
GC20-17S2-3
. File No. S/370-20

. ------

I
Systems

I

OS/Virtual Storage 1
Features Supplement

Release 6

This supplement discussesOS/Virtual Storage 1 (OS/VS1)
features and organization as of Release 6. Only concepts and
functions of OS/VSl that are new to and significantly different
from those of OS MFT are presented in detail. Transition from
OS MFT to OS/VSl is discussed also.

This supplement is an optional section designed to be inserted
in its entirety in anyone of the following base publications,
each of which contains the conceptual and System/370 hardware
information required to understand the OS/VS1 discussion
presented: A Guide to the IBM System/370 Model 135
(GC20-1738),A Guide to the IBM System/370 Model 138
(GC20-1785),A Guideto the IBM System/370 Model 145
(GC20-1734),A Guide to the IBM System/370 Model 148
(GC20-1784), A Guide to the IBM System/370 Model 158 for
System/370 Model 155 Users (GC20-1754), A Guide to the
IBM System/370 Model 158 for System/360 Users (GC20-1781),
A Guide to the IBM System/370 Model 168 for System/370
Model 165 Users (GC20-1755), A Guide to the IBM System/370
Model 168 for System/360 User~ (GC20-1787).

Readers who possess more than one of the above base publi
cations need add this supplement to only one of the documents,
as the OS/VS1 information presented applies to System/370
Models 135, 138, 145, 148, 158, and 168 unless otherwise
indicated in the text.

The contents of this supplement are designed to acquaint .the
OS MFT knowledgeable reader with the new facilities and the

. advantages of OS/VS 1.

-.~~---~-~- --~~-- .----~.--- -------.-------~--- ----~-

-- --------------

PREFACE

'-

This supplement is stocked in the IBM Distribution Center,
Mechanicsburg, as a separate form-numbered item and is not automatically
distributed as part of any other publication. Subsequent updates to the
supplement must also be ordered separately. Those who are familiar with
a system/310 model and a; MFl' and who require information about OS/VSl
should obtain this supplement and insert it as section 90 of one of the
appropriate base publications listed below.

Base publications for the OS/VSl supplement are:

• 	 A Guide to the IBM System/310 Model 135 (GC20-1138-4 or later

editions)

• 	 A Guide to the IBM System/310 Model 138 (GC20-1185)

• 	 A Guide to the IBM System/310 Model 145 (GC20-1134-2 or later

editions)

• 	 A Guide to the IBM system(310 Model 148 (GC20-1184)

• 	 A Guide to the IBM System/310 Model 158 for System/310 Model 155

Users (GC20-1154)

• 	 A Guide to the IBM System/310 Model 158 for System/360 Users

(GC20-1181)

• 	 A Guide to the IBM System/310 Model 168 for System/310 MOdel 165

Users (GC20-1755)

• 	 A Guide to the IBM System/310 Model 168 for system/360 Users

(GC20-1787)

This supplement is self-contained. It begins with page 1 and
includes its own table of contents and index. The title of the
supplement is printed at the bottom of each page as a means of
identifying the optional supplement to which the page belongs.
Knowledge of information contained in other optional supplements that
can be added to the base publications listed above is not required in
order to understand the OS/VSl features as they are presented. However,
comprehension of virtual storage concepts and dynamic address
translation hardware and terminology, as described in anyone of the
base publications, is assumed.

Fourth Edition (January 1977)

This edition is a major revision obsoleting GC20-1752-2. The text and illustrations have
been updated to reflect the new features of Release 6 of OS/VS1. Changes are indicated
by a vertical line in the left margin.

This publication is intended for planning purposes only. It will be updated from time to
time; however, the reader should remember that the authoritative sources of system in
formation are the system library publications for OS/VS1. These pUblications will first
reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality.

Address comments concerning the contents of this publication to: IBM Corporation, Technical
Publications/Systems, Department 824, 1133 Westchester Avenue, White Plains, New York 10604.

© 	Copyright International Business Machines Corporation 1972, 1975, 1976, 1977

-~-

/

CONTENTS (Section 90)

Section 90: OS/Virtual Storage 1 Features '. • •• '. '. • 	 1

90:05 Functions and Hardware Supported '•••• '••• 	 1

90:10 	 organization and Initialization of storage • 9

Virtual storage Organization • • '. • • '. • • • • • 9

Real storage Organization. • • • .. ••• 20

External Page storage Organization '. 20

System Initialization,. '•• 23

90:15 Ma jor Components • • 	 I. 35
4 • • '. '. •

90:20 	 Job Management .• • '. • .•• • • '. • • '.
,'~.

• • •• 38

Master Scheduler and Communications Tasks,. . ' .. 38

Job Entry Subsystem. • • • • 43

Job Scheduler,. ,. .• .• '. .• • • '. .• ,. • '. '. ,. 60

Remote Entry Services. '. '. .• ,. '. '. • 71

Conversational Remote Job Entry,. 81

90: 25 Task Management,. • • • • • 82

Interruption Supervisor,. '. 82

Task Supervisor. • '.. '. ,. • .. ie 83

Virtual Storage Supervisor .. • • • • .. ,. • • • ,. .• 90

Program Fetch,. • • • • '. ,. .• I. '. Ie. 91

Timer Supervisor '. ,. '.. • '. Ie '. 92

90:30 	 Data Management,•• ,•.• '•.• '. 94

'. Ie.

Channel-to-Channel Communication support • 95

Input/Output Supervisor,... " .• '. ,. " '. 95

Virtual Storage Access Method,. 96

90:35 	 Page Management.. • • • • '. • • '. .• '. ,. ,. ,. • 137

General Functions. • • '. • ,. '. • • 137

Real storage Management.. • ••• .• '•.•• • 138

External Page Storage Management '. '. • • '. • " • '. ,. 151

90:40 	 Recovery Management. '. ,. '. ,.. • 153

Recovery Management Support. '. '. '.. •• 153

OLTEP. • • '. '. '. '. I. '. I. I. I. '. I. •• 155

Problem Determination Facilities ,. • '. • • • 155

90:45 Language Translators, Service Programs, and Emulators,. .• 159

System Assembler. .• .• ,. ,. • '. .• • 159

. Linkage Editor . '. '. '. -'1:' . 1.:';,. I. • 159

utilities,. • '. '. ;. .• '. ,. ,. • • • ,. ,. • 160

sort/Merge Programs. • • .• '. 161

Integrated Emulators • '. '. '. • 162

90:50 	 VM/370 Handshaking Option.. • • '. .• • '. • 165

Functions,. . .. '. '. I. '. '. I. ,. I. I. • 165

ClOSing CP Spool Files '. • '•.• ,. • • • 165

Page Fault Handling•• ,. ,. .• • 166

Nonpaged Mode in a Virtual Machine. • '. '. 166
'~ Miscellaneous Enhancements • 167

BTAM AUTOPOLLI 90:55 OS/VSl Assist Su

.. '. ,•.• '. • '. •
pport. • • • '. • • • •• • • '. •

167

167

90:60 QS MFT to OS/VS1 Transition. '. 	 '. '. '••• 169

90:65 summary of Advantages.. '. '. • • • • 	 • 173

Index (Section 90).
 • 178

OS/Virtual Storage 1 Features Supplement

FIGURES (Section 90)

90.10.1 	 Virtual storage organization in Os/VS1 •• .•• • • 10
'~~.-90.10.2 	 Problem program partition organization for a pageable

job step in OS/VS1. .• • • • • • • .• .• •• • 18
90.10.3 	 Real storage organization in OS/VS1. • 20
90.10.4 	 External page storage, real storage, and virtual storage

relationship in OS/VSl '.. .• •• .• .•• '. •• • .• 23
90.10.5 	 Page table entry contents for an initialized, inactive

problem program partition. '. '. • '. • • '.. • .• '.. • '.. 25
90.10.6 	 Page table entry contents for a problem program partition

virtual storage page with a page frame allocated • ,. 26
90.10.7 	 IBM-supplied default parameter specification members and

default member name list for automated system
initialization • '. • .• ,. • ,. • • • '. '. '. • • • '. 29

90.20.1 	 Components, functions, and data flow of JES,••• 46
90.20.2 	 General flow of JES and job scheduling in OS/VSl • 70
90.20.3 	 RES interface with JES '. • • • • • • '. '. '.. • '. '. ,. '. '. • 73
90.25.1 	 Task queue containing a dynamiC dispatching group of

tasks. '. '.... I. '.. '. '. ". !••• I. '. '•.•..• I. _. 84
90.30.1 	 organization of a control area for a VSAM data set ••• '. 100
90.30.2 	 Relationships among VS1\..M control and request macros.•••• 106
90.30.3 	 Structure of the primary index for a VSAM key-sequenced

data set '. • '. • '. • '. ,. • • • • '. '. • '. '. '. '. '. • 110
90.35.1 	 Flow of the real storage allocation procedure. '. • • 140
90.35.2 	 Example of page activity measurement. ,••••.••••• '. 145

TABLES (Section 90)

90.05.1 	 Standard and optional features of OS/VSl _ • • '•• ~ '. 4
90.05.2 	 I/O devices, consoles, and terminals supported by

OS/vSl • '. f. I. I. '. '. . . '. .. f. '. • 6
90.10.1 	 Number of 2K slots per paging device type,. • • 22
90.15.1 	 OS/vSl control and processing program components • 36
90.20.1 	 OS/vSl operator commands that can be issued from an RES

remote work station,. '. '. ,. '•.• '. • .•.• '. '. '. '. '. 75
90.20.2 	 Characteristics of RES work stations • ,. ,••• ,. ,.. '. .•• 79
90.25.1 	 Task-switching rules for dynaMically dispatched tasks. 86
90.30.1 	 Types of processing supported for VSAM key-sequenced

data set.s,. I. '. ". I. _. '. I. ... r. .• f. '. • '. ,. I. • • '. • I. '. • r. 118
90.30.2 	 Types of processing supported for VSAM entry-sequenced

Ie • '. •data sets ,. I. . f. '. '. -. '. '. .. • .. _. '. • • I. ,e • • 121
90.30.3 	 Types of processing supported for relative record data

sets ·e • '. '. '. • la f. '. • • I. • • '. '. ,. .. '. • 123
90.30.4 	 Comparison table of VSAM and ISAM facilities for OS/vSl. • 132

OS/Virtual Storage 1 Features SUpplement

---- ----------- -- ------------------------'-----------

SECTION 90: Os/VIRTUAL STORAGE! FEATURES

90:05 FUNCTIONS AND HARDWARE SUPPORTED

OS/vS1 is a growth operating system for OS MFT, DOS, and DOS/VS
i nstallations. OS/VS1 includes features equivalent to, and compatible
with, those of OS MFT and offers major new functions and feature
enhancements. The most significant new items of OS/VS1 are:

• 	 support of one virtual storage of up to 16,111,216 bytes using

dynamic address translation hardware

• 	 More efficient peripheral I/O operations proceSSing provided by the
job entry subsystem (JES), which replaces OS MFT input readers and
output writers and incorporates many of the spooling features of MFT
HASP II

• 	 Improved remote job entry provided by the remote entry services
(RES) facility, a logical and functional extension of JES. RES
replaces OS RJE and provides functions similar to those available in
HASP II RJE in addition to support of system network archi tecture
(SNA) terminals.

• 	 Job scheduling enhancements that include elimination of small
partition scheduling, significant reduction in contention for the
job queue, and a new I/O device allocation technique

• 	 Performance enhancements, such as dynamiC task dispatching

• 	 An additional access method, called Virtual storage Access Method
(VSAM), that is designed to offer more functions and to be more
suitable to online and data base environments than ISAM

• 	 An additional access method, called Virtual Telecommunications
Access Method (VTAM), that supports network control program mode for
310.4 and 3105 Conununications Controllers and provides facilities not
available in BTAM or TeAM

• 	 Operational enhancements, such as more automated system

initialization and new and expanded operator commands

• 	 Improvements in system integrity and data security protection, such
as additional protection of control blocks within a problem program
partition, fetch protection, and an authorized program facility

OS/vS1 supports one partitioned virtual storage of up to 16 million
(16,111, 216) bytes with segments of 64K and pages of 2K. '!he
organization of virtual storage in 0s/VS1 is similar to that of main
storage in MFT.. However, virtual rather than real storage is divided
into partitions in OS/VS1. The management of virtual, real, and
external page storage and the paging activity of the system are handled
entirely by the OS/VS1 control program and are transparent to the
programmer •

OS MFT is upward compatible with 0s/VS1 to the extent that moving to
OS/VS1 resembles moving from one release of MFT to another that contains
Significant new features.. (see Section 90: 60 for a discussion of MFT to
OS/vS1 tranSition.) Except for JES and RES, 0s/VS1 is upward oompatible
with OS/VS2 SVS in the same way that MFT is upward compatible withMVT.

OS/Virtual storage 1 Features Supplement 1

DOS Version 3 and 4 and DOS/vS users can make the transition to
OS/vS1 with the aid of the OS/DOS emulator, which operates under OS/VS1
control. Compatibility that exists between DOS and DOS/VS files and MFT
data sets also exists between DOS and DOS/VS files and OS/vS1 data sets,.
Because of the compatibility between OS/VS1 and MFT, the effort required
to convert from DOS or DOS/VS to OS/VS1 is similar to that required to
convert from DOS to MFT.

OS/VS1 is an intermediate-level operating system, classified as
system control programming (SCP) and hereafter referred to as VS1 or
OS/VS1, that supports System/310 Models 135 (Models 0 and 3), 138, 145
(Models 0, 2, and 3), 148, 155 II, 158 (Models 1 and 3), 165 II, and 168
(Models 1 and 3). VS1 supports these models operating in EC and
translation modes.

VS1 does not support System/310 models operating in EC mode without
address translation operative, system/310 models operating in BC mode,
or any System/360 models. VSl does not support Model 158/168 Attached
Processor Systems or Model 158/168 tightly coupled multiprocessing
systems operating in multiprocessor mode but can be used when these
systems operate in uniprocessor mode.

The following minimum system configuration and hardware features are
used by VS1 during system operation:

• 	 144K of real storage f0r a Model 135, 160K of real storage for a

Model 145, and minimum r.eal storage size for the other System/370

models supported by VS1 (configurations with less than 160K are

subject to certain restrictions)

• 	 Byte.multiplexer channel with associated I/O devices, including one
reader, one punch, one printer, and one console

• 	 one selector or block multiplexer channel (or IFA for Models 135,

138, and 145 Model 0 or 2) with associated direct access devices

that include at least three 2314/2319, two 3330-series (any mode'l),

two 3340/3344 (any model), or two 3350 disk drives. The preceding

direct access devices and the 2305 Model 2 are supported for system

residence.

• 	 DynamiC address translation and channel indirect data addressing

• 	 Storage protection

• 	 Interval timer (at location 80) and time-of-day clock

• 	 Monitoring facility

• 	 Program event recording

The following restrictions apply when VS1 is used on a Model 135 with
144K:

• 	 A VS1 system generation cannot be performed using the starter system
(160K minimum is required) '.

• 	 A maximum of 2048K of virtual storage is supported.

• 	 The recommended maximum number of partitions is two. Only 'one
partition can be defined if RES is included in the generated VS1. system.

• 	 If RES is included in the system, it can support only one binary

synchronous communications line. Support of SNA terminals requires

a minimum of 256K.

OS/Virtual storage 1 Features Supplement 2

• 	 The Generalized Trace Facility (GTF) can operate but the external
trace option cannot be used.•

• 	 The Conversational Remote Job Entry (CRJE) facility cannot be used.

• 	 VTAM cannot be used (a minimum of 256K of real storage is required).

• 	 The 3600 Finance Communication System is not supported (a minimum of
256K of real storage is required for support of this system>.

The standard features of VSl and a minimal I/O oonfiguration are
supported in a system with 160K of real storage.. Inclusion of optional
features in the generated VSl control program, support of a larger than
minimal I/O configuration, and improved system performance require a
system with more than 160K of real storage. Note that a Model 145 with
a GE storage size will have less than 160K of real storage available
when the control storage requirement exceeds 321<.

The advantages and Significant new functions offered by a VSl virtual
storage environment and optimal system performance can best be attained
for a MOdel 135 if 240K or more is installed, and for a MOdel 145 if
256K or more is installed. The maximum amQJ.nt of real storage supported
by VSl is 8192K bytes.

Table 90... 05.1 lists the standard and optional features of OS/vsl and
Table 90.• 05.• 2 lists the i/O devices, consoles, and terminals supported.
Just as for an OS MFT operating system, the desired installation
tailored OS/VSl oontrol program must be generated, at which time user
selected optional features are included in the resulting system. More
features are standard in VS1 than in MFT. This enhancement can reduce
the number of options that must be specified and, thereby, reduce system
generation preparation and execution time.

OS/VSl is a functional extension of OS MFT (as of Release 21.8) .•
However, the following MFT features are not available in VS1:

• 	 storage hierarchies (2361 Core Storage cannot be attached to any
System/370 model). Hierarchy parameters are processed at link-edit
time but are ignored during program loading.

• 	 TESTRAN

• 	 QTAM (function provided by TCAM and VTAM), Graphic Job Processor
(GJP), and Satellite Graphic Job Processor (SGJP)

• 	 RJE (function provided by RES)

• 	 IEBUPDAT utility (replaced by IEBUPDTE)..
• 	 IMAPTFLE (replaced by HMAPTFLE), IMDMDMAP (replaced by HMBLIST),

IBCRCVRP (replaced by IEH~LAS), and IMASMP (replaced by HMASMP)
..,

• 	 IHGUAP utility

The following I/O devices, some of which are supported by MFT, are
not supported by VS1:

1017/1018 Paper Tape Reader/punch

1285 Optical Reader

2301 Drum storage

2303 Drum storage

2311 Disk Storage Drive

2321 Data Cell Drive

7772 Audio Response Unit

OS/Virtual Storage 1 Features Supplement 3

Table 90.05.1. 	 Standard and optional features of OS/VS1. (Standard features
are automatically included during system generation.
Optional features must be requested during system generation
or added after the generation is performed.. An asterisk
identifies features not available in MFT.)

Standard Features

• 	 One virtual storage of up to 16,384K bytes with 64K segments and 2K pages.
• 	 Up to 52 partitions: any combination of 1 to 15 problem program and

1 to 52 system task.
• Demand paging 	for allocation of real storage.
• 	 Execution of programs in paged. and nonpaged (V=R) modes
• 	 Paging algorithm tuning (PAGETUNE command).
• 	 Independent job scheduling.
• 	 Job entry subsystem (JES).
• 	 Remote entry services (RES).
• 	 Automated system initialization*
• 	 Installation-specified selection parameters (ISSP).
• 	 Multitasking (resident ATTACH)
• 	 Storage protection
• 	 Timing facilities (support of date and time of day, job step timing

and limiting including the changeable wait limit capability, and interval
timing)

• 	 Extended timer support (standard for all supported models
except Models 135 Model O·and 145 Models 0 and 2).

• 	 System log (can be excluded)
• Resident BLDL 	 table (either pageable or fixed)
• 	 Resident access methods (both pageable and fixed) - included whether

or not option is user-specified
• 	 Resident reentrant modules from SYS1.LINKLIB and SYS1.SVCLIB (both

pageable and fixed) - included whether or not option is user-specified
• 	 Resident IDENTIFY, EXTRACT, SPIE
• 	 Extended fixed list.
• 	 Standard fetch and multiple wait
• Fast multiple 	wait (EVENTS macro).
• 	 Fast start function (STARTF command).
• Basic overlay supervisor
• operator communication at IPL
• 	 Missing interruption checker routine.
• 	 Authorized program facility (APF).
• 	 Validity checking (for GETMAIN, FREEMAIN, POST, and WAIT macros)
• 	 Extended DEB validity checking. (can be excluded)
• 	 Access methods : BSAM, QSAM, BDAM, BPAM, VSAM. (VSAM can be excluded)
• Direct access 	volume serial number identification (can be excluded)
• 	 Dynamic support system (DSS).
• 	 Checkpoint/restart
• 	 Error statistics by volume (can be excluded)
• 	 Online test e xecutive program (OLTEP)
• Machine check 	handler (MCH) and channel check handler (CCH)
• 	 Alternate path retry (APR) - effective only if alternate channel

paths are specified
• 	 Dynamic devicereconfiguration (DDR) - can be excluded
• 	 Integrated emulator interface
• 	 System Assembler, Linkage Editor, and Loader
• 	 System utilities: XEHDASDR, IEHPROGM, IEBMOVE, IEBIOSUP, IFBS'mTR.

