
'• •-

VS FORTRAN Version 2
SC26-4223-2

Interactive Debug
Guide and Reference --• ". " •

Release 3 .

l.ifP JI - •}]

I--1S

l-^p ^s>3h^ -Ji - ^D)
.:i

i-S© S9^}V

-N:
.....A

if "\ ' r-

K:>/

>f£ • •'

•v;4

i

A
S^-

VS FORTRAN Version 2

Interactive Debug
Guide and Reference

Release 3

SC26-4223-2

I Third Edition (March 1988)

I This edition replaces and makes obsolete the previous edition, SC26-4223-1.

I This edition applies to Release 3 of VS FORTRAN Version 2, Program Numbers 5668-805 and 5668-806,
and to any subsequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the preface.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at
any subsequent publication of the page affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
I operation of IBM systems, consult the latest IBM System/370, SOxx, 4300, and 9370 Processors Bibli

ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. Ifyou request publications from the address given below, your order will be
delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. Ifthe form has been removed,
I comments may be addressed to IBM Corporation, Programming Publishing, P. O. Box 49023, San Jose,
I California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986, 1987, 1988

About This Book

This book describes how to use VS FORTRAN Version 2 Interactive Debug to
monitor and test the running of VS FORTRAN programs. This book can be used
easily and effectively by scientists, engineers, other professionals, and
students—all those who use VS FORTRAN for engineering and scientific
problem solving.

How This Book Is Organized

"Part One. User's Guide," discusses how to use Interactive Debug.

— Chapter 1, "Introduction," discusses the features, requirements and
restrictions of Interactive Debug.

— Chapter 2, "Debugging in Full Screen Mode," discusses how to invoke
and use Interactive Debug in full screen mode.

— Chapter 3, "Debugging in Line Mode," discusses how to invoke and use
Interactive Debug in line mode.

— Chapter 4, "Debugging in Batch Mode," discusses how to invoke and
use Interactive Debug in batch mode.

— Chapter 5, "Using Interactive Debug Files," discusses how to use the
Interactive Debug files AFFOUT. AFFIN, AFFPRINT, AFFON, AFFLST, and
AFFPIF.

— Chapter 6, "Debugging Tasks," discusses how to perform common
debugging tasks

— Chapter 7, "Special Considerations When Using Interactive Debug,"
describes special considerations in using Interactive Debug.

— Chapter 8, "A Sample Debugging Session," is a tutorial shows some of
the basic features of Interactive Debug.

"Part Two. Command Reference," describes all Interactive Debug com
mands.

^ Appendixes

— Appendix A, "Interactive Debug Messages," contains a list of Interac
tive Debug messages.

— Appendix B, "ISPF Dialog Variable Names Defined by Interactive
Debug," lists ISPF dialog variable names which are defined by Interac
tive Debug.

About This Book III

How to Use This Book

Syntax Notation

Read Part One to learn how to use Interactive Debug. The chapters should
be read in order of appearance.

After you are familiar with how to use Interactive Debug, use Part Two and
the Appendixes as reference material. Part Two is alphabetically organ
ized, with running headers on each page, to make commands easy to find.

For the syntax notation of all Interactive Debug commands, refer to page 100.

Summary of the VS FORTRAN Version 2 Publications
The following table lists the VS FORTRAN Version 2 publications and the tasks
they support.

Task VS FORTRAN Version 2 Publications Order Numbers

Evaluation and

Planning

General Information

Licensed Program Specifications

GC26-4219

GC26-4225

Installation and

Customization

Installation and Customization for VM

Installation and Customization for MVS

SC26-4339

SC26-4340

Application
Programming

Language and Library Reference
Programming Guide
Interactive Debug Guide and Reference
Reference Summary

SC26-4221

SC26-4222

SC26-4223

SX26-3751

Diagnosis Diagnosis Guide LY27-9516

iV VS FORTRAN Version 2 Interactive Debug Guide and Reference

Summary of Changes

Release 3, March 1988

Major Changes to the Product
^ A new main debugging panel in full screen mode that allows you to:

— Display AUTOLIST data in a monitor window, in addition to displaying
your source listing in a source window and your interaction with Interac
tive Debug in a log window.

— Change the size and configuration of the windows with the enhanced
WINDOW command and the new commands SIZE and ZOOM.

Automatic refresh of the main debugging panel by Interactive Debug after a
specified number of lines of output have been written to the log.

Vector tuning assistance that allows you to:

— Gather vector length and stride information with the new LISTVEC and
VECSTAT commands.

— Gather DO loop sampling and timing information with the enhanced
LISTSAMP and LISTTIME commands.

— Get on-line help for vector report messages with the enhanced HELP
command.

— View the source order vector report in full screen mode.

Double-byte data support. After you specify the new DBCS YES command,
double-byte data can be:

— Displayed in the source listing (full screen mode only).

— Contained in variable names and array names.

— Contained in character literals, both entered and printed.

— Used in terminal input and output to VS FORTRAN Version 2 programs.

The addition of the new full screen commands RESTORE and RETRIEVE.

Recognition of the restart file (AFFIN) and log file (AFFOUT) in line mode
debugging.

Enhancements to the include file (AFFON):

— Defaults can be defined for listed and unlisted program units.

— A program information file can be defined for a program unit. This file
is needed by Interactive Debug to gather vector tuning information.

— Debugging hooks can be placed only at DO loops, to improve DO loop
timing accuracy.

— Sequence numbers in columns 73 through 80 on 80 column records are
ignored.

Summary of Changes V

Enhancement to the LISTTIME command to show average times.

Enhancements to the format of the output produced by the ANNOTATE
command.

Addition of the default ddnames AFFLST and AFFPIF for the listing filename
and program information filename respectively, for use in MVS batch mode
debugging.

New IAD EXEC which allows you to invoke Interactive Debug in full screen
mode using ISPF without PDF.

Major Changes to This Manual
Documentation of the major product enhancements has been added.

Information on the Interactive Debug files AFFOUT, AFFIN, AFFPRINT, and
AFFON is now found in Chapter 5, "Using Interactive Debug Files" on
page 39.

»- Information on the commands UP, DOWN, LEFT, and RIGHT has been

added.

Appendix B, Interactive Debug Command Summary, has been deleted.
(You can find the information in the VS FORTRAN Version 2 Reference
Summary.)

*- A new Appendix B, ISPF Dialog Variable Names Defined by Interactive
Debug, has been added.

Vl VS FORTRAN Version 2 Interactive Debug Guide and Reference

Release 2, June 1987

Major Changes to the Product
• Support for 31-character symbolic names, including the underscore (_) char

acter.

Addition of a program sampling capability, to assist in identifying areas of a
program that use the most CPU time.

Addition of four new commands:

1. ANNOTATE, to support program sampling.

2. LISTSAMP, to support program sampling.

3. LISTINGS, to display the listings panel when using ISPF Version 2.

4. RECONNECT, to allow a CLOSED unit to be reset to its original {precon-
nected) state so that it can be implicitly opened again.

Capability of providing substring notation for character variables.

»• Capability of referencing array subscripts outside the range of the declared
dimensions.

Reduced dependency on TSO, including removal of the TSOLIB requirement
in CfyiS batch mode debugging.

Capability to debug programs invoked in TSO LOADGO.

Support for debugging CMS MODULE files in ISPF.

Major Changes to This Manual
Documentation of the major product enhancements has been added.

Summary of Changes Vli

Contents

Part One. User's Guide ^

Chapter 1. Introduction 3
Features 3
Requirements 3
Restrictions ®
Migration ®

Chapter 2. Debugging in Full Screen Mode 7
Invoking Interactive Debug in CMS 7

Using ISPF/PDF 7
Using ISPF without PDF 3

Invoking Interactive Debug in TSO 'iO
Using ISPF/PDF '•O
Using ISPF without PDF ^3

Using the Main Debugging Panel 14
Changing the Way Your Windows Look 13

Entering Commands 13
Changing the Defaults for Your Debugging Session • 21
Using the Split Screen Feature {ISPF/PDF Only) 24
Ending the Debugging Session 24

In ISPF without PDF 24
In ISPF/PDF 24

Chapter 3. Debugging in Line Mode 27
Invoking Interactive Debug in CMS 27

Using the LOAD and START Commands 27
Using the LOAD and GENMOD Commands 27
Using an Invocation EXEC 29

Invoking Interactive Debug in TSO 30
Entering Commands 31

Chapter 4. Debugging in Batch Mode 33
Invoking Interactive Debug in CMS 33
Invoking Interactive Debug in MVS 34

Using TSO 35
Without Using TSO 36

Running a Batch Debugging Session 37

Chapter 5. Using Interactive Debug Files 39
Log File (AFFOUT) 39
Restart File (AFFIN) 40
Print File (AFFPRINT) 42
Include File (AFFON) 43
Listing File (AFFLST) 48
Program Information File (AFFPIF) 49

Chapter s. Debugging Tasks 51
Getting On-line Help about Interactive Debug 51

Contents IX

Displaying information about Debuggable Program Units 54
Referring to Statements or Variables in Other Program Units 54
Setting Breakpoints at Debugging Hooks 56
Controlling Program Execution 58
Using Command Lists 60
Displaying Data Types of Variables and Arrays 61
Determining Statement Execution Frequency 62
Program Sampling 63
Program Unit Timing 66
Vector Tuning Assistance 67

Program Information File 67
DO Loop Analysis Hooks 67
Gathering Vector Length and Stride Information 68
DO Loop Sampling 69
DO Loop Timing 70
Vector Report Source Listing 71
On-line Help for Vector Messages 71

Tracing Program Execution 71
Animating the Execution of Your Program 73
Displaying Formatted Variable and Array Values 73
Handling Run-Time Errors 74
Processing External Files 76
Using System Commands 78
Entering Terminal Input 78
Continuing Execution without Further Debugging 80

Chapter 7. Special Considerations When Using Interactive Debug 83
Recognizing Common Errors in Setting up a Debugging Session 83
Issuing Commands after a Program Runs 84
Handling Loops in Nondebuggable Program Units 84
Specifying Default Run-Time Options 84
Monitoring Floating-Point Equalities 85
Referring to Unused VS FORTRAN Variables 85
Entering Commands in an Attention-Interrupt Exit 85
Debugging Optimized and Vectorized Code 86
Improving Program Performance while Debugging 91

I Using Interactive Debug Double-byte Data Support 92

Chapter 8. A Sample Debugging Session 93

Part Two. Command Reference 99

Syntax Notation 100
Statement Identifier Conventions 101

Commands Summarized by Function 102
* or" (Comments) 103
ANNOTATE 104

AT 108

AUTOLIST (full screen mode only) Ill
BACKSPACE 115

CLOSE 116

COLOR (full screen mode only) 118
I DBCS 120

DESCRIBE 121

I DOWN (full screen mode only) 123

X VS FORTRAN Version 2 Interactive Debug Guide and Reference

ENDDEBUG 124
ENDFILE 127
ERROR 128
FIXUP 130
GO 131
HALT 133

HELP 135
IF 138

I LEFT (full screen mode only) 140
LIST 141
LISTBRKS 145

LISTFREQ 146
LISTINGS (full screen mode only) 148
LISTSAMP 149
LISTSUBS 154
LISTTIME 156

I LISTVEC 159
MOVECURS (full screen mode only) 163
NEXT 164
OFF 165
OFFWN 167
POSITION (full screen mode only) 168
PREVDISP (full screen mode only) 169
PROFILE (full screen mode only) 170
PURGE 172
QUALIFY 173
QUIT 174
RECONNECT 175
REFRESH (full screen mode only) 176
RESTART (full screen mode only) 177

I RESTORE (full screen mode only) 178
I RETRIEVE (full screen mode only) 179

REWIND 180

I RIGHT (full screen mode only) 182
SEARCH (full screen mode only) 183
SET 185

I SIZE (full screen mode only) 188
STEP 189

SYSCMD 191

TERMIO 192

TIMER 194

TRACE 197

I UP (full screen mode only) 199
I VECSTAT 200

WHEN 202

WHERE 205
WINDOW (full screen mode only) 206

I ZOOM (full screen mode only) 208

Appendix A. Interactive Debug Messages 209

I Appendix B. ISPF Dialog Variable Names Defined by Interactive Debug 257

Glossary 259

Contents XI

Index 265

Xii VS FORTRAN Version 2 Interactive Debug Guide and Reference

Figures

1. Foreground Interactive Debug Panel for CMS 7
2. ISPF Foreground Interactive Debug Panel for ISO 11
3. Sample Modifications to the ISPF Invocation CLIST 12
4. Sample Modifications to ISPF Master Application Menu 13
5. Sample Application Panel (USERISP) to Prompt for the Text File Name 13
6. Sample CLIST (USERDBG) to Invoke the Program without PDF 14
7. Sample Main Debugging Panel 15
8. Sample Monitor Window 16
9. Sample Source Window 17

10. Sample Log Window 18
11. Sample Interactive Debug Listings Panel (CMS) 22
12. Sample Interactive Debug Listings Panel (TSO) 23
13. Foreground Print Options Panel in ISPF in CMS 25
14. Sample EXEC to Invoke Interactive Debug in CMS Line Mode 30
15. Sample CLIST to Invoke Interactive Debug in TSO Line Mode 31
16. Sample Commands for a Batch Debugging Session in CMS 34
17. Sample JCL for Batch Mode Debugging in MVS with TSO 35
18. Sample JCL for Batch Mode Debugging in MVS without TSO 36
19. Sample AFFON File 48
20. Sample AFFON File for Vector Tuning 48
21. Main HELP Menu (full screen mode) 52
22. Task HELP Menu (full screen mode) 52
23. Sample Command HELP Panel (full screen mode) 53

I 24. Sample Vector Message HELP Panel (full screen mode) 53
25. Sample DESCRIBE Output 61
26. Sample LISTFREQ Output 62
27. Sample LISTSAMP Output for Programs 65
28. Sample LISTSAMP Output for Programs 65

I 29. Sample LISTVEC Output 69
I 30. Sample LISTSAMP Output for DO Loops 70

31. Sample WHERE Output 72
32. Sample Use of FIXUP 75
33. Sample Use of FIXUP 76
34. Sample Use of FIXUP 76
35. Sample Use of FIXUP 76
36. Sample VS FORTRAN Version 2 Program 93
37. Sample VS FORTRAN Version 2 Program Listing 94
38. DUMP and FORMAT Codes for the AUTOLIST Command 112
39. Interactive Debug Color Panel 118
40. DUMP and FORMAT Codes for the LIST Command 142

41. Sample LISTVEC Output 162
42. Interactive Debug Profile Panel 170
43. Valid SET Command Assignments 186
44. Interactive Debug Window Configuration Selection Panel 207
45. ISPF Dialog Variable Nmaes Defined by Interactive Debug 257

Figures Xili

Part One. User's Guide

Part One. User's Guide 1

Chapter 1. Introduction

Features

VS FORTRAN Version 2 Interactive Debug is a flexible and efficient tool that
assists you in monitoring the running of VS FORTRAN Version 1 and VS
FORTRAN Version 2 programs. For convenience, "Interactive Debug" is used
to refer to VS FORTRAN Version 2 Interactive Debug, and "VS FORTRAN" is
used to refer to both VS FORTRAN Version 1 and VS FORTRAN Version 2.

Interactive Debug allows you to:

»- Start, suspend, and continue program execution

*• Examine, change, and display values of variables
Gather and display program performance information

*- Trace program transfers

Control the action taken for run-time errors

Save output in a file

You can use Interactive Debug in full screen mode, line mode, or batch mode.
(Please refer to the separate chapters for each of the modes.)

31-character names: You can use symbolic names up to 31 characters in
length, including the underscore (_) character, for both local and global names.

On-line help information: By using the HELP command, you can get on-line
help information on all Interactive Debug commands and tasks, as well as for
vector report messages in the optional vector report source listing. Help is
available in Time Sharing Option (TSO), Conversational Monitor System (CMS),
and ISPF (Interactive System Product Facility).

Windows: In full screen mode. Interactive Debug allows you to view your
source listing in a source window, view your interaction with Interactive Debug
in a log window, and view variable and array information in a monitor window.

Program animation: In full screen mode, you can highlight the command cur
rently running in the source window and control the pace of execution.

Split-screen display: Using ISPF with the Program Development Facility (PDF),
you can split your screen to perform debugging on one section of the screen
while editing your program on the other section.

Ability to issue AT, DESCRIBE, LIST, and OFF with PF keys: In full screen
mode, you can assign the AT, DESCRIBE, LIST, and OFF commands to a PF key,
and then perform many tasks by "pointing" with the cursor, instead of typing
identifiers on the command line. This allows you to use Interactive Debug

without knowing complex syntax or remembering command names.

Selective debugging of program units: An optional run-time control file (AFFON)
lets you specify which program units will be debugged, and which statements in
those program units will have debugging hooks. Those not selected for debug

ging will run at normal speed.

Chapter 1. Introduction 3

Manipulation of external files while debugging: Commands that are similar to
VS FORTRAN Version .2 I/O statements (for example, ENDFILE, BACKSPACE.
CLOSE, and REWIND) allow you to manipulate external sequential files. Also,
while remaining in debug mode, you can browse or edit external sequential
files used by the program being debugged.

Ability to issue system commands whiie debugging: Without terminating your
debug session, you can issue commands at the system level.

On MVS/XA, ability to debug programs in either addressing mode: Programs
that run in 31-bit addressing mode and reside either above or below the
16-megabyte line can be debugged, with restrictions (see page 6).

Debugging optimized and/or vectorized code: Programs compiled with opti
mization and/or vectorization can be debugged, with restrictions (see page 6).

Debugging reentrant code: Programs that are compiled with the RENT option
and run in reentrant mode can be debugged, with restrictions (see appropriate
bullet under "Compiler Requirements" on page 5).

Using sequence numbers instead of ISNs for source statements: Programs
compiled with the SDUMP (SEQ) option will generate the SDUMP statement
table using the sequence numbers you supply in columns 73 through 80. This
makes it possible for you to debug programs using those numbers instead of
internal statement numbers (ISNs).

Program sampling: This capability enables you to analyze an application
program and identify areas that take the most CPU time to run. This informa
tion can assist you in improving your program's performance.

Saving output: Interactive Debug allows you to place the output from some of
the commands in a print data set for later examination.

Set up expected input: A log of the debugging session is placed in a file
(AFFOUT). This file can subsequently be used as input to Interactive Debug to
re-create a previous debugging session.

Vector tuning assistance: Interactive Debug assists in the analysis and tuning
of vectorized programs by providing the capability of:

»- Gathering vector length and stride information at run time

Summarizing program sampling counts by DO loop

Timing DO loops

^ Providing the capability of displaying a vector report source listing in the
source window (full screen mode only)

Providing help on the vector report messages in the vector report source
listing

Double-byte data support: Interactive Debug enables you to specify double-byte
data in Interactive Debug commands that contain symbolic names or character
data as parameters, a source listing containing double-byte data.

4 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Requirements

System Requirements
Interactive Debug can be used In:

MVS/System Product Version 1 {5740-XYN or 5740-XYS) —all current
releases, with TSO/E (5665-285).

MVS/XA: MVS/System Product Version 2 (5665-291 or 5740-XC6) —all
current releases, and MVS/XA DFP Version 2 (5665-XA2)—all current
releases, with TSO/E (5665-285).

VM/System Product (5664-167)—Release 4 or later, with or without VM/SP
HPO (5664-173) —Release 4 or later.

Use of the double-byte character set requires VM/System Product Release
5.

VM/XA System Facility (5664-169)—Release 2.

^ VM/XA System Product (5664-308)—Release 1, with bimodal CMS.

VS FORTRAN Version 2 Release 3 will support VM/XA System Product
Release 1 with bimodal CMS concurrent with the availability of ISPF
support.

Using Interactive Debug In full screen mode requires:

In MVS, ISPF Version 2 (5665-319), with or without ISPF/PDF Version 2 for
MVS (5665-317).
In VM, ISPF Version 2 for VM (5664-282), with or without ISPF/PDF Version 2
for VM (5664-285).

ISPF/PDF Is required In order to use the following capabilities:

PDF browse and edit facilities in split-screen mode
Automatic browse of the debug print file and log at session end
Start of debugging using Interactive Debug's foreground Invocation panel

VS FORTRAN Version 2 Release 2 will run In the VM/SP operating system only
with the OS simulation facility. It cannot run v/lth the DOS simulation capability
of VM/CMS active.

TSO/E Is required on MVS, or if TSO commands are Issued in batch mode.

Compiler Requirements
VS FORTRAN programs to be debugged with Interactive Debug must have been
compiled with:

VS FORTRAN Version 1 Release 4 or later, or with any release of VS
FORTRAN Version 2

The SDUMP compiler option

^ The TEST compiler option, If the program is reentrant and will reside in a
shared area (DCSS or LPA). Reentrant VS FORTRAN Version 2 programs
can be debugged in user storage with or without the TEST option.

Chapter 1. Introduction 5

Vector tuning Information can be gathered only for those programs compiled
with the IVA suboption of the VECTOR option of VS FORTRAN Version 2
Release 3.

Library Requirements
Programs compiled with releases subsequent to Version 1 Release 4 (including
Version 2 releases) require link editing with the corresponding library release
or a later library. For example, programs compiled on the Release 4.1 compiler
would require link editing with the Release 4.1 library or a later library.

Using Interactive Debug in batch mode requires the VS FORTRAN Version 2
library.

Sampling requires the VS FORTRAN Version 2 Release 2 or later library.
j

Storage Requirements
Interactive Debug requires about 400K bytes of storage to begin execution (plus
the storage required to load the program that will be debugged). Interactive
Debug also acquires additional dynamic storage during execution. The amount
varies according to the nature of the program being debugged, and the type
and quantity of debugging commands issued.

Restrictions

Vectorized and Optimized Code; If a program unit is compiled with optimization
and/or vectorization, Interactive Debug will issue a warning message indicating
that the results of some debugging commands are unpredictable.

Overlays: Interactive Debug cannot debug programs that use overlays.

Multitasking Facility: If you are using the Multitasking Facility (MTF), only the
main task can be debugged.

Migration

AFFON File: AFFON files of debugging jobs run with VS FORTRAN Interactive
Debug Version 2 Release 2 or earlier must be modified to run on Release 3.
See page 46 for more information.

AFFOUT File: AFFOUT files must be defined to Interactive Debug with a RECFM
of FB and LRECL of 80. See page 39 for more information.

MOVECURS Command: Because there are now three windows in the main

debugging panel, MOVECURS works differently from last release. In particular,
if you specify a command on the command line, and then press a PF key
assigned to MOVECURS in order to move the cursor to the affected window, the
PF key must be set to

MOVECURS;

and not

KOVECURS

as in the previous release. See pages 163, 168, and 183 for more information.

6 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 2. Debugging in Fail Screen Mode

When Interactive Debug runs with ISPF (interactive Systerti Product Facility) in
either CMS or TSO, it is running in full screen mode because the entire screen
is available.

Full screen mode debugging allows you to view the source listing in a source
window, commands and output in a log window, and variable and array values
in a monitor window.

Invoking interactive Debug in CMS

Using ISPF/PDF
1. Invoke ISPF/PDF. The ISPF/PDF Primary Option Panel will be displayed.

2. Select option 4, FOREGROUND. The Foreground Selection Panel will be
displayed.

3. Select the Interactive Debug option (usually option 11).

The foreground Interactive Debug panel will be displayed. See Figure 1.

Note: To proceed directly to this panel, type 4.11 on the command line of
the Primary Option Panel.

FOREGROUMO VS FORTRAII VERSION 2.3.0 INTERACTIVE DEBUG

COMMAND ===>

ISPF LIBRARY:

PROJECT ===>

LIBRARY ===>

type ===>

MEMBER ===>

CMS FILE:

FILE ID ===>

MEMBER ===>

IF HOT LINKED. SPECIFY:

OWNER'S ID ===>

READ PASSWORD ===>

EXECUTION TIME OPTIONS:

DEBUG ===>

OTHER ===>

(Blank for member selection list)

(TEXT or MODULE file or LOADLIB)
(If member of a LOADLIB)

DEVICE ADDR. ===> LINK ACCESS MODE ===>

(Enter DEBUG or NODEBUG)

S/SLIB TXTLIB: (VSF2F0RT. TSOLIB and CMSLIB already specified)
8SS> 8S8> aas> sas>

Figure 1. Foreground Interactive Debug Panel for CMS

4. Fill in either the ISPF LIBRARY fields or the CMS FILE fields.

If you are not already familiar with ISPF libraries, you should probably use
the CMS FILE fields. If both groups of fields are filled in, the ISPF LIBRARY
fields will be ignored. If you do not provide the file ID. the ISPF library
member name will be used.

Chapter 2. Debugging in Full Screen Mode 7

Here are some additional guidelines:

For a TEXT file, fill in the FILE ID line with the filename optionally fol
lowed by a filetype of TEXT. Leave the MEMBER line blank.

• For a MODULE file, fill in the FILE ID line with the filename followed by a
filetype of MODULE. Leave the MEMBER line blank.

For a LOAD LIBRARY member, fill in the FILE ID line with the filename
and do not specify a filetype. Fill in the MEMBER line with the library
member name of your program.

*' For the files described in Chapter 5, "Using Interactive Debug Files" on
page 39, fill in the FILEID or MEMBER field with the appropriate name:

fname INCLUDE * - for AFFON

fname LIST A - for AFFPRINT

fname LISTING * - default listing name
fname LOG A - for AFFOUT

fname PIF * - default program information file name
fname RESTART * - for AFFIN

5. Fill in the READ PASSWORD field to access the disk if you don't already
have access.

6. Fill in the DEBUG field under EXECUTION TIME OPTIONS with DEBUG.

Ifyou specify NODEBUG, Interactive Debug will not be invoked unless you
include a special object module to override the default. For further informa
tion about overriding the default options, see "Specifying Default Run-Time
Options" on page 84.

7. Optionally, specify additional run-time options in the OTHER field.

You can continue the list of other options onto the second line if necessary.
Separate options, and keywords within one option, with commas. Do not
type in any extra blanks. For more information on run-time options, see VS
FORTRAN Version 2 Programming Guide.

8. Optionally, specify up to four additional TXTLIBS on the last line of the
panel.

These may be accessed in addition to VSF2F0RT whenever CMS deter
mines that it needs to search a TXTLIB (for example, when loading a TEXT
file and resolving all the external references).

Ifyou want your program to operate in link mode, specify VSF2LINK as an
additional TXTLIB. (For more information on link mode, see VS FORTRAN
Version 2 Programming Guide.)

Loading Multiple Text Files
When you use the ISPF panel to start debugging a TEXT file, you can specify
only a single TEXT file (program name). Should you be debugging a program
that calls other programs, the calls will be automatically resolved for you — pro
vided the called programs are either in a TXTLIB (specified on the panel as a
SYSLIB TXTLIB) or referenced in the calling program by their file names. (The
file names must be the same as the SUBROUTINE or FUNCTION names.) If
your called programs are not in a SYSLIB TXTLIB or referenced by their file
names, you will need to follow a different procedure. Here are three alternative
methods:

8 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Loading from a LOADLIB

Before invoking iSPF, place your main program and all its called programs in a
LOADLIB. You can use the CMS LKED command to build a LOADLIB.

The input to LKED is a file containing any combination of text files and LKED
control statements. (LKED control statements are the same as those accepted
by the MVS linkage editor.) For example, you could create a file of control
statements:

INCLUDE HYPROG

INCLUDE SUBl

INCLUDE HYHATH

ENTRY MAIN

NAME HYPROG(R)

Assume this file is named "MYFILE TEXT." Each control statement must be
preceded by at least one blank.

Now, enter the FILEDEF and LKED commands for your LOADLIB:

FILEDEF SYSLIB DISK VSF2F0RT TXTLIB *
LKED HYFILE (HAP

This produces a file named "MYFILE LOADLIB," which contains a link-edited
program named MYPROG. It also produces a listing file named "MYFILE
LKEDIT," which contains a map of your link-edited program.

Specify the LOADLIB name and member name in the FOREGROUND Interactive
Debug panel.

Loading a concatenated TEXT file

Alternatively, you can concatenate all the TEXT files into a single TEXT file. Use
the CMS COPYFILE command with the APPEND option, or an editor such as
XEDIT or the ISPF/PDF editor, to create a composite TEXT file. Then, specify
this composite TEXT file in the FOREGROUND Interactive Debug Panel.

Loading a module file

If you have generated a MODULE file containing your VS FORTRAN program,
you can specify the module filename and filetype on the ISPF panel. However,
the module must be generated with a higher origin than the default in order to
leave room for the invocation program. (ORIGIN 22000 will probably be high
enough.) If the module origin is too low, the following message will appear:
LOAD ADDRESS TOO LOW

Using ISPF without PDF
The product tape provides the IAD EXEC which allows you to invoke Interactive
Debug using ISPF without PDF. To use it, simply follow these steps:

1. Link to the product minidisk(s) containing ISPF and VS FORTRAN Version 2.

2. Type the following, where name is the program name (filetype of TEXT):
IAD name

To see the full syntax of the IAD EXEC, simply type
IAD

Chapter 2. Debugging in Full Screen Mode 9

The following should then appear:

Proper syntax is:

IAD name <type> <(<options> <HEHBER=member name»

where:

"name" is the name of the file containing the FORTRAN
program.

"type* is the type of the file containing the FORTRAN
program: TEXT, MODULE, LOADLIB or blank. If blank
is specified, the default type is TEXT.

(Note: If type is LOADLIB a member must be specified.)

"options" are the VS FORTRAN execution_time options.
(Note: DEBUG is defaulted.)

"member name" is the name of the member if LOADLIB was
specified and blank otherwise.

3. After pressing ENTER, the Interactive Debug main debugging panel (page
14) should appear.

The IAD EXEC issues FILEDEF statements for AFFON, AFFIN, AFFOUT, and
AFFPRINT. It defines Interactive Debug files with the following names:

name INCLUDE * - for AFFON

name LIST A - for AFFPRINT

name LISTING * - default listing name
name LOG A - for AFFOUT

name PIF * - default program information file name
name RESTART * - for AFFIN

For more information on these Interactive Debug files, see Chapter 5, "Using
Interactive Debug Files" on page 39.

Invoking Interactive Debug in TSO

Using ISPF/PDF
1. Invoke ISPF/PDF. The ISPF/PDF Primary Option Panei will be displayed.

2. Select option 4, FOREGROUND. The Foreground Selection Panel will be
displayed.

3. Select the Interactive Debug option (usually option 11).

The foreground Interactive Debug panel will be displayed. See Figure 2 on
page 11.

10 VS FORTRAN Version 2 Interactive Debug Guide and Reference

• • • • "N

FOREGROUND VS FORTRAN VERSION 2.3.6 INTERACTIVE DEBUG

COMMAND ===>

ISPF LIBRARY:

PROJECT ===>

LIBRARY ===>

TYPE ===>

MEMBER ===> (Blank for member selection list)

OTHER PARTITIONED DATA SET:

DATASET NAME ===>

FILE ID FOR DEBUG FILES
===> PASSWORD ===>

EXECUTION TIME OPTIONS:

DEBUG ===> (Enter DEBUG or NODEBUG)
OTHER ===>

V

Figure 2. ISPF Foreground Interactive Debug Panel for TSO

4. Fill in either the ISPF LIBRARY fields or the OTHER PARTITIONED DATA

SET fields.

If both groups of fields are filled in, the ISPF LIBRARY fields will be ignored.

If the OTHER PARTITIONED DATA SET line is filled in, you should specify
both the data set and member names. If you do not specify the member
name, you will see a panel with a list of member names. You then choose
the member name you need. Specify the data set and member names as
follows:

'data.set.name(member)'

Note: If you omit the quotation marks, ISPF will supply the data set prefix
specified as the default in your TSO profile.

5. Optionally, use the FILE ID FOR DEBUG FILES line to specify the file ID of
the following Interactive Debug files:

userid.fileid.lNCLUDE - for AFFON

userid.fileid.LOG - for AFFOUT

userid.fileid.PRINT - for AFFPRINT

userid.fileid.RESTART - for AFFIN

userid.fileid.LIST - default listing name
userid.fileid.PIF - default program information file

If you do not provide the file ID for any of the first four files, the ISPF library
member name will be used. The last two files (userid.fileid.LIST or
userid.fileid.PIF) always use the ISPF library member name.

6. Fill in the PASSWORD field to specify a password for any password-
protected data sets.

7. Fill in the DEBUG field under EXECUTION TIME OPTIONS with DEBUG.

If you do not specify DEBUG, Interactive Debug will not be invoked unless
you include a special object module to override the default. (For further
information about overriding the default options, see "Specifying Default
Run-Time Options" on page 84.)

8. Optionally, specify additional run-time options in the OTHER field.

Chapter 2. Debugging in Full Screen Mode 11

You can continue the list of other options onto the second line if necessary.
Separate options, and keywords within one option, with commas. Do not
type in any extra blanks. For more information on run-time options, see VS
FORTRAN Version 2 Programming Guide.

Using ISPF without PDF
1. Define the necessary data sets for running ISPF and Interactive Debug.

Modify your allocations for the ISPF data sets to include allocations for the
CLIST library, the IAD panel library, message library and command table.
Examples of lines which could be included in a CLIST are shown in
Figure 3.

CAUTION: We advise you to use the procedures in this manual to establish
your Interactive Debug libraries; they are the only ones supported by IAD.
Ifyou use another approach, such as the ISPF LIBDEF service, you may get
unpredictable results.

/* */
/* THIS IS AN EXAMPLE OF A CLIST FOR SETTING UP ISPF W/0 PDF. IT V
/* INCLUDES DEFINITIONS FOR THE DATA SETS REQUIRED BY VS FORTRAN */
/* VERSION 2 INTERACTIVE DEBUG. THE ISPF NAMES SHOWN IN THIS */
/* EXAMPLE MAY BE DIFFERENT FROM THE ONES USED AT YOUR LOCATION. */
/* V

***********************************/

FREE FI(ISPPLIB ISPHLIB ISPLLIB ISPTLIB ISPPROF)
ALLOC FI(ISPPROF) DA('userid.ISPF.PROFILE") SHR REUSE
ALLOC FI(SYSPROC) DA('VSF2.VSF2CLIB') SHR REUSE
ALLOC FI(ISPHLIB) DA("VSF2.VSF2MLIB' 'ISP.V2R1H0.ISPMLIB") SHR REUSE
ALLOC FI(ISPPLIB) DA('VSF2.VSF2PLIB* "ISP.V2R1H0.ISPPLIB") SHR REUSE
ALLOC FI(ISPTLIB) DA{'VSF2.VSF2TLIB' "ISP.V2R1H0.ISPTLIB") SHR REUSE
ALLOC FI(ISPLLIB) DA{"VSF2.VSF2L0AD" "ISP.V2R1H0.ISPLOAD") SHR REUSE
ALLOC FI(FT05F001) DA{*)
ALLOC FI(FT06FG01) DA(*)

Figure 3. Sample Modifications to the ISPF Invocation CLIST

2. Modify the ISPF Master Application Menu to include an option for Interactive
Debug, if the menu does not already include this option. The menu may
also have to be modified to call an application panel created by your instal
lation (see step 3).

Figure 4 on page 13 shows how you might modify the ISPF master applica
tion menu to provide an option for Interactive Debug (here, option 2) and
invoke a prompt panel (here, called USERISP).

12 VS FORTRAN Version 2 Interactive Debug Guide and Reference

ISPF MASTER APPLICATION MENU

%0PT10N ===> ZCHD % fUSERID

+TIHE

+TERHINAL

+PF KEYS

&ZUSER

&ZTIHE

&ZTERM

&ZKEYS

% 1 ♦SAHPLEl

% 2 tVSF IAD

% 3 ♦.

H 4 ♦.

% 5 +.

% X tEXIT

+Enter%EHD+coiiniand to terminate ISPF.

- Sample application 1
- VS FORTRAN Interactive Debug
- (Description for option 3)
- (Description for option 4)
- (Description for option 5)
- Terminate ISPF using list/log defaults

)INIT
.HELP

&ZPRIH

)PROC
&ZSEL =

)EN0

= ISP00005 /* Help for this master menu
= YES /* This is a primary option menu

TRANS(TRUNC (&ZCHD,'.')
1,'PANEL(ISP0PRIH)' /* Sample primary option menu */
2,'PAHEL(USERISP)' /* SAMPLE PANEL TO INVOKE IAD V

y******************************
/* */

/* Add other applications here. V
/* */
y***y

x!'EXIT'
)

"(new
option)

•(new
prompt)

Figure 4. Sample Modifications to ISPF Master Application Menu

3. Create an application panel that prompts for the name of your load module
and then invokes a CLIST created by your installation (see step 4).

You must create an application panel at your installation similar to the one
shown in Figure 5. The sample prompts the user for the name of the text
file, and then invokes a CLIST called USERDBG.

)ATTR DEFAULT(%+J
/* %TYPeTtEXT) IHTEHS(HIGH) defaults displayed for
/* + TYPE(TEXT) INTEMS(LOV/) information only
/* _ TYPE(IHPUT) IHTENS(HIGH) CAPS(OH) JUST(LEFT)

! TYPE(INPUT) IHTEMS(LOW) PAD(' ') /* input field padded with
)BODY
% SAMPLE VSF IAD PANEL

%C0HHAN0 ="> ZCHD

%

+ ENTER THE NAME OF YOUR PROGRAM BELOW...

+ %===>!MEM

*

+ ENTER THE NAME OF YOUR LIBRARY BELOW...

+ %=">!LIB

+ ENTER THE LIST OF YOUR EXECUTION TIME OPTIONS BELOW...

+ %===>!FOEBUG

♦

)PROC
VER(&MEM,NB,MAME)
VPUT (MEH.LIB.FDEBUG) PROFILE
&ZSEL='CMD(%USERDBG)'

)END

V
V
V

' V

Figure 5. Sample Application Panel (USERISP) to Prompt for the Text File Name

Chapter 2. Debugging in Full Screen Mode 13

4. Create a CLIST to run the VS FORTRAN program and pass the run-time
options.

The sample CLIST in Figure 6 invokes AFFLOAD which in turn loads the VS
FORTRAN Version 1 program with the DEBUG parameter. For this example,
we have called the CLIST "USERDBG."

PRCC 0

CONTROL NOLIST MAIN NOFLUSH NOHSG
/* HEM - MEMBER NAME */
/* LIB - LIBRARY NAME V
/* FDEBUG - EXECUTION TINE OPTIONS V
ISPEXEC VGET (HEM,LIB,FDEBUG,ZPREFIX)
SET &FAFFID = &MEH /* DEFAULT TO MEMBER NAME V
SET 8ZFAFFIN = &STR("fiZPREFIX..SFAFFID..RESTART')
SET &ZFAFFOU = &STR('fiZPREFIX..&FAFFID..LOG')
SET &ZFAFFON = &STR('&ZPREFIX..SFAFFID..INCLUDE')
SET &ZFAFFPR = &STR('SZPREFIX..&FAFFID..PRINT')
FREE FKAFFPRINT AFFIN AFFOUT AFFON AFFLOAD)
ALLOC FI(AFFIN) DA(SZFAFFIH) SHR
IF &LASTCC -= 0 THEN ALLOC FI(AFFIN) DUMMY RECFH(F)
ALLOC FI(AFFON) DA(&ZFAFFOH) SHR
IF &LASTCC -= 0 THEN ALLOC FI(AFFOH) DUMMY RECFH(F)
DELETE &ZFAFFOU

ALLOC FI(AFFOUT) DA(&ZFAFFCU) HOD CATALOG SPACE (1) CYLINDERS
DELETE &ZFAFFPR

ALLOC FI(AFFPRINT) DA(&ZFAFFPR) HOD CATALOG SPACE(l) CYLINDERS
ALLOC FI(AFFLOAO) DA(&LIB) SHR
ISPEXEC SELECT PGM(AFFLINKF) PARM(&MEM/&FDEBUG) NEWAPPL(AFF) NEWPOOL
FREE FKAFFPRINT AFFIN AFFOUT AFFON AFFLOAD)

Figure 6. Sample CLIST (USERDBG) to Invoke the Program without PDF

Using the Main Debugging Panel
When you enter Interactive Debug, the main debugging panel is displayed.
Figure 7 on page 15 shows the main debugging panel for program SAMPLE
found in Chapter 8, "A Sample Debugging Session" on page 93.

Note: You may initially be presented with the Interactive Debug Listings Panel
(page 22) if listings are not defined for every debuggable program unit.

14 VS FORTRAN Version 2 Interactive Debug Guide and Reference

a B B ^
IAD ' Q: SAMPLE W: SAMPLE.3 B
CCMMAHD ===> SCROLL =»»> PAGE

MOtllTOR —♦ 1 + 2 + 3 + 4 + 5 + 6 LINE: 6 OF 0
»«**««*««*»*««»**««*«««««** fQp gp moiiitor ********************************

«*«*««*««********«»««***** bojjom of monitor ******************************

SOURCE 8-

1

2

3

4

6 20

7

8

9 30

10

-4 ♦ 5 +. LINE: 1 OF 111 ♦ 2 ♦ 3 *—

PR0GRAI4 SAMPLE

INTEGER Al(ie).A2(ie).A3(10)
00 20 1*1,10

A1(I)"I+1
A2(I)«I-1

CONTINUE

CALL DIVIDE (A1.A2.A3)
WRITE (6,30)(A3(I),!=1,10)
FORMAT (' ',15)
STOP

log 0 + 1 ♦ 2 ♦ 3 ♦ 4—

0002 5668-806 (C) COPYRIGHT IBI-I CORP 19&5. 1988
0004 LICENSED MATERIALS-PROPERTY OF IBM

0063 WHERE: SAMPLE.3

-6- LINE: 2 OF 4

Figure 7. Sample Main Debugging Pane!

The main debugging panel consists of a two header lines, a monitor window, a
source window, and a log window. The boxed numbers in Figure 7 correspond
to the discussion below.

The header contains:

Q IAD Indicates Interactive Debug status. It may be followed by a /R (read),
/E (error), /W (write), or /F (finished).

Q Q: The name of the currently qualified program unit. Normally, the name
is that of the program unit running. In the sample panel, the program unit
is

SAMPLE

Q W: The statement in the VS FORTRAN program at which execution has
been suspended. Also displayed is the name of the program unit where
the statement is located. In the sample panel, this is statement 3 in
program unit SAMPLE, or

SAMPLE.3

Q COMMAND = = = > The command line. Interactive Debug, ISPF, and PDF
commands may be entered here.

Q SCROLL = ==== > Indicates the default scrolling amount to be used by the
UP, DOWN, LEFT, and RIGHT commands.

Each window contains:

Q Header line. This line contains;

•• The window identifier (either MONITOR, SOURCE, or LOG)
• A character scale

»- The current position (line number) of the contents of the window

Q Top-of-data marker

Chapter 2. Debugging in Full Screen Mode 15

Monitor Window

Q Bottom-of-data marker

The log and monitor window contain up to 1000 lines; there is no limit for the
source window.

Each window is either:

Closed (not displayed).

• Open (displayed with contents).

Empty (displayed with no contents). An empty window shows only the top-
of-data and bottom-of-data markers. The monitor window is initially empty.

Let's now examine each window more closely.

MONITOR ——1"

6681 SAMPLE.Aid)
6662 SAMPLE.Al(2)
6063 SAMPLE.A1(3)
6664 SAMPLE.Al(4)
6665 SAMPLE.Al(5)
6666 SAMPLE.Al(6)

.5 + LINE: 1 OF 16

Figure 8. Sample Monitor Window

The monitor window consists of two parts: prefix area and output from the
AUTOLIST command (page 111). Figure 8 shows the monitor window for
program SAMPLE (page 93), after autolist al has been entered on the
command line.

The contents of the window are automatically refreshed each time a command
is entered. Ifyou were now to run the program SAMPLE statement by state
ment, using the STEP command, you would see the values change for array Al.

During the session, you can view up to 1000 lines of information in the monitor
window.

Specifying AUTOLIST with no operands will terminate monitoring and remove
all information from the monitor window. If the monitor window was originally
open, it will become empty and will show the "TOP OF MONITOR/BOTTOM OF
MONITOR" markers.

16 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Source Window

SOURCE 0 + 1 ♦ 2 > 3 H

PROGRAM SAMPLE

INTEGER Al(ie).A2(ie}.A3(ie)
DO 20 1=1,10

A1(I)=I+1
A2(I)=I-1

COIITlllUE20

.5 +. LINE: 1 OF 11

Figure 9. Sample Source Window

The source window consists of three parts: prefix area, source listing area, and
suffix area.

1. Prefix area: the eight leftmost columns of the source window, containing
the statement numbers (ISNs or sequence numbers) that the compiler uses
to identify each statement in the program. They are extracted from the
source listing.

The commands AT and OFF can be typed in the prefix area. They can be
typed on more than one prefix line, but only one per line. AT and OFF com
mands that are specified in the prefix area are logged as if they had been
entered on the command line.

Whenever a displayed line in the source window has an AT breakpoint
associated with it, the prefix is highlighted, as specified on the Interactive
Debug color panel (page 118).

If an AT or OFF command is typed incorrectly, the erroneous command is
redisplayed in the prefix area with a different attribute (highlighted or dif
ferent color if supported) and followed by a question mark. On the next
interaction, if the user has not taken any action to correct the error, the
prefix is restored to its previous contents.

2. Source listing area: contains the source lines of the currently qualified
program unit extracted from the listing.

If annotation (page 104) is set on, then the source listing area can also
contain bar charts or vector messages.

3. Suffix area: contains the statement run-time count or sampling count. The
suffix area can be removed by changing the appropriate field in the Interac
tive Debug Profile Panel (page 170).

The source window will be empty if:

You specified "NOSOURCE" when you compiled the program.
The source listing for the currently qualified program unit does not exist
(you erased it).

The source listing exists, but the disk containing the source listing is not
accessed.

You specified "NO" in the DISPLAY field of the Interactive Debug Listings
Panel.

Chapter 2. Debugging in Full Screen Mode 17

I Log Window

log 0— 1-—+—-2-—♦-—3-—+—-4-—+-—5-——6-LINE: 1 OF 15
0001 VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG
0002 5668-806 (C) COPYRIGHT IBM CORP. 1985, 1988
0003 LICENSED HATERIALS-PROPERTY OF IBM
0004 WHERE: SAMPLE.3

0005 * list al

0006 SAMPLE.Al(l) = e
6007 SAMPLE.A1(2) = 0
0008 SAMPLE.A1(3) = 0
0009 SAMPLE.Al(4) = 0
0010 SAMPLE.Al(5) « 0
0011 SAMPLE.Al(6) - 0
0012 SAMPLE.Al(7) = 0
0013 SAMPLE.Al(8) = 0
0014 SAMPLE.Al(9) = 0
0015 SAMPLE.Al(10) = 0

Figure 10. Sample Log Window

The log window consists of two parts: prefix area and a session log, which is a
record of recent interactions between you and Interactive Debug. Input lines
are preceded by asterisks. ISPF commands and full screen commands are not
logged. The sample log window in Figure 10 shows that the list al command
was entered.

During the session, the last 1000 log lines are retained in storage to be viewed
by the user. If the output log file AFFOUT (page 39) exists, the entire log will be
written to AFFOUT.

Changing the Way' Your Windows Look
Commands used; DOWN (page 123), LEFT (page 140), MOVECURS (page 163),
POSITION (page 168), RIGHT (page 182), SEARCH (page 183), SIZE (page 188),
UP (page 199), WINDOW (page 206), ZOOM (page 208)

Here are some ways to manipulate the windows:

To open a window, use the WINDOW OPEN command. You can open a
window even if it's empty.

•- To close a window, use the WINDOW CLOSE command.

Various window configurations are possible. The initial configuration is
shown in Figure 7 on page 15. To change the window configuration, use
the WINDOW command with no operands.

To change window sizes, use the SIZE command.

»• To scroll up, down, left, or right within a window, use the UP, DOWN, LEFT,
and RIGHT commands. Ifyou have not changed the default program func
tion key (PF key) settings, you can also use the PF7 and PF8 keys to scroll
up and down, and PF10 and PF11 to scroll left ancl right.

To change the top line of any window, use the POSITION command.

18 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Entering Commands
In full screen mode, you can enter a command in the following ways:

*- Type the command on the command line.

Modify the command In the log window.

Use a program function key (PF key).

I Use the RETRIEVE command.

»• Use the command as a cursor-sensitive command (does not apply to all
Interactive Debug commands).

Typing the Command on the Command Line
The simplest way to enter an Interactive Debug command Is to type It on the
command line.

If a command is too long to fit on the command line, enter as much of the
command as you can, followed by the continuation character (-) to Indicate that
the command Is not yet complete. Press ENTER. Then enter the remainder of
the command.

The continuation character (-) must be the last character entered on the
I command line. You may enter up to 251 characters. Including blanks, In one

command. If a continuation segment requires leading blanks, type a quotation
mark (") first, then the required leading blanks. Interactive Debug will remove
the quotation mark and recognize the leading blanks.

While Interactive Debug Is awaiting the continuation of a command, COMMAND will
I be replaced on the panel by MORE... and you will receive the message

I AFFA019I CURRENT COMMAND IS INCOMPLETE, PENDING MORE INPUT

If you do not wish to continue the command, type END (or press a PF key that
has been assigned to END) and the command will be Ignored.

Modifying the Command in the Log Window
If you want to enter a command that has already been logged, you can move

I the cursor Into the log window, modify the desired command (such as blanking
out the leading asterisk), and press ENTER. This will cause the command to be
copied to the command line. You may then modify the command further before
pressing ENTER. This method allows you to avoid re-typIng a long variable
name.

I If the output line contains double-byte characters, only the visible portion of the
I line will be copied to the command line. The Integrity of the double-byte char-
I acters will be preserved.

Using PF Keys
Using program function keys (PF keys) to enter commands saves you time
because you can simply press a PF key Instead of typing in a long command.

To define PF keys, enter the ISPF command KEYS on the command line. ISPF
then presents you with a panel that displays the current PF key definitions and
allows you to change them. You can assign any Interactive Debug command or

Chapter 2. Debugging In Full Screen Mode 19

I a stack of commands to any PF key. To set a PF key to a stack of commands,
I like STEP and WHERE,.type the following on the PF key definition-line:
I STEP; V/HERE

When you have made all the changes you want, press the END key.

For information on setting the MOVECURS command to a PF key, see page 163.

Use the ISPF command PFSHOW to display your PF key settings across the
bottom of the screen. Use PFSHOW OFF to hide the settings.

Using the RETRIEVE Command
Enter the command RETRIEVE (page 179) either on the command line or from a
PF key to retrieve up to the twelve most recent commands to the command

I line. (Note that ifyou are using ISPF Version 2 Release 3 or later, RETRIEVE
I will behave differently. See page 179 for details.)

Using Cursor-Sensitive Commands
You can specify operands of a command by pointing to them with the cursor,
instead of typing them on the command line. The commands that can be
issued this way are called cursor-sensitive commands. The following are
cursor-sensitive commands:

AT POSITION

DESCRIBE RIGHT

DOWN SEARCH
HELP (for vector report messages) SIZE
LEFT UP

list window close

OFF ZOOM

A cursor-sensitive command affects the window in which the cursor is located.
For example, if you want to scroll up four lines in the log window, type UP 4 on
the command line, position the cursor in the log window, and press ENTER.

If, however, the cursor is not in a window, the following window hierarchy
applies:

If the source window is open, the source window will be affected.

If the source window is not open and the log window is open, the log
window will be affected.

*- If neither the source window or the log window are open, the monitor
window will be affected.

Note: The rules above do not apply to the WINDOW CLOSE command: if
WINDOW CLOSE is specified without a window name and the cursor is not in a
window, an error message will be displayed.

The two cursor-sensitive commands AT and OFF can also be typed in the prefix
area of the source window (see page 17).

Non-full screen cursor-sensitive commands are recorded in your session log as
if the equivalent command had been typed on the command line. For example,
ifyou type AT over ISN 12 in the source window while program unit SUB1 is
displayed, the command AT 12 is recorded in the log.

20 VS FORTRAN Version 2 Interactive Debug Guide and Reference

If the command line contains information when you press a PF key for a cursor-
sensitive command, the information will be appended to that command. For
example, if you enter 12 on the command line, and then press a PF key set to
the AT command, AT 12 will be run and recorded in the log.

Interactive Debug allows you to type over multiple ISN or sequence number
fields with AT or OFF commands before pressing ENTER.

Changing the Defaults for Your Debugging Session
In full screen mode, your Interactive Debug session can be customized by
changing the default values for:

The way your debugging session runs

»- The window configuration

The color of the various parts of the main debugging panel

Listing information

PF keys {see page 19)

Changing the Way Your Debugging Session Runs
Commands used: PROFILE (page 170)

Use the PROFILE command to display and change the current settings for
various parameters that affect the way Interactive Debug runs. To see these
parameters, enter the command PROFILE. A display panel will then appear on
your screen. You can modify this display any time during a debugging session.

One of the parameters on the profile screen is "Output refresh value." This
specifies the number of output lines after which Interactive Debug automatically
refreshes the main debugging panel.

For each refresh, the following will occur:

>- The "W:" field is updated.

»- The values of variables are updated in the monitor window.

The currently executing line in the program is highlighted in the source
window.

The last line of output is displayed in the log window.

Changing the Window Configuration
Commands used: SIZE (page 188), WINDOW (page 206)

Initially, the main debugging panel is divided into three windows (monitor,
source, and log), each section spanning the full width of the screen. You can,
however, change the way the windows are arranged, by using the WINDOW
command. Using WINDOW allows you to choose among six predefined config
urations, and save the one you find most useful. The SIZE command allows you
to further customize the window configuration by making a window bigger or
smaller.

Chapter 2. Debugging in Full Screen Mode 21

You can save the customized configuration by doing the following:

1. Use the SIZE command until you are satisfied with the window configura
tion.

2. Enter WINDOW SAVE on the command line.

To restore the default window and size settings, enter WINDOW on the
command line to display the Window Configuration Selection Panel. Then enter
RESET on the command line.

Changing the Display Color
Commands used: COLOR (page 118)

You will probably find debugging more convenient ifyou highlight certain parts
of the Interactive Debug main debugging panel, such as the current statement
in the source window, and the statement identifiers at which breakpoints have
been set. You can change the color, highlighting, or intensity of various fields
on the panel, using the COLOR command.

Changing Listing information
Commands used: LISTINGS (page 148)

Ifthere is at least one debuggable program routine that has no listing defined,
the Interactive Debug listings panel is automatically displayed at Interactive
Debug initialization. This can occur ifthese routines are not all specified in
AFFON (page 43), or subsequently not found in an. attempt made by Interactive
Debug to search a file or data set whose name is generated by Interactive
Debug from the given application program name. You can enter missing data
set definitions on the listings panel. Press the END key when you are done.

Note: Ifa restart file is present, this automatic display of the listings panel is
deferred until the end of the restart file is reached. If a QUIT command is run
from the restart file, the automatic intervention is bypassed.

You can also request the listings panel from the debugging session by entering
the LISTINGS command. Here are some sample listings panels:

COHHAIIO »»=>

PR06RAH UNIT HAKE

HAIII

IIITERACTIVE DEBUG LISTIII6S PAIIEL

CHS LlSTItlG FILE DISPLAY

XYZPR06 LISTI1I6 A1 Y

11THCOH TKCOH LISTING El

AFFA756E LISTING FILE COULD NOT BE FOUND Oil ACCESSED DISKS.
THE281J THE281J LISTING A1 Y

ROW 1 OF 5

SCROLL »==> PAGE

THY1666 THYie66 LISTING «_ 11

BOTTOf'l OF DATA *********************************

Figure 11. Sample Interactive Debug Ustings Panel (CMS)

22 VS FORTRAN Version 2 Interactive Debug Guide and Reference

CCHHAHD "»>

PROGRAM UllIT NAME

MAIN

TKCOH

IHTERACTIVE DEBUG LISTINGS PANEL

LISTING DATA SET

F0RTEST.TEST1.LIST_

FORTEST.THCOM.LIST

ROM 1 OF 5

SCROLL =«»> PAGE

DISPLAY

y

N

BOTTOM OF DATA **********«*******************#**

Figure 12. Sample Interactive Debug Listings Panel (ISO)

If the source listing you want does not appear on the panel, you must specify
the file ID or data set name for the program unit source listing. To fill in the
listings panel, enter the name of the program unit source listing in the CMS

LISTING FILE or LISTING DATA SET column. Interactive Debug then automatically
fills in the names of all program units found in that listing, and changes the
DISPLAY column to YES. If the listing is in a PDS member, include the member
name in parentheses at the end of the data set name.

To display a listing in the source window, the DISPLAY column for that listing
must specify YES. You may want to change some of these values to NO if you
do not want particular program units to be displayed.

In Figure 11 on page 22, the CMS message LISTING FILE COULD NOT BE FOUND ON
ACCESSED DISKS indicates that the specified file was not found on any of your
accessible disks. In TSO, the equivalent message is LISTING DATASET COULD NOT

BE FOUND IN ALLOCATED DATASETS. To correct the problem, make sure the file ID
for the listing containing the program unit is correctly spelled and is accessible.
If it is necessary to use system commands {CMS or TSO) to make the listing
accessible, you can enter them on the command line prefixed by "CMS" or
"TSO," as appropriate.

The message SPECIFIED PROGRAM UNIT HAME NOT FOUND IN LISTING indi
cates that the listing file was found, but did not contain the named program. To
correct the problem, make sure the file ID for the listing containing the program
unit is correctly spelled and Is accessible.

If you receive any of the following messages:

LISTING FILE COULD NOT BE OPENED

LISTING DATASET COULD NOT BE OPENED

LISTING COULD NOT BE LOADED INTO STORAGE

INSUFFICIENT STORAGE TO LOAD LISTING

then the listing data set was found, but cannot be used as a listing in the
source window. This could be caused by an invalid record length (it should not
be greater than 137 bytes), a very large listing, or security protection by another
user {in TSO).

After filling in the listings panel, you return to the main debugging panel by
entering END, usually PF key 3.

Chapter 2. Debugging in Full Screen Mode 23

Using the Split Screen Feature (ISPF/PDF Only)
With ISPF/PDF. you can split the physical screen into two logical screens. With
a split screen, you can then edit a source or listing file (or even recompile it, in
TSO) while debugging.

To split the screen, use the SPLIT command (or a PF key assigned the SPLIT
function, normally PF2), and then use EDIT to look at the appropriate file or data
set.

Note: The second screen in split-screen mode cannot be used to run a second
session of Interactive Debug (or any other debugging product). You cannot run
any program in the second screen that would intercept attentions, unless you
let that program terminate before trying to continue with Interactive Debug.

Recompiling a Program while Using a Split Screen (TSO Only)
You can use the split screen to perform a number of tasks. For example, in
TSO, you might want to split the screen, recompile a program, and then restart
the debugging session using the new compilation. You would need to complete
the following steps:

1. Split the screen into two portions.

2. Go into edit mode on the lower half of the screen (usually panel 2).

3. Make changes to the source program In the lower half of your screen.

4. Request the VS FORTRAN compilation panel (usually 4.3), and specify the
member name to be compiled.

5. When the program has compiled, request the link-edit panel (usually 4.7),
and specify the member name to be link-edited.

6. When the program has been link-edited, end the split-screen mode and
issue the RESTART command on the command line of the execution panel.

You can now debug the newly-compiled program.

Ending the Debugging Session
Commands used: QUIT (page 174)

In ISPF without PDF
Enter the QUIT command to end the Interactive Debug session.

In ISPF/PDF
After entering QUIT, ISPF will then automatically enter BROWSE so you can
examine the complete output log (AFFOUT). Ifyou have used the PRINT
keyword on any Interactive Debug commands that allow it, ISPF first enters
BROWSE for the AFFPRINT file.

After browsing these files, enter the END command, or use the PF key assigned
to END (usually PF 3). You will then be presented with the standard ISPF FORE
GROUND PRINT OPTIONS panel, allowing you to print each file and then to
keep or delete the file. A sample panel is shown in Figure 13 on page 25.

24 VS FORTRAN Version 2 Interactive Debug Guide and Reference

- FOREGROUHO PRINT OPTIONS
OPTION »==>

PK - Print file and keep K - Keep file (without printing)
PD - Print file and delete 0 - Delete (erase) file (without printing)

If END command is entered, file is kept without printing.

