data whenever possible.

ILX0138I

Short Form: CONDITIONAL NONINDUCTIVE SUB

Long Form: THE ARRAY(S) <vlist> ARE USED IN CONDITIONALLY
EXECUTED CODE AND HAVE NON-INDUCTIVE SUBSCRIPT

EXPRESSIONS.

Explanation: Indicates the use of non-inductive subscript expressions that
occur in conditionally processed code. A non-inductive expression is any
expression that is not a linear function of some loop induction variable, for
example, indirect addressing, as in "A{INDEX(K))," or diagonal traversal of
an array, as in "DIAG(K,K)."

Note: Some statements that affect the flow of control within a loop may not
be reproduced in the vector report listing produced by the
VECTOR{REPORT(XLIST)) option. It may be necessary to refer to the source
listing or to the output produced by the VECTOR{REPORT(SLIST)) option to
determine the correct control flow.

Supplemental Data:

<vllst> is a list of the names of the arrays that use non-inductive sub
scripts.

Example 1:

C EXAMPLE 1

C CONDITIONAL NON-INDUCTIVE SUB

REAL*4 8(200),C(200)
INTEGER*4 INDEX(2O0)

DO 10 I = 2,128
IF (8(1) .GT. 500) C(INDEX(I)) = 0.0

10 CONTINUE

Possible Response 1: For cases involving indirect addressing, it may be
possible to introduce additional arrays to hold intermediate results. The
loop should be transformed as follows:

— Select elements of the original array using the non-inductive subscript
expression and copy them into a new array.

408 VS FORTRAN Version 2 Programming Guide

— Replace the non-inductive references to the original array with refer
ences to the corresponding elements of the new array.

— Copy the contents of the new array back into the correct positions in the
original.

Modified Example 1:

C POSSIBLE RESPONSE 1

C CONDITIONAL NON-INDUCTIVE SUB
REALM B(200),C(200),NEW_C(200)
INTEGER*4 INDEX(200)

DO 9 I = 2,128
NEW C(I) = C(INDEX(I))

9 CONTINUE
DO 10 I = 2,128
IF (B(I) .GT. 500) NEW_C(I) =0.0

10 CONTINUE

DO 11 I = 2,128
C(INDEX(I)) = NEW_C(I)

11 CONTINUE

Note that this should only be done if it is absolutely certain that the non-
inductive subscript expression never selects any element more than once.
You should also be aware that due to the overhead involved in copying
data, it is possible that no performance benefits will be achieved, even if
the transformation does result in increased vectorization.

Example 2:

C EXAMPLE 2

C CONDITIONAL NON-INDUCTIVE SUB
REAL*4 X(50,50),Y(50)

DO 20 I = 1,50
IF (Y(I) .LT. 0.0) X(I,I) = X(I,I) ** 2.1

20 CONTINUE

Possible Response 2: For cases of diagonal access to an array, it may also
be possible to equivalence the original array to a one-dimensional array
where the elements that were part of a diagonal in the original are now
within a single dimension and are separated by a fixed number of elements.
These elements can now be referenced through inductive subscript
expressions.

Modified Example 2:

C POSSIBLE RESPONSE 2

C CONDITIONAL NON-INDUCTIVE SUB
REAL*4 X(50,50),Y(50),NEW_X(2500)
EQUIVALENCE (NEW_X(1),X(1,1))

J = 1

DO 20 I = 1,50
IF (Y(I) .LT. 0.0) NEW_X(J) = NEW_X(J) ** 2.1
J = J + 51

20 CONTINUE

Appendix F. Vector Report Diagnostic Messages 409

ILX0139I

Short Form: RESTRICTED NONINDUCTIVE SUB

Long Form: THE ARRAY(S) <vllst> HAVE LOGICAL*! OR INTEGER*2
DATA TYPES AND HAVE NON-INDUCTIVE SUBSCRIPT

EXPRESSIONS.

Explanation: Indicates the use of non-inductive subscript expressions that
occur in arrays with data types of INTEGER*2 and LOGICAL*!. A non-
inductive expression is any expression that is not a linear function of some
loop induction variable, for example, indirect addressing, as in
"A(INDEX(K))," or diagonal traversal of an array, as in "DIAG(K,K)."

Supplemental Data:

<vlist> is a list of the names of the arrays that use non-inductive sub
scripts.

Example 1:

C EXAMPLE 1

C RESTRICTED NON-INDUCTIVE SUB

INTEGER*2 C(128)
INTEGER*4 INDEX(128)

DO 10 I = 2,128
C(INDEX(I)) = 0

10 CONTINUE

Possible Response 1: If it is possible to replace the original arrays with
arrays that are INTEGER*4 or L0GICAL*4, do so.

Otherwise, for cases involving indirect addressing, it may be possible to
introduce additional arrays to hold intermediate results. The loop should be
transformed as follows:

— Select elements of the original array using the non-inductive subscript
expression and copy them into a new array.

— Replace the non-inductive references to the original array with refer
ences to the corresponding elements of the new array.

— Copy the contents of the new array back into the correct positions in the
original.

410 VS FORTRAN Version 2 Programming Guide

Modified Example 1:

C POSSIBLE RESPONSE 1

C RESTRICTED NON-INDUCTIVE SUB

INTEGER*2 C(128),NEW_C(128)
INTEGERS INDEX(128)

DO 9 I = 2,128
NEW_C(I) = C(INDEX(I))

9 CONTINUE

DO 10 I = 2,128
NEW_C(I) = 0

10 CONTINUE

DO 11 I = 2,128
C(INDEX(I)) = NEW_C(I)

11 CONTINUE

This should only be done if it is absolutely certain that the non-inductive
subscript expression never selects any element more than once. You
should also be aware that due to the overhead involved in copying data, it
is possible that no performance benefits will be achieved, even if the trans
formation does result in increased vectorization.

Example 2:

C EXAMPLE 2

C RESTRICTED NON-INDUCTIVE SUB

INTEGER*2 A(128,128)

DO 20 I = 2,128
A(I,I) = A(I,I) * 2.

20 CONTINUE

Possible Response 2; For cases of diagonal access to an array, it may also
bo possible to equivalence the original array to a one-dimensional array
where the elements that were part of a diagonal in the original are now
within a single dimension and are separated by a fixed number of elements.
These elements can be referenced through inductive subscript expressions.

Modified Example 2:

C POSSIBLE RESPONSE 2

C RESTRICTED NON-INDUCTIVE SUB

INTEGER*2 A(128,128),NEW_A(128*128)
EQUIVALENCE (A(l,l),NEW_A(1))

J = 1

DO 20 I = 2,128
NEW_A(J) = NEW_A(J) * 2.1
J = J + 129

20 CONTINUE

Appendix F. Vector Report Diagnostic Messages 411

ILX0140I

Short Form: IN-LINE INTRINSIC FUNCTION

Long Form: NO VECTOR SUPPORT EXISTS FOR THE IN-LINE
INTRINSIC FUNCTION(S) <flist>.

Explanation: Indicates the presence of selected Intrinsic functions that
cannot be vectorized. This set of functions includes the following:

DIM MOD SIGN NINT ANINT

Supplemental Data:

<flist> is a list of the names of the functions involved.

ILX0142I

Short Form: RELATIONAL EXPRESSION

Long Form: RELATIONAL EXPRESSIONS ARE NOT ELIGIBLE FOR
VECTORIZATION.

Explanation: Indicates the presence of relational expressions in an assign
ment statement.

Example:

C EXAt-IPLE

C RELATIONAL EXPRESSION

L0GICAL*4 L(128)
INTEGER*4 B(128),C(128)

DO 10 I = 1,128
L(I) = (B(I) .LI. C(I))

10 CONTINUE

Possible Response: If the relational expression is being used in an assign
ment statement to define some logical variable, replace the assignment
with a logical IF statement that tests the expression and sets the variable to
.TRUE, if the test succeeds and to .FALSE, if it fails.

Modified Example:

C POSSIBLE RESPONSE

C RELATIONAL EXPRESSION

L0GICAL*4 L(128)
INTEGER*4 B(128),C(128)

DO 10 I = 1,128
IF (B(I) .LT. C(I)) THEN

L(I) = .TRUE.
ELSE

L(I) = .FALSE.
ENDIF

10 CONTINUE

412 VS FORTRAN Version 2 Programming Guide

ILX0143I

Short Form: NOINTRINSIC OPTION IN EFFECT

Long Form: THE INTRINSIC FUNCTION(S) <flist> HAVE BEEN USED.
THE NOINTRINSIC OPTION INHIBITS VECTORIZATION OF

THIS CODE.

Explanation: Indicates the presence of intrinsic functions that cannot be
vectorized because the VECTOR(NOINTRINSIC) option has been specified.

Supplemental Data:

<fllst> is a list of the names of the functions involved.

Possible Response: Specify the VECTOR{INTRINSIC) option on an
©PROCESS card or when invoking the compiler.

Note: If you are using the VS FORTRAN Version 1 Library, the
VECTOR{INTRINSIC) option may cause your program to produce different
answers after vectorization. This is because there are no vector functions

in the VS FORTRAN Version 1 Library. When intrinsic functions are
vectorized, subprograms from the Version 2 Library will always be invoked,
although the equivalent Version 1 subprograms would be used when
running the program in scalar mode. Since the Version 2 Library produces
more accurate results than does the Version 1 Library, vector and scalar
processing of the same program may give slightly different answers in this
situation.

ILX0144I

Short Form: MISALIGNED DATA

Long Form: THE VARIABLE(S) <vlist> HAVE STORAGE ALIGNMENTS
THAT CONFLICT WITH THEIR DATA TYPES.

Explanation: Indicates the usage of conflicting storage alignments. Refer
ences to arrays containing misaligned data should not be vectorized since
they would produce alignment exceptions when the program is run.

Supplemental Data:

<vlist> is a list of the names of the variables with the conflicting align
ments.

Example:

C EXAMPLE

C MISALIGNED DATA

REAL*4 A(128),B(128)
INTEGER*2 DUMMY

COMMON // A,DUMMY,B

DO 10 I = 1,128
A(I) = B(I) ** 2.1

10 C0NTINUE

Possible Response: Modify the declarations so as to assure proper align
ment whenever possible.

Appendix F. Vector Report Diagnostic Messages 413

Modified Example:

C POSSIBLE RESPONSE

C MISALIGNED DATA

REAL*4 A(128),8(128)
INTEGER*2 DUMMY

COMMON II A,8,DUMMY

DO 10 I = 1,128
A(I) = 8(1) ** 2.1

10 CONTINUE

ILX0146I

Short Form: UNSUPPORTED CONSTRUCT

Long Form: NO VECTOR SUPPORT EXISTS FOR THIS OCCURRENCE OF
THE <fllst> CONSTRUCT.

Explanation:

Indicates that a particular occurrence of a MAX or MIN intrinsic function ref
erence cannot be vectorized because of the complexity or ordering of its
arguments.

Supplemental Data:

<fllst> is the name of the function involved.

Possible Response: This happens when a scalar variable appears both on
the left side of the equal sign and as a MAX and MIN intrinsic function argu
ment in the same Fortran statement.

If it is possible, simplify and reorder the arguments. Try to make the scalar
variable appear as the first argument of the MAX or MIN reference.

Example:

Will not vectorize:

CC = HAX(HAX(A(I),CC),2.0,B(I))

Will vectorize:

CC = HAX(CC,A(I),2.0,8(I))

ILX0147I

Short Form: UNSUPPORTED INTRINSIC FUNC

Long Form: THE INTRINSIC FUNCTION(S) <fllst> DO NOT HAVE
VECTOR OR SIMULATED VECTOR VERSIONS.

Explanation: Indicates that the compiler has found a call to an external
intrinsic function that does not have a vector or simulated vector version.

These are the functions that take REAL*16, COMPLEX*32, and CHARACTER
arguments.

Supplemental Data:

<fllst> is a list of the names of the functions that are not supported.

414 VS FORTRAN Version 2 Programming Guide

Messages for Statements which Can Be Vectorized (ELIG or VECT)
' The vectorizatlon status flag used for these messages is either ELIG or VECT.

ILX0148I

Short Form: SCALAR FASTER THAN VECTOR

Long Form: CODE THAT WAS ELIGIBLE TO EXECUTE IN VECTOR
MODE WAS DETERMINED TO EXECUTE MORE EFFI

CIENTLY IN SCALAR.

Explanation: IdentiOes loops that were eligible for vectorization but did not
vectorize at all because the compiler has determined that the cost of vector
processing exceeds the cost of scalar processing.

Example:

C EXAMPLE

C SCALAR FASTER THAN VECTOR
REAL*4 A(20,20)

DO 10 I = 1,20
A(I,I) = A(I,I) ** 2.1

10 CONTINUE

Possible Response: In some cases, the estimates used by the compiler for
comparing vector and scalar run limes may not be accurate. Ifyou find that
the compiler has misjudged the profitability of vectorizing a particular loop,
you can use the PREFER VECTOR directive to override the decision to
process this loop in scalar.

Modified Example:

ePROCESS DIRECTIVE('DIR')
C POSSIBLE RESPONSE

C SCALAR FASTER THAN VECTOR
REAL*4 A(20,20)

*DIR PREFER VECTOR

DO 10 I = 1,20
A(I,I) = A(I,I) ** 2.1

10 CONTINUE

Note: Do not rely on "intuition" to determine whether or not PREFER
VECTOR should be used. Always verify the appropriateness of its use by
taking direct moasuremonis of the run times of the affected loop, both with
and without the use of the directive.

• ILX0150I

Short Form: VECTOR SUM REDUCTION

Long Form: VECTORIZATION WAS DONE USING SUM OR PRODUCT
REDUCTION ON THE VARIABLE(S) <vllst>. RESULTS
MAY DIFFER FROM SCALAR CODE.

Explanation: Indicates when a statement is vectorized using a sum
reduction operation. Since the vector reduction instructions cause partial
results to be accumulated in an sequence different from the sequence used
for an equivalent scalar program, this may result in answers that are dif
ferent from those obtained by running the loop in scalar mode.

Appendix F. Vector Report Diagnostic Messages 415

Supplemental Data:

<vllst> is a list of names of variables that are used as accumulators In

statements vectorized via sum reduction.

Example:

C EXAMPLE

C VECTOR SUM REDUCTION

REAL*4 SUM, A(128)

SUM = 0.0

DO 10 I = 1,128
SUM = SUM + A(I)

10 CONTINUE

Possible Response: If there is concern for the consistency of program
results between vectorized and non-vectorized programs, the vectorization
of reduction functions can be inhibited by specifying the VECTOR{NORED)
option on an ©PROCESS card or when invoking the compiler.

ILX0151I

Short Form: VECTOR INTRINSIC FUNCTION

Long Form: THE INTRINSIC FUNCTION(S) <fllst> HAVE BEEN
VECTORIZED.

Explanation:

Indicates when statements are vectorized using vector intrinsic functions.

Note: If you are using the VS FORTRAN Version 1 Library, the vectorization
of intrinsic functions may cause your program to produce different answers
after vectorization. This is because there are no vector functions in the VS

FORTRAN Version 1 Library. When intrinsic functions are vectorized, sub
programs from the Version 2 Library will always be invoked, although the
equivalent Version 1 subprograms would be used when running the
program in scalar mode. Since the Version 2 Library produces more accu
rate results than does the Version 1 Library, vector and scalar processing of
the same program may give slightly different answers in this situation.

Supplemental Data:

<fllst> is a list of the names of the intrinsic functions that have been

vectorized.