IEBATLAS, lEaLIST, I EBI N ITT , XEHUCAT
• 	 Data set utilities: IEBCOPY, IEBTCRIN, IEBPTPCB, IEBGENER, IEBCOMPR,

IEBEDIT, IEBUPDTE, XEBISAM, IEBDG, IEBlMAGE*
• Access Method 	Services (for VSAM)*
• 	 Account Facility Program (IKJRBBMP) for RES*
• 	 Independent utilities: IBCDMPRS, IBCDASDI, ICAPRTBL, IAPAP100
• 	 Service aids: HMAPl'FLE, BMASMP, BMASPZAP, HMDSAIJ4P, BMBLIST, BMDPRDMP,

IMCJOBQD, IFCDIPOO, IFCEREPO. IMCOSJQD, Generalized Trace Facility (GTF)

OS/Virtual storage 1 Feature~ Supplanent

'--- .

-~-.----- -----------------------

4

Table 90.05,.1 (continued)

,

• 	 Industry Subsystem Support (for the 3600 Finance Communication
System, 3650 Retail Store system, 3660 supermarket System, and
3190 Communication system).

Optional Features

• 	 Resident transient SVC table
• 	 Resident type 3 and 4 SVC routines (both pageable and fixed)
• 	 Resident ERPs (fixed only)
• 	 User-written SVC routines resident in the generated nucleus
• 	 PCI fetch
• 	 TRACE function
• 	 Dynamic dispatching.
• 	 Fetch protection.
• 	 I/O load balancing.
• 	 Extended timer support (optional for Models 135 and 145 only).
• 	 Advanced overlay supervisor
• 	 ASCII translation routine
• 	 Alternate channels (one for the 2305 and up to three for 2314/2319,

3330-series, 3340/3344, 3350, and 3330 virtual volumes)
• 	 Alternate and/or composite console
• 	 Multiple Console Support (MCS)
• 	 Device Independent Displ,ay Operator"s Console Support (DIDoes)
• 	 Remote terminal access method (RTAM) for RES.
• 	 Automatic volume recognition (AVR)
• 	 Time slicing
• 	 Job log facility.
• 	 System Management Facilities (SMF)
• 	 Access methods: VTU., ISAM, BTU, TCAM
• 	 Shared Direct Access Storage Devices (DASD) for 2314/2319, 333O-series

(all models), 3340/3344 (all models), 3350, 2305 Models.1 and 2, and 3330
virtual volumes

• 	 Graphic programming services (GPs)
• 	 Conversational remote job entry (CRJE)
• 	 Integrated emulators (independent component releases)

1401/1440/1460 emulator for Models 158, 155 II, 148, 145, 1,38, and 135
1410/7010 emulator for Models 158, 155 II, 148, and 145
1010/1014 emulator for Models 165 II, 158, and 155 II
1080 and 109/1090/1094/109411 emulators for Models 168 and 165 II
DOS emulator for Models 158. 155 II, 148, 145, 138, and 135

• 	 progranmed-function keyboard (PFK) command entry and/or light pen
command entry support for graphic console devices

• 	 Reliability data extractor
• Reduced error recovery for magnetic tape .. • Error volume analysis (EVA)
• 	 Teleprocessing Online Test Executive Program (TOLTEP) for terminals

supported by VTAM.
• 	 Power Warning feature support for Models 158 and 168.
• 	 Automatic device status initialization (smart NIP routine)
• 	 Distributed Intelligence System (for System/1 processors).
• 	 Extended Control program Support feature support for MOdels 135-3,

138, 145-3, 148. and 158).
• 	 VM/310 Handshaking.
• 	 3850 Mass Storage System support.
• 	 Channel-to-channel communication.

OS/Virtual Storage 1 Features Supplement 5

--- --~------.---

Table 90.05.2. I/O devices, consoles, and terminals supported by OS/VS1

Readers and punches

1442 Card Read Punch, Models N1 and 2

2501 Card Reader, Models B1 and B2

2520 Card Read Punch, Models B1, B2, B3

2540 Card Read Punch

2596 card Read Punch (96 column) as 1442 equivalent

3505 Card Reader (including optical mark reading)

3525 Card Punch (including card reading and card printing)

Note: 	 Column binary reading and punching is supported for card devices
with the card image feature .•

Printers

1403 Printer, Models N1, 2, 3, 7

1443 Printer, Model N1

3203 Printer, Model 4

3211 Printer

3284 Printer, Models 1 and 2

3286 Printer, Models 1 and 2

3800 Printing Subsystem

Diskette Devices

3540 Diskette Input/Output Unit (as a SYSIN or SYSOUT device only
and by the COPY/RESTORE utility program. The 3540 is not supported
as an I/O device that can be accessed directly by problem programs
us ing an access method.)

Direct 	Access Storage

2314 Direct Access storage Facility (Models 1, A, and B) and 2844
Auxiliary Storage Control

2319 Disk storage, A and B models

3330-series Disk storage, all models

3340 Direct Access Storage Facility, all models

3344 Direct Access storage, all models

3350 Direct Access Storage, all models (in native and

3330 compatibility modes)

2305 Fixed Head storage Facility, Models 1 and 2

Note: 	 All the direct access devices listed above except the 2305
Modell are supported for system residence, as paging devices,
for spool data sets, the SYS1,.SYSJOBQE data set, the SYS1. SYS~DS
data set, SWADS data sets, and other system (SYS1.) data sets.•
The 2305 Model 1 is supported only as an input/output device by
the disk access methods, as a SYSIN/SYSOUT device, and by Shared
DASD support.. All the other direct access devices listed are
also supported as SYSIN/SYSOUT data sets.. Direct access devices
attached to a byte multiplexer channel are not supported. All
channel-switching features and string-switching features for the
above direct access storage devices are supported for alternate
channel paths and alternate control unit paths. The rotational
position sensing, 32-Drive Expansion, and 3333/3340 Intermix
features are also supported,.

Mass Storage

3850 Mass Storage system

OS/virtual storage 1 Features supplement 6

Table 90.05.2 (continued)

,.

MagnetiC and Paper Tape

2400-series and 3400-series magnetic tape units, all models, densities,
and switching units (attachment via a byte multiplexer channel is
not supported)

2495 Tape Cartridge Reader

2671 Paper Tape Reader

optical and Magnetic Character Readers

1287 Optical Reader
1288 Optical Page Reader
1419 Magnetic Character Reader (Dual Address Adapter and Expanded

Capability feature required)

3886 Optical Character Reader

3890 Document Processor

Display Units

2250 Display Unit (attachment via a byte multiplexer channel
is not supported)

2260, 2265 Display stations

3270 Information Display system

Primary Consoles

3210, 3215 Console Printer-Keyboards

Display consoles for Models 138, 148, and 158

3066 System Console for Models 168 and 165 II

Composite console (card reader and printer)

Alternate and Secondary Consoles

2150 Console with 1052 Printer-Keyboard Model 7

Composite console (card reader and printer)

2250 and 2260 display units (locally attached)

2740 Communication Terminal

3277 Display Station

Hard-copy Consoles

3213 Printer (for Model 158 display console)

3286 Model 2 Printer (for the Model 138 and 148 display console)

System log in SYS1.SPOOL data set

Any console device with output capability (MCS support required)

Transmission Control Units

2701 Data Adapter Unit

2702 and 2703 Transmission Controls

2715 Transmission control Unit

2772 Multi-Purpose Control Unit

2955 Data Adapter Unit

3704, 3705-1, and 3705-11 Communications controllers and

channel-switching features

5098-N05 Sensor-Based Control Unit (required by Distributed

Intelligence System support)

7770 Audio Response Unit

Os/Virtual Storage 1 Features Supplement 7

--_.,-----,---

Table 90,.05.• 2 (continued)

.~.

.~'
Terminals (start/Stop)

1030 Data Communication System
1050 and 1060 Data Communication Systems
2721 Portable Audio Terminal
2740 MOdels 1 and 2, and 2741 Modell Communication Terminals
2760 Optical Image Unit
3761 Communication Terminal (as a 2140 Modell or 2, or a 2141)
83B3 AT&T Terminal
WU115A Teletype
TWX-33/35 AT.T Teletype Terminal
Systeml7 Sensor-Based Information System
Communicating Magnetic Card Selectric Typewriter

Terminals (Binary Synchronous)

2110 and 2190 Data Communication Systems and 2198 Guidance
Display unit

2180 Data Transmission Terminal

2912 Models 8 and 11 General Banking Stations

2980 General Banking Terminal System

3210 Information Display system (also locally attached)

3650 Retail Store System· (as a System/3)

3660 Supermarket system (as a Systeml3)

3610 Brokerage Communication System

3135 Programmable Buffered Terminal

3140 Data Entry System

3110 Data Communication system (as a 2712/3180)

3780 Data Communications Terminal (as a 2112)

1130 System (as a processor station)

1800 System (as a processor station)

System/3 (as a processor station)

Systeml1 (as a System/3)

System/32 (as a System/3)

Systeml360 Models 20 and up (as a processor station)

System/370 models (as a processor station)

Terminals (Synchronous ~ Link COntrol)

3210 Information Display System (SNA)

3600 Finance Communication System

3650 supermarket System

3161 Communication Terminal

3170 Data Communication system

3190 Communication System

System/32 (as a 3710)

Note: 	 Terminals that are equivalent to those explicitly supported may
also function satisfactorily. The customer is responsible for
establishing equivalency.. IBM assumes no responsibility for the
impact that any changes to the IBM-supplied products or programs
may have on such terminals.

OS/Virtual Storage 1 Features Supplement

---------. 	 -------_.-----~---~ ---------.-----------~----------

8

90: 10 ORGANIZATION ~ INITIALIZATION OF STORAGE

VIRTUAL STORAGE ORGANIZATION

The organization and allocation of virtual storage in VS1 is
reflected in tables and control blocks that are established at system
initialization and maintained throughout system operation, as is dOne
for main storage in MFT. However, in VS1, virtual storage that is
allocated to pageable programs dOes not reqaire the allocation of real
storage until the virtual storage is actually referenced by executing
code. The size of the virtual storage supported can be specified at
system generation and changed by the operator during system
initialization. Virtual storage size can vary from a minimum of 1024K
bytes to a maximum of 16,384K (16,777,216) bytes and must be a multiple
of 64K.

The default virtual storage size assumed at system generation is
2048K unless certain options are included in the generated VS1 control
program. In a system with only 144Kof real storage, 2048K is the
maximum amount of virtual storage that is supported. A minimum virtual
storage size of 2048K is required if VSAM is to be used in a one
partition system. However, if the resident transient SVC routines or
resident access methods option is included in addition to VSAM, the
minimum virtual storage size for a one-partition system is 3072K.. A
minimum of 3072K of virtual storage is also required for a
multipartition VS1 system; in which VSAM is included, VTAM is included,
or industry subsystem support is to be used.. (Industry subsystem
support requires the inclusion of VSAM and VTAM.)

Virtual storage in VSl is divided into two main areas: a nonpageable
area in lowest addressed virtual storage and a pageable area in highest
addressed virtual storage, as shown in Figure 90.10.1. The two areas
are divided by the virtual-equals-real (V=R) line. Storage protection,
functionally equivalent to that implemented in MFT, is provided as a
standard feature. Protect key values are aSSigned to virtual storage
areas. Each time a page frame is allocated, its protect key is set
equal to the protect key value assigned to the virtual storage page to
which the page frame is allocated. Fetch protection for problem program
partitions, not supported in MFT, is available in VSl as an optional
feature.•

Nonpageable ~

The virtual storage in the nonpageable area is mapped on a virtual
equals-real basis with real storage. That is, each virtual storage page
has a page frame aSSigned so that virtual and real storage addresses are
equal. The nonpageable area contains the resident control program,
fixed system queue area (SQA), and V=R area,. Included in the resident
control program are the generated fixed nucleus, which is a minimum of
68K (for one partition, the minimum l:IO configuration, and no options),
and RMS routines (MCB and CCB),.

The fixed nucleus in VSl always contains the interruption supervisor,
virtual storage supervisor, page manager, timer supervisor, nonpageable
portion of the communications task, nonpageable portion of the master
scheduler, I/O supervisor, BLDL routine of BPAM, and portions of the
task supervisor and overlay supervisor. The two RMS routines require 6K
of resident control program storage and 2K of pageable supervisor area
When less than 192K of real storage is present, and 8K of resident'
control program storage when 192K or more is available. The resident
control program (fixed nucleus and RMS routines) is aSSigned storage
protect key 0 and is la inUltiple of 2K in size,•.

OS/Virtual storage 1 Features Supplement 9

...
Virtual Storage o

Maximum - 16.384K
Minimum - 1024K or real storage

size plus 512K, whichever
is greater

'.'::r Nonpageable Area \/ 	 Pageable Area

~
Nucleus RMS 	 Fixed V=R area Pn-l PO JES RTAM JES Pageable Dump Page I

SQA buffer pseudo- r.outines svstem area supervisor I
'~

Optionai resident 	 Pageable supervisorpool 	 partition and buffer queue reserved
routi nes area 	 routines area area loptlona" area 	 area area
Ipageable and fixed) 	 50K minimum i

IPSQA)
I

I

Type 3 	 .SVC I/O PageableERP's 	 VSAM Access BLDL I
routines and 4 methods~ table transient transient 	 supervisor

area area routines
routine. reentrant

routines

SVC and

o from 64K plus
V-R iob SVCLlB 1/64 of~

6K steps and and virtual

66K or 4K fixed SQA &OK 156K Fixed LINKLIB storage 50K
~ g minimum 8K minimum expansion 	 minimum minimum only 373.3K 120K 18K 2K size 2K lK minumum 16K 4K

AI Pageabte Supervisor Area Resident V-R Line Problem Program Area 	
• Maximum 52 partitions 	 (Protect key 0 and notControl • 2K·multiple
.1-15 problem programs Ikey I-IS) fetch protected)

Iprotect or end of real optionally fetch protected

~ . kevO storage for systems • I-52 system task I ... the nu~
and nat with 512K or I... of problem program partitions
fetch Ikey 0) not fetch protected.

~ Program • Located at 512K

• Located above 512K~ 	 prot"""",) and below or at end • Multiple 64K in size
of real storage for • Begin on 64K boundary... systems with more • 1-15 job classes per problem

than 512K program partition

'III • Key 1-15 for V=R • PO highest priority
/D job steps • Pn..1 lowest priority

• Key 0 for fixed SQA i
/D
(/)

fn Figure 90.10,.1. Virtual storage organization in OS/vsl

~
I
~

(c)))

1· ~ 	 j) I)

.,.

"

.,

The standard extended fixed list facility of VS1, not supported in
MFT, enables user-written CSECTs to be added to the generated fixed
nucleus (SYS1.NUCLEUS data set) without the necessity of a nucleus
generation. User-written CSECTs can be link-edited into the nucleus
data set during or after a nucleus or system generation.

A CSECT named lEASPL11 that contains five v-type address constants
for the default CSECTS lEAXYZ1 through IEAXYZ5 is IBM-supplied in the
nucleus data set. If the user-written CSECTs that are to be added to
the nucleus are assigned these names, reassembly of the IEASPL11 CSECT
is not required,. If other names are assigned to one or more user
written CSECTs, the lEASPL11 CSECT must be modified to include these
user-assigned names, reassembled, and link-edited into the nucleus data
set. The lEASPL11 CSECT is used during IPL to cause the user-written
CSEC'l'S it names via V-type address constants to be loaded into real
storage as part of the fixed nucleus.

In VS1, when a trace table is defined, it is located adjacent to the
resident control program and, optionally, its size can be varied. The
trace table in VSl is not included in the resident nucleus nor always
fixed in size, as in MFT. The size of the trace table can be varied
during VSl system initialization only when the TRACE parameter is
specified at system generation. The new TRACE system parameter can be
entered by the operator or specified via the automated system
initialization facility to override the number of 16-byte trace table
entries specified at syst;em generation,.

The maximum size of the' trace table is limited by the size of real
storage and the resident control program,. The trace table is built by
the nucleus initialization program.. The trace table and fixed SQA must
fit in the real storage available during system initialization that is
between the nucleus initialization program in upper real storage and the
resident control program in lowest addressed real storage.

The trace table in VS1 contains SVC (SVC interruption), DSP
(dispatching), I/O (I/O interruption), and SIO (START I/O instruction
execution) entries, as does the MIT trace table. However, the VS1 trace
table also contains program check interruption (PIO) and external (EXT)
interruption entries, which are not present in the MFT trace table.

The fixed system queue area is adjacent to the trace table or to the
resident control program if zero entries are specified for the trace
table. Fixed SQA, with a protect key of zero, is used for control
blocks and work areas that are not job or job step related or that must
have virtual-equals-real storage addresses. The size of fixed SQA is
specified at system generation and must be a minimum of 4K for a system
with 144K of real storage. An additional 2K of fixed SQA should be
allocated for each 64K of real storage present in excess of 144K up to a
maximum of 64K of fixed SQA for systems with 512Kor more.

The amount of fixed SQA specified is reserved in the nonpageabl e area
of virtual storage during system initialization. However, during system
operation, fixed SQA is dynamically expanded and contracted as needed, a
virtual storage page (and page frame) at a time. When an allocated
virtual storage page of expanded fixed SQA is no longer required, it and
its allocated page frame are freed and become available for
reassignment. The DISPLAY SQA command can be issued to cause the
virtual storage addresses of the upper and lONer boundaries and the
amount of free space in fixed SQA to be displayed.•

The V=R area, located adjacent to the fixed SQA defined at system
generation, is used for fixed SQA expansion. Any available virtual
storage pages (and their correspondingly addressed available page
frames) within the V=R area can be allocated to the fixed system queue
area, since this area need not consist of contiguous virtual storage

OS/Virtual storage 1 Features Supplement 11

pages. Dynamically expandable system queue space is not supported by
MFT, and system operations must be terminated if the amount allocated
during system initialization is exhausted daring processing. The
dynamic approach implemented in VSl and the support of a pageable SQA in
addition to a fixed ~A are designed to minimize system terminations
that occur because of a lack of SQA space.

The size of the V;R area is variable by system. The V;R area
consists of all the virtual storage from the end of defined fixed SQA to
the location of the V=R line. The V=R line is established during system
initialization Wben the amount of real storage present has been
determined,.

The default address of the V=R line in virtual storage is 512K or the
address of the end of real storage, whichever is less. The operator can
override the default location of the V=R line daring system
initialization only if the system has more than SllK of real storage,.
The address specified by the operator DUst be larger than S12K, less
than or equal to the address of the end of real storage, and a multiple
of 2K. '

Note that since the nucleus must be totally contained in virtual (and
real) storage below the V=R line, a VSl nucleus cannot be larger than
S12K, the default maximum value for the V=R line location. If a nucleus
(IEANUCOX member) larger than S12K is required, the default S12K value
in the IPL program can be. mpdified by the operator daring IPL (see
OS/VSl IPL and ~ Logic, SY~4-S160).

The V=R area is used for the execution of programs that operate in
nonpaged (V=R) mode, as well as for fixed SQA expansion. A nonpageable
job or job step is identified by the new ADDRSPC=RFAL parameter for the
JOB or EXEC statement. When ADDRSPC=REAL is specified, the REGION
parameter is used to indicate the amount of virtual and real storage
required by the nonpageable job or job step. Storage can be allocated
on a job or a job step basis and a job can contain both paged
(ADDRSPC=VIRT) and nonpageable job steps.

The ADDRSPC and REGION defaults are specified in the PARM field of
the EXEC statement in the reader procedure,. The default for the ADDRSPC
parameter is VIRT and the default size for a nonpageable job step is SOK
bytes in the IBM-supplied reader procedure,.

The maximum amount of real storage that can be allocated to a
nonpageable job or job step is a function of the amount of real storage
present. in the system, the size of the resident control program, and the
number and location of the page frames allocated to fixed pages at the
time the nonpageable job step is initiated. The amount requested must
be a multiple of 2K in size. When a nonpageable job step is initiated,
enough contiguous virtual and real storage must be available in the V=R
area at that time to satisfy the REGION parameter request. More than
one nonpageable job step can be active concurrently, up to a maximum of
15, subject to the availability of the required contiguous virtual and
real storage areas.•

Jobs containing one or more steps that are to exeOlte. in nonpaged
mode are scheduled (interpreted, initiated, terminated) using a pageable
problem program partition in the pageable area that handles the job
class indicated. That is, the scheduler operates paged in a pageable
partition even though one or more of the job steps it schedules operate
nonpaged in a contiguous area in the V=R area.

Although V=R job steps are not paged, they execut e with translation
mode operative, because they reference virtual storage addresses
contained in the pageable supervisor area. Page tables associated with
a nonpageable job step are established such that the real storage

OS/Virtual Storage 1 Features Supplement

....... -. ..

/

12

o

, ."

address that resul.ts from the translation of an address contained within
the V=R area allocated to the job step is equal to the virtual storage
address,. Channel program. address translation is not performed on COol
lists contained in a nonpaged program. A nonpaged job step must be
restarted from a checkpoint in the same location in the V=R area that
was used for the checkpoint.

