GC26-3813-4
File No. S370-31

OS/VS Linkage Editor
Systems | and Loader

VS1Release 5
VS2 Release 3

Fifth Edition (November 1975)

This edition replaces the previous editions (GC26-3813-2 and its technical newsletters,
GN26-0744 and GN26-0779, and GC26-3813-3) and makes them obsolete.

This edition applies both to Release 5 of OS/VS1 and to Release 2 of OS/VS2 and to all
subsequent releases of either system unless otherwise indicated in new editions or technical
newsletters.

However, information about the IBM 3350 Direct Access Storage and the IBM 3344 Direct
Access Storage Device is for VS1 Release S users only. This information is for planning
purposes only until the availability of the product.

Significant system changes are summarized under “OS/VS1 Summary of Amendments” or
“0S/VS2 Summary of Amendments” following the list of figures. In addition,
miscellaneous editorial and technical changes have been made throughout the publication.
Each technical change is marked by a vertical line to the left of the change.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
Serves you.

Forms for readers’ comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, General Products
Division, Programming Publishing—Department J57, Palo Alto, California 94304. All
comments and suggestions become the property of IBM.

©.Copyright International Business Machines Corporation 1972, 1973, 1974, 1975

PREFACE

This publication provides applications programmers with the information
necessary to use the OS/VS Linkage Editor and Loader to prepare the output
of a language translator for execution. Additional information on the
operation and use of the linkage editor and loader is directed to the system
programmer responsible for installing and maintaining the operating system.

The “Introduction” briefly defines the functions of the linkage editor and
loader and gives recommendations for the use of each. Part 1 describes the
linkage editor, and should be read before Part 2, which describes the loader.

The linkage editor combines and edits modules to produce a single module
that can be brought into storage by program fetch for execution. It operates
as a processing program rather than as part of the control program. The
linkage editor provides several processing facilities that are either performed
automatically or invoked in response to control statements prepared by the
programmer.

Part 1, which consists of six chapters and three appendixes, briefly describes
the processing facilities and operation of the linkage editor. The introduction
also defines linkage editor terms in reference to the source language
statements that cause them to be created.

The six chapters describe the input to the linkage editor, the output from the
linkage editor, module editing functions, design and specification of overlay
programs, the job control language necessary to run a linkage editor job step,
and the linkage editor control statements. The last two chapters are
summaries of reference information to be used after the general information
in the first four chapters is learned. The appendixes to Part 1 contain sample
programs, a description of the linkage editor programs, and information on
the invocation of the linkage editor.

The loader program combines the basic editing and loading functions of the
linkage editor and program fetch in one job step. It is designed for
high-performance loading of modules that do not require the special
processing facilities of the linkage editor and fetch, such as overlay. The
loader does not produce load modules for program libraries.

Part 2 of this publication describes the loader. The introduction to this part
describes the functional characteristics of the loader, along with its
compatibility with the linkage editor and restrictions on its use. The chapter
on using the loader describes the job control language statements and
invocation procedures for the loader, as well as loader input and output, and
user program data. The appendixes to Part 2 contain sample input, a
description of loader return codes, and storage considerations. All of these
items are discussed in relation to the capabilities of the linkage editor;
therefore, the reader must be familiar with Part 1 of this publication.

The diagnostic messages issued by both the linkage editor and the loader
program are described in OS/VS Message Library: Linkage Editor and
Loader Messages, GC38-1007. The description of each message includes an
explanation, a system action, and a problem determination action to be taken.

Preface 3

Time Sharing Option (TSO)

The following publication is needed to use the linkage editor or loader under
the Time Sharing Option (TSO):

Additional Publications

4 0OS/VS Linkage Editor and Loader

OS/VS2 TSO Terminal User’s Guide, GC28-0645

This manual contains procedures for invoking the linkage editor or loader
from the terminal and gives a brief description of the options that can be
specified under TSO.

Further information on TSO can be found in the following two manuals:

0S/VS2 System Programming Library: TSO, GC28-0629
0S/VS2 TSO Command Language Reference, GC28-0646

Within the text, references are made to the following publications:

OS/VS Data Management Services Guide, GC26-3783
OS/VS1 Planning and Use Guide, GC24-5090

OS/VS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681

OS/VS2 Planning Guide for Release 2, GC28-0667
0S/VS1 Service Aids, GC28-0665
OS/VS2 System Programming Library: Service Aids, GC28-0674

OS/VS1 Storage Estimates, GC24-5094

0S/VS2 System Programming Library: Storage Estimates, GC28-0604
OS/VS1 Supervisor Services and Macro Instructions, GC24-5103
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683
OS/VS1 System Data Areas, SY28-0605

OS/VS2 Data Areas, SYB8-0606

OS/VS1 System Generation Reference, GC26-3791

OS/VS2 System Programming Library: System Generation Reference,‘
GC26-3792

OS/VS Utilities, GC35-0005

OS/VS Message Library: VS1 System Codes, GC38-1003

OS/VS Message Library: VS2 System Codes, GC38-1008

OS/VS Message Library: Routing and Descriptor Codes, GC38-1004

OS/VS Message Library: Linkage Editor and Loader Messages,
GC38-1007

0S/VS1 JCL Reference, GC24-5099
0S/VS2 JCL, GC28-0692

CONTENTS

PLEfACEococveeiiieiiieeiiecreeeiererceeeetesessatesssseesssnnesssstsesseessnesansaasssasersenesane
Time Sharing Option (TSO)coooviiiiiieiieieeeeeeeeerre et 4
Additional PUBLCAtIONScccocerevuereiuienrirensiiene et neeeesree e reeeseee s ree e s aeesaeas 4
FAGUEES ...coonveiiiieeiriereeereetreeeeete s et eeeaeeesnsesessneassssasssssessstesensaesssnesnsssnanns 11
OS/VS1 Summary of AMendmentsc..cccceerueerieerieeeereesreesrersreesseessseenns 13
REIEASE 5 ...oneeieiieeiiierteectreeeeeeeste st ee et e sesresesseesessresessreseneesssseesssaessssnaanns 13
REICASE 3oeieiiieeerieetiectretreteeteserresesnresesar e st e eesseeeesseesasstassnsessssassnsesnsnes 13
REIEASE 2 ...ttt ettt esr e e re et e sae e a e s eenan 13
OS/VS2 Summary of AMendmentsccceceeeeeeeneesreeeeeeseeeseeeseeesveessesnns 15
REICASE 2 ...ttt ettt ettt et et s et e e et e e 15
REIEASE 1 ...oeeeieiiiieeiieriecrerctreteeeeesetesssee s e st essteesesanassssesesssassnsesansassassananes 15
INOUCHION ...ttt eere et e s e e et e ss s s snne e e s s sraeesersnaasannns 17
Part 1. Linkage EdItorccccoooviiiiiiiiiiiiciirreereeie e 19
Object and Load MOQUIESccccereveererciireeeerceeenieeceseesereeessreeseseessnnesenenas 21
External Symbol Dictionaryccccveeeveeevueereierinieneesneeseesseeesssneens 21

TEXL ceeeveeeeereerereesresrersseseaeseesseasntaseessstseseesssesssessntesssesssesssesssensenssesnnnes 22
Relocation DIiCtiONArYcccceeveieerieriiieieretenreeeerteeseeesteeesreeessaeeenns 22

End INdicationcccoccoveveeriienierectinnie et et seee s sreeeeeeesnaennne 23
Linkage Editor PrOCESSINGc..cccoceeveerreereiresereiereneereneereesieesseesseesseessaesssnans 23
Input and OULPUL SOUICESccerererierreerrrreerrrrersieereseeeeseeesaesesseserasessnaes 23
Load Module Creationcc.cceeveeeveeeerieereisnensneessreeesneessnessssessssessenns 23
AsSigning AdAIESSEScceeviierieiertienrieieieereseeiertreeseeesssesesseesssaesenns 25
Resolving External Referencesccccccceeeeeiiiieiivcisneneeceecnnisneneseenenenn. 25
Functions of the Linkage EdItOrccooveereeieriereeiieeeireeneeeeieeesereennenenns 25
Links MOdUIESccoeveriiereiitetitititcitciee e 26
Edits MOAUIEScccceiriieiieeiirereecrteeneteeeeesceteesrte st e serressateeseneanas 27
Aligns Control Sections or Common Areas on Page Boundaries 27
Accepts Additional INput SOUICEScccereeereirerienreeresereerieneiereseeeseane 27
RESEIVES StOTAZEeeevveenrireriererereeieeretresrreeestesesseessssessseessseesssseesans 28
Processes Pseudo REZIStErscocevvieeniienieriienneeniencneeencnnre e 28
Creates Overlay Programsccoceeveerreevceerieennreeeensneeesesieessssienessennes 28
Creates Multiple Load Modulescccccceereviinininircinnnnenceenceeneneen, 29
Provides Special Processing and Diagnostic Output Options 29
Assigns Load Module Attributescccocceeeeviieiienniinincnenieeceeeennns 29
Allocates User-Specified Virtual Storage Areascccccceeeveeecueeennee. 29
Stores System Status Index Informationcccecceevevereciiirniniinennnnen. 29
Traces Processing HiStorycccoccceeiviiiiiiiiinniciiciiiiineeccceceeceeenns 30
Lengthens Control Sections or Named Common Sections 30
Assigns an Authorization Code to Output Load Modules 30
Relationship to the Operating SYStemc..ccceevveereererrrveecnernnereiereseeeennns 31
Time Sharing Option (TSO) ...cccceeeeviiieeiieereeeereeecee e eeeeeeree e 31
Language Dependenciesc..cccceieerceeireirreienriitierieneeeteeseeteeesceessesnseeaennns 31
Assembler Languagecccocceeverviirniieinecneenstenseneteeeeee e seens e 31
COBOLcootietierieeninenteesteetesstessseseeesstessseesssessseessessseessesssassssansesns 32
FORTRANootiiiierieentreeteneeseessreesstessesesssessssessessssassesssesssesnsennnes 32
PL/T ettt see e et esee s aesnesae s s e s e s aa st e s s e stessaeaesa e sensansenn 32

Contents 5

6 OS/VS Linkage Editor and Loader

Input to the Linkage EdItorccccocoviiiiiiiiiiiiiiiininticcitcecnrcrcsneeeessnnens 35

Primary Input Data Setcccceeevererirerciiencnrecnrceteereeenseeeeseessseeessessssnessnneens 35
ODbjJect MOAUIEScccceereeeerierreeiireireeereseeeeseeessateessesesseessanssseesssassessesssasans 35
From Cards eeeeeerereteesteesbae et e e e aetesraa e ae e e e e s e aesaae s raanatannraaaan 36

As a Member of a Partitioned Data Setcccceecereerrecnrennennveiseennne 36
Passed from a Previous JOb Stepcccccerevverieeenreenreenreenneencseeecnnnens 36
Created in @ Separate JODcccccveeeevieiieieiiieeiciireeccreeeeenereeeeeseesssssseens 38
Control StAtEMENLSccccevvveerreerrererrreeseessseeesssseesseesssessssressaesssassessassrasans 38
Object Modules and Control Statementscccccceeeveeerveeeseesreceseerenneen 38
Control Statements in the Input Streamcccccccevveieverccenrceeecreeennnns 38
Control Statements in a Separate Data Setcccccceeeeeveernneeeeervenenen 39
Automatic Call LIDrarycccccceevmrverniiinninniinnniennineneenstecssesesseeseesnessesssens 39
SYSLIB DD Statementccceeeveeeerriceneennas erererenrsest st s aranerassnnes 40
System Call LIBrarycccoeverveeeiircniennnnnienseesreeeseessessnsssessnesssesseessens 40
Private Call Librariescccccecireerveiiiiniciininnenrecrieiecinnessseesessnnessssnnns 41
Concatenation of Call Librariesccccecervveereveereveeenveinieeissneesseenaens 41
Library Control Statementcccccceeevereeveeicrnereressseeeseesreesssassessssesneans 41
Additional Call LIDIariesccccceeeereeeserseerinesreecneseesseessesssessasessenns 42
Restricted No-Call FUNCionccccccevereerieeniieeesseesieesseeeseesssneesnenns 42
Never-Call FUNCHONcooieiviiieieciiinitiniiteneeseiessiteesteeseesesseessseees 43
NCAL OPLiONcceeireeiieeeeieerereteeeercrceeereeeeseeeernnnenseesesnns aerereereeeesnnnnnene 43
Included Data SEtscccceeeirrceereerirrenenrersteetesseeeseesssessecssnssnssssesseessaessnasnne 43
Including Sequential Data Setsccceecerevereriiernrierereeenerneeeeneeensenens 45
Including Library Membersc.ccccoceerceeerernieennienieessntecreessnesesiens 45
Including Concatenated Data Setscccccevveererreeeveensiierseenieeecreeseseennn, 46
Output from the Linkage Editorccccoceoiiiiriiniiiininrencrreercnrensneeesecneeens 47
Output Load ModUIEccccveiiieireriecereniieniterrcenereeestessneeesoresseessseasesasass 47
Output Module LIbrarycccceecieeeeeriirencrertnnreeenerssnesseeeseessseeseseens 47
Member NAIMEccceeeiierirriieieniieereneeeesrieesisresseesessessssesssessssnessssassns 48
ALIAS NAMES ...oovvriireiiieiiieriiiieirereeeeereeeessneessssseteeesseesssssesssssneesosorans 49
Entry POIntcciiiiiiiiiiieecetcinetcccneccn e et aree e 49
AUthorization Codec.ceeevveeerernierenernrrenereenieteneeeseesseesssseesenaenss 50
Reserving Storage in the Output Load Moduleccccoeriiiniinnniecnnnn. 50
Processing Pseudo REgIStErScoocvcerieernierriinienerrnneesecseeesesnueeecianenssssanees 51
Multiple Load Module ProCessingccceeecereveerererirerssersareeseeessesenneens 51
Diagnostic QULPULcccevviiiiiiiiiiiiiiniir ittt sae s assssne s 52
Diagnostic MESSALESceeeeeiierirrieriiirieiiiireetenserte s creresssreseesares s saensessneenes 52
Module Disposition MESSagEScccceevveieriiiceeriniieiniieeiereeesseneessennns 52
Error/Warning MESSAZEScceeveereereereereeraeraesessessassssssessssasssassasssenss 53
Sample Diagnostic QULPULccceeeeceieircerineeriinrenicctrreeseeeesssnenessanens 55
Optional Outputccccceevveeeneen. erreereessteesesteeeerraseentesesatae e nraaesnnraeeas 55
Control Statement LiStingc.ccccerercverrercrnriesrrencessreeensresssrereescssecas 55
MOQUIE MAPoveiiiieriieirnerecreeeesrrneeseccntteecneeesssseesesetsessnonesssnnessssnenes 55
Cross-Reference Tablecccvveeeericeerecniierinnnreereeneenreneenssnnecesssseasens 56
Module Editingccocveeeieiriiiriereenienieinentene st sseesssesseeseessnesssesons 59
Editing CONVENtIONScccoocereveerreceririerriieeitneeeecetesstesneeseneessssessseenas 59
Changing External SYMDbOIScccccevrueirreicerieririencnnereeniteeseresssneeessaseeses 60
Replacing Control SECHONSccccvvereremruiiiiinienrinieniiieeeresseessesssiasesas 61
Automatic Replacementcccceeeevueerernieierenvnercesiarecesnresesseessssnnessesneeees 62
EXample 1 ...coorieiiiiiiciteecererete ettt s sttt anee 62

| 251111 0) (0 O SO OO RP R PPRRRPPPTRRINt 62
REPLACE Statementc.ccceveenvernerrecssneiceecsessnseeseessaennes reeerre et e 64
Deleting a Control Section or Entry Namecoccccovviiniineiiisiinniecinnennnne 65
Ordering Control Sections or Named Common ATeasc.ccceveeveerererreennn 67

Aligning Control Sections or Named Common Areas on Page Boundaries . 69

Overlay Programscccoccvviiiiiiininncciseteennnneesesssnnessessseasssssssessssssessssssens 71

Design of an Overlay Programcccceceeeveieiiieiiniieeeieesecineeeseseseessnnessseees 71
Single Region Overlay Programc.ccecceeevceeerneeenveeennneenseecsnesseesnnnns 72
Control Section Dependencycccccceeeveeeecreereseesenernsreesseeessaessseeens 72
Segment DEPENAENCYcccecveereruereneernrerenreeierseeesseeesseeessesesssessssessnns 74
Length of an Overlay Programccccecoveeeeeiiiieeeiennneeeecsieeesesineensnnnns 75
Segment OTZINccccoviieeireriiererererereereeeerrsreeeseeesrreessreeseaeassnasnns 76
Communication Between SEgmentscccceeeveeerveerererenieesseeecsneennns 76
OVETIaY PTOCESS ...ccceveeirreniieticirneeeteeseeesneseneeeneeseassssessessssessaessessaanns 78
Multiple Region Overlay Programcccccoveeiereiieriiiiiieeneecsieeeeesineeeennnns 80
Specification of an Overlay Programcccccceeeveeiiveeriveeenineeesieenieeescnnenns 82
Segment OFIZINcc.ccocviiiiiiiereiiiiiiiecnretrieenree st e seeesssesreesseessesssesssesssasnns 83
Region OFiZINccoiiiiiiiiriieeireerteereereeeresteeereeseseesesseessseesssasesssesssenasnns 84
Positioning Control SECLIONScccceeeverrrvreecrreernrieeecreereseeesreeeseeseraeennns 85
Using Object DECKScocveivvirrrueremmeemierneeeenieeeseereneeesecesseesesseessneens 85
Using INCLUDE Statementsccccecceeereeereeeicreeesseeessesseeesssesssens 86
Using INSERT Statementscccccecveriveeerneeneieeresseeesneessseessesessneens 86
SpPecial OPLIONScccveireiieireireeerereeeste e steesee e e eessaeesssraseseessssaeseseaensans 88
OVLY OPLION ..cooecrieeeieieeererecireeeeerereeeessresessssseseessssseessssssessssssesssssns 88

LET OPHON ...cooouiieeieeiriteesieeniiteeeeeeeseeeeseeessssasessssesssasssssesssssssssssssses 88
XCAL OPLIONveeeeeieriereeieeeecrneeeseeesssesssesesssssssssassssassssssesssssssssessssas 89
Special Considerationscccccceeevieeeeiieeeeiiiiieeiccrereeeeeeeeeeerraeseseereseensaesenns 89
COMMON ATEASccouerrruerrrenrureesreessreeesssesesseessseesssssessssesssssesasssssssasesssasssens 89
Storage ReqUIrEmMENtSc.cceeeevvvierereereeeiiieeirrereeeeeereseecsrensaeeeseseennsnseeeenns 91
Overlay COMMUNICALIONc..eeeeererereecrerrereereneereieeeeseeesseeesseesesesassessnsas 92
CALL Statement or CALL Macro Instructionccceceevereveeneennennne. 93
Branch INStruCtionccecccceviereerceniieeneeeeeeeeeeeecee e e e reee e sne e 93
Segment Load (SEGLD) Macro Instructionccccceeeeveeeccveecreeeennen. 94
Segment Wait (SEGWT) Macro Instructionccccceeeevveeeeennnnnencnnns 94

Job Control Language SUmMMATYcccccceeeeiiieeecrrinieeirsnreeseeesesesssssseesssneeas 97
EXEC Statement—Introductioncceeeceeereeeernieinieeeenneennseeesseenenneesneens 97
EXEC Statement—Job Step OPtionsccccceeevveeerreeeneeersreeenieesceeeseeenen. 97
Module ALrDULEScccooiiiriiiieiiieiette et ee et et re e e re e e s e aaeeesnens 98
Downward Compatible Attributeccccceveeerieeeeeecneeeeeenerenecveeeeennns 98
Hierarchy Format Attributeccccceeviieiiernneenrieeneeeeceeeeeeeeeeeenen 98
Scatter Format Attributeccocceeeeveiivieeeriieinnieeenreeeenreeseeesreesaeens 99

Not Editable Attributecccocceeeiieieiiiiieiceceeecee et ecee e e eeens 100
Only Loadable Attributecccoeeeiceiiiiiniiiiiniceneceee e 100
OVerlay AIDULEcceoiieeiieeeereieeerieerteeeererere e e etecesree s seessenesaaees 100
Reusability AtIDULESccccceeeevieeerieeeeriiiieeereeeerceeserreessseeeseneessneenns 101
Refreshable Atributeccccocveveveieienrineenrerceeeeenreeseesessseesaesnnes 101

Test AIIDULEccocveiiviieiiiieeee et eccere e e sereees e ene s e e seaseeesasees 102
Page Boundary Attributecceccceeieevnreenncrnnensieennrensnesscessenseesnes 102
Authorization Codeccceecveerercrriiirreierenrereeeeeseeeeseeeseeeseeeeenees 102
Default Attributescccceeeveerevireeiereiieereeeereeeeee e ceseeeeeeseeeeenes 103
Incompatible Attributesccccceeeveieeriiiiieenrieierceeee e e eeeens 103
Special Processing OPtionsccoocevciiriiiniieierrineeeerieeeeseeseeeeneeeeenees 103
Exclusive Call Optioniceceeeveerevreveeeeeierieresseeereeeseseeseseesenns eeeeeeneas 103

Let EXECUte OPtionc.ovvceerierieieietiiineeetreeeesteteieestesiessesasaesesseeesnnens 104

No Automatic Library Call Optioncccceevveervecvrrerneerenvereeennnnes ereeeaees 104
Space Allocation OPLiONScccceereveveeirerisireiccnreeerersneeesesrsneeesessnesesnnnes 104
SIZE OPLIONcooeeeeeireerererrreereneeerreeesreesesseesssessesssassssessssessssssssses 104
DCBS OPLIONoeieriierieeireteerreeeessreeesaeesreeesanesssesesssesssssasssasssssassns 110
OULPUL OPLIONS ..ocineeeieiiiiiereeeeeesieerereeeeeereererrsreeseeeeeeeessesssssaesesssesnsnnes 110
Control Statement Listing Optioncccccceeeverervernrceiinnceeenscenneennee. 110

Contents 7

8 0S/VS Linkage Editor and Loader

Module Map OPHONcccooeviieeiirerieeertrreieeeeeeereeeesnesseressseesssassssassns 111

Cross-Reference Table Optionccccceeveeeveerereecneecnennneeessenesseeennes 111
Alternate Output (SYSTERM) OpLioncccoveeeerreeecrunrecrnneecssneenes 111
Incompatible JOb Step OPLONSccccieieieeireiicrreereereeeeeresaeeeesneens 111
EXEC Statement—Region Parameterccccceveeeereeiverecrecceeecrneernnens 112
EXEC Statement—Return Codecccevereeiiiecnneeiernceenecnnneecsrneessesaenes 113
DD Statementsccccceeeecreererreresereeerseseessecsneesersssesssassssssssssssssasssaaas 113
Linkage Editor DD Statementsccccccceeeceeeereeeseeeereeesseeessesssseessncennes 115
SYSLIN DD Statementccccccceeeeerereerrsreesersreeccsrensesssaeeesssasessssases 115
SYSLIB DD Statementcccccceeeereeeeencreeeecrreeeessraecssssesessaseessssneens 115
SYSUT1 DD Statementccccceeeererrerrneeeecseeeesseesessnsesssseseesssasasens 116
SYSPRINT DD Statementcccccevveeeeeerrueeecsssneceesseececrsnsesssseeenes i 116
SYSLMOD DD Statementcccccceeeeeineeeecsreeeeesiececsnsesesresseserssasens 116
SYSTERM DD Statementcccccceeeveeeereereseeecsrecsenssaescseessesessansns 117
Additional DD Statementscccceeeceeeeeeniereeesieeereesreeeessreeesseseeserasenens 118
Cataloged ProCeAUIEScccceerveereereeirererrcrnensseerenseesseessseesssessaresssessasaeses 118
Linkage Editor Cataloged Proceduresccoveeeercerivcnrecsersnenseessanns 119
Procedure LKEDcoiiiiiiiiriiieeinceeeneeceseeseseeecseesssessssesssesssaens 119
Procedure LKEDGcccceiinitieenieniccnneeeiesseeesssrsneessssesessssessssensesssnns 120
Overriding Cataloged Procedurescccccceeereecreeresersseesssneesecsssneasens 121
Overriding the EXEC Statementcccccceeveeeniieeneeereeecreessseesssnesns 121
Overriding DD Statementscccceeeerrereerereeesseeeseeereneeseesssssssssesns 122
Adding DD Statementsccccccvrieericeeeeniniecescrnneeersrseeesssesesssaseessssaeens 122
Linkage Editor Control Statement Summaryccccoccceenneiiicnniinnecnecnnnen. 123
General FOrmatcocoveiiiveecriieieinneeeinineeesessnneesssseeessssecessansesssnneees 123
Format Conventionscceveeeeeieneeniencieinninnceeneeseecesesssseenes 123
Placement INfOrmationccccccceeereccerieicceeiecnnnennnsseeesssneeecseneeecsnneees 124
ALTAS Statementccccceeeveerievreeeienreeeecrreeeesssseeessnesesssnsessseasssseees 125
CHANGE Statementcccceeeeeerreeeereieesersreseeeseseesssseeseessssnsessesnssns 126
ENTRY Statementccccceeeeeirecieiecireerenssseesesssneeseseesssssecssssensssssnns 128
EXPAND Statementcccccceeeeieeeieneeeersrueeessssesesssssssrsssssssssessessasas 129
IDENTIFY Statementccccceeiieriivcreeeeeeieeensrineeeeecessinneeeessssnnnsseeens 130
INCLUDE Statementccceeceveerierreeeercsreecessseessecsonesessassesssassssssnes 132
INSERT Statementccccccceeeeeiereecnreeeeesseeseessssesssrseesersssessnsassenes 133
LIBRARY Statementccccceeeeerurerecrnreeeersrecescssuneasessessssnsesessassssssens 135
NAME Statementcccceevveeeieiieeirisineeesssreeeesssnseessssseeserssssssnsssssnns 137
ORDER Statementcccccceeereiieeererreeeerereeeessssessessssessssessssseessssens 138
OVERLAY Statementccccceeererrerrcreeeeennececssnsnnneessssscsnnnesssscssssnnaenes 140
PAGE Statementcccccereceeeeeneeeeicineeeennseeeeesseeessseeeesssessesanessenns 142
REPLACE Statementccccccevvuueeeerneneeessceenessnneescsseesesssessssscnsssssnes 144
SETCODE Statementccccccueeeiurecreererirereseeesessessasesassesessssassssasanns 146
SETSSI Statementcccccoveeeieiicvrieereeeeeierrseseeeeeeesssssseessesserssasessessns 147
Appendix A. Sample Programscccceevveeieiirerinnnneeesnreeessnnessesseesesenens 149
Sample Program COBFORTcocoevimiiiiineiiinnennteneeneeeeessesseessneenen. 149
Job Control Languageccccceeeveeeerrcneirnrennerescseeescsseeessressscsennescses 149
Linkage Editor QUtPULcccceevereciiiinernreerercnenteeneeesreeseesssneesnees 150
Sample Program RPLACJIOBcoocviriviiiiiiiriineereteneeeeeneeeeeseneenenens 151
Job Control Languagec.cceceeveiierinnnennenineeninnecesesssessessnesaens 152
Linkage Editor Control Statementsc.cccceevueeeveciineninccnncenneennees 152
Linkage Editor OUtputcccceeeiruiiieriieeririeeeeenrereessneeesseesessansesssnns 152
Sample Program REGNOVLYccccooviiiiiniinniineniiiniecenennseseseeneeeenes 153
Job Control Languageccc.cceeveeeeveererernreeeeseenesuerssersssesesseseseasnns 154
Linkage Editor Control Statementscccocevveereeeriinnineeenieceennnens 155
Linkage Editor QULPULccooceeverrnirircennieneeneesresieeseeeseeceesssesseaenes 156

Sample Program PARTDScoooiireierrieeerieeeeneeeeneeessntesenesssseessssesssnenss 159

Job Control LangUagec.ccceereceerecerrvceereseeessneesseessssesssnsessssssesaes 159
Linkage Editor Control Statementscccccoceveeererrecrreersveeesrecesiueees 160
Linkage Editor QULPULccocceireiiriccrerrietrereeesreeeseeeesseessseesssaesesaens 160
Appendix B: Invocation of the Linkage Editorccccccceiiiiinnnnnnnene. 161
Appendix C: Storage Requirements and Capacitiesc...ccccceevcirannnnenn. 163
CAPACILIESeeeeoeereeeecernienitreeteeerreessreeessesasnsesessesssseessssessssesssseessssesans 163
Intermediate Data Setccccceverreriererrennenenerieneressreesnensresessseaneseees 165
Linkage Editor Storage Requirementscccceeecceeeiecnneeesenneeeessanee 165

Part 2. LOAErcooviieiiiiiiereceec ettt e see st e s e ntt e s e s e s nme e s s mne s 167
Functional CharacteristiCsc...ccecveeeerernruteirnrerestenincesiesinseenereeessseessees 167
Compatibility and RestriCtionsccocvveeinueicreinriniennninetncsnneeneceieenees 169
Time Sharing Option (TSO)cccciveiriicicrininiieirce e 169
Processing Object Modules in Virtual Storagecccccceveveereceerneee. 170
Loaded Program ReStrictionsccoecceeerevcerneeesenserinunnsenseessncenneens 170
Using The LORAETcoooviiiiiniririreneeteerecceeesseeteseesraraeseseesssssnnesns 171
Input for the Loadercccvuieeiiiienniintieeeneeceeeee et eee s eeeees 171
EXEC Statementcoccceviierrrererreniersteissnieneeresssiesssstessanessssesessesensseses 171
DD Statementscccocceeeeereerereerenerererestesesneeessereesseeseesessssessssesssseesenes 173
SYSLIN DD Statementccceeerereerererrersenesseressereseesessaessesasessasaesens 173
SYSLIB DD Statementcccceeeveerieeinneeeenersanessieeceneesssneeseseesennees 174
SYSLOUT DD Statementcccccceeerreineerineineecenenseesenenieseecsseesecsanes 175
SYSTERM DD Statementccccocvveerrnrencneecseeenuessnneensseessseesssnenss 175
Loaded Program Dataccceeceeeererenreeecreenseeeeseesesresesnressseesssnessnsenses 175
Invoking the Loaderc..eiiiiiiiniiniicnnicenniiiieeinieceeeenseeseseessnees 176
Loader OQULPULccooeeeeirirririeieiieeerrieeeeseeteeesesneseesessncesssssneeassnsessssssnnees 180
Appendix D: Sample Input for the Loadercccccecoiiiniiincininniinccnnnnen. 183
Appendix E: Loader Return Codescccceieiiinnninniicnnneinrnnneeneneenneen 185
Appendix F: Storage Considerationscccccoevciieiiiiiiiiiiicenincniecnecnneeen. 187
Appendix G: Load Module Formatc.cccceverrerereveniernsencnesesesennenens 189
Appendix H: SIZE and REGION Parameter Guidelinesc.ccc.ec... 191
GIOSSATYooiiiiiiiiiieieeeteeitetee ettt st e s st e s st s et s sae e s saeesseaen 193
INAEXooeieiiiiieiiiiteererccceee s rertereeresneeeeees e s e e srrasneseeessesssnneraeasesssssssnnnananes 195

Contents 9

FIGURES

Figure 1.
Figure 2.

Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure 10.
Figure 11.

Figure 12.

Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Figure 30.
Figure 31.
Figure 32.
Figure 33.

Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.

Figure 40.
Figure 41.

Figure 42.
Figure 43.

il

© % N o

Preparing a Source Module for Executionccocceeeecveencneennne 19
Preparing A Source Module for Execution and Executing the
Load ModUIEoociiiiiiiiiricetcee ettt 20
External Names and External Referencescccoevivinuninnnnen. 20
Use of the External Symbol Dictionarycccccceevivivininiieennns 22
Input, Intermediate, and Output Sources

for the Linkage Editorcccceieiiiiieiiiiienncieeercrseercecsneecesenenens 24
A Load Module Produced by the Linkage Editor 24
Linkage Editor Processing—Module Linkageccecceeuuennen. 26
Linkage Editor Processing—Module Editingccccccovveennnnns 27
Linkage Editor Processing—Additional Input Sources 28
System Automatic Call Librariesc..cccccccveveveeerecrvneenresenennn. 40
Processing of One INCLUDE

Control Statementccccceeeeeeerrrrnneeeeiieierarrseeeeeeeesesssssssrsennaees 44
Processing of More than One INCLUDE

Control Statementccccceieieiierrirrieererreeeerrineeeeesesneesasesneeens 44
Diagnostic Messages Issued by the Linkage Editor 55
MOUIE MAP ...conieeriieiiieeieneceeeeeeee et s e e st e st e s san s e neeeseeasenae 56
Cross-Reference Tablec.cccoeveeeriieenieeneninereerereenseeseeceneees 57
Editing a MOQUIEccceeeeeiieeierieercieeenreereseeesreeseneeseeeessneeenns 59
Changing an External Reference and an Entry Point 61
Automatic Replacement of Control Sectionscccceeceeeeeerennes 63
Replacing a Control Section with the REPLACE Control
SAtEMENLoorniiiiiiiiiritere ettt s 65
Deleting a Control SECtionccccverriveeeeeecrieeeriessreeseesrneessennns 66
Ordering Control SECLIONSccceeeeveereeerrernercneeeeseneeeresenaeenss 68
Aligning Control Sections on Page Boundariescc.cccceeuneene. 70
Control Section Dependenciescccccceeevcereveeersrereneseercreeeeenenn 73
Single-Region Overlay Tree Structureccccceevcerevceereneenens 74
Length of an Overlay Modulecccceevviireiinivinniiiiecieneiennne 75
Segment Origin and Use of Storagecccoeevceevevceniiccericenennen. 76
Inclusive and Exclusive Segmentsc.ccceeveeeeereerenvencneceneneenens 71
Inclusive and Exclusive Referencesccccoocciiiiiiciiniiicinncnnee 78
Location of Segment and Entry Tables in

an Overlay Moduleccoocociiiiiieiiiiiiiniceniteececeeeeee 79
Control Sections Used by Several Pathsccceccceveveinennnnen. 81
Overlay Tree for Multiple-Region Programcccccccernnneennn. 82
Symbolic Segment Origin in Single-Region Program 84
Symbolic Segment and Region Origin

in Multiple-Region Programcccccccceiiiinnieininnnnecniinieenncnnnee 85
Common Areas before Processingcccececeveveeereveercveeencseennnnns 90
Common Areas after Processingccceccevvveeirvveininceniecenneen. 91
Branch Sequences for Overlay Programscccccceveeeenueeennen. 93
Use of the SEGLD Macro Instructioncccceeeveieiiineeennenee 94
Use of the SEGWT Macro Instructionccecccceveverrenincnennne 95
SYSUT1 and SYSLMOD Device Types and Their Maximum
RECOTA SIZES ..eveieirerereiieeiiereeeeesteeeeerenee s eeeseeeesseeessneessnnees 105
Load Module Buffer Area and SYSLMOD and

SYSUT1 Record SiZesevveiiieirireerrrneeeeeensresssssrnneneeeeenessenns 107
Incompatible Job Step Options for the Linkage Editor 112
Linkage Editor Return Codescccccceeveeeereerrseeenseeneseeenenees 113
Linkage Editor ddnamescccocvveeerevereercineneeesecsnneeessrnneeens 115

Figures 11

12 OS/VS Linkage Editor and Loader

Figure 44.

Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

Figure 57.
Figure 58.
Figure 59.

Figure 60.
Figure 61.

Figure 62.
Figure 63.
Figure 64.

Figure 65.
Figure 66.

Figure 67.

Figure 68.
Figure 69.
Figure 70.
Figure 71.

Figure 72.
Figure 73.
Figure 74.

DCB Requirements for Object Module and Control Statement

INPUL ...ttt te e e s anat e s s sssssensesssessrsnnenans 115
DCB Requirements for SYSPRINTcccccoeivivririeriiccnneenennn. 116
DCB Requirements for Additional Input Data Sets 118
Statements in the LKED Cataloged Procedure 119
Statements in the LKEDG Cataloged Procedure 121
Overlay Structure for INSERT Statement Example 134
Output Load Module for ORDER Statement Example 139
Overlay Structure for OVERLAY Statement Example 141
Output Load Module for PAGE Statement Example 143
Linkage Editor Output for Sample Program COBFORT 150

Linkage Editor Output for Job Step that Created SUBONE ... 151
Linkage Editor Output for Sample Program RPLACJOB 153
Overlay Tree for Multiple-Region Sample

Program REGNOVLYcccoiiniiiininniniinnecnnienneeesesnees 154
Linkage Editor Output for Sample Program REGNOVLY 156
Input Statements for IEBUPDTE Utility Program 159
Linkage Editor Capacities for Minimal SIZE

Values (64K, 6K)ocoviieniicriiciieneeenreenseeesseeesseessanessseessnens 163
Loader Processing—SYSLIB Resolutioncccccceeeeueeencnnnnnn. 168
Loader Processing—Link Pack Area and

SYSLIB ReSOIItION ...c.ceeeveereiierenuerrereereneernsersseeessaeesseeseseessnnens 168
Loader Processing—Automatic Editingccceccervireennucnene 169
Input Deck for the Loader—Basic Formatcccccevuvrennene. 171
Loader and Loaded Program Data in VS1 or

VS2 INPUt SErEamcccccvvreerreerrinrnereeresnnereecsseeeessnesessanessssneeses 176

Using the LINK Macro Instruction to Refer to the Loader 177
Using the LOAD and CALL Macro Instructions to Refer to

HEWLOADR (Loading Without Identification) 179
Using the LOAD and CALL Macro Instructions to Refer to
HEWLOAD (Loading With Identification)c.cccceereueneen. 180
Module Map Format Exampleccccoceeeeeereerrrnveneecneneneneeenn. 181
Input Deck for a Load JObcocceeieeireciiecirrceeecceereeeree e 183
Input Deck for a Compile-Load JObeveeiiiiiceeeeeeeeennees 183
Input Deck for Compilation and Loading

of the Three Modulescccoveeiercireeiirieeeecnieeeicreeesrereeesnseenns 184
RetUIN COdES ...cccuvievuirriirierereereeeeereeeseeesseeeeteesseesssesssanssnns 185
Virtual Storage Requirementsccccovceeeeecreeerrneerernnneessneenns 188
Load Module FOrmatcocceereveeernceennieeecreenseecsessseeesseessnees 189

OS/VS1 SUMMARY OF AMENDMENTS

Release 5

Release 3

Release 2

« The appropriate figures have been updated to include specifications for the
IBM 3350 Direct Access Storage and the IBM 3344 Direct Access Storage
Device.

« The appropriate figures have been updated to include specifications for the
3330-1 and 3340 disk storage devices.

« The format for the load modules produced by the linkage editor has been
included in this edition. See Appendix G.

« The “SIZE option” has been rewritten to make it easier for the user to
determine the correct values for the option. Appendix H is a summary of
this section.

« The load module size restriction of 512K bytes has been removed.

¢ APF (Authorized Program Facility) support has been added and several
additions and corrections have been made to the ‘“Job Control Language
Summary” section of the book.

« The PAGE statement may now be used with VS1 systems.

There are no significant system changes in OS/VS1 Release 2. A more
efficient EXEC statement has been added for use in the LKEDG procedure
when the programmer wishes to specify the LET parameter in the LKED
step. This change applies to both OS/VS1 and OS/VS2.

0S/VS1 Summary of Amendments 13

OS/VS2 SUMMARY OF AMENDMENTS

Release 2

« The appropriate figures have been updated to include specifications for the
3330-1 and 3340 disk storage devices.

« The format for the load modules produced by the linkage editor has been
included in this edition. See Appendix G.

« The “SIZE option” has been rewritten to make it easier for the user to
determine the correct values for the option. Appendix H is a summary of
this section.

Release 1

« A more efficient EXEC statement has been added for use in the LKEDG
procedure when the programmer wishes to specify the LET parameter in
the LKED step. This change applies to both OS/VS1 and OS/VS2.

0S/VS2 Summary of Amendments 15

INTRODUCTION

The linkage editor and the loader processing programs prepare the output of
language translators for exectution. The linkage editor prepares a load module
that is to be brought into storage for execution by program fetch. The loader
prepares the executable program in storage and passes control to it directly.

The linkage editor provides several processing facilities such as creating
overlay programs, and aiding program modification. (The linkage editor is
also used to build and edit system libraries.) The loader provides high
performance loading of programs that do not require the special processing
facilities of the linkage editor.

Use of the linkage editor is recommended in the following cases:

« If the program requires linkage editor services in addition to the MAP,
LET, NCAL, and SIZE options.

« If the program uses linkage editor control statements such as INCLUDE,
NAME, OVERLAY, etc.

« If a load module is to be produced for a program library.