FILE ID: MAIN LOG A

SPOOL OPTIONS:

HWtBER OF COPIES ===> 1 SPOOL CLASS ===> A
BIN NUMBER «»»> 'FOR' USER

3808 KEYWORDS "<"»

FOR SPOOLING TO ANOTHER USER OR MACHINE:

USER / MACHINE ID B3C>

NODE / LINK ID ===>
TAG TEXT ===>

Figure 13. Foreground Print Options Panel in ISPF in CMS

You can fill In the file ID field and any spooling options, and then enter one of
the four options listed at the top of the panel. To leave this panel without
printing your log file, enter the END command or use the PR key assigned to
END.

Bypassing the BROWSE Step
It is possible to bypass the BROWSE step by modifying the AFFFX11 EXEC in
CMS, or the AFFFC11 CLIST in TSO.

In CMS

1. Edit the AFFFX11 EXEC.

2. Add the lines zfbrows = '' and zfprint = " to the EXEC as follows:

zfbrows = ''

zfprint = ''
/* Browse print file if it exists, set message if not */
afftype = 'PRINT' /* afftype is used in message AFFSO06 */

3. Alternatively, you can use '/*• and '*/' to comment out the lines
If zfbrows — " then 'ISPEXEC BROWSE FILE('lid')'
If zfprint -» '' then

'ISPEXEC SELECT CHD(ISRFXPRT ISRFPPRT' lid')'

These lines occur twice-once for displaying the print file and once for dis
playing the log file. For example, after you comment out the lines for dis-

. playing the log file, the EXEC should look like this:

/* Browse log file if it exists, set message if not */
formsg » ''
afftype = 'LOG'
lid » zfname 'LOG A'

'STATE' lid

If rc <= 0 then Do

Address 'ISPEXEC'

/* If zfbrows " then 'ISPEXEC BROWSE FILE('lid')'
If zfprint —» " then

'ISPEXEC SELECT CHD(ISRFXPRT ISRFPPRT' lid')'*/
Address CMS

End

Else formsg = 'AFFS005'

Chapter 2. Debugging in Full Screen Mode 25

If you want to bypass browsing the print menu, search for the first occur
rence of these lines and comment them out also.

InTSO

1. Edit the AFFFC11 CLIST.

2. Search for the following line:

SET ZFBROWS = BROWSE /* ASK FOR BROWSE */

3. Change the line to read as follows:

SET ZFBROWS = &Z /* BYPASS BROWSE */

You can also bypass the print menu by setting ZFPRINT to a null string, as
follows:

SET ZFPRINT » &Z /* BYPASS PRINT */

26 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 3. Debugging In Line Mode

Interactive Debug may be run in linemode in either a CMS or a TSO environ
ment, In line mode debugging, input and output are presented sequentially,
one line at a time. Line mode debugging is intended primarily for users with
access to only a typewriter-like terminal or when ISPF is not Installed.

Invoking Interactive Debug in CMS

Using the LOAD and START Commands
This method will not make a permanent copy of the executable program. The
LOAD command creates a temporary copy of your executable program in
virtual storage. The object code from which the executable program is built is
either in TEXT files or in text libraries, or both.

1. Make the appropriate VS FORTRAN Version 2 Library text libraries, as well
as your own text libraries, available:

a. For link mode execution:

GLOBAL TXTLIB VSF2LIMK \/SF2F0RT CIISLIB userlib...

b. For load mode execution:

GLOBAL TXTLIB VSF2F0RT CHSLIB userlib...

For more information on link mode and load mode execution, refer to the
VS FORTRAN Version 2 Programming Guide.

2. Create a temporary copy of your executable program in virtual storage:
LOAD myprog...

3. Issue:

GLOBAL LOADLIB VSF2L0A0

4. Run the temporary copy of your program that has been built in virtual
storage, and invoke Interactive Debug:

START * DEBUG

Using the LOAD and GENMOD Commands
This method will create an executable program that is stored as a
nonrelocatable file on your CMS disk. The object code from which the execut
able program is built is either in a TEXT file or in a member of a text library.

Note: If you have created a nonrelocatable file with a file type of MODULE for
your program in the past, you can run the program by completing steps 4
through 6 in the "Running the Program" section that follows.

Creating the MODULE File

1. Make the appropriate VS FORTRAN Version 2 Library text libraries, as well
as your own text libraries, available.

a. For link mode execution:

GLOBAL TXTLIB V$F2LIUK VSF2FCRT userlib...

Chapter 3. Debugging in Line Mode 27

b. For load mode execution:

GLOBAL TXTLIB VSFZFORT userlib...

For more information on link mode and load mode execution, refer to
the VS FORTRAN Version 2 Programming Guide.

2. Create a temporary copy of your executable program in virtual storage:

LOAD myprog...

3. Create a nonrelocatable file on your CMS disk:

GENKOD modname

This command builds a file with the file name assigned as modname, and a
file type of MODULE. This program can be run at any time.

Running the Program

4. You may need to issue one or more GLOBAL commands before running
your program. Issue the following command if the simulation of extended
precision floating-point instructions is required on the machine you are
using:

GLOBAL TXTLIB CHSLIB

5. Issue:

GLOBAL LOADLIB VSF2L0AD

6. Run the program that is stored as a nonrelocatable file, and invoke Interac
tive Debug:

modname DEBUG

where modname is the file name of your MODULE file, as originally specified
in the GENMOD command.

With the LKED Command

This method link-edits your program and stores it as a relocatable load module
in a member of a CMS LOADLIB.

Note: If you have created a load module from your program in the past, you
can run the program by completing steps 3 through 5 in the "Running the
Program" section that follows.

Creating a Load Module

1. Issue:

FILEDEF SYSLIB DISK VSFZFORT TXTLIB fm

where fm is either the file mode of the CMS disk that contains the library
VSF2F0RT, or an asterisk {*).

2. Issue:

LKED myprog (LIBE libname IIAHE membname

where:

myprog is the file name of the TEXT file that contains your object
code.

libname is the file name of the LOADLIB file into which the resulting
load module is to be placed as a member.

28 VS FORTRAN Version 2 Interactive Debug Guide and Reference

membname is the name of the member in the LOADLIB file designated by
li bname above, into which the resulting load module is to be
placed.

Running the Program

3. Issue;

GLOBAL LOADLIB VSF2L0A0 libname

where libname is the file name of the LOADLIB file into which your load
module was placed as a member by the LKED command.

4. Issue the following command if the simulation of extended precision
floating-point instructions is required on the machine you are using:

GLOBAL TXTLIB CMSLIB

5. Issue FILEDEF statements for the AFFON {page 43) and AFFPRINT (page 42)
files, such as:

FILEDEF AFFON DISK progname AFFON A
FILEDEF AFFPRINT DISK progname AFFPRINT A

6. Run your program, and invoke Interactive Debug:

OSRON membname PARM=DEBUG

where membname is the name of the member that contains the load module

created with the LKED command.

Using an Invocation EXEC
The easiest way to invoke Interactive Debug in CMS line mode is to use an
invocation EXEC.

Figure 14 shows an EXEC that invokes a VS FORTRAN program with the
DEBUG option. The EXEC allocates a print file, AFFPRINT, and a log file,
AFFOUT. And if they exist, the EXEC also allocates an include file, AFFON, and
a restart file, AFFIN. (For more information on these files, see page 39.) Speci
fying DEBUG on the START statement invokes Interactive Debug, see "Speci
fying Default Run-Time Options" on page 84.

This sample EXEC assumes your program is compiled, and the entire program
is contained in one TEXT file with filetype TEXT. It is also assumed that the
TEXT file will be linked with the VS FORTRAN Version 2 Library to run in load
mode. If you are running in link mode, change the GLOBAL TXTLIB statement
to:

GLOBAL TXTLIB VSF2LINK VSF2F0RT CHSLIB

For more information on link mode and load mode execution, refer to the VS

FORTRAN Version 2 Programming Guide.

Chapter 3. Debugging in Line Mode 29

/* FCRTIAD EXEC: Invokes VS FORTRAN Interactive Debug In line mode. */
arg program .

/* If there is an include file, use it. */
'STATE' program 'INCLUDE *'
if rc » 0 then

'FILEDEF AFFON DISK' program 'INCLUDE *'
else

'FILEDEF AFFON DUMMY'

/* If there is a restart file, use it. */
'STATE' program 'RESTART *'
if rc = 0 then

'FILEDEF AFFIH DISK' program 'RESTART *'
else

'FILEDEF AFFIH DUMMY'

/* Create a log file, deleting the old log, if any. */
•FILEDEF AFFOUT DISK' program 'LOG (RECFM F LRECL 80'

/* Create a print file, deleting the old print, if any. */
'FILEDEF AFFPRIHT DISK' program 'PRINT'

/* Define VS FORTRAN V2 library and required system libraries. */
'GLOBAL TXTLIB VSF2F0RT CMSLIB'

'GLOBAL LOADLIB VSF2L0A0'

/* Load and run the program. V
'LOAD' program '(CLEAR'
'START * DEBUG'

I exit rc

I Figure 14. Sample EXEC to Invoke Interactive Debug in CMS Line Mode

If the EXEC In this example is invoked without specifying a second parameter,
DEBUG will be the default option. If the EXEC were named FORTIAD, specifying

fortiad m06

would cause the program named I\/I06 to be invoked with the DEBUG option.

Invoking Interactive Debug in TSO
To invoke Interactive Debug in TSO line mode, you can use either of the fol
lowing:

CALL progname 'DEBUG'

LOADGO progname 'DEBUG'

I The most convenient method is to use a TSO CLIST. For example, ifthe CLIST
I is in 'userid.CLIST.CLIST{FORTIAD)', you can invoke Interactive Debug by
I typing
I FORTIAD program-name

I The following sample CLIST assumes that your program is compiled and the
I object code is in a data set named program.OBJ.

30 VS FORTRAN Version 2 Interactive Debug Guide and Reference

/* FORTIAD CLIST: INVOKES VS FORTRAN INTERACTIVE DEBUG IN LINE NODE. V
PROG 1 PROGRAM

CONTROL MSG NOFLUSH NOLIST NOSYHLIST NOCONLIST

/* HAKE SURE THE OBJECT CODE FOR THE PROGRAM EXISTS. */
IF &SYSDSH(&PROGRAH..OBJ) *'« OK THEN BO

WRITE DATA SET &PROGRAH..OBJ COULD NOT BE FOUND.
EXIT

END

/* IF THERE IS AN INCLUDE (AFFON) FILE, USE IT. V
IF &SYSDSH(&PROGRAH..INCLUDE) = OK THEN +

ALLOCATE FILE(AFFOH) DATASET(&PROGRAH..INCLUDE) SHR
ELSE +

ALLOCATE FILE(AFFON) DUMMY

I* IF THERE IS A RESTART FILE, USE IT. V
IF &SYSDSH(&PROGRAH..RESTART) = OK THEN +

ALLOCATE FILE(AFFIN) DATASET(&PROGRAM..RESTART) SHR
ELSE +

ALLOCATE FILE(AFFIN) DUMMY

I* DELETE OLD LOG FILE, THEN ALLOCATE A NEW ONE. V
IF &SYSDSU(&PROGRAH..LOG) » OK THEN +

DELETE &PROGRAM..LOG

ALLOCATE FILE(AFFCUT) OATASET(&PROGRAH..LOG) NEW +
SPACE(10,10) TRACKS RELEASE +
RECFM(F,B) LRECL(80) ELKS IZE(4000)

/* DELETE OLD PRINT FILE, THEN ALLOCATE A HEW ONE. */
IF &SYSDSH(&PROGRAN..PRINT) = OK THEN ♦

DELETE aPROGRAM..PRINT

ALLOCATE FILE(AFFPRIHT) DATASET(&PROGRAM..PRINT) NEW +
SPACE(10,10) TRACKS RELEASE

/* ALLOCATE VS FORTRAN FILES. V
ALLOCATE FILE(FT05F001) DATASETC')
ALLOCATE FILE(FT06F001) DATASET(*)

/* ALLOCATE VS FORTRAN V2 LIBRARY.
ALLOCATE FIL£(SYSLIB) DATASET('SYS1.VSF2F0RT') SHR

/* LINK EDIT AMD RUN THE PR0GRAI1. */
LOADGO &PROGRAH..OBJ 'DEBUG'

f* FREE FILES. V
FREE FILE(AFFON AFFIN AFFOUT AFFPRINT FT05F001 FT06FG01 SYSLIB)

Figure 15. Sample CLIST to Invoke Interactive Debug inISO Line Mode

Entering Commands
After invoking Interactive Debug, ttie copyright information will be displayed:
VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG
5668-806 (C) COPYRIGHT IBM CORP. 1985, 1988
LICENSED MATERIALS-PROPERTY OF IBM

At this point, execution is temporarily suspended to allow you to enter debug
ging commands. You can enter a command in the following ways:

• Type the command following the Interactive Debug prompt.

> Use a program function key (PR key).

Chapter 3. Debugging In Line Mode 31

Typing the Command Following the Interactive Debug Prompt
Commands are normally entered following the Interactive Debug prompt. Com
mands may also be issued when execution is suspended because of an input
request originating in the VS FORTRAN program while TERMIO IAD is in effect.
This is described in "Entering Terminal Input" on page 78.

If a command is too long to fit on one line, enter as much of the command as
you can, followed by the continuation character (-) to indicate that the command
is not yet complete. Press ENTER. Then enter the remainder of the command.

The continuation character (-) must be the last character entered on the
command line. You may enter up to 251 characters, including blanks, in one
command. If a continuation segment requires leading blanks, type a quotation
mark (") first, then the required leading blanks. Interactive Debug will remove
the quotation mark and recognize the leading blanks.

Interactive Debug waits for you to type in the continuation of a command by
displaying the following prompt:

PENDING:

If you do not wish to continue the command, type END and the command will be
ignored.

Using Program Function Keys
If you are using a 3270-type terminal on VM/SP, you can use program function
keys (PR keys) to enter commands in line mode.

Using PR keys to enter commands saves you time because you can simply
press a PR key instead of typing in a long command.

To define PR keys, use the SYSCMD command (page 191) with the CP command
SET PR.

For example, to set PR key 4 to the STEP command, issue:

syscmd cp set pf4 step

32 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 4. Debugging In Batch Mode

Interactive Debug can run in batch mode, which creates a non-interactive
debugging session. Batch mode debugging can be done in either a CMS or
MVS {with or without TSO) environment.

In batch mode. Interactive Debug takes its input from a file or data set with the
ddname AFFIN, and writes its normal output to one with the ddname AFFOUT.
During a batch session, you cannot interact with the batch job from your ter
minal. Commands that require user interaction (such as prompt panels) cannot
be used.

You might want to run a debugging session in batch mode if:

You want to restrict the resources used. Batch mode generally uses fewer
resources than interactive mode.

You have a program that might tie up your terminal for long periods of time.
If you use batch mode, you can continue to use your terminal for other work
while the batch job runs.

You are using Interactive Debug to collect performance or run-time data
about your program. For example, batch mode might be helpful if you want
to use LISTFREQ to get statement frequency information, but you do not
want to do any debugging.

The following commands cannot be used in batch mode:

AUTOLIST COLOR DOWN

HELP LEFT LISTINGS

MOVECURS POSITION PREVDISP

PROFILE REFRESH RESTART

RESTORE RETRIEVE RIGHT

SEARCH SIZE UP

WINDOW ZOOM

The invocation procedure you use to start a batch session will depend on the
batch procedures set up for you by your installation. Be sure you understand
how batch mode is invoked on your system before running Interactive Debug in
batch mode.

Invoking Interactive Debug in CMS
There are many batch facilities that can be run on CMS (CMSBATCH,
BATCHMON, VMBATCH, and so on). Interactive Debug considers batch mode
to occur whenever there is no physical terminal attached to the console, which
is true of all the batch facilities listed above. The following gives an overview of
an EXEC or job file for a batch job to be run on CMS:

1. The first part of the job is usually a set of control statements for the batch
machine, such as a job statement, accounting information, console routing
control, and resource limit specifications.

Chapter 4. Debugging In Batch Mode 33

2. The job probably needs CMS commands to link and access the disks con
taining the application program, the Interactive Debug product, input files,
and any other EXECs or programs needed.

3. Next, the job needs commands to run your application with the DEBUG
option. These are similar to the commands in the sample EXEC to invoke
Interactive Debug in line mode (FORTIAD EXEC), but must include defi
nitions for the AFFiN {page 40) and AFFOUT files (page 39). The sample
FORTIAD EXEC is described on page 30.

If you have a FORTIAD EXEC, modify it as above if necessary, and then
enter the following in your job file:

EXEC FORTIAD myprog

If you want to include the information contained in FORTIAD directly in your
job file, it might look like that shown in Figure 16.

GLOBAL TXTLIB VSF2F0RT CHSLIB

GLOBAL LOAOLIB VSF2L0AD

FILEDEF AFFIN DISK myprog AFFIN *
FILEDEF AFFOUT DISK myprog AFFOUT A (RECFH F LRECL 80
FILEDEF AFFON DUHHY

FILEDEF AFFPRINT DISK myprog AFFPRINT A
LOAD myprog (CLEAR
START * DEBUG

Figure 16. Sample Commands for a Batch Debugging Session in CMS

These sample statements invoke the program with the DEBUG option. They
aliocate an AFFPRINT file (page 42), but not an AFFON file (page 43). They
assume you are starting with TEXT files you want to link with the VS
FORTRAN Version 2 Library to run in load mode.

4. Finally, you need CMS commands to send back any output files that were
written to disk.

For example, to send the AFFOUT file to your reader, you might use these
commands:

CP SPOOL PUN TO userid NOCONT

PUNCH myprog AFFOUT

To send the AFFPRINT file to the printer, you might use these commands:

CP SPOOL PRT FOR userid

PRINT myprog AFFPRIHT

When the EXEC or job file is complete, submit it to the batch machine using the
procedures set up for your installation.

Invoking interactive Debug in MVS
In MVS, Interactive Debug considers batch mode to occur whenever no physical
terminal is attached. There are two ways to run Interactive Debug in MVS: with
TSO and without TSO.

34 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Using TSO
The sample JCL below runs the program with subroutine timing and tracing
active. The program is assumed to be compiled and link edited, with the load
module in: userid.FORTRAN.LOAD{program).

The JCL deHnes AFFON, AFFIN, AFFOUT, and AFFPRINT data sets (page 39).
The AFFON entry restricts debugging hooks to only subroutine entry and exit
hooks, which is optimum for subroutine tracing and timing. The AFFIN file con
tains debugging commands to activate tracing and timing, execute the program
to completion, and list program unit names.

//BATCHIAD JOB (accounting-inforcnation),'programmer-name',
// HSGLEVEL-l,HSGCLASS-Z,USER=userid,
// TIME=(0,5),HOTIFY=userid,CLASS»A,
// PASSWORD®password
//FORTIAO EXEC PGH®IKJEFT01,DYNAKNBR''1QO,REGION®2O48K
//STEPLIB DD DSH=SYS1.VSF2F0RT,0ISP»SHR
//SYSTSIH DD *
CALL 'userid.FORTRAN.L0AD(program)' 'DEBUG'
/•
//SYSTSPRT DD SYS0UT®*,DCB"(RECFH=F,LRECL»255,BLKSIZE»255)
//AFFOH DD *
(all) entry
/•
//AFFIH DD *
termio library
trace entry

timer * on

go

listtime

quit

/*
//AFFOUT DD SYSOUT=*,DCB=(RECFH=F,LRECL=80,BLKSIZE«80)
//AFFPRIHT DD SYSOUT®*
//FT06F0O1 DD SYSOUT®*

I Figure 17. Sample JCL for Batch Mode Debugging in MVS with TSO

I Lowercase variables, such as accounting-information and programmer-name, must
I be substituted with the appropriate information. (The ability to substitute an
I asterisk (*) for your user ID and password is system-dependent.) You may
I need to add DD cards to the last job step to define files used by your program.

Chapter 4. Debugging in Batch Mode 35

Without Using TSO
I The sample JCL below performs program sampling. It consists of three job
I steps: compile, link-edit, and run with Interactive Debug.

I The JCL defines AFFPRINT, AFFOUT, AFFIN, AFFLST, and AFFPIF data sets
I (page 39). Because listing or program information data sets were not defined
I using the AFFON file, they are taken from AFFLST and AFFPIF respectively.

//SAHPLE JOB (accounting-information),'prograitimer-name'
// HSGLEVEL=(1,1),HSGCLASS=Z,USER=useri d

,// TIHE»(1,0),NOTIFY=useri d,CLASS=A,
// PASSWORD=password

//* COMPILE THE FORTRATt PROGRAM. *

//COUP EXEC PGH=F0RTVS2,REGI0H=2048K,PARH='SDUHP,SOURCE'
//STEPLIB DO DSM»SYS1.VSF2C0HP,DISP=SHR
//SYSIM DD DSH=fortran-source-name,DISP=SHR
//SYSTERH DD SYSOUT='*
//SYSPRINT DD DSH=&&LISTSET,DISP=(NEM,PASS),UNIT=SYSDA,
// SPACE»(TRK,(10,10),RLSE),DCB=BLKSIZE=3429
//VSF2PIF DD DSH=&&PIFSET,DI$P=(NEW,PASS),UHIT=SY$DA,
// SPACE=(TRK,(10,10),RLSE)
//SYSLIH DD DSM=&&OBJSET,DISP=(HEW,PASS),UNIT»SYSDA,
// SPACE=(TRK,(10,10),RLSE) ,DCB=BLKSIZE=3120

H* LINK EDIT THE PROGRAM. *
j***

//LKED EXEC PGH=IEWL,REGI0II=768K
//SYSLIB DD DSM=SYS1.VSF2F0RT,DISP=SHR
//SYSLIN DD DSH=&&OBJSET,DISP=(OLD,DELETE)
//SYSUTl DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSPRIHT DD SYSOUT='»
//SYSLHOD DD DSH=&&LOADSET(tIAIN),DISP=(NEW,PASS),UNIT=SYSDA,
// SPACE=(TRK,(10,1O,1),RLSE),DCB=BLKSIZE=3276C

H* PERFORM PROGRAM SAMPLING. *
j^*****«**

//GO EXEC PGM=HAIM,REGI0N°2048K,PARM»'DEBUG'
//STEPLIB DD OSH=&&LOADSET,DISP=(OLD,DELETE)
// DD OSN=SYS1.VSF2L0AD,DISP»SHR
//AFFON OD DUMMY
//AFFLST DD OSH=&«iLISTSET,DISP=(OLD,DELETE)
//AFFPIF DD OSH=S&PIFSET,DISP=(OLD,DELETE)
//AFFIN DD *
ENDDEBUG SAMPLE

LISTSAHP *.* TOP(IOO)
ANNOTATE *

QUIT

/-^
//AFFOUT DD SYS0UT=*,DCB=(RECFM=F,LRECL=80)
//AFFPRINT DD SYSOUT=*
//FTC5F001 DD SYSOUT=*

Figure 18. Sample JCL for Batch Mode Debugging in MVS without TSO

Lowercase variables, such as accounting-information and programmer-name, must
be substituted with the appropriate information. (You can usually substitute an
asterisk {*) for your user ID and password if you prefer.) You may need to add
DD cards to the last job step to define files used by your program.

36 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Running a Batch Debugging Session
In batch mode, all Interactive Debug prompts are suppressed. Whenever a sim
ulated terminal input line is read, it is echoed to the simulated terminal output,
prefixed with an equal sign and asterisk {= *). If the AFFIN file does not exist or
the AFFOUT file is not defined, the program is terminated.

Standard corrective action is taken for all VS FORTRAN errors (unless the VS
FORTRAN program calls ERRSET to change them). This will cause the program
to terminate for unrecoverable errors.

Note: Interactive Debug avoids any real terminal interaction in batch mode.
However, it cannot guard against interactions required by the application
program or by SYSCMD commands. It is your responsibility to restrict the use
of interactive commands during batch sessions.

Ending a Debugging Session
It is your responsibility to make sure that the appropriate batch output files are
returned to you or sent to a printer. The batch output files are:

• AFFOUT for debug output (required in batch mode)
AFFPRINT for debug print output (optional in batch mode)

•- Any output files that your VS FORTRAN program writes

Chapter 4. Debugging in Batch Mode 37

Chapter 5. Using Interactive Debug Files

This chapter describes six files that are used by Interactive Debug, and how
they should be defined before invoking Interactive Debug. The six files are:

Log file (AFFOUT)

• Restart file (AFFIN)

• Print file (AFFPRINT)

• Include file (AFFON)

Listing file (AFFLST)

Program information file (AFFPIF)

AFFOUT and AFFIN are required for batch mode debugging.

AFFLST and AFFPIF can be used in MVS batch mode debugging only.

Log File (AFFOUT)
During your debugging session, Interactive Debug creates a log of activity for
you to examine; you can view this log after completion of the debugging
session. The log information is contained in the AFFOUT file. AFFOUT is
optional in full screen mode and line mode debugging; it is required for batch
mode debugging.

How to Define AFFOUT to interactive Debug
AFFOUT does not need to exist prior to execution of the VS FORTRAN program,
but it must be defined:

In CMS

Full screen mode: The ISPF invocation procedures define a file named
fname LOG (where fname is the name specified on the FILE ID line of the
invocation panel).

Line mode and batch mode: Issue a FILEDEF statement for AFFOUT.

In TSO

Full screen mode; The ISPF invocation procedures define a data set named
userid.fname.LOG (where fname is the name specified on the MEMBER line
or on the FILE ID FOR DEBUG FILES line on the invocation panel).

Line mode and batch mode: Issue a DD statement for AFFOUT. (AFFOUT is
required for batch mode debugging.)

Chapter 5. Using Interactive Debug Files 39

Characteristics
AFFOUT has the following characteristics:

All Interactive Debug I/O (except full screen commands) is logged. Unless
TERMIO LIBRARY has been specified, all program-initiated terminal I/O is
also logged.

The nie must be created with a RECFM of FB and an LRECL of 80.

Each line starts with a ' = ' (equal sign).

Each input line starts with a '=*' (equal sign, asterisk).

Input and output occurring within an attention exit are not logged; however,
the entering of an attention exit is logged.

Restart File (AFFIN)
AFFIN is a file of debugging commands, initially created with either an editor or
obtained by editing the output from a previous debugging session. AFFIN is
optional in full screen and line mode debugging; it is required for batch mode
debugging.

How to Define AFFIN to Interactive Debug
AFFIN must exist and be defined prior to execution of the VS FORTRAN
program:

In CMS

Full screen mode: The ISPF invocation procedures supplied by IBM assume
that the AFFIN file is called fname RESTART (where fname is the name
specified on the FILE ID line or MEMBER line of the invocation panel). If
you are using a previous output log file as the restart file, use the RESTART
command to change the allocation or the content of the log file.

Line mode and batch mode: Issue a FILEDEF statement for AFFIN.

Characteristics

InTSO

Full screen mode: It is assumed to be user/d./hame.RESTART (where fname
is the name specified on the MEMBER line or on the FILE ID FOR DEBUG
FILES line on the invocation panel). If you are using a previous output log
file as the restart file, use the RESTART command to change the allocation
or the content of the log file.

Line mode and batch mode: Issue a DD statement for AFFIN. (AFFIN is
required for batch mode debugging.)

AFFIN must have the following characteristics:

It must have a RECFM of F or FB and an LRECL of 80.

No sequence numbers are permitted in columns 73 through 80.

SYSCMD and CMS or TSO commands are not permitted without operands.

Interactive commands, such as HELP, are not permitted.

40 VS FORTRAN Version 2 Interactive Debug Guide and Reference

The file will be read until end-of-file or a QUIT command is encountered. (A
QUIT command is forced if end-of-file is reached in batch mode.) If the log file
of a previous debugging session is used as the restart file, Interactive Debug
will ignore any output contained in the file (anything preceded by only an equal
sign, or only an asterisk). It accepts any line preceded by =*, or by nothing, as
input.

I In full screen mode and line mode, additional input can be entered from the
terminal after the commands in the file have been run.

Special Considerations
I Using the output log file as an restart file in full screen mode or line mode:

You may want to use the log file (AFFOUT) as input to a subsequent debugging
session if, for example, you had to discontinue a debugging session but had not
yet solved the problem. To do this, follow these steps:

1. Use the QUIT command to stop debugging.

2. Keep the AFFOUT log file, and edit it to remove the QUIT command.

3. Prior to using the AFFOUT file as input to Interactive Debug, you must
rename it, as described above.

4. The log file can now be used as input to retrace the steps taken in the pre
vious session.

After the log file has been run, you should be at the same position as when you
stopped the previous session.

Using the output log file from a full screen or line mode debugging session as
an restart file to a batch debugging session:

Although it is possible in principle to use the log file from a full screen mode or
I line mode debugging session as AFFIN input for a batch debugging session,

you should be aware that there are some differences.

•- TERMIO is likely to have different effects in batch. In MVS it is not possible
to connect a data set to a terminal device in batch. However, you can use
the DEBUNIT run-time option to specify one or more units that will be
treated as terminals. It is then possible, for example, for you to use your
output from a full screen session as a restart file, with TERMIO set to IAD.

In CMS, you can still use TERMINAL in a FILEDEF command. However, do
not issue TERMIO LIBRARY if there will be any terminal input, because your
program would then attempt to actually get terminal input and the batch job
would stall.

You may want to add TERMIO MSG and NOMSG commands in order to get
some notification as the job progresses. (This should normally be used
with restraint.)

»• Error handling is different in batch. In order to avoid unplanned inter
actions, the debugger always forces standard fixup for errors in batch
mode. Thus ERROR EXIT will never cause an exit to be taken. Error limits

are in effect as if Interactive Debug were not present.

Chapter 5. Using Interactive Debug Files 41

• SYSCMD commands with no system command specified are considered an
error in batch mode (but cause no harm otherwise). You should also avoid
any system commands that might themselves require interaction.

> Prompts are suppressed in batch. For example, GO with a statement identi
fier does not prompt for confirmation in batch mode, even ifan optimized
program unit is being debugged.

Including program Input In AFFIN In batch mode:

When TERMIO IAD is in effect, all terminal input is obtained from AFFIN, pre
ceded with %, and interspersed with the IAD comments.

In batch mode in MVS, you do not have a terminal available, so it is therefore
impossible to connect VS FORTRAN files to a terminal. However, by specifying
the DEBUNIT run-time option, which specifies a device to be treated as a ter
minal, you can use the TERMIO command with MVS batch.

The DEBUNIT option may already be set up for you as a local default whenever
you specify the DEBUG option, or you may need to specify it at run-time when
you run your program. If you need to specify it, the format is as follows:
DEBUMIT(S1[,S2,...])

where S is a unit number (such as 5), or an inclusive range of unit numbers
(such as 35-40).

Note that in CMS, the commas must be replaced by blanks, unless the program
will be invoked by an EXEC2 or REXX EXEC and uses the extended PLIST facili
ties. If I/O is to be issued to the units, the job stream must also include a
FILEDEF (in CMS) or a DD card (in TSO) for each unit.

Remember that, when running in batch, the program must get its input from
real data sets, and must send its output to real data sets. In CMS batch, you
should not specify TERMIO LIBRARY ifthere will be any terminal input, because
this requests interaction and will cause the batch job to fail.

For more information on TERMIO, see "Entering Terminal Input" on page 78
and "TERMIO" on page 192.

Print File (AFFPRINT)
Commands used: ANNOTATE (page 104), DESCRIBE (page 121), LIST (page
141), LISTBRKS (page 145), LISTFREQ (page 146), LISTSAMP (page 149),
LISTSUBS (page 154), LISTTIME (page 156), LISTVEC (page 159), TRACE (page
197), WHERE (page 205)

The commands above allow you to send command output to a print file instead
of to the terminal (or in the case of batch mode debugging, to AFFOUT). This
can be useful, for example, when you are listing the contents of a large array
and want to keep that output separate from the output log. This print file is
referred to as the AFFPRINT file. AFFPRINT is optional.

42 VS FORTRAN Version 2 Interactive Debug Guide and Reference

How to Define AFFPRINT to Interactive Debug
AFFPRINT does not need to exist prior to execution of the VS FORTRAN
program, but it must be defined:

In CMS

Full screen mode: The invocation procedures will define a file named
fname LIST A (where fname is the name specified on the FILE ID line of the
invocation panel).

Line mode and batch mode: The EXEC used to run VS FORTRAN programs
should contain a FILEDEF statement for AFFPRINT.

FILEOEF AFFPRINT DISK progname LIST A

In ISO

Full screen mode: The invocation procedures will define a data set named
tyser/d./hame.PRINT (where fname is the name specified on the MEMBER
line or on the FILE ID FOR DEBUG FILES line on the invocation panel).

Line mode and batch mode: The CLIST used to run VS FORTRAN programs
should contain an ALLOCATE command for AFFPRINT.

ALLOCATE FI(AFFPRINT) DA(progname.PRINT)

Note: To prevent an existing AFFPRINT file from being overwritten, you must
rename it before running a program with the same name.

Characteristics

AFFPRINT is created with a RECFM of VB and an LRECL of 137 (and a blocksize
of 1733 for TSO).

Include File (AFFON)
The AFFON file is helpful in debugging large programs that are divided into
separately compiled sections, and programs in which many sections are known
to be free of errors. AFFON is optional in full screen mode, line mode, and
batch mode debugging.

The AFFON file allows you to:

Define separate listing data sets (TSO) or files (CMS) for different program
units. In full screen mode, these listings are displayed in the source
window during the debugging session, and are used when annotating
listings with frequency or sampling data using the ANNOTATE command.

Define separate program information data sets (TSO) or files (CMS) for dif
ferent program units. Program information files are generated by the com
piler when the VECTOR(IVA) option is specified, and are used by Interactive
Debug to gather vector tuning information (page 67).

Restrict debugging hooks to certain program units or sections of program
units. Hooks are used to pass control from the program to Interactive
Debug in order to monitor the execution of the program (tracing, timing, and
frequency) and to provide breakpoint capabilities (AT. STEP, WHEN, HALT,
NEXT).

By default. Interactive Debug inserts hooks at all executable statements of
all debuggable program units. This allows you to set a breakpoint at any

Chapter 5. Using Interactive Debug Files 43

statement in the program. Because there is overhead associated with this
ability, it is more efficient to exclude from debugging those program units
that are known to be error free. You can also exclude a part of a program
unit, which may be helpful ifthere are heavily run sections of that unit
which are error free.

How to Define AFFON to Interactive Debug
AFFON must exist and be defined prior to execution of the VS FORTRAN
Version 2 program:

In CMS

Full screen mode: The invocation procedures must include a correct
FILEDEF statement for AFFON. In full screen mode with ISPF/PDF, it is
assumed to be fname INCLUDE {where fname is the name specified on the
FILE ID line of the invocation panel).

Using the RESTART command, you can change the allocation or the content
of the existing file prior to restarting.

Using the information in the AFFON file entries. Interactive Debug will
attempt to automatically identify the data sets containing the program
listings for use in the source window and with the ANNOTATE command.

»- Line mode and batch mode: The EXEC used to run VS FORTRAN programs
should contain a FILEDEF statement for the AFFON file, for example:

FILEDEF AFFOM DISK progname UlCLUDE A

InTSO

Full screen mode: The invocation procedures must include a correct ALLO
CATE statement for AFFON. In full screen mode with ISPF/PDF, it is
assumed to be user/d./hame.lNCLUDE (where fname is the name specified
on the MEMBER line or on the FILE ID FOR DEBUG FILES line on the invo
cation panel).

Line mode and batch mode: The CLIST used to run VS FORTRAN pro
grams, should contain an ALLOCATE command for the AFFON data set.
ALLOCATE FI(AFFON) DA(progname.INCLUDE)

where progname is the name of the program you want to debug.

An AFFON file consists of records called AFFON entries. An AFFON entry can
be:

A comment entry, which begins with an asterisk.

A program unit entry, which specifies debugging attributes for a program
unit.

An ALL entry, which is used to change the default attributes.

The attributes that can be specified for a program unit are:

• The name of a data set (TSO) or file (CMS) that contains the source listing
for the unit.

• The name of a data set or file that contains the program information for the
unit.

44 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Characteristics

Syntax

A hook restriction list, describing how hooks should be placed in the
program unit.

For an explanation of syntax conventions, see page 100.

— Syntax for an AFFON Entry

{ program-unit-name | (ALL) }
['listing-file-name' ['program-info-file-name']]
I ENTRY I NONE | specification-list]

program-unit-name
specifies the name, up to 31 characters long, of the program unit to be
selected for debugging.

(ALL)
specifies that defaults are to be set for all program units. The defaults
pertain to all program units following the ALL entry, whether they are speci
fied in the AFFON file or not.

More than one ALL entry can be placed in the AFFON file. Subsequent ALL
entries override the defaults set by previous ALL entries. If listing-fle-name
(and optional prog-info-file-name) or specification-list is not specified on an
ALL entry, then the default for that field is unchanged.

' listing-file-name'
specifies the name of the file containing the source listing of the program
unit. It must be enclosed with quotes.

'program-info-file-name'
specifies the name of the program information file for the program unit. It
must be enclosed with quotes. If it is specified, listing-file-name must also
be specified.

ENTRY

specifies that only ENTRY and EXIT hooks are to be placed In the program
unit. This is helpful when you want to increase the accuracy of timing Infor
mation.

NONE

allows file names to be specified, but bypasses the inclusion of debugging
hooks.

specification-list
specifies a list of statement entries, separated by either blanks or commas.
Each entry in specification-list has the following format;

{n[:n] | *} [DOLOOP | DONEST | DOVECT]

n[:n] specifies either a single or a range of statement numbers (ISNs
or sequence numbers) that are to be selected for debugging.
ISNs are the default, unless you specified SDUMP(SEQ) when
you compiled the program unit.

Chapter 5. Using Interactive Debug Files 45

Usage Notes

specifies that hooks are to be placed at every statement in the
program unit, unless DOLOOP, DONEST, or DOVECT follows the
asterisk. Ifthis is the case, only DO loop analysis hooks are to
be placed in the program unit.

DOLOOP specifies that only DO loop analysis hooks are to be placed in
DO loops only for the preceding ISN or ISN range. If a single ISN
was specified, then it must be the ISN of a DO statement.

DONEST specifies that DO loop analysis hooks are to be placed only in
the outermost DO loops in nested DO loops for the preceding
ISN or ISN range. If a single ISN was specified, then it must be
the ISN of a DO statement. Ifthe DO statement is part of a nest
of DO loops, it must be the DO statement of the outermost loop.

DOVECT specifies that DO loop analysis hooks are to be placed only in
vectorized DO loops for the preceding ISN or ISN range. If a
single ISN was specified, then it must be the ISN of the DO state
ment if it is a vectorized DO loop.

1. There may be executable statements in the specified ranges that cannot
have debugging hooks placed on them because of optimization or
vectorization. To find out which statements have had hooks placed on
them, you can use the LiSTFREQ command.

2. Program units that do not meet the requirements for debugging will not
have program hooks inserted, even though they may be in the AFFON list.
For compiler and library restrictions that may make a program unit
nondebuggable, see "Requirements" on page 5.

3. AFFON can have any record format. The logical record length can be any
value up to 255 bytes. Entries can be in lower case.

Ifthe file exists but has incorrect attributes, you will receive an error
message stating that the AFFON file cannot be read.

AFFON can contain references to sequence numbers for VS FORTRAN pro
grams compiled with SDUMP(SEQ), but AFFON itself cannot be sequenced.

4. The initial ALL entry settings are:

• In line mode and batch mode, Hsting-file-name and prog-info-file-name
are undefined:

(ALL) *

If you are debugging in MVS batch mode, however. Interactive Debug
will try to get the listing-file-name and prog-info-file-name from the files
AFFLST (page 48) and AFFPIF (page 49) respectively.

In ISPF/PDF on TSO:

(ALL) 'userid.module-name.LIST' 'usend.module-name.PIF' *

where userid is the prefix set with the PROFILE command and
module-name is the name of the module being debugged.

In ISPF/PDF on CMS:

(ALL) 'module-name LISTING *' 'module-name PIF *' *

where userid is the user's logon id and module-name is the name of the
module being debugged.

46 VS FORTRAN Version 2 Interactive Debug Guide and Reference

5. Migration: To migrate AFFON file entries for programs created prior to
release 3 of VS FORTRAN Version 2. place the following entry at the end of
the AFFON file:

(ALL) none

6. If ISN range is followed by DOLOOP, DONEST, or DOVECT, then hooks are
placed in the appropriate DO loops in the range. A DO loop is in the range
if the ISN of the DO statement of the loop is in the range. The starting and
ending ISNs do not have to be DO statements.

7. DO loop analysis hooks are placed in DO loops in all ranges where
standard hooks are placed. For example, suppose the following AFFON
entry is in the AFFON file:

subl " 'progl.pif 10:40

DO loop analysis hooks would be placed in all DO loops whose DO state
ment is within the range ISN 10 through 40, in addition to standard hooks at
statement boundaries.

8. If any hooks are placed in the program unit, including DO loop analysis
hooks, then hooks will also be placed at program unit entry and exit.

9. An ALL entry cannot have a statement restriction list that contains ISN's.
This is because the entry is supposed to contain defaults, and particular
ISN's are meaningful only for a single program unit.

Examples of AFFON Entries
1. In CMS, make an AFFON entry with debugging hooks placed between state

ments 6 and 16 and at statement 18 of SUBI.

subl 'subl listing *' 6:16 18

subl listing * is defined as the default listing. ENTRY and EXIT hooks are
always placed in the program unit whenever any statement number ranges
are specified.

2. In TSO, make an AFFON entry with debugging hooks placed between state
ments 6 and 16 and at statement 18 of SUBI.

Subl 'userid.subl.list' 6:16 18

3. In MVS, set the default listing data set and program information data set for
the program to 'state.fort.listings(progl)' and 'state.fort.compinfo(progl)'
respectively. Also, by default, place hooks only at outermost nested DO
loops, and program unit entry and exit.

(all) 'state.fort.listings(progl)' 'state.fort.comp{nfo(progl)' * donest

4. In CMS, set the program information file for program unit SHENNA to
SHENNA INFOFILE A. Also, only place hooks at entry and exit of the
program unit and in the DO loop at ISN 35.

shenna " 'shenna infofile a' 35 doloop

5. For program unit SUBSRT, place DO loop analysis hooks at vectorized DO
loop whose DO statement is at ISN 34, place standard statement boundary
hooks in statements at ISNs 25 through 36, and place DO loop analysis
hooks in all DO loops whose DO statement is in the range 32 through 65.

subsrt 34 dovect 25:36 32:65 doloop

Chapter 5. Using Interactive Debug Files 47

Examples of AFFON Files
1. The following is an example of a complete AFFON file.

* I want to do detailed debugging on these three routines,
(all) 'user33.vlop33.list' *
main

rachek

mcslip

* The following four routines are frequently used and I believe
* have no errors. So, suppress all hooks.
(all) none
Irakd

Irjjb
Irral

Irsst

* For everything else, use a common listing, and hook entry and exit
* so subroutine tracing is possible.
(all) 'groupB.vlop.list' entry

Figure 19. Sample AFFON File

2. The following is an example of a complete AFFON file used to gather vector
tuning information (page 67).

* Define program information file and set hooks placement
* to only DO loop analysis hooks,
(all) " 'user33.vlop33.pif' * doloop

* Stop in RACHEK at ISHs 44 and 48 to temporarily
* turn off 00 loop timing,
rachek 44 48 * doloop

Figure 20. Sample AFFON File for Vector Tuning

I Listing Fiie (AFFLST)
I This file is used in MVS batch mode debugging only, and must be used if a
I listing-file-name is not defined in an AFFON file. Thus, AFFLST is the default
1 ddname used when the listing-file-name is not defined.

I Characteristics
I AFFLST must have the same characteristics as the source listing generated by
I the compiler(ddname SYSPRINT).

48 VS FORTRAN Version 2 Interactive Debug Guide and Reference

I Program Information File (AFFPIF)
I This file is used in MVS batch mode debugging only, and must be used if a
I program-info-file-name is not defined in an AFFON file. Thus, AFFPIF is the
I default ddname used when the prog-info-filename is not defined.

I Characteristics
I AFFPIF must have the same characteristics as the program information file gen-
I erated by the compiler (ddname VSF2PIF).

Chapter 5. Using Interactive Debug Files 49

Chapter 6. Debugging Tasks

This section describes some of the common debugging tasks you can perform
with Interactive Debug.

For complete descriptions of all commands, see "Part Two. Command
Reference" on page 99.

Getting On-line Help about Interactive Debug
Command used: HELP (page 135)

While using interactive Debug, you can get on-line information about:

Interactive Debug commands, each description containing:

— Function and syntax
— Usage notes
— Examples

Common Interactive Debug tasks

I Vector report messages that are in the vector report source listing

Invoke help by entering HELP with:

No operands (or press an equivalent PF key). If the most recently specified
command was in error, the help panel for that command will appear.

Otherwise, the main help menu will appear. From this menu, you can
select help on commands, tasks, or a tutorial describing a basic debugging
session.

Figure 21 on page 52 shows the Interactive Debug main HELP menu in full
screen mode.

Figure 22 on page 52 shows the Interactive Debug task HELP menu in full
screen mode. The task menu may be accessed from the main menu.

*• A command name. This takes you directly to the help information for that
command.

Figure 23 on page 53 shows a sample First screen of a set of screens for an
individual command in full screen mode.

I A message identifier. This displays help for a vector report message in the
I vector report source listing.

I Figure 24 on page 53 shows a sample first screen of a set of screens for a
I vector message in full screen mode.

Chapter 6. Debugging Tasks 51

SELECTIOH »==> VS FORTRAN VERSION 2 INTERACTIVE DEBUG

MAIN KELP MENU

Choose a topic by typing its number on the command line and pressing ENTER.
Return to this menu from any topic by typing TOP on the command line and
pressing ENTER. Return to debugging from any topic by pressing PF3. Toggle
between this menu and the task menu by pressing ENTER.

1 Task Menu 16 fixup 31 next 46 right

2 Tutorial 17 go 32 off 47 search

3 « » 18 hal t 33 offwn 48 set

4 annotate 19 help 34 posi tion 49 size

5 at 26 if 35 prevdisp 56 step

6 autolist 21 left 36 profi le 51 syscmd
7 backspace 22 1 ist 37 purge 52 temio

8 close 23 1istbrks 38 qualify 53 timer

9 color 24 1istfreq 39 qui t 54 trace

16 dbcs 25 1istings 46 reconnect 55 up

11 describe 26 1istsamp 41 refresh 56 vecstat

12 down 27 1istsubs 42 restart 57 vjhen

13 enddebug 28 1isttime 43 restore 58 vihere

14 endfile 29 1istvec 44 retrieve 59 wi ndow

13 error 36 movecurs 45 reivind 66 zoom

Figure 21. Main HELP Menu (full screen mode)

SELECTION VS FORTRAN VERSION 2 INTERACTIVE DEBUG

TASK KELP MENU

Choose a topic by typing its number on the command line and pressing ENTER.
Return to the main menu from any topic by typing TOP on the command line and
pressing ENTER. Return to debugging from any topic by pressing PF3. Toggle
between this menu and the main menu by pressing ENTER.

1 Main Menu 13 Display variable values

2 Specify files to debug 14 Handle library errors

3 Full screen animation 15 Enter program input

4 Enter cmds in attention 16 Debug optimized code

5 Debug in batch mode 17 Program sampling

6 Command continuation 18 Process external files

7 Command lists 19 Listing information

8 Control program execution 26 Set breakpoints

9 Cursor-sensitive cmds 21 Execute system commands

16 Display frequencies 22 Program timing

11 Display pgm information 23 Trace program execution
12 Display data types 24 Vector tuning assistance

Figure 22. Task HELP Menu (full screen mode)

"N

Additional Features of Interactive Debug On-line Help in Line Mode
in either CMS or ISO line mode, you can not only specify a command for which
you want help, but also whether you want the function, syntax, or keyword infor
mation of a particular command.

52 VS FORTRAN Version 2 Interactive Debug Guide and Reference

COHHAHD ===>

CLOSE Command

VS FORTRAN VERSION 2 INTERACTIVE DEBUG

Panel 1 of 4

CLOSE disconnects a VS FORTRAN external file from an input or output unit.
Its usage is similar to that of the CLOSE statement in the VS FORTRAN Version
2 language. This command alloivs you to close an external file, for example to
assign another file to the input or output unit, or to examine the contents of
the file.

Abbreviation: None

Syntax:

CLOSE

<|nuinber | <qual.>inleger-variable | <qual.>integer-array-eleBent|>

number

is the number of the I/O unit associated ivith the file that is to be
closed.

TOP for main menu hit ENTER for next page

Figure 23. Sample Command HELP Panel (full screen mode)

COIWND ===>

Vector Report Message ILX0113I

VS FORTRAN VERSION 2 INTERACTIVE DEBUG

Panel 1 of 5

Short Form: RESTRICTED CONSTRUCT

Long Form: THE LANGUAGE CONSTRUCT(S) <clist> ARE NOT ANALYZED FOR
VECTORIZATION.

Explanation: Indicates that a loop is rejected because it contains some
language construct that cannot be analyzed by the compiler. These constructs
include assigned and computed GOTO statements and NAMELIST statements.

Supplemental Data:

<clist>

is a list consisting of the names of the language constructs
responsible for the rejection along v;ith the ISNs (Internal Statement
Numbers) of the statements in which they are used.

hit ENTER for next page

Figure 24. Sample Vector Message HELP Panel (full screen mode)

For example, if you wished to get on-line help about the syntax of the LISTTIME
command in CMS line mode, type;

help llsttime (form

In TSO line mode, you would request the same information by typing:

help listtime syntax

You can request such specific help information in CMS full screen mode. To
get syntax information about LISTTIME in full screen mode, type:

cms help aff listtime (form

Chapter 6. Debugging Tasks 53

Displaying Information about Debuggabie Program Units
Command used: LISTSUBS (page 154)

Most debugging activities, such as displaying variables, can be performed only
on program units that are considered debuggabie by Interactive Debug. To be
debuggabie. a program unit must be compiled with the SDUMP option. In addi
tion, it must be in storage at the time the VS FORTRAN Library is initialized.

Note: The reentrant part of a program unit compiled with the RENT option need
not be in storage at this time.

Ifyou want to see which program units are debuggabie, you can use the
LISTSUBS command.

The following is a sample of the output produced by LISTSUBS:

RENT NOT LOADED

In this example, we see that the program unit MAINLINE was compiled using VS
FORTRAN Version 2, Release 3, identified as VSF 2.3.0, and SUBBUILD was
compiled with Release 4 of VS FORTRAN Version 1, identified as VSF 1.4.0. VSF
(TEST) tells us that SUBDOWN was compiled prior to VS FORTRAN Version 1
Release 4, and the TEST option was specified. In this case, it is not possible to
determine the VS FORTRAN release level.

Notice that, for MAINLINE, the OPT column specifies V2. This indicates that
vectorization was specified.

In the HOOKED column, "YES" means that hooks are installed at entry and exit
points and possibly at some or all statement boundaries as well. You can set
breakpoints only in program units that have hooks. The hook settings are con
trolled by the AFFON file. "NO" in the HOOKED column indicates that no hooks
are installed in the program unit. The TIMING column indicates whether the
TIMER command has been activated for each program unit listed. This column
may also be followed by an indication of the load status for reentrant programs.
In our example, SUBBUILD indicates RENT NOT LOADED, meaning that the
program unit has not yet been called, and has not been located (although it
may actually be in storage).

PROGRAM UNIT COMPILER OPT HOOKED TIMING

MAINLINE VSF 2.3.0 V2 YES OH

SUBBUILD VSF 1.4.0 3 HO OFF 1

SUBDOHM VSF (TEST) 0 YES OFF

Referring to Statements or Variables in Other Program Units
Commands used: AT (page 108), LIST (page 141), LISTBRKS (page 145),
QUALIFY (page 173)

Programs often contain more than one program unit. A program unit is defined
as a main program, a function subprogram, or a subroutine subprogram. Each
of these units has its own set of variables, but variables in different program
units may have the same names.

A similar situation exists with statement identification; two statements in dif
ferent program units may have the same statement label or be assigned the

54 VS FORTRAN Version 2 Interactive Debug Guide and Reference

same ISN by the VS FORTRAN compiler. On Interactive Debug commands that
refer to statements or variables, you can specify the program unit as a qualifier
(in the form of the program unit name followed by a period). If no qualifier is
specified in a command that references statements or variables, Interactive
Debug resolves these references using the current program qualification.

The current program qualification is normally the program unit that is running
(or in which execution is suspended). However, you can change the current
qualification by issuing the QUALIFY command.

Note: Each time execution is resumed, Interactive Debug will reset the quali
fication to the program unit currently running.

Displaying the Current Program Qualification
To see which program unit is currently qualified, enter the QUALIFY command
with no parameters:

qualify

The response will be something like:

QUALIFICATION IS MAIN

where MAIN is the name of the program unit.

Changing the Current Program Qualification
If the current qualification is MAIN, unqualified statement identifiers and vari
able names will refer to statements and variables in MAIN. Issuing the
command AT /10 will set a breakpoint at the statement labeled 10 in MAIN. If
your program has a subroutine (or function) named SUB1 and you wanted to
set a breakpoint in that subroutine, you could do so by using an explicit qual
ifier. For example:

AT subl./lO

You could also change the current qualification. For example:

qualify subl

Now entering:

at no

sets a breakpoint at the statement labeled 10 in your subroutine SUB1. To
check current breakpoint settings, entering the LISTBRKS command:

I istbrks

would produce output similar to that shown below.

CURRENT BREAKPOINTS:

HAIN.25/10

SUBl.32/10
CURRENT WHEN COHOITIONS:

NONE

CURRENT HALT STATUS: OFF

Breakpoint settings are displayed for both the main program and the subroutine
SUBl.

You can display all the variables in the currently qualified program unit with the
LIST command by entering:

Chapter6. Debugging Tasks 55

list *

To issue commands without explicit qualification that reference statements or
variables in MAIN, change the currently qualified program unit back to the main
program by entering:

qualify main

Now enter LIST ' again to display all the variables in MAIN. If, on resuming
execution, the breakpoint you set in SUB1 was reached, the currently qualified
program unit would be set to SUB1. For example:

go

AT SUBl.32/10
list *

would list all the variables in SUB1.

Qualifying individuai Variabies
You can qualify individual variables without a QUALIFY command by preceding
the variable name with the name of the program unit that it belongs to and a
period. For example, you can refer to variable x from MAIN as:

You can refer to an array element data(10) from sub2 as:

sub2.data(10)

When qualifying an array element with a symbolic subscript, remember to also
qualify the subscript. For example, to display array element data(i) from sub2
while execution is suspended in MAIN, enter:

list sub2.data(sub2.i)

If you omit the second SUB2, and the current qualification is MAIN. Interactive
Debug will look for a value of I in MAIN. If it finds one, it will give you that
element of DATA instead of the one you want in SUB2. You must qualify each
variable that is not in the currently qualified program unit.

You can reference variables outside the currently executing program unit in any
command dealing with VS FORTRAN variables. For example:

list (a,b.subl.alpha,sub2.beta,x,y,z)
set a-subl.value

when over (subl.rchg=5.)

Setting Breakpoints at Debugging Hooks
Command used: AT (page 108)

The AT command sets breakpoints at specific statements. Breakpoints can be
set only at statements that have debugging hooks. A hook gives temporary
control to Interactive Debug at a specific point within a program (usually at the
beginning of an executable statement).

For VS FORTRAN code compiled with the TEST option, debugging hooks are
placed in the object code bythe compiler. For VS FORTRAN code compiled
with the NOTEST and SDUMP options, hooks are inserted into the object code
by Interactive Debug at debugging time.

56 VS FORTRAN Version 2 Interactive Debug Guide and Reference

When using the AT command, you can identify the statement either by its state
ment number or by the statement label, if it has one. Normally, the statement
number refers to the Internal Statement Number (ISN) generated by the com
piler {see "Statement Identifier Conventions" on page 101 for more details).
However, you can specify at compile time that you want to use the sequence
numbers in columns 73 through 80 as the statement numbers for your debug
ging session instead of the ISNs.

As an example, assume that your main program has a write statement labeled
10 and that the compiler has assigned an ISN of 6 to this statement. The listing
might show:

ISH 6 10 WRITE(*,*) 'Example Program'

You can set a breakpoint at this statement by issuing either of the following two
commands:

at 6

at /lO

Statement labels are preceded with a slash to distinguish them from ISNs or
sequence numbers. Remember that, if no qualifier is specified. Interactive
Debug uses the current qualification to determine which program unit this state
ment is located in. (MAIN is assumed here.) When the statement is reached,
execution is suspended and the following message is displayed:

AT: MAIN.6/10

You may specify a list of statements or a range of statements with the AT
command. For example, the following command:

at (6 /15 14 3)

sets breakpoints at statement numbers 6, 14, and 3, and also at statement label
15, providing they are all executable statements and have debugging hooks,

at (6:/15)

sets breakpoints at every hooked executable statement between the statement
whose ISN is 6 and the statement labeled 15. Both statements specified in a
range must be executable, and the statement on the left must appear in the
program before the statement on the right.

Breakpoints cannot be set if optimization or vectorization causes the statement
to be collapsed. A collapsed statement is an executable source statement that
occupies no object code because of the effects of optimization or vectorization.
(The code was either moved to a new location, or eliminated.) For further
explanation, see "Debugging Optimized and Vectorized Code" on page 86.

If the statement is non-executable, you cannot set a breakpoint.

If you have specified statement ranges for one or more program units in the
AFFON control file, breakpoints can only be set in the specified statement
ranges for those program units. Multiple units and ranges can be specified.
See chapters on full screen mode, line mode, or batch mode for more informa
tion about specifying statement ranges in your environment.

Chapter 6. Debugging Tasks 57

You cannot suspend execution at the "trailer" statement following a logical IF
under any of these conditions:

The trailer statement is a GOTO statement.

Sequence numbers were used instead of ISNs.

Controlling Program Execution
Commands used: HALT (page 133), NEXT (page 164), OFFWN (page 167), WHEN
(page 202)

Note: The following section refers only to statements that have hooks. You
cannot suspend execution at a statement that does not have a hook.

You can suspend execution:

At every executable statement
At the next executable statement (without knowing which it is)
At every apparent program branch
At every entry to and exit from a program unit

*• Whenever a user-defined condition is met

Whenever a specific variable is modified

The HALT command allows you to suspend execution under certain specified
conditions. For example:

halt stmt

suspends execution at every executable statement. This allows you to single
step through your program, which can be helpful in finding errors related to the
processing flow.

halt goto

suspends execution at every apparent program branch. Halting can occur for
several reasons, including a GOTO, a DO group, and an IF statement.

halt entry

suspends execution at every entry to or exit from a debuggable program unit.

The HALT command remains in effect until you cancel it with:

halt off

The NEXT command requests that execution be suspended at the next execut
able statement. It is similar to the HALT STMT command, except that the NEXT
command is temporary and does not remain in effect after execution is sus
pended.

The WHEN command allows you to suspend execution every time a particular
condition is met. You define the condition and supply its name. Later you can
refer to the condition by name without redefining it. With WHEN, you can
monitor:

An arithmetic relationship between two variables or between a variable and
a constant

• The status of a logical variable

» A change in the value of a variable

58 VS FORTRAN Version 2 Interactive Debug Guide and Reference

For example, to cause execution to be suspended when variable SMITH equals
30, define a condition, such as theone below named RDS. (The name can be
one to four alphameric characters, the first character alphabetic.)
when rds (smith = 30)

Execution is suspended at the first possible statement following the point at
which the condition becomes true. Forexample, ifcondition RDS was found to
be satisfied at the beginning of statement 46 in program unit MAIN, you would
receive the following:

V/HEN; "RDS" SATISFIED;
CURRENTLY AT ltAIH.46

The first line tells you which condition was satisfied; the second tells you where
execution is suspended. To detect when SMITH changes value, enter:
when rds smith

Notice that when you want to define a condition that monitors any change in the
value of a variable, the variable name is not enclosed in parentheses.

If the value of SMITH is continually being changed, and SMITH changes initially
from 2 to 3, you are notified. If SMITH changes to 4, you are notified again.

Examples:

when rdsl (smith = md)

v/hen rds2 (smith .It. 4.7)

when rds3 (rich)

In the final example, RICH is a logical variable. In this case, you get control
when RICH is true. If the parentheses were omitted, you would get control
whenever RICH was modified.

Note: Interactive Debug cannot tell you exactly which statement changed the
variable being monitored. (It might have occurred in a section of code that has
no debugging hooks.) However, you can get a list ofthe last ten branches
known to the debugger by entering WHERE FLOW. This should help you deduce
which statement actually caused the change.

