
Systems

GC26-381l-3
File No. S370-31

OS/VS Linkage Editor
and Loader

VS1 Release 3
VS2 Release 2

Fourth Edition (May 1975)

This edition is a reprint of GC26-3813-2 incorporating changes released
in Technical Newsletters GN26-0774 (dated December 5, 1973) and GN26-0779
(dated June 30, 1974). GC26-3813-2 was a major revision and made
GC26-3813-1 obsolete.

This edition applies both to Release 3 of as/VS1 and to Release 2 of
as/VS2, and to all subsequent releases of either system unless otherwise
indicated in new editions or technical newsletters.

Information in this publication is subject to significant change. Any
such change:s will be published in new edi tions or technical newsletters.
Before using the publication, consult the latest IBM System/360 and
System/370 Bibliograp~, GA22-6822, and the technical newsletters that
amend the bibliography, to learn which editions and technical news
letters are applicable and current.

Requests for copies of IBM publications should be made to the IBM
branch office that serves you.

Forms for readers' comments are provided at the back of the publication.
If the forms have been removed, comments may be addressed to IBM
Corporation, Department J04, 1501 California Avenue, Palo Alto, California
94304. All comments and suqgestions become the property of IBM.

@ Copyright International Business Machines Corporation 1972, 1973

This publication provides applications
programmers with the information necessary
to use the OS/VS Linkage Editor and Loader
to prepare the output of a language
translator for execution. Additional
information on the operation and use of
the linkage editor and loader is directed
to the system programmer responsible for
installing and maintaining the operating
system.

The Introduction briefly defines the
functions of the linkage editor and loader
and gives recommendations for the use of
each. Part 1 describes the linkage editor,
and should be read before Part 2, which
describes the loader.

The liQ~~~editor combines and edits
modules to produce a single module that
can be brought into storage by program
fetch for execution. It operates as a
processing program rather than as part of
the control program. The linkage editor
provides several processing facilities that
are either performed automatically or
invoked in response to control statements
prepared by the programmer.

Part 1, which consists of six chapters
and three appendixes, briefly describes the
processing facilities and operation of the
linkage editor. The introduction also
defines linkage editor terms in reference
to the source language statements that
cause them to be created.

The six chapters describe the input to
the linkage editor, the output from the
linkage editor, module editing functions,
design and specification of overlay
programs, the job control language
necessary to run a linkage editor job step,
and the linkage editor control statements.
The last two chapters are summaries of
reference information to be used after the
general information in the first four
chapters is learned. The appendixes to
Part I contain sample programs, a
description of the linkage editor programs,
and information on the invocation of the
linkage editor.

The lQ~~~~ program combines the basic
editing and loading funct~ons of the
linkage editor and program fetch in one job
step. It is designed for aigh-performance
loading of modules that do not require the
special processing facilities of the
linkage editor and fetch, such as overlay.
The loader does not produce load modules
for program libraries.

Part 2 of this publication describes the
loader. The introduction to this part
describes the functional characteristics of
the loader, along with its compatibility
with the linkage editor and restrictions on
its use. The chapter on using the loader
describes the job control language
statements and invocation procedures for
the loader, as well as loader input and
output, and user program data. The
appendixes to Part 2 contain sample input,
a description of loader return codes, and
storage considerations. All of these items
are discussed in relation to the capabilities
of the linkage editor; therefore, the
reader must be familiar with Part I of this
publication.

The diagnostic messages issued by both
the linkage editor and the loader program
are described in OS/VS Message Library:
Linkage Editor and Loader Messages, GC38-1007.
The description of each message includes an
explanation,a system action, and a problem
determination action to be taken.

TIME SHARING OPTION (TSO)

The following publication is needed to use
the linkage editor or loader under the Time
Sharing Option (TSO):

OS/VS2 TSO Terminal User's Guide,
GC28-0645

This manual contains procedures for
invoking the linkage editor or loader from
the terminal and gives a brief description
of the options that can be specified under
TSO.

iii

Further information on TSO can be found
in the following two manuals:

OS/VS2 System Programming Library:
Job Management, Supervisor and TSO,
GC28-0682

OS/VS2 TSO Command Lan.guage Reference,
GC28-0646

ADDITIONAL PUBLICATIONS

Within the text, references are made to
the following publications:

OS/VS Data Management Services Guid~,
GC26-3783

OS/VS2 Planning and Use Guide for
Release 2, GC28-0667

OS/VS1 Service Aids, GC28-0635

OS/VS2 System Programming Library:
Service Aids, GC28-0674

9S/VS1 Storage Estimates, GC24-5094

OS/VS2 System Programming Library:
?torage Estimates, GC28-0604

iv

OS/VS1 Supervisor Services and Macro
Instructions, GC24-51OJ

OS/VS2 Supervisor Services and Macro
Instructions, GC28-0683

OS/VS1 System Data Areas, SY28-0605

OS/VS2 Data Areas, SYB8-0606

OS/VS 1 srstem Gen(3ration Reference,
GC26-379

OS/VS2 System Pro~ing Librar¥:
System Generation Reference, GC26-3792

OS/VS Utilities, GC35-0005

OS/VS Message Library: OS/VS1 System
Codes, GC38-1003

OS/VS Message Library: OS/VS2 System
Codes, GC38-1008

OS/VS Message Library: Routing and
Descriptor Codes, GC38-1004

OS/VS Message Library: Linkage Editor
and Loader Messages, GC38-1007

PREFACE iii

INTRODUCTION

PART 1. LINKAGE EDITOR
Object and Load Modules

External Symbol Dictionary
Text • • • • • • • • •
Relocation Dictionary • • • •
End Indication • • • •

Linkage Editor Processing •••••
Input and output Sources • • • •
Load Module Creation • •

Assigning Addresses
Resolving External References

Functions of the Linkage Editor • • • •
Links Modules
Edits Modules • • • •
Accepts Additional Input Sources
Aligns Control Sections or Common
Areas on Page Boundaries •
Reserves Storage • • • • •
Processes Pseudo Registers
creates Overlay Programs •
Creates Multiple Load Modules
Provides Special Processing and
Diagnostic Output Options
Assigns Load Module Attributes •
Allocates User-Specified Virtual

1

3
5
6
7
7
7
8
8
9

10
10
11
11
12
12

12
14
14
14
14

14
15

Storage Areas • • • • • • • • 15
Stores System Status Index
Information • • • • • • •
Traces Processing History
Lengthens Control Sections or
Named Common Sections . • • •
Assigns an Authorization Code
to Output Load Modules •

~elationship to the Operating System
Time Sharing Option (TSO)

Language Dependencies • • • •
Assembler Language • • • • • • •
COBOL
FORTRAN • • • • •
PL/I

INPUT TO THE LINKAGE EDITOR
Primary Input Data Set

Object Modules • • • • • •
From Cards • • • • • • •
As a Member of a Partitioned Data
Set • • • • • • • • • • • •
Passed from a Previous Job Step
Created in a Separate Job • • • • •

Control Statements • • • • •
Object Modules and Control Statements

control statements in the Input
stream • • • • • • • • • • • • •
Control Statements in a Separate
Data Set • • • • • • • • • • • • • •

Automatic Call Library
SYSLIB DD Statement

System Call Library • • • • •
Private Call Libraries •
Concatenation of Call Libraries

Library Control Statement
Additional Call Libraries •••••

15
15

15

16
16
16
17
17
17
17
18

19
19
20
20

20
21
22
22
23

23

24
24
25
25
25
26
26
27

CONTENTS

Restricted No-Call Function
Never-Call Function • • • • • •

27
28
28
29
30

NCAL Option • • • • • • • • • •
Included Data Sets • • •

Including Sequential Data Sets
Including Library Members
Including Concatenated D~ta Sets • •

OUTPUT FROM THE LINKAGE EDITOR .

30
31
33

Output Load Module • • •
output Module Library • • • .

Member Name • • • • •
Alias Names • • • •

Entry Point • • • • •

33
33
34

• 35
35

Reserving Storage in the Output Load
Module • • • • • •• ••••
Processing Pseudo Registers
Multiple Load Module Processing

Diagnostic Output • • • • •
Diagnostic Messages • • • • •

· 36
• 37
• 37
• 38
· 38

Module Disposition Messages
Error/Warning Messages • • • • .
Sample Diagnostic Output • • • • • .

38
40
41
43
43

Optional Output • • • • • • • • • • .
Control Statement Listing
Module Map • • • • • • •
Cross-Heference Table

• • • • 43
• • • • 44

MODULE EDITING • • • • . • • • • • • • . 46
46
47
48

Editing Conventions
Changing External Symbols
Replacing Control Sections

Automatic Replacement • • • • 49
Replace Statement • • • •

Deleting a Control Section or Entry
Name • • • • • • • • • • • • • . • •
Ordering Control Sections or Named
Common Areas . . • . • . . .
Aligning Control sections or Named
Common Areas on Page Boundaries.

OVERLAY PROGRAMS • • • • • • • .
Design of an Overlay Program • .

51

52

• 54

55

57
• • 57
• • 58

58
• • • • 60

Single Region Overlay Program
Control Section Dependency •
Segment Dependency • • • • .
Length of an Overlay Program
Segment Origin • • . • • • •
communication Between Segments •
Overlay Process • • • • • .

v

61

Multiple Region Overlay Program

62
62
64
66
68
68

Specification of an Overlay Program
Segment Origin • • • • . • • .
Region Origi n • • • • • • • .
Positioning Control Sections •

• • • . 70
· • . . 71

Using Object Decks • • •
Using INCLUDE Statements • .
Using INSERT Statements

Special Options • • • .
OVLY Option • • • • . • • .
LET Option ••
XCAL Option • • • •

Special Considerations •
Common Areas • • • • • • • • .
Storage Requirements • •
Overlay Communication

CALL Statement or CALL Macro
Instruction • • • • • • • •
Branch Instruction • •

71
• • • • 72
• • • • 72
• • • • 74
• • • • 74

74
75
75
75

• • • . 77
78

79
79

Segment Load (SEGLD) Macro
Instruction • • • •
Segment Wait (SEGWT) Macro
Instruction • • • •

80

81

JOB CONTROL, LANGUAGE SUMMARY • • .. • 83
EXEC Statement -- Introduction • • 83
EXEC Statement -- Job Step Options • 83

Module Attributes • • • • 84
Not Editable Attribute • 85
Only Loadable Attribute 85
Overlay Attribute • • • • • 86
Reusability Attributes .. • 86
Refreshable Attribute • • • • 87
Test Attribute • • • • • 87
Page Boundary Attribute. 88
Default Attributes .. • .. 88
Incompatible Attributes • .. • • 88

Special Processing Options • 89
Exclusive Call Option 89
Let Execute Option • M • 89
No Automatic Library Call option • • 90

Space Allocation Options • • • • • • • 90
SIZE Option • • • • • .. • • 90

VALUE 2 91
Examples of Value2 Determination . 93

VALUE 1 94
Examples of Value1 Determination . 95

DCBS Option .. • • • • • • 95
Output Options • • .. • • • • • • • 96

Control Statement Listing Option • • 96
Module Map Option • • • • • • .. • • 96
Cross-Reference Table Option •• 96
Alternate Output (SYSTEffi1) Option .. 96

Incompatible Job Step Options 97
EXEC Statement -- REGION Parameter • 97
EXEC Statement -- Return Code 98
DD Statements • • • • • • • • • • • • .. 98

Linkage Editor DD Statements 100
SYSLIN DD Statement • • • • • • .. • 100
SYSLIB DD Statement • 101
SYSUTl DD Statement • • • . .. • .. • 101
SYSPRINT DD Statement • .. • .. 102
SYSLMOD DD Statement. • • 102
SYSTERM DD Statement.. .. 103

Additional DD Statements .. 104
Cataloged Procedures • • .. • • .. • 105

Linkage Editor Cataloged Procedures • 105
Procedure LKED •• 105
Procedure LKEDG • • .. • • 107

Overriding Cataloged Procedures .108
Overriding the EXEC Stat:ement • 108
Overriding DD Statements. 109

Adding DD Statements • • • • .. • 110

LINKAGE EDITOR CONTROL STATEMENT
SUMMAR Y • • • • • • •

General Format • •
Format Conventions
Placement Information
ALIAS Statement
CHANGE Statement •
ENTRY Statement • • • •
EXPAND Statement .
IDENTIFY Statement • •
INCLUDE: Statement

• 111
• • 111

• 111
• • • 112

• 113
.. • 114

.. 116
• • • • • • 117

• • • .. 11 8
• • 11 9

vi

INSERT Statement. • • • • • 120
LIBRARY Statement • • •• 122
NAME Statement. . • . ••. 12Li
ORDER Statement. .. • 125
OVERLAY Statement .. • • 127
PAGE Statement . • . . . • • • • • . 129
REPLACE Statement • .. • • • 131
SETSSI Statement . 133

APPENDIX A. SAMPLE PROGRAMS
Sample Program COBFORT • •

Job Control Language •
Linkage Editor Ou~put

sample Program RPLACJOB •

135
135
135
136

· 139
• • • • 139 Job Control Language •

Linkage Editor Control
Linkage Editor Output

Statements 141
142

Sample Program REGNOVLY .. • .. • .. • •
Job Control Language • .. • • •
Linkage Editor Control Statements

· 144
· 145

146
146 Linkage Editor Output

Sample Program PARTDS • • • .. • • . 151
Job Control Language .. • .. • • • • • 1 52
Linkage Editor Control Statements 153
Linkage Editor Output • • • • • • . 153

APPENDIX B: INVOCATION OF THE LINKAGE
EDITOR • • • .. • • • • • • • • • • . 155

APPENDIX C: STORAGE REQUIREMENTS AND
CAPACITIES. . .•.• 157

Capacities.•..• 157
Intermediate Data Set ...•... 160
Linkage Editor-Storage Requirements 160

PART 2: LOADER ••••••
Functional Characteristics
Compatibility and Restrictions.

Time Sharing Option (TSO)
processing Object Moaules in
storage • • • • • • •
Loaded Program Restrictions

161
161

• . 163
• • 163

Virtual
• • .. . 164

164

USING THE LOADER •• .. • • • .. • • •
Input for the Loader

EXEC Statement • • .. • • • .. • .. • • •
165
165
165 DD Statements .. • .. •

SYSLIN DD Statement
SYSLIB DD Statement
SYSLOUT DD Statement ..
SYSTERM DD Statement

Loaded Program Data • • • •
Invoking the Loader

167
168
169

.. • 169
• . 170
.. . 170

Loader Output • • • • • 175

APPENDIX D: SAMPLE INPUT FOR THE LOADER 177

APPENDIX E: LOADER RETURN CODES

APPENDIX F: STORAGE CONSIDERATIONS

APPENDIX G: LOAD MODULE FORMAT

APPENDIX H: SIZE AND REGION
PARAMETER GUIDELINES•.

GLOSSARY

INDEX

179

181

183

· . 185

187

1 91

FIGURES

Figure 1. Preparing a Source Module
for Execution • • • • • • • • • • • •• 3
Figure 2. Preparing a Source Module
for Execution and Executing the Load
Module • • • • • • • 4
Figure 3. External Names and
External References • • • • • 5
Figure 4. Use of the External Symbol
Dictionary • • • • • • • • • • • • • •• 7
Figure 5. Input, Intermediate, and
Output Sources for the Linkage Editor 9
Figure 6. A Load Module Produced by
the Linkage Editor • • • • • • • • • • • 10
Figure 7. Linkage Editor Processing
-- Module Linkage • • • • • • • • • • • 12
Figure 8. Linkage Editor Processing
-- Module Editing • • • • • • • • • • . 13
Figure 9. Linkage Editor Processing
-- Additional Input Sources • • • • • • 13
Figure 10. Processing of one INCLUDE
Control Statement • • • • • • • • • • • 29
Figure 11. Processing of More than
One INCLUDE Control statement 30
Figure 12. Diagnostic J:vlessages issued by
the Linkage Edi tor • • . • . • • • . 42
Figure 13. Module Hap. • • • • • 45
Figure 14. Cross-Reference Table 45
Figure 15. Editing a Module. • • 46
Figure 16. Changing an External
Reference and an Entry Point • • • 48
Figure 17. Automatic Replacement of
Control Sections • • • • • • • • 50
Figure 18. Replacing a Control
Section with the REPLACE Control
Statement • • • • • • • • • • • • • • • 52
Figure 19. Deleting a Control Section. 53
Figure 20. Ordering Control Sections .. 55
Figure 21. Aligning Control Sections on
Page Boundaries. • • . • • . . 56
Figure 22. Control Section
Dependencies • • • • • • • • • 59
Figure 23. Single-Region Overlay Tree
Structure • • • • • • • • .,. • • • • • 60
Figure 24. Length of an Overlay Module 61
Figure 25. Segment Origin and Use of
Storage • • • • • • • • • • • • • • • • 62
Figure 26. Inclusive and Exclusive
Segments • • • • • • • • • • • • • • • • 63
Figure 27. Inclusive and Exclusive
References • • • • • • • • • • • • • • • 64
Figure 28. Location of Segment and
Entry Tables in an Overlay Module 65
Figure 29. Control Sections Used by
Several Paths •• • • • 67
Figure 30. Overlay Tree for
Multiple-Region Program 67
Figure 31. Symbolic Segment Origin in
Single-Region Program • • • • 69
Figure 32. Symbolic Segment and
Region Origin in Multiple-Region
Program • • • • • • • • • • • • • • • • 70

ILLUSTRATIONS

FiguIe 33. Common Areas Before
Processing • • • •
Figure 34. Common Areas After

· 76

Processing • • • • . •••. 77
Figure 35. Incompatible Job Step
Options for the Linkage Editor • •
Figure 36. Statements in the LKED
Cataloged Procedure • • • • • • •

· 97

· 106
Figure 37. Statements in the LKEDG
Cataloged Procedure • . • • • • • . • . 108
Figure 38. Overlay Structure for
INSERT Statement Example • • • • • . 121
Figure 39. Output Load Module for ORDER
Statement Example•...•• 126
Figure 40. Overlay Structure for
OVERLAY Statement Example ••••••. 128
Figure 41. Output Load Module for PAGE
statement Example••••. 130
Figure 42. Linkage Editor output for
Sample Program COBF'ORT • • • • . • • • . 137
Figure 43. Linkage Editor Output for
Job Step tnat Created SUBONE •.•••. 140
Figure 44. Linkage Editor Output for
Sample Program RPLACJOB .•••. 143
Figure 45. Overlay Tree for
Multiple-Region sample Program REGNOVLY 144
Figure 46. Linkage Editor Output for
Sample Program REGNOVLY 147
Figure 47. Input Statements for
IEBUPDTE Utility Program ..••
Figure 48. Macro Instruction Basic
Format • • • • • • • • . • • • . •
Figure 49. Loader Processing -
SYSLIB Resolution • . • • • •.•
Figure 50. Loader Processing -- Link
Pack Area and SYSLIB Resolution
Figure 51. Loader Processing -
Automatic Editing
Figure 52. Input Deck for the Loader

. . 151

· 155

162

162

163

-- Basic Format ••••••••. 165
Figure 53. Loader and Loaded Program
Data in VS1 or VS2 Input Stream
Figure 54. Macro Instruction Basic

170

Format • • • • • • . • . • • • • • • • . 1 71
Figure 55. Using the LINK Macro
Instruction To Refer to the Loader
Figure 56. Using the LOAD and CALL
Macro Instructions to Refer to
IEWLOADR (LOading without

• . 172

Identification) •••••••.•••. 173
Figure 57. Using the LOAD and CALL
Macro Instructions to Refer to HEWLOAD
(Loading With Identification> ••••. 174
Figure 58. Module Map Format Example .176
Figure 59. Input Deck for a Load Job .177
Figure 60. Input Deck for a
Compile-Load Job • • . • • • . 177
Figure 61. Input Deck for compilation
and Loading of the TQree Modules 178
Figure 62. Load Module Format. 183

vii

TABLES

Table 1. System Automatic Call
Libraries
Table 2. Branch Sequences for

. . . 25

Overlay Programs. 80
Table 3. Use of the SEGLD Macro
Instruction 81
Table 4. Use of the SEGWT Macro
Instruction 82
Table 5. SYSUT1 and SYSLMOD Device
Type and Thl:dr Maximum Record Sizes . . 9"
Table 6. Load Module Buffer Area and
SYSLMOD and SYSUTI Record Sizes 92

Table 7. Linkage Editor Return Codes. 98
Table 8. Linkage Editor ddnames ... 100
Table 9. DCB Requirements for Object
Module and Control Statement Input ... 101
Table 10. DCB Requirements for
SYSPRINT.102
Table 11. DCB Requirements for
Additional Input Data Sets 104
Table 12. Linkage Editor Capacities
for Minimal SIZE values (64K, 6K) . . . 158
Table 13. Return Codes.179
Table 14. Virtual Storage
Requirements 182

viii

OSjVS1 SUMMARY OF AMENDMENTS

RELEASE 3

• The appropriate figures and tables have been updated to include
specifications for the 3330-1 and 3340 disk storage devices.

• The format for the load modules produced by the linkage editor
has been included in this edition. See Appendix G.

• The "Size option" has been rewritten to make it easier for the
user to determine the correct values for the option. Appendix H
is a summary of this section.

• The load module size restriction of 512K bytes has been removed.

RELEASE 2

There are no significant system changes in OSjVS1 Release 2. A more
efficient EXEC statement has been added for use in the LKEDG procedure
when the programmer wishes to specify the LET parameter in the LKED
step. This change applies to both OSjVS1 and OSjVS2.

ix

OS/VS2 SUMMARY OF ANENDMENTS

RELEASE 2

• The appropriate figures and tables have been updated to include
specifications for the 3330-1 and 3340 disk storage devices.

• The format for the load modules produced by the linkage editor
has been included in this edition. See Appendix G.

• The "Size option" has been rewritten to make it easier for the
user to determine the correct values for the option. Appendix H
is a summary of this section.

xi

INTRODUCTION

The linkage editor and the loader processing programs prepare the
output of language translators for execution. The linkage editor pre
pares a load module that is to be brought into storage for execution by
program fetch. The loader prepares the executable program in storage
and passes control to it directly.

The linkage editor provides several processing facilities such as
creating overlay programs, and aiding program modification. (The
linkage editor is also used to build and edit system libraries.) The
loader provides high performance loading of programs that do not require
the special processing facilities of the linkage editor.

Use of the linkage editor is recommended in the following cases:

• If the program requires linkage editor services in addition to the
MAP, LET, NCAL, and SIZE options.

• If the program uses linkage editor control statements such as
INCLUDE, NAME, OVERLAY, etc •

• If a load module is to be produced for a program library.

Use of the loader is recommended if the program only requires the use of
the following linkage editor options: MAP, LET, NCAL, and SIZE.
Because of its fewer options and because it can process a job in one job
step, the loader reduces editing and loading time by about one half.

Linkage editor processing is performed in a link edit step. The
linkage editor can be used for compile-link edit-go, compile-link edit,
link edit, and link edit-go jobs. Loader processing is performed in a
load step, which is equivalent to the link edit-go steps. The loader
can be used for compile-load and load jobs.

Introduction I

Linkage editor processing is a necessary step that follows the
source program assembly or compilation of any problem program. The
linkage editor is a processing program and a service program used in
association with the language translators.

Every problem program is designed to fulfill a particular purpose.
To achieve that purpose, the program can generally be divided into
logical units that perform specific functions. A logical unit of coding
that performs a function, or several related functions, is a module.
Ordinarily, separate functions should be programmed into separate-
modules, a process called modular programming. Each module can be
written in the symbolic language that best suits the function to be
performed. (The symbolic languages are assembler, ALGOL, COBOL,
FORTRAN, PL/I, and RPG.)

Each module is separately assembled or compiled by one of the
language translators. The input to a language translator is a source
~2~Ql~; the output from a language translator is an 2Qi§~! module.--
Before an object module can be executed, it must be processed by the
linkage editor. The output of the linkage editor is a 12ad_~odQle
(Figure 1).

Figure 1. Preparing a Source Module for Execution

An object module is in relocatable format with unexecutable machine
code. A load module (see Appendix G) is also relocatable, but with
executable machine code. A load module is in a format that can be loaded
into virtual storage and relocated by program fetch (Figure 2).

Part 1. Linkage Editor 3

Figure 2. Preparing a Source Module for Execution and Executing the
Load Module

Any module is composed of one or more control sections. A control
section is a unit of coding (instructions and data) that is, in itself,
an entity. All elements of a control section are loaded and executed in
a constant relationship to one another. A control section is,
therefore, the smallest separately relocatable unit of a program.

Each module in the input to the linkage editor may contain symbolic
refe.rences to control sections in other modules; such references are
called external references. These references are made by means of
~ddress constants (adcons). The symbol referred to by an external
reference must be either the name of a control section or the name of an
entry point in a control section. Control section names and entry names
are called external names. By matching an external reference with an
external name, the linkage editor resolves references between modules.
External references and external names are called ~~:!::~!:!!~!_§Y!!}Q21§
(Figure 3). An external symbol is one that is defined in one module and
can .be referred to in another.

4 OS/VS Linkage Editor and Loader

External [
Symbols

External Names:

Control Section Entry Name
Al All
81

External References:

From Al to 81
From 81 to All

Figure 3. External Names and External References

OBJECT AND LOAD MODULES

Object modules and load modules have the same basic logical
structure. Each consists of:

ENTRY All

CALL 81

CSECT 81

• Control dictionaries, containing the information necessary to
resolve symbolic cross references between control sections of
different modules, and to relocate address constants. Control
dictionary entries are generated when external symbols, address
constants, or control sections are processed by a language
translator. Each language translator usually produces two kinds of
control dictionaries: an external symbol dictionary (ESD) and a
relocation dictionary (RLD).

• Text, containing the instructions and data of the program.

• An end of module indication: an END statement in an object module,
an end-of-module indicator in a load module.

Each control dictionary and the text and end indication is described in
greater detail in the following text.

Both object modules and load modules can contain data used by the
linkage editor to create CSECT Identification (IDR) records. If the
language translator creating an object module supports CSECT
Identification, the input object module can contain translator data for
Identification records on the END statement. Input load modules differ
from object modules in the type of data they supply. Input load modules
can also provide HMASPZAP data, linkage editor data, and user data to
the Identification records that are built during linkage editor
processing. During the link edit step, the optional IDENTIFY control
statement is used to supply the optional user data for the CSECT
Identification records.

Part 1. Linkage Editor 5

~xtern~l §y'mboJ Dictiona~

The external symbol dictionary (ESD) contains one entry for each
external symbol defined or referred to within a module. The dictionary
contains an entry for each external reference, pseudo register (external
dummy section), entry name, named or unnamed control section, and blank
or named common area. An entry name, pseudo register, or named control
section can be referred to by any control section or separately
processed module; an unnamed control section cannot.

Each entry identifies a symbol, or a symbol reference, and gives its
location, if known, within the module. Each entry in the external
symbol dictionary is classified as one of the following:

• Ext~rnal r~fer~nce -- a. symbol that is defined as an external name
in another separately processed module, but is referred to in the
module being processed. The external symbol dictionary entry
specifies the symbol; the location is unknown.

• !!ea~g~terf!~.! referen2§; -- a special type of external reference that
is not to be resolved by automatic library call unless an ordinary
external reference to the same symbol is found. The external symbol
dictionary entry specifies the symbol; the location is unknown.

• Entry name -- a name within a control section that defines an entry
point. The external symbol dictionary entry specifies the symbol
and its location, and identifies the control section to which it
belongs,.

• ~2!!tr0.l~ection Il:~me -- the symbolic name of a control section. The
external symbol dictionary entry specifies the symbol, the length of
the con-trol section, and its location. In this case, the location
represents the origin of the control section, which is the first
byte of the control section.

• Blank or named common area -- a control section used to reserve a
main storage-area -that - can be referred to by other modules. ~rhe
reserved storage area can be used, for example, as a communications
region within a program or to hold data supplied at execution time.
The external symbol dictionary entry specifies the name, if present,
and the length of the area. If there is no name, the name field
contains blanks.

• Private code -- an unnamed control section. The external symbol
Cil"ctionaryentry specifies the lengt.h of the control section, and
the origin. The name field contains blanks.

• Pse~do register -- a special facility (corresponding to the external
dummy section feature of Assembler F) that can be used to write
re-enterable programs. A pseudo register is a dynamically obtained
location in virtual storage that can be used as a pointer to
dynamically acquired storage; that is, the space for such areas is
not reserved in the load module but is acquired during execution.
The external symbol dictionary contains the name, length, alignment,
and displacement of the pseudo register.

When processing input modules, the linkage editor resolves references
between modules by matching the referenced symbols to defined symbols.
To do this, the linkage editor searches for the external symbol
definition in the external symbol dictionary of each input module. As

6 OS/VS Linkage Editor and Loader

shown in Figure 4, the linkage editor matches the external reference to
Bl by locating the definition for Bl in the external symbol dictionary
of Module B. In the same way, it matches the external reference to All
by locating the definition for All in the external symbol dictionary of
Module A.

Figure 4. Use of the External Symbol Dictionary

The text contains the instructions and data of the module.

Relocation Dictionary

The relocation dictionary (RLD) contains one entry for each
relocatable address constant that must be modified before a module is
executed. An entry identifies an address constant by indicating both
its location within a control section and the external symbol whose
value must be used to compute the value of the address constant. (The
external symbol is defined in an external symbol dictionary entry in
another control section or module.)

The linkage editor uses the relocation dictionary whenever it
processes a module to adjust the address constants for references to
other control sections and modules. This dictionary is also used to
adjust these address constants again after program fetch reads an output
load module from a library and loads it into virtual storage for execution.

End Indication

The end of a load module is marked by an ~~~=Qf=mQQ~!~ indicator
(EOM). The EOM cannot, like the assembler END instruction, specify an
entry point. Therefore, whenever a load module is reprocessed by the
linkage editor, a main entry point should be specified on an ENTRY
statement. If one is not specified, the linkage editor will assign the
first byte of the first control section encountered as the entry point.

Part 1. Linkage Editor 7

LINKAGE EDITOR PROCESSING

This section discusses the input and output sources of the linkage
editor, and the way in which the linkage editor produces a load module.

INPUT AND OUTPUT SOURCES

The linkage editor can receive its input from several sources, as
follows:

• The primary input, which can contain only object modules and linkage
editor control statements (called control statements in the
following text).

• Additional user-specified input, which can contain either object
modules and control statements, or load modules. This input is
either specified by the user as input, or incorporated automatically
by the linkage editor from a call library.

During processing, the linkage editor generates intermediate data.
Intermediate data is placed on a direct access storage device when
virtual storage allocated for input data is exhausted.

Output of the linkage editor is of two types:

• A load module, which is always placed in a library (a partitioned
data set) as a named member.

• Diagnostic output, which is produced as a sequential data set.

Figure 5 shows the input, intermediate, and output sources for the
linkage editor program.

8 OS/VS Linkage Editor and Loader

Figure 5. Input, Intermediate, and Output Sources for the Linkage
Editor

LOAD MODULE CREATION

In processing object and load modules, the linkage editor assigns
consecutive relative addresses to all control sections and resolves all
references between control sections. Object modules produced by several
different language translators can be used to form one load module.

An output load module is composed of all input object modules and
input load modules processed by the linkage editor. The control
dictionaries of an output module are therefore a composite of all the
control dictionaries in the linkage editor input. The control
dictionaries of a load module are called the composite external symbol
dictionary (CESD) and the relocation dictionary (RLD). The load module
also contains all of the text from each input module, and one
end-of-module indicator (Figure 6). See Appendix G for the format of
a load module.

Part 1. Linkage Editor 9

Figure 6. A Load Module Produced by the Linkage Editor

Each module to be processed by the linkage editor has an origin that
was assigned during assembly, compilation, or a previous execution of
the linkage editor. When several modules, each with an independently
assigned origin, are to be processed by ·the linkage editor, the sequence
of the addresses is unpredictable; two input modules may even have the
same ori.gin.

Each input module can be made up of one or more control sections. To
produce an executable outpu1: load module, the linkage editor assigns
relative virtual storage addresses to each control section by assigning an
origin to the first control section encountered and then assigning
addresses, relative to that origin, to all other control sections to be
included in the output load module. The value assigned as the origin of
the control section is used to relocate each address dependent item in
the control section.

Although the addresses in a load module are consecutive, they are
relative to zero. When a load module is to be executed, program fetch
prepares the module for execution by loading i.t at a specific virtual
storage location. The addresses in the module are then increased by
this base address. Each address constant must also be readjusted,
another function of program fetch.

R~solvin~ternal References

The linkage editor also resolves external references in the input
modules. Cross references between control sections in different modules
are symbolic. They must be resolved relative to the addresses assignE~d
to the load module. The linkage editor calculates the new address of
each relocatable expression in a control section and determines the
assigned origin of the item to which it refers.

10 as/vs Linkage Editor and Loader

FUNCTIONS OF THE LINKAGE EDITOR

Linkage editor input may consist of a combination of object modules,
load modules, and control statements. The primary function of the
linkage editor is to combine these modules, in accordance with the
requirements stated on control statements, into a single output load
module. Although this linking or combining of modules is its primary
function, the linkage editor also:

• Edits modules by replacing, deleting, rearranging, and ordering
control sections as directed by control statements.

• Aligns control sections and named common areas on 2K or 4K page
boundaries as directed by control statements.

• Accepts additional input modules from data sets other than the
primary input data set, either automatically, or upon request.

• Reserves storage for the common control sections generated by
assembler and FORTRAN language translators, and static external
areas generated by PL/I.

• Computes total length and assigns displacements for all pseudo
registers (external dummy sections).

• Creates overlay programs in a structure defined by control
statements.

• Creates mUltiple output load modules as directed by control
statements.

• Provides special processing and diagnostic output options.

• Assigns module attributes that describe the structure, content, and
logical format of the output load module.

• Allocates storage areas for linkage editor processing as
specified by the programmer.

• Stores system status index information in the directory of the
output module library (systems personnel only).

• Traces the processing history of a program.

• Allows the user to lengthen a control section or named common
section without changing source code, reassembling, or recompiling.

• Allows the user to assign an authorization code to a load module
that (a) makes it a restricted resource and (b) enables it to pass
control to other restricted resources.

Each of the linkage editor functions is described briefly in the
following paragraphs.

Links Modules

Processing by the linkage editor makes it possible for the programmer
to divide his program into several modules, each containing one or more
control sections. The modules can be separately assembled or compiled.
The linkage editor combines these modules into one output load module
(Figure 7) with contiguous storage addresses. During processing by the
linkage editor, references between modules within the input are
resolved. The output module is placed in a library (partitioned data
set).

Part 1. Linkage Editor 11

Figure 7. Linkage Editor Processing -- Module Linkage

Edits Modules

Program modification is made easier by the editing functions of the
linkage editor. When the functions of a program are changed, the
programmer modifies, then compiles and link edits again only the
affected control sections instead of the entire source module.

Control sections can be replaced, renamed, deleted, moved, or ordered
as directed by control statements. Control sections can also be
automatically replaced by the linkage editor. External symbols can also
be changed or deleted as directed by control statements.

Figure 8 illustrates the module editing function of the linkage
editor.

Aligns Control Sections or Conunon Areas on Page Boundaries

Control sections or named conunon areas in the output load module
can be aligned on either 2K or 4K page boundaries. Alignment on page
boundaries enables the progranuner to use real storage more efficiently
and appreciably reduce the paging rate for the job.

standard subroutines can be included in the output module, thus
:I."educing thE! work in coding programs. The programmer can specify that a
subroutine be included at a particular time during the processing of his
program by using a control statement. When the linkage editor processes
a program that contains this statement, the module containing the
subroutine is retrieved from the indicated input source, and made a part
of the output module (Figure 9).

12 OSjvs Linkage Editor and Loader

Figure 8. Linkage Editor Processing -- Module Editing

PRIMARY INPUT:

ADDITIONAL INPUT,

Figure 9. Linkage Editor Processing -- Additional Input Sources

Symbols that are still undefined after all input modules have been
processed cause the automatic library call mechanism to search for
modules that will resolve these references. When a module name is found
that matches the unresolved symbol, the module is processed by the
linkage editor and also becomes part of the output module (Figure 9).

Part 1. Linkage Editor 13

Note: The level F linkage E~ditor distinguishes a special type of
external ref:erence; the weak external reference. An unresolved weak
external reference does not cause the linkage editor to use the
automatic li.brary call mechanism. Instead, the reference is left
unresolved, and the load module is marked as executable.

Reserves Stor~~

The linkage editor processes common control sections generated by the
FORTRAN and assembler language translators. The static external storage
areas generated by the PL/I compiler are processed in the same way. The
common areas are collected by the linkage editor, and a reserved virtual
storage area is provided within the output module.

Processes Pseudo Regi§.:!::~

Pseudo rE~gisters, like the external dummy sections of Assembler F,
aid in genel~ating re-enterable code. The linkage editor processes
pseudo registers by accumulating the total length of storage required
for all pseudo registers and recording the displacement of each. During
execution, t.he program dynamically acquires the necessary storage ..

To minimize virtual storage requirements, the programmer can organize
his program into an overlay structure by dividing it into segments
according to the functional relationships of the control sections. Two
or more segments that need not be in virtual storage at the same time can
be assigned the same relative virtual storage addresses, and can be loaded
at different times.

The programmer uses control statement:s to specify the relationship of
segments within the overlay structure. The segments of the load Inodule
are placed in a library so that the control program can load them
separately when the load module is executed.

The linkage editor can also process its input to form more than one
load module within a single job step. Each load module is placed in the
library und4~r a unique member name, as spec if ied by a control statement.

The programmer can specify special processing options that negate
automatic library call or the effect of minor errors. In addition, the
linkage editor can produce a module map or cross-reference table that
shows the arrangement of control sections in the output module and
indicates how they communicate with one another. A list of the control
statements processed can also be produced.

Throughout processing, errors and possible error conditions are
logged. Serious errors cause the linkage editor to mark the output
module not E~xecutable. Additional diagnostic data is automatically
logged by the linkage editor. The data indicates the disposition of the
load module in the output module library.

14 as/vs Linkage Editor and Loader

Assigns Load Module Attributes

When the linkage editor generates a load module, it places an entry
for the module in the directory of the library. This entry contains
attributes that describe the structure, content, and logical format of
the load module. The control program uses these attributes to determine
how a module is to be loaded, what it contains, if it is executable,
whether it is executable more than once without reloading, and if it can
be executed by concurrent tasks. Some module attributes can be
specified by the programmer; others are specified by the linkage editor
as a result of information gathered during processing.

Allocates User-Specified virtual Storage Areas

The programmer can specify the total amount of virtual storage to be
made available to the linkage editor, the amount to be used for the load
module buffer, and the buffer for the output load module.

~~ores_§ystem Status Index Information

The following information is intended for systems personnel
responsible for maintaining IBM-supplied load modules. It is not
generally applicable to non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied load
modules are used to store system status index information. This
information, which is used for maintenance of the modules, is placed in
the directory with a control statement.

Tracing the processing history of a program is simplified by the CSECT
Identification (IDR) records created and maintained by the linkage
editor. A CSECT Identification record can contain data that describes:

• The language translator, its level, and the translation date for
each control section.

• The most recent processing by the linkage editor.

• Any modification made to the executable code of any control section.

optionally, user-supplied data associated with the executable code of a
control section can also be recorded.

Lengthens Control Sections or Named Common Sections

'I'he user can lengthen control sections or named common sections
of a program to add patch space without changing the source code,
reassembling, or recompiling.

Added space, consisting of binary zeros, is put at the end of a
specified control section by using the EXPAND control statement
(see the "Control Statement Summary" section). Space cannot be
added to a private code or blank common section.

Part 1. Linkage Editor 15

hssigns an Authorization Code to Output Load Modules

An authorization code may be assigned to an output load module
that (a) makes it a restricted resource and (b) enables it to
pass control to other restricted resources. For more information
about authorization codes, refer to the discussion of the Author
ized Program Facility (APF) in OS/VS2 Planning and Use Guide.

The linkage editor has the same relationship to the operating systen
as any other processing program. It can be executed either as a job
step, a subprogram, or a subtask. Control is passed to the linkage
editor in on.e of three ways:

• As a job step, when the linkage editor is specified on an EXEC job
control statement in the input stream •

• As a subprogram, with the execution of a CALL macro instruction
(after t.he execution of a LOAD macro instruction), a LINK macro
instruct.ion, or an XCTL macro instruction.

• As a subtask, in multitasking systems, with the execution of the
ATTACH macro instruction.

Execution of the linkage editor and the data sets used by the linkage
editor are described to the system with job control language statements.
These statements describe all jobs to be performed by the system.

!:tote: Job control statements are not to be confused with linkage editor
control statements. Job control statements are processed before the
linkage editor is executed; linkage editor control statements are
processed during linkage editor execution.

When the linkage editor is used under TSO (VS2 only), it is invoked
by the linkage editor prompter program that acts as an interface between
the user, operating system, and linkage editor. Under TSO, execution
of the linkage editor and definition of data sets used by the linkage
editor are described to the system through use of the LINK command that
causes the prompter to be executed. Operands of the LINK command can
also be used to specify the linkage editor options a job requires.

16 OS/VS Linkage Editor and Loader

Complete procedures for use of the LINK command are given in the
OS/VS2 TSO Terminal User's Guide.

This section defines control section, entry name, external reference,
common area, and pseudo register (external dummy section) in terms of
the source language statements that generally create them. The
languages described are assembler, COBOL, FORTRAN, and PL/I.

Note: Unless the language translator supports CSECT Identification
(IDR) Records, identification data is not produced.

Assembler Language

In the assembler language, a control section is defined by a CSECT
statement or a START statement. Either statement may specify a control
section name. The control section delimiter is an END statement, or
another CSECT or S~ART statement.

An entry name is defined with an EN~'RY statement.

An external reference to a data area is specified with an EXTRN
statement and an A-type address constant; an external reference to a
control section or an entry name is specified with a V-type address
constant.

A common area is specified with a COM statement.

An external dummy section (Assembler XF and Assembler H only) is
defined with a DXD instruction or a DSECT and a Q-type address constant;
a CXD instruction defines a 4-byte field that the linkage editor uses to
accumulate the length of all external dummy sections in a load module.

In COBOL, a control section is produced for each compilation. COBOL
control sections are always named, because a name must be specified in
the PROGRAM-ID paragraph of the IDENTIFICATION DIVISION.

An entry name is defined with an EN'I'RY statement.

An external reference is created by the compiler when a CALL
statement is used.

COBOL does not use common areas or pseudo registers.

In FORTRAN, a control section is defined with a SUBHOUTINE, FUNCTION,
or BLOCK DATA statement that specifies the control section name. If the
first statement in a FORTRAN routine is not one of these, it is assumed
to begin the main routine of the program. Automatically, the statement

Part 1. Linkage Editor 17

defines a control section named MAIN, the name always assigned to the
main routine of a FORTRAN program unless the programmer has used the
NAME option to assign a name to his main routine. A control section
delimiter is an END statement.

An entry name is defined with an ENTRY statement.

An external reference is created for an EXTERNAL statement or a
reference to a subroutine subprogram, a function subprogram, or a BLOCK
DATA subprogram.

A common area is specified with a COMMON statement. A name may be
specified, if desired.