Possible Response: If there is concern for the consistency of program
results between vectorized and non-vectorized programs when the Version
1 service subroutines are being used, the vectorization of intrinsic functions
can be inhibited by specifying the VECTOR(NOINTRINSIC) option on an

©PROCESS card or when invoking the compiler.

ILX0152I

Short Form: VECTOR IMPLICIT ROUTINE

Long Form: THE IMPLICITLY CALLED ROUTINE(S) <flist> HAVE
BEEN VECTORIZED.

Explanation:

Indicates when statements are vectorized using vector versions of implicitly
called routines. (These routines are processed as the result of certain nota-

416 VS FORTRAN Version 2 Programming Guide

tion appearing in a source statement. For example, if a REAL*4 variable is
raised to a REAL*4 power, the compiler generates a reference to VRXPR#,
the entry name for a routine that raises a real number to a real power.)

Note: Ifyou are using the VS FORTRAN Version 1 Library, the vectorization
of intrinsic functions may cause your program to produce different answers
after vectorization. This is because there are no vector functions in the VS

FORTRAN Version 1 Library. When intrinsic functions are vectorized, sub
programs from the Version 2 Library will always be invoked, although the
equivalent Version 1 subprograms would be used when running the
program in scalar mode. Since the Version 2 Library produces more accu
rate results than does the Version 1 Library, vector and scalar processing of
the same program may give slightly different answers in this situation.

Supplemental Data:

<flist> is a list of the names of the implicitly called routines that have
been vectorized.

Example:

C EXAMPLE

C VECTOR IMPLICIT ROUTINE

REAL*4 A(128)

DO 10 I = 1,128
A(I) = A(I) ** 2.1

10 CONTINUE

In this example, the compiler generates a call to the library subroutine
VRXPR^ to perform the exponentiation operation.

Possible Response: If there is concern for the consistency of program
results between vectorized and non-vectorized programs when the Version
1 service subroutines are being used, the vectorization of these routines
can be inhibited by specifying the VECTOR(NOINTRINSIC) option on an
©PROCESS card or when invoking the compiler.

Listing Clarification Messages (SCAL or VECT)
The vectorization status flag used for these messages is either SCAL or VECT.

ILX0156I

Short Form: MASKED VECTOR STATEMENT

Long Form: VECTORIZATION WAS PERFORMED ON CONDITIONALLY

EXECUTED CODE. VECTOR MASK MODE HAS BEEN

USED. THE VECTOR REPORT LISTING MAY FAIL TO

INDICATE THE BRANCH STATEMENT(S) THAT AFFECT
THE EXECUTION OF THIS REGION.

Explanation: Indicates when a statement or group of statements are proc
essed in mask mode. This message is intended to help clarify the program
listing that is produced by the VECTOR{REPORT{XLIST)) option. This is nec
essary because information about the branch structure in a loop is not
always reproduced when that loop is printed in the report.

In particular, the only conditional statements that are printed are logical IF
statements that perform conditional assignments. No branch statements
and no block IF constructs appear in the report.

Appendix F. Vector Report Diagnostic Messages 417

You should refer to the source listing or to the listing produced by the
VECTOR{REPORT{SLIST)) option in order to identify the control flow con
structs that can affect the way the code being flagged by this message runs.

Example:

C EXAMPLE

C MASKED VECTOR STATEMENT
REAL*4 A(128),B(128)

DO 10 I = 1,128
IF (A(I).LT.O.0) GOTO 5
B(I) = 1.1
GOTO 6

5 B(I) = 2.2
6 A(I) = 0.0

10 CONTINUE

The GOTO statements in the above loop will not be printed in the vector
report output produced by the VECTOR{REPORT(XLIST)) option.

ILX0158I

Short Form: CONDITIONAL SCALAR CODE

Long Form: THIS CODE IS CONDITIONALLY EXECUTED. THE VECTOR
REPORT LISTING MAY FAIL TO INDICATE THE BRANCH

STATEMENT(S) THAT AFFECT THE EXECUTION OF THIS
REGION.

Explanation: Indicates when a statement or group of statements that has
not been vectorized is part of a conditionally processed region of code.
This message is intended to help clarify the program listing that is
produced by the VECTOR{REPORT(XLIST)) option. This is necessary
because information about the branch structure in a loop is not always
reproduced when that loop is printed in the report.

In particular, the only conditional statements that are printed are logical IF
statements that perform conditional assignments. No branch statements
and no block IF constructs appear in the report.

You should refer to the source listing or to the listing produced by the
VECTOR(REPORT{SLIST)) option in order to identify the control flow con
structs that can affect the way the code being flagged by this message runs.

Example:

C EXAMPLE

C CONDITIONAL SCALAR CODE

REAL*4 A(128),B{128)

DO 10 I = 2,128
IF (A(I-1).LT.0.0) GOTO 5
B(I) = B(I-l)
GOTO 6

5 B(I) = B(I+1)
6 A(I)=B(I)

10 CONTINUE

The GOTO statements in the above loop will not be printed in the vector
report output produced by the VECTOR(REPORT{XLIST)) option.

418 VS FORTRAN Version 2 Programming Guide

Vector Directive Messages (VDiR)
These messages are used to describe the effects of vector directives on the
vectorization process. They identify statements and DO loops to which direc
tives have been applied and also indicate whether or not the directives affected
the outcome of vectorization.

The vectorization status flag used for these messages is VDIR.

ILX0165I

Short Form: "PREFER SCALAR" USED

Long Form: THIS LOOP WILL BE EXECUTED IN SCALAR BECAUSE OF

THE USE OF A "PREFER SCALAR " DIRECTIVE.

Explanation: This message identifies loops to which PREFER SCALAR
directives have been applied. When this directive is specified, a loop that is
considered eligible for vectorization by the compiler will not be vectorized.
It should be used only when an analysis of the run time performance of the
loop has determined that the loop runs faster when the directive is present.

Example:

EPROCESS DIRECTIVE('DIR')
C EXAMPLE

C PREFER SCALAR USED

REAL*4 A(128,128)

*DIR PREFER SCALAR

DO 10 I = 1,30
A(I,I) = A(I,I) ** 2.1

10 CONTINUE

Possible Response: If the program has been modified since the directive
was initially coded, or if the program is being compiled on a release of the
compiler different from the one on which it was originally developed, it may
be important to verify the appropriateness of this directive.

First check whether the loop would be chosen for scalar processing if the
directive were not enabled. If so, the directive is redundant and should be
removed.

Otherwise, analyze the run time of the loop with and without this directive
specified, and determine whether or not the performance is better when this
directive is used.

• ILX0167I

Short Form: "PREFER VECTOR " USED

Long Form: A "PREFER VECTOR" DIRECTIVE HAS BEEN SPECIFIED
FOR THIS LOOP.

Explanation: This message identifies loops to which PREFER VECTOR direc
tives have been successfully applied. (PREFER VECTOR is successful only
if the loop to which it is applied is eligible for vectorization and if no nested
eligible loop also has PREFER VECTOR specified.) It should be used only
when an analysis of the run time performance of the loop has determined
that the loop runs faster when the directive is present.

Appendix F. Vector Report Diagnostic Messages 419

Note that after loop distribution has taken place, it is possible that a
PREFER VECTOR directive is successful for part of the code within a loop,
but is unsuccessful for the rest.

Example:

0PROCESS DIRECTIVE('DIR')
C EXAMPLE

C PREFER VECTOR USED

REAL*4 A(10,10)

*DIR PREFER VECTOR

DO 10 I = 1,N
A(I,I) = A(I,I) * 2.1

10 CONTINUE

Possible Response: If the program has been modified since the directive
was initially coded or if the program is being compiled on a release of the
compiler different from the one on which it was originally developed, it may
be important to verify the appropriateness of this directive.

First check whether the loop would be chosen for vector processing if the
directive were not enabled. If so. the directive is redundant and should be
removed.

Otherwise, analyze the run time of the loop with and without this directive
specified, and determine whether or not the performance is better when this
directive is used.

ILX0168I

Short Form: INAPPLICABLE "PREFER VECTOR"

Long Form: A "PREFER VECTOR" DIRECTIVE HAS BEEN SPECIFIED
FOR THIS LOOP BUT COULD NOT BE HONORED

BECAUSE THE LOOP WAS NOT ELIGIBLE FOR

VECTORIZATION. THE DIRECTIVE HAS BEEN IGNORED.

Explanation: This message identifies loops for which inapplicable PREFER
VECTOR directives have been specified. {PREFER VECTOR is inapplicable if
the loop contains a recurrence or an unsupportable construct.)

Note that after loop distribution has taken place, it is possible that a
PREFER VECTOR directive is inapplicable for part of the code within a loop,
but is successful for the rest.

Example:

©PROCESS DIRECTIVE('DIR')
C EXAMPLE

C INAPPLICABLE PREFER VECTOR

REAL*4 A(128,128),8(128)

*DIR PREFER VECTOR

DO 10 I = 2,128
A(I,I) = A(I,I) * 2.1
8(1) = 8(1-1)

10 CONTINUE

The second statement in this loop cannot be vectorized because it forms a
recurrence. Therefore, the PREFER VECTOR directive cannot be applied to
this statement. The directive is still applicable to the first statement in the
loop.

420 VS FORTRAN Version 2 Programming Guide

Possible Response: If the program has been modified since the directive
was initially coded or if the program is being compiled on a release of the
compiler different from the one on which it was originally developed, it may
be important to verify the appropriateness of this directive.

It should first be determined whether the directive has any effect on the
vectorization of other parts of the original loop. If not, it is useless and
should be removed from the program.

Otherwise, analyze the run time of the loop with and without this directive
specified, and determine whether or not the performance is better when this
directive is used.

ILX0169I

Short Form: OVERRIDDEN "PREFER VECTOR"

Long Form: A "PREFER VECTOR" DIRECTIVE HAS BEEN SPECIFIED

FOR THIS LOOP BUT COULD NOT BE HONORED

BECAUSE "PREFER VECTOR" WAS ALSO SPECIFIED FOR

SOME ELIGIBLE NESTED LOOP. THE DIRECTIVE HAS

BEEN IGNORED.

Explanation: This message identifies loops for which overridden PREFER
VECTOR directives were specified. (PREFER VECTOR will be overridden if it
is specified for more than one mutually nested eligible loop. In this case
only the innermost PREFER VECTOR will be successful.)

Note that after loop distribution has taken place, it is possible that a
PREFER VECTOR directive is overridden for part of the code within a loop,
but is successful for the rest.

Example:

(3PR0CESS DIRECTIVE('DIR')
C EXAMPLE

C OVERRIDDEN PREFER VECTOR

REAL*4 A(128,128)

*DIR PREFER VECTOR

DO 10 I = 1,128
*DIR PREFER VECTOR

DO 10 J = 1,128
A(I,J) = A(I,J) * 2.1

10 CONTINUE

Only one loop in this nest can be vectorized. The PREFER VECTOR direc
tive used on the outer loop will be overridden by the PREFER VECTOR used
on the inner loop.

Possible Response: If the program has been modified since the directive
was initially coded or if the program is being compiled on a release of the
compiler different from the one on which it was originally developed, it may
be important to verify the appropriateness of this directive.

It should first be determined whether the directive has any effect on the
vectorization of other parts of the original loop. If not, it is useless and
should be removed from the program.

Otherwise, analyze the run time of the loop with and without this directive
specified, and determine whether or not the performance is better when this
directive is used.

Appendix F. Vector Report Diagnostic Messages 421

ILX0170I

Short Form: "ASSUME COUNT" USED

Long Form: THE ITERATION COUNT OFTHIS LOOP WAS SPECIFIED
AS "<n>" BY AN "ASSUME COUNT" DIRECTIVE.

Explanation: This message identifies loops for which successful ASSUME
COUNT directives have been specified. {ASSUME COUNT is successful if
the iteration count of the loop to which it applies cannot be determined at
compile time.) This directive is used to help the compilerdecide whether
vectorization of a particular loop will result in a performance improvement.

Supplemental Data:

<n> is the value of the loop iteration count that has been used for
vector cost analysis.

Example 1:

(3PR0CESS DIRECTIVE('DIR')
C EXAMPLE

C ASSUME COUNT USED
REAL*4 A(128,128)

*DIR ASSUME COUNT(10)
DO 10 I = 1,N

A(I,I) = A(I,I) ** 2.1
10 CONTINUE

Possible Response: If the program or data has undergone revisions since
ASSUME COUNT was initially coded, it may be necessary to verify its cor
rectness.

To do this, conduct a run time analysis of the loop to determine whether the
number specified by the directive approximates the average iteration count
observed for the processing loop.

ILX0171I

Short Form: INVALID "ASSUME COUNT" USED

Long Form: AN "ASSUME COUNT" DIRECTIVE HAS BEEN SPECIFIED
FOR THIS LOOP. THE COMPILER HAS DETERMINED

THAT THE ACTUAL ITERATION COUNT IS "<n>". THE

DIRECTIVE HAS BEEN IGNORED.

Explanation: This message identifies loops for which invalid ASSUME
COUNT vector directives have been specified. (ASSUME COUNT is invalid if
the iteration count of the loop to which it applies can be determined at
compile time.) An invalid ASSUME COUNT directive will have no effect on
the compilation process.

Supplemental Data:

<n> is the value of the loop iteration count that has been used for
vector cost analysis.

422 VS FORTRAN Version 2 Programming Guide

Example:

0PROCESS DIRECTIVE('DIR')
C EXAMPLE

C INVALID ASSUME COUNT

REAL*4 A(128,128)
PARAMETER (N=128)

*DIR ASSUME CGUNT(10)
DO 10 I = 1,N

A(I,I) = A(I,I) ** 2.1
10 CONTINUE

Possible Response: Consider removing the directive from the code.

ILX0172I

Short Form: "IGNORE RECROEPS" USED

Long Form: AN "IGNORE RECRDEPS" DIRECTIVE HAS BEEN SPECI
FIED FOR THIS LOOP.

Explanation: This message identifies loops to which IGNORE RECRDEPS
directives have been applied. It does not necessarily imply that the direc
tive had an effect on the vectorization of the loop, although this will often be
the case.

Example:

(EPROCESS DIRECTIVE('DIR')
C EXAMPLE

C IGNORE RECRDEPS USED

COMMON // N
REAL*4 A(128)

*DIR IGNORE RECRDEPS

DO 10 I = 64,128
A(I) = A(I-N) ** 2.1

10 CONTINUE

Possible Response: Determine whether the directive affects vectorization of
the loop. If not, it should be removed to avoid unexpected side effects in
the event that the loop is modified in the future.

If the directive does alter vectorization, try to determine why this occurred,
that is, determine which potential dependences have been ignored because
of the directive. (These dependences are identified by other vector report
messages that appear with the statements within a loop.)

If it is possible to determine the run time conditions under which these
potential dependences actually arise, code should be inserted prior to the
loop to check for these conditions and to issue a message and/or stop the
program when these conditions are met. (In this case, the dependence will
exist if the value of the variable N is between 1 and 64.)

Appendix F. Vector Report Diagnostic Messages 423

Modified Example:

EPROCESS DIRECTIVE('DIR')
C POSSIBLE RESPONSE

C IGNORE RECRDEPS USED

COMMON // N
REAL*4 A(128)

IF (N.GE.l .AND. N.LE.64) THEN
PRINT *,'INCORRECT IGNORE DIRECTIVE'
STOP

ENDIF

*DIR IGNORE RECRDEPS

DO 10 I = 64,128
A(I) = A(I-N) ** 2.1

10 CONTINUE

ILX0174I

Short Form: "IGNORE EQUDEPS" USED

Long Form: AN "IGNORE EQUDEPS" DIRECTIVE HAS BEEN SPECIFIED
FOR THIS LOOP.