To turn off WHEN condition monitoring, use the OFFWN command. For
example, to turn off condition RDS, enter:
offwn rds

To turn off condition DJV along with condition RDS, enter:

offwn (djv.rds)

To stop all condition monitoring, enter:

offwn •

WHEN condition monitoring is not automatically turned offwhen a condition is
satisfied. If you do not want to continue monitoring the same condition, you
must issue the OFFWN command after the condition has been satisfied.

Chapter 6. Debugging Tasks 59

Ifyou want to reactivate a condition after it has been deactivated by an OFFWN
command, enter WHEN with the condition name. For example:
when rds

Using Command Lists

Command used: AT (page 108)

As part of an AT command, you can specify a list of commands to be run when
ever a breakpoint is reached. This allows you to conditionally suspend exe
cution at a specific statement or to specify a list of commands to be executed
there. When you specify a command list, you can control whether Interactive
Debug will wait for a command, or whether it will continue execution without
the need for intervention.

In this example, the value of variable A will be displayed each time sequence
number 10 is reached, and execution will then continue.

at 10 (list a %go)

This is useful for observing how the value of a variable changes in a loop.
Here, sequence number 10 could be at the end of a loop and the value of vari
able A would be displayed at each iteration of the loop.

Note: The percent sign (%) is used to separate commands within the list.

To conditionally suspend execution at a particular statement, you can use the IF
and HALT commands within an AT command list. The HALT command will

suspend the execution of the command list. For example, entering:

at 10 (list (a,b) %if (a.lt.b) halt %go)

will cause execution to be suspended at sequence number 10 only if A is less
than B. Otherwise, the GO command will cause execution to continue. In

either case, the values of A and B will be displayed.

A command in an AT command list that causes execution to resume or halt will

cause the remainder of the command list to be ignored. In this example:

at /2G0 (if (a=0) go /ID %if (b=0) go /lO %go /3G0)

if the value of A or B is equal to 0, execution will resume at the statement
labeled 10; otherwise, execution will resume at the statement labeled 300.

The following commands cannot be used in a command list:

AUTOLIST

COLOR

DOWN

FIXUP

HELP

LEFT

LISTINGS

LISTSAMP

MOVECURS

POSITION

PREVDISP

PROFILE

REFRESH

RESTART

RESTORE

RETRIEVE

RIGHT

SEARCH

SIZE

UP

WINDOW

ZOOM

60 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Displaying Data Types of Variables and Arrays
Command used: DESCRIBE (page 121)

To display the data types ofvariables and arrays, use the DESCRIBE command.
DESCRIBE also displays dimension information for arrays. This command can
be useful for checking the attributes of variables and arrays when it is incon
venient to search the source listing for their declarations. It is particularly
useful for displaying the dimensions that were passed for dummy array argu
ments.

For example, to see the data type ofthe variable "a" in program unit "subl,"
enter this command:

describe subl.a

By entering an asterisk {*), you can request a display ofthe type ofevery vari
able in the currently qualified program unit. To see a list of all the names in
the current program unit, with their data types, enter this:
describe *

Let's say you have a program that uses a mixture of variables and arrays, and
you would like to display the type ofa specific group ofthem. You can specify
the variables and arrays in a name list, for example:

describe (i,k,sub2.duitichr,r8ary,sub2.r4dumy,llaytnn)

Possible output:

SUB3.I: INTEGERS

SUB3.K: IHTEGERM DUMMY

SUB2.DUMCHR: CHARACTER*(*) DUMMY

SUB3.R8ARY: REAL*8

RAHK = 2, SIZE = 49 ELEMENTS

DIM 1: EXTENT = 7, LBOUHD = (1), UBOUND = (7)
DIM 2: EXTENT = 7, LBOUHD = (1), UBOUND = (7)

SUB2.R4DUMY: REAL*4 DUMMY

RAMK = 3; DUMMY ARRAY ARGUMENT OF INACTIVE SUBPROGRAM OR
ALTERNATE ENTRY POINT;
DIMENSION INFORMATION NOT AVAILABLE

SUB3.L1AYHH: L06ICAL*1 DUMMY

RAMK = 2, SIZE = * ELEMENTS

DIM 1: EXTENT = 5, LBOUND =(-2), UBOUND = (2)
DIM 2: EXTENT = *, LBOUIID = (1), UBOUND = (*)

Figure 25. Sample DESCRIBE Output

Dummy arguments are identified by DUMMY in the right-hand column. The length
of DUMCHR could not be determined because it is a dummy argument in an
inactive program unit, so the length is displayed as CHARACTER*(*).

Dimension information is not available for R4DUMY. This information is never
displayed for arrays that are dummy arguments in an inactive program unit, or
that are defined only when entered by some other entry point.

Chapter 6. Debugging Tasks 61

L1AYMN is an assumed-size array. The upper bound for the last dimension of
such arrays is displayed as an asterisk {*), and the size is indicated as follows:

* ELEMENTS

I In full screen mode, DESCRIBE can be used as a cursor-sensitive command.
I For example, if the variable "A1" is displayed on the main debugging panel,
I you could type DESCRIBE on the command line, then position the cursor on
I "A1" and press ENTER.

Determining Statement Execution Frequency
Command used: LISTFREQ (page 146)

The LISTFREQ command displays the number of times each statement has
been run. For example, to see how often the statement whose statement
number is 100 has been run, enter:

listfreq lOG

You can specify a statement label or a statement number (an ISN or sequence
number), a list of statement labels or statement numbers (in parentheses), or a
range of statements. For.example, to see how often each statement between
sequence numbers 45 and 52 has been run, enter:

listfreq 45:52

To list the number of times every statement in the currently qualified program
unit has been run, enter;

listfreq

Possible output:

STATEMENT FREQUENCY

MAIM.ENTRY NO HOOK

MAIM.EXIT NO HOOK

MAIM.14/80 6

MAIN.15 6

MAIN.16 90

MAIN.17 90

MAIN.18 12

MAIN.19 90

MAIN.20/50 90

MAIN.21 6

MAIN.22 5

Figure 26. Sample LISTFREO Output

The LISTFREQ output tells you which statements have debugging hooks. Those
that do will have an execution count in the FREQUENCY column; those that do
not will be identified as either COLLAPSED STMT or NO HOOK. COLLAPSED

STMT indicates that, because of optimization or vectorization, there is no code
at this location. NO HOOK indicates that the statement was not in the AFFON

statement range list, or that it is an ENTRY/EXIT to the main program unit.

62 VS FORTRAN Version 2 Interactive Debug Guide and Reference

You can also use LISTFREQ to list statements that have never been run. The
ZEROFREQ keyword is used to create such a list. The PRINT keyword can be
added to obtain a listing file or a print data set.

listfreq 11:74 zerofreq print

Interactive Debug will list to the print file all the statements between statement
numbers 11 and 74 that have never been run.

Program Sampling
Program sampling can help you identify the portions of your program that are
using the most CPU time, without using the resources required when using
debugging hooks. The information developed by program sampling can be dis
played at your terminal using the LISTSAMP command, or reported as printed
output using the ANNOTATE command.

Initiating Program Sampiing
Command used: ENDDEBUG (page 124)

You can initiate program sampling by issuing the ENDDEBUG command with
the SAMPLE option. This will cause Interactive Debug to interrupt your pro
gram's execution periodically to collect sampling data. Data is collected for
each statement of every debuggable program unit and for each entry point in
every nondebuggable program unit. The sampling data is recorded in two
counters for each of the statements and entry points, as follows:

»- DIRECT counter

If the interruption occurs in the code of a debuggable program unit, the
DIRECT counter for the interrupted statement is incremented. Ifthe inter
ruption occurs while the VS FORTRAN library is active, the DIRECT counter
for the library entry point is also incremented.

CALLED counter

If sampling is initiated with the CALLED option of ENDDEBUG, the CALLED
counter is incremented for each statement (or entry) included in the
sequence of calling program units that lead to the interrupted statement. In
addition, if an I/O operation is in process when an interruption occurs, the
CALLED counter is incremented for the statement (or entry) that requested
the operation.

All interruptions that cannot be associated with any statement or entry are
recorded in the 'UNKNOWN DIRECT counter. (In order to be properly identified,
nondebuggable modules must follow standard MVS linkage conventions.) This
count is incremented if an interruption occurs in a program that has no entry
identifieror in system code servicing an asynchronous interrupt. The
'UNKNOWN CALLED counter is incremented when the save area chain cannot
be successfully traced back to the main program.

An additional counter, 'LIBRARY DIRECT, shows the sampling count for all VS
FORTRAN library modules, other than the mathematical functions and the Error
Monitor. This includes lower-level calls to system services. The 'LIBRARY
CALLED counter is never incremented.

Chapter 6. Debugging Tasks 63

Displaying Program Sampiing Information
Commands used: ANNOTATE {page 104), LISTSAMP {page 149)

When your program has completed, you can view the program sampling statis
tics in three ways:

1. Terminal display: Using LISTSAMP, you can display sampling counts either
by statement or program unit.. Additionally, LISTSAMP allows you to list
only those statements or program units having the highest sampling counts,
using the TOP{n) option.

2. Printed output: Using ANNOTATE, you can copy the source listings to
AFFPRINT. Sampling data is added to the right of each statement and is
summarized by program unit. All program units and nondebuggable entries
that were encountered are included in the summary. Page number refer
ences are shown for program units whose listings were annotated.

3. Bar chart: In full screen mode, you can overlay the source window with a
bar chart that displays the frequency or sampling data for each statement in
the listing. You control this feature by your choice of options for the ANNO
TATE command, specifying whether you want the bar chart to be in terms of
"frequency" {total executions) or "sample" {timer interrupts). You can also
overlay the frequency or sampling data with short vector REPORT{SLIST)
messages in the source window.

The bar chart adjusts to the size of the window so that 100% would cover
the full width. On a seven color terminal, the bar charts are shown by
simply changing the color {reverse video is assumed). Otherwise, asterisks
{*) are displayed.

The ANNOTATE and LISTSAMP commands provide options to let you display
the DIRECT counts, the CALLED counts, or the sum of the two {ALL) in your
terminal or printed output.

The following examples illustrate some forms of the ANNOTATE and LISTSAMP
commands. For more examples, please see pages 106 and 152.

1. Copy the source listing for SUB2 to AFFPRINT, annotating it with sampling
information.

annotate sub2

2. Overlay the source window with a bar chart showing the sum of the DIRECT
and CALLED counters.

annotate on all

3. Display a summary of the sampling counts for all program units.

listsamp * sunmary

Possible output:

64 VS FORTRAN Version 2 Interactive Debug Guide and Reference

PROGRAM SAMPLING INTERVAL MAS 10 MS; TOTAL NUMBER OF SAMPLES
WAS 2698.

DIRECT SAMPLES:

PROGRAM UNIT SAMPLES %TOTAL

MAIN 90 3.34 *

INIT 0 0.00

FUNl 177 6.56 A

SUBl 752 27.87 ******

SiilQRT 61 2.26

S#IN 4 0.15

A#LOG 5 0.19

^LIBRARY 1609 59.64 ************

Figure 27. Sample LISTSAMP Output for Programs

{MAIN, INIT, FLJN1, and SUB1 are VS FORTRAN program units; S#QRT,
S#IN, and A#LOG are VS FORTRAN math library entry points; "LIBRARY
contains the counts of sampling occurrences in VS FORTRAN non-math
library routines.)

4. Display the sampling counts for SUB1, including the CALLED counts. (Sam
pling counts will include interruptions which occurred in the code of a state
ment as well as in any lower-level routines called by the statement.)
listsamp subl.^ all

Possible output:

PROGRAM SAMPLING INTERVAL WAS 10 MS; TOTAL NUMBER OF SAMPLES
MAS 2698.

SUM OF DIRECT AND CALLED SAMPLES:

STATEMENT SAMPLES %UHIT ^TOTAL
SUBl.ENTRY/EXIT 52 6.47 1.93
SUB1.8 7 0.87 0.26
SUBl.9 34 4.23 1.26
SUBl.10 561 69.78 20.79 ****
SUBl.11/10 146 18.16 5.41 *
SUBl.12 4 0.50 0.15
SUBl.13 0 0.00 0.00

Figure 28. Sample LISTSAMP Output for Programs

Limitations of Program Sampling
1. Use of sampling will cancel any active timer interval at the start of exe

cution (one millisecond per timer interruption).

2. In CMS, the BLIP will be turned off during sampling.

3. Program performance will be slightly degraded due to the execution of sam
pling code at each interrupt, one millisecond per timer interruption. Use of
the CALLED option executes additional code in order to trace back through
the call chain.

4. Interruptions that occur in math library routines called by program units
compiled with NOSDUMP will be attributed to the program unit instead of
the library routine. You can eliminate this inaccuracy by recompiling with
the SDUMP option.

Chapter 6. Debugging Tasks 65

5. The accuracy of the STIMER macro, used to provide periodic Interruptions
on VM and MVS, is sensitive to system activity. Thus, sampling may occur
less often than the interval you specified in ENDDEBUG. If your CPU has
the virtual interval timer assist facility, and you are using CMS. you may be
able to improve the timing values. You can turn on this facility by issuing:

SYSCHD CP SET ASSIST CM THR

6. If you use the STIMER macro in your program, or a system service that
uses STIMER, sampling will be discontinued. For example, SVC 99 on MVS
uses STIMER in performing dynamic file allocation. (If you use VS
FORTRAN dynamic file allocation, however, sampling will not be discon
tinued.)

Program Unit Timing
If you want to time one or more program units and then see the timing informa
tion produced by Interactive Debug, use the TIMER and LISTTIME commands.

Initiating Program Unit Timing
Command used: TIMER (page 194)

The TIMER command turns timing on and off, or resets the activation count and
time to zero for a specified program unit. When you want to turn timing on for
a program unit named LR63, for example, you must issue the command:

TIMER LR63

Displaying Program Unit Timing Information
Command used: LISTTIME (page 156)

After your program has run, you can use the LISTTIME command to display
timing information. The following information is provided for each program unit
and entry point:

Total time: total execution time.

% total: percentage of total execution time.

Invocations: number of invocations.

Average time: total time divided by the number of invocations.

The timing information is presented by entry point, although timing is controlled
by the program unit name. LISTTIME shows values only for those program
units for which timing has been turned on (using TIMER). To get a printed
listing of the LISTTIME information, enter the command:

LISTTIHE PRINT

To see the information at your terminal, omit the PRINT keyword.

If you want to increase the accuracy of timing information for subroutines, you
must minimize the overhead caused by debugging hooks in your program. To
do this, use the AFFON file (page 43) to specify hooks only on entry and exit
points. Your AFFON file might look like this:

(all) entry

which will place hooks at entry and exit points of all program units.

66 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Next use the TIMER command to turn timing on for the subroutine you are inter
ested in. Ifthe subroutine calls any other routines, be sure to turn timing on for
them also. If you do not, the time spent in any called routines is included in the
measurement for the calling routine.

When you ask for your LISTTIME display, you should see a fairly accurate exe
cution time for that subroutine.

Vector Tuning Assistance
Interactive Debug can help you analyze and tune vectorized programs by:

• Gathering vector length and stride information at run time

Summarizing sample counts by DO loop

Timing analyzable DO loops

• Providing the capability of displaying a vector report source listing in the
source window (full screen mode only)

• Providing help on the vector report messages in the vector report source
listing

Program Information File
Before Interactive Debug can gather vector tuning information, your program
must have been compiled with the VECTOR{IVA) option. This causes the com
piler to generate a program information file, which is needed by Interactive
Debug to gather vector tuning information. The file contains information on DO
loops and how they are vectorized, locations where hooks need to be placed to
determine vector length and stride and DO loop timing, and compiler estimates
of vector lengths and strides.

Specify the program information file as an entry in the AFFON file (page 43).

If a program information file is not specified for a program unit, or if a program
information file exists but does not contain the necessary specifications, vector
tuning information cannot be gathered on the program unit and an error will
occur.

DO Loop Analysis Hooks
Interactive Debug places special hooks, called DO loop analysis hooks, into the
code of your program to perform vector analysis. They differ from regular
debugging hooks in that breakpoints cannot be set, and execution cannot be
suspended at these hooks.

By default, DO loop analysis hooks will be placed in every DO loop of every
program unit compiled with the VECTOR(IVA) option, in addition to regular
debugging hooks. The AFFON file can be used to restrict hooks to only DO loop
analysis hooks, for improved execution performance and more accurate DO
loop times.

Chapter 6. Debugging Tasks 67

For example, if your program contains a subroutine called MFPDIV, and you
want to time a single DO loop at ISN 23. you can limit hooks to only DO loop
analysis hooks for this loop by placing this in the AFFON file:

tnfpdiv 23 doloop
(all) none

If you restrict hooks to only DO loop analysis hooks, entry and exit debugging
hooks will still be placed in the program unit. These hooks are required for
Interactive Debug to function properly, but you may take advantage of them by
setting breakpoints to display vector analysis results partially through the exe
cution of the program, and, perhaps, to turn on and off the analysis of certain
DO loops.

For example, the following commands will set breakpoints at the entry and exit
of subroutine MFPDIV:

at mfpdiv.entry (timer * doloop resets go)
at mfpdiv.exit (listtime * do1oop% go)

The breakpoint at the entry of the subroutine will reset DO loop times for the
subroutine. The breakpoint at the exit of the subroutine will display DO loop
times for that execution of the subroutine.

Gathering Vector Length and Stride Information
Commands used: LISTVEC (page 159), VECSTAT (page 200)

Interactive Debug can record the average length and stride of vectors in a
program at run-time, and display the averages as well as compiler estimates
for length and stride. Averages are calculated over, all executions of the loop
where vector length and stride recording is active.

The length of a vector is equivalent to the iteration count of the DO loop. Thus,
the lengths of all vectors in one DO loop are equal. The stride of a vector is the
distance between successive elements of a vector, in units of the array element
size.

Length and stride statistics can be gathered for all DO loops that were
analyzable by the compiler. Refer to the VS FORTRAN Version 2 Programming
Guide for a list of conditions that causes an unanalyzable loop.

Run-time vector length and stride information can be used in several ways:

•' The average iteration count can be used in the ASSUME directive for DO
loops whose iteration count could not be accurately determined at compile-
time.

Average stride information can be used to restructure a DO loop to
decrease vector strides. This improves data cache usage and thus the per
formance of the loop.

»- Length and stride information can be used to determine if a DO loop should
or should not be vectorized. If the average iteration count of the loop is
small, or the average stride of vectors in the loop is large, it may not be
profitable to vectorize the loop. A PREFER directive can then be used to
force or inhibit vectorization of the DO loop.

68 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Examples

»> Length and stride information can be compared to compiler estimates to
verify that the compiler is using reasonable estimates for vector cost anal
ysis.

The VECSTAT command is used to activate, deactivate, or reset vector length
and stride recording. The LISTVEC command is used to display average length
and stride for vectors, recorded during execution, as well as compiler estimates
for length and stride.

1. Activate vector length and stride recording for all loops in a program:

vecstat *.* on

2. List vector lengths and strides for all loops in program unit COPY_MATRIX:
listvec copy_matrix.*

Possible output:

COPY HATRIX.4;

STATUS = ON

TOTAL NUHBER OF EXECUTIONS = 33

AVERAGE ITERATION COUNT = 10

ESTIMATED ITERATION COUNT = 10
STATEMENT ARRAY AVG STRIDE EST STRIDE

S COPYJIATRIX.e 111 1 1
S COPYJIATRIX.e 112 1 1

COPY MATRIX.5;

STATUS = OH

TOTAL NUMBER OF EXECUTIONS = 330

AVERAGE ITERATION COUNT = 10

ESTIMATED ITERATION COUNT = 10

STATEMENT ARRAY AVG STRIDE EST STRIDE
S COPY MATRIX.6 Ml 10 10
S C0PY~MATRIX.6 H2 10 10

Figure 29. Sample LISTVEC Output

DO Loop Sampling
Commands used: ENDDEBUG (page 124), LISTSAMP (page 149)

Interactive Debug allows you to summarize sampling statistics by DO loop:

To initiate sampling, use the ENDDEBUG command with the SAMPLE option.
Interactive Debug will remove DO loop analysis hooks as well as standard
statement hooks before execution under ENDDEBUG.

*• To list sampling information, use the LISTSAMP command for DO loops.

Example
Display sampling statistics by DO loop for program unit DISPLAY_MATRIX:
listsamp display_matrix.* doloop

Possible output:

Chapter 6. Debugging Tasks 69

DO Loop Timing

PROGRAM SAMPLING INTERVAL WAS 4 MS; TOTAL NUMBER OF SAMPLES WAS 269.
DIRECT SAMPLES:

00 LOOP SAMPLES %UNIT %TOTAL

DISPLAYJIATRIX.6 84 100.00 31.23 *****"
DISPLAYJIATRIX.7 48 57.14 17.84 ****
DISPLAY~HATRIX.15 7 8.33 2.60 *

Figure 30. Sample LISTSAMP Output for DO Loops

Commands used: LISTTIME (page 156), TIMER (page 194)

DO loop timing allows you to measure the actual performance improvement
gained from vectorizing a loop. You can time an analyzable DO loop before
and after vectorization, and then use the PREFER compiler directive to force
compilation of the most efficient form of the loop. (For information on the
PREFER compiler directive, see the vectorization chapter in VS FORTRAN
Version 2 Programming Guide.)

Here is a suggested method:

1. Place PREFER SCALAR directives before the loops being analyzed, in the
source file of the program.

2. Compile the program with the VEC option.

3. Create an AFFON file with an entry that will restrict hooks to only those
needed to accurately time DO loops:

(all) * doloop

4. Invoke the program with Interactive Debug using the AFFON file created.

5. Issue the following commands:

timer * doloop
go

listtime *.* doloop print
quit

This will run the program, time all DO loops, write the times in the print file,
and quit the debugging session.

6. Rename the print file (in order to run the program again without it being
erased).

7. Place PREFER VECTOR directives before the loops being analyzed in the
source file of the program.

8. Recompile the program.

9. Invoke the program again with Interactive Debug

10. Type in the same commands as in step 5 above.

11. Compare the DO loop timings in the two print files.

Interactive Debug run time is included in the times for DO loops. It is propor
tional to the number of times a loop is executed, and so should be identical for
two runs of the program with the same input data. Thus, times can and should
be used for comparison only, not for absolute measures of performance.

70 VS FORTRAN Version 2 Interactive Debug Guide and Reference

DO loop timing cannot be performed on unanalyzable loops.

Vector Report Source Listing
The compiler generates a new source listing when REPORT{SLIST) is specified
with the VECTOR compiler option. Interactive Debug uses this listing, when
available, instead of the standard listing in the source window and in listing
annotation with the ANNOTATE command. In full screen mode, the source
window is overlaid with vector messages.

To avoid getting duplicate information on the source listing, compile your
program with:

NOSOURCE VECTOR(REPORT(SLIST))

On-line Help for Vector Messages
Command used: HELP (page 135)

Interactive Debug provides on-line help for vector messages contained in the
vector report source listing.

For example, to display information on vector message ILX0109I. type eitherof
the following:

help ILX0109I
help 09

In full screen mode, you can also get information on vector messages by using
HELP as a cursor-sensitive command. Simply type help on the command line,
and point the cursor on the line displaying the vector message number, and
press ENTER. Or, if you have set HELP to a PR key, point the cursor on the line
displaying the vector message number, and press the specified PR key.

Tracing Program Execution
Commands used: TRACE (page 197), WHERE (page 205)

The TRACE command traces control transfers within your program as it exe
cutes. To trace each entry to and exit from any subprogram as it occurs, enter.
trace entry

This produces output similar to the following:
TRACE; FROM MAIM.14 TO SUBl.ENTRY

To trace the origin and destination of every apparent branch within the program
(including entry to and exit from subprograms) listed by statement identifier,
enter:

trace goto

This produces output similar to the following:
TRACE: FROH SUBl.150/20 TO SUBl.210/40

If you don't need to examine your TRACE output right away, you can add PRINT
to the TRACE command and send the output to the print data set.

trace goto print

Chapter 6. Debugging Tasks 71

To stop tracing, enter:

trace off

The WHERE command shows you the number of the statement at which exe
cution is suspended. This statement will normally be the one run next. For
example, if MAIN calls subroutine TAD at sequence number 150, but a break
point is set at sequence number 20 in TAD, a WHERE command produces:

VftlERE: TAD.20

WHERE has a TRBACK keyword that gives you a trace of the calls that got you
to your current location. For example, if your program MAIN calls subroutine
TAD and execution is suspended, entering:

where trback

might produce the following:

V/HERE: TAD. 20

TAD CALLED AT MAIN.150

TRBACK output is limited to the transfers between debuggable program units.

WHERE also has a FLOW keyword that gives you a trace of the last ten program
transfers run. For example, if you specify the FLOW keyword:

v/here flow

you will receive output similar to that in Figure 31.

VfHERE: MAIN.92 (WHERE response)
TO MAIN.80 FROM MAIN.85 (FLOW response, prev. branch)
TO MAIM.65 FROM MAIN.70 (Next most recent branch)
TO MAIN.51 FROM MAIN.53

TO MAIN.49 FROM MAIN.53 (Loop in MAIN)
TO MAIN.49 FROM MAIN.53

TO MAIN.47 FROM MAIN.40

TO MAIN.38 FROM MAIN.20

TO MAIN.15 FROM MAIN.10

TO MAIN.3 FROM MAIN.10 (Loop in MAIN)
TO MAIN.3 FROM MAIN.10

Figure 31. Sample WHERE Output

Note that Interactive Debug can only keep track of statements that have debug
ging hooks. If there is a block of code that has no hooks, it appears to Interac
tive Debug as if there was a branch from the statement before the block to the
statement after it.

The PRINT keyword can be used to send WHERE information to the print data
set. For example, you can record the contents of a 100-element array, "ar," at
several points in your program by issuing the following sequence of commands
each time you want "ar" recorded:

where print
list ar(l):ar(100) print

This produces a record on your print data set both of the array "ar" and of the
exact program location where "ar" had that particular content. Issuing the GO
command will resume execution until the next break.

72 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Animating the Execution of Your Program
Command used: STEP (page 189)

When you use the STEP command in full screen mode, Interactive Debug "ani
mates" the execution of your program so you can watch the execution
progress. The currently executing line is highlighted in the source window.

The source, log, and monitor (if the AUTOLIST command was specified)
windows are refreshed after each step of the program has been run. When the
STEP command terminates, or when execution is halted by some other means
(such as breakpoints), animation ends.

Controlling the Pace of Program Animation
Command used: PROFILE (page 170)

You can control the timing of animation by modifying the STEP DELAY field in
the profile panel. To change the value, enter the command PROFILE.

Displaying Formatted Variable and Array Values
Commands used: AUTOLIST (page 111), LIST (page 141)

Interactive Debug allows you to display the values of variables and arrays
through the LIST command. In full screen mode, you can use either the LIST
command or the AUTOLIST command. The difference between the two is that

LIST displays values in the log window, whereas AUTOLIST displays values in
the monitor window. Also, as a program runs and the value of a variable
changes, AUTOLIST will reflect the change, whereas LIST will not.

LIST can be used as a cursor-sensitive command in full screen mode.

To display the value of variable A, enter:

list a

To display the values of variables A, B, C, D, enter:

list (a,b,c,d)

Similarly, to display array elements ARY(1,1) through ARY(3,4), enter:

list ary(l,I):ary(3,4)

Output from the LIST command can be very long and you may not want it dis
played at the terminal. The LIST command has a PRINT keyword that sends its
output to a print data set.

1ist a(l):a(100) print

The value of each variable in a LIST command is normally displayed in its
correct VS FORTRAN data type and precision: integer, real, complex, and so on.
If you want to display the values in a different format, you can use the FORMAT
or DUMP keyword. To display the hexadecimal values of some variables, enter:

list (a,i,n,r) format(x)

Chapter 6. Debugging Tasks 73

To display the values as if they were character strings, enter:

list (a,i,n,p) forniat(a)

The DUMP keyword is similar to the FORMAT keyword, but shows the
hexadecimal storage location instead of the name. For example, to display the
storage location and the hexadecimal value of variable A, enter:

list (a) dump(x)

The FORMAT and DUMP keywords and codes are described in the reference
section in Figure 38 on page 112.

Note: For the LIST command and other commands that allow array element
references, the subscripts must use simple arithmetic expressions no more
complex than the form "variable plus {or minus) a constant." For example, the
following are valid:

A(l), A(3), ARY(I+3) or ARY(I-3)

Handling Run-Time Errors
Commands used: ERROR (page 128), FIXUP (page 130)

Interactive Debug allows you to control the action taken when you encounter
run-time errors. The ERROR command allows you to specify whether to take
corrective action or to suspend execution when an error occurs. If you choose
the latter, corrective action can be specified by the FIXUP command. It also
allows you to suppress the VS FORTRAN library run-time error messages for
specific errors.

Identifying Errors

Examples

Initially, whenever a run-time error occurs, execution is suspended and VS
FORTRAN library run-time error messages are displayed. The ERROR
command allows you to change these initial error settings. ERROR uses the
identification numbers from the VS FORTRAN library to identify run-time errors.
(You can find these error numbers in VS FORTRAN Version 2 Language and
Library Reference.)

1. Cause corrective action to be taken and a full diagnostic message to be dis
played for error AFB215I.

error 215 noexit tnsg

2. Cause corrective action to be taken and suppress the diagnostic message.

error 215 noexit nomsg

After entering this command you will not be notified if error AFB215I occurs
again. You can change the error settings back to their original settings by
entering any one of the following commands:

error 215

error 215 exit

error 215 msg
error 215 msg exit

All these commands have the same effect because of keyword defaults.

74 VS FORTRAN Version 2 Interactive Debug Guide and Reference

3. Cause corrective action to be taken, and display full diagnostic messages
for errors AFB2.15I, AFB243I, AFB247I, and AFB289I.

error (215 243 247 289) noexit

4. Cause execution to be suspended and suppress diagnostic messages for
errors AFB215I. AFB216I. AFB217I. AFB218I. and AFB290I.

error (215:218 290) nomsg

Note: When executing In Interactive Debug (except In batch mode), the VS
FORTRAN library does not update the run-time error occurrence counts; there
fore, settings In the VS FORTRAN Version 2 error option table that depend on
these counts have no effect. This permits unlimited occurrences of errors and
messages regardless of the settings In the error option table.

In batch mode, the error counts are updated and tested just as If running
without Interactive Debug.

Performing Corrective Action
When execution Is suspended because of an error. Interactive Debug displays a
message like this:

ERROR EXIT: ERROR 243 AT HAIN.6/15

and waits for you to enter a command. You may not enter a GO command with
a statement Identifier. Entering the FIXUP command with no arguments, or a
GO command with no statement identification, will cause standard corrective

action to be taken and execution to resume. If the error Is caused by an Incor
rect value passed to a VS FORTRAN library mathematical routine, you may use
the FIXUP command to specify corrected values to be used to recalculate the
function.

With FIXUP, you can assign values to the first, second, or both arguments of a
function. The following examples Illustrate some of the uses of the FIXUP
command:

1. The function has been reevaluated using both arguments, and execution
continues.

ERRHSG=> AF8241I FIXPI : INTEGER BASE=0, INTEGER EXP0NENT=0, LESS THAN
ERRHSG=> OR EQUAL TO ZERO
ERRIISG=> FIXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM

ERRHSG=> MAIN AT ISH 44 (OFFSET 000954).
INFHSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 241 AT HAIN.44

lAD/E
fixup argl(2) arg2(2)
INFHSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

Figure 32. Sample Use of FiXU.P

2. A new value Is given for the first argument (base) only; the second argu
ment (exponent) remains unchanged.

Chapter 8. Debugging Tasks 75

ERRMSG=> AFB242I FRXPI : REALM BASE=0.0, INTEGER EXPONENT = 0, LESS
ERRHSG=> THAN OR EQUAL TO ZERO
ERRHSG=> FRXPI ; LAST EXECUTED FORTRAN STATEMENT IN PROGRAM
ERRMSG=> MAIN AT ISN 51 (OFFSET 00099E).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 242 AT HAIN.51

lAD/E
fixup argl(2.0)
INFHS6=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

Figure 33. Sample Use of FIXUP

3. The function has been reevaluated by changing the second argument; the
first argument is unchanged.

ERRHSG=> AFB244I FRXPR : REALM BASE=0.0, REALM EXPONENT= O.OOOOOOOE
ERRHSG=> +00,LESS THAN OR EQUAL TO ZERO
ERRHSG=> FRXPR : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM MAIN
ERRMSG=> AT ISN 61 (OFFSET OOOAOE).
INFHSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 244 AT MAIN.61

lAD/E
fixup arg2(1.0e)
INFHSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

Figure 34. Sample Use of FIXUP

4. The abbreviation F for FIXUP is used with no arguments. Standard correc
tive action is taken. The same action would have been taken if GO had
been entered instead.

ERRHSG=> AFB243I FDXPI : REAL*8 BASE=0.0, INTEGER EXPONENT = 0, LESS
ERRMSG=> THAN OR EQUAL TO ZERO
ERRHSG=> FDXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM

ERRHSG=> MAIN AT ISN 56 (OFFSET 0009D6).
INFHSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 243 AT MAIN.56
lAD/E
f

INFHSG=> STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

Figure 35. Sample Use of FIXUP

To determine what standard corrective action is applied for a particular error or
for more information about mathematical functions and their arguments, see VS
FORTRAN Version 2 Language and Library Reference.

Processing External Files
Commands used: BACKSPACE (page 115), CLOSE (page 116), ENDFILE (page
127), GO (page 131), NEXT (page 164), RECONNECT (page 175), REWIND (page
180)

76 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Interactive Debug allows you to manipulate external files used by a VS
FORTRAN program through a set of commands that are similar to corre
sponding VS FORTRAN statements.

The BACKSPACE command positions a sequentially accessed external file at
the beginning of the previous record. For example:

backspace 8

positions the file connected to I/O unit 8 at the beginning of the last record
written or read, allowing it to be written or read again.

The REWIND command positions a sequentially accessed external file at the
beginning of the first record of the file. For example:

rewind 4

positions the file connected to I/O unit 4 at the beginning. This permits you to
perform I/O operations as though the file had just been opened. VS FORTRAN
supports multiple files under the same I/O unit. The REWIND command sets the
VS FORTRAN file name to the first in the sequence of files for the specified I/O
unit. For example, if you were currently processing file FT08F003 on I/O unit 8

and entered:

rewind 8

I/O unit 8 would be connected to file FT08F001, which would be positioned at the
beginning of the first record.

The ENDFILE command writes an end-of-file record on a sequentially accessed
external file. This causes subsequent I/O operations to be performed on the
next file for the specified I/O unit. For example, if you are currently processing
file FT05F001 on I/O unit 5, entering:

endfile 5

causes subsequent I/O operations to be performed, using file FT05F002. If
REWIND were issued for I/O unit 5, the filename would be set back to FT05F001.

The CLOSE command disconnects an external file from an I/O unit. For

example:

close 1

disconnects the VS FORTRAN file connected to I/O unit 1, allowing you to asso
ciate a different file or data set with that I/O unit, if desired, or to examine the

file contents using an editor or browser.

The RECONNECT command resets a file to its original (preconnected) condition.
For example, if unit 8 has been closed, you can make it possible for the
program to perform additional I/O on unit 8 {without executing an OPEN) by
issuing

reconnect 8

to reconnect unit 8 to file FT08F001. This is necessary only if the OCSTATUS
run-time option is in effect.

If you neglected to allocate a file that is needed by your program, you will
receive an error message when the program attempts to access that file. If the

Chapter 6. Debugging Tasks 77

program is debuggable and ERROR EXIT is in effect, you can recover from this
condition by issuing the following sequence:

NEXT

GO

SYSCHD ALLOCATE...(or FILEOEF...)
GO n

where n is the statement identifier for the I/O statement. The ALLOCATE or
FILEDEF command must be completed as appropriate for allocating the
required file. This procedure will work whether or not the OCSTATUS run-time
option is in effect.

Using System Commands
Command used: SYSCMD (page 191)

Use SYSCMD to issue a system command while debugging.

CMS Examples:

1. Begin processing a different file using I/O unit 8:

close 8

syscmd filedef 8 disk example data a

2. In line mode, view your VS FORTRAN source or listing file:

syscmd xedit example Fortran a
syscmd type example listing a

3. Show which CMS files are currently defined:

syscmd filedef

JSC Examples:

1. Begin processing a different data set using I/O unit 8:

close 8

syscmd allocate file (ftOSfOOl) da(example.data) reuse

2. In line mode, view your VS FORTRAN source or listing file:

syscmd edit example.fort
syscmd list example.list

3. Show which TSO data sets are currently allocated:

syscmd listale status

Entering Terminal Input
Command used: TERMIO (page 192)

When a VS FORTRAN program attempts to perform any I/O to or from the ter
minal, either the Interactive Debug I/O routines or the VS FORTRAN library I/O
routines can be used. The TERMIO setting determines which set of routines is
used. Using the Interactive Debug routines gives you the advantage of being
told which unit is being read, and you have the ability to issue Interactive
Debug commands while the read is pending. In addition, when operating in full
screen mode, the Interactive Debug routines remain in full screen mode for the
read or write.

78 VS FORTRAN Version 2 Interactive Debug Guide and Reference

When running in Interactive Debug, the initial TERMIO setting is IAD, specifying
that the Interactive Debug routines should be used for terminal I/O. The
TERMIO command allows you to change the setting to either IAD or LIBRARY
or to display the current TERMIO setting. When the option selected is
LIBRARY, all terminal I/O is performed in line mode in the same manner as
when Interactive Debug is not active.

When running in batch mode on MVS, no actual terminal is available. However,
the DEBUNIT run-time option may be used to specify that certain I/O units are
to be treated as if they were allocated to the terminal. These units then come
in the control of TERMIO. For details about using DEBUNIT, see VS FORTRAN
Version 2 Programming Guide.

When the TERMIO setting is IAD and your program attempts to read from the
terminal, the following message is displayed:

FT05F001 IHPUT: PRECEDE INPUT WITH % OR ENTER IAD COMHAND

where FT05F001 indicates the VS FORTRAN file being read. (In full screen
mode, "lAD/R" will also be displayed, in the upper left corner of the main
debugging panel.)

When this message is displayed, you may either:

*• Issue a debugging command (other than STEP, GO, or ENDDEBUG).

Enter the requested input, prefaced with a percent sign (%).

The percent sign is not passed to the VS FORTRAN program. For example:

FT05F001 IHPUT: PRECEDE IHPUT WITH % OR ENTER IAD CDHHAND

%743

inputs the number 743 to your program. Alternatively, you could have first
determined which statement in your program was issuing the read, as follows:

FT05F001 IHPUT: PRECEDE IHPUT WITH % OR ENTER IAD COMMAND

where

WHERE: MAIN.10

FT05F001 IHPUT: PRECEDE IHPUT WITH % OR ENTER IAD COMMAND

%743

When the TERMIO setting is IAD:

The leading and trailing percent signs are removed before the input is sent
to the VS FORTRAN program (the trailing percent sign is not required).
Whenever you want to include a percent sign as part of your input, you
must include a trailing percent sign. For example, to input the string 55%
to a VS FORTRAN program, enter:

%55%%

To enter two percent signs (%%), enter:

To signify an end-of-file from the terminal, use two percent signs. For
example:

All terminal input is padded on the right with blanks to the LRECL of the
terminal file.

Chapter 6. DebuggingTasks 79

All terminal input is converted to uppercase. To avoid this in environments
that support mixedrcase input, use the TERMIO LIBRARY setting.

Both Interactive Debug commands and terminal input can be continued on
succeeding lines by ending each continued line with a hyphen (-). For
example:

FTO5FG01 INPUT; PRECEDE INPUT WITH % OR ENTER IAD COHHAND
% hello, this input line is -
broken across two lines.

In ISPF, leading blanks are stripped from the beginning of all continuation
lines. To avoid this, precede the continuation line with a single quotation
mark {")- The quotation mark will not be passed to the program. For
example:

FT05FG01 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COHHAND
% hello, this input line is -
* broken across two lines.

The maximum length of an input line is 151 characters. In CMS and TSO
line mode, any input longer than this is truncated.

When this limit is exceeded in full screen mode, a message'is displayed
and the input is ignored.

All output written from your program to the terminal is shown in the log,
preceded by the name of the VS FORTRAN File it was written to, and is
broken into lines that are 60 characters long.

Continuing Execution without Further Debugging
Command used: ENDDEBUG (page 124)

When you complete debugging and want to finish execution of the program, use
the ENDDEBUG command. This command discontinues communication
between the program and Interactive Debug until the program terminates. Use
ENDDEBUG only when you are certain that further debugging is not required.

Using ENDDEBUG causes the program to run as ifthe DEBUG run-time option
had never been specified, except that attention interrupts are possible, and
Interactive Debug will be reentered at termination.

After ENDDEBUG has been issued, all terminal I/O is handled by the VS
FORTRAN library I/O routines (as if TERMIO LIBRARY had been issued).

In addition, the VS FORTRAN library begins updating the occurrence count for
run-time errors. All error handling is determined by settings in the VS
FORTRAN Version 2 error option table. The error summary displayed when the
program terminates reflects only errors occurring after ENDDEBUG was issued.
WHERE information is not available.

When the program terminates after issuing an ENDDEBUG command, you may
issue Interactive Debug commands. However, commands such as LISTFREQ
and LISTTIME will display only the information that was current when
ENDDEBUG was issued.

80 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Attention interrupts {page 85) can still be used to interrupt the program after
ENDDEBUG is issued; however, no program information is available at that
time. To resume execution after an attention interrupt, enter a null line. The
only command allowed while in an attention exit after ENDDEBUG has been
issued is QUIT, which terminates the program execution. You can then list the
values ofvariables or issue other commands that do not require program exe
cution.

Chapter 6. Debugging Tasks 81

Chapter 7. Special Considerations When Using interactive
Debug

This section discusses debugging tasks that are more speciaiized than those
discussed in the previous chapter:

Recognizing some common errors when setting up a debugging session

issuing commands after a program has run

^ Handling loops in nondebuggabie program units

Specifying the default run-time options

Monitoring floating-point equalities

*' Referring to unused FORTRAN variables

*' Entering commands in an attention-interrupt exit

Debugging optimized and vectorized code

*- Improving program performance while debugging

Using interactive Debug double-byte data support

For conventions when using any Interactive Debug command with statement
labels or statement numbers, see "Statement identifler Conventions" on
page 101.

Recognizing Common Errors in Setting up a Debugging Session
if you try to begin a debugging session without success, or if you try to debug a
program unit that Interactive Debug considers nondebuggabie. look through the
following list of common errors to find a possible solution:

Problem

Ail program units are
nondebuggabie.

One or more program units are
nondebuggabie.

Solution

Check your AFFON file (page 43) for incor
rectly coded AFFON entries.

insure that the AFFON file matches the

program being run. Make the necessary
corrections and try again.

Check to see whether the program unit was
compiled without SDUMP. or was compiled
with a FORTRAN compiler level that is not
supported. If so. recompile the program
unit.

Chapter 7. Special Considerations When Using Interactive Debug 83

Problem

Interactive Debug is not loaded
and a debugging session is not
initialized.

In ISPF, you receive the
message "LOG FILE NOT
FOUND," and Interactive Debug
never runs.

Solution

Be sure you have specified the DEBUG run
time option, or have taken steps to override
the default option.

Be sure you are running your program with
a level of the VS FORTRAN library that sup
ports Interactive Debug. If a program was
link-edited with an older library, re-link-edit
it with the current library.

Be sure that the VS FORTRAN Version 2

libraries are accessible and that you have
allocated the FT06F001 file, then rerun the

program. Also be sure you have allocated
enough storage.

Issuing Commands after a Program Runs
The following commands cannot be issued after your program runs:

AT

ENDDEBUG

ERROR

FIXUP

GO

HALT

IF

NEXT

OFF

OFFWN

RECONNECT

STEP

TIMER

TRACE

WHEN

Handling Loops in Nondebuggable Program Units
Many programs may contain units that cannot be debugged. These may be
subroutines coded in some language other than VS FORTRAN Version 1 or VS
FORTRAN Version 2, a VS FORTRAN module that is not debuggable, and so
forth. It is possible for execution to get caught in a loop in such a
nondebuggable program unit. When this happens, the only way to suspend the
program is by issuing an attention interrupt, and the only accepted command
that will affect program execution is QUIT. When QUIT is entered following an
attention interrupt. Interactive Debug terminates the program and allows you to
list the values of variables or issue other Interactive Debug commands that do
not require further execution. When QUIT is issued again, the debugging
session is terminated.

Specifying Default Run-Time Options
You may occasionally need to use a program compiled with a compiler other
than VS FORTRAN (COBOL, for example), which then invokes a VS FORTRAN
program. However, when you have no FORTRAN main program to accept a
parameter, there is no way to explicitly specify DEBUG or any other run-time
option. One way to solve this problem is to override the normal VS FORTRAN
default options by including a local parameter specification module
(AFBVLPRM) when you link-edit your module, or by using a customized library
containing a global parameter specification module (AFBVGPRM). You can

84 VS FORTRAN Version 2 Interactive Debug Guide and Reference

create either a local or a global parameter specification program by assembling
a small program that invokes a macro supplied with the VS FORTRAN Version 2
library. For details, see VS FORTRAN Version 2 Programming Guide.

Monitoring Floating-Point Equalities
Requesting Interactive Debug to monitor equal conditions for floating-point
numbers requires caution. Equality comparisons are performed on a bit-by-bit
basis. Numbers may appear to be equal in a program designed to be insensi
tive to minor differences, but may differ by a single bit and not be considered
equal when compared by Interactive Debug. Because only simple relations are
supported, there is no way to monitor equality to a given precision. See
"WHEN" on page 202 for more information.

Referring to Unused VS FORTRAN Variables
If you define a variable in your VS FORTRAN program without assigning an
initial value, and never refer.to it in your program, no storage is allocated for
the variable and it does not appear in the symbol table used by Interactive
Debug. Ifyou try to refer to the variable in your debug session, you will get an
error message stating that the variable does not exist.

Therefore, if there are VS FORTRAN variables that you may want to reference
in Interactive Debug but which are not referenced in the VS FORTRAN program,
you should assign initial values,to them.

Entering Commands in an Attention-interrupt Exit
You can interrupt processing in full screen or line mode by issuing an attention
interrupt signal. You can use this signal to gain control ifyour program
appears to be looping, or if an Interactive Debug command is producing exces
sive output.

The way you issue an attention interrupt signal varies with the operating
system and with the type of terminal. A line mode terminal typically has a
BREAK key, or one marked ATTN. On a 3270-type terminal, you can use the
PA1 key. In VM, pressing ENTER may signal attention.

When you enter an attention interrupt, Interactive Debug issues the attention
prompt (IAD/A), and temporarily suspends your program. Your program is now
in an attention exit. You can either:

Enter a null line, which will cause execution to continue. (You will leave the
attention exit.)

Enter an Interactive Debug command.

Enter QUIT, which will terminate your program. {However, you will still
have a chance to issue any Interactive Debug command that is valid after
program termination.)

Chapter 7. Special Considerations When Using Interactive Debug 85

If you Issue any ofthe following commands while in an attention exit, the
command will be run and you will remain in the attention exit:

PURGE To terminate excessive output, such as from a LIST
command.

WHERE To identify the last statement that was begun in a
debuggable program unit (parameters are not honored).

next To request a pause at the next executable statement in a
debuggable program unit. However, ifyour program is
looping in a nondebuggable program unit, you may never
get back to a debuggable unit.

*or " (comment) To enter a comment. (However, the comment will not be
logged.)

If you issue a QUIT command while the program is executing, the program will
be terminated and Interactive Debug will accept debugging commands that are
not related to execution.

If you issue any other non-fullscreen Interactive Debug command while the
program is executing, the command will be saved, the attention routine will be
exited, and execution will continue. The saved command is deferred until an
executable statement in a debuggable program unit is reached (which may not
happen). Note that if the program is looping in a nondebuggabie routine, the
saved command will never be run. Full screen commands cannot be issued
from an attention exit.

Debugging Optimized and Vectorized Code
Interactive Debug allows you to debug VS FORTRAN Version 2 programs com
piled with

Optimization: compiler option OPTIMIZE(O), OPTIMIZE(1), 0PTIMIZE(2), or
0PTIMIZE(3)

I Vectorization: compiler option VECTOR (or VEC)

I Vectorization requires either optimization level 2or 3, so debugging vectorized
code always involves debugging optimized code.

Debugging is least complicated for programs compiled at optimization level 0
with no vectorization. Optimization level 0 provides object code that most
closely follows the source code, so a bug found in the executing object code
can be most easily and directly traced to its corresponding source statement.

Debugging optimized or vectorized programs may be necessary, but it requires
careful, informed interpretation of the results. You must recognize certain
actions taken by the compiler for vectorization, and for the different optimization
levels. These actions are:

Register optimization: Retaining values in registers instead of in storage.

Common expression elimination: Eliminating duplicated instructions by
retaining subexpression values for later use.

86 VS FORTRAN Version 2 Interactive Debug Guide and Reference

strength reduction: Replacing an operation by a faster one to improve exe
cution of DO-loops..

Code motion: Altering the placement of calculations, usually by moving
instructions from inside a loop to outside

Vectorization: Running certain computations in DO-loops with vector
instructions rather than scalar instructions.

Interactive Debug will not be able to counter all the effects of optimization or
vectorization, but will issue a warning message to inform you that optimized or
vectorized code is being debugged. These messages are issued at your first
attempt to reference a variable in an optimized or vectorized program unit.
Rather than appearing every time an affected command is used, such mes
sages appear only once for each program unit.

If you must debug optimized or vectorized code, you can determine how opti
mization or vectorization has affected your program by looking at the listing and
vector report.

Optimization Examples
Constant Propagation: Constant propagation is a calculation done at compile
time. The pre-calculated results are used at run-time. For example:

II = 10

JJ = II is replaced by JJ == 10

Results may be unexpected when you change the value of II at a breakpoint
and later look at the value of JJ.

Common Expression Elimination: Common expressions are those in which the
result of a calculation is available because of a previous calculation. In the
example below, the calculation J + K is performed twice:

20 H = J + K

21 II = 10

22 JJ ° J K can be replaced by JJ - M

Note the opportunity for unexpected results when you change the value of J or
K while at ISN 21. Because the recalculation of the common expression J + K
has been eliminated, JJ will be equal to M, not the new sum of J + K. If there
is a breakpoint set at ISN 21 and the value of K is altered, it will have no effect
on the value assigned to JJ.

Backward Movement: If the variables involved in an expression are not

changed in a loop, it may be possible to move an expression outside of the
loop. In the example below, A = B could be moved out of the loop:

20 X = Y

21 DO 10 I = 1,10
22 ARR(I) = ARR (I) + I
23 A = B

24 10 CONTItlUE

25 VIRITE(5,*) X,A

Chapter7. Special Considerations When Using Interactive Debug 87

The program then becomes:

20 X = Y

21 A = B

DO 10 I » 1,10
22 ARR(I) = ARR (I) + I
23

24 10 COHTIHUE

25 V/RITE(6,*) X,A

The optimizer recognizes that both A and B are loop invariant, and the compu
tation can therefore be moved outside the loop. Note that ISN 23 is still there,
but is empty, or "collapsed." An attempt to set a breakpoint at ISN 23 would
result in an Interactive Debug error message.

Strength Reduction: Strength reduction replaces one operation by a faster one
to improve execution of DO loops.

Let's assume that elements of an array such as ARR, in the example below, are
4 bytes long.

21 DO 10 J = 1,10
22 ARR(J) = ARR(J) + 8
23 10 COHTIMUE

Since each element is 4 bytes long, the subscript J must be internally multiplied
by 4 to obtain the proper offset from the start of the array. The addresses of
elements in this array actually increase in steps of 4, rather than in the steps of
1 implied by the DO loop. Thus, the offset takes on values of 4. 8, 12, and so
on, as the subscript J takes on values of 1, 2, 3, and so on.

Strength reduction replaces one operation (in this case, the internal multipli
cation) by a faster one (in this case, addition). The loop code generated for the
loop would contain instructions to add 4 to each iteration of an internally main
tained offset, rather than keeping the subscript J and multiplying it by 4 on each
iteration.

Ifstrength reduction occurred in the example above and you set a breakpoint at
the statement following CONTINUE to display the value of J, the value would be
1. This is a misleading value. J is never really used in the optimized loop. A
compiler-generated temporary is used instead to calculate the offsets.

Global Register Assignment: Global register assignment is another way to
improve the generated code. The example below illustrates the principle
involved.

21 DO 10 1 = 1,10
22 J = J + I

23 10 COHTINUE

results in machine code that performs these actions:

load 1 into a register
store register at I

* add register to J
add 1 to register
compare register contents with 10
branch (to *) if compare is less than or equal
store final value at J

88 VS FORTRAN Version 2 Interactive Debug Guide and Reference

This is not an exact representation of the machine code, but illustrates the prin
ciple of register assignment. Instructions that use registers are faster than
instructions that reference storage. For the duration of this loop, I is assigned
to a register.

If you were to set a breakpoint at ISN 22 and display the variable I, the value
would be 1.

If a program works correctly at OPT(O) and fails when optimized at a higher
level, check for uninitialized variables. Frequently, a variable kept in storage at
OPT{0) is assigned to a register under 0PT{3). This is only one of the effects of
debugging an optimized program.

Vectorization Examples
Grouping of Data Elements: When a DO-loop is vectorized, individual loops that
operate on single elements are modified to produce less-frequently run loops
that operate on groups of elements. When you try to set a breakpoint at a par
ticular statement in a program unit that has been vectorized, you may find that
the loop index and/or the contents of storage have unexpected values. For
example, examine the following code:

1 REAL A(IOO), B(IOO)
2 DO 2 K = 1, H
3 2 A(K) = B(K)

The single loop in the above example may actually look like this in the
vectorized code:

DO 2 K = 1, N, Z
DO 2 KK = K, K+HIH(N-K,Z-1)

2 A(KK) = B(KK)

where Z is the size of the group, and the inner "loop" is actually performed by
vector instructions.

After vectorization, the single loop over individual elements becomes a loop
over groups of elements. This loop contains a second "conceptual" loop, run in
vector instructions, over elements in the group.

The original statement labeled "2" (ISN 3) no longer exists. It has been placed
under ISN 2 in a different form. If you try to set a breakpoint there, Interactive
Debug may issue a message saying that it cannot find the statement.

Statement Reordering: To vectorize certain loops, the order of execution of
statements may have to be modified. When you later try to debug a statement
in this loop, you may find that it doesn't appear where you expected to find it.

For example, you may have coded the following:

1 DIMENSION A(1O0},B(1OO),C(1O0)
2 DO 500 I = 2,100
3 A(I) = B(I-l) * 3.0
4 B(I) = C(I) * 3.0
5 500 CONTINUE

Chapter 7. Soecial Considerations When Using Interactive Debug 89

But your vector report listing after vectorization may look like this:

ISN FLAG NESTING *....*...1 2 3 4....

0001 DIMENSION A(IOO),B(100),C(100)
0002 VECT DO 500 I = 2,100
0004

0003

B(I) = C(I) * 3.0
A(I) = B(I-l) * 3.0

In this case, ISNs 3 and 4 have swapped positions. They have been placed
under ISN 2 in a different form. You will not be able to set breakpoints at these
statements.

Loop Distribution: During vectorization, statements coded within a single DO
loop are sometimes distributed to separate loops during vectorization.

For example, if you code this loop:

1 REAL A(2C0), B(200)
2 DO 20 I = 2,100,2
3 A(I) = A(I) + 2
4 B(I+2) = B(I) + 2
5 20 COHTIMUE

your vector report listing might look like this after vectorization:

ISN FLAG NESTING *....*...1 2 3 4....

0001 REAL A(200),B(200)
0002 VECT + DO 20 I = 2,100,2
0003 I A(I) = A(I) + 2

0002 SCAL DO 20 I = 2,100,2
0004 I B(I+2) = B(I) + 2
0006 END

You will not be able to set breakpoints inside the original loop. If you attempt
to debug statements within the original loop, you will find that ISNs 3, 4, and 5
have disappeared. They have been placed under ISN 2 in a different form.

Commands Affected by Optimization and Vectorization
The following Interactive Debug commands may produce unexpected or inaccu
rate results when used in debugging optimized or vectorized code.

AT: If you use AT on a statement that has been moved or completely elimi
nated due to vectorization or optimization. Interactive Debug will issue a
message telling you that no breakpoint can be established at that statement.

AUTOLIST: If you use AUTOLIST on an optimized or vectorized program, it is
possible that the current value of a variable, or of an array element, is only in a
register. As a result, what is displayed by the AUTOLIST command may not be
the current value of the variable or variables.

GO: If you use GO on a statement identifier in an optimized program, you will
receive a message indicating that results are unpredictable, and requires your
confirmation before proceeding. The VS FORTRAN Version 2 optimizer
produces code assuming that the possible paths through a module are
known—for example, that a sequence of ten assignment statements will always
be run in order. Based on this assumption, a register may be loaded once at
the beginning, and used by subsequent statements without being reloaded. If
you issue a GO command referring to a statement in the middle of that

90 VS FORTRAN Version 2 Interactive Debug Guide and Reference

sequence, you may be bypassing code that causes an Important register to be
loaded. Results are unpredictable when a statement using that register is sub
sequently run.

IF: If IF is used to examine the value assigned to a variable, results may be
unpredictable if the value is being kept in a register.

LIST: If LIST is used on an optimized or vectorized program, it is possible that
the current value of a variable, or of an array element, is only in a register. As
a result, what Is displayed by the LIST command may not be the current value
of the variable or variables.

LISTFREQ: The LISTFREQ command lists statements even though they may
have been removed or relocated due to optimization or vectorization, but indi
cates that these are "collapsed statements" in the "frequency" field. Execution
counts cannot be maintained for these statements.

SET: The SET command alters the contents of a storage location assigned to a
variable by the compiler. However, optimized or vectorized code may not be
using this storage location to contain the current value. Even if the optimized
or vectorized code has stored the value in this location, VS FORTRAN Version 2

may use a copy of the register value or values (without reloading it from
storage) for the next use of the variable. Furthermore, subsequent instructions
may store the values from the registers into storage, thereby overwriting the
value just stored by the SET command. Under either of these circumstances,
changing the value in storage will not have the desired effect.

WHEN: The WHEN command uses the storage value of a variable, and may not
produce correct results if the value is being kept in a register.

Warning Messages
On the first AUTOLIST, IF, LIST, SET, or WHEN command in any program unit
compiled with 0PT(1), 0PT(2), or 0PT(3), or with VECTOR, a warning message
will appear, stating that the program unit contains optimized or vectorized code.
Subsequent commands involving the same unit will not result in further mes
sages.

Improving Program Performance while Debugging
When you debug a program with Interactive Debug, the program runs slower.
This is because Interactive Debug checks every statement boundary for break
points or other conditions.

This is especially true when you are debugging a program that runs many
simple VS FORTRAN statements, with debugging hooks at ail (or most) of them.

Ways to Improve Performance
If you find performance seriously affected when running in Interactive Debug,
there are a number of things you can do to improve it.

Limit the amount of input to be processed.

»• Limit the number of program units being debugged at one time. The
include file (AFFON) can be used to specify which program units you want
to debug, allowing the rest to run at full speed. This is especially important

Chapter 7. Special Considerations When Using Interactive Debug 91

if some subroutines are called often. You can debug some of the program
units in one debugging session, and others in another debugging session.
For more information on AFFON, see page 43.

Insert only entry/exit hooks in heavily run subroutines. This may be all you
need to decide whether the subroutine is incorrectly changing a variable,
for example. If you find that such a subroutine is producing errors, you may
be able to use the AT command with a command list to temporarily gen
erate correct values while you are debugging other subroutines. Later, you
can restart the debugging session with a different AFFON file and concen
trate on the other subroutines that are generating incorrect results.

Avoid putting hooks in heavily run code, especially if it consists of many
simple statements. Use the include file (AFFON) to specify which parts of
each program unit are to have hooks inserted in them.

Using Interactive Debug Double-byte Data Support
After you specify the command DBCS YES (page 120), you can:

Specify double-byte data in Interactive Debug commands that contain sym
bolic names or character data as parameters.

Mixed character data, or data that contains single-byte and/or double-byte
data, is supported. Double-byte data is enclosed by shift-in (X'GF') and
shift-out (X'OE') characters.

If a command containing double-byte data cannot fit on one input line, it can
be continued on additional lines in the usual way; specify a single-byte dash
(-) as the last non-blank character in the line. If the character immediately
preceding the dash is a shift-in character and the first character of the next
line is a shift-out character, then the shift-in/shift-out pair will be removed.