FORTRAN does not use pseudo registers.

In PL/I, a control section is defined by an external PROCEDURE
statement and named by the first statement label. When the MAIN option
is specified, the control section IHE~ffiIN, which contains the address of
the principal entry point, is created. In both cases, the control
section IHENTRY is generated to provide appropriate linkage to the
library storage management modules. Control sections are also created
for each STATIC EXTERNAL or EXTERNAL declaration with initial text and
for each EXTERNAL file constant.

Note: If the labels or variable names used for control section names
exceed seven characters, PL/I generates a seven-character control
section name by concatenating the first four and the last three
characters in the label or variable name.

A control section is also created for STATIC INTERNAL storage; it
contains the items declared with their storage class attributes as well
as work areas and control blocks added by the compiler. This control
section takes its name from the name of the external procedure control
section, followed by the letter A and padded to the left with asterisks
to a length of eight characters.

An entry name is defined with an EN~RY statement.

An external reference is created for an ENTRY declaration, either
explicitly or implicity declared with the EXTERNAL attribute.
unresolved function references or procedure calls imply EXTERNAL scope
and also cause an external reference to be generated.

A named common area is specified with a STATIC EXTERNAL or EXTERNAL
declaration when the defined area does not contain initial text. (When
the area is initialized, a control section is generated.) The name is
the name of the variable. PL/I does not use blank common areas.

A pseudo register is created for each CONTROLLED variable, for each
file declared, and for each PROCEDURE or PROCEDURE BEGIN block or ON
unit in the prograrr. The name of the pseudo register created for a
CONTROLLED EXTERNAL variable is the name of the variable. In all other
cases, the name of the pseudo register is generated from the external.
procedure control section name followed by a letter (B, C, etc.) and
padded to the left with asterisks to a length of eight characters~ The
asterisks can be re~laced if necessary to provide sufficient unique
names.

18 OS/VS Linkage~ditor and Loader

INPUT TO THE LINKAGE EDITOR

The linkage editor accepts input from two major sources: the primary
input data set and additional data sets. The primary input data set is
made available through job control language specifications. ~99!~!QQ~!
data sets are made available either through the automatic library call
mechanism, or through user-specified control statements. They must,
however, also be defined with job control language specifications.

Primary and additional input data sets may contain the following
types of data:

• One or more object modules.

• One or more load modules.

• Control statements.

• Combinations of the above <restrictions on certain combinations are
noted where they apply).

Object modules and control statements may be contained in either
sequential or partitioned data sets. Load modules must be contained in
partitioned data sets.

This chapter describes the "linking" functions of the linkage editor
only; the "editing" functions are described in the chapter "Module
Editing."

PRIMARY INPUT DATA SET

The primary input data set is required for every linkage editor job
step. It must be defined by a DD statement with the ddname SYSLIN. The
primary input can be:

• A sequential data set.

• A member of a partitioned data set.

• A concatenation of sequential data sets and/or members of
partitioned data sets.

The primary input data set must contain object modules and/or control
statements. The modules and control statements are processed
sequentially and their order determines the basic order of linkage
editor processing during a given execution. However, the order of the
control sections after processing does not necessarily reflect the order
in which they appeared in the input.

In the examples that follow, only the statements necessary to define
the input to the linkage editor are shown; complete examples are shown
in Appendix A.

Input to the Linkage Editor 19

OBJECT MODULES

The primary input to the linkage editor may consist solely of one or
more object modules. The rest of this section discusses object module
input from cards, as a member of a partitioned data set, passed from a
previous job step, and created in a separate job.

Object module input to the linkage editor ~ay be on cards. The card
deck itself is treated as a sequential data set; the cards are placed in
the input stream, after a DD * statement, as follows:

//SYSLIN DD * r--,
IObject Deck A I
~-------.---~
IObject Deck B I L __ J

/*

The card input is followed by a /* statement.

An example of the JCL when card decks are used in addition to other
input is as follows:

//SYSLIN
//

DD
DD

DSNAME=INPUT, •••

* r--,
IObject Deck A I
~--i
IObject Deck B I L __ J

/*

By omitting the ddname on the second DD statement, the card input is
concatenated to the data set described on the SYSLIN DD statement.

As a Member of a Partitioned Data set

An object module in a partitioned data set can be used as primary
input to the linkage editor by specifying its data set name and member
name on the SYSLIN DD statement. In the following example, the member
named TAXCOMP in the object module library LIBROUT is to be the primary
input; LIBROUT is a cataloged data set:

//SYSLIN DD DSNAME=LIBROUT(TAXCOMP),DISP=(OLD,KEEP)

The library member is processed as if it were a sequential data set.

20 OS/VS Linkage Editor and Loader

Members of partitioned data sets can be concatenated with other input
data sets, as follows:

//SYSLIN
//

DD
DD

DSNAME=OBJLIB,DISP=(OLD,KEEP), •••
DSNAME=LIBROUT(TAXCOMP),DISP=(OLD,KEEP)

Library member TAXCOMP is concatenated to data set OBJLIB; both must
contain object modules since they are the primary input.

Passed from a Previous Job step

An object module to be used as input can be passed from a previous
job step to a linkage editor job step in the same job, as in a
compile-link edit job. That is, the output from the compiler is direct
input to the linkage editor. In the following example, an object module
that was created in a previous job step (Step A) is passed to the
linkage editor job step (Step B):

Step A: //SYSGO DD DSNAME=&&OBJECT,DISP=(NEW,PASS), •••

Step B: //SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

The data set name &&OBJECT, used in both job steps, identifies the
object module as the output of the language processor on the SYSGO DD
statement, and as the primary input to the linkage editor on the SYSLIN
DD statement.

Note: The double ampersand <&&) in the data set name defines a
temporary data set. These data sets exist for the duration of the job
and are automatically deleted at the end of the job. If the data set is
to be preserved for longer than the duration of a single job, the double
ampersand is not used (DSNAME=OBJECT».

The method used in the preceding example can also be used to retrieve
object modules created in previous steps. If the same data set name is
used for the output of each language processor, one SYSLIN DD statement
can be used to retrieve all the object modules, as follows:

Step A: //SYSGO DD DSNAME=&&OBJMOD,DISP=(NEW,PASS>, ••.

Step B: //SYSPUNCH DD DSNAME=&&OBJMOD, DISP=(MOD, PASS>

Step C: //SYSLIN DD DSNAME=&&OBJMOD,DISP=(OLD,DELETE)

The two object modules from Steps A and B are placed in the same
sequential data set, &&OBJMOD. The SYSLIN DD statement in Step C causes
both object modules to be used as the primary input to the linkage
editor.

Input to the Linkage Editor 21

Another method can be used to accomplish this purpose: concatenation
of data sets. This method could be used if the object modules were
created in previous job steps with different member names, as follows:

Step A: //SYSGO DD

Step B: //SYSPUNCH DD

Step C: //SYSLIN
//

DD
DD

DSNAME=&&OBJLIBCMODA),DISP=(NEW,PASS), •••

DSNAME=&&OBJLIB(MODB),DISP=(MOD,PASS), •••

DSNAME=&&OBJLIB(MODA>,DISP=(OlD,DELETE)
DSNAME=&&OBJLIB(MODB),DISP=(OLD,DElETE)

The object modules created in Steps A and B were placed in a partitioned
data set with different member names. The two members are concatenated
in Step C as primary input. Each member is ccnsidered to be·a
sequential data set.

Created in a Separate Job

If the only input to the linkage editor is an object module from a
previous job, the SYSLIN DD statement contains all the information
necessary to locate the object module, as follows:

//SYSLIN
//

DD DSNAME=OBJECT,DISP=(OLD,DELETE),UNIT=2314,
VOLUME=SER=LIB613

An object module created in a separate job may also be on cards, in
which case it is handled as described earlier.

CONTROL ST1~TEMENTS

The primary input data set may also consist solely of control
statements. When the primary input is control statements, input modules
are specified on INCLUDE control statements (see "Included Data Sets").
The control statements may be either placed in the input stream or
stored in a permanent data set.

In the following example, the primary input consists of control
statements in the input stream:

//SYSLIN DD * r--,
ILinkage Editor contro~ Statements I
L __ J

/*

22 OS/VS Linkage Editor and Loader

In the next example, the primary input consists of control statements
stored in the member INCLUDES in the partitioned data set CTLSTMTS:

//SYSLIN DD DSNAME=CTLSTMTS(INCLUDES),DISP=(OLD,KEEP) ••••

In either case, the control statements can be any of those described
in "Linkage Editor Control Statement Summary," as long as the rules
given there are followed.

OBJECT MODULES AND CONTROL STATEMENTS

The primary input to the linkage editor may contain both object
modules and control statements. The object modules and control
statements may be in either the same data set or different data sets.
If the modules and statements are in the same data set, this data set is
described on the SYSLIN DD statement as any data set is described.

If the modules and statements are in different data sets, the data
sets are concatenated. The control statements may be defined either in
the input stream or as a separate data set.

control Statements in the Input Stream

Control statements can be placed in the input stream and concatenated
to an object module data set, as follows:

//SYSLIN
//

DD
DD

DSNAME= & &OBJEC'l', •••

* r--,
ILinkage Editor Control Statements I L __ J

/*

Another method of handling control statements in the input stream is
to use the DDNAME parameter, as follows:

//SYSLIN
//

//SYSIN

DD
DD

DD

DSNAME=&&OBJECT, •••
DDNAME=SYSIN

* r--,
I Linkage Editor Control Statements I L __ J

/*

Note: The linkage editor cataloged procedures use DDNAME=SYSIN for the
SYSLIN DD statement to allow the programmer to specify the primary input
data set required.

Input to the Linkage Editor 23

A separate data set that contains control statements may be
concatenat€!d to a da·ta set that contains an object module. The control
statements for a frequently used procedure (for example, a complex
overlay structure or a series of INCLUDE statements) can be stored
permanently. In the following example, the members of data set CTLSTMTS
contain linkage editor control statements. One of the members is
concatenated to data set &&OBJECT.

//SYSLIN
//

nn
DD

DSNAME=&&OBJECT,DISP=(OLD,DELETE), •••
DSNAME=CTLSTMTS(OVLY),DISP=(OLD,KEEP), •••

The control statements in the member named OVLY of the partitioned data
set CTLSTM'1'S are used to structure the object module.

AUTOMATIC CALL LIBRARY

The automatic library call mechanism is used to resolve external
references that were not resolved during primary input processing.
Unresolved external references found in modules from additional data
sources are also processed by this mechanism.

Note: The following discussion of automatic library call does not apply
to unresolved weak external references: they are left unresolved.

The automatic library call mechanism involves a search of the
directory of the automatic call library for an entry that matches the
unresolved external reference. When a match is found, the entire member
is processed as input to the linkage editor.

Automatic library call can resolve an external reference when the
following conditions exist; the external reference must be (1) a member
name or an alias of a module in the call library, and (2) defined as an
external name in the external symbol dictionary of the module with that
name. If the unresolved external reference is a member name or an alias
in the library, but is not an external name in that member, the member
is processed but the external reference remains unresolved unless
subsequently defined.

The automatic library call mechanism searches the call library
defined on the SYSLIB DD statement. The call library can contain either
(1) object modules and control statements or (2) load modules: it must
not contain both.

Modules from libraries other than the SYSLIB call library can be
searched by the automatic library call mechanism as directed by the
LIBRARY control statement. The library specified in the control
statement is searched for member names that match specific external
references that are unresolved at the end of input processing. If any
unresolved references are found in the modules located by automatic
library call, they are resolved by another search of the library. Any
external references not specified on a LIBRARY control statement are
resolved from the library defined on the SYSLIB DD statement.

In addition, two means E~xist to negate the automatic library call
mechanism. The LIBRARY statement can be used to negate the automatic
library call for selected external refe.rences unresolved after input
processing; the NCAL option on the EXEC statement can be used to negate
the automatic library call for ~!! external references unresolved after
input processing. Use of the LIBRARY control statement and the NCAL
option are discussed after the SYSLIB DD statement that follows.

24 OS/VS Linkage Editor and Loader

SYSLIB DD STATEMENT

If the automatic library call mechanism is to be used, the call
library must be a partitioned data set described by a CD statement with
a ddname of SYSLIB. The call library may be either a system call
library or a private call library; call libraries may be concatenated.

Most of the system processing programs have their own automatic call
library (Table 1). This library must be defined when an object module
produced by that processor is to be link edited.

The call library may contain input/output, data conversion, and/or
other special routines that are needed to complete the module. The
processor creates an external reference for these special routines and
the linkage editor resolves the references from the appropriate call
library.

In the following example, a FORTRAN object module created in Step A
is to be link edited in Step B, and the FORTRAN automatic call library
is used to resolve external references:

Step A: //SYSOBJ DD

Step B: //SYSLIN DD
//SYSLIE DD

DSNAME=&&OBJMOD,DISP=(NEW,PASS), •••

DSNAME=&&OBJMOD,DISP= (OLO, DELETE)
DSNAME=SYS1. FORTLIB, OISP=SHR

The disposition of SHR on the SYSLIB OD statement means that other tasks
which may be executing concurrently with Step B may also use
SYS1.FORTLIB.

Table 1. System Automatic Call Libraries
r-----------------------------------T----------------------------------,
I Processing Program I Library Name I
~-----------------------------------t----------------------------------~
I ALGOL I SYS1.ALGLIB I
I COBOL I SYS1.COBLIB I
I FORTRAN I SYS1.FORTLIB I
I PL/I I SYS1.PL1LIB I
I Sort/Merge I SYS1.S0RTLIB I L ___________________________________ ~ __________________________________ J

Private Call Libraries

The SYSLIB DD statement can also describe a private, user-written
library. In this case, the automatic library call mechanism searches
the private library for unresolved external references. In the
following example, unresolved external references are to be resolved
from a private library named PVTPROG:

//SYSLIB DO DSNAME=PVTPROG,OISP=SHR,UNIT=2314,VOLUME=SER=PVT002

Input to the Linkage Editor 25

System call libraries and private call libraries may be concatenated
either to themselves, and/or to each other. When libraries are
concatenated, they must all be either object module libraries or load
module libraries; they may not be mixed.

If object modules from different system processors are to be link
edited to form one load module, the call library for each must be
defined. This is accomplished by concatenating the additional call
libraries t.o the library dE~fined on the SYSLIB DO statement. In the
following example, a FORTRAN object module and a COBOL object module a:re
to be link edited: the two system call libraries are concatenated as
follows:

//SYSLIB
//

OD
DD

DSNAME=SYS1.FORTLIB,DISP=SHR
DSNAME=SYS1.COBLIB,DISP=SHR

System libraries are cataloged: no unit or volume information is needed.

A system call library and a private call library can also be
concatenated in this way. For example, by adding the following
statement to the two in the preceding example, the private call library
PVTPROG, which is not cataloged, is concatenated to the two system call
libraries:

// DD DSNAME=PVTPROG, DISP=SHR, UNIT=2314, VOLUME=SER=PV'I'002

Any external references not resolved from the two system libraries
are resol vE~d from the pri va te libra.ry.

LIBRARY CONTROL STATEMENT

The LIBRARY control statement can bE~ used to direct the automatic
library call mechanism to a library other than that specified in the
SYSLIB DD statement. Only external references listed on the LIBRARY
statement are resolved in this way. All other unresolved external
references are resolved from the library in the SYSLIB DD statement.

The LIBRARY statement can also be used to specify external references
that are ~9t to be resolved by the automatic library call mechanism.
The LIBRARY statement specifies the duration of the nonresolution:
either during the current linkage editor job step, called restri~ted
no=cal!; or during this or any subsequent linkage editor job step,
called never-£all.

Examples of each use of the LIBRARY statement follow; a description
of the format is given in "Linkage Editor Control Statement Summary."

26 OS/VS Linkage Editor and Loader

If additional libraries are to be used to resolve specific
references, the LIBRARY statement contains the ddname of a DD statement
that describes the library. The LIBRARY statement also contains, in
parentheses, the external references to be resolved from the library;
i.e., the names of the members to be used from the library. If the
unresolved external reference is not a member name in the specified
library, the reference remains unresolved unless subsequently defined.

For example, two modules (DATE and TIME) from a system call library
have been rewritten. The new modules are to be tested with the calling
modules before they replace the old modules. Because the automatic
library call mechanism would otherwise search the system call library
(which is needed for other modules>, a LIBRARY statement is used, as
follows:

//SYSLIB
//TESTLIB
//SYSLIN
//

LIBRARY
/*

DD DSNAME=SYS1.COBLIB,DISP=SHR
DD DSNAME=TEST,DISP=(OLD,KEEP), •••
DO DSNAME=ACCTROUT, •••
DD *

TESTLIB(DATE,TIME)

Two external references, DATE and TIME, are resolved from the library
described on the TESTLIB DD statement. All other unresolved external
references are resolved from the library described on the SYSLIB DD
statement.

The programmer can use the LIBRARY statement to specify those
external references in the output module for which there is to be no
library search during the current linkage editor job step. This is done
by specifying the external reference(s) in parentheses without
specifying a ddname. The reference remains unresolved but the linkage
editor marks the module executable.

For example, a program contains references to two large modules that
are called from the automatic call library. One of the modules has been
tested and corrected, the other is to be tested in this job step.
Rather than execute the tested module again, the restricted no-call
function is used to prevent automatic library call from processing the
module as follows:

//
//SYSLIB

//SY~LIN

//
LIBRARY

EXEC PGM=HEWL,PARM=LET
DO OSNAME=PVTPROG,DISP=SHR,UNIT=2314,VOLUME=SER=PVT002

DD DSNAME=&&PAYROL, •••
DD *

(OVERTIME)

As a result, the external reference to OVERTIME is not resolved by
automatic library call.

Input to the Linkage Editor 27

Never-Call Function

The never-call function specifies those external references that are
not to be resolved by automatic library call during this or any
subsequent linkage editor job step. This is done by specifying an
asterisk followed by the external reference(s) in parentheses. The
reference Jcemains unresolved but the linkage editor marks the
module executable.

For example, a certain part of a program is never executed, but i,t
contains an external reference to a large module (CITYTAX) which is no
longer used by this program. However, the module is in a call library
needed to resolve other references. Rather than take up storage for a
module that is never used, the never-call function is specified, as
follows:

//
//SYSLIB

//SYSLIN
//

LIBRARY
/*

EXEC
DD

PGM=HEWL,PARM=LET
DSNAME==PVTPROG, DISP=SHR, UNI'I'=2314. VOlUME=SER=:PVT002

OD DSNAME:=TAXROUT, OISP=OLO, •••
DD *
* (CITYTAX)

As a result, whenever program TAXROUT is executed, the external
reference to CITYTAX is not resolved by automatic library call.

NCAL OPTION

When thE! NCAL option is specified, no automatic library call occurs
,to resolve external references that are unresolved after input
processing. The NCAL option is similar to the restricted no-call
function on the LIBRARY statement, except that the NCAL option negates
automatic library call for all unresolved external references and
restricted no-call negates automatic library call for selected
unresolved external references. With NCAL, all external referen~es that
are unresolved after input processing is finished, remain unresolved.
The module is however, marked executable.

The NCAl. option is a special processing parameter that is specified
on the EXEC statement as described in "No Automatic Library Call
Option .. "

28 OS/VS Linkage Editor and Loader

The INCLUDE control statement requests the linkage editor to use
additional data sets as input. These can be sequential data sets
containing object modules and/or control statements, or members of
partitioned data sets containing object modules and/or control
statements, or load modules.

The INCLUDE statement specifies the ddname of a DD statement that
describes the data set to be used as additional input. If the DD
statement describes a partitioned data set, the INCLUDE statement also
contains the name of each member to be used. See "Linkage Editor
Control Statement Summary" for a detailed description of the format of
the INCLUDE statement.

When an INCLUDE control statement is encountered, the linkage editor
processes the module or modules indicated. Figure 10 shows the
processing of an INCLUDE statement. In the illustration, the primary
input data set is a sequential data set named OBJMOD which contains an
INCLUDE statement. After processing the included data set, the linkage
editor processes the next primary input item. The arrows indicate the
flow of processing.

Primary Input
Data Set OBJMOD

INCLUDE OBJLlB (MODAl

Library OBJLlB
Member MODA

Figure 10. Processing of One INCLUDE Control Statement

If an included data set also contains an INCLUDE statement, this
specified module is also processed. However, any data following the
INCLUDE statement is not processed.

If the OBJMOD data set shown in Figure 10 is itself included, the
data following the INCLUDE statement for OBJLIB is not processed.
Figure 11 shows the flow of processing for this example.

Input to the Linkage Editor 29

Primary Input
Data Set SYSLIN

INCLUDE OBJMOD

Sequential
Data Set OBJMOD

INCLUDE OBJLlB (MODAl

Library OBJLlB
Member MODA

Figure 11. Processing of More than One INCLUDE Control Statement

Jn2!!!ding Sequential Data Sets

Sequenti.al data sets containing object modules and/or control
statements can be specified by an INCLUDE control statement. In the
following example, an INCLUDE statement specifies the ddnames of two
sequential data sets to be used as additional input:

/ /ACCOUNTS DD DSNAME==ACCTROUT, DISP=(OLD, KEEP),
/ /INVEN'I'RY DD DSNAME==INVENTRY, DISP= (OLD, KEEP) , •••
/ /SYSLIN DD DSNAME==QTREND, •••
// DD *

INCLUDE ACCOUNTS,INVENTRY
/*

Each ddname could also have been specified on a separate INCLUDE
statement; with either method, a DD statement must be specified for each
ddname.

Another method of doing the preceding example is given in "Including
Concatenated Data Sets."

One or more members of a partitioned data set can be specified on an
INCLUDE control statement. The member name must be specified on the
INCLUDE sta.tement; no memb~~r name should appear on the DD statement
itself.

30 OS/VS Linkage Editor and Loader

In the following example, one member name is specified on the INCLUDE
statement:

//PAYROLL
//SYSLIN
//

INCLUDE

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), •••
DD DSNAME=&&CHECKS, DISP=(OLD, DELETE)
DD *
PAYROLL (FICA)

If more than one member of a partitioned data set is to be included,
the INCLUDE statement specifies all the members to be used from each
library. The member names are not repeated on the DD statement.

In the following example, an INCLUDE statement specifies two members
from each of two libraries to be used as additional input:

//PAYROLL
//ATTEND
//SYSLIN

INCLUDE
/*

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), •••
DD DSNAME=ATTROUTS,DISP=(OLD,KEEP), •••
DD *
PAYROLL (FICA, TAX) ,ATTEND (ABSENCE, OVERTIME)

Each library could have been specified on a separate INCLUDE statement;
with either method, a DD statement must be specified for each ddname.

Another method of doing this example is given in "Including
Concatenated Data Sets."

Several data sets can be designated as input with one INCLUDE
statement that specifies one ddname; additional data sets are then
concatenated to the data set described on the specified CD statement.
When data sets are concatenated, all of the records must have the same
characteristics (i.e., format, record length, block size, etc.).

§~g~§ntial_Q~ta~ets: In the following example, two sequential data
sets are concatenated and then specified as input with one INCLUDE
statement:

//CONCAT
//
//SYSLIN
//

INCLUDE
/*

DD DSNAME=ACCTROUT,DISP=<OLD, KEEP) , •••
DD DSNAME=INVENTRY,DISP=(OLD,KEEP), •••
DD DSNAME=SALES,DISP=OLD, •••
CD *

CONCAT

When the INCLUDE statement is recognized, the contents of the sequentidl
data sets ACCTROUT and INVENTRY are processed.

Input to the Linkage Editor 31

Librar~mbers: Members from more than one library can be designated
as input with one ddname on an INCLUDE statement. In this case, all the
members are listed on the INCLUDE statement; the partitioned data sets
are concatenated using the ddname from the INCLUDE statement:

//CONCA.T
//
//SYSLIN
//

INCLUDE
/*

DD DSNAME==PAYROUTS, DISP= (OLD, KEEP), •••
DD DSNAME==ATTROUTS, DISP=(OLD, KEEP), •••
DD DSNAME=REPORT,DISP=OLD, •••
DD *
CONCAT(FICA, TAX, ABSENCE, OVERTIME)

When the INCLUDE statement: is recognized, the two libraries PAYROUTS and
ATTROUTS are searched for the four members; the members are then
processed as input.

32 OS/VS Linkage Editor and Loader

OUTPUT FROM THE LINKAGE EDITOR

The linkage editor produces two types of output: a load module and
diagnostic information. The principal output of the linkage editor is
the output load module. The linkage editor always places this load
module in a partitioned data set. In addition, the linkage editor
issues diagnostic information. Error and/or warning messages, module
disposition data, and optional diagnostic output are stored in the
diagnostic output data set.

OUTPUT LOAD MODULE

The linkage editor produces one or more load modules (see Appendix G)
from the input processed. When more than one load module is produced,
the process is called multiple load module processing.

Whether or not the linkage editor produces one or more load modules,
the following apply:

• The load module is stored in a partitioned data set called the
output module library.

• The load module must have an entry point; if the programmer has not
assigned one, the linkage editor does.

• During processing, the linkage editor reserves and collects common
areas, as specified in the source language program.

• During processing, the linkage editor accumulates total length and
individual displacements for each pseudo register (external dummy
section) •

• During processing. the linkage editor collects and records
identification data in the CSECT Identification (IDR) records.

OUTPUT MODULE LIBRARY

The linkage editor stores every load module it produces in the output
module library. This library is a partitioned data set that must be
described by a DD statement with the name SYSLMOD. The data set name of
the library is also specified on this DD statement. The data set can be
either temporary (defined with a double ampersand>, or permanent
(defined without a double ampersand). If the data set name is either
SYS1.LINKLIB or SYS1.SVCLIB, it would be advisable to re-IPL the system
after linkage editor processing is complete. ~his ensures that the
corresponding Data Extent Block (DEB) is updated to reflect additional
extents if secondary allocation of direct access space was required.

Whether the data set is permanent or temporary, each module must be
assigned a unique name, called the ID~m~~~_g~m~, to distinguish one load
module from another. The output module can be assigned ~!!~§~§ if the
programmer wants the module either identified by more than one name or
entered for execution at several different points. Each member name and
alias in a load module library must be unique. The library member name

output from the Linkage Editor 33

and aliases for each load module appear as separate entries in the
library directory, along with the module attributes. (Some module
attributes can be assigned on the EXEC statement for each linkage editor
job step; see "Module Attributes" in "Job Control Language Suremary.")

Member NamE~

The member name of the output load module must be unique in the
library. The member name must be specified either on the SYSLMOD DD
statement or in a NAME control statement. Either method can also be
used to replace an identically named member in the library. If the name
is omitted, the linkage editor assigns a temporary member name
(TEMPNAME) that may not be unique.

~~~ign~d og_§Y~1~OD DD_Sta~~!!!~!!!:: If the member name is assigned on the 
SYSLMOD DD statement, the name is written in parentheses following the 
data set name of the library. For example: 

//SYSLMOD DD 
// 

DSNAME=~1ATHLIB (SQDEV) , DISP= (NEW, KEEP) , UNIT=2 314, 
SPACE=(TRK, (100,10,1»,VOLUME=SER=LIB002 

The member name SQDEV is assigned to the load module, which is placed in 
the new library named MATHLIB. 

Assigned on NA~~~~Q1-§1:ate!!!~!!!:: If the member name is not specified 
on the SYSLMOD DD statemen1:, it must be assigned in a NAME control 
statement. For example: 

//SYSLMOD 
//SYSLIN 
// 

NAME 
/* 

DD 
DD 
DD 

SQDEV 

DSNAME=MATHLIB, DISP=(NEW, KEEP> , ••• 
DSNAME=&&OBJECT,DISP=(OLD,DELETE) 

* 

The member name SQDEV is assigned to the load module, which is placed in 
the library named MATHLIB. 

~ssigned on Both: If both the SYSLMOD DD statement and the NAME control 
statement specify a member name, the names should be identical. If the 
names are different, the name on the NAME control statement is used as 
the member name. When us ing' ref erback, if the member name on the SYSI,MOD 
statement is not the same as that used in the NAME statement, the 
member cannot be located for execution. For example: 

//LKED 

//SYSLMOD 
//SYSLIN 
// 

NAME 
/* 
//GO 

EXEC 

DD 
DD 
DD 

READ 

EXEC 

PGM=HEWL 

DSNAME=:& &LOADST (GO) ~ DISP= (NEW, PASS) , ••• 
DSNAME=&&OBJECT, DISP=(OLD, DELETE) 

* 

PGM=*.LKED.SYSLMOD 

The EXEC statement of the GO step specifies that the module to be 
executed is described in the LKED step in the SYSLMOD statement. The 
system tries to locate a member named GO; however, the output module was 
assigned the name READ. 

34 OS/VS Linkage Editor and Loader 



ReE!~cing_~~_Identi£~1!y-~~m~g_~iQf~fY_~~~Q~r: An output module can 
replace an identically named member in the library in either cf two 
ways. The disposition field of the SYSLMOD statement contains OLD, as 
follows: 

//SYSLMOD DD DSNAME=MATHLIB(SQDEV),DISP=(OLD,KEEP), ••• 

Or, the NAME control statement specifies the replace function, as 
follows: 

NAME SQDEV(R) 

In either case, the member named SQDEV is replaced with a new module of 
the same name. 

An output module can be assigned a maximum of 16 aliases, specified 
with the ALIAS control statement. The aliases exist in addition to the 
member name of the output module. When a module is referred to by an 
alias, execution begins at the external name specified by the alias. If 
the name specified by the ALIAS statement is not an external symbol 
within the module, the main entry point is used. 

For example, an output module is to be assigned two additional entry 
points, CODEl and CODE2. In addition, due to a misunderstanding, 
calling modules have been written and tested using both ROUTONE and 
ROUTl to refer to the output module. Rather than correct the calling 
modules, an alternate library member name (alias) is also assigned. 

//SYSLMOD 
// 
//SYSLIN 
// 

/* 

ALIAS 
N~E 

DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314, 
VOLUME=SER=LIBOOl 

DD DSNAME=&&OBJECT,DISP=(OLD, DELETE) 
DD * 
CODE1,CODE2,ROUTONE 
ROUTl 

The names CODE1, CODE2, and ROUTONE appear in the library directory 
along with ROUT1, the member name. Because CODEl and CODE2 are defined 
as external symbols within the output module, when these names are used, 
execution begins at these points. Control may be passed to the main 
entry point by using either the member name ROUTl or the alias ROUTONE. 

ENTRY POINT 

Every load module must have a main entry point. The programmer may 
specify the entry point in one of two ways: 

• On a linkage editor ENTRY control statement • 

• On an assembler language END statement, which is the last statement 
in the source program. The assembler produces an object module and 
an END statement for the module. The assembler-produced END 
statement contains an entry point only if the source language END 
statement contained one. 

Output from the Linkage Editor 35 



From its input, the linkage editor selects the entry point for the 
load module as follows: 

1. From the first ENTRY control statement in the input. 

2. If there is no ENTRY control statement in the input, from the fLest 
assembler-produced END statement that specifies an entry point. 

3. If no ENTRY control statement or no assembler-produced END 
statement specifies an entry point, the first byte of the first 
control section of the load module is used as the entry point. 

In general, the entry point should be explicitly specified because it 
is not always possible to predict which control section will be first in 
the output module. 

When a load module is reprocessed by the linkage editor, it has no 
END statement. Therefore, if the first byte of the first control 
section of t:he load module is not a sui table entry point, the entry 
point must be specified in one of two ways: 

• Through an ENTRY control statement • 

• Through the assembler-produced END statement of another input 
module, which is being processed for the first time. This object 
module must be the first such module to be processed by the linkage 
edi tor. 

Entry points other than the main entry point may be specified with an 
ALIAS control statement. The sYffibol specified on the ALIAS statement 
must be defined as an external symbol in the load module. Any reference 
to that symbol causes execution of the module to begin at that point 
instead of t:he rr.ain entry point. 

In the following example, assume that. CDCHECK, CODE1, and CODE2 are 
defined as external symbols in the output module: 

//SYSLIN DD DSNAME=&&OBJECT,DISP=<OLD,DELETE) 
// DD * 

/* 

EN'rRY CDCHECK 
ALIAS CODE1,CODE2,ROUTONE 
NAME ROUTl 

As a result of the preceding control sta.tements, CDCHECK is the main 
entry point; CODEl and CODE2 are additional entry points. Any reference 
to ROUTONE or ROUTl causes execution to begin at CDCHECK; any reference 
to CODEl and CODE2 causes execution to begin at these points. 

RESERVING STORAGE IN THE OUTPUT LOAD MODULE 

In FORTR1\N, assembler language, and PL/I, the programmer can create 
control sections that reserve virtual storage areas that contain no data or 
or instructions. These control sections are called "common" or "static 
external" areas, and are produced in the object modules by the language 
translators~ These common areas are used, for example, as co~munication 
regions for different parts of a program or to reserve virtual storage 
areas for data supplied at execution time. These corrIron areas are 
either named or unnamed (blank). 

36 OS/VS Linkage Editor and Loader 



Collection of Common Areas: During processing, the linkage editor 
collects common areas. That is, if two or more blank common areas are 
found in the input, the largest blank common area is used in the output 
module; all references to a blank common area refer to the one retained. 
If two or more named common areas have the same name, the largest of the 
identically named common areas is used in the output module; all 
references to the named common areas refer to the one area retained. 

Id~ntically_~am~9 commQn~E~as_~ng_~Qn!EQ!_~~£t!2n§: If a control 
section (as is generated from a BLOCK DATA subprogram in FORTRAN, for 
example) and a named common area have the same name, the length of the 
control section must be greater than or equal to the length of the named 
common area. If the control section is smaller in length than the named 
common area, a diagnostic message is issued. The control section is 
regarded as the largest of the common areas processed with that name. 
All subsequent control sections and/or common areas with the same name 
are ignored. 

PROCESSING PSEUDO REGISTERS 

In PL/I, programmers can use pseudo registers to define storage that 
will not be reserved in the load module but can be allocated dynamically 
during execution. The external dummy sections generated by Assembler F 
or Assembler H correspond to the pseudo registers of PL/I. 

The linkage editor accumulates the total length of all pseudo 
registers in the input and records the displacement of each. If two or 
more pseudo registers have the same name, the one with the longest 
length and the most restrictive alignment will be retained. All other 
pseudo registers with the same name will be ignored; all references to 
the identically named pseudo registers will refer to the one retained. 

MULTIPLE LOAD MODULE PROCESSING 

The linkage editor can produce more 
job step. A NAME control statement in 
delimiter for input to a load module. 
follow the NAME statement in the input 
formation of the next load module. 

than one load module in a single 
the input stream is used as a 
If additional input modules 
stream, they are used in the 

Each load module that is formed has a unique name and is placed in 
the same library as a separate member. When processing multiple load 
modules in a single job step, the options and attributes specified in 
the EXEC statement for that job step apply to all load modules created. 
If the linkage editor terminates abnormally during processing of any of 
the output modules, neither that module nor any of the modules yet to be 
processed in the job step is processed or placed in the library. Load 
modules processed before abnormal termination have already been placed 
in the library. 

The SYSLMOD DD statement should not specify a member name when a NAME 
control statement is used to specify the name of the first load module. 
However, if the SYSLMOD statement does specify a member name, the name 
should be identical to that specified in either the first NAME statement 
or an ALIAS statement for the first module. In either case, the NAM'E 
statement is regarded as the last item to be processed for the preceding 
load module. 

output from the Linkage Editor 37 



In the following example, two load modules are produced in one 
linkage editor job step: 

//LKED EXEC PGM=HEWL,PARM='MAP,LIST' 

//SYSLMOD DD 
// 

DSNAME=:PAYROLL (OVERTIME) ,DISP=OLD, UNIT=2314, 
VOLUME=SER=LIB002 

//MODTWO 
//SYSLIN 
// 

/* 

ENTRY 
NAME 
INCLUDE 
ENTRY 
NAME 

DD 
DD 
DD 

DSNAME=&&OBJECT ,DISP= (OLD ,DELETE) 
DSNAME=:& & OBJECT (A) ,DISP= (OLD ,DELETE) 

* 
INIT 
OVERTIME 
MOD TWO (B) 
HSKEEP 
VACATION 

The first load module is produced from the object module in the data 
set defined on the SYSLIN DD statement. The main entry point is INIT 
and the member name is OVERTIME. 

The second load module is produced from the object module specified 
by the INCLUDE statement. The main entry point is HSKEEP and the member 
name is VACA,TION. 

Both load modules are placed in the library PAYROLL, defined on the 
SYSLMOD statement. Note that the member name specified cn the SYSLMOD 
statement is identical to the name given the first load module. 

The parameters on the EXEC card specify that a module map and a 
control statement listing is produced for each load module. The map and 
listing are discussed in detail in the next section. 

Diagnostic inforrr,ation is stored in the diagnostic output data set, 
which must be defined by a DD statement with the name SYSPRINT. This 
output is a collection of messages generated by the linkage editor, as 
well as any optional output requested by the programmer. 

DIAGNOSTIC MESSAGES 

The linkage editor generates two types of rr,essages: module 
disposition messages and error/warning messages. Descriptions of the 
error/warning messages can be found in Linkage Editor and Loader 
Messages. 

Module disposition messages of several types are printed fer each 
load module produced. The first message indicates the options and 
attributes specified for each module. Invalid options or attributes are 
replaced by INVALID in the output. Messages are also generated to 
inform the programmer that incompatible attributes have been specified. 

38 OS/VS Linkage Editor and Loader 



Disposition messages also describe the handling of the load module. 
These messages are preceded by several asterisks, and are: 

• member name NOW ADDED TO DATA SET. 

• member name NOW REPLACED IN DATA SET. 

• member name DOES NOT EXIST BUT HAS BEEN ADDED TO THE DATA SET. 

(The replacement function was specified, but 
the member did not exist in the data set; the 
module is added to the data set using the 
member name given.) 

• alias name IS AN ALIAS FOR THIS MEMBER. 

• MODULE HAS BEEN MARKED NOT EXECUTABLE. 

In addition, module disposition messages are used when the 
re-enterable (RENT), reusable (REUS>, and/or refreshable (REFR) linkage 
editor options have been specified for the module. When one or more of 
these module attributes has been indicated, a message informs the user 
what attribute(s) have been assigned to the module. This message 
indicates whether the load module has been marked re-enterable or not 
re-enterable, reusable or not reusable, refreshable or not refreshable, 
depending on the option or options used. (See "Reusablity Attributes" 
and "Refreshable Attribute" in the job control language summary section 
for more information on these options.) 

The message consists of several asterisks and MODULE HAS BEEN MARKED, 
followed by the attribute(s) assigned as a result of the linkage editor 
options specified. The programmer, of course, is responsible for 
verifying that the module actually is re-enterable, reusable, and/or 
refreshable. The following messages are examples of some possible 
combinations: 

• MODULE HAS BEEN MARKED REFRESHABLE. 

• MODULE HAS BEEN MARKED NOT REFRESHABLE. 

• MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE. 

• MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE. 

When an error causes the linkage editor to mark a module not 
executable, only the MODULE HAS BEEN MARKED NOT EXECUTABLE rr,essage 
appears; no attribute messages are generated. 

output from the Linkage Editor 39 



:Error /Warnj;.lliLMessages 

certain conditions that are present when a module is being processed 
can cause an error or warning message to be printed. These messages 
contain a message code and message text. If an error is encountered 
during processing, the message code for that error is printed with the 
applicable symbol or record in error. .After processing is completed, 
the diagnostic message associated with that code is printed. The error 
warning messages have the following format: 

IEWOmms 

where: 

IEWO 
mm 
s 

message text 

indicates a linkage editor message 
is the message number 
is the severity code, and may be one of the following values: 

1 Indicates a condition that may cause an error during 
execution of the output module. A module map or 
cross-reference table is produced if specified by the 
programmer. The output module is marked executable. 

2 -- Indicates an error that could make execution of the 
output module impossioled Processing continues. When 
possible, a module map or cross-reference table is 
produced if specified by the programmer. The output 
module is marked not executable unless the LET option is 
specified on the EXEC statement. 

3 -- Indicates an error that will make execution of the output 
module impossible. Processing continues. When possible, 
a module map or cross-reference table is produced if 
specified by the programmer. The output module is marked 
not executable. 

4 -- Indicates an error condition from which no recovery is 
possible. Processing terminates. The only output is 
diagnostic messages. 

Note: A special severity code of zero is generated for each 
control statement printed as a result of the LIST option. 
Severity zero does not indicate an error or warning condition. 

The highest severity code encountered during processing is 
multiplied by 4 to create a return code that is placed in 
register 15 at the end of processing. This return code can be 
tested to determine whether or not processing is to continue 
(see "Job Control Language Summary"). 

message tex·t contains combinations of the following: 

• The message classification (either error or warning). 

• Cause of error. 

• Identification of the symbol, segment number (when in 
overlay), or input item to which the message applies. 

• Instructions to the programmer. 

• Action taken by the linkage editor. 

40 OS/VS Linkage Editor and Loader 



Optionally, error/warning messages can be sent to a separate output 
data set, which is defined by specifying TERM in the PARM field of the 
EXEC statement and including a SYSTERM DD statement. This separate 
SYSTERM data set consists of only numbered error/warning messages. It 
supplements the SYSPRINT output data set, which can also include module 
disposition messages and optional diagnostic output. When SYSTERM is 
used, the numbered error/warning messages appear in both data sets. 

es contains a complete list 
~~~'-~~~~~--~~--~------~~ 
o

Figure 12 shows the format of the diagnostic output for the
linkage editor. No optional output was requested other than the
list of control statements.

The letters indicate the dispoaition and error/warning messages as
follows:

®

®

Is a module disposition message that lists the options and
attributes specified. Additional information is printed indicating
the variable and default options used.

Is a list of control statements used CIEWOOOO) and the message
codes (IEW0201 and IEW0461) for error/warning conditions
discovered during processing. For error/warning message codes,
the symbol in error, if necessary, is also listed (CCCCCCCC and
BASEDUMP).

~ Is a module disposition message (****) that indicates that the
output module (BBBBBBBB) has been added to the output module data
set.

~ Is the diagnostic message directory that contains the text of the
error codes listed in item ® .

Output from the Linkage Editor 41

+-
N

r--~-----,

®-~ F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LET,NCAL,XREF,OVLY,LIST
DEFAULT OPTION(S) USED-SIZE=(65536,6144)

NAME BBBBBBBB (IEWOOOO

® -----.~ i IEW0201
IEW0461 CCCCCCCC
IEw0461 BASEDUMP

~ ****BBBBBBBB NOW ADDED

@----. ..

TO DATA SET
DIAGNOSTIC MESSAGE DIRECTORY

IEW0201 WARNING - OVERLAY STRUCTUHE CONTAINS ONLY ONE SEGr-'lENT -- OVERLAY OPTION
C~-NCELED ..

IEw0461 WARclING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL ~EFEHENCE, NCAL WAS
SPECIFIED.

I
I
I
I
I
I

l~ ______ ---___ J

t"i
o
~ Figure 12. Diagnostic Messages Issued by the Linkage Editor
p..
(1)
Ii

OPTIONAL OUTPUT

In addition to error/warning and disposition messages, the linkage
editor can produce diagnostic output as requested by the programmer.
This optional output includes a control statement listing, a module map,
and a cross-reference table.