Except for the resident control program in the nonpageable area of
virtual storage (nucleus and RMS routines), none of the SCP components
of VSl must execute in nonpaged mode. However, any program that
executes in VSl must execute in nonpaged mode if it does one of the
following:

• 	 Contains a channel program that is modified while the channel

program is active

• 	 Is highly time-dependent (involves time-dependent I/O operations,
for example, such as 1419, but not 3890, magnetic ink character
reader programs)

• 	 Must have all of its pages in real storage when it is executing (for
performance reasons, for example)

• 	 Uses the EXCP macro and executes user-written I/O appendages that
can encounter a disabled page fault (Section 90:25 discusses
disabled page faults).

• 	 Uses the EXCP macro and has chained CCW lists wit~ more than 239
CCWs

Existing user-written programs that are operating under MFT control
and that must operate in nonpaged mode under VS1 control need not be
modified in order to run in this mode. Existing optical character
reader and certain types of card reader programs can be run in nonpaged
mode under VSl to maintain the performance achieved when they execute in
an MFT environment.

A program that involves operations on a 1287 or a 1288 optical
character reader will run slower in paged mode than in nonpaged mode. A
program that accesses a card reader directly (does not use JES) and that
uses the CNTRL macro, say for stacker selection, will probably run
slower in paged mode than in nonpaged mode. The reduction in
performance is the result of additional control program processing that
is required to perform channel program translation and page fixing.

Note that executing such programs in nonpaged mode can improve the
performance of that individual program but can also degrade total system
performance by making less real storage available for paging,. Nonpaged
mode should be used only when really necessary, as indicated in the
performance discussion contained in the prerequisite base publications
for this supplement (Section 15:15 or 30:15).

Pageable ~

The pageable area consists of all the virtual storage above the V=R
line. It contains a pageable supervisor area and a partitioned area for
the execution of pageable problem programs. The pageable supervisor
area contains control program routines that are resident in virtual
storage (have virtual storage allocated and are contained in external
page storage) and, therefore, are subject to paging. Optionally,
certain control program functions can be made resident and fixed instead
of pageable.

OS/Virtual Storage 1 Features Supplement 13

http:resul.ts

.-----~. =~~-------=~-=,-----~--~~------------------.-----..

The pageable supervisor area is located in highest addressed virtual
storage and has a protect key of zero unless otherwise noted below,. It
contains the following in high-to-Iow virtual storage address sequence:

• 	 An area of 4K reserved for the page supervisor

• A 16K-byte dump area that is used when an abnormal termination
(ABEND) dump is to be taken for a pageable parti tion and the amount
of virtual storage required for the dump is not currently available
in the partition. This dump area consists of four pages of pageable
partition queue area (PQA) and four pages of problem program virtual
storage that is appended to the ABENDing partition. This dump area
is used when required only to take an ABEND dump for an ABENDing job
step task (not an ABENDing subtask). In addition, the dump area is
not used for ABEND dumps of nonpageable partitions.

Only one pageable partition can use the dump area at a time. If the
dump area is being used by a pageable partition and another pageable
partition requests access to the area, the requesting partition must
wait until the dump area is released by the other partition. A
queue of waiting partitions is maintained. The operator is notified
when an ABENDing partition will have to wait for the dump area and
must indicate whether the partition is to wait or the dump should be
canceled. In the latter case, the partition is abnormally
terminated without taking a dump.

The dump area has a protect key of zero when it is not in use. When
the dump area is being used, the four pages of problem program
virtual storage have the protect key of the problem program
partition that is being dumped,. The fetch protect bit is on for
these four pages if fetch protection is included in the systen.

• 	 The pageable supervisor routine area of approximately SOK minimum,
which contains supervisor routines that can be paged instead of
fixed with minimal effect on system performance. The size of this
area varies depending on the system generation options selected
(RTAM and VTAM, for example),.

This area always contains ATTACH, pageable portions of the
communications task, DISABLE, enqueue/dequeue, EXTRACT,
FIND/BIDL/CONVTTR, IDENTIFY, LINlVLOAD/XCTL/FINCH, pageable portions
of the master scheduler, standard program fetch (unless PCI fetch is
included), SEGLD/SEGWT, SPIE, SYNCH, and, if only one partition is
defined, TIME,. This area also contains the SVC transient area,
which is 2K bytes <instead of 1K, as in MFT) and the I/O transient
area of 1K.

• 	 A pageable system queue area, which system tasks can use for their
pageable virtual storage requirements. In general, any GETMAIN
request issued by a system task that does not have its own pseudo
partition is satisfied from pageable SQA. This area is implemented
to reduce the fixed SQA space requirement. pageable SQA also
contains the resident job list,.

The default size of pageable SQA is determined by the size of the
virtual storage supported and the maximum size of the resident job
list,. It is 64K bytes, plus 16 times the virtual storage size
expressed in K bytes (or 1/64 of virtual storage size), plus maximum
resident job list requirements,. For example, the default pageable
SQA size when virtual storage size is 2048K bytes is 96K bytes (64K
bytes + (16 x 2048 bytes» plus maximum job list size for this IPL
as determined by the supplied job list definition parameters.

Pageable SQA size can be specified by the operator during systen
initialization via the PSQA system parameter. The specified size

..

14 OS/Virtual Storage 1 Features Supplement

overrides the default size unless it is less than the default size
or not enough virtual storage is available to satisfy the request.

,r-.., 	 An error message is issued in the latter situation. Pageabl e SQA
cannot be extended during system operation. The system is
abnormally terminated if pageable SQA space runs out during system
operation•

• 	 The resident supervisor area, which can contain the BLDL table,
access method and other reentrant routjnes from SYS1.LINKLIB and
SYS1,. SVCLIB, type 3 and 4 SVC routines; and error recovery
procedures (ERPs). The resident BLDL table feature is standard.
The resident BLDL table is either pageable or fixed as indicated
during system generation or initialization. The IBM-supplied BLPL .. 	 table list in SYSl.PARMLIB is used unless one or two alternate user
defined lists are specified during system initialization via the
BLDL or BLDLF parameter. The BLDL or BLDLF parameter can be
specified via the automated system initialization facility or by the
operator. The resident BLDL table feature can also be canceled for
an IPL.

The resident access methods, resident reentrant modules from
SYS1,. LINRLIB and SYS1.SVCLIB, and resident type 3 and 4 SVC routines
options can be included during system generation. If the resident
access methods or resident reentrant modules options are not
specified during system generation, the RAM. and RAMF parameters can
still be specified during system initialization to indicate the
access method and reentrant modules that are to be made resident,
since the resident access methods and reentrant modules options are
assumed whether or not they are specified during system generation.

A standard list of pageable modules for each of these three resident
module options is IBM-supplied,. User-specified modules can be added
to the three IBM-supplied lists of pageable modules during system
generation (via the VIRTUAL parameter of the LINKLIB and SVCLIB
macros),. In addition, alternate lists can be defined by the user
and added to SYS1. PARMLIB,. Note that when VSAM is included in ~,
generated system, apprOximately 382,800 bytes of VSAM modules ar~
automatically made resident. '"

Inclusion of these resident module options also provides the
capability of making access methods, reentrant routines, and type 3
and 4 SVC routines resident in the resident supervisor routines area
and fixed instead of pageable. For each option, some modules can be
made fixed while others are pageable, all modules can be made
pageable, or all modules can be made fixed. The modules that are to
be placed in the IBM-supplied standard lists for fixed resident
modules can be user-specified during system generation (via the
RESIDNT parameter of the LINIU.IB and SVCLIB macros). '!he three IBM
supplied SYS1.PARMLIB members for fixed lists are null.

The IBM-supplied standard pageable list and fixed list are used fOr
each of these three resident module options unless alternate user
defined pageable and fixed lists are specified or the options are
canceled during system initialization via the RAM, RAMF', RSVC, and
RSVCF parameters.. 'lhese parameters can be specified via the
automated system initialization facility or by the operator~ Even
when the resident access methods and reentrant routines option is
canceled during system initialization, certain access method modules
are made resident and pageable,.

If ERPs are made resident, they are always fixed. Resident ERPS
cannot be made pageable. The IBM-Supplied standard list, which does
not contain any entries, is used unless an alternate user-defined
list is specified or the option is canceled during system
initialization using ,the RERP parameter. This parameter can be

OS/Virtual storage 1 Features Supplement 15

http:LINIU.IB

specified via the automated system initialization facility or by the
operator. Any ERP routines that are specified in the RESIDNT and
VIRTUAL parameters of the SVCLIB macro are placed in the IBM
supplied standard list during system generation.

The entries in the IBM-supplied standard lists for resident modules
differ in VS1 and MFT. In VS1, approximately 141K bytes of virtual
storage in the resident supervisor area are required to contain the
BLDL entries and modules indicated in the standard lists
(approximately 2048 bytes for the ELDL table, 129,768 bytes for type
3 and q SVC routines, and 18,856 bytes for QSAM, BSAM, and JAM
access methods and certain dump formatting routines). Additional
modules are made resident if TCAM or VTAM is included in the
generated VS1 system. It may not be possible to use the IBM- ,
supplied lists in a system that supports only 1024K bytes of virtual
storage.

• 	 The job entry subsystem area (pseudo partition), which contains JES
routines and buffers. The JES area is a minimum of 156K \ and is
pageable.

• 	 The remote terminal access method (RTAM) area (pseudo partition), if
RES is used. The RTAM area is a m1nlJllUm of 58K in size. RTAM is
the teleprocessing access method used by RES.

• 	 The JES buffer pool area, which is used by the reader and writer
tasks in the JES pseudo partition. The pageable supervisor area
size is rounded to a 64K multiple. Any available virtual storage
between the problem program area and the beginning of the VTAM
pseudo partition is used for JES buffers.

The problem program area in VSl virtual storage is divided into
contiguous partitions, just as the problem program area is in MFT. A
maximum of 52 partitions (pO to P51) can be defined. A partition is
identified either as a problem program partition or a system task
partition. The maximum number of problem program partitions that can be
defined is 15. The maximum number of system task partitions that can be
defined is 52. PO, in the highest addressed portion of the problem
program area, has the highest execution (task dispatching) priority and
P51 has the lowest.

A partition in the problem program area of virtual storage must be a
multiple of 64K in size (the segment size used) and begin on a 64K
virtual storage boundary. All partitions must be a minimum of 128K in
VSl systems that include VSAM. In VS1 systems without VSAM, 64K is the
minimum partition size. These two minillRlm5 assume no user-written
routines have been added to the IBM-supplied routines that execute in a
partition. Small partitions, as defined in as MFT (those too small to
contain the job scheduler), do not exist in as/VS1, and job entry
subsystem support eliminates the need for reader and writer partitions.

The resident ATTACH feature is standard in VS1 and provides the same
multitasking capability for partitions as in MFT. In VS1, however,
there is no limit on the total number of subtasks that can be created as
there is in MFT (from 196 to 249 depending on the number of partitions
defined and system options used in MFT).

Jobs are scheduled to execute in problem program partitions by job
priority within job class, just as in MFT. However, a VS1 problem
program partition can have up to 15 job classes assigned, instead of the
MFT limit of 3. In addition, there are 36 job classes (A-Z, 0-9) for
problem program partitions in VS1 instead of the 15 job-classes (A-O)
supported in MFT. A given job class can be assigned to more than one
partition in VS1, as in MFT.

16 	 as/Virtual storage 1 Features supplement

.~

------..

..

',,-- .'

The maximum number of partitions to be supported, their size, their

type, etc., are defined at system generation.. These parameters can be

altered by the operator during and after system initialization as long

as the maximum number of partitions or the maximum amount of virtual

storage specified at system generation or initialization is not

exceeded.

Problem program partitions are aSSigned a nonzero storage protect
key. They are used for the scheduling and execution of pageable job
steps and direct system output (DSO) writers, and for the scheduling
(but not execution) of nonpageable job steps.. A pageable job step can
be initiated in a problem program partition as long as the size of the
program to be executed is at least 4K less than the partition size.
(The 4K is the minimum required for system control blocks and tab! es.)
Use of the scheduler work area facility of JES requires the partition to
contain considerably more than 4K of virtual storage for non-problem
program use. Paged job steps execute with storage addresses in
instructions translated by DAT hardware and storage addresses in channel
programs translated by the control program.•

When a pageable job step executes in a problem program partition,

virtual storage within the partition consists of:

• 	 Fixed protected queue area (PQA) of 2K minimum with a protect key of
zero

• 	 pageable protected queue area of 2K minimum with a protect key of
zero

• 	 Problem program area. which is all virtual storage in the partition
not allocated to fixed or pageable PQA. This area has a nonzero
protect key.•

The fixed PQA contains partition-related control information that is
not paged for system integrity and reliability reasons. For example,
the fixed PQA contains the page tables required for the partition,

.request blocks (PRBs, SVRBs, IRBs, etc.), and the TCBs for any subtasks
that are created during execution of a job step. (·TCBs for system tasks
and one TCB for each partition defined at system generation are
contained in the resident nucleus.) 	 ,-_

When a partition is defined, either during system initialization or
when the operator enters the DEFINE command. at least one virtual
storage page is allocated for fixed PQA from the highest addressed
Virtual stor~ge in the partition, and a page frame is assigned .to it and
fixed.

The number of virtual storage pages required for fixed PQA at
partition initialization time depends on the size of the virtual
partition and whether PCI fetch is included in the control program. The
amount of fixed PQA required at partition initialization in bytes is
500. plus 1600 if PCI fetch is present, plus 1 byte for each 1024 bytes
of virtual storage in the partition rounded to the next multiple of
2048. (For the RTAM pseudo partition, 2K of fixed PQF-. is required,. For
the VTAM pseudo partition, 22K of fixed PQA is required.) If additional
fixed PQA space is needed during problem program execution, it is taken,
a virtual storage page at a time, from the highest available problem
program virtual storage in the partition.

pageable PQA contains control blocks that can be paged with minimal
effect on performance. The amount of virtual storage initially .
allocated to fixed PQA is affected by the size of the scheduler work
area for the partition (if any), the size of the data extent block (DEB)
table, whether or not PC! fetch is included in the system, the maximum

as/Virtual storage 1 Features Supplement 17

~\.

size of the task I/O table (TIOT), and certain JES data set
(SYS1.SYSPOOL) characteristics.

No pageable PQA is allocated when a partition is initialized. When a
pageable job step is initiated, one or more 2K pages of pageable PQA 'are
allocated from the highest addressed available virtual storage in the
partition. pageable PQA can be expanded during problem program
execution. Pages are allocated from highest available problem program
virtual storage in the partition.

At partition initialization time, the problem program area contains
all virtual storage in the partition below fixed PQA. When a pageable
job step is initiated, virtual storage is allocated to it beginning with
the lowest addressed virtual storage in the partition. Virtual storage
above this is then available for allocation to the fixed and pageable
PQAs and to the problem program as needed. The problem program area
within a partition that is below the pageable PQA is organized the same
way in VSl as in MFT, as shown in Figure 90.10.2.

Fixed PQA

Minimum 2K

Zero protect key

Pageable PQA

Minimum 2K

Zero protect key

User parameter and

save area .

Nonzero protect key

Access method routines

and routines loaded

via a LOAD macro

Nonzero protect key

Available virtual
storage

Routines loaded via
LI N K, ATTACH, and
XCTL macro instructions

Nonzero protect key

Problem program
loaded at job step
initiation

Nonzero protect key

Figure 90.10.2. 	 Problem program partition organization for a pageable
job step in Os/VSl

When a nonpageable job step is initiated, fixed PQA for the job step
is allocated in the problem program partition that is used to schedule
the job step, as for a pageable job step. However, pageable PQA is
allocated in highest addressed virtual and real storage in the V=R area
in which the nonpageable job step executes. Therefore, the amount of
storage to request in the REGION parameter for a nonpageable job step
should include pageable PQA but not fixed PQA requirements,. The amount
of nonpaged storage required in addition to the fixed PQA requirement
should be determined in the same way as for a pageable job step.

OS/Virtual Storage 	1 Features Supplement 18

e

optionally, fetch protection for problem program partitions, both
pageable and nonpageable, and all subpools with a nonzero protect key
can be included in a VSl control program during system generation.
Fetch protection is established during system initialization for each
defined partition and whenever partition redefinition is performed using
the DEFINE command. When present in a VSl control program, fetch
protection can be canceled during system initialization.

Fetch protection support causes the fetch protect bit to be turned on
in all areas within a problem program partition that have a nonzero
storage protect key,. Areas within a problem program partition that have
a zero protect key, such as fixed and pageable PQA, are not fetch
protected. This approach prevents each problem program partition from
accessing and storing data in nonzero key areas of every other problem
program partition. A fetch or storage protection interruption occurs if
any such attempt is made. Key zero areas in a problem program partition
can be accessed by any routine but can be modified only by routines with
a zero protect key.

Fetch protection is not provided for the resident control program and
fixed SQA in the nonpageable area, the pageable supervisor area (except
for the VTAM pseudo partition, which is fetch-protected in its non-PQA
areas), or system task partitions.

Probl€1l\ program partition organization in VSl offers integrity"
advantages over MFT partition organization in that all control blocks
contained within a VS1 virtual partition are protected from modification
by the problem program and'fetch protection for nonzero key areas is
available.

system task partitions are designated with the identification STP
instead of with job classes. They have the same organization as problem
program partitions and operate with the CPU in problem program state;
however, system task partitions have protect key zero assigned and are
not fetch-protected. problem programs cannot be executed in a system
task partition,. The Generalized Trace Facility, the MOUNT command,
S~RT RDR/WTR commands, STOP RDR/WTR commands, and conversational remote
job entry readers are system tasks that are authorized to operate in a
system task partition. The missing interruption checker routine and
SYS1. SYSJOBQE extension program can also be executed in a system task
partition.

The system tasks that are authorized to execute in a system task
partition can also be executed in problem program partitions; hence, a
system task partition does not have to be defined. A system task
partition can be defined for the purpose of executing operator commands,
such as MOUNT, START RDR/WTR, and STOP RDR/WTR, that must operate in a
partition. If a system task part! tion is available when one of these
commands is issued, the command can be processed immediately without
waiting for a problem program partition to become available.

Unlike main storage areas in MFT, certain virtual storage areas in
VSl need not be contiguous with each other. There can be undefined
virtual storage between PO, which must be a multiple of 64K and located
on a 64K bOundary, and the pag~able supervisor area, which is allocated
from the top of virtual storage down and need not be a multiple of 64K
in size. There cannot be any undefined virtual storage between virtual
partitions but there can be between the nonpageable area (V=R line,
which is on a 2K boundary) and the pageable area (lowest priority
pageable partition starting address), which is on a 64K boundary.

OS/Virtual storage 1 Features Supplement 19

REAL STORAGE ORGANIZATION

Real storage is also divided into a nonpageable and a pageable area,
as shown in Figure 90.10.3. The nonpageable area in lowest addressed
real storage is allocated to the nonpageable area of virtual storage-on
a V=R basis. It contains the fixed resident control program (nucleus
and ~lS routines) and the fixed SQA defined at system generation or
system initialization. With a few exceptions, resident control program
routines operate with translation mode specified even though they are
not paged. This approach is taken because the resident control program
accesses virtual storage addresses at various times during its execution
and address errors would occur at these times if translation was not
operative.

Real Storage - 8192K maximum

fIIonpageable Area Pageable Area
~_____________·~A~______________~~______________--JA~______________

(T
~

~5 I S'" I
Allocated to: I

Optional• Fixed SQA expansion I Allocated to:
• Nonpageable I fixed

I • Pageable partitions

RMS Fixed job steps
 modules

I • Pageable control program routinesNucleus 6K SQA • Pages of pageable
I • PQA (fixed and paged) • BLDL

68K or 4K partitions Table
I • Pageable SQA
minimum 8K min. • Pageable control ! • SVC'sNot all oeated to:

program routines , I • Nonpageable job steps • ERP's
I
I• PQA (fixed and • FixedSQA • Reentrant

pageable) routjnes
I

(S I

I 5f

Address of V=R line..)f

Layout shown assumes V=R line is not
at the end of real storage

Figure 90.10.3. Real storage organization in OS/VS1

Page frames in the nonpageable area above the resident control
program up to the V=R line are allocated to both pageable and
nonpageable virtual storage pages. page frames are allocated to fixed
SQA and nonpageable job steps only from available real storage below the
address of the V=R line. However, available real storage below the V=R
line can also be allocated to pageable supervisor routines, pageable
problem programs, pageable SQA, and fixed and pageable PQA, when
necessary.

Page frames above the V=R line are allocated to pageable supervisor
routines, pageable problem programs, fixed and pageable PQA , and
pageable SQA, but cannot be allocated to fixed SQA or nonpageable
problem programs.. That portion of the pageable supervisor area
(resident access methods, BLDL table, etc.) that is made fixed instead ..
of pageable is loaded into highest addressed available real storage
during system initialization and marked long-term fixed. (Real storage
allocation is discussed in more detail in Section 90:35.)