Use of the loader is recommended if the program only requires the use of the
following linkage editor options: MAP, LET, NCAL, and SIZE. Because of
its fewer options and because it can process a job in one job step, the loader
reduces editing and loading time by about one-half.

Linkage editor processing is performed in a link edit step. The linkage editor
can be used for compile-link edit-go, compile-link edit, link edit, and link
edit-go jobs. Loader processing is performed in a load step, which is
equivalent to the link edit-go steps. The loader can be used for compile-load
and load jobs.

Introduction 17

PART 1. LINKAGE EDITOR

Linkage editor processing is a necessary step that follows the source program
assembly or compilation of any problem program. The linkage editor is a
processing program and a service program used in association with the
language translators.

Every problem program is designed to fulfill a particular purpose. To achieve
that purpose, the program can generally be divided into logical units that
perform specific functions. A logical unit of coding that performs a function,
or several related functions, is a module. Ordinarily, separate functions should
be programmed into separate modules, a process called modular
programming. Each module can be written in the symbolic language that best
suits the function to be performed. (The symbolic languages are Assembler,
ALGOL, COBOL, FORTRAN, PL/I, and RPG.)

Each module is separately assembled or compiled by one of the language
translators. The input to a language translator is a source module; the output
from a language translator is an object module. Before an object module can
be executed, it must be processed by the linkage editor. The output of the
linkage editor is a load module (Figure 1).

An object module is in relocatable format with unexecutable machine code. A
load module (see Appendix G) is also relocatable, but with executable
machine code. A load module is in a format that can be loaded into virtual
storage and relocated by program fetch (Figure 2).

Any module is composed of one or more control sections. A control section is
a unit of coding (instructions and data) that is, in itself, an entity. All
elements of a control section are loaded and executed in a constant
relationship to one another. A control section is, therefore, the smallest
separately relocatable unit of a program.

Each module in the input to the linkage editor may contain symbolic
references to control sections in other modules; such references are called
external references. These references are made by means of address constants
(adcons). The symbol referred to by an external reference must be either the
name of a control section or the name of an entry point in a control section.
Control section names and entry names are called external names. By
matching an external reference with an external name, the linkage editor
resolves references between modules. External references and external names
are called external symbols (Figure 3). An external symbol is one that is
defined in one module and can be referred to in another.

Source N
Module

J

Object w Load
Module Module
/7
Language Linkage ‘
Translator Editor /

Figure 1. Preparing a Source Module for Execution

Part 1. Linkage Editor 19

Source Object
Module Module

Language
Translator

Figure 2. Preparing a Source Module for Execution and Executing the Load Module

Linkage

Editor

!

Program
Fetch

l

Execution

Input
Module A

CSECT Al

ENTRY All

CALL B1

(" External Names:
Input
Control Section Entry Name Module B
Al All
External < B1 CSECT B1
Symbols
External References:
From A1 to Bl .
L From B1 to A1l CALL A1l

Figure 3. External Names and External References

Linkage
Editor

Output Load
Module AB

CSECT Al
ENTRY All

CALL B1

CSECT B1

CALL A1l

20 OS/VS Linkage Editor and Loader

Object and Load Modules

External Symbol Dictionary

Object modules and load modules have the same basic logical structure. Each
consists of:

« Control dictionaries, containing the information necessary to resolve
symbolic cross-references between control sections of different modules,
and to relocate address constants. Control dictionary entries are generated
when external symbols, address constants, or control sections are
processed by a language translator. Each language translator usually
produces two kinds of control dictionaries: an external symbol dictionary
(ESD) and a relocation dictionary (RLD).

« Text, containing the instructions and data of the program.

+ An end-of-module indication: an END statement in an object module, an
end-of-module indicator in a load module.

Each control dictionary, text, and end indication is described in greater detail
in the following text.

Both object modules and load modules can contain data used by the linkage
editor to create CSECT Identification (IDR) records. If the language
translator creating an object module supports CSECT Identification, the input
object module can contain translator data for Identification records on the
END statement. Input load modules differ from object modules in the type of
data they supply. Input load modules can also provide HMASPZAP data,
linkage editor data, and user data to the Identification records that are built
during linkage editor processing. During the link edit step, the optional
IDENTIFY control statement is used to supply the optional user data for the
CSECT Identification records.

The external symbol dictionary (ESD) contains one entry for each external
symbol defined or referred to within a module. The dictionary contains an
entry for each external reference, pseudo register (external dummy section),
entry name, named or unnamed control section, and blank or named common
area. An entry name, pseudo register, or named control section can be
referred to by any control section or separately processed module; an
unnamed control section cannot.

Each entry identifies a symbol, or a symbol reference, and gives its location, if
known, within the module. Each entry in the external symbol dictionary is
classified as one of the following:

e External reference—a symbol that is defined as an external name in
another separately processed module, but is referred to in the module being
processed. The external symbol dictionary entry specifies the symbol; the
location is unknown.

e Weak external reference—a special type of external reference that is not
to be resolved by automatic library call unless an ordinary external
reference to the same symbol is found. The external symbol dictionary
entry specifies the symbol; the location is unknown.

e Entry name—a name with a control section that defines an entry point.
The external symbol dictionary entry specifies the symbol and its location,
and identifies the control section to which it belongs.

Part 1. Linkage Editor 21

o Control section name—the symbolic name of a control section. The
external symbol dictionary entry specifies the symbol, the length of the
control section, and its location. In this case, the location represents the
origin of the control section, which is the first byte of the control section.

e Blank or named common area—a control section used to reserve a
virtual storage area that can be referred to by other modules. The reserved
storage area can be used, for example, as a communications region within a
program or to hold data supplied at execution time. The external symbol
dictionary entry specifies the name, it present, and the length of the area. If
there is no name, the name field contains blanks.

e Private code—an unnamed control section. The external symbol dictionary
entry specifies the length of the control section and the origin. The name
field contains blanks.

o Pseudo register—a special facility (corresponding to the external dummy
section feature of Assembler F) that can be used to write re-enterable
programs. A pseudo register is a dynamically obtained location in virtual
storage that can be used as a pointer to dynamically acquired storage; that
is, the space for such areas is not reserved in the load module but is
acquired during execution. The external symbol dictionary contains the
name, length, alignment, and displacement of the pseudo register.

When processing input modules, the linkage editor resolves references
between modules by matching the referenced symbols to defined symbols. To
do this, the linkage editor searches for the external symbol definition in the
external symbol dictionary of each input module. As shown in Figure 4, the
linkage editor matches the external reference to B1 by locating the definition
for B1 in the external symbol dictionary of Module B. In the same way, it
matches the external reference to Al1 by locating the definition for A1l in
the external symbol dictionary of Module A.

Text
The text contains the instructions and data of the module.
Relocation Dictionary
The relocation dictionary (RLD) contains one entry for each relocatable
address constant that must be modified before a module is executed. An entry
identifies an address constant by indicating both its location within a control
section and the external symbol whose value must be used to compute the
Input ESD for A
Module A -
Symbol - Type Location ESD for B \
\ Input
Al Control Known Symbol Types Location § \ Module B
Section \
ESD Name B1 Control Known \
All Entry Name | Known Section \
CSECT Al Y Name
. ESD
. B1 External Unknown /
. Reference i All External Unknown /
ENTR.Y All Reference | / CSECT B1
CALL B1 CALL A1l

Figure 4. Use of the External Symbol Dictionary

22 OS/VS Linkage Editor and Loader

End Indication

value of the address constant. (The external symbol is defined in an external
symbol dictionary entry in another control section or module.)

The linkage editor uses the relocation dictionary whenever it processes a
module to adjust the address constants for references to other control sections
and modules. This dictionary is also used to adjust these address constants
again after program fetch reads an output load module from a library and
loads it into virtual storage for execution.

The end of a load module is marked by an end-of-module indicator (EOM).
The EOM cannot, like the assembler END instruction, specify an entry point.
Therefore, whenever a load module is reprocessed by the linkage editor, a
main entry point should be specified on an ENTRY statement. If one is not
specified, the linkage editor will assign the first byte of the first control
section encountered as the entry point.

Linkage Editor Processing

Input and Output Sources

Load Module Creation

This section discusses the input and output sources of the linkage editor, and
the way in which the linkage editor produces a load module.

The linkage editor can receive its input from several sources, as follows:

 The primary input, which can contain only object modules and linkage
editor control statements (called control statements in the following text).

« Additional user-specified input, which can contain either object modules
and control statements, or load modules. This input is either specified by
the user as input, or incorporated automatically by the linkage editor from
a call library.

During processing, the linkage editor generates intermediate data.
Intermediate data is placed on a direct-access storage device when virtual
storage allocated for input data is exhausted.

Output of the linkage editor is of two types:

« A load module, which is always placed in a library (a partitioned data set)
as a named member.

« Diagnostic output, which is produced as a sequential data set.

Figure 5 shows the input, intermediate, and output sources for the linkage
editor program.

In processing object and load modules, the linkage editor assigns consecutive
relative addresses to all control sections and resolves all references between
control sections. Object modules produced by several different language
translators can be used to form one load module.

An output load module is composed of all input object modules and input
load modules processed by the linkage editor. The control dictionaries of an
output module are, therefore, a composite of all the control dictionaries in the
linkage editor input. The control dictionaries of a load module are called the

Part 1. Linkage Editor 23

Inter-
mediate

Load
Module

Automatic
Call
Library

Diagnostic
Output

User-
Specified
Input

Figure 5. Input, Intermediate, and Output Sources for the Linkage Editor

composite external symbol dictionary (CESD) and the relocation dictionary
(RLD). The load module also contains all of the text from each input module,
and one end-of-module indicator (Figure 6.) See Appendix G for the format
of a load module.

Module A
' Output Load
Module AB
TXT CESD
RLD TXT
END
Module B
ESD
RLD
TXT
EOM
RLD
END

Figure 6. A Load Module Produced by the Linkage Editor

24 OS/VS Linkage Editor and Loader

Assigning Addresses

Each module to be processed by the linkage editor has an origin that was
assigned during assembly, compilation, or a previous execution of the linkage
editor. When several modules, each with an independently assigned origin, are
to be processed by the linkage editor, the sequence of the addresses is
unpredictable; two input modules may even have the same origin.

Each input module can be made up of one or more control sections. To
produce an executable output load module, the linkage editor assigns relative
virtual storage addresses to each control section by assigning an origin to the
first control section encountered and then assigning addresses, relative to that
origin, to all other control sections to be included in the output load module.
The value assigned as the origin of the control section is used to relocate each
address dependent item in the control section.

Although the addresses in a load module are consecutive, they are relative to
zero. When a load module is to be executed, program fetch prepares the
module for execution by loading it at a specific virtual storage location. The
addresses in the module are then increased by this base address. Each address
constant must also be readjusted, another function of program fetch.

Resolving External References

The linkage editor also resolves external references in the input modules.
Cross references between control sections in different modules are symbolic.
They must be resolved relative to the addresses assigned to the load module.
The linkage editor calculates the new address of each relocatable expression
in a control section and determines the assigned origin of the item to which it
refers.

Functions of the Linkage Editor

Linkage editor input may consist of a combination of object modules, load
modules, and control statements. The primary function of the linkage editor is
to combine these modules, in accordance with the requirements stated on
control statements, into a single output load module. Although this linking or
combining of modules is its primary function, the linkage editor also:

« Edits modules by replacing, deleting, rearranging, and ordering control
sections as directed by control statements.

« Aligns control sections and named common areas on 2K or 4K page
boundaries as directed by control statements.

« Accepts additional input modules from data sets other than the primary
input data set, either automatically, or upon request.

« Reserves storage for the common control sections generated by Assembler
and FORTRAN language translators, and static external areas generated
by PL/1

o Computes total length and assigns displacements for all pseudo registers
(external dummy sections).

o Creates overlay programs in a structure defined by control statements.
o Creates multiple output load modules as directed by control statements.

« Provides special processing and diagnostic output options.

Part 1. Linkage Editor 25

o Assigns module attributes that describe the structure, content, and logical
format of the output load module.

o Allocates storage areas for linkage editor processing as specified by the
programmer.

« Stores system status index information in the directory of the output
module library (systems personnel only).

« Traces the processing history of a program.

« Allows the user to lengthen a control section or named common section
without changing source code, reassembling, or recompliling.

« Allows the user to assign an authorization code to a load module that (a)
makes it a restricted resouce and (b) enables it to pass control to other
restricted resources.

Each of the linkage editor functions is described briefly in the following
paragraphs.

Links Modules

Processing by the linkage editor makes it possible for the programmer to
divide his program into several modules, each containing one or more control
sections. The modules can be separately assembled or compiled. The linkage
editor combines these modules into one output load module (Figure 7) with
contiguous storage addresses. During processing by the linkage editor,
references between modules within the input are resolved. The output module
is placed in a library (partitioned data set).

Assembler

Source
Module

N

A

Module
Object

Module Y /
\ ———
Linkage \

Load
Module

Figure 7. Linkage Editor Processing—Module Linkage

26 OS/VS Linkage Editor and Loader

Edits Modules

Program modification is made easier by the editing functions of the linkage
editor. When the functions of a program are changed, the programmer
modifies, then compiles and link edits again only the affected control sections
instead of the entire source module.

Control sections can be replaced, renamed, deleted, moved, or ordered as
directed by control statements. Control sections can also be automatically
replaced by the linkage editor. External symbols can be changed or deleted as
directed by control statements.

Figure 8 illustrates the module editing function of the linkage editor.

Object
Module
A

Control
Statements

Linkage
Editor

Figure 8. Linkage Editor Processing—Module Editing

Aligns Control Sections or Common Areas on Page Boundaries

Accepts Additional Input Sources

Control sections or named common areas in the output load module can be

aligned on either 2K or 4K page boundaries. Alignment on page boundaries
enables the programmer to use real storage more efficiently and appreciably
reduce the paging rate for the job.

Standard subroutines can be included in the output module, thus reducing the
work in coding programs. The programmer can specify that a subroutine be
included at a particular time during the processing of his program by using a
control statement. When the linkage editor processes a program that contains
this statement, the module containing the subroutine is retrived from the
indicated input source, and made a part of the output module (Figure 9).

Symbols that are still undefined after all input modules have been processed
cause the automatic library call mechanism to search for modules that will
resolve these references. When a module name is found that matches the
unresolved symbol, the module is processed by the linkage editor and also
becomes part of the output module (Figure 9).

Part 1. Linkage Editor 27

Reserves Storage

Processes Pseudo Registers

Creates Overlay Programs

Primary Input:

Object
Module
A

Control

Statements J _
Linkage
Editor /
Additional Input: 4 “
P / \ N
Automatic | Load
Call Module
Library A
2 lcand D B
/1 c
D
E
F
- \
Module
F
Object
Module E »)

Figure 9. Linkage Editor Processing—Additional Input Sources

Note: The level F linkage editor distinguishes a special type of external
reference— the weak external reference. An unresolved weak external
reference does not cause the linkage editor to use the automatic library call
mechanism. Instead, the reference is left unresolved, and the load module is
marked as executable.

The linkage editor processes common control sections generated by the
FORTRAN and Assember language translators. The static external storage
areas generated by the PL/I compiler are processed in the same way. The
common areas are collected by the linkage editor, and a reserved virtual
storage area is provided within the output module.

Pseudo registers, like the external dummy sections of Assembler F, aid in
generating re-enterable code. The linkage editor processes pseudo registers by
accumulating the total length of storage required for all pseudo registers and
recording the displacement of each. During execution, the program
dynamically acquires the necessary storage.

To minimize virtual storage requirements, the programmer can organize his
program into an overlay structure by dividing it into segments according to
the functional relationships of the control sections. Two or more segments
that need not be in virtual storage at the same time can be assigned the same

28 OS/VS Linkage Editor and Loader

Creates Multiple Load Modules

relative virtual storage addresses, and can be loaded at different times.

The programmer uses control statements to specify the relationship of
segments within the overlay structure. The segments of the load module are
placed in a library so that the control program can load them separately when
the load module is executed.

The linkage editor can also proces§ its input to form more than one load
module within a single job step. Each load module is placed in the library
under a unique member name, as specified by a control statement.

Provides Special Processing and Diagnostic Output Options

Assigns Load Module Attributes

The programmer can specify special processing options that negate automatic
library call or the effect of minor errors. In addition, the linkage editor can
produce a module map or cross-reference table that shows the arrangement of
control sections in the output module and indicates how they communicate
with one another. A list of the control statements processed can also be
produced.

Throughout processing, errors and possible error conditions are logged.
Serious errors cause the linkage editor to mark the output module not
executable. Additional diagnostic data is automatically logged by the linkage
editor. The data indicates the disposition of the load module in the output
module library.

When the linkage editor generates a load module, it places an entry for the
module in the directory of the library. This entry contains attributes that
describe the structure, content, and logical format of the load module. The
control program uses these attributes to determine how a module is to be
loaded, what it contains, if it is executable, whether it is executable more than
once without reloading, and if it can be executed by concurrent tasks. Some
module attributes can-be specified by the programmer; others are specified by
the linkage editor as a result of information gathered during processing.

Allocates User-Specified Virtual Storage Areas

The programmer can specify the total amount of virtual storage to be made
available to the linkage editor, the amount to be used for the load module
buffer, and the buffer for the output load module.

Stores System Status Index Information

The following information is intended for systems personnel responsible for
maintaining IBM-supplied load modules. It is not generally applicable to
non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied load modules are
used to store system status index information. This information, which is used
for maintenance of the modules, is placed in the directory with a control
statement.

Part 1. Linkage Editor 29

Traces Processing History

Tracing the processing history of a program is simplified by the CSECT
Identification (IDR) records created and maintained by the linkage editor. A
CSECT Identification record can contain data that describes:

« The language translator, its level, and the translation date for each control
section.

« The most recent processing by the linkage editor.
« Any modification made to the executable code of any control section.

Optionally, user-supplied data associated with the executable code of a
control section can also be recorded.

Lengthens Control Sections or Named Common Sections

The user can lengthen control sections or named common sections of a
program to add patch space without changing the source code, reassembling,
or recompiling.

Added space, consisting of binary zeros, is put at the end of a specified
control section by using the EXPAND control statement (see the ‘“‘Control
Statement Summary”’ section). Space cannot be added to a private code or
blank common section.

Assigns an Authorization Code to Output Load Modules

The authorized program facility (APF) limits the use of sensitive system and
(optionally) user services and resources to authorized system and user
programs. Authorization is defined as accesss to those services and resources.
The services and resources to which access is limited are described in the
following publications: for VS1, OS/VS1 Planning and Use Guide; for
VS2, OS/VS2 System Programming Library: Initialization and Tuning
Guide.

Programs are authorized at the job-step level. For a job step to gain
authorization initially, the first module loaded at the start of the job step must
be an authorized module, and it must have been loaded from an authorized
library. Otherwise, the job step is not authorized initially and cannot
subsequently gain authorization.

For a job step to maintain its authorization, all subsequent modules invoked
during the job step (via LINK, LOAD, ATTACH, and/or XCTL macro
instructions) must be loaded from an authorized library. Otherwise, the job
step loses its authorization and cannot gain authorization.

A library becomes an ‘““‘authorized” library by the inclusion of its name in a
list called IEAAPFQO. This list is described in more detail in OS/VS2 System
Programming Library: nitialization and Tuning Guide.

In VS1, a load module becomes ‘““authorized” by the inclusion of its name in a
list called IEFSDPPT. This list is described in more detail in OS/VS1
Planning and Use Guide.

In VS2, a load module becomes ‘‘authorized’” by the assignment of an
authorization code to the load module during linkage-editing. This assignment
is made via the PARM field parameter AC or via the control statement
SETCODE, which are described in the sections that follow.

30 OS/VS Linkage Editor and Loader

Relationship to the Operating System

Time Sharing Option (TSO)

Language Dependencies

Assembler Language

The linkage editor has the same relationship to the operating system as any
other processing program. It can be executed either as a job step, a
subprogram, or a subtask. Control is passed to the linkage editor in one of
three ways:

« As a job step, when the linkage editor is specified on an EXEC job control
statement in the input stream.

« As a subprogram, with the execution of a CALL macro instruction (after
the execution of a LOAD macro instruction), a LINK macro instruction, or
an XCTL macro instruction.

« As a subtask, in multitasking systems, with the execution of the ATTACH
macro instruction.

Execution of the linkage editor and the data sets used by the linkage editor
are described to the system with job control language statements. These
statements describe all jobs to be performed by the system.

Note: Job control statements are not to be confused with linkage editor
control statements. Job control statements are processed before the linkage
editor is executed; linkage editor control statements are processed during
linkage editor execution.

When the linkage editor is used under TSO (VS2 only), it is invoked by the
linkage editor prompter program that acts as an interface between the user,
operating system, and linkage editor. Under TSO, execution of the linkage
editor and definition of data sets used by the linkage editor are described to
the system through use of the LINK command that causes the prompter to be
executed. Operands of the LINK command can also be used to specify the
linkage editor options a job requires. Complete procedures for use of the
LINK command are given in the OS/VS2 TSO Terminal User’s Guide.

This section defines control section, entry name, external reference, common
area, and pseudo register (external dummy section) in terms of the source
language statements that generally create them. The languages described are
Assembler, COBOL, FORTRAN, and PL/I.

Note: Unless the language translator supports CSECT Identification (IDR)
records, identification data is not produced.

In the Assembler language, a control section is defined by a CSECT
statement or a START statement. Either statement may specify a control
section name. The control section delimiter is an END statement, or another
CSECT or START statement.

An entry name is defined with an ENTRY statement.

An external reference to a data area is specified with an EXTRN statement
and an A-type address constant; an external reference to a control section or
an entry name is specified with a V-type address constant.

A common area is specified with a COM statement.

Part 1. Linkage Editor 31

COBOL

FORTRAN

PL/1

An external dummy section (Assembler XF and Assember H only) is defined
with a DXD instruction or a DSECT and a Q-type address constant; a CXD
instruction defines a 4-byte field that the linkage editor uses to accumulate
the length of all external dummy sections in a load module.

In COBOL, a control section is produced for each compilation. COBOL
control sections are always named, because a name must be specified in the
PROGRAM-ID paragraph of the IDENTIFICATION DIVISION.

An entry name is defined with an ENTRY statement.

An external reference is created by the compiler when a CALL statement is
used.

COBOL does not use common areas or pseudo registers.

In FORTRAN, a control section is defined with a SUBROUTINE,
FUNCTION, or BLOCK DATA statement that specifies the control section
name. If the first statement in a FORTRAN routine is not one of these, it is
assumed to begin the main routine of the program. Automatically, the
statement defines a control section named MAIN, the name always assigned
to the main routine of a FORTRAN program unless the programmer has used
the NAME option to assign a name to his main routine. A control section
delimiter is an END statement.

An entry name is defined with an ENTRY statement.

An external reference is created for an EXTERNAL statement or a reference
to a subroutine subprogrmm, a function subprogram, or a BLOCK DATA
subprogram.

A common area is specified with a COMMON statement. A name may be
specified, if desired.

FORTRAN does not use pseudo registers.

In PL/1, a control section is defined by an external PROCEDURE statement
and named by the first statement label. When the MAIN option is specified,
the control section IHEMAIN, which contains the address of the principal
entry point, is created. In both cases, the control section IHENTRY is
generated to provide appropriate linkage to the library storage management
modules. Control sections are also created for each STATIC EXTERNAL or
EXTERNAL declaration with initial text and for each EXTERNAL file
constant.

Note: If the labels or variable names used for control section names exceed
seven characters, PL/I generates a seven-character control section name by
concatenating the first four and the last three characters in the label or
variable name.

A control section is also created for STATIC INTERNAL storage; it contains
the items declared with their storage class attributes as well as work areas and
control blocks added by the compiler. This control section takes its name
from the name of the external procedure control section, followed by the
letter A and padded to the left with asterisks to a length of eight characters.

32 0OS/VS Linkage Editor and Loader

An entry name is defined with an ENTRY statement.

An external reference is created for an ENTRY declaration, either explicitly
or implicity declared with the EXTERNAL attribute. Unresolved function
references or procedure calls imply EXTERNAL scope and also cause an
external reference to be generated.

A named common area is specified wyith a STATIC EXTERNAL or
EXTERNAL declaration when the defined area does not contain initial text.
(When the area is initialized, a control section is generated.) The name is the
name of the variable. PL/I does not use blank common areas.

A pseudo register is created for each CONTROLLED variable, for each file
declared, and for each PROCEDURE or PROCEDURE BEGIN block or ON
unit in the program. The name of the pseudo register created for a
CONTROLLED EXTERNAL variable is the name of the variable. In all
other cases, the name of the pseudo register is generated from the external
procedure control section name followed by a letter (B, C, etc.) and padded
to the left with asterisks to a length of eight characters. The asterisks can be
replaced, if necessary, to provide sufficient unique names.

Part 1. Linkage Editor 33

INPUT TO THE LINKAGE EDITOR

Primary Input Data Set

Object Modules

The linkage editor accepts input from two major sources: the primary input
data set and additional data sets. The primary input data set is made
available through job control language specifications. Additional data sets
are made available either through the automatic library call mechanism, or
through user-specified control statements. They must, however, also be
defined with job control language specifications.

Primary and additional input data sets may contain the following types of
data:

e One or more object modules.
+ One or more load modules.
+ Control statements.

« Combinations of the above (restrictions on certain combinations are noted
where they apply).

Object modules and control statements may be contained in either sequential
or partitioned data sets. Load modules must be contained in partitioned data
sets.

This chapter describes the “linking ” functions of the linkage editor only; the
“editing” functions are described in the chapter “Module Editing.”

The primary input data set is required for every linkage editor job step. It
must be defined by a DD statement with the ddname SYSLIN. The primary
input can be:

« A sequential data set.
« A member of a partitioned data set.

» A concatenation of sequential data sets and/or members of partitioned
data sets.

The primary input data set must contain object modules and/or control
statements. The modules and control statements are processed sequentially
and their order determines the basic order of linkage editor processing during
a given execution. However, the order of the control sections after processing
does not necessarily reflect the order in which they appeared in the input.

In the examples that follow, only the statements necessary to define the input
to the linkage editor are shown; complete examples are shown in Appendix A.

The primary input to the linkage editor may consist solely of one or more
object modules. The rest of this section discusses object module input from
cards, as a member of a partitioned data set, passed from a previous job step,
and created in a separate job.

Input to the Linkage Editor 35

From Cards

Object module input to the linkage editor may be on cards. The card deck
itself is treated as a sequential data set; the cards are placed in the input
stream, after a DD * statement, as follows:

//SYSLIN DD *
Object Deck A

Object Deck B

/*

The card input is followed by a /* statement.

An example of the JCL when card decks are used in addition to other input is
as follows:

//SYSLIN DD DSNAME=INPUT, ...
// DD *

Object Deck A

Object Deck B

/*

By omitting the ddname on the second DD statement, the card input is
concatenated to the data set described on the SYSLIN DD statement.

As a Member of a Partitioned Data Set

Passed from a Previous Job Step

An object module in a partitioned data set can be used as primary input to the
linkage editor by specifying its data set name and member name on the
SYSLIN DD statement. In the following example, the member named
TAXCOMP in the object module library LIBROUT is to be the primary
input; LIBROUT is a cataloged data set:

//SYSLIN DD DSNAME=LIBROUT(TAXCOMP),
// DISP=(OLD,KEEP)

The library member is processed as if it were a sequential data set.

Members of partitioned data sets can be concatenated with other input data
sets, as follows:

//SYSLIN DD DSNAME=OBJLIB,DISP=(OLD,KEEP), .
// DD DSNAME=LIBROUT(TAXCOMP),
// DISP=(OLD,KEEP)

Library member TAXCOMP is concatenated to data set OBJLIB; both must
contain object modules since they are the primary input.

An object module to be used as input can be passed from a previous job step
to a linkage editor job step in the same job, as in a compile-link edit job. That
is, the output from the compiler is direct input to the linkage editor. In the
following example, and object module that was created in a previous job step
(Step A) is passed to the linkage editor job step (Step B):

Step A:

//SYSGO DD DSNAME=§&OBJECT ,DISP=(NEW,PASS), ...
Step B:

//SYSLIN DD DSNAME=§ EOBJECT ,DISP=(OLD,DELETE)

36 OS/VS Linkage Editor and Loader

The data set name &&OBJECT, used in both job steps, identifies the object:
module as the output of the language processor on the SYSGO DD statement,
and as the primary input to the linkage editor on the SYSLIN DD statement.

Note: The double ampersand (&&) in the data set name defines a temporary
data set. These data sets exist for the duration of the job and are
automatically deleted at the end of the job. If the data set is to be preserved
for longer than the duration of a single job, the double ampersand is not used
(DSNAME=0BJECT).

The method used in the preceding example can also be used to retrieve object
modules created in previous steps. If the same data set name is used for the
output of each language processor, one SYSLIN DD statement can be used to
retrieve all the object modules, as follows:

Step A:

//SYSGO DD DSNAME=§ §OBJMOD ,DISP=(NEW,PASS), .
Step B:

//SYSPUNCH DD DSNAME=§ &§OBJMOD ,DISP=(MOD, PASS)
Step C:

//SYSLIN DD DSNAME=¢§ &§0OBJMOD,DISP=(OLD,DELETE)

The two object modules from Step A and Step B are placed in the same
sequential data set, &&OBJMOD. The SYSLIN DD statement in Step C
causes both object modules to be used as the primary input to the linkage
editor.

Another method can be used to accomplish this purpose: concatenation of
data sets. This method could be used if the object modules were created in
previous job steps with different member names, as follows:

Step A:

//SYSGO DD DSNAME=§ §OBJLIB(MODA), DISP=(NEW,
// PASS), ..

Step B:

//SYSPUNCH DD DSNAME=¢§ EOBJLIB(MODB), DISP=(MOD,
// . PASS), ...

Step C:

//SYSLIN DD DSNAME=§ §OBJLIB(MODA),DISP=(OLD,
// DELETE)

// DD DSNAME=§ §OBJLIB(MODB), DISP=(OLD,
// DELETE)

The object modules created in Step A and Step B were placed in a partitioned
data set with different member names. The two members are concatenated in
Step C as primary input. Each member is considered to be a sequential data
set.

Input to the Linkage Editor 37

Created in a Separate Job

If the only input to the linkage editor is an object module from a previous job,
the SYSLIN DD statement contains all the information necessary to locate
the object module, as follows:

//SYSLIN DD DSNAME=0OBJECT,DISP=(OLD,DELETE),
// _ UNIT=2314,VOLUME=SER=LIB613

An object module created in a separate job may also be on cards, in which
case it is handled as described earlier.

Control Statements

The primary input data set may also consist solely of control statements.
When the primary input is control statements, input modules are specified on
INCLUDE control statements (see “Included Data Sets). The control
statements may be either placed‘in the input stream or stored in a permanent
data set.

In the following example, the primary input consists of control statements in
the input stream:

//SYSLIN DD *
Linkage Editor Control Statements
/ *

In the next example, the primary input consists of control statements stored in
the member INCLUDES in the partitioned data set CTLSTMTS:

//SYSLIN DD DSNAME=CTLSTMTS(INCLUDES),DISP=(OLD,
// KEEP), ..

In either case, the control statements can be any of those described in
“Linkage Editor Control Statement Summary,” as long as the rules given
there are followed.

Object Modules and Control Statements

The primary input to the linkage editor may contain both object modules and
control statements. The object modules and control statements may be in
either the same data set or different data sets. If the modules and statements
are in the same data set, this data set is described on the SYSLIN DD
statement as any data set is described.

If the modules and statements are in different data sets, the data sets are
concatenated. The control statements may be defined either in the input
stream or as a separate data set.

Control Statements in the Input Stream

Control statements can be placed in the input stream and concatenated to an
object module data set, as follows:

//SYSLIN DD DSNAME=§EOBJECT, ...
// DD *

Linkage Editor Control Statements

/%

38 OS/VS Linkage Editor and Loader

Another method of handling control statements in the input stream is to use
the DDNAME parameter, as follows:

//SYSLIN DD DSNAME=§ EOBJECT, . ..
// DD DDNAME=SYSIN
//SYSIN DD *

Linkage Editor Control Statements

/ *

Note: The linkage editor cataloged procedures use DDNAME=SYSIN for the
SYSLIN DD statement to allow the programmer to specify the primary input
data set required.

Control Statements in a Separate Data Set

Automatic Call Library

A separate data set that contains control statements may be concatenated to a
data set that contains an object module. The control statements for a
frequently used procedure (for example, a complex overlay structure or a
series of INCLUDE statements) can be stored permanently. In the following
example, the members of data set CTLSTMTS contain linkage editor control
statements. One of the members is concatenated to data set & & OBJECT.

//SYSLIN DD DSNAME=§ §OBJECT,DISP=(OLD,DELETE), . .
// DD DSNAME=CTLSTMTS(OVLY),DISP=(OLD,
// KEEP), .

The control statements in the member named OVLY of the partitioned data
set CTLSTMTS are used to structure the object module.

The automatic library call mechanism is used to resolve external references
that were not resolved during primary input processing. Unresolved external
references found in modules from additional data sources are also processed
by this mechanism.

Note: The following discussion of automatic library call does not apply to
unresolved weak external references; they are left unresolved.

The automatic library call mechanism involves a search of the directory of the
automatic call library for an entry that matches the unresolved external
reference. When a match is found, the entire member is processed as input to
the linkage editor.

Automatic library call can resolve an external reference when the following
conditions exist; the external reference must be (1) a member name or an
alias of a module in the call library, and (2) defined as an external name in
the external symbol dictionary of the module with that name. If the
unresolved external reference is a member name or an alias in the library, but
is not an external name in that member, the member is processed but the
external reference remains unresolved unless subsequently defined.

The automatic library call mechanism searches the call library defined on the
SYSLIB DD statement. The call library can contain either (1) object modules
and control statements or (2) load modules; it must not contain both.

Modules from libraries other than the SYSLIB call library can be searched by
the automatic library call mechanism as directed by the LIBRARY control

Input to the Linkage Editor 39

statement. The library specified in the control statement is searched for
member names that match specific external references that are unresolved at
the end of input processing. If any unresolved references are found in the
modules located by automatic library call, they are resolved by another search
of the library. Any external references not specified on a LIBRARY control
statement are resolved from the library defined on the SYSLIB DD statement.

In addition, two means exist to negate the automatic library call mechanism.
The LIBRARY statement can be used to negate the automatic library call for
selected external references unresolved after input processing; the NCAL
option on the EXEC statement can be used to negate the automatic library
call for all external references unresolved after input processing. Use of the
LIBRARY control statement and the NCAL option are discussed after the
SYSLIB DD statement that follows.

SYSLIB DD Statement
If the automatic library call mechanism is to be used, the call library must be a
partitioned data set described by a DD statement with a ddname of SYSLIB.
The call library may be either a system call library or a private call library; call
libraries may be concatenated.

System Call Library

Most of the system processing programs have their own automatic call library
(Figure 10). This library must be defined when an object module produced by
that processor is to be link edited.

Processing Program Library Name
ALGOL SYS1.ALGLIB
COBOL SYS1.COBLIB
FORTRAN SYS1.FORTLIB
PL/I SYS1.PLILIB
Sort/Merge SYS1.SORTLIB

Figure 10. System Automatic Call Libraries

The call library may contain input/output, data conversion, and/or other
special routines that are needed to complete the module. The processor
creates an external reference for these special routines and the linkage editor
resolves the references from the appropriate call library.

In the following example, a FORTRAN object module created in Step A is to
be link edited in Step B, and the FORTRAN automatic call library is used to
resolve external references:

Step A:

//SYSOBJ DD DSNAME=§ EOBJIJMOD ,DISP=(NEW,

// PASS), ...

Step B:

//SYSLIN DD DSNAME=§&0OBJMOD, DISP=(OLD,DELETE)
//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR

40 OS/VS Linkage Editor and Loader

Private Call Libraries

Concatenation of Call Libraries

Library Control Statement

The disposition of SHR on the SYSLIB DD statement means that other tasks
which may be executing concurrently with Step B may also use
SYS1.FORTLIB.

The SYSLIB DD statement can also describe a private, user-written library.
In this case, the automatic library call mechanism searches the private library
for unresolved external references. In the following example, unresolved
external references are to be resolved from a private library named
PVTPROG:

//SYSLIB DD DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
// VOLUME=SER=PVT002

System call libraries and private call libraries may be concatenated either to
themselves, and/or to each other. When librariess are concatenated, they
must all be either object module libraries or load module libraries; they may
not be mixed.

If object modules from different system processors are to be link edited to
form one load module, the call library for each must be defined. This is
accomplished by concatenating the additional call libraries to the library
defined on the SYSLIB DD statement. In the following example, a
FORTRAN object module and a COBOL object module are to be link
edited; the two system call libraries are concatenated as follows:

//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
// DD DSNAME=SYS1.COBLIB,DISP=SHR

System libraries are cataloged; no unit or volume information is needed.

A system call library and a private call library can also be concatenated in this
way. For example, by adding the following statement to the two in the
preceding example, the private call library PVTPROG, which is not cataloged,
is concatenated to the two system call libraries:

// DD DSNAME=PVTPROG, DISP=SHR, UNIT=2314,
// VOLUME=SER=PVTO002

Any external references not resolved from the two system libraries are
resolved from the private library.

The LIBRARY control statement can be used to direct the automatic library
call mechanism to a library other than that specified in the SYSLIB DD
statement. Only external references listed on the LIBRARY statement are
resolved in this way. All other unresolved external references are resolved
from the library in the SYSLIB DD statement.

The LIBRARY statement can also be used to specify external references that
are not to be resolved by the automatic library call mechanism. The
LIBRARY statement specifies the duration of the nonresolution: either
during the current linkage editor job step, called restricted no-call, or during
this or any subsequent linkage editor job step, called never-call.

Examples of each use of the LIBRARY statement follow; a description of the
format is given in “Linkage Editor Control Statement Summary.”

Input to the Linkage Editor 41

Additional Call Libraries

Restricted No-Call Function

If the additional libraries are to be used to resolve specific references, the
LIBRARY statement contains the ddname of a DD statement that describes
the library. The LIBRARY statement also contains, in parentheses, the
external references to be resolved from the iibrary; i.e., the names of the
members to be used from the library. If the unresolved external reference is
not a member name in the specified library, the reference remains unresolved
unless subsequently defined.

For example, two modules (DATE and TIME) from a system call library have
been rewritten. The new modules are to be tested with the calling modules

. before they replace the old modules. Because the automatic library call

mechanism would otherwise search the system call library (which is needed
for other modules), a LIBRARY statement is used, as follows:

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//TESTLIB DD DSNAME=TEST ,DISP=(OLD,KEEP), ...
//SYSLIN DD DSNAME=ACCTROUT, .
// DD *

LIBRARY TESTLIB(DATE,TIME)
/*

Two external references, DATE and TIME, are resolved from the library
described on the TESTLIB DD statement. All other unresolved external
references are resolved from the library described on the SYSLIB DD
statement.

The programmer can use the LIBRARY statement to specify those external
references in the output module for which there is to be no library search
during the current linkage editor job step. This is done by specifying the
external reference(s) in parenthese without specifying a ddname. The
reference remains unresolved, but the linkage editor marks the module
executable.

For example, a program contains references to two large module that are
called from the automatic call library. One of the modules has been tested and
corrected, the other is to be tested in this job step. Rather than execute the
tested module again, the restricted no-call function is used to prevent
automatic library call from processing the module as follows:

// EXEC PGM=HEWL,PARM=LET
//SYSLIB DD DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD DSNAME= & §PAYROL, . . .
// DD *
LIBRARY (OVERTIME)
/*

As a result, the external reference to OVERTIME is not resolved by
automatic library call.

42 0S/VS Linkage Editor and Loader

Never-Call Function

NCAL OPTION

Included Data Sets

The never-call function specifies those external references that are not to be
resolved by automatic library call during this or any subsequent linkage editor
job step. This is done by specifying an asterisk followed by the external
reference(s) in parentheses. The reference remains unresolved but the linkage
editor marks the module executable.

For example, a certain part of a program is never executed, but it contains an
external reference to a large module (CITYTAX) which is no longer used by
this program. However, the module is in a call library needed to resolve other
references. Rather than take up storage for a module that is never used, the
never-call function is specified, as follows:

// EXEC PGM=HEWL, PARM=LET
//SYSLIB DD DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD DSNAME=TAXROUT,DISP=0LD, .
// DD *
LIBRARY *¥(CITYTAX)
/*

As a result, when program TAXROUT is link edited, the external reference to
CITYTAX is not resolved by automatic library call.

When the NCAL option is specified, no automatic library call occurs to
resolve external references that are unresolved after input processing. The
NCAL option is similar to the restricted no-call function on the LIBRARY
statement, except that the NCAL option negates automatic library call for all
unresolved external references and restricted no-call negates automatic library
call for selected unresolved external references. With NCAL, all external
references that are unresolved after input processing is finished, remain
unresolved. The module is however, marked executable.