If the LIST option is specified on the EXEC statement, a listing of
all linkage editor control statements is produced. For each control
statement, the listing contains a special message code, IEWOOOO,
followed by the control statement. Item ® in Figure 12 contains
an example of a control statement listing.

Module Map

If the MAP option is specified on the EXEC statement, a module map of
the output load module is produced. The module map shows all control
sections in the output module and all entry names in each control
section. Named common areas are listed as control sections.

For each control section, the module map indicates its origin
<relative to zero) and length in bytes (in hexadecimal notation).
each entry name in each control section, the module map indicates
location at which the name is defined. These locations are also
relative to zero.

For
the

If the module is not in an overlay structure, the control sections
are arranged in ascending order according to their origins. An entry
name is listed with the control section in which it is defined.

If the module is an overlay structure, the control sections are
arranged by segment. The segments are listed as they appear in the
overlay structure, top to bottom, left to right, and region by region.
Within each segment, the control sections and their corresponding entry
names are listed in ascending order according to their assigned origins.
The number of the segment in which they appear is also listed.

In any module map, the following are identified by a dollar sign:

• Blank common area.

• Private code (unnamed control section).

• For overlay programs, the segment table and each entry table.

When the load module processed by the linkage editor does not
have an origin of zero, the linkage editor generates a one-byte
private code (unnamed control section) as the first text record. This
private code is deleted in any subsequen-t reprocessing of the load module
by the linkage editor.

Each control section that is obtained from a call library during
automatic library call is identified by an asterisk after the control
section name.

At the end of the module map is the entry address, that is, the
relative address of the main entry point. The entry address is followed
by the total length of the module in bytes; in the case of an overlay
module, the length is that of the longest path. Pseudo registers, if
used, also appear at the end of the module map; the name, length, and
displacement of each pseudo register is given.

output from the Linkage Editor 43

Figure 13 contains a module map with five control sections. There
are two named control sections (COBSUB and MAINMOD), one unnamed control
section (designated by $PRIVATE), and two control sections obtained from
a call library (ILBODSPO and ILBOSTPO). In addition, two entry names
are defined, SUBi in the unnamed control section and ILBOSTPi in control
section ILBOSTPO.

Note: The HMBLIST service aid program described in the OS/VS Service
Eids publication can also be used to obtain a module map.

If the XREF option is spc~cified on the EXEC statement, a cross-'
reference table is produced. The cross-reference table consists of
a module map and a list of cross-references for each control section .
.Each address constant that refers to a symbol defined in another control
section is listed with its assigned location, the symbol referred to,
and the namE~ of the control section in which the symbol is def ined. In
cases where control sections are compiled together and simple address
constants are used to refer from one control section to another (instead
of using external symbols and entry names) the control section name is
listed as the symbol referred to.

For overlay programs, this information is provided for each segment;
in addi1:ion, the number of the segment in which the symbol is defined is
provided.

If a symbol is unresolved after processing by the linkage editor, it
is identified by $UNRESOLVED in the list. However, if an unresolved
symbol is ma.rked by the never-call function (as specified on a LIBRARY
control statement), it is identified by $NEVER-CALL. If an unresolved
symbol is a weak external reference, it is identified by $UNRESOLVED(W)~

Figure 14 contains a cross-reference table for the same program whose
module map is shown in Figure 13. All of the information from the
module map is present, plus a list of cross-references for each control
section.

44 OS/VS Linkage Editor and Loader

CONTROL SEClION ENTRY

NAME ORIGIN LENGTH NAME lOCATI ON NtlME LOCAl ION NtlME L GCAT leN NAME LOCATION

coaSU8 co 33A
$PRIVATE 340 EF

SUBl 340
MAINMOD 430 166
ILBODSPO:t 5<;8 5E2
Il8CSTPO:t E80 35

IlBOSTPl 896

ENTRY ADDRESS 430
TOTAL LENGTH 8B8

NOT EXIST

Figure 13. Module Map

CROSS REFE~ENCE TABLE

CONTROL SECTION EN1RY

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

CO BSU B 00 33A
$PRlvI!TE 340 EF

SUBl 340
~AINMOO 430 166
Il BOCSPO* 5CJ8 5E2
IlBOSlPO* B80 35

I L BOSTP 1 BCJ6

LCCATI ON REFERS TO SYMBOL IN (ONTI<OL SECT ION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

250 ILBOSTPO IlBOSTPO 254 ILBOOSPO IL BODSPO

258 IleOSTPl Il eOSTPO 45C SUBl
478 coeSUB (cesue

ENTRY AC(JRESS 430
101 H LENGTH B138

Figure 14. Cross-Reference Table

MODULE EDITING

The linka.ge editor performs editing functions either automatically or
as directed by control statements. These editing functions provide for
program modification on a control section basis. That is, they ~ake it
possible to modify a control section wit.hin an object or load module,
without recompiling the entire source program.

The editing functions can modify either an entire control section or
external symbols within a control section. Control sections can be
deleted, replaced, or arranged in sequence; external symbols can be
deleted or changed. (External symbols are control section names, entry
names, external references, named common areas, or pseudo registers.)

Whatever function is used, it is requested in reference to an !~EBE
module. The resulting output load module reflects the request. That
is, no actual change, deletion, or replacement is made to an input
module. The requested alterations are used to control linkage editor
processing (Figure 15).

/ /SYSLMOD DD DSNAME-,--oNEWLIB (MODA 1 A21, ...
/ /MODATWO DD DSNAME=MODA2, .. .

. / /SYSLIN DD DSNAME=MODA 1, .. .
/ / DD

ENTRY CSEcn
REPLACI: CSECT2 (CSECT AI
INCLUDE MODA TWO

Figure 15. Editing a Module

In requesting editing functions, certain conventions should be
followed to ensur~ that the specified modification is processed
correctly. These conventions concern the following items:

• Entry points for the new module.

• Placement of central statements.

• Identical old and new symbols.

46 OS/VS Linkage Editor and Loader

Entry Points: Each time the linkage editor reprocesses a load module,
the entry point for the output module should be specified in one of two
ways:

• Through an ENTRY control statement.

• Through the assembler-produced END statement of an input object
module, if one is present. If the entry point specified in the
assembler-produced END statement is not defined in the object
module, the entry name must be defined as an external reference.

The entry point assigned must be defined as an external name within the
resulting load module.

Placement of control Statements: The control statement (such as CHANGE or
REPLACE) used to specify an editing function must precede either the
module to be modified, or the INCLUDE statement that specifies the
module. If an INCLUDE statement specifies several modules, the CHANGE
or REPLACE statement applies only to the first module included.

Identical Old and New s~ols: The same symbol should not appear as
both an old external symbol and a new external symbol in one linkage
editor run. If a control section is to be replaced by another control
section with the same name, the linkage editor handles this
automatically (see "Automatic Replacement").

CHANGING EXTERNAL SYMBOLS

The linkage editor can be directed to change an external symbol to a
new symbol while processing an input module. External references and
address constants within the module automatically refer to the new
symbol. External references from other modules to a changed external
symbol must be changed with separate control statements.

Both the old and the new symbols are specified on either a CHANGE
control statement or a REPLACE control statement. The use of the old
symbol within the module determines whether the new symbol becomes a
control section name, an entry name, or an external reference. The old
symbol appears first, followed by the new symbol in parentheses.

The CHANGE control statement changes a control section name, an entry
name, or an external reference. The REPLACE statement changes or
deletes an entry name; if the symbols on a REPLACE statement are control
section names, the entire control section is replaced or deleted (see
"Replacing Control Sections").

In the following example, assume that SUBONE is defined as an
external reference in the input load module. A CHANGE statement is used
to change the external reference to NEWMOD (Figure 16).

//SYSLMOD
//SYSLIN

ENTRY
CHANGE
INCLUDE
N~E

/*

DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,VOLUME=SER=PVT002
DD *
BEGIN
SUBONE(NEWMOD)
SYSLMOD(MAINROUT)
MAINROUT(R)

Module Editing 47

//SYSLMOD
//SYSLIN

ENTRY
CHANGE
INCLUDE
NAME

/*

DD DSNAME=PVTLlB, ...
DD *
MAINEP
5UBONE (NEWMOD),BEGIN (MAINEP)
5Y5LMOD(MAINROUn
MAINROUT(R)

Figure 16. Changing an External Reference and an Entry Point

In the load module MAINROUT, every reference to SUBONE is changed to
NEWMOD. Not:e also that the INCLUDE statement specifies a ddname of
SYSLMOD~ This allows a library to be used both as input and as the
output module library.

More than one change can be specified on the same control statement.
If, in the same exaffiple, the entry point is also to be changed, the two
changes can be specified at once (Figure 16).

//SYSLMOD
//SYSLIN

ENTRY
CHANGE
INCLUDE
NAME

/*

DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,VOLUME=SER=PVT002
DD *
MAINEP
SUBONE(NEWMOD),BEGIN(MAINEP)
SYSLMOD(MAINROUT)
MAINROUT(R)

The main entry point is now MAINEP instead of BEGIN. The ENTRY
control statement specifies the new entry point because this is the
entry point that is entered in the library directory entry for the load
module.

REPLACING CONTROL SECTIONS

An entirE! control section can be replaced with a new control section.
Control sections can be replaced either automatically or with a REPLACE
control stat:ement. Automatic replacement acts upon all input modules;
the REPLACE statement acts only upon the module that follows it.

Note 1: An}r CSECT Identification (IDR) records associated with a
particular control section are also replaced.

Note 2: (For assembler language programmers only.) When some but no·t
all control sections of a separately assembled module are to be
replaced, A-type address constants that refer to a deleted symbol will
be incorrect~ly resolved unless the entry name is at the same
displacement~ from the origin in both the old and the new control
section. If all control sections of a separately assembled module are
replaced, no restrictions apply.

48 as/vs Li.nkage Editor and Loader

AUTOMATIC REPLACEMENT

control sections are automatically replaced if both the old and the
new control section have the same name. The first of the identically
named control sections processed by the linkage editor is made a part of
the output module. All subsequent identically named control sections
are ignored; external references to identically named control sections
are resolved with respect to the first one processed. Therefore, to
cause automatic replacement, the new control section must have the same
name as the control section to be replaced, and must be processed before
the old control section.

Caution: Automatic replacement applies to duplicate control section
names only; if duplicate entry points exist in control sections with
different names, a REPLACE control statement must be used to specify
the entry point name. If a control section being automatically replaced
contains unresolved external references and the control section re
placing it does not, the parameter NCAL must be specified or the un
resolved external references must be explicitly deleted using the
REPLACE statement or marked for restricted no-call or never-call using
the LIBRARY statement; otherwise, the unresolved external reference is
retained.

Note on overlay programs: When identically named control sections
appear in modules being placed in an overlay structure, the second and
any subsequent control sections with that name are ignored. This occurs
whether the modules are in segments in the same path or in exclusive
segments. Resolution of external references may therefore cause invalid
exclusive references. Invalid exclusive references cause the linkage
editor to mark the output module not executable unless the XCAL option
is specified on the EXEC statement.

Example 1

An object module deck contains two control sections, READ and WRITE;
member INOUT of library PVTLIB also contains a control section WRITE.

//SYSLMOD DD
//SYSLIN DD

DSNAME=PVTLIB,DISP=OLD,UNIT=2314,VOLUME=SER=PVT002

* r---,
I Object Deck for READ I
~--~----------------~
I Object Deck for WRITE I L ___ J

ENTRY READ IN
INCLUDE SYSLMOD(INOUT)
NAME INOUT(R)

/*

Module Editing 49

The output load module contains the new READ control section, the new
WRITE control section (replacing the old WRITE control section in member
INOUT), and all remaining control sections from INOUT.

A large load module named PAYROLL, originally written in COBOL,
contains ma.ny control sections. Two control sections, FICA and
STATETAX, were recompiled and passed to the linkage editor job step in
the &&OBJECT data set. Then, by including the load module PAYROLL, a
member of t.he partitioned data set LIB001, as well as the output of the
language translator, the modified control sections automatically replace
the identically named control sections (Figure 17).

IISYSLMOD
II
IISYSLIB
I IOLDL01~D
II
IISYSLIN
II

INCLUDE
ENTRY

1*

FICA
(old)

STATETAX
(old)

FEDTAX

DD DSNAME=LIB002(PAYROLL),DISP=OLD,UNIT=2314,
VOLUME=SER=LIB002

DD DSNAME=SYS1.COBLIB,DISP=SHR
DD DSNAME=LIB001, DISP=<OLD, DELETE) ,UNIT=23l4,

VOLUME=SER=LIBOOl
DD DSNAME=&&OBJECT,DISP=<OLD, DELETE)
DD *
OLDLOAD(PAYROLL)
INITl

IISYSLMOD
IloLDLOAD
IISYSLIN
II

INCLUDE
ENTRY

1*

DD DSNAME=LlB002 (PAYROLL),. "
DD DSNAME=LlB001, .•.
DD D* SNAME=&&OBJECT, •..
DD
OLDLOAD(PAYROLL)
INITl

Figure 17. Automatic Replacement of Control Sections

50 OS/VS Linkage Editor and Loader

The output module contains the modified FICA and STATETAX control
sections and the rest of the control sections from the old PAYROLL
module. The main entry point is INIT1, and the output module is placed
in a library named LIB002. The COBOL automatic call library is used to
resolve any external references that may be unresolved after the SYSLIN
data sets are processed.

REPLACE STATEMENT

The REPLACE statement is used to replace control sections when the
old and the new control sections have different names. The name of the
old control section appears first, followed by the name of the new
control section in parentheses. The REPLACE statement must immediately
precede either the input module that contains the control section to be
replaced, or the INCLUDE statement that specifies the input module. The
scope of the REPLACE statement is across the immediately following
module (object module or load module). The END record in the immediately
following object module or the end-of-module indication in the load
module terminates the action of the REPLACE statement.

An external reference to the old control section from within the same
input module is resolved to the new control section. An external
reference to the old control section from any other module becomes an
unresolved external reference unless one of the following occurs:

• The external reference to the old control section is changed to the
new control section with a separate CHANGE control statement.

• The same entry name appears in the new control section or in some
other control section in the linkage editor input.

In the following example, the REPLACE statement is used to replace
one control section with another of a different name. Assume that the
old control section SEARCH is in library member TBLESRCH, and that the
new control section BINSRCH is in the data set &&OBJECT, which was
passed from a previous step (Figure 18).

//SYSLMOD
//
//SYSLIN
//

/*

ENTRY
REPLACE
INCLUDE
NAME

DD DSNAME=SRCHRTN,DISP=OLD,UNIT=2314,
VOLUME=SER=SRCHLIB

DD DSNAME=&&OBJECT, DISP=(OLD, DELETE)
DD *
READIN
SEARCH (BINSRCH)
SYSLMOD(TBLESRCH)
TBLESRCH(R)

Module Editing 51

CAll SEARCH

SEARCH

IISYSLMOD
IISYSLIN
II

1*

ENTRY
REPLACE
INCLUDE
NAME

DD DSNAME=SRCHRTN, ..•
DD DSNAME=&&OBJ ECT, •••
DD *
READIN
SEARCH (BINSRCH)
SYSLMOD (TB LESRCH)
TBLESRCH(R)

Figure 18. Replacing a Control Section with the REPLACE Control
Statement

The output module contains BINSRCH instead of SEARCH; any references
to SEARCH vIi thin the module refer to BINSRCH. Any external references
to SEARCH from other modules will not be resolved to BINSRCH.

The REPLACE statement can be used to delete a control section or an
entry name. The REPLACE s·tatement must immediately precede either the
module that contains the control section or entry name to be deleted or
the INCLUDE statement that specifies the module. Only one symbol
appears on the REPLACE statement; the appropriate deletion is made
depending on how the symbol is defined in the rr.odule.

If the symbol is a control section name, the entire control section
is deleted. The control section name is deleted from the external
symbol dictionary cnly if no address constants refer to the name from
within the same input module. If an address constant does refer to it,
the control section name is changed to an external reference.

The preceding is also true of an entry name to be deleted. Any
references to it from within the input module cause the entry name to be
changed to an external reference.

These editor-supplied external references, unless resolved with other
input modules, cause the automatic library call mechanism to attempt to
resolve them. Also, the deletion of a control section or an entry name
may cause E~xternal references from other input modules to be unresolved.
Either condition can cause the output load module to be marked not
executable ..

If a deleted control section contains an unresolved external
reference, the reference remains.

52 OS/VS Linkage Editor and Loader

Note: When a control section is deleted, any CSECT Identification data
associated with that control section is also deleted.

In the following example, control section CODER is to be deleted
(Figure 19).

//SYSLMOD
//SYSLIN

ENTRY
REPLACE
INCLUDE
NAME

/*

DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,VOLUME=SER=PVT002
DD *
START!
CODER
SYSLMOD(CODEROUT)
CODEROUT(R)

The control section CODER is deleted. If no address constants refer
to CODER from other control sections in the module, the control section
name is also deleted. If address constants refer to CODER, the name is
retained as an external reference.

//SYSlMOD
//SYSlIN

ENTRY
REPLACE
INCLUDE
NAME

/*

DD DSNAME=PVTlIB I' ••
DD *
STARTl
CODER
SYSlMOD(CODEROUT)
CODEROUT(R)

Figure 19. Deleting a Control Section

Module Editing 53

ORDERING CONTROL SECTIONS OR NAMED-.C.QMMON AREAS

The sequence of control sections or named common areas in an output
load module can be specified by using the ORDER control statement.

Individual control sec·tions or named common areas are arranged in
the output load module according to the sequence in which they appear
on the ORDER control statement. Multiple ORDER control statements
can be used in a job step. The sequence of the ORDER statements
determines the sequence of the control sections or named common areas
in the load module.

Any control sections or named common areas that are not specified
on ORDER statements appear last in the output load module. If a control
section or named common area is changed by a CHANGE or REPLACE control
statement ,. the new name must be used on the ORDER statement.

In the following example, ORDER statements are used to specify the
sequence of five of the six control sections in an output load module.
A REPLACE statement is used to replace the old control section SESECTA
with the new control section CSECTA from the data set &&OBJECT, which
was passed from a previous step. Assume that the control sections to
be ordered are found in library member 1V'"~INROOT (Figure 20).

IISYSLMOD DD
IISYSLIN DD
II DD

1*

ORDER
REPLACE
ORDER
INCLUDE
NAME

DSNAME=PVTLIB,DISP=OLD,UNIT=2314,VOLUME=SER=PVT002
DSNAME=&&OBJECT,DISP=(OLD,DELETE)

*
MAINEP(P) ,SEGMT1,SEG2
SESECTA(CSECTA)
CSECTA,CSECTB(P)
SYSLMOD(MAINROOT)
MAINROOT

In the load module MAINROOT, the control sections MAINEP,SEGMT1,
SEG2, CSECTA, CSECTB are rearranged in the output load module according
to the sequence specified in the ORDER statements. A REPLACE statement
is used to replace the control section SESECTA with control section
CSECTA from the data set &&OBJECT, which was passed from a previous
step. The ORDER statement refers to the new control section CSECTA.
Control section LASTEP appears after the other control sections in the
output load module because it was not included in the ORDER statement
operands.

54 OS/vs Linkage Editor and Loader

INPUT MODULES

&&OBJECT OUTPUT LOAD MODULE

_/------.... r/
CSECTA

MAINROOT
L ./
CSECTB

./
SESECTA

./
MAINEP

./
LASTEP

/"
SEGMTl

/"
SEG2

JCL AND CONTROL STATEMENTS

II

IISYSLMOD
IISYSLIN
II

ORDER

1*

REPLACE
ORDER
INCLUDE
NAME

EXEC PGM=HEWL,PARM=IAlIGN2 1

DD DSNAME=PVTlIB, •••
DD DSNAME=&&OBJECT, •••
DD *

MAINEP(P) ,SEGMTl ,SEG2
SESECTA(CSECTA)
CSECTA,CSECTB(P)
SYSLMOD(MAINROOT)
MAINROOT

Figure 20. Ordering Control Sections

MAINROOT

OK /
MAINEP

SEGMTl

SEG2

CSECTA

2K
CSECTB

LASTEP

ALIGNING CONTROL SECTIONS OR NAMED COMMON AREAS ON PAGE BOUNDARIES

A control section or named common area can be placed on a page
boundary by using either the ORDER statement (with the P operand) or
the PAGE statement. Alignment on a page boundary can be used to
effect a lower paging rate and thus make more efficient use of
real storage.

./

./

./

/"

./

/"

V

The control section or cornmon area to be aligned is named on either
the PAGE statement or the ORDER statement with the P operand. Either
the PAGE statement or the ORDER statement (with the P operand) causes
the linkage editor to locate the starting address of the control section
or cornmon area on a page boundary within the load module.

The default value for the page boundary is 4K. Under VS1, the
ALIGN2 attribute must be specified in the PA~l field of the EXEC
statement to override the default. Because a module using the 2K
page boundary alignment may suffer performance degradation if it is
moved from a VS1 system to a VS2 system, the 2K page boundary should
be used only when virtual storage is limited.

In the following example, the control sections RAREUSE and MAINRT
are aligned on 2K page boundaries by PAGE and ORDER control statements
used with the ALIGN2 attribute. Control sections CSECTA and SESECT1
are sequenced by the ORDER control statement. Assume that each control
section is 2K in length except for SESECT1 and RAREUSE (Figure 21).

Module Editing 55

//LKED EXEC PGM=HEWL,PARM='ALIGN2, ... '

//SYSLMOD DD
//SYSLIN DD

DSNAME=OWNLIB,DISP=OLD,UNIT=2314,VOLUME=SER=OWN002

*

/*

PAGE RAREUSE
ORDER MAINRT(P} ,CSECTA,SESECT1
INCLUDE SYSLMOD (MAINROOT)
NAME MAINROOT

The linkage editor places the control sections MAINRT and RAREUSE
on 2K page boundaries because ALIGN2 is specified on the EXEC statement.
Control sections MAINRT, CSECTA, and SESECT1 are sequenced as specified
in the ORDER statement. RAREUSE, while placed on a 2K page boundary,
appears after the control sections specified in the ORDER statement
because it was not included. The control section BOTTOM comes after
RAREUSE because it appeared after RAREUSE in the input module.

INPUT MODULE

MAINROOT
,/

CSECTA
"7

JCL AND CONTROL STATEMENTS

OUTPUT LOAD MODU LE

MAINROOT

OK
,/ ./

MAINRT

//LKED EXEC PGM=HEWL,PARM='ALlGN2'

-- /
RAREUSE

-- /
SESECTl

-- /
BOTTOM

/
MAINRT

//SYSLMOD
//SYSLIN

PAGE
ORDER
INCLUDE
NAME

/*

DD DSNAME=OWNLlB, •••
DD *
RAREUSE
MAINRT{P} ,CSECTA,SESECTl
S YS LMOD (MA I NROOT)

MAINROOT

Figure 21. Aligning Control Sections on Page Boundaries

56 OS/VS Linkage Editor and Loader

/
CSECTA

2K

./
SESECTl 4K

/

/
RAREUSE 6K

.. /
BOTTOM

__ V

Ordinarily, when a load module produced by the linkage editor is
executed, all of the control sections of the module remain in virtual
storage throughout execution. The length of the load module is,
therefore, the sum of the lengths of all of the control sections. When
storage space is not at a premium, this is the most efficient way to
execute a program. However, if a program approaches the limits of
the virtual storage available, the programmer should consider using
the overlay facilities of the linkage editor.

In most cases, all that is needed to convert an ordinary program to
an overlay program is the addition of control statements to structure
the module. The programmer chooses the overlayable portions of the
program, and the system arranges to load the required portions when
needed during execution of the program.

When the linkage editor overlay facility is requested, the load
module is structured so that, at execution time, certain control
sections are loaded only when referenced. When a reference is made from
an executing control section to another, the system determines whether
or not the code required is already in virtual storage. If it is not, the
code is loaded dynamically and may overlay an unneeded part of the
module already in storage.

The rest of this chapter is divided into three sections that describe
the design, specification, and special considerations for overlay
programs.

DESIGN OF AN OVERLAY PROGRAM

The way in which an overlay module is structured depends on the
relationships among the control sections within the module. Two control
sections that do not have to be in storage at the same time can overlay
each other. Such control sections are independent; that is, they do not
reference each other either directly or indirectly. Independent control
sections can be assigned the same load addresses and are loaded only
when referenced. For example, control sections that handle error
conditions or unusual data may be used infrequently, and need not be
occupying storage unless in use.

control sections are grouped into segments. A segment is the
smallest functional unit (one or more control sections) that can be
loaded as one logical entity during execution. The control sections
required all of the time are grouped into a special segment called the
root segment. This segment remains in storage throughout execution of
an overlay program.

When a particular segment is to be executed, any segments between it
and the root segment must also be in storage. This is a Q~~h. A
reference from one segment to another segment lower in a path is a
downward reference. That is, the segment contains a reference to
another segment tarther from the root segment. Conversely, a reference
from one segment to another segment higher in a path <closer to the root
segment) is an upward reference.

Overlay Programs 57

Therefore, a downward reference may cause overlay because the
necessary segment may not yet be in virtual storage. An upward reference
will not cause overlay because all segments between a segment and the
root segment must be present in storage.

sometimes several paths need the same control sections. This problem
may be solved by placing the control sections in another region. In an
overlay structure, a !,~gio!! is a contiguous area of virtual storage within
which segmE:mts can be loaded independently of paths in other regions.
An overlay program can be designed in single or multiple regions8

SINGLE REGION OVERLAY PROGRAM

To design an overlay structure, the programmer should select those
control sections that will receive control at the beginning of
execution, plus those that should always remain in storage; these
control sections form the root segment. The rest of the structure is
developed by determining the dependencies of the remaining control
sections and how they can use the same virtual storage locations at
different times during execution.

Besides control section dependency, other topics discussed in this
section are segment dependency, the length of the overlay program,
segment origin, communication between segments, and overlay processing.

Control Section Dependency

Control section dependency is determined by the requirements of a
control section for a given routine in another control section. A
control section is dependent upon any control section from which it
receives control, or which processes its data. For example, if control
section C receives control from control section B, then C is dependent
upon B. That is, both control sections must be in storage before
execution can continue beyond a given point in the program.

A program contains seven control sections, CSA through CSG, and
exceeds the amount of storage available for its execution. Before the
program is rewritten, it is examined to see whether or not it could be
placed into an overlay structure. Figure 22 shows the groups of
dependent control sections in the program (the arrows indicate
dependencies).

58 OS/VS Linkage Editor and Loader

Figure 22. Control Section Dependencies

Each dependent group is also a path. That is, if control section CSG
is to be executed, CSB and CSA must also be in storage. Because CSA and
CSB are in each path, they must be in the root segment. Control section
CSC is in two groups, and therefore is a common segment in two different
paths.

A better way to show the relationship between segments is with a tree
structure. A tree is the graphic representation that shows how segments
can use virtual storage at different times. It does not imply the order of
execution, although the root segment is the first to receive control.
Figure 23 shows the tree structure for the dependent groups shown in
Figure 22. The structure is contained in one region, and has five
segments.

Overlay Programs 59

esc Segment 2

l~
Segment 3 CSF

1~

T~
CSA

i- > '00' '.,m.,' ,
CSB

I ~

Segment 4

Figure 23. Single-Region Overlay Tree Structure

I
CSG

1

When a segment is in virtual storage, all segments in its path

Segment 5 •

are also in virtual storage. Each time a segment is loaded, all
segments in its path are loaded if they are not already in virtual
storage. In Figure 23 when segment 3 is in virtual storage, segments
1 and 2 are also in virtual storage. However, if segment 2 is in
storage, 1:his does not imply that segment 3 or 4 is in virtual storage
since neither segment is in the path of segment 2.

The position of the se9ments in an overlay tree structure does not
imply the sequence in which the segments are executed. A segrrent can be
loaded and. overlaid as many times as required by the logic of the
program. However, a segment will not be overlaid by itself. If a
segment is modified during execution, that modification remains only
until the segment is overlaid.

60 OS/VS Linkage Editor and Loader

Lenqth of an Overlay Program

For purposes of illustration, assume that the control sections in the
sample program have the following lengths:

Control Section
CSA
CSB
CSC
CSD
CSE
CSF
CSG

~~~~h_l!~_gYi~§l 
3,000 
2,000 
6,000 
4,000 
3,000 
6,000 
8,000 

If the program were not in overlay, it would require 32,000 bytes of 
virtual storage. In overlay, however, the program requires the amount of 
storage needed for the longest path. In this structure, the longest 
path is formed by segments 1, 2, and 3, since, when they are all in 
storage, they require 18,000 bytes, as shown in Figure 24. 

CSE 
3,000 
bytes 

1 

Segment 3 
7,000 bytes 

esc 
6,000 
bytes 

Segment 2 
6,000 bytes 

T 
CSA 

3,000 
bytes 

t 
CSB 

2,000 
bytes 

CSF 
6,000 

I 

Figure 24. Length of an Overlay Module 

Root Segment 1 
5,000 bytes 

Segment 4 
6,000 bytes 

CSG 
8,000 
bytes 

1 
Segment 5 
8,000 bytes 

Note, however, that the length of the longest path is not the minimum 
requirement for an overlay program; when a program is in overlay, 
certain tables are used, and their storage requirements must also be 
considered. The storage required by these tables is given in the 
section "Special Considerations." 

Overlay Programs 61 



Segment Origi!! 

The linkage editor assigns the relocatable origin of the root segment 
(the origin of the program) at O. The relative origin of each segment 
is determined by 0 plus the length of all segments in the path. For 
example, the origin of segments 3 and 4 is equal to 0 plus 6,000 (the 
length of segment 2) plus 5,000 (the length of the root segment), or 
11,000. The origins of all the segments are as follows: 

Segme!!! 
1 
2 
3 
4 
5 

Origin 
o 

5,000 
11,000 
11,000 

5,000 

The segment origin is also called the ;12~s!_E2!~1, because it is the 
relative location at which the segment is loaded. 

Figure 25 shows the segment origin :for each segment and the way 
storage is used by the sample program. In the illustration, the 
vertical bars indicate segment origin; any two segments with the same 
origin may use the same storage area. Figure 25 also shows that the 
longest path is that of sE~gments 1. 2, and 3. 

~~_L-~I~~I~.~~~_~~~~~~~~~L~J 
o 4 6 7 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 17 1 8 1 9 20 

------- Rillative Storage Location (in 1,000 byte increments) -------------_ .. 

Figure 25. Segment Origin and Use of Storage 

Segments that can be in virtual storage simultaneously are considered to 
be inclusiye. Segments in the same region but not in the sarre path are 
considered to be exclusive; they cannot be in virtual storage 
simultaneously. Figure 26 shows the inclusive and exclusive segments in 
the sample program. 

62 OS/VS Linkage Editor and Loader 



Segments upon which two or more exclusive segments are dependent are 
called common segments. A segment common to two other segments is part 
of the path of each segment. In Figure 26 segment 2 is common to 
segments 3 and 4, but not to segment 5. 

I 
SOT" 

I 
Segment 4 

1. 

T 
Root 

s"'r" 

Figure 26. Inclusive and Exclusive Segments 

Inclusive Segments 
1,2, and 3 
1,2, and 4 
1 and 5 

Exclusive Segments 
2 and 5 
3 and 4 
3 and 5 
4 and 5 

An inclusive reference is a reference between inclusive segments; 
that is;-a-reference-from a segment in storage to an external symbol in 
a segment that will not cause overlay of the calling segwent. An 
exclusive reference is a reference between exclusive segments; that is, 
a-reference-from-a-segment in storage to an external symbol in a segment 
that will cause overlay of the calling segment. 

Figure 27 shows the difference between an inclusive reference and an 
exclusive reference; the arrows indicate references between segments. 

Inclusive References: Wherever possible, inclusive references should be 
used instead of exclusive references. Inclusive references between 
segments are always valid and do not require special options. When 
inclusive references are used, there is also less chance for error in 
structuring the overlay program correctly. 

Exclusive References: An exclusive reference is made when the external 
reference-In-the-requesting segment is to a symbol defined in a segment 
not in the path of the requesting segment. Exclusive references are 
either valid or invalid. 

An exclusive reference is valid only if there is also a reference to 
the requested control section-rn-a segment common to both the segment to 
be loaded and the segment to be overlaid. The same symbol must be used 
in both the common segment and the exclusive reference. In Figure 27, a 
reference from segment B to segment A is valid, because there is an 
inclusive reference from the common segment to segment A. (An entry 
table in the common segment contains the address of segment Ai the 
overlay does not destroy this table.) 

In the same illustration, a reference from segment A to segment B is 
invalid because there is no reference from the common segment to segment 
~-~-reference from segment A to segment B can be made valid by 
including, in the common segment, an external reference to the symbol 
used in the exclusive reference to segment B. 

Overlay Programs 63 



Inclusive 
Referenc,e 

Segment A 

Common Segment 

Figure 27. Inclusive and Exclusive References 

Segment B 

Another way to eliminate exclusive references is to arrange the 
program so that the references that will cause overlay are made in a 
higher segment. For example, the programmer could eliminate the 
exclusive reference shown in Figure 27 by writing a new module to be 
placed in the common segment; the new module's only function would be to 
reference segment E. He would then change the code in segment A to 
refer to the new module instead of to segment B. Control then would 
pass from segment A to the common segment, where the overlay of segment 
A by segment B would be initiated. 

If either valid or invalid exclusivE? references appear in the 
program, the linkage editor considers them errors unless one of the 
special options is used. These options are described later in this 
section. 

• During the execution of a program written in a higher level language 
such as FORTRAN, COBOL, or PL/I, an exclusive call results in 
abnormal termination of the program if the requested segment 
attempts to return control directly to the invoking segment that has 
been overlaid,. 

• If a program written in COBOL includes a segment that contains a 
reference to a COBOL class test or TRANSFORM table, the segment 
containing the table must be either (1) the root segment or (2) a 
segment that is higher in the same path than the segment containing 
the reference to the table. 

The overlay process is initiated during execution of a program only 
if a control section in virtual storage references a control section not 
in storage. The control program determines the segment that the refer
enced control section is in and, if necessary, loads the segment. When a 
segment is loaded, i,t overlays any segment in storage with the same 
relative origin. Any segments in storage that are lower in the path of 
the overlaid segment may also be overlaid. An exclusive reference can 
also cause segments higher in the path to be overlaid. If a control sec
tion in storage references a control section in another segment already 
in storage, no overlay occurs. 

64 OS/VS Linkage Editor and Loader 



The portion of the control program that determines when overlay is to 
occur is the overlay_~upe~vi~2~, which uses special tables to determine 
when overlay is necessary. These tables are generated by the linkage 
editor, and are part of the output load module. The special tables are 
the segment table and the entry table(s). Figure 28 shows the location 
of the segment and entry tables in the sample program. 

Figure 28. Location of Segment and Entry Tables in an Overlay Module 

Because the tables are present in every overlay module, their size 
must be considered when planning the use of virtual storage. The storage 
requirements for the tables are given in "Special considerations." A 
more detailed discussion of the segment and entry tables follows. 

~ent Table: Each overlay program contains one segment table 
(SEGTAB)i this table is the first control section in the root segment. 
The segment table contains information about the relationship of the 
segments and regions in the program. During execution, the table also 
indicates which segments are either in storage or being loaded, and 
other control information. 

En~~ Table: Each segment that is not the last segment in a path may 
contain one entry table (ENTAB)i this table, when present, is the last 
control section in a segment. 

When overlay will be required, an entry in the table is created for a 
symbol to which control is to be passed, provided (1) the symbol is used 
as an external reference in the requesting segment, and (2) the symbol 
is defined in another segment either lower in the path of the requesting 
segment, or in another region. An ENTAB entry is not created for any 

Overlay Programs 65 



symbol alrE~ady present in an entry table closer to the rcot segment 
(higher in the path), or for a symbol defined higher in the path. (A 
reference to a symbol higher in the path does not have to go through the 
control program because no overlay is required.) 

If an external reference and the symbol to which it refers are in 
segments not in the same path but in the same region, an exclusive 
reference was made. If the exclusive reference is valid, an ENTAB entry 
for the symbol is present in the common segment. Since the common 
segment is higher in the path of the requesting segment, no ENTAB entry 
is created in the requesting segment. When the reference is executed, 
control passes through the ENTAB entry in the common segment. That is, 
a branch to the location in the ENTAB causes the overlay supervisor to 
be called to load the needed segment or segments. 

If the exclusive reference is invalid, no ENTAB entry is present in 
the common segment. If the LET option is specified, an invalid 
exclusive reference causes unpredictable results when the program is 
executed. Since no ENTAB E~ntry exists, control is passed directly to 
the relative address specified in the reference, even though the 
requested segment may not be in main storage. 

MULTIPLE REGION OVERLAY PROGRAM 

If a control section is used by several segments, it is usually 
desirable t~o place that control section in the root segment. However, 
the root SE!gment can get so large that the benefits of overlay are lost. 
If some of the control sections in the root segment could overlay each 
other (exCE!pt for the requirement that all segments in a path must be in 
storage at the same ·time), the job may be a candidate for multiple 
region structure. Multiple region structures can also be used to 
increase SE!gment loading efficiency: processing can continue in one 
region while the next path to be executed is being loaded into another 
.region. 

With multiple regions, a segment has access to segments that are not 
in its path. Within each region, the rules for single region overlay 
programs apply, but the regions are independent of each other. A 
maximum of four regions can be used. 

Figure 29 shows the relationship between the control sections in the 
sample program and two new control sections, CSH and CSI. The two new 
control sections are each used by two other control sections in 
different paths. Placing CSH and CSI in the root segment makes the 
segment la:rger than necessary because CSH and CSI can overlay each 
other. The two control sections should not be duplicated in two paths 
because thE~ linkage editor a utoma tically deletes the second pair and an 
invalid exclusive reference may then result. 

/ 

If however, the two control sections are placed in another region f 

they can bE~ in virtual s·torage when needed, regardless of the path being 
executed in the first region. Figure 30 shows all of the control 
sections in a two-region structure. Either path in regicn 2 can be in 
virtual storage regardless of the path being executed in region 1; 
segments in region 2 can cause segments in region 1 to be loaded 
without being overlaid themselves. 

66 OS/VS Linkage Editor and Loader 



T 
CSA 

+ CS8 

I 

I 

I 
esc CSG 

I 
I 

CSD CSF 

t CSI 

CSH 

CSE CSI 

1 CSH II~;"I i 
Figure 29. Control Sections Used by Several Paths 

Figure 30. Overlay Tree for Multiple-Region Program 

Overlay Programs 67 



The relative origin of a second region is determined by the length of 
the longest path in the first region (18,000 bytes). Region 2, 
therefore, begins at 0 plus 18,000 bytes. The relative origin of a 
third region would be determined by the length of the longest path in 
the first region plus the longest path in the second region. 

The virtual storage required for the program is determined by adding 
the lengths of the long~st path in each region. In Figure 30, if CSH is 
4,000 bytes and CSI is 3,000 bytes, the storage required is 22,000 
bytes, plus the storage required by the special overlay tables. Care 
should be exercised when choosing multiple regions. There may be 
some system degredation due to the overlay supervisor being unable to 
optimize segment loading when multiple regions are used . 

. SPECIFICATION OF AN QVERLAY PROGRAM 

Once the programmer has designed an overlay structure, ne rrust place 
the module in that structure by indicating to the linkage editor the 
relative positions of the segments and regions, and the control sections 
in each segment. Positioning is accomplished as follows: 

- ~egmen!§ are positioned by OVERLAY statements. Since segrr:ents are 
not named, the programmer identifies a segment by giving its origin 
(or load point) a symbolic name and then uses that name in an 
OVERLAY statement to specify a symbolic origin. Each OVERLAY 
statement begins a new segment. 

-segi.2!!§ are also positioned by OVERLAY statements. The programmE~r 
specifies the origin of the first segment of the region, followed by 
the word REGION in parentheses. 

- ~ontro.!_§.ecti2ns are positioned in ·the segment specified by the 
OVERLAY statement with which they are associated in the input 
sequence. However, the sequence of the control sections within a 
segment is not necessarily the order in which the control sections 
are specified. 

The input sequence of control statements and control sections should 
reflect the sequence of the segments in the overlay structure from top 
to bottom, left to right, and region by region. This sequence is 
illustrated in later examples. 

In addition, several special options are used with overlay programs. 
These options are specified on the EXEC statement for the linkage editor 
job step, and are described at the end of this section. 

Note: If a load module in overlay structure is to be reprocessed by the 
linkage editor, the OVERLAY statements and special options (such as 
OVLY) must be respecified. If the statements and options are not 
provided, the output load module will not be in overlay structure. 

SEGMENT ORIGIN 

The symbolic origin of every segment, other than the root segment, 
must be specified with an OVERLAY statement. The first time a symbolic 
origin is specified, a load point is created at the end of the previous 
segment. 'I'hat load point is logically assigned a relati ve address at 
the doubleword boundary that follows the last byte in the preceding 
segment. Subsequent use of the same symbolic origin indicates that the 
next segment is to have its origin at the same load point. 

68 OS/VS Linkage Editor and Loader 



In the sample single-region program, the symbolic origin names ONE 
and TWO are assigned to the two necessary load points, as shown in 
Figure 30. Segments 2 and 5 are at load point ONE, segments 3 and 4 are 
at load point TWO. 

The following sequence of OVERLAY statements will result in the 
structure in Figure 31 (the control sections in each segment are 
indicated by name): 

Control section CSA 
Control section CSB 
OVERLAY ONE 
Control section esc 
OVERLAY TWO 
Control section CSD 
control section CSE 
OVERLAY TWO 
Control section CSF 
OVERLAY ONE 
Control section CSG 

Note that the sequence of OVERLAY statements reflects the order of 
segments in the structure from top to bottom and left to right. 

T 
Root Segment 1 

Segment 2 

l 
Segment 3 Segment 4 

1 1 
Figure 31. Symbolic Segment Origin in Single-Region Program 

Overlay Programs 69 



REGION ORIGIN 

The symbolic origin of every region, other than the first, must be 
specified with an OVERLAY statement. Once a new region is specified, a 
segment origin from a previous region should not be specified. 

In the sample multiple-region program, the symbolic origin THREE is 
assigned to region 2, as shown in Figure 32. Segments 6 and 7 are at 
load point THREE. 

REGION 1 

T 
"ot'T" 1 

I ONE 

Segment 2 

,--L-1 
SegmE,nt 3 Segment 4 

........ 1 ........... ·1··~·".·.""""·"'·'.·"·.·:·"·"·.·"'.·.·.'.:' ... , ... ,'.,!,!.::" .... ,':,',.". • •••••• ·r··· ........ II •••• REGION 2 : THREE ;j 
·::::::":::::::::::;::::?t 

Segment 6 Segment 7 

1 1 

Figure 32. Symbolic Segment and Region Origin in Multiple-Region 
Program 

If the following is added to the sequence for the single-region 
program, the multiple-region structure will be produced: 

OVERLAY THREE(REGION) 
Control section CSH 
OVERLAY THREE 
Control section CSI 

70 OS/VS Linkage Editor and Loader 



POSITIONING CONTROL SECTIONS 

After each OVERLAY statement, the control sections for that segment 
must be specified. The control sections for a segment can be specified 
in one of three ways: 

• By placing the object decks for each segment after the appropriate 
OVERLAY statement. 

• By using INCLUDE control statements for the modules containing the 
control sections for the segment. 

• By using INSER~ control statements to reposition a control section 
from its position in the input stream to a particular segment. 

Any control sections that precede the first OVERLAY statement are placed 
in the root segment; they can be repositioned with an INSERT statement. 
Control sections from the automatic call library are also placed in the 
root segment. The INSERT statement can be used to place these control 
sections in another specific segment. Common areas in an overlay 
program are described in "Special considerations." 

An example of each of the three methods of positioning control 
sections follows. Each example results in the structure for the 
single-region sample program. An example is also given of repositioning 
control sections from the automatic call library. 

Using Object Decks 

The primary input data set for this example contains an ENTRY 
statement and seven object decks, separated by OVERLAY statements: 

//LKED EXEC PGM=HEWL,PARM='OVLY' 

//SYSLIN DD * 
ENTRY BEGIN 
Object deck for CSA 
Object deck for CSB 
OVERLAY ONE 
Object deck for CSC 
OVERLAY TWO 
Object deck for CSD 
Object deck for CSE 
OVERLAY TWO 
Object deck for CSF 
OVERLAY ONE 
Object deck for CSG 

/* 

The EXEC statement illustrates that the OVLY parameter must be specified 
for every overlay program to be processed by the linkage editor. 

Overlay Programs 71 



The primary input data set for this example contains a series of 
control statements. The INCLUDE statements in the primary input data 
set direct the linkage editor to library members that contain the 
control sections of the program. 

//LKED EXEC PGM= HE~vL , P ARM= ' OVL Y , 

//MODLIB DD DSNAME=OBJLIB,DISP=(OLD,KEEP), ••• 
//SYSLIN DD * 

/* 

ENTRY BEGIN 
INCLUDE MODLIB(CSA,CSB) 
OVERLAY ONE 
INCLUDE MODLIB(CSC) 
OVERLAY TWO 
INCLUDE MODLIB(CSD,CSE) 
OVERLAY TWO 
INCLUDE MODLIB(CSF) 
OVERLAY ONE 
INCLUDE MODLIB(CSG) 

This example differs from the previous one in that the control sections 
of the program are not part of the primary input data set, but are 
represented in the primary input by the INCLUDE statements. When an 
INCLUDE statement is precessed, the appropriate control section is 
retrieved from the library and processed. 

When INSERT statements are used, the INSERT and OVERLAY statements 
may either follow or precede all the input modules. However, the order 
of the control sections in a segment is not necessarily the same as the 
order of thE~ INSERT statements for each segment. An example of each is 
given, as well as an example of repositioning automatically called 
control sections. 

Followi~~A]~npu~: The control statements can follow all the input 
modules, as shown in the following example: 

//LKED EXEC PGM=HEWL,PARM='OVLY' 

//SYSLIN DD DSNAME=OBJECT,DISP=(OLD,KEEP), ••• 
// DD * 

ENTRY BEGIN 
INSERT CSA,CSB 
OVERLAY ONE 
INSERT CSC 
OVERLAY TWO 
INSERT CSD,CSE 
OVERLAY TWO 
INSERT CSF 
OVERLAY ONE 
INSERT CSG 

72 OS/VS Linkage Editor and Loader 



The primary input data set contains the object rr.odules for the control 
sections, and the input stream is concatenated to it. 

R~eceding_AlI-±D~ut: The control statements can also precede all input 
modules, as shown in the following example: 

//LKED 
//MODULES 

EXEC 
DD 

PGM=HEWL,PARM='OVLY' 
DSNAME=OBJSEQ,DISP=(OLD,KEEP), ••• 

//SYSLIN DD * 
ENTRY BEGIN 
INSERT CSA,CSB 
OVERLAY ONE 
INSERT CSC 
OVERLAY TWO 
INSERT CSD,CSE 
OVERLAY TWO 
INSERT CSF 
OVERLAY ONE 
INSERT CSG 
INCLUDE MODULES 

The primary input data set contains all of the control staterr.ents for 
the overlay structure and an INCLUDE statement. The data set specified 
by the INCLUDE statement contains all of the object modules for the 
structure, and is a sequential data set. 

Repositioning Automatically Called Control Secti9~§: The INSERT 
statement can also be used to move automatically called control sections 
from the root segment to the desired segment. This is helpful when 
control sections from the automatic call library are used in only one 
segment. By moving such control sections, the root segment will contain 
only those control sections used by more than one segwent. 

When a program is written in a higher level language, special control 
sections are called from the automatic call library. Assume that the 
sample program is written in COBOL and that two control sections 
(ILBOVTRO and ILBOSCHO) are called automatically from SYS1.COBLIB. 
Ordinarily, these control sections are placed in the root segrr.ent. 
However, INSERT statements are used in the following example to place 
these control sections in segments other than the root segment. 

overlay Programs 73 



//LKED 
//MODLIB 
//SYSLIB 

EXEC 
DD 
DD 

PGM=HEWL,PARM='OVLY' 
DSNAME=OBJLIB,DISP=(OLD,KEEP), ••• 
DSNAME=SYS1.COBLIB,DISP=SHR 

//SYSLIN DD * 

/* 

EN'TRY BEGIN 
INCLUDE MODLIE(CSA,CSB) 
OVERLAY ONE 
INCLUDE MODLIE(CSC) 
OVERLAY TWO 
INCLUDE MODLIE(CSD,CSE) 
INSERT ILBOVTRO 
OVERLAY TWO 
INCLUDE MODLIB(CSF) 
INSERT ILBOSCHO 
OVERLAY ONE 
INCLUDE MODLIE(CSG) 

As a result, segments 3 and 4 will also contain ILBOVTRO and ILBOSCHO. 
respectively_ 

This example also combinE~s two of the ways of specifying the control 
sections for a segment. 

SPECIAL OPTIONS 

The linkage editor provides three special job step options for the 
overlay programmer. These options are specified on the EXEC statement 
for the linkage editor job step. They must be specified each time a 
load module in overlay structure is reprocessed by the linkage editor. 
'The three options are OVLY, LET, and XCAL. 

The OVLY option must be specified for every overlay program. If the 
option is omitted, all the OVERLAY and INSERT statements are considered 
invalid. The output module is marked not executable unless the LET 
option is specified. The output module is not in an overlay structure. 

LET Option 

With the LET option, the output module is marked executable even 
though certain error conditions were found during linkage editor 
processing. When LET is specified, any exclusive reference (valid or 
invalid> is accepted. At execution time, a valid exclusive reference is 
executed correctly; an invalid exclusive reference usually causes 
unpredictable results. 

Also with the LET option, unresolved external references do not 
prevent the module from being marked executable. This could be helpful 
when part of a large program is ready for testing; the segments to be 
tested may contain references to segments not yet coded. If LET is 

74 OS/VS Linkage Editor and Loader 



specified, the program can be executed to test those parts that are 
finished (as long as the references to the absent segments are not 
executed>. If the LET option is not specified, these unresolved 
references will cause the module to be marked not executable. 

with the XCAL option, a valid exclusive call is not considered an 
error, and the load module is marked executable. However, other errors 
could cause the module to be marked not executable, unless the LET 
option is specified; in this case, the XCAL option is not required. 

SPECIAL 'CONSIDERATIONS 

This section discusses several special considerations that affect 
overlay programs. ~hese considerations include the handling of common 
areas, special storage requirements, and overlay communication. 

COMMON AREAS 

When common areas (blank or named) are encountered in an overlay 
program, the common areas are collected as described previously (i.e., 
the largest blank or identically named common area is used). The final 
location of the common area in the output module depends on whether 
INSERT statements were used to structure the program. 

If INSERT statements are used to structure the overlay program, a 
named common area should either be part of the input stream 1n the 
segment to which it belongs, or should be placed there with an INSER1 
statement. 

Because INSERT statements cannot be used for blank common areas, a 
blank common area should always be part of the input stream in the 
segment to which it belongs. 

If INSERT staterrents are not used, and the control sections for each 
segment are placed or included between OVERLAY statements, the linkage 
editor "promotes" the common area automatically. That is, the common 
area is placed in the common segment of the paths that contain 
references to it so that the common area is in storage when needed. 
The position of the promoted area in relation to other control sections 
within the common segment is unpredictable. 

If a common area is encountered in a module from the autonatic call 
library, automatic promotion places the common area in the root segment. 
In the case of a named common area, this may be overridden by use of the 
INSERT statement. 

Assume that the sample program is written in FORTRAN and that cornman 
areas are present as shown in Figure 33. Further assume that the 
overlay program is structured with INCLUDE statements between the 
OVERLAY statements so that automatic promotion occurs. 

Overlay Programs 75 



Figure 33. Common Areas Before Processing 

Segments 2 and 5 contain blank common areas, segments 3 and 4 contain 
named common area A, and segments 4 and 5 contain named common area B. 
During linkage editor processing, the blank corrmon areas are collected 
and the larqest area is promoted to the root segment (the first common 
segment in 1:he two paths); the common areas named A are collected and 
1:he largest area is promoted to segment 2; the common areas named Bare 
collected and promoted to the root segment. Figure 34 shows the 
location of the common areas after processing by the linkage editor. 

76 as/vs Linkage Editor and Loader 



Figure 34. Common Areas After Processing 

STORAGE REQUIREMEN~S 

The virtual storage requirements for an overlay program include the 
items placed in the module by the linkage editor and the overlay 
supervisor necessary for execution. 

Items in the Load Module: The items that the linkage editor places in 
an-overlay load-module-are the segment table, entry tables, and other 
control information. Their size must be included in the minimum 
requirements for an overlay program, along with the storage required by 
the longest path and any control sections from the automatic call 
library. 

Every overlay program has one segment table in the root segment. The 
storage requirements are: 

SEGTAB 4n + 24 

where: 

n = the number of segments in the program 

Overlay Programs 77 



Some segments will have an entry table. The requirements of the 
entry tables in the segments in the longest path must be added to the 
storage requirements for the program. The requirements for an entry 
i:able are: 

ENTAB = 12(x + 1) 

where: 

x the number of entries in the table 

Finally, a NOTE list is required to execute an overlay program. The 
storage requirements are: 

NOTELST 4:n + 8 

where: 

n the number of segments in the program 

qverlay Su~~!,:vi.so!:: To the minimum requirements of the load module 
itself must be added the requirements of the overlay supervisor. This 
system routine is not placed in an overlay module, but, during execution 
of the module, the supervisor may be called to initiate an overlay. If 
called, the storage allocated for the program must be large enough for 
the supervisor also. 

Three overlay supervisor modules are furnished with the system: the 
basic, advanced, and asychronous modules. The basic module does not 
test whether a request for overlay is valid; the other two do. Neither 
the basic nor advanced modules permit overlay through the SEGLD macro 
instruction (see "Overlay Communication"); the asynchronous module does. 
When the SEGLD macro instruction is used with the basic and advanced 
modules, it is ignored. The storage requirements for the overlay 
supervisor modules are: 

Module 
Basic (used with VS1) 
Advanced (used with VS1) 
Asynchronous (used with VS2) 

OVERLAY COMMUNICATION 

Storage 
Requirements 

(in bytes> 
436 
512 
992 

Several ways of communicating between segments of an overlay program 
are discussed in this section. A higher level or assembler language 
program may use a CALL statement or CALL macro instruction, 
respectively, to cause control to be passed to a symbol defined in 
another segment. The CALL may cause the segment to be loaded if it is 
not already present in storage. An assembler language program may also 
use three additional ways to communicate between segments: 

• By a branch instruction, which causes a segment to be loaded and 
control to be passed to a symbol defined in that segment. 

78 OS/VS Linkage Editor and Loader 



• By a segment load (SEGLD) macro instruction (VS2 only), which 
requests loading of a segment. Processing continues in the 
requesting segment while the requested segment is being loaded • 

• By a segment load and wait (SEGWT) macro instruction, which requests 
loading of a segment. Processing continues in the requesting 
segment only after the requested segment is loaded. 

Any of the four methods may be used to make inclusive references. 
Only the CALL and branch may be used to make exclusive references. 
Neither the SEGLD nor SEGWT macro instruction should be used to make 
exclusive references; since both imply that processing is to continue in 
the requesting segment, an exclusive reference leads to erroneous 
results when the program is executed. 

A CALL statement or CALL macro instruction refers to an external name 
in the segment to which control is to be passed. The external name must 
be defined as an external reference in the requesting segment. In 
assembler language, the name must be defined as a four-byte V-type 
address constant; the high-order byte is reserved for use by the control 
program, and must not be altered during execution of the program. 

When a CALL is used, the requested segment and any segments in its 
path are loaded if they are not part of the path already in virtual 
storage. After the segment is loaded, control is passed to the 
requested segment at the location specified by the external name. 

A CALL between inclusive segments is always valid. A return can be 
made to the requesting segment by another source language statement, 
such as RETURN. A CALL between exclusive segments is valid if the 
conditions for a valid exclusive reference are met; a return from the 
requested segment can be made only by another exclusive reference, 
because the requesting segment has been overlaid. 

Branch Instruction 

Any of the branching conventions shown in Table 2 can be used to 
request loading and branching to a segment. As a result, the requested 
segment and any segments in its path are loaded if they are not part of 
the path already in virtual storage. Control is then passed to the 
requested segment at the location specified by the address constant 
placed in general register 15. 

The address constant must be a 4-byte v-type address constant. The 
high-order byte is reserved for use by the control program, and must not 
be altered during execution of the program. 

Overlay Programs 79 



Table 2. Branch Sequences for Overlay Programs 
r----------T----------T--------------------T---------------------------, 
I Example I Name 1 I Operation I Operand2 3 I 

~----------+----------t--------------------+---------------------------~ 
I 1 I I L I R 15, =V (name) I 
I I I BALR I Rn,R15 I 

~----------+----------+--------------------t---------------------------~ 
I 2 I I L I R15,ADCON I 
I I I BALR I Rn,R15 I 
I I I I I 
I I I I I 

I I I I I 
I I ADCON I DC I V (name) I 
~----------+----------t--------------------t---------------------------~ 
I 3 I I L I R15, =V(name) I 
I I I BAL I Rn,0(0,R15)4 I 
~----------+----------t--------------------t---------------------------~ 
I 4 I I L I R15, =V (name) I 
I I I BAL I Rn,0(R15)5 I 
~----------+----------t--------------------+---------------------------~ 
I 56 I I L I R15, =V(name) I 
I I I BeR I 15, R15 I 
~----------+----------+--------------------t---------------------------~ 
I 6 6 I I L I R15, =VCname) I 
I I I BC I 15,OCO,R15)4 I 
~----------+----------+--------------------+---------------------------~ 
I 7 6 I I L I R15, =V(name) I 
I I I BC I 15, 0 (R15) 5 I 
~----------~----------~--------------------~---------------------------~ 
11 When the name field is blank, specification of a name is optional. 
12R15 is the register into which is loaded a 4-byte address constant 
I that is an entry name or a control section name in the requested 
I segment. The address constant must be loaded into the standard entry 
I point register, register 15. 
13 Rn is any other register and is used to hold the return address~ 
I This register is usually register 14. 
14This may also be written so that the index register is loaded with 
I the address constant: the other fields must be zero. 
15In this format, the base register must be loaded with the address 
I constant; the displacement must be zero. 
16This example is an unconditional branch; other conditions are also 
I allowed. l ______________________________________________________________________ J 

A branch between inclusive segments is always valid: a return may be 
made by means of the address stored in Rn. A branch between exclusive 
segments is valid if the conditions for a valid exclusive reference are 
met; a return can be made only by another exclusive reference • 

..§egment Load (SEGLD) Macro Instruction 

The SEGLD macro instruction is used to provide overlap between 
segment loading and processing within the requesting segment. As a 
result of uBing any of the examples in 'l'able 3, the loading of the 
requested s(~gment and any segments in its path is initiated when they 
are not part of the path already in virtual storage. Processing then 
resumes at the next sequential instruction in the requesting segment 
while the s{~gment or segments are being loaded. Control may be passed 
to the requested segment with either a CALL or a branch, as shown in 
examples 1 and 2, respectively. A SEGWT instruction can be used ·to 

80 OS/VS Linkage Editor and Loader 



ensure that the data in the control section specified by the external 
name is in virtual storage before processing begins, as shown in 
Example 3. 

The external names specified in the SEGLD macro instruction must be 
defined with a 4-byte V-type address constant. The high-order byte is 
reserved for use by the control program and must not be altered during 
execution of the program. 

Note: Some configurations of the control program do not have the 
capability of processing the SEGLD macro instruction. When used, the 
macro instruction is treated as a NOP (no operation) and the segment is 
loaded when a SEGWT macro instruction or a branch is executed. If the 
rules of overlay are followed, correct execution occurs. 

Table 3. Use of the SEGLD Macro Instruction 
r----------T----------T--------------------T---------------------------, 
I Example I Name~ I Operation I Operand 2 3 I 

~----------+----------+--------------------+---------------------------~ 
I 1 I I SEGLD I external name I 

I I I I I 
I I I CALL I external name I 

~----------+----------f--------------------+---------------------------~ 
I 2 I I SEGLD I external name I 

I I I I I 
I I I branch I I 

~----------f----------+--------------------+---------------------------~ 
I 3 I I SEGLD I external name I 
I I I I I 
I I I SEGWT I external name I 

I I I L I Rn,=A(name) I 
~----------~----------~--------------------~---------------------------~ 
I~When the name field is blank, specification of a name is optional. I 
12 External name is an entry name or a control section name in the I 
I requested segment. I 
13 Rn is any other register and is used to hold the return address. I 
I This register is usually register 14. I L ______________________________________________________________________ J 

Segment Wait (SEGWT) Macro Instruction 

The SEGWT macro instruction is used to stop processing in the 
requesting segment until the requested segment is in virtual storage. 

As a result of using any of the examples in Table 4, no further 
processing takes place until the requested segment and all segments in 
its path are loaded when not already in virtual storage. Processing 
resumes at the next sequential instruction in the requesting segment 
after the requested segment has been loaded. 

If the SEGWT and SEGLD macro instructions are used together, overlap 
occurs between processing and segment loading; use of the SEGWT macro 
instruction serves as a check to see that the necessary information is 
in storage when it is finally needed (see Example 1 in Table 4). In 
Example 2 in Table 4, no overlap is provided; the SEGWT macro 
instruction initiates loading, and processing is stopped in the 
requesting segment until the requested segment is in virtual storage. 

overlay Programs 81 



The external name specified in the SEGWT macro instruction must be 
defined with a 4-byte V-type address constant. The high-order by·te is 
reserved for use by the control program, and must not be altered during 
execution of the program. 

If the contents of a virtual storage location in the requested segment 
are to be processed, the entry name of the location must be referred to 
by an A-type address consta.nt. 

Table 4. Use of the SEGW,]~ Macro Instruction 
r---------T----------T--------------------T---------------------------, 
I Example I Name~ I Operation I Operand 2 3 I 
~----------+----------+--------------------+---------------------------i 
I 1 I I SEGLD I external name I 
I I I I I 
I I I SEGWT I external name I 
I I I L I Rn,ADCON I 
I I I I I 
I I I branch I I 
I I ADCON I DC I A (name) I 
~----------+----------+--------------------+---------------------------i 
I 2 I I SEGWT I external name I 
I I I L I Rn, =A ( name) I 
~----------~----------~--------------------~---------------------------i 
I~When the name field is blank, specification of a name is optional. I 
12 External name is an entry name or a control section name in the I 
I requested segment. I 
13 Rn is any other register and is used to hold the return address. I 
I This register is usually register 14. I L ______________________________________________________________________ J 

82 OSjVS Linkage Editor and Loader 



JOB CONTROL LANGUAGE SUMMARY 

This chapter summarizes those aspects of the job control language 
that pertain directly to the use of the linkage editor. ~he major 
topics covered are the EXEC statement, DD statements, and cataloged 
procedures for the linkage editor. The reader should be familiar with 
the job control language as described in OS/VS1 JCL Reference or 
OS/VS2 JCL. 

The EXEC statement is the first statement of every job step. For the 
linkage editor job step, the following topics are pertinent: 

• The program name of the linkage editor. 

• Linkage editor options passed to the job step. 

• Region requirements for the linkage editor. 

For an execution job step following the linkage editor job step, the 
linkage editor return code is important. 

The EXEC statement contains the symbolic name of the load 
module to be invoked for execution. The linkage editor can 
be invoked with the following program name: 

HEWL 

LINKEDIT is an alias name for the linkage editor and can also 
be used to invoke it. 

For example, the following EXEC statement causes the linkage 
editor to be invoked: 

//LKED EXEC PGM=HEWL 

PGM=LINKEDIT could also be used 

To ensure compatibility with the operating system, the linkage 
editor can also be invoked by any of the following alias names: 
IEWL, IEWLF440, IEWLF880, IEWLF128. 

EXEC STATEMENT -- JOB STEP OPTIONS 

The EXEC statement also contains a list of options or pararreters to 
be passed to the linkage editor. These options are of four types: 

• Module attributes, which describe the characteristics of the output 
load module. 

• Special processing options, which affect linkage editor processing. 

• Space allocation options, which affect the amount of storage used by 
the linkage editor for processing and output module library buffers. 

• Output options, which specify the kind of output the linkage editor 
is to produce. 

Job Control Language Summary 83 



The rest of this section describes the options in each category. All of 
the options for a particular linkage editor execution are listed in the 
PARM parameter on the EXEC statement. They can be listed in any 
sequence, as long as the rules for coding parameters are followed. 

MODULE ATTRIBUTES 

The module attributes describe the characteristics of the output 
module, or modules. (If more than one load module is produced by the 
same linkage editor job step, all output modules will have the 
attributes assigned on the EXEC statement.) The attributes for each 
load module are stored in the directory of the output module library 
along with the member name. (The format of the directory entry of a 
partitioned data set is given in as/VS1 System Data Areas and as/VS2 
Data Areas. 

Module attributes specify whether or not the module: 

• Can ever be reprocessed by the linkage editor. 

• Can be brought into virtual storage only by the LOAD macro instruction. 

• Is to be in overlay format. 

• Can be! reused. 

• Can bE! placed in the link pack area; i. e., is re-enterable. 

• Can be replaced durinq execution by recovery management; i. E!., :is 
refreshable. 

• Is to be tested by the TSa TEST command under VS2. 

• Is to have specified control sections aligned on page boundaries. 

After the descriptions of the module attributes, the default and 
incompatible attributes are discussed. 

Note: The attributes for hierarchy format (HIAR) and scatter 
loading (SCTR) can be specified on the EXEC statement to ensure 
compatibility with the operating system. If either is specified, 
the linkage editor prepares the load module accordingly; however, 
hierarchy format and scatter loading are not supported by VS, and 
the attributes are ignored during execution of the load module. 

To assign the hierarchy format attribute, code HIAR in the PARM 
field, as follows: 

/ /LKED EXEC PGM=HEWL, PARM=' HIAR, ... ' 

TO assign the scatter loading attribute, code SCTR in the PARM 
field, as follows: 

//LKED EXEC PGM=HEWL,PARM='SCTR, ... ' 

The downward compatibility attribute (DC) is used to ensure that 
load modules processed by the linkage editor can be reprocessed by 
the level F linkage editor. This attribute would be needed under 
VS only when either (1) a maximum record size of 1024 bytes is 
required or (2) no grouping of control sections in output load 
module records is desired. 

84 as/vs Linkage Editor and Loader 



To assign the downward compatibility attribute, code DC in the 
PARM field, as follows: 

//LKED EXEC PGM=HEWL,PARM='DC, ... ' 

Note: If the output module library is an existing data set, the block 
size in the DSCB (data set control block) is set to 1024 only if the 
current blocksize of the data set is less than 1024. For new output 
module libraries, the blocksize in the DSCB is always set to 1024. 
The programmer however, can override the system generated blocksize 
by using the DCBS option (see 'DCBS option'). 

Not Editable Attribute 

A load module which is marked NE (not editable) is not reprocessable 
by the linkage editor. If a module map or a cross-reference table is 
requested, the not editable attribute is neglected. 

To assign the not editable attribute, code NE in the PARM field, as 
follows: 

//LKED EXEC PGM=HEWL,PARM='NE, ... ' 

Note: The not editable attribute disables the EXPAND function for the 
output load module and also limits to eighteen the number of consecu
tive iterations of AMASPZAP (for VS2) or HMASPZAP (for VS1). If the 
EXPAND function is required or more than eighteen iterations of 
AMASPZAP/HMASPZAP are required, the load module will have to be 
recreated. 

On1Y-Loadable Attrib~te 

A module with the only loadable attribute can be brought into virtual 
storage only with a LOAD macro instruction. Some subsets of the control 
program use a smaller control table when the load module is invoked with 
a LOAD. This reduces the overall virtual storage requirements of the 
module. 

A module with the only loadable attribute ,must be entered by means of 
a branch instruction or a CALL macro instruction. If an attempt is made 
to enter the module with a LINK, XCTL, or ATTACH macro instruction, the 
program making the attempt is terminated abnormally by the control 
program. 

To assign the only loadable attribute, code OL in the PARM field as 
follows: 

//LKED EXEC PGM=HEWL,PARM='OL, ... ' 

Note: The only loadable attribute is intended primarily for use by the 
control program. Use of this attribute by the problem programmer can 
impair the usability of the module. 

Job Control Language Summary 85 



overl~,tribute 

A program with the overlay attribute is placed in an overlay 
structure as directed by t,be linkage editor OVERLAY control statements. 
The module is suitable only for block loading; it cannot be refreshable, 
re-enterable, serially reusable, or assigned to hierarchies. 

If the overlay attribute is specified and no OVERLAY control 
statements are found in the linkage editor input, the attribute is 
negated. The condition is considered a recoverable error; that is, if 
the LET option is specified, the module is marked executable. 

The overlay attribute must be specified for overlay processing. If 
this attribute is omitted, the OVERLAY and INSERT statements are 
considered invalid, and the module is not an overlay structure. This 
condition is also recoverable; if the LET option is specified, the 
module is marked executable. 

To assign the overlay attribute, code OVLY in the PARM field as 
follows: 

//LKED EXEC PGM=HEWL, PARM= I OVLY , .•. I 

See "Overlay Programs" for information on the design and 
specification of an overlay structure. 

Ei ther one of two at'tributes may be spec if ied to denote the 
reusability of a module. Reusability means that the same copy of a load 
module can be used by more than one task either concurrently or one at a 
time. The reusability at1:ributes are re-enterable and serially 
reusable; if neither is specified, the module is not reusable and a 
fresh copy must be brought into virtual storage before another task 
can use the module. 

The linkage editor only stores the attribute in the directory entry; 
it does not check whether the module is really re-enterable or serially 
reusable. A re-enterable module is automatically assigned the reusable 
attribute. However, a reusable module is not also defined as 
re-enterable; it is reusable only. 

Re-enterable: A module with the re-en'terable attribute can be executed 
by more than one task at a time; that is, a task may begin executing a 
re-enterable module before a previous "task has finished executing it. 
This type of module cannot: be modified by itself or by any other module 
during execution. 

If a module is to be re-enterable, all of the control sections within 
the module must be re-enterable. If the re-enterable attribute is 
specified, and any load modules that a:['e not re-enterable become a part 
of the input to the linkage editor, the attribute is negated. 

To assign the re-enterable attribute, code RENT in the PARM field, as 
follows: 

//I.KED EXEC PGM=HEWL,PARM=' RENT, •.. ' 

86 OS/VS Linkage Editor and Loader 



Serially Reusable: A module with the serially reusable attribute can be 
executed by only one task at a time; that is, a task may not begin 
executing a serially reusable module before a previous task has finished 
executing it. This type of module must initialize itself and/or restore 
any instructions or data in the module altered during execution. 

If a module is to be serially reusable, all of its control sections 
must be either serially reusable or re-enterable. If the serially 
reusable attribute is specified, and any load modules that are neither 
serially reusable nor re-enterable become a part of the input to the 
linkage editor, the serially reusable attribute is negated. 

To assign the serially reusable attribute, code REUS in the PARM 
field, as follows: 

//LKED EXEC PGM=HEWL,PARM='REUS, ..• ' 

Refreshable Attribute 

A module with the refreshable attribute can be replaced by a new copy 
during execution by a recovery management routine without changing 
either the sequence or results of processing. This type of module 
cannot be modified by itself or by any other module during execution. 
The linkage editor only stores the attribute in the directory entry; it 
does not check whether the module is refreshable. 

If a module is to be refreshable, all of the control sections within 
it must be refreshable. If the refreshable attribute is specified, and 
any load modules that are not refreshable become a part of the input to 
the linkage editor, the attribute is negated. 

To assign the refreshable attribute, code REFR in the PARM field, as 
follows: 

//LKED EXEC PGM=HEWL,PARM='REFR, ... ' 

Test Attribute 

A module with the test attribute is to be tested and contains 
the testing symbol tables for the TSO TEST command. The linkage 
editor accepts these tables as input, and places them in the output 
module. The module is marked as being under test. If the test 
attribute is not specified, the symbol tables are ignored by the 
linkage editor and are not placed in the output module. If the test 
attribute is specified, and no symbol table input is received, the 
output load module will not contain symbol tables to be used by 
the TSO TEST command. 

To assign the test attribute, code TEST in the PARM field, as 
follows: 

//LKED EXEC PGM=HEWL,PARM='TEST, ... ' 

Note: The test attribute applies to programs using TESTRAN or the TSO 
TEST command. Do not use the JTEST' option unless the load module is 
to be executed by TSO or TESTRAN. 

Job Control Language Summary 87 



Page Bound~Attribute 

Control sections within a load module with the page boundary 
attribute are aligned in storage on page boundaries. Used with 
the PAGE control statement. or the ORDER statement with the P 
operand, this attribute causes alignment of specified control 
sections on 2K boundaries. If virtual storage is limited under 
VS1, alignment on 2K page boundaries reduces paging and conserves 
storage; however, performance degradation may result when 2K 
alignment is used under VS2. 

To assign the 2K page boundary attribute, code ALIGN2 in the 
PARM field, as follows: 

IIIJKED EXEC PGM=HEWL, PARM= ' ALIGN2 , ... ' 

Note: If the ALIGN2 attribute is not coded and the PAGE statement 
or ORDER statement with the P operand is used, the default boundary 
alignment is 4K. 

Unless specific module attributes are.indicated by the programmer, 
the output module is not in an overlay structure, and it is not tested 
(assembler only). The module is in block format, not refreshable, 
not re-enterable, and not serially reusable. Its control sections 
are aligned on 4K page boundaries if page boundary alignment is requested. 

One other attribute is specified by the linkage editor after 
processing is finished. If, during processing, severity 2 errors were 
found that would prevent the output module from being executed 
successfully, the linkage editor assigns the not executable attribute. 
The control program will not load a module with this attribute. 

If the LET option is specified, the output module is marked 
executable even if severity 2 errors occur. The LET option is discussed 
later in this section. 

Incompatible Attributes 

Of the module attributes that the programmer may specify, 
several are mutually exclusive. When mutually exclusive attributes 
are specified for a load module, the linkage editor ignores the 
less significant attribut:es. For example, if both OVLY and RENT are 
specified, the module will be in an overlay structure and will not be 
re-enterable. 

Certain attributes are also incompatible with other job step options. 
For convenience, all job step options are shown in Figure 35 at thE~ end 
of this chapter along wit:h those options that are incompatible. 

88 OS/VS Linkage Editor and Loader 



SPECIAL PROCESSING OPTIONS 

The special processing options affect the executability of the output 
module and the use of the automatic library call mechanism. These 
options are the exclusive call option, the let execute option, and the 
no automatic call option. 

Exclusive Call Option 

When the exclusive call option is specified, the linkage editor marks 
the output module as executable when valid exclusive references have 
been made between segments. However, a warning message is given for 
each valid exclusive reference. 

To specify the exclusive call option, code XCAL in the PARM field as 
follows: 

//LKED EXEC PGM=HEWL,PARM='XCAL,OVLY, ... ' 

The OVLY attribute must also be specified for an overlay program. 

Note: Other errors may cause the module to be marked not executable 
unless the let execute option is specified. 

Let Execute OEtion 

When the let execute option is specified, the linkage editor marks 
the output module as executable even though a severity 2 error condition 
was found during processing. (A severity 2 error condition could make 
execution of the output load module impossible.) Some examples of 
severity 2 errors are: 

• Unresolved external references. 
• Valid or invalid exclusive calls in an overlay program. 
• Error on a linkage editor control statement. 
• A library module that cannot be found. 
• No available space in the directory of the output module library. 

Job Control Language summary 89 



To specify the let execute option, code LET in the PARM field as 
follows: 

//LKED EXEC PGM=HEWL,PARM='LET, ... ' 

Note: If :LET is specified, XCAL need not be specified. 

No Automatic Library Call Option 

When the no automatic library call option is specified, the linkage 
editor library call mechanism does not call library members to resolve 
external references. The output module is marked executable even though 
unresolved external references are present. If this option is 
specified, the LIBRARY sta.tement cannot be used to negate the au·tomatic 
library call for selected external references. Also, with this option, 
a SYSLIB DD statement need not be supplied. 

To specify the no automatic library call option, code NCAL in the 
PARM field, as follows: 

//LKED EXEC PGM=HEWL,PAHM='NCAL, ... ' 

Note: Other errors may cause the module to be marked not executable 
unless the LET option is also specified. 

SPACE ALLOCATION OPTIONS 

These options allow the progranuner to specify the storage available 
to the linkage editor, and to specify the blocksize for the output 
module. 

SIZE Option 

The programmer can specify, through the size option, the amount of 
virtual storage to be used by the level F linkage editor and the por
tion of that storage to be used as the load module buffer. 

Default values for the size option are chosen during system genera
tion. The default values are used if one or both of the values are not 
specified correctly, or not specified at all. These defaults should be 
made adequate for most link edits, relieving the programmer from having 
to specify the size option for each link edit. For details on how to 
establish default values, see the publication OS/VS, System Generation 
Reference or OS/VS2 System Programming Library: System Generation 
Reference. 

Format: The format of the SIZE option is: 

SIZE=(value"value2 ) 
SIZE= (value, ) 
SIZE= (value, ,) 
S I ZE= ( , val ue 2) 
SI ZE= ( , ) 

When coded in the PARM field, the expression is enclosed in single 
quotes, as follows: 

//LKED EXEC PGM=HEWL,PARM='SIZE=(value" value2 ) , ... ' 

Both value, and value2 may be expressed as integers specifying t:he 
number of bytes of virtual storage or as Nk where N represents the 
number of 'k ('024 bytes) of virtual storage. 

When determining the values for the size option, it is best to 
establish value 2 first, then value,. 

90 as/vs Linkage Editor and Loader 



value 2 specifies the number of bytes of storage to be allocated 
as the module buffer. The allocation specified by value 2 is a part of 
the virtual storage specified by value 1 . 

. The actual minimum for value2 ~~ 6144 (6k) or the length of the largest 
~nput load module text record, wh~chever is larger. If a value less than 
6144 (6k) is specified, the default value for value

2 
is used. 

The space allocated by value2 is used as: the buffer into which the 
input load module text is read, the buffer from which load module text 
is written to the intermediate data set, the buffer into which the load 
module text is read from the intermediate data set, and the buffers 
from which the load module text is written to the output data set. 
Therefore the determination of value 2 requires that the programmer con
sider the record sizes of the data sets from which any load module text 
records are to be read (SYSLIB, any data set referenced by an INCLUDE, 
any library data set), the record size for the intermediate data set 
(SYSUT1), and the record size for the output load module data set 
(SYSLMOD) . 

Table 5 lists the direct access devices that may contain data sets 
that are the source of input load module text, the intermediate data set, 
and the output load module data set, and lists the maximum record size 
used for each device by the linkage editor. These maximum record sizes 
may always be used in specifying value 2 or, if the programmer can deter
mine them, exact sizes can be used. 

Table 5. SYSUT1 and SYSLMOD Device Type and Their Maximum Record Sizes 

Device Maximum record si ze 

2305 13312 or 13K 
2314 6144 or 6K 
2319 6144 or 6K 
3330 12288 or 12K 
3340 12288 or 12K 

The programmer must specify value 2 so that the linkage editor has 
sufficient space to allocate buffers that are compatible with the record 
sizes for the intermediate data set and the output load module data set. 

The linkage editor optimizes the record size for the device type of 
the input load module data set unless one of the following conditions 
exists. 

1) The programmer has specified PARM=' .. DC ... ', forcing the linkage 
editor to write records having a maximum size of 1024 (1K) bytes. 

2) The programmer has specified PARM=' ... DCBS ... ', and the SYSLMOD DD 
statement contains a BLKSIZE subparameter in the DCB parameter, 
forcing the linkage editor to write records having a maximum length 
equal to the BLKSIZE specification. 

3) The output load module data set is an existing data set having a 
block size less than the optimum record size, forcing the linkage 
editor to write records no longer than that block size. 

4) The programmer has specified a value less than twice the maximum 
record size for the output load mOdufe data set, forcing the linkage 
editor to write records having a maximum size of one half value 2 . 

5) The intermediate data set and the output load module data set have 
dissimilar record sizes, forcing the linkage editor to write records 
having a maximum size determined for compatibility between the two 
data sets. 

Job Control Language Summary 91 



The linkage editor optimizes the record size of the output load module 
data set for its device type but selects a record size compatible with the 
intermediate data set (see restrictions above). Therefore, use of the 
load module buffer is optimized if the intermediate data set and the out
put load module data set reside on the same device type. The performance 
of the linkage editor is improved if the data sets are on different units 
of the same type. 

Table 6 shows the record sizes used for compatibility between every 
combination of device typE~S for the intermediate and output load module 
data sets. 

value 2 is, minimally, twice the record size for the output load Inodule 
data set. If value2 can be made larger than twice the record size for the 
output load module data set, the increase should be the larger of the 
record sizes for the intermediate and output load module data sets. 

The maximum for value is 102400 (100K). The practical maximum however, 
is the length of the loa~ module to be built, plus 4K if the length of the 
load module to be built is equal to or greater than 40960 (40K). Any space 
allocated to the load module buffer above this amount is not used and need 
not be allocated to value 2 . 

If a value greater than the maximum for value 2 is specified, the default 
value for value 2 is used. If a va"lue 2 is specified that cannot be accomo
dated in the available storage, value 2 is reduced to the next lower 2K 
multiple of storage that is available. This reduction, however, never 
decreases value 2 to less than the minimum, 6144 (6K). 

Table 6. Load Module Buff E:!r Area and SYSLMOD and SYSUT1 Record Sizes 

i - SYSL;~~ Record siz~ -- i - ~Y;UT1 -;e~ord -;i-;e - - - I" Mi~i~- .- i 
I" - - - _. T - - - - - - - - - - I - -- - - - - --I Load Module 
I Device I Maximum Record : Device I Maximum Record 1 Buffer Area 1 

I Used I Size Produced I Used I Size Produced : (Value2) , 
r - - - - -I-- - - - - - -- -,- - - - I -- - - -1- - -- - - --t 
I I I 2305 I 12K2 1 I 
I IBM 2314 I 2314,2319 6K 12K 
1 IBM 231 9, 6K , 3330,3330 -1 1 2K I I 
I I 1 3340 I 6K2 I I 
t- - - - - '-, - - - -- --t- - - - -- -1- - - - - - -1- - -. - .- --i 
,I 2305 1 1 2K 2 I 1 

IBM 3330 I I 2314,2319' 6K 1 24K 
" IBM 33 30--1 I 12K 1 33 30 , 333 0 -1 I 12K I I 

I I 3340 1 6K2 I I 
~ - - - - --1- - - - - - - +- - - - - T - - - -- 1- - - - ---l 
1 L ___ ~·~K _____ 1 ~05 ______ L _ ~5K2 ___ 1.. _ 25~ _._j 
, IBM 3340 I 6K1 I 2314,2319 1 6K I 12K , 

I ~- -7.5K- - - -'3330,3330-1 T -7.5K2 - - -'-15K --1 
I '- - - - - - - - - t- - - - - -- -.l- - - -- -- - - -- -I- - - -- - -- -i 
I I 7.5K I 3340 I 7.5K I 15K I 
I- - - -- -- --I - - - -- - - - - -- -- - - - - .- -,- - - - - - - -1- - - - -- --1 
1 13K I 2305 13K 26K 

L ______ -- _1_ - - - - - -L - - - - - - - +- - - - - - -I 
I IBM 2305 1 12K1 2314,2319 I 6K I 24K 
I --- --- - - -1- -- --'-,-- - -- - - - - - _.- ----~ I ~ __ ~ 2K~ ___ -.l}33~ 33~-1 -I- ___ 1":K ____ : __ 2~ ___ .J 
I 12K1 I 3340 6K 24K I ,----.1.---- ...l. _____ L_ _-1 ______ -/ 
INotes~ I 
I 1The SYSLMOD record size is reduced to less than the maximum to make I 
I it compatible with the SYSUT1 record size. I 
I 2The SYSUrr1 record size is reduced to less than the maximum to make it I 
I compatible with the SYSLMOD record size. I L ______________________________ ~ 

92 OS/VS Linkage Editor and Loader 



The optimal value 2 is the practical maximum, as explained above. 
If the entire load module is contained in storage, the performance of the 
linkage editor is improved and the use of the intermediate data set may 
be eliminated. 

Examples of Value2 Determination 

(1) A load module of between 21K and 22K is to be built. The load module 
data set is a new data set on a 3330. The intermediate data set is 
allocated to a 2314. ASYSLI~ data set is to be used, residing on 
a 3330. The entire load module could be contained in the load module 
buffer if value2 were 22K (the load module size). The minimum for 
value2 would be 12K (the size of the largest possible input load 
module text record from the SYSLIB data set). However, value2 must 
be at least as large as two reco~ds to be written to the load module 
data set (i.e., 24K). there is a reconciliation necessary in this 
case between the two dissimilar device types for the intermediate 
and output load module data sets,; but the record size of the output 
load module data set is an even mUltiple of the record size of the 
intermediate data set so no adjustment of the record sizes is made. 
Therefore, the minimum, as well as the maximum and optimal, value2 
in this case is 24K. 

(2) A load module of more than 50K is to be re-link-edited; however, a 
maximum of 40K is available to be allocated to value2' The output 
load module data set is an old data set residing on a 2314, written 
with maximum record size. The intermediate data set is allocated to 
a 2305. The link-edit involves a control section in the SYSLIN data 
set that will replace a control section in the old load module, fol
lowed by an include statement naming the old load module on the 
SYSLMOD data set. The maximum for value2 cannot be satisfied, since 
only 40K is available. The size of two maximum records written to a 
2314 would be 12K. However, the size of one record to be written or 
no be read from the intermediate data set is 12K. Therefore, the 
minimum for value2 in this case is 12K. This is sufficient space for 
one input load module text record or one record written to or to be 
read from the intermediate data set or two records written to the 
output load module data set. The optimum value2 in this case is 36K; 
the minimum, 12K, plus two increments of the larger of the record 
sizes for the intermediate data set and the output load module data 
set, 12K. 

(3) The output load module data set resides on a 2305. The intermediate 
data set is allocated to a 3330. All load module input comes from 
a 3330. Vaaue2 in this case is 24K, because the input load module text 
records are, at mos~, 12K, the records written to and read from the 
intermediate data set are 12K, and the records written to the output 
load module data set are 12K. The maximum record size of 13K for the 
2305 is reduced to 12K for this link-edit in order to be compatible 
with the intermediate data set. 

An alternative for value2 in the above example is 12K. 12K is ade
quate for the input load module text records and the records 
written to and read from the intermediate data set. 12K forces a 
maximum record size of 6K to be written to the output load module 
data set. At 6K each, two records can be written on a 2305 track 
while, as in the above example, only one record of 12K can be writ
ten on a 2305 track. 

Job Control Language Summary 93 



(4) A load module of 10K is to be link-edited. The output load module 
data set resides on a 2305. The input load module libraries all 
reside on 2314s. The intermediate data set is allocated to a 2314. 
The progranuner has specified the linkage editor parameter DC. The 
minimum for value2 of 6K is adequate in this case, since 6K is suf
ficient for input and intermediate data set records and the output 
load ihoddle data set records have a maximum size of 1K. 

(5) The ou·tput load module data set is a new data set allocated to a 
3330. 'rhe prograrruner has specif ied the linkage editor parameter 
DCBS and the SYSLMOD DD statement contains 
' ••. DCB=( •.. BLKSIZE=3072, ..• ) , ... '. The only load module input 
comes from a data set created previously in a similar manner. The 
intermediate data set is allocated to a 2314. The minimum for 
value2 in this case is 6K; the input load module records are 3K 
at most, the intermedi.ate data set records are 6K at most, and, as 
directed by the progrcmmer, the linkage editor produces records 
having a maximum size of 3K on the output load module data set. 

Value1 specifies the number bytes of virtual storage available t:o the 
linkage editor, regardless of the region or partition size. The storage 
specified by value1 includes the allocation specified by value2' 

The minimum for value, is the design point of the linkage editor, 64K. 
If a value less than the minimum for value1 is specified, the default 
options for both value, and value2 are used. 

The practical minimum value1 is 65536 (64K) plus any excess in value2 
over 6144 (6K), plus any addit~onal space required to support the blocking 
factor for the SYSLIN, object module library, and SYSPRINT data sets. 

The design point of the linkage editor provides for the minimum load 
module buffer - 6144 (6K) bytes of virtual storage. If a load module 
buffer larger than 6144 (6K) is specified in value2, value1 must be 
increased by the excess of that value2 over 6144 (6K). 

The linkage editor supports three different blocking factors for the 
SYSLIN, object module library, and SYSPRINT data sets; they are 5, '0, 
and 40 to 1. The requirement for additional space depends upon the 
blocking factor that is ·to be supported. The following table shows the 
additional space required to support each blocking factor. 

Space Requirement for Blocking Factor Support 
,- - _. - - - - - - - - - --l 

Blocking Factor 
1------,- - - - --,- - - -- --1 
1.2 '£0_'_. -l_1Q... to ..1. ____ + _4Q.. to --.1 _ ---t 
1 0 or OK I 18432 or '8K 28672 or 28K J 
~ ___ L ______ L ____ _ 

Blocking factors of 1 through 4, 6 through 9, and 11 through 39 are 
treated as blocking factors of 5, 10, and 40, respectively. Blocking 
factors q-reater than 40 are invalid. 

The additional space requirement is determined by the largest blocking 
factor ~nong the affected data sets. 

The blocking factor supported is dE~pendent upon space available ·after 
value2 has been allocated to the load module buffer out of value1. There
fore, if the space provi.ded in value" is insufficient, the link-edit 
will be terminated with an error message to that effect. 

94 OS/VS Linkage Editor and Loader 



The maximum for value1 is 999999 (999K) or, the region or partition 
whichever size is smaller. (See "EXEC Statement - Region Parameter" 
below.) If a value1 is specified greater than the reg~on or partition 
size, the editor may use some of the storage intended for data manage
ment and other system functions required by the linkage editor. This 
lack of storage will result in the abnormal termination of the link-edit. 

Value1 should be as large as possible. The performance of the linkage 
editor is improved when additional storage is allocated by value1. 

Examples of Value1 Determinat.i.on 

(1) An optimum value2 of 36K has already been determined for the link
edit. An appropriate value1 is 94K, since an additional 30K, above 
the minimum of 64K, is needed to support the allocation of 36K to 
value2 and no additional storage is required to support the blocking 
factors for SYSLIN, SYSPRINT, and any object module libraries. 

(2) The minimum for value 2 (6K) is being used. All of the object module 
libraries are blocked 5-to-1, except one that is blocked 10-to-1. The 
SYSLIN and SYSPRINT data sets are assigned blocking factors of 5. An 
appropriate value1 for this link-edit is 82K, the minimum plus the 
18K needed to support the blocking factor of 10-to-1 on the object 
module library. 

(3) The same situation exists as in example 2. However, in this case the 
minimum region size is 100K. A more appropriate value1' under these 
circumstances, is 90K. Since extra space is available, it is possible 
to optimize use of the region allocated and to increase value2 to 
18K, the optimum for this case. 

DCBS option 

The DCBS option allows the programmer to specify the blocksize for 
the SYSLMOD data set in the DCB parameter of the DD statement. If the 
data set is new, the blocksize specified by the programmer will be used 
unless it is larger than the maximum record size for the device. In 
this case, the linkage editor will use the maximum record size. If the 
data set is old, either the blocksize specified by the programmer or 
the existing blocksize, whichever is larger, will be used. However, if 
the blocksize specified by the programmer is larger than the maximum 
record size for the device, the linkage editor will use the maximum 
record size. 

The following example shows the use of the DCBS option for a 2314 
disk: 

//LKED EXEC PGM=HEWL,PARM='XREF,DCBS' 

//SYSLMOD DD DSNAME=LOADMOD(TEST),DISP=(NEW,KEEP>, 
// DCB=(BLKSIZE=3072), ••• 

As a result, the linkage editor uses a 3K blocksize for the output 
module library. 

Note: When the DCES option is used, a blocksize must be specified in 
the DCB parameter of the SYSLMOD DD statement. 

Job Control Language Summary 95 



OUTPUT OPTIONS 

These options control the optional diagnostic output produced by the 
linkage editor. The programmer can request that the linkage editor 
produce a list of all control statements and a module map or 
cross-reference table to help in testing a program. The format of each 
is described in the chapter "output from the Linkage Editor." 

In addi1:ion, the programmer can request that the numbered 
error/warning messages generated by the linkage editor should appear on 
the SYSTERr1 data set as well as on the SYSPRINT data set. 

To request a control statement listing, code LIST in the PARM field, 
as follows:: 

//LKED EXEC PGM=HEWL,PARM='LIST, .•• ' 

When thE~ LIST option is specified, all control statements processed 
by the linkage editor are listed in card-image format on the diagnos·tic 
output data set. 

To req~est a module map, code MAP in the PARM field, as follows: 

//LKED EXEC PGM=HEWL,PARM='MAP, .•. ' 

When the~ MAP option is specif ied, the linkage editor produces a 
module map of the output module on the diagnostic output data set. 

To requ.est a cross-reference table, code XREF in the PARM field, as 
follows: 

//LKED EXEC PGM=HEWL,PARM='XREF, .•. ' 

When the XREF option is specified, the linkage editor produces a 
cross-reference table of the output module on the diagnostic output data 
set. The cross-reference table includes a module map; therefore, both 
XREF and M~P need not be specified for one linkage editor job step. 

Alternate Output (SYSTERM). 0E!:ion 

To request that the numbered linkage editor error/warning messages be 
generated on the data set defined by a SYSTERM DD statement, code TERM 
in the PARM field, as follows: 

//LKED EXEC PGM=HEWL,PARM='TERM, ... ' 

When the TERM option is specified, a SYSTERM DD statement must be 
provided. If it is not, the TERM option is negated. 

output specified by the TERM option supplements printed diagnostic 
information; when TERM is used, linkage editor error/warning messages 
appear in both output data sets. 

96 OS/VS Linkage Editor and Loader 



INCOMPATIBLE JOB STEP OPTIONS 

When mutually exclusive jOb step options are specified for a linkage 
editor execution, the linkage editor ignores the less significant 
options. Figure 35 illustrates the significance of those options that 
are incompatible. When an X appears at an intersection, the options are 
incompatible. The option that appears higher in the list is selected. 

For example, to check the compatibility of XREF and NE, follow the 
XREF column down and the NE row across until they intersect. Since an X 
appears where they intersect, they are incompatible; XREF is selected, 
NE is negated. 

If incorrect values are 'specified for the SIZE parameter, the default 
values are used. If incompatible options are detected, the message 

*** OPTIONS INCOMPATIBLE *** 

is printed. This message follows the standard module disposition 
message. 

~ o-.l. 

- '\~'-)'\ 

+~~ 
~~ 

X 
~ 'V 