EXTER~L PAGE STORAGE ORGANIZAXION

External page storage is used to contain the contents of the pageable
virtual storage area, which consists of all virtual storage between the
V=R line and the end of defined virtual storage. Only fixed PQA pages
and any fixed control program routines in the pageable supervisor area,
such as SVCs, access methods, etc., are not written in external page
storage. The direct access devices supported as paging devices are the

OS/Virtual storage 1 Features Supplement 20

231~/2319, 3330-series (all models), 33~0/33~~ (all models), 3350 (in
native and compatibility modes), and 2305 Model 2.

The direct access storage allocated as external page storage is
called the page file (SYS1.•PAGE data sets).. The page file configuration
is defined during system generation.. The device types specified during
system generation are placed in a list in the NIP routine and the space
allocation data is placed in a member of SYS1.PARMLrB called lEASYSOO.
The page .file .configuration that was specified at system generation can
be modified by updating the lEASYSOO member or by using the PAGE system
parameter, which can be specified via the automated system
initialization facility or entered by the operator during system
initialization,. If the PAGE parameter is issued, it overrides '(but ·does
not change) the specifications in the lEASYSOO member for the IPL.

The page file configuration specified during system generation can be
modified by the addition of volumes, deletion of volumes, and alteration
of the s;;paceallocation for a given SYS1.PAGE data set. If a paging
volume is added, its type must be the same as one of the direct access
device types that were defined for paging at system generation.. The
PAGE parameter can also be used to cause page file volumes to be
formatted during system initialization.

If a specified page data set volume is found not to be mOunted during
system initialization, it is bypassed and, a message to the operator is
issued tbilt indicates the volume was not moo.nted. The operator can
mount the volume if it is needed and then BUst enter the PAGE parameter
to add the volume to the page file .•

The page file can consist of up to eight SYS1.PAGE data sets, each of
which must be a single extent only and totally contained on one direct
access device. Any mixture of the direct access device types that are
supported for paging can be used. While direct access devices that
contain a page data set need not be dedicated to paging, this approach
is recommended for performance reasons. Page file disk volumes must be
permanently resident. The lOS priority queuing option need not be
specified for direct access devices that contain page data sets, since
paging I/O requests are queued on a priority basis regardless of the
queuing option specified for the device for which they are queued.

A track in a VSl page data set contains a number of 2K recOrd areas
called slots.. Slots are written as unblocked records without. a key.;
Regardless of the direct access device type used, page data set traCks
are formatted with a dummy record written after each 2K slot,. The dummy
records are added to increase paging performance. They allow time for
electronic head switching during accessing of multiple pages contained
within the same cylinder, using a command-chained channel program. The
track overflow feature is not used because, for a 2K record size, it
yields no significant space benefit on the supported devices. The
number of 2K slots available per device type is shown in Table 90.10.1.

The page file must be large enough to contain a number of 2K slots
equal to or greater t.han the number of 2K virtual storage pages that
exist between the V=R line and the end of virtual storage. External
page storage is statically mapped on a one-to-one basis with virtual
storage above the V=R line. That is, the contents of any given virtual
storage page are always placed in the same slot and the first virtual
storage page is associated with the first slot in external page storage,
etc.. (See Figure 90.10·.~.)

OS/virtual storage 1 Features Supplement 21

Table 90.10.1. Number of 2K slots per paging device type

Device Type Slots per Track Slots per Cylinder Slots per Pack

2314/2319 3 	 60 11,940*

3330-series 5 95 38,285*
Models 1 and 2
and 3350 in
3330 Model 1
compatioility mode

3330~series 5 95 76,570* ..
Model 11 and 3350
in 3330 Model 11
compatibility mode

3340 Model 35 3 	 36 12,528*

3340 Models 70 3 36 25,056*
and 70F and
3344

3350 (native mode) 7 	 210 116,550

2305 Model 2 6

* 	 Maximum number of 2K slots required is 8192 (for 16 million bytes

of virtual storage) less the number of page frames in

real storage below the address of the V=R line~

Virtual storage is mapped to the set of paging volumes that are
defined and mounted during system initialization beginning with the
highest addressed virtual storage. The page data sets defined in
lEASYSOO are allocated first in the sequence in which they are listed
(that is, as specified during system generation). Second, the devices
specified via the automated system initialization facility (NIPx:xxxx
member) are allocated in the order in which they are listed in the
member. Last, the devices specified by the operator during system
initialization via the PAGE parameter are allocated in the order in
which they are entered.

OS/Virtual storage 1 Features SUpplement 22

External Page Storage
231412319 -_-_-----__

\
\

\
\

V irtual Storage

\ I\
Control\ 	

\ 	 Programs and
\ 	 - Rotnesl

\
\
\
.\

\ Partition 0 PQA
\

\
\

\
\

\

\
\
\ Virtual storage

\ is mapped 1: 1 Partition 1 PQA
\ on externalFixed PQA \

not paged \
 page storage

\
\

\
\

\
\ Partition 2 PQA
\

\
\
\

\
Paging \
activity \

\ Partition n PQA
\
\ ..

\
\V=R line Real Storage \ V=R line -

\ PQA PQA PQA

\

\
 PQA
\

\
\

\ 	 r- Nonpaged - I-
\ job steps

\
\ - r-andSQA-I-

\
\Available 	 Not mapped\

d iract access \ on external
\storage

\ page storage
\ or paged

\
\ \ SQA SQA

Resident Control Program Resident Control Program

Figure 90.10.". 	 External page storage, real storage, and virtual storage
relationship in OS/VS1

SYSTEM INITIALIZATION

At the completion of the VSl system initialization procedure, EC and
translation modes are operative. During system initialization, virtual,
real, and external page storage are initialized as follows.

23OS/Virtual Storage 1 Features Supplement

Virtual Storage

During system initialization, a virtual storage of the size specified
at system generation is initialized, unless the size is smaller thaq. the
minimum virtual storage size required or the operator overrides the
system generation specification. The operator can increase or decrease
the amount specified at system generation but cannot specify less than
1024K or the size of real storage plus 512K, whichever is greater. .

The initialization of virtual storage consists of building the
control blocks and tables required to define the various areas of
virtual storage that are shown in Figure 90,.10.1. virtual storage is
mapped according to system generation parameters and any additional
definitions specified in SYS1.P~B or overrides indicated by the " operator.. Control program modules that are to be made resident in the
pageable supervisor area of virtual storage and paged are allocated
virtual storage and fetched from load module libraries. Re~ident
modules that are to be fixed are placed in the high end of real storage
and marked long-term fixed.

Resident modules that are to be paged are paged out to external page
storage as a result of normal paging activity, if necessary. 'lbere is
no routine in VS1 that forces the page out of pageable load modules that
are fetched during system initialization or thereafter,. If real storage
becomes full during the loading of. modules, pages are written out as per
the page replacement algorithm.

,
During system initialization, the segment ~ble is built at the end

of the resident nucleus. The size of the segment table is dependent on
the size of the virtual 'storage established for this IPL. Virtual,
storage for page tables is also allocated during system initialization.
The page tables for all virtual storage areas except the problem pr9gram
area (pageable partitions) are allocated in fixed SQA. Page tables, for
the pageable partitions defined are allocated within the partitions·
themselves. One or more virtual storage pages of fixed PQA are
allocated in the high end of each initialized partition with space'
reserved in them for the page tables required to address the entire
partition.

Real Storage

The operator can set the end-of-real-storage address to a value lower
than that of the actual end of real storage during IPL (see OS/vS1 ~
and NIP LOgiC, SY24-5160). The real storage size specified must be a
multiple of 64K. Only real storage up to the limit specified will be
zeroed during IPL and used by the VS1 operating system for the duration
of this !PL.

At the completion of system initialization, real storage contains:

• 	 The resident control program (in the nonpageable ~rea in lowest

addressed real storage) and any resident supervisor routines that

are fixed (in the high end of real storage). The standard nucleus

(member IEANUC01) or anyone of eight alternate nucleus members can

be s elected during IPL.

• 	 4K or more of fixed SQA (adjacent to the resident control program)

• 	 At least one page frame of fixed PQA for each partition defined and

initialized

• 	 A minimum of three fixed pages for JES

OS/Virtual storage 1 Feattires Supplement 24

The m1n1mum VS1 control program (one partition, one JES reader, one
JES writer, and no fixed supervisor routines) requires 86K of fixed real
storage (68K for the nucleus, 6K for RMS, 4K of SQA, 2K of fixed PQA,
and 6K of fixed real storage for JES).

In VS1, a certain amount of real storage is reserved to be available
for paging, fixed SQA or fixed PQA expansion, and short-term fixing. A
minimum of eight page frames must be available for paging. Two page
frames must be available to extend fixed SQA or fixed PQA, if necessary,
and enough page frames must be available to satisfy the largest expected
I/O request for short-term page fixing. In VS1, 36K of real storage is
always reserved to remain available for these operations, regardless ·of
the amount of real s~orage in the system.•

COntrol blocks and tables are initialized to reflect the size and
organization of the virtual storage defined, as well as the real storage
present and allocated. The operator is notified during system
initialization if VS1 is being loaded into a system with more than 4096K
of real storage and real storage above 4096K is not used.

Th, segment table in the nucleus reflects the current size of virtual
storage, and the segment entries have their invalid bit off to indicate
that page tables have been built and initialized. The page table
entries for the virtual storage that has real storage allocated
(resident control program, fixed PQA, etc.•) have their invalid bit off,
while the entries for problem program virtual storage have their invalid
bit on.

A page table entry for a problem program partition is initialized as
shown in Figure 90.10.5. Bit 0 is on to indicate that bits 3 to 6
contain the nonzero protect key of the partition. If fetch protection
is included in the system, bit 7 (fetch protect bit) is on.. The invalid
bit is on and the user bit is off. When off, the us er bit indicates
that a page-in is not required after a page frame has been allocated to
the virtual storage page.. The user bit is turned on the first time real
storage is allocated to this virtual storage page after job step
initialization. At job step termination, the user bit is turned off.•

Bits 0 3 7 8 13 14 15

1
Partition
protect
key

F 1 0 0

Bit
o 	 When 1. bits 3 to 7 contain partition protect key

.and fetch protect bit .

3-7 When bit 0 is a 1, these bits contain the partition
protect key

13 Invalid bit on to indicate real storage page frame
not allocated

15 	 User bit off to indicate a page-in is not required
to allocate a page frame

Figure 90.10.5. 	 Page table entry contents for an initialized, inactive
problem program partition

The first time any problem program virtual storage page is
referenced, a page frame is allocated without a page-in and cleared to
zeros (for security protection). The protect key value in bits 3 to 7
of the page table entry is inserted in the protect key of the page frame
allocated. The invalid bit is turned off and the user bit is turned on

OS/Virtual storage 1 Features supplement 25

in the associated page table entxy.. The high-order bits of the address
of the allocated page frame are placed in bits 0 to 12 of the page table
entry. The page table entry fora virtual storage page with a page
frame allocated is shown in Figure 90.10.6 .•

Bits 0 	 12 13 14 15

High-order 13 bits of page

frame allocated to virtual 0 0 1

storage page
 ,t

Invalid bit User bit

Figure 90.10.6. 	 Page table entxy contents for a problem program
partitionvirtual storage page with a page ..frame
allocated

External Page storage

The location, in terms of unit addressees) or volume serial
number(s), and the size of the page data sets in the page file that were
specified at system generation are used unless overridden during system
initialization. The operat.or is notified if the page file space
allocated is not large enough to contain the virtual storage space above
the current V=R line. The first time a given volume is used for a page
data set, space is allocated and slots are formatted. Thereafter, the .
page data set can be used without reformatting as long as the same or a
lesser amount of space is allocated. Formatting can be requested by the
operator.•

At the completion of system initialization, external page storage may
contain some of the pageablecontrol program load modules that are
resident in virtual storage (if any were paged out during system
initialization) • The volumes containing external page storage and the
paging devices on which these volumes reside cannot be changed without a
re-IPL.

Missing Interruption Checker Routine

The missing interruption checker routine, not provided in MET, is a
standard feature of VS1. If this routine is to be used, the operator
must initiate its execution in a partition via a START command. This
routine is authorized to execute in a system task partition. The
missing interruption checker routine checks for missing channel-end and
I/O device-end interruptions during system operation.

This routine is designed to lessen the impact on system operation of
missing I/O interruptions that are the result of a hardware malfunction,
operational error, or environmental circumstance. When the control
program expects an I/O interruption that fails to occur, a task, or in
some cases the system, enters the wait state. A miSSing channel- or
device-end interruption can cause a job to be canceled because the
allowable wait time for the job is exceeded.

The missing interruption checker is CPU model- and channel
independent. It performs a polling function on all active
nonteleprocessing I/O devices to ensure that device- and channel-end
Signals are received within a reasonable amount of time. The operator
is notified if an I/O interruption is not received within a time
interval that is established when the I/O operation is initiated. The
operator is also notified if a MOUNT command is not satisfied in the

OS/Virtual Storage 1 Features Supplement 26

http:operat.or

..

time interval. The IBM-supplied time interval of three minutes can be
changed by the user by alteration of the missing interrup~ion checker
module, which is contained in SYS1.LINKLIB.

system operation continues after the operator is notified of a

missing interruption. The condition may be correctable by the operator

(such as when a MOUNT was not satisfied), or a hardware malfunction may

have occurred that requires cancellation of the affected job.

The operator can terminate operation of the missing interruption

checker routine at any time during system operation by entering a STOP

command.

Automatic Device status Initialization

The smart NIP routine that provides automatic device status
initialization can be included in a VSl system during system generation,
as in MFT. In VS1, however, the operator can include the smart NIP
routine during system initialization by specifying the DEVSTAT system
parameter. If the smart NIP routine is not requested, the availability
of the direct access devices specified during system generation is
tested. If the smart NIP routine is requested, all the devices of the
type(s) specified in the DEVSTAT parameter or at system generation are
tested for availability,.

In VS1, NIP notifies the operator when an unexpected device status
that is unacceptable is received several times for a device during the
testing of device addresses that were specified during system
generation. This facility is designed to notify the operator of a
condition of which he would otherwise be unaware. It is included in VSl
whether or not smart NIP is present,.

Automated System Initialization

During the initialization of a VSl control program, many more
parameters can be specified than during the initialization of an MFT.
control program. This capability is provided because VSl supports many
new features and is designed to offer the advantage of allowing an
installation to change most parameters that were specified at system

.generation without the necessity of a regeneration.

The amount of operator action required to initialize a VSl control
program can be minimized by use of the standard automated system
initialization (AS!) feature, which is not supported in MFr,. ASI
provides an automated)way for the operator to indicate the parameters to
be used for an IPL that allows system generation specifications to be
Changed without the necessity of entering a large amount of data via the
operating system console device.

ASI enables an installation to establish several different sets of

parameters that override various system generation specifications when

necessary and permits the operator to select a set of parameters during

system initialization with a minimlE of keyboarding. In addition, the

time required to initialize a VS1 system is significantly reduced when

the parameters specified at system generation and via the ASI process

are not be be changed.

When the ASI facility is used, the NIP and master scheduler

initialization (MSI) routines establish parameters by processing a set

of up to ten different types of SYS1.PARMLIB parameter specification

members that contain the parameters to be used for this IPL. Each type

of parameter specification member contains a particular group of

parameters or, conmands: system parameters, JES reconfiguration

OS/virtual storage 1 Features SUpplement

.,
27

parameter.;, DEFI NE command parameters, SET parameters, permanently
resident volume list parameters, automatic commands, SMF parameters,
RTAM parameters, or mass storage volume control parameters for the 3850
Mass storage System.

A default parameter specification member for five of the nine member
types is IBM-supplied. One or more user-defined parameter specification
members can be defined for each of the ten types of parameter groups and
placed in SYS1.PARMLIB using the IEBUPDTE utility.

A parameter specification member contains 80-byte records, each of
which specifies a parameter in the same format as that used when the
parameter is entered manually during system initialization. The four~
to-eight-character names assigned to user-defined parameter
specification members must adhere to the following conventions: the
first three characters must be the IBM-defined characters that identify
the particular parameter-type group (NIP, JES, etc,.) and the last five
characters can be user-selected to identify different members for the
same parameter-type group (NIP01, NIP02, for example).

In addition to parameter specification members, SYS1.PARMLIB must
contain user-defined members whose contents are a list of the names of
parameter specification members. One default member name list is IBM
supplied in a table in the master scheduler initialization routine.
This table contains the names of the six default parameter specification
members and a null entry for each of the other four types of parameter
specification member types,. as shown in Figure 90.10.7. The names
aSSigned to the user-defined member name list members need not follow a
particular naming convention. A user-defined member name list member
can contain the names of from one to nine user-defined parameter
specification members that are listed in any sequence.

When.ASI is to be utilized, general operation of the system
initialization procedure is as follows. In response to the NIP message
SPECIFY SYSTEM AND/OR SET PARAMETERS (IEAl01A), the operator indicates
via the operating system console the user-defined member name list
member that is to be used for this IPL or supplies the names of from one
to ten parameter specification members in cards (one member name per
card) •

Alternatively, the member name list member that is to be used when an
automated system initialization is performed can be specified at system
generation via the AUTO parameter so that it need not be entered by the
operator during system initialization in response to the lEA10lA
message. The operator can also enter parameters via the console that
are to override corresponding parameters in the user-defined parameter
specification members that are used for this IPL.

NIP reads the member specified or the cards supplied and any
additional parameters the operator supplies. NIP then overrides
corresponding entries in the default member name list with the member
names read. If the user-supplied member name list does not contain a
member name for a particular parameter-type group, the member name or
null entry in the default member name list for that group is used.
ThUS, the operator can override some or all of the default parameter
specification members for an IPL.

Once modification of the default member name list is completed, NIP
processes the contents of the system parameters member if one was
specified and operator-supplied system parameters, if any. The MSI
routine then processes the parameters specified in the other parameter
specification members that are named in the modified default member name ~
list. The parameter specification member names contained in the
modified default list that is used for the IPL are listed on the ~./
operator's console.

OS/Virtual storage 1 Features Supplement 28

Default
parameter
specification
members

User-defined
member-name-I ist
members with any
valid member name

User-defined
parameter
specification
members with
names that
follows
naming
convention

SYS1.PARMLIB

~ ~
r JESPARMS PRESRES

System generation User-added
parameters volumes a~d
for JES characteristics

SMFPRMOO RESPARMS

System generation System generation
< parameters parameters

for SMF 	 for RES

MVIKEYOO

3850 mass
storage volume
control parameters

"

A list of 1 to 10 user-
defined parameter
specificatic,il{ 	 ••• L:Jmembi!r names

,.
NIPxxxxx JESxxxxx

System 	 JES
parameters parameters

DFNxxxxx SETxxxxx

DEFINE SET
command parameters
parameters

PRExxxxx CMDxxxxx

(Permanently Automatic
resident volume commands
list

SMFxxxxx RESxxxxx

SMF 	 RES
parameters parameters

MVlxxxxx

3850 mass
storage volume
control parameters

Default Member-Name
List Table in MSI

Null entry for system parameters
JESPARMS
Null entry lor DEFINE parameters
Null entry for SET parameters
PRESRES
Null entry for automatic commands
SMFPRMOO
RESPARMS
MVIKEYOO

Figure 90.10.7. IBM-supplied default parameter specification members
and member name list for automated system initialization

OS/Virtual storage 1 Features Supplement 29

Listed below are the types of parameter specification members. For
each type, the member name that must be assigned to a user-defined
parameter specification member is given, the name of the default member ~.
in the IBM-supplied member name list is given, the contents of the
default and user-defined members are described, and the way in which the '--./
parameters specified in the member can be manually overridden by the
operator, if any, is indicated.. The action taken if no parameter
specification member is specified for a given parameter-type group and
when a specification error is encountered during the processing of a
parameter specification member are also described.

• 	 System parameters (user-defined member name is NIPxxxxx , default

member name is all blanks to indicate there is no default member).

A user-:defined system parameters member can contain any of the .

system parameters that the operator can enter in response to the

lEA101A message except the parameters D=member name, AUTO, and RDR.

Hence, the following system parameters are valid (an asterisk

identifies parameters that are not also MFT parameters): ALTSYS,

BLDL, BLDLF., dynamic dispatching parameters (DDDEL, DOG, DOMIN,

DDRATIO, DDSTAT)., DEVSTAT (smart-NIP option parameter)., BARDCPY,

JES job list parameters (JOBQINl', JOBQEXT, JOBQNXT)., PAGE., P SQA. ,

PURGE and NOPURGE (demounting options for the 3850 Mass storage

System)., RAM, RAMF.,. REACT (task reactivation parameter)., lU:RP,

RSVC, RSVCF., SECURITY (fetch protection parameter)., 90S, TRACE.,

and VR (virtual=real area specification) ••

The system parameters sPecified in the NIPxxxxx member override for

this system initialization the corresponding parameter that was

specified at system generation. The operator can override one or

more of the system parameters in the specified NIPxxxxx member by

including system parameters in the response to the IEA101A message.