*- Display a source listing containing double-byte data in the source window
(full screen mode only)

If the DBCS YES command is not specified, double-byte data will not be cor
rectly interpreted and displayed.

A valid double-byte character consists of two bytes, each of which is in the
range of X'41' to X'FE', except for the double-byte character blank, which is
represented by X'4040'.

92 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 8. A Sample Debugging Session

This section will acquaint you with some of the basic concepts and commands
of Interactive Debug through a sample line mode debugging session.

1. Type in the following program:

0PRCCESS

PROGRAM SAMPLE

INTEGER A1(10),A2(10),A3(10)
DO 20 1=1,10 ! Assign values to elements

A1(I)=I+1 ! in arrays A1 and A2
A2(I)=I-1

20 CONTINUE

CALL DIVIDE (A1,A2,A3)
DO 40 J=1,10 ! Write out contents of

WRITE (6,30) J,A3(J) ! array A3
30 FORMAT (5X, •A3C , 12,')=', 15)
40 CONTINUE

STOP

END

EPROCESS

SUBROUTINE DIVIDE (DIVEHD,DIV,RES) ! Divide every element in
INTEGER DIVEND(10),DIV(10),RES(10) ! A1 by the corresponding
DO 10 1=1,10 ! element in A2, put result

RES(I)=DIVEHO(I)/DIV(I) ! in array A3
10 CONTINUE

RETURN

END

Figure 36. Sample VS FORTRAN Version 2 Program

2. Compile the program with the SDUMP and OPT(O) options.

3. Run the program with the DEBUG option.

The following figure shows how the compiler listing for the SAMPLE
program might appear. During the debugging session, this listing will be
useful for determining statement identifiers for breakpoints. A statement
identifier can be an ISN, a sequence number in columns 73 through 80, or a
statement label.

The compiler assigns a number known as the internal statement number
(ISN) to each statement in the program. For example, the first executable
statement in Figure 37 has an ISN of 3. To reference that statement in an
Interactive Debug command, you would normally use this ISN. You can use
a qualifier to distinguish ISNs with the same number in different program
units.

However, if you specify SDUMP(SEQ) when you compile your program, refer to
the sequence numbers in columns 73 through 80 instead of the compiler-
generated ISNs.

Statements that have a user-specified statement label in columns 1 through
5, such as the CONTINUE statement in program SAMPLE, can also be refer
enced by that statement label. When a statement label is used, the number
must be preceded by a slash (/). The CONTINUE statement in SAMPLE may
be referenced as /20 as well as 6.

Chapter8. A Sample Debugging Session 93

LEVEL 2.3.0 (MAR 1988) VS FORTRAN
REQUESTED OPTIONS (EXECUTE): SDUMP OPT(O)
REQUESTED OPTIONS (PROCESS):
OPTIONS IN EFFECT: NOLIST NOHAP NOXREF HOGOSTHT NODECK SOURCE TERM OBJECT FIXED TRHFLG SRCFLG NOSYH NORENT

SDUNP(ISN) N0SX14 NOVECTOR IL(DIH) NOTEST NODC MOICA NODIRECTIVE NODBCS NOSAA
OPT(O) LANGLVL(77) HOFIPS FLAG(I) AUTODBL(NONE) NAHE(HAIN) LINECOUNT(60) CHARLEN(5G0)

IF DO ISN *....*...1 2 3 4 5 6 7.* 8

1 PROGRAM SAMPLE

20

30

40

INTEGER A1(10),A2(1O),A3(1O)
00 20 1=1,10

A1(I)=I+1
A2(I)=I-1

CONTINUE

CALL DIVIDE (A1,A2,A3)
DO 40 J=l,10

WRITE (6,30) J,A3(J)
FORMAT (5X,'A3(',I2,')=',I5)

CONTINUE

STOP

END

SOURCE STATEMENTS = 13, PROGRAM SIZE
NO DIAGNOSTICS GENERATED.

SAHPLE END OF COMPILATION 1 **"***

LEVEL 2.3.0 (MAR 1988) VS FORTRAN
REQUESTED OPTIONS (PROCESS):
OPTIONS IN EFFECT: NOLIST NOHAP NOXREF NOGOSTHT MODECK SOURCE TERM OBJECT FIXED TRHFLG SRCFLG NOSYH NORENT

SDUHP(ISN) NOSXH NOVECTOR IL(DIH) NOTEST NODC NOICA NODIRECTIVE NODBCS HOSAA
OPT(O) LAHGLVL(77) NOFIPS FLAG(I) AUTODBL(NONE) NAHE(HAIN) LINEC0UNT(60) CHARLEN(500)

IF DO ISM *....*...1 2 3 4 5 6 7.* 8

1 SUBROUTINE DIVIDE (DIVEND,DIV,RES) ! Divide every element in
INTEGER DIVEND(10),DIV(10),RES(10)
DO 10 1=1,10

OCT 15, 1987 13:21:50

! Assign values to elements
! in arrays A1 and A2

! V/rite out contents of

! array A3

PAGE:

2

3

1 4

1 5

1 6

7

8

1 9

1 10

1 11

12

13

^STATISTICS*

STATISTICS

956 BYTES, PROGRAM NAME = SAMPLE PAGE: 1.

RES(I)=DIVEND(I)/DIV(I)
10 CONTINUE

RETURN

END

STATISTICS SOURCE STATEMENTS = 7, PROGRAM SIZE
STATISTICS NO DIAGNOSTICS GENERATED.

DIVIDE END OF COMPILATION 2 ******

LEVEL 2.3.0 (MAR 1988) VS FORTRAN
SUMMARY OF MESSAGES AND STATISTICS FOR ALL COMPILATIONS

STATISTICS SOURCE STATEMENTS = 13, PROGRAM SIZE = 956 BYTES, PROGRAM NAME = SAMPLE
STATISTICS MO DIAGNOSTICS GENERATED.

SAMPLE END OF COMPILATION 1 ******

STATISTICS SOURCE STATEMENTS = 7, PROGRAM SIZE = 736 BYTES, PROGRAM NAME = DIVIDE
STATISTICS NO DIAGNOSTICS GENERATED.

DIVIDE END OF COMPILATION 2 ******

******* SUMMARY STATISTICS ******* Q DIAGNOSTICS GENERATED. HIGHEST SEVERITY CODE IS 0.

OCT 16, 1987 13:21:50

! A1 by the corresponding
! element in A2, put result
! in array A3

TIME STAMP: 87.28913.21.50

PAGE: 2

736 BYTES, PROGRAM NAME = DIVIDE PAGE:

OCT 16, 1987 13:21 :50

I Figure 37. Sample VS FORTRAN Version 2 Program Listing

94 VS FORTRAN Version 2 Interactive Debug Guide and Reference

TIME STAMP: 87.28913.21.50

PAGE: 3

PAGE: 1.

TIME STAMP:

PAGE: 2.

87.28913.21.50

TIME STAMP: 87.28913.21.50

Before running the first statement, Interactive Debug suspends execution
and allows you to enter commands. The log tells you that execution is sus
pended at ISN 3:

VfHERE: SAMPLE.3

Interactive Debug will prompt you for commands wherever execution is sus
pended. You can enter commands in upper- or lowercase letters, but all
system responses will appear in uppercase letters.

To begin our debugging session, let's list the program units available for
debugging.

4. List the program units:

listsubs

The output to LISTSUBS should look like this:

PROGRAM UNIT COMPILER OPT HOOKED TIMING

SAMPLE VSF 2.3.0 0 YES OFF

DIVIDE VSF 2.3.0 0 YES OFF

Now let's try running the program. The GO command begins execution at
the next executable statement. Because we are not aware of any errors in
the program, let's try running it without setting any breakpoints.

5. Run the program:

go

Unfortunately, there is an error in the program. You should receive an
error message that looks like this:

ERRMSG=> AFB209I VFHTH : PROGRAM INTERRUPT - FIXED-POINT DIVIDE EXCEP
ERRMSG=> TION

ERRMSG=> VFHTH : PSW FFE40009A2020620

ERRMSG=> VFHTH : LAST EXECUTED FORTRAN STATEMENT IM PROGRAM D
ERRMSG=> IVIDE AT ISM 4 (OFFSET 000210).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 209 AT DIVIDE.4

Now we know that there is a problem at ISN 4 in program unit DIVIDE.
Because ISN 4 contains several variables, it might help to look at the values
of the variables there.

6. Display variable information:

1ist (i,divend(i),div(i),res(i))

The output to LIST should look like this:

DIVIDE.I = 1

DIVIDE.DIVEND(l)
2

DIVIDE.OIV(l) = 0
DIVIDE.RES(l) = 0

Look at the value of our divisor, DIV. At this point in the program, DIV is 0,
an invalid value for a division operation. But how did the value become 0?
To find out, let's set a breakpoint at the first statement in main program
SAMPLE after returning from the call to DIVIDE, using the AT command.
Looking at our listing, we see that we will set a breakpoint at ISN 8. Since
we are currently in DIVIDE, we must qualify the ISN with the name of the
main program.

7. Set the breakpoint:

at sample.8

Chapter 8. A Sample Debugging Session 95

8. Now resume execution:

go

Execution is suspended at ISN 8 in main program SAMPLE. You should
receive the following messages:

INFHSG=> STAHOARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.
AT: SAMPLE.8

The error in DIVIDE has been temporarily corrected, and execution has
resumed up to ISN 8. The AT message indicates where execution is now
suspended by displaying the ISN of the statement and the name of its
program unit (in this case, SAMPLE, the main program).

By using the GO command with a statement identifier, the initialization loop
can be run again. We can check the values in the three arrays just before
DIVIDE is called. To do this, we should set a breakpoint at the statement
labeled 20, and use a command list to list the values of the variables at this
point:

9. Set another breakpoint:

at /20 (list (i,al(i),a2(i),a3(i)))

Before resuming execution, we can verify that we set the correct break
points by listing them:

10. List the breakpoints:

listbrks

The output to LISTBRKS should look like this:

CURRENT BREAKPOINTS:

SAMPLE.6/20

SAMPLE.8

CURRENT WHEN COHDITIOHS:

NOME

CURRENT HALT STATUS: OFF

We see that a breakpoint is indeed set at ISN 6, which is also statement
label 20. in SAMPLE. So we are ready to resume execution at the begin
ning of the array initialization loop, ISN 3.

11. Execute SAMPLE at ISN 3:

go 3

Execution will be suspended at ISN 6, and the values of the variables listed:

AT: SAMPLE.6/20

SAMPLE.I = 1

SAMPLE.Al(l) = 2
SAMPLE.A2(l) = 0
SAMPLE.A3(1) = 2

Again, we can see that the value in the second array, A2, which is refer
enced indirectly by subroutine DIVIDE as DIV, is 0. For now, let's tempo
rarily correct this value with the SET command.

12. Change the value of A2(1), for the current debugging session only, with:
set a2(l) = 1

13. Remove all the breakpoints:

off *

96 VS FORTRAN Version 2 Interactive Debug Guide and Reference

14. Now run the program:

go

You should now get this output:

FT06F001 A3(1)= 2
FTG6FG01 A3(2)= 3
FTG5FGG1 A3(3)= 2
FTG5FGG1 A3(4)=
FTG6FGG1 A3(5)=
FTG6FGG1 A3(6)=
FTG6FG01 A3(7)=
FT06FG01 A3(8)=
FTG6FG01 A3(9)=
FTG6FGG1 A3(1G)=
PRGGRAfl HAS TERMINATED; RC = (G)

The last message indicates that the program has completed execution, in
this case as the result of the STOP statement. Because the arrays are
integer, the values are truncated. The output is correct up to the truncated
value, so you can assume that the value of A2 was the bug in the program.

15. End the debugging session:

quit

To permanently correct the problem in this program, you must:

1. Edit the source program so that no value of A2 in DIV is ever 0.

2. Save the new version of the program.

3. Re-compile and run the program.

To edit the source listing without ending the debugging session, use the
SYSCMD command:

syscmd edit sample.for (TSO)

syscmd xedit sample fortran a (CMS)

Chapter 8. A Sample Debugging Session 97

Part Two. Command Reference

Part Two. Command Reference 99

Syntax Notation
The following Items explain how to interpret the syntax used in this section:

UPPERCASE letters and special characters (such as commas and paren
theses) are to be coded exactly as shown, except where otherwise noted.
You can, however, mix lowercase and uppercase letters; lowercase letters
are equivalent to their uppercase counterparts.

Italicized lowercase letters or words indicate variables, such as array
names or data types, and are to be substituted.

Underlined letters or words indicate. IBM-supplied defaults.

•- Ellipses (...) indicate that the preceding optional items may appear one or
more times in succession.

Braces ({ }) group items from which you must choose one.

- Square brackets ([]) group optional items from which you may choose
none, one, or more.

OR signs (|) indicate you may choose only one of the items they separate.

A command can be abbreviated only with the abbreviation shown.

Keywords within a command, except those for full screen commands, can
be abbreviated to any unique shortened form.

Sample Syntax

POUR_CUP
[ONE I TWO I THREE]
{ ESPRESSO I CAFE_DELUX | CAFE^AU.LAIT }

The syntax above shows how to specify the imaginary command POUR_CUP. If
no number is specified with CUP, ONE will be assumed. A choice must be
made between ESPRESSO, CAFE_DELUX, and CAFE_AU_LAIT. According to the
syntax rules, all the following are valid:

pour_cup espresso

pour_cup three cafe_au_Iait
pour_cup one cafe_d
pour_cup cap

pour_cup e

The following are not valid:

pour_cup

pour_cup ca

pour_cup one two

100 VS FORTRAN Version 2 interactive Debug Guide and Reference

statement Identifier Conventions

Follow these conventions when using any Interactive Debug command with VS
FORTRAN statement labels, ISNs, or sequence numbers:

All statement labels {numbers in columns 1 through 5 of the source
program) must be preceded with a slash (for example, /100).

The type of statement number is determined by the compiler and the
options used when the program was compiled. A statement number is
either an ISN or a sequence number.

— If the program was compiled with VS FORTRAN Version 2, you can use
either the ISN or the sequence number. ISNs are the default; to use
sequence numbers, specify the compiler option SDUMP(SEQ).

— If the program was compiled with VS FORTRAN Version 1, and if both
TEST and NOSDUMP were in effect or if VS FORTRAN Release 2 was

used, and if the first record has a number in columns 73 through 80, use
the sequence numbers. If the first record does not have a number in
positions 73 through 80, use the internal statement number (ISN) pro
vided in the compiler listing. VS FORTRAN Version 1 sequence
numbers are not supported in full screen mode.

~ For all other combinations of VS FORTRAN Version 1 options, use the
ISN.

Part Two. Command Reference 101

Commands Summarized by Function

Controlling Program Execution

Monitoring and Modifying Variables

Processing Sequential Files

Controlling Full Screen Display

Handling Run-Time Errors

Gattiering Vector Tuning Information

Tracing and Timing

General

AT

ENDDEBUG

GO

HALT

LISTBRKS

NEXT

OFF

OFFWN

RESTART

STEP

WHEN

AUTOLIST

DESCRIBE

IF

LIST

QUALIFY
SET

BACKSPACE

CLOSE

ENDFILE

RECONNECT

REWIND

COLOR

DOWN

LEFT

LISTINGS

MOVECURS

POSITION

PREVDISP

PROFILE

REFRESH

RESTORE

RETRIEVE

RIGHT

SEARCH

SIZE

UP

WINDOW

ZOOM

ERROR

FIXUP

LISTVEC

VECSTAT

ANNOTATE

LISTFREQ
LISTSAMP

LISTSUBS

LISTTIME

TIMER

TRACE

WHERE

• or " (comment)
DBCS

HELP

PURGE

QUIT

SYSCMD

TERMIO

102 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Comments

* or " (Commenis)

Usage Notes

Examples

Function: A comment may be inserted Into the Interactive Debug log by pre
ceding it with either an asterisk {*) or a quotation mark {"). Comments are
useful in helping you identify items for later examination.

Abbreviation: None

Syntax

[comment]

comment

is any character string. This character string will appear in the log of the
debugging session.

1. In CMS, the use of a quotation mark (") to identify a comment may be inhib
ited because the {") mark is normally assigned to be the CMS escape char
acter. In this case, a double quotation mark is required to enter a
comment. For example;

"" This is a comment.

2. Entered comments are ignored:

in a command list as part of an AT command
in an attention exit

as the command portion on the IF command

This is how comments are inserted into the log.

A quotation mark also works.

Part Two. Command Reference 103

ANNOTATE

ANNOTATE

Tasks:

Specifying Output to a Print File (page 42)
Program Sampling (page 63)

Function: ANNOTATE provides program sampling or frequency data in either:

A source listing to the AFFPRINT file

A bar chart overlay in the source window (full screen mode only)

Abbreviation: AN

Format 1

— Syntax for Copying Source Listings to a Print File

ANNOTATE

{unit I {unit-list) | * }
rSAMPLING fPIRECT | CALLED | ALL] | FREQUENCY]

Format 2

— Syntax for Providing a Bar Chart in the Source Window

ANNOTATE

{ON I OFF I TOGGLE}
[SAMPLING [DIRECT | CALLED | ALL] | FREQUENCY | MESSAGE]

Format 3

— Syntax for Querying ANNOTATE Settings

ANNOTATE

unit

specifies the name of a program unit whose listing is to be copied to a print
file (AFFPRINT) with sampling or frequency data added. The program unit
must be a VS FORTRAN program unit compiled with the SDUMP option.
Listing files must be identified either by specification in AFFON or on the
Interactive Debug Listings Panel.

unit-list

specifies a list of program units whose listings are to be copied to
AFFPRINT with sampling or frequency data added. (See restrictions under
unit, above.)

*

specifies that all available program unit listings are to be copied to
AFFPRINT with sampling or frequency data added. (See restrictions under
unit, above.)

104 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

ANNOTATE

ON I OFF I TOGGLE
ON, OFF, and TOGGLE are used in full screen mode only.

ON specifies that the source listing window is to be shown with overlaid
sampling or frequency bar charts. ON cannot be abbreviated.

OFF specifies that overlaid sampling or frequency bar charts are not to be
shown in the source window. OFF cannot be abbreviated.

TOGGLE specifies that overlaying of the source window with sampling or
frequency bar charts is to be changed to ON if currently OFF, or to OFF if
currently ON. This form is intended for assignment to a PF key. TOGGLE
cannot be abbreviated.

SAMPLING

specifies sampling information annotation. For Format 1, SAMPLING is the
default when neither SAMPLING or FREQUENCY is specified.

DIRECT I CALLED | ALL
DIRECT counts interruptions occurring in the code.

CALLED counts interruptions occurring in lower-level routines. This option
is valid only if sampling was initiated with CALLED.

ALL specifies that sampling counts are to be the sum of the DIRECT and
CALLED counts.

FREQUENCY

specifies statement frequency annotation information.

MESSAGE

{Format 2 only) specifies that short vector REPORT(SLIST) messages are to
replace sampling or frequency annotation (whichever was previously speci
fied) in the source window, if the program is compiled with REPORT(SLIST).

1. Annotated information listings show a summary of all program units and
entries for which sampling counts have been accumulated. This summary
includes non-FORTRAN units, FORTRAN units compiled with NOSDUMP,
and program units not specified in the unit list operand of the command.

2. When SAMPLING is specified along with the ON, OFF, or TOGGLE options,
the current ANNOTATE settings are unchanged if FREQUENCY, DIRECT,
CALLED, or ALL are not specified. The initial ANNOTATE setting is

ON MESSAGE

If sampling is done, the setting is automatically changed to

ON SAHPLING DIRECT

3. Only unit \ {unit-list) \ ' may be used in a restart file or in batch mode.
Annotation is then limited to listings identified in the AFFON or AFFLST (for
MVS batch mode debugging) file.

4. Histograms are scaled at the subroutine level such that the most
CPU-intensive statement within any subroutine receives the maximum
histogram width.

5. With full screen message annotation, messages are truncated on the right
so that the message overlays at most 50% of the width of the source
window.

Part Two. Command Reference 105

ANNOTATE

Examples
1. Overlay the source window with bar charts indicating the sum of both

DIRECT and CALLED sampling.

annotate on all

2. Remove the bar chart overlays from the source window.

annotate off

3. Query the ANNOTATE settings.

annotate

4. Copy the VS FORTRAN source listings (if known) for all program units to
AFFPRINT, annotating them with DIRECT sampling information.

annotate *

5. Copy the VS FORTRAN source listing for program unit SLIB2 to AFFPRINT,
f annotating it with frequency information.

annotate sub2 frequency

Possible output:

AFF563I VS FORTRAN INTERACTIVE DEBUG V2 R3 ANNOTATED LISTINGS:

AFF568I FREQUENCIES:
LEVEL 2.3.0 (MAR 1988) VS FORTRAN DEC 15, 1987 14:34:49 PAGE 1
OPTIONS IN EFFECT: NOLIST NOHAP NOXREF NOGOSTHT NODECK SOURCE TERM OBJECT FIXED TRHFLG SRCFLG NOSYH NOREHT

SDUHP(ISN) NOSXH NOVECTOR IL(DIM) NOTEST NODC NOICA NOOIRECT IVE HODBCS NOSAA
0PT(3) LANGLVL(77) NOFIPS FLAG(I) AUTODBL(MONE) MAHE(MAIN) LINEC0UNT(60) CHARLEN(500)

DO ISN

1

A

subroutine sub2

2 integer i, j, k
3 real a(10,10,10)
4 do 10 i = 1, 10

1 5 call sub3 (2, 81
1 6 10 continue

7 do 20 i = 1, 10
1 8 do 20 j = 1, 10
2 9 do 20 k = 1, :
3 10 20 a(i,j,k) = •

11 return

12 end

'•''SUB2** END OF COHPILATIOH 3

AFF568I FREQUENCIES:
AFF347I PROGRAM UNIT

AFF348I CTAFFl

AFF348I SUBl

AFF348I SUB2

AFF348I SUB3

PAGE FREQUENCY DISTRIBUTION
191

43

1 4360 *''****

9165

14

14

132

131

13

130

1300

2600

13

0

TIME STAMP: 87.34914.34.49

6. In full screen mode, request that the source window be overlaid with state
ment frequency annotation. (Note that if you are using an extended color
terminal, your output will look a little different.)

annotate on freq

Possible output:

106 VS FORTRAN Version 2 Interactive Debug Guide and Reference

lAD/F Q: SU61 W: SUBl.ll

COMMAHO ===> SCROLL ===> HALF

SOURCE 0 + 1 ♦-—2 ♦ 3 1- 4 + 5 LINE: 1 OF 14
It***

* SUBROUTINE SUBl

C

C »

C «

1

2

3

4

5

6

7

8

9

10 10

11

SUBROUTINE SUBl

INTEGER I

00 10 I = 1. 2

IF (I.EO.l) then
CALL SUB3

ENDIF

IF (I.E0.2) THEN
CALL SUB2

ENOIF

CONTINUE

END

log 0 ♦ 1 ♦ 2

0008 * q sub3
8009 * go
8010 PROGRAM HAS TERMINATED; RC (0)
8011 * q subl

0012 * annotate on freq

17

39

296

6

56
************** 218

» 17
***** 73

** 34

BOTTOM OF SOURCE *******************************
....3 ♦ 4 + 5 + 6 LINE: 8 OF 12

7. In full screen mode, request vector report message annotation.

annotate on message

Possible output:

lAD/F Q: VREP23

COFWAND ===>

SOURCE 0

10 U

11 SI

12 V2

13 si

14 si

15 v2

16 v2

17 si 130

H: VREP23.16

18 140

C

C

C

C

C

-1 ♦-—2 ^

DO 140 I = 1. 7

DO 130 J = 1. 128

128

BB(K,J,I)
BB(K.J.I)
I J ♦ K

I * J « K

OD(K.J,I}

DO 130 K = 1.

CC(K,J,I) =
CC(K,J,I) =
CC(K,J,I) =
DO(K.J,I) =
AA(K,J.I) =

CALL SUB1(AA,CC)

SUM REDUCTION

19

20 VI

21 V

22 V 290

log 0 ♦ 1—

0008

0009

S4 * 0.0

DO 290 I = 1.

S4 = A{I) *

CONTINUE
.♦ 2 + 3 + 4 ♦ 5 + 6 LINE: 8 OF

enddebug sample
PROGRAM HAS TERI-IINATED; RC (0)

8010 * annotate on message

100

S4

SCROLL ===> HALF

..4 + 5 + LINE: 12 OF 34

USER FUNCTION OR SUBROUTINE 1

NESTED NON-CONSTANT INDUCTION 1

1

EQUIVALENCE USED 12

' 23 EQUIVALENCE USED 12

12

11

EQUIVALENCE USED 11

0

0

VECTOR SUM REDUCTION

ANNOTATE

Part Two. Command Reference 107

AT

AT

Tasks:

Using Cursor-Sensitive Commands (page 20)
Referring to Statements or Variables in Other Program Units (page 54)
Setting Breakpoints at Debugging Hooks (page 56)
Using Command Lists (page 60)

Function: AT sets breakpoints in a VS FORTRAN program at executable state
ments, entry points, or exit points. When defining a breakpoint, you may
specify a list of Interactive Debug commands to be run whenever the breakpoint
is reached. Execution will be suspended before the specified statement is run.

Abbreviation: None

— Syntax —

AT

{ [quaL]{number [:[qual.}number} | ENTRY
I EXIT} I (number/ENTRY/EXIT list)}
[{command-list)]
[COUNT(n)]
fNOTIFY I NONOTIFY]

qual
specifies a program unit name prefix to temporarily override the current
qualifier for the prefixed operand only.

number

specifies the statement label, ISN, or sequence numberof an executable VS
FORTRAN statement. Precede a statement label with a slash to distinguish
it from an ISN or sequence number. The type of statement number used
(ISN or sequence number) is determined by the compiler and the options
used. See "Statement Identifier Conventions" on page 101.

number:[qual.]number
specifies a range of statement labels and/or statement numbers (either
ISNs or sequence numbers). A breakpoint is set at each executable state
ment within the range. Statement labels can be combined with ISNs or
sequence numbers in the range, but the first and last must both be execut
able statements. Precede each statement label with a slash.

Statement identifiers can be qualified with a program unit name. The
default program unit for the first identifier is the current qualifier. The
default program unit for the second identifier in a range is the program unit
specified or defaulted for the first identifier. Both identifiers must have the
same program unit in effect.

For example, A.5:6 is the same as A.5:A.6. However, A.5:8.6 is invalid.

108 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

AT

ENTRY

specifies that an. entry breakpoint is to be set. The breakpoint occurs in the
prolog of the program unit. The subroutine or function is not yet active, so
dummy arguments are not accessible, and a GO with a statement identifier
cannot be issued. The breakpoint occurs regardless of which entry point of
the program unit is entered.

EXIT

specifies that an exit breakpoint is to be set. The breakpoint occurs after
the last FORTRAN statement in the program unit has been executed.

(number/ENTRY/EXIT list)
specifies a list of statement labels, ISNs, sequence numbers, entry break
points, exit breakpoints, and/or ranges of numbers. A breakpoint is set at
each executable statement specified. Enclose the list in parentheses, and
separate entries with commas or blanks. Precede each statement label
with a slash.

Note: If a statement that does not have a debugging hook is specified in the
number list, an error message is issued but breakpoints are still set at the
remaining statements.

{command-list)
specifies a list of commands to be run at the specified statement. If more
than one statement is listed, the command list is run at every statement
listed. Enclose the command list in parentheses, and separate commands
with percent signs {%).

The qualification in effect when AT is issued is used as the default for any
variables and statements referenced in the command list.

COUNT(n)
specifies that a breakpoint occurs only every nth time the specified state
ment is reached. Specify n as an integer. If more than one statement is
specified, the iteration count is applied independently to each listed state
ment.

NOTIFY I NONOTIFY
NOTIFY specifies that the location of every breakpoint is to be displayed
when it is reached. This includes breakpoints that cause the program to
resume without user intervention.

NONOTIFY specifies that no notification is given when the AT command list
contains a command, such as GO, that causes execution to resume.

NOTIFY and NONOTIFY have no effect on the notification that is done when

a breakpoint is reached and execution is suspended. You cannot turn off
notification when execution is suspended.

In full screen mode, AT can be used as a cursor-sensitive command. Place
the cursor in the prefix area of the source window, and press the PF key
assigned to AT. You can type over multiple ISN or sequence numbers with
the AT command before pressing ENTER.

Instead of assigning a PF key to the AT command, you can type the AT
command over the statement number, or you can type AT on the command
line and move the cursor to the target statement number before pressing
ENTER.

Part Two. Command Reference 109

AT

Examples

2. Unless you have attached a command list containing GO, ENDDEBUG,
STEP. RESTART, or QUIT, execution is always suspended when a break
point is reached.

3. The following commands cannot be used in a command list; AUTLOLIST,
COLOR. DOWN, FIXUP, HELP. LEFT. LISTINGS, LISTSAMP, MOVECURS,
POSITION. PREVDISP, PROFILE, REFRESH, RESTART, RESTORE, RETRIEVE,
RIGHT. SEARCH. SIZE. UP, WINDOW, ZOOM.

4. An AT statement specified for a statement that already contains a break
point will.replace the old breakpoint with a new breakpoint.

5. HALT, NEXT, WHEN conditions, and AT breakpoints all cause execution to
be suspended. When execution is suspended for multiple reasons, mes
sages are issued for all the reasons.

6. At ENTRY, the following restrictions apply:

GO with a statement ID is not permitted.
Variables in a dynamic common cannot be referenced.
Dummy arguments are not accessible.

7. You can display a comment with a breakpoint by using LIST (page 141) to
display a quoted string as part of the command list for the breakpoint.

8. You can set a breakpoint only on statements that have a debugging hook.
You cannot set a breakpoint on statements outside the AFFON statement
list, on statements that are collapsed, on the ENTRY of a VS FORTRAN main
program, or on the EXIT of a VS FORTRAN main program. For more infor
mation on debugging hooks, see "Setting Breakpoints at Debugging Hooks"
on page 56.

9. A command in an AT command list that causes execution to resume will
cause the remainder of the command list to be ignored. These commands
are GO, STEP. ENDDEBUG. and RESTART. QUIT and HALT IMMED also
cause the remainder of the command list to be ignored.

10. AT is not permitted after the VS FORTRAN program has terminated.

1. Stop execution every 10th time the program reaches the beginning of a loop
that begins at statement label 65.

at /65 count(10)

2. Set breakpoints at ISNs 180 and 220 in the currently qualified program unit,
at every executable statement in program unit SUB1 between ISN 10 and
statement label 50, and at entry to program unit CHECK. Execution is sus
pended at each of these points.

at (180 220 subl.l0:/50 check.entry)

3. At ISN 140, list the value of variable A, set variable I to 10, and continue
execution. Except for listing the value of A, no notification is given.

at 140 (list a%set 1=10%go) nonotify

4. At ISN 5 in program unit STUB, set variable ANSWER to 100 and exit the
subroutine.

at stub.5 (set stub.answer=100%go stub.exit)

110 VS FORTRAN Version 2 Interactive Debug Guide and Reference

AUTOLIST

AUTOLIST (full screen mode only)
Function: AUTOLIST Is used to define a group of variables and array elements
for which values are to be displayed in the monitor window of the main debug
ging panel. The values are continuously displayed during execution.

The containing program unit name is shown with all variable or array names.
Array elements may be displayed outside the defined dimensions. If AUTOLIST
is specified with no operands, the monitor window will become empty.

Abbreviation: AL

— Syntax

AUTOLIST

[{[qual.]name[:[qual.]name] | * | 'string' \ number \ (list)}
[FORMAT[(code)] | DUMP [(code)]]]

[qual.}name
specifies the name of a variable, array, or array element used in the
program. If qual. is specified, it overrides the current qualifier for the speci
fied name. Substring notation may be used with string variables.

[qual.]name:[qual.]name
specifies a range of variable, array, or array element names used in the
program. If qual. is specified, it overrides the current qualifier for the speci
fied name.

AUTOLIST displays all storage locations between the two variables. Unless
FORMAT or DUMP is specified, the format of the displayed storage is the
same as the type of the first variable.

«

specifies that a list of all the variables and arrays in the currently qualified
program unit is desired. Unless FORMAT or DUMP is specified, each is dis

played according to its own type.

'string'
specifies a character string to be displayed as a remark. You can use this
operand to help identify the AUTOLIST display.

number

specifies an integer or real numeric constant to be displayed as a remark.
This function can be useful in converting numbers, when used in conjunc
tion with the FORMAT option.

list

identifies a list of individual specifications. The list must be enclosed in
parentheses. Individual entries must be separated by commas or blanks.

FORMAT [(code)] \ DUMP [(code)]
specifies a particular data format:

•- FORMAT displays the names listed and their values in the specified
format.

Part Two. Command Reference 111

AUTOLIST

Usage Notes

DUMP displays the address In storage of the names listed and their
values in the specified format.

code specifies the format or dump code for the names to be listed. The
default format'code is X. The default dump code is Z. FORMAT and
DUMP codes for the AUTOLIST command are shown in Figure 38.

FORMAT and DUMP are mutually exclusive.

Code Output

L1 Logicari

L4 Logical*4

12 lnteger*2

14 integerM

R4 RealM

R8 Real*8

R16 Reari6

08 Oomplex*8

016 Oomplex*16

032 Oomplex*32

L Logical with size closest to internal data size

1 Integer with size closest to internal data size

R Real with size closest to internal data size

0 Oompiex with size closest to internal data size

X[nnn] Hexadecimal with nnn bytes per data Item
(default to Internal data size)

Z[nnn] Hexadecimal with nnn bytes per data item
(default to Z4)

A[nnn] Oharacter with nnn bytes per data item
(default to internal data size)

H[nnn) Oharacter with nnn bytes per data item
(default to continuous full line output)

Figure 38. DUMP and FORMAT Codes for the AUTOLIST Command

1. Each time you issue AUTOLIST, the set of variables to be listed is redeFmed.
The lists are not cumulative.

For example, ifyou type AL (X,Y), then X and Y are displayed. Ifyou later
type AL Z, only Z will be displayed.

2. The output is displayed in the monitorwindow. No AUTOLIST output is
shown in the log window. If more than 1000 lines of output are requested,
the excess is not displayed.

3. Dummy arguments can only be displayed when the program unit in which
they are defined is active. For example, when executing in MAIN before
calling SUB1, entering:

autotist subl.a

will cause a message to be produced if a is a parameter. Results are
unpredictable ifyou display a dummy argumentthat is not defined at the
entry point called. (Note that a program unit is not yet active when sus
pended at entry.)

112 VS FORTRAN Version 2 Interactive Debug Guide and Reference

AUTOLIST

4. Variables in dynamic commons can only be displayed if the program unit
used to qualify the variable has been activated at least once. (If not, you
may receive an error message. However, if a variable has a large dis
placement in its dynamic common. Interactive Debug cannot detect that it is
not initialized.)

5. When you request an individual name or list of names, the default format is
determined by the type of each variable being displayed. When you request
a range of names, the formatting of the values is determined by the format
of the first name in the range. The locations of the listed names are not
identified in the output. You may, however, specify a different format using
FORMAT or DUMP.

6. VS FORTRAN defines storage layout only within arrays, variables in a
common block (defined in a COMMON statement), and variables in equiv
alence groups (defined in an EQUIVALENCE statement). The relative posi
tions of any other names in storage cannot be predicted. Names that you
may expect to be adjacent in storage may be widely separated by other
data. Therefore, a range specification for names other than array, equiv
alence, or common variables may produce unexpected results.

7. The DUMP option is not permitted with constant operands, including strings.

8. The length specification in a FORMAT or DUMP code may be entered with 1
through 3 digits. Thus, 14. 104, and 1004 are equivalent.

9. A length specification of 0 in character and hexadecimal FORMAT and
DUMP codes (for example, AO or ZO) causes the data to be displayed as a
continuous string, rather than split into pieces of some specified length.

10. If a FORMAT or DUMP code with no length specification is given for a range
of variables or array elements, each variable or array element is displayed
separately in the specified format. However, if a length specification is
given. Interactive Debug will consider the entire storage area occupied by
all the range of variables or array elements, or occupied by the entire
array, as if it were broken into pieces, each with a length equal to that
specified in the DUMP or FORMAT code, and will display each piece
according to the specified format. For example, if PRIMES is a 2 x 3 array
of INTEGERM values, then:

autolist primes format(x)

will cause a display of 6 values, each corresponding to an element of the
array. However:

autolist primes format(x2)

will cause a display of 12 values, each displaying the contents of successive
2 byte storage areas within the array.

11. An assumed size array cannot be listed by just specifying the array name;
the specific element or range of elements must be specified. (An assumed
size array is an array with the last upper bound specified as an asterisk (*).)
This restriction does not apply to arrays whose last dimension is "1" even
though such arrays are otherwise treated as assumed size arrays.
However, only the elements whose last subscript is "1" will be displayed if
no subscripts are specified.

12. For array elements, subscripts may have values beyond the range of the
corresponding array dimensions. A warning message will be issued except
in the special case where the last dimension is "1" or and only the last
subscript is out of range.

Part Two. Command Reference 113

AUTOLIST

Examples

13. Array subscripts may contain simple arithmetic expressions no more
complex than the form "variable plus (or minus) a constant." For example,
the following are valid forms:

autolist ARY(I)
autollst ARY(I + 3)

autolist ARY(3)
autolist ARY(I • 3)

1. Continuously display the value of variable NCOUNT.
autolist ncount

2. Continuously display a hexadecimal dump {FORMATfX}) showing values of
array variables A(1,1) through A(2,3).

autolist a(l,l);a(2,3) format

3. Continuously display several variables in hexadecimal, each with as many
bytes as are appropriate for its data type.

autolist (i,j,p,q.r) format

4. Continuously display an entire array (CHARAY) containing a series of
30-character alphabetic strings so that each character string is separated
from the others. {If the array is declared in the program to be a
CHARACTER*30 array, then the elements of the array will be separated
from each other when the array is listed.)

autolist charay format(a30)

5. Continuously display the value of the variable REAL1 in SUB1, ARRAY{I,J) in
SUB2, and STRING, I, and J in the currently qualified program unit.
autolist (subl.reall,sub2.array{i,j),string,i,j)

114 VS FORTRAN Version 2 Interactive Debug Guide and Reference

BACKSPACE

Usage Notes

Example

BACKSPACE

Tasks: Processing External Files (page 76)

Function: BACKSPACE positions a sequentially accessed external file to the
beginning of the previous record, it is similar to the BACKSPACE statement in
the VS FORTRAN Version 2 language. This command allows you to move back
ward in the file, for example to rewrite or reread a record.

Abbreviation: BAOKSPAC, BACKS

— Syntax

BACKSPACE

{number \ [qual.]integer-variable | [qual.]integer-array-element}

number

is the number of the i/0 unit associated with the sequential file on which
the backspace is to be performed.

[qual.}integer-variable
is the name of an integer variable in the VS FORTRAN program. This vari
able specifies the number of the I/O unit associated with the sequential file
on which the backspace is to be performed.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the
sequential file on which the backspace is to be performed.

1. number, integer-variable, or integer-array-element must be specified; there
is no default number.

2. This command may not be issued when I/O is currently active.

3. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a
constant." For example, the following are valid:

A(I), A(3), ARY(I43), ARY(I-3)

Backspace the sequentially accessed external file associated with I/O unit 8 so
that the last record written can be rewritten,

backspace 8

Part Two. Command Reference 115

CLOSE

CLOSE

Usage Notes

Tasks: Processing External Files {page 76)

Function: CLOSE disconnects a VS FORTRAN external file from an input or
output unit. Its usage is similar to that of the CLOSE statement in the VS
FORTRAN Version 2 language. This command allows you to close an external
file, for example to assign another file to the input or output unit, or to examine
the contents of the file.

Abbreviation: None

Syntax

{number | [qual.linteger-variable \ [quaiynteger-array-element}

number

is the number of the I/O unit associated with the file that is to be closed.

[qual.ynteger-variable
is the name of an integer-variable in the VS FORTRAN program. This vari
able specifies the number of the I/O unit associated with the file that is to
be closed.

[qual.ynteger-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the file
that is to be closed.

1. Number, integer-variable, or integer-array-element must be specified; there
is no default number.

2. This command may not be issued when I/O is currently active.

3. Files used in the program but not explicitly closed will still be open when
Interactive Debug gives you control at termination. If you want to examine
such a file, you must CLOSE it first.

4. Under certain conditions, use of the CLOSE command may make it neces
sary for you to use the RECONNECT command (page 175) before your
program can perform additional I/O operations on the file. This situation
occurs when the OCSTATUS run-time option is in effect, and the program
cannot be made to run an OPEN statement before doing more I/O to the file.

5. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a
constant." For example, the following are valid:

A(I), A(3), ARY(l+3), ARY(I-3)

116 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Examples
1. In CMS, reallocate an external output file for I/O unit 8.

close 8

sys flledef 8 disk output file a

2. In TSO, reallocate an external output file for I/O unit 8.

dose 8

sys allocate file(ft08f001) dataset(output.file)

CLOSE

Part Two. Command Reference 117

COLOR

COLOR (full screen mode only)
Tasks: Changing the Display Color (page 22)

Function: COLOR allows you to customize the color, highlighting and intensity
of the various parts of the main debugging panel.

Abbreviation: None

Syntax

COLOR

The color panel is shown in Figure 39.

VS FORTRAN INTERACTIVE

COHHAIIO

COLOR

WHITE

BLUE

TURQ

TURQ

WHITE

TURO
BLUE

YELLOW

RED

6REEII

GREEN

YELLOW

TURQ

YELLOW

GREEN

BLUE

WHITE

TITLE : FIELD HEADERS
OUTPUT FIELDS

KONITOR: CONTENTS

LINE NUMBERS

SOURCE : LISTING AREA
PREFIX AREA

SUFFIX AREA

CURRENT LINE

BREAKPOINT

BAR GRAPHS

LOG : OUTPUT LINES
INPUT LINES

LINE NUIiBERS

COt«IAND LINE

AREA HEADERS

TOF & EOF DELIMITER

SEARCH TARGET

DEBUG COLOR PANEL

HIGHLIGHT

NONE

NONE

REVERSE

REVERSE

REVERSE

REVERSE

REVERSE

REVERSE

REVERSE

REVERSE

NONE

NONE

NONE

NONE

REVERSE

REVERSE

NONE

INTENSITY

HIGH

LOW

LOW

HIGH

LOW

LOW

LOW

HIGH

HIGH

HIGH

LOW

HIGH

HIGH

LOW

HIGH

LOW

HIGH

ENTER:

SAVE TO SAVE YOUR

COLOR SETTINGS.

RESET TO RESTORE

PROFILE SETTINGS.

END TO RETURN TO

DEBUG SESSION WITH

CURRENT settings IN
EFFECT.

COLOR and HIGHLIGHT

ARE VALID ONLY WITH

COLOR TERMINALS.

VALID COLOR : WHITE YELLOW BLUE TURQ GREEN PINK RED
VALID INTENSITY : HIGH LOW

VALID HIGHLIGHT : USCORE BLINK REVERSE NONE

Figure 39. Interactive Debug Color Panel

The following commands can be entered on the command line:

SAVE: saves current color settings in the ISPF profile for future debugging ses
sions.

RESET: restores color settings to the profile settings.

END: returns to main debugging panel with current settings in effect. (Unless a
SAVE has been issued, these settings will remain in effect for only the duration
of the debugging session.)

118 VS FORTRAN Version 2 Interactive Debug Guide and Reference

COLOR

Usage Notes
1. COLOR cannot be issued in: a command list, an IF command, an attention

exit, or a restart flie.

COLOR will operate as usual with a parameter list, but the panel will
include the message "PARAMETERS IGNORED."

Part Two. Command Reference 119

DBCS

DBCS

Usage Note

Example

Function: DBCS specifies whether X'OE' and X'OF' are interpreted as the DBCS
shift-out and shift-in characters in input and output.

Abbreviation: None

Syntax

[YES 1 NO]

YES

specifies that X'OE' and X'OF' are interpreted as DBCS shift codes.

specifies that X'OE' and X'OF' are not interpreted as DBCS shift codes. NO
is the initial setting.

NO

To query the current status of DBCS, specify DBCS with no operands.

Query DBCS status.

(Ibcs

120 VS FORTRAN Version 2 Interactive Debug Guide and Reference

DESCRIBE

Usage Notes

DESCRIBE

Tasks:

Using Cursor-Sensitive Commands {page 20)
Specifying Output to a Print File (page 42)
Displaying Data Types of Variables and Arrays (page 61)

Function: DESCRIBE displays the data type of variables or arrays, and also
supplies dimension information for arrays.

Abbreviation: DE

Syntax

DESCRIBE

{[quaL]name |
[PRINT]

{name-list)}

[qual.yiame
specifies the name of a variable, or array used in the program. The name
can be qualified by the name of a program unit.

«

specifies a list of all the names in the currently qualified program unit. The
type of each is displayed.

{name-list)
specifies a list of names. Enclose the list in parentheses and separate indi
vidual names with commas or blanks.

PRINT

specifies that output be sent to a print file (AFFPRINT) instead of the ter
minal.

1. In full screen mode, DESCRIBE can be used as a cursor-sensitive

command. If the DESCRIBE command is already assigned to a PF key,
place the cursor at a variable name in the source window, and press the PF
key for DESCRIBE. The variable may include either subscript or substring
notation. If both are present, only the subscript will be included in the
command.

2. In your output, dummy arguments are identified in the last column with the
word DUMMY.

3. Interactive Debug cannot determine the length of character variables that
are dummy arguments in an inactive program unit. The length is displayed
as CHARACTER*(*). (Note that at ENTRY, the program unit is not yet
active.)

4. Dimension information is not displayed for arrays that are dummy argu
ments in an inactive program unit, or that are defined only when entered by
some other entry point. (Note that at ENTRY, the program unit is not yet
active.)

Part Two. Command Reference 121

DESCRIBE

Example

5. The upper bound for the last dimension of an assumed-size array is dis
played as an asterisk, and the size is indicated as * ELEMENTS.

Display the data type information for the variables I and R4, for array CM8ARY,
for the dummy array R8ASAR, for the dummy variable WHERE in program unit
SUB1, and for dummy array L1AYMN in program unit SUB1.
describe (1,r4,cm8ary,r8asar,subl.where,subl.1laymn)

The output from this command should look something like this:
SUB2.I:

SUB2.R4:

SUB2.CH8ARY:

RANK = 2,
DIM 1:

DIM 2:

SUB2.R8ASAR:

RANK » 1,
DIM 1:

SUBl.WHERE:

SUBI.LIAYHN:

RANK = 1;

SIZE = 21 ELEMENTS
EXTENT = 3, LBOUND
EXTENT = 7, LBCUHD

SIZE = * ELEMENTS
EXTENT = LBQUHO

IHTEGER*4

REAL*4

COMPLEXES

(1), UBOUNO
(1), UBOUND
REAL*8

(3)
(7)

DUMMY

(-3), UBOUMD = (*)
CHARACTER"(*) DUHHY
LOGICAL*! DUMIIY

DUMMY ARRAY ARGUMENT OF INACTIVE SUBPROGRAM OR
ALTERNATE ENTRY POINT
DIMENSION INFORMATION HOT AVAILABLE

122 VS FORTRAN Version 2 Interactive Debug Guide and Reference

DOWN

DOWN (full screen mode only)
Tasks:

Usage Notes

Example

Changing the Way YourWindows Look (page 18)
Using Cursor-Sensitive Commands (page 20)

Function: DOWN scrolls the contents of a window so that lines below those cur
rently displayed in the window can be seen.

Abbreviation: None

Syntax

DOWN

[number | PAGE | HALF j GSR | DATA 1MAX]

number

is the number of lines to scroll down, from 1 to 9999.

PAGE (or P)
scrolls down by the number of lines in the window.

HALF (or H)
scrolls down by half the number of lines in the window.

GSR (or G)
scrolls down by PAGE, unless the cursor is in the window, in which case the
window is scrolled down by the appropriate number of lines to place the
cursor at the edge of the window.

DATA (or D)
scrolls down by PAGE-1 number of lines. If only one line is visible, the
scrolling is equivalent to that of PAGE.

MAX (or M)
scrolls down so that the last line of the window will contain the bottom-of-
data marker (see page 15).

1. DOWN is cursor-sensitive. The window that is scrolled is determined from
the cursor position and the windows currently open.

2. DOWN cannot be issued in; a command list, an IF command, an attention
exit, or a restart file.

3. If an operand is not specified with DOWN, the scrolling amount is taken
from the SCROLL ===> field on the main debugging panel.

Scroll down ten lines in the listing displayed in the source window, assuming
that the cursor is on the command line and the source window is open.

dot-m 10

Part Two. Command Reference 123

ENDDEBUG

ENDDEBUG

Tasks:

Program Sampling (page 63)
Continuing Execution without Further Debugging (page 80)

Function: ENDDEBUG allows you to:

1. Discontinue debugging and run the program at full speed. Except for
entering limited commands after the program has terminated, no debugging
is available after using the ENDDEBUG command.

2. Initiate program sampling to obtain an approximation of relative CPU time,
using the SAMPLE option.

Abbreviation: None

Syntax

ENDDEBUG

[SAMPLE[(msecs)] [MAXSAMP(n[,STOP])] [CALLED]]

SAMPLE [(msecs)]
indicates that sampling is to occur during subsequent execution, msecs is
the time interval in milliseconds between sampling interruptions; the default
is 10 milliseconds.

MAXSAMP(n[,STOP])
specifies the maximum number of sampling interruptions (n) that can occur.
If STOP is specified, the program will be terminated when the specified
number of samples is reached. Otherwise, the program will continue exe
cution without sampling interruptions after the specified number of samples
is reached. If MAXSAMP is not specified, sampling interruptions will con
tinue until the program terminates. MAXSAMP is valid only if SAMPLE is
specified.

CALLED

specifies that each sampling interruption is to be counted for each caller in
the save chain. This option may cause an appreciable increase in over
head for the sampling function; however, it makes it much easier to deter
mine when CPU usage is primarily due to called subroutines. CALLED is
valid only if SAMPLE is specified.

If CALLED is not specified in the ENDDEBUG command, the CALLED option
will not be permitted with the ANNOTATE and LISTSAMP commands.

124 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

ENDDEBUG

1. All breakpoints and WHEN conditions are removed and the HALT command
status is set to OFF.

2. TERMIO is set to LIBRARY.

3. Timing is turned off for all program units.

4. The VS FORTRAN Library will begin updating the occurrence count for run
time errors. All error handling actions will be determined by the settings in
the VS FORTRAN error option table.

5. The attention exit will no longer allow entry of Interactive Debug commands
after ENDDEBUG is called. The only Interactive Debug commands allowed
from an attention exit are PURGE and QUIT, which will terminate the VS
FORTRAN program. You will then be prompted for further Interactive
Debug commands. Entering QUIT a second time will terminate the debug
ging session. To resume execution following an attention interrupt, enter a
null line.

6. At the end of program execution, Interactive Debug will prompt for com
mands. LISTTIME and LISTFREQ will show information that was current
when the ENDDEBUG command was issued. WHERE information cannot be
determined after ENDDEBUG is issued.

7. Unless the program was compiled with the TEST option, or SAMPLE was
specified, execution will proceed at the same speed at which it would run if
the DEBUG run-time option had not been specified.

Ifa program unit was compiled with the TEST option. Interactive Debug will
still be called for each VS FORTRAN statement in that program unit. While
this activity will not be apparent, there will be a slight increase in the time
required to run your program.

8. IfSAMPLE was specified, program speed will be reduced due to the over
head involved in recording the sampling information at each interrupt.
Sampling will cancel any active timer interval at the start of execution (one
millisecond per timer interruption).

9. IfSAMPLE is specified without CALLED, the ANNOTATE settings (for the
source window) are changed to ON. IfSAMPLE and CALLED are both spec
ified, the settings are changed to ON and CALLED.

10. ENDDEBUG is not permitted after the VS FORTRAN program has terminated
or while a read is pending. If issued in an error exit, standard corrective
action is taken.

11. The BLIP is turned off when sampling is in operation and restored when
sampling completes.

12. The service routine CPUTIME cannot be used while sampling is in progress.
For more information on CPUTIME, see VS FORTRAN Version 2 Language
and Library Reference.

Part Two. Command Reference 125

ENDDEBUG

Examples
1 Continue running a program from the current statement to the end of the

program with no further debugging activity.

enddebug

2. End debugging, but continue running the program with sampling inter
ruptions every 10 milliseconds.

enddebug sample

3. End debugging, but continue running the program with sampling inter
ruptions every 20 milliseconds and CALLED counts accumulated.

enddebug sample(20) called

4. End debugging, but continue running the program with sampling inter
ruptions occurring every 40 milliseconds. Continue running the program
without interruptions if the number of interruptions exceeds 10,000.

enddebug sample(40) maxsamp(10000)

126 VS FORTRAN Version 2 Interactive Debug Guide and Reference

ENDFILE

Usage Notes

Example

ENDFILE

Tasks: Processing External Files {page 76)

Function: ENDFILE writes an end-of-file record on a sequentially accessed
external file. Its usage Is similarto that of the ENDFILE statement In the VS
FORTRAN Version 2 language.

Abbreviation: ENDF

Syntax

ENDFILE

{number \ [qual.]integer-variable 1[qual.ynteger-array-element}

number

Is the number of the I/O unit associated with the sequential file on which
the end-of-flle record Is to be written.

[qual.ynteger-variable
is the name of an integer-variable in the VS FORTRAN program. This vari
able specifies the number of the I/O unit associated with the sequential file
on which the end-of-file record Is to be written.

[qual.]integer-array-element
Is the name of an element of an integer array In the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the
sequential file on which the end-of-file record Is to be written.

1. number, integer-variable, or integer-array-element must be specified; there
Is no default number.

2. This command may not be issued when I/O Is currently active.

3. Writing an end-of-file record erases all records that may follow.

4. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a
constant." For example, the following are valid:

ARY(I), ARY(3), ARY(I+3), ARY(I-3)

Write an end-of-file record on the sequentially accessed external file associated
with I/O unit 8.

endfile 8

Part Two. Command Reference 127

ERROR

ERROR

Tasks: Handling Run-Time Errors (page 74)

Function: ERROR specifies whether corrective action is to be performed or
execution is to be suspended, and whether messages are to be received for
run-time errors. If execution is suspended, you may specify the corrective
action to be taken by issuing the FIXUP command. For more information on
library error messages, see VS FORTRAN Version 2 Language and Library Ref
erence.

Abbreviation: ER

— Syntax

ERROR

{error \ errorerror | {error-list)}
fMSGlNOMSGI

rEXITlNOEXm

error

specifies the identification number of a single error as defined by the VS
FORTRAN Version 2 or VS FORTRAN Version 1 Library, or as defined by an
auxiliary product.

error.error

specifies a range of error identification numbers to which all specified
keywords apply.

{error-list)

specifies a list of error numbers or ranges to which all specified keywords
apply. Enclose the list in parentheses, and separate entries with commas
or blanks.

MSG I NOMSG
specifies whether or not a diagnostic message is to be displayed if a run
time error occurs among those specified.

EXIT I NOEXIT
EXIT specifies that program execution is to be suspended if any of the listed
errors occur.

NOEXIT specifies that the VS FORTRAN library is to take corrective action
and execution is to continue if any of the listed errors occur.

128 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

Examples

ERROR

1. The default options at the start of a debugging session are to provide all
diagnostic messages (MSG) and to suspend execution of the program if any
run-time error occurs (EXIT). Ifyour program calls ERRSET, this will change
the settings for the specified errors to MSG and NOEXIT.

2. Ifthe EXIT keyword is in effect for a particular error, you are notified of the
location and error number when the error occurs. You can then trace the
sequence of control that led to the error location by issuing the WHERE
command with the TRBACK or FLOW keyword. If NOEXIT and NOMSG are
both in effect, no notification of error location or error number is given. If
MSG is in effect, the error number will be contained in the error message.

3. Ifyou specify a large range of error numbers, the ERROR command may
generate a large number of diagnostic messages. You can use the PURGE
command in an attention exit to terminate ERROR if the messages are

excessive.

4. If NOEXIT has been specified, standard corrective action will be taken
unless you have defined user corrective action by calling ERRSET from your
VS FORTRAN program. Execution will not be suspended in either case.

5. Not all VS FORTRAN library error numbers may be specified by the ERROR
command. Ifyou specify one that may not, you will receive the following
message:

AFB198I VIADI : ATTEMPT TO CHANGE UIIMODIFIABLE MESSAGE TABLE ENTRY,
MESSAGE NUMBER 240

6. ERROR is not permitted after the VS FORTRAN program has terminated.

You have set a variable to a negative value to test a condition but then
realize that the square root of the variable will be taken later. To avoid
halting execution when this occurs, you want the library to perform
standard corrective action and continue with no notification of the error.
The error number for the square root of a negative number is 251.

error 251 nomsg noexit

Ifany single or double precision arithmetic run-time errors (logs, trigono
metric functions, exponents) occur, you want Interactive Debug to provide
full diagnostics and to also take standard corrective action. The error
numbers are 241 through 285.

error 241:285 noexit

Part Two. Command Reference 129

FIXUP

FIXUP

Usage Notes

Examples

Tasks: Handling Run-Time Errors (page 74)

Function: FIXUP specifies corrected argument values when execution has been
suspended because of errors in a VS FORTRAN Library mathematical function.
This command causes the function to be evaluated with new arguments and
execution to be continued. A FIXUP command with no arguments causes
standard corrective action to be taken.

Abbreviation: F

Syntax

FIXUP

[ARG1(va/ue)]
[ARG2(va/ue)]

ARG1(va/(;e)
specifies the value of the first argument of the function. The value can be a
variable, an array element, or a constant.

ARG2(va/ue)
specifies the value of the second argument of the function. The value can
be a variable, an array element, or a constant.

1. FIXUP is permitted only when execution is suspended for a library function
error.

2. If the library function for which FIXUP is to be performed has two argu
ments, you can specify a single value for either of the two arguments, or
you can specify values for both arguments.

3. If you issue GO or FIXUP without arguments after an run-time error,
standard corrective action is performed and execution is resumed.

4. You cannot change the actual value of the variable in storage by using
FIXUP.

5. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a
constant." For example, the following are valid:

A(l), A(3), ARY(I+3), ARY(I-3)

1. Your program stops because of an arithmetic error. You want the library to
perform standard corrective action and to resume execution.

fixup

2. Your program attempts to take the square root of a variable that is set to a
negative value. Instead of taking standard corrective action, you reset the
negative variable to a positive number and resume execution. (The value
of the variable in storage is not changed.)

fixup argl(36)

130 VS FORTRAN Version 2 Interactive Debug Guide and Reference

GO

Usage Notes

Tasks:

Animating the Execution of Your Program (page 73)
Processing External Files (page 76)

Function: GO resumes program execution.

Abbreviation: None

Syntax

[[quaL]{number \ EXIT}]

GO

qual.
specifies a program unit name to temporarily override the current qualifier
for this command. The qualifier must be the program unit that will be in
execution when the GO is run.

number

specifies the statement identifier of an executable VS FORTRAN statement
at which execution is to be resumed. The statement identifier is a state
ment label, an ISN, or a sequence number in columns 73 through 80. The
type of statement number used (ISN or sequence number) is determined by
the compiler and the options used. (See "Statement Identifier Conventions"
on page 101.) Precede a statement label with a slash. The statement must
be an executable statement with a debugging hook.

EXIT

specifies that Interactive Debug will resume execution of the program unit
at the exit point that corresponds to the entry point used.

1. The statement identifier or EXIT keyword is optional, and is used if exe
cution is to resume at a specific point outside of the normal execution
sequence. GO without an operand causes execution to be resumed at the
currently suspended statement.

2. Ifexecution has stopped because of an run-time error, resuming it with GO
produces standard corrective action to fix the error. (GO with an operand is
not allowed in an error exit.)

3. Execution of the GO command is subject to the same language restrictions
as the GOTO statement in VS FORTRAN. Branches into DO-loops and inner
DO-loops (except from the extended range of the DO loop (LANGLVL(66)
only)) will produce unpredictable results.

4. The number or EXIT operand is not allowed with the GO command:

In an error exit

When execution is suspended at the ENTRY point of a program unit
When execution is suspended for output

When execution is suspended during a terminal read

Part Two. Command Reference 131

GO

Examples

5. It is not advisable to specify a statement label or statement Identifier wfien
running in a program unit that has been compiled with an optimization level
higher than zero. (This is because optimized code is highly dependent on
register contents.) Interactive Debug allows the operand, but will warn you
(except in batch mode) that the program unit is optimized and ask if you
wish to continue. If you type YES, the GO will be run.