The NCAL option is a special processing parameter that is specified on the
EXEC statement as described in “No Automatic Library Call Option.”

The INCLUDE control statement requests the linkage editor to use additional
data sets as input. These can be sequential data sets containing object
modules and/or control statements, or members of partitioned data sets
containing object modules and/or control statements, or load modules.

The INCLUDE statement specifies the ddname of a DD statement that
describes the data set to be used as additional input. If the DD statement
describes a partitioned data set, the INCLUDE statement also contains the
name of each member to be used. See “Linkage Editor Control Statement
Summary” for a detailed description of the format of the INCLUDE statement.

Input to the Linkage Editor 43

When an INCLUDE control statement is encountered, the linkage editor
processes the module or modules indicated. Figure 11 shows the processing of
an INCLUDE statement. In the illustration, the primary input data set is a
sequential data set named OBJMOD which contains an INCLUDE statement.
After processing the included data set, the linkage editor processes the next
primary input item. The arrows indicate the flow of processing.

Primary Input

Data Set OBJMOD
Library OBJLIB
Member MODA
Include OBJLIB (MODA)

Figure 11. Processing of One INCLUDE Control Statement

Primary Input
Data Set SYSLIN

2%V

Include OBJMOD

NAAAANV]

Sequential
Data Set OBIMOD

Library OBJLIB
Member MODA

VIAAN

Include OBJIB (MODA)

A AAN

not processed

Figure 12. Processing of More than One INCLUDE Control Statement

44 OS/VS Linkage Editor and Loader

Including Sequential Data Sets

Including Library Members

If an included data set also contains an INCLUDE statement, this specified
module is also processed. However, any data following the INCLUDE
statement is not processed.

If the OBJMOD data set shown in Figure 11 is itself included, the data
following the INCLUDE statement for OBJLIB is not processed. Figure 12
shows the flow of processing for this example.

Sequential data sets containing object modules and/or control statements can
be specified by an INCLUDE control statement. In the following example, an
INCLUDE statement specifies the ddnames of two sequential data sets to be
used as additional input:

//ACCOUNTS DD DSNAME=ACCTROUT,DISP=(OLD,KEEP), ...
//INVENTRY DD DSNAME=INVENTRY,DISP=(OLD,KEEP), ..
//SYSLIN DD DSNAME=QTREND, . ..
// DD *

INCLUDE ACCOUNTS, INVENTRY
/*

Each ddname could also have been specified on a separate INCLUDE
statement; with either method, a DD statement must be specified for each
ddname.

Another method of doing the preceding example is given in “Including
Concatenated Data Sets.”

One or more members of a partitioned data set can be specified on an
INCLUDE control statement. The member name must be specified on the
INCLUDE statement; no member name should appear on the DD statement
itself.

In the following example, one member name is specified on the INCLUDE
statement:

//PAYROLL DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), ...
//SYSLIN DD DSNAME=§ &§CHECKS , DISP=(OLD, DELETE)
// DD *

INCLUDE PAYROLL(FICA)
/*

If more than one member of a partitioned data set is to be included, the
INCLUDE statement specifies all the members to be used from each library.
The member names are not repeated on the DD statement.

In the following example, an INCLUDE statement specifies two members
from each of two libraries to be used as additional input:

//PAYROLL DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), ...
//ATTEND DD DSNAME=ATTROUTS,DISP=(OLD,KEEP),...
//SYSLIN DD *

INCLUDE PAYROLL(FICA,TAX),ATTEND(ABSENCE, OVERTIME)
/%

Each library could have been specified on a separate INCLUDE statement;
with either method, a DD statement must be specified for each ddname.

Another method of doing this example is given in “Including Concatenated
Data Sets.”

Input to the Linkage Editor 45

Including Concatenated Data Sets

Several data sets can be designated as input with one INCLUDE statement
that specifies one ddname; additional data sets are then concatenated to the
data set described on the specified DD statement. When data sets are
concatenated, all of the records must have the same characteristics (i.e.,
format, record length, block size, etc.).

Sequential Data Sets: In the following example, two sequential data sets are
concatenated and then specified as input with one INCLUDE statement:

//CONCAT DD DSNAME=ACCTROUT ,DISP=(OLD,KEEP), ...
DD DSNAME=INVENTRY,DISP=(OLD,KEEP), ...
//SYSLIN DD DSNAME=SALES,DISP=0OLD, ...
// DD *
INCLUDE CONCAT
/*

When the INCLUDE statement is recognized, the contents of the sequential
data sets ACCTROUT and INVENTRY are processed.

Library Members: Members from more than one library can be designated as
input with one ddname on an INCLUDE statement. In this case, all the
members are listed on the INCLUDE statement; the partitioned data sets are
concatenated using the ddname from the INCLUDE statement:

//CONCAT DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), ...
// DD DSNAME=ATTROUTS ,DISP=(OLD,KEEP), ...
//SYSLIN DD DSNAME=REPORT,DISP=0LD, ...

DD *

INCLUDE CONCAT(FICA,TAX,ABSENCE,OVERTIME)
/*
When the INCLUDE statement is recognized, the two libraries PAYROUTS
and ATTROUTS are searched for the four members; the members are then
processed as input.

46 OS/VS Linkage Editor and Loader

OUTPUT FROM THE LINKAGE EDITOR

Output Load Module

Output Module Library

The linkage editor produces two types of output: a load module and
diagnostic information. The principal output of the linkage editor is the output
load module. The linkage editor always places this load module in a
partitioned data set. In addition, the linkage editor issues diagnostic
information. Error and/or warning messages, module disposition data, and
optional diagnostic output are stored in the diagnostic output data set.

The linkage editor produces one or more load modules (see Appendix G)
from the input processed. When more than one load module is produced, the
process is called multiple load module processing.

Whether or not the linkage editor produces one or more load modules, the
following apply:

« The load module is stored in a partitioned data set called the outpur
module library.

¢ The load module must have an entry point; if the programmer has not
assigned one, the linkage editor does.

« The output load module is assigned an authorization code.

» During processing, the linkage editor reserves and collects common areas,
as specified in the source language program.

» During processing, the linkage editor accumulates total length and
individual displacements for each pseudo register (external dummy
section).

« During processing, the linkage editor collects and records identification
data in the CSECT Identification (IDR) records.

o During the processing of a load module, the linkage editor deletes any
private code (unnamed control section) having a length of zero and any
identification data associated with it.

The linkage editor stores every load module it produces in the output module
library. This library is a partitioned data set that must be described by a DD
statement with the name SYSLMOD. The data set name of the library is also
specified on this DD statement. The data set can be either temporary (defined
with a double ampersand), or permanent (defined without a double
ampersand). If the data set name is either SYS1.LINKLIB or SYS1.SVCLIB,
it would be advisable to re-IPL the system after linkage editor processing is
complete. This ensures that the corresponding Data Extent Block (DEB) is
updated to reflect additional extents if secondary allocation of direct-access
space was required.

Whether the data set is permanent or temporary, each module must be
assigned a unique name, called the member name, to distinguish one load
module from another. The output module can be assigned aliases if the
programmer wants the module either identified by more than one name or
entered for execution at several different points. Each member name and alias

Output from the Linkage Editor 47

Member Name

in a load module library must be unique. The library member name and aliases
for each load module appear as separate entries in the library directory, along
with the module attributes. (Some module attributes can be assigned on the
EXEC statement for each linkage editor job step; see ‘“Module Attributes” in
“Job Control Language Summary.”’)

The member name of the output load module may be specified either on the
SYSLMOD DD statement, in a NAME statement, or both. If the member
name is not specified, the default is TEMPNAME. If this default name has
been previously assigned to a load module, using it again will cause a failure.

Assigned on SYSLMOD DD Statement: If the member name is assigned on
the SYSLMOD DD statement, the name is written in parentheses following
the data set name of the library. For example:

//SYSLMOD DD DSNAME=MATHLIB(SQDEV),DISP=(NEW,KEEP),
// UNIT=2314,SPACE=(TRK,(100,10,1)),
// VOLUME=SER=LIB002

The member name SQDEYV is assigned to the load module, which is placed in
the new library named MATHLIB.

Assigned on NAME Control Statement: If the member name is not specified
on the SYSLMOD DD statement, it may be assigned in a NAME control
statement. For example:

//SYSLMOD DD DSNAME=MATHLIB,DISP=(NEW,KEEP), .
//SYSLIN DD DSNAME=§EOBJECT, DISP=(OLD,DELETE)
// DD * '

NAME SQDEV
/*

The member name SQDEYV is assigned to the load module, which is placed in
the library named MATHLIB.

Assigned on Both: If both the SYSLMOD DD statement and the NAME
control statement specify a member name, the names should be identical. If
the names are different, the name on the NAME control statement is used as
the member name. '

Note: If a “link-edit and go”’ sequence of job steps is performed and the
program name in the EXEC statement of the “go’’step contains a backward
reference to the SYSLMOD DD statement in the “link-edit” step, the user
must ensure that the member name specified in the SYSLMOD DD statement
is valid and is not overridden by a NAME control statement. For example:

//LKED EXEC PGM=HEWL
//SYSLMOD DD DSNAME=§ELOADST(GO),DISP=(NEW,
//SYSLIN DD DSNAME=§ §OBJECT ,DISP=(OLD,DELETE)
// DD *

NAME READ
/*

//GO EXEC PGM=%* .LKED.SYSLMOD

The EXEC statement of the GO step specifies that the module to be executed
is described in the LKED step in the SYSLMOD statement. The system tries

48 OS/VS Linkage Editor and Loader

Alias Names

Entry Point

to locate a member named GO; however, the output module was assigned the
name READ.

Replacing an Identically Named Library Member: An output module can
replace an identically named member in the library in either of two ways. The
SYSLMOD DD statement names an existing data set, as follows:

//SYSLMOD DD DSNAME=MATHLIB(SQDEV),DISP=(OLD,
// KEEP), ...

Or, the NAME control statement specifies the replace function, as follows:
NAME SQDEV(R)

In either case, the member named SQDEV is replaced with a new module of
the same name.

An output module can be assigned a maximum of 16 aliases, specified with
the ALIAS control statement. The aliases exist in addition to the member
name of the output module. When a module is referred to by an alias,
execution begins at the external name specified by the alias. If the name
specified by the ALIAS statement is not an external symbol within the
module, the main entry point is used.

For example, an output module is to be assigned two additional entry points,
CODEL1 and CODE2. In addition, due to a misunderstanding, calling modules
have been written and tested using both ROUTONE and ROUT1 to refer to
the output module. Rather than correct the calling modules, an alternate
library member name (alias) is also assigned.

//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
// VOLUME=SER=LIB0O
//SYSLIN DD DSNAME=§ EOBJECT , DISP=(OLD , DELETE)
// DD * P

ALIAS ‘CODE1, CODE2, ROUTONE

NAME ROUT .
/* -

The names CODE1, CODE2, and ROUTONE appear in the library directory
along with ROUT]1, the member name. Because CODE1 and CODE2 are
defined as external symbols within the output module, when these names are
used, execution begins at these points. Control may be passed to the main
entry point by using either the member name ROUT1 or the alias
ROUTONE.

Every load module must have a main entry point. The programmer may
specify the entry point in one of two ways:

e On a linkage editor ENTRY control statement.

« On an Assembler language END statement, which is the last statement in
the source program. The assembler produces an object module and an
END statement for the module. The assembler-produced END statement
contains an entry point only if the source language END statement
contained one.

From its input, the linkage editor selects the entry point for the load module
as follows:

1. From the first ENTRY control statement in the input.

Output from the Linkage Editor 49

Authorization Code

2. If there is no ENTRY control statement in the input, from the first
assembler-procuced END statement that specifies an entry point.

3. If no ENTRY control statement or no assembler-produced END statement
specifies an entry point, the first byte of the first control section of the load
module is used as the entry point.

In general, the entry point should be explicitly specified because it is not
always possible to predict which control section will be first in the output
module.

When a load module is reprocessed by the linkage editor, it has no END
statement. Therefore, if the first byte of the first control section of the load
module is not a suitable entry point, the entry point must be specified in one
of two ways:

« Through an ENTRY control statement.

« Through the assembler-produced END statement of another input module,
which is being processed for the first time. This object module must be the
first such module to be processed by the linkage editor.

Entry points other than the main entry point may be specified with an ALIAS
control statement. The symbol specified on the ALIAS statement must be
defined as an external symbol in the load module. Any reference to that
symbol causes execution of the module to begin at that point instead of the
main entry point. ‘ :

In the following example, assume that CDCHECK, CODE]1, and CODE2 are
defined as external symbols in the output module:

//SYSLIN DD DSNAME=¢€ §OBJECT,DISP=(OLD,DELETE)

// DD *

. ENTRY CDCHECK
ALIAS CODE1,CODE2,ROUTONE
NAME ROUT1

/*

As a result of the preceding control statements, CDCHECK is the main entry
point; CODE1 and CODE?2 are additional entry points. Any reference to
ROUTONE or ROUT1 causes execution to begin at CDCHECK; any
reference to CODE1 and CODE2 causes execution to begin at these points.

Each load module link edited is assigned an authorization code that
determines whether or not the module is allowed to use restricted system
services and resources. A non-zero code allows the module to use restricted
services and resources, and a zero code disallows that usage. The
authorization code becomes part of the directory entry for the module in the
library containing the module.

Reserving Storage in the Output Load Module

In FORTRAN, Assembler language, and PL/1, the programmer can create
control sections that reserve virtual storage areas that contain no data or
instructions. These control sections are called “common” or ‘“‘static external”
areas, and are produced in the object modules by the language translators.
These common areas are used, for example, as communication regions for
different parts of a program or to reserve virtual storage areas for data
supplied at execution time. These common areas are either named or
unnamed (blank).

50 OS/VS Linkage Editor and Loader

Collection of Common Areas: During processing, the linkage editor collects
common areas. That is, if two or more blank common areas are found in the
input, the largest blank common area is used in the output module; all
references to a blank common area refer to the one retained. If two or more
named common areas have the same name, the largest of the identically
named common areas is used in the output module; all references to the
named common areas refer to the one area retained.

Identically Named Common Areas and Control Sections: If a control section (as
is generated from a BLOCK DATA subprogram in FORTRAN, for example)
and a named common area have the same name, the length of the control
section must be greater than or equal to the length of the named common
area. If the control section is smaller in length than the named common area,
a diagnostic message is issued. The control section is regarded as the largest of
the common areas processed with that name. All subsequent control sections
and/or common areas with the same name are ignored.

Processing Pseudo Registers

In PL/I, programmers can use pseudo registers to define storage that will not
be reserved in the load module but can be allocated dynamically during
execution. The external dummy sections generated by Assembler F or
Assembler H correspond to the pseudo registers of PL/L

The linkage editor accumulates the total length of all pseudo registers in the
input and records the displacement of each. If two or more pseudo registers
have the same name, the one with the longest length and the most restrictive
alignment will be retained. All other pseudo registers with the same name will
be ignored; all references to the identically named pseudo registers will refer
to the one retained.

Multiple Load Module Processing

The linkage editor can produce more than one load module in a single job
step. A NAME control statement in the input stream is used as a delimiter for
input to a load module. If additional input modules follow the NAME
statement in the input stream, they are used in the formation of the next load
module.

Each load module that is formed has a unique name and is placed in the same
\ library as a separate member. When processing multiple load modules in a
single job step, the options and attributes specified in the EXEC statement
for that job step apply to all load modules created. If the linkage editor
terminates abnormally during processing of any of the output modules,
neither that module nor any of the modules yet to be processed in the job step
is processed or placed in the library. Load modules processed before
abnormal termination have already been placed in the library.

The SYSLMOD DD statement should not specify a member name when a
NAME control statement is used to specify the name of the first load module.
However, if the SYSLMOD statement does specify a member name, the name
should be identical to that specified in either the first NAME statement or an
ALIAS statement for the first module. In either case, the NAME statement is
regarded as the last item to be processed for the preceding load module.

Output from the Linkage Editor 51

Diagnostic Output

Diagnostic Messages

Module Disposition Messages

In the following example, two load modules are produced in one linkage
editor job step: '

//LKED EXEC PGM=HEWL,PARM='MAP,LIST'
//SYSLMOD DD DSNAME=PAYROLL(OVERTIME) ,DISP=0LD,
// UNIT=2314,VOLUME=SER=LIB002
//MODTWO DD DSNAME= & §OBJECT, DISP=(OLD,DELETE)
//SYSLIN DD DSNAME=§ §OBJECT(A),DISP=(OLD,DELETE)
// DD *

ENTRY INIT

NAME OVERTIME

INCLUDE MODTWO(B)

ENTRY HSKEEP

NAME VACATION
/*

The first load module is produced from the object module in the data set
defined on the SYSLIN DD statement. The main entry point is INIT:and the
member name is OVERTIME.

‘The second load module is produced from the object module specified by the

INCLUDE statement. The main entry point is HSKEEP and the member
name is VACATION.

Both load modules are placed in the library PAYROLL, defined on the
SYSLMOD statement. Note that the member name specified on the
SYSLMOD statement is identical to the name given the first load module.

The parameters on the EXEC card specify that a module map and a control
statement listing is produced for each load module. The map and listing are
discussed in detail in the next section.

Diagnostic information is stored in the diagnostic output data set, which must
be defined by a DD statement with the name SYSPRINT. This output is a
collection of messages generated by the linkage editor, as well as any optional
output requested by the programmer.

The linkage editor generates two types of messages: module disposition
messages and error/warning messages. Descriptions of the error/warning
messages can be found in Linkage Editor and Loader Messages.

Module disposition messages of several types are printed for each load
module produced. The first message indicates the options and attributes
specified for each module. Invalid options or attributes are replaced by
INVALID in the output. Messages are also generated to inform the
programmer that incompatible attributes have been specified.

52 OS/VS Linkage Editor and Loader

Error/Warning Messages

Disposition messages also describe the handling of the load module. These
messages are preceded by several asterisks, and are:

« member name NOW ADDED TO DATA SET.
o member name NOW REPLACED IN DATA SET.

e member name DOES NOT EXIST BUT HAS BEEN ADDED TO THE DATA
SET.

The replacement function was specified, but the member did not exist in
the data set; the module is added to the data set using the member name
given.)

o alias name 1S AN ALIAS FOR THIS MEMBER.
e MODULE HAS BEEN MARKED NOT EXECUTABLE.

In addition, module disposition messages are used when the re-enterable
(RENT), reusable (REUS), and/or refreshable (REFR) linkage editor
options have been specified for the module. When one or more of these
module attributes has been indicated, a message informs the user what
attribute(s) have been assigned to the module. This message indicates
whether the load module has been marked re-enterable or not re-enterable,
reusable or not reusable, refreshable or not refreshable, depending on the
option or options used. (See ‘“Reusablity Attributes” and “Refreshable
Attribute” in the job control language summary section for more information
on these options.)

The message consists of several asterisks and MODULE HAS BEEN MARKED,
followed by the attribute(s) assigned as a result of the linkage editor options
specified. The programmer, of course, is responsible for verifying that the
module actually is re-enterable, reusable, and/or refreshable. The following
messages are examples of some possible combinations:

e MODULE HAS BEEN MARKED REFRESHABLE.

e MODULE HAS BEEN MARKED NOT REFRESHABLE.

e MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.
e MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not executable,
only the MODULE HAS BEEN MARKED NOT EXECUTABLE message appears; no
attribute messages are generated.

Certain conditions that are present when a module is being processed can
cause an error or warning message to be printed. These messages contain a
message code and message text. If an error is encountered during processing,
the message code for that error is printed with the applicable symbol or
record in error. After processing is completed, the diagnostic message

Output from the Linkage Editor 53

associated with that code is printed. The error warning messages have the
following format:

IEWOmms message text

where:

IEWO indicates a linkage editor message

mm is the message number

s is the severity code, and may be one of the following values:

1 Indicates a condition that may cause an error during execution
of the output module. A module map or cross-reference table is
produced if specified by the programmer. The output module is
marked executable.

2 Indicates an error that could make execution of the output

~ module impossible. Processing continues. When possible, a
module map or cross-reference table is produced if specified by
the programmer. The output module is marked not executable
unless the LET option is specified on the EXEC statement.

3 Indicates an error that will make execution of the output
module impossible. Processing continues. When possible, a
module map or cross-reference table is produced if specified by
the programmer. The output module is marked not executable.

4 Indicates an error condition from which no recovery is possible.
Processing terminates. The only output is diagnostic messages.

Note: A special severity code of zero is generated for each control
statement printed as a result of the LIST option. Severity zero
does not indicate an error or warning condition.

The highest severity code encountered during processing is
multiplied by 4 to create a return code that is placed in resister 15
at the end of processing. This return code can be tested to
determine whether or not processing is to continue (see ‘“Job
Control Language Summary”’).

message text contains combinations of the following:
« The message classification (either error or warning).
« Cause of error.

« Identification of the symbol, segment number (when in
overlay), or input item to which the message applies.

« Instructions to the programmer.
« Action taken by the linkage editor.

Optionally, error/warning messages can be sent to a separate output data set,
which is defined by specifying TERM in the PARM field of the EXEC
statement and including a SYSTERM DD statement. This separate
SYSTERM data set consists of only numbered error/warning messages. It
supplements the SYSPRINT output data set, which can also include module
disposition messages and optional diagnostic output. When SYSTERM is
used, the numbered error/warning messages appear in both data sets.

Linkage Editor and Loader Messages contains a complete list of
error/warning messages.

54 OS/VS Linkage Editor and Loader

Sample Diagnostic Output

Optional Output

Control Statement Listing

Module Map

Figure 13 shows the format of the diagnostic output for the linkage editor. No
optional output was requested other than the list of control statements.

The letters indicate the disposition and error/warning messages as follows:

A Is a module disposition message that lists the options and attributes
specified. Additional information is printed indicating the variable and
default options used.

B Is a list of control statements used (IEW0000) and the message codes
(IEW0201 and IEWO0461) for error/warning conditions discovered during
processing. For error/warning message codes, the symbol in error, if
necessary, is also listed (CCCCCCCC and BASEDUMP).

C Is a module disposition message (****) that indicates that the output
module (BBBBBBBB) has been added to the output module data set.

D Is the diagnostic message directory that contains the text of the error codes
listed in item B.

In addition to error/warning and disposition messages, the linkage editor can
produce diagnostic output as requested by the programmer. This optional
output includes a control statement listing, a module map, and a
cross-reference table.

If the LIST option is specified on the EXEC statement, a listing of all linkage
editor control statements is produced. For each control statement, the listing
contains a special message code, IEW0000, followed by the control statement.
Item B in Figure 13 contains an example of a control statement listing.

If the MAP option is specified on the EXEC statement, a module map of the
output load module is produced. The module map shows all control sections in
the output module and all entry names in each control section. Named
common areas are listed as control sections.

For each control section, the module map indicates its origin (relative to zero)
and length in bytes (in hexadecimal notation). For each entry name in each
control section, the module map indicates the location at which the name is
defined. These locations are also relative to zero.

>

B IEW0000
IEW0201
IEWO0461
IEW0461

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LET,NCAL,XREF,OVLY,LIST

DEFAULT OPTION(S) USED - SIZE=(65536,6144)
NAME BBBBBBBB

cceeeece
BASEDUMP

C *+4+BBBBBBBB NOW ADDED TO DATA SET

DIAGNOSTIC MESSAGE DIRECTORY

IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLAY OPTION

CANCELED.

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS

SPECIFIED.

Figure 13. Diagnostic Messages Issued by the Linkage Editor

Output from the Linkage Editor 55

Cross Reference Table

If the module is not in an overlay structure, the control sections are arranged
in ascending order according to their origins. An entry name is listed with the
control section in which it is defined.

If the module is an overlay structure, the control sections are arranged by
segment. The segments are listed as they appear in the overlay structure, top
to bottom, left to right, and region by region. Within each segment, the
control sections and their corresponding entry names are listed in ascending
order according to their assigned origins. The number of the segment in which
they appear is also listed.

In any module map, the following are identified by a dollar sign:
o Blank common area.

o Private code (unnamed control section).

« For overlay programs, the segment table and each entry table.

When the load module processed by the linkage editor does not have an origin
of zero, the linkage editor generates a one-byte private code (unnamed
control section) as the first text record. This private code is deleted in any
subsequent reprocessing of the load module by the linkage editor.

Each control section that is obtained from a call library during automatic
library call is identified by an asterisk after the control section name.

At the end of the module map is the entry address, that is, the relative address
of the main entry point. The entry address is followed by the total length of
the module in bytes; in the case of an overlay module, the length is that of the
longest path. Pseudo registers, if used, also appear at the end of the module
map; the name, length, and displacement of each pseudo register is given.

Figure 14 contains a module map with five control sections. There are two
named control sections (COBSUB snd MAINMOD), one unnamed control
section (designated by $PRIVATE), and two control sections obtained from a
call library (ILBODSPO and ILBOSTPO). In addition, two entry names are
defined, SUB1 in the unnamed control section and ILBOSTP1 in control
section ILBOSTPO. ‘

Note: The HMBLIST service aid program described in the OS/VS Service
Aids publication can also be used to obtain a module map.

If the XREF option is specified on the EXEC statement, a cross-reference
table is produced. The cross-reference table consists of a module map and a
list of cross-references for each control section. Each address constant that
refers to a symbol defined in another control section is listed with its assigned
location, the symbol referred to, and the name of the control section in which

CONTROL SECTION

ENTRY

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
COBSUB 00 33a
$PRIVATE 340 EF
SUB1 340
MAINMOD 430 166
ILBODSPO* 598 5E2
ILBOSTPO* B8O 35
ILBOSTP1 B96
ENTRY ADDRESS 430
TOTAL LENGTH BB8
*REXGO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

Figure 14. Module Map

56 OS/VS Linkage Editor and Loader

the symbol is defined. In cases where control sections are compiled together
and simple address constants are used to refer from one control section to
another (instead of using external symbols and entry names) the control
section name is listed as the symbol referred to.

For overlay programs, this information is provided for each segment; in
addition, the number of the segment in which the symbol is defined is
provided.

If a symbol is unresolved after processing by the linkage editor, it is identified
by SUNRESOLVED in the list. However, if an unresolved symbol is marked

by the never-call function (as specified on a LIBRARY control statement), it
is identified by SNEVER-CALL. If an unresolved symbol is a weak external

reference, it is identified by SUNRESOLVED(W).

Figure 15 contains a cross-reference table for the same program whose
module map is shown in Figure 14. All of the information from the module
map is present, plus a list of cross references for each control section.

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
COBSUB 00 33a
$PRIVATE 340 EF
SUB1 340
MAINMOD 430 166
ILBODSPO* 598 5E2
ILBOSTPO* B8O 35
ILBOSTP1 B96
LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
250 ILBOSTPO ILBOSTPO 254 ILBODSPO ILBODSPO
258 ILBOSTP1 ILBOSTPO 450 SUB1
478 COBSUB COBSUB
ENTRY ADDRESS 430
TOTAL LENGTH BB8

Figure 15. Cross Reference Table

Output from the Linkage Editor 57

MODULE EDITING

The linkage editor performs editing functions either automatically or as
directed by control statements. These editing functions provide for program
modification on a control section basis. That is, they make it possible to
modify a control section within an object or load module, without recompiling
the entire source program.

The editing functions can modify either an entire control section or external
symbols within a control section. Control sections can be deleted, replaced, or
arranged in sequence; external symbols can be deleted or changed. (External
symbols are control section names, entry names, external references, named
common areas, or pseudo registers.)

Whatever function is used, it is requested in reference to an input module.
The resulting output load module reflects the request. That is, no actual
change, deletion, or replacement is made to an input module. The requested
alterations are used to control linkage editor processing (Figure 16).

Editing Conventions
In requesting editing functions, certain conventions should be followed to
ensure that the specified modification is processed correctly. These
conventions concern the following items:
« Entry points for the new module.
« Placement of control statements.
« Identical old and new symbols.
Entry Points: Each time the linkage editor reprocesses a load module, the
entry point for the output module should be specified in one of two ways:
o Through an ENTRY control statement.
Input Modules JCL and Control Statements Output Load Module
MODA1 N
MODA1A2
CSECTA > :
//SYSLMOD DD DSNAME=NEWLIB(MODA1A2),... CSECT1
J //MODATWO DD DSNAME=MODA2, ...
//SYSLIN DD DSNAME=MODAT,...
// DD * CSECTA
MODA2 ENTRY CSECT3
REPLACE CSECTZ2(CSECTA)
CSECT1 INCLUDE MODATWO CSECT3
CSECT2 \
CSECT3
J

Figure 16. Editing a Module

Module Editing 59

« Through the assembler-produced END statement of an input object
module, if one is present. If the entry point specified in the
assembler-produced END statement is not defined in the object module,
the entry name must be defined as an external reference.

The entry point assigned must be defined as an external name within the
resulting load module.

Placement of Control Statements: The control statement (such as CHANGE
or REPLACE) used to specify an editing function must precede either the
module to be modified, or the INCLUDE statement that specifies the module.
If an INCLUDE statement specifies several modules, the CHANGE or
REPLACE statement applies only to the first module included.

Identical Old and New Symbols: The same symbol should not appear as both
an old external symbol and a new external symbol in one linkage editor run. If
a control section is to be replaced by another control section with the same
name, the linkage editor handles this automatically (see ‘ Automatic
Replacement”’).

Changing External Symbols

The linkage editor can be directed to change an external symbol to a new
symbol while processing an input module. External references and address
constants within the module automatically refer to the new symbol. External
references from other modules to a changed external symbol must be changed
with separate control statements.

Both the old and the new symbols are specified on either a CHANGE control
statement or a REPLACE control statement. The use of the old symbol
within the module determines whether the new symbol becomes a control
section name, an entry name, or an external reference. The old symbol
appears first, followed by the new symbol in parentheses.

The CHANGE control statement changes a control section name, an entry
name, or an external reference. The REPLACE statement changes or deletes
an entry name; if the symbols on a REPLACE statement are control section
names, the entire control section is replaced or deleted (see “Replacing
Control Sections”).

The CHANGE statement must immediately precede either the input module
that contains the external symbol to be changed, or the INCLUDE statement
that specifies the input module. The scope of the CHANGE statement is
across the immediately following module (object module or load module).
The END record in the immediately following object module or the
end-of-module indication in the load module terminates the action of the
CHANGE statement. :

In the following example, assume that SUBONE is defined as an external
reference in the input load module. A CHANGE statement is used to change
the external reference to NEWMOD (Figure 17).

//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD *
ENTRY BEGIN
CHANGE SUBONE (NEWMOD)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)
/*

60 OS/VS Linkage Editor and Loader

Input Module

MAINROUT

BEGIN ENTRY
CALL SUBONE

CALL SUBONE

CALL SUBONE

>\\T’-

J

JCL and Control Statements Output Load Module

MAINROUT

MAINEP ENTRY

//SYSLMOD DD DSNAME=PVTLIB, ... CALL NEWMOD
//SYSLIN DD *
ENTRY MAINEP :
CHANGE SUBONE(NEWMOD), BEGIN(MAINEP) | caLL NEWMOD
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)
/*

CALL NEWMOD

Figure 17. Changing an External Reference and an Entry Point

In the load module MAINROUT, every reference to SUBONE is changed to
NEWMOD. Note also that the INCLUDE statement specifies a ddname of
SYSLMOD. This allows a library to be used both as input and as the output
module library.

More than one change can be specified on the same control statement. If, in
the same example, the entry point is also to be changed, the two changes can
be specified at once (Figure 17).

//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD, UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD *
ENTRY MAINEP
CHANGE SUBONE(NEWMOD) , BEGIN(MAINEP)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)
/*

The main entry point is now MAINEP instead of BEGIN. The ENTRY
control statement specifies the new entry point because this is the entry point
that is entered in the library directory entry for the load module.

Replacing Control Sections

An entire control section can be replaced with a new control section. Control
sections can be replaced either automatically or with a REPLACE control
statement. Automatic replacement acts upon all input modules; the
REPLACE statement acts only upon the module that follows it.

Note 1: Any CSECT Identification (IDR) records associated with a particular
control section are also replaced.

Note 2: (For Assembler language programmers only.) When some but not all
control sections of a separately assembled module are to be replaced, A-type
address constants that refer to a deleted symbol will be incorrectly resolved
unless the entry name is at the same displacement from the origin in both the
old and the new control section. If all control sections of a separately
assembled module are replaced, no restrictions apply.

Module Editing 61

Automatic Replacement

Example 1

Example 2

Control sections are automatically replaced if both the old and the new
control section have the same name. The first of the identically named control
sections processed by the linkage editor is made a part of the output module.
All subsequent identically named control sections are ignored; external
references to identically named control sections are resolved with respect to
the first one processed. Therefore, to cause automatic replacement, the new
control section must have the same name as the control section to be
replaced, and must be processed before the old control section.

Caution: Automatic replacement applies to duplicate control section names
only; if duplicate entry points exist in control sections with different names, a
REPLACE control statement must be used to specify the entry point name. If
a control section being automatically replaced contains unresolved external
references and the control section replacing it does not, the parameter NCAL
must be specified or the unresolved external references must be explicitly
deleted using the REPLACE statement or marked for restricted no-call or
never-call using the LIBRARY statement; otherwise, the unresolved external
reference is retained.

Note on Overlay Programs: When identically named control sections appear in
modules being placed in an overlay structure, the second and any subsequent
control sections with that name are ignored. This occurs whether the modules
are in segments in the same path or in exclusive segments. Resolution of
external references may therefore cause invalid exclusive references. Invalid
exclusive references cause the linkage editor to mark the output module not
executable unless the XCAL option is specified on the EXEC statement.

An object module deck contains two control sections, READ and WRITE;
member INOUT of library PVTLIB also contains a control section WRITE.

//SYSLMOD DD DSNAME=PVTLIB,DISP=0OLD,UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD *
Object Deck for READ
Object Deck for WRITE
ENTRY READIN
INCLUDE SYSLMOD(INOUT)
NAME INOUT(R)
/*

The output load module contains the new READ control section, the new
WRITE control section (replacing the old WRITE control section in member
INOUT), and all remaining control sections from INOUT.

A large load module named PAYROLL, originally written in COBOL,
contains many control sections. Two control sections, FICA and
STATETAX, were recompiled and passed to the linkage editor job step in the
& & OBJECT data set. Then, by including the load module PAYROLL, a
member of the partitioned data set LIBOO1, as well as the output of the
language translator, the modified control sections automatically replace the
identically named control sections (Figure 18).

62 OS/VS Linkage Editor and Loader

//SYSILMOD DD DSNAME=LIB0O02(PAYROLL),DISP=0LD,

UNIT=2314,VOLUME=SER=LIB002
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

//OLDLOAD DD DSNAME=LIB001,DISP=(OLD,DELETE),

// UNIT=2314,VOLUME=SER=LIBO0O1

//SYSLIN DD DSNAME=§&0OBJECT,DISP=(0OLD,DELETE)

// DD *
INCLUDE OLDLOAD(PAYROLL)
ENTRY INITI1

/*

The output module contains the modified FICA and STATETAX control
sections and the rest of the control sections from the old PAYROLL module.
The main entry point is INIT1, and the output module is placed in a library
named LIB002. The COBOL automatic call library is used to resolve any
external references that may be unresolved after the SYSLIN data sets are

processed.

Input Modules

&&OBJECT

FICA
(new)

STATETAX
(new)

LIB0O1
(Payroll)

MAINROUT

OVERTIME

FICA
(old)

STATETAX
(old)

FEDTAX

ILLACC

VAKTION

/\:/w

L

JCL and Control Statements

//SYSLMOD DD DSNAME=LIB0O0O2(PAYROLL), ...

//OLDLOAD DD DSNAME=LIBOO1, ...
//SYSLIN DD DSNAME=§ §OBJECT, . ..

// DD *
INCLUDE OLDLOAD(PAYROLL)
ENTRY INIT1

/*

Figure 18. Automatic Replacement of Control Sections

Output Load Module

LIB002
(Payroll)

FICA
(new)

STATETAX
(new)

MAINROUT

OVERTIME

FEDTAX

ILLACC

VAKTION

W/

Module Editing 63

REPLACE Statement

The REPLACE statement is used to replace control sections when the old
and the new control sections have different names. The name of the old
control section appears first, followed by the name of the new control section
in parentheses. The REPLACE statement must immediately precede either
the input module that contains the control section to be replaced, or the
INCLUDE statement that specifies the input module. The scope of the
REPLACE statement is across the immediately following module (object
module or load module). The END record in the immediately following object
module or the End-of-Module indication in the load module terminates the
action of the REPLACE statement.

An external reference to the old control section from within the same input
module is resolved to the new control section. An external reference to the
old control section from any other module becomes an unresolved external
reference unless one of the following occurs:

« The external reference to the old control section is changed to the new
control section with a separate CHANGE control statement.

+ The same entry name appears in the new control section or in some other
control section in the linkage editor input.

In the following example, the REPLACE statement is used to replace one
control section with another of a different name. Assume that the old control
section SEARCH is in library member TBLESRCH, and that the new control
section BINSRCH is in the data set & & OBJECT, which was passed from a
previous step (Figure 19).

//SYSLMOD DD DSNAME=SRCHRTN, DISP=0LD,UNIT=2314,
// VOLUME=SER=SRCHLIB
//SYSLIN DD DSNAME=§ §OBJECT , DISP=(OLD, DELETE)
// DD *

ENTRY READIN

REPLACE SEARCH(BINSRCH)

INCLUDE SYSLMOD(TBLESRCH)

NAME TBLESRCH(R)
/*

The output module contains BINSRCH instead of SEARCH; any references
to SEARCH within the module refer to BINSRCH. Any external references
to SEARCH from other modules will not be resolved to BINSRCH.

64 OS/VS Linkage Editor and Loader

Input Modules

&&OBJECT

BINSRCH

TBLESRCH

READIN ENTRY

CALL SEARCH

SEARCH

\

JCL and Control Statements

Output Load Module

//SYSLMOD DD DSNAME=SRCHRTN, . . .
//SYSLIN DD DSNAME=§EOBJECT, . . . TBLESRCH
// DD *
ENTRY READIN READIN ENTRY
REPLACE SEARCH(BINSRCH)
NAME TBLESRCH(R)
/* CALL BINSRCH

BINSRCH

Figure 19. Replacing a Control Section with the REPLACE Control Statement

Deleting a Control Section or Entry Name

The REPLACE statement can be used to delete a control section or an entry
name. The REPLACE statement must immediately precede either the module
that contains the control section or entry name to be deleted or the
INCLUDE statement that specifies the module. Only one symbol appears on
the REPLACE statement; the appropriate deletion is made depending on how
the symbol is defined in the module.

If the symbol is a control section name, the entire control section is deleted.
The control section name is deleted from the external symbol dictionary only
if no address constants refer to the name from within the same input module.
If an address constant does refer to it, the control section name is changed to
an external record.

The preceding is also true of an entry name to be deleted. Any references to it
from within the input module cause the entry name to be changed to an
external reference.

These editor-supplied external references, unless resolved with other input
modules, cause the automatic library call mechanism to attempt to resolve
them. Also, the deletion of a control section or an entry name may cause
external references from other input modules to be unresolved. Either
condition can cause the output load module to be marked not executable.

If a deleted control section contains an unresolved external reference, the
reference remains.

Module Editing 65

Note: When a control section is deleted, any CSECT Identification data
associated with that control section is also deleted.

In the following example, control section CODER is to be deleted (Figure
20).

//SYSLMOD DD DSNAME=PVTLIB,DISP=0OLD,UNIT=2314,
VOLUME=SER=PVT002

//SYSLIN DD *
ENTRY START
REPLACE CODER
INCLUDE SYSLMOD(CODEROUT)
NAME CODEROUT(R)
/*

The control section CODER is deleted. If no address constants refer to
CODER from other control sections in the module, the control section name
is also deleted. If address constants refer to CODER, the name is retained as
an external reference.

Input Module

CODEROUT

ENCODE

CODER

L__.. NAME CODEROUT(R)
/*

DECODF

Figure 20. Deleting a Control Section

JCL and Control Statements ‘ Output Load Module
: CODEROUT
//SYSLMOD DD DSNAME=PVTLIB, ...
//SYSLIN DD * ENCODE
ENTRY START1

REPLACE CODER
INCLUDE SYSLMOD(CODEROUT)

DECODE

66 OS/VS Linkage Editor and Loader

Ordering Control Sections or Named Common Areas

The sequence of control sections or named common areas in an output load
module can be specified by using the ORDER control statement.

Individual control sections or named common areas are arranged in the output
load module according to the sequence in which they appear on the ORDER
control statement. Multiple ORDER control statements can be used in a job
step. The sequence of the ORDER statements determines the sequence of the
control sections or named common areas in the load module.

Any control sections or named common areas that are not specified on
ORDER statements appear last in the output load module. If a control section
or named common area is changed by a CHANGE or REPLACE control
statement, the new name must be used on the ORDER statement.