~~~ 
X ~~~'-)
X X

~~
~ X +~~

X X
~'\ v

...,." X X X
~~

0"
'-)~~

$-~
X (,~'-)

<)

I
'\~~

Figure 35. Incompatible Job Step Options for the Linkage Editor

If the SIZE option is specified, the partition size in VS1 must be
10K larger thanvalue1. If VS2 is used, the default or specified region
size must be 10K larger than value1.

For example, if SIZE+(200K,36K) is coded when using the 88K design
Size, the REGION specified must be the same as value1, that is REGION=200K.

Job Control Language Summary 97

EXEC STATEMENT -- RETURN CODE

The linkage editor passes a return code to the control program upon
completion of the job step. The return code reflects the highest
severity code recorded in any iteration of the linkage editor within
that job step. The highest severity code encountered during processing
is multiplied by 4 to create the return code: this code is placed into
register 15 at the end of linkage editor processing. Table 7 contains
the return codes, the corresponding severity code, and a description of
each.

The programmer may use this return code to determine whether or not
the load module is to be executed by using the condi t:ion parameter
(COND) on the EXEC statement for the load module. The control program
compares the return code with the values specified in the COND
parameter, and the results of the comparisons are used to determine
subsequent action. The COND parameter may be specified either in the
JOB statement or the EXEC statement (see the publication OS/VS JCL
Reference) .

Table 7. Linkage Editor Return Codes
r-----~--------T--,
I Return I Severity I I

I Code I Code I Description I

~-----+--------+--i
I 00 I 0 I Normal conclusion. I
~------+--,------+--i
I 04 I 1 I Warning messages have been listed, execution should I

I I I be successful. For example, if the overlay op,tion is I
I I I specified and the overlay structure contains only onel
I I I segment, a return code of 04 is issued. I
~------+--------+--i
I 08 I 2 I Error messages have been listed, execution may fail. I
I I I The module is marked not executable unless the LE'I' I

I I I option is specified. For example, if the blocksize I

I I I of a specified library data set cannot be handled by I
I I I the linkage editor, a return code of 08 is issued. I
~------+--------+--i
I 12 I 3 I Severe errors have occurred, execution is impossible. I

I I I For example, if an invalid entry point has been I
I I I specified, a return code of 12 is issued. I
~------+--------+--i
I 16 I 4 I Terminal errors have occurred, the processing has I
I I I terminated. For example, if the linkage editor I

I I I cannot handle the blocking factor requested for I
I I I SYSPRINT, a return code of 16 is issued. I L ______ ~ ________ ~ __ J

Every da.ta set used by the linkage editor must be described with a DD
statement. Each DD statement must have a name, unless data sets are
concatenated. The CD statements for data sets required by the linkage
editor have pre-assigned names: those for additional input data sets
have user-a.ssigned names; those for concatenated data sets (after the
first) have no names.

In addition to the name, the DD statement provides the control
program with information about the input/output device on which the data

98 OS/VS Linkage Editor and Loader

set resides, and a description of the data set itself. All of the job
control language facilities for device description are available to the
users of the linkage editor.

Besides information about the device, the DD statement also contains
a data set description, which includes the data set name and its
disposition. Information for the data control block <DCB) may also be
given.

General information pertinent to the linkage editor on the data set
name and DCB information follows; information on disposition is given in
the discussion for each data set.

DATA SET NAME: The linkage editor uses either sequential or partitioned
data sets. For sequential data sets, only the name of the data set is
specified; for partitioned data sets, the member name must also be
specified either on the DO statement or with a control statement.

When input data sets are passed from a previous job step, or when the
output load module is being tested, a recommended practice is to use
temporary data set names (i.e., &&dsname). Use of temporary names
ensures that there are no duplicate data sets with out-of-date modules.
A data set with a temporary name is automatically deleted at the end of
the job. When a module is to be stored permanently, a data set name
without ampersands is used.

DCB INFORMATION: Before a data set can be used for input, information
describing the data set must be placed in the data control block (DCB).
If this information does not exist in the DCB or header label, or if no
labels are used (magnetic tape does not require labels), the programmer
must specify it in the DCB parameter on the DD statement.

Record format (RECFM), logical record size (LRECL), and blocksize
(BLKSIZE) subparameters of the DCB parameter are discussed as they apply
to the linkage editor. Specific information on each as it applies to
the linkage editor data sets is given in the description of the data set
which follows later in this section. Other DCB information (tape
recording technique, density, and so forth) is described in the
publication OS/VS JCL Reference.

Record Format: The following record formats are used with the linkage
editor:

F The records are fixed length.

FB The records are fixed length, and blocked.

FBA The records are fixed length, blocked, and contain
ANSI control characters.

FBS -- The records are fixed length, blocked, and written in
standard blocks.

FA The records are fixed length and contain ANSI control
characters.

FS The records are fixed length and written in standard blocks.

U The records are undefined length.

Job Control Language Summary 99

UA The records are undefined IEmgth and contain ANSI control
characters.

A record format of FS or FBS must be used with caution. All blocks
in the data set must be the same size. This size must be equal to the
specified blocksize. A truncated block can occur only as the last
block in the data set.

Note: Track overflow is never used by the linkage editor. When moving
or-copying load modules, it is recommended that the track overflow
feature not be used on the target data set as errors may occur in
fetching the load modules for execution.

Logical Record and Blocksize: Blocking- is allowed for input object
module data sets and the diagnostic output data set. The blocking
factors used to determine buffer allocations are 10 and 40. The
BLKSIZE must therefore be a multiple of LRECL. See the description
of blockinq factors in the discussion of the SIZE option.

Also, a blocksize may be specified for the output load module
library whE~n the DCBS option is specified (see "SYSLMOD DD Statement"
later in this section.)

LINKAGE EDITOR DD STATEMENTS

The linkage editor uses six data sets; of these, four are required.
The DD statements for these data sets must use the preassigned ddnames
given in Table 8. The descriptions that follow give pertinent device
and data set information for each linkage editor data set.

Table 8. Linkage Editor ddnames
r----------------------------T----------T------------------------------,
I Data Set I ddname I Required I
~----------------------------+----------+---------------------------.---~

Primary input data set SYSLIN Yes

Automatic call library

Intermediate data set

Diagnostic output data set

output module library

SYSLIB

SYSUTl

SYSPRINT

SYSLMOD

Only if the automatic library
call mechanism is used

Yes

Yes

Yes

Al ternate- output data set SYSTERM Only if the TERM option is
specified L ____________________________ ~ __________ ~ ______________________________ J

The SYSLIN DD statement is always required; it describes the primary
input data set which can be assigned to a direct-access device, a
magnetic tape unit, or the card reader. The data set may be either
sequential or partitioned; in the latter case, a member name must be
specified.

If SYSLIN is assigned to a card reader or "pseudo card reader," i~put
records must be unblocked and 80-bytes long. (A pseudo card reader 1S
defined as input from a tape or direct-access device in card reader mode.)

100 OS/VS Linkage Editor and Loader

This data set must contain object modules and/or control statements.
Load modules used in the primary input data set are considered a
severity 4 error.

The recommended disposition for the primary input data set is SHR or
OLD.

The DCB requirements are shown in Table 9.

Table 9. DCB Requirements for Object Module and Control
statement Input

r---,
I DCB Requirements I
~-------------T--------------------T----------------------~
I LRECL I BLKSIZE I RECFM I
~-------------+--------------------+----------------------~
I I 80 IF, FS I
I 80 ~--------------------+----------------------~
I I 800,3200* I FB,FBS I
r-------------~------------~-------L----------------------~
I~These are the maximum blocksizes allowed. Which :
I maximum is applicable depends on the values given to I

I valuel and value2 of the SIZE option. : L ___ ~

SYSLIB DD Statement

The SYSLIB DD statement is required when the automatic library call
mechanism is to be used. This DD statement describes the automatic call
library, which must be assigne<l to a direct-access device. The data set
must be partitioned, but member names should not be specified.

The recommended disposition for the call library is SHR or OLD.

If concatenated call libraries are used, object and load module
libraries must not be mixed. If only object modules are used, the call
library may also contain control statements.

The DCB requirements for object module call libraries are given in
Table 9. The DCB requirement for load module call libraries is a
record format of U; the blocksize used for storage allocation is equal
to the maximum for the device used, not the record read.

SYSUTl DD statement

The SYSUTl DD statement is always required; it describes the
intermediate data set, which is a sequential data set assigned to a
direct-access device. Space must be allocated for this data set but the
DCB requirements are supplied by the linkage editor.

Job Control Language Summary 101

SYSPRINT DD statement

The SYSPRINT DD statement is always required; it describes the
diagnostic output data set, which is a sequential data set assigned to a
printer or an intermediate storage device. If an intermediate storage
device is used, the data records contain a carriage control character as
the first byte.

The usual specification for this data set is SYSOUT=A. The programmer
may assign a blocksize if he is running under a VS1 or VS2 system. The
record formoa.t assigned by the linkage editor depends on whether blocking
is used or not.

Table 10 shows the DCB requirements for SYSPRINT. The shaded areas
represent information supplied by the linkage editor. The only informa
tion that can be supplied by the programmer is the blocksize.

Table 10. DCB Requirements for SYSPRINT
1--,
I DCB Requirements I
~-----------------T------~-----------T-----------------~
I LRECL I B:LKSIZE I RECFM I

I Note:

where n
~s less than or
equal to 40

I The value ::;pecified for BLKSIZE, either on the DCB

I
I parameter of the SYSPRINT DD statement or in the DSCB

(data set control block) of an existing data set, I must be a multiple of 121; if it is not, the linkage
I editor issues a message to the operator's console I
I and terminates processing. I
1 ______ ---_I

SYSLMOD DD statement

The SYSLMOD DD statement is always required; it describes the output
module library, which must be a partitioned data set assigned to a
direct-access device. A member name mUBt be specified, either on the
SYSLMOD DD statement or on a NAME control statement.

If the member is to replace an identically named member in an existing
library, the disposi-tion may be OLD or SER. If the member is to be added
to an existing library, the disposition should be MOD, OLD, or SHR. If no
library exists and the member is the first to be added to a new library,
the disposition should be NEW or MOD. If the member is to be added to an
existing library that may be used concurrently in another region or
partition, the disposition should be SHR.

102 OS/VS Linkage Editor and Loader

The linkage editor assigns a blocksize by:

1. Finding the smallest of the following values:

• The maximum track size for the device

• The value of the BLKSIZE subparameter in the DCB parameter on
the SYSLMOD DD statement, if the DCBS option was specified

• 1024, if the DC option was specified

• The actual output buffer length (half the number specified for
value2 of the SIZE option)

2. Comparing the smallest value above to the value currently
in the DSCB. The greater value is assigned as the blocksize.

In the following example, the SYSLMOD DD statement specifies a
permanent library on an IBM 2314 Disk storage Device:

//SYSLMOD DD DSNAME=USERLIB(TAXES>,DISP=MOD,UNIT=2314, •••

The linkage editor assigns a record format of U, and a logical record
and blocksize of 6K, the maximum for a 2314. However, consider the
following example:

//LKED

//SYSLMOD
//

EXEC PGM=HEWL,PARM='XREF,DCBS'

DD DSNAME=USERLIB(TAXES),DISP=MOD,UNIT=2314,
DCB=(BLKSIZE=3072>, •••

The linkage editor still assigns a record format of U, but the logical
record and blocksize are now 3K rather than 6K, due to the use of the
DCBS option.

SYSTERM DD Statement

The SYSTERM DD statement is optional; it describes a data set that is
used only for numbered error/warning messages. Although intended to
define the terminal data set when the linkage editor is being used under
the Time Sharing Option (TSO) of VS2, the SYSTERM DD statement can be
used in any environment to define a data set consisting of numbered
error/warning messages that supplements the SYSPRINT data set.

SYSTERM output is defined by including a SYSTERM DD statement and
specifying TERM in the PARM field of the EXEC statement. When SYSTERM
output is defined, numbered messages are then written to both the
SYSTERM and SYSPRIN~ data sets.

Job Control Language Summary 103

The following example shows how the SYSTERM DD statement could be
used to specify the system output unit:

//SYSTEHM DD SYSOUT:=A

The DCB requirements for SYSTERM (LRECL=121, BLKSIZE=121 and RECFM=FBA
are supplied by the linkage editor. If necessary, the linkage editor
will modify the DSCB (data set control block) of an existing data set to
reflect these values.

ADDITIONAL DD STATEMENTS

Each ddname specified on an INCLUDE or LIBRARY control statement must
also be described with a DD statement. These DD statements describe
sequential or partitioned data sets, assigned to magnetic tape units or
direct-access devices.

The ddnames are specifiE=d by the user along with any other necessary
information. The DCB requirements for these data sets are shown in
Table 11.

When concatenated data sets are included, each data set must contain
records of the same format, record size, and blocksize. If the data
sets reside on magnetic tape, the tape recording technique and density
must also be identical.

Table 11. DCB Requirements for Additional Input Data Sets
r-----------------------T------------------------------------,
I I DCE Requirements I
I ~------------T--------------T--------i
I Data Set Contents I LRECL I BLKSIZE I RECFM I

~-----------------------+------------+--------------+--------i
I Object modules and/or I 80 I 80 I F,FS I

I control statements I I I I
~-----------------------+------------+--------------+--------i
: Load modules I lK I lK I U I
------------------------f------------+--------------+--------i i Object modules and/or I I 80 I F,FS I
I control statements I 80 ~·--------------+--------i
I I I 400, 800, 3200 * I FB, FES I
1------------------------+------------+--------------+--------i
I Load modules I maximum I equal to I U I

I I for device, I LRECL I I

I I or one-half I I I

I I of value;u I I I

I I whichever I I I
I I is smaller I ~ I
~-----------------------~------------~--------------~---------
i*These are the maximum blocksizes allowed. Which I
i maximum is applicable depends on the values given I
I to value} and value2 of the SIZE option. I L ___ J

104 OS/VS Linkage Editor and Loader

CATALOGED PROCEDURES

To facilitate the operation of the system, the control program allows
the programmer to store EXEC and DO statements under a unique member
name in a procedure library. Such a series of job control language
statements is called a cataloged procedure. These job control language
statements can be recalled at any time to specify the requirements for a
job. To request this procedure, the programmer places an EXEC statement
in the input stream. The EXEC statement specifies the unique member
name of the procedure desired.

The specifications in a cataloged procedure can be temporarily
overridden, and DD statements can be added. The information altered by
the programmer is in effect only for the duration of the job step; the
cataloged procedures themselves are not altered permanently. Any
additional DD statements supplied by the programmer must follow those
that override the cataloged procedure.

LINKAGE EDITOR CATALOGED PROCEDURES

Two linkage editor cataloged procedures are provided: a single-step
procedure that link edits the input and produces a load module
(procedure LKED), and a two-step procedure that link edits the input,
produces a load module, and executes that module (procedure LKEDG).
Many of the cataloged procedures provided for language translators also
contain linkage editor steps. The EXEC and DD statement specifications
in these steps are similar to the specifications in the cataloged
procedures described in the following paragraphs.

Procedure LKED

The cataloged procedure named LKED is a single-step procedure that
link edits the input, produces a load module, and passes the load module
to another step in the same job. The statements in this procedure are
shown in Figure 36; the following is a description of those statements.

Statement Numbers: The 8-digit numbers on the right-hand side of each
statement are used to identify each statement and would be used, for
example, when permanently modifying the cataloged procedure with the
system utility program IEBUPDTE. For a description of this utility
program, see the publication OS/VS Utilities.

EXEC Statement: The PARM field specifies the XREF, LIST, LET, and NCAL
options:--If the automatic library call mechanism is to be used, the
NCAL option must be overridden, and a SYSLIB DD statement must be added.
overriding and adding DD statements is discussed later in this section.

SYSPRINT Statement: The SYSPRINT DD statement specifies the SYSOUT
class A, which is either a printer or an intermediate storage device.
If an intermediate storage device is used, a carriage control character
precedes the data. The carriage control characters are ANSI for the
editor.

Job Control Language Summary 105

SYSLIN Statement: The specification of DDNAME=SYSIN allows the
programmer ·to specify any input data set as long as it fulfills the
requirements for linkage editor input. The input data set must be
defined with a DD statement with the ddname SYSIN. This data set may be
either in the input stream or residing on a separate volume.

If the data set is in the input stream, the following SYSIN statement
is used:

//LKED.SYSIN ~D *

If this SYSIN statement is used, it may be anywhere in the job step DO
statements as long as it follows all overriding 00 statements. The object
module decks and/or control statements should follow the SYSIN state
ment, wi th a delimiter stat.ement (/*) at the end of the input.

If the data set resides on a separate volume, the following SY~3IN
statement is used:

//LKED.SYSIN ~D parameters describing an input data set

If this SYSIN statement is used, it may be anywhere in the job step DD
statements as long as it follows all overriding DD statements. Several
data sets may be concatenated as described in the chapter "Input to the
Linkage Edi itor. "

§YSLMOD Statement: The SYSLMOD DO statE!ment specifies a temporary data.
set and a g(~neral space allocation. The disposition allows the next job
step to execute the load module. If the load module is to reside
permanently in a library, these general specifications must be
overridden.

§XSU~l Statemen!:: The SYSUT1 DD statement specifies that the
intermediate data set is to reside on a direct-access device, but not
the same device as either the SYSLMOD or the SYSLIN data sets. A9ain, a
general space allocation is given.

SYSLIB Stab9men:!:: Note that there is no SYSLIB OD statement. If the
automatic library call mechanism is to be used with a cataloged
procedure, a SYSLIB DD statement must be added; also, the NCAL option in
the PARM fi'9ld of the EXEC statement must be negated.

r--,
I//LKED EXEC PGM=HEWL,PARM='XREF,LIST,LET,NCAL',REGION=96K 000200001
I//SYSPRINT DD SYSOUT=A 000400001
I//SYSLIN DD DDNAME=SYSIN 000600001
I//SYSLMOD OD DSNAME=&&GOSET(GO>,SPACE=(1024, (50,20,1», C000800001
1// UNIT=SYSDA,DISP=(MOD,PASS) 001000001
1//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN», C001200001
1// SPACE=(1024, (200,20» 001400001 L __ J

Figure 36. statements in the LKED Cataloged Procedure

106 OS/VS Linkage Editor and Loader

Inyokinq the LKED Procedure: To invoke the LKED procedure, code the
following EXEC statement:

//stepname EXEC LKED

where stepname is optional and is the name of the job step.

The following example shows the use of the SYSIN DD * statement:

step A: //LESTEP EXEC LKED
r--,
loverriding and additional DD statements for the I
ILKED step, each beginning //LKED.ddname... I l __ J

//LKED.SYSIN DD *
r--,
IObject module decks and/or control statements I l __ J

/*
Step B: //EXSTEP EXEC PGM=*.LESTEP.LKED.SYSLMOD

r--,
IDD statements and data for load module execution I l __ J

If data is supplied for the execution step, the data must be followed by
a /* delimiter statement.

step A invokes the LKED procedure and step B executes the load module
produced in Step A. The job control language statements for these two
steps are combined in LKEDG cataloged procedure.

Procedure LKEDG

The cataloged procedure named LKEDG is a two-step procedure that link
edits the input, produces a load module, and executes that load module.
The statements in this procedure are shown in Figure 37. The two steps
are named LKED and GO. The specifications in the statements in the LKED
step are identical to the specifications in the LKED procedure.

GO Step: The EXEC s·tatement specifies that the program to be executed
is the load module produced in the LKED step of this job. This module
was stored in the data set described on the SYSLMOD DD statement in that
step. (If a NAME statement was used to specify a member name other than
that used on the SYSLMOD statement, use the LKED procedure.)

The condition parameter specifies that the execution step is bypassed
if the, return code issued by the LKED step is greater than 4.

Job Control Language Summary 107

r--,
1/ /L.KED EXEC PGM=HEWL, PARM=' XREF, LIST, NCAL' ,REGION=96K 000200001
I//SYSPRINT DD SYSOUT=A 000400001
!//SYSLIN DD DDNAME=SYSIN 000600001
I//SYSI,MOD DD DSNAME=&&GOSET(GO) ,SPACE=(1024, (50,20,1», C000800001
1// UNIT=SYSDA,DISP=(MOD, PASS> 001000001
1//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN», C001200001
!// SPACE=(1024, (200,20» 001400001
I//GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED) 001600001 l __ J

Figure 37. statements in the LKEDG Cataloged Procedure

Inyokin~he LKEDG Procedg!-~: To invoke the LKEDG procedure, code the
following EXEC statement:

//stepname EXEC LKEDG

where §tepname is optional and is the name of the job step.

The following example shows the use of the SYSIN DD * statement with
the LKED procedure:

//TWOSTEP EXEC LKEDG
r--,
IOverriding and additional DD statements for the LKED step, each 1
Ibeginning //LKED.ddname ••• I L __ J

//LKED.SYSIN DD *
r------------------------·--,
IObject module decks and/or control statements I L __ J

/*

r--,
IDD statements for the GO step, each beginning //GO.ddname ••• I L _______________________________________ ---------____________________ J

//GO.SYSIN DD *
r--,
IData for the GO step I L __ J

/*

OVERRIDING CATALOGED PROCEDURES

The programmer may override any of the EXEC or DD statement
specifications in a cataloged procedure~ These new specifications
remain in effect only for t:he duration of the job step. For a detailed
description of overriding cataloged procedures, see the publication
as/vs JCL Reference.

pverriding the EXEC Statem~nt

The EXEC statement in a cataloged procedure is overridden by
specifying the changes and additions on the EXEC statement that invokes

108 as/vs Linkage Editor and Loader

the cataloged procedure. The stepname should be specified when
overriding the EXEC statement parameters.

For example, the REGION parameter can be increased as follows:

//LESTEP EXEC LKED,REGION.LKED=136K

The rest of the specifications on the EXEC statement of procedure LKED
remain in effect.

If the PARM field is to be overridden, all of the options specified
in the cataloged procedure are negated. That is, if XREF, LIST, or
NCAL is desired when overriding the PARM field, they must be
respecified. In the following example, the OVLY option is added and the
NCAL option is negated:

//LESTEP EXEC LKED,PARM.LKED='OVLY,XREF,LIST'

As a result, the XREF and LIST options are retained, but the NCAL option
is negated; when NCAL is negated, a SYSLIB DD statement must be added.

If you use the LKEDG procedure and want to execute the load module
just built, an efficient way is to specify the parameter LET in the LKED
step and invoke the LKEDG procedure with the following EXEC statement:

//stepname EXEC LKEDG,PARM.LKED='XREF,LIST,NCAL,LET',
COND.GO=(8,LT,LKED)

Overriding DD Statements

Any of the DD statements in the cataloged procedures can be
overridden as long as the overriding DD statements are in the same order
as they appear in the procedure. If any DD statements are not
overridden, or overriding DD statements are included but are not in
sequence, the specifications in the cataloged procedure are used.

Only those parameters specified on the overriding DD statement are
affected; the rest of the parameters remain as specified in the
procedure. In the following example, the output load module is to be
placed in a permanent library:

//LIBUPDTE
//LKED.SYSLMOD
//LKED.SYSIN

EXEC LKED
DD DSNAME=LOADLIB(PAYROLL),DISP=OLD
DD DSNAME=OBJMOD, DISP=(OLD, DELETE)

Unit and volume information should be given if these data sets are not
cataloged.

As a result of the statements in the example, the LKED procedure is
used to process the object module in the OBJMOD data set. The output
load module is stored in the data set LOADLIB with the name PAYROLL.
The SPACE parameter on the SYSLMOD DD statement and the other
specifications in the procedure remain in effect.

Job Control Language Summary 109

ADDING DD STATEMEN~S

The DD statements for additional data sets can be supplied when using
cataloged procedures. These additional DD statements must follow any
overriding DD statements.

In the following example, the automatic library call mechanism is to
be used along with the LKEDG procedure:

//CPSTEP
//LKED.SYSLMOD
//LKED.SYSLIB
//LKED.SYSIN

EXEC
DD
DD
DD

LKEDG,PARM.LKED='XREF,LIST'
DSNAME=LOADLIB(TESTER),DISP=OLD, •••
DSNAME=SYS1.PL1LIB,DISP=SHR ,..

r--,
IObject module decks and/or control statements I L __ J

/*
//GO.SYSIN DD
r--,
IData for execution step I L __ J

/*

The NCAL option is negated, and a SYSLIB DD statement is added between
the overriding SYSLMOD DD statement and the SYSIN DD statement.

110 OS/VS :Linkage Editor and Loader

This chapter summarizes the linkage editor control statements. The
description of each statement includes:

• What the statement does

• The format of the statement

• Placement of the statement in the input

• Notes on use, if any

• One or more examples that include job control language statements,
when necessary.

The control statements are described in alphabetical order. Before
using this chapter, the user should be familiar with the following
information on general format, format conventions, and placement.

Note: If the control statement to specify hierarchy format (HIARCHY)
is specified for vs, the linkage editor prepares the load module
accordingly. However, hierarchy format is not supported by VS, and
it is ignored during execution of the load module.

General Format

Each linkage editor control statement specifies an QE§f~~!Q~ and one
or more QEerands. Nothing must be written preceding the operation,
which must begin in or after column 2. The operation must be separated
from the operand by one or more blanks.

A control statement can be continued on as many cards as necessary by
terminating the operand at a comma, and by placing a nonblank character
in column 72 of the card. Continuation must begin in column 16 of the
next card. A symbol cannot be split; that is, it cannot begin on one
card and be continued on the next.

Format Conventions

The following conventions are used in the formats to describe the
coding of the linkage editor control statements:

• Upper-case letters and words must be coded exactly as shown.

• Lower-case letters and words represent variables for which specified
information is substituted.

• Parentheses, commas, and asterisks, when shown, are required.

• Items within braces, { }, are required and must be specified.

Linkage Editor Control statement Summary 111

• Items within brackets, [1, are optional and may be omitted •

• Stacked items, enclosed in either braces or brackets, represent
alternative items; only one item should be specified.

• The ellipsis (•••) indicates that the preceding unit may occur
once, or any number of times in succession.

Linkage editor control statements are placed before, between, or
after modules. They can be grouped, but they cannot be placed within a
module. However, specific placement restrictions may be imposed by the
nature of the functions being requested by the control statement. Any
placement restrictions are noted.

112 OS/VS Linkage Editor and Loader

ALIAS Statement

The ALIAS statement specifies additional names for the output library
member, and can also specify names of alternative entry points. Up to
16 names can be specified on one ALIAS statement, or separate ALIAS
statements for one library member. The names are entered in the
directory of the partitioned data set in addition to the member name.

Format: The format of the ALIAS statement is:

r---------T--,
I Operation I Operand I
~---------+--~
I I {SymbOl } [, symbol] I
I ALIAS I ••• I
I I external name ,external name I L _________ ~ __ J

symbol
specifies an alternate name for the load module. When the module
is executed, the main entry point is used as the starting point for
execution.

external name
specifies a name that is defined as a control section name or entry
name in the output module. When the module is called for
execution, execution begins at the external name referred to.

Placement: An ALIAS statement can be placed before, between, or after
object modules or other control statements. It must precede a NAME
statement used to specify the member name, if one is present.

Notes:
• In an overlay program, an external name specified by the ALIAS

statement must be in the root segment.

• No more than 16 alias names can be assigned to one output module.

• Each alias specified for a load module is retained in the directory
entry for the module; the linkage editor does not delete an old
alias. Therefore, each alias that is specified must be unique;
assigning the same alias to more than one load module can cause
incorrect module reference.

• Obsolete alias names should be deleted from the PDS directory using
a system utility such as IEHPROGM, to avoid future name conflicts.

• If the replace option is in effect for the output load module (that
is, the load module built in this link edit does or may replace an
identically named load module in the output module library), the replace
option is in effect for each ALIAS name for the load module as well
as the primary name.

Example: An output module, ROUT1, is to be assigned two alternate entry
points, CODEl and CODE2. In addition, calling modules have been written
using both ROUTl and ROUTONE to refer to the output module. Rather than
correct the calling modules, an alternative library member name is also
assigned.

ALIAS
NAME

CODE1, CODE2, ROUTONE
ROUTl

Since CODEl and CODE2 are entry names in the output module, when these
names are used to call the module, execution begins at the point
referred to. The modules that call the output module with the name
ROUTONE now correctly refer to ROUTl at its main entry point. The names
CODE1, CODE2, and ROUTONE appear in the library directory along with
ROUT1.

Linkage Editor Control Statement Summary 113

The CHANGE statement causes an external symbol to be replaced by the
symbol in parentheses following the external symbol. The external
symbol to be changed can be a control section name, an entry name, or an
external reference. More than one such substitution may be specified in
one CHANGE statement.

Forma.!:: The format of the CHANGE statement is:

r---------~--,
I Operation I Operand I
~---------+--i
I CHANGE I external symbol (newsymbol) [,externalsymbol(newsymbol)]o.. I L _________ ~ __ J

externalsymbol
is the control section name, entry name, or external reference that
is to be changed.

newsymbol
is thc~ name to which the external symbol is to be changed.

Placement: The CHANGE control statement must be placed immediat(~ly
before either the module containing the external symbol to be changed,
or the INCI,UDE control statement specifying the module.

Notes:

• External references from other modules to a changed control section
name or entry name remain unresolved unless further action is taken.

• If the symbol specified on the CHANGE statement is inadvertently
misspelled, the symbol will not be changed. Linkage editor output,
such as the cross-reference listing or module map, can be used to
verify each change.

Example 1: Two control seretions in different modules have the name
TAXROUT. Since both modules are to be link edited together, one of the
control section names must be changed. The module to be changea is
defined wi t.h a DD statement named OBJMOD. The control section name
could be changed as follows:

/ /OBJMOD DD DSNAME:=TAXES, DISP= (OLD, KEEP) , •••
//SYSLIN DD *

CHANGE TAXROUT (STATET.AX)
INCLUDE OBJMOD

As a resuI1:, the name of control section TAXROUT in module TAXES is
changed to STATETAX. Any references to TAXROUT from other modules are
not affectE~d.

114 as/vs :Linkage Editor and Loader

Example 2: A load module contains references to TAX ROUT that must now
be changed to STATETAX. This module is defined with a DD statement
named LOADMOD. The external references could be changed at the same
time the control section name is changed, as follows:

//OBJMOD DD DSNAME=TAXES,DISP=(OLD,DELETE), •••
//LOADMOD DD DSNAME=LOADLIB,DISP=OLD, •••
//SYSLIN DD *

/*

CHANGE TAXROUT(STATETAX)
INCLUDE OBJMOD
CHANGE TAXROUT(STATETAX)
INCLUDE LOADMOD(INVENTRY)

As a result, control section name TAXROUT in module TAXES and external
reference TAXROUT in module INVENTRY are both changed to STATETAX. Any
references to TAXROUT from other modules are not affected.

Linkage Editor Control statement Summary 115

ENTRY Statement

The ENTRY statement specifies the symbolic name of the first
instruction to be executed when the program is called by its module name
for execution. An ENTRY statement should be used whenever a module is
reprocessed by the linkage editor. If more than one ENTRY statement~ is
encountered, the first statement specifies the main entry point; all
other ENTRY statements are ignored.

Forma..!:: The format of the ENTRY statement is:

r---------T--,
I Operation I Operand I
~---------t--~
I ENTRY lexternalname I L _________ ~ __ J

externalname
is defined as either a control section name or an entry name in a
linkage editor input module.

Placement: An ENTRY statement can be placed before, between, or aft.er
object modules or other control statements. It must precede the NAME
statement for the module, if one is present.

Notes:

• In an overlay program, the first instruction to be executed must be
in the root segment.

• The external name specified must be the name of an instruction, not
a data name.

Exampl.,g: In the following example, the main entry point is INIT1:

//LOADLIB DD DSNAME=LOADLIB,DISP=OLD, •••
//SYSLIN DD *

ENTRY INITl
INCLUDE LOADLIB(READ,WRITE)

ENTRY READIN
/*

INITl must be either a control section name or an entry name in the
linkage editor input. The entry point specification of READIN is
ignored.

116 OS/VS Linkage Editor and Loader

EXPAND statement

The EXPAND statement lengthens control sections or named common
sections by a specified number of bytes.

Format: The format of an EXPAND statement is

,--------7--,
I Operation I Operand I
~---------+--~
/EXPAND Iname(xxxx)[,name(xxxx)]... I L _________ ~ __ J

name

xxxx

is the symbolic name of a common section or control section
whose length is to be increased.

is the decimal number of bytes to be added to the length of
a common section. Binary zeros will be added for an expanded
control section. The maximum is 4095 for each section indicated.

Placement: An EXPAND s·tatement can be placed before, between, or
after other control statements or object modules. However, the
statement must follow the module containing the control or named
common section to which it refers. If the control section or named
common section is entered as the result of an INCLUDE statement,
the EXPAND statement must follow the INCLUDE statement.

Note: EXPAND should be used with caution so as not to increase
the length of a program beyond its own design limitations. For
example, if space is added to a control section beyond the range of
its base register addressability, that space is unusable.

Example: In the following example EXPAND statements add a 250-byte
patch area (initialized to zeros) at the end of control section
CSECTI and increase the length of named common section COMI by
400 bytes.

IILKED EXEC
IISYSPRINT DD
IISYSUTI DD
IISYSLMOD DD
IISYSLIN DD
II DD

1*

EXPAND
EXPAND
NAME

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK, (10,4»
DSNAME=PDSX,DISP=OLD
DSNAME=&&LOADSET,DISP=(OLD,PASS) ,UNIT=SYSDA

*
CSECTl(250)
COM1 (400)
MODI (R)

Linkage Editor Control Statement Summary 117

JDENTIFY S!:.atement

The IDENTIFY statement specifies any data supplied by the user to be
entered into the CSECT Identification (IDR) records for a particular
control section. The statement can be used either to supply descriptive
data for a control section or to provide a means of associating
system-supplied data with executable code.

~Forma~: The format of the IDENTIFY statement is:

r---------T--,
I Operation I Operand I
~---------f--~
IIDENTIFY Icsectname('data U) [,csectname('data')]... I L _________ ~ __ J

csectname
is the symbolic name of the control section to be identified.

data
specifies up to 40 EBCDIC characters of identifying information.
The user may supply any information desired for identification purposes.

Placement: An IDENTIFY statement can be placed before, between, or
after other control statemEmts or object modules. The IDENTIFY
statement must follow the module containing the control section to be
identified or the INCLUDE statement specifying the module.

Example: In the following example, IDENTIFY statements are used to
identify the source level of a control section, a PTF application to a
control section, and the functions of several control sections.