Explanation: This message identifies loops to which IGNORE EQUDEPS
directives have been applied. It does not necessarily imply that the direc
tive had an effect on the vectorization of the loop, although this will often be
the case.

Example 1:

EPROCESS DIRECTIVE('DIR')
C EXAMPLE

C IGNORE EQUDEPS USED
EQUIVALENCE (A,B)
REAL*4 A(128),B(128)

*DIR IGNORE EQUDEPS
DO 10 I = 1,128

A(I) = B(I) ** 2.1
10 CONTINUE

Possible Response: Determine whether the directive affects vectorization of
the loop. If not, it should be removed to avoid unexpected side effects in
the event that the loop is modified in the future.

If the directive does alter vectorization, try to determine why this occurs,
that is, determine which potential dependences have been ignored because
of the directive. (These dependences are identified by other vector report
messages that appear with the statements within a loop.)

Study the mapping of the variables within the equivalence group and the
subscript calculations to determine whether two different variables may ref
erence a single storage location when the loop is processed. If so, the
directive should be removed.

424 VS FORTRAN Version 2 Programming Guide

• ILX0175I

Short Form: "IGNORE RECRDEPS EQUDEPS"

Long Form: AN "IGNORE RECRDEPS EQUDEPS" DIRECTIVE HAS BEEN
SPECIFIED FOR THIS LOOP.

Explanation: This message identifies loops to which IGNORE RECRDEPS
EQUDEPS directives have been applied. It does not necessarily imply that
the directive had an effect on the vectorization of the loop, although this will
often be the case.

Example:

EPROCESS DIRECTIVE('DIR')
C EXAI-1PLE

C IGNORE RECRDEPS EQUDEPS USED
COMMON // N
EQUIVALENCE (A,B)
REALM A(128),B(128),C(128)

*DIR IGNORE RECRDEPS(C) EQUDEPS
DO 10 I = 64,128

A(I) = B(I) ** 2.1
C(I) = C(I-N)

10 CONTINUE

Possible Response: Determine whether the directive affects vectorization of
the loop. If not, it should be removed to avoid unexpected side effects in
the event that the loop is modified in the future.

If the directive does alter vectorization. try to determine why this occurs,
that is. determine which potential dependences have been ignored because
of the directive. (These dependences are identified by other vector report
messages that appear with the statements within a loop.)

For equivalence dependences, study the mapping of the variables within the
equivalence group and the subscript calculations to determine whether two
different variables may reference a single storage location when the loop is

processed. If so. the directive should be removed or modified.

For other dependences, if it is possible to determine the run time conditions
under which these potential dependences actually arise, code should be
inserted prior to the loop to check for these conditions and to issue a
message and/or stop the program when these conditions are met. (In this
case, the dependence will exist if the value of the variable N is between 1
and 64.)

Appendix F. Vector Report Diagnostic Messages 425

Modified Example:

EPROCESS DIRECTIVE('OIR')
C POSSIBLE RESPONSE

C IGNORE RECRDEPS EQUDEPS USED
COMMON 11 N
EQUIVALENCE (A,B)
REAL*4 A(I28),B(128),C(128)

IF (N.GE.l .AND. N.LE.64) THEN
PRINT INCORRECT IGNORE DIRECTIVE'

STOP

ENDIF

*DIR IGNORE RECRDEPS(C) EQUDEPS
DO 10 I = 64,128

A(I) = B(I) ** 2.1
C(I) = C(I-N)

10 CONTINUE

ILX0177I

Short Form: POTENTIAL REORDER ELIMINATED

Long Form: POTENTIAL BACKWARD DEPENDENCE(S) INVOLVING THE
ARRAY(S) <alist> HAVE BEEN IGNORED BECAUSE OF
AN "IGNORE RECRDEPS" DIRECTIVE APPLIED TO THE

LOOP(S) AT NESTING LEVEL(S) <levlist>.

Explanation: This message identifies the statements where an IGNORE
RECRDEPS directive has caused the compiler to ignore some backward
dependence that would otherwise have been assumed to exist. It does not
necessarily imply that the directive had an effect on the vectorization of the
loop, although this will often be the case.

Supplemental Data:

<alist> is a list of the names of the arrays involved in the ignored
dependences.

<levlist> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Example:

(aPROCESS DIRECTIVE('DIR')
C EXAMPLE

C POTENTIAL RECRDEP ELIMINATED
COMMON // N
REAL*4 A(-200:200)

*DIR IGNORE RECRDEPS

DO 10 I = 1,128
A(I) = A(I+N) ** 2.1

10 CONTINUE

Possible Response: Determine whether the directive affects vectorization of
the loop in which the statement occurs. If not, it should be removed to

426 VS FORTRAN Version 2 Programming Guide

avoid unexpected side effects in the event that the loop is modifled in the
future.

If the directive does alter vectorization, try to determine the run time condi
tions under which these potential backward dependences actually arise. (In
this case, there will be a dependence if the value of the variable N is
between -127 and -1.) Code should be inserted prior to the loop to check
for these conditions and to issue a message and/or stop the program when
these conditions are met.

Modified Example:

EPROCESS OIRECTIVE('DIR')
C POSSIBLE RESPONSE

C POTENTIAL RECRDEP ELIMINATED

COMMON // N
REAL*4 A(-2O0:200)

IF (N.LT.0 .AND. N.GT.-128) THEN
PRINT INCORRECT IGNORE DIRECTIVE'

STOP

ENDIF

*DIR IGNORE REORDERS

DO 10 I = 1,128
A(I) = A(I+N) ** 2.1

10 CONTINUE

ILX0178I

Short Form: POTENTIAL EQUDEP ELIMINATED

Long Form: POTENTIAL DEPENDENCE(S) INVOLVING THE EQUIV-
ALENCED ARRAY(S) <alist> HAVE BEEN IGNORED
BECAUSE OF AN "IGNORE EQUDEPS" DIRECTIVE
APPLIED TO THE LOOP(S) AT NESTING LEVEL(S)
<levlist>.

Explanation: This message identifies the statements where an IGNORE
EQUDEPS directive has caused the compiler to ignore some dependence
that would otherwise have been assumed to exist between arrays in the
same equivalence group. It does not necessarily imply that the directive
had an effect on the vectorization of the loop, although this will often be the
case.

Supplemental Data:

<alist> is a list of the names of the arrays involved In the ignored
dependences.

<levllst> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Appendix F. Vector Report Diagnostic Messages 427

Example:

EPROCESS DIRECTIVE('DIR')
C EXAMPLE

C POTENTIAL EQUDEP ELIMINATED
EQUIVALENCE (A,B)
REAL*4 A(128),B(128)

*DIR IGNORE EQUDEPS
DO 10 I = 1,128

A(I) = B(I) ** 2.1
10 CONTINUE

Possible Response: Determine whether the directive affects vectorization of
the loop in which the statement occurs. If not, it should be removed to
avoid unexpected side effects in the event that the loop is modified in the
future.

If the directive does alter vectorization, analyze the storage mapping and
the subscript calculations used in the specified arrays to make sure that ref
erences to the different variables do not involve the same storage locations.
If they do, the directive should be removed.

ILX0179I

Short Form: ACTUAL REORDER NOT IGNORED

Long Form: BACKWARD DEPENDENCES INVOLVING THE ARRAY(S)
<alist>, WHICH WERE IN THE RANGE OF "IGNORE
REORDERS" DIRECTIVE(S) APPLIED TO THE LOOP(S) AT
LEVEL(S) <levlist> HAVE NOT BEEN IGNORED BECAUSE
THE COMPILER HAS DETERMINED THAT THESE DEPEND-

ENCES ARE ALWAYS PRESENT.

Explanation: This message identifies the statements where an IGNORE
REORDERS directive could have been applied but where the compiler has
chosen not to do so because the subject dependences are always present.
(This directive is only honored when the compiler determines that there is a
potential dependence but that the dependence will not arise under certain
run time conditions.) Even if this message is present, it is possible that the
directive had some effect on the vectorization of the loop, since some other
backward dependences may have been ignored.

Supplemental Data:

<allst> is a list of the names of the variables that carry the depend
ences.

<levlist> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

428 VS FORTRAN Version 2 Programming Guide

Example:

„ EPROCESS DIRECTIVE('OIR')
C EXAMPLE

C ACTUAL RECROEP NOT IGNORED

REAL*4 A(128)

*DIR IGNORE RECRDEPS

DO 10 I = 2,128
A(I) = A(I-l) ** 2.1

10 CONTINUE

The IGNORE directive cannot be honored in this case since a recurrence

definitely exists.

Possible.Response: Determine whether the directive has any effect on the
vectorization of other statements used in the loop. If not, remove the direc
tive.

- ILX0180I

Short Form: POTENTIAL RECRDEP MODIFIED

Long Form: DEPENDENCES INVOLVING THE ARRAY(S) <alist> WERE
PRESUMED NOT TO BE INTERCHANGE PREVENTING

BECAUSE OF AN "IGNORE RECRDEPS" DIRECTIVE

APPLIED TO THE LOOP(S) AT NESTING LEVEL(S)
<levlist>.

Explanation: This message identifies the statements where an IGNORE
RECRDEPS directive has caused the compiler to assume that some forward
dependence is not interchange preventing. This happens only when the
compiler is not certain whether or not a dependence is really interchange
preventing.

Usually, the presence of an interchange preventing dependence restricts
vectorization. When an interchange preventing dependence exists, the
reordering, or interchange, of two loops would cause different results to be
produced. Since vectorization of an outer loop has the same effect as
moving that loop to the innermost position, the existence of an interchange
preventing dependence carried by an outer loop prevents vectorization.

To understand how an interchange preventing dependence comes about,
study the following example:

DO 10 1=1,2
DO 10 J=l,2

10 A(I-1,J+1)=A(I,J)

In this code, the element A(1,2) is fetched when 1= 1 and J = 2 and is stored
into when 1= 2 and J = 1. When these loops are processed, the fetch will
occur before the store. However, if the loops were interchanged, the store
would come first and different results would probably be produced.

It is not always possible for the compiler to determine whether or not a
dependence is interchange preventing. Unless it can prove otherwise, the
compiler will normally assume that a given dependence is interchange pre
venting. This will insure that correct results are always produced after
vectorization, even though some potential vectorization may be missed.

In cases where the compiler is unable to determine whether or not a partic
ular dependence is interchange preventing, the IGNORE RECRDEPS direc-

Appendix F. Vector Report Diagnostic Messages 429

five allows you to force the compiler to assume that the dependence is not
interchange preventing.

Supplemental Data:

<allst> is a list of the names of the arrays involved in the modified
dependences.

<levlist> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Example:

0PROCESS DIRECTIVE('DIR')
C EXAMPLE

C POTENTIAL RECRDEP MODIFIED

REAL*4 U(10O,100,1O0)

*DIR IGNORE RECRDEPS

DO 190 K = I, 19
DO 190 J = 1, 19
DO 190 I = 1, 19
U(I,J,K) = U(I+N,J,K) + U(I,J+N,K) + U(I,J,K+N)

190 C0NTINUE

Possible Response: Determine whether the directive affects vectorization of

the loop in which the statement occurs. If not, it should be removed to
avoid unexpected side effects in the event that the loop is modified in the
future.

If the directive does alter vectorization, try to determine the run time condi
tions under which these dependences might be interchange preventing.
Code should be inserted prior to the loop to check for these conditions and
to issue a message and/or stop the program when these conditions are
met.

Note: The table of ignored dependences that appears after the vector
report message listing can help identify these dependences.

ILX0181I

Short Form: ACTUAL RECRDEP NOT MODIFIED

Long Form: INTERCHANGE PREVENTING DEPENDENCES INVOLVING

THE ARRAY(S) <alist> THAT WERE IN THE RANGE OF
"IGNORE RECRDEPS" DIRECTIVE(S) APPLIED TO THE
LOOP(S) AT LEVEL(S) <levlist> HAVE BEEN PRESERVED
BECAUSE THE COMPILER HAS DETERMINED THAT THESE

DEPENDENCES DEFINITELY EXIST.

Explanation: This message identifies the statements where an IGNORE
RECRDEPS directive could have been applied to some interchange pre
venting dependences but where the compiler has chosen not to do so
because the subject dependences are always present.

Usually, the presence of an interchange preventing dependence restricts
vectorization. When an interchange preventing dependence exists, the
reordering, or interchange, of two loops would cause different results to be

430 VS FORTRAN Version 2 Programming Guide

produced. Since vectorization of an outer loop has the same effect as
moving that loop to the Innermost position, the existence of an Interchange
preventing dependence carried by an outer loop prevents vectorization.

To understand how an Interchange preventing dependence comes about,
study the following example:

DO 10 1=1,2
DO 10 J=l,2

10 A(I-1,J+1)=A(I,J)

In this code, the element A(1,2) Is fetched when 1= 1 and J = 2 and Is stored
Into when 1= 2 and J = 1. When these loops are processed, the fetch will
occur before the store. However, If the loops were Interchanged, the store
would come first and different results would probably be produced.

It Is not always possible for the compiler to determine whether or not a
dependence Is Interchange preventing. Unless It can prove otherwise, the
compiler will normally assume that a given dependence Is Interchange pre
venting. This will Insure that correct results are always produced after
veclorlzallon, even though some potential vectorization may be missed.

Normally, an IGNORE RECRDEPS directive would cause the compiler to
assume that a dependence Is not Interchange preventing. However, In
cases whore the compiler Is absolutely certain that a dependence Is Inter
change preventing, the existence of the IGNORE RECRDEPS directive will
have no effect on the analysis of a program.

Note that even If this message Is present, It Is possible that the directive
had some effect on the vectorization of the loop, since some other back
ward dependences may have been Ignored.

Supplemental Data:

<alist> Is a list of the names of the variables that carry the depend
ences.

<levllst> is a list of the relative nesting levels of the loops that carry
the dependences.

Note: These levels correspond to the nesting indicated by the nesting
level brackets that appear on the vector report. They do not necessarily
correspond to the nesting level indications that appear on the source
listing.

Example:

(aPROCESS DIRECTIVE('DIR')
C EXAMPLE

C ACTUAL RECRDEP NOT MODIFIED

REAL*4 A(128,128)

*DIR IGNORE RECRDEPS

DO 10 I = 1,100
DO 10 J = 2,100
A(I,J) = A(I+1,J-1) ** 2.1

10 CONTINUE

The IGNORE directive cannot be honored in this case since the dependence
Is definitely Interchange preventing.

Appendix F. Vector Report Diagnostic Messages 431

Possible Response: Determine whether the directive has any effect on the
vectorlzation of other statements used in the loop, if not. remove the direc
tive.

432 VS FORTRAN Version 2 Programming Guide

^ Appendix G. What Determines File Existence
This appendix discusses the conditions that VS FORTRAN uses to determine the
existence of files. File existence, in turn, is used for;

*- Determining the value returned for the EXIST specifier on the INQUIRE
statement.

^ Verifying whether STATUS='OLD' or STATUS='NEW on the OPEN state
ment correctly reflects the status of a file's existence. (This verification is
done only when OCSTATUS is in effect and only for files on certain device
types.)