In the following example, ORDER statements are used to specify the
sequence of five of the six control sections in an output load module. A
REPLACE statement is used to replace the old control section SESECTA
with the new control section CSECTA from the data set & & OBJECT,
which was passed from a previous step. Assume that the control sections to be
ordered are found in library member MAINROOT (Figure 21).

//SYSLMOD DD DSNAME=PVTLIB,DISP=0LD,
// UNIT=2314,VOLUME=SER=PVT002
//SYSLIN DD DSNAME=§ §OBJECT , DISP=(OLD,DELETE)
// DD *

ORDER MAINEP(P),SEGMT1,SEG2

REPLACE SESECTA(CSECTA)

ORDER CSECTA,CSECTB(P)

INCLUDE SYSLMOD(MAINROOT)

NAME MAINROOT
/*

Module Editing 67

Input Modules

&&OBJECT

CSECTA

MAINROOT

CSECTB

SESECTA

MAINEP

LASTEP

SEGMT1

SEG2

JCL and Control Statements

//

//SYSLMOD
//SYSLIN
//
ORDER
REPLACE
ORDER
INCLUDE
NAME
/*

Figure 21. Ordering Control Sections

PGM=HEWL , PARM="'ALIGN2'

DSNAME=PVTLIB, ...
DSNAME=§ EOBJECT, . ..

*
MAINEP(P),SEGMT1,SEG2
SESECTA(CSECTA)
CSECTA,CSECTB(P)
SYSLMOD(MAINROOT)
MAINROOT

0K

2K

Output Load Module

MAINRCOT

MAINEP

SEGMT1

SEG2

CSECTA

CSECTB

LASTEP

In the load module MAINROOT, the control sections MAINEP, SEGMT1,

SEG2, CSECTA, CSECTB are rearranged in the output load module

according to the sequence specified in the ORDER statements. A REPLACE

statement is used to replace the control section SESECTA with control
section CSECTA from the data set &&OBJECT, which was passed from a
previous step. The ORDER statement refers to the new control section

CSECTA. Control section LASTEP appears after the other control sections

in the oupput load module because it was not included in the ORDER
statement operands.

68 OS/VS Linkage Editor and Loader

Aligning Control Sections or Named Common Areas on

Page Boundaries

A control section or named common area can be placed on a page boundary
by using either the ORDER statement (with the P operand) or the PAGE
statement. Alignment on a page boundary can be used to effect a lower
paging rate and thus make more efficient use of real storage.

The control section or common area to be aligned is named on either the
PAGE statement or the ORDER statement with the P operand. Either the
PAGE statement or the ORDER statement (with the P operand) causes the
linkage editor to locate the starting address of the control section or common
area on a page boundary within the load module.

The default value for the page boundary is 4K. Under VS1, the ALIGN2
attribute must be specified in the PARM field of the EXEC statement to
override the default. Because a module using the 2K page boundary alignment
may suffer performance degradation if it is moved from a VS1 system to a
VS2 system, the 2K page boundary should be used only when virtual storage
is limited.

In the following example, the control sections RAREUSE and MAINRT are
aligned on 2K page boundaries by PAGE and ORDER control statements
used with the ALIGN2 attribute. Control sections CSECTA and SESECT1
are sequenced by the ORDER control statement. Assume that each control
section is 2K in length except for SESECT1 and RAREUSE (Figure 22).

//LKED EXEC PGM=HEWL , PARM="'ALIGN2, . ..
//SYSLMOD DD DSNAME=OWNLIB,DISP=OLD,UNIT=2314,
// VOLUME=SER=0OWN002

//SYSLIN DD’ *

PAGE RAREUSE

ORDER MAINRT(P),CSECTA,SESECT1

INCLUDE SYSLMOD (MAINROOT)

NAME MAINROOT
/%
The linkage editor places the control sections MAINRT and RAREUSE on
2K page boundaries because ALIGN?2 is specified on the EXEC statement.
Control sections MAINRT, CSECTA, and SESECT1 are sequenced as
specified in the ORDER statement. RAREUSE, while placed on a 2K page
boundary, appears after the control sections specified in the ORDER
statement because it was not included. The control section BOTTOM comes
after RAREUSE because it appeared after RAREUSE in the input module.

Module Editing 69

Input Module

MAINROOT

CSECTA

RAREUSE

SESECT1

BOTTOM

MAINRT

JCL and Controls Statements

//LKED EXEC PGM=HEWL, PARM='ALIGN2,..."

.

//SYSLMOD DD DSNAME=OWNLIB, ...
//SYSLIN DD *
PAGE RAREUSE
ORDER MAINRT(P),CSECTA,SESECT1
INCLUDE SYSLMOD(MAINROOT)
NAME MAINROOT

/*

Figure 22. Aligning Control Sections on Page Boundaries

0K,

2K]

4K

6K

Output Load Module

MAINROOT

MAINRT

CSECTA

SESECT1

RAREUSE

BOTTOM

70 OS/VS Linkage Editor and Loader

OVERLAY PROGRAMS

Ordinarily, when a load module produced by the linkage editor is executed, all
of the control sections of the module remain in virtual storage throughout
execution. The length of the load module is, therefore, the sum of the lengths
of all of the control sections. When storage space is not at a premium, this is
the most efficient way to execute a program. However, if a program
approaches the limits of the virtual storage available, the programmer should
consider using the overlay facilities of the linkage editor.

In most cases, all that is needed to convert an ordinary program to an overlay
program is the addition of control statements to structure the module. The
programmer chooses the overlayable portions of the program, and the system
arranges to load the required portions when needed during execution of the
program.

When the linkage editor overlay facility is requested, the load module is
structured so that, at execution time, certain control sections are loaded only
when referenced. When a reference is made from an executing control section
to another, the system determines whether or not the code required is already
in virtual storage. If it is not, the code is loaded dynamically and may overlay
an unneeded part of the module already in storage.

The rest of this chapter is divided into three sections that describe the design,
specification, and special considerations for overlay programs.

Design of an Overlay Program

The way in which an overlay module is structured depends on the
relationships among the control sections within the module. Two control
sections that do not have to be in storage at the same time can overlay each
other. Such control sections are independent; that is, they do not reference
each other either directly or indirectly. Independent control sections can be
assigned the same load addresses and are loaded only when referenced. For
example, control sections that handle error conditions or unusual data may be
used infrequently, and need not be occupying storage unless in use.

Control sections are grouped into segments. A segment is the smallest
functional unit (one or more control sections) that can be loaded as one
logical entity during execution. The control sections required all of the time
are grouped into a special segment called the root segment. This segment
remains in storage throughout execution of an overlay program.

When a particular segment is to be executed, any segments between it and the
root segment must also be in storage. This is a path. A reference from one
segment to another segment lower in a path is a downward reference. That is,
the segment contains a reference to another segment farther from the root
segment. Conversely, a reference from one segment to another segment
higher in a path (closer to the root segment) is an upward reference.

Therefore, a downward reference may cause overlay because the necessary
segment may not yet be in virtual storage. An upward reference will not cause
overlay because all segments between a segment and the root segment must
be present in storage.

Sometimes several paths need the same control sections. This problem may be
solved by placing the control sections in another region. In an overlay

Overlay Programs 71

structure, a region is a contiguous area of virtual storage within which
segments can be loaded independently of paths in other regions. An overlay
program can be designed in single or multiple regions.

Single Region Overlay Program

Control Section Dependency

To design an overlay structure, the programmer should select those control
sections that will receive control at the beginning of execution, plus those that
should always remain in storage; these control sections form the root
segment. The rest of the structure is developed by determining the
dependencies of the remaining control sections and how they can use the
same virtual storage locations at different times during execution.

Besides control section dependency, other topics discussed in this section are
segment dependency, the length of the overlay program, segment origin,
communication between segments, and overlay processing.

Control section dependency is determined by the requirements of a control
section for a given routine in another control section. A control section is
dependent upon any control section from which it receives control, or which
processes its data. For example, if control section C receives control from
control section B, then C is dependent upon B. That is, both control sections
must be in storage before execution can continue beyond a given point in the

program.

A program contains seven control sections, CSA through CSG, and exceeds
the amount of storage available for its execution. Before the program is
rewritten, it is examined to see whether or not it could be placed into an
overlay structure. Figure 23 shows the groups of dependent control sections
in the program (the arrows indicate dependencies).

Each dependent group is also a path. That is, if control section CSG is to be
executed, CSB and CSA must also be in storage. Because CSA and CSB are
in each path, they must be in the root segment. Control section CSC is in two
groups, and therefore is a common segment in two different paths.

A better way to show the relationship between segments is with a tree
structure. A tree is the graphic representation that shows how segments can
use virtual storage at different times. It does not imply the order of execution,
although the root segment is the first to receive control. Figure 24 shows the
tree structure for the dependent groups shown in Figure 23. The structure is
contained in one region, and has five segments.

72 OS/VS Linkage Editor and Loader

CSA CSA CSA
A A A
CSB CSB CSB
A A A
CSC CSC CSG
A A
Dependent
Group 3
CSD CSF
A
Dependent
Group 2
CSE
Dependent
Group 1

Figure 23. Control Section Dependencies

Overlay Programs 73

T
CSA
4 > Root Segment 1
CSB
J
) \
csc }Segment 2 CSG > Segment 5
< 1)

T r Segment 3 CSF } Segment 4

Figure 24. Single-Region Overlay Tree Structure

Segment Dependency

When a segment is in virtual storage, all segments in its path are also in virtual
storage. Each time a segment is loaded, all segments in its path are loaded if
they are not already in virtual storage. In Figure 24 when segment 3 is in
virtual storage, segments 1 and 2 are also in virtual storage. However, if
segment 2 is in storage, this does not imply that segment 3 or 4 is in virtual
storage since neither segment is in the path of segment 2.

The position of the segments in an overlay tree structure does not imply the
sequence in which the segments are executed. A segment can be loaded and
overlaid as many times as required by the logic of the program. However, a
segment will not be overlaid by itself. If a segment is modified during
execution, that modification remains only until the segment is overlaid.

74 OS/VS Linkage Editor and Loader

Length of an Overlay Program

For purposes of illustration, assume that the control sections in the sample
program have the following lengths:

Control Section Length (in bytes)

CSA 3,000
CSB 2,000
CsC 6,000
CSD 4,000
CSE 3,000
CSF 6,000
CSG 8,000

If the program were not in overlay, it would require 32,000 bytes of virtual
storage. In overlay, however, the program requires the amount of storage
needed for the longest path. In this structure, the longest path is formed by
segments 1, 2, and 3, since, when they are all in storage, they require 18,000
bytes, as shown in Figure 25.

Note, however, that the length of the longest path is not the minimum
requirement for an overlay program; when a program is in overlay, certain
tables are used, and their storage requirements must also be considered. The
storage required by these tables is given in the section ‘“Special
Considerations.”

T)
CSA
3,000
bytes
Root Segment 1
—I— ? 5,000 bytes
CSB
2,000
bytes
| | J .
CSC
Segment 2
2’000 6,000 bytes gsogo Segment 5
ytes ’ 8,000 bytes
bytes
) B

csb - 7

4,000 ESO}Z)O Segment 4

byte ’

ytes bytes 6,000 bytes
Segment 3 _I-
?' 7,000 bytes

CSE

3,000

bytes

1)

Figure 25. Length of an Overlay Module

Overlay Programs 75

Segment ' Origin

The linkage editor assigns the relocatable origin of the root segment (the
origin of the program) at 0. The relative origin of each segment is determined
by 0 plus the length of all segments in the path. For example, the origin of
segments 3 and 4 is equal to 0 plus 6,000 (the length of segment 2) plus
5,000 (the length of the root segment), or 11,000. The origins of all the
segments are as follows:

Segment Origin
1 0
2 5,000
3 11,000
4 11,000
5 5,000

The segment origin is also called the load point, because it is the relative
location at which the segment is loaded.

Figure 26 shows the segment origin for each segment and the way storage is
used by the sample program. In the illustration, the vertical bars indicate
segment origin; any two segments with the same origin may use the same
storage area. Figure 25 also shows that the longest path is that of segments 1,
2, and 3.

Communication Between Segments

Segments that can be in virtual storage simultaneously are considered to be
inclusive. Segments in the same region but not in the same path are considered
to be exclusive; they cannot be in virtual storage simultaneously. Figure 27
shows the inclusive and exclusive segments in the sample program.

Segments upon which two or more exclusive segments are dependent are
called common segments. A segment common to two other segments is part of
the path of each segment. In Figure 27 segment 2 is common to segments 3
and 4, but not to segment 5.

Root Segment 1
5,000 bytes

Segment 5
8,000 bytes
Segment 2
6,000 bytes
Segment 4
6,000 bytes
Segment 3
7,000 bytes

Relative Storage Location (in 1,000 byte increments)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

)

Figure 26. Segment Origin and Use of Storage

76 OS/VS Linkage Editor and Loader

-

Root
Segment 1

Segment 2
I Segment 5

| Inclusive Segments

Segment 4 1,2,and 3

1;2,and 4
Segment 3 J_ land §

Exclusive Segments

2and 5
3and 4
3and 5
4and 5

Figure 27. Inclusive and Exclusive Segments

An inclusive reference is a reference between inclusive segments; that is, a
reference from a segment in storage to an external symbol in a segment that
will not cause overlay of the calling segment. An exclusive reference is a
reference between exclusive segments; that is, a reference from a segment in
storage to an external symbol in a segment that will cause overlay of the
calling segment.

Figure 28 shows the difference between an inclusive reference and an
exclusive reference; the arrows indicate references between segments.

Inclusive References: Wherever possible, inclusive references should be used
instead of exclusive references. Inclusive references between segments are
always valid and do not require special options. When inclusive references are
used, there is also less chance for error in structuring the overlay program
correctly.

Exclusive References: An exclusive reference is made when the external
reference in the requesting segment is to a symbol defined in a segment not in
the path of the requesting segment. Exclusive references are either valid or
invalid.

An exclusive reference is valid only if there is also a reference to the

requested control section in a segment common to both the segment to be
loaded and the segment to be overlaid. The same symbol must be used in both
the common segment and the exclusive reference. In Figure 28, a reference
from segment B to segment A is valid, because there is an inclusive reference
from the common segment to segment A. (An entry table in the common
segment contains the address of segment A; the overlay does not destroy this
table.)

In the same illustration, a reference from segment A to segment B is invalid
because there is no reference from the common segment to segment B. A
reference from segment A to segment B can be made valid by including, in
the common segment, an external reference to the symbol used in the
exclusive reference to segment B.

Overlay Programs 77

Inclusive
Reference

Common Segment

Segment B
Segment A

R Exclusive —1
Reference

Figure 28. Inclusive and Exclusive References

Another way to eliminate exclusive references is to arrange the program so
that the references that will cause overlay are made in a higher segment. For
example, the programmer could eliminate the exclusive reference shown in
Figure 28 by writing a new module to be placed in the common segment; the
new module’s only function would be to reference segment B. He would then
change the code in segment A to refer to the new module instead of to
segment B. Control then would pass from segment A to the common segment,
where the overlay of segment A by segment B would be initiated.

If either valid or invalid exclusive references appear in the program, the
linkage editor considers them errors unless one of the special options is used.
These options are described later in this section.

Notes:

« During the execution of a program written in a higher level language such
as FORTRAN, COBOL, or PL/I, an exclusive call results in abnormal
termination of the program if the requested segment attempts to return
control directly to the invoking segment that has been overlaid.

o If a program written in COBOL includes a segment that contains a
reference to a COBOL class test or TRANSFORM table, the segment
containing the table must be either (1) in the root segment or (2) a
segment that is higher in the same path than the segment containing the
reference to the table.

Overlay Process

The overlay process is initiated during execution of a program only if a
control section in virtual storage references a control section not in storage.
The control program determines the segment that the referenced control
section is in and, if necessary, loads the segment. When a segment is loaded, it
overlays any segment in storage with the same relative origin. Any segments
in storage that are lower in the path of the overlaid segment may also be
overlaid. An exclusive reference can also cause segments higher in the path to
be overlaid. If a control section in storage references a control section in
another segment already in storage, no overlay occurs.

78 OS/VS Linkage Editor and Loader

The portion of the control program that determines when overlay is to occur
is the overlay supervisor, which uses special tables to determine when overlay
is necessary. These tables are generated by the linkage editor, and are part of
the output load module. The special tables are the segment table and the entry
table(s). Figure 29 shows the location of the segment and entry tables in the
sample program.

Because the tables are present in every overlay module, their size must be
considered when planning the use of virtual storage. The storage reguirements
for the tables are given in ‘“‘Special Considerations.” A more detailed
discussion of the segment and entry tables follows.

Segment Table: Each overlay program contains one segment table
(SEGTAB); this table is the first control section in the root segment. The
segment table contains information about the relationship of the segments
and regions in the program. During execution, the table also indicates which
segments are either in storage or being loaded, and other control information.

Entry Table: Each segment that is not the last segment in a path may contain
one entry table (ENTAB); this table, when present, is the last control section
in a segment.

When overlay will be required, an entry in the table is created for a symbol to
which control is to be passed, provided (1) the symbol is used as an external
reference in the requesting segment, and (2) the symbol is defined in another
segment either lower in the path of the requesting segment, or in another
region. An ENTAB entry is not created for any symbol already present in an

\
SEGTAB
CSA
>Root Segment 1
(i;'B
ENTAB J
| | “
CSC
Segment 2 CSG >Segment 5
ENTAB
' < l 4
CSD CSF Segment 4
?Segment 3 _l_

Figure 29. Location of Segment and Entry Tables in an Overlay Module

Overlay Programs 79

entry table closer to the root segment (higher in the path), or for a symbol
defined higher in the path. (A reference to a symbol higher in the path does
not have to go through the control program because no overlay is required.)

If an external reference and the symbol to which it refers are in segments not
in the same path but in the same region, an exclusive reference was made. If
the exclusive reference is valid, an ENTAB entry for the symbol is present in
the common segment. Since the common segment is higher in the path of the
requesting segment, no ENTAB entry is created in the requesting segment.
When the reference is executed, control passes through the ENTAB entry in
the common segment. That is, a branch to the location in the ENTAB causes
the overlay supervisor to be called to load the needed segment or segments.

If the exclusive reference is invalid, no ENTAB entry is present in the
common segment. If the LET option is specified, an invalid exclusive
reference causes unpredictable results when the program is executed. Since no
ENTAB-entry exists, control is passed directly to the relative address
specified in the reference, even though the requested segment may not be in
virtual storage.

Multiple Region Overlay Program

If a control section is used by several segments, it is usually desirable to place
that control section in the root segment. However, the root segment can get
so large that the benefits of overlay are lost. If some of the control sections in
the root segment could overlay each other (except for the requirement that all
segments in a path must be in storage at the same time), the job may be a
candidate for multiple region structure. Multiple region structures can also be
used to increase segment loading efficiency: processing can continue in one
region while the next path to be executed is being loaded into another region.

With multiple regions, a segment has access to segments that are not in its
path. Within each region, the rules for single region overlay programs apply,
but the regions are independent of each other. A maximum of four regions
can be used.

Figure 30 shows the relationship between the control sections in the sample
program and two new control sections, CSH and CSI. The two new control
sections are each used by two other control sections in different paths.
Placing CSH and CSI in the root segment makes the segment larger than
necessary because CSH and CSI can overlay each other. The two control
sections should not be duplicated in two paths because the linkage editor
automatically deletes the second pair and an invalid exclusive reference may
then result.

If however, the two control sections are placed in another region, they can be
in virtual storage when needed, regardless of the path being executed in the
first region. Figure 31 shows all of the control sections in a two-region
structure. Either path in region 2 can be in virtual storage regardless of the
path being executed in region 1; segments in region 2 can cause segments in
region 1 to be loaded without being overlaid themselves.

The relative origin of a second region is determined by the length of the
longest path in the first region (18,000 bytes). Region 2, therefore, begins at
0 plus 18,000 bytes. The relative origin of a third region would be determined
by the length of the longest path in the first region plus the longest path in the
second region.

80 OS/VS Linkage Editor and Loader

Figure 30. Control Sections Used by Several Paths

The virtual storage required for the program is determined by adding the
lengths of the longest path in each region. In Figure 31, if CSH is 4,000 bytes
and CSI is 3,000 bytes, the storage required is 22,000 bytes, plus the storage
required by the special overlay tables. Care should be exercised when
choosing multiple regions. There may be some system degradation due to the
overlay supervisor being unable to optimize segment loading when multiple
regions are used.

Overlay Programs 81

REGION 1

CSA

+ Root Segment 1

SB
|

@]

CSG > Segment 5

CSC pSegment 2
CSD
+ Segment 3
CSE

REGION 2

CSF »Segment 4 1/

-"“-L““_"T B R

CSI Segment 7
CSH Segment 6

Figure 31. Overlay Tree for Multiple-Region Program

Specification of an Overlay Program

Once the programmer has designed an overlay structure, he must place the
module in that structure by indicating to the linkage editor the relative
positions of the segments and regions, and the control sections in each
segment. Positioning is accomplished as follows:

Segments are positioned by OVERLAY statements. Since segments are
not named, the programmer identifies a segment by giving its origin (or
load point) a symbolic name and then uses that name in an OVERLAY
statement to specify a symbolic origin. Each OVERLAY statement begins
a new segment.

Regions are also positioned by OVERLAY statements. The programmer
specifies the origin of the first segment of the region, followed by the word
REGION in parentheses.

Control sections are positioned in the segment specified by the
OVERLAY statement with which they are associated in the input
sequence. However, the sequence of the control sections within a segment
is not necessarily the order in which the control sections are specified.

The input sequence of control statements and control sections should reflect
the sequence of the segments in the overlay structure from top to bottom, left
to right, and region by region. This sequence is illustrated in later examples.

82 OS/VS Linkage Editor and Loader

Segment Origin

In addition, several special options are used with overlay programs. These
options are specified on the EXEC statement for the linkage editor job step,
and are described at the end of this section.

Note: If a load module in overlay structure is to be reprocessed by the linkage
editor, the OVERLAY statements and special options (such as OVLY) must
be respecified. If the statements and options are not provided, the output load
module will not be in overlay structure.

The symbolic origin of every segment, other than the root segment, must be
specified with an OVERLAY statement. The first time a symbolic origin is
specified, a load point is created at the end of the previous segment. That load
point is logically assigned a relative address at the doubleword boundary that
follows the last byte in the preceding segment. Subsequent use of the same
symbolic origin indicates that the next segment is to have its origin at the
same load point.

In the sample single-region program, the symbolic origin names ONE and
TWO are assigned to the two necessary load points, as shown in Figure 31.
Segments 2 and 5 are at load point ONE, segments 3 and 4 are at load point
TWO.

The following sequence of OVERLAY statements will result in the structure
in Figure 32 (the control sections in each segment are indicated by name):

Control section CSA
Control section CSB
OVERLAY ONE
Control section CSC
OVERLAY TWO
Control section CSD
Control section CSE
OVERLAY TWO
Control section CSF
OVERLAY ONE
Control section CSG

Note that the sequence of OVERLAY statements reflects the order of
segments in the structure from top to bottom and left to right.

Overlay Programs 83

Root Segment 1

ONE

Segment 2

Segment 5§

TWO

Segment 3 Segment 4

A

Figure 32. Symbolic Segment Origin in Single-Region Program

Region Origin

The symbolic origin of every region, other than the first, must be specified
with an OVERLAY statement. Once a new region is specified, a segment
origin from a previous region should not be specified.

In the sample multiple-region program, the symbolic origin THREE is
assigned to region 2, as shown in Figure 33. Segments 6 and 7 are at load
point THREE.

If the following is added to the sequence for the single-region program, the
multiple-region structure will be produced:

.

.

OVERLAY THREE(REGION)
Control section CSH

OVERLAY THREE

Control section CSI

84 0OS/VS Linkage Editor and Loader

REGION 1

:

Root Segment 1

ONE
Segment 2
Segment 5
TWO]
1
Segment 4
Segment 3 -|_
NS GEED GINED GEED GENED GEEND GWED CGHNND NS G NS G WSS GERED GENED IS GENED CERNN G NN GEED IR GENR GRS GRS GRS S
REGION 2 -l- THREE
Segment 7
Segment 6

1

Figure 33. Symbolic Segment and Region Origin in Multiple-Region Program

Positioning Control Sections

Using Object Decks

After each OVERLAY statement, the control sections for that segment must
be specified. The control sections for a segment can be specified in one of
three ways:

« By placing the object decks for each segment after the appropriate
OVERLAY statement.

« By using INCLUDE control statements for the modules containing the
control sections for the segment.

« By using INSERT control statements to reposition a control section from
its position in the input stream to a particular segment.

Any control sections that precede the first OVERLAY statement are placed
in the root segment; they can be repositioned with an INSERT statement.
Control sections from the automatic call library are also placed in the root
segment. The INSERT statement can be used to place these control sections
in another specific segment. Common areas in an overlay program are
described in “Special Considerations.”

An example of each of the three methods of positioning control sections
follows. Each example results in the structure for the single-region sample
program. An example is also given of repositioning control sections from the
automatic call library.

The primary input data set for this example contains an ENTRY statement
and seven object decks, separated by OVERLAY statements:

Overlay Programs 85

Using INCLUDE Statements

Using INSERT Statements

//LKED EXEC PGM=HEWL,PARM='OVLY'

.
.

//SYSLIN DD *
ENTRY BEGIN
Object deck for CSA
Object deck for CSB
OVERLAY ONE
Object deck for CSC
OVERLAY TWO
Object deck for CSD
Object deck for CSE
OVERLAY TWO
Object deck for CSF
OVERLAY ONE
Object deck for CSG
/ *

The EXEC statement illustrates that the OVLY parameter must be specified
for every overlay program to be processed by the linkage editor.

The primary input data set for this example contains a series of control
statements. The INCLUDE statements in the primary input data set direct the
linkage editor to library members that contain the control sections of the
program.

//LKED EXEC PGM=HEWL,PARM='OVLY'
//MODLIB DD DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
//SYSLIN DD *

ENTRY BEGIN

INCLUDE MODLIB(CSA,CSB)

OVERLAY ONE

INCLUDE MODLIB(CSC)

OVERLAY TWO

INCLUDE MODLIB(CSD,CSE)

OVERLAY TWO

INCLUDE MODLIB(CSF)

OVERLAY ONE

INCLUDE MODLIB(CSG)
/*
This example differs from the previous one in that the control sections of the
program are not part of the primary input data set, but are represented in the
primary input by the INCLUDE statements. When an INCLUDE statement
is processed, the appropriate control section is retrieved from the library and
processed.

When INSERT statements are used, the INSERT and OVERLAY statements
may either follow or precede all the input modules. However, the order of the
control sections in a segment is not necessarily the same as the order of the
INSERT statements for each segment. An example of each is given, as well as
an example of repositioning automatically called control sections.

86 OS/VS Linkage Editor and Loader

Following All Input: The control statements can follow all the input modules,
as shown in the following example:

//LKED EXEC PGM=HEWL,PARM="'OVLY"'
//SYSLIN DD DSNAME=OBJECT,DISP=(OLD,KEEP), . .
// DD *

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
/*

The primary input data set contains the object modules for the control
sections, and the input stream is concatenated to it.

Preceding All Input: The control statements can also precede all input
modules, as shown in the following example:

//LKED EXEC PGM=HEWL,PARM='OVLY'
//MODULES DD DSNAME=OBJSEQ, DISP=(OLD,KEEP), .
//SYSLIN DD *

ENTRY -BEGIN

INSERT CSA,CSB

OVERLAY ONE

INSERT CSC

OVERLAY TWO

INSERT CSD,CSE

OVERLAY TWO

INSERT CSF

OVERLAY ONE

INSERT CSG

INCLUDE MODULES
/*
The primary input data set contains all of the control statements for the
overlay structure and an INCLUDE statement. The data set specified by the
INCLUDE statement contains all of the object modules for the structure, and

is a sequential data set.

Repositioning Automatically Called Control Sections: The INSERT statement
can also be used to move automatically called control sections from the root
segment to the desired segment. This is helpful when control sections from
the automatic call library are used in only one segment. By moving such
control sections, the root segment will contain only those control sections
used by more than one segment.

When a program is written in a higher level language, special control sections
are called from the automatic call library. Assume that the sample program is
written in COBOL and that two control sections ILBOVTRO and
ILBOSCHO) are called automatically from SYS1.COBLIB. Ordinarily, these
control sections are placed in the root segment. However, INSERT statements
are used in the following example to place these control sections in segments
other than the root segment.

Overlay Programs 87

Special Options

OVLY Option

LET Option

//LKED EXEC PGM=HEWL, PARM='OVLY'

//MODLIB DD DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//SYSLIN DD *

ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)
OVERLAY TWO
INCLUDE MODLIB(CSD,CSE)
INSERT ILBOVTRO
OVERLAY TWO
INCLUDE MODLIB(CSF)
INSERT ILBOSCHO
OVERLAY ONE
INCLUDE MODLIB(CSG)
/*
As a result, segments 3 and 4 will also contain ILBOVTRO and ILBOSCHO,
respectively.

This example also combines two of the ways of specifying the control sections
for a segment.

The linkage editor provides three special job step options for the overlay
programmer. These options are specified on the EXEC statement for the
linkage editor job step. They must be specified each time a load module in
overlay structure is reprocessed by the linkage editor. The three options are
OVLY, LET, and XCAL.

The OVLY option must be specified for every overlay program. If the option
is omitted, all the OVERLAY and INSERT statements are considered invalid.
The output module is marked not executable unless the LET option is
specified. The output module is not in an overlay structure.

With the LET option, the output module is marked executable even though
certain error conditions were found during linkage editor processing. When
LET is specified, any exclusive reference (valid or invalid) is accepted. At
execution time, a valid exclusive reference is executed correctly; an invalid
exclusive reference usually causes unpredictable results.

Also with the LET option, unresolved external references do not prevent the
module from being marked executable. This could be helpful when part of a
large program is ready for testing; the segments to be tested may contain
references to segments not yet coded. If LET is specified, the program can be
executed to test those parts that are finished (as long as the references to the
absent segments are not executed). If the LET option is not specified, these
unresolved references will cause the module to be marked not executable.

88 OS/VS Linkage Editor and Loader

XCAL Option

Special Considerations

Common Areas

With the XCAL option, a valid exclusive call is not considered an error, and
the load module is marked executable. However, other errors could cause the
module to be marked not executable, unless the LET option is specified; in
this case, the XCAL option is not required.)

This section discusses several special considerations that affect overlay
programs. These considerations include the handling of common areas, special
storage requirements, and overlay communication.

When common areas (blank or named) are encountered in an overlay
program, the common areas are collected as described previously (i.e., the
largest blank or identically named common area is used). The final location of
the common area in the output module depends on whether INSERT
statements were used to structure the program.

If INSERT statements are used to structure the overlay program, a named
common area should either be part of the input stream in the segment to
which it belongs, or should be placed there with an INSERT statement.

Because INSERT statements cannot be used for blank common areas, a blank
common area should always be part of the input stream in the segment to
which it belongs.

If INSERT statements are not used, and the control sections for each segment
are placed or included between OVERLAY statements, the linkage editor
“promotes” the common area automatically. That is, the common area is
placed in the common segment of the paths that contain references to it so
that the common area is in storage when needed. The position of the
promoted area in relation to other control sections within the common
segment is unpredictable.

If a common area is encountered in a module from the automatic call library,
automatic promotion places the common area in the root segment. In the case
of a named common area, this may be overridden by use of the INSERT
statement.

Assume that the sample program is written in FORTRAN and that common
areas are present as shown in Figure 34. Further assume that the overlay
program is structured with INCLUDE statements between the OVERLAY
statements so that automatic promotion occurs.

Segments 2 and 5 contain blank common areas, segments 3 and 4 contain
named common area A, and segments 4 and 5 contain named common area
B. During linkage editor processing, the blank common areas are collected
and the largest area is promoted to the root segment (the first common
segment in the two paths); the common areas named A are collected and the
largest area is promoted to segment 2; the common areas named B are
collected and promoted to the root segment. Figure 35 shows the location of
the common areas after processing by the linkage editor.

Overlay Programs 89

CSA
+ Root Segment 1

N
Blank Common
> Segment 2
CsC
l J
SN
Named Common A Named Common A
+ —+
CSD
-+ $ Segment 3 CSF
CSE
Named Common B
4 J

Figure 34. Common Areas before Processing

\

LSegment 4

/

Blank Common

CSG

I

Named Common B

& Segment §

J

90 OS/VS Linkage Editor and Loader

Named Common A A/

T

CSA

+

CSB

i ? Root Segment 1

Blank Common

Named Common B

J

} Segment 2 CSG }Segment 5

J

|

CSD

<|. ?Segment 3

CSE

l /

CSF Segment 4

Figure 35. Common Areas after Processing

Storage Requirements

The virtual storage requirements for an overlay program include the items
placed in the module by the linkage editor and the overlay supervisor
necessary for execution.

Items in the Load Module: The items that the linkage editor places in an
overlay load module are the segment table, entry tables, and other control
information. Their size must be included in the minimum requirements for an
overlay program, along with the storage required by the longest path and any
control sections from the automatic call library.

Every overlay program has one segment table in the root segment. The
storage requirements are:

SEGTAB = 4n + 24
where. '
n = the number of segments in the program

Some segments will have an entry table. The requirements of the entry tables
in the segments in the longest path must be added to the storage requirements
for the program. The requirements for an entry table are:

ENTAB = 12(x + 1)
where:

X = the number of entries in the table

Overlay Programs 91

Finally, a NOTE list is required to execute an overlay program. The storage
requirements are:

NOTELST = 4n + 8
where:
n = the number of segments in the program

Overlay Supervisor: To the minimum requirements of the load module itself
must be added the requirements of the overlay supervisor. This system routine
is not placed in an overlay module, but, during execution of the module, the
supervisor may be called to initiate an overlay. If called, the storage allocated
for the program must be large enough for the supervisor also.

Three overlay supervisor modules are furnished with the system: the basic,
advanced, and asychronous modules. The basic module does does not test
whether a request for overlay is valid; the other two do. Neither. the basic nor
advanced modules permit overlay through the SEGLD macro instruction (see
“Overlay Communication”); the asynchronous module does. When the
SEGLD macro instruction is used with the basic and advanced modules, it is
ignored. The storage requirements for the overlay supervisor modules are:

Module Storage Requirements (in bytes)
Basic (used with VS1) 436
Advanced (used with VS1) 512
Asynchronous (used with VS2) 992

Overlay Communication

Several ways of communicating between segments of an overlay program are
discussed in this section. A higher level or Assembler language program may
use a CALL statement or CALL macro instruction, respectively, to cause
control to be passed to a symbol defined in another segment. The CALL may
cause the segment to be loaded if it is not already present in storage. An
Assembler language program may also use three additional ways to
communicate between segments:

« By a branch instruction, which causes a segment to be loaded and control
to be passed to a symbol defined in that segment.

« By a segment load (SEGLD) macro instruction (VS2 only), which requests
loading of a segment. Processing continues in the requesting segment while
the requested segment is being loaded.

¢ By a segment load and wait (SEGWT) macro instruction, which requests
loading of a segment. Processing continues in the requesting segment only
after the requested segment is loaded.

Any of the four methods may be used to make inclusive references. Only the
CALL and branch may be used to make exclusive references. Neither the
SEGLD nor SEGWT macro isntruction should be used to make exclusive
references; since both imply that processing is to continue in the requesting
segment, an exclusive reference leads to erroneous results when the program
is executed.

92 OS/VS Linkage Editor and Loader

CALL Statement or CALL Macro Instruction

Branch Instruction

A CALL statement or CALL macro instruction refers to an external name in
the segment to which control is to be passed. The external name must be
defined as an external reference in the requesting segment. In Assembler
language, the name must be defined as a four-byte V-type address constant;
the high-order byte is reserved for use by the control program, and must not
be altered during execution of the program.

When a CALL is used, the requested segment and any segments in its path
are loaded if they are not part of the path already in virtual storage. After the
segment is loaded, control is passed to the requested segment at the location
specified by the external name.

A CALL between inclusive segments is always valid. A return can be made to
the requesting segment by another source language statement, such as
RETURN. A CALL between exclusive segments is valid if the conditions for
a valid exclusive reference are met; a return from the requested segment can
be made only by another exclusive reference, because the requesting segment
has been overlaid.

Any of the branching conventions shown in Figure 36 can be used to request
loading and branching to a segment. As a result, the requested segment and
any segments in its path are loaded if they are not part of the path already in
virtual storage. Control is then passed to the requested segment at the
location specified by the address constant placed in general register 15.

Example Name! Operation Operand?3

1 L R15,=V(name)
BALR Rn,R15

2 L R15,ADCON
BALR Rn,R15

ADCON DC V(name)

3 L R15,=V(name)
BAL Rn,0(0,R15)4

4 L R15,=V(name)
BAL Rn,0(R15)5

56 L R15,=V(name)
BCR 15,R15

66 L R15,=V(name)
BC 15,0(0,R15)4

76 L R15,=V(name)
BC 15,0(R15)5

1 When the name field is blank, specification of a name is optional.

2 R15 is the register into which is loaded a 4-byte address constant that is an entry name or a control
section name in the requested segment. The address constant must be loaded into the standard entry point
register, register 15.

3 Rnis any other register and is used to hold the return address. This register is usually register 14.

4 This may also be written so that the index register is loaded with the address constant; the other fields
must be zero.

5 In this format, the base register must be loaded with the address constant; the displacement must be zero.
6 This example is an unconditional branch; other conditions are also allowed.

Figure 36. Branch Sequences for Overlay Programs

Overlay Programs 93

The address constant must be a 4-byte V-type address constant. The
high-order byte is reserved for use by the control program, and must not be
altered during execution of the program.

A branch between inclusive segments is always valid; a return may be made
by means of the address stored in Rn. A branch betweeen exclusive segments
is valid if the conditions for a valid exclusive reference are met; a return can
be made only by another exclusive reference.

Segment Load (SEGLD) Macro Instruction

The SEGLD macro instruction is used to provide overlap between segment
loading and processing within the requesting segment. As a result of using any
of the examples in Figure 37, the loading of the requested segment and any
segments in its path is initiated when they are not part of the path already in
virtual storage. Processing then resumes at the next sequential instruction in
the requesting segment while the segment or segments are being loaded.
Control may be passed to the requested segment with either a CALL or a
branch, as shown in examples 1 and 2, respectively. A SEGWT instruction
can be used to ensure that the data in the control section specified by the
external name is in virtual storage before processing begins, as shown in

Example 3.

Example Namel Operation Operand?2:3

1 SEGLD external name
CALL external name

2 SEGLD external name
branch

3 SEGLD external name
SEGWT external name
L Rn,=A(name)

1 When the name field is blank, specification of a name is optional.

2 External name is an entry name or a control section name in the requested segment.

3 Rnis any other register and is used to hold the return address. This register is usually register 14.
Figure 37. Use of the SEGLD Macro Instruction

The external names specified in the SEGLD macro instruction must be
defined with a 4-byte V-type address constant. The high-order byte is
reserved for use by the control program and must not be altered during
execution of the program. -

Note: Some configurations of the control program do not have the capability
of processing the SEGLD macro instruction. When used, the macro
instruction is treated as a NOP (no operation) and the segment is loaded
when a SEGWT macro instruction or a branch is executed. If the rules of
overlay are followed, correct execution occurs.

Segment Wait (SEGWT) Macro Instruction

The SEGWT macro instruction is used to stop processing in the requesting
segment until the requested segment is in virtual storage.

As a result of using any of the examples in Figure 38, no further processing
takes place until the requested segment and all segments in its path are loaded
when not already in virtual storage. Processing resumes at the next sequential
instruction in the requesting segment after the requested segment has been
loaded.

94 OS/VS Linkage Editor and Loader

Example Name! Operation Operand?23

1 SEGLD external name
SEGWT external name
L Rn,ADCON
branch
ADCON DC A(name)
2 SEGWT external name
L Rn,=A(name)

1 When the name field is blank, specification of a name is optional.
2 External name is an entry name or a control section name in the requested segment.

3 Rnis any other register and is used to hold the return address. This register is usually register 14.

Figure 38. Use of the SEGWT Macro Instruction

If the SEGWT and SEGLD macro instructions are used together, overlap
occurs between processing and segment loading; use of the SEGWT macro
instruction serves as a check to see that the necessary information is in
storage when it is finally needed (see Example 1 in Figure 38). In Example 2
in Figure 38, no overlap is provided; the SEGWT macro instruction initiates
loading, and processing is stopped in the requesting segment until the
requested segment is in virtual storage.

The external name specified in the SEGWT macro instruction must be
defined with a 4-byte V-type address constant. The high-order byte is
reserved for use by the control program, and must not be altered during
execution of the program.