If a NIPxxxxx member is not specified for an IPL, the system

parameters specified at a system generation are used unless the

operator overrides them by supplying system parameters in his

response to the IEA101A message,.

If NIP encounters a specification error during the processing of a

NIPxxxxx member, the operator is notified and further processing of

the NIPxxxxx member is terminated. The operator must reenter the

erroneous system parameter, all unprocessed system parameters in the

NIPxxxxx member (those following the incorrect system parameter),

and any system parameters specified in response to the IEA101A

message.•

• 	 JES reconfiguration parameters (user-defined member name is

JESxxxxx, default member name is JESPARMS).. A JESxxxxx member can

contain any of the JES parameters that are contained in the JESPARMS

member (ALCUNIT. BUFSIZE, JOBLOG, JOBQVOL, JOUTLIM, LPRPARM,

LPUPARM, LRDPARM, NUMBUFS, PRLRECL, RDR, RPRPARM, RPUPARM, RRDPARM,

SPOLCAP, SPOLVOL, STEPWTP, SWDSLMT, WTLRCDS, and WTR). JESPARMS

contains all the JES parameters that are speCified during system

generation except the three resident job list parameters (JOBQINIT,

JOBQEXT, and JOBQNXT). If a JESxxxxx member is not named in the

user-specified member name list, the JESPARMS member is used.

The MSI routine compares the JES parameters specified in JESPARMS

with those specified at system generation. When a difference is

encountered, the JES parameter in the JESPARMS member overrides the

system generation specification. JES parameters in JESPARMS can be

modified using the IEBUPDTE utility..

If a JESxxxxx member is specified, the JESPARMS member is not used.

Any parameter that is specified in the JESxxxxx member overrides the

OS/Virtual storage 1 Features Supplement 30

corresponding JES parameter that was specified at system generation.
The name JESNULL can be specified in the supplied member name list
when the JES parameters that were specified at system generation are
not to 'be modified for an IPL. This causes all processing of the
JESPARMS member to be bypassed..

I
< 	 ,

If a specification error is encountered during the processing of a
JESxxxxx or the JESPARMS member, the operator is notified.. The
specified JES member is ignored and all the system generation JES
parameter specifications are used for the IPL •

• 	 DEFINE parameters (user-defined member name is DFNxxxxx, default
member name is all blankS to indicate there is no default member).
A DFNxxxxx member can contain any of the parameters that can be
specified in a DEFINE command except the PARM=membername parameter.
The parameters in this member override for this system
initialization the partition definitions that were specified at
system generation.

The partition definitions made effective by this member can be
changed after system initialization via a DEFINE command that
specifies new definitions or the PARM parameter, which specifies the
name of a member in SYS1.PARMLIB that contains the new definitions.
If a DFNxxxxx member is not specified in the member name list for a
given system initialization, the master scheduler issues the CHANGE
PARTITIONS? message (IEE802lD) and the operator can enter any
required changes via the operating system console as usual.

If a specification error is encountered during processing of the
parameters in a DFNxxxxx member, the same error messages are issued
as when the operator enters the definitions via the operating system
console and the operator can take the same recovery actions. The
DFNxxxxx member is not modified by any parameter specification
corrections made by the operator. ,Any incorrect "specifications in a
DFNxxxxx member must be corrected using the IEBUPDTE utility•

• 	 SET parameters (user-defined member name is SETxxxxx, default member
name is all blanks to indicate there is no default member). A
SETxxxxx member can contain the following SET parameters: PROC, Q,
SPOOL, and' SYSW. The parameters specified in thiS member override
for thiS system initialization the corresponding SET parameters that
were specified at system generation. <

The operator can override any parameters in a SETxxxxx member by
including the SET parameters in his response to the IEAlOlA message.
The SET parameters DATE, CLOCK. and GMT cannot be specified in a
SETxxxxx member, but they can be entered by the operator in response
to the IEAlOlA message,. DATE and CLOCK can also be specified in a
SET command that is issued after system initiali,zation is completed.

If a SETxxxxx member name is not specified in the member name list
for a given system initialization, the system generation SET
parameter values are used unless the operator overrides them by
entering new specifications via the operating system console in
response to the IEAl01A message.

If specification errors are encountered during processing of the
parameters in the SETxxxxx member, the same error messages are
issued as when the operator enters SET parameters via the operating
system console and the same operator responses can be entered. ,
Parameter corrections made by the operator do not cause the SETxxxxx
member to be updated.

• 	 Permanently resident volume list parameters (user-defined member
name is PRExxxxx, default member name is PRESRES). The PRExLXXX

OS/Virtual Storage 1 Features supplement 31

member can contain a list of direct access volumes with mount and

allocation characteristics specified in the same format as that used

in the PRESRES member. When a PRExxxxx member is specified in the

user-supplied member name list, it is used instead of PRESRES for

this IPL. The name PRESNULL can be specified in the user-supplied

member name list to cause processing of PRESRES to be bypassed•

• 	 Automatic commands (user-defined member name is CMDxxxxx , default

member name is all blanks to indicate there is no default member).

The CMDxxxxx member can contain any <x>mmands that are to be executed

automatically during system initialization. START, STARTF, LOGON,

VARY, MONITOR, MODE, and DISPLAY commands are examples of commands

that could be placed in a CMDxxxxx member. If a CMDxxxxx member is

not specified in a member name list for a given system

initialization, no automatic commands are issued, since automatic

commands cannot be specified at system generation.

If a specification error is encountered during the processing of a

command in the CMDxxxxx member, the operator is notified' and can

correct the error by reentering the command via the console. The

CMDxxxxx member is not updated •

• 	 SMF parameters (user-defined member name isSMFxxxxx, default member

name is SMFPRMOO). The SMFxxxxx member can contain any of the SMF

parameters that are contained in the default member SMFPRMOO, which

is IBM-supplied. If an SMFxxxxx member is specified, it is used

instead of SMFPRMOO. Th'e SMFPRMOO member is used when SMFxxxxx is

not specified in the user-supplied member name list. The operator

can override the SMF parameters in the member used (either SMFPRMOO

or SMFxxxxx) during SMF initialization only if the OPI=YES parameter

was specified in the member used.

If an SMFxxxxx. member is not named in the user-supplied member name

list and an SMFPRMOO member is not present in SYS1.PARMLIB, the

operator is asked to supply the required SMF parameters via the

operating system console during SMF initialization. If

specification errors occur during processing of the parameters in

the SMF parameters member, the operator is notified and can correct

the error via the console whether or not OPI=YES was specified. The

name SMFNULL can be placed in a member name list to specify the use

of a null member instead of SMFPRMOO for an IPL.

• 	 RTAM parameters (user-defined member name is RESxxxxx , default

member name is RESPARMS).. An RESxxxxx member and the RESPARMS

member can contain One or more of the following RTAM parameters:

APPLID, CPACT, CPACTDF, CTABLE, EXTRA, MSGFCTR, OMIT, PASSWD, PORTS,

TPBUF, TPREAD, TPPRINl', TPPUNCH, and STBUFNO. The RTAM parameters

in the specified RESxxxxx member or the RESPARMS member override for

an IPL the RTAM values that were specified during RTAM generation.

The RESPARMS member is used unless an RESxxxxx member is specified.

The user is responsible for creating the RESPARMS member as well as

any RESxxxxx members that are to be used.. If an RESxxxxx member is

not specified and an RESPARMS member does not exist, the RTAM values

_specified at RTAM generation are used for the IPL. If a

specification error is encountered during processing of the

specified RES parameters member, all values in the member are

ignored and the RTAM values that were specified at RTAM generation

are used.•

• 	 Mass storage volume control parameters (user-defin-ed member name is-
MVIxxxxx, default member name is MVIREYOO). The MVIKEYOO or an ~
MVIxxxxx member supplies the follOWing three parameters to the Mass
Storage System Communicator: names of the Mass Storage Volume ,j

Inventory and Mass Storage Volume Control Journal data sets,

OS/v1rtual storage 1 Feature~ Supplement 32

..

location of messages for the space manager r and time interval for
checking staging drive groups.

Regardless of bow the member name list is supplied, the operator can
specify the NOLIST keyword in response to message lEA10lA to prevent
noncritical informational and nonerror messages from NIP and the MSI
routine from being written to the operating system console during system
initialization. For exampler eliminated are printing of the ready
message, any automatic commands, a list of the parameter specification
members identified in the AUTO or RDR parameter for this IPL (IEA764I)r
and a list of the system parameters contained in the NIPxxxxx member
used for this IPL (IEA765I).

When the AUTO parameter ~ not specified during system. generation,
the operator can perform one of the follOWing in response to the message
IEA10lA during system initialization:

• 	 Enter the AUTO parameter with or without NOLIST to specify the name
of the member name list member that is to be used for this automated
system initialization. In addition to AUTOr the operator can enter
any of the system parameters and SET parameters that are valid for a
response to the lEA10lA message. These parameters override
corresponding parameters in the system parameters and SET parameters
members or the system generation speCifications, as previously
described.

• 	 Enter the RDR paramete~ with or without NOLIST to indicate that an
automated system initialization is to be performed and that the
member name list is to be read from a card reader. As when the AUTO
parameter is specified r the operator can also enter system
parameters and SET parameters that are valid for the lEA10lA
message,.

• 	 Omit the AUTO and RDR parameters from the response. This causes the
default member name list member to be used, and results in a manual
rather than an automated system initialization. In this case r the
operator must enter any system and SET parameters that are to
override the system generation specifications in response to the
lEA101A message.

If the AUTO parameter was specified at system generation r the
operator can perform one of the following in response to the IEA101A
message, which is issued after r instead of before r NIP has processed the
system parameters in the NIPxxxxx member named in the member name list
member specified during system generation r if any:

• 	 Enter an EOB without entering any data to indicate that an automated
system initialization is to be performed using the member specified
in the AUTO parameter at system generation and that no parameters
are to be changed by the operator for this IPL.

• 	 Enter, with or without NOLIST, the AUTO parameter with a member name
or the RDR parameter to indicate that an automated system
initialization procedure is to be performed but that the list
indicated in this response is to be used for this system
initialization instead of the member specified at system generation.
The system and SET parameters that are valid in a response to
message IEA10lA can be included to override corresponding parameters
in the parameter members specified or the system generation
specifications.

• 	 Enter AUTO=r to indicate a manual instead of an automated system
initialization is to be performed using the default member name
list. The system and SET parameters that are valid for message
lEA101A can be entered as well to override system generation

OS/Virtual storage 1 Features supplement 33

specifications and those contained in the NIPxxxxx member that is
specified in the member name list member identified by the AUTO
system generation parameter.

Note that if NOLIST was specified with the AUTO parameter at system
generation, the LIST parameter can be included in the response to
message IEAl01A to override the NOLIST specification.

If the virtual storage size specified at system generation is to be
used and no initialization parameters are to be changed for an IPL, the
system initialization process can be speeded up considerably by
initiating the FASTNIP function. This procedure is accomplished by
pressing the request key (enter key on the Model 138/148/158 display
console operating in display mode or end key on the 3066 console)
immediately after pressing the load button.

When FASTNIP is used, the page file messages (IEA757I, IEA758I, and
IEA761I), SPECIFY VIRTUAL STORAGE SIZE message (IEA760A), SPECIFY
SYS1.DUMP TAPE UNIT ADDRESS message (IEA135A), USE VS1 ASSIST message
UEA407A). and SPECIFY SYSTEM AND/OR SET PARAMETERS message UEAIOlA)
are not issued during system initialization. Only informational
messages regarding parameters used, readers and writers started,
automatic commands issued, etc., that are usually printed during system
initialization are issued. FASTNIP can be used whether or not the VS1
system is set up to use the automated system initialization facility.

OS/Virtual Storage 1 Features Supplement

-------------- ------ --~-------- ----------

34

90:15 MAJOR COMPONENTS

The major control and problem program components of'OS/VS1 are shown
in Table 90.15,.1. Except for the integrated emulator programs and
industry subsystems, components identified as SCP are distributed with
the VS1 starter system. Integrated emulators, Type I programs, and
program products are not distributed as part of VS1 and must be obtained
separately. Industry subsystem support for the 3600 Finance
Communication system, 3650 Retail store System, 3660 Supermarket system,
and 3790 Communication system is provided in independent releases.

The division of control program routines in VS1 and MFT is similar.
Both have job, task, data, and recovery management functions. However,
OS/vSl also has a page management function that is responsible for
managing both real and external page storage. Virtual storage is
allocated and maintained by the storage supervisor of task managEment
that manages main storage in an MFT environment.

The new features of VS1 and the most significant differences between
VS1 and MFT components are presented in the discussions that follow.
VS1 uses the same system data sets and libraries that are used in MFT as
well as the following additional libraries and data sets:

• 	 SYS1.DSSVM - required if DSS is used

• 	 SYS1,.PAGE - required ,for the page file

• 	 SYS1,.SYSPOOL - required for JES spool data sets

• 	 SWAnS (scheduler work area data set) - one required for each
initiator started unless a scheduler work area is aSSigned instead

• 	 SYS1,.SYSWADS - required for certain job scheduling data

• 	 SYS1,.ISPMAC - required for the assembly of exit definition macros if
the installation-specified selection parameters facility is used

• 	 SYS1. VTAMLIB, SYS1. VTAMLST, and SYS1.VTAMOBJ - required if VTAM is
included in the gerierated system

• 	 SYS1,. INDMAC - required if support of an industry subsystem, such as
the 3600 Finance Communication system, is included in the generated '
system

• 	 SYS1.. UADS and SYSl. BRODCAST - requi red if RES is us ed. The
SYS1,.RMTMAC and SYS1.RMTOBJ system data sets are required for an
RTAM generation.

• 	 SYS1. WARNA and SYS1. WARNB - required if. Power Warning feature
support for a Model 158 or 168 is included in the system

Note that if the Shared DASD option is included in the generated
" 	 system, SYS1.PAGE, SYS1.SYSWADS, SWADS, SYS1.SYSPOOL, SYS1.UADS,

SYS1.BRODCAST, SYS1.WARNA, and SYS1.WARNB data sets cannot be shared in
addition to those that cannot be shared in an MFT environment (which are
SYSl. SVCLIB, SYSl.NUCLEUS, SYS1.LOGREC, SYS1.SYSJOBQE, SYSCTLG,
SYS1.ACCT, SYS1.MANX, SYS1.MANY, and PASSWORD data sets).

OS/Virtual Storage 1 Features Supplement 35

Table 90.15.1. OS/VSl control and processing program components
(

CONTROL PROGRAM COMPONENTS (SCP)

Job 	Management

• 	 Master scheduler and
communications task

• 	 Job Entry Subsystem (JES)
Job entry peripheral services
Job entry central services

• 	 Job scheduler
Initiator
Interpreter
Allocation
Terminator
Direct SYSOUT writers

• 	 System Management Facilities (SMF)
• Remote Entry services (RES)

Task Management

• 	 Interruption supervisor
• 	 Task supervisor
• 	 Virtual storage supervisor
• 	 Contents supervisor
• 	 Timer supervisor
• 	 Overlay supervisor

Page Management

• 	 Page exception handler
• 	 Page supervisor

Real storage management
External page storage management

• Conversational Remote Job Entry (CRJE)

Data Management

• 	 Input/output supervisor
• 	 Access methods ,

QSAM, BSAM, QISAM, BISAM, VSAM,
EDAM, BPAM, BTAM, '!'CAM, GAM, VTAM

• 	 catalog management
• 	 Direct Access Device

Space Management (DADSM)
• 	 OPEN/CLOSE/EOV
• 	 3704/3705 System Support Programs
• 	 Industry Subsystems

PROBLEM PROGRAMS

Language Translators

• 	 System Assembler (SCP)
• 	 Assembler B (PP)
• 	 Full ANS COBOL V3, V4, and

Libraries (PP)
• 	 PL/I Optimizing CompUer (Pp)
• 	 PL/I Checkout Compiler (PP)
• 	 PL/I Resident and Transient

Libraries (PP)
• 	 FORTRAN IV G (PP)
• 	 FORTRAN IV H Extended (PP)
• 	 FORTRAN IV Libraries - Models

1 and 2 (PP)
• 	 Code and Go FORTRAN (PP)
• 	 ITF PL/I (PP)
• 	 ITF BASIC (PP)
• 	 System/7 FORTRAN IV System/370

Host Compiler and Library
• 	 VS BASIC (PP)

General

• 	 Application-oriented program
products (some operate in paged
mode and some in nonpaged mode)

Recovery Management

• 	 Machine Check Handler (MCH)
• 	 Channel Check Hand! er (CCB)
• 	 Alternate Path Retry (APR)
• 	 Dynamic Device Reconfiguration

(DDR)
• 	 Online Test Executive Program

(OLTEP)
• 	 Problem determination facilities

Service Aids
Dynamic Support system

(SCP AND PP)

Service Programs

-. -

""

• 	 Linkage Editor~,,(SCP)
• 	 Loader (SCP) '"
• 	 Utilities

System and data set (SCP)
Data set with ASCI.I (PP)

• 	 Basic Unformatted Read System (PP)
• 	 OS Sort/Merge 5734-SMl (PP)
• 	 Os/VS Sort/Merge 5740-SMl (PP)
• 	 Subsystem support services' (SCP)

Integrated Emulators

• 	 1401/1440/1460 (SCP)
• 	 1410/7010 (SCP)
• 	 7070/7074 (SCP)
• 	 7080 (SCP)
• 	 709/7090/7094/709411 (SCP)
• 	 DOS Emulator (SCP)

OS/Virtual Storage 1 Features Supplement 36

Table 90~15.1 (continued)

PROBLEM PROGRAMS - TYPE I AND USER-WRITTEN

Language Translators 	 Seni ce Programs

• OOOOL to ANS COBOL LCP (360-CV-113) • Sort/Merge (360S-SM-023)
• COBOL F (360S-CB-524)
• OOBOL F Library (36o-LM-525) General
• PL/I syntax Checker (360S-PL-552)
• 	 Full. ANS COBOL Version 2 • User-written programs

(360S-CB-54S) and Library compiled using the Type I
(360S-LM-546) language translators listed

• FORTRAN G (360S-FO-520) 	 • User-written programs compiled
• FORTRAN H. Version 2 (360S-FO-500) using program product language
• 	 FORTRAN Library (E,G,H) translators

C360S-LM-501)

• 	 FORTRAN Syntax Checker

(360s-FO-550)

• PL/I F (360S-NL-511)
• 	 PL/I Subroutine Library

(360S-LM-512)

• 	 PL/I syntax Checker

(360S-PL-552)

VSl supports all the primary operator console devices requiredfbr
Models 135 to 168. The DIDOCS option with 3210 support must be included
in a VSl control program to support display mode operations on the
display console for Models 138, 148, and 158 or to support the display
console contained in the 3066 standalone console unit for Models 168 and
165 II. The 3213 Printer is supported only as a hard-copy output device
for the Model 158 display console and not for output operations.. MCS
and DIDoes in VSl support the same console devices .and console functions
as in MFT.

VSl supports only the printer-keyboard and display modes of the
display console for Models 138 and 148. The 115/125 Console-Display
Emulation mode of this display console is not supported by VS1.
Printer-keyboard support is functionally equivalent to 3215 Console
printer-Keyboard support. Display mode support is equivalent to that
supported for the Model 158 display console except that Model 138 and
148 display console users can program twelve function keys that are not
available on the Model 158 display console. The 3286 Model 2 Printer is
supported for hard--copy output in both printer-keyboard and display
modes. This hard-copy support for the Model 138 and 148 display console
is optional.

OS/Virtual Storage 1 Features Supplement 31

90: 20 JOB MANAGEMENT

VSl and MFT job management functions are logically the same, and
externally the VSl job management interface with the operator is upward
compatible with that of MFT.. The internal organization of job
management in VSl and MFT differs considerably, however.. VSl job
management has been modified to operate in a paging environment, and it
is designed to offer reduced real storage requirements, improvements in
performance, and new functions,.

The organization and new features of VSl job management are designed
to provide the follOwing advantages over MFT:

• More efficient handling of peripheral I/O operations (via.JES)

• 	 Enhanced support of remote job entry (via RES)

• 	 More system configurability without regeneration

• 	 Enhanced operator command processing

• 	 Additional operator control via the new WRITER and PAGETUNE commands
and additions to the support provided by several MFT commands

• 	 Improved job scheduling via elimination of small partition
scheduling and significant reductions in contention for the job
queue (implementation of the resident job list, SYS1.SYSWADS data
set, scheduler work area data sets, and scheduler work areas)

MASTER SCHEDULER AND COMMUNICATIONS TASKS

As in MFT, the master scheduler task and the communications task in
VSl handle initialization functions during system initialization and
operator/system communication. Portions of these routines are contained
in the fixed nucleus while other portions operate in the pageabl. e
supervisor area. The communications task is repackaged in VSl to
minimize the occurrence of page faults and to combine a tranSient
routine that calls another transient routine into one 2K transient
routine when possible.