Determining whether a file needs to be created when the STATUS specifier
on the OPEN statement is omitted, or when STATUS ='SCRATCH' or
STATUS ='UNKNOWN' is specified.

The INQUIRE and OPEN statements are discussed in Chapter 6, "Performing
Input/Output Operations" on page 121. For detailed information about the
syntax of these statements, see VS FORTRAN Version 2 Language and Library
Reference.

In general, any external file that your program can read or that your program
has written is said to exist for your program. For a specific file, however, there
are many factors that control whether the file exists from the FORTRAN point of
view. Among these factors are the presence of a file definition, what type of
device the file resides on, and. for some device types, whether the file contains

' ^ any data. In this appendix you will find a series of decision tables, one for each
different device type, that show whether a particular file exists at any point
while your program runs.

For the most part, the decision tables that define file existence reflect the intui
tive notion of what file existence is. For example, if there is a file definition that
refers to a disk file and that disk file is present on the disk volume, then the
decision table for disk files should indicate that the file exists. There are,

however, a few anomalies, even for the simple case of the disk file. Some of
these are discussed here. However, the detailed definition of file existence is
shown in the decision tables.

Disk files on CMS minidisks: If a file is on a CMS minidisk and it is referred to

by a file definition, it always exists. However, a CMS minidisk can never
contain an empty file. As a result, your program will see an empty file as
existing only if you have created it within that program and have not deleted it.
But that same empty file will not exist when a subsequent program, that has not
yet created it using a WRITE or OPEN statement, runs.

Disk files under MVS: Under MVS. a disk file that is referred to by a file defi
nition and that has data records in it always exists. Just allocating the space
for the file on a DASD volume does not mean that the file exists. This is true
even though that space may have been allocated previously and your DD state
ment specifies DISP = OLD. The disk file doesn't exist until it has been created
within a FORTRAN program using a WRITE or OPEN statement.

Appendix G. What Determines File Existence 433

A disk file that was created by your program but has no data records In it will
be seen as existing within that the program as long as you don't delete it.
However, in a program that you run later, that file will not exist until that
program recreates it.

VSAM files: A VSAM file that is referred to by a file definition and that has had
data written into it always exists, even if all of the records have since been
deleted. Simply defining the file through Access Method Services does not
cause it to exist as far as FORTRAN is concerned. The VSAM file doesn't exist

until it has been created within a FORTRAN program using a WRITE or OPEN
statement.

A VSAM file that was created by your program but which has never had data
records written into it will be seen as existing within that program as long as
you don't delete it. However, in a program you run later, that file will not exist
until that program recreates it.

File on terminals: A terminal is an unusual I/O device in that your data is not
stored permanently within the device. Also, your program can read data from
or write data to the terminal regardless of any previous data transfer. As a
result, the existence of a file that is on a terminal is somewhat nebulous. VS

FORTRAN arbitrarily considers that files on terminals always exist.

Conditions that Apply to All Files
For all files under both MVS and VM, the following conditions and results apply:

If a file does not have a file definition in effect, it does not exist.

Note that under VM. a file definition is always in effect because a default file
definition is supplied if you don't supply one. The form of the default file
definition is:

FILEDEF ddname DISK FILE ddname A

•' If a file is internally open, it exists.

InternaUy open means that a file either has been connected by the OPEN
statement: or, in the case of a preconnected file, a READ, WRITE, PRINT, or
ENDFILE statement for that file has been successfully run.

•• If a file cannot be accessed because VS FORTRAN detects an access

restriction, an error is detected. An exception to this is for DASD files under
VM, as shown in Figure 104 on page 441 .

An access restriction is any condition that prevents the use of the file in
your program, such as RACF protection or the inability to mount a volume.

Access restriction is checked only for the following:

— DASD files {including PDS members and VSAM files)

— Tape files

434 VS FORTRAN Version 2 Programming Guide

Conditions that Apply to All Unnamed Files
When you code the INQUIRE statement to check the existence of an unnamed
file, the unit number must be within the range of unit numbers allowed for your
installation. If the unit number is beyond the range, the value returned for
EXIST will be false, even if a file definition is in effect.

Additional Conditions Specific to Certain Files
The following tables show additional conditions that VS FORTRAN checks to
determine file existence. Because VS FORTRAN checks different conditions for
different file types, the tables are divided by file type.

The tables are divided according to whether the device or file type is on MVS
(see "MVS File Existence Tables") or VM (see "VM File Existence Tables" on
page 441).

Basic Conditions
All tables refer to files that meet these basic conditions:

They have a file definition in effect.
They are not internally open.

*• They do not have restricted file access, as detected by VS FORTRAN.

An exception to this last condition is for DASD files under VM, as shown in
Figure 104 on page 441 .

In the tables, " indicates that this condition does not affect file existence in
this instance.

MVS File Existence Tables
These types of MVS files are referenced;

DASD files, page 436
Reusable VSAM files, page 437
Non-reusable VSAM files, page 437
PDS members, page 438
Labeled tape files, page 438
Unlabeled tape files, page 439
In-slream (DD * or DD DATA) data sets, page 439
System output (sysoul) data sets, page 439
Terminals, page 439
Unit record input devices, page 440
Unit record output devices, page 440
Files whose file definitions specify DUMMY, page 440
Files on other devices, including subsystems, page 441

Appendix G. What Determines File Existence 435

DASD File Existence Table (MVS)

If, in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in effect:

File On

Volume'

Volume File

Sequence Conca>
Number^ tenated-*

>1

File

Contains

Data

File Ever

Internally
Opened

File

Deleted

by CLOSE

Then

the

file:

No —
— — — —

doesn't

exist

Yes Yes - - — -
exists

Yes No Yes — -
— exists

Yes No No Yes -
— exists

Yes No No No No -
doesn't

exist

Yes No No No Yes No exists

Yes No No No Yes Yes doesn't

exist

Figure 95. File Existence Table for DASD (MVS)

Notes to Figure 95:

1. For DASD. file on volume means that space is currently allocated for the data set
on the volume.

2. The volume sequence number identifies the volume of a multivolume data set to be
used to begin processing the data set. For more information, see MVS JCL.

3. Concatenated refers to a JCL concatenation of data sets having a single ddname,
not a set of subfiles having different ddnames.

436 VS FORTRAN Version 2 Programming Guide

Reusable VSAM File Existence Table (MVS)

If, in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in effect:

Subfile File Fife Ever File Then

Sequence Contains Internally Deleted the
Number Data Opened by CLOSE file:
> 1

Yes _ _ — doesn't

exist

No Yes — — exists

No No No — doesn't
exist

No No Yes No exists

No No Yes Yes doesn't
exist

Figure 96. File Existence Table for Reusable VSAM (MVS)

Non-Reusable VSAM File Existence Table (MVS)

If. in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in effect:

Subfile File File Ever Then

Sequence Contains Internally the
Number Data Opened file:
>1

Yes — — doesn't

exist

No Yes — exists

No No No doesn't

exist

No No Yes exists

Figure 97. File Existence Table for Non-Reusable VSAM (MVS)

Appendix G. What Determines File Existence 437

PDS Member Existence Table (MVS)

If, in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in effect:

Member Then

Exists the

file:

No doesn't

exist

Yes exists

Figure 98. File Existence Table for POS Member (MVS)

Labeled Tape File Existence Table (MVS)

If, in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in effect:

File On Block and Record Then

Volume' Lengths Are 0 in the
Header Label file: C ")

No — doesn't

exist

Yes Yes doesn't

exist

Yes No exists

Figure 99. File Existence Table for Labeled Tape File (MVS)

Note to Figure 99:

1. For a labeled tape, file on volume means that the volume can be positioned to the
data set and that the data set name in the header label matches the data set name

given in the DO statement or ALLOCATE command.

438 VS FORTRAN Version 2 Programming Guide

Unlabeled Tape File Existence Table (MVS)

If, in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in effect:

File On Then

Volume' the

file:

No doesn't

exist

Yes exists

Figure 100. File Existence Table for Unlabeled Tape File (MVS)

Note to Figure 100:

1. For an unlabeled tape, file on volume means that the volume can be positioned to
the data set.

In-stream (DD * or DD DATA) Data Set Existence Table (MVS)

If the basic conditions listed under "Basic Conditions" on page 435 are in effect, the file
exists:

System Output (Sysout) Data Set Existence Table (MVS)

If, in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in effect:

File Ever Then

Internally the
Opened file:

No doesn't

exist

Yes exists

Figure 101. File Existence Table for Sysout Data Sets (MVS)

Appendix G. What Determines File Existence 439

Terminal Existence Table (MVS)

Ifthe basicconditions listed under "Basic Conditions" on page 435 are in effect, the file
exists:

Unit Record Input Device Existence Table (MVS)

If the basic conditions listed under "BasicConditions" on page 435 are in effect, the file
exists:

Unit Record Output Device Existence Table (MVS)

If, in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in effect:

File Ever Then

Internally the

Opened file:

No doesn't

exist

Yes exists

Figure 102. File Existence Table for Unit Record Output Devices (MVS)

Files Whose File Definitions Specify DUMMY Existence Table (MVS)

If, in addition to the basic conditions listed under "BasicConditions" on page 435, these
conditions are in effect:

File Conca- File Ever File Then
tenated' Internally Deleted the

Opened by CLOSE file:

Yes — — exists

No Yes No exists

No Yes Yes doesn't
exist

No No — exists

Figure 103. File Existence Table for Files Whose File Definitions Specify DUMMY (MVS)

440 VS FORTRAN Version 2 Programming Guide

Note to Figure 103:

1. Concatenated refers to a JCL concatenation of data sets having a single ddname,
not a set of subfiles having different ddnames.

File Existence Table for Files on Other Devices, Including Subsystems (MVS)

If the basic conditions listed under "Basic Conditions" on page 435 are in effect, the file
exists.

VM File Existence Tables
These types of VM files are referenced:

DASD files, page 441
Reusable VSAM files, page 442
Non-reusable VSAM files, page 442
Library members, page 443
Tape files, page 443
Terminals, page 443
Unit record input devices, page 444
Unit record output devices, page 444
Files whose file definitions specify DUMMY, page 444
Files on other devices, page 444

DASD Device File Existence Table (VM)

if the file is not currently internally open and the following conditions are in effect:

Access Explicit File On File Ever File Then
Restricted FILEDEF Minidisk Internally Deleted the

Opened by CLOSE file:

Yes

Yes

No

No

No

No

Yes

No

Yes

No

No

No

No

Yes

Yes

No

Yes

"error

detected'

doesn't

exist

exists

doesn't

exist

exists

doesn't

exist

Figure 104. File Existence Table for DASD Device (VM)

Appendix G. What Determines File Existence 441

Reusable VSAM File Existence Table (VM)

If, in addition to the basicconditions listedunder "Basic Conditions" on page 435, these
conditions are in effect:

Subfile File File Ever File Then

Sequence Contains Internally Deleted the

Number Data Opened by CLOSE file:

> 1

Yes —
— doesn't

exist

No Yes — -
exists

No No No — doesn't

exist

No No Yes No exists

No No Yes Yes doesn't

exist

Figure 105. File ExistenceTable for Reusable VSAM (VM)

Non-Reusable VSAM File Existence Table (VM)

If, in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in effect:

Subfile File File Ever Then

Sequence Contains Internally the

Number Data Opened file:

>1

Opened

Yes — — doesn't

exist

No Yes — exists

No No No doesn't

exist

No No Yes exists

Figure 106. File ExistenceTable for Non-Reusable VSAM (VM)

442 VS FORTRAN Version 2 Programming Guide

I Library Member File Existence Table (VM)

^ I If, in addition to the basicconditions listedunder "Basic Conditions" on page 435, these
conditions are in effect:

Library Member Then
On Exists the

Minidisk' file:

No — doesn't

exist

Yes Yes exists

Yes No doesn't

exist

Figure 107. File Existence Table for Library Member (VM)

Note to Figure 107:

1. A library is a CMS TXTLIB, MACLIB. or LOADLIB.

Tape File Existence Table (VM)

If, in addition to the basic conditions listed under "BasicConditions" on page 435, these
conditions are in effect:

File On Then

Volume the

file:

Yes exists

No doesn't

exist

Figure 108. File Existence Table for Tape File (VM)

Terminal Existence Table (VM)

If the basic conditions listed under "Basic Conditions" on page 435 are in effect, the file
exists.

Appendix G. What Determines File Existence 443

Unit Record input Device Existence Tabie (VM)

If the basic conditions listed under "Basic Conditions" on page 435 are in effect, the file
exists.

Unit Record Output Device Existence Tabie (VM)

If, in addition to the basic conditions listedunder "Basic Conditions" on page 435, these
conditions are in effect:

File Ever Then

Internally the

Opened file:

No doesn't

exist

Yes exists

Figure 109. File ExistenceTable for Unit Record"Output Devices (VM)

Files Whose File Definitions Specify DUMMY Existence Tabie (VM)

If, in addition to the basic conditions listed under "Basic Conditions" on page 435, these
conditions are in elfect:

File Ever File Then

internally Deleted the
Opened by CLOSE file:

No — exists

Yes No exists

Yes Yes doesn't
exist

Figure 110. File Existence Table for Files Whose File Definitions Specify DUMMY (VM)

File Existence Tabie for Files on Other Devices (VM)

If the basic conditions listed under "Basic Conditions" on page 435 are in effect, the file
exists.

444 VS FORTRAN Version 2 Programming Guide

Appendix H. Considerations for Specifying RECFM, LRECL,
and BLKSIZE

The values of the record format, record length, and block size may come from
several sources: file definitions {DD statements, ALLOCATE commands, or
FILEDEF commands), CALL FILEINF statements for dynamically-allocated files,
data set labels of old data sets, and defaults.

The following sections discuss the priority of processing these values and list
the defaults.

Priority of Processing under MVS
Under MVS, the priority of processing RECFM, LRECL, and BLKSIZE values
from different sources is as follows:

1. The values are obtained from the file definition, or CALL FILEINF statement

for dynamically-allocated files. The values, if any, will override the values
from the old data set if it is available.

2. The values are obtained from the old data set if available. Values missing
from the file definition or CALL FILEINF statement are used from this

source.

The resulting combination of the three parameters are processed after each
parameter is determined according to the priority listed above. Any missing
parameters will be obtained either from installation defaults or default values
assigned based on the rules specified under "MVS and CMS Default Values" on
page 446.

For a file connected with an OPEN statement, the record format, record length,
and block size information of an old data set is written over as part of the data
set label in the following cases:

The ACTION on the OPEN statement is specified as WRITE.

The STATUS on the OPEN statement is specified as NEW.

The file does not exist, and STATUS is UNKNOWN.

OUT is specified on the LABEL parameter of a JCL DD statement, or
OUTPUT is specified on an ALLOCATE command.

For cases other than those above, the data set label is not rewritten. The

resulting combination of record format, record length, and block size should be
the same as the old data set, or I/O errors may occur.

For a preconnected file, the record format, record length, and block size infor

mation of an old data set is written over as part of the data set label when the
first I/O operation is WRITE. If the first I/O operation is a READ, I/O errors may
occur if the resulting combination of the values is not the same as that of the
old data set.

Appendix H. Considerations for Specifying RECFM, LRECL, and BLKSIZE 445

Priority of Processing under CMS
Under CMS, the values for RECFM, LRECL, and BLKSIZE are obtained from the
file definition, or CALL FILEINF statement for dynamically-allocated files. The
values, if any, will override the values from an old file.