6. GO is not permitted after the VS FORTRAN program has terminated. It is
also not permitted if execution is suspended during a terminal read.

Your program suspends execution at a breakpoint for debugging, and you
now want to resume execution at the currently suspended statement.

go

Your program suspends execution at a breakpoint for debugging, and you
now want to skip ahead and resume execution at sequence number 410.

go 410

Your program suspends execution at a breakpoint for debugging, and you
have changed the qualification to display variables in another program unit.
You now want to skip ahead and resume execution at the exit point of the
program unit currently executing, which is SUB1.

go subl.exit

You know that program unit BUGGY produces incorrect results past the
statement labeled 100. For now, you want to set RESULT to the value A,
and exit whenever statement 100 is reached.

at buggy./lOO (set result = a % go buggy.exit) nonotify

132 VS FORTRAN Version 2 Interactive Debug Guide and Reference

HALT

HALT

Tasks:

Animating ttie Execution of Your Program (page 73)
Controlling Program Execution (page 58)

Function: HALT causes execution to be suspended for every statement of a
given class, or at a specific point in a command list. The classes of statements
are: at the start of every statement, or after every branch, or at entry to and
exit from a debuggable routine.

Abbreviation: None

Syntax

[OFF ISTMT I GOTO | ENTRY IIMMEDI

OFF

specifies that the HALT setting in effect is to be terminated. This is the
setting when Interactive Debug execution begins.

STMT

indicates that execution is to be suspended before every executable state
ment that has a debugging hook.

GOTO

indicates that execution is to be suspended whenever two consecutively
executed debugging hooks are not on consecutively stored statements.
This could occur for several reasons, including a GOTO, a DO group, a
CALL, or an IF statement. It also might occur if one or more statements
have been collapsed by optimization or vectorization, or because of hook
restrictions specified for ranges in AFFON, or when debug packets occur in
the code.

ENTRY

specifies that execution is to be suspended whenever any debuggable
program unit is entered or exited. This could be as a result of a subroutine
or function call or return from a subroutine or function.

HALT ENTRY causes suspension of execution at the same points as AT EXIT
or AT ENTRY. At an entry breakpoint, the program unit is not yet active.
Thus, dummy arguments or variables in a dynamic common cannot be
accessed, and GO with an operand is not permitted.

IMMED

indicates that execution of an AT command list should be suspended imme
diately and a prompt should be issued. This is the default action when
HALT is issued with no operand. In an attention exit, this will terminate the
current AT command list if one is running.

Part Two. Command Reference 133

HALT

Usage Notes

Examples

1. In full screen mode, HALT can be used as a cursor-sensitive command.

2. You can issue a HALT IMMED command to terminate a command list. You
can also use HALT IMMED in an attention exit to terminate command loops.

For example: AT 5 (60 5).

3. If a statement at which execution would normally be suspended by the
current HALT setting has an AT breakpoint with a command list that causes
execution to resume, the HALT setting will not suspend that statement.

For example, if HALT STMT is in effect but you have issued the command AT
5 (SET A=10%GO), execution will not be suspended at statement 5.

4. Any statement for which execution would be suspended by HALT GOTO will
also have execution suspended by HALT STMT.

Any statement for which execution would be suspended by HALT ENTRY
will also have execution suspended by HALT GOTO and HALT STMT.

5. HALT is not permitted after the VS FORTRAN program has terminated.

6. To see the current HALT setting, type LISTBRKS.

1. Suspend execution at entry to or exit from all debuggable units.

halt entry

2. Suspend execution prior to executing each statement with a debugging
hook in the program.

halt stmt

3. At statement identifier 10, halt execution if A is greater than B; otherwise,
continue executing with no notification of the breakpoint.

at 10 (if (a .gt. b) halt^cgo) nonotify

134 VS FORTRAN Version 2 Interactive Debug Guide and Reference

HELP

HELP

Tasks:

Using Cursor-Sensitive Commands {page 20)
Getting On-line Help about Interactive Debug (page 51)

HELP provides on-line information about Interactive Debug commands, common
tasks, and vector messages contained in the vector report source listing, as
well as a task-oriented tutorial.

Abbreviation: H

Syntax in CMS or ISO Full Screen Mode

HELP

[command \ vecmsg-id]

— Syntax in CMS Line Mode'

HELP

[command [(ALL | (DESC | (PARM | (FORM] | vecmsg-icl\

Syntax In TSO Line Mode

HELP

[command | FUNCTION | SYNTAX | OPERANDS [{keyword-list)]\
I vecmsg-id]

command

specifies the name of a command, or one of the keywords TASK or MENU
(lADMENU in TSO line mode). If no command is specified, a HELP menu is
displayed for further selection. You can specify a command abbreviation in
full screen mode, but not in line mode.

ALL

requests the function, syntax, keywords, usage notes, and examples of the
specified command.

DESC

requests the function of the specified command.

FORM

requests the syntax of the specified command.

PARM

requests the keywords, usage notes, and examples of the specified
command.

FUNCTION

requests the function of the specified command.

Part Two. Command Reference 135

HELP

Usage Notes

Examples

SYNTAX

requests the syntax of the specified command.

OPERANDS [(keyword-list)]
requests the keywords of the specified command. Enclose the list in paren
theses and separate the keywords in the list with commas or blanks. If the
list is omitted, all keywords, usage notes, and examples of the specified
command are displayed.

vecmsg-id
specifies the number of a vector message on the vector report source
listing. It can be in either of two forms:

ILXOlnnI

nn

where nn is the two-digit number that uniquely identifies the message.

1. HELP cannot be issued in: an AT command list, an IF command, or a

restart file.

2. In TSO line mode, you can request that usage notes and examples be
shown by specifying NOTES or EXAMPLES as a keyword with OPERANDS.

3. In full screen mode, vector message information can be displayed by using
the HELP command as a cursor-sensitive command:

If the source window displays a vector report source listing, the cursor
is in the source window, and the user hits PF1 (normally HELP), the help
for the vector report message on that line of the listing will be dis
played.

The cursor may be in the prefix area, the source listing area, or the
prefix area of the source window corresponding to the line of the listing.
If PF1 is not set to HELP, the user can type HELP on the command line,
place the cursor on the desired line in the source window, and press
ENTER for the same effect.

Placing the cursor on a line in the vector report source listing which
does not have a vector report message results in the following message
being displayed:

NO VEC(REP) MESSAGE

If the cursor is outside the source window or if the listing being dis
played is not a vector report source listing, then HELP will not function
as a cursor-sensitive command.

1. Display a list of all available HELP topics.

help

2. Display a list of all available HELP task topics.

help task

3. Display all available information on the IF command.

help if

4. In CMS line mode, display the syntax for the ERROR command,

help error (fonn

136 VS FORTRAN Version 2 Interactive Debug Guide and Reference

HELP

5. In TSO line mode, display the syntax for the ERROR command,

help error syntax

6. In TSO line mode, display the syntax and the EXIT keyword for the ERROR
command.

help error syntax operands(exit)

7. In TSO line mode, display the syntax, usage notes, and examples for the
GO command.

help go syntax operands(notes, examples)

8. Display information on the vector message ILX0113I.

help 13

9. In full screen mode, display information for vector message ILX0109I on ISN
423 of the vector report listing for LBTAB:

a. Qualify to program unit LBTAB by typing q Ibtab

b. Scroll down to ISN 423 in the source window by typing position 423 on
the command line, putting the cursor in the source window, and
pressing ENTER.

c. Place cursor on the statement at ISN 423 in the source window.

d. Press the HELP PF key (normally PF1).

Part Two. Command Reference 137

IF

IF

Usage Notes

Function: IF is used, usually within an AT command list, to test a relational or a
logical condition when the specified breakpoint is reached. If the condition is
true, the command specified within the IF command is run.

Abbreviation: None

— Syntax

IF

{condition) command

{condition)
is the condition to be tested,

tion:

It can be either a relational or a logical condi-

Relational condition: a signed or unsigned variable or array element or
constant, followed by a relational operator, followed by another signed
or unsigned variable or array element or constant. There are six rela
tional operators that can be used to test relational conditions.

= or -EQ.

-' = or .NE.

> or .GT.

< or.LT.

> = or .GE.

< = or -LE.

»- Logical condition: a logical variable or a logical array element,
optionally preceded by the negation operator (-• or .NOT.). No other
operators are permitted.

command

is a single Interactive Debug command that is run only if the specified con
dition is true.

1. The following is an example of the relational condition form of the IF
command:

IF (A .GT. B) HALT

With the relational condition form of the IF command, the following is true:

When either variable or constant is a logical or character type, both
must be of that same type, and no sign is permitted preceding either
variable or constant.

»- When either variable or constant is a logical or complex type, only the
relational operators .EQ. and .NE. {or = and =) may be used.

2. Substring notation is permitted for string variables.

3. For array elements, subscripts may have values beyond the range of the
corresponding array dimensions. A warning message will be issued except
in the special case where the last dimension is "1" or and only the last
subscript is out of range.

138 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Examples

IF

4. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a
constant." For example, the following are valid:

ARY(I), ARY(3), ARY(I*3), ARY(l-3)

5. You cannot reference variables that are not currently defined, such as
dummy arguments in an inactive subroutine.

6. Logical variables must have been set to VS FORTRAN logical constants for
condition testing to produce predictable results.

7. Variables in different program units can be referenced by qualifying the var
iable names with program unit names:

IF (MAIN.A .LT. SUBl.B) SET SUB1.8 = MAIN.A

8. The command specified with IF cannot be HELP, QUALIFY, or FIXUP. You
also cannot specify any of the full screen display commands.

9. When character variables or constants of unequal length are compared, the
shorter is considered to be extended with blanks during the comparison.

10. IF is not permitted after the VS FORTRAN program has terminated.

1. At the statement labeled 100, determine whether logical variable OVER is
true, and if it is true, reinitialize counter i and resume processing; if OVER
is false, continue processing without resetting i.

at /lOO (if (over) set i=0^go)

2. At statement number 10, test if variable A in subroutine SUB is zero; if it is,
suspend execution; if A is not zero, continue processing.

at 10 (if (sub.a = 0.0) halt^go)

3. At statement 5, test the following set of logical conditions: if either A or B is
true, go to the statement labeled 10 and continue processing; if neither is
true, continue processing at the next executable statement.

at 5 (if (a) go /IQHM (b) go /lO %go)

4. At statement 7, if the first five characters of the variable SOLAR are ABODE,

set counter J to 2

at 7 (if (solar(l;5)='ABCDE*) set J=2)

Part Two. Command Reference 139

LEFT

LEFT (full screen mode only)
Tasks:

Usage Notes

Example

Changing the Way Your Windows Look (page 18)
Using Cursor-Sensitive Commands (page 20)

Function: LEFT scrolls the contents of a window so that columns to the left of
those currently displayed in the window can be seen.

Abbreviation: None

Syntax

[number | PAGE | HALF | CSR | DATA | MAX]

number

is the number of columns to scroll left, from 1 to 9999.

PAGE (or P)
scrolls left by the number of columns in the window.

HALF (or H)
scrolls left by half the number of columns in the window.

CSR (or C)
scrolls left by PAGE, unless the cursor is in the window, in which case the
window is scrolled left by the appropriate number of columns to place the
cursor at the edge of the window.

DATA (or D)
scrolls left by PAGE-1 number of columns. Ifonly one column is visible, the
scrolling is equivalent to that of PAGE.

MAX (or M)
scrolls left so that the leftmost column of the window will contain the left
most column of the contents for the window.

1. LEFT is cursor-sensitive. The window that is scrolled is determined from
the cursor position and the windows currently open.

2. LEFT cannot be issued in: a command list, an IF command, an attention
exit, or a restart file.

3. Ifan operand is not specified with LEFT, the scrolling amount is taken from
the SCROLL ===> field on the main debugging panel.

Scroll left so that the farthest left column of the window will contain the farthest
left column of the contents for the window.

left max

140 VS FORTRAN Version 2 Interactive Debug Guide and Reference

LIST

LIST

Tasks:

Using Cursor-Sensitive Commands (page 20)
Specifying Output to a Print File (page 42)
Referring to Statements or Variables in Other Program Units (page 54)
Displaying Formatted Variable and Array Values (page 73)

Function: LIST displays the values of specified scalar variables, arrays, array
elements, or string constants at the terminal or in a print file (AFFPRINT).
Values can be displayed in a variety of formats. The specified or implied qual
ifier is shown with all variable or array names and the array elements may be
displayed outside the defined dimensions.

Abbreviation: L

Syntax — ——

LIST

{[qual.]name[:[qual.]name] \ * \ 'string' \ number] {list)}
[PRINT]
[FORMAT [{code)] j DUMP [(code)]]

[qual.]name

specifies the name of a variable, array, or array element used in the
program. If a qualifier is specified, it overrides the current qualifier for the
specified name.

[qual.]name:[qual.]name
specifies a range of variable, array, or array element names used in the
program. Ifa qualifier is specified, it overrides the current qualifier for the
specified name.

LIST displays all storage locations between the two variables. Unless
FORMAT or DUMP is specified, the format of the displayed variables is the
same as the type of the first variable.

*

specifies that a list of all the names in the currently qualified program unit
is desired. Unless FORMAT or DUMP is specified, each is displayed
according to its own type.

'string'
specifies a character string to be displayed as a remark. You can use this
operand to help identify breakpoints.

number

specifies an integer or real numeric constant to be displayed as a remark.
This function is useful for converting numbers, in conjunction with the
FORMAT option.

list

specifies a list of individual specifications. Enclose the list in parentheses,
and separate entries with commas or blanks.

Part Two. Command Reference 141

LIST

Usage Notes

PRINT

specifies that output be sent to a print file (AFFPRINT) instead ofthe ter
minal.

FORMAT [(code)] | DUMP [(code)]
specifies a particular data format:

FORMAT displays the names listed and their values in the specified
format.

DUMP displays the address in storage of the names listed and their
values in the specified format.

(code) specifies the format or dump code for the names to be listed.
The default format code is X. The default dump code is Z.
FORMAT and DUMP are mutually exclusive.

FORMAT and DUMP codes for the LIST command are the same as for
the AUTOLIST command, and are shown again in Figure 40.

Code Output

L1 Logicari

L4 Logical *4

12 Integer*2

14 IntegerM

R4 Real*4

R8 Rears

R16 Reari6

C8 Complex's

C16 Complex*16

C32 Complex'32

L Logical with size closest to internal data size

1 Integer with size closest to internal data size

R Real with size closest to internal data size

C Complex with size closest to internal data size

XfnnnJ Hexadecimal with nnn bytes per data item
(default to internal data size)

Z[nnn] Hexadecimal with nnn bytes per data item
(default to Z4)

A[nnn] Character with nnn bytes per data item
(default to internal data size)

H[nnn] Character with nnn bytes per data item
(default to continuous full line output)

Figure 40. DUMP and FORMAT Codes for the LIST Command

In full screen mode. LIST can be used as a cursor-sensitive command. If
the LIST command is already assigned to a PF key, place the cursor at a
variable name in the source window, and press the PF key for LIST. The
variable may include either subscript or substring notation. If both are
present, only the subscript will be included in the command.

Instead of assigning a PF key to the LIST command, you can type LIST on
the command line and move the cursor to a variable name before pressing
ENTER.

142 VS FORTRAN Version 2 Interactive Debug Guide and Reference

LIST

2. When you request an individual name or list of names, the default format
ting of values is determined by the type of each name being displayed.
When you request a range of names, the formatting of the values is deter
mined by the format of the first name in the range. You may, however,
specify a different format using the FORMAT or DUMP keyword. The
locations of the listed names are identified in the output only if DUMP is
specified.

3. VS FORTRAN defines storage layout only for arrays, variables in a common
block (defined in a COMMON statement), and variables in equivalence
groups (defined in an EQUIVALENCE statement). The relative positions of
any other names in storage cannot be predicted. Names that you may
expect to be adjacent in storage may be widely separated by other data.
Therefore, a range specification for names other than array, equivalence, or
common variables may produce unexpected results.

4. The length specification in a FORMAT or DUMP code may be entered with 1
through 3 digits. Thus, 14, 104, and 1004 are equivalent.

5. A length specification of 0 in character and hexadecimal FORMAT and
DUMP codes (for example, AO or ZO) causes the data to be displayed as a

continuous string, rather than split into pieces of some specified length.

6. If a FORMAT or DUMP code with no length specification is given for a range
of variables or array elements, each variable or array element is displayed
separately in the specified format. However, if a length specification is
given. Interactive Debug will consider the entire storage area occupied by
all the range of variables or array elements, or occupied by the entire
array, as if it were broken into pieces, each with a length equal to that
specified in the DUMP or FORMAT code, and will display each piece
according to the specified format. For example, if PRIMES is a 2 x 3 array
of INTEGER'4 values, then:

list primes format(x)

will cause a display of 6 values, each corresponding to an element of the
array. However:

list primes format(x2)

will cause a display of 12 values, each displaying the contents of successive
2-byte storage areas within the array.

7. The DUMP option is not permitted with constant operands, including strings;
using it will produce an error message.

8. An assumed size array cannot be listed by just specifying the array name;
the specific element or range of elements must be specified. (An assumed
size array is an array with the last upper bound declarator specified as an
asterisk (').) This restriction does not apply to arrays whose last dimension
is "1," even though such arrays are otherwise treated as assumed size
arrays. However, only the elements whose last subscript is "1" will be dis
played if no subscripts are specified.

9. For array elements, subscripts may have values beyond the range of the
corresponding array dimensions. A warning message will be issued except
in the special case where the last dimension is "1" or and only the last
subscript is out of range.

Part Two. Command Reference 143

LIST

Examples

10. Array subscripts must consist of simple arithmetic expressions no more
complex than the form "variable plus (or minus) a constant." For example,
the following are valid:

list ARY(J), list ARY(3), list ARY(J +3), list ARY(J - 3)

11. Dummy arguments can only be displayed when the program unit in which
they are defined is active. If not, an error message is issued. Results are
unpredictable if you display a dummy argument that is not defined at the
entry point called. Note that a program unit is not yet active when sus
pended at entry.

12. Variables in dynamic commons can only be displayed ifthe program unit
used to qualify the variable has been activated at least once. (If not, an
error message may be issued. However, ifa variable has a large displace
ment in its dynamic common. Interactive Debug cannot detect that it is not
initialized.)

13. Although a quoted string can be used as an operand on the LIST command,
you cannot point the cursor at a quoted string in the source listing window
(when using LIST as a cursor-sensitive command).

1. Display at the terminal the value of the variable named NCOUNT.
list ncount

2. Obtain a hexadecimal dump (FORMAT(X)) showing values of array variables
A(1,1) through A(7,10). Have the display sent to the print data set.

list a(l,l):a(7,10) print format

3. List the decimal number 12345 in hex.

list 12345 f(x)

4. Display an entire array (CHARAY) containing a series of 30-character alpha
betic strings so that each character string is separated from the others. (If
the array is declared in the program to be a CHARACTER*30 array, the ele
ments of the array will be separated from each other when the array is
listed.)

list charay format(a30)

5. Display the value of the variable named CTR in subroutine SUB1.

list subl.ctr

6. Display the message "inside loop" whenever ISN 100 is run.

at 100 (list 'inside loop'%go)

7. Display variable LONG_NAME_VAR in program unit SUBI, and variable
SHORT in program unit SLIB2. This illustrates the LIST format in support of
long (31 character) names. Note that long names cause a line break to
allow alignment of the " = "s without excessive horizontal spread.

list (subl.long_name_var,sub2.short)
SUB1.L0HG_NAHE VAR

10

SUB2.SHORT = 25

8. Display values of the second through sixth characters in the character vari
able PORT

list PORT(2:6)

144 VS FORTRAN Version 2 Interactive Debug Guide and Reference

LISTBRKS

Example

LISTBRKS

Tasks:

Specifying Output to a Print File {page 42)
Referring to Statements or Variables in Other Program Units (page 54)

Function: LISTBRKS provides the following information:

All breakpoints that are currently set, including entry, exit, and statement
breakpoints

• All WHEN conditions (both on and off) that are currently defined, and the
condition being tested

• The current HALT status (OFF, STMT, GOTO, or ENTRY)

Abbreviation: LB

LISTBRKS

[PRINT]

PRINT

specifies that output be sent to a print file (AFFPRINT) instead of the ter
minal.

Possible output:

CURRENT BREAKPOINTS:

NAIN.15/30
SUB.ENTRY

SUB.8/10
CURRENT WHEN CONDITIONS;

ABCD OH (SUB.X > 5)
EFGH CM (CH(1:2)='AB')

CURRENT HALT STATUS: OFF

Part Two. Command Reference 145

LISTFREQ

LISTFREQ
Tasks:

Specifying Output to a Print File (page 42)
Determining Statement Execution Frequency (page 62)

Function: LISTFREQ displays the number of times statements in the currently
qualified program unit have been run. This command can also be used to list
the statements that have not been run.

Abbreviation: LF

Syntax

LISTFREQ
\lqual.]{number[:[qual.]number] \ ENTRY | EXIT} |
(number/ENTRY/EXIT list)]
[ZEROFREQ]
[PRINT]

qual.
specifies a program unit name prefix to temporarily override the current
qualifier for the prefixed operand only.

number

specifies the statement label, ISN, or sequence number of an executable VS
FORTRAN statement whose execution counts are to be listed or checked for
zero. Precede a statement label with a slash to distinguish it from an ISN
or sequence number.

number:[qual.]number
specifies a range of statement labels or statement numbers (ISNs or
sequence numbers) whose execution counts are to be listed or checked for
zero. Statement labels can be combined with ISNs or sequence numbers in
the range specification, but the first and last must be executable state
ments. Precede each statement label with a slash.

Statement identifiers can be qualified with a program unit name. The
default program unit for the first identifier is the current qualifier. The
default program unit for the second identifier is the program unit specified
or defaulted for the first identifier. Both identifiers must have the same
program unit in effect.

(number/ENTRY/EXIT list)
requests a list of statement labels, ISNs or sequence numbers, entry points,
exit points, and ranges. (Note that ENTRY and EXIT are not permitted in a
range.) The frequency for each specified statement is listed. Enclose the
list in parentheses, with individual entries separated by commas or blanks.
Precede each statement label with a slash.

ZEROFREQ

requests a list of statements that have not been run. All statements may be
tested, or specific statements may be specified using the options discussed
above.

146 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

Examples

LISTFREQ

PRINT

specifles that output be sent to a print file (AFFPRINT) instead of the ter
minal.

1. If no operand is specined, the counts are displayed for ENTRY, EXIT, and all
executable statements with debugging hooks in the currently qualified
program unit.

2. If LISTFREQ is issued after an ENDDEBUG command, the execution counts

displayed are those that existed when ENDDEBUG was issued.

3. Execution counts of unhooked or collapsed statements are not displayed.
Instead, you will see the phrase "NO HOOK" or "COLLAPSED STMT."

4. Before a RENT program unit is first entered, all statements are considered
to have no hook. Statements in a reentrant program unit that are excluded
in the AFFON file will show "COLLAPSED STMT" on the LISTFREQ display.

5. After ENDDEBUG is issued, LISTFREQ displays counts for all non-collapsed
statements.

6. Statements in a debug packet will be treated as collapsed in VS FORTRAN
programs compiled prior to Version 1 Release 4.0. If the program is com
piled with VS FORTRAN Version 1 Release 4.0 or later, the debug state
ments are inserted directly into the code and LISTFREQ will show duplicate
statements in addition to the DEBUG packet code.

7. If you request ZEROFREQ, Interactive Debug displays only hooked state
ments that have not been run.

1. On the print data set. list how many times each executable statement in the
currently qualified program unit has been run.

listfreq print

Your output might look something like this:

STATEHEMT

MAIN.ENTRY

MAIN.EXIT

MAIN.6

liAIN.7

MAIN.8

MAIN.9

MAIN.10

MAIN.11

MAIN.12

MAIN.13/10014

FREQUENCY
110 HOOK

110 HOOK

1

COLLAPSED STMT

COLLAPSED STMT

110 HOOK

3

3

NO HOOK

NO HOOK

2. List the statements that have not been run in the currently qualified
program unit.

listfreq zerofreq

3. List how many times some specific statements have been run in the cur
rently qualified program unit.

listfreq (10:/80,300,/95,/105,ENTRY)

listfreq (20:130 ENTRY 250 /lOOO)

4. List how many times the executable statements 12 through 15 in subroutine
SUB1 have been run.

listfreq subl.l2:subl.l5

Part Two. Command Reference 147

LISTINGS

LISTINGS (full screen mode only)
Tasks: Changing Listing Information (page 22)

Function: LISTINGS displays the Interactive Debug listings panel.

Abbreviation: None

Syntax

Usage Notes

LISTINGS

1. LISTINGS cannot be issued in: a command list, an IF command, an atten
tion exit, or a restart file.

2. LISTINGS will operate as usual with a parameter list, but the panel will indi
cate the message "THE PARAMETERS ARE INVALID AND HAVE NO EFFECT
WITH THIS COMMAND."

Sample listings panel in CMS:

COHIIAIID =»=>

PR06RAII UIIIT NAME

MAIN

TIICOH

INTERACTIVE DEBUG LISTINGS PANEL

CMS LISTING FILE

XYZPROG LISTING A1

THCOM LISTING El

ROW 1 OF 5

SCROLL ===> PAGE

DISPLAY

Y

N

AFFA756E LISTING FILE COULD NOT BE FOUND ON ACCESSED DISKS.

TIIE281J THE281J LISTING A1 Y

THY1066 THY1066 LISTING «

X***************************** bottom of DATA *********************************

The column labelled "PROGRAM UNIT NAME" identifies the debuggable VS
FORTRAN program units. The second column, "CMS LISTING FILE," indicates
the names of files where the listings are to be found. In the column labelled
"DISPLAY," YES indicates that the listing will be displayed in the source
window.

A message area is located under each program unit name. In the sample
panel above, the CMS message LISTING FILE COULD NOT BE FOUND ON ACCESSED
DISKS indicates that the specified file was not found on any of your accessible
disks. The equivalent TSO message is LISTING DATASET COULD NOT BE FOUND IN
ALLOCATED DATASETS.

After filling in the listings panel, return to the execution panel by entering END,
usually PF key 3.

148 VS FORTRAN Version 2 Interactive Debug Guide and Reference

LISTSAMP

LISTSAMP

Tasks:

Specifying Output to a Print File (page 42)
Program Sampling (page 63)
Vector Tuning Assistance (page 67)

Function: LISTSAMP lists sampling counts by statement, program unit, or DO
loop. Percentage of program unit samples and percentage of total number of
samples are also listed, along with a bar chart of the sampling counts.

Abbreviation: None

Format 1

— Syntax for Listing Sampling Counts by Statement

LISTSAMP

{[qual.'\numberl:[qual.]number] | [qua/.]ENTRY | [qual.y \ {list) \ *.*}
rOIRECT I CALLED | ALL]
[TOP[(n)]]

[PRINT]

Format 2

Syntax for Listing Sampling Counts by Program Unit

LISTSAMP

{unit-name | {unit-name-list) \ •}
SUMMARY

[DIRECT I CALLED | ALL]
[TOP[(n)]]
[PRINT]

Format 3

— Syntax for Listing Sampling Counts by DO Loop

LISTSAMP

{[qual.]number[:[qual.}number] \ [qual.y I {list) \ *.*}
DOLOOP

[DIRECT I CALLED | ALL]
[TOP[(n)]]
[PRINT]

[qual.}
specifies a program unit name to temporarily override the current qualifier
for the prefixed operand only.

Part Two. Command Reference 149

LISTSAMP

[qual.lnumber
is the statement label, ISN, or sequence number of an executable statement
(formats 1 and 2) or DO statement for a DO loop (format 3) for which sam
pling information is to be listed. Qualification is optional. Astatement label
must be prefixed with a slash (/).

[qual.]number:[qual.]number
specifies a range of statements in the program (formats 1 and 2) or a range
of statements in the program for all DO loops in the range (format 3) for
which sampling counts is to be displayed. (A DO loop is in the range ifthe
DO statement of the loop is in the range. All the statements of the loop do
not have to be in the range. The starting and ending statement identifiers
do not have to be DO statements.) Qualification is optional. If the second
qualifier is specified, it must be the same as that specified for the first qual
ifier.

[qua/.JENTRY
indicates that the sampling count for the entry and exit code of the specified
or currently qualified program unit is to be listed. There is only one sam
pling count to cover both entry and exit code.

[qual.r
indicates that sampling counts for all statements (formats 1 and 2) or DO
loops (format 3) in the specified or currently qualified program unit are to
be displayed.

list

specifies a list of individual statement (formats 1 and 2) or DO loop (format
3) specifications. Enclose the list in parentheses and separate entries using
commas or blanks.

indicates that sampling counts for all statements in all programming units
(formats 1 and 2) or all DO loops in the program (format 3) are to be dis
played.

unit-name

specifies the name of a program unit whose sampling summary is to be
listed. This must be a VS FORTRAN unit compiled with SDUMP.

unit-name-list

specifies a list of program unit names separated by commas or blanks.

indicates that all program units, debuggable or not, are to be included. In
addition, there are two special names that are reported when is speci
fied:

'LIBRARY shows the sampling count accumulated for all VS FORTRAN
Library modules other than the mathematical functions and the Error
Monitor. This includes lower-level calls to system services.

'UNKNOWN shows the count of sampling interrupts that could not be
assigned to any program unit.

SUMMARY

indicates that sampling counts are to be summarized by program unit. This
keyword is allowed only in format 2.

150 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

LISTSAMP

DOLOOP

indicates that sampling counts are to be summarized by DO loop. This
keyword is allowed only in format 3.

DIRECT I CALLED | ALL
DIRECT indicates that interruptions occurring in the code are to be included
in the sampling counts for that code. DIRECT is the default.

CALLED indicates that interruptions occurring in lower-level routines are
also to be included in the sampling counts of the code being sampled. This
option is valid only when sampling is initiated with the CALLED option.

ALL indicates that sampling counts are to be the sum of the DIRECT and
CALLED counts.

T0P(/7)
indicates that only n number of statements (format 1), programming units
(format 2), or DO loops (format 3) having the highest counts are to be listed.
The output is sorted in descending order by count. The default for n is "1";
the maximum value is "9999."

IfTOP is not specified, the output is in the order shown in the specification
list, and within that by statement table order.

PRINT

specifies that output be sent to a print file (AFFPRINT) instead of the ter
minal.

1. The LISTSAMP command is valid only when sampling has been performed.

2. Qualifiers and unit names are restricted to VS FORTRAN program units
compiled with SDUMP.

3. Non-FORTRAN program units (and units compiled with NOSDUMP) are iden
tified by the entry ID located using the value of GPR 15 saved in the save
area. Programs that do not follow MVS standards for entry identifiers will
not be correctly identified. Note that the entire ID string is shown, up to 31
characters. This often includes blanks and additional information such as
date and time of compilation.

4. Sampling counts for non-debuggable program units cannot be requested by
name; however, the operand with the SUMMARY option will show sam
pling counts for both debuggable and non-debuggable program units,
including VS FORTRAN library counts.

5. For format 3:

The program information for a program unit must have been success
fully obtained at initialization of the debugging session in order to
display sampling counts by DO loop for the program unit.

A LISTSAMP command with a specification list or a program-unit-name
list will run if one or more of the DO statement identifiers or program

unit names in the list are valid.

Since there are likely to be statements in the program that are not con
tained in DO loops, DIRECT sampling counts for all DO loops in the
program may not add up to the total number of samples. Also, since
DO loops can be nested, DIRECT sampling counts for all DO loops in
the program may add up to more than the total number of samples.

Part Two. Command Reference 151

LISTSAMP

Examples

If a DO loop has been distributed into several loops due to
vectorization, then sampling counts are summed for all of the distrib
uted loops, and displayed as if the DO loop was not distributed.

1. Display a summary of the sampling counts for all program units.
listsamp * summary

Possible output:

PROGRAM SAMPLING INTERVAL WAS 20 US; TOTAL NUMBER OF SAMPLES
WAS 9745.

DIRECT SAMPLES:

PROGRAM UNIT SAMPLES %TOTAL

MAIN 613 6.35 *

SUBl 15 0.15

SUB2 5763 59.71

SUB3 1882 19.31

SfillN 1251 12.83 AA A

♦LIBRARY 128 1.31

♦UUKNOWN 93 1.01

2. Display a summary of the sampling counts for SUB1 and SUB2.

listsamp (subl,sub2) summary

Possible output:

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES
WAS 9745.

DIRECT SAMPLES:

PROGRAM SAMPLES ^TOTAL

SUBl 15 0.15

SUB2 5763 59.71 ************

3. Display the sampling counts for a range of statements in SUB2. (Sampling
counts will include interruptions which occurred in the code of a statement
as well as in any lower-level routines called by the statement.)

listsamp sub2.10:20 all

Possible output:

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES
WAS 9745.

SUM OF DIRECT AMD CALLED SAMPLES:

STATEMENT SAMPLES %UHIT %TOTAL

SUB2.10/920 1142 73.15 12.53

SUB2.il/930 231 15.42 3.02

SUB2.13 12 1.22 0.15

SUB2.15 COLLAPSED

SUB2.16 22 2.38 0.32

SUB2.18 14 1.24 0.16

SUB2.20 46 5.17 0.77

Display the four highest counts in SUB2. (Sampling counts will include
interruptions which occurred in the code of a statement as well as in any
lower-level routines called by the statement.)

listsamp sub2.* top(4) all

Possible output:

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES
WAS 9745.

SUM OF DIRECT AND CALLED SAMPLES:

STATEMENT SAMPLES %UNIT %TOTAL

SUB2.10/920 1142 73.15 12.53

SUB2.il/930 231 15.42 3.02 AAA

SUB2.20 46 5.17 0.77 A

SUB2.ENTRY/EXIT 42 4.92 0.72 A

152 VS FORTRAN Version 2 Interactive Debug Guide and Reference

LISTSAMP

List DIRECT sampling counts by DO loop for the 10 DO loops In the cur
rently qualified program unit that have the highest counts, sorted In order
from largest to smallest number of samples.

Ilstsamp * doloop top(10)

Possible output:

PROGRAM SAMPLING INTERVAL MAS 20 MS; TOTAL NUMBER OF SAMPLES

MAS 9745.

DIRECT SAMPLES:

DO LOOP SAMPLES %UNIT %TOTAL

MAIM.9 613 100.00 6.35

MAIN.49 165 26.92 1.69 AHA

HAIN.41 46 7.48 0.77 H

HAIM.40 46 7.48 0.77 it

MAIM.27 35 5.69 0.51 it

MAIN.26 35 5.69 0.51 *

MAIM.24/200 35 5.69 0.51 *

MAIM.34/300 22 3.58 0.32

MAIM.33 22 3.58 0.32

MAIM.32 22 3.58 0.32

I 6. List the CALLED sampling count for the DO loop whose DO statement Is at
I ISN 53 In program unit LOLLI, and place the output In the print file.
I Ilstsamp 1o11i.53 doloop called print

Part Two. Command Reference 153

LISTSUBS

LISTSUBS

Tasks:

Specifying Output to a Print File {page 42)
Displaying Information about Debuggable Program Units (page 54)

Function: LISTSUBS displays a list of all VS FORTRAN program units compiled
with SDUMP, including those not listed in AFFON, with the following information
for each:

Compiler level used to produce the object code (if it can be determined)
Optimization level

•• Vectorization level

Hook existence

Timing status
•- Load status for units compiled with RENT

Abbreviation: LS

Syntax

LSTSUBS

[PRINT]

PRINT

specifies that output be sent to the print file instead of the terminal.

Sample output:

PROGRAM UNIT COHPILER OPT HOOKED TIMING

tIAIIILIHE VSF 2.3.0 V2 YES ON

SUBBUILO VSF 1.4.0 3 MO OFF

SUBDOWri VSF (TEST) 0 YES OFF

RENT NOT LOADED.

In the sample output above, VSF (TEST) means that the program unit was com
piled prior to VS FORTRAN Version 1 Release 4.0, and the TEST option was
specified. In this case, it is not possible to determine the VS FORTRAN release
level.

For non-vectorized programs, the "OPT" column displays the level of optimiza
tion: 0, 1, 2, or 3. For vectorized programs, the "OPT" column displays "V2."

YES means that hooks are installed at entry and exit points and possibly at
some or all statement boundaries as well. The hook settings are controlled by
the AFFON file. NO in the "HOOKED" column indicates that no hooks are

installed in the program unit.

ON in the "TIMING" column indicates that timing has been activated for the
program unit. The TIMER command is used to set timing ON or OFF.

The possible load status indications for RENT program units are:

RENT NOT LOADED The program unit has not yet been called, and has not
been located (although it may actually be in storage).

154 VS FORTRAN Version 2 Interactive Debug Guide and Reference

LISTSUBS

RENT IN USER AREA The program unit has been called and is in user-owned
storage.

RENT IN PROT AREA The program unit has been called and is in protected
storage.

Part Two. Command Reference 155

LISTTIME

USTTIME

Tasks:

Specifying Output to a Print File (page 42)
Program Unit Timing (page 66)
Vector Tuning Assistance (page 67)

Function: LISTTIME displays timing information for either program units or
analyzable DO loops. The following information is provided for each program
unit or DO loop:

Total time: total execution time.

% total: percentage of total execution time.
Invocations: number of invocations.

Timing information for program units also includes average time (calculated by
dividing the total time by the number of invocations).

Use the TIMER command (page 194) to activate, deactivate, or reset timing.

Abbreviation: LT

Format 1

— Syntax for Displaying Timing Information by Program Unit

LISTTIME

[PRINT]

Format 2

— Syntax for Displaying Timing Information by DO Loop

LISTTIME

{ [qual.]number[:[qual.]number] \ [qual.]* \ (list) \ }
DOLOOP

[PRINT]

PRINT

specifies that output be sent to the print file instead of the terminal.

[qua!.]
specifies a program unit name to temporarily override the current qualifier
for the prefixed operand only.

[qual.]number
specifies the statement label, ISN, or sequence number of the DO statement
for a DO loop whose timing is to be displayed. Qualification is optional. A
statement label must be prefixed with a slash (/).

[qual.]number.[qual.]number
specifies a range of statements in the program for which the timing for all
DO loops in the range is to be displayed. Qualification is optional. (A DO

156 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

LISTTIME

loop is in the range if the DO statement of the loop is in the range. All the
statements of the loop do not have to be in the range. The starting and
ending statement identifiers do not have to be DO statements.) Qualifica
tion is optional. Ifthe second qualifier is specified, it must be the same as
that specified or defaulted for the first qualifier.

[quair
specifies that the timing for all DO loops in the specified or currently quali
fied program unit is to be displayed.

list

specifies a list of individual DO loop specifications. Enclose the list in
parentheses and separate entries using commas or blanks.

specifies that timing for all DO loops in the program is to be displayed.

1. The timing information provided by Interactive Debug may include overhead
caused by the debugging hooks in your program. Thus, the timing informa
tion is not an accurate representation of the time it takes to run without
Interactive Debug.

To reduce DO loop timing distortion, restrict hooks in the program to only
DO loop analysis hooks. This can be done by creating an AFFON file for the
debugging session, with one entry of (ALL) * DOLOOP inside it.

2. DO loop timing cannot be performed on unanalyzable loops.

3. The program information for a program unit must have been successfully
obtained at initialization of the debugging session in order to time DO loops
in the program unit.

4. The DO statement for a DO loop must have been included in the AFFON
statement restriction list (page 43) for the program unit in order to display
timing for the loop.

5. A LISTTIME command with a specification list will run if one or more of the
DO statement identifiers in the list are valid.

6. If a DO loop has been distributed into several loops due to vectorization,
then all of the distributed loops are timed and the time is presented as if
the DO loop was not distributed.

7. Time is measured in microseconds. Average time is rounded to the
nearest microsecond. Percentages are rounded to the nearest hundredth of
a percent.

8. The execution times displayed are CPU times. The time may not include
time spent in paging and other operating system activities.

9. The accuracy of the times depends on CPU model and operating system.
The accuracy may be sensitive to system load.

10. Timing for very small subroutines may be erratic.

11. Timing is measured separately for each entry point in the program unit.

12. If LISTTIME is issued after an ENDDEBUG command, the times and acti
vation counts are those that existed when ENDDEBUG was issued.

Part Two. Command Reference 157

LISTTIME

Examples
1. Display timing information to the terminal for all program units.

1isttime

Possible output:

ENTRY POINT TOTAL TIME %TOTAL INVOCATIONS AVERAGE TINE
MAIN 54274 8.69 1 54274

1NITIALI ZE_OVERVI EWJYSTEH
3423 0.55 1 3423

FIELDS 52438 8.40 12 4370

FIELDS ALPHA 2432 0.39 24 101

FIELDS~BETA 23331 3.74 5 4666

XSORT 487391 78.05 563 866

FHALL 1142 0.18 2 571

Display timing information to the terminal for all DO loops.

listtime doloop

Possible output:

DO LOOP TOTAL TIME EXECUTIONS AVERAGE; TIME STATUS

MAIN.13 23421 1 23421 ON

INITIALIZEJVERVIEWJYSTEH. 122/10100
1342 1 1342 ON

FIELDS ALPHA.23 2234 24 93 OH

FIEL0S""aLPHA.24 1503 120 63 Oil

FIELDS~BETA.48 19231 5 3846 ON

FIELDS~BETA.49 10765 25 431 OFF

FIELDS~BETA.65 2342 5 468 ON

XSORT.T2 473223 563 841 OFF

XSORT.23 365253 251 1455 OFF

In interpreting the values in the EXECUTIONS column, consiC
lowing:

*• If a DO loop is divided into several loops due to vectorization, the
number of executions of the loop is the number of executions of the first
recurrence of the loop.

If the DO loop (or first recurrence) is nested in a vectorized loop, the
number of executions will be less than that obtained if the loop were
nested in a scalar loop. This is because the inner loop will be run only
once for each vector section processed by the outer loop.

If Z denotes vector section size, and N is the iteration count of the outer

loop, then the inner loop will be run INT {{N - 1) / Z) + 1 times for each
execution of the outer loop.

3. Display timing information for DO loops in subroutine SUBSEL.

It subsel.* d

158 VS FORTRAN Version 2 Interactive Debug Guide and Reference

LISTVEC

LISTVEC

Tasks:

Specifying Output to a Print File (page 42)
Vector Tuning Assistance (page 67)

Function: LISTVEC displays vector length and stride information. The LISTVEC
report contains:

»• the total number of executions of the DO loop

the average iteration count (length) of a DO loop
the compiler estimate for the iteration count
the average stride for each array indexed by the DO variable of the loop
the compiler estimates for these strides

Abbreviation: LV

— Syntax —— —

LISTVEC

{[qual.]number[:[qual.]number]
[TOP [(n)]]
[PRINT]

[qual.Y I {list) \ }

[quaL]number
is the statement label, ISN, or sequence number for a DO statement of a DO
loop for which vector information is to be displayed. A statement label
must be prefixed with a slash (/). qua! specifies a program unit name to
temporarily override the current qualifier for the prefixed operand only.

[qual.}number:[qual.]number
specifies a range of statements in the program for which the vector informa
tion for all DO loops in the range is to be displayed. (A DO loop is in the
range ifthe DO statement of the loop is in the range. All the statements of
the loop do not have to be in the range. The starting and ending statement
identifiers do not have to be DO statements.) If the second qua! is speci
fied, it must be the same as that specified or defaulted for the first qua!.

[qual.Y
indicates that the vector information for all DO loops in the specified or cur
rently qualified program unit is to be displayed.

list

is a list of individual DO loop specifications. Enclose the list in parentheses
and separate entries with commas or blanks.

• •

indicates that vector information for all DO loops in the program is to be
displayed.

TOP[(n)]
specifies that only array references with the highest n average strides are
to be displayed. (Since there may be more than one array reference with
the same stride, more than n array references may be displayed.) The ref
erences are listed in order from largest stride to smallest. Array references

Part Two. Command Reference 159

LISTVEC

Usage Notes

with the same stride are listed in order of statement appearance in the
source listing.

PRINT

indicates that output be sent to a print file (AFFPRINT) instead of the ter
minal.

1. Length and stride statistics are only available for DO loops that were
analyzable by the compiler. An error message is issued if the LISTVEC
command explicitly specifies a DO loop that was not analyzable. If a range
of DO loops is specified on the LISTVEC command, and a loop in the range
was not analyzable, then the message "NOT ANALYZABLE" appears in
place of length and stride information for the loop in the LISTVEC output.

2. The program information for a program unit must have been successfully
obtained at initialization of the debugging session in order to display length
and stride statistics for DO loops in the program unit.

3. VECSTAT must be issued to turn on length and stride recording before the
LISTVEC command can give useful information. If not, then the average
length, average stride, and number of invocations for the loop are set to
zero.

4. The DO statement for a DO loop must have been included in the AFFON
statement restriction list for the program unit in order to record run-time
vector information. If not, the message "NO HOOK" appears instead of
values for number of executions, average iteration count, and average
strides.

5. A LISTVEC command with a specification list runs if one or more of the DO
statement identifiers in the list are valid.

6. Length and stride statistics are updated during the execution of the DO
statement for the loop. Thus, if the user breaks at a statement in the
middle of the loop and performs a LISTVEC, the number of executions,
average iteration count, and average strides are already updated for that
execution of the loop.

7. Some strides for non-vectorized DO loops may not be obtainable at run
time. For such strides, the word "UNKNOWN" appears instead of a value
for the average stride in the LISTVEC output.

8. For the TOP{n) option, average strides marked "NO HOOK" or "UNKNOWN"
are not included.

9. A question mark (?) following a compiler estimate indicates that the value
could not be accurately determined at compile time. The estimate shown is
an arbitrary value that was chosen by the compiler for vector cost analysis.

10. If a DO loop has been distributed into several loops due to vectorization,
then length and stride information is collected for all of the distributed
loops, and presented as if the DO loop was not distributed.

11. DO loops are listed in the LISTVEC output in order of appearance in the
source listing. Array references for strides of a loop are listed in order of
statement appearance in the source listing. Multiple references in the
statement are not listed in any particular order.

12. The PURGE command can be used to terminate output of a LISTVEC
command after the output has been suspended by an attention interrupt.

160 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Examples

Sample Output

LISTVEC

1. Display length and stride information for all DO loops in the program.
LISTVEC

2. Display length and stride information for all DO loops in SUBR0UTINE1 from
statement label 10 to statement label 40.

LISTVEC SUBROUTIHEl./lO:/40

Below is an example of LISTVEC output for all DO loops of a program. The DO
statement identifier is listed first, followed by the number of executions,
average and estimated iteration counts, and a list of strides for each array ref
erence indexed by the DO variable of the loop.

In interpreting the values for the TOTAL NUMBER OF EXECUTIONS line, con
sider the following:

If a DO loop is divided into several loops due to vectorization, the number
of executions of the loop is the number of executions of the first recurrence
of the ioop.

If the DO loop (or first recurrence) is nested in a vectorized loop, the
number of executions is less than that obtained if the loop is nested in a
scalar loop. This is because the inner loop only runs once for each vector
section processed by the outer loop.

If Z denotes vector section size, and N is the iteration count of the outer
loop, then the inner loop runs INT ((N -1) / Z + 1 times for each execution
of the outer loop.

Part Two. Command Reference 161

LISTVEC

IVA04.7:

NOT ANALYZABLE

IVAQ4.10;

STATUS « ON

TOTAL NUMBER OF EXECUTIONS »

AVERAGE ITERATION COUNT

ESTIUATEO ITERATION COUNT -

STATEMENT ARRAY

V IVA04.12 A1

V IVA04.12 A1

V IVA04.12 C1

S IVA04.13 B1

S IVA04.13 B1

S IVA04.13 C1

IVA04.11:

STATUS - OH

TOTAL NUMBER OF EXECUTIONS »

AVERAGE ITERATION COUNT

ESTIMATED ITERATION COUNT °

75

13

20?

945

8

400?

AVG STRIDE

3

UNKNOWN

30

3

3

21

EST STRIDE

3

3?

4?

3

3

21

STATEMENT ARRAY AVG STRIDE EST STRIDE

s IVA04.12 A1 500 500

s IVA04.12 A1 500 500

s IVA04.12 C1 2500 400?

V IVA04.13 B1 500 500

V IVA04.13 C1 5500 5500

IVA04.20:

STATUS = OFF

TOTAL NUMBER OF EXECUTIONS = NO

AVERAGE ITERATION COUNT NO

ESTIMATEO ITERATION COUNT =

STATEMENT ARRAY

IVA04.21 A1

IVA04.21 B1

TALLY UP IVA STATISTICS.42:

status"- off
TOTAL NUMBER OF EXECUTIONS -

AVERAGE ITERATION COUNT

ESTIMATED ITERATION COUNT -

STATEMENT ARRAY

V TALLY_UP_IVA_STATISTICS.43
A1

V TALLY UP IVA STATISTICS.43

CALCULATED IVA GSTATS

HOOK

HOOK

20?

30

100

20?

Figure 41. Sample LISTVEC Output

AVG STRIDE

NO HOOK

NO HOOK

AVG STRIDE

1

EST STRIDE

1?

1?

EST STRIDE

1

1?

162 VS FORTRAN Version 2 Interactive Debug Guide and Reference

MOVECURS

MOVECURS (full screen mode only)

Usage Notes

Function; MOVECURS toggles the cursor between the command line and its
most recent position in the main debugging panel.

Abbreviation: MC

Syntax

MOVECURS

MOVECURS cannot be issued in: a command list, an IF command, an atten
tion exit, or a restart file.

You may find it convenient to set MOVECURS to a PF key. To do this,
specify KEYS on the command line. You will then see a list of all current PF
key assignments. You can change the CURSOR key (usually PF 12) to
MOVECURS by typing

HOVECURS;

next to the appropriate PF key number and pressing ENTER. Note a semi
colon must follow MOVECURS. For more information on PF keys, see page
19.

Part Two. Command Reference 163

NEXT

NEXT

Usage Notes

Examples

Tasks:

Controlling Program Execution (page 58)
Processing External Files (page 76)

Function: NEXT suspends program execution at the next statement, entry, or
exit with a debugging hook. Because some statements may not have been
included in the AFFON list or may have been collapsed, execution need not
necessarily be suspended at the next statement to be run.

Abbreviation: N

Syntax

NEXT

1. You are notified of the point where execution is suspended because of
NEXT.

2. NEXT suspension is not a breakpoint. It is not listed by LISTBRKS.

3. Certain commands are not allowed while I/O is active. When execution is

suspended for output, the NEXT command can be issued to cause'execution
to be suspended again after the completion of the I/O operation. At the
next statement boundary with a debugging hook, execution will be sus
pended, and you may issue other commands.

4. If the statement at which execution is to be suspended has a breakpoint set
with an AT command, including a command list that causes execution to
resume, the NEXT command will not cause execution to be suspended at
that statement.

5. NEXT is not permitted after the VS FORTRAN program has terminated.

6. The STEP command (page 189) can be issued to replace NEXT/GO combi
nations.

1. Suspend execution after executing one statement.

AT: MAIN.10

next

go

NEXT: MAIN.11

next

go 40
NEXT: MAIN.40

2. You are in an error exit, and want to suspend execution after having per
formed corrective action.

ERROR EXIT: ERROR 209 AT MAIN.11

next

f i xup
STAMOARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

NEXT: MAIN.12

164 VS FORTRAN Version 2 Interactive Debug Guide and Reference

OFF

OFF

Tasks: Using Cursor-Sensitive Commands (page 20)

Function: OFF removes breakpoints in the currently qualified program unit.

Abbreviation: None

—^ Syntax

OFF

{ [quaL]{number{:[qual.]number] \ ENTRY | EXIT}
I ' I (number/ENTRY/EXIT list) }

qua!.
specifies a program unit name prefix to temporarily override the current
qualifier. The program unit name is used for the prefixed operand only.

number

specifies the statement label. ISN, or sequence number of a single break
point you want to remove. Precede a statement label with a slash to distin
guish it from an ISN or sequence number.

number:[qual.]n umber
specifies a range ofstatement labels and/or statement numbers {ISNs or
sequence numbers). Breakpoints set at any statement within the range are
removed. Statement labels and statement numbers (ISNs or sequence
numbers) can be combined in the range. Precede each statement label
with a slash.

Statement identifiers can be qualified with a program unit name. The
default program unit for the first identifier is the current qualifier. The
default program unit for the second identifier is the program unit specified
or defaulted for the first identifier. Both identifiers must have the same
program unit in effect.

ENTRY

specifies that the entry breakpoint is to be removed.

EXIT

specifies that the exit breakpoint is to be removed.
*

specifies that all breakpoints will be removed from the qualified program
unit.

(number/ENTRY/EXIT list)
specifies a list ofstatement labels, ISNs or sequence numbers, entry points,
exit points, and ranges of numbers. Breakpoints set at each specified state
ment and within each range are removed. Enclose the list in parentheses,
and separate entries with commas or blanks. Precede each statement
label with a slash.

If the number of a statement that does not have a debugging hook is
entered in the number list, an error message is issued but breakpoints are
still removed from the remaining statements.

Part Two. Command Reference 165

OFF

Usage Notes

Examples

1. In full screen mode, OFF can be used as a cursor-sensitive command. If

the OFF command (with no parameters) is already assigned to a PF key,
place the cursor in the prefix area of the source window, and press the PF
key for OFF.

Instead of assigning a PF key to the OFF command, you can type the OFF
command in the prefix area, or you can type OFF on the command line and
move the cursor to the target statement number before pressing ENTER.

2. OFF is not permitted after the VS FORTRAN program has terminated.

1. Remove all breakpoints in the currently qualified program unit.

off *

2. Remove breakpoints at statement numbers 120 and 560 in program SUB1.

off (subl.120 subl.560)

3. Remove specific breakpoints in the currently qualified program unit.

off (20:80 /lOO EHTRY)

166 VS FORTRAN Version 2 Interactive Debug Guide and Reference

OFFWN

Usage Notes

Examples

Tasks: Controlling Program Execution (page 58)

Function: OFFWN turns off the monitoring of WHEN conditions.

Abbreviation: None

— Syntax —^——

OFFWN

{condition-name \ * | {condition-name-list)}

OFFWN

condition-name

specifies the 1- through 4-character name of a WHEN condition that Is cur
rently being monitored and that you want to stop monitoring.

turns off all WHEN condition monitoring.

{condition-name-list)
specifies a list of such WHEN condition names. Monitoring is stopped for all
of them. Enclose the list in parentheses, with individual names separated
by commas or blanks.

1. Use of OFFWN to turn off monitoring of a condition does not remove the
definition of the condition. Any condition can be reactivated by using the
WHEN command.

2. To see the currently defined conditions, use the LISTBRKS command.

3. OFFWN is not permitted after the VS FORTRAN program has terminated.

1. Stop monitoring all WHEN conditions.

offv/n *

2. Stop monitoring a certain WHEN condition called ABS.
offv/n abs

Part Two. Command Reference 167

POSITION

POSITION (full screen mode only)
Tasks:

Usage Notes

Example

Using Cursor-Sensitive Commands (page 20)
Changing the Way Your Windows Look (page 18)

Function: POSITION allows you to search for a line and place it at the top of a
specified window.

Abbreviation: POS

— Syntax

posmoN

number

number

specifies either a statement number (an ISN or sequence number), a log
line number, or a monitor line number to be used as the target.

4.

POSITION cannot be issued in:

tion exit, or a restart file.

a command list, an IF command, an atten-

Only the last 1000 lines of the log window and the first 1000 lines of the
monitor window are available for display during the debugging session. A
target located below the last 1000 lines will cause an error message to be
displayed.

Sequence numbers (in columns 73 through 80) can be used only for
program units that were compiled with VS FORTRAN Version 2 with the
SDUr^P(SEQ) option. In all other cases, ISNs must be used.

If you have MOVECURS; assigned to a PF key, you can type the POSITION
command on the command line. Then press the MOVECURS PF key to
move the cursor to its previous position in the main debugging panel, and
press ENTER to position the specified line at the top of the window.

Search for line number 100 in either the source, monitor, or log window,
depending on where the cursor is currently positioned, and place it at the top of
the window.

position 100

168 VS FORTRAN Version 2 Interactive Debug Guide and Reference

PREVDISP

PREVDISP (full screen mode only)

Usage Notes

Function: PREVDISP re-displays the previous panel displayed by the applica
tion program (if ISPF was used). The panels are saved automatically by ISPF,
and are re-displayed with an ISPF message "Saved Panel Display."

Warning: The variables in the program are actually reset to the values of the
variables in the previously displayed panel, (unless the application program has
used VDELETE for those variables). The information in a saved panel is re
displayed exactly as it appeared when the panel was originally displayed, and
may no longer be correct. You will not receive a message to remind you of
this, nor will the change in values be logged.

Abbreviation: PREV

— Syntax

PREVDISP

PREVDISP cannot be issued in:

tion exit, or a restart file.

a command list, an IF command, an atten-

2. If no previous panel exists, the first PREVDISP Help panel is displayed.

If the HELP panel is displayed, you cannot access the main menu or subse
quent panels.

3. The display of a previous panel is not an active display. For example, if you
re-display an EDIT session, you cannot edit the panel as if you were in an
editing session.

You can, however, change the values of application variables on a saved
panel display, but this is not recommended. The application program may
not be prepared to have the variables changed at that point.

4. GDDM must still be active to re-display a panel with a graphic area. If
GDDM is not active (for example, if GRTERM has been invoked), the graphic
area will be empty.

Part Two. Command Reference 169

PROFILE

PROFILE (full screen mode only)
Tasks: Changing the Way Your Debugging Session Runs (page 21)

Function: PROFILE displays a panel containing the settings for various parame
ters that affect the way your debugging session runs. The current settings are
shown for each parameter.

Abbreviation: None

— Syntax

PROFILE

The profile panel will contain the following initial settings:

VS FORTRAII INTERACTIVE DEBUG PROFILE

COHMAND ===>

CURRENT SETTING

STEP DELAY 56 (160 UNITS = 1 SECOND)
FREQUENCY COUNT DISPLAY YES (YES OR NO)
MONITOR LINE NUMBERS YES (YES OR NO)
LOG LINE NUMBERS YES (YES OR NO)
OUTPUT REFRESH VALUE 50 (1 TO 9999)

ENTER:

SAVE

RESET

END

TO SAVE YOUR PROFILE SETTINGS.

TO RETURN TO THE PREVIOUSLY-SAVED SETTINGS.

TO RETURN TO THE MAIN PANEL WITH SPECIFIED PROFILE

SETTINGS IN EFFECT.

Figure 42. Interactive Debug Profile Panel

The parameters displayed in the PROFILE panel are:

Step delay: Controls the pace of animation, measured in hundredths of a
second.

Frequency count display: Indicates whether the statement execution counts will
be shown in the source window.

Monitor line numbers: Indicates whether line numbers in the monitor window

will be displayed.

Log line numbers: Indicates whether line numbers in the log window will be
displayed.

Output refresh value: Indicates the number of output lines after which Interac
tive Debug will refresh the main debugging panel.

170 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

PROFILE

The following commands may be entered on the command line:

SAVE: saves the current settings in the profile.

RESET: restores the current settings to last saved settings, or the default set
tings if no previous save was done.

END or RETURN: changes the current settings without changing the profile set
tings. That is, unless a SAVE has been issued, these settings will remain in
effect for only the duration of the current debugging session.

1. PROFILE cannot be issued in: a command list, an IF command, an attention

exit, or a restart file.

2. Initially, the current setting for any of the parameters displayed will be the
same as your profile setting.

Part Two. Command Reference 171

PURGE

PURGE

Usage Notes

Example

Function: PURGE terminates the output of a single Interactive Debug command
after the output has been suspended by an attention interrupt. Subsequent
commands in a command list are not affected. Following the PURGE command,
resume execution by entering a null line.

Abbreviation: None

Syntax

PURGE

1. PURGE cannot be used to stop output being produced as a result of a VS
FORTRAN WRITE statement or a command in a static DEBUG packet.

2. PURGE cannot be used to stop output from the HELP command.

3. The terminal displays the results of commands more slowly than the
processor produces these results. This may cause the processor to begin
processing the command(s) following the one displayed on the terminal at
the same time the null line (ATTN) was issued. In this case, PURGE may
not have the desired results.

4. PURGE has no effect outside an attention exit.

The following AT command list is being run:

at 100 (list a% set i=0%list b% where% go)

A contains 1000 elements. When A starts to be displayed, stop the display
before its completion.