The communications task is also modified in VSl to dynamically obtain
any required WTO/WTOR buffers when the number specified at system
generation are all being used, instead of waiting until a buffer becomes
available. In MFr, the communication task waits for a buffer unless it
is servicing a request from certain high-priority system routines. In
addition, when a WTO that specifies the ID of an inactive console is
issued, the message is not saved but is routed to the master console (to
avoid using up available pageable SQA space).

Most commands are processed in the 2K SVC transient area, which is
pageable. Certain of these command processing routines are repackaged
in VSl to execute in 2K multiples (instead of 110 to increase their
performance. Some commands must operate in a partition (as in MFT) and
a system task partition can be defined for this purpose, as indicated
previously.

The master scheduler processes the follOWing operator commands:
CANCEL (a queued job), DEFINE, DISPLAY, DISPLAY ACTIVE, DISPLAY C,
DISPLAY K, DISPLAY PFK, DISPLAY U, DUMP, HALT EOD, HOW, LISTBC, LOGON,
MONITOR ACTIVE, RELEASE, RESET, ROUTE, SEND, SETPRT, and. SWITCH.

An internal command processing capability, not provided in MFr, is
supported in VS1. This facility enables a program that is authorized
via APF to use the MGCR macro or an SVC 34 instruction directly to issue

38 OS/Virtual storage 1 Features ,Supplement

~----~~~

.. ~

/

a VSl operator command (those handled by SVC 34) during its execution.
The MGCR macro provides linkage to an SVC 34 instruction, which is used
to issue an operator command via programming. Messages associated with
the command are written to the operator (master) console device,.

All MFT operator commands and parameters and their formats are
accepted in VSl except those assoc.iated with MFT features that are not
supported in VS1. Modifications or extensions to the functions
performed by the following commands, which are also supported in MFT,
have been made in VS1:

• 	 CANCEL - This command can be issued in VSl to cancel an abnormal
termination dump at any time during construction of the dump data.
In MFT, a CANCEL command is rejected if it is received while dump
data is being written to the SYSABEND data set. In addition, up to
five jobs, five system tasks in device allocation status, or the
processing of up to five SYSOUT data sets by writers can be canceled
with a single CANCEL command in VS1, instead of only one as in MFT.
The USER parameter is added to identify remote (RES) users.

• 	 DEFINE - In VS1, the additional keyword PARM is supported for the
DEFINE command. The PARM keyword can be used to specify the name of
a member in SYS1.PARMLIB that contains the partition definitions to
be made effective as a result of the DEFINE command. The same
partition definition data that can be supplied via a DEFINE command
can be placed in a SYS1.PARMLIB member. This facility relieves the
operator of having to manually key in partition redefinitions in
VS1.. The DEFINE command cannot be entered via an input stream.

• 	 DISPlAY - The class, priority, queue location, position on the
queue, and (for an RES job) user identification for an active job
are displayed when a DISPLAY job names command is issued (not given
in MFT for active jobs),. Up to five job names can be specified in
one DISPLAY command in VSl instead of a maximum of one as in MFT.
The P parameter can be specified to cause profiles associated with
the installation-specified selection parameters facility to be
displayed (see interpreter routine discussion later in this
subsection under -Job Scheduler-).. The LIST parameter can be
specified on a DISPLAY R command to cause the display of up to 72
characters of the text of all outstanding WTOR's.•

The parameters USER and RT are added to the DISPLAY command for RES
users and the R parameter has the keywords USER and ALL. A DISPLAY
USER command can be issued to cause a display of one of the
following: the number of RES users logged on, the number of RES
users logged on and their user identifications, or information about
a specified RES user.. This information is whether the user is
logged on, the number of the binary synchronous line or the symbolic
node name of the terminal assigned by VTAM at logon (for SNA
terminals) that he is using, his routing mask, his limiting
priority, his default logon procedure name, and the procedure
actually used for this logon.•

A DISPLAY R USER command can be issued to cause the reply IDs of
outstanding wrORs for a specified RES user to be displayed. The
reply IDs of outstanding WTORs for all RES users and the central
operator are displayed when a DISPLAY, R ALL command is issued.

The DISPLAY RT command can be issued by any user to display the
follOlNing: number of active lines (ACT parameter), which include
those that are started and logged on; number of inactive lines
UNACT parameter), which include lines tha t are not started or
started but not logged on; number of inactive and active 1 ines (ALL
parameter); the user identification of the RES user at the specified

OS/Virtual Storage 1 Features Supplement 	 39

remote. terminal (TERM parameter) as well as the number of readers.

printers. and punches assigned to his work station.•

The L, LB, or LS parameter can also be specified with the ALL, ACl',
or INACT parameter. L requests the display for both binary
synchronous lines and SNA ports.. LB requests the display for binary
synchronous lines only and LS for SNA ports only.•

• 	 HOLD and RELEASE - In MFT, the BOLD command can be issued to place
one specific job, jobs in all input queues, or jobs in up to four
specific input queues in held status. In VS1, the BOLD command is
expanded to allow up five job names to be specified in one HOLD
command instead of a maximum of one and to allow the following to be
placed in held statusl jobs in all inplt queues and all output
queues for locally suhnitted jobs (ALL parameter), jobs in up to
four or all output queues for locally suhnitted jobs (OUT
parameter), and output for a job queued in up to four or all local
output queues (job name with OUT parameter) .•

The central operator can also issue a BOLD command to place a

remotely submitted (RES) job that is in an input queue in held

status or to place in held status the output from a remotely

submitted job that is queued in up to four or all output queues for
the remote user.

Note that in VSl, input, queues contain both locally subnittedand
remotely submitted (RES), jObs. However. there is one set of output
queues for all locally suhnitted jobs and one set of output queues
for each logged-on remote (RES) user. The RELEASE command is
expanded to provide release functions equivalent to the hold functions.

Input and output queues are held by class or by job name in VS1.
The JaN parameter is specified on a HOLD command to hold a queue by
job name. When a queue is held either by class or job name, all
jobs that are placed in the queue after the HOLD has been issued are
also held.. If a queue is held by job name (HOLD queue command with
JBN parameter specified), it must be released by job name (RELEASE
queue command with the JBN parameter specified). A RELEASE command
without the JBN parameter will not release a queue that has been
held by job name.

When a queue is held by job name, individual jobs can be released by
issuing RELEASE job name commands. A RELEASE job name command"
however, does not release a job that is in a queue that was held by
class (HOLD queue command without the JBN parameter). Queues that
are held by class must be released by class (RELEASE command without
JBN parameter).

• 	 MODIFY - Up to 15 job classes (A-Z, 0-9) are accepted. The
TYPRUN=HOLD parameter can be specified on a MODIFY command for a
specific reader to cause all jobs that are read by this reader after
the MODIFY command is issued to be placed in held status by job
name.. Jobs held in' this way can be released by iss.uing a RELFASE
command with the JBN parameter (releases all such jObs) or a RELEASE
job name command (releases only the specified job).. The
TYPRUN=NOHOLD parameter on a MODIFY command cancels this holding
process for a reader.•

The MODIFY command inVSl also provides the capability of changing
the job classes that an active initiator is assigned to handle and
of passing text from the operator's console to an executing problem
program. The MODIFY command is used by the central 'operator in an
RES environment to start lines, stop lines, stop and then restart a
line, and alter remote workstation output characteristics.

'--"

..

OSJ'Virtual storage 1 Features Supplement 40

• 	 MODE - A simplified format is used that is applicable to all
System/370 models. The operator can no longer establish threshold
values for ECC errors and instruction retry errors. The MODE
command cannot be entered via an input stream.

• 	 MONITOR - Three new functions are added to this command in VS1.
When MCS and one or more display consoles are present in a VSl
configuration, a MONITOR A command can be issued to cause periodic
displays on a display console of the currently active jobs in the
system. The CONTROL command is used to set a time interval,. Each
time the interval elapses, a new display of the currently active
jobs replaces the old display. The format and content of this
display are the same as the di splay crea ted by a DISPLAY A command.
A STOPMN A command terminates this periodic display. .

A 	MONITOR MSG command can be issued to cause message IEE087I COMMAND
RECEIVED to be issued to the operator whenever VSl receives a
command from the operating system console or input stream. A STOPMN
MSG command terminates acknowledgment by VSl when a command is

received.

A 	MONITOR SESS command can be issued by any RES us er to cause a
mess age to be issued to him any time an RES user logs on or off. If
the T parameter is specified as well, the current time is included
in the message. This monitoring facility is terminated by issuing a
STOPMN SESS command.

• 	 REPLY~- An abbreviated' form that contains only the message
identification and response (no command verb) can be used after
initialization of the communications task (1, 44 instead of R 1, 44,
for example). The abbreviated form cannot be used when a reply is
entered via the input stream.

• 	 RESET - Up to five job names can be specified in VSl instead of a
maximum of one, as in MFT.•

• 	 SET - In VSl, the SET command can be issued only after system
initialization is completed to change the time differential between
GMT and local time or the date. SET cannot be issued during VSl
system initialization as it can in MFT. The SEl' command contains
only the CLOCK and DATE parameters in VS1. The parameters CLOCK,
DATE, PROC, and Q, which are specified via the SET command during an
MFT system initialization, can be specified during a VSl system
initialization as SEl' parameters in response to the IEA10lA message,.

Two additional SF!' parameters, SPOOL and SYSW, are supported in VS1.
The SPOOL parameter is used to change the SPOOL file configuration
that was specified at system generation and/or to cause SPOOL data
sets to be formatted. The SYSW parameter can be used to specify the
location of the SYSl.SYSWADS data set.

• 	 START - This command is modified such that when a reader or writer
procedure is started, a partition cannot be specified. The
procedure is initiated USing the next available partition.

• 	S~T INIT - Three new keywords can be specified in the PARM
parameter. SWA can be specified to indicate that a scheduler work
area instead of a scheduler work area data set is to be used for
this initiator. EXCPVR=NO can be specified when a scheduler work
area data set is used by this initiator. This keyword indicates the
EXCP macro is to be used for I/O' operations to the scheduler work
area data set. The RESV keyword can be specified to override the
reserve number of scheduler work area data sets or scheduler work
area records that is specified in the initiator procedure.

OS/Virtual Storage 1 Features Supplement 41

• 	 STOP - Up to five job names, unit addresses, or identifiers can be

specified in one STOP command, instead of a maximum of one as in MFT.

VSl supports new commands associated with RES (discussed under
"Remote Entry Services" later in this subsection). Other new operator
commands, PAGETUNE, WRITER, STARTF, and SETPRT, are provided also. The
PAGETUNE command can be entered only via the operator console (not via
the input stream). or placed in a CMDxxxxx member in SYS1. PARMLIB. The
PAGETUNE command allows the operator to alter operation of the paging
algorithm in a multiprogramming environment by altering certain of the
values used by page management routines (see discussion in Section 90:35
under "Real Storage Management").

The WRITER command enables the operator to communicate requests to a
JES writer. The WRITER command gives the operator significantly more
control over executing writers than is provided in MFr. parameters for
the WRITER command have one-character abbreviations.

Using the WRITER command, the operator can:

• 	 Request up to 254 additional copies of output (printed, punched, or

written to tape), on a data set or a job basis

• 	 Request that printing continue up to 255 pages ahead of the current

logical page (forward space) or up to 100 pages before the current

logical page (backspace >.

• 	 Request a backspace to the beginning of the data set and a reprint

of the data set from the beginning

• 	 Request a forward space to the end of the data set

• 	 Request a backspace to the beginning of the job class being handled

and a rewriting of the data sets

• 	 Terminate the printing of a SYSOUT data set and place it in held

status. Such data sets can be released using the RELE1\SE command or

the new ROUTE command with the HOLD=NO parameter that is provided

for RES support,. printing can be resumed at the beginning of the

data set or at the beginning of the page that was being printed when

termination occurred.

• 	 Alter printer line spacing (Single, double, triple) for the SYSOUT

data set currently being processed

The STARTF command is. provided to start JES readers and writers more
quickly than· does the START command. Readers and writ ers started with
STARTF are also stopped-more quickly although the existing STOP command
is used as usual. •

When a START command is issued, an available partition must be found
in which to perform the start and a device must be allocated before the
JEPS monitor task receives control.. A job is also created,.

The STARTF command does not require the use of a partition. STARTF
code is executed under the control of SVC 34, JEPS monitor, and JEPS
reader and writer routines. In addition, the STARTF command does not
create a job. No job queue entry is made, no spool space is allocated,
and no system messages are issued. Some operator messages and all user
exits are bypassed. No allocation recovery exists for the STARl'F
command.. The device to be used must be online and not allocated to
another program or the STARTF command terminates.

The STARTF conunand does not use cataloged procedures. Optionally, a
job name (not a procedure name) can be specified in the STARTF command.

OS/virtual storage 1 Features Supplement 42

If the name begins with RDR, a .reader is started. A writer is started
if the name begins with WTR. A unit address must be specified in the
S~RTF and its type must be consistent with the type implied by the job
name, if one is specified.•

If a job name is not specified in a STARTF command, the type of
device specified indicates whether a reader (with default name RDRF) or
writer (with default name WTRF) is started for a local reader or writer.•
For an RES reader or writer, the user identification is used as the
default job name. The name specified in the STARTF command or the
default name assigned is the name used in the STOP command f or a reader
or writer started via STARTF.

The following can also be specified in a STARTF commands

• 	 The name of the job to be processed first (for a reader)

• 	 The output classes to be processed (for a writer)

• 	 :Keyword options (USER, DCB=LRECL, DCB=BL:KSIZE, DCB=BUFNO,
DCB=OPTCD=U, PARM, UCS, and FeB). The PARM keyword specifies the
parameters for the reader or writer. If this keyword is not
specified, the default values specified in the JESPARM or JESxxxxx
member (LRDPARM, LPRPARM, RPRPARM, LPUPARM, RPUPARM, and PRLRECL
parameters) used during system initialization are used.

The SETPRT command is p~ovided to support the 3800 printing
Subsystem. It is used to alter or list the operator control and
hardware features in effect for a specific 3800 unit. Parameters to be
changed can be specified in the SETPRT command or the member name of an
IEAPRTxx member in SYS1.•PARMLIB can be specified. In the latter case,
the member is read and the unit control block WCB) extension for the
specified 3800 is updated.

The SETPRT macro can be used in a program to cause the loading of UCS
and FCB mffers in a 3800 unit. The SETPRT macro is also used to
initially set or dynamically change the following printer control
informatiom forms bursting, character arrangements to be used, number
of copies, starting copy number, vertical formatting of a page, flashing
of forms, initialization of printer control information, modification of
copy, and blocking or unblocking of data checks.

JOB ENTRY SUBSYSTEM

The job entry subsystem (JES) is a significant new feature of VS1.
It replaces MFT readers, writers, job queue management, and HASP II.
JES provides centralized management of system input data, system output
data, and job queue processing. It handles local system input and
system output streams, allocates and manages intermediate direct access
storage for this data, interfaces with RES to handle remote. input and

c 	 output streams, and manages allocation and proceSSing of the job queue.

JES is designed to maximize utilization of the unit record and direct
access devices involved in peripheral I/O processing and to minimize
contention for the job queue. It also supports a checkpoint/restart
capability.

In VS1, JES places system input and output on from one to ten direct
access volumes (as specified by the user) called the SYS1.SYSPOOL data
set. Logically, the data stored in SYS1.• SYSPOOL is placed in spool' data
~. However, as discussed later, a spool data set within the
SYS1.SYSPOOL data set does not have the same characteristics as an OS/VS
data set, and it is processed by JES routines instead of VSl access
methods.. Reading input streams and writing the data onto spool volumes

I
OS/Virtual storage 1 Features Supplement 	 43

and reading system output data from spool volumes and writing the data
to system output devices are called spooling in VS1.

Spooling operations in JES are centralized such that all system input
reading, system output writing, and spool volume processing are
controlled by one set of modular routines. Centralization eliminates
duplication of functions within the system and improves the performance
of spooling operations.

JES reader code and writer code are reentrant, which reduces the
amount of storage (both virtual and real) required to service multiple
input and. output streams. Because all JES routines are totally
pageable, real storage is allocated only to active JES tasks and without
operator intervention. (In MFT, for example, main storage allocated to
an inactive reader or writer partition cannot be used by other active
partitions unless the operator intervenes to redefine partition
allocation o~ to change the type of the reader/writer partition.)

The total virtual storage requirement for the minimum JES
configuration (one reader, one writer, one spool volume, and minimum
buffering) handling one partition is 156K. Additional virtual storage
is required to handle a larger spooling configuration and more or larger
buffers.. If user-written output writer, job separator, or SMF routines
are included in the VS1 system, they execute in the pageable JES
routines area (pseudo partition) and increase its size. use of the
installation-specified seleption parameters facility also increases the
size of the JES routines area.

All the JES modules are pageable, except for approximately 600 bytes
of I/O appendage code, which must be fixed. The JES routines pseudo
partition always requires one page of fixed PQA. This page is
sufficient to support one active reader and one active writer.
Additional pages are fixed and unfixed as required as additional readers
and writers are started and stopped.

When JES modules are link-edited during system generation, they are
ordered (using ORDER and ALIGN2 control statements) by use and function
on 2R page boundaries to reduce the real storage requirements and paging
activity of JES modules.•

Centralization of control also enables JES spooling operations to be
performed more efficiently. Buffer storage for all readers and writers
is contained in one pool, buffer storage for all spool volumes is
contained in one pool, and direct access spool space (the SYS1.• SYSPOOL
data set) for all system input and output data is shared. These pools
are in the JES buffer pool area.•

Buffer storage and spool space are managed (allocated, opened,
closed, and deallocated) by JES routines that are tailored to provide
efficient spooling operations in a paging environment. Buffer storage
is allocated for JES operations such that the number of page faults
incurred is minimized, and direct access storage is allocated such that
data transfer time for JES operations is minimized.

JES readers do not interpret job control statements as do MFT reader
interpreters. The interpreter in VS1 is a subroutine of the initiator.
This organization, together with support of command chaining, can allow
a card reader to operate near its rated hardware speed, since reading is
not delayed by interpretation. Therefore, jobs can be placed in the job
queue more quickly.

Any number of readers and writers are supported by JES, subject only
to the availability of system resources. MFT supports 3 readers and 36
wri ters maximum. The maximum number of readers and the maximum number
of writers that can be started for a given VS1 control program (both JES

OS/Virtual storage 1 Features Supplement 44

and RES requirements) can be specified at system generation. The size
and number of spool buffers and the number of spool volumes can also be
indicated at system generation. Defaults are assumed for parameters not
specified. .

All the JES parameters that are specified during system generation
except those associated with the resident job list facility (JOBQINT,
JOBQEXT, and JOBQNXT) are placed in the JESPARMS member in SYS1.PARMLIB.
The JES parameters specified at system generation can be changed during
system initialization by specifying a JESxxxxx member with different JES
parameters or the JESPARMS member with modified JES parameters. The
three job list parameters are system parameters that can be overridden
by the operator during system initialization. ThUS, for example, the
number of readers and writers supported can be increased or decreased
without performing a system generation.

During system initialization, enough virtual storage ~s allocated to
the JES areas to support the maximum JES configuration as defined for
this system initialization. Virtual storage from the JES area is
allocated as readers and writers are started.

In slunmary, JES offers the follOWing significant overall advantages
when compared, with MFT readers and writers:

• 	 More efficiently managed peripheral I/O operations through
centralization of control and use of resource allocation algorithms
that are specifically gesigned to improve spool performance

• 	 Reduced virtual and real storage requirements for spooling

operations involving multiple readers and writers

• 	 More efficient use of real storage for peripheral operations since
real storage is allocated to a JES component only when it is active

• 	 Ability to handle more readers and writers

• 	 Ability to increase the number of readers and/or writers handled by
a VS1 control program (and all other JES parameters) without
generating a new system

• 	 continuously available reader for unit record SYSIN devices

• 	 Additional operator control over writers

• 	 Reduced contention for the job queue

JES functions are performed by job entry peripheral services (JEPS)
and job entry central services (JECS) routines. The components of JEPS
and JECS are:

JECS

• 	 Monitor task • Spool management
• 	 JES readers • Buffer management
• 	 JES writers • DASD work area management

• 	 Job list management
• 	 SWAnS management

JEPS tasks execute under the control of TCBS that have higher
dispatching priority than any of the 52 partitions that can be defined.
However, the dispatching priority of readers and writers can be lowered
by changing reader/writer procedures. JECS routines operate under the
control of the TCB of the task that requested their service. The
components, functions, and data flow of JES are shown in Figure 90,.20.1.