/*

//LKED EXEC PGM=HEWL
//SYSPRINT DD SYSOUT=A
//SYSUTl DD UNIT=SYSDA,SPACE=(TRK, (10,5»
//SYSLMOD DD DSNAME=LOADSET,DISP=OLD
//OLDMOD DD DSNAME=OLD.LOADSET,DISP=OLD
//PTFMOD DD DSNAME=PTF.OBJECT,DISP=OLD
//SYSLIN DD *

(input

IDENTIFY
INCLUDE
IDENTIFY
INCLUDE
IDENTIFY

object deck for a control section named FORT)
FORT (' LEVEL 03')
PTFMOD (CSEC'I'4)
CSECT4('PTF99999')
OLDMOD(PROG1)
CSECT1('I/O ROUTINE'),CSECT2('SORT ROUTINE'>,
CSECT3('SCAN ROUTINE')

X

Execution of this example produces IDR records containing the following
identification data:

• The name of the linkagE~ editor that produced the load module, the
linkage editor version and modification level, and the date of the
current linkage editor processing of the module. This information
is provided automatically.

• User-supplied data describing the functions of several control
section.s in the module, as indicated on the third IDENTIFY statement.

• If the language translator used supports IDR, the Identification
records produced by thE~ linkage edi·tor also contain the name of the
translator that produced the object module, its version and
modification level, and the date of compilation.

The IDR records created by the linkage editor can be referenced by using
the LISTIDH function of thE~ service aid program HMBLIST for VS 1 or
AMBLIST for VS2. For instructions on how to use HMBLIST, see OS/VS1 Ser
vice Aids. For instructions on how to use AMBLIST, see OS/VS2 System
Programming Library: Service Aids.

118 OS/VS Linkage Editorand Loader

INCLUDE Statement

The INCLUDE statement specifies sequential data sets and/or libraries
that are to be sources of additional input for the linkage editor.
INCLUDE statements are processed in the order in which they appear in
the input. However, the sequence of data sets and modules within the
output load module does not necessarily follow the order of the INCLUDE
statements.

Format: The format of the INCLUDE statement is:

r--------T--,
I operation I Operand I
~---------+--~
I INCLUDE Iddname[(membername[,membernamel •••)] I
I I [,ddname[(membername[,membernamel •••)] •••] I L _________ i _______________________________ ---__________________________ J

ddname
is the na~e of a DD statement that describes either a sequential or
a partitioned data set to be used as additional input to the
linkage editor. For a sequential data set, ddname is all that must
be specified. For a partitioned data set, at least one member name
must also be specified.

membername
is the name of or an alias for a member of the library defined in
the specified DD statement. The membername must not be specified
again on the DD statement.

Placement: An INCLUDE statement can be placed before, between, or after
object modules or other control statements.

Note: A NAME statement in any data set specified in an INCLUDE
statement is invalid; the NAME statement is ignored. All other control
statements are processed.

Example 1: In the following example, an INCLUDE statement specifies two
data sets to be the input to the linkage editor:

//OBJMOD DD
//LOADMOD DD

DSNAME=&&OBJECT, DISP=(OLD, DELETE)
DSNAME=LOADLIB,DISP=SHR, •••

//SYSLIN DD *
INCLUDE OBJMOD,LOADMOD(TESTMOD,READMOD)

/*

Note that a DD statement must be supplied for every ddname specified in
an INCLUDE statement.

Example 2: Two separate INCLUDE statements could have been used in the
preceding example, as follows:

INCLUDE OBJMOD
INCLUDE LOADMOD(TESTMOD,READMOD)

Linkage Editor Control Statement Summary 119

INSERT Staj~~nt

The INS]~RT statement repositions a control section from its position
in the input sequence to a segment in an overlay structure. However,
the sequence of control sections within a segment is not necessarily the
order of the INSERT statements.

If a symbol specified in the operand field of an INSERT statement is
not present: in the external symbol dictionary, it is entered as an
external rE~ference. If the reference has not been resolved at the end
of primary input processing, the automatic library call mechanism
attempts to resolve it •

. Format: The format of the INSERT statement is:

r---------y--,
lop~rationioperand I
~---------+--i I INSERT ~.csectname [, csec"tname] ~. • I l _________ ~ ___ - _____________ . ___ J

csectname
is the name of the control section to be repositioned. A
particular control section can appear only once within a load
moduIE~.

Placement: The INSERT statement must be placed in the input sequence
following i:he OVERLAY statement that specifies the origin of the segment
in which the control section is to be positioned. If the control
section is to be positioned in the root segment, the INSERT statement
must be placed before the first OVERLAY statement.

Note: Control sections that are positioned in a segment must contain
all address constants to be used during execution unless:

• The A-t:ype address constants are located in a segment in the path.

• The V-type address constants used to pass control to another segment
are located in the path. If an exclusive reference is made, the
V-type address constan·t must be in a common segment.

• The V-"type address constants used with the SEGLD and SEGWT macro
instructions are located in the segment.

120 OS/VS Linkage Editor clOd Loader

Example: The following INSERT (and OVERLAY) statements specify the
overlay structure shown in Figure 38:

// EXEC PGM=HEWL,PARM='OVLY,XREF,LIST'

//SYSLIN DD *
INSERT CSA
INSERT CSB
OVERLAY ALPHA
INSERT CSC,CSD
OVERLAY ALPHA
INSERT CSE

esc

+ cso

1

T
CSA

+ CS8

ALPHA

Figure 38. Overlay structure for INSERT statement Example

CSE

1

Linkage Editor Control statement Summa'ry 121

LIBRARY Statement

The LIBlffiRY ~tatement can be used to specify:

• Additional automatic call libraries, which contain modules used to
resolve external references found in the program.

• Restricted no-call function: External references that are not to be
resolvE~d by the automatic library call mechanism during the current
linkage editor job step.

• Never-call function: External references that are not to be
resolvE~d by the automatic library call mechanism during any linkage
editor job step.

Combinations of these functions can be written in the same LIBRARY
statement.

Format: The format of the LIBRARY statement is:

r---------'r--,
I Operation I Operand I
~--------+--~
I I{ddname(membername[,membernamel •••)} I
I LIBRARY I (externalreference[.externalreferencel •••) •••• I
I I *(externalreference[,externalreferencel •••) I L _________ ~ __ J

ddname
is the name of a DD statement that defines a library.

membername
is the name of or an alias for a member of the specified library.
Only those members specified are used to resolve references.

externalreference

*

is an external reference that may be unresolved after primary input
processing. The external reference is not to be resolved hy
automatic library call.

indicates that the external reference is never to be resolved; if
the * (asterisk) is missing, the reference is left unresolved only
during the current linkage editor run.

Placement: A LIBRARY stat:ement can be placed before, between, or after
object modules or other control statements.

• If the unresolved external symbol is not a member name in the
library specified. the external reference remains unresolved unless
defined in another input module.

• If the NCAL option is specified, the LIBRARY statement cannot be
used to specify additional call libraries.

122 OS/VS Linkage Editor and Loader

• Members called by automatic library call are placed in the root
segment of an overlay program, unless they are repositioned with an
INSERT statement •

• Specifying an external reference for restricted no-call or
never-call by means of the LIBRARY statement prevents the
external reference from being resolved by automatic inclusion
of the necessary module from an automatic call library; it does
not prevent the external reference from being resolved if the
module necessary to resolve the reference is specifically included
or is included as part of an input module.

Example: The following example shows all three uses of the LIBRARY
statement:

// EXEC
//TESTLIB DD

PGM=HEWL,PARM='LET,XREF,LIST'
DSNAME=TEST,DISP=SHR, •••

//SYSLIN DD *
LIBRARY TESTLIB(DATA,TIME), (FICACOMP),*<STATETAX)

/*

As a result, members DATE and TIME from the additional library TEST are
used to resolve external references. FICACOMP and STATETAX are not
resolved: however, because the references remain unresolved, the LET
option must be specified on the EXEC statement if the module is to be
marked executable. In addition, STATETAX will not be resolved in any
subsequent reprocessing by the linkage editor.

Linkage Editor Control Statement Summary 123

NAME Statement

The NAME statement specifies the name of the. load module created from
the preceding input modules, and serves as a delimiter for input to the
load module. As a delimiter, the NAME statement allows multiple load
module processing in one linkage editor job step. The NAME statement
can also indicate that the load module replaces an identically named
module in the output module library.

Format: The format of the NAME statement is:

r------r--~
I Opera tionl Operand I
~------~--~
I NAME I membername [(R)] I L _____ ~ ______________________________________ J

membername

(R)

is the name to be assi~fned to the load module that is created from
the preceding input modules •.

indicat.es that this load module replaces an identically named
module in the output module library. If the module is not a
replacement, the paren1:hesized value (R) should not be specifiedo

Placement: The NAME statemE~nt is placed after the last input module or
control stat,ement that is to be used for the output module.

Notes:

• Any ALIll.S statement used must precede the NAME statement .

• A NAME statement found in a data set other than the primary input
data set is invalid. The statement is ignored.

Example: In the following E::!xample, two load modules, RDMOD and WRTMOD,
are produced by the linkage editor in one job step:

IISYSLMOD DD
IINEWMOD DD
IISYSLIN DD
II DD

1*

NAME RDMOD (R)
INCLUDE: NEWMOD
NAME WRTMOD

DSNAME=AUXMODS,DISP=MOD, ...
DSNAME=&&WRTMOD,DISP=OLD
DSNAME=&&RDMOD,DISP=OLD

*

As a result" the first module is named RDMOD and replaces an identically
named module~ in the output module library AUXMODSi the second module is
named WRTMOD and is added to the library.

124 aS/Vs Linkage Editor and Loader

ORDER statement

The ORDER statement indicates the sequence in which control sections or
named common areas appear in the output load module. The control
sections or named common areas appear in the sequence in which they
are specified on the ORDER statement. When multiple ORDER statements
are used, their sequence further determines the sequence of the
control sections or named common areas in the output load module;
those named on the first statement appear first, and so forth.

Format: The format of the ORDER statement is:

,------r--------------------------------, I Operation Operand I r- - - - --l- - - - -------- ---- - - --------- ----,
I ORDER I {common area name} [{common area name}] I

[(p)] [(p)] •••
I I csectname csectname I L _____ L ______________________________ --1

common area name
is the name of the common area to be sequenced.

csectname

(p)

is the name of the control section to be sequenced.

indicates that the starting address of the control section or named
common area is to be on a page boundary within the load module. The
control sections or common areas are aligned on 4K page boundaries
unless the ALIGN2 attribute is specified on the EXEC statement.

placement: An ORDER statement can be placed before, between, or after
object modules or other control statements.

Notes:

• A control section or common area can be named on only one ORDER
statement. If the same name is used more than once, except when it
is the last operand on one ORDER statement and the first operand
on the next, the name is ignored, as is the balance of the control
statement on which it appears.

• The control sections and common areas named as operands can appear
in either the primary input or the automatic call library, or
both.

• If a control section or named common area is changed by a CHANGE
or REPLACE control statement and sequencing is desired, specify
the new name on the ORDER statement.

Example: In this example, the control sections in the load module LDMOD
are arranged by the linkage editor according to the sequence specified
on ORDER statements. The page boundary alignments and the control
section sequence made as a result of these statements are shown in
Figure 39. Assume each control section is 1K in length.

Note: The control section name PART1 is changed by a CHANGE statement
to FSTPART. The ORDER statement refers to the control section by its
new name.

Linkage Editor Control statement Summary 125

JCL AND CONTROL STATEMENTS

//SYSLMOD
//SYSUN

ORDER
ORDER
CHANGE
ORDER
INCLUDE

DO DSNAME=PYTlIB,DISP=OLD, •••
DO *
ROOTSEG(P) ,MAINSEG ,SEGl ,SEG2
SEG3(P), ENTRYl
PART 1 (FSTPART)
FSTPART ,SESECTA,SESECTB(P)
SYSLMOO(LDMO D)

OK

4K

8K

OUTPUT LOAD MODULE

LDMOD
./ ./

ROOTSEG

l/
MAINSEG

./
SEGl

./
SEG2

./
SEG3

./
ENTRYl

/
FSTPART

./
SESECTA

./
SESECTB

Figure 39. Output Load Module for ORDER statement Example

126 OS/VS Linkage Editor and Loader

OVERLAY statement

The OVERLAY statement indicates either the beginning of an overlay
segment, or the beginning of an overlay region. Since a segment or a
region is not named, the programmer identifies it by giving its origin
(or load point) a symbolic name. This name is then used on an OVERLAY
statement to signify the start of a new segment or region.

Format: The format of the OVERLAY statement is:

r--------T--,
I Operation I Operand I
~---------+--i
I OVERLAY Isymbol[(REGION)] I L _________ ~ __ J

symbol
is the symbolic name assigned to the or1g1n of a segment. This
symbol is not related to external symbols in a module.

(REGION)
specifies the origin of a new region.

Placement: The OVERLAY statement must precede the first module of the
next segment, the INCLUDE statement specifying the first module of the
segment, or the INSERT statement specifying the control sections to be
positioned in the segment •

• The OVLY option must be specified on the EXEC statement when OVERLAY
statements are to be used.

~ The sequence of OVERLAY statements should reflect the order of the
segments in the overlay structure from top to bottom, left to right,
and region by region.

• No OVERLAY statement should precede the root segment.

Linkage Editor Control statement Summary 127

Example: The following OVERLAY and INSERT statements specify the
overlay structure in Figure 40.

// EXEC PGM=HE:WL, PARM= I OVLY ,XREF ,LIST I

//SYSLIN DO OSNAME:=&&OBJ, •••
// DO *

/*

INSER'T eSA
OVERLAY ONE
INSERT eSB
OVERLA.Y TWO
INSER'T esc
OVERLAY TWO
INSERT eso
OVERLAY ONE
INSERT eSE,CSF
OVERLA.Y THREE(REGION)
INSER'T eSH
QVERL,A. Y THREE
INSERT CSI

REGION 1

I
CS8

I
TWO

T
CSA

I
ONE

I
cso

1

I
CSE

-I-
CSF

1-

-------··------------r--------------------T----·······._.-REGION 2 THREE
CSH C51

_L JL

Figure 40. Overlay Struct.ure for OVERLAY Statement Example

128 OS/VS Linkage Editor and Loader

PAGE Stateme"nt

The PAGE statement aligns a control section or named common area on a
4K page boundary in the load module. If the ALIGN2 attribute is
specified on the EXEC statement for the linkage editor job step, use
of the PAGE statement aligns the specified control sections or common
areas on 2K page boundaries within the load module. However, page
boundary alignment in the executing module can occur only when the
operating system supervisor includes support for fetch on a page
boundary. This support is available only with VS2.

Format: The format of the PAGE statement is:

common area name
is the name of the common area to be aligned on a page boundary.

csectname
is the name of the contro-l section to be aligned on a page
boundary.

Placement: The PAGE statement can be placed before, between, or after
obJect modules or other control statements.

Notes:

• If a control section or named common area is changed by a CHANGE
or REPLACE control statement and page alignment is desired, specify
the new name in the PAGE statement.

• The control sections and common areas named as operands can appear
in either the primary input or the automatic call library, or both.

Linkage Editor Control Statement Summary 129

Example: In this example, the control sections in the load module LDMOD
are aligned on page boundaries as specified in the following PAGE
statement:

PAGE AI~IGN, BNDRY 4K, EIGHTK

The job control statements and control statements as well as the output
load module are shown in Figure 41. Assume each control section is 3K
in length.

JCL AND CONTROL STATEMENTS

//LKED EXEC PGM=HEWL,PARM='ALlGN2, ••• 1

.
//SYSLMOD DO DSNAME=PVTLlB,DISP=OLD, •••
//SYSLIN DO *

PAGE ALIGN ,BNDRY 4K, EIGHTK
INCLUDE SYSLMOO(LDMOO)

/*

OUTPUT LOAD MODULE

LDMOD

OK#-----.....
ALIGN

4K
BNDRY4K

8K
EIGHTK

Figure 41. Output Load Module for PAGE Statement Example

130 OS/VS Linkage Editor and Loader

REPLACE Statement

The REPLACE statement specifies one of the following:

• The replacement of one control section with another.

• The deletion of a control section.

• The deletion of an entry name.

A REPLACE statement can specify more than one function.

When a control section is replaced, all references within the input
module to the old control section are changed to the new control
section. Any external references to the old control section from other
modules are unresolved unless changed.

When a control section is deleted, the control section name is also
deleted from the external symbol dictionary unless references are made
to the control section from within the input module. If there are any
such references, the control section name is changed to an external
reference. External references from other modules to a deleted control
section also remain unresolved.

When deleting an entry name, the entry name is changed to an external
reference if there are any references to it within the same input
module.

Format: The format of the REPLACE statement is:

r--------T--,
I Operation I Operand I
~---------+--~
I I{CSectname-l[(CSectname-2)]} I
I REPLACE I ,... I
I I entry name I L _________ ~ __ J

csectname
is the name of a control section. If only csectname-l is used, the
control section is deleted; if csectname-2 is also used, the first
control section is replaced with the second.

entry name
is the entry name to be deleted.

Placement: The REPLACE statement must immediately precede either (1)
the module containing the control section or entry name to be replaced
or deleted, or (2) the INCLUDE statement specifying the module. The
scope of the REPLACE statement is across the immediately following
module (object module or load module). The END record in the immediately
following object module or the end-of-module indication in the load
module terminates the action of the REPLACE statement.

Notes:

• Unresolved external references are not deleted from the output
module even though a deleted control section contains the only
reference to a symbol.

Linkage Editor Control Statement Summary 131

• When some but not all 'control sections of a separately assembled
module are to be repla1ced, A-type address constants that refer to a
deleted symbol will be incorrectly resolved, unless the entry name
is at t:he same displacement from the origin in both the old and the
new control sections.

• If the control section specified on the REPLACE statement is
inadvertently misspelled, the control section will not be replaced
or deIE~ted. Linkage editor output, such as the cross-reference
listin9 and module map" can be used to verify each change.

,Example: In the following example, assume that control section INT7 is
in member LOANCOMP and that control section INTS, which is to replace
INT7,' is in data set &&NEWINT. Also assume that control section PRIME
in member IJOANCOMP is to be deleted.

//NEWMOD DD
//OLDMOD DD
//SYSLIN DD

ENTRY MAINENT
INCLUDE NEWMOD

DSNAME=&&NEWINT, DISP=<OLD, DELETE)
OSNAME:=PVTLIB, DISP=OLO, •••

*

REPLACE INT1(INTS),PRlME
INCLUDE OLDMOD < LOANCOI"1P)

/*

As a result~, INT1 is removed from the input module described by the
OLDMOD DO :atatement, and INTS replaces INT1. All references to INT1 in
the input module now refer to INTS. Any references to INT1 from other
modules remain unresolved. control section PRIME is deleted; the
control section name is also deleted from the external symbol dictionary
if there al~e no references to PRIME in LOANCOMP.

'132 OSjVS :('inkage Editor and Loader

SETSSI Statement

The SETSSI statement specifies hexadecimal information to be placed
in the system status index of the directory entry for the output module.

Format: The format for the SETSSI statement is:

r---------T--,
I Operation I Operand I
~--------t--~
ISETSSI Ixxxxxxxx I L _________ ~ __ J

xxxxxxxx
represents eight hexadecimal characters (0 through 9 and A through
F) to be placed in the 4-byte system status index of the output
module libra'ry directory entry.

Placement: The SETSSI statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME
statement for the module, if one is present.

Note: A SETSSI statement must be provided whenever an IBM-supplied load
module is reprocessed by the linkage editor. If the statement is
omitted, no system status index information is present.

Linkage Editor Control Statement Summary 133

This appendix contains sample linkage editor programs. The material
presented for each program includes a description of the program, the
job control language necessary for the linkage editor job step, linkage
editor control statements (if any>, and the linkage editor output. The
sample programs are:

• Link editing a COBOL and a FORTRAN object module (COBFORT).

• Replacing one control section with another by using the REPLACE
statement (RPLACJOB).

• Creating a multiple-region overlay program (REGNOVLY).

• Placing the control statements for the multiple region overlay
program in a partitioned data set, and using them (PARTDS).

The output for each program includes a cross-reference table and module
map, and a control statement listing and diagnostic messages, if any.

SAMPLE PROGRAM COBFORT

Sample program COBFORT link edits a COBOL object module and a FORTRAN
object module to form one load module. The source programs were
compiled in two steps previous to the linkage editor job step, and the
output from each compilation was placed in data set &&OBJMOD.

Job Control Language

The job control language for the linkage editor job step of this
sample program is:

//LKED
//SYSUTl
//SYSLIB
//
//SYSLMOD
//
//SYSPRINT
//SYSLIN

statement
EXEC

SYSUTl

EXEC
DD
DD
DD
DD

DD
DD

PGM=HEWL,PARM=' XREF,
DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, (100,10»
DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=SYS1. FORTLIB, DISP=SHR
DSNAME=&&LOADMD(GO),UNIT=SYSDA,DISP=(NEW,PASS),
SPACE=(TRK, (100,10,1»
SYSOUT=A
DSNAME=&&OBJMOD,DISP=(OLD,DELETE)

Explanation
Causes the execution of the linkage editor. The PARM
field option requests a cross-reference table and a
module map to be produced on the diagnostic output
data set.

Defines a temporary direct-access data set to be used as
the intermediate data set.

Appendix A: Sample Programs 135

Statem~nt

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

ExE1anation
Defines the automatic call library; the call libraries for
COBOL and FORTRAN are concatenated; both are used to
resolve external references.

Defines a temporary data set to be used as the output
module library: the load module is assigned a member name
of GO, and is passed to a subsequent step for execution.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &&OBJMOD, which
contains both input object modules; this data set was
passed from a previous job step and is to be deleted at the
end of this job step.

Linkage Edi itor Output

Figure 4:2 shows the linkage editor output for COBFORT. The listi~9:.
header indicates the options specified (XREF,LIST), and the SIZEopt~on
values used in decimal (65536 for value! and 6144 for value2). Because
XREF is specified, the heading CROSS REFERENCE TABLE precedes the rest
of the output.

Part 1 of Figure 42 shows the module map for COBFORT. MAINMOD and
FORTSU are the names of the input control sections. The rest of the
control sec·tions are either from the COBOL automatic call library or
from the FORTRAN automatic call library. (They can be distinguished by
the initial three letters: ILB indicates a COBOL control section, IHC a.
FORTRAN control section.) The origin and length (in hexadecimal) of
each control section follows the name.

To the right of each control section is a list of the entry names
defined in each control section. The location (in hexadecimal) of each
entry name is also given. For example, in control section IHCCOMH2 (the
asterisk is not a part of the name; it indicates that the control
section is from the automatic call library>, entry name SEQDASD is
defined at location 1728.

Part 2 of Figure 42 shows the cross-reference table for COBFORT. The
table contains the location of any address constant that refers to a
symbol defined in another control section. The symbol that the address
constant refers to is also listed, along with the control section in
which the symbol is defined. For example, at location 250 in control
section MAINMOD (determined by using the module map; 250 falls between
origin 00 and origin 330), an address constant refers to symbol
ILBOSTPO, dE~fined in control section ILBOSTPO.

The ent~)Laddress is 00 and the ~Q~~l_!~Qg~h of the load module is
5808. Note that the length of the module is rounded up to a doubleword
boundary.

The dis~~it~2n m~ssage at the end of the output in Figure 42
indicates that the load module GO has been added to the output module
library~ The library did not contain any other module with that name.
The four asterisks identify the message.

'136 OS/VS ;C,inkage Editor and Loader

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF
DEFAULT OPTION(S. USED - SIZE=(196608,65536)

CROSS REFERENCE TABLE

CONTROL SECTI eN ENTRY

NAME OR IGIN LENGTH NAME LOCATI ON NAME

I PCT3(1 00 360
TX652F 360 IE 0
IHCFCOMH* 540 CD9

IBCOM# 540 FLJ IOC S#
IHCCUMH2* 1220 434

SEQDASD 154A
IHDFDI sp* 1658 626
IHCFCVTH* 1C 80 1190

ADCON# 1C80 Fe VAOUTP
FCV IOUTP 22B8 FCVEOUTP

IHCF INTH* 2E20 39E
AR ITH# 2E20 ADJSWTCH

IHCFIOSH* 31CO 100E
FlOC S# 31CO

IHCUOPT * 41 DO 8
IHC TRCH * 4108 2D4

IHCERRM 4108
IHCUATBL* 44BO 638

Figure 42. Linkage Editor output for Sample Program COBFORT
(Part 1 of 2)

LOCATION NAME LOCAT ION NA~E LOCATION

5FC I NT SWTCH lIfE

.102A FCVLOUTP 1 DBA FCVlOUT P 1R'A
27BA FCVCClUTP 2Q[).t.. I NTbSWCH 2eBB

30D8

-W
to

0 en
"-<: en
t"i
t:S
~
PI
\Q
m
t!J
P,
rt
0
11

PI ::s
p,

t"t
0
PI
P,
(t)
11

LOCATIGN REFERS TO SYMBOL IN CONTROL SEC T ION LOCATION
1FO IHOFOISP IHOFOISP
410 I BCOMt# IHCFCOMH

1108 AOCONt# IHCFCVTH
l10C AP I THtJ IHCFI NTH
1128 I HCl.X)PT IHC UOPT
1114 FCVLCUTP IHCFCVT H
UlC FC VCOUTP IHCFCVTH
1124 FCVZOUTP IHCFCVTH
10E4 IHCERRM IHCTRCH
14AC IHCFCOMH IHCFCOMH
1264 I BCOMt# IHCFCOMH
2C78 IHCERRM IHCTRCH
3120 I NTSWTCH I HeFC OMH
3000 I HCUOPT IHCUOPT
~124 FIOCSt# IHC FIOSH
3FF8 IHCUATBL Iii: u\ TBL
4300 I BCOMt# IHCFCOMH
4308 FlOC S# IHCFIOSH

ENT RY ACORESS ((I

TOTAL LENGTH 4AE8

****GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET
AUTHORIZATION CODE IS O.

Figure 42. Linkage Editor Output for Sample Program COBFORT
(Part 2 of 2)

1F4
5FC

llOO
1I2C
1110
1118
1120
10EO
14A9
1268
2C7C
311C
3004
3128
32F8
4004
4304

REFERS TO SYMBOL IN CONTROL SECTION-
TX652F TXt- 52F
SEQDASO IHCCOMHZ
FIOCStI IHCFIOSH
AOJSWTCH IH(FINTH
FCVEOUT P IHCFCVTH
FC VI OUTP IHCFCVTH
FCVAOUTP !H(F(VTH
I HCCOMH2 IHCCOMH2
IHCFCOfo'H IHCFCOMH
IHCERRM IHCTf)(H
I BCOM# I HCFCOMH
IBC:JMf# II-!CF(OMH
INT6SWCH IH(FrVTH
ADeO!\!# IHCFCVTH
IHCERRM I He TPCH
IBCOMf# IHCFCO~H

~OC ONtl I HCFCVTH

SAMPLE PROGRAM RPLACJOB

Sample program RPLACJOB shows the use of the REPLACE statement to
replace one control section with another. The source program for the
new control section (NEWMOD) is processed in a previous job step and
passed to the linkage editor job step. The control section (SUBONE) to
be replaced is in an existing load module. Figure 43 shows the linkage
editor output for the job step that created this load module. Note that
the entry address is FO which is the location of the entry point MAINMOD
(specified on the ENTRY control statement).

Job Control Language

The job control language for the replacement job step of this sample
program is:

//LKED
//SYSUTl
//INPUTX
//SYSLMOD
//
//SYSPRINT
//SYSLIN
II

EXEC
DD
DD
DD

DD
DD
DD

PGM=HEWL,PARM='XREF,LIST'
UNIT=SYSDA,SPACE=(TRK, (100,10»
DS'NAME=LOADLIB,DISP=OLD,UNIT=SYSDA,VOL=SER=SCRTCH
DSNAME=LOADLIB(GO),DISP=OLD,UNIT=SYSDA,
VOL=SER=SCRTCH
SYSOUT=A
DSNAME=&&OBJMOD,DISP=(OLD,DELETE),UNIT=SYSDA

* r--,
ILinkage Editor Control Statements I L __ J

/*

Appendix A: Sample Programs 139

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST
DEFAULT OPTION(S) USED - SILc=(196608,tSS361

IEWOOOO ENTRY MAINMOD

CROSS REFERENCE TABLE

CONTROL SEcn ON

NAME
St..30NE

MAINMOD

ORIGIN
00

FO

LENGTH
EF

146

ENTRY

NAME LOCA TI ON NAME

SUBI 00

LOCATION NAME LOCAT ION NAME

LOCATION REFERS TO SYMBOL IN CUNTROL SECTION LOCAl ION REFERS TO SYMBOL IN CONTPOL SECTION
llC SUBCJNE SUBONE

eNTRY ADDRESS FO

TOTAL LENGTh 238
****GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET
AUTHORIZATION CODE IS O.

Figure 43. Linkage Editor Output for Job step that Created SUBONE

LOCA TION

Statement
EXEC

SYSUTl

INPUTX

SYSLMOD

SYSPRINT

SYSLIN

Explanation
Causes the execution of the linkage editor. The PARM
field options request a cross-reference table' and a
module map (XREF) , and a control statement listing
(LIST) to be produced on the diagnostic output data
set.

Defines a temporary direct-access data set to be used as
the intermediate data set.

Defines a permanent data set, used later as additional
linkage editor input.

Defines a permanent data set to be used as the output
module library. Note that it is the same data set that was
described on the INPUTX DD statement. The output load
module is added to the data set, under the member name GO.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object module for the replacement control
section. This data set is temporary and was passed from a
previous job step; it is to be deleted at the end of this
job. This statement also concatenates the input stream to
the primary input data set. The input stream contains
linkage editor control statements that may be followed by
a /* statement.

Linkage Editor Control statements

The input stream contains the linkage editor control statements that
are necessary for the replacement of SUBONE with NEWMOD. The control
statements are:

ENTRY MAINMOD
REPLACE SUBONE(NEWMOD)
INCLUDE INPUTX(GO)

Statement
ENTRY

REPLACE

INCLUDE

EXE!.anation
specifies that the entry point is to be MAINMOD.

Specifies that control section SUBONE in the module that
follows the REPLACE statement is to be replaced by control
section NEWMOD.

Specifies additional input: member GO of the data set
described on the INPUTX DD statement. This library member
contains the control section to be replaced. Since this
member name is identical to that specified on the SYSLMOD
DD statement, the output load module replaces the existing
library member.

Appendix A: Sample Programs 141

Figure 44 shows the linkage editor output for sample program
RPLACJOB. 'rhe listing head.§.l." indicates the options specified
(XREF and LIST), and the SIZE option values used (65536 for value:L
and 6144 for value2).

Because the LIST option is specified, a £Q~t~Q!_§t~~~~~~i_li§~i~g is
produced. Each control statement is preceded by a special message
number, IEWOOOO. Because XREF is specified, the heading CROSS REFERENCE
TABLE precedes the rest of the output.

The module m~ shows that control section NEWMOD is now part of the
l.oad module, and that control section SUBONE has been deleted. The new
_~l!!::~ddr~ss is F8, because NEWMOD is longer than SUBONE. The ~Q~!!l:
l~ngth of the load module is 240 bytes.

The cross-reference table indicates that at location 124 in MAINMOD,
an address-constant refers to symbol NE~~MOD, defined in control section
NEWMOD. No·te that before the replacement occurred, the address const:ant
in MAINMOD .referred to SUBONE, defined in control section SUBONE <Figure
43). When the REPLACE statement is used to replace a control section,
references ·to the old control section from wi thin the same input module
are also changed.

The dis~osi~ion mes§age indicates that the output load module (GO)
has been added to the output module library.

142 OS/VS Linkage Editor and Loader

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST

IEWOOOO
IEWOOOO
IEWOOOO

DEFAULT OPTION(SJ USED - SIZE=(1Q66C8,65536)
ENTRY HAINMOD
REPLACE SUBCNE(NEWMOD)
INCLUDE INPUTX(GO)

CROSS REFERENCE TABLE

CONTROL SECTION

NAME
NEWMOD
HAINMOD

ORIGIN
00
F8

LENGTH
F1

146

ENTRY

NAME

LOCATION REFERS TO SYMBOL IN CONTROL SECTION
124 NEW MOD NEWMOD

ENTRY ADDRESS Fa

TOTAL LENGTH 240
****GO NOW REPLACED IN DATA SET
AUTHORIZATION CODE IS O.

LOCAT ION NAME LOCATION NAME

LOCATION REFERS TO SYMBOL

Figure 44. Linkage Editor Output for Sample Program RPLACJOB

LOCATION NAME LOCATION

IN CONTROL SECTIO~

SAMPLE PROGRAM REGNOVLY

Sample program REGNOVLY creates a multiple-region overlay structure.
The structw~e produced is shown in Figure 45. In this program, some of
1:he references between cont:rol sections are:

CSA to CSE
CSB to CSE
CSB to CSD
CSD to esc

The reference from CSB to CSE is a valid exclusive call because there is
a reference to CSE in the segment common to both CSB and CSEi the
reference from CSD to esc is invalid because there is no reference to
esc in the common segment.

The source programs for all the control sections were compiled in
previous job steps. All of the object modules were placed in the same
data set, which was passed to the linkage editor job step.

REGION 1

T
CSA Root Segment 1

IT ALPHA

I

r--1l~
CSE

1
Segment 5

CS'C Segment 3 CSD Segment 4

········J············
l
· J··············

l
--_·············· REGION 2 GAMMA

CSF Segment 6 CSG Segment 7

1 1
Figure 45. Overlay Tree for Multiple-Region Sample Program REGNOVLY

'1 44 OS /VS :Linkage Edi tor and Loader

Job Control Language

The job control language for the linkage editor job step of this
sample program is:

//LKED
//SYSUT1
//SYSLIB
//SYSLMOD
//
//SYSPRINT
//SYSLIN
//

EXEC
DD
DD
DO

DO
DD
DD

PGM=HEWL,PARM=' XREF,LIST,OVLY,LET ,
OSNAME=&&UT1,UNIT=SYSOA,SPACE=(TRK, (100,10»
DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=&&OVLYJB(GO),UNIT=SYSDA,DISP=(NEW,PASS>,
SPACE=(TRK, (100,10,1»
SYSOUT=A
DSNAME=&&OBJMOD,DISP=(OLD,DELETE)

* r--,
ILinkage Editor Control statements I L __ J

/*

statement
EXEC

SYSUT1

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

Explanation
Causes the execution of the linkage editor. The PARM
field options request a cross-reference table and a
module map (XREF), and a control statement listing (LIST)
to be produced on the diagnostic output data set. The
module is to be assigned the overlay attribute (OVLY),
and marked executable in spite of severity 2 errors (LET).
The LET option is specified to permit testing of the
output module, even though an invalid exclusive call is
present. The XCAL option allows only valid exclusive
calls.

Defines a temporary direct-access data set to be used as
the intermediate data set.

Defines the automatic call library (SYS1.COBLIB) to be used
to resolve external references. All control sections from
this library are placed in the root segment; they remain
there unless they are repositioned.

Defines a temporary data set to be used as the output
module library; the load module is assigned the member name
GO and is passed to a subsequent step for execution.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object modules for the overlay structure.
This data set is temporary and was passed from a previous
job step; it is to be deleted at the end of this job. This
statement also concatenates the input stream to the primary
input data set. The input stream contains linkage editor
control statements, which must be delimited by a /*
statement.

Appendix A: Sample Programs 145

J,.inkage Edi tor Control Sta 1:emen ts

The input stream contains the linkage editor control statements that
structure the overlay program. The control statements are:

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT eSB
OVERLAY BETA
INSERT esc
OVERLAY BETA
INSERT eSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAMMA(REGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG

Linkage Editor Output

Figure 46 shows the linkage editor output for sample program
REGNOVLY. The listingnheader indicates the options specified (XREF,
LIST, OVLY, and LET), and the SIZE option values used (65536 for value
and 6144 for value2).

Because the LIST option was specified, the control statement listing
is produced. Each control statement is preceded by a special message
number, IE~~OOOO.

The con1:rol statement listing is followed by two diagnostic message
numbers (IEW0172 and IEW0182). The explanation of the messages and the
information following each message is given at the end of the output in
the diagnostic message directory.

The output for each segment contains a module map and a
cross-reference table. The segments are listed as they appear in the
overlay structure, top to bottom, left to right, and region by region.
(Note that this is also the sequence in which the OVERLAY and INSERT
statements must be given.)

146 OS/VS Linkage Editor and Loader

F64-lEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST,OVLY,LET

IE 1010000
IEWOOOO
I Ewoaoo
IE 10100.00
IEWOOOO
I EWOOOO
IE WOOOO
lEWOOOO
I EW(OOO
IE 1010000
I EWJOOO
I EWOOOO
IE 1010000
IEWOOOO
I EWOl 72
IEWOl82

DEFAULT OPTION(S) USED - SIZE:(1966C8,65536)
If\SERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
o VERLA Y BE TA
INS ERT CSC
OVERLAY BETA
INSER T C SO
OVERLAY ALPHA
INSERT CSE
JVERLAY GAMMA(REGIONI
INS ERT CS F
OVERLAY GAMMA
INSERT CSG.

2 CSE
4 CSC

C R 0 S S R E FF R ENe ETA B LE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. N(l. NAME LOCATION NAME
$ SEG TAB 00 34 1

CSA 38 366 1
I LBODSPO * 3AO 6F8 1
I LBOSTPO* A98 35 1

ILBOSTPl AAE

ROOT
$ ENT AB ADO 30

SEGMENT

LOCAT ION REFERS TO SYMBOL IN CLNTR OL SEC TI ON SEG. NO. LOCA TI ON
2CO IlBODSPO IlBODS PQ 1
2C8 C SG CSG 7
200 CS8 CSB 2

Figure 46. Linkage Editor Output for Sample Program REGNOVLY
(Part 1 of 3)

2C4
2CC
2D4

LOCA TI ON NAME LOCAT ION NA",E

REFERS TO SI(MBOl IN CONTROL SECT ION S EG. NO.
ILBOSTpn I lBOSTP(l 1
CS E C SE 5
I LBOSTPI IlROSTP~ 1

+=
ex>

0
(f)

.........
<:
(f)

t-t
~
f'r
PJ

\Q
CD

tt:I
P.
rt
0
Ii

PJ
~
P.

t-t
0
PJ
P.
CD
Ii

(CONTROL SECT ION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATIO\! NA"1E LOCA. nON
CSB BOO 360 2

$ ENT AB E60 18 2

SEGMENT
2

LO:::A TI ON REFERS TO SYMBCL IN CONT ROL SECT ION S EG. NO. LOCATION REFERS TJ
054 ILBOOSPO ILBOOSPO 1 050
058 CSE CSE 5 060
05C CSO CSO 4

,; CONTROL SECT !ON ENTRY

NAME ORIGI N LENGTH SEG. NO. NAME LOCAT ION NAME LOCATIJN
CSC E18 336 3

SEGMENT
3

LOCA TION REH:RS TO SYMBOL IN CONTROL SECT! ON SEG. NO. LOCAT ION REFERS TO
10CC ILBOOSPO IUIOOSPO 1 10C8

\.
1000 ILBOSTPI ILBOSTPO 1

CONTROL S EeT ION ENTRY

NAME ORIGI N LENGTH SEG. NO. NAME LOCAT ION NAME LOCATIO"J
CSO E18 362 4

SEGMENT

'"
LOCA nON REFER S TO SYMBOL IN CONTROL SECT! ON S EG. NO. LOCAT ION REFERS TO

10ce IL BOOSPO I LBDD SPO 1 10C8
1004 ILBOSTP1 ILBOSTPO 1 1000

Figure 46. Linkage Editor Output for Sample Program REGNOVLY
(Part 2 of 3)

NAME LOOTION NAME LOCAT InN

SY'4BJL IN :f1NnOL SE: TI 8N SEG. NO.
IL BOSTP('I ILI?-JSTP(, 1
ILBOSTPi ILP,OSTP~ 1

~AME LOO TI ON NAME LOCATION

SYMBOL IN C[1NTPOL SEC TIC''! SEG. I'1(l.

I L BOST P('I ILBOSTP~ 1

~A'1E un nON NAME LOCJIT! ON

SYMBOL IN CONTROL SEC TI O~ 5fG. NO.
ILBOST PC' IL BOSTP(' 1
CSC esc ?

CONTROL

NAME
CS E

LOCAr ION
054
058

ORIGIN LENGTH SEG. NO. NAME
BOO 336 5

REFERS TO SYMBOL IN CONTR OL SES TI ON
ILBODSPO IL BODSPO
ILBOSTPI IlBOSTPO

CONTROL SECTION ENTRY

NAME ORIGI N LENG TH SEG. NO. NAME
CS F llEO 2FA 6

LOCATI uN REFERS TO SYMBOL IN CONTPCL SECT ION
lq30 I LBOSTPO I LbOSTPO

rON TROL SEC TI eN ENTRY

NAME
CSG

ORIGIN LENGTH SEG. NO. NAME
lIED 336 7

LOCAT ION NAM E LOCAT IJN LOO TI ON

SE:; • NO. LOCATION REFERS TO SYMBOL IN CONTP.OL SECT!Of'-! SEG.
1 050 I LBOSTP(l ILBOSTP~
1

LOCAT ION NAME LOCATIJN \lAME LOCATION NAME

SEG. NO. LOCATION REFERS TO SYMBOL INC ONTROL SECT ION SEG.
1 1434 .JLBJSTPI I LEt:! STP 0

LOCATI ON NAME LOCAT ION NAME LOCAl ION NA~f'

lOCAT ION REFERS TO SYMBOL IN CONTROL SECTIOf'.! SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG.
1434
1438

c: NTRY ADDRESS

TOTAL LENGTH
****GO
AUTHORI ZATI eN

I LBODSPO ILBOOSPO 1 1430 I L BJ STP (I I lEtOSTP(l
ILBO STP 1 I LBOSTPO 1
38

1518
DOES NOT EXIST BUT HA S BEEN ADOED TO DATA SET
CODE IS o. ~

DIAGNOSTIC MESSAGE DIRECTORY
EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED.
INVALID EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED.

Figure 46. Linkage Editor Output for Sample Program REGNOVLY
(Part 3 of 3)

Within each segment, a ~2du!~_~~E lists the control sections in
ascending sequence according to their assigned origin. The origin,
length, and segment number is listed for each control section, along
with any entry names and the location where each entry name is defined.
For example, the root segment has five control sections: $SEGTAB, which
is always the first control section in the root segment; CSA, which is
from the object module input; ILBODSPO and ILBOSTPO, which are from the
automatic call library and were not repositioned; and $ENTAB, which,
when present, is always the last control section in any segment (as also
in segment 2). One entry name is defined, ILBOS'IPl at location AB6 in
control section ILEOSTPO.

The cross-reference table for each segment contains all of the
address constants that-refer to symbols defined in other control
sections. The location of the address constant is followed by the
symbol referred to, the control section in which the symbol is defined,
and the segment in which the control section is located. For example,
in the root segment, an address constant at location 298 refers to
symbol CSG, which is defined in control section CSG in segment 7.
Although the region is not given, the overlay tree in Figure 45 shows
that segment 7 is in region 2.