Press ENTER (or ATTN)
purge

This sequence suppresses the output of A. When a null line is entered, exe
cution will resume with the next command in the command list (set i=0).

172 VS FORTRAN Version 2 Interactive Debug Guide and Reference

QUALIFY

Usage Notes

Examples

QUALIFY

Tasks: Referring to Statements or Variables in Other Program Units (page 54)

Function: QUALIFY changes or displays the current qualification. This
command allows you to change the default qualification that determines which
program unit any unqualified statement or variable references apply to.

Abbreviation: Q

— Syntax

QUALIFY

[program-unit-name]

program-unit-name
specifies the name of the main program or subroutine, or the name of a
function subprogram.

1. The QUALIFY command remains in effect until the next QUALIFY command,
or until execution is resumed. When execution is resumed, the current

qualification is reset to the executing program unit.

2. If QUALIFY is not entered, it is assumed that any Interactive Debug com
mands apply to the currently executing program unit (except for individually
qualified operands).

3. QUALIFY command specified without the program unit parameter will
display the name of the currently qualified program unit.

4. QUALIFY is not permitted as the command specified in an IF command.

5. To qualify an individual VS FORTRAN variable, place the variable name
after the name of the program unit.

list subl.x

6. To qualify an individual statement identifier, place the number or statement
label after the name of the program unit. The statement label must be pre
ceded by a slash.

at subl./50

1. Display the value of all the variables in subroutine SUB1 while execution is
suspended at a breakpoint in the main program.

qualify subl
list *

2. Display the name of the currently qualified program unit.

qualify

Part Two. Command Reference 173

QUIT

QUIT

Usage Notes

Function: QUIT allows you to exit Interactive Debug.

Abbreviation: None

— Syntax —

QUIT

1. IfQUIT is issued following an attention interrupt, your program will be ter
minated. You may then issue certain Interactive Debug commands {for
example, LIST) before returning to ISPF, CMS, or TSO. You must issue
another QUIT to terminate the session.

2. Commands following QUIT in a command list are ignored.

3. The ISPF END command cannot be used to terminate a debugging session.
The QUIT command must be used. This is designed to avoid accidentally
terminating a debugging session with PF key 3.

174 VS FORTRAN Version 2 Interactive Debug Guide and Reference

RECONNECT

Usage Notes

Example

RECONNECT

Tasks: Processing External Files (page 76)

Function: RECONNECT resets a file to its original (preconnected) condition.
This may be necessary if you have used the CLOSE command or your program
has run a CLOSE, and you wish to make it possible for the program to do addi
tional I/O to the preconnected file.

Abbreviation: RECONN, RECONNEC

Syntax

RECONNECT

{number | [qual.]integer-variable \ [qual.]}nteger-array-element}

number

is the number of the I/O unit associated with the sequential file on which
the reconnect is to be performed.

[qual.ynteger-variable
is the name of an integer variable in the VS FORTRAN program. This vari
able specifies the number of the I/O unit associated with the sequential file
on which the reconnect is to be performed.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the
sequential file on which the reconnect is to be performed.

1. number, integer-variable, or integer-array-element must be specified; there
is no default number.

2. This command may not be issued when I/O is currently active.

3. RECONNECT is only necessary if the OCSTATUS run-time option is in effect
and you wish to allow your program to perform additional I/O on a file that
has been closed, without running another OPEN.

4. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus {or minus) a
constant." For example, the following are valid:

ARY(J), ARY(3), ARY(J+3) or ARY(J-3)

Reconnect the sequentially accessed external file associated with I/O unit 8.

reconnect 8

Part Two. Command Reference 175

REFRESH

REFRESH (full screen mode only)

Usage Notes

Example

Function: REFRESH controls whether or not the Interactive Debug panel is
completely refreshed when Interactive Debug panels are displayed.

If you have applications that do full screen I/O without using ISPF, there may be
changes to the screen contents that ISPF is not"aware of, and portions of the
application display may remain on the screen. REFRESH is helpful in these sit
uations.

Abbreviation: None

Syntax

[ONIOFF]

ON

indicates that every display of an Interactive Debug panel should rewrite the
entire screen.

OFF

indicates that ISPF does not need to rewrite portions of the screen that
already seem to have the proper contents. This is the initial setting for
REFRESH.

1. REFRESH cannot be issued in: a command list, an IF command, an atten
tion exit, or a restart file.

2. When refresh is on, animation is less smooth because the entire screen is
refreshed for each step. The screen may appear to flash each time.

3. Response time may increase for remote terminals when refresh is on.

4. Entering REFRESH without a parameter queries the status of REFRESH.

Query the current status of REFRESH:

refresh

176 VS FORTRAN Version 2 Interactive Debug Guide and Reference

RESTART

RESTART (full screen mode only)

Usage Notes

Example

Function: RESTART allows you to restart a debugging session in full screen
mode without clearing the log file. The variable values are all cleared unless
they are in dynamic commons. The VS FORTRAN program restarts at the first
executable statement. Any new log information is appended to the existing log
file.

Abbreviation: None

— Syntax

RESTART

1. RESTART cannot be Issued in: a command list, an IF command, an atten

tion exit, or a restart file.

2. When RESTART is issued, breakpoints and the settings for WHEN condi
tions, HALT status, and AUTOLIST window, are reset. The TIMER status is

turned off and all times are cleared.

3. In TSO, you can recompile a program unit using a split screen, then issue
RESTART to restart the debugging session using the new object deck. {This

is not possible in CMS.)

4. The AFFON and AFFIN files are re-read when you issue RESTART. If you
have modified these files (for example, in a split-screen edit session), the
new files are used.

Restart a debugging session in full screen mode, but retain the current log file.

restart

Part Two. Command Reference 177

RESTORE

RESTORE (full screen mode only)
Function: RESTORE is used to restore the source window to the last point of
execution.

Abbreviation: RES

Syntax

RESTORE

Usage Notes
1. RESTORE cannot be issued in: a command list, an IF command, an atten

tion exit, or a restart file.

2. Ifthe source window is open and the listing is available, the source window
is restored to the pointof execution with the current statement highlighted.

3. Ifthe currently qualified program unit is different than the program unit
where execution was suspended, the currently qualified program unit is
reset.

178 VS FORTRAN Version 2 Interactive Debug Guide and Reference

RETRIEVE

RETRIEVE (full screen mode only)

Usage Notes

Function: RETRIEVE is used to re-display up to the last twelve Interactive
Debug commands entered on the command line.

RETRIEVE also displays commands that are partly specified on the command
line and partly specified by a PF key. For example, if you type PAGE on the
command line and press PF8 (initially set to the DOWN command), and then
enter RETRIEVE, the following appears on the command line:

down page

Abbreviation: None

Syntax

RETRIEVE

1. RETRIEVE cannot be issued in: a command list, an IF command, an atten

tion exit, or a restart file.

2. Commands issued before a RESTART command cannot be retrieved.

3. If you are using ISPF Version 2 Release 3 or later, RETRIEVE will behave
differently:

RETRIEVE will re-display Interactive Debug as well as ISPF commands.
»• Commands entered by PF key are not re-displayed. For example, if you

type PAGE on the command line and press PF8 (initially set to the
DOWN command), and then enter RETRIEVE, the following appears on
the command line:

page

The number of commands that RETRIEVE can re-display depends on the
size of the stack allocated by your system programmer.

Part Two. Command Reference 179

REWIND

REWIND

Usage Notes

Tasks: Processing External Files (page 76)

Function: REWIND positions a sequentially accessed external file at the begin
ning of the first record. Its usage is similar to that of the REWIND statement in
the VS FORTRAN Version 2 language, allowing you to move to the beginning of
the file.

Abbreviation: REW

— Syntax — ——

REWIND

{number \ [qual.]integer-variable \ [qua/.]//?feger-array-e/e/77enf}

number

is the number of the i/0 unit associated with the sequential file that is to be
rewound.

[qual.ynteger-variable
is the name of an integer variable in the VS FORTRAN program. This vari
able specifies the number of the I/O unit associated with the sequential File
that is to be rewound.

[qual.ynteger-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the
sequential file that is to be rewound.

1. number, integer-variable, or integer-array-eiement must be specified; there
is no default number.

2. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a
constant." For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)

are valid forms.

3. This command may not be issued when I/O is currently active.

4. VS FORTRAN Version 1 and VS FORTRAN Version 2 support multiple files
under the same I/O unit. The REWIND command sets the VS FORTRAN file

name to the first in the sequence of files for the specified I/O unit. For
example, if you were currently processing file FT08F003 on I/O unit 8, and
entered:

rewind 8

I/O unit 8 would be connected to file FT08F001, which would be positioned at
the beginning of the first record.

180 VS FORTRAN Version 2 Interactive Debug Guide and Reference

REWIND

Example
Rewind the sequentially accessed external file associated with logical unit 4 so
that it may be rewritten,

rewind 4

Part Two. Command Reference 181

RIGHT

RIGHT (full screen mode only)
Tasks:

Usage Notes

Example

Changing the Way Your Windows Look (page 18)
Using Cursor-Sensitive Commands (page 20)

Function: RIGHT scrolls the contents of a window so that columns to the right
of those currently displayed in the window can be seen.

Abbreviation: None

Syntax

RIGHT

[number \ PAGE | HALF | GSR | DATA | MAX]

number

is the number of columns to scroll right, from 1 to 9999.

PAGE (or P)
scrolls right by the number of columns in the window.

HALF (or H)
scrolls right by half the number of columns in the window.

GSR (or G)
scrolls right by PAGE, unless the cursor is in the window, in which case the
window is scrolled right by the appropriate number of columns to place the
cursor at the edge of the window.

DATA (or D)
scrolls right by PAGE-1 number of columns. If only one column is visible,
the scrolling is equivalent to that of PAGE.

MAX (or M)
scrolls right so that the rightmost column of the window will contain the
rightmost column of the contents for the window.

1. RIGHT cannot be issued in: a command list, an IF command, an attention

exit, or a restart file.

2. RIGHT is cursor-sensitive. The window that is scrolled is determined from

the cursor position and the windows currently open.

3. If an operand is not specified with RIGHT, the scrolling amount is taken
from the SCROLL ===> field on the main debugging panel.

Scroll right by the number of columns visible in the window.

right p

182 VS FORTRAN Version 2 Interactive Debug Guide and Reference

SEARCH

SEARCH (full screen mode only)
Tasks: Using Cursor-Sensitive Commands {page 20)

Function: SEARCH searches a window for a given character string.

Abbreviation: None

— Syntax ——

Usage Notes

SEARCH

Istringil]

string
specifies a character string to be searched for. The search is not case sen
sitive, so your string can be found in any combination of upper or lower
case.

You can use any non-blank character as a delimiter. A slash (/) is shown in
the syntax above.

The initial and final delimiter must be the same character. The final delim

iter is required if the search string contains trailing blanks. In all other
cases, it is optional.

1. SEARCH cannot be issued in: a command list, an IF command, an attention
exit, or a restart file.

2. SEARCH is a cursor-sensitive command. After typing SEARCH followed by
the string on the command line, position the cursor in the desired window
and press ENTER.

3. The search is performed starting at the top line displayed on the screen.
However, if a search is done immediately after a search, the second search
begins at the location of the last-found search argument.

4. When searching the log, only the last 1000 lines of the log are available.

5. If the search reaches the bottom of the window and wraps around to the
beginning of the window, the message "SEARCH CONTINUED FROM THE
TOP OF AREA" is displayed in the upper right corner of the screen.

6. If you search without a parameter, the most recent character string used as
a target is searched for again.

7. If you have

HOVECURS;

assigned to a PF key, you can type the SEARCH command on the command
line. Then press the MOVECURS PF key to move the cursor to its previous
position in the main debugging panel, and press ENTER to search the
window.

8. If the search string contains double-byte characters and the DBCS option Is
in effect, highlighting of the search string is suppressed, but the cursor is
still positioned in the window at the beginning of the string.

Part Two. Command Reference 183

SEARCH

Example
Search for the character string VM/CMS, using a question mark as the delim
iter.

search 7VH/CHS?

184 VS FORTRAN Version 2 Interactive Debug Guide and Reference

SET

Usage Notes

SET

Function: SET changes the value of a variable, array, array element, or group
of array elements.

Abbreviation: S

— Syntax

SET

[qual.]name = value[,value...]

qua!.
specifies a program unit name to temporarily override the current qualifier
for the prefixed name only.

name

specifies the name of a variable, array, or array element.

value

is the value to be assigned to a single variable or single array element. A
group of values (separated by commas or blanks) can be assigned to an
entire array or part of an array. A value can also be another qualified vari
able name or array element, and can be prefixed by a numeric replication
factor.

1. Valid SET command assignments for the different types of names are shown
in Figure 43. All names can be qualified.

2. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a
constant." For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)

are valid forms.

3. No arithmetic operations (except negation) are allowed in the value assign

ments; for example, SET A = B + 4 is not allowed.

4. Upper- and lowercase character constants may be entered at the terminal.
They must be enclosed in single quotation marks when entered, but the
enclosing single quotation marks are removed before the assignment is
performed. If a single quotation mark is to be assigned as part of the char
acter constant, two single quotation marks must be entered; for example:

set c»" "

sets C to a single quotation mark. Character strings are truncated or
extended with blanks to match the length of the receiving character variable
or array element.

Part Two. Command Reference 185

SET

Name Set Type of Value Example

Real,
Integer,
or

Complex
scalar

= Another scalar variable

An array element

A constant

ALPHA = BETA

ALPHA =-BETA

ALPHA = A(3)
ALPHA = -A(3)
NUM = 7

Logical = Another logical variable
An array element

A logical value

LOG1=LOG2

LOG1 = LOG(2)
LOG = .TRUE.

Character = Another character variable

An array element
A character constant

A substring

CHAR1=CHAR2

CHAR1=CHAR(2)
MSG ='HELLO'

A(1:3) = 'ABC'

Array
element

= Another array element

A scalar variable

A constant

A(4) = B(1)
AR(2,2) = -AR(5,5)
C(7) = RATE
C(8) = -TIME
D(l,J) = 0.0

Contiguous
array

elements

= Value,value,...

(Values can be variables,
array elements, or
constants: multiple

assignments of a value
can be entered as

n'value.)

A = 3*1.0,4*0.0,

7.2,5.,ACCL,

8.5E9

B(J,K) = 'C',
3*'Q',2*,'X'

Figure 43. Valid SET Command Assignments

In assigning values to contiguous array elements, values may be repeated
sinn tho notation n*\/aliia Por avamnir

o. in assigning vaiues lu cunuguuus urray ei

using the notation n'value. For example,

set ary=10M

sets the first 10 elements of the array ARY to 4.

6. In assigning values to contiguous array elements, elements can be omitted
by using the asterisk notation with no value following the asterisk. For
example, a single omission is entered as 1", and a multiple omission might
be entered as 3* (this would leave three successive elements of the array
unchanged).

7. Substring notation is permitted with string variables.

8. On the right side of the " = " sign, an array reference can have subscripts
that exceed the bounds of the dimensions. A warning message will be
issued except for the special case where only the last dimension is
exceeded, and that dimension is or "1."

9. An assumed size array is not set unless a specific element or range of ele
ments is specified. An assumed size array is an array with the last
upperbound declarator specified as an asterisk (*). Results are unpredict
able if you SET array elements beyond the end of the original array.

10. Dummy arguments can only be used or set when the program unit in which
they are defined is active. (Note that a program unit is not yet active when
suspended at entry.) If this rule is violated, you will get an error message.

11. Variables in a dynamic common can only be used or set after the program
unit used to qualify the variable has been activated at least once. If this
rule is violated, you will get an error message.

12. When setting a variable, results are unpredictable if:

186 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Examples

SET

More values are specified than will fit in an assumed-size array or an
array whose, last dimension is "1."

The right hand side contains an array reference whose subscripts are
not all within the array dimensions. You will get a warning message in
this case.

The right-hand side of the statement contains an inaccessible variable.
You will get an error message in this case.

1. Change the values of several variables.

set jt=8.9e+7
set m=-int

set a(3)=b(5)
set c(i,2)=4.1
set d(10)=xray
set a(i-l,3)=b(4,j+6)
set inain.x=subl.x

set quote='he said: "bye, bye."'

2. Set the ten elements of array DH to 0, 0, 0, .666, .21E-08, 1.0, 0, 0, 0, 0.

set dh=3*0.0,.666,.21e-8,1.0,4*0.0

3. Set the second element of array DATA to 0, leave the third element
unchanged, set the fourth through eighth elements to 1.0, and leave all
other elements unchanged.

set data(2)=0,l*,5*1.0

4. Set the third through the fifth characters of character string E423 to 'ABC.
set 6423(3:5) ='ABC

Part Two. Command Reference 187

SIZE

SIZE (full screen mode only)
Tasks:

Usage Notes

Changing the Way Your Windows Look (page 18)
Changing the Window Configuration (page 21)

Function: SIZE is used to re-size the windows on the main debugging panel.
Cursor position is used to determine the size of the window specified by SIZE:

If the cursor is in the specified window, the window is reduced to the cursor
position.

If the cursor is not in the specified window, the window is enlarged to the
cursor location.

The size of the other windows are adjusted accordingly.

Abbreviation: None

[SOURCE 1 MONITOR | LOG]

SOURCE I MONITOR | LOG
specifies that either the source, monitor, or log window is to be sized.

1. SIZE cannot be issued in: a command list, an IF command, an attention
exit, or a restart file.

2. The minimum window height is one row and the minimum window width is
seven columns.

3. To save re-sized windows, specify WINDOW SAVE (page 206) on the
command line after using SIZE.

4. If SIZE is specified with no parameters, the window border that is closest to
the current cursor position will move to that position.

188 VS FORTRAN Version 2 Interactive Debug Guide and Reference

STEP

Usage Notes

STEP

Tasks: Animating the Execution of Your Program (page 73)

Function: STEP runs one or more FORTRAN statements and then gives control
back to you. STEP is similar to a series of NEXT and GO command pairs.

In full screen mode, STEP execution is automatically animated if the source
listing is available to Interactive Debug. Animated execution means that the
source window is refreshed at each statement boundary where a hook exists,
and the current statement is highlighted. Highlighting is determined by the
COLOR settings. The monitor window will also be updated, or refreshed as
necessary at each debugging hook.

Abbreviation: ST

Syntax

[number]

number

specifies the maximum number of hooked statements to be run before exe
cution stops. The number must be a positive integer. The default is one.

1. To change the pace of animation, use the PROFILE command (page 170).
When the profile panel is displayed, change the STEP DELAY field.

2. The STEP command itself causes your program to resume execution. You
do not need to use a GO command.

3. If any of the following conditions occur, STEP execution will terminate
before the STEP count runs out:

A breakpoint is encountered.

A WHEN condition is satisfied.

The HALT status is satisfied.

An error condition is detected.

Terminal input occurs with TERMIO IAD in effect.
An attention is issued.

The program terminates.

4. If STEP processing ends after finding one of the above conditions or after
reaching the end of the step count, you cannot resume STEP. You must
issue a new STEP command.

5. If a STEP command is terminated because of a terminal READ, a NEXT will

be forced at the next hooked statement.

6. If STEP is issued within a command list, the remainder of the list is ignored.

7. STEP counts only those statements that have debugging hooks. Thus, STEP
may run many statements before stopping. Statements that have been col
lapsed and statements not included in the AFFON statement list are not
counted and execution does not stop.

Part Two. Command Reference 189

STEP

Example

8. STEP is not permitted after the VS FORTRAN program has terminated, or
while a READ is pending. If issued in an error exit, standard corrective
action is taken.

9. The service routine CPUTIME cannot be used while animation is in

progress. For more information on CPUTIME, see VS FORTRAN Version 2
Language and Library Reference.

Run the next 12 hooked statements before suspending execution:

step 12

190 VS FORTRAN Version 2 Interactive Debug Guide and Reference

SYSCMD

Usage Notes

Examples

SYSCMD

Tasks: Using System Commands (page 78)

Function: SYSCMD runs system commands during an Interactive Debug
session. SYSCMD can also be included in a command list and on the IF
command.

Abbreviation: SYS. CMS, TSO

— Syntax

SYSCMD

[system-command]

system-command
is a CMS or TSO system command to be run.

1. Caution should be observed when issuing commands that would cause the
currently executing program to be overlaid. For example, a CMS LOAD
command with the CLEAR option could cause Interactive Debug and the VS
FORTRAN application program to be erased from storage.

2. (CMS) If the system command is omitted, the standard CMS SUBSET will
be entered. In this mode, CMS commands may be issued and Interactive
Debug will not regain control until the RETURN command is issued. CMS
commands issued in this mode (or specified with the SYSCMD command)
are limited to those commands allowed in CMS SUBSET mode.

3. (TSO) If the system command is omitted, a special command entry mode
will be entered. Interactive Debug will produce the message,

ENTER A TSO CGMHAND OR A NULL LINE

In this mode, TSO commands may be issued and Interactive Debug will
pass them along to TSO until a null line is entered.

4. In order to use SYSCMD in batch mode on MVS, it is necessary to run a
TSO Terminal Monitor Program (TMP).

5. In batch mode, the system command must be specified, and must not be a
command that requires interaction. Interactive Debug cannot guard against
system commands that require interaction during a batch session; this is
your responsibility.

1. (CMS) List the files that have been allocated:
syscmd q filedef

2. (TSO) List the data sets that have been allocated;
syscmd listalc status

Part Two. Command Reference 191

TERMIO

TERMIO

Tasks; Entering Terminal Input (page 78)

Function: TERMIO allows you to select the I/O routines that you want to use for
terminal I/O for your VS FORTRAN program. You can select either the Interac
tive Debug I/O routines, or the VS FORTRAN library routines.

You can also use TERMIO to send a copy of batch mode output to a user as
message text. To query the current settings, enter TERMIO with no operands.

Abbreviation: None

— Syntax

TERMIO

riAD I LIBRARY]
[MSG [{userid)} \ NOMSG]

IAD i LIBRARY
IAD indicates that terminal I/O is to be performed using the Interactive
Debug I/O routines. The Interactive Debug I/O routines combine input and
output from the VS FORTRAN program with Interactive Debug input and
output. You must precede terminal input with a percent sign (%) to distin
guish it from Interactive Debug commands.

This is the initial setting.

In full screen mode or batch mode, terminal input and output are included
in the log file. This includes library error messages.

LIBRARY indicates that terminal I/O is to be performed using the VS
FORTRAN library routines. The library I/O routines cause output from the
VS FORTRAN program to be displayed as it would be if the program were
not being debugged.

Terminal input and output are not included in the log file. In full screen
mode, a request for terminal input causes the screen to be cleared and the
keyboard to be unlocked. Terminal output is written on a blank screen.

MSG [{userid)] | NOMSG
In batch mode only, MSG indicates that a copy of each line of Interactive
Debug input and output is to be sent to the specified or defaulted user ID as
message text.

userid specifies the user ID to which message text is to be sent. If this
operand is omitted, it defaults to the previously established user ID (if one
exists), or to the submitter's user ID if available. The operand is required if
the submitter's user ID is not available and no user ID has been previously
established.

The default user ID is obtained from the JOB card information in MVS, if

available. In CMS, no default user ID is available.

NOMSG specifies that Interactive Debug input and output are not to be
copied as message text.

192 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

Examples

TERMIO

1. When no operands are specified, the current TERMIO setting is displayed.

2. This command does not affect I/O operations other than those requested by
the VS FORTRAN application program. This implies that, if Interactive
Debug is running in ISPF, a specification of LIBRARY will cause any applica
tion program terminal I/O operation to occur in line mode. At the com
pletion of the I/O operation, full screen operation Will resume.

3. When running in batch mode on MVS, a VS FORTRAN program has no real
terminal inputs or outputs. You can simulate these terminal inputs and
outputs by specifying one or more units on the DEBUNIT run-time option for
your VS FORTRAN program. If you do not specify the DEBUNIT option, the
IAD/LIBRARY operand has no effect on program I/O.

4. Whenever character data is entered, Interactive Debug I/O routines change
it to uppercase. If mixed-case input is required (and supported by the host
system), the library I/O routines must be used.

5. If output cannot fit on one line in whatever mode Interactive Debug is oper
ating, it is split across multiple lines. The lengths of these lines are 60
characters if Interactive Debug I/O routines are used. When the library rou
tines are used, I/O operations produce the same results as would be
produced if the program were run without Interactive Debug.

6. When TERMIO IAD is in effect, any continuation line that begins with leading
blanks must be prefixed with a quotation mark {"). The quotation mark will
not be passed to the program.

1. Specify that Interactive Debug routines are to be used for subsequent I/O
requests of the VS FORTRAN program.

termio iad

2. Display the current setting of the terminal I/O mode.

termio

3. Specify that Interactive Debug input and output are to be echoed to user ID
"SMITH" (in batch mode).

termio msg(smith)

Part Two. Command Reference 193

TIMER

TIMER

Tasks:

Program Unit Timing (page 66)
Vector Tuning Assistance (page 67)

Function: TIMER activates, deactivates, and resets the timing of program units
or DO loops. Timing must be activated in order for a program unit or 00 loop
to be timed when invoked. The LISTTIME command displays the timing infor
mation.

Abbreviation: None

Format 1

— Syntax for Timing a Program Unit

TIMER

{ * I program-unit-name \ {program-unit-name-list) }
[ON I OFF I RESET]

Format 2

— Syntax for Timing a DO Loop

TIMER

{ [qual.]number: [qual.]number j [qua!.]* j {list) j }
DOLOOP

[ON I OFF I RESET]

specifies that the command applies to all debuggable program units.

program-unit-name
specifies an individual program unit.

program-unit-name-list
specifies a list of program unit names. Enclose the list in parentheses and
separate entries with commas or blanks.

[qua!.]

specifies a program unit name to temporarily override the current qualifier
for the prefixed operand only.

[qual.}number
specifies the statement label, ISN, or sequence number of the DO statement
for a DO loop for which timing is to be activated, deactivated, or reset.
Qualification is optional. A statement label must be prefixed with a slash

(/).

[qual.}number:[qual.]number

specifies a range of statements in the program for which the timing for all
DO loops in the range is activated, deactivated, or reset. (A DO loop is in
the range if the DO statement of the loop is in the range. All the statements

194 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

TIMER

of the loop do not have to be In the range. The starting and ending state
ment identifiers.do not have to be DO statements.) Qualification is optional.
If the second qualifier is specified, it must be the same as that specified or
defaulted for the first qualifier.

[qual.Y
specifies that the timing of all DO loops in the specified or currently quali
fied program unit is activated, deactivated, or reset.

list

specifies a list of individual DO loop specifications. Enclose the list in
parentheses and separate entries using commas or blanks.

* *

specifies that timing for all DO loops in the program is activated, deacti
vated, or reset.

DOLOOP

indicates that timing for DO loops, not program units, is to be measured.

ON I OFF I RESET
specifies that timing is to be activated, deactivated, or reset to zero for the
specified program units {format 1) or DO loops {format 2). OFF is the initial
setting for TIMER.

1. Timing is cumulative. Timing values are only reset by specifying RESET.

2. The time for a routine is measured beginning at the entry point and ending
at the exit. If a call is made to another routine for which TIMER is on, the
time spent in the second routine {and lower-level routines) is not included
in the measurement for the first routine. However, time spent in called {and
lower-level) non-timed routines is included in the measurement for the
calling routine. Forexample, if program Acalls program B and you do not
want the time in B to be included in the timing of A, you must specify: TIMER
(A,B) ON. Program B must be debuggable.

3. In MVS, timing measurements will be incorrect if your program uses the
STIMER macro, or if it uses a system service that calls STIMER. This
includes the BTAM OPEN and LINE OPEN operations, and Dynamic Allo
cation.

4. Timing for very small routines may be erratic.

5. The timing information provided by Interactive Debug includes overhead
caused by the debugging hooks in your program. Thus, the timing informa
tion is not a completely accurate representation of the time it takes to run
without Interactive Debug.

However, the overhead is consistent. Therefore, you can use program unit
and DO loop timing to measure changes to run times due to vector tuning
efforts.

To get the most accurate timing information for program units, place hooks
only at entry and exit of the program unit. This can be done by specifying
this in the AFFON file:

(all) entry

Part Two. Command Reference 195

TIMER

Examples

Likewise, to get the most accurate timing information for DO loops, specify
this in the AFFON file:

(all) * doloop

6. The ENDDEBUG command turns timing off for all program units and DO
loops.

7. TIMER is not permitted after the VS FORTRAN program has terminated.

8. Timing is measured separately for each entry point into the program unit.

9. The service routine CPUTIME cannot be used while timing is in progress.
For more information on CPUTIME, see VS FORTRAN Version 2 Language
and Library Reference.

10. Format 2 only:

- DO loop timing cannot be performed on unanalyzable loops.

" The program information for a program unit must have been success
fully obtained at initialization of the debugging session in order to time
DO loops in the program unit.

• The DO statement for a DO loop must have been included in the AFFON
statement restriction list for the program unit in order to time the loop.

If a DO loop has been distributed into several loops due to
vectorization, then all of the distributed loops are timed and the time is
presented as if the DO loop was not distributed.

1. Turn timing on for program units MAIN and SUB2:

timer (tnain,sub2)

2. Reset timing to zero for program unit MAIN:

timer main reset

3. Turn timing off for all debuggable program units:

timer * off

4. Activate timing for all DO loops in the program:

timer *.* doloop on

5. Reset timing for DO loops in the ISN range 12 to 44 in program unit
PLACES.

timer'places.12:44 doloop reset

196 VS FORTRAN Version 2 Interactive Debug Guide and Reference

TRACE

Usage Notes

TRACE

Tasks:

Specifying Output to a Print File (page 42)
Tracing Program Execution {page 71)

Function: TRACE starts or stops tracing of the flow of the program as it runs.
You can trace each transfer of control in the program, trace just entries to and
exits from debuggable subroutines, or determine the current trace status.

Abbreviation: T

— Syntax

TRACE

[GOTO I ENTRY | OFF]
[PRINT]

GOTO I ENTRY | OFF
GOTO specifies that a record of each apparent branch taken within the
program is to be created. GOTO produces a listing showing a statement
label or statement identifier for the origin and destination of each transfer
made, including entries to and exits from debuggable subroutines.

ENTRY specifies that only a record of entries to and exits from debuggable
subroutines is to be produced.

OFF turns off tracing that you previously initiated.

PRINT

specifies that output be sent to a print file (AFFPRINT) instead of the ter
minal.

1. Tracing continues until turned off, or altered by another TRACE command,
or an ENDDEBUG command is issued.

2. TRACE operations apply to all debuggable program units.

3. TRACE GOTO issues a trace message if two consecutively executed debug
ging hooks are not on consecutively stored statements. This also occurs if
statements have been collapsed or vectorized, or have no debugging
hooks.

4. TRACE is not permitted after the VS FORTRAN program has terminated.

5. If no operand is specified, TRACE issues a message describing the current
trace status.

Part Two. Command Reference 197

TRACE

Examples
1. Trace each program transfer, and have the trace output sent to the print

data set Instead of to the terminal.

trace goto print

2. Discontinue tracing entirely.

trace off

3. Trace only the calls to and returns from subroutines and functions.

trace entry

198 VS FORTRAN Version 2 Interactive Debug Guide and Reference

UP

UP (full screen mode only)
Tasks:

Usage Notes

Example

Changing the Way Your Windows Look (page 18)
Using Cursor-Sensitive Commands (page 20)

Function: UP scrolls the contents of a window so that lines above those cur

rently displayed in the window can be seen.

Abbreviation: None

[number \ PAGE | HALF | GSR | DATA | MAX]

number

is the number of lines to scroll up, from 1 to 9999.

PAGE (or P)
scrolls up by the number of lines in the window.

HALF (or H)
scrolls up by half the number of lines in the window.

GSR (or G)
scrolls up by PAGE, unless the cursor is in the window, in which case the
window is scrolled up by the appropriate number of lines to place the
cursor at the edge of the window.

DATA (or D)
scrolls up by PAGE-1 number of lines. If only one line is visible, the
scrolling is equivalent to that of PAGE.

MAX (or M)
scrolls up so that the uppermost line of the window will contain the top-of-
data marker (see page 15).

1. UP cannot be issued in; a command list, an IF command, an attention exit,

or a restart file.

2. UP is cursor-sensitive. The window that is scrolled is determined from the

cursor position and the windows currently open.

3. If an operand is not specified with UP, the scrolling amount is taken from
the SCROLL ===> field on the main debugging panel.

Scroll up by half the number of lines visible in the window.

up half

Part Two. Command Reference 199

VECSTAT

VECSTAT

Tasks: Vector Tuning Assistance (page 67)

Function: VECSTAT is used to activate, deactivate, or reset DO loop length and
stride recording.

Abbreviation: VEC

— Syntax

VECSTAT

{ [qual.}number{:[qual.]number] \ [qual.]* I {list) | }
[ON I OFF I RESET]

[qual.yiumber
is the statement label, ISN, or sequence number of a DO statement for a DO
loop in the specified or currently qualified program unit. qua!, specifies a
program unit to temporarily override the current qualiHer for the prefixed
operand only.

[qual.}number:[qual.]numb€r

specifies a range of statements in the program for which vector information
for all DO loops in the range is to be recorded. (A DO loop is in the range if
the DO statement of the loop is in the range. All the statements of the loop
do not have to be in the range. The starting and ending statement identi
fiers do not have to be DO statements.) Qualification is optional. If the
second qua! is specified, it must be the same as that specified or defaulted
for the first qual.

[qual.Y
indicates that vector information is to be recorded for all DO loops in the
specified or currently qualified program unit.

list

is a list of individual DO loop specifications. Enclose the list in parentheses
and separate entries with commas or blanks.

* *

indicates that vector information for all DO loops in the program is to be
recorded.

ON I OFF I RESET
ON activates length and'stride recording.

OFF deactivates length and stride recording.

RESET clears length and stride information. Length and stride averages
and number of invocations are set to zero. Also, length and stride
recording is activated for the DO loops.

200 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

Examples

VECSTAT

1. Length and stride statistics can only be gathered for DO loops that were
analyzable by the compiler.

2. The program information for a program unit must have been successfully
obtained at initialization of the debugging session in order to record length
and stride statistics for DO loops in the program unit.

3. The DO statement for a DO loop must have been included in the AFFON
statement restriction list for the program unit in order to record vector infor
mation.

4. A VECSTAT command with a specification list will run if one or more of the
DO statement identifiers in the list are valid.

5. If a DO loop has been distributed into several loops due to vectorization,
then length and stride information is collected for all of the distributed
loops, and presented as if the DO loop was not distributed.

1. Activate length and stride data recording for a|l DO loops in the program.

VECSTAT CN

2. Reset the length and stride data for DO loops in function FUN1 at ISN 23,
and in subroutine SUB1 at ISN 44.

VECSTAT (FUII1.23, SUB1.44) RESET

Part Two. Command Reference 201

WHEN

WHEN

Tasks: Controlling Program Execution {page 58)

Function: WHEN allows you to suspend execution every time a particular condi
tion Is met. You can define a condition and supply Its name, or restart moni
toring of a previously defined condition. The condition Is tested at all
statements with debugging hooks.

Abbreviation: WN

— Syntax

WHEN

condition-name

[{condition) \ variable]

condition-name

Identifies the condition, condition-name must be 1 through 4 alphameric
characters, with the first character alphabetic, condition-name Is only a
name; It Is not to be confused with the definition of the condition.

{condition)
defines a condition to be monitored. The condition Itself appears only In the
initial WHEN command. The condition must be enclosed In parentheses.

Only scalars and single array elements are allowed in the condition
expressions. They can be explicitly qualified; for example, subl.x=4.0

It can be either a relational or a logical condition;

»- Relational condition: a signed or unsigned variable or array element or
constant, followed by a relational operator, followed by another signed
or unsigned variable or array element or constant.

There are six relational operators that can be used to define test condi
tions between scalar variables, array elements or constants.

= or .EQ.

-' = or .NE.

> or .GT.

< or.LT.

> = or .GE.

< = or .LE.

Logical condition: a logical variable or a logical array element,
optionally preceded by the negation operator (-• or .NOT.). No other
operators are permitted. If the value being tested Is a logical variable
or a logical array element, the negation operator can be applied In the
condition definition. For example:

WHEN NTON {-> LOGVAR)

variable

specifies the name of a variable or an array element to be monitored for
any change In value. Only the name Is specified; no parentheses to
enclose the name are used. The name can be explicitly qualified.

202 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

WHEN

1. The condition itself is only defined once. At that time, a condition name
must be supplied. Subsequent WHEN commands referring to that condition
should contain only the condition name.

2. Monitoring remains in effect after a condition is satisfied. To turn the condi
tion off, issue an OFFWN command, naming the condition.

3. After being turned off by an OFFWN, condition monitoring can be reacti
vated by reissuing WHEN and specifying only the condition name.

4. WHEN conditions are evaluated at each debugging hook in each
debuggable program unit. If you use a variable subscript, it is reevaluated
each time the condition is tested. The array element actually tested, there
fore, depends on the subscript value at that moment.

5. You can redefine an existing WHEN condition by entering a new WHEN
command with the same condition name and a new condition definition.

6. Variables can be prefixed by a program unit qualifier to override the current
qualification (at the time the WHEN command is issued). For example,

HHEM COMO (MAIN.A .LT. SUBl.B)

7. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a
constant." For example,

ARY(I), ARYO), ARY(I+3) or ARY(I-3)

are valid.

8. In the relational condition form of the WHEN command, for example, WHEN
TEST (A .GT. B):

When either variable or constant is a logical, character, or complex
type, both must be of that same type, and a sign preceding the variable
or constant is not permitted.

When either variable or constant is a logical or complex type, only the
relational operators .EQ. and .NE. (or = and =) may be used.

*- When character variables or constants of unequal length are compared,
the shorter is considered to be extended with blanks during the compar
ison.

9. When an unparenthesized variable name is specified as the condition (for
example, WHEN TEST NAME) and the variable is a character variable:

The length of the character variable is determined at the time the WHEN
command is issued.

If the character variable subsequently changes length (perhaps because
it is a parameter to the subroutine being monitored), the old and new
values are compared by effectively extending the shorter one with
blanks.

If a change in value is found, the new value is preserved, either
extended or truncated, using the size of the variable at the time the
WHEN command was issued.

Part Two. Command Reference 203

WHEN

Examples

10.

• The current length and value of the variable can be captured at any
time by issuing the WHEN conrinriand with just the condition name (for
example. WHEN TEST). It is not necessary to issue an OFFWN
command first or to state the variable name again. {The WHEN
command can be embedded in an AT command list to automate this
process.)

When a specified condition is met, messages will be displayed. These indi
cate the condition name that was satisfied, and where execution is currently
suspended.

11. If you refer to undefined variables (such as dummy arguments in an inactive
subprogram), you will receive an error message at each statement where
the condition is tested. To avoid these messages, you can use OFFWN in
an AT EXIT command list, and WHEN to reactivate it in an AT ENTRY
command list.

12. WHEN is not permitted after the VS FORTRAN program has terminated.

1. start monitoring variable MIKE to see if it changes. Call the condition (the
change to variable MIKE) OLD.

when old mike

2. Define a condition named OVFL as an array element A(1,5) greater than
3.5E10. Start monitoring it.

v/hen ovfl (a(l,5) .gt. 3.5e+lQ)

3. If the monitoring from Example 2 has been turned off with an OFFWN
command, restart monitoring condition OVFL.

v/hen ovfl

204 VS FORTRAN Version 2 Interactive Debug Guide and Reference

WHERE

Usage Notes

Examples

WHERE

Tasks:

Specifying Output to a Print File (page 42)
Tracing Program Execution (page 71)

Function: WHERE identifies the statement at which execution is suspended.

Abbreviation: W

— Syntax —

WHERE

[TRBACK]
[FLOW]
[PRINT]

TRBACK

specifies a traceback showing the names of all program units that are cur
rently active.

FLOW

specifies a trace of the last 10 program transfers that were run.

PRINT

specifies that output is be sent to a print file (AFFPRINT) instead of the ter
minal.

1. If WHERE is used following an attention interrupt, it can only be used to
identify the current statement. Any parameters are ignored.

2. If there are no active program units, WHERE TRBACK indicates that no sub
routines have been called.

3. The current statement identified by the WHERE command has not yet been
run.

4. An automatic WHERE command is forced at the first debugging hook found.
This is usually the first executable statement in the main program.

1. Find out where you are after execution was suspended by an attention
interrupt.

v/here

2. Find out the sequence of control transfers that led to the current breakpoint.

where trback flow

3. Conditionally indicate that a breakpoint has been reached, even though the
AT command list does not cause execution to be suspended. The WHERE
command will only be run if A is less than or equal to 4.8.

at 120 (if (a .gt. 4.8) go%^^fhe^e%list a%go) nonotify

Part Two. Command Reference 205

WINDOW

WINDOW (full screen mode only)
Tasks:

Changing the Way YourWindows Look {page 18)
Using Cursor-Sensitive Commands (page 20)
Changing the Window Configuration (page 21)

Function: WINDOW allows you to:

Change and save the window configuration of the debugging session
»- Open or close a specified window

Abbreviation: None

— Syntax for Changing the Window Configuration

WINDOW

— Syntax for Saving the Window Configuration

WINDOW

SAVE

— Syntax for Opening or Closing a Window

WINDOW

{OPEN I CLOSE)
{SOURCE I MONITOR | LOG)

WINDOW

allows you to change the window configuration. After you type WINDOW
with no operands on the command line and press ENTER, the Window Con
figuration Selection Panel will appear. The panel initially looks like
Figure 44 on page 207.

WjNDOW SAVE
saves the current window configuration.

WINDOW CLOSE {SOURCE | MONITOR | LOG)
closes the specified window.

WINDOW OPEN {SOURCE | MONITOR | LOG)
opens the specified window.

206 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Usage Notes

WINDOW COttFIGURATIOH SELECTION PANEL
COttMAND

- -

H
_ -

.... S

—

L

LEGEND:

L - LOG

H - MONITOR

S - SOURCE

TO REASSIGN THE

SOURCE, MONITOR,

AND LOG WINDOWS,
TYPE OVER THE

CURRENT SETTINGS

OR UNDERSCORES

WITH L, M, OR S.

ENTER SAVE TO SAVE WINDOW CONFIGURATION IN PROFILE.

ENTER RESET TO RETRIEVE WINDOW CONFIGURATION FROM PROFILE.

ENTER END TO RETURN TO DEBUG SESSION WITH CURRENT SETTINGS IN EFFECT.

WINDOW

Figure 44. Interactive Debug Window Configuration Selection Panel

From this panel, the following commands may be entered on the command line:

SAVE: saves the current window configuration in the profile.

RESET: restores the current window configuration to the last saved configura
tion, or to the initial configuration if no previous save was done.

END or RETURN: changes the current configuration without changing the last
saved configuration. That is, unless a SAVE has been issued, this configuration
will remain in effect for only the duration of the current debugging session.

1. WINDOW cannot be issued in: a command list, an IF command, an attention

exit, or a restart file.

2. Besides specifying WINDOW CLOSE with either SOURCE, MONITOR, or
LOG, you can also close a window by typing WINDOW CLOSE on the
command line, positioning the cursor in the desired window, and pressing
ENTER.

3. If you close a window, and then specify WINDOW OPEN with no operands,
you will open the window you just closed.

4. When changing the window configuration, only one configuration may be
selected at a time, and each object type can be assigned to only one
window area.

5. You can use WINDOW SAVE to save windows re-sized with the SIZE

command (page 188).

Part Two. Command Reference 207

ZOOM

ZOOM (full screen mode only)
Tasks: Using Cursor-Sensitive Commands (page 20)

Function: ZOOM allows you to toggle between displaying one window (either
the source, monitor, or log window) on the entire screen, and displaying a con
figuration ofwindows as defined by the WINDOW command.

Abbreviation: None

Syntax

Usage Notes

ZOOM

[SOURCE 1MONITOR | LOG]

SOURCE I MONITOR | LOG
specifies either the source, monitor, or log window to be allocated to the
entire screen.

1. ZOOM cannot be issued in: a command list, an IF command, an attention
exit, or a restart file.

2. ZOOM is a cursor-sensitive command. That is, if ZOOM is specified with no
operands, the hierarchy of windows for cursor-sensitive commands will
determine which window will be affected.

3. To return to the configuration of windows specified by the WINDOW
command, enter ZOOM with no operands.

4. When one window is displayed in the entire screen, default cursor-sensitive
commands apply to that window.

5. Any subsequent WINDOW OPEN or WINDOW CLOSE command will cancel
the ZOOM mode.

208 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Appendix A. Interactive Debug Messages

Each Interactive Debug message can be Identified by Its own message number.
It Is composed of:

1. The prefix AFF

2. A 3-dlglt number

3. Asuffix, which Indicates the level of the message:

I - Informational

W - warning
E - error

•-A - action required

You can control whether or not the message numbers are displayed. In CMS,
use the SET EMSG command. In TSO, use the PROFILE MSGID command.

In this appendix, an Explanation section Is provided for each Interactive Debug
message. User Response and System Action sections are also provided Ifthey
differ from the following:

User Response - reenter the command, correcting the problem that was
Identified In the error message.

• System Action - Issue the Interactive Debug prompt (FORTIAD) In line
mode, or re-dlsplay the screen In full screen mode, and await entry of
another command.

AppendixA. Interactive Debug Messages 209

Debugging messages

Debugging messages

AFFOOOE THIS MESSAGE IS RESERVED FOR FUTURE USE; INFORM IBM

Explanation: This message should never occur. If it does, it is the result of a
programming error within Interactive Debug.

User Response: Contact your IBM representative.

AFF001A FORTIAD

Explanation: This is the standard prompt displayed when running Interactive
Debug in line mode.

User Response: Enter any Interactive Debug command.

AFF002A lAD/E

Explanation: This is the prompt displayed when execution is suspended during
an error exit for an error detected by the VS FORTRAN Version 1 or VS
FORTRAN Version 2 Library.

User Response: When appropriate, use the FIXUP command to supply cor
rected values for invalid arguments. Use the GO command to cause standard
corrective action to be taken.

AFF003A IAD/A

Explanation: This is the prompt displayed when execution is suspended
because of an attention interrupt. When this prompt is displayed, processing is
within the Interactive Debug attention exit.

User Response: Enter an Interactive Debug command or a null line.

AFF(X)4A PENDING:

Explanation: This is the prompt displayed when an input line has been con
tinued by using the continuation character

AFF010I VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG

Explanation: This message is issued during initialization of Interactive Debug to
identify the product and release level.

AFF011I 5668-806 (C) COPYRIGHT IBM CORP 1985. 1988

Explanation: This message is issued during initialization of Interactive Debug.

AFFD13I LICENSED MATERIALS - PROPERTY OF IBM

Explanation: This message is issued during initialization of Interactive Debug.

210 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF020E INTERNAL IAD ERROR number. FORTRAN PROGRAM MAY HAVE

MODIFIED IAD STORAGE

Explanation: This message Is Issued when an Internal error occurs.

User Response: Make sure the application program has not modifled Interac
tive Debug storage. If It has not, contact your IBM representative.

AFF100E "PRINT" OPTION NOT PERMITTED

Explanation: The AUTOLIST command was entered with the PRINT option.

AFF102E "name" MUST SPECIFY A COMMAND IN BATCH MODE

Explanation: A SYSCMD, CMS. or TSO command was entered with no operand
while operating In batch mode.

User Response: Correct the problem and resubmit the job. If you want to Issue
a sequence of system commands, you must enter separate SYSCMDs.

AFF103E "name" IS SUPPORTED ONLY IN FULLSCREEN MODE; COMMAND
IGNORED

Explanation: AUTOLIST. REFRESH, or RESTART was entered In line mode or
batch mode.

User Response: Be sure you are running In ISPF before entering this
command.

AFF111I PROGRAM TERMINATED EARLY BECAUSE MAXIMUM COUNT WAS
REACHED

Explanation: The maximum count value specified In the subllst for the
MAXSAMP keyword of the ENDDEBUG command was reached. STOP was also
specified which caused the program to be terminated.

AFF112E INTERVAL TIMER WAS RESET BY USER PROGRAM, THUS CANCEL
LING SAMPLING

Explanation: A non-VS FORTRAN routine called by a VS FORTRAN program
performed an STIMER macro, resetting the STIMER set by IAD program sam
pling.

System Action: Program sampling was discontinued.

AFF121E THE AFFON STATEMENT RESTRICTION LIST WILL BE IGNORED
FOR "name" BECAUSE IT WAS COMPILED WITH THE "TEST"

OPTION

Explanation: You cannot restrict statement hooks If the program unit Is com
piled with "TEST" because the compiler Inserts the hooks.

User Response: Remove the statement restriction list, or recompile the
program unit.

System Action: The restriction list Is Ignored.

Appendix A. Interactive Debug Messages 211

Debugging messages

AFF122E THE AFFON STATEMENT RESTRICTION LIST FOR "name" CON
TAINS AN INVALID RANGE, WHICH WILL BE TREATED AS A SINGLE
ISN

Explanation: If an invalid range syntax is specified in the AFFON file, only the
first ISN will be considered.

User Response: Correct the restriction list, and rerun the job.

System Action: The second ISN is ignored.

AFF123E THE AFFON STATEMENT RESTRICTION LIST FOR "program-unit-
name" CONTAINS INVALID SYNTAX AND WILL BE IGNORED

Explanation: A hook restriction list on an AFFON entry contains invalid syntax.
This can be caused by any of the following:

An invalid character was found (not alphanumeric or a colon).
An unrecognized keyword was found (probably misspelled).
ENTRY or NONE keywords were followed by other operands.
Missing an ISN number before or after a colon.

System Action: The restriction list is ignored. For a program unit name entry,
hooks will be set according to the current defaults. For an ALL entry, the
default hook restriction list will remain unchanged.

User Response: Determine the cause of the invalid syntax in the entry, correct
the restriction list, and restart the debugging session.

AFF124E THE AFFON STATEMENT RESTRICTION LIST FOR "name" CON
TAINS AN ENTRY THAT EXCEEDS THE MAXIMUM POSSIBLE ISN;

THE MAXIMUM IS ASSUMED

Explanation: An ISN greater than 16777215 was specified in the AFFON
restriction list.

User Response: Correct the restriction list, and rerun the job.

System Action: The entry is treated as 16777215.

AFF190E ATTEMPT TO REFERENCE INACCESSIBLE STORAGE

Explanation: Interactive Debug tried to examine storage in an area where it
was not allowed to look. This was probably caused by either an invalid address
entered as part of a LIST command, or an invalid address within a VS
FORTRAN module.

User Response: Ifyou specified an invalid address on a LIST command,
reissue the command with valid addresses. If not, try to determine the cause of
the invalid address in the program.

AFF192I CURRENT HALT STATUS: status

Explanation: This message tells you whether HALT has been issued to indicate
when execution is to be suspended. Possible status is STMT, GOTO, or ENTRY.

User Response: None required. This is an informational message.

212 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF194E I/O IS ALREADY ACTIVE; COMMAND IGNORED

Explanation: An attempt to issue BACKSPACE. CLOSE, ENDFILE, RECONNECT
or REWIND, has been detected while I/O was already active.

User Response: If you need to issue one of these commands, issue a NEXT
command so that execution will be suspended after the I/O event is completed.

AFF195E NO DEBUGGABLE FORTRAN PROGRAMS WERE FOUND

Explanation: Interactive Debug has not found any programs within the module
to be run that are debuggable program units. In general, for a program unit to
be considered debuggable, it must have been compiled with the SDUMP option.

User Response: The problem may be because of an incorrectly specified
AFFON file. If so, you should have received other messages detailing other
errors.

AFF196E THERE IS NO PRINT DATA SET DEFINED

Explanation: An error has occurred while attempting to open the AFFPRINT
data set.

User Response: Correct the cause of the error.

System Action: Processing continues. You will not be able to use the PRINT
keyword on any Interactive Debug command.

AFF200E STORAGE EXHAUSTED; SIMPLIFY THE COMMAND OR REMOVE
SOME BREAKPOINTS

Explanation: While attempting to build internal control blocks to represent a
command. Interactive Debug used up all available storage.

User Response: If possible, issue a less complicated command, or re-invoke
Interactive Debug with more virtual storage (VM) or a larger user region (MVS).

AFF210E STORAGE EXHAUSTED DURING SAMPLING, ENTRY POINT SAM
PLING INFORMATION WILL BE INCOMPLETE

Explanation: IAD was not able to obtain storage for recording the sampling
counts for some entry points of nondebuggable VS FORTRAN routines, VS
FORTRAN math, library routines, or non-VS FORTRAN routines. Counts that
would have normally been categorized by entry point are grouped together in
the "UNKNOWN count.

User Response: Reinvoke Interactive Debug with more virtual storage (VM) or
a larger user region (MVS).

AFF220I synad message

Explanation: This is the error message returned by the operating system when
an attempt was made to write to the AFFPRINT data set.

User Response: Correct the error that caused the message. If printed output is
required, after correcting the problem, re-invoke Interactive Debug.

Appendix A. Interactive Debug Messages 213

Debugging messages

AFF224I "coonr LINES OF OUTPUT WRITTEN TO AFFPRINT

Explanation: Confirms that information was written to the print file, following a
command that was specified with the print option.

AFF225E ERROR WRITING THE PRINT DATA SET; SUBSEQUENT OUTPUT
WILL BE WRITTEN TO THE TERMINAL

Explanation: An error was detected when attempting to send "printed output
to the AFFPRINT data set. From this point on, output that would be destined for
the print data set is redirected to the terminal.

User Response: If you need to have the print output in a print data set, termi
nate your debugging session, correct the error, and re-invoke the program.

System Action: Further print output is sent to the terminal.

AFF226E ERROR WRITING THE PRINT DATA SET; SUBSEQUENT OUTPUT
WILL BE DISCARDED.

Explanation: An error was detected when attempting to send "printed" output
to the AFFPRINT data set in TSO batch mode. From this point on. output that
would be destined for the print data set is discarded.

User Response: If you must have the print output in a print data set, terminate
your debugging session, correct the error, and re-invoke the program.

System Action: Further print output is discarded.

AFF229E INVALID COUNT VALUE SPECIFIED IN ''number

Explanation: A count value larger than 65535 was specified on the AT
command.

User Response: Specify a smaller count value, and reissue the AT command.

AFF230E NO BREAKPOINTS CAN BE SET AT STATEMENT "number" BECAUSE
IT IS COLLAPSED

Explanation: The indicated statement occupies no storage so a breakpoint
cannot be set.

User Response: Set your breakpoint at a statement before or after the indi
cated statement. You can use LISTFREQ to see which statements have hooks.

AFF231E NO BREAKPOINT CAN BE SET AT STATEMENT "number" BECAUSE
THERE IS NO HOOK THERE

Explanation: The specified statement was not included in the AFFON file
restriction list, or is an ENTRY or EXIT of a main program unit.

User Response: None required. You can use LISTFREQ to see which state
ments have hooks.

214 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF240W A SUBSCRIPT IS OUT OF RANGE IN "array elemenV*

Explanation: A subscript has been specified for the indicated array element that
exceeds the dimension specified when the array element was defined.

AFF241W WARNING: A SUBSTRING BOUNDARY IS OUT OF RANGE IN

"string"

Explanation: A substring value has been specified which is outside the defined
variable length.

System Action: The command is run as normal.

AFF242E "name" CANNOT BE ACCESSED; IT COULD BE IN AN UNINITIAL
IZED DYNAMIC COMMON

Explanation: Variables in a dynamic common cannot be accessed until the
common has been initialized and the address has been obtained for the quali
fying VS FORTRAN program unit. This occurs the first time the program unit is
entered.

User Response: Set a breakpoint at some point that will be reached after the
program unit is entered, and access the variables when you get there. If the
dynamic common has been initialized, you may be able to access it using a
different program unit that has already been entered at least once.

AFF245E "WHERE" INFORMATION IS NOT AVAILABLE AFTER "ENDDEBUG"
IS ISSUED

Explanation: ENDDEBUG has been issued and WHERE information cannot be
determined.

AFF292E LISTING FILE "dsname" CANNOT BE READ

Explanation: Issued when a read error occurs while attempting to annotate a
listing. Can occur due to an actual read error or unexpected file format.

User Response: Insure that the file or data set is sequential or is a PDS
member and that the LRECL is not greater than 151.

AFF293E AN ARRAY WAS USED WHERE A SCALAR IS REQUIRED IN
"variable"

Explanation: While scanning the syntax of the previous command, an array var
iable was found when a scalar variable was required.

AFF294E A SIGN WAS SPECIFIED IN "text," BUT THE VARIABLE IS NOT A
NUMERIC SCALAR

Explanation: While scanning the previous command, a sign {+ or-) was speci
fied for a non-numeric variable. Only numeric variables may have signs.

Appendix A. Interactive Debug Messages 215

Debugging messages

AFF295E THERE IS NO ROOM TO INSERT A HOOK IN STATEMENT
"name.number"', STATEMENT TREATED AS COLLAPSED

Explanation: This Is an internal error and should not occur. It indicates that the
VS FORTRAN Version 1 or VS FORTRAN Version 2 compiler only allocated two
bytes for a VS FORTRAN statement. The compiler should allocate at least four
bytes so that an Interactive Debug hook can be inserted.

User Response: Contact your IBM representative. Debugging may be con
tinued, however.

System Action: The statement is treated as a collapsed statement, and you will
not be allowed to set a breakpoint at the statement.

AFF296E THE AFFON FILE CANNOT BE READ; FILE IGNORED

Explanation: An I/O error occurred trying to access the AFFON file.

User Response: Correct the cause of the I/O error ifyou want the AFFON file to
be read.

System Action: The AFFON file is ignored and processing continues.

AFF299E ERROR WRITING AFFOUT FILE; FILE IGNORED

Explanation: An I/O error has occurred while attempting to write to the AFFOUT
data set. No further attempts will be made to access the file.

User Response: Correct the problem that caused the message. If the log is
required, re-invoke Interactive Debug after correcting the problem.

AFF300I AT: name.number

Explanation: Execution has been suspended at the identified statement in the
identified program unit. It is suspended because a prior AT command
requested a breakpoint at this statement.

User Response: Enter debugging commands, or GO to resume execution.

AFF301I NEXT: name.number

Explanation: Execution has been suspended at the identified statement in the
identified program unit. It is suspended because a NEXT or STEP command
was issued.

User Response: Enter debugging commands, or GO to resume execution.

AFF303I TRACE STATUS: status

Explanation: Provides the current trace status in response to the TRACE
command with no operands.

216 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF304I TRACE: FROM name.number TO name.number

Explanation: Execution has passed from the first identified statement to the
second identified statement. The second statement did not immediately follow
the first statement in the VS FORTRAN source. This message is received
because of an earlier TRACE command that was issued.

User Response: None required.

AFF305W "ERROR" COMMAND TERMINATED AFTER PROCESSING ERROR

NUMBER number

Explanation: The PURGE command was used to terminate excessive output
from an ERROR command. The last error number processed was "number."

User Response: None required.

AFF306i PROGRAM HAS TERMINATED; RC = (code)

Explanation: The application program being run has completed. If a return
code was coded on the STOP statement, it is provided.

User Response: None required.

System Action: You will be allowed to continue entering commands until a
QUIT command is entered, at which time the debugging session will be termi
nated.

AFF307W COMMAND OUTPUT REFLECTS THE STATE OF EXECUTION PRIOR

TO ENTERING "ENDDEBUG"

Explanation: The information presented as output for the command which was
just issued, is not necessarily current information. It was correct when you
issued an ENDDEBUG command earlier in the debugging session, and has not
been updated since ENDDEBUG was issued.

User Response: None required.

AFF310E MISSING ISN OR BEFORE "DOLOOP", "DONEST", OR "DOVECT"
IN AFFON ENTRY FOR "program-unit-name".

Explanation: A DOLOOP, DONEST, or DOVECT keyword was found on an
AFFON entry without an ISN, an ISN range, or an asterisk preceding it.

System Action: The restriction list is ignored. For a program unit name entry,
hooks will be set according to the current defaults. For an ALL entry, the
default hook restriction list will remain unchanged.

User Response: Determine the cause of the invalid syntax in the entry, correct
the restriction list, and restart the debugging session.

Appendix A. Interactive Debug Messages 217

Debugging messages

AFF311E PROGRAM INFORMATION FILE "nie-name" SPECIFIED FOR
"program-unit-name" CANNOT BE FOUND.

Explanation: The data set or file specified to contain program information for
the program unit could not be opened.

System Action: The program unit is treated as having an undefined program
information file.