Because CMS uses a different file structure than MVS, not all file information is
retained as part of a data set label as is done under MVS. Therefore, VS
FORTRAN programs under CMS do not use information from an old file when
the file is written over. For initial READ operations, the old file information is
used if available according to the rules under "MVS and CMS Default Values."

Note the following considerations for coding file definitions and CALL FILEINF
statements:

*• If a program issues a READ statement (which may be followed by subse
quent write operations) as the first I/O operation after an OPEN statement
or as the first I/O operation to a preconnected file, any values specified on
a file definition or CALL FILEINF statement must be the same as the values
used when the file was created; otherwise, an I/O error might occur during
subsequent I/O operations.

• If a program issues a WRITE statement as the first I/O operation, the record
format, record length, and block size information is used from the file defi
nition or CALL FILEINF statement. This information may be different from
what was used to create a file that is being rewritten, except in the case
when DISP MOD is specified on a FILEDEF command and STATUS on the
OPEN statement is OLD.

Unlike information from a FILEDEF command, the information from a CALL
FILEINF statement prior to an OPEN statement is no longer available after a
CLOSE statement for the same unit. When the file is subsequently recon
nected, a CALL FILEINF statement may need to precede the new OPEN
statement in order to provide the same information.

MVS and CMS Default Values
This section describes the VS FORTRAN process for assigning default values
for RECFM, LRECL, and BLKSIZE for programs under either MVS or CMS.

For programs under CMS, keep in mind when reading this section that informa
tion from an old file is not available for WRITE operations, nor for READ oper
ations when the file mode number is 4. For READ operations when the file
mode is not 4, only partial information may be available unless the record
format is F.

RECFM: If the record format is not specified and is not available from the old
data set, it is obtained from the installation default (installation defaults are
given under "Installation Defaults" on page 448) unless ACCESS is DIRECT, in
which case the record format is always F.

446 VS FORTRAN Version 2 Programming Guide

LRECL and BLKSIZE: The values for LRECL and BLKSIZE depend on the
RECFM value and the information available. The following describes the
process for determining the LRECL and BLKSIZE values depending on which
values are provided by a file definition or CALL FILEINF statement;

» LRECL and BLKSIZE both provided

— RECFM is F, FA. U, or UA: The LRECL provided is ignored and is set to

equal BLKSIZE.

— RECFM is V or VA: The LRECL provided is ignored and is set to equal

BLKSIZE minus 4.

— RECFM is FB or FBA: BLKSIZE is made equal to the largest exact mul
tiple of LRECL less than or equal to the BLKSIZE provided. If LRECL is
greater than the BLKSIZE. LRECL is made equal to BLKSIZE.

— RECFM is VB or VBA: The values provided are used unless LRECL plus
4 is greater than BLKSIZE. LRECL is set to BLKSIZE minus 4 in this
case.

— RECFM is VS or VBS: The values provided are used.

•- BLKSIZE is provided but LRECL is not

— RECFM is F. FA. U. or UA: LRECL is made equal to BLKSIZE.

— RECFM is V or VA: LRECL is set to BLKSIZE minus 4.

— RECFM is FB or FBA: LRECL is obtained from the old data set, if avail

able. If it is not available, or is invalid, the installation default is used.

If LRECL is greater than BLKSIZE. it is made equal to BLKSIZE. If
BLKSIZE is not an exact multiple of LRECL, BLKSIZE is adjusted to be
the largest exact multiple of LRECL less than or equal to the BLKSIZE
specified.

— RECFM is VB or VBA: LRECL is obtained from the old data set. if avail

able. If it is not available, the installation default is used. If LRECL plus
4 is greater than BLKSIZE. or is invalid. LRECL is set to BLKSIZE minus
4.

— RECFM is VS or VBS: LRECL is obtained from the old data set. if avail

able. If it is not available, the installation default is used.

LRECL is provided but BLKSIZE is not

— RECFM is F, FA. U. or UA: BLKSIZE is made equal to LRECL.

— RECFM is V or VA: BLKSIZE is set to LRECL plus 4.

— RECFM is FB or FBA: BLKSIZE is obtained from the old data set. if

available. If it is not available, the installation default is used. If LRECL

is greater than BLKSIZE. BLKSIZE is made equal to LRECL. If BLKSIZE
is greater than LRECL. BLKSIZE is set to be the largest exact multiple
of LRECL less than or equal to the available BLKSIZE.

— RECFM is VB or VBA: BLKSIZE is obtained from the old data set. if

available. If it is not available, the installation default is used. If LRECL

plus 4 is greater than BLKSIZE. BLKSIZE is set to LRECL plus 4.

— RECFM is VS or VBS: BLKSIZE is obtained from the old data set, if

available. If it is not available, the installation default is used.

Appendix H. Considerations for Specifying RECFM, LRECL, and BLKSIZE 447

LRECL and BLKSIZE both not provided

- RECFM is F, FA, U. or UA: If BLKSIZE is available, it is used; in this
case. LRECL is made equal to BLKSIZE. If BLKSIZE is not available, but
LRECL is. BLKSIZE is made equal to LRECL. If LRECL is not available.
BLKSIZE and LRECL are both set to the installation default for BLKSIZE.

- RECFM is V or VA: If BLKSIZE is available, it is used; in this case.
LRECL is set to BLKSIZE minus 4. If BLKSIZE is not available, but
LRECL is. BLKSIZE is set to LRECL plus 4. If neither are available, the
installation default is used for BLKSIZE and LRECL is set to BLKSIZE
minus 4.

- RECFM is FB or FBA: If LRECL and BLKSIZE are available, they are
used. Installation defaults are used for unavailable values. If LRECL is
greater than BLKSIZE. LRECL is adjusted to equal BLKSIZE.

- RECFM is VB or VBA: If LRECL and BLKSIZE are available, they are
used. Installation defaults are used for unavailable values. If LRECL
plus 4 is greater than BLKSIZE. LRECL is adjusted to equal BLKSIZE
minus 4.

- RECFM is VS or VBS: If LRECL and BLKSIZE are available, they are
used. Installation defaults are used for unavailable values.

Installation Defaults

The IBM-supplied installation defaults for RECFM. LRECL. and BLKSIZE are
given in Figure 111 on page 449. These defaults may have been modihed at
your site.

Note: Previous to VS FORTRAN Version 2 Release 3. defaults for RECFM,
LRECL. and BLKSIZE could not be modified at installation time. Ifyou previ
ously relied on defaults for these options and your site modified the defaults
when installing Release 3. your programs may run incorrectly. For such pro
grams. be sure to code these options on the file definition or CALL FILEINF
statement in order to avoid problems.

448 VS FORTRAN Version 2 Programming Guide

Characteristic Unit 5

RECFM

formatted, sequential F
access

unformatted, sequential F
access

LRECL

formatted, sequential
access

80

unformatted, sequential 80
access

BLKSIZE

formatted, sequential 80
access

unformatted, sequential 80
access

Unit 6 Unit 7

UA F

see note 2 F

133 80

see note 2 80

133 80

see note 2 80

All Other Units

MVS: U, VM: F (see note 1)

VS

MVS: 800, VM: 80 (see note 1]

unlimited

MVS: 800, VM: 80 (see note 1]

800

Figure 111. IBM-Supplied Installation Defaults for File Characteristics

Notes to Figure 111:

1. Under CMS. if the defaults for formatted I/O were selected at installation

time to have OS/VS characteristics, the MVS default applies.

2. Only files connected for sequential access and having formatted records
may be directed to the error message unit.

Appendix H. Considerations for Specifying RECFM, LRECl.^ and BLKSIZE 449

I Appendix I. Sample Compiler Listing with Double-Byte
I Characters

I Figure 112 shows a sample compiler listing with Kanji double-byte characters.

LEVEL 2.5.0 (KER 1980) VS FORTRAN DEC 07, 1987 1S:27;2« rACEi

RE4UESTE0 ORTIONS IPROCCSS): 08CS XREF

OPTZOHS IN EFFECT: NOLIST NOHAP XREF NOCOSmT NOOECK SOURCE TERM OBJECT FIXED TRMFLO SRCFL6 NOSYH NOXENT

SOUMPIISN) MOSXM NOVECTOR ILlDIHi NOTEST NOOC HOZCA NOOIRECTIVE OBCS NOSAA

0PTI3I LANGLVLI77> NOFIPS FLAGIll AUrOOBDNONE I NAME! MAINI LINECOUNTUOI CKARLENISOOl

IF OO ISN m •...1 2 5 4 5 6 7.» 8

C* IN THIS LISTING OBCS AND EBCDIC CHARACTERS APPEAR AS FOLLOHS "C

Cn I < AND > REPRESENT THE SHIFT-OUT AND SKIFT-IN CHARACTERS): «C

C» «C

C» < I) 0 C S > - OBCS CHARACTERS "C

C» EBCDIC - EBCDIC CHARACTERS aC

CaaaaaaaaaaaKaaaaaaaaaaKaaiaaaRaaaaHaaaaaaMaaaaiHiaaaaaaaMaaaaaaaaaaaaaC

C» DBCS VARIABLE NAMES "C

Caaaaaaaaaaaaatma

1 CHARACTERa47 <D U C S V A II—>, <0 1) C S V .\ R">, <D D C S V>
*<Alt7:.>, INVAR, OUTVAR

2 CHARACTER <C II A II -->»4, < U IJ C S V A II?'^>»I01
5 INTEGER < I N T —>, RCX4, RSX4
4 HEAL <U li A L •>

Ca—aaaaxaaaa••••»»"»*»« aaaxaaaaaaaaaaaaaaaaa—aaaaaaaaaaaaaaaaaaaaC

C» LIKE CONTINUED CHARACTER CONSTANT CONTAINING DBCS K

5 DATA <l) B C S V A K-:>/'<n B C S ClIAItACTER STRl>
*<N U>•/

6 <0 n c s V Aiu^;>. '<1)0 u n 1.1- > i single byte <cii ar ac>
r li U > CONSTANT CONTINUED <A C Kp S S 2 LINUS >'

a

Ca INPUT/OUTPUT Of DBCS CHARACTERS a{

Caaa*a••••••••••••••••••••••••asaavaaavaaaaaaaaaaaaaaaaaaaf

7 ID FORMAT IA32,I3,F5.2.A36I

a 20 FORMAT I •<!) H C S>>,JX.A32.3X,IS,3X,FS.2.3X>A3«I
9 OPEN I UNIT=5, ACCESS='SEQUENTIAL •.FORMS'FORMATTED ••CHARS'DBCS* I

10 OPEN I UNIT=6.CHARS'DBCS'I

11 READlS.lO) <l) n C S V A R—>,< I N T—>,<R li A L—>,
♦< D n c s V AII r.>

12 KRITE (6,20) <D D C S V A R —>,< I N T —>,<B IL A L —>,
♦<l) 11 CSV All" >

13 INQUIRE l6tCHARs<C II A R—>1
14 IF l<CIIAK- > .EQ. 'OBCS* I THEN

I 15 HRITE (6.'(A19)') *<0 II A II "> = DOCS'

1 16 ELSE

I 17 KRITE I6,'(A22I*) '<C II A R—> not a DBCS'
1 IB ENOIF

Ca ASSlGMt SUBROUTINE aC

Ca#*»a#B#eeeew»»e*e«MMHieae#«aaa####aea##eaa«aaaiHaaaaHBaee»wea#ea»«eaBwc

19 INVAR = *<0 DCS C II A II ACT tills >•

20 CALL ASSICNH (IHVAR,0UrVAR,RCX4,RSX4I

21 KRITE (6.'(A12,3X,I4,3X,I4)*) OUTVAR,RCX4,RSX4

22 END

Figure 112 (Part 1 of 2). Sample Compiler Listing with Double-Byte Characters

Appendix I. Sample Compiler Listing with Double-Byte Characters 451

UVCI. t.S.O (KM lW8t VS FORTMN

SVIBOI. CROSS REFERENCE OICTIONMY

PItOGRMI KUCi NUN

TAGS:

A-MUY

C-COtON

O-DUrtir ARGUCKT

C-EQUtVALENCEO

F-STATEICKr FUNCTION

G-GENERIC rUUC

I-IKTRINSXC FUNCTION

K-HAKEO COfSTANT

N-ENTRY

P-PROHOTEO

^•PAOOED

R-SUBPROCRAN NAHE

DEC 07> 1407 13:27:20 tMME:NAlN

S-ASSIGNEO

T-EXPLICITtY TYPED

V-INinAL VALUE

X-EXTERNAl SUBPROCRAM

Y-DYNANIC COmON

hahe TYPE TAG CECLAREB BEFS IfiREFD SrSCT BiREFO/WAY BE SET!

<CHAIl--> CHAR T 2 IS I4B

<DnCSVAR-'> CHAR T 1 IIS 12F

<DUCSVAU~> CHAR T 1 IIS 12F

<DDCSVAIIH» CHAR VT 1 s

<DBCSVAK0> CHAR T 2 6B

< 1 N T -> i«« T S IIS 12F

<(l R A L —> R»A T 4 IIS 12F

ASSIGFM X 20F

INVAR CHAR T 1 146 206

OUTVAR CHAR T 1 20B 21F

RCX4 I«4 T S 2CB 21F

RSX4 I"4 T S 20B 21F

VARIABLES REFERENCED BUT NOT SET. I« POSSIBLY SET AS ARCUHEHT.

<C il A n *> OUTVAR" RCX4* R5X4»

_LA8EL CROSS REFERENCE OICTIONARr

TAGS:

A-USED AS ARCUNENT F-FORHAT S-U6E0 IN ASSIGN STATEHENT

B-OOJCCr OF BRANCH N-NON-EXEtUTABLE

LABEL TAG OEFINfO RFFERFNCFO

10 NF 7 11

20 NF a 12

•STATISTlCSn SOURCE STATEMENTS • 22. PROGRAM SIZE • 188B BYTES. PROGRAM NAME > MAIN PAGE:

WSTATISTICS* NO 01AGNOSTICS GENERATED.