At the end of the output for all the segments is the entry address
and total length. The entry address is 38, which is the origin of CSA,
the specified entry point. The total length given refers to main
storage used, not device storage. The length given, therefore, is that
of the longest path. The longest path is that formed by the root
segment and segments 2, 4, and 7; the length given is l4DO.

However, if the given lengths of the control sections in each segment
are added, the result is 14D3. The discrepancy exists because the given
lengths do not include the padding bytes necessary to make control
sections begin on a doubleword address (multiple of 8). For example, in
the root segment, the length of $SEGTAB is 34; however, the origin of
CSA which follows $SEGTAB is 38 (decimal 56). Four additional bytes are
needed so that the origin of CSA is a multiple of 8.

The di~~osi~i2n mes~ag~ indicates that the load module GO has been
added to the output module library. The library did not contain any
other module by that name. The four asterisks identify the message.

The last item in the output for this sample program is the g!~g~2§tic
me~~~g~~!.;:ectory. The directory contains the text for the message
numbers listed after the control statement listing. The directory must
be correlated to the information following the number to interpret t:he
message.

For example, message IEW0172 is an E=rror message which indicates that
an exclusive call was made K;:2~ the segment number printed (2) following
the message number to the symbol printed (CSE). The output for segment
2 indicates that this call is at location D68 in control section CSE,
and the symbol is defined in control sE:=ction CSE in segment 5. This is
the valid exclusive call from CSB to CSE described earlier. (If XCAL
were specified, a warning message is issued instead of an error
message.)

If an ~nvalid exclusive call is detected, message IEW0182 appears as
shown. This is also an error message; it indicates that an invalid
exclusive call was made f:['om segment 4 to symbol CSC. This call is at
location 10CO in control section CSD, and the symbol is defined in
control section CSC in segment 3. This is the invalid exclusive call
from CSD to CSC, also described earlier.

150 OS/VS Linkage Editor and Loader

SAMPLE PROGRAM PARTDS

Sample program PARTDS illustrates that linkage editor control
statements can be placed in a separate data set and then used as input.
For convenience, the control statements are those for sample program
REGNOVLY, described previously. These control statements are placed in
a partitioned data set. When the member that contains the control
statements is referenced, the linkage editor uses the control statements
to produce the overlay structure shown earlier in Figure 45.

Figure 47 shows the input statements for the IEBUPDTE utility program
used to place the control statements in a partitioned data set.

The source programs for all the control sections were compiled in
previous job steps. All the object modules were placed in the same data
set, which was passed to the linkage editor job step. The input modules
are those used for sample program REGNOVLY.

r--,
//PARTDS JOE ,SMITH,MSGLEVEL(2,O)
//CTLG EXEC PGM=IEBUPDTE,PARM=(NEW)
//SYSUT2 DD DSNAME=OVLYLIB,UNIT=2314,VOL=SER=DA028,DISP=NEW,
// SPACE=(TRK,(lO,5,2»),DCB=(LRECL=80,BLKSIZE=80,RECFM=F)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
./ ADD NAME=OVLY,LEVEL=OO,SOURCE=OO,LIST=ALL
./ NUMBER NEW1=lO,INCR=5

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT CSC
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAMMA(REGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG

./ ENDUP
1/* L __ J

Figure 47. Input Statements for IEBUPDTE Utility Program

Appendix A: Sample Programs 151

The job control language for the overlay program job step of this
sample program is:

//LKED
//SYSUTl
//OVLYCDS
//SYSLIB
//SYSLMOD
//
//SYSPRINT
//SYSLIN
//

EXEC
DD
DD
DD
DD

DD
DD
DD

PGM=HEWL,PARM='XREF,LIST,OVLY,LET'
DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, (100,10»
DSNAME=OVLYLIB,UNI'I'=SYSDA,VOL=SER=SCRTCH,DISP=OLD
DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=&&OVLYJB(GO> ,UNIT=SYSDA, DISP= (NEW,PASS> ,
SPACE=(TRK, (100,10,1»
SYSOUT=A
DSNAME=&&OBJMOD, DISP=(OLD, DELETE)

* r--,
ILinkage Editor Control Statements I L ___ J

/*

Statement
EXEC

SYSUT1

OVLYCDS

SYSLIB

SYSLMOD

SYSPRINT

SYSLIN

Explanation
Causes the execution of the linkage editor. The PARM field
options request a cross-reference table and a modulE~ map
(XREF) , and a control stat,ement listing (LIST) to be
produced on the diagnostic output data set. The output
load module is to be assigned the overlay attribute (OVLY),
and is to be marked executable despite severity 2 errors
(LET).

Defines a temporary direct-access data set to be uSE=d as
the intermediate data set.

Defines a permanent data set to be used later as additional
input; this is the partitioned data set which was created
by IEEUPDTE and contains the control statements for
structuring the overlay program.

Defines the automatic call library (SYS1.COBLIB) to be used
to resolve external references. All control sections from
this library are placed in the root segment; they remain
there unless they are repositioned.

Defines a temporary data set to be used as the output
module library; the load module is to be assigned the
member name GO, and is passed to a subsequent step for
execution.

Defines the diagnostic output data set, which is assigned
to output class A.

Defines the primary input data set, &&OBJMOD, which
contains the object modules for the overlay structure.
This data set is temporary and was passed from a previous
job step; it is to be deleted at the end of this job. This
statement also concatenates the input stream to the primary
input data set. The input stream contains linkage editor
control statements tha.t must be deliuli ted by a /*
statement.

152 OS/VS Linkage Editor and Loader

The input stream contains an INCLUDE statement, as follows:

INCLUDE OVLYCDS(OVLY)

This statement causes the control statements to be read from the
partitioned data set described on the OVLYCDS DD statement. The member
name of the statements is OVLY, the same name used in the ADD statement
for the utility program.

Linkage Editor Output

The output for this sample program is identical to the output from
the REGNOVLY sample program, with one exception. The list of control
statements begins with the statement

IEWOOOO INCLUDE OVLYCDS(OVLY)

This statement is followed by a list of the control statements read from
the additional input data set specified in this INCLUDE statement. The
rest of the output is identical to that shown in Figure 46.

Appendix A: Sample Programs 153

The linkage editor can be invoked by a problem program at execution
time through the use of the ATTACH, LINK, LOAD, or XCTL macro
instruction. Figure 48 shows the basic format of these macro
instructions.

r------------T-------------T---,
I Name I Operation IOperand I
~------------+-------------+---~
I [symbol] I{LINK} I EP=linkeditname, I
I I ATTACH I PARAM=(optionlist[,ddnamelist]),VL=l I
I ~-------------+---~
I I{LOAD} I EP=linkeditname I
I I XCTL I I L ____________ ~ _____________ ~ ___ J

Figure 48. Macro Instruction Basic Format

EP=linkeditname

PARAM

specifies the symbolic name of the linkage editor. The entry point
at which execution is to begin is determined by the control program
(from the library directory entry).

specifies, as a sublist, address parameters to be passed from the
problem program to the linkage editor. The first fullword in the
address parameter list contains the address of the option and
attribute list for the load module. The second fullword contains
the address of the ddname list. If standard ddnames are to be
used, this list may be omitted.

optionlist
specifies the address of a variable length list containing the
options and attributes. This address must be written even though
no list is provided.

The option list must begin on a halfword boundary. The two
high-order bytes contain a count of the number of bytes in the
remainder of the list. If no options or attributes are specified,
the count must be zero. The option list is free form with each
field separated by a comma. No blanks or zeros should appear in
the list.

ddnamelist
specifies the address of a variable length list containing
alternative ddnames for the data sets used during linkage editor
processing. If standard ddnames are used, this operand may be
omitted.

The ddname list must begin on a halfword boundary. The two
high-order bytes contain a count of the number of bytes in the
remainder of the list. Each name of less than 8 bytes must be left
justified and padded with blanks. If an alternate ddname is
omitted from the list, the standard name will be assumed. If the
name is omitted within the list, the 8-byte entry must contain
binary zeros. Names can be omitted from the end by merely
shortening the list.

Appendix B: Invocation of the Linkage Editor 155

VI ..

The sequence of the 8-byte entries in the ddnamelist is as follows:

1
2

3
4
5
6
1
8
9-11
12

SYSLIN
member name (the name under which the output

load module is stored in the SYSLMOD data
set: this entry is used if the name is not
specified on the SYSLMOD DD statement or if
there is no NAME control statement)

SYSLMOD
SYSLIB
not applicable
SYSPRINT
not applicable
SYSUT1
not. applicable
SYSTERM

specifies that the sign bit is to be set to 1 in the last fullword
of the address parameter list.

When the linkage editor completes processing, a condition code is
returned in register 15 (see "Linkage Editor Return Code").

156 OS/VS Linkage Editor and Loader

APPENDIX C: STORAGE REQUIREMENTS AND CAPACITIES

This appendix describes the reQord-processing capacities of the
linkage editor, the types of devices that can be used for the
intermediate data set (SYSUT1), and the amount of virtual storage that
the linkage editor requires.

Capacities

The minimum storage requirement and processing capacities for the
linkage editor program are described in Table 12. To increase the
capacity for processing external symbol dictionary records, intermediate
text records, relocation dictionary records, and identification records,
increase value! and/or value2 of the SIZE option. Output text record
length can be increased by increasing the SIZE option values, but in no
case can the record length ever exceed the track length for the device.
The number of overlay segments and regions that can be processed is not
affected by increasing the storage available.

For the composite external 55mbOl dictionary, the number of entries
permitted can be computed by su tracting, from the maximum number
given in Table 12, one entry for each of the following:

• A data definition, name (ddname) specified in LIBRARY statements.
• A data definition name (ddname) specified in INCLUDE statements.
• An ALIAS statement.
• A symbol in REPLACE or CHANGE statements that are in the largest

group of such statements preceding a single object module in the
input to the linkage editor.

• The segment table (SEGTAB) in an overlay program.
• An entry table (ENTAB) in an overlay program.

To compute the number of intermediate text records that will be
produced during processing of-either-prograrn;-add-one record for each
group of x bytes within each control section, where x is the record size
for the intermediate data set. The minimum value for X is 1024; a
maximum is chosen depending on the amount of storage available to
the linkage editor and the devices allocated for the intermediate
and output data sets.

The number of text records that can be handled by a linkage editor
program is less than the maximums given in Table 12 if the text of one
or more control sections is not in sequence by address in the input to
the linkage editor.

To compute the number of relocation dictionary records in either
program, add one record for each group of 30 relocatable address
constants within each control section. In determining the number of
records, add one record for a remainder of less than 30 address
constants.

11K = 1,024 bytes

Appendix C: Storage Requirements and Capacities 157

Table 12. Linkage Editor Capacities for Minimal SIZE Values (64K,6K)
~--------------------r----------~ I Function Capacity I
r:------------ -- - - -- - - --l------- - ---i
l!irtual storage allocated (in bytes) I 64K I

IIM~imu;~mber~;_entrie~ i~~omposite----I------- ---II
external symbol dictionary (CESD) I 558

j;~imu;-n~mber-of int~edi~te-t~t- -- - - -1- - - - - - - - - --i
t.ecord~ _______________ +_:2.2 ________ 1

I
Maximum number of relocation dictionary I I
(RLD) records 192 I

~axi~ ~umbe~;-segments -;;-;rogram-- - t -255- - - -- --1
r:
1

Ma:-i;;;-um -;;umber -07" overlay ;;-;giO;;-;; - - - - -1- - - - - - -- -1
per program 4 I

j;axi~;-blOCking fact~ for-inpu';-Obj ect- - --1-- ~-- - - - - -I
modules (number of 80-column card images I 10

Iper physical record) I
r--------------------L---------i
I Maximum blocking factor for SYSPRINT I I
loutput (number of 121-character logical I 10 1 I
~ecord~pe~ -':'h:;ic~~cor~~ ______ -+ ____________ II
I On IBM 2314, 2319
I I Storage Facility I 3072 2 I
I Output text 1----------- __ L __ ---- ---I
1 record length Ian IBM 2305 Fixed Head I 2 I
1 (in bytes) ~Sto-=-age .::.a:~lit~ _____ 1_3~2 ________ ~

I I On IBM 3330 Disk Storage I 2 I
: ~FacilitL ________ --I. ...]072 ______ --I

I : On IBM 3340 Disk Storage I 2 I
I Facility 3072 I r - - - - - - L - - - - - - - - - - - ..1 - - - - - -of
I 1From 74K to 9999K for value! of the SIZE option, the blocking 1
I factor for input object modules and SYSPRINT output is 40. ' I
12The maximum output text record length is achieved when value2 of I
I the SIZE parameter is at least twice the record length size. For I
I example, on a 3330, 12288 byte records are written when value2 is I
L at least 24576. _________________________ J

158 OS/VS Linkage Editor and Loader

There is no maximum limit to the number of CSECT Identification
records associated with a load module produced by the linkage
editor. To determine the number of bytes of identification data
contained in a particular load module, use the following formula:

SIZE 269 + 16A + 31B + 2C + I(n + 6)

where:

A = the number of compilations or. assemblies by a processor
supporting CSECT Identification that produced the object code
for the module.

B = the number of pre-processor compiler compilations by a processor
supporting CSECT Identification that produced the object code
for the module.

C = the number of control sections in the module with END statements
that contain identification data.

I = the number of control sections in the module that contain
user-supplied data supplied during link editing by the optional
IDENTIFY control statement.

n the average number of characters in the data specified by
IDENTIFY control statements.

Notes:

• The size computed by the formula includes space for recording up
to 19 HMASPZAP modifications. When 75% of this space has been
used, a new 251-byte record is created the next time the module
is reprocessed by the linkage editor •

• To determine the approximate number of records involved, divide
the computed size of the identification data by 256.

Example: A module contains 100 control sections produced by 20
unique compilations. Each control section is identified during link
editing by 8 characters of user data specified by the IDENTIFY
control statement. The size of the identification data is computed
as follows:

A = 20
I 100
n = 8

269 + 320 + 1400 = 1989 bytes

If the optional user data specified on the IDENTIFY control
statements is omitted, the size can be reduced considerably, as
computed below:

269 + 320 = 589 bytes

The maximum number of downward calls made from a segment to other
segments lower in its path can never exceed 340. To compute the
maximum number of downward calls allowed, subtract 12 from the
SYSLMOD record size and then divide the difference by 12. Examples
of maximum downward calls are 84 for a SYSLMOD record size of 1024
bytes and 340 for a SYSLMOD record size of 6144 bytes.

Appendix C: Storage Requirements and Capacities 159

Intermediate Data Set

The intermediate data set. (SYSUT1) is used by the linkage editor
to hold intermediate data records during processing. The linkage
editor places intermediate data in this data set when storage
allocated for input data or certain forms of out-of-sequence text
is exhaustE~d.

The following direct-access devices, if supported by the system, can
be used for this data set:

IBM 2314
IBM 2319
IBM 2305
IBM 3330
IBM 3330-1
IBM 3340

Storage Facility
Storage Facility
Fixed Head Storage Facility
Disk Storage Facility
Disk Storage Facility
Disk Storage Facility

Linkage Editor Storage Requirements

The linkage editor requires a minimum of 74K of storage for execution.

The linkage editor program is in overlay format and uses the overlay
supervisor. For VS1, the storage required by the overlay supervisor must
be added to the minimum real storage requirement for the linkage editor.
The storage requirement for the overlay supervisor is 512 bytes.

The storage requirement given above is for VS1 and includes the
storage required by the access method modules used by the linkage editor.
The linkage editor uses the basic sequential and basic partitioned access
methods (BSAM and BPAM, respectively).

Since the overlay supervisor is in the link pack area in VS2, the
storage requirements for the overlay supervisor should not be included
when determining the size of the editor's region.

160 OS/VS Linkage Editor and Loader

PART 2: LOADER

The Loader is a processing program. It combines ba$ic editing and
loading functions of the linkage editor and program fetch in one job
step. Therefore, the load function is equivalent to the link edit-go
function. The loader can be used for compile-load and load Jobs.

The loader will load object modules produced by a language processor
and load modules produced by the linkage editor into virtual storage
for execution. Optionally, it will search a call library (SYSLIB) or
a resident link pack area, or both, to resolve external references.
The loader does not produce load modules for program libraries.

The functional characteristics, compatibility and restrictions,
performance considerations, and storage considerations of the loader are
described in the following sections.

FUNCTIONAL CHARACTERISTICS

The loader can be used with VS1 and VS2. The loader is re-enterable
and, therefore, can reside in the resident link pack area.

The loader combines the following basic functions of the linkage
editor and program fetch:

1. Resolution of external references between program modules.

2. Optional inclusion of modules from a call library (SYSLIB) or from
a link pack area, or from both (Figures 49 and 50). (Inclusion of
modules from a call library or the link pack area is performed, if
requested, when external references remain unresolved after
processing the primary input to the loader. If both are requested,
the link pack area is searched first.)

3. Automatic deletion of duplicate copies of program modules (Figure
51). (The first copy is loaded and all succeeding requests use
that copy.)

4. Relocation of all address constants so that control may be passed
directly to the assigned entry point in virtual storage.

The diagnostics produced by the loader are similar to those of the
linkage editor.

Loader 161

Figure 49.

Figure 50.

Object Q!:.
Locld Modu I es

D

G

Loader Processing -- SYSLIB Resolution

Loader Processing -- Link Pack Area and SYSLIB Resolution

162 OS/VS Linkage Editor and Loader

Figure 51. Loader Processing -- Automatic Editing

The loader accepts the same basic input as the linkage editor:

1. All object modules that can be processed by the linkage editor can
be input to the loader.

2. All load modules produced by the linkage editor can be input to the
loader (except load modules edited with the NE option).

The loader supports the following linkage editor options: l~AP, LE1,
NCAL, SIZE, and TERM. All other linkage editor options and attributes
are not supported, but, if used, they will not be considered as errors.
A message will be listed on SYSLOUT indicating that they are not
supported. The supported options are specified in the PARM field of the
EXEC statement, or with the LINK, ATTACH, LOAD, or XCTL macro
instruction. In addition to the supported linkage editor options, the
loader provides several other options. All loader options are described
under "EXEC Statement" in the section "Using the Loader."

The loader does not process linkage editor control statements (for
example, INCLUDE, NAME, OVERLAY, etc.). If they are used, they will not
be treated as errors and a message will be listed on SYSLOUT indicating
that the control statements are not supported.

The loader and the linkage editor are bound by the same input
conventions. (These conventions are discussed ~n Part 1 of this
publication.) In addition, the loader can accept load modules in the
SYSLIN data set and object modules from a data area in virtual storage.

The loader does not use auxiliary storage space for work areas; that
is, there is no loader function corresponding to the linkage editor's
creation of intermediate work data sets or output load modules.

Time Sharing Option (TSO)

When the loader is used under TSO (VS2 only), it is invoked by the loader
prompter, a program that acts as an interface between the user and the
operating system and the loader. Under TSO, execution of the loader and
definition of the data sets used by the loader are described to the
system through use of the LOADGO command that causes the prompi~er to be
executed. Operands of the LOADGO command can also be used to specify
the loader options a job requires.

Loader 163

Complete procedures for using the LOADGO command to load and execute
an object module are given in the VS2 TSO Terminal User's Guide.

processing Object Modules in virtual Storage

The loader can act as an interface with a compiler that has the
ability to construct a data area of one or more object modules in virtual
storage as an alternative to a data set on a secondary storage volume
(such as a tape or disk). such a compiler passes the loader a
description of the internal data area, which the loader then processes
as primary input. This internal data area replaces external SYSLIN data
set input to the loader.

Instead of placing text records for the object module in the internal
data area, the compiler can pass pointers to preloaded text. The loader
can then perform its reloca"tion and linkage functions on the preloaded
text itself; text is not moved during processing.

Loaded Program Restrictions

Any loaded program that issues an XCTL macro instruction or an
IDENTIFY macro instruction in a VS1 environment will not execute
properly. It is recommended that any such program be processed by the
linkage editor.

If an IDENTIFY macro ins"truction is issued by the loaded program,
IDENTIFY returns a 'OC' code in register 15. This code means that the
entry point address is not within an eligible load module and that the
entry point was not added.

In a VS1 environment, any data set opened by a loaded program should
be closed by the program before execution is complete.

164 OS/VS Linkage Editor and Loader

This section discusses how to prepare an input deck for the loader and
how to invoke the loader; it also describes the output from the loader.

The input deck for the loader must contain job control languaqe
statements for the loader and, optionally, for the loaded proqram
(Figure 52).

Only the EXEC statement and the SYSLIN DD statement are required for
a loader step. The JOB statement is required if the loader is the first
step in the job.

r---,
I//name JOB parameters (optional) 1

I//name EXEC PGM=LOADER,PARM=<parameters) 1

I//SYSLIN DD parameters 1

I//SYSLIB DD parameters (optional) 1
I//SYSLOUT DD parameters (optional) 1

I//SYSTERM DD parameters (optional) 1
1// (optional DD statements and data required for loaded program) 1 L __ . __________ J

Figure 52. Input Deck for the Loader -- Basic Format

EXEC STATEMENT

The EXEC statement is used to call the loader and to specify options
for the loader and for the loaded program. The loader is called by
specifying PGM=IEWLDRGO or PGM=LOADER (see "Invoking the Loader").
Loader and loaded program options are specified in the PARM field of the
EXEC statement. The PARM field must have the following forma·t:

,PARM=' [loaderoption[,loaderoptionl ••• l
[/programoption[,programoptionl ••• l'

Note that the loaded program options, if any, must be separated from the
loader options by a slash (/). If there are no loader options, the
program options must begin with a slash. The entire PARM field may be
omitted if there are no loader or loaded program options.

Parameters must be enclosed in single quotes when special characters
(/ and =) are used.

Using the Loader 165

The loader options are:

~lAP

The loader produces a map of the loaded program that lists external
names and their absolute storage addresses on the SYSLOUT data set.
(If the SYSLOUT DD statement is not used in the input deck, this
option is ignored.) The module map is described in "Loader Output"
in this section.

NOMAP

:RES

A map is not produced.

An automatic search 'of the link pack area queue is to be made.
This search is always made after processing the primary input
(SYSLIN), and before searching the SYSLIB data set. When this
option is specified, the CALL option is automatically set.

NORES

CALL

No automatic search of the link pack area queue is to be made.

An automatic search of the SYSLIB data set is to be made. (If the
SYSLIB DD statement is not included in the input deck, this option
is ignored.)

NO CALL
or NeAL

I,ET

NOLET

An automatic search of the SYSLIB data set will not be made. When
this option is specified, the NORES option is automatically set.

The loader will try to execute the object program even though a
severity 2 error condition is found. (A severity 2 error condition
is one that could make execution of the loaded program impossible.)

The loader will not try to execute the loaded program if a severity
2 error condition is found.

SIZE=size
specifies the size, in bytes, of dynamic virtual storage that can be
used by the loader (see Appendix F).

EP=name
specifies the external name to be assigned as the entry point of
the loaded program. This parameter must be specified if the entry
point of the loaded program is in an input load module. For
FORTRAN, ALGOL, and PL/I, these entry points must be MAIN,
IHIFSAIN, and IHENTRY, respectively, unless changed by compiler options.

NAME=name

PRINT

specifies the name to be used to identify the loaded program to the
system. If this parameter is not used, the loaded program will be
named **GO.

Informa1:ional and diagnostic messages are produced on the SYSLOUT
data set.

NOPRINT
Informational and diagnostic messages are not produced on the
SYSLOUT data set. SYSLOUT is not opened.

166 OS/VS Linkage Editor and Loader

TERM
Numbered diagnostic messages are to be sent to the SYSTERM data
set. Although intended to be used when operating under the Time
Sharing Option (TSO) , the SYSTERM data set can be used to replace
or supplement the SYSLOUT data set at any time. (If the SYSTERM DO
statement is not included in the input deck, this option is
ignored.)

NOTERM
Numbered .diagnostic messages are not to be sent to the SYSTERM data
set.

The default options are: NOMAP, RES, CALL, NOLET, SIZE=lOOK, PRINT,
NAME=**GO and NOTERM. For VSl, the default options NOMAP, RES, CALL,
NOLET, SIZE=lOOK, and PRINT may be changed during system generation by
using the LOADER macro instruction.

The following are examples of the EXEC statement. In these examples,
X and Yare parameters required by the loaded program.

//LOAD EXEC PGM=LOADER

//LOAD EXEC PGM=HEWLORGO,PARM='MAP,EP=FIRST/X,Y'

//LOAD EXEC PGM=LOADER,PARM='/X,Y'

//LOAD EXEC PGM=LOADER,PARM=NOPRINT

//LOAD EXEC PGM=LOADER,PARM= (MAP"LET)

//LOAD EXEC PGM=LOADER,PARM=' NAME=NEWPROG, TERM, NOPRINT'

For further details in coding the EXEC statement refer to OS/VS1
JCL Reference and OS/VS2 JCL.

DO STATEMENTS

The loader uses four DD statements named SYSLIN, SYSLIB, SYSLOUT, and
SYSTERM. (For VSl, these ddnames can be changed during system generation
with the LOADER macro instruction.) The SYSLIN DD statement must be used
in every loader job. The other three are optional.

The following considerations apply to the DCB parameter of SYSLIN,
SYSLIB, and SYSLOUT.

• For better performance, BLKSIZE and BUFNO can be specified.

• If BUFNO is omitted, BUFNO=2 is assumed.

• Any value given to BUFNO is assumed for NCP (number of channel
prog rams) •

• If RECFM=U is specified, BUFNO=2 is assumed, and BLKSIZE and LRECL
are ignored.

• RECFM=V is not accepted.

Using the Loader 167

• If RECFM is omitted, RECFM=F is assumed for SYSLIN and SYSLIB •

• If BLKSIZE is omitted, the value given to LRECL is assumed.

• LRECL=121 is assumed for SYSLOUT unless the loader is operating
under the Time Sharing Option (TSO>, when LRECL=81 is assumed.

• If LRECL is omitted, LRECL=80 is assumed for SYSLIN and SYSLIB.

• If OPTCD=C is used to specify chained scheduling, an additional 2K
(2048 bytes) of virtual sto]~age is needed in the user's region if
the necessary data management routines are not resident.

Note: The SYSTERM data set will always consist of unblocked
8i-character records with BUFNO=2 and RECFM=FSA. Because these values
are fixed, the DCB parameter need not be used.

In addition to the DD statements used by the loader, any DD
statements and data required by the loaded program must be included in
t.he input deck.

~YSLIN DD Statement

The SYSLIN DD statement defines the input data for the loader. This
input can be either object modules produced by a language translator, or
load modules produced by the linkage editor, or both. The data sets
defined by the SYSLIN DD statement can be either sequential data sets.
or members of a partitioned data set, or both. The DSNAME parameter for
a partitioned data set must indicate the member name, that is,
DSNAME=dsname(membername). Concatenation can be used to include more
than one module in SYSLIN.

The following are examples of the SYSLIN DD statement. The first
example defines a member of a previously cataloged partitioned data set:

IISYSLIN DD
II

DSNAME=OUTPUT.FORT(MOD12),DISP=OLD,
DCB=BLKSIZE;3200

The second example defines a sequential data set on magnetic tape:

IISYSLIN DD
II

DSNAME=PROGlS,UNIT=2400,DISP=(OLD,KEEP),
VO:LUME=(PRIVATE,RETAIN,SER=MCS167)

The third example defines a data set which was the output of a
previous step in the same job:

IISYSLIN DD DSNAME=*.COBOL. SYSLIN,DISP=(OLD, DELETE)

The fourth example shows the concatenation of three data sets. The
first two data sets are members of different partitioned data sets; the
first is an object module and the second is a load module. The third
data set is in the input stream following a SYSIN DD stat.ement (see
"Loaded Program Data" in this section).

IISYSLIN DD
II
II DD
II DD

DSNAME=PGMLIB. SE'l'l (RFS1) , DISP=OLD,
DCB=(BLKSIZ:E=3200,RECFM=FB)
DSNAME=PGMLIB.SET2 (ABCS>,DISP=OLD, DCB=RECFM=U
DDNAME=SYSIN

168 aS/vs Linkage Editor and Loader

The SYSLIB data set contains IBM-supplied or user-written library
routines to be included in the loaded program. The data set is searched
when unresolved references remain after processing SYSLIN and optionally
searching the link pack area.

The SYSLIB data set is used to resolve an external reference when the
following conditions exist: the external reference must be (1) a member
name or an alias of a module in the data set, and (2) defined as an
external name in the external symbol dictionary of the module with that
name. If the unresolved external reference is a member name or an alias
in the library, but is not an external name in that member, the member
is processed but the external reference remains unresolved unless
subsequently defined.

The data set defined by the SYSLIB DD statement must be a partitioned
data set that contains either object modules or load modules, but not
both. Concatenation may be used to include more partitioned data sets
in SYSLIB. All concatenated data sets must contain the same type of
modules (object or load).

The following are examples of the SYSLIB DO statement. The first
example defines a cataloged partitioned data set that can be shared by
other steps:

//SYSLIB DD DSNAME=SYS1.ALGLIB,DISP=SHR

The second example shows the concatenation of two data sets:

//SYSLIB DO
// OD

DSNAME=SYS1.PL1LIB,DISP=SHR
DSNAME=LIBMOD.MATH,DISP=OLD

The SYSLOUT DD statement is used for error and warning messages and
for an optional map of external references (see "Loader Output" in this
section). The data set defined by this DD statement must be a
sequential data set. The DCB parameter can be used to specify the
blocking factor (BLKSIZE) of this data set. For better performance, the
number of buffers (BUFNO) to be allocated to SYSLOUT can also be
specified.

The following are examples of the SYSLOUT DO statement. The first
example specifies the system output unit:

//SYSLOUT DD SYSOUT=A

The second example defines a sequential data set on a 1443 printer:

//SYSLOUT DD UNIT=1443,DCB=(BLKSIZE=121,BUFNO=4)

The SYSTERM OD statement defines a data set that is used for numbered
diagnostic messages only. When the loader is being used under the Time

Using the Loader 169

Sharing option (TSO) (VS2 only) of the operating system, the SYSTERM
DD s·tatement defines the term.inal output data set. However, SYSTERM
can also be used at any time to replace or supplement the SYSLOUT data
set. Because the SYSTERM data set is not opened unless the loader
must issue a diagnostic message, using SYSTERM instead of SYSLOUT can
reduce loader processing time.

When the SYSTERM data set replaces the SYSLOUT data set, the numbered
messages in the SYSTERM data set are the only diagnostic output; when
SYSTERM supplements the SYSLOUT data set, the numbered messages appear
in both data sets, and optional diagnostic and informational output,
such as a list of options or a module map, can be obtained on SYSLOUT

The DCB parameters for SYSTERM are fixed and need not be specified.
The SYSTERM data set always consists of unblocked 8i-character records
with BUFNO=2 and RECFM=FSA.

The following example shows the SYSTERM DD statement when used to
specify the system output uni·t:

//SYSTERM DO SYSOUT=A

J:"OADED PROGRAM DATA

Loaded program data and loader data can both be specified in the
input reader in VS1 and VS2. Loaded program data can be defined by a
DD statement following the loader data.

Figure 53 shows the loading of a previously compiled FORTRAN problem
program. The program to be loaded (loader data) follows the SYSLIN
DD statement. The loaded program data follows the FT05F001 DD
statement.

r-----------·---,
I//LOAD JOB MSGLEVEL=l
I//LDR EXEC PGM=LOADER,PARM=MAP
I//SYSLIB DD DSNAME=SYSi.FORTLIB,DISP=SHR
I//SYSLOUT DD SYSOUT=A
11/ /FT06FOOi DD SYSOUT=A
~//SYSLIN DD *
1 (Loader data>
~/*
1//FT05FOOi DD *
~ (Loaded program data)
1/* l __ . _____ _

Figure 53. Loader and Loaded Program Data in VS1 or VS2 Input Stream

The loader can be referred to by either its program name, IEWLDRGO.
or its alias, LOADER. The loader can be invoked through the EXEC
statement, as described in "Input for the Loader," or through the LOAD,
ATTACH, LINK, or XCTL macro instruction. Figure 54 shows the basic
format for the macro instruction.

170 OS/VS Linkage Editor and Loader

r--------T---------T~--,
I Name I Operation I Operand I
~-------~---------+---~
I I I EP=loadername I
I [symbol] I {LINK } IPARAM=(optionlist[,ddname list]) I
I I ATTACH IVL=l I
I ~---------~---~
I I {LOAD} I EP=loadername I
I I XCTL I I L ________ i _________ i ___ J

Figure 54. Macro Instruction Basic Format

EP
specifies the symbolic name of the loader. The entry point at
which execution is to begin is determined by the control program
from the library directory entry.

PARAM
specifies, as a sublist, address parameters to be passed to the
loader. The first fullword in the address parameter list contains
the address of the option list for the loader and/or loaded
program. The second fullword contains the address of the ddname
list. If standard ddnames are to be used, this list may be
omitted.

option list
specifies the address of a variable length list containing the
loader and loaded program options. This address must be written
even though no list is provided.

The option list must begin on a half word boundary. The two
high~order bytes contain a count of the number of bytes in the
remainder of the list. If no options are specified, the count must
be zero.

The option list is free form, with the loader and loaded program
options separated by a slash (/), and with each option separated by
a comma. No blanks or zeros should appear in the list.

ddname list

VL

specifies the address of a variable length list containing
alternative ddnames for the data sets used during loader
processing. If the standard ddnames are used, this operand may be
omitted.

The format of the ddname list is identical to the format of the
ddname list for invoking the linkage editor; the 8-byte entries in
the list are as follows:

Entry
1
2
3
4
5
6
7-11
12

Alternate Name For:
SYSLIN
not applicable
not applicable
SYSLIB
not applicable
SYSLOUT
not applicable
SYSTERM

specifies that the sign bit is to be set to 1 in the last fullword
of the address parameter list.

Using the Loader 171

Figure 55 shows an assembler language program that uses the LINK
macro instruction to refer to the loader.

r--,

PARM
OPTIONS
LENGTH
SAVEAREA

SAVE (14,12) initialize -- save

LA 13,SAVEAREA

registers and point
to new save area

LINK EP=LOADER,PARAM=(PARM),VL=l

L 13,4(13)
RETURN (14,12),T

OS
DC
DC
EQU
OS

END

OH
AL2(LENGTH)
C'NOPRINT,CALL/X,Y,Z'
*-OPTIONS
18F

length of options
loader and loaded program

options
save area

Figure 55. Using the LINK Macro Instruction To Refer to the Loader

If desired, the loader may be used to process a program but not
execute it. To invoke just the portion of the loader that processes
input data, specify either the name HEWLOAD or the name HEWLOADR with a
LOAD and CALL macro instruction.

HEWLOAD, which is used with VS2 only, will both load and identify the
program. HEWLOAD returns the address of an 8-character name in register
1. This namE~ can be used with an ATTACH, LINK, LOAD, or XCTL macro
instruction to invoke the loaded program. A user program that is going
to attach a loaded program, should avoid specifying SZERO=NO in its
ATTACH macro. If SZERO=NO must be specified, the user program should
issue a LOAD for the loaded program before performing the ATTACH and a
DELETE for the loaded program after the ATTACH.

HEWLOADR, which can be used with VS1 or VS2, will load the program
but will not identify it. HEWLOADR returns the entry point of the
loaded program in register O. Register 1 points to two full words: the
first points to the beginning of storage occupied by the loaded program;
the second contains the size of the loaded program. This location and
size can then be used in a FREEMAIN macro instruction to free the
storage occupied by the loaded program when it is no longer needed.

Figure 56 shows an assembler language program that uses the LOAD and
CALL macro instructions to refer to HEWLOADR. Figure 57 shows an
assemtller language program that uses the LOAD and CALL macro
instructions to refer to HEWLOAD.

For further information on the use of these macro instructions, refer
to OS!VS1 Supervisor Services and Macro Instructions and OS!VS2 Supervisor
Services and Macro Instructions.

172 OS!VS Linkage Editor and Loader

r--,

*

*

FREE

PARMl
OPTIONSl
LENGTH1

PARM2
OPTIONS2
LENGTH2
SAVEAREA

SAVE (14,12),T initialize -- save registers and

ST 13,SAVEAREA+4
LA 13,SAVEAREA

LOAD
LR
CALL

LR
LR
LR

DELETE
CH
BH
LR

CALL

EP=HEWLOADR
15,0
(15), (PARM1) , VL

7,15
5,0
6,1

EP=HEWLOADR
7,=H'4'
FREE
15,5

(15), (PARM2), VL

L 0,4(6)
L 1,0(6)
FREEMAIN R,LV=(O),A=(l)

L 13,4(13)
RETURN (14,12),T
DS OH
DC AL2(LENGTH1)
DC C'NOPRINT,CALL'
EQU *-OPTIONSl
DS OH
DC AL2 (LENGTH2)
DC C'X,Y,Z'
EQU *-OPTIONS2
DS 18F

END

point to new save area

load the loader
get its entry point address
invoke the loader

save return code
save entry to loaded program
save pointer to list containing

start address and length
delete loader
verify successful loading
negative branch
loading successful -- get

point address for CALL
invoke program

get length into register 0
get start address
delete loaded program

length of loader options
loader options

entry

length of loaded program options I
loaded program options I

save area
I
I
I
I
I
I __ J

Figure 56. Using the LOAD and CALL Macro Instructions to Refer to
HEWLOADR (Loading without Identification>

Using the Loader 173

r--,
~ SAVE (14,12),T initialize -- save registers and

* point to new save area

*
*

PARMl
OPTIONSl
LENGTHl

PARM2
OPTIONS2
LENGTH2
SAVEAREA
PGMNAM

ST 13,SAVEAREA+4
LA 13,SAVEAREA

LOAD
LR
CALL
LR
MVC
DELETE
CH
BH

EP=HEWLOAD
15,0
(15), (PARMi), VL
7,15
PGMNAM(S),O(l)
EP=HEWLOAD
7,=H'4'
ERROR

load the loader
get its entry point address
invoke the loader
save the return code
save program name
delete the loader
verify successful loading
negative branch

LINK EPLOC=PGMNAM,PARM=(PARM2),VL=1 loading successful~
invoke program

L 13,4(13)
RETURN (14,12),T
DS OH
DC AL2 (LENGTH1) length of loader options
DC C' MAP' loader options
EQU *-OPTIONSl
DS OH
DC AL2 (LENGTH2) length· of loaded program options
DC C' X, Y, Z' loaded program options
EQU *-OPTIONS2
DS lSF save area
DS 2F program name

END L __ J

:Figure 57. Using the LOAD and CALL Macro Instructions to Refer to
HEWLOAD (Loading With Identification)

174 OS/VS Linkage Editor and Loader

LOADER OUTPUT

Loader output consists of a collection of diagnostics and error
messages, and of an optional storage map of the loaded program. This
output is produced in the data set defined by the SYSLOUT 00 and SYSTERM
00 statements. If these are omitted, no loader output is produced.

SYSLOUT output includes a loader heading, and the list of options and
defaults requested through the PARM field of the EXEC statement. The
SIZE stated is the size obtained, and not necessarily the size requested
in the PARM field. Error messages are written when the errors are
detected. After processing is complete an explanation of the error is
written. Loader error messages are similar to those of the linkage
editor and are listed in the OS/VS Message Library: Linkage Editor and
Loader Messages.

SYSTERM output includes only numbered warning and error messages.
These messages are written when the errors are detected. After
processing is complete, an explanation of each error is written.

The storage map includes the name and absolute address of each
control section and entry point defined in the loaded program. Each map
entry marked with an asterisk (*) comes from the data set specified on
the SYSLIB 00 statement. Two asterisks (**) indicate the entry was
found in the link pack area; three asterisks (***) indicate the entry
comep from text that was preloaded by a compiler. The TYPE column indicates
what each entry on the map is used fori SO-control section, LR-Iabel
reference, and PR-pseudo register.

The map is written as the input to the loader is processed, so all
map entries appear in the same sequence in which the input ESO items are
defined. The total size and storage extent of the loaded program are
also included. For PL/I programs,a list is written showing
pseudo-registers with their addresses assigned relative to zero. Figure
58 shows an example of a module map.

In a VS2 environment, the loader issues an informational message
when the loaded program terminates abnormally.