User Response: The name is probably misspelled. The name must be fully
qualified and enclosed in quotes. If it is spelled correctly, then the file either
does not exist or cannot be accessed. You may need to recompile the program
to generate the file, or obtain read access to the file. Then, restart the debug
ging session.

AFF312E FILE "file-name" SPECIFIED AS PROGRAM INFORMATION FILE FOR
"program-unit-name" IS NOT A PROGRAM INFORMATION FILE.

Explanation: The data set or file specified to contain program information for
the program unit is not a program information file.

System Action: The program unit Is treated as having an undefined program
information file.

User Response: Check to make sure that the right data set or file was speci
fied. If so, then the file may have been modified in some way since compila
tion. Try recompiling the program to re-create the file.

AFF313E PROGRAM INFORMATION FILE "file-name" WAS SPECIFIED FOR
"program-unit-name'\ BUT PROGRAM UNIT IS NOT COMPILED WITH
THE IVA OPTION.

Explanation: A program information file was specified for the program unit, but
the program unit was not compiled with the IVA sub-option of the VECTOR
option.

System Action: The program is treated as having an undefined program infor
mation file.

User Response: Ifyou wish to perform vector analysis functions with this
program unit, you will need to recompile it with the IVA sub-option of the
VECTOR option.

AFF315E ERROR READING PROGRAM INFORMATION FILE FOR "program-
unit-name".

Explanation: A read error occurred while reading the program information for
the program unit.

System Action: The program unit is treated as having an undefined program
information file.

User Response: Check to make sure you are properly accessed to the file. If
on CMS, try re-accessing the mini-disk containing the file.

218 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF316E ERROR IN THE PROGRAM INFORMATION FILE DATA FOR

"program-unit-name".

Explanation: An error was found in the program information for the program
unit. This is probably because the file has been changed in some way since
compilation.

System Action: The program unit is treated as having an undefined program
information file.

User Response: Check to make sure you are properly accessed to the file. If
on CMS, try re-accessing the mini-disk containing the file. Ifthe file has been
modified in some way since compilation, you will need to recompile the
program unit to re-create the file.

AFF317E PROGRAM INFORMATION FILE "file-name" DOES NOT CONTAIN
DATA FOR "program-unit-name".

Explanation: The program information file specified for the program unit does
not contain program information for the program unit. The wrong program
information file was probably specified.

System Action: The program unit is treated as having an undefined program
information file.

User Response: Check to make sure that the file specified is correct for the
program unit.

AFF318E PROGRAM INFORMATION for "program-unit-name" DOES NOT HAVE
THE SAME COMPILATION DATE AS THE CODE FOR THE PROGRAM
UNIT.

Explanation: Time stamps in the program information file and in the code for
the program unit do not match.

System Action: The program unit is treated as having an undefined program
information file.

User Response: Re-compile or re-link edit the program to make sure that the
module being debugged contains the latest compilations of the program units
and that the program information file is from the latest compilation.

AFF319E AN "(ALL) "ENTRY IN THE AFFON FILE HAS ASTATEMENT
RESTRICTION LIST THAT CONTAINS ISN'S. THE RESTRICTION LIST
IS IGNORED.

Explanation: The "ALL" entry in the AFFON file specified an IBM or an IBM
range. These are not allowed on the ALL entry, because the ALL entry is sup
posed to contain defaults for all program units. IBM's are only meaningful to a
specific program unit.

System Action: The default hook restriction list will remain unchanged.

User Response: Remove the IBM's on the ALL entry in the AFFOM file. You
may specify """, "* DOLOOP", DOMEBT", "* DOVECT", "ENTRY", or "NOME" as
the statement restriction list for an ALL entry.

Appendix A. Interactive Debug Messages 219

Debugging messages

AFF320E AFFON ENTRY FOR "program-unit-name" CONTAINS STATEMENT
RESTRICTION "isn DOLOOP", BUT ISN IS NOT A DO STATEMENT.

Explanation: The statement restriction list for a program unit in the AFFON file
specifles a DO loop ISN that is not the ISN of a DO statement.

System Action: The statement restriction is ignored. Ifthis is the only state
ment restriction in the list, then hooks are only set at entry and exit of the
program unit.

User Response: Check to make sure the correct ISN was specified. It must be
the ISN of a DO statement.

AFF321E AFFON ENTRY FOR "program-unit-name" CONTAINS STATEMENT
RESTRICTION "isn DONEST", BUT ISN IS NOT THE DO STATEMENT
OF AN OUTERMOST NESTED DO LOOP.

Explanation: The statement restriction list for a program unit in the AFFON file
specifies an ISN that either is not the ISN of a DO statement, or is the ISN of a
DO statement but the DO statement is not for the outermost loop in a nest of
DO loops.

System Action: The statement restriction is ignored. If this is the only state
ment restriction in the list, then hooks are only set at entry and exit of the
program unit.

User Response: Check to make sure the correct ISN was specified. It must be
the ISN of the DO statement of the outermost DO loop in a nest of DO loops.

AFF322E AFFON ENTRY FOR "program-unit-name" CONTAINS STATEMENT
RESTRICTION "isn DOVECT ", BUT ISN IS NOT THE DO STATEMENT
OF A VECTORIZED DO LOOP.

Explanation: The statement restriction list for a program unit in the AFFON file
specifies an ISN that either is not the ISN of a DO statement, or is the ISN of a
DO statement but the DO loop is not vectorized.

System Action: The statement restriction is ignored. If this is the only state
ment restriction in the list, then hooks are only set at entry and exit of the
program unit.

User Response: Check to make sure the correct ISN was specified. It must be
the ISN of the DO statement of a vectorized DO loop.

AFF323I statement-id:

Explanation: This is the first line of the LISTVEC output for each DO loop listed.
It is the identifier of the DO statement for the loop.

AFF324I STATUS = status

Explanation: This message is part of the LISTVEC output for a DO loop. It
shows the current status of vector statistics recording for the loop (set by the
VECSTAT command). It has two settings, "ON" and "OFF". If the setting is OFF.
then the statistics are not updated when the loop is run.

220 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF325I TOTAL NUMBER OF EXECUTIONS = number

Explanation: This message Is part of the LISTVEC output for a DO loop. It
shows the total number of executions of the DO loop. The number of exe
cutions of a DO loop is defined as the number of times the DO statement for the
loop is entered. If the total number of executions could not be determined
because the DO loop does not contain DO loop analysis hooks, then "NO
HOOK" appears instead of the value.

AFF326I AVERAGE ITERATION COUNT = number

Explanation: This message is part of the LISTVEC output for a DO loop. It
shows the average iteration count of the loop. The iteration count is equivalent
to the length for all vectors in the loop. The iteration count is calculated by
dividing the sum of the iterations for each execution of the loop by the number
of executions of the loop. If the average iteration count could not be deter
mined because the DO loop does not contain DO loop analysis hooks, then "NO
HOOK" appears instead of the value.

AFF327I ESTIMATED ITERATION COUNT = number ?

Explanation: This message is part of the LISTVEC output for a DO loop. It
shows the compiler estimate for the iteration count (length) of the DO loop. A
question mark after the compiler estimate indicates that the compiler could not
accurately estimate the value. The value displayed is an arbitrary value that
the compiler used for vector cost analysis.

AFF328I STATEMENT ARRAY AVG STRIDE EST STRIDE

Explanation: This message is part of the LISTVEC output for a DO loop. It is
the header message before the listing of the strides of a DO loop.

AFF329I Vstatement-id array-name number number ?

Explanation: This is a line of the LISTVEC output for a stride ofa DO loop. It
shows:

a "V" or "S" indicating that the statement is part of a vector or scalar loop,
respectively. "S" will also be placed on statements belonging to the scalar
portion of a partially vectorized loop,
the statement identifier of the array reference,

^ an array reference indexed by the DO variable of the loop,
the average stride of reference, and
the compiler estimated stride.

If the stride could not be obtained for an array reference, because the DO loop
does not contain DO loop analysis hooks, then "NO HOOK" appears instead of
the value. If the stride could not be obtained because information was not sup
plied by the compiler to locate and calculate the value, then, "UNKNOWN"
appears instead of the value. A question mark (?) after the compiler estimate
indicates that the compiler could not accurately estimate the value. The value
displayed is an arbitrary value that the compiler used for vectorcost analysis.

Appendix A. Interactive Debug Messages 221

Debugging messages

AFF330I NOT ANALYZABLE

Explanation: This message is displayed as part ofthe LISTVEC output, in place
of the vector statistics for a DO loop. The listed DO loop could not be analyzed
for vectorization by the VS FORTRAN compiler. Run-time statistics could not be
gathered for the loop, and compiler estimates are not available.

AFF331E PROGRAM INFORMATION FILE DATA IS NOT AVAILABLE FOR
"program-unit-name".

Explanation: A program information data set or file was not defined for the
program unit. This file is needed by Interactive Debug to perform DO loop anal
ysis functions (VECSTAT, LISTVEC, TIMER DOLOOP, LISTTIME DOLOOP, and
LISTSAMP DOLOOP).

User Response: Create or change the AFFON file entry for the program unit to
specify a correct program information file for the program unit. You may also
need to recompile the program unit with the VECTOR(IVA) option. Restart the
debugging session.

AFF332E DO LOOP "statement-id" IS NOT ANALYZABLE.

Explanation: A VECSTAT, LISTVEC, TIMER DOLOOP, or LISTTIME DOLOOP
command was entered stating a DO loop (not in a range) that was not
analyzable by the compiler.

User Response: If you wish to gather length and stride information for this loop,
or time this loop, you must modify your program to make the loop analyzable.

AFF333E DO LOOP "statement-id" DOES NOT CONTAIN DO LOOP ANALYSIS

HOOKS.

Explanation: The DO loop explicitly specified on the command does not contain
the DO loop analysis hooks. These hooks are needed to gather length and
stride information, and to time DO loops.

User Response: Change the AFFON file entry for the program unit to specify
that DO loop analysis hooks be placed in the loop. Restart the debugging
session.

AFF334E STATEMENT "statement-id" IS NOT A DO STATEMENT.

Explanation: A statement explicitly specified on a VECSTAT, LISTVEC, TIMER
DOLOOP. LISTTIME DOLOOP, or LISTSAMP DOLOOP command is not a DO

statement.

AFF335I DO LOOP SAMPLES %UNIT %TOTAL

Explanation: This is the header message for LISTSAMP DOLOOP output.

222 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF336I statement-id number prcnt prcnt histogram

Explanation: This Is a line in the LISTSAMP DOLOOP output. It shows:

• the statement identifier of the DO statement for the loop,
*- the total number of samples in the loop,
• the percentage of samples to the total for the program unit,

*• the percentage of samples to the total for the program, and

a histogram of the percentage of samples to the total for the program
(where one asterisk is 5 percent, rounded).

AFF337I NO STRIDE INFORMATION AVAILABLE

Explanation: This message is issued in place of a list of strides for a DO loop
on a LISTVEC report if the DO loop does not contain any vectors.

AFF339I DO LOOP TOTAL TIME EXECUTIONS AVERAGE TIME

STATUS

Explanation: This is the header message for LISTTIME output for DO loops.

AFF340I statement-id number number number status

Explanation: This is a line of LISTTIME output for DO loops. It shows:

" the statement identifier of the DO statement for the loop,

the execution time of the DO loop (in microseconds),
the number of executions of the DO loop, and

the average time per execution of the loop (in microseconds),
the timing status for the DO loop (set by the TIMER command). The settings
are "ON" and "OFF".

AFF347I PROGRAM UNIT PAGE FREQUENCY DISTRIB
UTION

Explanation: This is the header message for an annotate summary for state
ment frequency counts.

AFF348I program-unit-name number frequency histogram

Explanation: This is a line of an annotate summary for statement frequency
counts. It shows:

• the program unit name
the sum of the frequencies of all statements in the program unit
a histogram showing the sum in item as a percentage of the sum of fre
quencies of all statements in the entire program.

Appendix A. Interactive Debug Messages 223

Debugging messages

AFF349E INVALID SYNTAX "texr AT START OF AFFON ENTRY. PROGRAM
UNIT NAME, "(ALL)", OR EXPECTED.

Explanation: An entry in the AFFON file begins with a character string that is
not valid syntax for a program unit name, does not begin with the string "(ALL)"
used to signify ALL entries, and does not begin with used to indicate
comment entries.

System Action: The entry is ignored.

User Response: Correct cause of invalid syntax, and restart debugging session.

AFF350E ERROR OBTAINING STORAGE FOR PROGRAM INFORMATION FOR
"program-unit-name".

Explanation: There is not enough storage to contain program information file
data for the program unit.

System Action: The program unit is treated as having an undefined program
information file.

User Response: Re-invoke Interactive Debug with more virtual storage (VM) or
a larger user region (MVS).

AFF351E ERROR OBTAINING STORAGE FOR AFFON FILE INFORMATION.

Explanation: There is not enough storage to contain AFFON file information.

System Action: The AFFON file is ignored.

User Response: Re-invoke Interactive Debug with more virtual storage (VM) or
a larger user region (MVS).

AFF352E NO DO LOOP INFORMATION IS AVAILABLE FOR PROGRAM UNIT

"program-unit-name".

Explanation: A VECSTAT, LISTVEC, TIMER DOLOOP, LISTTIME DOLOOP, or
LISTSAMP DOLOOP, command specified a program unit that does not contain
any DO loops.

AFF353E THERE ARE NO DO LOOPS IN ANY DEBUGGABLE PROGRAM UNIT.

Explanation: A VECSTAT, LISTVEC. TIMER DOLOOP, LISTTIME DOLOOP, or
LISTSAMP DOLOOP command was issued with the operand, yet there are
no DO loops in any debuggable program unit.

AFF354E THERE ARE NO PROGRAM INFORMATION FILES DEFINED FOR ANY

DEBUGGABLE PROGRAM UNIT.

Explanation: A VECSTAT, LISTVEC, TIMER DOLOOP, LISTTIME DOLOOP. or
LISTSAMP DOLOOP command was issued with the *.* operand, yet there is no
program information for any debuggable program unit.

224 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF355E THERE ARE NO DO LOOPS IN THE RANGE "statement-range-icT,

Explanation: A statement range was specified on a VECSTAT, LISTVEC, TIMER
DOLOOP, LISTTIME DOLOOP, or LISTSAMP DOLOOP command, but there are
no DO loops in the range.

AFF3S6I array-name number number ?

Explanation: This is a continuation message for message AFF329I.

AFF357I number number ?

Explanation: This is a continuation message for message AFF356I.

AFF358I number prcnt prcnt histogram

Explanation: This is a continuation message for message AFF336I.

AFF360E ERROR READING AFFLST FILE; "program-unit-name" CANNOT BE
ANNOTATED.

Explanation: There was a problem reading a listing from the AFFLST file during
the execution of an ANNOTATE command. The AFFLST file is probably not
defined correctly.

User Response: Check the AFFLST DD statement in the JCL to make sure the
listings are properly defined. Correct the JCL and rerun the job.

AFF361E "program-unit-name" CANNOT BE ANNOTATED BECAUSE ITS
LISTING WAS NOT FOUND IN THE AFFLST FILE.

Explanation: The listing for the specified program unit was not in the AFFLST
file.

User Response: Check the AFFLST DD statement in the JCL to make sure that
the listing for the program unit is specified. Correct the JCL and rerun the job.

AFF362E ERROR READING AFFPIF FILE; FILE IGNORED.

Explanation: There was an error reading program information from the AFFPIF
file. The file is probably not defined correctly.

System Action: The AFFPIF file is ignored. Program units whose program
information was to be taken from the AFFPIF file are treated as having unde
fined program information.

User Response: Check the AFFPIF DD statement in the JCL to make sure that it
is properly defined. Correct the JCL and rerun the job.

Appendix A. Interactive Debug Messages 225

Debugging messages

AFF363E THE AFFPIF FILE DOES NOT CONTAIN PROGRAM INFORMATION.

Explanation: The AFFPIF file contains data that could not be Interpreted as
program Information.

System Action: The AFFPIF file Is Ignored. Program units whose program
Information was to be taken from the AFFPIF file are treated as having unde
fined program Information.

User Response: Check the AFFPIF DD statement In the JCL to make sure that
program Information Is being properly defined. Correct the JCL and rerun the
job.

AFF364E THE AFFPIF FILE DOES NOT CONTAIN PROGRAM INFORMATION
FOR ''program-unit-name".

Explanation: Program Information for the specified program unit was not In the
AFFPIF file.

System Action: The program unit Is treated as having undefined program Infor
mation.

User Response: Check the AFFPIF DD statement In the JCL to make sure that
program information for the program unit is specified. Correct the JCL and
rerun the job.

AFF370E A SHIFT-IN CONTROL CHARACTER WAS NOT FOUND IN THE DBCS

LITERAL.

Explanation: A shift-in control character Is required to Indicate the end of a
DBCS character string.

AFF370W LINE TRUNCATED

Explanation: Line continuation was used to enter a line to Interactive Debug
that exceeded 255 characters.

System Action: The line is truncated to 255 characters.

User Response: If the Input line Is a command, simplify the command (perhaps
by using abbreviations) to fit Into 255 characters.

AFF371I INPUT ABORTED BY "END"

Explanation: This message Is issued when an continued Input line (using the
line continuation character"-") was aborted by typing "END" on a continuation
line.

AFF372E THE SHIFT-OUT CHARACTER CAN NOT BE USED AS A DELIMITER.

Explanation: The DBCS shift-out control character can not be used as a delim
iter of the SEARCH command.

226 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF372W "command-name" IS SUPPORTED ONLY IN FULLSCREEN MODE;

COMMAND IGNORED.

Explanation: A full screen only command was Issued in line mode or batch
mode.

User Response: Make sure you are running in ISPF before entering this
command.

AFF373W "command-name" COMMAND CANNOT BE ISSUED IN A RESTART

FILE.

Explanation: The specified command (a full screen command or the RESTART
command) is not allowed in a restart (AFFIN) file.

System Action: The command is ignored.

AFF400I THE COMMAND LIST FOR THE BREAKPOINT AT "name.number"
HAS BEEN TERMINATED BY AN ATTENTION

Explanation: Because of entering an attention exit, the indicated command list
cannot be completed.

User Response: If necessary, enter the commands that were not completed.

AFF405E THE NONIMMEDIATE COMMAND "command" WAS IGNORED DUE
TO A PENDING ERROR EXIT

Explanation: The indicated command could not be run now because it is not a
command that can be immediately processed (that is, processed easily by
issuing a message, like WHERE, or by setting a flag, like NEXT), and cannot be
deferred to later processing because execution is currently within an error exit.

User Response: Issue a NEXT, and then issue the command after execution
has left the error exit.

AFF410E UNKNOWN COMMAND

Explanation: The syntax of the previous "command" name was not a valid
Interactive Debug command.

User Response: Check your spelling of the command name for accuracy or
insure that you have included the SYSCMD command for a system command.

AFF450E "name" IS AN ASSUMED SIZE ARRAY; SUBSCRIPTS MUST BE
SPECIFIED FOR "LIST"

Explanation: A LIST or SET command was issued for the specified array.
However, the final dimension of the array is unknown because it was not
defined at compile time. For example, B{*) may have been specified. Interac
tive Debug will not LIST or SET values in an assumed size array unless a speci
fied element (for example, B(3)) is specified.

Appendix A. Interactive Debug Messages 227

Debugging messages

AFF454E "GOTO" OR "ENTRY" MUST BE SPECIFIED WITH "PRINT"

Explanation: GOTO or ENTRY was not specified with the PRINT option on the
TRACE command.

User Response: Reissue the TRACE command with either the GOTO or ENTRY
options.

AFF455E INVALiD OPERAND SYNTAX SPECIFiED iN "fexf"

Explanation: Invalid syntax has been specified for the indicated command
operand.

AFF456E "word" IS NOT A VALID KEYWORD FOR THE "cmnd" COMMAND

Explanation: Issued when an invalid Keyword option is detected in an IAD
command.

AFF457E "abbr" IS AN AMBIGUOUS KEYWORD ABBREVIATION FOR THE

"cmnd" COMMAND

Explanation: Issued when an ambiguous abbreviation is detected in an IAD
command.

User Response: Use a longer abbreviation for the keyword.

AFF458E KEYWORD "word" WAS SPECIFIED MORE THAN ONCE FOR THE

"cmnd" COMMAND

Explanation: Issued when an option keyword is specified more than once in an
IAD command.

User Response: Specify the option keyword only once.

AFF459E "wordi" AND "word2" CANNOT BOTH BE SPECIFIED ON THE

"cmnd" COMMAND

Explanation: Conflicting keywords are specified.

User Response: Reissue the command with only one of the keywords.

AFF460E UNBALANCED DELIMITERS SPECIFIED IN "text"

Explanation: While scanning the syntax of the previous command, an invalid
use of delimiters was detected. Usually, a right or left parenthesis is missing.

AFF461E INVALID SUBLIST SYNTAX IN "text"

Explanation: Issued when incorrect syntax is detected in a parenthesized
sublist following a keyword.

228 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF462E KEYWORD "word" OF THE "cmnd" COMMAND REQUIRES A
SUBLIST

Explanation: Issued when a parenthesized sublist was not specified for a
keyword that requires one.

User Response: Reissue the command with the required sublist.

AFF463E KEYWORD "word" OF THE "cmnd" COMMAND DOES NOT ALLOW A

SUBLIST

Explanation: Issued when a parenthesized sublist was specified for a keyword
that does not permit one.

AFF464E SUBLIST VALUE "number" IS TOO LARGE FOR KEYWORD ''word"

Explanation: The value specified in the sublist is larger than the maximum
allowed.

AFF470E UNKNOWN COMMAND "text"

Explanation: The indicated string was found in a command list, but is not
recognized as a valid Interactive Debug command.

AFF481E THE DESTINATION CANNOT BE BRANCHED TO IN "text"

Explanation: A GO command was entered that references a VS FORTRAN
statement that has no hook. This includes a GO EXIT for a VS FORTRAN
Version 1 MAIN program.

User Response: You can use LISTFREQ to see which statements have hooks.

AFF483E "GO" WITH A STATEMENT IDENTIFIER CANNOT BE ISSUED FROM
AN ENTRY

Explanation: A GO command with a statement identifier cannot be issued from
the entry point of any VS FORTRAN program unit. At entry, the unit is not yet
active.

User Response: Issue STEP 1 to get to the first statement with a hook. You
should be able to issue the GO command from there.

AFF484E CONTINUATION IS NOT PERMITTED WITH THE "command"
COMMAND

Explanation: A command valid only in full screen mode was entered in full
screen mode, but with continuation. Continuation is not supported for these
commands.

AFF485E "cmnd" COMMAND CANNOT BE ISSUED FROM AN ATTENTION EXIT

Explanation: A full screen display command is not allowed from an attention
exit.

User Response: Exit the attention mode and reissue the command.

Appendix A. Interactive Debug Messages 229

Debugging messages

AFF486E "cmnd" COMMAND CANNOT BE ISSUED FROM A RESTART FILE

Explanation: Afull screen display command is not allowed in a RESTART file.

System Action: The command is ignored.

AFF500E STATEMENT number IS NOT EXECUTABLE

Explanation: The statement reference does not identify an executable state
ment. Possibly the current qualification identifies a program unit that does not
contain a statement with the specified number.

User Response: Use the QUALIFY command to set the proper qualification, or
select a different statement.

AFF510E INVALID RANGE; THE RIGHT SIDE {number) IS LESS THAN THE
LEFT SIDE {number)

Explanation: If a command has been entered with a range of statements speci
fied, the first statement must appear prior to the second in the program.

AFF511E INVALID SUBSTRING RANGE; THE RIGHT SIDE IS LESS THAN THE
LEFT SIDE IN "string"

Explanation: The value specified on the right side of the substring notation is
larger than the value specified on the left side.

AFF520E program IS NOT A DEBUGGABLE FORTRAN PROGRAM UNIT

Explanation: The indicated program unit cannot be debugged.

1. If it is a VS FORTRAN Version 1 or VS FORTRAN Version 2 program, it prob
ably was compiled with the NOSDUMP option. Either SDUMP or TEST must
be specified (or defaulted) for the program unit to be eligible for debugging.

2. A valid AFFON file was found but did not contain this program unit.

User Response: If you want to debug the indicated program unit, terminate the
current debugging session, using the QUIT command, correct the AFFON file or
recompile the program unit with the appropriate compiler options, and re-
execute the program.

AFF530E "text" IS INVALID "FIXUP" SYNTAX

Explanation: Invalid keyword syntax has been detected for a FIXUP command.
The only valid keywords are ARG1 and ARG2 and both must contain a value
within parentheses following the keyword.

AFF535E NONNUMERIC VALUE "text" IS NOT ALLOWED IN FIXUP

Explanation: A logical or character value has been specified in a FIXUP
command as value for either ARG1 or ARG2. Only numeric values are valid.

230 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF540E FORTRAN TERM "text" IS NOT ALLOWED IN FIXUP

Explanation: Usually, valid syntax has been detected where it is not allowed in
a FIXUP command (for example, a duplication factor).

AFF545E A NULL FORTRAN TERM IS INVALID

Explanation: One of the sides of a range specification is missing (for example,
"LIST A(1):").

AFF549E PROGRAM SAMPLING REQUIRES VS FORTRAN VERSION 2
RELEASE 2.0 LIBRARY OR LATER

Explanation: The module being debugged was link-edited with an older release
of the VS FORTRAN library. Interactive Debug needs Version 2 Release 2.0 in
order to perform program sampling.

User Response; Relink-edit the program with the latest release of the library.

AFF550I PROGRAM SAMPLING INTERVAL WAS m MS; TOTAL NUMBER OF
SAMPLES WAS n

Explanation: This is the header message for a LISTSAMP display, where "m" is
the sampling time interval used and "n" is the total number of sampling inter
ruptions that occurred.

AFF551I "type" SAMPLES:

Explanation: The sampling counts that follow are for sampling interruptions of
the type indicated.

AFF552I SUM OF DIRECT AND CALLED SAMPLES:

Explanation: The counts that follow are the sum of both DIRECT and CALLED
counts.

AFF553E "unitname" CANNOT BE ANNOTATED BECAUSE ITS LISTING FILE IS
NOT KNOWN

Explanation: Issued when the listing file has not been identified for a program
unit that has had annotation requested for it.

User Response: Specify the file or data set name in the AFFON file, or use the
LISTINGS panel in full screen mode.

AFF554E "unitname" CANNOT BE ANNOTATED BECAUSE IT WAS NOT
FOUND IN "dsname"

Explanation: Issued when the listing for a specified program unit cannot be
found in the specified listing data set.

User Response: Be sure the correct file or data set name is specified in the
AFFON file.

Appendix A. Interactive Debug Messages 231

Debugging messages

AFF555I STATEMENT SAMPLES %UNIT %TOTAL

Explanation: This is the title line for a LISTSAMP output when statement infor
mation is listed.

AFF556I PROGRAM UNIT SAMPLES %TOTAL

Explanation: This is the title line for LISTSAMP output when summary informa
tion is listed.

AFF557I statement samples %unit %total histogram

Explanation: This is the program sampling information for a statement, showing
statement number, number of samples, percentage of total samples for the
program unit, percentage of total samples for the entire program, and a
histogram (bar chart) that graphically displays the size of this value relative to
the other sampling values listed.

AFF558I program samples %total histogram

Explanation: This is the program sampling information for a program unit,
showing program unit name, number of samples, percent of total samples, and
a histogram (bar chart).

AFF559E "unitname" CANNOT BE ANNOTATED BECAUSE IT WAS NOT COM

PILED WITH VS FORTRAN V2

Explanation: Issued when annotation is requested for a program unit that was
not compiled with VS FORTRAN VERSION 2. Annotation is not supported for
listings produced by previous versions of the compiler.

AFF560E PROGRAM SAMPLING HAS NOT BEEN DONE; ISSUE '*ENDDEBUG"
WITH THE "SAMPLE" OPTION TO INITIATE PROGRAM SAMPLING

Explanation: Issued when LISTSAMP or ANNOTATE with the SAMPLING option
is entered but program sampling has not been initiated.

AFF561I ANNOTATING LISTING FOR PROGRAM UNIT "unitname"

Explanation: An informational message indicating the progress of the ANNO
TATE command.

AFF562I samples %unit %total histogram

Explanation: This is program sampling information for a statement, showing
number of samples, percentage of total samples for the program unit, per
centage of total samples for the entire program, and a histogram (bar chart),
that graphically displays the size of this value relative to the other sampling
values listed. This information will appear on the line below the statement
number, in those cases where these fields and the statement number are too

long to display together on a single line.

232 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF563I VS FORTRAN INTERACTIVE DEBUG V2 R3 ANNOTATED LISTINGS:

Explanation: This is the heading line for annotated listings.

AFF564I PROGRAM UNIT PAGE %TOTAL DISTRIBUTION

Explanation: This is the heading line for the summary page of annotated
listings.

AFF56SI unitname page percent histogram

Explanation: This is the format of the output of the summary lines shown on the
summary page of annotated listings.

AFF566I ANNOTATE: status

Explanation: Indicates the current status of the ANNOTATE controls that are
used for displaying bar charts on the source window. The status may be any
one of the following:

ON SAMPLING DIRECT

ON SAMPLING CALLED

ON SAMPLING ALL

OFF SAMPLING DIRECT

OFF SAMPLING CALLED

OFF SAMPLING ALL

ON FREQUENCY

OFF FREQUENCY

ON MESSAGE

OFF MESSAGE

AFF567E "CALLED" IS NOT VALID UNLESS SAMPLING WAS INITIATED WITH
THE "CALLED" OPTION

Explanation: The CALLED keyword must be specified in the ENDDEBUG
command in order for CALLED to be valid in the ANNOTATE and LISTSAMP
commands.

User Response: Reissue the command without the CALLED option, or restart
the debugging and specify the CALLED option, in ENDDEBUG, when initiating
sampling.

AFF568I FREQUENCIES

Explanation: Heading for annotated listing by program unit when frequency
values are displayed.

AFF569E "word" KEYWORD IS NOT PERMITTED WITHOUT THE "SAMPLE"
KEYWORD

Explanation: The MAXSAMP or CALLED keywords are only valid if SAMPLE has
been specified for the ENDDEBUG command.

Appendix A. Interactive Debug Messages 233

Debugging messages

AFF570E TIMING INTERVAL MUST BE AN INTEGER LARGER THAN ZERO

Explanation: The sample time specified in the SAMPLE sublist of the
ENDDEBUG command must be an integer value larger than zero.

AFF571E INVALID STOP PARAMETER SPECIFIED IN "MAXSAMP" SUBLIST

Explanation: STOP, oran abbreviated form of STOP, was incorrectly specified
in the MAXSAMP sublist of the ENDDEBUG command.

AFF572E NO SUBLISTSPECIFIED FOR THE "word" KEYWORD

Explanation: Asublist is required with the indicated keyword.

AFF573E "number" IS AN INVALID ''word" VALUE

Explanation: The numeric value specified in the keyword sublist is too large.

AFF574E MAXIMUM NUMBER OF SAMPLING INTERRUPTS MUST BE AN
INTEGER GREATER THAN ZERO

Explanation: The maximum number of sampling interrupts specified in the
MAXSAMP sublist of the ENDDEBUG command must be an integer value
greater than zero.

AFF575E "text" IS NOT A VALID SUBLIST FOR "word"

Explanation: A sublist after the keyword on a command contains invalid syntax.

AFF576E "DUMP" IS NOT PERMITTED WITH A CONSTANT OPERAND

Explanation: LIST or AUTOLIST has been specified with both a constant
operand and the dump option. This combination is not permitted.

AFF577E THE MINIMUM SAMPLING INTERVAL ON CMS IS 4 MILLISECONDS.

Explanation: When using CP timer assist, the minimum accuracy of the interval
timer on CMS is about 3.3 milliseconds. To prevent sampling interruptions from
occurring in the operating system code servicing of the interruption, the interval
time is restricted to 4 milliseconds or greater.

AFF605E ONLY REALS ALLOWED IN COMPLEX CONSTANT "text"

Explanation: Integers have been used as part of a complex constant. Only real
numbers are allowed.

AFF610E REAL AND IMAGINARY PARTS OF "variable" DIFFER IN LENGTH

Explanation: One part of a complex constant has been entered as a REALM
number and the other part has been entered as a REAL'S number. Both parts
must be of equal length.

234 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF615E ''text" IS INVALID FORTRAN TERM SYNTAX

Explanation: While scanning the previous command, an operand that must be a
VS FORTRAN term had invalid syntax.

AFF620E SUBSCRIPTS ARE NOT PERMITTED ON "variable"; THE VARIABLE
IS NOT AN ARRAY

Explanation: Subscripts have been specified for a variable that is not an array.

AFF625E THE NUMBER OF SUBSCRIPTS ON "array" DOES NOT MATCH THE
DECLARED NUMBER OF DIMENSIONS

Explanation: There are too many or too few subscripts specified for the indi
cated array.

AFF630E "variable" IS AN INVALID FORTRAN VARIABLE NAME

Explanation: The name of a VS FORTRAN variable is invalid. For example, the
name contains more than six characters, or does not begin with an alphabetic
character.

AFF631E PROGRAM UNiT "name" IS NOT ACTIVE; "varname" IS A DUMMY
ARGUMENT AND CANNOT BE ACCESSED

Explanation: An AUTOLIST, LIST, SET, IF, or WHEN command attempted to
access variables that have no storage because the program unit is not active.

User Response: Set a breakpoint within the program unit and access the vari
ables when you get there. If the dynamic common has been initialized, you
may be able to access it using a different program unit.

AFF632E "varname" IS A DUMMY ARGUMENT THAT IS NOT DEFINED AT THE

ENTRY POINT BY WHICH "program" WAS ENTERED, AND CANNOT
BE ACCESSED

Explanation: An attempt was made to reference a dummy argument that is
defined only in an alternate entry point.

User Response: Wait until the program unit is entered by an entry point that
defines the dummy variable you want to access.

AFF633E "QUIT" HAS BEEN ISSUED. ENTER "QUIT" AGAIN TO FORCE AN
ABNORMAL TERMINATION

Explanation: This message is issued by the attention interrupt handler.

User Response: Enter QUIT again if you want to terminate debugging: other
wise, enter any command that is appropriate in an attention exit.

Appendix A. Interactive Debug Messages 235

Debugging messages

AFF635E VARIABLE .'Var/ab/e" IS NOT IN PROGRAM UNIT program

Explanation: The specified variable was not found in the specified program unit.
The variable may be misspelled, the program qualification may be missing or
incorrect, or the variable may have been removed bythe optimizer.

User Response: Make sure that the variable is defined in the currently qualified
program unit. If not, then either use the QUALIFY command, orexplicitly qualify
the variable name in the Interactive Debug command.

AFF636E "COMMAND NOT FOUND"

Explanation: The TSO command requested using the SYSCMD command was
not found by TSO.

AFF640E "fexf" IS INVALID CONSTANT SYNTAX

Explanation: There is a syntax error in the indicated constant.

AFF645E CONSTANT "number" EXCEEDS THE MACHINE CAPACITY

Explanation: The indicated constant is too large. This may occur if leading
zeros are specified with the constant.

AFF650E INVALID SUBSCRIPT IN "text"', A SUBSCRIPT CANNOT BE AN
ARRAY OR ARRAY ELEMENT

Explanation: The subscripts of the indicated array must be scalar constants or
variables.

AFF655E ONE OR MORE PARTS OF COMPLEX CONSTANT "text" ARE
MISSING

Explanation: Either the real or the imaginary portion of the indicated complex
constant is missing. Both portions are required.

AFF660E "text" HAS INVALID SUBSCRIPT SYNTAX

Explanation: While scanning what appears to be a subscript, invalid syntax was
discovered. Possibly the right parenthesis was missing.

AFF665E INVALID SUBSCRIPT IN "array"; A NON-INTEGER VARIABLE WAS
SPECIFIED

Explanation: A logical, real, character, or complex variable has been used as a
subscript for the indicated array. Only integer numbers may be used as sub
scripts.

AFF670E "text" IS INVALID ON THE LEFT SIDE OF A SET COMMAND

Explanation: A duplication factor, a minus sign, or a constant appears on the
left side of a SET command. None of these are valid on the left side.

236 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF675E ''text" IS INVALID "SET" SYNTAX

Explanation; Either the equal sign {=) or the right side of the SET assignment
has been omitted.

AFF680E "text" IS INVALID IN THE "LIST" RANGE

Explanation: An item is specified in a range that is not allowed in a LIST
command.

AFF690E VARIABLE "variable" IS INVALID IN "command" COMMAND

Explanation: A duplication factor, a minus sign (-), or a constant appears with a
variable in the indicated command.

AFF691E LITERAL OR NUMERIC CONSTANTS ARE NOT PERMITTED IN THE

"DESCRIBE" COMMAND

Explanation: Only variables and array names can be specified on the
DESCRIBE command.

AFF700E NULL VARIABLE LIST/RANGE SPECIFIED IN "text"

Explanation: While scanning the previous command, the end of the command
was found before a list or range specification was completed.

AFF715E "variable" IS NOT A LOGICAL VARIABLE

Explanation: While scanning the previous command, a logical variable was
expected, but the indicated variable, which is not a logical variable, was found
instead.

AFF720E "condition" HAS AN INVALID CONDITION

Explanation: The indicated condition is not syntactically correct. For example,
".EE." may have been used instead of ".EQ.."

AFF725E INVALID COMBINATION OF DATA TYPES IN CONDITION "condition"

Explanation: While scanning the syntax of the previous command, an invalid
combination of data type was found within the condition specification. The data
types of the variables must be the same or compatible.

AFF730E "condition" IS INVALID CONDITION SYNTAX

Explanation: In the specification of an arithmetic condition, either the right side
of the condition has been omitted, or some extraneous data follows what

appears to be a complete condition.

AFF735E CONDITION "condition" HAS AN INVALID FORTRAN TERM

Explanation: A duplication factor is specified within a condition specification.
This is not valid.

Appendix A. Interactive Debug Messages 237

Debugging messages

AFF740E "text" IS INVALID "IF" SYNTAX

Explanation: Invalid syntax has been detected within an IF command. For
example, parentheses may be missing around the condition definition.

AFF741E A USERID MUST BE SPECIFIED WITH THE MSG OPERAND; NO
DEFAULT IS AVAILABLE

Explanation: TERMIO MSG was entered and the default user ID cannot be
determined.

User Response: If the MSG operand is desired, specify the desired user ID.

AFF742W "MSG" OPERAND IGNORED; "MSG" IS NOT VALID OUTSIDE BATCH
MODE

Explanation: ATERMIO command containing a MSG operand was entered
while Interactive Debug was being used interactively. The MSG operand is only
for batch mode.

AFF743E "command" COMMAND IS NOT PERMITTED IN BATCH MODE

Explanation: The indicated command was entered while in batch mode, but is
not permitted there.

AFF745E "text" IS INVALID "WHEN" SYNTAX

Explanation: In the specification of an arithmetic condition, either the right side
of the condition has been omitted, or some extraneous data follows what
appears to be a complete condition.

AFF750E A COMMAND MUST BE SPECIFIED AFTER "text"

Explanation: No command was specified after the condition on an IF statement.

AFF755E "QUALIFY" IS NOT PERMITTED IN AN "IF" COMMAND

Explanation: QUALIFY cannot be the command specified as the action to be
taken if the condition specified in an IF command is true.

AFF760E "text" REQUIRES AN OPERAND; THE COMMAND IS IGNORED

Explanation: An operand must be specified on the indicated command.

AFF765E "condition" HAS AN INVALID "WHEN" CONDITION NAME

Explanation: The name of the indicated condition has a syntactically invalid
name. Valid names must begin with an alphabetic character and contain no
more than four alphameric characters.

AFF768W "condition" CONDITION IS NOT ON

Explanation: An attempt to turn offthe indicated condition has been detected,
but the condition is already off.

238 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF775E "'command" COMMAND IGNORED IN AN IF OR COMMAND LIST

Explanation: The indicated command was found in an IF command or a
command list specified with an AT command. The command is not valid in this
context and is ignored.

AFF780E "command" IS NOT PERMITTED TO HAVE OPERANDS; THE
COMMAND IS IGNORED

Explanation: A keyword has been specified for a command that has no
keywords. The extra keyword is ignored.

User Response: Determine why the extra keyword was entered. Possibly the
wrong command was issued. If so, issue the right command.

AFF795E INVALID COMBINATION OF DATA TYPES IN "text"

Explanation; In a SET command, the data type of the variables and constants
on the right side of the equal sign is different from the data type of the variable
on the left side of the equal sign.

A character variable may be assigned only character data items.

A logical variable may be assigned only logical data items.

An arithmetic variable may be assigned only arithmetic data items.

AFF800E INVALID "GO"; THE STATEMENT IDENTIFIER IS NOT IN THE

CURRENT PROGRAM UNIT

Explanation: An attempt has been detected to go to a statement outside the
program unit that was being run when processing was suspended.

User Response: Reenter the GO command either without an ISN or sequence
number, or with an ISN or sequence number that is within the correct program
unit.

AFF801I QUALIFICATION IS program

Explanation: This message is issued in response to a QUALIFY command, and
identifies the currently qualified program unit. Unless you have issued a
QUALIFY command to set a different program unit, the currently qualified
program unit will be the program unit which is currently being run.

AFF802E COMMAND IGNORED; THE PROGRAM HAS FINISHED EXECUTION

Explanation: The VS FORTRAN program has finished execution. Interactive
Debug will allow you to enter most commands before you enter the QUIT
command, but the last command entered is not one of those that may be issued
at this time.

User Response: Enter a valid command. Valid commands are:

Appendix A. Interactive Debug Messages 239

Debugging messages

ANNOTATE POSITION

AUTQLIST PROFILE

BACKSPACE PREVOISP

CLOSE PURGE

COLOR QUALIFY

conment QUIT

DESCRIBE RECONNECT

ENDFILE REFRESH

HELP RESTART

LIST REVfINO

LISTBRKS SEARCH

LISTFREQ SET

LISTINGS SYSCHD

LISTSAHP TERHIO

LISTSUBS WHERE

LISTTIHE WINDOW

HOVECURS

Program Runs" on page 84.

AFF805W program IS OPTIMIZED; "GO" WITH STATEMENT ID MAY CAUSE
UNPREDICTABLE RESULTS

Explanation: The indicated program unit was compiled with OPT(n) with n>0.
Because the program is optimized, it may depend on values being kept in reg
isters between some statements. A GO command to a specific statement may
bypass code that is needed to set registers, and may cause unpredictable
results.

System Action: Message AFF806 is issued to confirm whether the command
should be run.

AFF806A DO YOU WISH TO EXECUTE THIS COMMAND? (YES OR NO)

Explanation: This message was preceded by message AFF805, which warned of
the possible consequences of running the GO command. You must now
confirm your desire to issue the command.

User Response: Reply YES or NO.

System Action: If YES is specified, the command is issued. If NO is specified,
the command is not issued. Following either action, processing continues.

AFF820E OPEN ERROR ON AFFOUT FILE

Explanation: This message is issued to your SYSMSG file or spooled console
when the OPEN of the AFFOUT file fails while running batch mode.

User Response: Correct the cause of the I/O error.

AFF821E ERROR PROCESSING AFFOUT FILE

Explanation: This message is issued to your SYSMSG file or spooled console
when a PUT to the AFFOUT file fails while running batch mode.

User Response: Correct the cause of the I/O error.

240 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF822E OPEN ERROR ON AFFIN FILE

Explanation: This message is issued when the OPEN of the AFFIN file fails
while running batch mode.

User Response: Correct the cause of the I/O error.

System Action: Debugging is terminated.

AFF823E ERROR PROCESSING AFFIN FILE

Explanation: This message is issued if a GET to the AFFIN file fails while
running batch mode.

User Response: Correct the cause of the I/O error.

System Action: Debugging is terminated.

AFF824E END-OF-FILE ON AFFIN FILE

Explanation: This message is issued when end-of-file is reached on the AFFIN
file for batch mode.

User Response: Correct the input file and rerun the job if more commands are
desired.

System Action: A QUIT command is forced.

AFF825E UNABLE TO WRITE DIAGNOSTIC MESSAGE CONCERNING AFFIN

FILE

Explanation: This message is issued to your SYSMSG file or spooled console
when an AFFIN diagnostic cannot be written to the AFFOUT file in batch mode.

User Response: Correct the cause of the I/O error.

AFF831E "ENTRY" AND "EXIT" ARE NOT PERMITTED IN A RANGE

Explanation: An ENTRY or EXIT keyword was issued in a statement ID range.

User Response: Use ISNs or sequence numbers for ranges. ENTRY and EXIT
are usable only as individual elements.

AFF832E THE QUALIFIER ON THE RIGHT SIDE OF A RANGE MUST MATCH

THE QUALIFIER ON THE LEFT SIDE

Explanation: A statement ID range was entered where a qualifier was specified
for the right statement ID that does not match the one on the left side.

User Response: Use a matching qualifier or allow it to default.

AFF840E LIST RANGE IGNORED; THE SECOND VARIABLE PRECEDES THE
FIRST IN STORAGE

Explanation: A LIST command has been entered with a range of variables
specified. In a range, the first variable must appear in storage prior to the
second variable so that the area between the two variables may be displayed.

Appendix A. Interactive Debug Messages 241

Debugging messages

AFF841I RANK = number, DUMMY ARRAY ARGUMENT OF INACTIVE SUB
PROGRAM OR ALTERNATE ENTRY POINT

Explanation: This message is produced by the DESCRIBE command for a
dummy array argument of an inactive subprogram oralternate entry point.

AFF850I variable value

Explanation: This is the output of a LIST command that did not include the
DUMP keyword. The name of the requested variable is shown along with its
current value.

AFF851I PROGRAM UNIT COMPILER OPT HOOKED TIMING

Explanation: This is the title line for LISTSUBS output.

AFF852I ENTRY POINT TOTAL TIME %TOTAL INVOCATIONS
AVERAGE TIME

Explanation: This is the header message for LISTTIME output for program units.

AFF853I entry-point-name number prcnt number number

Explanation: This is a line of LISTTIME output for program units. It shows:

the name of the entry point into the program

the execution time of the program (in microseconds)
the percent of total execution time for the program
the number of invocations of the program unit
the average time per invocation of the program unit (in microseconds)

AFF854I NO TIMING INFORMATION IS AVAILABLE

Explanation: This message is issued ifno program units are timing or have
accumulated time.

AFF855I name datatype

Explanation: This is the DESCRIBE output for a scalar variable.

AFF858I RANK = number, SIZE = number ELEMENTS

Explanation: This message provides DESCRIBE information about the size of an
array variable.

AFF857I DIM number, LBOUND = {number), UBOUND = {number)

Explanation: This message provides DESCRIBE information about the dimen
sions of an array variable.

AFF859I DIMENSION INFORMATION NOT AVAILABLE

Explanation: Dimension information is not available for dummy arguments of an
inactive subprogram or for an alternate entry point.

242 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF860E FIXUP IGNORED; SUBSCRIPT ERROR

Explanation: A subscript specified within a FIXUP command was out of range
for the variable it was subscripting.

AFF861E FIXUP IGNORED; NOT IN ERROR EXIT

Explanation: You can issue a FIXUP command only if a run-time error has
occurred in the VS FORTRAN program.

AFF882E FIXUP IGNORED; NO ARGUMENTS MAY BE MODIFIED

Explanation: A FIXUP command with either ARG1 or ARG2 (or both) specified
was entered for an error that has no modifiable arguments.

User Response: Enter a corrected FIXUP command or a GO command.

AFF863E FIXUP IGNORED; ARG2 MAY NOT BE MODIFIED

Explanation: A FIXUP command has been entered with a value specified for
ARG2, but the VS FORTRAN library subroutine that detected the error only has
one modifiable argument.

AFF865E "GO" WITH A STATEMENT ID IS NOT ALLOWED IN AN ERROR EXIT

Explanation: This type of GO command is not allowed within an error exit.

User Response: If you want to continue processing at some other statement,
you may issue a NEXT command followed by a GO command. When execution
is suspended because of the NEXT command, you may issue the GO command
with a specific statement identification.

AFF866E LAST COMMAND IGNORED DUE TO AN ERROR EXIT

Explanation: The last command entered within an attention exit was not run

because an error exit occurred.

AFF867E ERROR EXIT: ERROR number AT name.number

Explanation: This is the notification message that occurs when an error exit is
taken. It is also the response to a WHERE command in an error exit. The indi
cated statement and program unit name identify the last statement that was
running prior to the indicated error.

User Response: None required. Use the FIXUP or GO command to terminate
the error exit processing.

AFF868E "fexf" IS INVALID I/O COMMAND SYNTAX

Explanation: The syntax of the previous BACKSPACE, CLOSE, ENDFILE, or
REWIND command Is invalid. An integer variable or constant must be specified.

Appendix A. Interactive Debug Messages 243

Debugging messages

AFF871I WHEN: condition SATISFIED

Explanation: The indicated WHEN condition has been satisfied.

System Action: This message will be followed by message AFF872I.

AFF872I CURRENTLY AT name.number

Explanation: This message is issued after message AFF871I to identify the
current location within the program unit.

AFF873I PROGRAM TERMINATED BY USER REQUEST

Explanation: This message is issued when you enter the "QUIT" command in
an attention exit to terminate execution of a VS FORTRAN program.

System Action: Control is returned to Interactive Debug.

AFF874E ERROR ON AFFIN FILE; FILE IGNORED

Explanation: An error has occurred while attempting to open the AFFIN file. No
further attempts to access this file are made.

User Response: Correct the problem that caused the message. If the file is
required, correct the problem and re-invoke Interactive Debug.

AFF875E WHEN IGNORED; CONDITION ''condition" NOT DEFINED

Explanation: AWHEN command has been detected that contains only a condi
tion name. This is interpreted as a request to "turn the condition on." However,
no condition with the specified name has been defined.

AFF878E WHEN IGNORED; SUBSCRIPT ERROR

Explanation: A subscript error was encountered while processing the WHEN
command.

AFF880E OFFWN IGNORED; NO WHEN CONDITIONS ARE DEFINED

Explanation: The previous OFFWN command was ignored because there are no
WHEN conditions defined that could be turned off.

AFF881E OFFWN IGNORED FOR UNDEFINED CONDITION "condition"

Explanation: The previous OFFWN command specified a WHEN condition that
does not exist. The command is ignored.

AFF900E SYSTEM COMMAND RETURN CODE: code

Explanation: The indicated code was received from processing the previous
system command using Interactive Debug's SYSCMD command.

244 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF910I CURRENT TERMIO STATUS: status

Explanation: This message indicates the status of settings that are controlled
by the TERMIO command.

AFF920E SET COMMAND NOT COMPLETED NORMALLY

Explanation: Because of an error described in the preceding message, the SET
command was unable to be completed; not all values were assigned.

AFF915I CURRENT DBCS STATUS: status

Explanation: Provides the current DBCS status in response to the DBCS
command with no operands.

AFF925E TOO MANY VALUES; EXCESS IGNORED; SET COMPLETED

Explanation: Too many values for an array have been specified with a SET
command. The extraneous values are ignored.

AFF929E MULTIPLE FORTRAN MAIN PROGRAMS HAVE BEEN FOUND;

PROGRAM "program-unit-name" IS ALSO A MAIN PROGRAM

Explanation: Multiple main FORTRAN program units were found in the program
being debugged. Only programs with a single main program unit can be
debugged.

System Action: Processing continues. Interactive Debug assumes that the last
main program unit in the load module is the main program that was invoked. If
this is not the case, message AFF937E will be issued.

User Response: Relink-edit the program to contain only one main program unit.

AFF930E NAME "name" GREATER THAN 31 CHARACTERS; TRUNCATED

Explanation: A program unit name in the AFFON file is greater than 31 charac
ters. The name is truncated to 31 characters.

User Response: Ifthe name is misspelled, correct the spelling in the AFFON
file and re-invoke the debugger.

AFF931E INVALID FILE NAME IN AFFON ENTRY FOR "program-unit-name".

Explanation: A data set name or file identifier specified in the AFFON file entry
for the named program unit (or ALL) is invalid.

System Action: The data set name or file identifier is ignored. For a program
unit name entry, the default name will be used. For an ALL entry, the default
name will remain unchanged.

User Response: The data set name or file identifier is misspelled. Check to
make sure the name is fully qualified and enclosed in quotes.

Appendix A. Interactive Debug Messages 245

Debugging messages

AFF932E DUPLICATE NAME "name"

Explanation: The indicated program unit name has been found more than once
in the AFFON file.

System Action: The duplicate entry is ignored, and processing continues.

I AFF933I THE AFFON FILE WAS PROCESSED WITH number ERRORS

I Explanation: This is an informational message informing you that the AFFON
I file was processed, number is the number oferrors found from parsing the file.
I Additional errors may be printed after this message indicating that certain data
I in the AFFON file is not valid for certain program units.

AFF934E PROGRAM NAME "program" NOT FOUND

Explanation: The indicated program unit name was specified in the AFFON file,
but could not be found in the program to be debugged.

System Action: The program unit name is ignored, and processing continues.

AFF935E INTERNAL ERROR IN GENERATED CODE FOR "program"

Explanation: This is an internal error and should never occur. It indicates that,
within the first four bytes generated by the VS FORTRAN Version 1 or VS
FORTRAN Version 2 compiler for a VS FORTRAN statement, an instruction of
the form "BALR x.y" was detected. Such an instruction is only valid if y=0.

User Response: Contact your IBM representative.

System Action: Debugging is discontinued.

AFF937E HOOK FOUND AT UNKNOWN LOCATION

Explanation: This is probably an internal error. It indicates that what appears
to be an Interactive Debug hook was found at a location that Interactive Debug
could not recognize.

User Response: Contact your IBM representative.

System Action: Interactive Debug returns control to the VS FORTRAN Version 2
Library for its normal program check handling.

AFF938E ADDRESSING MODE CHANGED IN program unit name

Explanation: An external routine called from a VS FORTRAN program unit has
changed the MVS/XA addressing mode and not restored it. Unless this is an
unusual or intentional situation, an abend will probably occur. Be aware that
there are some situations in which an abend will occur before Interactive Debug
can get control and issue this message. For example, a program running
above the 16-megabyte line that switches to 24-bit addressing mode will abend
immediately.

There are situations, however, where this message will be issued as informa
tional only. For example, the Release 4 VS FORTRAN Version 1 library always
enters user error exits in 31-bit addressing mode. If an MVS/XA program is
linked to run 24/24, this message will be issued the first time such a routine is

246 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

entered. In this case, it should be treated as infornnationai only, and not
regarded as an error condition.

User Response: Unless the change of addressing mode was intentional, or
unless a user exit was taken by a 24/24 program, you should check and correct
the addressing mode logic in any external routines called by the specified
program unit.

AFF940I ZERO-FREQUENCY STATEMENTS

Explanation: This is the heading of a listing of statements within the indicated
program unit that have not been run, in response to LISTFREQ.

System Action: The ISNs or sequence numbers are listed.

AFF942I name.statement

Explanation: This is the output of the LISTFREQ command when the ZEROFREQ
keyword has been specified.

AFF943I NONE

Explanation: One of the following is true:

A LISTFREQ command with the ZEROFREQ keyword was entered, and all
statements in the currently qualified program unit have been run at least
once.

A LISTBRKS command was entered, and no breakpoints have been estab
lished using the AT command.

A LISTBRKS command was entered, and no WHEN conditions have been
established.

AFF945I STATEMENT FREQUENCY

Explanation: This is the heading for a listing of execution counts, in response to
LISTFREQ.

System Action: The ISNs or sequence numbers are listed.

AFF947I name.number frequency

Explanation: This is the output of the LISTFREQ command.

AFF950I CURRENT BREAKPOINTS:

Explanation: This is the heading for the output of the LISTBRKS command for
breakpoints set by the AT command.

System Action: All active breakpoints are listed.

AFF952I name.statement

Explanation: This is the output from the LISTBRKS command for AT commands
with a COUNT of 1.

Appendix A. Interactive Debug Messages 247

Debugging messages

AFF953I name.statement COUNT(coL/nO

Explanation: This is the output from the LISTBRKS command for AT commands
with a COUNT greater than 1.

AFF955I CURRENT WHEN CONDITIONS:

Explanation: This is the heading for the output of the LISTBRKS command for
WHEN conditions.

AFF957I condition name setting condition

Explanation: This is the output from the LISTBRKS command for WHEN condi
tions. Each defined condition is shown, along with an indication of whether the
condition is currently being monitored (ON) or not (OFF).

AFF960W COMMAND WILL BE ATTEMPTED, BUT PROGRAM HAS FINISHED
EXECUTION

Explanation: The previous command has been accepted and will be run
normally, but execution of the program has completed and may not be
restarted.

AFF970W program IS OPTIMIZED; SETS MAY BE INEFFECTIVE AND REFER
ENCES MAY GET INVALID VALUES

Explanation: The indicated program unit has been compiled with the OPT{n) or
VECTOR(n) compiler option with n>0. Because the program unit is optimized.
Interactive Debug commands that reference storage locations may produce
unexpected results. For example, LIST A will report the value in the storage
location the compiler established for variable A, but the compiled code may not
be using the storage location to keep the value of the variable; it may be kept in
a register instead. Interactive Debug cannot detect this situation, but it is likely
to occur in optimized program units.

User Response; Use affected commands with care. See "Debugging Optimized
and Vectorized Code" on page 86, which discusses the effect of optimized code
on Interactive Debug.

System Action: Processing continues. This message should only appear the
first time you issue one of the affected commands in a program unit.

AFF971E STATEMENT number IS COLLAPSED AND MAY NOT BE USED FOR

DEBUGGING

Explanation: The indicated statement cannot have a breakpoint associated with
it because it occupies no storage (because of optimization or vectorization).

User Response: If necessary, set a breakpoint at a statement immediately
before or after the collapsed statement. You can use LISTFREQ to show which
statements are collapsed.

248 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Debugging messages

AFF972I STATEMENT number DOES NOT HAVE AN ESTABLISHED BREAK

POINT

Explanation: An OFF command specifles that a breakpoint at the Indicated
statement is to be removed. There is no breakpoint at this statement.

AFF973I "OFF" IGNORED; NO BREAKPOINTS ARE DEFINED

Explanation: An OFF command has been issued, but there are no breakpoints
defined in the currently qualified program unit.

AFF975E command COMMAND IGNORED; NO CURRENT QUALIFICATION

Explanation: There is no program unit serving as the current qualification.
Perhaps execution was suspended before any debuggable program was exe
cuted.

User Response: Set a qualification using the QUALIFY command, and reenter
the command causing the message.

AFF976E SYNTAX ERROR IN command COMMAND

Explanation: A syntax error was detected in scanning the indicated command.

User Response: Determine the cause of the error, and reenter the command
with the correct syntax.

AFF977E I/O UNIT NUMBER IN "command" MUST BE AN INTEGER

Explanation: While scanning the previous command, where an integer value or
integer variable was expected, a duplication factor or some other type of data
was found.

User Response: Reenter the command with an integer value or the name of an
INTEGER variable.

AFF978E COMMAND IGNORED; "ENDDEBUG" HAS BEEN ISSUED

Explanation: The last command entered is being ignored because of a previ
ously issued ENDDEBUG command. After ENDDEBUG is issued, you no longer
have the ability to debug.

User Response: You may issue QUIT if you no longer want to run the program,
or may enter a null line to continue execution.

AFF973E "command" IGNORED; TERMINAL INPUT PENDING

Explanation: A GO, ENDDEBUG, or STEP command was entered, but is not per
mitted when a program is waiting for input.

User Response: If you want to enter a GO, ENDDEBUG, or STEP command,
enter a NEXT command now, and, when execution stops for the NEXT, enter the
GO or ENDDEBUG command.

Appendix A. Interactive Debug Messages 249

Debugging messages

AFF980E THE "STEP" OPERAND MUST BE AN INTEGER GREATER THAN
ZERO

Explanation: STEP was entered with an invalid operand.

AFF981I ALL BREAKPOINTS IGNORED FOR PROGRAM UNIT "name"

Explanation: A dynamically loaded program unit with pending breakpoints was
found to be loaded in read-only storage.

AFF982I NO BREAKPOINTS ARE DEFINED WITHIN THE SPECIFIED RANGE

Explanation: The OFF command specified a range where no breakpoints were
defined.

AFF990I START OF RUN OR NO DEBUGGABLE PROGRAM EXECUTING

Explanation: A WHERE command has been detected, but either only the first
prompt has been received and execution has not really started, or execution
was interrupted while a nondebuggable program was executing.

AFF991I program CALLED AT name.number

Explanation: This message is the output of the WHERE command with the
TRBACK keyword. The message indicates the logic flow through the program
units.