••nAlN«» END OF COMPILATION 1 •«««•

I Figure 112 (Part 2 of 2). Sample Compiler Listing with Double-Byte Characters

452 VS FORTRAN Version 2 Programming Guide

TIME STAW: B7.S411S.27.2*

Index

Special Characters
. (period) v
@PROCESS statement 37

abnormal termination

dump request 84
dump, requesting an 109

ABSDUMP run-time option
description 101

access method services cataloging DEFINE
command 309

access methods

choosing 125, 151
direct 126, 180

INQUIRE statement 159

keyed 126, 181
operating system 126
sequential 126, 174

actual argument
rules for use 193

adding data to a file
new records 186

replacing records 187
AFBVRSEP module 277

AFBVSFST 292

ALLOCATE command 122

ALLOCATE command under TSO 18

alternative mathematical library subroutines 341
alternative mathematical subroutines 341

American National Standard FORTRAN

flagging for 47
AMODE attribute 68, 89

antidependence 231
argument

actual 194

passed by reference 194
array and assembler subprograms 327
assembler programs and 326, 330
assigning values to 194
COMMON statement and 194

dummy 194
general rules 193
passing between programs 193
passing character 344
subroutine subprograms and 193
transparent, passing 345
variable and assembler subprograms 326

arithmetic

efficiency, for optimization 225
errors, common 117

arrays

adjustable dimensioned, recommendation
against 223

arrays (continued)
as actual argument 194
assembler subprograms and 327
efficient common arrangement 196
initializing efficiently 223
initializing, common error 117
optimizing identically dimensioned 223
subscript references invalid, common error 117

ASCII/ISCII

encoded file, record format 87

assembler language considerations
common data in 324

FORTRAN data 324

initializing run-time environment 319
internal representation of data 330
LIST option listing and 114
register conventions 321
retrieving arguments 326
subprogram 324
VFEIN# and VFEIL# entry points 319

assigned name form
consequences under MVS 291
consequences under VM 277
general description 274

ASSUME COUNT vector directive 256

asynchronous I/O 144
AUTODBL compiler option 24

definition of 24

programming considerations with 49
using automatic precision increase facility with 47

automatic cross-compilation 7
automatic precision increase facility

by means of AUTODBL 47
precision conversion process

padding 49
promotion 48

AUTOTASK DD statement 370

AUTOTASK keyword 350, 369
AUTOTASK run-time option 101
avoiding coding errors 117

B
background command procedure under TSO 99
BACKSPACE statement

invalid for directly accessed VSAM direct file 314
keyed access 187
sequential access 176
sequentially accessed VSAM direct file 313
VSAM sequential file considerations 312

backward dependence 232
bimodal CMS 68

blank common

description 200
must be unnamed 200

Index 453

blank common (continued)
only one allowed 200

block data subprograms
coding example 201
initializing 201

blocked records 127

blocking 127

CALL command under TSO 20, 96

CALL loader option under MVS 81
calling and called programs

assembler language consideration 319
detailed description 193
differences between VS FORTRAN Version 2,

Version 1 and current implementations 341
internal limits in VS FORTRAN Version 2 347

invoking the FORTRAN compiler 325
card punch file under CMS 67
card reader file under CMS 67

cataloged procedure
compile-only under MVS 14
MVS compiler data set 15
using for program output 84

cataloging
and loading alternate index 307
entry in a VSAM catalog 309

character

arguments, passing 344
character data type

internal representation 330
CHARLEN compiler option 27
Cl compiler option 27
CLEN I NOCLEN suboption of ICA compiler option 29
CLISTS under TSO 99

CLOSE statement

deleting files 155
disconnecting files 154
OCSTATUS I NOOCSTATUS run-time option 154
retaining files 154
specifiers 154

CMS considerations

compilation 7
compiler options and 8
invoking the VS FORTRAN Version 2

compiler 325
specifying run-time options 64

CMS LOADLIB

changing name of 281
code independence 358
codes

abnormal termination 42

error 41

informational 41

severe error 41

unrecoverable error 42

warning error 41

454 VS FORTRAN Version 2 Programming Guide

coding your program
coding errors to avoid 117
sharing data 193

combined LINK library 61,285
common

blocks, storage maps and 44
coding errors in source 117
expression elimination, OPTIMIZE(3) 218

COMMON statement

argument usage 194
assembler programs and 324, 326
blank common 200

description of use 193
dummy variables for alignment 197
efficient data arrangement 196
EOUIVALENCE considerations 198

fixed order variable alignment 197
named common 200

passing subroutine arguments using 222
storage maps and 44
transmitting values using 195
using efficiently 222

compilation
automatic cross-compilation 7
identification 38

modification of defaults 38

requesting under CMS 7
requesting under MVS 14
requesting under TSO 18
statistics in object listing 114

compiler considerations 217
compiler data sets under MVS 15
compiler invocation 325
compiler messages 42

See also diagnostic messages
(compiler messages are online—they are not docu

mented)
compiler options

AUTODBL 24

CHARLEN 27

Cl 27

conflicting 36
DBCS 27

DC 27

DECK 28

defaults for 23

DIRECTIVE 28

DISK 8

EXEC statement in MVS 13

FIPS 28

FIXED 28

FLAG 28

F0RTVS2 command 8

FREE 28

GOSTMT 29

ICA 29

IL 30

LANGLVL(66 j 77) 30
LINECOUNT 30

compiler options (continued)
LIST 30

MAP 30

NAME 30

NODBCS 27

NODECK 28

NODIRECTIVE 28

NOFIPS 28

NOGOSTMT 29

NOICA 29

NOLIST 30

NOMAP 30

NOOBJECT 31

NOOPTIMIZE 31

NOPRINT 8

NORENT 31

NOSAA 31,47
NOSDUMP 31

NOSOURCE 32

NOSRCFLG 32

NOSXM 32

NOSYM 32

NOTERMINAL 32

NOTEST 32

NOTRMFLG 32

NOVECTOR 33

NOXREF 35

OBJECT 31

OPTIMIZE(0 |1 I 2 I 3) 31
PRINT 8

RENT 31

SAA 31.47
SDUMP 31

SOURCE 32

SRCFLG 32

SXM 32

SYM 32

TERMINAL 32

TEST 32

TRMFLG 32

VECTOR 33

XREF 35

compiler output
cross reference listing. XREF option 42
default options and 38
dependent on options in effect 17, 20
description 37
end of compilation message 46
LIST data set under TSO 20
listing 38
LISTING file for CMS 11

listing, header 38
message listing, FLAG option 40
OBJ data set under TSO 20

object module for MVS 18
output file for MVS 18
Program Information File (PIF)

IVA compiler suboption 34
under CMS 37

under MVS 15

compiler output (continued)
source program listing 38
standard language flagging 47
storage map listing, MAP option 42
TEXT file for CMS 11

under CMS 37

compiling your source program 7, 23
complex data type

internal representation 332
compound instructions 246
computational independence 351, 358
conflicting compiler options 36
connecting files and units

changing connection properties 152
direct access 151

file definition statement 147
inquiring about 159
keyed access 151, 182
named files 149

OCSTATUS run-time option 150
OPEN statement, using an 148
preconnection, using 147
reconnecting

named files 157
preconnected files 157
unnamed files 157

sequential access 147, 151
temporary files 150
unnamed files 149

constant

expressions, how compiler recognizes 224
operands, recognition of 223
restrictions as actual argument 194

control dependence 231
critical variables, limitations on optimizing 221
cross reference dictionary

description 44
using the 42
XREF option requests 35

current standard, flagging for 47
CVAR I NOCVAR suboption of ICA compiler

option 29

D
data

efficient arrangement, common areas 196
set, partitioned 84
sharing between programs 193
sharing storage for 193

data dependence 231
data independence 351, 358
data type

cross reference and 45

date

in output listing header 38
of compilation, compiler default 38

DBCS

See double-byte character set (DBCS)

Index 455

DBCS compiler option 27
DC compiler option 27
DOB parameter

default values 16

default values for load module execution data

set 82

default values for load module execution direct

access data set 82

defines MVS record 86

DCSS

and reentrant programs 282
DO control statement, MVS

description 14
direct access label and 85

tape label and 85
VSAM file processing 309

DO statement 122

ddnames

direct access 124

error message unit 124
keyed access 182
on FILE specifier 123
preconnection 147
sequential access 124
unnamed files 149

debug packets 113
DEBUG run-time option

description 101
specification TSO 97
specification under VM 64
specification using MVS 83

debug statements, static 112
Debug, Interactive

See VS FORTRAN Version 2 Interactive Debug 32
debugging

dumps, formatted 117
extended error handling and 110
GOSTMT option and 109
static debug example 113
static debug statements for 112

DEBUNIT run-time option 102
DECK compiler option

brief description 28
DECLARED column in cross reference 45

default name form

consequences under MVS 291
consequences under VM 277
general description 274

default run-time options table
establishing 106

defaults

extended error handling 110
modification of 38

DEFINE command, VSAM
creates catalog entry 302
processing of 309
VSAM direct file 303

VSAM keyed file 303
VSAM sequential file 304

456 VS FORTRAN Version 2 Programming Guide

defining record 85
DELETE statement 187

dependence
classifications

direction 232

interchangeability 233
level 233

mode 231

type 231
definition 229

dependences, table of ignored 241
diagnostic message in vector report 373
diagnostic messages

compiler default 38
compiler module identifier in 41
compiler output and 17, 20, 37
compiler, example 41
GOSTMT option and 109
ILX compiler message prefix 41
listing, FLAG option 40
message number identifies 41
operator 110
self-explanatory 40
severity level in 41
traceback map and 107

diagnostic messages, vector report 240
differences between VS FORTRAN Version 2, Version

1 and earlier FORTRANs 341

direct access, files connected for
connecting 147, 180
default record formats 128

description 126, 180
disconnecting 154
endfile record 180

file organization 126,180
formatted I/O 137

INQUIRE statement 181

inquiring about 159
reading data 180
unformatted I/O 142

unnamed files 180

writing data 180
direct file processing

CMS FILEDEF command and 66

record format 88

valid VSAM source statements, summary 310
VSAM considerations 299

VSAM direct access for 314

VSAM sequential access for 313
VSAM source language 312

DIRECTIVE compiler option 28
directives, vector 253
disconnecting units and files

at program termination 125, 156
CLOSE statement, using a 154
deleting files 155
OPEN statement, using an 156
retaining files 154

DISK compiler option 8
displacement column, in storage map 44
displacement, definition 197
DLBL command 122

DO LOOP qualification for vector processing 234
DO loop, extended range of a 343
DO statement

control transfers into, common coding error 117
implied, partial short-lists in 220
writing loops inline 224

documentation of IBM extensions vii

double precision data type
conversions of 225

double-byte character data
documentation v

double-byte character set (DBCS)
CHAR specifier on INQUIRE statement 190
CHAR specifier on OPEN statement 151, 190
DBCS I NODBCS compiler option 27
defaults for preconnected files 152
formatted I/O 190

keyed access, considerations for 190
MAP I NOMAP compiler option 43
unformatted I/O 190

XREF I NOXREF compiler option 45
DSPTCH subroutine 350

dummy argument
restrictions on assigning values 194
rules for use 193

dummy variables, alignment using 197
dumps

requesting 117
duplicate expressions, how compiler recognizes 224
dynamic common considerations 69, 92, 359
dynamic file definition

defaults for file characteristics (MVS) 88, 167, 445
defaults for file characteristics (VM) 68, 167, 445
definition 122

deleting files 155
FILEINF service routine 168

inquiring about files 158, 171
named files 123, 124, 149, 165
space calculation under MVS 170
unnamed files 165

E
E

error code 41

EBCDIC

data set record format 87

efficient source code 217

ELIG vector status flag 239
elimination of instructions, 0PTIMIZE(3) 219
end of compilation message 46
endfile record

definition 127

encountering 175
writing 175

ENDFILE statement 175

VSAM files treat as documentation 310

ENTRY control statement under MVS 89

entry point, traceback map lists 108
entry points VFEIN# and VFEIL# 319
entry sequenced data set (ESDS), source language

considerations 310

EP loader option under MVS 81
EQUIVALENCE statement

COMMON statement and 198

errors using 199, 200
invalid references, common error 117
optimization and 221

ERRMON, extended error control 111

error

handling, effects of VS FORTRAN Version 2 Inter
active Debug on 112

handling, extended 110
occurrences, warning on number of 111

error checking
ERR specifier 174
lOSTAT specifier 174

error message unit 102, 124, 148, 359
error messages

See diagnostic messages
errors

fixing user 117
identifying run-time 107
summary, in traceback map 109
to avoid 117

ERRSAV, alters entry in option table 111
ERRSET

changes entry in option table 111
requests traceback maps 107

ERRSTR, stores entry in option table 111
ERRTRA

executes the traceback routines 111

ESDS

defining an 304
VSAM sequential file 299

EXEC control statement, MVS
description 13
linkage editor options under MVS 78
loader data set 81

loader processing options 81
execution, compiler

See compilation
existence, file

checking 122, 159
definition 122

factors determining 433
indicating on the OPEN statement 150
tables

MVS 435

VM 441

explicit type statement
type changes using, common coding error 117

exponent underflow mask control 105

Index 457

expression

common, 0PTIMIZE(3) eliminates 218
how compiler recognizes duplicate 224
restrictions as actual argument 194
scaling elimination 224

expressions, how compiler recognizes duplicate 224
extended architecture considerations 68, 89
extended error handling, using 110
extended range of a DO loop 343
extensions, IBM

documentation of vii

external files 121

factoring expressions 224
file definition

ddname 123

description 122
file existence tables, MVS 435
file existence tables, VM 441
filename 123

file/unit connection

See unit/file connection

FILEDEF command 65, 122
FILEINF service routine 168

filemode in VM 65

filename in VM 65

files. I/O
See I/O files

filetype in VM 65
FIPS compiler option

description of 28
output for 47

fixed

length record description 86
order variable alignment 197
point items, conversions of 224

FIXED compiler option 28
fixed-length records 127
fixing

user errors 117

FLAG compiler option
description of 28
diagnostic message listing 40
examples of compiler messages 40

floating-point
items, conversions of 224

foreground command procedure under TSO 99
FORMAT statement

FMT specifier 138
format codes 138

reading data 141
writing data 138

formatted data

FORMAT statement

reading data 141
writing data 138

INOUIRE statement 159

458 VS FORTRAN Version 2 Programming Guide

formatted data (continued)
internal flies 130, 145
list-directed formatting

reading data 132
writing data 130

NAMELIST formatting
reading data 134
writing data 137

OPEN statement 151

FORTRAN

See VS FORTRAN Version 2

FORTRAN-supplied functions
See intrinsic functions

FORTVS2 command for CMS 7

forward dependence 232
FREE compiler option

description 28
FTERRsss DD statements 370

FTPRTsss DD statements 370

FTxxFyyy, optional MVS loader data set
full FIPS flagging 47
function subprograms

paired arguments in 193

GENMOD command for CMS 62, 69
GOSTMT compiler option 29

description 29

I

informational code

I/O files

access methods 125

connecting
changing properties of
definition 125

inquiring about 159
with the OPEN statement

disconnecting
at program termination
deleting after 155
retaining after 154
with the CLOSE statement

with the OPEN statement

dynamically allocating
defaults for file characteristics (MVS)

445

defaults for file characteristics (VM) 68, 167,
445

definition 122

deleting flies 155
FILEINF service routine 168

inquiring about files 158, 171
named files 123, 124, 149, 165
space calculation under MVS 170
unnamed files 165

41

152

148

156

154

156

81

88, 167,

I/O files (continued)
existence

definition 122

indicating 150
inquiring about 159

external

description 121
difference from operating system files 122

file definition 122

internal

description 122
reading and writing 145

MVS considerations 85

named

connecting using an OPEN statement 149
definition 123

optimization and 220
preconnecting 147
reconnecting 156
temporary 150
unnamed

connecting using an OPEN statement 149
definition 123

VM considerations 65

I/O statements, overview 129

I/O terminology
access method 125

connection 125

ddname 123

direct retrieval 184

dynamic file allocation 122
external files 121

file definition 122

file existence 122, 433

internal files 122

internally open 159
key of reference 184
named files 123

preconnection 125
records 127

sequential retrieval 184
subfiles 177

unit/file connection 125

unnamed files 123

I/O unit

connection

changing properties of 152
general 125, 147
inquiring about 159
with the OPEN statement 148

definition 125

disconnection

at program termination 156
with the CLOSE statement 154

with the OPEN statement 156

identifier 125

preconnection 147
IBM extensions

documentation of vii

ICA compiler option 29
ICA feature

See intercompilation analysis feature
ICA optional MVS compiler data set 15
IF statement, optimization and 225
IGNORE vector directive 258

ignored dependences 241
IL compiler option 30
ILX, compiler message prefix 41
IMPLICIT statement

type changes using, common coding error 117
implied-DO I/O statements 220
INCLUDE command for CMS 60. 62
INCLUDE directive. FORTRAN

conditional 10. 17
identification numbers 27

under CMS 9

under MVS 15. 16
INCLUDE, MVS linkage editor control statement 79.