OS/Virtual storage 1 Features Supplement 45

3540

Card readers

o
Diskettes

Problem
program

2314/2319

3330-series

3340/3344

3350

SYSIN Devices SYSOUT Devices2305 Models I, 2

Printers Punches

JEPS

3540

o
Diskettes

record

AllocateGet
spool space

Spool DASD

buffer

Buffer
Management Work Area

Management block/dablock Allocation

Free Free

buffer spool space

Write Read ,----""
request request

Buffer

pool DASD

Work Area

Manager

Resident

..

Job List
job listWrites Reads Manager JECS

Spool data sets

JCL

~::~~m { 1-----1~ ,~S~YS~I_N_
PROC

SystemSYSOUT
output

SYSMSG

SYSLOG

Spool configuration

up to ten volumes

(·2314/2319,3330-series,

3340/3344,3350, 2305 Model 21

"
Figure .90.20.1. Components, functions, and data flow of JES

OS/Virtual Storage 1. Features Supplement 46

JEPS MOnitor Task

The monitor task is responsible for initializing JES readers and
writers, which operate as subtasks of the monitor task. When a START or
STOP command for a reader or writer procedure is entered, an initiator
or terminator is brought into the first available partition in order to
invoke the monitor. The monitor task is also automatically invoked to
terminate a reader task when end of file occurs on a SYSIN device other
than a card reader.

The monitor task obtains or releases buffers for a reader/writer from
the reader/writer virtual storage area allocated in the JES area during
system initialization, and attaches or detaches a reader/writer task.• · A
reader/writer is started as long as this request does not cause the
maximum number of readers/writers specified during system initialization
to be exceeded.

OS MFT reader and writer procedures are not compatible with those of
JES. Only two reader procedures are IBM-supplied for VS1. One is for
unit record SYSIN devices and the other is for tape SYSIN devices. In
MFT, there are three IBM-supplied reader procedures. The MFT reader
procedures RDR400 and RDR3200 are not provided in VS1.

Optionally, a VSl reader procedure can contain a SYSABEND or SYSUDUMP
DD statement. (IBM-supplied reader procedures for VSl do not contain a
storage dump DD statement •.) The dump DD statement causes the system to
take a virtual storage dump;if the reader task abnormally terminates.
If the SYS1.DUMP data set is available, an SVC dump is written to this
data set.. Otherwise, a SYSABEND or SYSUDUMP dump is provided as
specified in the dump DD statement,. This dump facility for reader tasks
is not provided in MFT.

Two writer procedures are provided in VSl instead of one as in MFT.
One is for a printer output device (with procedure name WTR) and the
other is for a tape output device (with procedure name WTRT). Like
reader procedures, optionally, writer procedures in VSl can contain a
SYSABEND or SYSUDUMP DD statement to cause a virtual storage dump to be
taken if the writer terminates abnormally. The writer procedures in VS1

,contain additional parameters to support the 3800 Printing Subsystem.

The dispat'ching priority of a reader or writer can be lowered by
specifying the dispatching priority parameter in the PARM field of the
EXEC statement for the reader or writer procedure. Making the
dispatching priority of readers and/or writers lower than that of one or
more partitions ,(either system task or problem program) may improve
system throughput.

A partition number of from 00 to 14 can be specified in the

dispatching priority parameter of the PARM field. The dispatching

priority of the reader or writer is determined as follows:

• 	 If the partition number specified is not greater than that of the
highest numbered partition currently defined, the reader or writer
is assigned a dispatching priority one less than the dispatching
priority of the partition specified. When a partition that is part
of the time-sliced group of partitions or the dynamic dispatching
group of partitions is specified, the reader or writer is assigned a
dispatching priority one less than that of the lowest priority
partition in the time-sliced group or the dynamic dispatching group.

• 	 If the partition number specified is greater than that of the
highest numbered partition currently defined, the reader or writer
is aSSigned a dispatching priority one less than the dispatching
priority of the lowest priority (highest numbered) partition
currently defined.

OS/Virtual Storage 1 Features Supplement 47

When the normal dispatching priority for a reader is desired, the
dispatching priority parameter sh>uld be blanks, XX, or omitted. Normal
dispatching priority for a writer is aSSigned by omitting the ~
dispatching priority parameter from the PARM field.•

JES Readers

A local input stream can be read from any card reader, tape unit, or
direct access device that is supported by VSl and from the 3~40 Diskette
Input/output Unit. An input stream on disk can be read from sequential
data sets and individual members of partitioned data sets.

The 3540 can be used as a SYS~N device in the following ways:

• 	 A job stream (job control and data) can be contained in one diskette

data set.•

• 	 A job stream (job control and data) can be contained on card, tape,

or disk while additional input data for the job stream is contained

in one or more diskette data sets. These diskette data sets are

called associated data sets. An associated data set can be

contained on multiple diskettes. The maxinum number of readers that

can be started to read associated data sets is specified as a JES

parameter.

• 	 A job stream (job control and data) can be contained in a diskette

data set while additiona'l input data for the job stream is contained

in one or more diskette (associated) dat a sets.•

Card input streams are read by a special JES access meth>d (JAM).
Column binary reading is not supported. Tape and disk input streams,
which can be blocked, are read using a special interface to QSAM. ~.
COmmand-chained reads are initiated for a card SYS~N device. The number
of cards read per command-chained channel program can be specified at
system generation. ~f this number is not specified, a channel program
designed to read five cards is initiated for each 11'0 operation to a
card SYSIN device.

A 3540 sequential access method is used to read 3540 SYS~N data sets.
A command-chained channel program that contains 26 read commands is
initiated for each read of a SYS~N diskette device. Therefore, each ~/O
operation reads in a full track of records from the diskette.

SYS~N reading starts at the beginning of the input stream or at the
job name indicated in the S'IART command. Reading continues until a STOP
RDR command is issued by the operator or, for tape, disk, and diskette
SYS~N devices only, until end-of-file occurs.. A reader task that is
handling a tape, disk, or diskette SYS~N device is terminated on an end
of-file condition. When end of file occurs on a card reader, the JES
reader enters the wait state (and the real storage assigned to it tends
to become available for allocation to other tasks). When the card
reader is made ready again, reading automatically continues. This
continuously available reader facility is not provided in MFT for card
SYS~N devices.

VSl input stream data can consist of job control statements
(including in-stream procedures and requests to execute procedures),
input data sets (multiple per job step), and operator commands. ~f
records other than operator commands are found between jobs in VSl (such
as misplaced data records and/or job control statements), they are
flushed, as in MFT.. However, in VS1, the operator is informed of the
flushing operation via a message. . .~

~

Os/Virtual Storage 1 Features Supplement 48

A JES reader inspects the JOB statement. and defaults for job class
and priority are supplied. if necessary,. A unique job number is
appended to the job name specified to eliminate the possibility of
duplicate job names.. This job number is used internally only. Job
control statements. commands contained within jobs, input data, and any
requested procedures that are contained in user procedure libraries or
concatenated procedure libraries are passed to the spool management
routine of JECS to be written in spool data sets. Procedures that are
contained in SYS1.PROCLIB are not written in spool data sets. Commands
contained within a job are processed during the initiation of the job.
Commands not contained within a job are processed when encountered.

When a job has been completely read, the JES reader builds certain
control blocks that describe the job. The job is placed in an input
work queue and marked in held status if so indicated in the JOB
statement. As in MFT. jobs are queued by job priority within job class

.. 	 and first-in, first-out within equal priorities. The total number of
statements read and the real time taken to read the job is made
available to SMF, if SMF is included in the VS1 control program.

JES Writers

A JES writer transcribes SYSOUT spool data sets created by job steps
and system message spool data sets that contain job scheduler messages
and job control statements. The local SYSOUT devices supported are the
printers, punches, and tape units supported by VS1 and the 3540 Diskette
Input/Output Unit. Up to 19 SYSOUT data sets from the same job that
have the same SYSOUT class can be written on one diskette. A special
JES access method is used to support printers and punches. Column
binary pWlching is not supported. An interface to QSAM is used to
handle a tape SYSOUT device and 3540 SYSOUT data sets are written by a

.~. 3540 sequential access method.

AS for card reading, command-chained channel programs are used fOr
card punching and printing operatiOns to enable SYSOUT devices to
operate near rated speeds. Six records are printed or punched per
channel program unless a different value is specified by the user at
system generation.. A channel program that contains. 26 write commands is
initiated for each I/O operation to a diskette device to write a full
track of records,. .

The Two-Line card Print and Multiline Card print features of the 3525
Card Punch are supported by JES writers for printing operations on cards
punched from SYSOUT data sets. 'lhe data punche(i on each card can
consist of one or two lines of the data punched in the card (interpret
function on lines 1 and 3). The FUNC=I keyword must be specified in the
DCB parameter of the SYSOUT DD statement when interpretation of a
punched SYSOUT data set is desired.•

Alternatively, up to 25 lines of data supplied by the user in the
SYSOUT data set can be printed on each card punched from a SYSOUT data
set. When this program-controlled printed output facility is used, the
SYSOUT data set must include after each punch record a print record
containing the appropriate line control character for each line that is
to be printed on the card.

A JES writer is initiated using a START command and terminated using
a STOP command. Each JES writer can handle up to eight SYSOUT classes
and more than one writer can be assigned to handle the same SYSOUT
class. Thirty-six output classes (A-Z, 0-9) are supported, as in MFT.
The writing of SYSOUT data for a job does not begin until the job itself
is terminated, just as in MFT. After all the SYSOUT data for a job has
been written, the job is purged from the system, accounting data is

OS/Virtual storage 1 Features Supplement 49

supplied to SMF, if appropriate, and the spool space allocated to its
SYSOUT spool data sets is released.

A JES writer handles all the SYSOUT spool'data sets of the same class
that are present for,a given job before attempting to process SYSOUT
spool data sets of the same class that belong to another job. All the
job control statements and system messages for a job, which are placed
in a system message spool data set instead of the SYS1.SYSJOBQE data set
during processing of the job, are printed before all the SYSOUT spool
data sets for the job. (MFl' writers intersperse the printing of job
control stateme~ts and system messages with the printing of SYSOUT data
sets.)

Optionally, the job log facility can be included in a VS1 control
program. When this facility is present, the text contained in all WTO
and WTOR macros (including write-to-programmer messages), replies to
WTOR messages, and WTL macros (if system log support is not present) for
each job processed are written in the system message data set for the
job. Job-related messages that are written to the operator by system
routines using WTO and WTOR macros are included in the system message
data set as well. The first line of text in MLWTO macros is also saved.
The saved messages are printed at the beginning of the output for a job
since the system message data se~ is processed before any SYSOUT data
sets for a job.

Multiple copies of a given SYSOUT spool data set can be requested in
VS1 via the COPIES parameter ,(not provided in MFT) for the SYSOUT DD
statement, in addition to vi:a the WRITER command. Multiple copies of a
SYSOUT data set cannot be written to a 3540 diskette device. When
printing is to be done on a 3800 printing SUbsystem, group values can be
specified in the COPIES parameter. A group value indicates the total
number of copies to print' and total number of times each page is to be
printed,.

For example, if group values of 1, 3, and 2 are specified in a COPIES
statement, six copies of the data set will be printed in three groups.
The first group contains one copy of each page. The second contains
three copies of each page, and the third group contains two copies of
each page.

Three other new facilities for output writers in VS1 area
checkpointing capability for SYSOUT data sets, an end-of-job separator
option, and IBM- and user-defined translate tables for unprintable
characters. Optionally, the PARM field of the EXEC statement in a
writer procedure Can contain a checkpoint' interval, value, which is a
roultiple of ten. When such an interval is specified, the writer
checkpoints the SYSOUT data set it is processing each time the specified
number of pages have been printed or punch/tape logical records have
been written. When such checkpOints are taken, if the system is warm
started before the SYSOUT data set is conpletely written .. the operator
can specify that writing of the data is to resume at the last checkpoint
or at the beginning of the SYSOUT data set.

The end-of-job separator option, supported only for SYSOUT data that
is written to a local or non-RTAM-supported remote printer, can also be
specified in the PARM field of the EXEC statement in a writer procedure.
When this option is chosen, one, two, or three output separator pages
(as specified in the PARM field) are printed after the last SYSOUT data
set that is printed for each job,. The end-of-job separator pages are
identical in content to the output separator pages that are printed at
the beginning of the printer output of the job (when output separation
is specified) except that no asterisks are printed after-the last page.

The end-of-job separator facility is designed to assure the user that
he has received all the printed output from his job. The end-:-of-job

OS/Virtual Storage 1 Features supplenent

, ~'

..

50

separator facility can be used only with the system output writer (not
with user-written output writers) and requires the specification of
o~tput separation as well.

VS1 provides the option of having output writers use a translate
table to translate unprintable characters to blanks.. The IBM-supplied
translate table, which is print-train-independent, or a user-defined
translate table can be used. Multiple translate tables, each of which
matches a specific print chain, for example, can be user-defined, named,
and added to the JES load module (IEFl'RT control section). The name of
the translation table to be used by a writer is specified in the PARM
field of the EXEC statement in the writer procedure or the PARM field of
the START writer conunand.•

User-written output writer routines that use BSAM or QSAM and job
separator routines that operate with MFl' do not require modification for
operation under VSl.

A selective posting facility is implemented in VS1 for JES writers
and initiators. Selective posting of a waiting JES writer when a SYSOUT
data set is queued is like selective posting of a waiting initiator when
an input job is queued. Selective posting is discussed later in this
subsection under -Job SCheduler- .•

Problem Program Access ~'SYSIN ~ SYSOUT ~

In VS1, problem programs access SYSIN and SYSOUT spool data sets via
QSAM and BSAM, as in MFT. However, in VS1 these sequential access
methods interface with a device-independent JES translator, which
interfaces with JECS to access SYSIN and SYSOUT spool data sets on spool
volumes.•

The JES translator module is automatically invoked when a
SYSIN/SYSOUT data set is specified by a job step.. The translator module
is entered each time the problem program requests the reading ofa SYSIN
record or the writing of a SYSOUT record. The JES translator reformats
the request as necessary and passes it to JECS. When JECS has processed
the request, this fact is indicated to the JES translator, which posts
the appropriate control blocks and, in the case of a SYSIN request,
makes the record available to the problem program.

The interface to the JES translator is transparent to the problem
program.. ThUS, the MFT approach of using QSAM or BSAM to access SYSIN
and SYSOUT spool data sets is valid in VS1, and modifications to the
SYSINISYSOUT data set processing contained in existing MFT programs are
not required in order to execute these programs under VS1. SYSIN and
SYSOUT spool data sets cannot be accessed via the EXCP macro .in VS1
because there is no interface to the JES translator from this macro.

~ Spool Management

Spool management is the central facility that controls all access to
spool data sets, as shown in Figure 90.• 20.1. It receives and processes
service requests from JES readers, JES writers, job scheduler
components, and executing' problem programs.. Spool management processing
consists of blocking and deblocking system input and output records and
requesting services from other JECS components.

Spool management interfaces with JECS buffer management to obtain the
I/O buffers required to read and write spool data sets~ Spool
management interfaces with DASD work area management to obtain and to
free direct access space for spool data sets and to request I/O
operations on spool data sets.

OS/Virtual storage 1 Features Supplement 51

The OUTLIM facility. available to MFT users only via SMF. is a
standard feature of JES. This facility allows the user to indicate the
maximum number of logical records that can be placed in a SYSOUT spool
data set (up to a maximum of 16,777,215). Spool management also ensures
that the OUTLIM quantity for SYSOUT spOOl data sets is not exceeded and
maintains control blocks that indicate all the system input and output
data sets associated with each job.

JECS Buffer Management

The pool of JES I/O buffers that is available to be used for the
reading and writing of all spool data sets is maintained by buffer
management, which services requests from spool management only. The JES
buffer pool area is allocated during system initialization and its size
.cannot be increased without a re-IPL. The size and number of buffers
can be specified at system generation and these values can be overridden
by changing the JESPARMS member in SYS1,.PARMLIB or specifying a JESxxxxx
member during system initialization.

The number of buffers required for optimum spOOl performance is a
function of the number of JES readers. JES writers. partitions. and
opened spool data sets that can be active concurrently. If too few
buffers are provided. loss of spool performance can occur. Hence. it is
better to overestimate than to underestimate buffer requirements,. The
allocation of more spool buffers than are actually required does not
affect system performance since real storage is allocated to spool
buffers only if they are used. A maximum of 999 buffers can be
specified. (See OS/vS1 System Generation Reference, GC26-3791, fOr
estimating spool buffer needs.>

The formula given for estimating buffer requirements provides one
buffer for each spool data set possible,. The buffer is allocated when
the spool data set is opened and, normally, is released when the spool
data set is closed,. When allocating a buffer. buffer management always
looks first for an available buffer that is contained in a virtual
storage page that already has buffers allocated to ensure that the
minimal number of virtual storage pages are used for allocated spool
buffers. This approach minimizes both page faults and the amount of
real storage allocated for buffers at any given time during JES
activity. .

I f the buffer pool is empty. buffer management attempts to obtain a
buffer that is assigned to another spool data set. However, if all
aSSigned spool buffers are currently in use. the buffer request cannot
be satisfied until an aSSigned buffer becomes available or until a
buffer is freed and returned to the buffer pool. This buffer preempting
for the purpose of buffer sharing can occur only if the total spool
configuration is active and the number of spool buffers allocated is
less than the number calculated using the spool buffer requirements
formula.

DASD ~~ Management

The allocation and deallocation of direct access space to spool data
sets and the reading and writing of spool da'ta sets are handled by the
DASD work area allocation routine and the DASD work area manager.
respectively. Spool volumes contain JCL. SYSIN, PROC, SYSOUT, and
system message spool data sets, as well as write-to--programmer messages
and the two system log data sets.

The spool volume configuration (DASD work area) can consist of up to
ten permanently mounted direct access volumes with a maximum of 64K
tracks allocated to the SYS1.SYSPOOL data set. Any mixture of the

OS/Virtual Storage 1 Features Supplement

..

52

..

following direct access device types can be included in the spool
configuration (SYS1.SYSPOOL data set): 2314/2319, 3330-series (all
models), 3340/3344 (all models), 3350 (in native or 3330 compatibility
mode) and 2305 MOdel 2. The volume serial numbers of the volumes in the
spool configuration can be specified at system generation. The volumes
specified can be changed during system initialization via a different
speCification in the JESPARMS member, via specification of a JESxxxxx
member, or by the operator via the SET parameter SPOOL. Spool volumes
can be added or deleted. Spool volume formatting can also be requested
via the SPOOL parameter,.

The spool volumes to be used must be mounted prior to an IPL. Any
volumes in the specified spool configuration that have not been mounted
before the IPL are deleted from the spool configuration for this IPL and
the operator is notified.. A re-IPL is required to alter the spool
volume configuration after system initialization•

Spool volumes need not be dedicated to spooling: however, arm
. movement can be minimized and increased performance obtained when spool

Vblumes are dedicated to spooling or contain only low-usage data sets in
addition to spool data sets. SYS1.SYSPOOL and SYS1.PAGE data sets
should not be placed on the same volumes, if possible.

Spool data sets are sequentially organized and contain variable
length blocked spanned records that are written without a key. For card
input, blanks after the l~st character punched are deleted from the
resulting logical record. ,For printer and punch output, blanks after
the last character to be printed in a line or punched in a card are
deleted from the logical record. This truncation eliminates using spool
space to store inSignificant blank characters.

Spool volumes must be preformatted with physical records the size of
the spool buffers to be used.. preformatting is done during an initial
IPL when the operator requests spool volume formatting, or because it is
determined that spool volumes require formatting. Reformatting is not
required thereafter unless spool buffer size is changed,.

The spool buffer size chosen must be a minimum of 436 and a maximum
of 99,999 bytes. The default buffer size is 880 bytes. Spool buffer
size cannot be larger than the full-track capacity of the smallest
capacity track in the spool device configuration. Therefore, if a
2314/2319 is part of the spool configuration, buffer size cannot exceed
1294 bytes regardless of the other direct access device types in the
spool configuration.. The track overflow feature is not supported for
spool data sets, but rotational position sensing is used when it is
present for a spool device.

Direct access space on spool volumes is allocated to spool data sets
in terms of a logical cylinder instead of a physical cylinder. A
logical cylinder consists of a number of trackS, from two to a maximum
of 255, all of which need not be contained in the same physical
cylinder. The number of physical tracks in a logical cylinder depends
on the size of the spool buffer (BUFSIZE parameter), the number of spool
buffers that can fit on one track, and a spool allocation unit
specification in bytes (ALCUNIT parameter) '.

The BUFSIZE and ALCUNIT parameters can be specified at system
generation and overridden during system initialization. (A cold start
rather than a warm start must be performed after either parameter is
changed.) The system defaults of 880 bytes for BUFSIZE and 28,612 bytes
for ALCUNIT are used if these parameters are not user-specified. .