Using the Loader 175

f-'
-....J
~

0
til
""-<!
til

t:-I
1-'-
Ij
;;>;'
PJ

lQ
CD

tt:l
P,
1-'-
rt
0
H

PJ
::J
P,

t:-I
0
PJ
P,
CD
H

OS/360

OPTIONS USED - PRINT,MAP,NOLET,CALL,NORES,SIZE=424176

NAME TYPE ADDR NAME TYPE

SAMPL2B SD 161EO .SAMPL2BA SD
SYSIN SD 17D48 IHEVQC * SD
IHEDIA * SD 183CO IHEDlAA * LR
IHEVPA * SD 18870 IHEVPAA * LR
IHEVPCA * LR 189F8 IHEVFE * SD
IHEDNC * SD 18CB8 IHEDNCA * LR
IHEDMA * SD 19010 IHEDMAA " LR
IHEVFAA * LR 19160 IHEVPB * SD
IHEIOB * SD 19488 IHEIOBA * LR
IHESARC * LR 1A9C8 IHESADD * LR
IHEBEGA * LR 1AE28 IHEERR * SD
IHEERRA * LR 1AE86 IHEERRE * LR
IHEITA'Z * LR 1B81E IHEITAX * LR
lHEDCNB * LR 1B862 lHEIOD * SD
IHEVTB * SD 1BCFO IHEVTBA * LR

IHEQINV PR 00 IHEQERR PR
SYSIN PR 14 IHEQLSA PR
IHEQLW3 PR 28 IHEQLW4 PR
lHEQFVD PR 3C IHEQCFL PR
lHEQEVT PR 58 IHEQSLA PR
IHEQSFC PR 70

IEW1001 IHEUPBA
IEW1001 lHEUPAA
IEW1001 IHETERA
IEW1001 IHEM91C
IEW1001 IHEM91B
IEW1001 IHEM91A
IEW1001 lHEDDOD
IEW1001 lHEVPFA
IEW1001 lHEVPDA
IEW1001 lHEDBNA
IEW1001 IHEVSFA
IEW1001 IHEVSBA
IEW1001 lHEVCAA
IEW1001 IHEVSAA
IEW1001 IHEDNBA
IEW1001 IHEUPBB
IEW1001 IHEUPAB
IEW1001 IHEVSEB

TOTAL LENGTH 5068
ENTRY ADDRESS 17DOO

WARNING

Figure 58. Module Map Format Example

ADDR

16EC8
17D80
183CO
18870
18BE8
18CB8
19010
19248
19488
1A9DE
1AE68
1B4E2
1B8.2A
1BA50
1BCFO

4
18
2C
40
60

NAME TYPE

IHEMAIN SD
IHEVQCA * LR
IHEDIAB * LR
IHEVFC * SD
IHEVFEA * LR
IHEDOA * SD
IHEVFD * SD
IHEVPBA * LR
IHEIOBB * LR
IHESAFF * LR
IHEERRD * LR
IHEIOF * SD
IHEITAA * LR
IHEIODG * LR
IHEVQA * SD

SAMPL2BB PR
IHEQLWO PR
IHEQLWE PR
IHEQFOP PR
IHEQSAR PR

ADDR

17CF8
17D80
183C2
189DO
18BE8
18F30
19108
19248
19490
1AA18
1AE68
1B580
1B83E
1BA50
1BD78

8
1C
30
48
64

NAME TYPE

IHENTRY SD
IHEVQB * SD
IHEVPE * SD
IHEVFCA * LR
IHEVSC * SD
IHEDOAA * LR
IHEVFDA * LR
IHEXIS * SD
IHEIOBC * LR
IHEPRT * SD
IHEERRC * LR
IHEIOFB * LR
IHEDCN * SD
IHEIODP " LR
IHEVQAA * LR

SAMPL2BC PR
IHEQLW1 PR
IHEQLCA PR
IHEQADC PR
IHEQLWF PR

ADDR

17DOO
17FD8
18608
189DO
18C08
18F30
19108
193FO
19498
1AB70
1AE72
1B580
1B860
1BA52
1BD78

C
20
34
4C
68

NAME TYPE

IHESPRT SD
IHEVQBA * LR
IHEVPEA * LR
IHEVPC
IHEVSCA
IHEDOAB
IHEVFA
IHEXISO
IHEIOBD
IHEPRTA
IHEERRB
IHEIOFA
IHEDCNA
IHEIODT

IHEQSPR
IHEQLW2
IHEQVDA
IHEQXLV
IHEQRTC

* SD
* LR
* LR
* SD
* LR

'" LR
* LR
* LR
* LR
* LR
* LR

PR
PR
PR
PR
PR

ADDR

17D10
17FD8
18608
189F8
18C08
18F32
19160
193FO
194AO
1AB70
1AE7C
1B582
1B860
1BB4A

10
24
38
50
6C

Figure 59 shows an input deck for a load job. A previously assembled
program, MASTER, is to be loaded. The SYSLOUT, SYSLIB, and SYSTERM DD
statements are not used.

r--,
I//LOAD JOB MSGLEVEL=l 1
1// EXEC PGM=LOADER I
I//SYSLIN DD DSNAME=MASTER,DISP=OLD I
1 I
1 (DD statements and data required for execution of MASTER) 1
1 1
1/* I L __ J

Figure 59. Input Deck for a Load Job

Figure 60 shows an input deck for a compile-load job. The COBOL F
(IEQCBLOO) compiler is used for the compile step. The loaded program
requires the SYSOUT, TAXRATE, and SYSIN DD statements.

r---,
I//JOB JOB 22,MCS,MSGLEVEL=1
//COBOL EXEC PGM=IEQCBLOO,PARM=MAP,REGION=86K,RD=R
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD UNIT=SYSCP
//SYSUTl DD UNIT=SYSDA,SPACE=(TRK, (100,10»
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK, (100,10»
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (100,10»
//SYSUT4 DD UNIT=SY8DA,SPACE=(TRK, (100,10»
//SYSLIN DD DSNAME=~&LOADSET,DISP=(MOD,PASS),
// UNIT=SYSSQ,SPACE=(TRK, (30,10»
//SYSIN DD *

(source program)
/*
//LOAD EXEC PGM=LOADER,PARM='MAP,LET',COND=(S,LT,COBOL)
//SYSLIN DD DSNAME=*.COBOL.SYSLIN,DISP=(OLD,DELETE)
//SYSLOUT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//SYSOUT DD SYSOUT=A
//TAXRATE DD DSNAME=TAXRATE,DISP=OLD
I/SYS!N DD *

(Data for Loaded Program)
L~! ___ _

Figure 60. Input Deck for a Compile-Load Job

Appendix D: Sample Input for the Loader 177

Figure 61 shows the compilation and loading of three modules. In the
first three steps, the FORTRAN H (IEKAAOO) compiler is used to compile a
main program, MAIN, and two subprograms, SUBl and SUB2. Each of the
object modules is placed in a sequential data set by the compiler and
passed to the loader job step. In addition to the FORTRAN library, a
private library, MYLIB, is used to resolve external references. In the
loader job step, MYLIB is concatenated with the SYSLIB DD statement.
SUBl and SUB2 are included in the program to be loaded by concatenating
them with the SYSLIN DD statement. The SYSTERM statement is used to
define the diagnostic output data set. The loaded program requires the
FT01FOOl and FT10FOOl DD statements for execution, and it does not
require data in the input stream.

r--------------------------'--,
//JOBX JOB
//STEPl EXEC PGM=IEKAAOO,PARM='NAME=MAIN,LOAD'

//SYSLIN DD DSNAME=&&GOFILE,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD *

(Source module for MAIN)
/*
//STEP2 EXEC PGM=IEKAAOO,PARM='NAME=SUB1,LOAD'

//SYSLIN DD DSNAME=&&SUBPROG1,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD *

(Source module for SUB1)
/*
//STEP3 EXEC PGM=IEKAAOO,PARM='NAME=SUB2,LOAD'

//SYSLIN DD DSNAME=&&SUBPROG2,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD *

(Source module for SUB2)
/*
//STEP4
//SYSTERM
//SYSLIB
//
//SYSLIN
//
//
//FT01FOOl
//FT10FOOl

1/*

EXEC
DD
DD
DD
DD
DD
DD
DD
DD

PGM=LOADER
SYSOUT=A
DSNAME=SYS1.FORTLIB,DISP=OLD
DSNAME=MYLIB,DISP=OLD
DSNAME=*.STEP1.SYSLIN,DISP=OLD
DSNAME=*.STEP2.SYSLIN,DISP=OLD
DSNAME=*.STEP3.SYSLIN,DISP=OLD
DSNAME=PA,RAMS, DISP=OLD
SYSOUT=A

L ___ . __ _

Figure 61. Input Deck for Compilation and Loading of the Three Modules

178 OS/VS Linkage Editor and Loader

APPENDIX E: LOADER RETURN CODES

The return code of a loader step is determined by the return codes
resulting from loader processing and from loaded program processing.

The return code indicates whether errors occurred during the
execution of the loader or of the loaded program. The return code can
be tested through the COND parameter of the JOB statement specified for
this job and/or the COND parameter of the EXEC statement specified in
any succeeding job step. (For details, see the publication OS/VS
JCL Reference.) Table 13 shows the return codes.

Table 13. Return Codes (Part 1 of 2)

r------~-------~-------T---,
I I ILoaded I I
I ILoader I Program I I
I Return I Return IReturn I I
I Code I Code 1 I Code I Conclusion or Meaning I
~-----f-------f-------f---1
I I 0 I 0 I Program loaded successfully, and execution of I
I I I I the loaded program was successful. I
I ~-------f-------f---~
I 0 I 4 I 0 I The loader found a condition that may cause ani
I ~-------+-------I error during execution, but no error occurred I
I I 8 (LE'I') I 0 I during execution of the loaded program. I
~-----f-------f-------f---~
I I I I Program loaded successfully, and an error I
I I 0 I 4 I occurred during execution of the loaded I
I I I I program. I
I 4 ~-------+-------+---~
I I 4 I 4 I The loader found a condition that may cause ani
I ~-------+-------I error during execution, and an error did I
I 18 (LET) I 4 I occur during execution of the loaded program. I
~------+-------+-------+---~
I I J I Program loaded successfully, and an error I
I I 0 I 8 I occurred during execution of the loaded I
I I I I program. I
I ~-------+-------f---~
I I 4 I 8 I The loader found a condition that may cause ani
I 8 ~-------+-------I error during execution, and an error did I
I 18 (LET) I 8 I occur during execution of the loaded program. I
I ~-------+-------f---~
I I I I The loader found a condition that could make I
I I 8 I I execution impossible. The loaded program was I
I I I I not executed. I
~------~--~----~-------~---~
11 Error diagnostics (SYSLOUT and/or SYSTERM data set) for the loader I
I will show the severity of errors found by the loader. I L __ J

Appendix E: Loader Return Codes 179

Table 13. Return Codes (Part 2 of 2)
r------T-------T-------T---,
I I I Loaded I I
I ILoader I Program I I
IReturnlReturn IReturn I I
I Code I Code1 I Code I Conclusion or Meaning I
~------+-------+-------+---i
I I I I Program loaded successfully, and an error I
I I 0 I 12 I occurred during execution of the loaded I
I I I I program. I
I ~-------+-------f--i
I I 4 I 12 I The loader found a condition that may cause ani
I 12 ~-------+-------I error during execution, and an error did I
I 18 (LET) I 12 I occur during execution of the loaded program. I
I ~-------+-------f--i
I I 12 I I The loader could not load the program I
I I I I successfully, execution impossible. I
~------+-------+-------f---i
I I 0 I 16 I Program loaded successfully, and the loaded I
I I I I program found a terminating error. I
I ~-------+-------f---i
I I 4 I 16 I The loader found a condition that may cause ani
I ~-------+-------l error during execution, and a terminating I
I 16 18 (LET) I 16 I error was found during execution of the loaded I
I I I I program. I
I ~-------+-------+---i
I I 16 I I The loader could not load program, execution I
I I I I impossible. I
~------~-------~-------~--i
11 Error diagnostics (SYSLOUT and/or SYSTERM data set) for the loader I
I will show the severity of errors found by the loader. I L __ J

180 OS/VS Linkage Editor and Loader

APPENDIX F: STORAGE CONSIDERATIONS

The loader requires virtual storage space for the following items:

• Loader code.

• Data management access methods.

• Buffers and tables used by the loader (dynamic storage).

• Loaded program (dynamic storage).

Region size includes all four of the above items; the SIZE option
refers to the last two items.

For the SIZE option, the minimum required virtual storage is 4K
plus the size of the loaded program. This minimum requirement grows
to accommodate the extra table entries needed by the program being
loaded. For example: FORTRAN requires at least 3K plus the size of
the loaded program, and PL/I needs at least 8K plus the size of the
loaded program. Buffer number (BUFNO) and blocksize (BLKSIZE) could
also increase this minimum size. Table 14 shows the appropriate
storage requirements in bytes.

The maximum virtual storage that can be used is whatever virtual
storage is available up to 8192K.

Allor part of the storage required is obtained from user storage.
If the access methods are made resident at IPL time, they are
allocated in system storage. However, 6K is always reserved for
system use.

In a VS2 environment the loader code could also be made resident in
the link pack area. If so, it requires the following space: HEWLDRGO,
the control/interface module (alias LOADER), approximately 700 bytes;
HEWLOADR, the loader processing portion, approximately 13,664 bytes.

The size of the loaded program is the same as if the program had been
processed by the linkage editor and program fetch.

The loader does not use auxiliary storage space for work areas.

Appendix F: Storage Considerations 181

'rable 14. Virtual Storage Requirements
r-----------------------T---------------------T------------------------,
I I Approximate I I
I I Virtual storage I I
I I Requirements I I
I Consideration I (in bytes) I Comments I
~-------7--·-------------t---------------------t-----------------------~
I I Control I 700 VS1 I I
I Loader I I 2000 VS2 I I
ICode ~---------------t---------------------+-----------------------~
I I Processing 113664 VS1 I I
I I 114000 VS 2 I I
~-------~---------------t---------------------+-----------------------~
I Data Management I 6K I BSAM I
~------------------------+---------------------+-----------------------~
IObject Module Buffers IBUFNO(BLKSIZE + 24) IConcatenation of I
land DECBs I I different BLKSIZE and I
I I I BUFNO must be I
I I I considered. (Minimum I
I I I BUFN0==2) I
~-----------------------t---------------------+-----------------------~
ILoad Module Buffer I 304 I I
land DECBs I I I
~-----------------------t---------------------t-----------------------~
ISYSTERM DCB I 312 IAllocated if TERM I
I Buffers, and DECBs I loption is specified I
~------------------------t---------------------t-----------------------~
ISYSLOUT Buffers IBUFNO(BLKSIZE + 24) IBuffer size rounded up I
land DECBs I Ito integral number of I
I I I double words. I
I I I (Minimum BUFN0=2) I
~-------------------·-----t---------------------t-----------------------~
ISize of program being IProgram Size IProgram size is I
Iloa~ed I Irestricted only by I
I, I lavailable virtual ,
I : : storage :
r------------------------~---------------------T-----------------------,
lEach external relocation I 8 I I
Idictionary entry I I I
~------------------------+---------------------+-----------------------~
I Each external symbol I 20 _ I I
~------------------------t---------------------t-----·------------------~
ILargest ESD number I 4n IAllocated in increments I
I Ig is the largest ESD lof 32 entries I
I Inumber in any input I I
I I module I I
~-------------------·-----t---------------------+-----------------------~
IFixed Loader Table Size I 1260 ISubtract 88 if NOPRINT I
I I lis specified I
~------------------------t---------------------+-----------------------~
ICondensed Symbol I 12n IBuilt only if TSO is I
I Table I g is the total number I operating and space I
I lof control sections lis available I
I land common areas in I I
I Ithe loaded program I I
~------------------------+---------------------+-----------------------~
I system I 1600 VS1 I I
I Requirement.s I 4000 VS2 I I L ________________________ ~ _____________________ i _______________________ J

182 OS/VS Linkage Editor and Loader

APPENDIX G: LOAD MODULE FORMAT

The format of a load module built by the linkage editor is shown in
Figure 62.

In writing the output load module to the SYSLMOD data set, the link
age editor does not use the track overflow feature. When moving or copy
ing load modules, it is recommended that the track overflow feature not
be used on the target data set, as errors may occur in fetching the
load modules for execution.

TTR-P, if TEST option and SYM records present

j I
TTR-P, if no TEST option I TTR-T, if OVLY oP~ion used . / TTR-T, if no OVLY option

, ,TTR-NS, 1f SCTR opt1on

I SYM I I CESD

tpresent if TEST
option and SYM
records present.

I 1 _I_D_R----JI I CTL I I SEGTAB I I

t~ if OVLY
option and more
than 1 segment.

Present if OS Release 21.0
or later linkage editor
created load module

RLD IICTL,RLD, ••• CTL,RLD,TXT,ENTABI ~ I

t fl +
Carries EOS if Carries EOM

SCTR I ~ I 1st TXT

tpresent if SCTR
option is used.

I ENTAB I (continued)

tpresent if OVLY option
used and more than
1 segment.

TTR-Ns, if OVLY
.and more than 1

option
segment

CTL I~~

tcarries EDM tpresent if OVLY
following ENTAB if this is RLD

for Last TXT
if no RLSs and more than 1
for Last TXT

option
segment

Figure 62. Load Module Format.

Appendix G: Load Module Format 183

APPENDIX H: SIZE AND REGION PARAMETER GUIDELINES

This appendix gives guidelines for determining an appropriate REGION
parameter value and SIZE parameter values for a linkage editor job step.

First - determine Value2 of the SIZE parameter.

Value2 = < < a + b

where: a is the length of the load module to be built

b is 0 , if the length of the load module to be

built is < [:g~60J or
if the length of the load module to

be built > [
40K]
40960

c is an integer ~ 2

d is the track capacity of the SYSLMOD device

e is the block size of the SYSLMOD data set

J is the length of the largest text record in load
module input

Q is the track capacity of the SYSUT1 device

Second - determine Value1 of the SIZE parameter

Value1 = f + g + h Value1 must range between f and
[

999K]
999999

where: f is the design point of the Linkage Editor being used:

g is the excess of Value2 over

g = Value2 [~~ 44]

h is the additional storage required to support the blocking
factor for SYSLIN, any object module libraries, and SYSPRINT:

F64 5 to 1 10 to 1 40 to 1

[
18K]
18432 [

28K]
28672

Third - determine the REGION parameter.

REGION = Value1 +
[

10K 1 10240

Appendix H: Size and Region Parameter Guidelines l85

GLOSSARY

IBM is grateful to the American National Standards Institute (ANSI) for
permission to reprint its definitions from the American National
Standard Vocabulary for Information Processing (ANSI X3.12-1970), which
was prepared by Subcommittee X3.5 on Terminology and Glossary of
American National Standards Committee X3. ANSI definitions are preceded
ny an asterisk.

*~dd£ess: An identification, as represented by a name, label, or
number, for a reqister, location in storage, or any other data source
or destination such as the location of a station in a communication
network; any part of an instruction that specifies the location of an
operand for the instruction.

address constant: A value, or an expression representing a value, used
in the calculation of storage addresses; can be used for branching or
retrieving data.

address translation: The process of changing the address of a data
item or an instruction from its virtual address to the real storage
address of the location where it will reside. See also dynamic address
translation.

alias name: An alternate name or entry point for a load module that is
also entered in the output module library directory entry along with
the member name.

automatic library call mechanism: The process whereby control sections
are processed by the linkage editor or loader to resolve external
references to members of partitioned data sets not resolved by primary
input processing.

auxiliary storage: Data storage other than virtual storage; for
example, storage on magnetic tape or direct-access devices.

common area: A control section used to reserve a virtual storage area
that can be referred to by other modules; may be either named or
unnamed (blank).

common segment: A segment upon which two exclusive segments are
dependent.

control section: That part of a program (instructions and data)
specified-by the programmer to be a relocatable unit, all elements of
which are to be loaded into adjoining storage locations for execution.
Abbreviated CSECT.

control section name: The symbolic name of a control section.

demand paging: Transfer of a page from external page storage to real
storage at the time it is needed for execution.

downward reference: A reference made from a segment to another segment
lower in the same path; i.e., farther from the root segment.

dynamic address translation (DAT): (1) The change of a virtual storage
address to a real storage address during execution of an instructlon.
See also address translation. (2) A hardware feature that performs the
translation.

~ntry-nam~: A name within a control section that defines an entry
point, and can be referred to for execution by any control section.

Glossary 187

exclusive reference: A reference between exclusive segments; that is,
a reference from a segment in storage to an external symbol in a
segment that will cause overlay of the calling segment.

exclusive segments: Segments in the same region of an overlay program,
neither of which is in the path of the other; they cannot be in virtual
storage simultaneously.

external name: A name that can be referred to by any control section
or-Separately assembled or compiled module; i.e., a control section
name or an entry name.

external page storage: The portion of auxiliary storage that is used
to contain pages.

~~te~nal Eefer~~£§: (1) A reference to a symbol that is defined as an
external name in another module. (2) An external symbol that is
defined in another module; that which is defined in the assembler
language by an EXTRN statement or by a V-type address constant, and is
resolved during linkage editing. See also weak external reference.

~~~~Enal_~~bol: A control section name, entry point name, or external 
reference that is defined or referred to in a particular moduled A 
symbol contained in the external symbol dictionary. 

i.!!~l~siv~_E~f~rence: A reference between inclusive segments; that is, 
a reference from a segment in storage to an external symbol in a 
segment that will not cause overlay of the calling segment. 

i!!~l~siv~_se9.!!!ents: Segments in the same region of an overlay program 
that are in the same path; they can be in virtual storage simultaneously. 

invalid exclusive reference: An exclusive reference in which a common 
segment does not contain a reference to the symbol used in the 
exclusive reference. 

library: In this publication, it is a partitioned data set that always 
contains named members~ 

lQ~g mog~!~: The output of the linkage editor; a program in a format 
suitable for loading into virtual storage for execution. 

load module buffer: An entity of virtual storage used by the linkage 
ed~tor to read input load module text records and possibly to retain 
the text information in storage for subsequent writing of the output 
load module text records. 

, *~odule: A program unit that is discre.§t and identifiable with respect 
to compiling, combining with other units, and loading, for example, the 
input to, or output from, an assembler, compiler, linkage editor, or 
executive routine. 

multiple load module proce~sing: A method of processing whereby two or 
more load modules can be produced in a single linkage editor job step. 

*obj~ct mOQul~: A module that is the output of an assembler or compiler 
and is input to a linkage editor. 

overlay prggram: A program in which certain control sections can use 
the same storage locations at different times during execution. 

*Qve~laL~~..p~E.Yi~or: A routine that controls the proper sequencing and 
positioning of segments of computer programs in limited storage during 
their execution. 

188 OS/VS Linkage Editor and Loader 



QyerlaY_i~~: A graphic representation showing the relationships of 
segments of an overlay program and how the segments are arranged to use 
the same main storage area at different times. 

~: (1) A fixed-length block of instructions, data, or both, that 
can be transferred between real storage and external page storage. 
(2) To transfer instructions, data, or both between real storage and 
external page storage. 

page fault: A program interruption that occurs when a page that is 
marked "not in real storage" is referred to by an active page. 

paging: The process of transferring pages between real storage and 
external page storage. 

path: All of the segments in an overlay tree between a given segment 
and the root segment, inclusive. 

~iyate_~ode: An unnamed control section. 

£rogram: A logically self-contained sequence of operations or 
instructions that, when followed in some predetermined sequence, will 
produce a specified result; a sequence of instructions to be performed 
by an electronic computer; one or more modules, in source language or 
relocatable object code, or one module in executable code, that are a 
logically self-contained process. 

£rogram fetch: A program that prepares load modules for execution by 
loading them at specific storage locations; it also readjusts each 
address constant. 

pseudo register: In PL/I, a location in virtual storage that is used as 
a pointer to dynamically acquired virtual storage. It enables the pL/I 
compiler to generate re-enterable code. External dummy sections give 
the programmer using Assembler F or Assembler H the same facility. 

real storage: The storage of System/370 from which the central 
processing unit can directly obtain instructions and data, and to which 
it can directly return results. 

re-enterable load module: A module that can be used concurrently by 
more than one task. 

refreshable load module: A load module that cannot be modified by 
itself-or-by-any-other-module during execution; can be replaced by a 
new copy during execution by a recovery management routine without 
changing either the sequence or results of processing. 

region: In an overlay structure, it is a contiguous area of virtual 
storage within which segments can be loaded independently of paths in 
other regions. Only one path within a region can be in virtual storage 
at anyone time. 

relocation: The modification of address constants required to 
compensate for a change of origin of a module, program, or control 
section. 

~QQi_~~en~: That segment of an overlay program that remains in virtual 
storage at all times during the execution of the overlay program; the 
first segment in an overlay program. 

scatter format: A load module attribute that permits the programmer or 
the-control program to dynamically load control sections into 
noncontiguous areas of virtual storage. 

Glossary 189 



~eqment: The smallest functional unit (one or more control sections) 
that can be loaded as one logical entity during execution of an overlay 
program. 

~~~ially-re~~ble IO~2-mQg~le: A module that cannot be used by a 
second task until the first task has finished using it.

source module: The source statements that constitute the input to a
language translator for a particular translation~

storage block: A 2K block of real storage to which a storage key can
be assigned.

~E~~Ig~fer~: A reference made from a segment to another segment
higher in the same path; i.e., closer to the root segment.

valid exclusive reference: An exclusive reference in which a common
segment contains a reference to the symbol used in the exclusive
reference.

virtual address: An address that refers to virtual storage and must,
therefore, be translated into a real storage address when it is used.

yirtual storage: Addressable space that appears to the user as real
storage, from which instructions and data are mapped into real storage
locations. The size of virtual storage is limited by the addressing
scheme of the computing system and the amount of auxiliary storage
available, rather than by the actual number of real storage locations.

weak external reference: An external reference that does not have to
be resolved during linkage editing. If it is not resolved, it appears
as though its value was resolved to zero. Abbreviated WXTRN.

190 OS/VS Linkage Editor and Loader

INDEX

For additional information about any subject listed in this index, refer to the
publications that are listed under the same subject in either OS/VS1 Master
Index, GC24-5104, or OS/VS2 Master Index, GC28-0693.

$PRIVATE 44
**GO 166

A-type address constant
replacing control sections 145
SEGWT macro instruction 81

adcons (see address constant)
additional call libraries 27
additional input sources

automatic call library 24-28
general description of 20-21, 12-13
included data sets 29-32
libraries 27
processing of 24-25, 28-29
specification of

automatic call library 25-26
INCLUDE statement 29-32
LIBRARY statement 26-28, 122-123

address
assignment 10
defined 187
of main entry point 35-36

in module map 43
address constant 4

(see also A-type, Q-type, v-type address
constant)

defined 187
resolution of 7

advanced overlay supervisor 78
alias 33
alias name 35

defined 187
for the linkage editor 83
for the loader 170
specification of 35, 36

ALIAS statement 35,36
summary 112

alternate output data set (see SYSTERM data
set)

assembler language dependencies 17
asynchronous overlay supervisor 78
attributes, module (see module attributes)
authorization codes 16
automatic call library for linkage
editor 24-28

negating 27-28

automatic call library for loader
DD statement for 168
description of 161, 162
negating 166
options for use 166

automatic deletion of modules 161, 163
automatic library call mechanism

defined 187
(see also automatic call library for
linkage editor, loader)

automatic replacement
control sections 48-51
modules 35
overlay note 49

automatic search of link pack area 166
auxiliary storage

defined 187

basic overlay supervisor 78
blank common area

collection of 36-37, 75-76
defined 6
in module map 43

BLKSIZE subparameter 99
block size 99
blocking factors 94
branch instructions

in overlay programs 79-80
buffer, load module (see load module
buffer)

buffer numbers, for loader data sets 167

II
call library, linkage editor 24-28

additional libraries 27
concatenating 26
ddname 25
NCAL option 28
never-call 28
restricted no-call 27
specification of 24-28

call library, loader
DD statement for 168
description 161, 162
options for use 166

Index 191

CALL loader option 166
CALL macro instruction 79

to invoke the loader 172
with only loadable modules 85

CALL statement 79
capacities of the linkage editor 157-160
cataloged procedure

defined 105
for the linkage editor 105-110

LKED 105-107
LKEDG 107-110

how to add DD statements 110
how to override 108-109

CESD {see composite external symbol
dictionary

CHANGE statement 47-48, 54
summary 114-115

changing external symbols 47-48
class test table 64
COBOL language dependencies 17
collection of common areas 37-38
common areas

blank 6
collection of 36-37, 75-76
defined 187, 6
definition

Assembler 17
FORTRAN 18
PL/I 18

in module map 43
lengthen named 15, 117
named 6
ordering named 54
reserving storage for 36-37

common segment
defined 79, 187
in exclusive references 63-64
in promotion of common areas 75-76

comparison of linkage editor and
loader 163

compatibility
of linkage editor and loader 163

composite external symbol dictionary 9
number of entries 157

concatenation of call libraries 26
concatenation of input data sets

linkage editor 31-32
restriction 104

loader 168
COND parameter 98
condition parameter, in LKEDG 107
constant (see address constant)
control dictionaries 5
control section

aligning on page boundary 55-56
defined 4, 187
definition

Assembler 17
COBOL 17
FORTRAN 17-18
PL/I 18

external symbol dictionary 6
how to delete 52-53
how to lengthen 15, 117

192 OS/VS Linkage Editor and Loader

how to position 71-74
how to replace 48-52
in module map 43
ordering of 54

control section name
defined 187
external symbol dictionary 6
changing 47-48

control statements
continuation of 111
format conventions 111-112
general format 111
as input 22-23, 24
listing 43, 45
listing option 96
placement information 112
summary list 113-133

cross-reference table 44
sample 45

cross-reference table option 96
CSECT identification records

function 16
in object and load modules 5
storage required 159-160
use of IDENTIFY 118

II
data definition statements (see DD
statements)

data for loaded program 169
data set

concatenation of 26, 168
linkage editor

input 19-32
output 33-45

loader 167-170
DC attribute 84
DCB information

linkage editor 99-100
loader 167

DCBS option 95
DD statements

general description 98-99
linkage editor data sets 98-104

ddnames 100
SYSLIB 25-26, 101
SYSLIN 100-101
SYSLMOD 102-103
SYSPRINT 102
SYSUTl 101

loader data sets
ddnames 167-170, 171
SYSLIB 168
SYSLIN 167-168
SYSLOUT 169

ddname list 155
ddnames

linkage editor 100
specifying alternate names 155

loader
automatic call library 168

diagnostic data set 169-170
input data set 167-168
specifying alternate names 171

default module attributes 88
deleting

control section 52-53
entry name 52-53

diagnostic messages
linkage editor

directory 40-42
format 38-40

loader
format 175

diagnostic output
linkage editor 38-45

messages 38-42
optional 33-35
options, summary 14

loader
data set 169
format 175
options 166

dictionaries
composite external symbol 9, 157
external symbol 5-7
relocation 5, 7, 157

directory entry, output module 14, 33
disposition messages 38-39
downward call (see downward reference)
downward compatible attribute 84
downward reference 57

defined 187
maximum number 157, 158

II
editing, module 46-55
editing conventions 46
end of module indication 7, 5
END statement

object module 5
specifies entry point 35-36

ENTAB (entry table) 71-72
entry address, in module map 43
entry name

defined 187
definition, language

Assembler 17
COBOL 17
FORTRAN 18
PL/I 18

in ESD 6
how to change 47-48
how to delete 52-53
in module map 43

entry point 35-36
of loaded program 166
specification of

END statement 35-36
ENTRY statement 35, 116
EP loader option 166

ENTRY statement 3S
summary 116

entry table 65-66
EOM (end of module indication) 7, 5
EP loade; option 166
error condition (see severity code)
error messages (see diagnostiq messages)
ESD (external symbol dictionary) 5-7
exclusive call option 89
exclusive reference 63w 64

defined 188
entry table 65-66
restrictic;m 64
segment table 65
XC1\L option 89

exclusive segments 62~64
defined 188

EXEC statement
linkage editor 83-98

introducticm 8:3
job step options 84-97
program name 83
REGION parameter 97
return code 98

loader
desoription 165-167
examples 167

executable module 89
EXPAND statement 117
external dummy section

Assembler definition of 17
defined 189
processing of 14, 37
(see also pseudo register)

external name 4, 5
defined 185
(see also control section name; entry
name)

external reference 4
changing 47-48
defined 184
definition, language

Assembler 17
COBOr,. 17
FORTRAN 18
PL/I 18

in ESO 5-6
resolving 24, 10
weak 6, 13

with automatic library call 24
in oross-reference table 44

external symbol 4, 5
changing 47-48
defined 189

external symbol dictionary 5-7

• FORTRAN language dependencies 17-18
functions

linkage editor 11-15
loader 161

Index 193

HEWL 83, 105
HEWLOAD 172, 174
HEWLOADR 172, 173
HIAR attribute 84

how to

a

add DD statements to cataloged
procedure 110

change entry names in ESD 47-48
delete control sections 52-53
delete entry names from ESD 52-53
include library members 30-31
include members of a partitioned
data set 30-31

invoke the linkage editor 155-156
invoke the loader 170-174
override cataloged procedures 108-109
position control sections 71-73
replace control sections 48-52
specify alternate ddnames

linkage editor 156
loader 171

IDENTIFY macro instruction, as input to
loader 164

IDENTIFY statement summary 118
IDR (see CSECT identification records)
LE:BUPDTE, input statements 151
IE:WOOOO 51
IMBMDMAP program 44
INCLUDE statement 29-32

summary 119
included data sets 29-32

concatenated data sets 29-32
library merr~ers 30-31
sequential data sets 30

inclusive reference 63
defined 188

inclusive segments 62-64
defined 188

incompatible job step options 97
incompatible module attributes 88, 97
input data set:s

linkage editor 19-32
type of data 19

loader 167-168
input processing 19
input sources

linkage editor 8-9
loader 165, 167-168

INSERT statement 72-74
s.ummary 120-121

intermediate data set
linkage editor

ddname 100
description 8-9, 157
devices supported 160
use of SIZE option 91

194 OS/VS Linkage Editor and Loader

when used 160
loader 163

intermediate text records
number produced 157

internal data area 164
invalid attributes or options 38
invalid exclusive reference 63-64

defined 188
invocation of

linkage editor 155-156
loader 170-174

II
job control language summary 83-110
job control statements

linkage editor 83-110
loader processing

basic format 165
compile-load job 177
load job 177
multiple compilations 178

job step options, on EXEC statement 83-96

II
language dependencies

Assembler 17
COBOL 17
FORTRAN 17-18
PL/I 18

let execute option 89
LET option

for the linkage editor 89
for the loader 163, 166
for overlay programs 73-74

library, defined 188
library call (see automatic call library
for linkage editor, loader; call library)

library members
how to include 30-31
as input to the linkage editor 20-21
as input to the loader 167-168

LIBRARY statement 28-30
additional call libraries 27
with NCAL 89
never-call function 28
restricted no-call function 27
summary 122-123

LINK command
function of 16

LINK macro instruction
to invoke the linkage editor 155-156
to invoke the loader 170, 172

link pack area resolution by the
loader 166-167

linkage editor
cataloged procedures 105-110
compared to loader 1, 161
control statement summary 111-133
DD statements 100-104

functions 11-16
input 19-32
how to invoke 155-156
output 33-45
processing 8-10
relationship to operating system 15-16
storage requirements 157-160
when to use 1

LINKEDIT 83
linking modules 11-12
LIST option 96, 43
LKED procedure 105-107,109
LKEDG 107-109
LOAD macro instruction

to invoke the loader 170-174
with only loadable modules 85

load module
attributes 84-88
buffer 90-94
defined 3, 184
entry point 35-36
as input

to the linkage editor 19
to the loader 163

as linkage editor output 33-38
multiple processing of 37-38
size restriction 16
structure 5

load module attribute assignment
summary 14-15

load module buffer 90-95
defined 188

load module creation 9-10
load point 62, 68-69
load step 1, 161
loaded program

data 170
in module map 175
options 165
restrictions 164
return code 179-180

loader
abnormal termination message (VS2) 175
alias name 170
compared to linkage editor 1, 163
compatibility with linkage editor 163
data sets 167-170
input 161, 163
invocation of 170-174
options 166
output 175-176
program name 165
restrictions on use 163
return code 179-180

LOADGO command
function of 164

loading
with identification 172, 174
without identification 172, 173

logical record length
linkage editor data sets

blocking factors 100
diagnostic output 102
input 100-101

SIZE option 90-95
LRECL 100

(see also logical record length)

II
macro instruction, basic format 155
MAP option

linkage editor 95
loader 166, 163

maximum record size for device types 91
member, partitioned data set

how to include 30-31
as input to the linkage editor 20-21
as input to the loader 167-168

member name 34-35
defined 33

messages
disposition 38-39
examples 42
format 40-41
text 40
unnumbered 38-39

modular programming 3
module, defined 3, 188

(see also load module; module
attributes; object module)

module attributes 84-88
default attributes 88
downward compatible 84
hierarchy format 84
incompatible attributes 88, 97
not editable 85
not executable 88
only loadable 85
overlay 86
refreshable 87
reusability

re-enterable 86
serially reusable 87

scatter format 84
test 87

module disposition messages 38-39
module editing 48-53

summary 12-13
module linking 11-12
module map

linkage editor
description 43-44
example 45
MAP option 96

loader
description 175
example 176
specification 166

module map option 96
multiple load module processing 37-38

defined 188
multiple region overlay program 66-68

specification 69-70

Index 195

II
Name option 166
NAME statement 34

in mUltiple load module processing 35
replace function 35
summary 124
with SYSLMOD DD 37-38

named common area
aligning on page boundary 55
collection of 36-37, 75-76
defined 6
in module map 43

NCAL option
linkage editor 31, 90
loader 166, 163

NE attribute 85
negation of

automatic library call
linkage editor 27-28
loader 166

loader
diagnostic output 166
module map 166
search of link pack area 166

not editable attribute 85
not executable attribute 88
re-enterable attribute 86
refreshable attribute 87
serially reusable 87

never-call function 28
in cross-reference table 44

no automatic library call option 90
no-call 27
NOCALL loader option 166
node point (see load point)
NOLET loader option 166, 163
NOMAP loader option 166
NOPRINT loader option 166
NORES loader option 166
NOTERM loader option 166
not editable attribute

linkage editor 85
loader 163

not executable attribute 104

object module
defined 3, 188
input to linkage editor 20-23

with control statements 23-24
input to the loader 167-170
structure 5
in virtual storage 164

OL attribute 85-86
only loadable attribute 85
optional output 43-45
options, linkage editor

module attributes 84-88
output 96

196 OS/VS Linkage Editor and Loader

space allocation 90-95
special processing 89-90
ORDER statement 54-56
summary 125-126

origin
of control section in module map 43
of region 70
of segments 62

output of linkage editor
diagnostic messages 38-42
load module 33-38
optional output 43-45
output module library 33--35
output options 96

output of the loader
messages 175
module map 175, 176
specification of 166

output module library 33-35
output text record length 157, 158
overlap of loading and processing of
overlay segments 80-82

overlay attribute 86
with hierarchy attribute 84

overlay program
communication 78-82
defined 188
design 57-68
module map 43
multiple region 66-68
process 64-66
region origin 70
respecifying control statements 68
sample program 144-153
segment origin 68-69, 62
single region 58-66
special considerations 75-82
specification 68-75
storage requirements 77-78

OVERLAY statement 68-70
summary 127-128

overlay supervisor 65
defined 188
storage requirements 160

overlay tree 59-60
defined 189

overriding cataloged procedures
EXEC statement 108-109
DD statements 109

OVLY attribute 102 ..
page boundary

aligning control sections or
named common areas 55, 56

attribu·te 88
PAGE statement

aligning control sections 55, 56
summary 129-130

partitioned data set
as inpu·t

to linkage editor 20-21
to loader 167-168

as output of linkage editor 33-35
path, in overlay programs 57-58

defined 189
PL/I language dependencies 8.
placement of control statements 112
positioning control sections 71-74
pre loaded text 164, 175
primary input data set 19-24

control statements 22-23, 23-24
object modules 20-22, 23-24

PRINT loader option 166
private call libraries 25
private code

defined 6, 189
in module map 43

procedure LKED 105-107
procedure LKEDG 107-108
program
processing history, tracing 16

defined 189
program fetch

defined 189
functions 10

program name
on EXEC statement 96

prompter, linkage editor
function of 16

prompter, loader
function of 164

pseudo register
defined 6, 189
in module map 43
PL/I definition of 18
processing of 14, 37

II
Q-type address constant 17

real storage requirements 160
RECFM (see record format)
record format (RECFM) 99-100

linkage editor data sets
diagnostic output 102
input 100-101
load modules 102-103

loader data sets 167
record size, maximum for device type 91
re-enterable attribute 86
re-enterable load module

defined 189
module attribute 86

REFR attribute 87
refreshable attribute 87
refreshable load module

defined 189

module attribute 87
region, in overlay programs 66-67, 70

defined 189
region, virtual storage

for linkage editor
cataloged procedures 105
requirements 160
with SIZE option 97

for loader 171
relocating a load module 3-4
relocation

defined 189
relocation dictionary 7

number of entries 157
RENT attribute 86
replace function 35
REPLACE statement 48-49, 54

sample program 139-143
summary 131-132

replacing control sections 48-52
assembler language note 48

replacing external symbols (see CHANGE
statement; changing external symbols)

replacing load modules with the same
name 35

repositioning control statements 71-74
from automatic call library 73-74
INSERT statement 120-121

reprocessing load modules
compatibility 84
entry point assignment 36
not editable attribute 85

RES loader option 166
reserving storage 36-37
resolving external references 24, 10
restricted no-call function 27
restrictions, loaded program 164
return code

linkage editor 98
loader 179-180

testing 179
severity code 40

REUS attribute 86
reusability attributes 86

re-enterable 86
serially reusable 87

RLD (see relocation dictionary)
root segments 57-58

defined 189
wi th OVERLAY 68
and segment 'table 65-66

II
sample programs 135-153
scatter format attribute

defined 189
with hierarchy attribute 84

scatter loading 84
SCTR attribute 84
SEGLD macro instruction 79-80
segment

communication 62-64

Index 197

defined 190
dependency 60
origin 62
(see also exclusive, inclusive, root
segments)

segment load macro instruction
segment table 64-66

80-81

segment wait macro instruction
with SEGLD 80-81

81-82

SEGTAB (segment table)
SEGWT macro instruction

with SEGLD 80-81
sequential data set

70-72
81-82

as input to the linkage
as input to the loader
with INCLUDE statement

editor
167-168
30-32

serially reusable
attribute 87
defined 190

SETSSI statement 133
severity code

linkage editor messages 40
return code 98

severity 0, 2 errors 40
SIZE option

linkage editor 90-95
loader

descr ipt.ion
size restriction,
source module

defined 190

163, 166
load modules

space allocation options 90-95
DCBS option 95
maximum values 91,94
minimum values 91,94
SIZE option 90-95

special processing options 89-90
summary 14

static external areas 36-37
storage hierarchy assignment

summary 15

16

(see also hierarchy assignment)

19

storage requirements (see also real storage
requirements; virtual storage requirements)

SYSLIB DD statement
for the linkage editor 101

(see also automatic call library)
for the loader 168

SYSLIN DD Statement
for the linkage editor 100-101

(see also primary input data set)
for the loader 167-168

SYSLMOD DD statement 102-103
(see also output module library)

NAME statement 37-38
SYSPRINT DD statement 102

(see also diagnostic output)
system call library 25

list of 25
system status index information

storage of 15
SYSTERM data set

linkage editor 103, 96, 41
loader 169-170, 167, 175

198 OS/vS Linkage Editor and Loader

SYSTERM DD statement
linkage editor 103, 96, 41
loader 169-170

SYSUTI DD statement 101
(see also intermediate data set)

II
tasking options of PL/I, use with
loader 163

TEMP NAME 34
temporary data set 21, 33
rrERM option

linkage editor 103, 96, 41
loader 167

TEST attribute 87
text 5, 7
text, message 40
time sharing option (see TSO)
tracing processing history 16
TRANSFORM table 64
tree structure 59-60

overlay tree, defined 189
TSO (time sharing option)

linkage editor 16
SYSTERM data set 103, 96
TERM option 41

loader
SYSTERM data set 169-170, 167,175
TERM option 167

TXT 13, 15

II
unnumbered messages 38-39
unresolved references

automatic library call, resolving with 24
in cross-reference table 44

upward reference 57
defined 190

user-specified
input 8
storage 15

user-written library (see private call
libraries)

II
v-type address constant

branch instruction, overlay 79
with CALL 79
with SEGLD 81
with SEGWT 82

valid exclusive reference 69-70
defined 190

virtual storage requirements 157
linkage editor 160
loader 181-182
overlay programs 76-77

wait for loading of segment 81-82
warning messages 40-42, 38
weak external reference 13

with automatic library call 24
in cross-reference table 44
defined 6, 190

II
XCAL option 89
XCTL macro instruction

as input to the loader 163
to invoke the loader 170-172

XREF option 96
(see also cross-reference table)

Index 199

OS/VS Linkage Editor and Loader
GC26-3813-3

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. ~ather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

GC26-3813-3

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
System Development Division
LDF Publishing-Department J04
1501 California Avenue
Palo Alto, California 94304

Fold and Staple

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604

(U.S.A. only)

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017

(I nternational)

First Class Permit

Number 439

Palo Alto, California

o
CfJ --<
CfJ

c:
::::l
7\
OJ

co
co
m
0..
rl-'
S;
OJ
::::l
0..

r
o
OJ
0..

~

" co
z
o
CfJ
W
'-.J
o
tv

::::l

C
CfJ

~

GC26·3813·3

International Bu.in ... Machlnel Corttorltieft
Dltl Proc •• lng Dlvillon
1133 Westch.ster Avenu., Whit. Ptllnl, New York 10804
(U.S.A. only)

IBM World Trade Corporation
821 Unittd Nation. Plaza, New York, New York 10017
(lnt.rnational)

o
Cf)

<:
Cf)

c:
:::J
7\
OJ

c.c
CD

m
0..
::+'
Q
OJ
:::J
0..

r o
OJ
0..
~

."

co
z
o

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	replyA
	replyB
	xBack