If the contents of a virtual storage location in the requested segment are to be
processed, the entry name of the location must be referred to by an A-type
address constant.

Overlay Programs 95

JOB CONTROL LANGUAGE SUMMARY

This chapter summarizes those aspects of the job control language that
pertain directly to the use of the linkage editor. The major topics covered are
the EXEC statement, DD statements, and cataloged procedures for the
linkage editor. The reader should be familiar with the job control language as
described in OS/VS1 JCL Reference or OS/VS2 JCL.

EXEC Statement—Introduction

The EXEC statement is the first statement of every job step. For the linkage
editor job step, the following topics are pertinent:

o The program name of the linkage editor.
« Linkage editor options passed to the job step.
« Region requirements for the linkage editor.

For an execution job step following the linkage editor job step, the linkage
editor return code is important.

The EXEC statement contains the symbolic name of the load module to be
invoked for execution. The linkage editor can be invoked with the following
program name:

HEWL
LINKEDIT is an alias name for the linkage editor and can also be used to
invoke it.
For example, the following EXEC statement causes the linkage editor to be
invoked:
//LKED EXEC PGM=HEWL

PGM=LINKEDIT could also be used.

To ensure compatibility with the operating system, the linkage editor can also
be invoked by any of the following alias names: IEWL, IEWLF440,
IEWLF880, IEWLF128.

EXEC Statement—Job Step Options

The EXEC statement also contains a list of options or parameters to be
passed to the linkage editor. These options are of four types:

« Module attributes, which describe the characteristics of the output load
module.

« Special processing options, which affect linkage editor processing.

« Space allocation options, which affect the amount of storage used by the
linkage editor for processing and output module library buffers.

« Output options, which specify the kind of output the linkage editor is to
produce.

The rest of this section describes the options in each category. All of the
options for a particular linkage editor execution are listed in the PARM
parameter on the EXEC statement. They can be listed in any sequence, as
long as the rules for coding parameters are followed.

Job Control Language Summary 97

Module Attributes

Downward Compatible Attribute

Hierarchy Format Attribute

The module attributes describe the characteristics of the output module, or
modules. (If more than one load module is produced by the same linkage
editor job step, all output modules will have the attributes assigned on the
EXEC statement.) The attributes for each load module are stored in the
directory of the output module library along with the member name. (The
format of the directory entry of a partitioned data set is given in OS/VS1
System Data Areas and OS/VS2 Data Areas.

Module attributes specify whether or not the module:

« Can ever be processed by the linkage editor.

« Can be brought into virtual storage only by the LOAD macro instruction.
« Is to be in overlay format.

« Can be reused.

« Can be placed in the link pack area; i.e., is re-enterable.

o Can be replaced during execution by recovery management; i.e., is
refreshable.

o Is to be tested by the TSO TEST command under VS2.
« Is to have specified control sections aligned on page boundaries.
« Is or is not authorized to use the restricted system resources and functions.

After the descriptions of the module attributes, the default and incompatible
attributes are discussed.

When this attribute is specified, a maximum record size of 1024 bytes is used
for the output module library.

To assign the downward compatible attribute, code DC in the PARM field as
follows: :

//LKED EXEC PGM=IEWL,PARM='DC,..."

Note: If the DC attribute is specified and the output load module library is a
data set created by the link-edit job step, the blocksize in the DSCB (data set
control block) is set to 1024. If the DC attribute is specified and the output
load module library is an existing data set, then the blocksize in the DSCB is
set to 1024 only if the current blocksize in the DSCB is less than 1024; if the
current blocksize in the DSCB is greater than 1024, the load module is
written using a maximum record size of 1024 bytes but the blocksize in the
DSCB is not changed.

Although VS systems do not provide hierarchy support, the HIAR attribute is
included in the linkage editor for compatibility with OS systems. If the HIAR
attribute is specified and the module is link-edited under VS, the module will
run on either OS or VS but the attribute will be ignored when fetching the
load module on VS systems.

Control sections within a module with the hierarchy format attribute are
suitable for either block or scatter loading into the hierarchies specified in
HIARCHY control statements. Specification of hierarchy format, when main
storage hierarchy support is included in the system, allows the programmer to

98 OS/VS Linkage Editor and Loader

Scatter Format Attribute

make use of both processor storage (hierarchy 0) and IBM 2361 Core
Storage (hierarchy 1). When main storage hierarchy support is not included in
the system, programs with the hierarchy format attribute are block or scatter
loaded into processor storage (see ‘“Scatter Format”).

When storage hierarchies are used, all control sections assigned to a hierarchy
are normally block loaded. If the allocated region within the hierarchy is not
large enough for block loading of the control sections, and the scatter loading
feature is available, the control sections may be scatter loaded into the
allocated area within the hierarchy.

The hierarchy format attribute overrides the scatter format attribute; the
overlay attribute overrides the hierarchy format attribute and must be omitted
if hierarchies are to be assigned.

To assign the hierarchy format attribute, code HIAR in the PARM field, as
follows:

//LKED EXEC PGM=IEWL, PARM='HIAR,...'

See the description of the HIARCHY control statement for information on
assigning control sections to a specific hierarchy.

Note: Because control sections may be scatter loaded when HIAR is
specified, the programmer should ensure that the load module does not
contain zero-length control sections, private code sections, or common areas.
The presence of such sections in a module that is to be scatter loaded can,
under certain circumstances, cause Program Fetch to terminate abnormally
when the module is loaded into main storage for execution.

A module with the scatter format attribute need not be loaded into a
contiguous block of main storage; rather, the programmer can specify the
dynamic loading of control sections into noncontiguous, or scattered, areas
within his assigned main storage area. Although scatter loading can also be
left to the control program, the programmer should specify the loading
process himself for most effective use of available storage. If the scatter
format attribute is not specified, the linkage editor produces a load module in
a format suitable for block loading. That is, the control program can load the
module only into one contiguous main storage area large enough to contain
the complete module.

When the scatter format attribute is specified, the linkage editor produces a
load module in a format suitable for either scatter or block loading. If the
scatter load feature is not available in the control program, modules with the
scatter format attribute are block loaded.

To assign the scatter format attribute, code SCTR in the PARM field, as
follows:

//LKED EXEC PGM=IEWL,PARM="'SCTR,..."

Note 1: The block format attribute is assigned by the linkage editor if scatter
format is not specified. (The programmer cannot specify block format.)

Note 2: If SCTR is specified, the programmer should ensure that the load
module does not contain zero-length control sections, private code sections,
or common areas. The presence of such sections in a module that is to be
scatter loaded can, under certain circumstances, cause Program Fetch to
terminate abnormally when the module is loaded into main storage for
execution.

Job Control Language Summary 99

Not Editable Attribute

Only Loadable Attribute

Opverlay Attribute

Note: The SCTR attribute must be specified when the nucleus for a VS
system is link-edited. In all other instances, - if the SCTR attribute is specified,
the linkage editor builds the output load module appropriately; however,
scatter load support is not provided in the VS systems and the attribute/load
module format is ignored when fetching the load module.

A load module which is marked NE (not editable) is not reprocessable by the
linkage editor. If a module map or a cross-reference table is requested, the not
editable attribute is ignored.

To assign the not editable attribute, code NE in the PARM field, as follows:
//LKED EXEC PGM=HEWL, PARM='NE, ...'

Note: The not editable attribute disables the EXPAND function for the
output load module and also limits to eighteen the number of consecutive
iterations of AMASPZAP (for VS2) or HMASPZAP (for VS1). If the
EXPAND function is required or more than eighteen iterations of
AMASPZAP/HMASPZARP are required, the load module will have to be
recreated.

A module with the only loadable attribute can be brought into virtual storage
only with a LOAD macro instruction. Some subsets of the control program
use a smaller control table when the load module is invoked with a LOAD.
This reduces the overall virtual storage requirements of the module.

A module with the only loadable attribute must be entered by means of a
branch instruction or a CALL macro instruction. If an attempt is made to
enter the module with a LINK, XCTL, or ATTACH macro instruction, the
program making the attempt is terminated abnormally by the control
program. ‘

To assign the only loadable attribute, code OL in the PARM field as follows:
//LKED EXEC PGM=HEWL, PARM="'0OL, ..."

Note: The only loadable attribute is intended primarily for use by the control
program. Use of this attribute by the problem programmer can impair the
usability of the module.

A program with the overlay attribute is placed in an overlay structure as
directed by the linkage editor OVERLAY control statements. The module is
suitable only for block loading; it cannot be refreshable, re-enterable, serially
reusable, or assigned to hierarchies.

If the overlay attribute is specified and no OVERLAY control statements are
found in the linkage editor input, the attribute is negated. The condition is
considered a recoverable error; that is, if the LET option is specified, the
module is marked executable.

The overlay attribute must be specified for overlay processing. If this attribute
is omitted, the OVERILAY and INSERT statements are considered invalid,
and the module is not an overlay structure. This condition is also recoverable;
if the LET option is specified, the module is marked executable.

100 OS/VS Linkage Editor and Loader

Reusability Attributes

Refreshable Attribute

To assign the overlay attribute, code OVLY in the PARM field as follows:
//LKED EXEC PGM=HEWL, PARM="'0OVLY, ...

See ‘“Overlay Programs” for information on the design and specification of an
overlay structure.

Either one of two attributes may be specified to denote the reusability of a
module. Reusability means that the same copy of a load module can be used
by more than one task either concurrently or one at a time. The reusability
attributes are re-enterable and serially reusable; if neither is specified, the
module is not reusable and a fresh copy must be brought into virtual storage
before another task can use the module.

The linkage editor only stores the attribute in the directory entry; it does not
check whether the module is really re-enterable or serially reusable. A
re-enterable module is automatically assigned the reusable attribute.
However, a reusable module is not also defined as re-enterable; it is reusable
only.

Re-enterable: A module with the re-enterable attribute can be executed by
more than one task at a time; that is, a task may begin executing a
re-enterable module before a previous task has finished executing it. This type
of module cannot be modified by itself or by any other module during
execution.

If a module is to be re-enterable, all of the control sections within the module
must be re-enterable. If the re-enterable attribute is specified, and any load
modules that are not re-enterable become a part of the input to the linkage
editor, the attribute is negated.

To assign the re-enterable attribute, code RENT in the PARM field,; as
follows:

//LKED EXEC PGM=HEWL, PARM="'RENT, ..."'

Serially Reusable: A module with the serially reusable attribute can be
executed by only one task at a time; that is, a task may not begin executing a
serially reusable module before a previous task has finished executing it. This
type of module must initialize itself and/or restore any instructions or data in
the module altered during execution.

If a module is to be serially reusable, all of its control sections must be either
serially reusable or re-enterable. If the serially reusable attribure is specified,
and any load modules that are neither serially reusable nor re-enterable
become a part of the input to the linkage editor, the serially reusable attribute
is negated.

To assign the serially reusable attribute, code REUS in the PARM field, as
follows:

//LKED EXEC PGM=HEWL, PARM="'REUS, ...'

A module with the refreshable attribute can be replaced by a new copy during
execution by a recovery management routine without changing either the
sequence or results of processing. This type of module cannot be modified by
itself or by any other module during execution. The linkage editor only stores
the attribute in the directory entry; it does not check whether the module is
refreshable.

Job Control Language Summary 101

Test Attribute
Page Boundary Attribute

Authorization Code

If a module is to be refreshable, all of the control sections within it must be
refreshable. If the refreshable attribute is specified, and any load modules that
are not refreshable become a part of the input to the linkage editor, the
attribute is negated.

To assign the refreshable attribute, code REFR in the PARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='REFR,..."'

A module with the test attribute is to be tested and contains the testing
symbol tables for the TSO TEST command. The linkage editor accepts these
tables as input, and places them in the output module. The module is marked
as being under test. If the test attribute is not specified, the symbol tables are
ignored by the linkage editor and are not placed in the output module. If the
test attribute is specified, and no symbol table input is received, the output
load module will not contain symbol tables to be used by the TSO TEST
command.

To assign the test attribute, code TEST in the PARM field, as follows:
//LKED EXEC PGM=HEWL , PARM="'TEST, ..."

Note: The test attribute applies to programs using TESTRAN or the TSO
TEST command. Do not use the ‘TEST’ option unless the load module is to
be executed by TSO or TESTRAN.

Control sections within a load module with the page boundary attribute are
aligned in storage on page boundaries. Used with the PAGE control
statement or the ORDER statement with the P operand, this attribute causes
alignment of specified control sections on 2K boundaries. If virtual storage is
limited under VS1, alignment on 2K page boundaries reduces paging and
conserves storage; however, performance degradation may result when 2K
alignment is used under VS2.

To assign the 2K page boundary attribute, code ALIGN2 in the PARM field,
as follows: -

//LKED EXEC PGM=HEWL, PARM="'ALIGN2,..."

Note: If the ALIGN?2 attribute is not coded and the PAGE statement or
ORDER statement with the P operand is used, the default boundary
alignment is 4K.

The output load module is assigned an authorization code which determines
whether or not the load module may use restricted system services and
resources.

To assign an authorization code through the PARM field, code the AC
parameter as follows:

//LKED EXEC PGM=HEWL, PARM='AC=n,..."

The authorization code n must be 1 to 8 decimal digits giving a value from 0
to 255.

102 OS/VS Linkage Editor and Loader

Default Attributes

Incompatible Attributes

Special Processing Options

Exclusive Call Option

‘AC=’, ‘AC=,...” and ‘AC= " are equivalent to ‘AC=(’. The authorization
code assigned in the PARM field is overridden by an authorization code
assigned through the SETCODE control statement.

Unless specific module attributes are indicated by the programmer, the output
module is not in an overlay structure, and it is not tested (assembler only).
The module is in block format, not refreshable, not re-enterable, and not
serially reusable. Its control sections are aligned on 4K page boundaries if
page boundary alignment is requested.

One other attribute is specified by the linkage editor after processing is
finished. If, during processing, severity 2 errors were found that would
prevent the output module from being executed successfully, the linkage
editor assigns the not executable attribute. The control program will not load
a module with this attribute.

If the LET option is specified, the output module is marked executable even if
severity 2 errors occur. The LET option is discussed later in this section.

If the AC parameter is not specified or is coded incorrectly, the default
authorization code of zero (0) is assigned to the output load module.

Of the module attributes that the programmer may specify, several are
mutually exclusive. When mutually exclusive attributes are specified for a load
module, the linkage editor ignores the less significant attributes. For example,
if both OVLY and RENT are specified, the module will be in an overlay
structure and will not be re-enterable.

Certain attributes are also incompatible with other job step options. For
convenience, all job step options are shown in Figure 41 at the end of this
chapter along with those options that are incompatible.

The special processing options affect the executability of the output module
and the use of the automatic library call mechanism. These options are the
exclusive call option, the let execute option, and the no automatic call option.

When the exclusive call option is specified, the linkage editor marks the
output module as executable when valid exclusive references have been made
between segments. However, a warning message is given for each valid
exclusive reference.

To specify the exclusive call option, code XCAL in the PARM field as
follows:

//LKED EXEC PGM=HEWL, PARM="'XCAL,OVLY, ...'
The OVLY attribute must also be specified for an overlay program.

Note: Other errors may cause the module to be marked not executable unless
the let execute option is specified.

Job Control Language Summary 103

Let Execute Option

No Automatic Library Call Option

Space Allocation Options

SIZE Option

When the let execute option is specified, the linkage editor marks the output
module as executable even though a severity 2 error condition was found
during processing. (A severity 2 error condition could make execution of the
output load module impossible.) Some examples of severity 2 errors are:

« Unresolved external references.

« 'Valid or invalid exclusive calls in an overlay program.

« Error on a linkage editor control statement.

« A library module that cannot be found.

« No available space in the directory of the output module library.

To specify the let execute option, code LET in the PARM field as follows:
//LKED EXEC PGM=HEWL, PARM='LET,..."'
Note: If LET is specified, XCAL need not be specified.

When the no automatic library call option is specified, the linkage editor
library call mechanism does not call library members to resolve external
references. The output module is marked executable even though unresolved
external references are present. If this option is specified, the LIBRARY
statement need not be used to negate the automatic library call for selected
external references. Also, with this option, a SYSLIB DD statement need not
be supplied.

To specify the no automatic library call option, code NCAL in the PARM
field, as follows:

//LKED EXEC PARM=HEWL, PARM='NCAL, ..."

Note: Other errors may cause the module to be marked not executable unless
the LET option is also specified.

These options allow the programmer to specify the storage available to the
linkage editor, and to specify the blocksize for the output module.

The programmer can specify, through the SIZE option, the amount of virtual
storage to be used by the level F linkage editor and the portion of that storage
to be used as the load module buffer.

Default values for the SIZE option are chosen during system generation. The
default values are used if one or both of the values are not specified correctly,
or not specified at all. These defaults should be made adequate for most link
edits, relieving the programmer from having to specify the SIZE option for
each link edit. For details on how to establish default values, for VS1 see the
EDITOR macro in OS/VS1 System Generation Reference. The default

values for VS2 are: valuel is 192K and value? is 64K.

104 OS/VS Linkage Editor and Loader

Format: The format of the SIZE option is:
SIZE=(valuel ,value)

SIZE=(valuel)

SIZE=(valuel ,)

SIZE=(,value2)

SIZE=(,)

When coded in the PARM field, the expression is enclosed in single quotes, as
follows:

//LKED EXEC PGM=HEWL, PARM="'SIZE=(valuel,
// value2),..."

Both valuel and value2 may be expressed as integers specifying the number
of bytes of virtual storage or as nK where n represents the number of 1K
(1024) bytes of virtual storage.

When determining the values for the SIZE option, it is best to establish value2
first, then valuel.

Value2: Value?2 specifies the number of bytes of storage to be allocated as the
module buffer. The allocation specified by value2 is a part of the virtual
storage specified by valuel.

The actual minimum for value2 is 6144 (6K) or the length of the largest input
load module text record, whichever is larger. If a value less than 6144 (6K) is
specified, the default value for value?2 is used.

The space allocated by value?2 is used as: the buffer into which the input load
module text is read, the buffer from which load module text is written to the
intermediate data set, the buffer into which the load module text is read from
the intermediate data set, and the buffers from which the load module text is
written to the output data set. Therefore the determination of value2 requires
that the programmer consider the record sizes of the data sets from which any
load module text records are to be read (SYSLIB, any data set referenced by
an INCLUDE, any library data set), the record size for the intermediate data
set (SYSUT1), and the record size for the output load module data set
(SYSLMOD).

Figure 39 lists the direct access devices that may contain data sets that are the
source of input load module text, the intermediate data set, and the output
load module data set, and lists the maximum record size used for each device
by the linkage editor. These maximum record sizes may always be used in
specifying value2 or, if the programmer can determine them, exact sizes can
be used.

Device Maximum Record Size
2305 13312 or 13K

2314 6144 or 6K

2319 6144 or 6K

3330 12288 or 12K

3340 12288 or 12K

3350 18432 or 18K

Figure 39. SYSUT1 and SYSLMOD Device Types and their Maximum Record Sizes

Job Control Language Summary 105

The programmer must specify value2 so that the linkage editor has sufficient
space to allocate buffers that are compatible with the record sizes for the
intermediate data set and the output load module data set.

The linkage editor optimizes the record size for the device type of output load
module data set unless one of the following conditions exists.

‘1. The programmer has specified PARM="...DC,...’, forcing the linkage editor
to write records having a maximum size of 1024 (1K) bytes.

2. The programmer has specified PARM=*...DCBS,...’, and the
SYSLMOD DD statement contains a BLKSIZE subprarmeter in the DCB
parameter, forcing the linkage editor to write records having a maximum
length equal to the BLKSIZE specification.

3. The output load module data set is an existing data set having a block size
less than the optimum record size, forcing the linkage editor to write
records no longer than that block size.

4. The programmer has specified a value2 less than twice the maximum
record size for the output load module data set, forcing the linkage editor
to write records having a maximum size of one-half value2.

5. The intermediate data set and the output load module data set have
dissimilar record sizes, forcing the linkage editor to write records having a
maximum size determined for compatibility between the two data sets.

The linkage editor optimizes the record size of the output load module data
set for its device type but selects a record size compatible with the
intermediate data set (see restrictions above). Therefore, use of the load
module buffer is optimized if the intermediate data set and the output load
module data set reside on the same device type. The performance of the
linkage editor is improved if the data sets are on different units of the same
type.

Figure 40 shows the record sizes used for compatibility between every
combination of device types for the intermediate and output load module data
sets.

Value?2 is, minimally, twice the record size for the output load module data
set. If value2 can be made larger than twice the record size for the output
load module data set, the increase should be the larger of the record sizes for
the intermediate and output load module data sets.

The maximum for value2 is 102400 (100K). The practical maximum
however, is the length of the load module to be built, plus 4K if the length of
the load module to be built is equal to or greater than 40960 (40K). Any
space allocated to the load module buffer above this amount is not used and
need not be allocated to value2.

If a value greater than the maximum for value?2 is specified, the default value
for value2 is used. If a value?2 is specified that cannot be accomodated in the
available storage, value2 is reduced to the next lower 2K multiple of storage
that is available. This reduction, however, never decreases value2 to less than
the minimum, 6144 (6K).

The optimal value?2 is the practical maximum, as explained above. If the entire
load module is contained in storage, the performance of the linkage editor is
improved and the use of the intermediate data set may be eliminated.

106 OS/VS Linkage Editor and Loader

SYSLMOD Record Size SYSUT1 Record Size Minimum

Load Module
Device Maximum Record Device Maximum Record Buffer Area
Used Size Produced Used Size Produced (Value2)
IBM 2314 6K 2305 12K2 12K
IBM 2319 2314,2319 6K 12K
3330,3330-1 12K2 24K
3340 6K2 12K
6K 3350 18K 18K
IBM 3330 12K 2305 12K2 24K
IBM 3330-1 2314,2319 6K 24K
3330,3330-1 12K 24K
3340 6K2 24K
12K 3350 12K2 24K
IBM 3340 7.5K 2305 7.5K2 15K
IBM 3344 6K1 2314,2319 6K 12K
7.5K 3330,3330-1 7.5K2 15K
7.5K 3340 7.5K 15K
7.5K 3350 15K2 15K
IBM 2305 13K 2305 13K 26K
12K1 2314,2319 6K 24K
12K1 3330,3330-1 12K 24K
12K1 3340 6K 24K
13K 3350 13K2 26K
IBM 3350 13K1 2305 13K 26K
18K 2314,2319 6K 36K
12K1 3330,3330-1 12K 24K
18K 3340 6K 36K
18K 3350 18K 36K

Notes:

1 The SYSLMOD record size is reduced to less than the maximum to make it compatible with the SYSUT1
record size.

2 The SYSUT! record size is reduced to less than the maximum to make it compatible with the SYSLMOD
record size.

Figure 40. Load Module Buffer Area and SYSLMOD and SYSUT1 Record Sizes

Examples of Value2 Determination

1. A load module of between 21K and 22k is to be built. The load module
data set is a new data set on a 3330. The intermediate data set is allocated
to a 2314. A SYSLIB data set is to be used, residing on a 3330. The entire
load module could be contained in the load module buffer if value2 were
22K (the load module size). The minimum for value2 would be 12K (the
size of the largest possible input load module text record from the SYSLIB
data set). However, value2 must be at least as large as two records to be
written to the load module data set (i.e.,24K). There is a reconciliation
necessary in this case between the two dissimilar device types for the
intermediate and output load module data sets; but the record size of the
output load module data set is an even multiple of the record size of the
intermediate data set so no adjustment of the record sizes is made.
Therefore, the minimum, as well as the maximum and optimal, value2 in
this case is 24K.

2. A load module of more than 50K is to be re-link-edited; however, a
maximum of 40K is available to be allocated to value2. The output load
module data set is an old data set residing on a 2314, written with
maximum record size. The intermediate data set is allocated to a 2305. The

Job Control Language Summary 107

link-edit involves a control section in the SYSLIN data set that will replace
a control section in the old load module, followed by an INCLUDE
statement naming the old load module on the SYSLMOD data set. The
maximum for value2 cannot be satisfied, since only 40K is available. The
size of two maximum records written to a 2314 would be 12K. However,
the size of one record to be written or to be read from the intermediate
data set is 12K. Therefore, the minimum for value2 in this case is 12K.
This is sufficient space for one input load module text record or one record
written to or to be read from the intermediate data set or two records
written to the output load module data set. The optimum value?2 in this
case is 36K; the minimum, 12K, plus two increments of the larger of the
record sizes for the intermediate data set and the output load module data
set, 12K.

. The output load module data set resides on a 2305. The intermediate data

set is allocated to a 3330. All load module input comes from a 3330.
Value? in this case is 24K, because the input load module text records are,
at most, 12K, the records written to and read from the intermediate data
set are 12K, and the records written to the output load module data set are
12K. The maximum record size of 13K for the 2305 is reduced to 12K for
this link-edit in order to be compatible with the intermediate data set.

An alternative for value2 in the above example is 12K. 12K is adequate for
the input load module text records and the records written to and read
from the intermediate data set. 12K forces a maximum record size of 6K to
be written to the output load module data set. At 6K each, two records can
be written on a 2305 track while, as in the above example, only one record
of 12K can be written on a 2305 track.

. A load module of 10K is to be link-edited. The output load module data set

resides on a 2305. The input load module libraries all reside on 2314s. The
intermediate data set is allocated to a 2314. The programmer has specified
the linkage editor parameter DC. The minimum for value2 of 6K is
adequate in this case, since 6K is sufficient for input and intermediate data
set records and the output load module data set records have a maximum
size of 1K.

. The output load module data set is a new data set allocated to a 3330. The

programmer has specified the linkage editor parameter DCBS and the
SYSLMOD DD statement contains ‘...DCB=(...BLKSIZE=3072,...),...".
The only load module input comes from a data set created previously in a
similar manner. The intermediate data set is allocated to a 2314. The
minimum for value2 in this case is 6K; the input load module records are
3K at most, the intermediate data set records are 6K at most, and, as
directed by the programmer, the linkage editor produces records having a
maximum size of 3K on the output load module data set.

Valuel: Valuel specifies the number bytes of virtual storage available to the
linkage editor, regardless of the region or partition size. The storage specified
by valuel includes the allocation specified by value2.

The minimum for valuel is the design point of the linkage editor, 64K. If a
value less than the minimum for valuel is specified, the default options for
both valuel and value2 are used.

The practical minimum valuel is 65536 (64K) plus any excess in value2 over
6144 (6K), plus any additional space required to support the blocking factor
for the SYSLIN, object module library, and SYSPRINT data sets.

108 OS/VS Linkage Editor and Loader

The design point of the linkage editor provides for the minimum load module
buffer— 6144 (6K) bytes of virtual storage. If a load module buffer larger
than 6144 (6K) is specified in value2, valuel must be increased by the excess
of that value2 over 6144 (6K).

The linkage editor supports three different blocking factors for the SYSLIN,
object module library, and SYSPRINT data sets; they are 5, 10, and 40 to 1.
The requirement for additional space depends upon the blocking factor that is
to be supported.

The following table shows the additional space required to support each
blocking factor.

Blocking Factor

S5tol 0 or 0K
10to1 18432 or 18K
40to1 28672 or 28K

Blocking factors of 1 through 4, 6 through 9, and 11 through 39 are treated as
blocking factors of 5, 10, and 40, respectively. Blocking factors greater than
40 are invalid.

The additional space requirement is determined by the largest blocking factor
among the affected data sets.

The blocking factor supported is dependent upon space available after value2
has been allocated to the load module buffer out of valuel. Therefore, if the
space provided in valuel is insufficient, the link-edit will be terminated with
an error message to that effect.

The maximum for valuel is 999999 (9999K) or, the region or partition
whichever size is smaller. (See “EXEC Statement—Region Parameter”
below.) If a valuel is specified greater than the region or partition size, the
editor may use some of the storage intended for data management and other
system functions required by the linkage editor. This lack of storage will result
in the abnormal termination of the link-edit.

Valuel should be as large as possible. The performance of the linkage editor
is improved when additional storage is allocated by valuel.

Examples of Valuel Determination

1. An optimum value2 of 36K has already been determined for the link-edit.
An appropriate valuel is 94K, since an additional 30K, above the minimum
of 64K, is needed to support the allocation of 36K to value2 and no
additional storage is required to support the blocking factors for SYSLIN,
SYSPRINT, and any object module libraries.

2. The minimum for value2 (6K) is being used. All of the object module
libraries are blocked 5-to-1, except one that is blocked 10-to-1. The
SYSLIN and SYSPRINT data sets are assigned blocking factors of 5. An
appropriate valuel for this link-edit is 82K, the minimum plus the 18K
needed to support the blocking factor of 10-to-1 on the object module
library.

3. The same situation exists as in example 2. However, in this case the
minimum region size is 100K. A more appropriate valuel, under these
circumstances, is 90K. Since extra space is available, it is possible to
optimize use of the region allocated and to increase value2 to 18K, the
optimum for this case.

Job Control Language Summary 109

DCBS Option

Output Options

Control Statement Listing Option

The DCBS option allows the programmer to specify the block size for the
SYSLMOD data set in the DCB parameter of SYSLMOD DD statement.

If the DCBS option is specified, the block size value in the DSCB for the
SYSLMOD data set may be overridden. If the DCBS option is not specified,
the block size value in the DSCB for the SYSLMOD data set may not be
overridden.

If the DCBS option is specified and no block size value is provided in the
DCB parameter of the SYSLMOD DD statement, the linkage editor uses the
maximum track size for the device. If the DCBS option is not specified and a
block size value is provided in the DCB parameter of the SYSLMOD DD
statement, the block size value in the DCB parameter of the SYSLMOD DD
statement is ignored by the linkage editor.

Even though the DCBS option is specified, the linkage editor will not allow
the programmer to set the block size for the SYSLMOD data set to a value
less than the minimum; that is, 256, or 1024 if the SCTR option is specified,
or a value less than the block size in the DSCB for an existing data set.

The block size specified by the programmer will be used unless (1) it is larger
than the maximum record size for the device, in which case the maximum
record size is used, or (2) it is less than the minimum block size, in which case
the minimum block size is used.

The following example shows the use of the DCBS option for a 2314 disk:

//LKED EXEC PGM=HEWL,PARM='XREF,DCBS'
//SYSLMOD DD DSNAME=LOADMOD(TEST), DISP=(NEW,KEEP),
// DCB=(BLKSIZE=3072),.

As a result, the linkage editor uses a 3K blocksize for the output module
library. ’

Note: When the DCBS option is used, a blocksize must be specified in the
DCB parameter of the SYSLMOD DD statement.

These options control the optional diagnostic output produced by the linkage
editor. The programmer can request that the linkage editor produce a list of
all control statements and a module map or cross-reference table to help in
testing a program. The format of each is described in the chapter “Output
from the Linkage Editor.”

In addition, the programmer can request that the numbered error/warning
messages generated by the linkage editor should appear on the SYSTERM
data set as well as on the SYSPRINT data set.

To request a control statement listing, code LIST in the PARM field, as
follows:

//LKED EXEC PGM=HEWL , PARM="'LIST,..."

110 OS/VS Linkage Editor and Loader

Module Map Option

Cross Reference Table Option

When the LIST option is specified, all control statements processed by the
linkage editor are listed in card-image format on the diagnostic output data
set.

To request a module map, code MAP in the PARM field, as follows:
//LKED EXEC PGM=HEWL,PARM='MAP,..."

When the MAP option is specified, the linkage editor produces a module map
of the output module on the diagnostic output data set.

To request a cross-reference table, code XREF in the PARM field, as
follows:

//LKED EXEC PGM=HEWL, PARM="'XREF,..."

When the XREF option is specified, the linkage editor produces a
cross-reference table of the output module on the diagnostic output data set.
The cross reference table includes a module map; therefore, both XREF and
MAP need not be specified for one linkage editor job step.

Alternate Output (SYSTERM) Option ‘

To request that the numbered linkage editor error/warning messages be
generated on the data set defined by a SYSTERM DD statement, code
TERM in the PARM field, as follows:

//LKED EXEC PGM=HEWL, PARM="'TERM, .. ."

When the TERM option is specified, a SYSTERM DD statement must be
provided. If it is not, the TERM option is negated.

Output specified by the TERM option supplements printed diagnostic
information; when TERM is used, linkage editor error/warning messages
appear in both output data sets.

Incompatible Job Step Options

When mutually exclusive job step options are specified for a linkage editor
execution, the linkage editor ignores the less significant options. Figure 41
illustrates the significance of those options that are incompatible. When an X
appears at an intersection, the options are incompatible. The option that
appears higher in the list is selected.

For example, to check the compatibility of XREF and NE, follow the XREF
column down and the NE row across until they intersect. Since an X appears
where they intersect, they are incompatible; XREF is selected, NE is negated.

If incorrect values are specified for the SIZE parameter, the default values are
used. If incompatible options are detected, the message

*¥** OPTIONS INCOMPATIBLE ***

is printed. This message follows the standard module disposition message.

Job Control Language Summary 111

&
Q
ro
@3
<
R
<
Qf‘/ .
S
&
Q‘\vg'
&Q‘
&
&
4
<
0%
C,Y’
0\»
&
RO
s
Q§
0&%
%&
&
<

Figure 41. Incompatible Job Step Options for the Linkage Editor

EXEC Statement—Region Parameter

If the SIZE option is specified, the partition size in VS1 must be at least 10K
larger than valuel. If VS2 is used, the default or specified region size must be
at least 10K larger than valuel.

Note: Due to certain paging requirements it may be necessary to increase the
10K slightly.

For example, if SIZE=(200K,36K) is coded, the REGION specified must be
210K.

112 OS/VS Linkage Editor and Loader

EXEC Statement—Return Code

DD Statements

The linkage editor passes a return code to the control program upon
completion of the job step. The return code reflects the highest severity code
recorded in any iteration of the linkage editor within that job step. The
highest severity code encountered during processing is multiplied by 4 to
create the return code; this code is placed into register 15 at the end of
linkage editor processing. Figure 42 contains the return codes, the
corresponding severity code, and a description of each.

Return Severity

Code Code Description
00 0 Normal conclusion.
04 1 Warning messages have been listed, execution should be successful.

For example, if the overlay option is specified and the overlay
structure contains only one segment, a return code of 04 is issued.

08 2 Error messages have been listed, execution may fail. The module is
marked not executable unless the LET option is specified. For
example, if the blocksize of a specified library data set cannot be
handled by the linkage editor, a return code of 08 is issued.

12 3 Severe errors have occurred, execution is impossible. For example,
if an invalid entry point has been specified, a return code of 12 is
issued.

16 4 Terminal errors have occurred, the processing has terminated. For

example, if the linkage editor cannot handle the blocking factor
requested for SYSPRINT, a return code of 16 is issued.

Figure 42. Linkage Editor Return Codes

The programmer may use this return code to determine whether or not the
load module is to be executed by using the condition parameter (COND) on
the EXEC statement for the load module. The control program compares the
return code with the values specified in the COND parameter, and the results
of the comparisons are used to determine subsequent action. The COND
parameter may be specified either in the JOB statement or the EXEC
statement (see the publication OS/VSI! JCL Reference or OS/VS2 JCL).

Every data set used by the linkage editor must be described with a

DD statement. Each DD statement must have a name, unless data sets are
concatenated. The DD statements for data sets required by the linkage editor
have pre-assigned names; those for additional input data sets have
user-assigned names; those for concatenated data sets (after the first) have no
names.

In addition to the name, the DD statement provides the control program with
information about the input/output device on which the data set resides, and

a description of the data set itself. All of the job control language facilities for
device description are available to the users of the linkage editor.

Besides information about the device, the DD statement also contains a data
set description, which includes the data set name and its disposition.
Information for the data control block (DCB) may also be given.

General information pertinent to the linkage editor on the data set name and
DCB information follows; information on disposition is given in the
discussion for each data set.

Job Control Language Summary 113

Data Set Name: The linkage editor uses either sequential or partitioned data
sets. For sequential data sets, only the name of the data set is specified; for

partitioned data sets, the member name must also be specified either on the
DD statement or with a control statement.

When input data sets are passed from a previous job step, or when the output
load module is being tested, a recommended practice is to use temporary data
set names (i.e., & & dsname). Use of temporary names ensures that there are
no duplicate data sets with out-of-date modules. A data set with a temporary
name is automatically deleted at the end of the job. When a module is to be
stored permanently, a data set name without ampersands is used.

DCB Information: Before a data set can be used for input, information
describing the data set must be placed in the data control block (DCB). If this
information does not exist in the DCB or header label, or if no labels are used
(magnetic tape does not require labels), the programmer must specify it in the
DCB parameter on the DD statement.

Record format (RECFM), logical record size (LRECL), and blocksize
(BLKSIZE) subparameters of the DCB parameter are discussed as they apply
to the linkage editor. Specific information on each as it applies to the linkage
editor data sets is given in the description of the data set which follows later
in this section. Other DCB information (tape recording technique, density,
and so forth) is described in the publication OS/VSI JCL Reference or
0S/VS2 JCL.

Record Format: The following record formats are used with the linkage
editor:

F The records are fixed length.

FB The'records are fixed length and blocked.

FBA The records are fixed length, blocked, and contain ANSI control characters.
FBS The records are fixed length, blocked, and written in standard blocks.

FA The records are fixed length and contain ANSI control characters.

FS The records are fixed length and written in standard blocks.

U The records are undefined length.

UA The records are undefined length and contain ANSI control characters.

A record format of FS or FBS must be used with caution. All blocks in the
data set must be the same size. This size must be equal to the specified
blocksize. A truncated block can occur only as the last block in the data set.

Note: Track overflow is never used by the linkage editor. When moving or
copying load modules, it is recommended that the track overflow feature not
be used on the target data set as errors may occur in fetching the load
modules for execution.

Logical Record and Blocksize: Blocking is allowed for input object module
data sets and the diagnostic output data set. The blocking factors used to

' determine buffer allocations are 10 and 40. The BLKSIZE must therefore be
a multiple of LRECL. See the description of blocking factors in the discussion
of the SIZE opion.

Also, a blocksize should be specified for the output load module library when
the DCBS option is specified (see “SYSLMOD DD Statement” later in this
section).

114 OS/VS Linkage Editor and Loader

Linkage Editor DD Statements

SYSLIN DD Statement

SYSLIB DD Statement

The linkage editor uses six data sets; of these, four are required. The

DD statements for these data sets must use the preassigned ddnames given in
Figure 43. The descriptions that follow give pertinent device and data set
information for each linkage editor data set.

Data Set ddname Required
Primary input data set SYSLIN Yes
Automatic call library SYSLIB Only if the automatic library call
mechanism is used
.Intermediate data set SYSUT1 Yes
Diagnostic output data set SYSPRINT Yes
Output module library SYSLMOD Yes
Alternate output data set SYSTERM Only if the TERM option is specified

Figure 43. Linkage Editor ddnames

The SYSLIN DD statement is always required; it describes the primary input
data set which can be assigned to a direct-access device, a magnetic tape unit,
or the card reader. The data set may be either sequential or partitioned; in the
latter case, a member name must be specified.

If SYSLIN is assigned to a card reader or “pseudo card reader,” input records
must be unblocked and 80-bytes long. (A pseudo card reader is defined as
input from a tape or direct-access device in card reader mode.)

This data set must contain object modules and/or control statements. Load
modules used in the primary input data set are considered a severity 4 error.

The recommended disposition for the primary input data set is SHR or OLD.
The DCB requirements are shown in Figure 44.

DCB Requirements

LRECL BLKSIZE RECFM
80 80 F.FS

80 800,3200* FB,FBS

* These are the maximum blocksizes allowed. Which maximum is applicable depends on the value given to
valuel and value2 of the SIZE option.

Figure 44. DCB Requirements for Object Module and Control Statement Input

The SYSLIB DD statement is required when the automatic library call
mechanism is to be used. This DD statement describes the automatic call
library, which must be assigned to a direct-access device. The data set must
be partitioned, but member names should not be specified.

The recommended disposition for the call library is SHR or OLD.

If concatenated call libraries are used, object and load module libraries must
not be mixed. If only object modules are used, the call library may also
contain control statements.

The DCB requirements for object module call libraries are given in Figure 44.
The DCB requirement for load module call libraries is a record format of U;

Job Control Language Summary 115

SYSUT1 DD Statement

SYSPRINT DD Statement

SYSLMOD DD Statement

the blocksize used for storage allocation is equal to the maximum for the
device used, not the record read.

This data set must not be assigned to SYSOUT.

The SYSUT1 DD statement is always required; it describes the intermediate
data set, which is a sequential data set assigned to a direct-access device.
Space must be allocated for this data set but the DCB requirements are
supplied by the linkage editor.

The SYSPRINT DD statement is always required; it describes the diagnostic
output data set, which is a sequential data set assigned to a printer or an
intermediate storage device. If an intermediate storage device is used, the data
records contain a carriage control character as the first byte.