AFF992I NO SUBROUTINES CALLED

Explanation: This message is issued following a WHERE TRBACK command
when no subroutines have been called. This implies that execution is currently
within the topmost debuggable program unit (usually the "main" program).

AFF995I WHERE: name.number

Explanation: This is the output of the WHERE command. It shows that exe
cution is currently at the indicated statement in the indicated program unit. If
execution is currently within a program unit that is not debuggable (and exe
cution was suspended because of an attention interrupt), then the specified
statement will be the last statement executed in a debuggable program unit.

AFF996I TO: name.number FROM: name.number

Explanation: This message is the output of the WHERE command with the
FLOW keyword. The message indicates the logic flow through the program
units.

AFF998E INTERNAL ERROR number AT LOCATION number; IAD STORAGE

MAY HAVE BEEN OVERLAID BY PROGRAM

Explanation: This message is issued when an internal Interactive Debug abend
occurs.

User Response: Contact your IBM representative.

System Action: Abend 101 is issued.

250 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Full screen mode messages

Full screen mode messages
These messages appear only in full screen mode. They are displayed below
the command line, and will not appear in the log.

AFFA001E "AT" OR "OFF" ARE THE ONLY VALID PREFIX COMMANDS

Explanation: An invalid prefix command was detected. In the prefix command
area, only the AT and OFF commands are allowed.

User Response: Press ENTER or type a valid command.

AFFA002E string PLACED ON A NON-EXECUTABLE STATEMENT

Explanation: The statement corresponding to where the prefix command was
entered is not an executable statement.

AFFA004E THE ONLY VALID LISTING PANEL COMMANDS ARE "END" OR
"RETURN"

Explanation: While in the listings panel. Interactive Debug commands are not
recognized.

User Response: To issue Interactive Debug commands, first type END or
RETURN in the listings panel to return to the main panel.

AFFA006I SEARCH HAS BEEN CONTINUED FROM TOP OF AREA

Explanation: The target of the SEARCH command was not found between the
starting point of the search to the end of the object, so the search for the string
wrapped to the top of the object.

AFFA007I NO VEC(REP) MESSAGE

Explanation: There is no vector message for the line pointed to by the cursor.

AFFA008E TARGET OF command NOT FOUND

Explanation; The argument of the POSITION or SEARCH command was not
found.

AFFA009E NO PREVIOUS SEARCH ARGUMENT EXISTS; SEARCH NOT PER
FORMED

Explanation: A SEARCH command was issued without an operand and there
was no previous instance of a search. Thus, Interactive Debug has no string for
which to search.

AFFA011I THIS lA A DISPLAY OF A SAVED PANEL. ALL COMMANDS WILL BE
IGNORED

Explanation: By issuing the PREVDISP command. Interactive Debug will display
the last displayed ISPF panel of the application program. The saved panel
display is not an active panel; it is merely a picture of the display information.
Thus, any commands or modifications made on this panel will have no effect.

Appendix A. Interactive Debug Messages 251

Full screen mode messages

AFFA015I CURSOR MUST BE IN THE OBJECT AREA OF THE WINDOW

Explanation: A cursor sensitive command was issued but the cursor placement
was not in the correct area of the window for the operation to take place.

User Response: Place the cursor in one of the three windows where the opera
tion is to take place.

AFFA018I CURSOR MUST BE IN LOG, SOURCE OR MONITOR WINDOW

Explanation: A cursor sensitive command was issued but the cursor was not in
a window.

User Response: Place the cursor in one of the three windows where the opera
tion is to take place.

AFFA019I CURRENT COMMAND IS INCOMPLETE, PENDING MORE INPUT

Explanation: When Interactive Debug recognizes that a block of commands are
being entered, it will display this informational message until the command
block is closed by an END statement.

AFFA020I ONLY COMMAND LINE INPUT IS ACCEPTED DURING PENDING

MODE

Explanation: When the command continuation mode is on, the only input areas
recognized are the command area and the log window where command modifi
cation may take place.

AFFA030E VALID DISPLAY FIELD VALUES ARE: YES, NO FOR THIS FIELD.

Explanation: The only valid values are YES and NO.

AFFA037E txtUb-name TXTLIB COULD NOT BE FOUND

Explanation: In CMS, the specified txtlib name on the invocation panel could
not be found on any of the accessed disks.

AFFA045I INTERACTIVE DEBUG HAS ENDED NORMALLY

Explanation: The Interactive Debug session has completed.

AFFA050I THE RETRIEVE QUEUE IS EMPTY

Explanation: No previous command was issued from the command line during
the current debug session.

AFFA051I EACH WINDOW MUST HAVE UNIQUE LETTERS OF L, M, AND S

Explanation: Objects cannot simultaneously reside in multiple windows. Each
window must contain a unique object.

252 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Full screen mode messages

AFFA052I window-name WINDOW IS ALREADY OPEN

Explanation; A WINDOW OPEN command was issued for a window which Is
already open.

AFFA053I window-name WINDOW IS ALREADY CLOSED

Explanation: A WINDOW CLOSE command was Issued for a window which was
already closed.

AFFA054I ONE WINDOW MUST BE OPEN AT ALL TIMES

Explanation: A WINDOW CLOSE command was given with only one window
open. At least one window must be open at any time.

AFFA055I SPECIFY A WINDOW NAME ON THE command-name COMMAND

Explanation: A full screen command which requires one of the window object
names as an operand was not given a window object name as an argument.

AFFA501S INSUFFICIENT STORAGE FOR ENVIRONMENT SETUP, CANNOT
CONTINUE.

Explanation: During Initialization, not enough storage was available to set up
the execution environment.

AFFA502S FAILURE DURING PROGRAM LOAD. CANNOT CONTINUE.

Explanation: During initialization, several modules are dynamically loaded. If
there were any kind of errors while loading system routines, this message will
be Issued.

AFFA503S TSO COMMAND NOT EXECUTED. ATTENTION HANDLER INVOCA
TION ERROR.

Explanation: In line mode TSO operation, an attention handler Is established
when the TSO command Is run. This message will appear If the attention
handler cannot be set up.

AFFA504S TSO COMMAND NOT EXECUTED. COMMAND NOT RECOGNIZED OR
INVALID.

Explanation: In line mode TSO operation, an operand following the TSO
command has been passed to TSO for execution. TSO doesn't recognize the
operand as a command.

AFFA505S HELP COMMAND NOT EXECUTED. ATTENTION HANDLER INVOCA
TION ERROR

Explanation: In line mode TSO operation, an attention handler Is established
when the HELP command is run. This message will appear If the attention
handler cannot be set up.

Appendix A. Interactive Debug Messages 253

Full screen mode messages

AFFA751E LISTING TAGS MISSING. LISTING MUST BE COMPILED WITH
FORTRAN V2R3

Explanation: The listing file was not compiled with the VS FORTRAN Version 2
Release 3 compiler.

AFFA752E LISTING FILE COULD NOT BE OPENED.

AFFA753E LISTING DATASET COULD NOT BE OPENED.

AFFA754E LISTING COULD NOT BE LOADED INTO STORAGE.

AFFA75SE INSUFFICIENT STORAGE TO LOAD LISTING.

Explanation: There is not enough storage available to load the listing for the
program unit.

AFFA756E LISTING FILE COULD NOT BE FOUND ON ACCESSED DISKS.

Explanation: The default or the specified listing name could not be found on
any of the CMS accessed disks.

AFFA757E LISTING DATASET COULD NOT BE FOUND IN ALLOCATED DATA-

SETS.

Explanation: The default or the specifled dataset name could not be found on
any of the allocated datasets.

AFFA758E SPECIFIED PROGRAM UNIT NAME NOT FOUND IN LISTING.

Explanation: The compile unit name entered on the listing panel could not be
found in the listing associated with it.

AFFA851E LOG FILE LRECL GREATER THAN 256; LOG WILL NOT BE CREATED.

Explanation: A user defined log file must have a logical record length greater
than or equal to 32 bytes and less than or equal to 256 bytes.

AFFA852E LOG FILE LRECL LESS THAN 32; LOG WILL NOT BE CREATED.

Explanation: A user defined log flle must have a logical record length greater
than or equal to 32 bytes and less than or equal to 256 bytes.

AFFA853E ERROR WRITING TO LOG FILE.

Explanation: An I/O error occurred while trying to write to the log file.

AFFA854E LOG FILE COULD NOT BE OPENED.

Explanation: An I/O error caused some problem with creating the log file.

AFFS(K)2 ERROR DETECTED BY IAD

Explanation: An error was detected while trying to process an Interactive
Debug command.

User Response: Check the log window for an explanation.

254 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Full screen mode messages

AFFS003 THE FORTRAN LIBRARY DETECTED AN ERROR DURING THE

PROGRAM EXECUTION

Explanation: An error In the program was detected by the VS FORTRAN library.

User Response: Check the log window for an explanation.

AFFS006 Wetype FILE NOT FOUND

Explanation: Either the LOG or PRINT file was not found by Interactive Debug.
Therefore, it cannot be browsed after IAD completion.

AFFS007A THE PARAMETERS USED ARE INVALID AND HAVE NO EFFECT WITH

THIS COMMAND

Explanation: This command does not require an operand. The command is
executed as if no operand was specified.

AFFS008A NO PREVIOUS SEARCH ARGUMENT EXISTS; SEARCH NOT PER
FORMED.

Explanation: A SEARCH command was entered without operands, but there
was no previous search argument to use as a default.

User Response: Reissue the command with an operand.

AFFS010 file-id LOADS TOO LOW IN STORAGE TO RUN UNDER ISPF

Explanation: A MODULE could not be loaded into storage for debugging since
its origin is too low.

User Response: GENMOD the module at a larger address. (ORIGIN 22000
should be high enough.)

AFFS016 FUNCTION ERROR, RC = rc

LONG FORM: ERROR TRYING TO LOAD PROGRAM, RC = rc

CHECK IAD MANUAL FOR INFO.

Explanation: The VS FORTRAN program could not be invoked. The possible
return codes from Interactive Debug are:

5 The OPEN failed when trying to use a LOADLIB.

6 The BLDL failed when trying to use a LOADLIB, other than the specified
member was not found.

12 . The LOADMOD failed when trying to use a MODULE, other than the
MODULE origin too low.

99 The LOAD failed when trying to use a TEXT file or LOADLIB.

AFFS017 EXECUTED WITHOUT DEBUG

LONG FORM: NODEBUG SPECIFIED AS EXECUTION TIME OPTION,

DEBUG NOT INVOKED

Explanation: Interactive Debug was not invoked because NODEBUG was speci
fied as an execution-time option.

Appendix A. Interactive Debug Messages 255

AFFS018 TXTLIB NOT FOUND
LONG FORM: SPECIFIED TXTLIB NOT FOUND ON ANY ACCESSED
DISK

Explanation: One of the TXTLIBs specined on the invocation panel or either
VSF2F0RT or CMSLIB TXTLIB was not found when trying to invoke Interactive
Debug.

User Response: Make sure that the specified TXTLIBs are properly accessed.

AFFS018A LOADLIB NOT FOUND
LONG FORM: VSF2L0AD LOADLIB NOT FOUND ON ANY
ACCESSED DISK

Explanation: The VS FORTRAN Interactive Debug library was not found on any
of your accessed disks.

User Response: Make sure the VS FORTRAN disk is properly accessed.

256 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Appendix B. ISPF Dialog Variable Names Defined by
Interactive Debug

Following are names of ISPF dialog variables defined by Interactive Debug, and
should not be used in defining ISPF dialog variables in VS FORTRAN Version 2
programs.

AFFRSTRT AMT_LITERAL AQACRP_LITERAL
AQAHELP_LITERAL AQAMENU AQATRAP

CMD_LINE_FIELD CMD_MODE STRING CNAME

C0L1 C0L2 C0L3

CONFIG COUNTL CPOS

DYNAM_AREA_NAME FREQUENCY_DISPLAY ISPALRM

ISPCLST ISPCRLST ISPDSMS

ISPDSN ISPFCMD ISPFID

ISPHALT ISPLINE ISPLNUM

ISPLOGN ISPLOGNO ISPMO

ISPMONNO ISPPGM ISPSRFL

ISPWAIT ISP1LST ISP2LST

LAST LINE LISTING_TYPE
LOG_OUTPUT_TYPE LOGDSN LOGFID

MIXED_MODE_FIELD MLOG NO_LITERAL
PARM1 PARM2 PFKEY_NAME
PREVDISP_MARK QUALIFY_FIELD REFRESH_FIELD
RESET_LITERAL RESTFID RETCBUF

RETCLEN R0W1 R0W2

R0W3 RST RSTDSN

SAVE_LITERAL SCREEN_WIDTH TABLE_LINE
VGET_BUFFER WHERE_FIELD WIND0W1

WIND0W2 WINDOWS W10PEN

W20PEN W30PEN YES_LITERAL
ZAPPLID ZHILITE ZKEYS

ZSCREEND ZSCREENW ZSCRMIN2

ZSCROLLN_LITERAL ZSPLIT_LITERAL ZTDSELS_LITERAL
ZUSER ZVERB

Figure 45. ISPF Dialog Variable Nmaes Defined by Interactive Debug

Appendix B. ISPF Dialog Variable Names Defined by Interactive Debug 257

Glossary

This glossary Includes definitions developed by the
Annerican National Standards Institute (ANSI), and the
International Organization for Standardization (ISO).

This material is reproduced from the American
National Dictionary for Information Processing, copy
right 1977 by the Computer and Business Equipment
Manufacturers Association, copies of which may be
purchased from the American National Standards
Institute, 1430 Broadway, New York, New York 10018.

An asterisk (*) to the right of an item number indi
cates an ANSI definition in an entry that also includes
other definitions.

The symbol "(ISO)" at the beginning of a definition
indicates that it has been discussed and agreed upon
at meetings of the International Organization for
Standardization Technical Committee

97/Subcommittee 1 (Data Processing Vocabulary), and
has also been approved by ANSI and included in the
American National Dictionary for Information Proc
essing.

addressing mode. The length of an address, either 24
bits or 31 bits, used by the processor. Indicated by
the high-order bit of the PSW in an MVS/XA environ
ment.

alphabetic character. A character of the set A, B, C,
... Z. See also "letter." In VS FORTRAN Version 1 and

VS FORTRAN Version 2, the currency symbol ($) is
considered an alphabetic character. In VS FORTRAN
Version 2, lowercase letters (a through z) are also
valid.

alphameric. Pertaining to a character set that con
tains letters (A through Z) and digits (0 through 9)
only. In VS FORTRAN Version 2, the character set
may also contain lowercase letters (a through z).

alphameric character set. A character set that con
tains both letters and digits.

alternate entry. (1) In VS FORTRAN, an entry pro
vided by means of the ENTRY statement. (2) As used
by Interactive Debug, an entry other than the one by
which the subprogram was actually entered.

analyzable DO loop. See also "DO loop." A DO loop
that is eligible for vectorization by the compiler. The
loop may or may not have been vectorized,
depending on compiler directives used and decisions
made by the compiler based on cost analysis.

Glossary

animation. In ISPF with Interactive Debug, the ability
to highlight the command currently running and
control the pace of execution when using the STEP
command. This creates an "animated" picture of your
program's execution.

argument. A parameter passed between a calling
program and a SUBROUTINE subprogram, a FUNC
TION subprogram, or a statement function.

arithmetic constant. A constant of type integer, real,
double-precision, or complex.

arithmetic expression. One or more arithmetic opera
tors and/or arithmetic primaries, the evaluation of
which produces a numeric value. An arithmetic
expression can be an unsigned arithmetic constant,
the name of an arithmetic constant, or a reference to

an arithmetic variable, array element, or function ref
erence, or a combination of such primaries formed by
using arithmetic operators and parentheses.

arithmetic operator. A symbol that directs VS
FORTRAN to perform an arithmetic operation. The
arithmetic operators are:

+ addition

subtraction

* multiplication
I division

** exponentiation

array. An ordered set of data items identified by a
single name.

array declarator. The part of a statement that
describes an array used in a program unit. It indi
cates the name of the array, the number of dimen
sions it contains, and the size of each dimension. An
array declarator may appear in a DIMENSION,
COMMON, or explicit type statement.

array element. A data item in an array, identified by
the array name followed by a subscript indicating its
position in the array.

array name. The name of an ordered set of data
items that make up an array.

assignment statement. A statement that assigns a
value to a variable or array element. It is made up of
a variable or array element, followed by an equal sign
(=), followed by an expression. The variable, array
element, or expression can be of type character,
logical, or arithmetic. When the assignment state
ment is run, the expression to the right of the equal

Glossary 259

Glossary

sign replaces the value of the variable or array
element to the left.

B

basic real constant. A string of decimal digits con
taining a decimal point, and expressing a real value.

blank common. An unnamed common block.

breakpoint. (1) (ISO) A place in a computer program,
usually specified by an instruction, where its exe
cution may be interrupted by external intervention or
by a monitor program. (2) As used by Interactive
Debug, a VS FORTRAN statement where the user has
specified that execution is to be suspended, or that
some action is to be taken.

character constant. A string of one or more charac
ters enclosed in apostrophes. The delimiting apostro
phes are not part of the constant.

character expression. An expression in the form of a
single character constant, variable, array element,
substring, function reference, or another expression
enclosed in parentheses. A character expression is
always of type character.

character type. A data type that can consist of any
characters; in storage, one byte is used for each char
acter.

collapsed statement. A statement for which no
machine code has been generated because of the
nature of the statement, or as a result of optimization
or vectorization.

common block. A storage area that may be referred
to by a calling program and one or more subpro
grams.

complex constant. An ordered pair of real or integer
constants separated by a comma and enclosed in
parentheses. The first real constant of the pair is the
real part of the complex number; the second is the
imaginary part.

complex type. An approximation of the value of a
complex number, consisting of an ordered pair of real
data items separated by a comma and enclosed in
parentheses. The first item represents the real part
of the complex number; the second represents the
imaginary part.

connected file. A file that has been connected to a

unit and defined by a FILEDEF command or by job
control statements.

constant. An unvarying quantity. Thefour classes of
constants specify numbers (arithmetic), truth values
(logical), character data (character), and hexadecimal
data.

continuation character, a hyphen (-), used to continue
a command that is longer than the Interactive Debug
command line. Enter it as the last character before
continuation.

control statement. Any of the statements used to
alter the normal sequential execution of FORTRAN
statements, or to terminate the execution of a VS
FORTRAN program. FORTRAN control statements are
any of the forms of the GO TO, IF, and DO statements,
or the PAUSE, CONTINUE, and STOP statements.

cursor-sensitive command. A command for which its
operands can be specified by pointing to them with
the cursor, instead of typing them on the command
line. Applies to full screen mode debugging only.

data. (1) " (ISO) A representation of facts or
instructions in a form suitable for communication,
interpretation, or processing by human or automatic
means. (2) In FORTRAN, data includes constants,
variables, arrays, and character substrings.

data item. A constant, variable, array element, or
character substring.

data set. The major unit of data storage and retrieval
consisting of data collected in one of several pre
scribed arrangements and described by control infor
mation to which the system has access.

data set reference number. A constant or variable in

an input or output statement that identifies a data set
to be processed.

data type. The properties and internal representation
that characterize data and functions. The basic types
are integer, real, complex, logical, double precision,
and character.

debugging hook. See also "DO loop analysis hook"
and "hook." A type of hook used to give Interactive
Debug control of a user's program for debugging pur
poses, such as for AT and WHEN breakpoints, tracing,
and single stepping. These hooks are different from
DO loop analysis hooks.

* digit. (ISO) A graphic character that represents an
integer. For example, one of the characters 0 through
9.

DO loop. See also "analyzable DOloop." A range of
statements run repetitively by a DO statement.

260 VS FORTRAN Version 2 Interactive Debug Guide and Reference

DO loop analysis hook. See also "debugging hook"
and "hook." A type of hook used to give Interactive
Debug control of the user's program for DO loop anal
ysis purposes, such as for vector length and stride
gathering and DO loop timing. These hooks are dif
ferent from debugging hooks.

double-byte character. A character which is repres
ented by two bytes.

double-byte data. Data consisting of double-byte
characters.

double precision,
storage length 8.

The standard name for real data of

DO variable. A variable, specified in a DO statement,
that is initialized or incremented prior to each exe
cution of the statement or statements within a DO

range. It is used to control the number of times the
statements within the range are run.

dummy argument. A variable within a subprogram or
statement function definition with which actual argu
ments from the calling program or function reference
are positionally associated. Dummy arguments are
defined in a SUBROUTINE or FUNCTION statement, or

in a statement function definition.

dynamic common. A VS FORTRAN named common
which the DC compiler option specifies should be allo
cated at run- time.

executable program. A program that can be run as a
self-contained procedure. It consists of a main
program and, optionally, one or more subprograms or
non-FORTRAN-defined external procedures, or both.

executable statement. A statement that causes an

action to be taken by the program; for example, to
calculate, to test conditions, or is a control statement.

existing file. A file that has been defined by a
FILEDEF command or by job control statements. A
valid unit number in FORTRAN'S internal unit assign
ment table, as specified at installation time.

The INQUIRE statement considers a file to exist on

the basis of FORTRAN I/O statements that have been

processed.

existing unit. A valid unit number in FORTRAN'S
internal unit assignment table, as specified at installa
tion.

expression. A notation that represents a value: a
constant or a reference appearing alone, or combina
tions of constants and/or references with operators.
An expression can be arithmetic, character, logical, or
relational.

Glossary

external file. A set of related external records treated

as a unit; for example, in stock control, an external
file would consist of a set of invoices.

external function. A function defined outside the

program unit that refers to it.

external procedure. A SUBROUTINE OR FUNCTION
subprogram written in FORTRAN.

file. A set of records. If the file is located in internal

storage, it is an internal file; if it is on an input/output
device, it is an external file.

file definition statement. A statement that describes

the characteristics of a file to a user program. For
example, the OSA/S DD statement or the FILEDEF
command for CMS processing.

file reference. A reference within a program to a file.
It is specified by a unit identifier.

formatted record. (1) A record, described in a
FORMAT statement, that is transmitted, when neces
sary with data conversion, between internal storage
and internal storage or to an external record. (2) A
record transmitted with list-directed READ or WRITE

statements and an EXTERNAL statement.

FORTRAN-supplied procedure. See "intrinsic func
tion."

function reference. A source program reference to an
intrinsic function, to an external function, or to a
statement function.

function subprogram. A subprogram invoked through
a function reference, and headed by a FUNCTION
statement. It returns a value to the calling program
unit at the point of reference.

H

hexadecimal constant. A constant that is made up of
the character Z followed by two or more hexadecimal
digits.

hierarchy of operations. The relative priority order
used to evaluate expressions containing arithmetic,
logical, or character operations.

hook. See also "debugging hook" and "DO loop anal
ysis hook." A segment of code, imbedded in the
user's program, that gives control to Interactive
Debug during execution of the program. This code is
independent of the algorithm being implemented by
the program. Hooks may be compiled in (by using the
TEST option) or inserted during initialization.

Giossary 261

Glossary

IAD. Interactive Debug.

Implied DO. An Indexing specification, similar to a DO
statement, causing repetition over a range of data
elements. (The word DO Is omitted, hence the term
"Implied.")

integer constant. A string of decimal digits containing
no decimal point and expressing a whole number.

Integer expression. An arithmetic expression whose
values are of Integer type.

Integer type. An arithmetic data type, capable of
expressing the value of an Integer. It can have a pos
itive, negative, or zero value; it must not include a
decimal point.

internal file,

as a unit.

A set of related Internal records treated

Internal statement number (ISN). A number assigned
to each statement In a VS FORTRAN program by the
VS FORTRAN compiler. ISNs are assigned sequen
tially beginning with 1, and are visible on the listing
produced by the compiler.

ISN is sometimes referred to as "Internal sequence
number." See also "statement identifier" and

"sequence number."

Interruption localizing. A function that occurs at opti
mization level 2. It restricts certain optimizations so
that no code Is moved out of a loop if it would cause
an Interruption that would not occur without optimiza
tion.

intrinsic function. A function, supplied by VS
FORTRAN, that performs mathematical or character
operations.

I/O. Pertaining to either Input or output, or both.

I/O list. A list of variables In an Input or output state
ment specifying which data Is to be read or which
data is to be written. An output list may also contain
a constant, an expression Involving operators or func
tion references, or an expression enclosed in paren
theses.

labeled common. See "named common."

length specification. A source language specification
of the number of bytes to be occupied by a variable
or an array element.

letter. A symbol representing a unit of the English
alphabet.

list-directed. An Input/output specification that uses a
data list Instead of a FORMAT specification.

logical constant. A constant that can have one of two
values: "true" or "false."

logical expression. A combination of logical primaries
and logical operators. A logical operator can have
one of two values: true or false.

logical operator. Any of the set of operators .NOT.
(negation), .AND. (connection: both), or .OR. (Inclu
sion: either or both), .EOV. (equal), .NEOV. (not
equal).

logical primary. A primary that can have the value
"true" or "false." See also "primary."

logical type. A data type that can have the value
"true" or "false" for VS FORTRAN Version 1 or VS
FORTRAN Version 2. See also "data type."

looping. Repetitive execution of the same statement
or statements. Usually controlled by a DO statement.

M

main program. A program unit, required for exe
cution, that can call other program units but cannot
be called by them.

mixed character data, character data which contains

both single-byte and double-byte data.

N

name. A string of from one through thirty-one alpha
meric characters, the first of which must be alpha
betic. The underscore (_) Is a valid character. Used
to identify a constant, a variable, an array, a function,
a subroutine, or a common block.

named common. A separate common block con
sisting of variables, arrays, and array declarators, and
given a name.

nested DO. A DO statement whose range of state
ments Is entirely contained within the range of
another DO statement.

nonexecutable statement. A statement that describes

the characteristics of the program unit, of data, of
editing Information, or of statement functions, but
does not cause an action to be taken by the program.

nonexisting file. A file that has not been defined by a
FILEDEF command or by job control statements.

* numeric character. (ISO) Synonym for digit.

262 VS FORTRAN Version 2 Interactive Debug Guide and Reference

numeric constant. A constant that expresses an
integer, real, or complex number.

preconnected file. A unit that was defined at installa
tion time. However, a preconnected unit does not
exist for a program if the unit is not defined by a
FILEDEF command or by job control statements.

predefined specification. The implied type and length
specification of a data item, based on the initial char
acter of its name in the absence of any specification
to the contrary. The initial characters l-N type data
items as integer; the initial characters A-H, 0-Z, and $
type data items as real. No other data types are pre
defined. For VS FORTRAN Version 1 and VS

FORTRAN Version 2, the length of both types is 4
bytes.

primary. An irreducible unit of data; a single con
stant, variable, array element, function reference, or
expression enclosed in parentheses.

procedure. A sequenced set of statements that may
be used at one or more points in one or more com
puter programs, and that usually is given one or more
input parameters and returns one or more output
parameters. A procedure consists of subroutines,
function subprograms, and intrinsic functions.

procedure subprogram,
program.

A function or subroutine sub

program return code. When a program Is terminated
with a nonzero return code, the code is available for
interrogation by means of Job control language for the
appropriate operating system.

program unit. A sequence of statements constituting
a main program or subprogram.

real constant. A string of decimal digits that
expresses a real number. A real constant must
contain either a decimal point or a decimal exponent
and may contain both.

real type. An arithmetic data type, capable of approx
imating the value of a real number. It can have a
positive, negative, or zero value.

record. A collection of related items of data treated

as a unit.

relational expression. An expression that consists of
an arithmetic expression followed by a relational
operator, followed by another arithmetic expression
or a character expression followed by a relational
operator, followed by another character expression.

Glossary

The result is a value that is true or false. In Interac

tive Debug the only arithmetic expression permitted
in a relational expression is a variable, an array
element, or a constant.

relational operator. Any of the set of operators that
can express a comparison between arithmetic
expressions, and that can be either true or false:

.GT. greater than

.GE. greater than or equal to

.LT. less than

.LE. less than or equal to

.EO. equal to

.NE. not equal to

residence mode. Where a program resides in virtual
storage in an MVS/XA environment: above or below
16 megabytes.

sc^le factor. A specification in a FORMAT statement
that changes the location of the decimal point in a
real number (and, if there is no exponent, the magni
tude of the number).

sequence number. A number found in positions 73
through 80 of records containing source statements
for the VS FORTRAN compiler. Sequence numbers
are not necessarily unique, in sequence, or present in
every record. See "internal statement number" and
"statement identifier."

shift-in (SI) character. The character indicating the
end of double-byte data. It has an internal represen
tation of X'OF'.

shift-out (SO) character. The character indicating the
beginning of double-byte data. It has an internal rep
resentation of X'OE'.

single-byte character. A character which is repres
ented by a single byte. Also known as an EBCDIC
character.

single-byte data.
acters.

Data consisting of single-byte char-

specification statement. One of the set of statements
that provides the compiler with information about the
data used in the source program. In addition, the
statement supplies the information required to allo
cate data storage.

specification subprogram. A subprogram headed by a
BLOCK DATA statement and used to initialize vari

ables in named common blocks.

statement. The basic unit of a VS FORTRAN program,
that specifies an action to be performed, or the nature
and characteristics of the data to be processed, or

Glossary 263

Index

information about the program itself. Statements fall
into two broad classes: executable and nonexecut
able.

statement function. A name, followed by a list of
dummy arguments, that is equated to an arithmetic,
logical, or character expression. In the remainder of
the program the name can be used as a substitute for
the expression.

statement function definition. A statement that

defines a statement function. Its form is a name, fol
lowed by a list of dummy arguments, followed by an
equal sign (=), followed by an arithmetic, logical, or
character expression.

statement function reference. A reference in an arith
metic, logical, or character expression to the name of
a previously defined statement function.

statement identifier. The statement label, internal

statement number (ISN), or sequence number used by
Interactive Debug to Identify a statement in a VS
FORTRAN program. The options that existed when
the program was compiled determine whether the ISN
or the sequence number is valid. In many cases, you
can also use the statement label, preceded by a
slash, as a valid identifier for a statement.

See also "internal statement number" and "sequence
number."

statement label. A number of from one through five
decimal digits that is used to identify a statement.
Statement labels can be used to transfer control, to

define the range of a DO statement, or to refer to a
FORMAT statement.

subprogram. A program unit that is invoked by
another program unit in the same program. In
FORTRAN, a subprogram has a FUNCTION, SUBROU
TINE, or BLOCK DATA statement as its first state
ment.

subroutine subprogram. A subprogram whose first
statement is a SUBROUTINE statement. It optionally
returns one or more parameters to the calling
program unit.

* subscript. A subscript quantity or set of subscript
quantities, enclosed in parentheses and used with an
array name to identify a particular array element.

subscript quantity. A component of a subscript: an
integer constant, an integer variable, or an expression
evaluated as an integer constant.

type specification. The explicit specification of the
type of a constant, variable, array, or function by use
of an explicit type specification statement.

U

unformatted record. A record that is transmitted
unchanged between internal storage and an external
record.

unit. A means of referring to a file in order to use
input/output statements. A unit can be connected or
not connected to a file. If connected, it refers to a
file. The connection is symmetric: that is. if a unit is
connected to a file, the file is connected to the unit.

unit identifier. The number that specifies an external
unit.

1. An integer expression whose value must be zero
or positive. For VS FORTRAN Version 1 and VS
FORTRAN Version 2, this integer value of length 4
must correspond to a DD name, a FILEDEF name,
or an ASSGN name.

2. An asterisk (*) that corresponds on input to
FT05F001 and on output to FT06F001.

3. The name of a character array, character array
element, or character substring for an internal
file.

variable. A data item, identified by a name, that is
not a named constant, array, or array element, and-
that can assume different values at different times

during program execution.

vectorization. The process of creating machine
instructions that will run on the special vector proc
essing facility of the IBM 3090 Vector Facility.

vectorize. To compile a source program so its eligible
DO loop statements are transformed into vector
object code.

264 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Index

Special Characters
I (vertical line) 100
* (asterisk)

and AFFOUT file 40

inserting comments into debug log 103
- (hyphen) 80

and entering terminal input 80
and full screen mode continuation 19
and line mode continuation 32

/(slash) 108
% (percent sign) 79
= (equal sign)

and AFFOUT file 40

" (quotation mark)
inserting comments into debug log 103
use with continuation lines 80

""(double quotation mark) 103
[] (square brackets) 100
{)(braces) 100

addressing mode, definition 259
AFFIN

how to use 40

new feature summary v

AFFLST

how to use 48

new feature summary vi
AFFON

examples 47
feature summary 3
how to use 43

migration 6
new feature summary v

syntax 45
with TIMER command 66

AFFOUT

feature summary 4
how to use 39

migration 6
new feature summary v

AFFPIF

how to use 49

new feature summary vi
AFFPRINT

how to use 42

alphabetic character, definition 259
alphameric, definition 259
analyzable DO loop, definition 259
animation

and program execution 73
definition 259

feature summary 3

index

animation (continued)
specifying step delay 170

ANNOTATE command

description and syntax 104
examples 105
new feature summary vi
use in program sampling 64

argument
assigning values to 75
definition 259

arithmetic expression, definition 259
arithmetic operator, definition 259
array

definition 259

displaying data type of 61, 121
how to change value of 185

array declarator, definition 259
array element, definition 259
array name, definition 259
assigning values 185
assignment statement, definition 259
asterisk (*)

and AFFOUT file 40

inserting comments into debug log 103
AT command

at specific statements 57
COUNT keyword
description and syntax 108
effects of optimization or vectorization 90
examples 110
setting up command lists 60
specifying breakpoints 57
used as a PF key 3

attention interrupt
and OUIT command 81, 85
attention prompt 85
entering commands 85
exit, entering commands in an 85
PURGE, NEXT. WHERE, or * (comment) 85
resuming execution with null line 80, 85

AUTOLIST command
description and syntax 111
effects of optimization or vectorization 90
examples 114

B
BACKSPACE command

description and syntax 115
position external files 77

basic real constant, definition 260
batch mode

and FORTIAD EXEC 33
commands that cannot be used in 33
connecting a data set to a terminal device 41

Index 265

Index

batch mode (continued)
DEBUNIT run-time option 41
description of 33
library requirements for 6
restrictions 37

bit-by-bit comparison 85
blank common, definition 260
blanks, inputting 79
bottom-of-data marker 15

braces ({ }) 100
breakpoint

list all 145

qualifying 55
remove 165

set 56, 93, 108, 164
breakpoint, definition 260
browsing and editing 24

changes to Interactive Debug v
character constant

definition 260

enclosed in single quotation marks 185
character data type, definition 260
character expression, definition 260
character string, searching for 183
CLIST, using to invoke VS FORTRAN programs
CLOSE command

description and syntax 116
disconnect external file 77

examples 116
CMS

AFFON

using in ISPF 48
entering system commands 191
invoking Interactive Debug

in batch mode 33

in line mode 27

using ISPF with PDF 7
using ISPF without PDF 9

on-line help 52
show defined files 78

collapsed statement
and debugging hooks 56
definition 260

COLOR command

description and syntax 118
using ISPF 22

command

* or " 103

ANNOTATE 104

AT 108

AUTOLIST 111

BACKSPACE 115

CLOSE 116

COLOR 118

continuation of 19, 32
DBCS 120

31

command (continued)
DESCRIBE 121

DOWN 123

ENDDEBUG 124

ENDFILE 127

entering in an attention-interrupt exit 85
entering in full screen mode 19
entering in line mode 32
ERROR 128

examples of common usage 54
FIXUP 130

functions 93

GO 131

HALT 133

HELP 135

IF 138

KEYS 163

LEFT 140

LIST 141

LISTBRKS 145

LISTFREO 146

LISTINGS 148

LISTSAMP 149

LISTSUBS 154

LISTTIME 156

LISTVEC 159

maximum length 32
MOVECURS 163

NEXT 164

OFF 165

OFFWN 167

on the ISPF execution panel 18
POSITION 168

PREVDISP 169

PROFILE 170

PURGE 172

QUALIFY 173

QUIT 174

RECONNECT 175

REFRESH 176

RESTART 177

RESTORE 178

restrictions in batch mode 33

RETRIEVE 179

REWIND 180

RIGHT 182

SEARCH 183

SET 185

SIZE 188

STEP 189

summary by function 102
SYSCMD 191

table of 102

TERMIO 192

TIMER 194

TRACE 197

UP 199

usage, advanced 54
using system 78

266 VS FORTRAN Version 2 Interactive Debug Guide and Reference

command (continued)
valid after program execution, list of 84
VECSTAT 200

WHEN 202

WHERE 205

WINDOW 206

ZOOM 208

command list

commands that cannot be used in 60

effects of optimization or vectorization 90
IF command used within AT 138

parameters 108
resuming execution 60
setting up 60
uses 60

comments into debug log, inserting 103
common block, definition 260
COMMON statement 113

common variable 113

compare floating point numbers 85
compare variables 138
compiler option

SDUMP 5

TEST 5

VECTOR 5

VECTOR REPORT(SLIST) 71
VECTOR(IVA) 67

compiler requirements 5
complex constant, definition 260
complex data type, definition 260
connected file, definition 260
constant (WHEN) 202
constant, definition 260
continuation character

how to enter 19

restricted commands 19

terminal input 80
continuation character, definition 260
control statement, definition 260
conventions

statement identifier 101

syntax 100
Conversational Monitor System

See CMS

corrective action 75

CP SET PF command 32
CPUTIME service routine 125, 190, 196
current statement boundary 205
cursor-sensitive command, definition 260
cursor-sensitive commands 20
cursor, moving between window and command

line 163

data item, definition 260
data set reference number, definition 260
data set, definition 260
data type

definition 260

displaying 61
data type, displaying 121
data, definition 260
DBCS command 120

DBCS support
feature summary 4
how to use it 92

modifying commands in log window 19
new feature summary v

system requirements 5
DCSS, compiler requirements to use 5
ddname VSF2PIF 49

DEBUG run-time option 11
debuggable program unit

defined 54

display a list of 154
how to list 54

debugging
changing defaults for session 21
data sets required 11
files required 11
functions that affect 86
optimized code 86
restarting 177
using common commands 54
vectorized code 86

warning messages 87
debugging hook

See hook, debugging
debugging hook, definition 260
debugging panel

See main debugging panel
DEBUNIT run-time option 42
default qualification, how to change 173
default settings for profile panel 170
DESCRIBE command

description and syntax 121
examples 61, 122
setting up 61
used as a PF key 3

digit, definition 260
display

compiler level 154
current statement boundary 205
data types 61, 121
load status 154

log line numbers 170
nonexecuted statements 146
optimization level 154
previous panel 169
timing status 154
values of variables 73, 141

Index

Index 267

Index

display (continued)
vectorization level 154

00 loop analysis hook, definition 260
DO loop analysis hook, in vector tuning

assistance 67

DO loop timing 70
DO loop, definition 260
DO variable, definition 261

double precision, definition 261

double quotation mark ("") 103
double-byte data support

See DBCS support
DOWN command 123

dummy argument, definition 261
DU MP codes for LIST 112. 142
dynamic common

definition 261

displaying variables in 112
dynamic invocation

considerations 85

in batch mode 33

in CMS line mode 27

in CMS with ISPF 7

in TSO line mode 30

end Interactive Debug session 174
end-of-file, entering 79
ENDDEBUG command

description and syntax 124
end debugging 80
entering subsequent commands 80
examples 126
terminal I/O 80

ENDFILE command

description and syntax 127
end-of-file record 77

perform I/O operations 77
entering

commands 19

terminal input 78
equal sign (=)

and AFFOUT file 40

EOUIVALENCE statement 113

equivalence variable 113
error

handling 75
messages, list of 209
occurrence counts 75

option table 75
ERROR command

corrective action with FIXUP command 74

description and syntax 128
examples 129
EXIT|NOEXIT keywords

definitions 128

display messages 74
initial error settings 74

ERROR command (continued)
messages 74
MSG|NOMSG keywords

definitions 128

perform corrective action 74
suspend execution 74

example
See also sample
of a debugging session 93
of execution panel 14

excluding program units 57
EXEC, invocation

CMS full screen mode 9

CMS line mode 29

executable program, definition 261
executable statement, definition 261
execution

controlling program 57
frequency 146
frequency, determining statement 62
of one or more statements using STEP 189
panel for ISPF 14
tracing program 71

execution-time

See run-time

existing file, definition of 261
existing unit, definition of 261
exit Interactive Debug session 174
expression, definition 261
external file

definition 261

disconnect 77

end-of file record, writing 77
positioning 77
processing 77
sequentially accessed 77

external function, definition 261

features, Interactive Debug v, 3
file definition statement, definition 261
file name

for CMS files in Interactive Debug 8
of optional debugging files 8

file reference, definition 261
file, definition 261
finish Interactive Debug session 174
FIXUP command

assign values to arguments 75
description and syntax 130
examples 130
specify corrected values 75

fixup, standard 74
floating-point equalities 85
foreground panel 7
FORMAT codes for LIST 112, 142
formatted record, definition 261

268 VS FORTRAN Version 2 Interactive Debug Guide and Reference

FORTIAD EXEC

as a TSO GUST to invoke line mode 31

modified for batch mode 33

to invoke line mode in CMS 29

frequency count
modifying on profile panel 170

frequency of execution 146
full screen display command

restriction in command list 110

restriction with IF 139

full screen mode

debugging in 8
system requirements 5

function reference, definition 281
function subprogram, definition 281

global register assignment 88
glossary

ANSI definitions 259

definitions of terms 259—284

ISO definitions 259

GO command

beginning or resuming execution 93
description and syntax 131
effects of optimization or vectorization 90
examples 132
in command lists 62

H
HALT command

description and syntax 133
examples 134
in command lists 60

stop execution 58
handling errors 75
help

See on-line help
HELP command

description and syntax 135
examples 136

hexadecimal constant, definition 261
hierarchy of operations, definition 261
hook, debugging

and compiler options 56
display list of 62
displaying list of 46
eliminating overhead caused by 66
entry and exit 48
how to insert 56

none 48

suspending execution at a 58
use of LISTSUBS command 154

hook, definition 281
hyphen (-)

and entering terminal input 80
and full screen mode continuation 19

hyphen (-) (continued)
and line mode continuation 32

Index

I
I/O list, definition 282
I/O, definition 282
IAD

See Interactive Debug
IAD EXEC 9

IF command

description and syntax 138
effects of optimization or vectorization 90
examples 139
in command lists 60

implied DO, definition 282
include file

See AFFON

individual variable qualification 54
information, help 135
informational messages 209
initializing variables 85
input

using log of debugging session as 4
input/output

See I/O

input, entering terminal 78
integer constant, definition 282
integer expression, definition 282
integer type, definition 262
Interactive Debug

batch mode support 33
browsing and editing 24
command summary 102
definition 261

dynamic invocation of 85
entering terminal input 78
execution panel, contents and use 14
features 3

full screen mode debugging 6
full screen support 24
HELP command 51

invoking
in batch mode 33

in line mode 27

using ISPF 7
new features v

options to allocate files and control Interactive
Debug I/O 3

requirements 4
routines for terminal input 78
warning messages 87

Interactive System Product Facility
See ISPF

internal file, definition 282
Internal Statement Number

See ISN

interruption localizing
definition 282

Index 269

Index

intrinsic function, definition 262
invoking Interactive Debug

in batch mode

overview 33

using CMS 33
using MVS with TSO 34
using MVS without TSO 38

in full screen mode

overview 7

using CMS with PDF 7
using CMS without PDF 9
using TSO with PDF 10
using TSO without PDF 12

in line mode

overview 27

using CMS 27
using TSO 30

ISN

definition 262

position at 168
referencing 93
when to use 101

ISO, identifies ISO glossary definitions 259
ISPF

See also full screen mode

and PDF 3

CMS, operating in
dialog variable names 257
foreground selection panel 7
primary option panel 7
requirement for full screen mode debugging 5

IVA suboption of VECTOR compiler option 5
See also vector tuning assistance

K
KEYS command 19. 163

label, statement, definition 264
LEFT command 140

length specification, definition 262
length, vector 68, 159
letter, definition 262
library requirements 6
limitations of using Interactive Debug 6
line mode

changing PF key definitions 32
maximum length of an input line 80
use of Interactive Debug with 27

line number

displaying or inhibiting 170
on main debugging panel 15

link mode

modifications for batch mode 34

specifying as GLOBAL TXTLIB for line mode 27
specifying on ISPF invocation panel 8

LIST command

array elements 73
arrays, display values of 144
common variables 143

description and syntax 141
display all variables 55
DUMP keyword

conditions 113, 143

definition 141

use of 73

effects of optimization or vectorizalion 90
EQUIVALENCE statement 143

equivalence variables 143
examples 144
FORMAT keyword

conditions 113, 143

definition 141

use of 73

hexadecimal, display values in 144
series of variables 73

to a print data set 73
used as a PF key 3
variables in different format 73

list the number of times statements have been

run 146

list-directed, definition 262
LISTBRKS command

check breakpoint settings 55
description and syntax 145

LISTFREO command

description and syntax 146
effects of optimization or vectorization 90
examples 147
obtain a listing file or a print data set 62

listing file
See AFFLST

listing file, using while debugging 24
LISTINGS command

description and syntax 148
listings panel

display with LISTINGS command 148
modifying 22

LISTSAMP command

description and syntax 149
examples 152
use in program sampling 64

LISTSUBS command

description and syntax 154
for determining debuggable program units 54

LISTTIME command

description and syntax 156
examples 157
new feature summary vi
to get timing information 66
used with TIMER command 194

LISTVEC command

description and syntax 159
examples 160

270 VS FORTRAN Version 2 Interactive Debug Guide and Reference

load mode

default for Interactive Debug 8
default In line mode 27

load status, displaying 154
location Information (WHERE) 72, 205
log

example 14
file at termination of activity 24, 37
Inhibiting display of line numbers 170
restarting a debugging session 177
searching for character string 183
searching for log line number 168
viewing the scrollable 18

log file
See AFFOUT

log number
See line number

log window
See also log
contents 18

In full screen mode debugging 15
logical condition 202
logical constant, definition 262
logical expression, definition 262
logical operator

definition 262

used with IF command 138
logical primary, definition 262
logical type, definition 262
loop in nondebuggable program unit

escaping from 84
using the QUIT command 84

looping, definition 262
LPA, compiler requirements to use 5

M
main debugging panel

In full screen mode debugging 14
new feature summary v

main program, definition 262
maximum length of an input line

In CMS or ISO line mode 80
in ISPF 80

messages 209
migration considerations 6
mixed-case input 80
monitor

a condition using WHEN 58
a condition, turn off 167
a condition, turn on 202
across program boundaries (QUALIFY) 55

monitor window

and AUTOLIST command 111
contents 16

In full screen mode debugging 15
MOVECURS command

description and syntax 163
migration 6

MTF 6

multiple assignments of a value 185
Multitasking Facility

See MTF

MVS/XA

31-bit addressing mode 4

N
name, definition 262
named common, definition 262
nested DO, definition 262
new features, Interactive Debug v
NEXT command

description and syntax 164
examples 164
next executable statement 58
suspend execution 58
using STEP as NEXT/GO pair 189

NODEBUG option 11
nonexecutable statement, definition 262
nonexecuted statements, display 146
nonexisting file, definition 262
null line 81

number, Internal statement
See ISN

numeric character, definition 262
numeric constant, definition 263

occurrence count for run-time errors 80
OCSTATUS run-time option 116, 175
OFF command

description and syntax 165
examples 166
used as a PF key 3

OFFWN command

condition name list 167
description and syntax 167
examples 167
reactivate condition monitoring 59

on-line help
CMS procedures 52
feature summary 3
HELP menu 51

invoking 51
overview 51

task menu 52

TSO procedures 52
tutorial 51

using 19
one-time testing of conditions (IF) 138
operating procedures, ISPF 14
optimization

commands effected 90

display level for debuggable units 154
effects on debugging 86
execution of DO loops 88

Index

Index 271

Index

optimization (continued)
levels and functions 86

operational situations 84
restrictions in debugging optimized code 6
warning messages 91
warning messages while debugging 87

option
DEBUG/NODEBUG 85

overriding run-time 85
See also compiler option
See also run-time option
to allocate files and control Interactive Debug

I/O 3

output halt value 164
output, printing

See printing output
overlays 6
overriding run-time default 11

P
panel

display previous 169
filling in the CMS 7
filling in the TSO 10
foreground selection 7
primary option 7
refreshing the screen 176

PDF

as a system requirement 5
browsing and editing 24
invocation without PDF 9, 12
required for browse and edit 7
split-screen browsing and editing 3

performance
DO loop timing 70
hints for improving debugging 91
program sampling 63
program unit timing 66

PF key
feature summary 3
how to change in full screen mode 19
how to change in line mode 32
limited number of lines 18

restrictions 18

scrolling with 18
setting up for MOVECURS 163
using with cursor-sensitive commands 20

POSITION command

description and syntax 168
example 168

preconnected file, definition 263
predefined specification, definition 263
PREVDISP command

description and syntax 169
primary option panel 7
primary, definition 263
print file

See AFFPRINT

printing output
feature summary 4

procedure subprogram, definition 263
procedure, definition 263
processing flow errors 58

See also HALT command

PROFILE command

changing settings 21
description and syntax 170

program animation
See animation

Program Development Facility
See PDF

program function key
See PF key

program information file
See AFFPIF

program return code, definition 263
program sampling

bar charts in full screen mode 64

feature summary 4
initiation 63

limitations 65

statistics 64

use of ANNOTATE command 104

use of CALLED counter 63

use of DIRECT counter 63

use of ENDDEBUG 124

use of LISTSAMP 149

program unit
See also AFFON

activating timing 194
changing qualification 173
definition 263

main, subprogram, subroutine 54
moving between 55
multi-subroutine modules 57

qualifying 54
to be debugged, specifying
transfers 72

program unit timing
displaying information 66
initiation 66

use of LISTTIME 156

use of TIMER 194

PURGE command

description and syntax 172
example 172

Q
qualification

apply commands to another unit 54
in another program 55
individual variables 55

overriding on AT statement 108
overriding on OFF statement 165
set breakpoints in another program 55

272 VS FORTRAN Version 2 Interactive Debug Guide and Reference

OUALIFV command

description and syntax 173
examples 173
qualify variables 54

QUIT command

description and syntax 174
terminate debugging 97
terminate execution 80

while in attention exit 81, 85

quit Interactive Debug session 174
quotation mark (")

inserting comments into debug log 103
use with continuation lines 80

reactivate WHEN monitoring 167
real constant, definition 263
real type, definition 263
RECONNECT command

description and syntax 175
example 175
use with CLOSE command 116

record, definition 263
recovery after messages 209
reentrant programs

compiler requirements for 5
reference number, data set (definition) 260
REFRESH command

description and syntax 176
relational condition 202
relational conditions 138
relational expression, definition 263
relational operator, definition 263
remove WHEN breakpoints (OFFWN) 167
RENT compiler option

display load status for units compiled with
RENT 154

requirements 4
residence mode, definition 263
respond to errors 74
RESTART command

description and syntax 177
using to start session with new compilation 24

restart file

See AFFIN

RESTORE command

description and syntax 178
new feature summary v

restrictions of using Interactive Debug 6
RETRIEVE command

description and syntax 179
new feature summary v

return to system 97
See also QUIT command

REWIND command

description and syntax 180
example 180
perform I/O operations 77

REWIND command (continued)
position external file 77

RIGHT command 182

routine, service (CPUTIME) 125, 190, 196
run-time

error, handling 74
option

DEBUG 93

OCSTATUS 116,175
overriding default value 85
with ISPF 7

s
sample

See also example
debugging session 95
program 93

sampling
DO loop 69
library requirements for 6
program 63

scalar variable

and WHEN command 202

displaying data type of 61, 121
scale factor, definition 263
screen support, full 24
SDUMP compiler option 4

compiler requirements for 5
SEARCH command

description and syntax 183
example 183

search for an ISN or log number 168
select I/O routines 192

sequence number 4
definition 263

generating instead of ISNs 101
restriction in AFFIN 41

sequence of control, tracing
TRACE 197

WHERE 205

service routine CPUTIME 125, 190, 196
SET command

changing the value of variables 96
description and syntax 185
effects of optimization or vectorization 90
examples 187

SIZE command 188

slash (/) 108
source listing, vector report 71
source statement, tracing (TRACE) 197
source window

and AT command 109

and cursor-sensitive commands 20
and DESCRIBE command 121
and RESTORE command 178

and STEP command 189

and STEP command for animation 73
changing color or highlighting 22

Index

Index 273

Index

source window (continued)
columns 21

contents 17

defining 206
defining defaults 170
in full screen mode debugging 15
inhibiting display of source listing 22
introduction 7

moving cursor to command line 163
rows 21

searching for character string 183
searching for ISN or sequence number 168
setting default values 21
turning on and off 170

space requirements 6
special characters, entering 100
special considerations

entering commands in an attention-interrupt
exit 85

excluding program units 57
identifying debuggable statements 57
initializing VS FORTRAN variables 85
loops in nondebuggable program units 84
modifying default value for run-time option 85
monitoring floating-point equalities 85
statement identifier conventions 101

specification statement, definition 263
specification subprogram, definition 263
split screen, debugging in 24
split-screen display

feature summary 3
square brackets ([]) 100
standard corrective action 74

statement

definition 263

not executed, displaying 146
statement boundary, displaying 205
statement function definition, definition 264
statement function reference, definition 264
statement function, definition 264
statement identifier

conventions 100

definition 264

internal statement numbers 101

ISNs 101

position at ISN or log number 168
sequence numbers 101
statement labels 101

with TEST and NOSDUMP options 101
statement label

definition 264

preceded with a slash 101
referencing 93

STEP command

description and syntax 189
example 190

STOP statement 96

storage requirements 6

strength reduction 88
stride, vector 68
subprogram transfers, tracing (TRACE) 71
subprogram, definition 264
subroutine subprogram, definition 264
subroutines, how to exclude 57
subscript

definition 264

for arrays 185
subscript quantity, definition 264
suspend execution at condition (HALT) 133
syntax conventions 100
SYSCMD command

description and syntax 191
examples 191

system commands
CMS files defined 78

TSO data sets allocated 78

using 78
view listing files 78
view source files 78

system requirements 5

T
table

commands 102

terminal input, entering 78
terminate Interactive Debug session 174
termination

entering commands after 84
TERMIO command

and DEBUNIT run-time option 42
default setting 78
description and syntax 192
examples 193
with MVS batch 42

test a condition 138

TEST compiler option 5
Time Sharing Option

See TSO

TIMER command

description and syntax 194
examples 196
to get timing information 66

timing
activating with TIMER 194
display all program units with timing active 156
display status 154
DO loop 70
program unit 66
using the LISTTIME command 156
using TIMER and LISTTIME 66

top-of-data marker 15
TRACE command

control transfers 71

description and syntax 197
examples 197
source statements 72

274 VS FORTRAN Version 2 Interactive Debug Guide and Reference

trailer statements 57

TSO

AFFON

using in ISPF 48
connecting a data set to a terminal device in

batch 41

entering system commands 191
invoking Interactive Debug

in batch mode 34

in line mode 30

using ISPF with PDF 10
using ISPF without PDF 12

on-line help 52
show allocated data sets 78

TSO/E, as a system requirement 5
tutorial

a sample debugging session 93
HELP 51

type specification, definition 264

u
unformatted record, definition 264
unit identifier, definition 264
unit, definition 264
unit, program 55
UP command 199

uppercase terminal input 80

V
variable

common 113

defining 85
definition 264

display value of 73
equivalence 113
how to change value of 185
initializing 85
qualifying 54

VECSTAT command

description and syntax 200
examples 201

VECTOR compiler option 5
vector length 68, 159
vector report source listing 71
VECTOR REPORT(SLIST) compiler option 71
vector stride 68

vector tuning assistance
AFFON example 48
compiler requirements for 5
feature summary 4
how to use it 67

IVA suboption of VECTOR compiler option 5
new feature summary v

VECTOR(IVA) compiler option 67
vectorization

definition 264

display level for debuggable units 154

Index

vectorization (continued)
effects on debugging 86
levels and functions 86

restrictions in debugging vectorized code 6
vectorize, definition 264
vertical line (|) 100
VS FORTRAN Version 2

assigning initial values 85
initializing variables 85

VS FORTRAN Version 2 Interactive Debug
See Interactive Debug

w
warning messages 87, 209
WHEN command

See also OFFWN command

canceling 59
description and syntax 202
effects of optimization or vectorization 90
examples 204
list conditions 145

monitoring a condition 58
naming a condition 58
resume monitoring 59
see also OFFWN 59

suspend execution at a defined condition 58
WHERE command

description and syntax 205
examples 205
next executing statement 72
tracing 72

window

changing the way they look 18
DOWN command 123

feature summary 3
in full screen mode debugging 15
LEFT command 140

POSITION command 168

RIGHT command 182

SEARCH command 183

See also log window
See also monitor window

See also source window

SIZE command 188

UP command 199

WINDOW command 206

ZOOM command 208

WINDOW command

description and syntax 206

Index 275

Index

z
ZOOM command 208

Numerics
16-megabyte line, MVS/XA 4
31-bit addressing mode, MVS/XA

276 VS FORTRAN Version 2 Interactive Debug Guide and Reference

VS FORTRAN Version 2 RparlAr'c
Interactive Debug Coinment
Guide and Reference

SC26-4223-2

Form

This manual is partofa library thatserves as a reference sourcefor system analysts, programmers, andoperators of IBM systems.
You mayuse this form to communicateyour commentsabout this publication, its organization,or subject matter, with the under
standing that IBM mayuse or distribute whatever information yousupply inany way it believesappropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, ifany,are deemed appro
priate.

Note: Donot use this form to request IBM publications. Ifyou do, your order willbe delayed because publications are not stocked at
the address printed on the reverse side. Instead, youshould direct any requests for copies ofpublications, or for assistance In using
your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Ifyou have applied any technical newsletters (TNLs) to this book, please list them here;

Chapter/Section

Page No.

Comments:

If you want a reply, please complete the following information.

Name— Phone No. {.

Company

Address

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4223-2

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023
San Jose, CA 95161-9023

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

liiilliilililiillliiiiiiiliiliililiiliiliiiillililil

Fold and tape Please do not staple Fold and tape

VS FORTRAN Version 2 Reader's
Interactive Debug Comment
Guide and Reference Form

SC26-4223-2

This manual is part ofa librarythat serves as a reference source forsystem analysts, programmers, and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization, or subject matter, withthe under
standing that IBM may use or distributewhatever information yousupply in any wayit believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever reviewand action, ifany, are deemed appro
priate.

Note: Donot use this form to request IBM publications. Ifyou do, your order willbe delayed because publications are not stocked at
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance in using
your IBMsystem, to your IBMrepresentative or to the IBMbranch office serving your iocality.

Ifyou have applied any technical newsletters (TNLs)to this book, please list them here:

Chapter/Section

Page No.

Comments:

If you want a reply, please complete the following information.

Name Phone No. (.

Company

Address

Thank Vou for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

SC26-4223-2

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023
San Jose, OA 95161-9023

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

VS FORTRAN Version 2 Reader's
Interactive Debug Comment
Guide and Reference

SC26-4223-2

Form

This manual is partofa library thatserves as a reference sourcefor system analysts, programmers, and operators ofIBM systems.
You mayuse this form to communicateyourcommentsabout this publication. Itsorganization,or subject matter, with the under
standing that IBM may use or distribute whatever information you supply inany way itbelieves appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and action, ifany,are deemed appro
priate.

Note: Donot use this formto request IBM publications, ifyou do, your order willbe delayed because publications are not stocked at
the address printed on the reverse side, instead, you should direct any requests for copies of publications,or for assistance in using
your IBM system, to your IBMrepresentative or to the IBMbranch office serving your locality.

Ifyou have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Page No.

Comments:

If you want a reply, please complete the following information.

Name Phone No. (.

Company

Address

Thank Voufor your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address In the Edition Notice on the back of the title page.)

SC26-4223-2

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Programming Publishing
P.O. Box 49023
San Jose, CA 95161 -9023

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I...II..I.I.I..III......III.I..I.I..I..I....II.I.I.I

Fold and tape Please do not staple Fold and tape

Printed in U.S.A.

Program Number
5668-805

5668-806

The VS FiORTRAN Version 2 Library

Diagnos s Guide

General Information

Installation and Customization for MVS

Installatijon and Customization for VM
Interactive Debug Guide and Reference

Language and Library Reference
Licensed Program Specifications

Progranrlming Guide
Reference Summary

File Number

S370-40

LY27-9516

GC26-4219

SC26-4340

SC26-4339

SC26-4223

SC26-4221

GC26-4225

SC26-4222

SX26-3751