89

induction variable, definition 230
industry standards vi
information messages, compiler default 38
initialization errors, common 118
input blanks, treatment of 151
input/output operations

See I/O files

INQPCOPN run-time option 102
INQUIRE by file name 158
INQUIRE by unit 158
INQUIRE by unnamed file 158
INQUIRE statement

direct access 181

forms of 158

information provided by 159
keyed access 189
response under OCSTATUS | NOOCSTATUS 103
sample program 164
sequential access 177, 178
specifiers 161
where to code 164

INSERT control statement under MVS 89

instruction elimination, 0PTIMIZE(3) 219
integer data type

internal representation 331
optimization efficiency and 221

Interactive Vectorization Aid 34

See also Program Information File (PIF)
interchange-preventing dependence 233, 235
intercompilation analysis feature

description 201
errors detected

conflicting argument usage 202
conflicting common block lengths 206
conflicting common block storage

assignment 206
conflicting external name usage 205
conflicting function type 205

intercompilation analysis file 210

Index 459

intercompilation analysis feature (continued)
managing large programs with 207
managing small programs with 207
messages, suppressing 211
sample programs compiled with ICA 212
UPDATE suboption 210
USE suboption 210
using intercompilation analysis with non-FORTRAN

program units 212
using the USE and UPDATE suboptions 208
when to use 207

intercompilation analysis file 208, 210
allocating space for 210
considerations in CMS 210

considerations in MVS 210

intercompilation analysis file
considerations in CMS 210

considerations in MVS 210

search order for 210

internal files 122, 145
internal limits in VS FORTRAN Version 2 347

internal statement number (ISN)
compile-time messages optionally contain 42
source program listing 17, 20
source program listing prints 38
traceback map uses 108

intrinsic functions

storage map lists 42
TSO usage of 95
vectorization 34

vectorization of 236

INTRINSIC, VECTOR suboption 33. 34
101NIT run-time option 102
lOSTAT

option, VSAM return code placed in 316
ISCII/ASCII

encoded file, record format 87
ISN

See internal statement number (ISN)
IVA, VECTOR suboption 34

See also Program Information File (PIF)

J
job control

considerations for MVS 14

how to specify for MVS 13
JOB control statement for MVS 13

job libraries and run-time loading of library 74
job processing, MVS 12
JOBLIB DD use 83

460 VS FORTRAN Version 2 Programming Guide

K
keyed access, files connected for

alternate keys 126, 181
connecting 147, 182
DBCS data 190

ddnames 182

description 126, 181
direct retrieval 184

disconnecting 154
double-byte data 190
file definitions 182

formatted I/O 137

INOUIRE statement 158, 189
inquiring about 159, 189
key of reference 184
loading new records 183
primary keys 126, 181
reading data 184
respositioning files 187
sequential retrieval 185
unformatted I/O 142

updating files 186
KSDS

defining a 303
file organization

keyed 299
relative 299

sequential 299
VSAM keyed file 299

LABEL parameter of DD statement 85
LANGLVL(66 j 77) compiler option 30
LET

linkage editor option under MVS 78
loader option under MVS 81

level codes

description of 41
E (error) 41
I (information) 41
S (serious error) 41
U (abnormal termination) 42
W (warning) 41
0 (information) 41
12 (serious error) 41
16 (abnormal termination) 42
4 (warning) 41
8 (error) 41

library
See also run-time library
combined LINK library 61, 285

library messages
See diagnostic messages

library module run-time loading 59, 73
library subroutines, mathematical 341
LIBRARY, MVS linkage editor control statement 79

limits in VS FORTRAN Version 2 347
linear data set, VSAM

defining, JCL for 304
description 300
processing, JCL for 316

LINECOUNT compiler option 30
LINK command under TSO 95

LINK library
combined 61, 285

link mode selecting 59, 74
with reentrant programs 280

link mode selection

with reentrant programs 293
link-editing

MVS linkage editor control statements 79
optional MVS linkage editor data sets 78
output 80
required MVS linkage editor data sets 78
TSO listing 95
under MVS 77

under TSO 93

linkage editor
control statements under MVS 79

program under MVS 78
linkage editor NAME statement

and reentrant programs 274
in separation tool output under MVS 277, 291

LIST compiler option
example of output 117
format of listing 114
object module listing 114

LIST data set under TSO 20

LIST linkage editor option under MVS 78
LIST report, vector 238
list-directed formatting

description 130
internal files, rules for 133
output formats 131
reading data 132
writing data 130

listing clarification diagnostic message 417
LISTING file for CMS 11

LKED command for CMS 63, 69
LOAD command for CMS 60, 62, 69
load mode selecting 59, 74

with reentrant programs 280
load mode selection

with reentrant programs 293
load mode, using Multitasking Facility (MTF)

with 371

load module

execution data set under MVS 82

migration under MVS 75
run-time output 84
running 82
running on MVS 83

loader option under MVS 81
loader program

under MVS 80

loader program (continued)
under TSO 97

loading
of library modules under MVS, run-time 73
of library modules under VM, run-time 59

loading new records into a file 183
loading VSAM KSDS 307
logic errors, MAP option helps find 42
logical data type

internal representation 330
optimization efficiency and 221

loop distribution, definition 230
LPA

and reentrant programs 295

M
main program
main task for Multitasking Facility (MTF) 349
MAP compiler option

description 30, 42
example 43, 45
specifying run-time options 83
using the 42

MAP linkage editor option
for MVS 78

MAP loader option under MVS 81
map, traceback 107
mathematical

library subroutines 341
mathematical functions, vectorization of 236

maximum

efficiency 217
LRECL and BLKSIZE 66

member name, changing 281
message

compiler messages (these messages are
online) 42

format, operator 110
number, compiler 41
prefix, compiler 41
programmer-specified text in PAUSE

statement 110

programmer-specified text in STOP statement 110
messages

See diagnostic messages
migration, load modules under MVS

library module replacement tool 76
linkage editor considerations 75

modification of compiler defaults 38
module identifier, compiler messages 41
MSG(NEW I NONE j ALL) suboption of ICA compiler

option 30
MSGOFF suboption of ICA compiler option 30, 211
MSGON suboption of ICA compiler option 30, 211
MTF (Multitasking Facility)

See Multitasking Facility (MTF)
Multitasking Facility (MTF)

coding for 358

Index 461

Multitasking Facility (MTF) (continued)
compiling 367
concepts illustrated 353
designing for 358

' dynamic commons 359, 364, 372
examples 361, 364
independence requirement 358
input/output 359, 370
introduction to 349

Job Control Language (JCL) for 369
linking 367
load modules 367

passing data 359
rules 358, 367
running under 369
using with load mode 371

MVS considerations

automatic cross-compilation 7
compile-only cataloged procedure 14
compiler data set 15
compiler options and 13
defining a record 85
direct access label 85

input/output 85
invoking the VS FORTRAN Version 2

compiler 325
job control statements 14
link-edit processing 77
linkage editor control statements 79
linkage editor data sets 80
linkage editor use 78
load module execution data set 82

load modules 80

loader data set 81

loader program under TSO 97
loader use 80

object modules 15
overlay 88
requesting an abnormal termination dump 84
requesting compilation 14
running the load module 83
tape label 85
using partitioned data set 84
VSAM DEFINE command 309

VSAM file creation 309

VSAM file processing 309
MVS/XA considerations 89

MXREF I NOMXREF suboption of ICA compiler
option 29

462 VS FORTRAN Version2 Programming Guide

N
name

column in cross reference 45

cross reference and 45

of separation tool output under MVS 291
of separation tool output under VM 277

NAME compiler option
column, in storage map 43
description of 30

named common

description 200
length restriction 200

named files

definition 123

INQUIRE statement 158

reconnecting 157
NAMELIST formatting

description 134
internal flies, rules for 135
reading data 134
writing data 137

NAMELIST statement 134

NAMESYS macro 283

NCAL

linkage editor option under MVS 78
loader option under MVS 81

NOABSDUMP run-time option 101
NOAUTOTASK run-time option 101
NODBCS compiler option 27
NODEBUG run-time option

description 101
specification under TSO 97
specification under VM 64
specification using MVS 83

NODEBUNIT run-time option 102
NODECK compiler option 28
NODIRECTIVE compiler option 28
NOFIPS compiler option 28
NOGOSTMT compiler option 29
NOICA compiler option 29
NOINOPCOPN run-time option 102
NOIOINIT run-time option 102
NOLET loader option under MVS 81
NOLIST compiler option 30
NOMAP compiler option

description of 30
loader option under MVS 81

noninductive subscript, definition 230
nonreentrant program

definition 273

nonshareable part of reentrant program
defined 270

See also reentrant programs
NOOBJECT compiler option 31
NOOCSTATUS run-time option

description 102
NOOPTIMIZE compiler option 31

NOPRINT

compiler option 8
loader option under MVS 81

NORENT compiler option 31
NORES loader option under MVS 81
NOSAA compiler option 31
NOSDUMP compiler option 31
NOSOURCE compiler option 32
NOSPIE run-time option 103
NOSRCFLG compiler option 32
NOSTAE run-time option 104
NOSXM compiler option 32
NOSYM compiler option 32
NOTERMINALcompiler option 32
NOTEST compiler option 32
NOXREF compiler option 35
NOXUFLOW run-time option

description 105
specification under TSO 97
specification using MVS 83
specifying under VM 64

NTASKS subroutine 350

OBJ data set under TSO 20

OBJECT compiler option
description 31

object module
compiler default 38
compiler output 17, 20, 37
example of listing 117
link-editing 75
MVS 15

obtaining listing of 114
SYM record in 335

OCSTATUS/NOOCSTATUS run-time option
description 102
effect on connection 150

effect on disconnection 154

effect on reconnection 156

OPEN statement

access method, choosing 151
connecting a file

direct access 180

general 147, 148
keyed access 182
temporary 150

connection properties, changing 152
DBCS data, indicating 152
disconnecting a file 156
error checking 151
file existence, indicating 150
formatted I/O. choosing 151
input blanks, treatment of 151
OCSTATUS I NOOCSTATUS run-time option 150
specifiers 149
unformatted I/O, choosing 151
VSAM considerations 151

OPEN statement (continued)
VSAM direct file considerations 313

VSAM sequential file considerations 311
operands, recognition of constant 223
operating system access methods 126
operator

message format 110
message identification 110
messages 110

OPTIMIZE compiler option
arithmetic conversions, avoiding 224
array initialization 223
arrays, adjustable dimensioned not

recommended 223

arrays, optimizing identically dimensioned 223
common blocks, using efficiently 222
common expressions, 0PTIMIZE(3) eliminates 218
constant operand recognition 223
description 31
difference between 0PTIMIZE(2) &

0PTIMIZE(3) 217
double precision conversions and 225
duplicate expression recognition 224
efficient accumulator usage 222
efficient arithmetic constructions and 225

efficient program size 220
EQUIVALENCE statement not recommended 221

higher levels best 220
IF statement and 225

instruction elimination, 0PTIMIZE(3) 219
integer variables and 221
logical variables and 221
OPTIMIZE(3) considerations 218
passing subroutine arguments in common 222
scaling elimination 224
single precision conversions and 225
source program considerations 217
unformatted input/output and 220
variables, optimization limitations 221
vectorization considerations 227, 268
writing loops inline 224

option table, warning on error occurrences 111
options, compiler

See compiler options
output

error free 84

from separation tool 274
link-editing 80

output dependence 232
output listing

general description 37
header 38

using 38
using the object module listing 114

overlay 88
OVERLAY control statement under MVS 89

OVLY linkage editor option under MVS 78

Index 463

p
padding 49

programming considerations with
effect of argument padding on array 52
effect on asynchronous input/output

processing 53
effect on CALL DUMP or CALL PDUMP 52

effect on common or equivalence data
value 49

effect on direct access input/output
processing 52

effect on formatted input/output data set 53
effect on initialization with hexadecimal

constant 50

effect on initialization with literal constant 50

effect on mode-changing intrinsic function 51
effect on programs calling subprogram 51
effect on unformatted input/output data set 53

parallel subroutines for Multitasking Facility
(MTF) 349

partial short-list I/O 220
partitioned data set under MVS 84
passing arguments between programs 193
PAUSE statement

operator message and 110
performance considerations

description of 271
using reentrant programs 270

period v
PIF

See Program Information File (PIF)
precision

errors, common 117

preconnected files
definition 147

file deFinition 147

reconnecting 157
under OCSTATUS | NOOCSTATUS run-time

option 103
PREFER vector directive 264

PRINT compiler option under CMS 8
PRINT statement

list-directed formatting 130
NAMELIST formatting 134
specifying your own format 137

printer files under CMS 68
PROCESS (\^) statement 37
processing options for MVS linkage editor 78
program

units, sharing storage between 193
program code table 339
program constants

See constant

Program Information File (PIF)
IVA compiler suboption 34
under CMS 11,37

under MVS 15,18
under TSO 21

464 VS FORTRAN Version 2 Programming Guide

program output
error free 84

program, coding
See coding your program

range of a DO loop, extended 343
READ statement

direct access 180

directly accessed VSAM direct file 314
formatted data

list-directed 132

NAMELIST 134

user-specified 141
internal files 145

keyed access 184
sequential access 175
sequentially accessed VSAM direct file 313
specifiers

for unformatted data 143

NAMELIST formatting 135
unformatted data 143

unformatted record size and 87

VSAM sequential file considerations 311
reading data

asynchronous I/O 144
direct access 180

formatted data

list-directed 132

NAMELIST 134

user-specified 141
internal files 145

keyed access 184
sequential access 175
unformatted data 142

real data type
internal representation 331

reconnecting files
&I2@XREC0NN.

preconnected files 157
named files 157

unnamed files 157

record

direct access file 88

formats under MVS 86

record definition 85

record format

default values 128

fixed-length 127
operating system 127
specifying 128
undefined 127

variable-length 127
variable-length spanned 127

records

blocked 127

endfile 127, 176, 180
formatted

in internal files 145

records (continued)
formatted (continued)

reading and writing 130
specifying on the OPEN statement 151

unformatted

asynchronous I/O 144
description 127
reading and writing 142
specifying on the OPEN statement 151

RECR vector status flag 239
recurrence detection during vectorization 235
recurrence diagnostic message 385
recurrence, definition 229

reduction function, vectorization 35
REDUCTION, VECTOR suboption 33, 35
reentrant programs

advantages 270
and choice of link mode or load mode 280, 293
and residence mode under MVS/XA 294

cataloged procedures to separate 295
changing name of LOADLIB 281
comparison with nonreentrant 269
creating individual members of a TXTLIB 280
creating under MVS 291
creating under VM 277
definition of nonreentrant program 273
dynamic loading capability 271
EXECs to separate 286
in main and auxiliary storage 271
installing in a DCSS 282

_ installing in an LPA 295
limitations 271

nonshareable and shareable parts 270
running under MVS 295
running under VM 285
sharing 270
structure of 269

summary of steps to create 276
two output forms under MVS 291
two output forms under VM 277

REFERENCED field in cross reference 45

relative record

data set (RRDS), source language
considerations 310

RENT option
and separation tool 271
description of 31
under MVS 291

under VM 277

report, vector

See vector report
REPORT, VECTOR suboption 33
repositioning files

BACKSPACE statement 176, 188
REWIND statement 176, 187

RES loader option under MVS 81
residence mode

with reentrant programs 294

return code subroutines

SYSRCS 265

SYSRCX 265

REWIND statement

invalid for directly accessed VSAM direct file 314
keyed access 187
sequential access 176
sequentially accessed VSAM direct file 313
specifiers 187
VSAM sequential file considerations 312