The usual specification for this data set is SYSOUT=A. The programmer may
assign a blocksize if he is running under a VS1 or VS2 system. The record
format assigned by the linkage editor depends on whether blocking is used or
not.

Figure 45 shows the DCB requirements for SYSPRINT. The bold-face type

represents information supplied by the linkage editor. The only information

that can be supplied by the programmer is the blocksize.

DCB Requirements for SYSPRINT

LRECL BLKSIZE RECFM
121 121 FA
121 n x 121 where n FBA

is less than or

equal to 40

Note: The value specified for BLKSIZE, either on the DCB parameter of the SYSPRINT DD statement or
in the DSCB (data set control block) of an existing data set, must be a multiple of 121; if it is not, the linkage
editor issues a message to the operator’s console and terminates processing.

Figure 45. DCB Requirements for SYSPRINT

The SYSLMOD DD statement is always required; it describes the output
module library, which must be a partitioned data set assigned to a
direct-access device.

A member name may be specified on the SYSLMOD DD statement. If a
member name is specified, it is used only if a name was not specified on a
NAME control statement. This member name must conform to the rules for
the name on the NAME control statement. This would imply the replacement
of an identically named member in the output load module library, if one
exists.

If the member is to replace an identically named member in an existing
library, the disposition should be OLD or SHR. If the member is to be added
to an existing library, the disposition should be MOD, OLD, or SHR. If no
library exists and the member is the first to be added to a new library, the
disposition should be NEW or MOD. If the member is to be added to an
existing library that may be used concurrently in another region or partition,
the disposition should be SHR.

116 OS/VS Linkage Editor and Loader

SYSTERM DD Statement

The record format U is assigned by the linkage editor. See Appendix G.
The linkage editor assigns a blocksize by:
1. Finding the smallest of the following values:

o The maximum track size for the device

« The value of the BLKSIZE subparameter in the DCB parameter on the
SYSLMOD DD statement, if the DCBS option was specified

« 1024, if the DC option was specified

« The actual output buffer length (half the number specified for value2 of
the SIZE option)

2. Comparing the smallest value above to the value currently in the DSCB.
The greater value is assigned as the block size.

If the SYSLMOD DD statement is used as a source of load module input,
the SYSLMOD data set is read with a record format of U in all cases.

In the following example, the SYSLMOD DD statement specifies a
permanent library on an IBM 2314 Disk Storage Device:

//SYSLMOD DD DSNAME=USERLIB(TAXES),DISP=MOD,
// UNIT=2314,...

The linkage editor assigns a record format of U, and a logical record and
blocksize of 6K, the maximum for a 2314. However, consider the following
example:

//LKED EXEC PGM=HEWL , PARM="XREF , DCBS'
//SYSLMOD DD DSNAME=USERLIB(TAXES),DISP=MOD,
// UNIT=2314,DCB=(BLKSIZE=3072), ...

The linkage editor still assigns a record format of U, but the logical record and
block size are now 3K rather than 6K, due to the use of the DCBS option.

The SYSTERM DD statement is optional; it describes a data set that is used
only for numbered error/warning messages. Although intended to define the
terminal data set when the linkage editor is being used under the Time
Sharing Option (TSO) of VS2, the SYSTERM DD statement can be used in
any environment to define a data set consisting of numbered error/warning
messages that supplements the SYSPRINT data set.

SYSTERM output is defined by including a SYSTERM DD statement and
specifying TERM in the PARM field of the EXEC statement. When
SYSTERM output is defined, numbered messages are then written to both the
SYSTERM and SYSPRINT data sets.

The following example shows how the SYSTERM DD statement could be
used to specify the system output unit:

//SYSTERM DD SYSOUT=A

The DCB requirements for SYSTERM (LRECL=121,BLKSIZE=121, and
RECFM=FBA) are supplied by the linkage editor. If necessary, the linkage
editor will modify the DSCB (data set control block) of an existing data set to
reflect these values.

Job Control Language Summary 117

Additional DD Statements

Cataloged Procedures

Each ddname specified on an INCLUDE or LIBRARY control statement
must also be described with a DD statement. These DD statements describe
sequential or partitioned data sets, assigned to magnetic tape units or
direct-access devices.

The ddnames are specified by the user along with any other necessary
information. The DCB requirements for these data sets are shown in Figure
46.

DCB Requirements
Data Set Contents LRECL BLKSIZE RECFM
Object modules and/or 80 80 F,FS
control statements)
Load modules 1K 1K U
Object modules and/or 80 80 F,FS
control statements 400,800,3200%* FB,FBS
Load Modules maximum equal to U

for device, LRECL

or one-half

of value2,

whichever

is smaller

* These are the maximum blocksizes allowed. Which maximum is applicable depends on the values given to
valuel and value2 of the SIZE option.

Figure 46. DCB Requirements for Additional Input Data Sets

When concatenated data sets are included, each data set must contain records
of the same format, record size, and blocksize. If the data sets reside on
magnetic tape, the tape recording technique and density must also be
identical.

If the SYSLMOD DD statement is used as a source of load module input, the
SYSLMOD data set is read with a record format of U in all cases.

To facilitate the operation of the system, the control program allows the
programmer to store EXEC and DD statements under a unique member name
in a procedure library. Such a series of job control language statements is
called a cataloged procedure. These job control language statements can be
recalled at any time to specify the requirements for a job. To request this
procedure, the programmer places an EXEC statement in the input stream.
The EXEC statement specifies the unique member name of the procedure
desired.

The specifications in a cataloged procedure can be temporarily overridden,
and DD statements can be added. The information altered by the programmer
is in effect only for the duration of the job step; the cataloged procedures
themselves are not altered permanently. Any additional DD statements
supplied by the programmer must follow those that override the cataloged
procedure.

118 OS/VS Linkage Editor and Loader

Linkage Editor Cataloged Procedures

Procedure LKED

Two linkage editor cataloged procedures are provided: a single-step procedure
that link edits the input and produces a load module (procedure LKED), and
a two-step procedure that link edits the input, produces a load module, and
executes that module (procedure LKEDG). Many of the cataloged
procedures provided for language translators also contain linkage editor steps.
The EXEC and DD statement specifications in these steps are similar to the
specifications in the cataloged procedures described in the followmg
paragraphs.

The cataloged procedure named LKED is a single-step procedure that link
edits the input, produces a load module, and passes the load module to
another step in the same job. The statements in this procedure are shown in
Figure 47; the following is a description of these statements.

Statement Numbers: The 8-digit numbers on the right-hand side of each
statement are used to identify each statement and would be used, for
example, when permanently modifying the cataloged procedure with the
system utility program IEBUPDTE. For a description of this utility program,
see the publication OS/VS Utilities.

EXEC Statement: The PARM field specifies the XREF, LIST, LET, and
NCAL options. If the automatic library call mechanism is to be used, the
NCAL option must be overridden, and a SYSLIB DD statement must be
added. Overriding and adding DD statements is discussed later in this section.

SYSPRINT Statement: The SYSPRINT DD statement specifies the SYSOUT
class A, which is either a printer or an intermediate storage device. If an
intermediate storage device is used, a carriage control character precedes the
data. The carriage control characters are ANSI for the editor.

SYSLIN Statement: The specification of DDNAME=SYSIN allows the
programmer to specify any input data set as long as it fulfills the requirements
for linkage editor input. The input data set must be defined with a DD
statement with the ddname SYSIN. This data set may be either in the input
stream or residing on a separate volume.

If the data set is in the input stream, the following SYSIN statement is used:
//LKED.SYSIN DD *

If this SYSIN statement is used, it may be anywhere in the job step

DD statements as long as it follows all overriding DD statements. The object
module decks and/or control statements should follow the SYSIN statement,
with a delimiter statement (/*) at the end of the input.

If the data set resides on a separate volume, the following SYSIN statement is
used:

//LKED.SYSIN DD parameters describing an input data set

//LKED
//SYSPRINT
//SYSLIN
//SYSLMOD

//SYSUT1
//

EXEC
DD
DD
DD

DD

PGM=HEWL , PARM="'XREF,LIST,LET,NCAL' ,REGION=96K 00020000
SYSOUT=A 00040000
DDNAME=SYSIN 00060000
DSNAME=§&&GOSET(GO), SPACE=(1024,(50,20,1)), C00080000
UNIT=SYSDA,DISP=(MOD,PASS) 00100000
UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), C00120000
SPACE=(1024,(200,20)) 00140000

Figure 47. Statements in the LKED Cataloged Procedure

Job Control Language Summary 119

Procedure LKEDG

If this SYSIN statement is used, it may be anywhere in the job step

DD statements as long as it follows all overriding DD statements. Several data
sets may be concatenated as described in the chapter “Input to the Linkage
Editor.”

SYSLMOD Statement: The SYSLMOD DD statement specifies a temporary
data set and a general space allocation. The disposition allows the next job
step to execute the load module. If the load module is to reside permanently
in a library, these general specifications must be overridden.

SYSUT1 Statement: The SYSUT1 DD statement specifies that the
intermediate data set is to reside on a direct-access device, but not the same
device as either the SYSLMOD or the SYSLIN data sets. Again, a general
space allocation is given.

SYSLIB Statement: Note that there is no SYSLIB DD statement. If the
automatic library call mechanism is to be used with a cataloged procedure, a
SYSLIB DD statement must be added; also, the NCAL option in the PARM
field of the EXEC statement must be negated.

Invoking the LKED Procedure: To invoke the LKED procedure, code the
following EXEC statement:

//stepname EXEC LKED
where stepname is optional and is the name of the job step.

The following example shows the use of the SYSIN DD* statement:
Step A:
//LESTEP EXEC LKED

Overriding and additional DD statements for the LKED step, each beginning
//LKED.ddname...

//LKED.SYSIN DD *

Object module decks and/or control statements

Step B:

//EXSTEP EXEC PGM=%* . LESTEP .LKED.SYSLMOD

DD statements and data for load module execution

If data is supplied for the execution step, the data must be followed by a /*
delimiter statement.

Step A invokes the LKED procedure and Step B executes the load module
produced in Step A. The job control language statements for these two steps
are combined in LKEDG cataloged procedure.

The cataloged procedure named LKEDG is a two-step procedure that link
edits the input, produces a load module, and executes that load module. The
statements in this procedure are shown in Figure 48. The two steps are named
LKED and GO. The specifications in the statements in the LKED step are
identical to the specifications in the LKED procedure.

GO Step: The EXEC statement specifies that the program to be executed is
the load module produced in the LKED step of this job. This module was
stored in the data set described on the SYSLMOD DD statement in that step.
(If a NAME statement was used to specify a member name other than that
used on the SYSLMOD statement, use the LKED procedure.)

120 OS/VS Linkage Editor and Loader

//LKED EXEC PGM=HEWL, PARM="'XREF ,LIST,NCAL' ,REGION=96K 00020000

//SYSPRINT DD SYSOUT=A 00040000
//SYSLIN DD DDNAME=SYSIN 00060000
//SYSLMOD DD DSNAME=§ §GOSET(GO) , SPACE=(1024, (50,20,1)), C00080000
// UNIT=(SYSDA,DISP=(MOD,PASS) 00100000
//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), C00120000
// SPACE=(1024,(200,20)) 00140000
//GO EXEC PGM=#%.LKED.SYSLMOD,COND=(4,LT,LKED) 00160000

Figure 48. Statements in the LKEDG Cataloged Procedure

The condition parameter specifies that the execution step is bypassed if the
return code issued by the LKED step is greater than 4.

Invoking the LKEDG Procedure: To invoke the LKEDG procedure, code the
following EXEC statement:

//stepname EXEC LKEDG
where stepname is optional and is the name of the job step.

The following example shows the use of the SYSIN DD * statement with the
LKED procedure:
//TWOSTEP EXEC LKEDG

Overriding and additional DD statements for the LKED step, each beginning
//LKED.ddname...

//LKED.SYSIN DD *

Object module decks and/or control statements

/ *

DD statements for the GO step, each beginning //GO.ddname ...
//GO.SYSIN DD *

Data for the GO step

/ *

Overriding Cataloged Procedures

Opverriding the EXEC Statement

The programmer may override any of the EXEC or DD statement
specifications in a cataloged procedure. These new specifications remain in
effect only for the duriation of the job step. For a detailed description of
overriding cataloged procedures, see the publication OS/VS1 JCL Reference
or OS/VS2 JCL.

The EXEC statement in a cataloged procedure is overridden by specifying the
changes and additions on the EXEC statement that invokes the cataloged
procedure. The stepname should be specified when overriding the EXEC
statement parameters.

For example, the REGION parameter can be increased as follows:
//LESTEP EXEC LKED,REGION.LKED=136K

The rest of the specifications on the EXEC statement of procedure LKED
remain in effect.

If the PARM field is to be overridden, all of the options specified in the
cataloged procedure are negated. That is, if XREF, LIST, or NCAL is desired

Job Control Language Summary 121

Overriding DD Statements

Adding DD Statements

when overriding the PARM field, they must be respecified. In the following
example, the OVLY option is added and the NCAL option is negated:

//LESTEP EXEC LKED,PARM.LKED='OVLY,XREF,LIST'

As a result, the XREF and LIST options are retained, but the NCAL option is
negated; when NCAL is negated, a SYSLIB DD statement must be added.

If you use the LKEDG procedure and want to execute the load module just
built, an efficient way is to specify the parameter LET in the LKED step and
invoke the LKEDG procedure with the following EXEC statement:

//stepname EXEC LKEDG, PARM. LKED="'XREF,LIST,NCAL,LET' ,‘
// COND.GO=(8,LT,LKED)

Any of the DD statements in the cataloged procedures can be overridden as
long as the overriding DD statements are in the same order as they appear in
the procedure. If any DD statements are not overridden, or overriding DD
statements are included but are not in sequence, the specifications in the
cataloged procedure are used.

Only those parameters specified on the overriding DD statement are affected;
the rest of the parameters remain as specified in the procedure. In the
following example, the output load module is to be placed in a permanent
library:

//LIBUPDTE EXEC LKED

//LKED.SYSLMOD DD DSNAME=LOADLIB(PAYROLL),DISP=OLD
//LKED.SYSIN DD DSNAME=OBJMOD,DISP=(OLD,DELETE)

Unit and volume information should be given if these data sets are not
cataloged.

As a result of the statements in the example, the LKED procedure is used to
process the object module in the OBJIMOD data set. The output load module
is stored in the data set LOADLIB with the name PAYROLL. The SPACE
parameter on the SYSLMOD DD statement and the other specifications in
the procedure remain in effect.

The DD statements for additional data sets can be supplied when using
cataloged procedures. These additional DD statements must follow any
overriding DD statements.

In the following example, the automatic library call mechanism is to be used
along with the LKEDG procedure:

//CPSTEP ‘EXEC LKEDG,PARM.LKED='XREF,LIST'
//LKED.SYSLMOD DD DSNAME=LOADLIB(TESTER),DISP=0LD, .

//1LKED.SYSLIB DD DSNAME=SYL1.PL1LIB,DISP=SHR
//LKED.SYSIN DD *

Object module decks and/or control statements

/%
//GO.SYSIN DD *

Data for execution step

/%

The NCAL option is negated, and a SYSLIB DD statement is added between
the overriding SYSLMOD DD statement and the SYSIN DD statement.

122 OS/VS Linkage Editor and Loader

LINKAGE EDITOR CONTROL STATEMENT

SUMMARY

General Format

Format Conventions

This chapter summarizes the linkage editor control statements. The
description of each statement includes:

« What the statement does

e The format of the statement

« Placement of the statement in the input
« Notes on use, if any

« One or more examples that include job control language statements, when
necessary.

The control statements are described in alphabetical order. Before using this
chapter, the user should be familiar with the following information on general
format, format conventions, and placement.

Note: If the control statement to specify hierarchy format (HIARCHY) is
specified for VS, the linkage editor prepares the load module accordingly.
However, hierarchy format is not supported by VS, and it is ignored during
execution of the load module.

Each linkage editor control statement specifies an operation and one or more
operands. Nothing must be written preceding the operation, which must begin
in or after columm 2. The operation must be separated from the operand by
one or more blanks.

A control statement can be continued on as many cards as necessary by
terminating the operand at a comma, and by placing a nonblank character in
column 72 of the card. Continuation must begin in column 16 of the next
card. A symbol cannot be split; that is, it cannot begin on one card and be
continued on the next.

The following conventions are used in the formats to describe the coding of
the linkage editor control statements:

« Boldface type indicates the exact characters to be entered. Such items must
be entered exactly as illustrated (in upper case, if applicable).

o Italic type specifies fields to be supplied by the user.

« Other punctuation (parentheses, commas, spaces, etc.) must be entered as
shown.

« Braces { } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

o Brackets [] indicate an optional field or parameter.

« An ellipsis (...) indicates that multiple entries of the type immediately
preceding the ellipsis are allowed.

« Items separated by a vertical bar (|) represent alternative items. No more
than one of the items may be selected.

Linkage Editor Control Statement Summary 123

Placement Information

Linkage editor control statements are placed before, between, or after
modules. They can be grouped, but they cannot be placed within a module.
However, specific placement restrictions may be imposed by the nature of the
functions being requested by the control statement. Any placement
restrictions are noted.

124 OS/VS Linkage Editor and Loader

ALIAS Statement

The ALIAS statement specifies additional names for the output library
member, and also can specify names of alternative entry points. Up to 16
names can be specified on one ALIAS statement, or separate ALIAS
statements for one library member. The names are entered in the directory of
the partitioned data set in addition to the member name.

Format: The format of the ALIAS statement is:

ALIAS §{ symbol | external name },...

symbol
specifies an alternate name for the load module. When the module is
executed, the main entry point is used as the starting point for execution.

external name
specifies a name that is defined as a control section name or entry name in
the output module. When the module is called for execution, execution
begins at the external name referred to.

Placement: An ALIAS statement can be placed before, between, or after
object modules or other control statements. It must precede a NAME
statement used to specify the member name, if one is present.

Notes:

« In an overlay program, an external name specified by the ALIAS statement
must be in the root segment.

« No more than 16 alias names can be assigned to one output module.

« Each alias specified for a load module is retained in the directory entry for
the module; the linkage editor does not delete an old alias. Therefore, each
alias that is specified must be unique; assigning the same alias to more than
one load module can cause incorrect module reference.

« Obsolete alias names should be deleted from the PDS directory using a
system utility such as IEHPROGM, to avoid future name conflicts.

« If the replace option is in effect for the output load module (that is, the
load module built in this link edit does or may replace an identically named
load module in the output module library), the replace option is in effect
for each ALIAS name for the load module as well as the primary name.

Example: An output module, ROUT1, is to be assigned two alternate entry
points, CODE1 and CODE2. In addition, calling modules have been written
using both ROUT1 and ROUTONE to refer to the output module. Rather
than correct the calling modules, an alternative library member name is also
assigned.

ALIAS CODE1,CODE2,ROUTONE
NAME ROUT1

Since CODE1 and CODE?2 are entry names in the output module, when these
names are used to call the module, execution begins at the point referred to.
The modules that call the output module with the name ROUTONE now
correctly refer to ROUT1 at its main entry point. The names CODE]1,
CODE2, and ROUTONE appear in the library directory along with ROUT1.

Linkage Editor Control Statement Summary 125

CHANGE Statement

The CHANGE statement causes an external symbol to be replaced by the
symbol in parentheses following the external symbol. The external symbol to
be changed can be a control section name, an entry name, or an external
reference. More than one such substitution may be specified in one
CHANGE statement.

Format: The format of the CHANGE statement is:

CHANGE | externalsymbol (newsymbol)
[, externalsymbol (newsymbol)]...

externalsymbol
is the control section name, entry name, or external reference that is to be
changed.

newsymbol
is the name to which the external symbol is to be changed.

Placement: The CHANGE control statement must be placed immediately
before either the module containing the external symbol to be changed, or the
INCLUDE control statement specifying the module. The scope of the
CHANGE statement is across the immediately following module (object
module or load module); the END record in the immediately following object
module or the End-of-Module indication in the immediately following load
module delimits the scope of the CHANGE statement.

Notes:

« External references from other modules to a changed control section name
or entry name remain unresolved unless further action is taken.

o If the symbol specified on the CHANGE statement is inadvertently
misspelled, the symbol will not be changed. Linkage editor output, such as
the cross-reference listing or module map, can be used to verify each
change.

Example 1: Two control sections in diffent modules have the name
TAXROUT. Since both modules are to be link edited together, one of the
control section names must be changed. The module to be changed is defined
with a DD statement named OBJMOD. The control section name could be
changed as follows:

//OBJIMOD DD DSNAME=TAXES , DISP=(OLD,KEEP), . .
//SYSLIN DD *

CHANGE TAXROUT(STATETAX)

INCLUDE OBJMOD

/%

As a result, the name of control section TAXROUT in module TAXES is
changed to STATETAX. Any references to TAXROUT from other modules
are not affected.

Example 2: A load module contains references to TAXROUT that must now
be changed to STATETAX. This module is defined with a DD statement

126 OS/VS Linkage Editor and Loader

named LOADMOD. The external references could be changed at the same
time the control section name is changed, as follows:

//0OBJMOD DD DSNAME=TAXES,DISP=(OLD,DELETE), ...
//LOADMOD DD DSNAME=LOADLIB,DISP=0LD, ...
//SYSLIN DD *

CHANGE TAXROUT(STATETAX)
INCLUDE OBJMOD

CHANGE TAXROUT(STATETAX)
INCLUDE LOADMOD(INVENTRY)

/*
As a result, control section name TAXROUT in module TAXES and external
reference TAXROUT in module INVENTRY are both changed to
STATETAX. Any references to TAXROUT from other modules are not
affected.

Linkage Editor Control Statement Summary 127

ENTRY Statement

The ENTRY statement specifies the symbolic name of the first instruction to
be executed when the program is called by its module name for execution. An
ENTRY statement should be used whenever a module is reprocessed by the
linkage editor. If more than one ENTRY statement is encountered, the first
statement specifies the main entry point; all other ENTRY statements are
ignored.

Format: The format of the ENTRY statement is:

ENTRY externalname

external name
is defined as either a control section name or an entry name in a linkage
editor input module.

Placement: An ENTRY statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME
statement for the module, if one is present.

Notes:

« In an overlay program, the first instruction to be executed must be in the
root segment.

o The external name specified must be the name of an instruction, not a data
name, if the module is to be executed.

Example: In the following example, the main entry point is INIT1:

//LOADLIB DD DSNMAE=LOADLIB,DISP=0LD, .
//SYSLIN DD *

ENTRY INIT1

INCLUDE LOADLIB(READ,WRITE)

ENTRY READIN
/*

INIT1 must be either a control section name or an entry name in the linkage
editor input. The entry point specification of READIN is ignored.

128 OS/VS Linkage Editor and Loader

EXPAND Statement

The EXPAND statement lengthens control sections or named common
sections by a specified number of bytes.

Format: The format of an EXPAND statement is

EXPAND name (xxxx)
[, name (xxxx)]...

name
is the symbolic name of a common section or control section whose length
is to be increased.

xxXX
is the decimal number of bytes to be added to the length of a common
section. Binary zeros will be added for an expanded control section. The
maximum is 4095 for each section indicated.

The EXPAND statement is followed by a message, IEW0740, that indicates
the number of bytes added to the control section and the offset, relative to
the start of the control section, at which the expansion begins. The effective
length of the expansion is given in hexadecimal and may be greater than the
specified length if, after the specified expansion, padding bytes must be added
for alignment of the next control section or named common section.

Placement: An EXPAND statement can be placed before, between, or after
other control statements or object modules. However, the statement must
follow the module containing the control or named common section to which
it refers. If the control section or named common section is entered as the
result of an INCLUDE statement, the EXPAND statement must follow the
INCLUDE statement.

Note: EXPAND should be used with caution so as not to increase the length
of a program beyond its own design limitations. For example, if space is
added to a control section beyond the range of its base register addressability,
that space is unusable.

Example: In the following example EXPAND statements add a 250-byte
patch area (initialized to zeros) at the end of control section CSECT1 and
increase the length of named common section COM1 by 400 bytes.

//LKED EXEC PGM=HEWL
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,4))
//SYSLMOD DD DSNAME=PDSX ,DISP=0OLD
//SYSLIN DD DSNAME=§ELOADSET ,DISP=(OLD, PASS),
// UNIT=SYSDA
// DD *

EXPAND CSECT1(250)

EXPAND COM1(400)

NAME MOD1(R)
/*

Linkage Editor Control Statement Summary 129

IDENTIFY Statement

The IDENTIFY statement specifies any data supplied by the user to be
entered into the CSECT Identification (IDR) records for a particular control
section. The statement can be used either to supply descriptive data for a
control section or to provide a means of associating system-supplied data with
executable code.

Format: The format of the IDENTIFY statement is:

IDENTIFY | csectname (‘data’)[,csectname (‘data’)]...

csectname
is the symbolic name of the control section to be identified.

data
specifies up to 40 EBCDIC characters of identifying information. The user
may supply any information desired for identificaionn purposes.

The rules of syntax for the operand field are:

1. No blanks or characters may appear between the left parenthesis and the
leading quote nor between the trailing quote and the right parenthesis.

2. The data field consists of from 1 to 40 characters; therefore, a null entry
must be represented, minimally, by a single blank.

3. Blanks may appear between the leading quote and the trailing quote. Each
blank counts as 1 character toward the 40 character limit.

4. A Single quote between the leading quote and the trailing quote is
represented by 2 consecutive quotes. The pair of quotes counts as 1
character toward the 40 character limit.

5. Any EBCDIC character may appear between the leading quote and the
trailing quote. Each character counts as 1 character toward the 40
character limit.

6. The IDENTIFY statement may be continued; however, a whole operand
must appear on a single card image and at least 1 whole operand must
appear on each card image of the continued statement.

7. If a leading quote is found, all characters are absorbed until a trailing quote
is found or the 40 character limit is exhausted.

8. Blanks may not appear between the CSECT name and the left parenthesis.

9. A blank following a left parenthesis terminates the operand field; a blank
following a comma that terminates an operand terminates the operand field
of that card image.

Placement: An IDENTIFY statement can be placed before, between, or after
other control statements or object modules. The IDENTIFY statement must
follow the module containing the control section to be identified or the
INCLUDE statement specifying the module.

130 OS/VS Linkage Editor and Loader

Example: In the following example, IDENTIFY statements are used to
identify the source level of a control section, a PTF application to a control
section, and the functions of several control sections.

//LKED EXEC PGM=HEWL

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA, SPACE=(TRK,(10,5))
//SYSLMOD DD DSNAME=LOADSET, DISP=OLD
//OLDMOD DD DSNAME=0OLD.LOADSET, DISP=OLD
//PTFMOD DD DSNAME=PTF .OBJECT, DISP=0LD
//SYSLIN DD *

(input object deck for a control section named FORT)

IDENTIFY FORT('LEVEL 03')
INCLUDE PTFMOD(CSECT4)
IDENTIFY CSECT4('PTF99999"')
INCLUDE OLDMOD(PROG1)
IDENTIFY CSECT1('I/0 ROUTINE'), X
CSECT2('SORT ROUTINE'), X
CSECT3('SCAN ROUTINE')
/*
Execution of this example produces IDR records containing the following
identification data:

» The name of the linkage editor that produced the load module, the linkage
editor version and modification level, and the date of the current linkage
editor processing of the module. This information is provided
automatically.

« User-supplied data describing the functions of several control sections in
the module, as indicated on the third IDENTIFY statement.

o If the language translator used supports IDR, the Identification records
produced by the linkage editor also contain the name of the translator that
produced the object module, its version and modification level, and the
data of compilation.

The IDR records created by the linkage editor can be referenced by using the
LISTIDR function of the service aid program HMBLIST for VS1 or
AMBLIST for VS2. For instructions on how to use HMBLIST, see OS/VS1
Service Aids. For instructions on how to use AMBLIST, see OS/VS2
System Programming Library: Service Aids.

Linkage Editor Control Statement Summary 131

INCLUDE Statement

.| INCLUDE | ddname [(membername]|,...])]

The INCLUDE statement specifies sequential data sets and/or libraries that
are to be sources of additional input for the linkage editor. INCLUDE
statements are processed in the order in which they appear in the input.
However, the sequence of data sets and modules within the output load
module does not necessarily follow the order of the INCLUDE statements.

Format: The format of the INCLUDE statement is:

[, ddname [(membername|,...1)11...

ddname
is the name of a DD statement that describes either a sequential or a
partitioned data set to be used as additional input to the linkage editor. For
a sequential data set, ddname is all that must be specified. For a partitioned
data set, at least one member name must also be specified.

membername
is the name of or an alias for a member of the library defined in the
specified DD statement. The membername must not be specified again on
the DD statement.

Placement: An INCLUDE statement can be placed before, between, or after
object modules or other control statements.

Note: A NAME statement in any data set specified in an INCLUDE
statement is invalid; the NAME statement is ignored. All other control
statements are processed.

Example 1: In the following example, an INCLUDE statement specifies two
data sets to be the input to the linkage editor:

//OBJIMOD DD DSNAME=§ §OBJECT ,DISP=(OLD,DELETE)
//LOADMOD DD DSNAME=LOADLIB,DISP=SHR, ...
//SYSLIN DD *

INCLUDE OBJMOD, LOADMOD(TESTMOD,READMOD)
/*

Note that a DD statement must be supplied for every ddname specified in an
INCLUDE statement.

Example 2: Two separate INCLUDE statements could have been used in the
preceding example, as follows:

INCLUDE OBJMOD
INCLUDE LOADMOD(TESTMOD,READMOD)

132 OS/VS Linkage Editor and Loader

INSERT Statement

The INSERT statement repositions a control section from its position in the
input sequence to a segment in an overlay structure. However, the sequence
of control sections within a segment is not necessarily the order of the
INSERT statements.

If a symbol specified in the operand field of an INSERT statement is not
present in the external symbol dictionary, it is entered as an external
reference. If the reference has not been resolved at the end of primary input
processing, the automatic library call mechanism attempts to resolve it.

Format: The format of the INSERT statement is:

INSERT csectname,...

csectname
is the name of the control section to be repositioned. A particular control
section can appear only once within a load module.

Placement: The INSERT statement must be placed in the input sequence
following the OVERLAY statement that specifies the origin of the segment in
which the control section is to be positioned. If the control section is to be
positioned in the root segment, the INSERT statement must be placed before
the first OVERLAY statement.

Note: Control sections that are positioned in a segment must contain all
address constants to be used during execution unless:

« The A-type address constants are located in a segment in the path.

. The V-type address constants used to pass control to another segment are
located in the path. If an exclusive reference is made, the V-type address
constant must be in a common segment.

o The V-type address constants used with the SEGLD and SEGWT macro
instructions are located in the segment.

Example: The following INSERT (and OVERLAY) statements specify the
overlay structure shown in Figure 49:

// EXEC PGM=HEWL,PARM='0OVLY, XREF,LIST'
//SYSLIN DD *

INSERT CSA

INSERT CSB

OVERLAY ALPHA
INSERT CSC,CSD
OVERLAY ALPHA
INSERT CSE

Linkage Editor Control Statement Summary 133

ALPHA

CS

o

Figure 49. Overlay Structure for INSERT Statement Example

134 OS/VS Linkage Editer and Loader

LIBRARY Statement

The LIBRARY statement can be used to specify:

« Additional automatic call libraries, which contain modules used to resolve
external references found in the program.

« Restricted no-call function: External references that are not to be resolved
by the automatic library call mechanism during the current linkage editor
job step.

« Never-call function: External references that are not to be resolved by the
automatic library call mechanism during any linkage editor job step.

Combinations of these functions can be written in the same LIBRARY
statement.

Format: The format of the LIBRARY statement is:

LIBRARY | {ddname(membernameé [,...]) |
(externalreferencel,...]) |
*(externalreference,...])},...

ddname
is the name of a DD statement that defines a library.

membername
is the name of or an alias for a member of the specified library. Only those
members specified are used to resolve references.

externalreference
is an external reference that may be unresolved after primary input
processing. The external reference is not to be resolved by automatic
library call. '

indicates that the external reference is never to be resolved; if the
*(asterisk) is missing, the reference is left unresolved only during the
current linkage editor run.

Placement: A LIBRARY statement can be placed before, between, or after
object modules or other control statements.

Notes:

« If the unresolved external symbol is not a member name in the library
specified, the external reference remains unresolved unless defined in
another input module.

« If the NCAL option is specified, the LIBRARY statement cannot be used
to specify additional call libraries.

e Members called by automatic library call are placed in the root segment of
an overlay program, unless they are repositioned with an INSERT
statement.

« Specifying an external reference for restricted no-call or never-call by
means of the LIBRARY statement prevents the external reference from
being resolved by automatic inclusion of the necessary module from an
automatic call library; it does not prevent the external reference from being
resolved if the module necessary to resolve the reference is specifically
included or is included as part of an input module.

Linkage Editor Control Statement Summary 135

Example: The following example shows all three uses of the LIBRARY

statement:
EXEC PGM=HEWL, PARM="'LET, XREF, LIST'
//TESTLIB DD DSNAME=TEST,DISP=SHR, ...
//SYSLIN DD *
LIBRARY TESTLIB(DATA,TIME),(FICACOMP),*(STATETAX)
Vi

As a result, members DATE and TIME from the additional library TEST are
used to resolve external references. FICACOMP and STATETAX are not
resolved; however, because the references remain unresolved, the LET option
must be specified on the EXEC statement if the module is to be marked
executable. In addition, STATETAX will not be resolved in any subsequent
reprocessing by the linkage editor.

136 OS/VS Linkage Editor and Loader

NAME Statement

The NAME statement specifies the name of the load module created from the
preceding input modules, and serves as a delimiter for input to the load
module. As a delimiter, the NAME statement allows multiple load module
processing in one linkage editor job step. The NAME statement can also
indicate that the load module replaces an identically named module in the
output module library.

Format: The format of the NAME statement is:

NAME membername [(R)]

membername
is the name to be assigned to the load module that is created from the
preceding input modules.

R)
indicates that this load module replaces an identically named module in the
output module library. If the module is not a replacement, the
parenthesized value (R) should not be specified.

Placement: The NAME statement is placed after the last input module or
control statement that is to be used for the output module.

Notes:
¢ Any ALIAS statement used must precede the NAME statement.

o A NAME statement found in a data set other than the primary input data
set is invalid. The statement is ignored.

Example: In the following example, two load modules, RDMOD and
WRTMOD, are produced by the linkage editor in one job step:

//SYSLMOD DD DSNAME=AUXMODS ,DISP=MOD, ...
//NEWMOD DD DSNAME=§& EWRTMOD , DISP=0LD
//SYSLIN DD DSNAME=§ ERDMOD , DISP=0LD

// DD *

NAME RDMOD(R)

INCLUDE NEWMOD

NAME WRTMOD
/* .
As a result, the first module is named RDMOD and replaces an identically
named module in the output module library AUXMODS; the second module
is named WRTMOD and is added to the library.

Linkage Editor Control Statement Summary 137

ORDER Statement

The ORDER statement indicates the sequence in which control sections or
named common areas appear in the output load module. The control sections
or named common areas appear in the sequence in which they are specified
on the ORDER statement. When multiple ORDER statements are used, their
sequence further determines the sequence of the control sections or named
common areas in the output load module; those named on the first statement
appear first, and so forth.

Format: The format of the ORDER statement is:

ORDER { common area name [(P)] | csectname [(P)1},...

common area name
is the name of the common area to be sequenced.

csectname
is the name of the control section to be sequenced.

(P)
indicates that the starting address of the control section or named common
area is to be on a page boundary within the load module. The control
sections or common areas are aligned on 4K page boundaries unless the
ALIGN?2 attribute is specified on the EXEC statement.

Placement: An ORDER statement can be placed before, between, or after
object modules or other control statements.

Notes:

« A control section or common area can be named on only one ORDER
statement. If the same name is used more than once, except when it is the
last operand on one ORDER statement and the first operand on the next,
the name is ignored, as is the balance of the control statement on which it
appears.

« The control sections and common areas named as operands can appear in
either the primary input or the automatic call library, or both.

« If a control section or named common area is changed by a CHANGE or
REPLACE control statement and sequencing is desired, specify the new
name on the ORDER statement.

Example: In this example, the control sections in the load module LDMOD
are arranged by the linkage editor according to the sequence specified on
ORDER statements. The page boundary alignments and the control section
sequence made as a result of these statements are shown in Figure 50.
Assume each control section is 1K in length.

138 OS/VS Linkage Editor and Loader

JCL and Control Statements Output Load Module

LDMOD
. 0K ROOTSEG
//SYSLMOD DD DSNAME=PVTLIB,DISP=0OLD, ...
//SYSLIN DD *
ORDER ROOTSEG(P),MAINSEG,SEG1,SEG2 MAINSEG
ORDER SEG3(P),ENTRY1
CHANGE PART1(FSTPART)
ORDER FSTPART, SESECTA, SESECTB(P) SEG1
INCLUDE SYSLMOD(LDMOD)
SEG2
4K
SEG3
ENTRY1
FSTPART
SESECTA
8K
SESECTB

Figure 50. Output Load Module for ORDER Statement Example

Note: The control section name PART1 is changed by a CHANGE statement
to FSTPART. The ORDER statement refers to the control section by its new
name.

Linkage Editor Control Statement Summary 139

OVERLAY Statement

The OVERLAY statement indicates either the beginning of an overlay
segment, or the beginning of an overlay region. Since a segment or a region is
not named, the programmer identifies it by giving its origin (or load point) a
symbolic name. This name is then used on a OVERLAY statement to signify
the start of a new segment or region.

Format: The format of the OVERLAY statement is:

OVERLAY | symbol [(REGION)]

symbol
is the symbolic name assigned to the origin of a segment. This symbol is
not related to external symbols in a module.

(REGION)
specifies the origin of a new region.

Placement: The OVERLAY statement must precede the first module of the
next segment, the INCLUDE statement specifying the first module of the
segment, or the INSERT statement specifying the control sections to be
positioned in the segment.

Notes:

» The OVLY option must be specified on the EXEC statement when
OVERLAY statements are to be used.

« The sequence of OVERLAY statements should reflect the order of the

segments in the overlay structure from top to bottom, left to right, and
region by region.

+ No OVERLAY statement should precede the root segment.

Example: The following OVERLAY and INSERT statements specify the
overlay structure in Figure 51.

// EXEC PGM=HEWL,PARM='OVLY,XREF,LIST'

//SYSLIN DD DSNAME=§&EOBJ, . ..
// DD *
INSERT CSA
OVERLAY ONE
INSERT CSB
OVERLAY TWO
INSERT CSC
OVERLAY TWO
INSERT CSD
OVERLAY ONE
INSERT CSE,CSF
OVERLAY THREE(REGION)
INSERT CSH
OVERLAY THREE
INSERT CSI

140 OS/VS Linkage Editor and Loader

REGION 1| T

CSA
]

l ONE]

CTB C_T_E

l ™0 C]SD CSF

CcSsC .

1 L

I I st

REGION 2 CSH cslI

1 1

Figure 51. Overlay Structure for OVERLAY Statement Example

Linkage Editor Control Statement Summary 141

PAGE Statement

The PAGE statement aligns a control section or named common area on a 4K
page boundary in the load module. If the ALIGN?2 attribute is specified on
the EXEC statement for the linkage editor job step, use of the PAGE
statement aligns the specified control sections or common areas on 2K page
boundaries within the load module. However, page boundary alignment in the
executing module can occur only when the operating system supervisor
includes support for fetch on a page boundary.

Format: The format of the PAGE statement is:

PAGE { common area name | csectname},...

common area name .
is the name of the common area to be aligned on a page boundary.

csectname
is the name of the control section to be aligned on a page boundary.

Placement: The PAGE statement can be placed before, between, or after
object modules or other control statements.

Notes:

« If a control section or named common area is changed by a CHANGE or
REPLACE control statement and page alignment is desired, specify the
new name in the PAGE statement.

« The control sections and common areas named as operands can appear in
either the primary input or the automatic call library, or both.

Example: In this example, the control sections in the load module LDMOD
are aligned on page boundaries as specified in the following PAGE statement:

PAGE ALIGN,BNDRY4K,EIGHTK

The job control statements and control statements as well as the output load
module are shown in Figure 52. Assume each control section is 3K in length.

142 OS/VS Linkage Editor and Loader

JCL AND CONTROL STATEMENTS

OUTPUT LOAD MODULE
//LKED EXEC PGM=HEWL , PARM=" ALIGNVZ oo
. LDMOD
. 0K
//SYSLMOD DD DSNAME=PVTLIB,DISP=0LD, ... ALIGN
//SYSLIN DD *
PAGE ALIGN, BNDRY4K,EIGHTK
INCLUDE SYSLMOD(LDMOD)
/*
Empty Space
Due to Boundary
Alignment
4K
BNDRY4K

Empty Space
Due to Boundary
Alignment

8K

EIGHTK

Figure 52. Output Load Module for PAGE Statement Example

Linkage Editor Control Statement Summary 143

REPLACE Statement

The REPLACE statement specifies one of the following:

« The replacement of one control section with another.

o The deletion of a control section.

o The deletion of an entry name.

A REPLACE statement can specify more than one function.

When a control section is replaced, all references within the input module to
the old control section are changed to the new control section. Any external
references to the old control section from other modules are unresolved unless
changed.

When a control section is deleted, the control section name is also deleted
from the external symbol dictionary unless references are made to the control
section from within the input module. If there are any such references, the
control section name is changed to an external reference. External references
from other modules to a deleted control section also remain unresolved.

When deleting an entry name, the entry name is changed to an external
reference if there are any references to it within the same input module.

Format: The format of the REPLACE statement is:

REPLACE | { csectname -1[(csectname -2)] | entryname}1,...

csectname
is the name of a control section. If only csectname-1 is used, the control
section is deleted; if csectname-2 is also used, the first control section is
replaced with the second.

entry name
is the entry name to be deleted.

Placement: The REPLACE statement must immediately precede either (1)
the module containing the control section or entry name to be replaced or
deleted, or (2) the INCLUDE statement specifying the module. The scope of
the REPLACE statement is across the immediately following module (object
module or load module). The END record in the immediately following object
module or the end-of-module indication in the load module terminates the
action of the REPLACE statement.

Notes:

« Unresolved external references are not deleted from the output module
even though a deleted control section contains the only reference to a
symbol.

« When some but not all control sections of a separately assembled module
are to be replaced, A-type address constants that refer to a deleted symbol
will be incorrectly resolved, unless the entry name is at the same
displacement from the origin in both the old and the new control sections.

« If the control section specified on the REPLACE statement is
inadvertently misspelled, the control section will not be replaced or
deleted. Linkage editor output, such as the cross-reference listing and
module map, can be used to verify each change.

Example: In the following example, assume that control section INT7 is in
member LOANCOMP and that control section INT8, which is to replace

144 OS/VS Linkage Editor and Loader

INT7, is in data set & & NEWINT. Also assume that control section PRIME
in member LOANCOMP is to be deleted.

//NEWMOD DD DSNAME=§ENEWINT, DISP=(OLD,DELETE)
//OLDMOD DD DSNAME=PVTLIB,DISP=0LD, ...
//SYSLIN DD *

ENTRY MAINENT

INCLUDE NEWMOD

REPLACE INT7(INT8),PRIME

INCLUDE OLDMOD(LOANCOMP)
/*
As aresult, INT7 is removed from the input module described by the
OLDMOD DD statement, and INT8 replaces INT7. All references to INT7 in
the input module now refer to INT8. Any references to INT7 from other
modules remain unresolved. Control section PRIME is deleted; the control
section name is also deleted from the external symbol dictionary if there are
no references to PRIME in LOANCOMP.

Linkage Editor Control Statement Summary 145

SETCODE Statement

The SETCODE statement assigns the specified authorization code to the
output load module. The authorization code is placed in the directory entry
for the output load module.

The format of the SETCODE statement is as follows:

SETCODE | AC(authorizationcode)

authorizationcode
is 1 to 8 decimal digits specifying a value from 0 to 255.

Placement: A SETCODE statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME
statement for the module if one is present.

Notes: The authorization code assigned by the SETCODE statement
overrides the authorization code assigned by the AC parameter in the PARM
field of the EXEC statement.

If more than one SETCODE statement is encountered in the link edit of a
load module, the last valid authorization code assigned is used.

The operand ‘AC()’ results in an authorization code of zero.

Example: In the following example, an authorization code of 1 is assigned to
the output load module MOD1.

//LKED EXEC PGM=HEWL
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA, SPACE=(TRK,(10,5))
//SYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSLIN DD DSNAME=§ §LOADSET , DISP=(OLD, PASS)
// UNIT=SYSDA
DD *

SETCODE AC(1)

NAME MOD1(R)
/*

146 OS/VS Linkage Editor and Loader

SETSSI Statement

The SETSSI statement specifies hexadecimal information to be placed in the
system status index of the directory entry for the output module.

Format: The format for the SETSSI statement is:

SETSSI XXXXXXXX

XXXXXXXX
represents eight hexadecimal characters (0 through 9 and A through F) to
be placed in the 4-byte system status index of the output module library
directory entry.

Placement: The SETSSI statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME
statement for the module, if one is present.

Note: A SETSSI statement must be provided whenever an IBM-supplied load
module is reprocessed by the linkage editor. If the statement is omitted, no
system status index information is present.

Linkage Editor Control Statement Summary 147

APPENDIX A: SAMPLE PROGRAMS

This appendix contains sample linkage editor programs. The material
presented for each program included a description of the program, the job
control language necessary for the linkage editor job step, linkage editor
control statements (if any), and the linkage editor output. The sample
programs are:

¢ Link editing a COBOL and a FORTRAN object module (COBFORT).

« Replacing one control section with another by using the REPLACE
statement (RPLACJOB).

+ Creating a multiple-region overlay program (REGNOVLY).

« Placing the control statements for the multiple region overlay program in a
partitioned data set, and using them (PARTDS).

The output for each program includes a cross-reference table and module
map, and a control statement listing and diagnostic messages, if any.

Sample Program COBFORT

Job Control Language

Sample program COBFORT link edits a COBOL object module and a
FORTRAN object module to form one load module. The source programs
were compiled in two steps previous to the linkage editor job step, and the
output from each compilation was placed in data set & & OBJMOD.

The job control language for the linkage editor job step of this sample
program is:

//LKED EXEC PGM=HEWL, PARM="XREF"'

//SYSUT1 DD DSNAME=§&&UT1,UNIT=SYSDA, SPACE=(TRK,
// (100,10))

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

// DD DSNAME=SYS1.FORTLIB,DISP=SHR
//SYSLMOD DD DSNAME=§ ELOADMD(GO) , UNIT=SYSDA,

// DISP=(NEW,PASS),SPACE=(TRK,

// (100,10,1))

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSNAME=§ EOBJMOD, DISP=(OLD,DELETE)
/*

Statement Explanation

EXEC Causes the execution of the linkage editor. The PARM field option

requests a cross-reference table and a module map to be produced on the
diagnostic output data set.

SYSUT1 Defines a temporary direct-access data set to be used as the intermediate
data set.
SYSLIB Defines the automatic call library; the call libraries for COBOL and

FORTRAN are concatenated; both are used to resolve external references.

SYSLMOD Defines a temporary data set to be used as the output module library; the
load module is assigned a member name of GO, and is passed to a
subsequent step for execution.

SYSPRINT Defines the diagnostic output data set, which is assigned to output class A.

SYSLIN Defines the primary input data set, & & OBJMOD, which contains both
input object modules; this data set was passed from a previous job step
and is to be deleted at the end of this job step.

Appendix A: Sample Programs 149

Linkage Editor Output

Figure 53 shows the linkage editor output for COBFORT. The listing header
indicates the options specified (XREF,LIST), and the SIZE option values
used in decimal (65536 for valuel and 6144 for value2). Because XREF is
specified, the heading CROSS REFERENCE TABLE precedes the rest of
the output.

Part 1 of Figure 53 shows the module map for COBFORT. MAINMOD and
FORTSU are the names of the input control sections. The rest of the control
sections are either from the COBOL automatic call library or from the
FORTRAN automatic call library. (They can be distinguished by the initial
three letters; ILB indicates a COBOL control section, IHC a FORTRAN
control section.) The origin and length (in hexadecimal) of each control
section follows the name.

To the right of each control section is a list of the entry names defined in each
control section. The location (in hexadecimal) of each entry name is also
given. For example, in control section IHCCOMH2 (the asterisk is not a part
of the name; it indicates that the control section is from the automatic call
library), entry name SEQDASD is defined at location 1728.

Part 2 of Figure 53 shows the cross reference table for COBFORT. The
table contains the location of any address constant that refers to a symbol
defined in another control section. The symbol that the address constant
refers to is also listed, along with the control section in which the symbol is
defined. For example, at location 250 in control section MAINMOD
(determined by using the module map; 250 falls between origin 00 and and
origin 330), an address constant refers to symbol ILBOSTPO, defined in
control section ILBOSTPO.

The entry address is 00 and the total length of the load module is S808.
Note that the length of the module is rounded up to a doubleword boundary.

The disposition message at the end of the output in Figure 53 indicates that
the load module GO has been added to the output module library. The library
did not contain any other module with that name. The four asterisks identify
the message.

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF
DEFAULT OPTIONS(S) USED - SIZE=(196608,65536)

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
IPCT30 00 360
TX652F 360 1E0
IHCFCOMH* 540 CD9)
IBCOM# 540 FDIOCS# SFC INTSWTCH 11FE
IHCCOMH2* 1220 434
SEQDASD 154A
IHDFDISP* 1658 626
IHCFCVTH* 1C80 119D
ADCON# 1C80 FCVAOUTP 1D2A FCVLOUTP 1DBA FCVZOUTP 1FOA
FCVIOUTP 22B8 FCVEOUTP 27BA FCVCOUTP 29D4 INT6SWCH 2CBB
IHCFINTH* 2E20 39E
ARITH# 2E20 ADJSWTCH 30D8
IHCFIOSH* 31c0 100E
FIOCS# 31co
IHCUOPT * 41D0 8
IHCTRCH * 41D8 2D4
THCERRM 41D8
IHCUATBL* 44B0 638

Figure 53 Part 1 of 2. Linkage Editor Output for Sample Program COBFORT

150 OS/VS Linkage Editor and Loader

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

1FO IHDFDISP IHDFDISP 1F4 TX652F TX652F
410 IBCOM# IHCFCOMH 5FC SEQDASD IHCCOMH2
1108 ADCON# IHCFCVTH 1100 FIOCS# IHCFIOSH
110C ARITH# IHCFINTH 112C ADJSWTCH IHCFINTH
1128 IHCUOPT IHCUOPT 1110 FCVEOUTP IHCFCVTH
1114 FCVLOUTP IHCFCVTH 1118 FCVIOUTP IHCFCVTH
111C FCVCOUTP IHCFCVTH 1120 FCVAOUTP IHCFCVTH
1124 FCVZOUTP IHCFCVTH 10E0 IHCCOMH2 IHCCOMH2
10E4 IHCERRM IHCTRCH 1479 IHCFCOMH IHCFCOMH
14AC IHCFCOMH IHCFCOMH 1268 IHCERRM IHCTRCH
1264 IBCOM# IHCFCOMH 2c7c IBCOM# IHCFCOMH
2c78 IHCERRM IHCTRCH 311c IBCOM# IHCFCOMH
3120 INTSWTCH IHCFCOMH 30D4 INT6SWCH IHCFCVTH
30D0 IHCUOPT IHCUOPT 3128 ADCON# IHCFCVTH
3124 FIOCS# IHCFIOSH 32F8 IHCERRM IHCTRCH
3FF8 IHCUATBL IHCUATBL 4004 IBCOM# IHCFCOMH
43D0 IBCOM# IHCFCOMH 43D4 ADCON# IHCFCVTH
43D8 FIOCS# IHCFIOSH

ENTRY ADDRESS 00

TOTAL LENGTH 4AE8

*¥32G0 DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

AUTHORIZATION CODE IS 0.

Figure 53 (Part 2 of 2). Linkage Editor Output for Sample Program COBFORT

Sample Program RPLACJOB

Sample program RPLACJOB shows the use of the REPLACE statement to
replace one control section with another. The source program for the new
control section (NEWMOD) is processed in a previous job step and passed to
the linkage editor job step. The control section (SUBONE) to be replaced is
in an existing load module. Figure 54 shows the linkage editor output for the
job step that created this load module. Note that the entry address is FO
which is the location of the entry point MAINMOD (specified on the ENTRY
control statement).

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST
DEFAULT OPTION(S) USED - SIZE=(196608,65536)

IEW0000 ENTRY MAINMOD
CROSS REFERENCE TABLE
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
SUBONE 0o EF
SUB1 00
MAINMOD FO 146
LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
11¢c SUBONE SUBONE
ENTRY ADDRESS FO
TOTAL LENGTH 238
*¥¥2GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET
AUTHORIZATION CODE IS 0.

Figure 54. Linkage Editor Output for Job Step that Created SUBONE

Appendix A: Sample Programs 151

Job Control Language

The job control language for the replacement job step of this sample program

182

//LKED
//SYSUT1
//INPUTX
//
//SYSPRINT
//SYSLIN
//

//

EXEC PGM=HEWL, PARM="'XREF, LIST"'

DD UNIT=SYSDA,SPACE=(TRK,(100,10))

DD DSNAME=LOADLIB,DISP=0LD,UNIT=SYSDA,
VOL=SER=SCRTCH

DD SYSOUT=A

DD DSNAME=§ §OBJMOD , DISP=(OLD,DELETE),
UNIT=SYSDA

DD *

Linkage Editor Control Statements

/ *
Statement
EXEC

SYSUT1

INPUTX
SYSLMOD

SYSPRINT
SYSLIN

Linkage Editor Control Statements

Explanation

Causes the execution of the linkage editor. The PARM field options
request a cross-reference table and a module map (XREF), and a control
statement listing (LIST) to be produced on the diagnostic output data set.

Defines a temporary direct-access data set to be used as the intermediate
data set. -

Defines a permanent data set, used later as additional linkage editor input.

Defines a permanent data set to be used as the output module library.
Note that it is the same data set that was described on the INPUTX DD
statement. The output load module is added to the data set, under the
member name GO.

Defines the diagnostic output data set, which is assigned to output class A.

Defines the primary input data set, & & OBJMOD, which contains the
object module for the replacement control section. This data set is
temporary and was passed from a previous job step; it is to be deleted at
the end of this job. This statement also concatenates the input stream to
the primary input data set. The input stream contains linkage editor
control statements that may be followed by a /* statement.

The input stream contains the linkage editor control statements that are

necessary for

the replacement of SUBONE with NEWMOD. The control

statements are:

ENTRY
REPLACE
INCLUDE

Statement
ENTRY
REPLACE

INCLUDE

Linkage Editor Output

MAINMOD
SUBONE (NEWMOD)
INPUTX(GO)

Explanation
Specifies that the entry point is to be MAINMOD.

Specifies that control section SUBONE in the module that follows the
REPLACE statement is to be replaced by control section NEWMOD.

Specifies additional input: member GO of the data set described on the
INPUTX DD statement. This library member contains the control section
to be replaced. Since this member name is identical to that specified on the
SYSLMOD DD statement, the output load module replaces the existing
library member.

Figure 55 shows the linkage editor output for sample program RPLACJOB.
The listing header indicates the options specified (XREF and LIST), and the
SIZE option values used (64436 for valuel and 6144 for value2).

152 OS/VS Linkage Editor and Loader

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST
DEFAULT OPTION(S) USED - SIZE=(196608,65536)

IEW0000 ENTRY MAINMOD
IEWO000 REPLACE SUBONE (NEWMOD)
IEW0000 INCLUDE INPUTX(GO)
CROSS REFERENCE TABLE
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
NEWMOD 00 F1
MAINMOD F8 146
LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
124 NEWMOD NEWMOD
ENTRY ADDRESS F8
TOTAL LENGTH 240
*E22GO NOW REPLACED IN DATA SET
AUTHORIZATION CODE IS 0.

Figure 55. Linkage Editor Output for Sample Program RPLACJOB

Because the LIST option is specified, a control statement listing is produced.
Each control statement is preceded by a special message number, IEW0000.
Because XREF is specified, the heading CROSS REFERENCE TABLE
precedes the rest of the output.

The module map shows that control section NEWMOD is now part of the
load module, and that control section SUBONE has been deleted. The new
entry address is F8, because NEWMOD is longer than SUBONE. The total
length of the load module is 240 bytes.

The cross reference table indicates that at location 124 in MAINMOD, an
address constant refers to symbol NEWMOD, defined in control section
NEWMOD. Note that before the replacement occurred, the address constant
in MAINMOD referred to SUBONE, defined in control section SUBONE
(Figure 54). When the REPLACE statement is used to replace a control
section, references to the old control section from within the same input
module are also changed.

The disposition message indicates that the output load module (GO) has been
added to the output module library.

Sample Program REGNOVLY

Sample program REGNOVLY creates a multiple-region overlay structure.
The structure produced is shown in Figure 56. In this program, some of the
references between control sections are:

CSA to CSE

CSB to CSE

CSB to CSD

CSD to CSC
The reference from CSB to CSE is a valid exclusive call because there is a
reference to CSE in the segment common to both CSB and CSE; the

reference from CSD to CSC is invalid because there is no reference to CSC in
the common segment.

The source programs for all the control sections were compiled in previous
job steps. All of the object modules were placed in the same data set, which
was passed to the linkage editor job step.

Appendix A: Sample Programs 153

REGION 1
CSA } Root Segment 1
J ,
Alpha
CSB Segment 2 CSE > Segment S
N i
Beta
CSC > Segment 3 CSD > Segment 4
—— — — — — — — - el— —— — — — ﬂl —— — — o— o—— —— —-—
REGION 2 Gamma
CSF Segment 6 CSG Segment 7

Figure 56. Overlay Tree for Multiple-Region Sample Program REGNOVLY

Job Control Language

The job control language for the linkage editor job step of this sample

program is:

//LKED
//SYSUT1
//
//SYSLIB
//SYSLMOD
//
//SYSPRINT
//SYSLIN
//

EXEC PGM=HEWL, PARM="'XREF,LIST,OVLY,LET'

DD DSNAME=§&UT1,UNIT=SYSDA, SPACE=(TRK,
(100,10))

DD DSNAME=SYS1.COBLIB,DISP=SHR

DD DSNAME=§&OVLYJIB(GO), UNIT=SYSDA,

DISP=(NEW,PASS),SPACE=(TRK,(100,10,1))

DD SYSOUT=A
DD DSNAME=§& §OBJMOD , DISP=(OLD,DELETE)
DD *

Linkage Editor Control statements

/ *
Statement
EXEC

SYSUT1

SYSLIB

154 OS/VS Linkage Editor and Loader

Explanation

Causes the execution of the linkage editor. The PARM field options
request a cross reference table and a module map (XREF), and a control
statement listing (LIST) to be produced on the diagnostic output data set.
The module is to be assigned the overlay attribute (OVLY), and marked
executable in spite of severity 2 errors (LET). The LET option is specified
to permit testing of the output module, even though an invalid exclusive
call is present. The XCAL option allows only valid exclusive calls.

Defines a temporary direct-access data set to be used as the intermediate
data set.

Defines the automatic call library (SYS1.COBLIB) to be used to resolve
external references. All control sections from this library are placed in the
root segment; they remain there unless they are repositioned.

Statement Explanation

SYSLMOD Defines a temporary data set to be used as the output module library; the
load module is assigned the member name GO and is passed to a
subsequent step for execution.

SYSPRINT Defines the diagnostic output data set, which is assigned to output class A.

SYSLIN Defines the primary input data set, & & OBJIMOD, which contains the
object modules for the overlay structure. This data set is temporary and
was passed from a previous job step; it is to be deleted at the end of this
job. This statement also concatenates the input stream to the primary
input data set. The input stream contains linkage editor control
statements, which must be delimited by a /* statement.

Linkage Editor Control Statements

The input stream contains the linkage editor control statements that structure
the overlay program. The control statements are:

INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERTCSB
OVERLAY BETA
INSERTCSC
OVERLAY BETA
INSERTCSD
OVERLAY ALPHA
INSERTCSE
OVERLAY GAMMA(REGION)
INSERTCSF
OVERLAY GAMMA
INSERTCSG

Appendix A: Sample Programs 155

Linkage Editor Output

Figure 57 shows the linkage editor output for sample program REGNOVLY.
The list header indicates the options specified (XREF, LIST, OVLY, and
LET), and the SIZE option values used (65536 for value and 6144 for
value2).

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST,OVLY,LET
DEFAULT OPTION(S) USED - SIZE=(196608,65536)

IEW0000 INSERT CSA
IEW0000 ENTRY CSA
IEW0000 OVERLAY ALPHA
IEW0000 INSERT CSB
IEW0000 OVERLAY BETA
IEW0000 INSERT CSC
1EWO000 OVERLAY BETA
IEW0000 INSERT CSD
IEW0000 OVERLAY ALPHA
IEW0000 INSERT CSE
IEW0000 OVERLAY GAMMA (REGION)
IEW0000 INSERT CSF
IEW0000 OVERLAY GAMMA
IEW0000 INSERT CSG
IEW0172 2 CSE
IEW0182 4 csc

CROSS REFERENCE TABLE
Root Segment 1:

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
$SEGTAB 00 34 1
csa 38 366 1
ILBODSPO* 3a0 6F8 1
ILBOSTPO* A98 35 1
ILBOSTP1 AAE
$ENTAB ADO 30 1
LOCATION REFERS TO SYMBOL 1IN CONTROL SECTION SEG. NO. , LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
2C0 ILBODSPO ILBODSPO 1 2c4 ILBOSTPO ILBOSTPO 1
2c8 CsG CSG 7 2cc CSE CSE 5
2D0 CSB CSB 2 2D4 ILBOSTP1 ILBOSTPO 1
Segment 2:
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
CSB BOO 360 2 '

$ENTAB E60 18 2

LOCATION REFERS TO SYMBOL 1IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
D54 ILBODSPO ILBODSPO 1 D50 ILBOSTPO ILBOSTPO 1

D58 CSE CSE 5 D60 ILBOSTP1 ILBOSTPO 1
D5C CsDh Csb 4
Segment 3:
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
csc E78 336 3 .

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
10cC ILBODSPO ILBODSPO 1 10c8 ILBOSTPO ILBOSTPO 1
10D0 ILBOSTP1 ILBOSTPO 1

Segment 4:
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
€sD E78 362 4

LOCATION REFERS TO SYMBOL 1IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
10cc ILBODSPO ILBODSPO 1 10Cc8 ILBOSTPO ILBOSTPO 1
i0D4 ILBOSTP1 ILBOSTPO 1 10D0 csc CsC 3

Figure 57 (Part 1 of 2). Linkage Editor Output for Sample Program REGNOVLY

156 OS/VS Linkage Editor and Loader

CROSS REFERENCE TABLE

Segment 5:
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
CSE BOO 336 5
LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
D54 ILBODSPO ILBODSPO 1 D50 ILBOSTPO ILBOSTPO 1
D58 ILBOSTP1 ILBOSTPO 1
Segment 6:
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
CSF 11E0 2FA 6
LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
1430 ILBOSTPO ILBOSTPO 1 1434 ILBOSTP1 ILBOSTPO 1
Segment 7:
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
CsG 11E0 336 7
LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.
1434 ILBODSPO ILBODSPO 1 1430 ILBOSTPO ILBOSTPO 1
1438 ILBOSTP1 ILBOSTPO 1
ENTRY ADDRESS 38
TOTAL LENGTH 1518
**%3GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

AUTHORIZATION CODE IS

0.

DIAGNOSTIC MESSAGE DIRECTORY

IEW0172 ERROR - EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED.
IEW0182 ERROR - INVALID EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED.

Figure 57 (Part 2 of 2). Linkage Editor Output for Sample Program REGNOVLY

Because the LIST option was specified, the control statement listing is
produced. Each control statement is preceded by a special message number,
IEW0000.

The control statement listing is followed by two diagnostic message numbers
(IEW0172 and IEW0182). The explanation of the messages and the
information following each message is given at the end of the output in the
diagnostic message directory.

The output for each segment contains a module map and a cross-reference
table. The segments are listed as they appear in the overlay structure, top to
bottom, left to right, and region by region. (Note that this is also the sequence
in which the OVERLAY and INSERT statements must be given.)

Within each segment, a module map lists the control sections in ascending
sequence according to their assigned origin. The origin, length, and segment
number is listed for each control section, along with any entry names and the
location where each entry name is defined. For example, the root segment has
five control sections: $SEGTAB, which is always the first control section in
the root segment; CSA, which is from the object module input; ILBODSPO
and ILBOSTPO, which are from the automatic call library and were not
repositioned; and $SENTAB, which, when present, is always the last control
section in any segment (as also in segment 2). One entry name is defined,
ILBOSTP1 at location AB6 in control section ILBOSTPQ.

The cross reference table for each segment contains all of the address
constants that refer to symbols defined in other control sections. The location
of the address constant is followed by the symbol referred to, the control
section in which the symbol is defined, and the segment in which the control
section is located. For example, in the root segment, an address constant at
location 298 refers to symbol CSG, which is defined in control section CSG

Appendix A: Sample Programs 157

in segment 7. Although the region is not given, the overlay tree in Figure 56
shows that segment 7 is in region 2.

At the end of the output for all the segments is the entry address and total
length. The entry address is 38, which is the origin of CSA, the specified entry
point. The total length given refers to main storage used, not device storage.
The length given, therefore, is that of the longest path. The longest path is
that formed by the root segment and segments 2, 4, and 7; the length given is
14DO.

However, if the given lengths of the control sections in each segment are
added, the result is 14D3. The discrepancy exists because the given lengths do
not include the padding bytes necessary to make control sections begin on a
doubleword address (multiple of 8). For example, in the root segment, the
length of $SEGTAB is 34; however, the origin of CSA which follows
$SEGTAB is 38 (decimal 56). Four additional bytes are needed so that the
origin of CSA is a multiple of 8.

The disposition message indicates that the load module GO has been added
to the output module library. The library did not contain any other module by
that name. The four asterisks identify the message.

The last item in the output for this sample program is the diagnostic message
directory. The directory contains the text for the message numbers listed after
the control statement listing. The directory must be correlated to the
information following the number to interpret the message.

For example, message IEW0172 is an error message which indicates that an
exclusive call was made from the segment number printed (2) following the
message number zo the symbol printed (CSE). The output for segment 2
indicates that this call is at location D68 in control section CSB, and the
symbol is defined in control section CSE in segment 5. This is the valid
exclusive call from CSB to CSE described earlier. (If XCAL were specified, a
warning message is issued instead of an error message.)

If an invalid exclusive call is detected, message IEW0182 appears as shown.
This is also an error message; it indicates that an invalid exclusive call was
made from segment 4 to symbol CSC. This call is at location 10CO0 in control
section CSD, and the symbol is defined in control section CSC in segment 3.
This is the invalid exclusive call from CSD to CSC, also described earlier.

158 OS/VS Linkage Editor and Loader

Sample Program PARTDS

Sample program PARTDS illustrates that linkage editor control statements
can be placed in a separate data set and then used as input. For convenience,
the control statements are those for sample progarm REGNOVLY, described
previously. These control statements are placed in a partitioned data set.
When the member that contains the control statements is referenced, the
linkage editor uses the control statements to produce the overlay structure
shown earlier in Figure 56.

Figure 58 shows the input statements for the IEBUPDTE utility program used
to place the control statements in a partitioned data set.

The source programs for all the control sections were compiled in previous
job steps. All the object modules were placed in the same data set, which was
passed to the linkage editor job step. The input modules are those used for
sample program REGNOVLY.

Job Control Language
The job control language for the overlay program job step of this sample
program is:
//LKED EXEC PGM=HEWL, PARM="'XREF,LIST,OVLY,LET'
//SYSUT1 DD DSNAME=§&UT1,UNIT=SYSDA,SPACE=(TRK,
// (100,10))
//OVLYCDS DD DSNAME=OVLYLIB,UNIT=SYSDA,
// VOL=SER=SCRTCH,DISP=0OLD
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//SYSLMOD DD DSNAME=§&EOVLYJIB(GO) ,UNIT=SYSDA,
// DISP=(NEW,PASS),SPACE=(TRK,(100,10,1))
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSNAME=§&&§0BJMOD,DISP=(OLD,DELETE)
// DD *
Linkage Editor Control Statements
/%
//PARTDS JOB ,SMITH,MSGLEVEL(2,0)
//CTLG EXEC PGM=IEBUPDTE, PARM=(NEW)
//SYSUT2 DD DSNAME=OVLYLIB,UNIT=2314,VOL=SER=DA028,DISP=NEW,
// SPACE=(TRK,(10,5,2)),DCB=(LRECL=80,BLKSIZE=80,RECFM=F)
//SYSPRINT DD SYSOUT=A
//SYSIN DD
./ ADD NAME=0OVLY, LEVEL=00, SOURCE=00, LIST=ALL
./ NUMBER NEW1=10, INCR=5
INSERT CSA
ENTRY CSA
OVERLAY ALPHA
INSERT CSB
OVERLAY BETA
INSERT CSC
OVERLAY BETA
INSERT CSD
OVERLAY ALPHA
INSERT CSE
OVERLAY GAMMA(REGION)
INSERT CSF
OVERLAY GAMMA
INSERT CSG
./ ENDUP
/¥

Figure 58. Input Statements for IEBUPDTE Utility Program

Appendix A: Sample Programs 159

Statement Explanation

EXEC Causes the execution of the linkage editor. The PARM field options
request a cross-reference table and a module map (XREF), and a
control statement listing (LIST) to be produced on the diagnostic
output data set. The output load module is to be assigned the overlay
attribute (OVLY), and is to be marked executable despite severity 2
errors (LET).

SYSUT1 Defines a temporary direct-access data set to be used as the
intermediate data set.

OVLYCDS) Defines a permanent data set to be used later as additional input; this
is the partitioned data set which was created by IEBUPDTE and
contains the control statements for structuring the overlay program.

SYSLIB Defines the automatic call library (SYS1.COBLIB) to be used to
i resolve external references. All control sections from this library are
placed in the root segment; they remain there unless they are
repositioned.

SYSLMOD Defines a temporary data set to be used as the output module library;
the load module is to be assigned the member name GO, and is
passed to a subsequent step for execution.

SYSPRINT Defines the diagnostic output data set, which is assigned to output
class A.
SYSLIN Defines the primary input data set, & & OBJMOD, which contains

the object modules for the overlay structure. This data set is
temporary and was passed from a previous job step; it is to be deleted
at the end of this job. This statement also concatenates the input
stream to the primary input data set. The input stream contains
linkage editor control statements that must be delimited by a /*
statement.

Linkage Editor Conirol Statements

Linkage Editor Output

The input stream contains an INCLUDE statement, as follows:
INCLUDE OVLYCDS(OVLY)

This statement causes the control statements to be read from the partitioned
data set described on the OVLYCDS DD statement. The member name of
the statements is OVLY, the same name used in the ADD statement for the
utility program.

The output for this sample program is identical to the output from the
REGNOVLY sample program, with one execption. The list of control
statements begins with the statement

IEW0000 INCLUD OVLYCDS(OVLY)

This statement is followed by a list of the control statements read from the
additional input data set specified in this INCLUDE statement. The rest of
the output is identical to that shown in Figure 57.

160 OS/VS Linkage Editor and Loader

APPENDIX B: INVOCATION OF THE LINKAGE
EDITOR

The linkage editor can be invoked by a problem program at execution time
through the use of one of the following macro instructions.

[symbol] | [LINK] EP= linkeditname
PARAM=(optionlist [,ddname list]),
VL=1

[symbol] | [ATTACH] | EP= linkeditname
PARAM=(optionlist [,ddname list 1),

VL=1
[symbol] | [LOAD] EP= linkeditname
[symbol] | [XCTL] EP= linkeditname

EP= linkeditname
specifies the symbolic name of the linkage editor. The entry point at which
execution is to begin is determined by the control program (from the
library directory entry).

PARAM=(optionlist [, ddname list 1)
specifies, as a sublist, address parameters to be passed from the problem
program to the linkage editor. The first fullword in the address parameter
list contains the address of the option and attribute list for the load module.
The second fullword contains the address of the ddname list. If standard
ddnames are to be used, this list may be omitted.

optionlist
specifies the address of a variable length list containing the options and
attributes. This address must be written even though no list is provided.

The option list must begin on a halfword boundary. The two high-order
bytes contain a count of the number of bytes in the remainder of the
list. If no options or attributes are specified, the count must be zero. The
option list is free form with each field separated by a comma. No blanks
or zeros should appear in the list.

ddnamelist
specifies the address of a variable length list containing alternative
ddnames for the data sets used during linkage editor processing. If
standard ddnames are used, this operand may be omitted.

The ddname list must begin on a halfword boundary. The two
high-order bytes contain a count of the number of bytes in the
remainder of the list. Each name of less than 8 bytes must be left
justified and padded with blanks. If an alternate ddname is omitted from
the list, the standard name will be assumed. If the name is omitted
within the list, the 8-byte entry must contain binary zeros. Names can
be omitted from the end by merely shortening the list.

Appendix B: Invocation of the Linkage Editor 161

The sequence of the 8-byte entries in the ddnamelist is as follows:

Entry Alternate Name For:

VL

1 SYSLIN
2 member name (the name under which the output load module is stored in the
SYSLMOD data set; this entry is used if the name is not specified on the
SYSLMOD DD statement or if there is no NAME control statement)
3 SYSLMOD
4 SYSLIB
5 not applicable
6 SYSPRINT
7 not applicable
8 SYSUT1
9-11 not applicable
12 SYSTERM
specifies that the sign bit is to be set to 1 in the last fullword of the address
parameter list.

When the linkage editor completes processing, a condition code is returned in
register 15 (see “Linkage Editor Return Code™).

162 OS/VS Linkage Editor and Loader

APPENDIX C: STORAGE REQUIREMENTS AND

CAPACITIES

Capacities

This appendix describes the record-processing capacities of the linkage editor,
the types of devices that can be used for the intermediate data set (SYSUT1),
and the amount of virtual storage that the linkage editor requires.

The minimum storage requirement and processing capacities for the linkage
editor program are described in Figure 59. To increase the capacity for
processing external symbol dictionary records, intermediate text records,
relocation dictionary records, and identification records, increase valuel
and/or value2 of the SIZE option. Output text record length can be increased
by increasing the SIZE option values, but in no case can the record length
ever exceed the track length for the device. The number of overlay segments
and regions that can be processed is not affected by increasing the storage
available.

Function Capacity
Virtual storage allocated (in bytes) 64K

Maximum number of entries in composite
external symbol dictionary (CESD) 558

Maximum number of intermediate test
records 372

Maximum number of relocation
dictionary (RLD) records 192

Maximum number of segments per
program 255

Maximum number of overlay regions
per program 4

Maximum blocking factor for input
object modules (number of 80-column
card images per physical record) 10!

Maximum blocking factor for SYSPRINT
output (number of 121-character logical records

per physical record) 101

Output text record length (in bytes):
On IBM 2314, 2319 Storage Facility 30722
On IBM 2305 Fixed Head Storage Facility 30722
On IBM 3330 Disk Storage Facility 30722
On IBM 3340 Disk Storage Facility 30722
On IBM 3344 Direct Access Storage Device 30722
On IBM 3350 Direct Access Storage 30722

1 From 74K to 9999K for valuel of the SIZE option, the blocking factor for input object modules and
SYSPRINT output is 40.

2 The maximum output text record length is achieved when value2 of the SIZE parameter is at least twice
the record length size. For example, on a 3330, 12288 byte records are written when value2 is at least 24576.

Figure 59. Linkage Editor Capacities for Minimal SIZE Values (64K,6K)

Appendix C: Storage Requirements and Capacities 163

For the composite external symbol dictionary, the number of entries
permitted can be computed by subtracting, from the maximum number given
in Figure 59, one entry for each of the following:

o A data definition name (ddname) specified in LIBRARY statements.
o A data definition name (ddname) specified in INCLUDE statements.
o An ALIAS statement.

» A symbol in REPLACE or CHANGE statements that are in the largest
group of such statements preceding a single object module in the input to
the linkage editor.

o The segment table (SEGTAB) in an overlay program.
e An entry table (ENTAB) in an overlay program.

To compute the number of intermediate text records that will be produced
during processing of either program, add one record for each group of x

bytes within each control section, where x is the record size for the
intermediate data set. The minimum value for x is 1024; a maximum is
chosen depending on the amount of storage available to the linkage editor and
the devices allocated for the intermediate and output data sets.

The number of text records that can be handled by a linkage editor program is
less than the maximums given in Figure 59 if the text of one or more control
sections is not in sequence by address in the input to the linkage editor.

There is no maximum limit to the number of CSECT Identification records
associated with a load module produced by the linkage editor. To determine
the number of bytes of identification data contained in a particular load
module, use the following formula:

SIZE = 269 + 16A + 31B + 2C + I(n + 6)

where:
A = the number of compilations or assemblies by a processor supporting
CSECT Identification that produced the object code for the module.

B = the number of pre-processor compiler compilations by a processor
supporting CSECT Identification that produced the object code for the
module.

C = the number of control sections in the module with END statements that
contain identification data.

I = the number of control sections in the module that contain user-supplied
data supplied during link editing by the optional IDENTIFY control
statement.

n = the average number of characters in the data specified by IDENTIFY
control statements.

Notes:

« The size computed by the formula includes space for recording up to 19
HMASPZAP modifications. When 75% of this space has been used, a new
251-byte record is created the next time the module is reprocessed by the
linkage editor.

o To determine the approximate number of records involved, divide the
computed size of the identification data by 256.

164 OS/VS Linkage Editor and Loader

Example: A module contains 100 control sections produced by 20 unique
compilations. Each control section is identified during link editing by 8
characters of user data specified by the IDENTIFY control statement. The
size of the identification data is computed as follows:

A=20
I=100
n=3_§

269 + 320 + 1400 = 1989 bytes

If the optional user data specified on the IDENTIFY control statements is
omitted, the size can be reduced considerably, as computed below:

269 + 320 = 589 bytes

If maximum number of downward calls made from a segment to other
segments lower in its path can never exceed 340. To compute the maximum
number of downward calls allowed, subtract 12 from the SYSLMOD record
size and then divide the difference by 12. Examples of maximum downward
calls are 84 for a SYSLMOD record size of 1024 bytes and 340 for a
SYSLMOD record size of 6144 bytes.

Intermediate Data Set

The intermediate data set (SYSUT1) is used by the linkage editor to hold
intermediate data records during processing. The linkage editor places
intermediate data in this data set when storage allocated for input data or
certain forms of out-of-sequence text is exhausted.

The following direct-access devices, if supported by the system, can be used
for this data set:

IBM 2314 Storage Facility

IBM 2319 Storage Facility

IBM 2305 Fixed Head Storage Facility

IBM 3330 Disk Storage Facility

IBM 3330-1 Disk Storage Facility

IBM 3340 Disk Storage Facility

IBM 3344 Direct Access Storage Device

IBM 3350 Direct Access Storage

Linkage Editor Storage Requirements
The linkage editor requires a minimum of 74K of storage for execution.

The linkage editor program is in overlay format and uses the overlay
supervisor. For VS1, the storage required by the overlay supervisor must be
added to the minimum real storage requirement for the linkage editor. The
storage requirement for the overlay supervisor is 512 bytes.

The storage requirement given above is for VS1 and includes the storage
required by the access method modules used by the linkage editor. The
linkage editor uses the basic sequential and basic partitioned access methods
(BSAM and BPAM, respectively).

Since the overlay supervisor is in the link pack area in VS2, the storage
requirements for the overlay supervisor should not be included when
determining the size of the editor’s region.

Appendix C: Storage Requirements and Capacities 165

PART 2. LOADER

The Loader is a processing program. It combines basic editing and loading
functions of the linkage editor and program fetch in one job step. Therefore,
the load function is equivalent to the link edit-go function. The loader can
be used for compile-load and load jobs.

The loader will load object modules produced by a language processor and
load modules produced by the linkage editor into virtual storage for
execution. Optionally, it will search a call library (SYSLIB) or a resident link
pack area, or both, to resolve external references. The loader does not
produce load modules for program libraries.

The functional characteristics, compatibility and restrictions, performance
considerations, and storage considerations of the loader are described in the
following sections.

Functional Characteristics

The loader can be used with VS1 and VS2. The loader is re-enterable and,
therefore, can reside in the resident link pack area.

The loader combines the following basic functions of the linkage editor and
program fetch:

1. Resolution of external references between program modules.

2. Optional inclusion of modules from a call library (SYSLIB) or from a link
pack area, or from both (Figures 60 and 61). (Inclusion of modules from a
call library or the link pack area is performed, if requested, when external
references remain unresolved after processing the primary input to the
loader. If both are requested, the link pack area is searched first.)

3. Automatic deletion of duplicate copies of program modules (Figure 62).
(The first copy is loaded and all succeeding requests use that copy.)

4. Relocation of all address constants so that control may be passed directly
to the assigned entry point in virtual storage.

The diagnostics produced by the loader are similar to those of the linkage
editor.

Part 2. Loader 167

Object and/or
Load Modules

A

B
C

SYSLIN

Loader l —

[

Object or
Load Modules

QmmY

QMg QO w >

Virtual Storage

SYSLIB — called automatically when references

were unresolved at the end of input

from SYSLIN.

Figure 60. Loader Processing—SYSLIB Resolution

Object and/or
Load Modules

A

SYSLIN

M

Object or Ve
Load Modules 7

D

E
F
H

Ve

Ve
Ve
Ve

SYSLIB — Called automatically when
references remain unresolved

at the end of input from

SYSLIN and after searching

the link pack area.