REWRITE statement 187

RMODE attribute 68, 89
routines, listed in traceback map 108
RRDS

defining a 303
VSAM direct file 299

run-time

efficiency and boundary alignment 196
loading of library modules under MVS 73
loading of library modules under VM 59

run-time error messages
operator 110
traceback map with 107

run-time library
alternative mathematical subroutines 341

making available at run time 83
run-time options

ABSDUMP I NOABSDUMP 101
AUTOTASK I NOAUTOTASK 101
DEBUG I NODEBUG 101
DEBUNIT I NODEBUNIT 101, 102
INOPCOPN I NOINOPCOPN 101, 102
lOINIT I NOIOINIT 101,102
OCSTATUS I NOOCSTATUS 101, 102, 150, 154
SPIE I NOSPIE 101, 103
STAE I NOSTAE 101, 104
XUFLOW I NOXUFLOW 101, 105

run-time options table 106
running a program under TSO 96

S severe error code 41

SAA compiler option
description of 31,47

SCAL vector status flag 237, 238
scalar expansion 230, 235, 247
SDUMP compiler option

description of 31
section size for vectorization 35

sectioning, for vector processing 228, 234
separation tool

and linkage editor NAME statement 277, 291
assigned name form 274
changing name of output 281
default name form 274

forms of output under MVS 291
forms of output under VM 277
invoking under MVS 292

Index 465

separation tool (continued)
Invoking under VM 279
MVS cataloged procedures 295
output from 274
supplied as AFBVSFST 292
supplied as nonrelocatable file 277
used to permit dynamic loading 271
used to permit program sharing 270
using with multiple object files 272
using with nonreentrant programs 273
VM EXECs to invoke 286

sequential access, files connected for
asynchronous I/O 144
default record formats 128

description 126, 174
file organization 126
INQUIRE statement 177

inquiring about 159
list-directed formatting 130
NAMELIST formatting 134
preconnected 125
reading data 175
repositioning files 176
specifying your own format 137
subfiles, processing 177
unformatted I/O 142

writing data 175
sequential access, VSAM direct file 313
sequential file processing

CMS FILEDEF command and 66

EBCDIC encoded record 87

ISCII/ASCII considerations 87

valid VSAM source statements, summary 310
VSAM considerations 299

VSAM source language 310
severity level, compiler messages 41
shareable part of reentrant program

defined 270

See also reentrant programs
sharing data between programs 193
shift-in

documentation v

shift-out

documentation v

short-list I/O, partial 220
SHRCOM subroutine 358, 359, 367
single precision, conversions of 225
SIZE

linkage editor option under MVS 78
loader option under MVS 81
parameter for VSAM file processing 310
VECTOR suboption 35

SIZE loader option under MVS 81
SIZE suboption of VECTOR compiler option 253
SIZE, VECTOR suboption 33
SLIST report, vector 239
source code efficiency 217
SOURCE compiler option

description of 32

466 VS FORTRAN Version 2 Programming Guide

SOURCE compiler option (continued)
source program listing 38
source program listing example 40

source program

compiling 7, 23
map, using the 42

source program listing
compiler default 38
description 38
using MAP and XREF 42

source statements

mixed case 341

spanned record description 87
SPIE run-time option 103
SRCFLG compiler option

description of 32
source program listing 40
source program listing example 40

STAE run-time option 104
standard input unit 65, 125, 135, 147, 168, 359
standard output unit 65, 124, 125, 132, 135, 147, 168,

359

START command for CMS 60, 69

STAT report, vector 241
statement

label 347

statement function

storage map lists 42
statement label

storage maps and 44
statement table 339

statements, overview of I/O 129

static debug example 113
static debug statements 112
statistics table, vector 241
step libraries and run-time loading of library 74
STEPLIB DO use 83

STOP statement

causes program termination 110
operator message and 110

storage map description and example 43
storage sharing

See EQUIVALENCE statement

See reentrant programs
stride

definition 228

minimizing 251
subfiles, processing 177
subprogram

arguments in, general rules 193
block data 201

paired arguments in 193
storage map lists 42

subroutine subprograms
arguments in 193
paired arguments in 193
passing arguments to 193

subroutines

alternative mathematical 341

subscript
Invalid values for, common coding error 117
vectorization, affect on 248

subset FIPS flagging 47
summary of errors, in traceback map 109
SXM compiler option

description of 32
using the 42

SYM compiler option
description of 32
record in object module 335

SYNCRO subroutine 350

syntax errors, MAP option helps find 42
syntax notation iv
SYSIN

required MVS compiler data set 15
SYSLIB

optional for MVS linkage editor 78
optional MVS compiler data set 15
optional MVS loader data set 81

SYSLIN

MVS loader required data set 81
optional MVS compiler data set 15
required for MVS linkage editor 78

SYSLMOD 78

SYSLOUT, optional MVS loader data set 81
SYSPRINT

required for MVS linkage editor 78
required MVS compiler data set 15
required MVS loader data set 81

SYSPUNCH optional MVS compiler data set 15
SYSRCS subroutine 265

SYSRCX subroutine 265

System Application Architecture (SAA) 47
Systems Application Architecture (SAA) 31
SYSTERM

optional MVS compiler data set 15
SYSUT1, required for MVS linkage editor 78

table of ignored dependences 241
table, program code 339
Tag column

in storage map 44
tape files

CMS FILEDEF command and 66

ISCII/ASCII considerations 87
TERM report, vector 237
terminal

file. CMS FILEDEF command and 67
TERMINAL compiler option 32
terminal report, vector 237
TEST

compiler option 32
TEXT file for CMS 11

Time Sharing Option
See TSO (Time Sharing Option)

time, in output listing header 38
traceback map 107
transparent argument passing 345
TRMFLG compiler option

description of 32
output for 46

true dependence 231
TSO (Time Sharing Option)

ALLOCATE command 18

background command procedure under 99
CALL command 20

CLISTs under 99

compilation 18
foreground command procedure under 99
linkage editor listing 95
loader program and 97
loading 93
running 93
specification under TSO 97
TEST command 98

Type
column, in storage map 43

type statement

See explicit type statement

u
U unrecoverable error code 42

UNAN vector status flag 237, 238, 239
unanalyzable loop diagnostic message 374
unanalyzable loop, definition 230
undefined length record description 87
undefined records 127

underflow mask control, exponent 105
unformatted data

asynchronous I/O 144
EBCDIC encoded file 87

INOUIRE statement 159

OPEN statement 151

reading data 143
writing data 142

unit

record file, CMS FILEDEF command and 67
unit identifier

asterisk (") 125,147
default value 125, 147
external files 132

internal files 145

unit/file connection

changing connection properties 152
direct access 151

file definition 147

inquiring about 159
keyed access 151, 182
named files 149

OCSTATUS run-time option 150
OPEN statement, using an 148
preconnection, using 147
reconnecting

named files 157

Index 467

unit/file connection (continued)
reconnecting (continued)

preconnected files 157
unnamed files 157

sequential access 147, 151
temporary files 150
unnamed files 149

unit, I/O
See I/O unit

unnamed files

connecting 149
definition 123

existence 435

INQUIRE statement 159

preconnecting 147
reconnecting 157
subfiles 177

UNSP vector status flag 239
unsupportable construct diagnostic message
unsupportable loop, definition 230
UPDATE suboption of ICA compiler option 29. 208

intercompilation analysis file 208
UPDATE-IN-PLACE attribute 66

USE suboption of ICA compiler option 29, 208
user errors, fixing 117
using VS FORTRAN Version 2

under VM 7

V
variable

accumulator usage 222
and assembler subprograms 326
as actual argument 194
dummy, for alignment in common 197
efficient common arrangement 196
fixed order alignment in common 197
internal representation 330
length record description 86
optimization limitations 221
recognition when constant 223
storage map lists 42

variable length records
VECT vector status flag
VECTOR compiler option

description of 33
vector directives 253

vector report

defaults 33

diagnostic message 373
printed listing (LIST or XLIST) 33
specifying REPORT option 33
terminal display (TERM) 33

vector, definition 227
vectorization

analysis of DO loops 234, 249
cost considerations 235

dependences 229, 231, 253
dependences, table of ignored 241

127

237, 238, 239

405

468 VS FORTRAN Version 2 Programming Guide

vectorization (continued)
diagnostic message reporting 373

directive 419

listing clarification 417
recurrence 385

unanalyzable loop 374
unsupportable construct 405
vectorization of statement 415

diagnostic messages 240
directives

applications 254
ASSUME COUNT 256

format 254

global 255
IGNORE 258

interactions between directives 254

local 255

multiple 255
PREFER 264

verifying correct application 265
eligibility of DO loops 234, 249
examples

compound instructions 246
IF conversion 247

intrinsic functions 248

loop distribution 246
loop selection 246
printed report 245
reduction operations 247
scalar expansion 247
statement reordering 247
terminal report 237

intrinsic functions 236

mathematical functions 236

qualification stages 234
recurence detection 235

reports

examples 237, 238
on terminal 237

printed 238
restrictions

interaction with static debug statements
math library routines 267
subscript values and array bounds 268
vector versus scalar summation 267

sectioning considerations 234
statistics table 241

table of ignored dependences 241
techniques for improvement

compound instructions 246
DO loops 249
program logic 250
section size 253

statements preventing vectorization 248
stride 251

subscripts 248
temporary variables 251
vector overhead 252

virtual memory 251

268

vectorization (continued)
terminology

dependence 229
induction variable 230

loop distribution 230
noninductive subscript 230
recurrence 229

scalar expansion 230
stride 228

unanalyzable loop 230
unsupportable loop 230
vector 227

vector section 228

VECTOR compiler option 33
defaults 33

INTRINSIC suboption 34
IVA suboption 34
NOINTRINSIC suboption 34
NOIVA suboption 34
NOREDUCTION suboption 35
NOREPORT suboption 33
REDUCTION suboption 35
REPORT suboption 33
SIZE suboption 35

VFEIL# entry point 319
VFEIN/^ entry point 319
VFEIN^, common errors using 118
VFEIS# 368
VFT2RCL cataloged procedure under MVS 295
VFT2RCLG cataloged procedure under MVS 295
VFT2RLG cataloged procedure under MVS 295
VM

See CMS considerations

VM/XA considerations 68

VS FORTRAN Version 2 Interactive Debug
effects on error handling 112
options, specifying 101
relationship of TEST and NOSDUMP compiler

options to 32
VS FORTRAN Version 2

common coding errors 117
compiler invocation 325
compiling your program 7. 23
creating reentrant programs under MVS 291
creating reentrant programs under VM 277
differences 341

fixing user errors 117
identifying run-time errors 107
internal limits in 347

separation tool, general description 271
subprograms and shared data 193
under MVS 14

under VM, using 7, 59
VSAM file processing

alternate index path 305
alternate index terminology 306
catalog entry creation 302
cataloging and loading alternate index 307
example of defining a VSAM file 302

VSAM file processing (continued)
file definition 301

file organization 299
lOSTAT option obtains return code 316
operating system data definition statement 308
source language considerations 310

obtaining the VSAM return code—lOSTAT
option 316

processing VSAM direct file 312
processing VSAM sequential file 311

valid source statements, summary 310
VSAM terminology 300

VSCOM# routine 319
VSF2RCS 286

VSF2RSEP 288

w
W warning error code 41
WAIT statement 144

WRITE statement

direct access 180

directly accessed VSAM direct file 314
formatted data

list-directed 130

NAMELIST 137

user-speci fied 138
internal files 145

keyed access 183, 186
sequential access 175
sequentially accessed VSAM direct file 313
unformatted data 142, 144

unformatted record size and 87

VSAM sequential file considerations 312
writing data

asynchronous I/O 144
direct access 180

formatted data

list-directed 130

NAMELIST 137

user-specified 138
internal files 145

keyed access 183, 186
sequential access 175
statements 130

unformatted data 142

XA considerations 68, 89
XLIST report, vector 238
XREF

compiler option 35
cross reference listing 42
linkage editor option under MVS 78
source program cross reference 43

XUFLOW run-time option
description 105
specification under TSO 97

Index 469

XUFLOW run-time option (continued)
specification using MVS 83
specifying under VM 64

Y
yy, operator message identifier 110

Numerics
0 informational code 41

0, in operator message 110
12 severe error code 41

18 abnormal termination code 42

31-bit addressing 68, 89
4 warning error code 41
8 error code 41

470 VS FORTRAN Version 2 Programming Guide

E~

D —
c o
Q) Q>

CO O
I

O

E E
o E

'SZ 3
n O'

5 >

E "en
<u c

V 3
CO CO
3 <0

— CO
Q. o
O V

(rt Q.

VS FORTRAN Version 2

Programming Guide

SC26-4222-3

Reader's

Comment

Form

This manual is part of a librarythat serves as a reference source for system analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, withthe under
standing that IBM may use or distribute whatever information yousupply inany way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever reviewand action, ifany, are deemed appro
priate.

Note: Donot use this form to request IBM publications. Ifyou do, your order willi>e delayed because publications are not stocked at
the address printedon the reverse side. Instead,youshoulddirect any requests forcopies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Ifyou have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Comments:

Ifyou want a reply, please complete the following information.

Name

Company.

Address

Page No.

Rhone No. (.

Thank you for your cooperation. No postage Is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4222-3

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023
San Jose, OA 95161-9023

liiilliilililiillliiiiiilililiililiiliiliiiiliililil

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE

UNITED STATES

Fold and tape

q.£
*5 —
O" o
Q> 0)

w a>
0 a
<0 o
1

o ^

E E
u E

'JZ 3
O ^

is

£ °
•i §

m

E 'w
V c

0 f
a ®

0) 3
01 01

(/) 0.

VS FORTRAN Version 2

Programming Guide

SC26-4222-3

Reader's

Comment

Form

This manual is part ofa library that servesas a reference source for system analysts, programmers, and operators ofIBM systems.
You may use this form to communicate your comments about this publication, itsorganization, orsubject matter, with the under
standing that IBM may useordistribute whatever information you supply in any way itbelieves appropriate without incurring any
obligation toyou. Your comments will besenttotheauthor's department for whatever review and action, if any, are deemed appro
priate.

Note: Do notuse thisform to requestIBM publications. If you do,your orderwiii be delayed becausepublications are notstocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, orfor assistance in using
yourIBM system,to yourIBM representative or to the IBM branchoffice servingyourlocality.

Ifyou have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Comments:

Ifyou want a reply, please complete the following information.

Name

Company.

Address

Page No.

Phone No. (.

Thank you for your cooperation. No postage is necessary if mailed inthe U.S.A. (Elsewhere, an IBM office or representative will be
happy toforward your comments or you may mail them directly totheaddress in the Edition Notice onthe back ofthe title page.)

SC26-4222-3

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023
San Jose, OA 95161-9023

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

Printed In U.S.A.

Program Number
5668-805

5668-806

The VS FORTRAN Version 2 Library

Diagnosis Guide

General Information

Installation and Customization for MVS

Installation and Customization for VM

Interactive Debug Guide and Reference

Language and Library Reference

Licensed Program Specifications

Programming Guide

Reference Summary

File Number

S370-40

LY27-9516

GC26-4219

SC26-4339

SC26-4223

SC26-4221

GC26-4225

SC26-4222

SX26-3751