User’s Region

Virtual Storage

Figure 61. Loader Processing—Link Pack Area and SYSLIB Resolution

References made in B to
D, E, F, and G are
resolved to the link
pack area.

Modules in link pack
area must be
re-enterable.

168 OS/VS Linkage Editor and Loader

Object and/or -
Load Modules L~
e

7
Id

e ———

The first copy is

TOwm»Uom

SYSLIN

loaded

Y
e'
2
N
Y
¥
© » T

Virtual Storage

Figure 62. Loader Processing—Automatic Editing

Compatibility and Restrictions

Time Sharing Option (TSO)

The loader accepts the same basic input as the linkage editor:

1. All object modules that can be processed by the linkage editor can be input
to the loader.

2. All load modules produced by the linkage editor can be input to the loader
(except load modules edited with the NE option).

The loader supports the following linkage editor options: MAP, LET, NCAL,
SIZE, and TERM. All other linkage editor options and attributes are not
supported, but, if used, they will not be considered as errors. A message will
be listed on SYSLOUT indicating that they are not supported. The supported
options are specified in the PARM field of the EXEC statement, or with the
LINK, ATTACH, LOAD, or XCTL macro instruction. In addition to the
supported linkage editor options, the loader provides several other options.
All loader options are described under “EXEC Statement” in the section
“Using the Loader.”

The loader does not process linkage editor control statements (for example,
INCLUDE, NAME, OVERLAY, etc.). If they are used, they will not be
treated as errors and a message will be listed on SYSLOUT indicating that the
control statements are not supported.

The loader and the linkage editor are bound by the same input conventions.
(These conventions are discussed in Part 1 of this publication.) In addition,
the loader can accept load modules in the SYSLIN data set and object
modules from a data area in virtual storage.

The loader does not use auxiliary storage space for work areas; that is, there
is no loader function corresponding to the linkage editor’s creation of
intermediate work data sets or output load modules.

When the loader is used under TSO (VS2 only), it is invoked by the loader
prompter, a program that acts as an interface between the user and the
operating system and the loader. Under TSO, execution of the loader and
definition of the data sets used by the loader are described to the system
through use of the LOADGO command that causes the prompter to be
executed. Operands of the LOADGO command can also be used to specify
the loader options a job requires.

Complete procedures for using the LOADGO command to load and execute
an object module are given in the VS2 TSO Terminal User’s Guide.

Part 2. Loader 169

Processing Object Modules in Virtual Storage

Loaded Program Restrictions

The loader can act as an interface with a compiler that has the ability to
construct a data area of one or more object modules in virtual storage as an
alternative to a data set on a secondary storage volume (such as a tape or
disk). Such a compiler passes the loader a description of the internal data
area, which the loader then processes as primary input. This internal data area
replaces external SYSLIN data set input to the loader.

Instead of placing text records for the object module in the internal data area,
the compiler can pass pointers to preloaded text. The loader can then perform
its relocation and linkage functions on the preloaded text itself; text is not
moved during processing.

‘»

Any loaded program that issues an XCTL macro instruction or an IDENTIFY
macro instruction in a VS1 environment will not execute properly. It is
recommended that any such program be processed by the linkage editor.

If an IDENTIFY macro instruction is issued by the loaded program,
IDENTIFY returns a ‘OC’ code in register 15. This code means that the entry
point address is not within an eligible load module and that the entry point
was not added.

In a VS1 environment, any data set opened by a loaded program should be
closed by the program before execution is complete.

170 OS/VS Linkage Editor and Loader

USING THE LOADER

Input for the Loader

EXEC Statement

This section discusses how to prepare an input deck for the loader and how to
invoke the loader; it also describes the output from the loader.

The input deck for the loader must contain job control language statements
for the loader and, optionally, for the loaded program (Figure 63).

//name JOB parameters (optional)
//name EXEC PGM=LOADER , PARM=(parameters)
//SYSLIN DD parameters)
//SYSLIB DD parameters (optional)
//SYSLOUT DD parameters (optional)
//SYSTERM DD parameters (optional)
// (optional DD statements and data

// required for loaded program)

Figure 63. Input Deck for the Loader—Basic Format

Only the EXEC statement and the SYSLIN DD statement are required for a
loader step. The JOB statement is required if the loader is the first step in the
job.

The EXEC statement is used to call the loader and to specify options for the
loader and for the loaded program. The loader is called by specifying
PGM=IEWLDRGO or PGM=LOADER (see “Invoking the Loader”).
Loader and loaded program options are specified in the PARM field of the
EXEC statement. The PARM field must have the following format:

JPARM=* [loaderoption [,...][/programoption],...]]’

Note that the loaded program options, if any, must be separated from the
loader options by a slash (/). If there are no loader options, the program
options must begin with a slash. The entire PARM field may be omitted if
there are no loader or loaded program options.

Parameters must be enclosed in single quotes when special characters (/ and
=) are used.

The loader options are:

MAP
The loader produces a map of the loaded program that lists external names
and their absolute storage addresses on the SYSLOUT data set. (If the
SYSLOUT DD statement is not used in the input deck, this option is
ignored.) The module map is described in “Loader Output” in this section.

NOMAP
A map is not produced.

RES
An automatic search of the link pack area queue is to be made. This search
is always made after processing the primary input (SYSLIN), and before
searching the SYSLIB data set. When this option is specified, the CALL
option is automatically set.

Using the Loader 171

NORES
No automatic search of the link pack area queue is to be made.

CALL
An automatic search of the SYSLIB data set is to be made. (If the SYSLIB
DD statement is not included in the input deck, this option is ignored.)

NOCALL | NCAL
An automatic search of the SYSLIB data set will not be made. When this
option is specified, the NORES option is automatically set.

LET
The loader will try to execute the object program even though a severity 2
error condition is fgund. (A severity 2 error condition is one that could
make execution of the loaded program impossible.)

NOLET
The loader will not try to execute the loaded program if a severity 2 error
condition is found.

SIZE=size v
specifies the size, in bytes, of dynamic virtual storage that can be used by
the loader (see Appendix F).

EP=name
specifies the external name to be assigned as the entry point of the loaded
program. This parameter must be specified if the entry point of the loaded
program is in an input load module. For FORTRAN, ALGOL, and PL/I,
these entry points must be MAIN, IHIFSAIN, and IHENTRY,
respectively, unless changed by compiler options.

NAME=name
specifies the name to be used to identify the loaded program to the system.
If this parameter is not used, the loaded program will be named **GO.

PRINT
Informational and diagnostic messages are produced on the SYSLOUT
data set.

NOPRINT
Informational and diagnostic messages are not produced on the SYSLOUT
data set. SYSLOUT is not opened.

TERM
Numbered diagnostic messages are to be sent to the SYSTERM data set.
Although intended to be used when operating under the Time Sharing
Option (TSO), the SYSTERM data set can be used to replace or
supplement the SYSLOUT data set at any time. (If the SYSTERM DD
statement is not included in the input deck, this option is ignored.)

NOTERM
Numbered diagnostic messages are not to be sent to the SYSTERM data
set.

The default options are: NOMAP, RES, CALL, NOLET, SIZE=100K,
PRINT, NAME=**GO and NOTERM. For VS1, the default options
NOMAP, RES, CALL, NOLET, SIZE=100K, and PRINT may be changed
during system generation by using the LOADER macro instruction.

172 OS/VS Linkage Editor and Loader

DD Statements

SYSLIN DD Statement

The following are examples of the EXEC statement. In these examples, X
and Y are parameters required by the loaded program.

//LOAD EXEC PGM=LOADER

//LOAD EXEC PGM=HEWLDRGO, PARM='MAP,

// EP=FIRST/X,Y'

//LOAD EXEC PGM=LOADER,PARM='/X,Y'

//LOAD EXEC PGM=LOADER, PARM=NOPRINT
//LOAD EXEC PGM=LOADER,PARM=(MAP,LET)
//LOAD EXEC PGM=LOADER, PARM='NAME=NEWPROG,
// TERM, NOPRINT'

For further details in coding the EXEC statement refer to OS/VS1 JCL
Reference and OS/VS2 JCL.

The loader uses four DD statements named SYSLIN, SYSLIB, SYSLOUT,
and SYSTERM. (For VS1, these ddnames can be changed during system
generation with the LOADER macro instruction.) The SYSLIN DD
statement must be used in every loader job. The other three are optional.

The following considerations apply to the DCB parameter of SYSLIN,
SYSLIB, and SYSLOUT.

« For better performance, BLKSIZE and BUFNO can be specified.
« If BUFNO is omitted, BUFNO=2 is assumed.

« Any value given to BUFNO is assumed for NCP (number of channel
programs).

« If RECFM=U is specified, BUFNO=2 is assumed, anq BLKSIZE and
LRECL are ignored.

« RECFM=V is not accepted.

« RECFM=FBSA is always assumed for SYSLOUT.

« If RECFM is omitted, RECFM=F is assumed for SYSLIN and SYSLIB.
o If BLKSIZE is omitted, the value given to LRECL is assumed.

« LRECL=121 is assumed for SYSLOUT unless the loader is operating
under the Time Sharing Option (TSO), when LRECL =81 is assumed.

« If LRECL is omitted, LRECL =80 is assumed for SYSLIN and SYSLIB.

« If OPTCD=C is used to specify chained scheduling, an additional 2K
(2048 bytes) of virtual storage is needed in the user’s region if the
necessary data management routines are not resident.

Note: The SYSTERM data set will always consist of unblocked 81-character
records with BUFNO=2 and RECFM=FSA. Because these values are fixed,
the DCB parameter need not be used.

In addition to the DD statements used by the loader, any DD statements and
data required by the loaded program must be included in the input deck.

The SYSLIN DD statement defines the input data for the loader. This input
can be either object modules produced by a language translator, or load
modules produced by the linkage editor, or both. The data sets defined by the
SYSLIN DD statement can be either sequential data sets or members of a
partitioned data set, or both. The DSNAME parameter for a partitioned data

Using the Loader 173

SYSLIB DD Statement

set must indicate the member name, that is,
DSNAME=dsname(membername). Concatenation can be used to include
more than one module in SYSLIN.

The following are examples of the SYSLIN DD statement. The first example
defines a member of a previously cataloged partitioned data set:

//SYSLIN DD DSNAME=OUTPUT.FORT(MOD12),

// DISP=OLD,DCB=BLKSIZE=3200

The second example defines a sequential data set on magnetic tape:
//SYSLIN DD DSNAME=PROG15, UNIT=2400,DISP=(OLD,
// KEEP), VOLUME=(PRIVATE,RETAIN,

// SER=MCS167)

The third example defines a data set which was the output of a previous step
in the same job:

//SYSLIN DD DSNAME=* . COBOL. SYSLIN,DISP=(OLD,
// DELETE)

The fourth example shows the concatenation of three data sets. The first two
data sets are members of different partitioned data sets; the first is an object
module and the second is a load module. The third data set is in the input
stream following a SYSLIN DD statement (see ‘“‘Loaded Program Data” in
this section).

//SYSLIN DD DSNAME=PGMLIB.SET1(RFS1),DISP=0OLD,
// DCB=(BLKSIZE=3200,RECFM=FB)

// DD DSNAME=PGMLIB.SET2(ABCS5),DISP=0LD,
// DCB=RECFM=U

// DD DDNAME=SYSIN

The SYSLIB data set contains IBM-supplied or user-written library routines
to be included in the loaded program. The data set is searched when
unresolved references remain after processing SYSLIN and optionally
searching the link pack area.

The SYSLIB data set is used to resolve an external reference when the
following conditions exist: the external reference must be (1) a member name
or an alias of a module in the data set, and (2) defined as an external name in
the external symbol dictionary of the module with that name. If the
unresolved external reference is a member name or an alias in the library, but
is not an external name in that member, the member is processed but the
external reference remains unresolved unless subsequently defined.

The data set defined by the SYSLIB DD statement must be a partitioned data
set that contains either object modules or load modules, but not both.
Concatenation may be used to include more partitioned data sets in SYSLIB.
All concatenated data sets must contain the same type of modules (object or
load).

The following are examples of the SYSLIB DD statement. The first example
defines a cataloged partitioned data set that can be shared by other steps:

//SYSLIB DD DSNAME=SYS1.ALGLIB,DISP=SHR
The second example shows the concatenation of two data sets:
//SYSLIB DD DSNAME=SYS1.PL1LIB,DISP=SHR
// DD DSNAME=LIBMOD .MATH, DISP=0OLD

174 OS/VS Linkage Editor and Loader

SYSLOUT DD Statement

SYSTERM DD Statement

Loaded Program Data

The SYSLOUT DD statement is used for error and warning messages and for
an optional map of external references (see ‘“‘Loader Output” in this section).
The data set defined by this DD statement must be a sequential data set. The
DCB parameter can be used to specify the blocking factor (BLKSIZE) of this
data set. For better performance, the number of buffers (BUFNO) to be
allocated to SYSLOUT can also be specified.

The following are examples of the SYSLOUT DD statement. The first
example specifies the system output unit:

//SYSLOUT DD SYSOUT=A

The second example defines a sequential data set on a 1443 printer:
//SYSLOUT DD UNIT=1443,DCB=(BLKSIZE=121,

// BUFNO=4)

The SYSTERM DD statement defines a data set that is used for numbered
diagnostic messages only. When the loader is being used under the Time
Sharing Option (TSO) (VS2 only) of the operating system, the SYSTERM
DD statement defines the terminal output data set. However, SYSTERM can
also be used at any time to replace or supplement the SYSLOUT data set.
Because the SYSTERM data set is not opened unless the loader must issue a
diagnostic message, using SYSTERM instead of SYSLOUT can reduce loader
processing time.

When the SYSTERM data set replaces the SYSLOUT data set, the numbered
messages in the SYSTERM data set are the only diagnostic output; when
SYSTERM supplements the SYSLOUT data set, the numbered messages
appear in both data sets, and optional diagnostic and informational output,
such as a list of options or a module map, can be obtained on SYSLOUT.

The DCB parmeters for SYSTERM are fixed and need not be specified. The
SYSTERM data set always consists of unblocked 81-character records with
BUFNO=2 and RECFM=FSA.

The following example shows the SYSTERM DD statement when used to
specify the system output unit:
//SYSTERM DD SYSOUT=A

Loaded program data and loader data can both be specified in the input
reader in VS1 and VS2. Loaded program data can be defined by a DD
statement following the loader data.

Figure 64 shows the loading of a previously compiled FORTRAN problem
program. The program to be loaded (loader data) follows the SYSLIN DD
statement. The loaded program data follows the FTOSF001 DD statement.

Using the Loader 175

Invoking The Loader

//LOAD JOB MSGLEVEL=1

//LDR EXEC PGM=LOADER, PARM=MAP
//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
//SYSLOUT DD SYSOUT=A
//FT06F001 DD SYSOUT=A
//SYSLIN DD *
Loader data
/*
//FTO5F001 DD *
Loaded program data
/*

Figure 64. Loader and Loaded Program Data in V§1 or VS2 Input Stream

The loader can be referred to by either its program name, IEWLDRGO, or its
alias, LOADER. The loader can be invoked through the EXEC statement, as
described in “Input for the Loader,” or through one of the following macro
instructions.

[symbol] | LINK EP= loadername,
PARAM=(optionlist [, ddname list}),
VL=1

[symbol] | ATTACH EP= loadername ,

PARAM=(optionlist [, ddname list]),

VL=1
[symbol] | LOAD EP= loadername
[symbol] | XCTL EP= loadername

EP= loadername
specifies the symbolic name of the loader. The entry point at which
execution is to begin is determined by the control program from the library
directory entry.

PARAM=(optionlist [, ddname list])
specifies, as a sublist, address parameters to be passed to the loader. The
first fullword in the address parameter list contains the address of the
option list for the loader and/or loaded program. The second fullword
contains the address of the ddname list. If standard ddnames are to be
used, this list may be omitted.

option list
specifies the address of a variable length list containing the loader and
loaded program options. This address must be written even though no
list is provided.

The option list must begin on a halfword boundary. The two high-order
bytes contain a count of the number of bytes in the remainder of the
list. If no options are specified, the count must be zero.

176 OS/VS Linkage Editor and Loader

The option list is free form, with the loader and loaded program options
separated by a slash (/), and with each option separated by a comma.
No blanks or zeros should appear in the list.

ddname list
specifies the address of a variable length list containing alternative
ddnames for the data sets used during loader processing. If the standard
ddnames are used, this operand may be omitted.

The format of the ddname list is identical to the format of the ddname
list for invoking the linkage editor; the 8-byte entries in the list are as

follows:
Entry Alternate Name for:
1 SYSLIN
2 not applicable
3 not applicable
4 SYSLIB
5 not applicable
6 SYSLOUT
7-11 not applicable
12 SYSTERM

VL
specifies that the sign bit is to be set to 1 in the last fullword of the address
parameter list.

Figure 65 shows an Assembler language program that uses the LINK macro
instruction to refer to the loader.

SAVE (14,12) initialize-save
. registers and point
. to new save area

LA 13,SAVEAREA

LINK EP=LOADER, PARAM=(PARM) ,VL=1

L 13,4(13)

RETURN (14,12),T

DS OH

PARM DC AL2(LENGTH) length of options
OPTIONS DC C'NOPRINT,CALL/X,Y,Z' loader and loaded
LENGTH EQU *-OPTIONS program options
SAVEAREA DS 18F Save area

END

Figure 65. Using the LINK Macro Instruction to Refer to the Loader

If desired, the loader may be used to process a program but not execute it. To
invoke just the portion of the loader that processes input data, specify either
the name HEWLOAD or the name HEWLOADR with a LOAD and CALL
macro instruction.

Using the Loader 177

HEWLOAD, which is used with VS2 only, will both load and identify the
program. HEWLOAD returns the address of an 8-character name in register
1. This name can be used with an ATTACH, LINK, LOAD, or XCTL macro
instruction to invoke the loaded program. A user program that is going to
attach a loaded program, should avoid specifying SZERO=NO in its
ATTACH macro. If SZERO=NO must be specified, the user program should
issue a LOAD for the loaded program before performing the ATTACH and a
DELETE for the loaded program after the ATTACH.

HEWLOADR, which can be used with VS1 or VS2, will load the program but
will not identify it. HEWLOADR returns the entry point of the loaded
program in register 0. Register 1 points to two full words: the first points to
the begining of storage occupied by the loaded program; the second contains
the size of the loaded program. This location and size can then be used in a
FREEMAIN macro instruction to free the storage occupied by the loaded
program when it is no longer needed.

Figure 66 shows an Assembler language program that uses the LOAD and
CALL macro instructions to refer to HEWLOADR. Figure 67 shows an
Assembler language program that uses the LOAD and CALL macro
instructions to refer to HEWLOAD.

For further information on the use of these macro instructions, refer to
OS/VS1 Supervisor Services and Macro Instructions or OS/VS2
Supervisor Services and Macro Instructions.

178 OS/VS Linkage Editor and Loader

FREE

PARM1
OPTIONS1
LENGTH1

PARM2
OPTIONS2
LENGTH2
SAVEAREA

SAVE (14,12),T

ST 13, SAVEAREA+4
LA 13, SAVEAREA
LOAD EP=HEWLOADR

LR 15,0

CALL (15),(PARM1),VL
LR 7,15

LR 5,0

LR 6,1

DELETE EP=HEWLOADR

CH 7,=H'4"

BH FREE

LR 15,5

CALL (15),(PARM2),VL
L 0,4(6)

L 1,0(6)

FREEMAIN R,LV=(0),A=(1)

.

L 13,4(13)
RETURN (14,12),T
DS OH)

DC AL2(LENGTH1)
DC C'NOPRINT,CALL'
EQU *-OPTIONS1

DS OH .

DC AL2(LENGTH2)
DC C'X,Y,Z'

EQU *-OPTIONS2

DS 18F

END

initialize-save registers and
point to new save area

load the loader
get its entry point address
invoke the loader

save return code

save entry to loaded program
save pointer to list containing
start address and length

delete loader

verify successful loading
negative branch

loading successful-get entry
point address for CALL

invoke program

get length into register O
get start address
delete loaded program

length of loader options
loader options

length of loaded program options
loaded program options

save area

Figure 66. Using the LOAD and CALL Macro Instructions to Refer to HEWLOADR (Loading Without Identification)

Using the Loader 179

PARM1
OPTIONS1
LENGTH1

PARM2
OPTIONS2
LENGTH2
SAVEAREA
PGMNAM

LOAD
LR
CALL
LR
MVC
DELETE
CH

BH
LINK

L
RETURN

END

(14,12),T

13, SAVEAREA+4
13, SAVEAREA

EP=HEWLOADR
15,0

(15),(PARM1),VL

7,15

PGMNAM(8),0(1)

initialize-save registers and
point to new save area

load the loader

get its entry point address
invoke the loader

save the return code

save program name

EP=HEWLOAD delete the loader
7,=H'4’ verify successful loading
ERROR negative branch

EPLOC=PGMNAM, PARM=(PARM2), VL=1

13,4(13)
(14,12),T
OH ’

AL2(LENGTH1)
C'MAP'

loading successfuf)

invoke program

length of loader options
loader options

*-OPTIONS1

OH

AL2(LENGTH2) length of loaded program options
c'X,y,z' loaded program options
*-OPTIONS2

18F save area

2F program name

Figure 67. Using the LOAD and CALL Macro Instructions to Refer to HEWLOAD (Loading With Identification)

Loader Output

Loader output consists of a collection of diagnostics and error messages, and
of an optional storage map of the loaded program. This output is produced in
the data set defined by the SYSLOUT DD and SYSTERM DD statements. If
these are omitted, no loader output is produced.

SYSLOUT output includes a loader heading, and the list of options and
defaults requested through the PARM field of the EXEC statement. The
SIZE stated is the size obtained, and not necessarily the size requested in the
PARM field. Error messages are written when the errors are detected. After
processing is complete an explanation of the error is written. Loader error
messages are similar to those of the linkage editor and are listed in the
OS/VS Message Library: Linkage Editor and Loader Messages.

SYSTERM output includes only numbered warning and error messages.
These messages are written when the errors are detected. After processing is
complete, an explanation of each error is written.

The storage map includes the name and absolute address of each control
section and entry point defined in the loaded program. Each map entry
marked with an asterisk (*) comes from the data set specified on the

SYSLIB DD statement. Two asterisks (**) indicate the entry was found in the

180 OS/VS Linkage Editor and Loader

link pack area; three asterisks (***) indicate the entry comes from text that
was preloaded by a compiler. The TYPE column indicates what each entry on
the map is used for; SD-control section, LR-label reference, and PR-pseudo
register.

The map is written as the input to the loader is processed, so all map entries
appear in the same sequence in which the input ESD items are defined. The
total size and storage extent of the loaded program are also included. For
PL/I programs, a list is written showing pseudo-registers with their addresses
assigned relative to zero. Figure 68 shows an example of a module map. In a
VS2 environment, the loader issues an informational message when the

loaded program terminates abnormally.

OPTIONS

NAME

SAMPL2B
SYSIN
IHEDIA
IHEVPA
IHEVPCA
IHEDNC
IHEDMA
IHEVFAA
IHEIOB
IHESARC
IHEBEGA
IHEERRA
IHEITAZ
IHEDCNB
IHEVTB

IHEQINV
SYSIN

IHEQLW3
IHEQFVD
IHEQEVT
IHEQSFC

IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001
IEW1001

TOTAL
ENTRY

IEW1001

TYPE

SD
SD
SD
SD
LR
SD
SD
LR

EIE IR 2E IR K SR BF AN BF I
12}
o

IHEUPBA
IHEUPAA
IHETERA
IHEM91C
IHEM91B
IHEM91A
IHEDDOD
IHEVPFA
IHEVPDA
IHEDBNA
IHEVSFA
IHEVSBA
IHEVCAA
IHEVSAA
IHEDNBA
IHEUPBB
IHEUPAB
IHEVSEB

LENGTH
ADDRESS

ADDR

161E0
17D48
183c0
18870
189F8
18CB8
19010
19160
19488
1A9CB
1AE28
1AE86
1B81E
1B862
1BCFO

00
14
28
3c
58
70

5068
17D00

NAME

SAMPL2BA
IHEVQC
IHEDIAA
IHEVPAA
IHEVFE
IHEDNCA
IHEDMAA
IHEVPB
IHEIOBA
IHESADD
IHEERR
IHEERRE
IHEITAX
IHEIOD
IHEVTBA

R R R R R EER RN

IHEGERR
IHEQLSA
IHEQLW4
IHEQCFL
IHEQSLA

0S/360 LOADER
USED-PRINT,MAP,NOLET,CALL,NORES,SIZE=424176

TYPE ADDR

sD 16EC8
SD 17D80
LR 183C0
LR 18870
SD 18BE8
LR 18CB8
LR 19010
sD 19248
LR 19488
LR 1A9DE
SD 1AE68
LR 1B4E2
LR 1B82A
sDh 1BAS0
LR 1BCFO
PR 4
PR 18
PR 2C
PR 40
PR 60

NAME

IHEMAIN
IHEVQCA
IHEDIAB
IHEVFC
IHEVFEA
IHEDOA
IHEVFD
IHEVPBA
IHEIOBB
IHESAFF
IHEERRD
IHEIOF
IHEITAA
IHEIODG
IHEVQA

SAMPL2BB
IHEQLWO
IHEQLWE
IHEQFOP
IHEQSAR

* H B REERREEREEERER
EE85555855855

TYPE

ADDR

17CF8
17D80
183c2
189D0
18BE8
18F30
19108
19248
19490
1AA18
1AE68
1B580
1B83E
1BAS0
1BD78

30
48
64

WARNING - UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED)
.

Figure 68. Module Map Format Example

NAME

IHENTRY
IHEVQB
IHEVPE
IHEVFCA
IHEVSC
IHEDOAA
IHEVFDA
IHEXIS
IHEIOBC
IHEPRT
IHEERRC
IHEIOFB
IHEDCN
IHEIODP
THEVQAA

SAMPL2BC
IHEQLW1
IHEQLCA
IHEQADC
IHEQLWF

R R R R R R ERER RN

TYPE

ADDR

17D00
17FD8
18608
189D0
18C08
18F30
19108
193F0
19498
1AB70
1AE72
1B580
1B860
1BAS2
1BD78

20

ac
68

NAME

IHESPRT
IHEVQBA*
IHEVPEA*
IHEVEC *
THEVSCA*
IHEDOAB*
IHEVFA *
IHEXISO*
IHEIOBD*
IHEPRTA*
IHEERRB*
IHEIOFA*
IHEDCNA*
IHEIODT*

IHEQSPR
THEQLW2
IHEQVDA
IHEQXLV
IHEQRTC

TYPE
SD

SD

5%

SD

EEkERER

PR
PR
PR

PR

ADDR

17D10
17FD8
18608
189F8
18C08
18F32
19160
193F0
194A0
1AB70
1AE7C
1B582
1B860
1BB4A

10
24
38
50
6C

Using the Loader 181

APPENDIX D: SAMPLE INPUT FOR THE LOADER

Figure 69 shows an input deck for a load job. A previously assembled
program, MASTER, is to be loaded. The SYSLOUT, SYSLIB, and
SYSTERM DD statements are not used.

//LOAD JOB MSGLEVEL=1
EXEC PGM=LOADER
//SYSLIN DD DSNAME=MASTER ,DISP=0LD
(DD statements and data required for execution of MASTER)
/*

Figure 69. Input Deck for a Load Job

Figure 70 shows an input deck for a compile-load job. The COBOL F
(IEQCBLO00) compiler is used for the compile step. The loaded program
requires the SYSOUT, TAXRATE, and SYSIN DD statements.

//JOB JOB 22,MCS,MSGLEVEL=1
//COBOL EXEC PGM=IEQCBLOO, PARM=MAP,REGION=86K,RD=R
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD UNIT=SYSCP
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(100,10))
//SYSUT2 DD UNIT=SYSDA, SPACE=(TRK, (100,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(100,10))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(100,10))
//SYSLIN DD DSNAME=§ §LOADSET,DISP=(MOD,PASS),
UNIT=SYSSQ,SPACE=(TRK,(30,10))
. //SYSIN DD *
(source program)
//LOAD EXEC PGM=LOADER,PARM='MAP,LET',COND=(5,LT,
/7 COBOL)
//SYSLIN DD DSNAME=%* , COBOL.SYSLIN,DISP=(OLD,
// DELETE)
//SYSLOUT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//SYSOUT DD SYSOUT=A
//TAXRATE DD DSNAME=TAXRATE ,DISP=0LD
//SYSIN DD *
(Data for Loaded Program)

/ *

Figure 70. Input Deck for a Compile-Load Job

Figure 71 shows the compilation and loading of three modules. In the first
three steps, the FORTRAN H (IEKAAO00) compiler is used to compile a main
program, MAIN, and two subprograms, SUB1 and SUB2. Each of the object
modules is placed in a sequential data set by the compiler and passed to the
loader job step. In addition to the FORTRAN library, a private library,
MYLIB, is used to resolve external references. In the loader job step, MYLIB
is concatenated with the SYSLIB DD statement. SUB1 and SUB2 are
included in the program to be loaded by concatenating them with the
SYSLIN DD statement. The SYSTERM statement is used to define the
diagnostic output data set. The loaded program requires the FTO01F001 and
FT10F001 DD statements for execution, and it does not require data in the
input stream.

Appendix D: Sample Input for the Loader 183

//JOBX JOB
//STEP1 EXEC PGM=IEKAAQO, PARM='NAME=MAIN,LOAD'

-

//SYSLIN DD DSNAME=§ §GOFILE ,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD *

(Source module for MAIN)

/*
//STEP2 EXEC PGM=IEKAAQ00,PARM='NAME=SUB1,LOAD'

//SYSLIN DD DSNAME=§&SUBPROG1,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD *

(Source module for SUB1)

/%
//STEP3 EXEC PGM=IEKAAOO,PARM='NAME=SUB2,LOAD'

-

//SYSLIN DD DSNAME=§&SUBPROG2,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD %

(Source module for SUB2)
/*
//STEP4 EXEC PGM=LOADER
//SYSTERM DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=0LD

DD DSNAME=MYLIB,DISP=0LD

//SYSLIN DD DSNAME=* _STEP1.SYSLIN,DISP=0LD
// DD DSNAME=+*,STEP2.SYSLIN,DISP=0OLD
// DD DSNAME=*.STEP3.SYSLIN,DISP=0OLD
//FTO1F001 DD DSNAME=PARAMS ,DISP=0LD
//FT10F001 DD SYSOUT=A
/*

Figure 71. Input Deck for Compilation and Loading of the Three Modules

184 OS/VS Linkage Editor and Loader

APPENDIX E: LOADER RETURN CODES

The return code of a loader step is determined by the return codes resulting
from loader processing and from loaded program processing.

The return code indicates whether errors occurred during the execution of the
loader or of the loaded program. The return code can be tested through the
COND parameter of the JOB statement specified for this job and/or the
COND parameter of the EXEC statement specified in any succeeding job
step. (For details, see the publication OS/VSI JCL Reference or OS/VS2
JCL. Figure 72 shows the return codes.

Loaded
Loader Program
Return Return Return
Code Code! Code Conclusion or Meaning
0 0 0 Program loaded successfully, and execution of the
loaded program was successful.

4 0 The loader found a condition that may cause an

8 (LET) 0 error during execution, but no error occurred
during execution of the loaded program.

4 0 4 Program loaded successfully, and an error occurred
during execution of the loaded program.

4 4 The loader found a condition that may cause an

8 (LET) 4 error during execution, and an error did
occur during execution of the loaded program.

8 0 8 Program loaded successfully, and an error occurred
during execution of the loaded program.

4 8 The loader found a condition that may cause an

8 (LET) 8 error during execution, and an error did occur during
execution of the loaded program.

8 The loader found a condition that could make
execution impossible. The loaded program was not
executed.

12 0 12 Program loaded successfully, and an error occurred
during execution of the loaded program.

4 12 The loader found a condition that may cause an

8 (LET) 12 error during execution, and an error did occur during
execution of the loaded program.

12 The loader could not load the program successfully,
execution impossible.

16 0 16 Program loaded successfully, and the loaded program
found a terminating error.

4 16 The loader found a condition that may cause an

8 (LET) 16 error during execution, and a terminating error was
found during execution of the loaded program.

16 The loader could not load program, execution

impossible.

1 Error diagnostics (SYSLOUT and/or SYSTERM data set) for the loader will show the severity of errors
found by the loader.

Figure 72. Return Codes

Appendix E: Loader Return Codes 185

APPENDIX F: STORAGE CONSIDERATIONS

The loader requires virtual storage space for the following items:
» Loader code.

« Data management access methods.

« Buffers and tables used by the loader (dynamic storage).

» Loaded program (dynamic storage).

Region size includes all four of the above items; the SIZE option refers to the
last two items.

For the SIZE option, the minimum required virtual storage is 4K plus the size
of the loaded program. This minimum requirement grows to accommodate the
extra table entries needed by the program being loaded. For example:
FORTRAN requires at least 3K plus the size of the loaded program, and
PL/1 needs at least 8K plus the size of the loaded program. Buffer number
(BUFNO) and blocksize (BLKSIZE) could also increase this minimum size.
Figure 73 shows the appropriate storage requirements in bytes.

The maximum virtual storage that can be used is whatever virtual storage is
available up to 8192K.

All or part of the storage required is obtained from user storage. If the access
methods are made resident at IPL time, they are allocated in system storage.
However, 6K is always reserved for system use.

In a VS2 environment the loader code could also be made resident in the link
pack area. If so, it requires the following space: HEWLDRGO, the
control/interface module (alias LOADER), approximately 700 bytes;
HEWLOADR, the loader processing portion, approximately 13,664 bytes.

The size of the loaded program is the same as if the program had been
processed by the linkage editor and program fetch.

The loader does not use auxiliary storage space for work areas.

Appendix F: Storage Considerations 187

Consideration
Loader Code Control

Loader Code Processing

Data Management

Object Module Buffers
and DECBs

Load Module Buffer
and DECBs

SYSTERM DCB
Buffers and DECBs

SYSLOUT Buffers
and DECBs

Size of program being
loaded

Each external relocation
dictionary entry

Each external symbol

Largest ESD number

Fixed Loader Table Size

Condensed Symbol
Table

System
Requirements

Approximate
Virtual Storage
Requirements
(in bytes)

700 VS1
2000 VS2

13664 VS1
14000 VS2

6K
BUFNO(BLKSIZE + 24)

304

312

BUFNO(BLKSIZE + 24)

Program Size

20

4n

n is the largest ESD
number in any input
module

1260

12n

n is the total number
of control sections
and common areas in
the loaded program

1600 VS1
4000 VS2

Figure 73. Virtual Storage Requirements

Comments

BSAM

Concatenation of

different BLKSIZE and BUFNO
must be considered. (Minimum
BUFNO=2)

Allocated if TERM
option is specified

Buffer size rounded up
to integral number of double
words. (Minimum BUFNQO=2)

Program size is
restricted only by available virtual
storage

Allocated in increments
of 32 entries

Subtract 88 if NOPRINT is
specified

Built only if TSO is
operating and space
is available

188 OS/VS Linkage Editor and Loader

APPENDIX G: LOAD MODULE FORMAT

The format of a load module built by the linkage editor is shown in Figure 74.

In writing the output load module to the SYSLMOD data set, the linkage
editor does not use the track overflow feature. When moving or copying load
modules, it is recommended that the track overflow feature not be used on
the target data set, as errors may occur in fetching the load modules for
execution.

TTR-P2, if TEST option and SYM records present

TTR--P2, if no TEST option

TTR-T3, if OVLY option used TTR-T3, if no OVLY option
TTR-N/S1, if SCTR
*option
| SYM | | CESD | | IDR | | CTL | | SEGTAB] | SCTR | | CTL | | 1stTXT | | ENTAB | (continued)
A . .

* Present if TEST }Present if OVLY *Present if SCTR * Present if OVLY option

option and SYM option and more option is used used and more than 1

records present than 1 segment segment

TTR-N/S1, if OVLY option
and more than 1 segment

/

| RLD | | CTRL,RLD,.,.CTL,RLD,TXT,ENTAB | | RLD || CTIL | | TXT | | TIR |
CXd
* Carries EOS if *Carries EOM Carries EOM * Present if OVLY option
following ENTAB if thisis RLD if no RLDs and more than 1 segment

for Last TXT for Last TXT

lTTR—N/S: TTR of the note list or scatter/translation table. Used for
modules in scatter load format or overlay structure only.

2TTR-P: TTR of the first block of the named member (load module).
3TTR-T: TTR of the first block of text.

Figure 74. Load Module Format

Appendix G: Load Module Format 189

APPENDIX H: SIZE AND REGION PARAMETER
GUIDELINES

This appendix gives guidelines for determining an appropriate REGION
parameter value and SIZE parameter values for a linkage editor job step.

First—determine Value2 of the SIZE parameter.

Value2= [6K] <[@ + b < (@ + b)
[6144] [(c*a]
[f] [C*el
[g]

where:
a is the length of the load module to be built
| b is 0, if the length of the load module to be built is < [40K]

- [40960]
or[4K]
[4096] if the length of the load module to be built is > [40K]
' [40960]

¢ is an integer equal or greater than 2

d is the track capacity of the SYSLMOD device

e is the block size of the SYSLMOD data set

f is the length of the largest text record in load module input

g is the track capacity of the SYSUT1 device
Second—determine Valuel of the SIZE parameter.

Valuel=h + j + k

Valuel must range between A and [9999K]
[999999]

where:
h is the design point of the Linkage Editor being used:

h =[64K]
[65536]

J is the excess of Value2 over [6K]
[6144]

Value2 — [6K]
[6144]

k is the additional storage required to support the blocking factor for
SYSLIN, and object module libraries, and SYSPRINT:

F64 5tol 10tol 40to 1
— [18K] [28K]
— [18432] [28672]

Third—determine the REGION parameter.

REGION = Valuel + [10K]
[10240]

Appendix H: SIZE and REGION Parameter Guidelines 191

GLOSSARY

IBM is grateful to the American National Standards Institute
(ANSI) for permission to reprint its definitions from the
American National Standard Vocabulary for Information
Processing (ANSI X3.12-1970), which was prepared by
Subcommittee X3.5 on Terminology and Glossary of
American National Standards Committee X3. ANSI
definitions are preceded by an asterisk (¥).

*address: An identification, as represented by a name, label,
or number, for a register, location in storage, or any other
data source or destination such as the location of a station in
a communication network; any part of an instruction that
specifies the location of an operand for the instruction.

address constant: A value, or an expression representing a
value, used in the calculation of storage addresses; can be
used for branching or retrieving data.

address translation: The process of changing the address of a
data item or an instruction from its virtual address to the real
storage address of the location where it will reside. See also
dynamic address translation.

alias name: An alternate name or entry point for a load
module that is also entered in the output module library
directory entry along with the member name.

automatic library call mechanism: The process whereby control
sections are processed by the linkage editor or loader to
resolve external references to members of partitioned data
sets not resolved by primary input processing.

auxiliary storage: Data storage other than virtual storage; for
example, storage on magnetic tape or direct-access devices.

common area: A control section used to reserve a virtual
storage area that can be referred to by other modules; may be
either named or unnamed (blank).

common segment: A segment upon which two exclusive
segments are dependent.

control section: That part of a program (instructions and data)
specified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining storage
locations for execution. Abbreviated CSECT.

control section name: The symbolic name of a control section.

demand paging: Transfer of a page from external page storage
to real storage at the time it is needed for execution.

downward reference: A reference made from a segment to
another segment lower in the same path; i.e., farther from the
root segment.

dynamic address translation (DAT): (1) The change of a virtual
storage address to a real storage address during execution of
an instruction. See also address translation. (2) A hardware
feature that performs the translation.

entry name: A name within a control section that defines an
entry point, and can be referred to for execution by any
control section.

exclusive reference: A reference between exclusive segments;
that is, a reference from a segment in storage to an external
symbol in a segment that will cause overlay of the calling
segment.

exclusive segments: Segments in the same region of an overlay
program, neither of which is in the path of the other; they
cannot be in virtual storage simultaneously.

external name: A name that can be referred to by any control
section or separately assembled or compiled module; i.e., a
control section name or an entry name.

external page storage: The portion of auxiliary storage that is
used to contain pages.

external reference: (1) A reference to a symbol that is defined
as an external name in another module. (2) An external
symbol that is defined in another module; that which is
defined in the Assembler language by an EXTRN statement
or by a V-type address constant, and is resolved during
linkage editing. See also weak external reference.

external symbol: A control section name, entry point name, or
external reference that is defined or referred to in a particular
module. A symbol contained in the external symbol
dictionary.

inclusive reference: A reference beiween inclusive segments;
that is, a reference from a segment in storage