The number of tracks in a logical cylinder is calculated for each
spool device type using the formula ALCUNIT / (BUFSIZE x number of
buffer records per track). When the default values for both BUFSIZE and

OS/Virtual Storage 1 Features Supplement 53

ALCUNIT are used, there are five tracks in a logical cylinder for 2314,
2319, and 3340/3344 spool devices; three tracks in a logical cylinder
for 3330-series (all models), 3350 in 3330-compatibility mode, and 2305
Model 2 spool devices; and two tracks in a logical cylinder for 3350
native mode spool devices.

The default specifications for BUFSIZE and ~~CUNIT provide
approximately 28K bytes of spool space per logical cylinder for each
spool device type. These values are designed to optimize spool space
usage and allocation for installations with spool data sets (JCL, SYSIN,
SYSOUT, etc.) that vary in size. The minimum amount of space that can
be allocated to the SYS1.SYSPOOL data set is 20 logical cylinders.

If an installation consistently has jobs that require small spool
data sets, specification of a smaller ALCUNIT value, which results in a
smaller logical cylinder, can avoid wasting spool space. If an
installation consistently has jobs that require large spool data sets,
specification of a larger ALCUNIT value, which results in a larger
logical cylinder, will cause fewer calls for spool space allocation.
However, if neither of these two conditions exists, the default value
for the ALCUNIT parameter should be used.

The DASD work area allocation routine maintains a logical cylinder
bit map of the spool space defined. This map is contained in virtual
storage. It indicates which logical cylinders are allocated and which
are available. When a permanent I/O error occurs on any track in a
logical cylinder, the logical cylinder is maorked unavailable for
allocation.

The DASD work area allocation routine allocates spool space such that
the spool I/O load is balanced across the available spool volumes as
much as possible. During processing, a count of the number of accesses
and the total spool access time are maintained for each spool volume. ~
When a spool space request is received, average access time is
calculated for those spool volumes that have available space. The spool ,/
device chosen to satisfy a request is the one with available space and
the smallest average access time.

one logical cylinder at a time is allocated to a given spool data
set, and each time this space becomes filled, one additional logical
cylinder is allocated. Because of the I/O load-balancing approach used,
the logical cylinders assigned to any given spool data set can be
contained on more than one spool volume. The available logical cylinder
that is allocated from the spool device selected is the one that is
closest (on either side) to the current location of the access arm on
the device. This approach is used to group allocated logical cylinders
together so that access arm movement is minimized. Therefore, the
logical cylinders allocated to a given spool data set on a given spool
yolume are not necessarily contiguous.

At system generation, a threshold value percentage (from 40 to 90)
for spool capacity can be specified or the default percentage of 80 can
be used,. The operator is notified when the threshold percentage of
spool capacity becomes allocated during system operation. At this time,
the system automatically holds the input queue to prevent further job
selection and stops all started readers. The operator should ensure
that writers are started for those SYSOUT classes that have SYSOUT data
sets queued and start another writer, if possible. The remaining spool
space is then allocated only for starting another writer, processing
jobs currently initiated, and terminating problem programs and system
readers.

If the percentage of spool allocation continues to rise above ~he
threshold value, the operator is informed of every 5 percent increase.
When the spool volumes become so full that only a special reserve of

OS/Virtual storage 1 Fea ture s supplement

------ ..._--- .

54

logical cylinders is available, the operator is asked whether the job
currently requesting spool space should be canceled. Depending on the
reply, the job is canceled or placed in a wait state until a logical
cylinder becomes available. The reserve cylinders are allocated only
for the purpose of starting another writer or' canceling a job as a
result of an affirmative operator reply to the cancel request.

The operator continues to be informed of the percentage of allocated
logical cylinders until the percentage is reduced to the threshold
value. When the allocation percentage decreases to a value of 10
percent less than the threshold value, the operator is informed that
spool space is no longer critical. JES readers that were stopped can be
restarted and the input queue can be released,.

The advantages of the spool techniques used by DASD work area
management routines are:

• 	 Spool space is allocated and deallocated more quickly via use of an
in-storage map rather than by DADSM routines, which must process
VTOCs to locate and return direct access space,. OPEN and CLOSE
processing is also eliminated.

• 	 Spool space is allocated to minimize direct access device arm

movement.

• 	 Spool space for a giv~n spool data set is allocated across I/O

devices, if possible, to enable spool I/O operations to be

overlapped and to help'balance the I/O load.

• 	 Space is allocated a logical cylinder at a time as required so there
is less chance of wasting direct access space because of.
overestimating the requirement for a given spool data set.

• 	 The operator is automatically informed that spool space is running
out prior to a full condition that causes job cancellation. The
operator can take steps to prevent a full-spool condition.

Job List Manaqement and SWAnS Manaqement

The job queue organization and management implemented in VS1 is
considerably different from that implemented in MFT. They are designed
to reduce contention for the job queue, such as can occur in MFT, and to
eliminate duplicate job queue processing code through centralization of
job queue processing, which can reduce pagingactivi ty,.

The basic difference between job queue organization in MFT and VS1 is
that all of the work queues and much of the job scheduling data that are
contained in the SYS1. SYSJOBQE data set in MF'T have been removed from
this data set in VS1 and placed in other locations. In VS1, a resident
job list in virtual storage, a SYS1.SYSJOBQE data set, scheduler work
area data sets (SWADS), a system scheduler work area data set
(SYS1.SYSWADS), and scheduler work areas (SWAS) in virtual storage are
supported to contain job queues (input and output work queues) and job
scheduling data. Job queue processing is handled by the job list
manager and job scheduling data is accessed by the SWADS manager.

The resident job list is maintained in virtual storage in pageable
SQA. Each entry in the job list represents a unit of work that is to be
performed by a job scheduler routine and points to the location of
control blocks in SYS1.SYSJOBQE that descr ibe the unit of work. Job
list entries are connected to form work queues, which .in MFT are in
SYS1. SYSJOBQE. The resident job list contains entries for problem
program jobs only. It does not contain any entries for system tasks
that are started.

Os/Virtual Storage 1 Features Supplement 55

Included in the resident job list are from 1 to 36 (A to Z, 0 to 9)
input work queues for all locally and remotely submitted (RES) jobs,
from 1 to 36 (A to Z, 0 to 9) output work queues for the SYSOUT data
sets from locally submi~ted jobs, and from 1 to 36 (A to Z, 0 to 9)
output work queues for each remote (RES) user. Separate hold queues are
not maintained for jobs. When a HOLD command is issued for a job, the
job remains in the input or output queue of which it is a part and is
marked as being in held status.

The resident job list is maintained b¥ the job list manager. Job
scheduler routines access this list via the job list manager. JES
readers place an entry in the appropriate input queue whenever the
reading of a locally or remotely submitted job completes. Terminators
place entries in appropriate output queues whenever a locally or .
remotely submitted job completes. Initiators and JES writers obtain the
work they are to handle from this list.

During system initialization, the maximum size of the resident job
list of this IPL is calculated using JOBQINT, JOBQEXT, and JOBQNXT
parameters. These parameters are specified during system generation and
can be overridden during system initialization via a NIPxxxxx member in
SYS1.PARMLIB or by the operator in response to message lEA10lA.•

The amount of space within pageable SQA that is actually allocated to
the resident job list during system initialization is the amount
specified in the JOBQINT parameter.. The JOBQEXT and JOBQNXT parameters
are used to dynamically extend the size of the resident job list during
system operation, if necessary, as discussed later~

The SYS1.• SYSJOBQE data set in VSl contains job requirements data and
accounting data for the problem program jobs that are queued in the
resident job list. It does not contain any of the work and hold queues,
job ;:;cheduler tables, and system messages that are contained in
SYS1. SYSJOBQE in MFT. The control blocks in the SYS1. SYSJOBQE data set
in VSl are primarily job-related instead of job-step-related.•

The following control blocks are placed in SYS1.SYSJOBQE in VS1: disk
entry record (DER), job management record (JMR), SYSOUT class directory
(SCD), data set blocks for SYSOUT data sets (DSBs), job accounting table
(JACT), and routing table (RTBL).. These records are created by reader
and interpreter routines. Logical records in the SYS1~SYSJOBQE data set
in VSl are 116 bytes as in MFT; however, job records are blocked in
SYS1.SYSJOBQE in VSl (five logical records per block) to improve
performance~ SYS1.SYSJOBQE in VS1. is managed by the job ~ist manager.

SYS1.• SYSJOBQE is a sequential data set that Can reSide on one or more
volumes, which need not be all of the same direct access device type.
The volume(s) that contain the SYS1,.SYSJOBQE data set(s) can be
specified at system generation via the JOBQVOL parameter. The system
residence volume is assumed if the JOBQVOL parameter is not specified.
The system generation specification can be overridden during system
initialization via the JESPARMS or a JESxxxxx member in SYS1,. PARMLIB or
the operator can enter the SET parameter Q=cuu/CHNG,F to specify the
SYS1.SYSJOBQE configuration if it has not been previously specified,
change the previous specification, and/or cause formatting of
SYS1.SYSJOBQE to be done during system initialization.

In VS1, job scheduler tables and control blocks are placed in the
SYS1.SYSWADS data set, SWADS data sets, and optionally, SWAs. Scheduler
data includes the job control table (JCT), step control table (SCT) ,
step control table extension (SCTX), step input/output table (SlOT),'
account control table (ACT), volume table (VOLT), job file control block
(JFCB), data set enqueue table (OOENQ), and data set name table (DSNT).
Scheduler data is always written in 116-byte records. '

,~

/
------. ,

OS/Virtual Storage 1 Features Supplement 56

The job scheduler tables and control blocks for all the system tasks
and generalized start problem program jobs that are initiated are placed
in one SYSl. SYSWADS data set. The 176-byte records in SYS1. SYSWADS are
sequentially organized and unblocked. The location of this data set can
be indicated by cataloging it. Alternatively, it can be specified
during system initialization via the SET parameter SYSW. This parameter
can be placed in a SETxxxxx member in SYS1.PARMLIB or entered by the
operator,. The SYS1.SYSWADS data set is assumed to be on the system
residence volume if its location is not specified.

The job scheduler tables and control blocks for a problem program job
that is not initiated via a START command are placed in the SWADS data
set or SWA that is allocated to the initiator that schedules the job.
In VS1, either an SWADS or an SWA must be assigned to each active
initiator. Regardless of whether an SWADS or SWA is assigned to an
initiator, the scheduler data for any system tasks and generalized start
jobs it schedules is written in the SYSl.SYSWADS data set. The
SYS1.SYSWADS data set, SWADS data sets, and SWAs are maintained by SWADS
management.

An SWADS is allocated to an initiator by including an IEFRDR DD
statement in the initiator procedure. The SWADS for an IBM-supplied
initiator is a temporary data set that is allocated and formatted when
the initiator is started. An SWAnS (which cannot be allocated on a
virtual volume) is sequentially organized and contains a single extent
of a maximum of 32,767 unblocked 176-byte records. Allocation
parameters in the SWADS DD statement are used unless they are overridden
by the operator via the PARM parameter in the START initiator command.

A permanent instead of temporary data set can be allocated to an
SWAnS. When a permanent data set is allocated, the SWADS is not
formatted when its associated initiator is started unless the SWADS has
not been formatted previously or the FMTzY parameter is specified as a
PARM value on the EXEC statement in the initiator procedure or in the
START initiator command,.

_ Whenever a job is selected by an initiator and interpreted, the
interpreter places all the scheduler tables and control blocks for the
entire job in the swans for the initiator. Thereafter, initiator,
allocation, and terminator routines access the SWAnS (via the SWADS
'manager) to schedule steps of the job. The scheduler data for each
successive job that is processed by the same initiator overlays the
scheduler data in the SWAnS for the previous job. The SWADS data set
that is allocated to an IBM-supplied initiator is released when the
initiator is stopped.

An SWA is allocated to an initiator by including the SWA keyword in
the PARM field of the EXEC statement in the initiator procedure or in
the START initiator command that is issued by the operator,. If the SWA
parameter is supplied, either in the initiator procedure or via the
START initiator command, an SWA is used even though an IEFRDR DD
statement for an SWADS is present in the initiator procedure. The
presence of an SWADS DD statement causes an SWADS data set to be
allocated, however, even though an SWA is actually used. '!be SWA
parameter indicates the number of 176-byte records the SWA is to
contain.

When an initiator is started and the SWA parameter is speCified, an
SWA is allocated to the initiator and formatted. The SWA is allocated
from pageable PQA virtual storage in the partition in which the _
initia-tor is started. There must be at least 64K of virtual storage
remaining in a partition after the SWA has been allocated. Thereafter,
when a job is selected for processing, the interpreter places scheduler
data in the SWA in virtual storage for access by job scheduler
components. The scheduler data for each successive job that is

OS/Virtual storage 1 Features supplement 57

processed by the same initiator overlays the scheduler data in the S~
for the previous job. When an initiator is stopped, the SWA that is
allocated to it is released.

Use of an SWA in virtual storage instead of an SWADS data set for an
initiator can provide improved performance, particularly for jobs.whose
total job time includes a large amount of scheduler processing.time,
assuming the system can absorb the increase in paging activity that
results from using an SWA.

Note, however, that jobs scheduled by an initiator with an SWA.
assigned cannot use automatic step restart, automatic checkpoint
restart, and deferred checkpoint restart facilities, since the restart
reader and checkpoint restart routines require an SWADS data set. When
a system failure occurs, jobs in progress whose scheduler data is in an
SWA are not reenqueued in the resident job list and their queued SYSIN
data sets, if any, are deleted. However, the SYSOUT data sets for these
jobs, if any, are queued for processing by a JES writer.

SYS1. SYSJOBQE, SYS1.SYSWADS, and SWADS data sets can be placed on
2314/2319, 3330-series (all models), 3340/3344 (all models), 3350 (in
native or 3330-compatibility mode), and 2305 Model 2 direct access
devices. RPS is supported when it is present for the device. The same
device type need not be used for each of these three types of system
data sets and all SWADS need not be on the same type of direct access
device.

In VS1, as in MFT, space' can be reserved for job queue and job
scheduler data that is used in the event that the nonreserved space
becomes exhausted. SUch space is reserved for initiators to enable them
to complete processing of the job they are scheduling and to start
writers so that job queue space is- freed. In VS1, however, a
SYS1. SYSJOBQE extension program is also provided that enables the
operator to add space to SYS1.SYSJOBQE during system operation. The
amount of virtual storage allocated to the resident job list can .also be
dynamically expanded during system operation.

The following parameters that allocate reserved space can be
specified during system generation and overridden during system
initialization (via a NIPxxxxx member in SYS1.PARMLIB-,or by the operator
in response to message IEAl01A):

• 	 JOBQLMT to specify the number of records to reserve in SYS1.SYSJOBQE
for each initiator started. These reserve records enable an
initiator to complete processi ng of the current job.'

• 	 JOBQLST to specify the number of entries in the resident job list
that are to be reserved for each initiator started. These entries
enable an active job to be terminated.

• 	 JOBQTMT to specify the number of records that are to be reserved in
SYS1.SYSJOBQE for starting one initiator, one writer, and the
SYS1,.SYSJOBQE extension program in the event that queue space
becomes critical

• 	 SYSWTMT to specify the number of records that are to be reserved in
SYS1.SYSWADS for starting one initiator, one writer, and the
SYS1.SYSJOBQE extension program in the event that queue space
becomes critical

The RESV parameter can be specified in an initiator procedure or
START initiator command to reserve records in an SWADS.data set'or an
SWA. The reserved space is used to terminate abnormally a job whose
space requirements exceed the nonreserved SWADs/SWA space.

OS/Virtual storage 1 Features Supplement

..

~

,~

58

..

.~,

..

The JOBQEXT and JOBQNXT parameters are specified during system
generation and can be overridden during system initialization to control
dynamic expansion of resident job list space. The JOBQEXT parameter
indicates the number of job list entries that are to be allocated when
existing space in the job list is exhausted.•. The amount of virtual
storage required for the number of entries specified is dynamically
obtained from pageable SQA each time the job list area becomes totally
allocated and additional space is required. Such an extension of the
job list area is automatically released when it is no longer required.
The JOBQNXT parameter indicates the maxinum number of times (from 0 to
255) job list space can be extended.•

The SYS1.SYSJOBQE extension program must be executed to add space to
SYS1.SYSJOBQE during system operation. The operator initiates this
program in a partition via a START JQEXD command, normally in response
to the message JOBQ SPACE CRITICAL - START A JOBQ EXTENSION PROCEDURE
(IEF052E). This program is authorized to execute in a system task
partition. The START command specifies the name of the extension data
set that is to be added to the SYS1. SYSJOBQE data set originally
d~fined.. Only one extension data set is added per start of the
extension program.

The maximum number of data sets that can be defined in a
SYS1.SYSJOBQE configuration, including both initially allocated and
extension data sets, is ten. A mini1llllm of two tracks must be allocated
to each SYS1 .• SYSJOBQE data set. More than one SYSl. SYSJOBQE data set
can be placed on the same volume. One is named SYS1.SYSJOBQE, while the
others are named SYS1.SYSJOBQx, where x is chosen by the operator to
form a unique data set name for the volume. The same direct access
device type need not be used for all SYS1.SYSJOBQE data sets.

When an extension SYS1.SYSJOBQE data set is no longer required, the
job list manager releases it, that is, deletes it from the set of
SYS1.SYSJOBQE data sets being used. In order to unallocate the space
assigned to a released extension data set, the operator can execute the
SYS1.SYSJOBQE extension program to perform the scratch fUnction.

Space in SYS1.SYSWADS, an SWADS data set, or an SWA cannot be
extended dynamically during system operation. A job is abnormally
terminated if the space being used for its scheduler tables and control
blocks runs out during proceSSing of the job.

Job List Verification program and JESDUMP Service Aid

The job list verification program and JESDUMP service aid are
standard functions of JES. The job list verification program is
designed to determine whether an error that could cause abnormal system
termination exists in the resident job list after it has been
manipulated by the job list manager. If an error is detected, a virtual
storage dump can be taken using the JESDUMP program (QMGRDUMP entry).
The QMGRDUMP entry to the JESDUMP program can also be used to take a
dump after the SWADS manager encounters an I/O error. JESDUMP can also
be used to take a virtual storage dump after certain spooling conditions
are detected (JECSDUMP entry).

If the job list verification and JESDUMP programs are to be used,
they must be enabled by modification of the appropriate bytes Within
JES. This can be done on a selective basis (that is, only at certain
times) using the alter/display function of the primary system console
device or on a permanent basis using the HMASPZAP service aid.

The job list verification program and the QMGRDUMP entry into the
JESDUMP program are activated by altering JESCT+X'OC" to X'·CO'. This
setting causes the job list verification program to be executed

OS/Virtual Storage 1 Features Supplement 59

-- ----

following each manipulation of the resident job list by the job list
manager to check the contents of the resident job list for accuracy. If
no error is found, processing continues without a dump. If an error is
found, the JESDUMP program is entered at the QMGRDUwlP entry and a
formatted SVC dump of virtual storage is written in the SYS1.DUMP data
set. The X"CO' setting for JESC1'+X' Oct also causes entry into the
JESDUMP program at the QMGRDUMP entry whenever an I/O error occurs
during SWADS manager processing of SYS!.SYSJOBQE, SYS1. SWADS, or an
SWADS.

The storage dump taken at the time the system abnormally terminates
because of a resident· job list error does not necessarily contain the
information required to locate a job list error that occurred earlier•.
The JESDUMP program provides a virtual storage dump at the time the
resident job list error occurs.•

Entry into the JESDUMP program at JECSDUMP is made after spool
manager processing occurs when location JESCT+X' O· is altered. When
JESDUMP is entered at this point, it checks the pass back code from the
spooling manager and the value in JESC1'+X'O' to determine whether a dump
should be taken. The value placed in JESCT+X'O' indicates which one or
more of the following conditions should cause a dump to he taken: JECS
errors other than those that follow, two OPEN macros issu~d withoutan
intervening CLOSE, data set not found, spool space exceed~d, JECS work
area (LRCB) not open, OUTLIM value exceeded, end of file, OUTLIM value
equaled, space critical, a~d data set empty.•

If the passback code does not indicate any of the cOfiditions
specified in JESCT+X'O', processing continues without a dump. If a
specified condition does exist, a formatted SVC dump of virtual storage
is written to the SYS1.DUMP data set.

JOB SCHEDULER

The basic design changes embodied in the VSl job scheduler are
inclusion of the interpret function as part of job scheduling and access
to the resident job list, the SYS1,.SYSWADS data set, SWADS, and SWAs in
addition to SYS1,.SYSJOBQE to obtain the jobs to be processed and job
scheduling data.

The components of the job scheduler (initiator, interpreter,
allocation, terminator) are modified to operate in a paging environment,
interface with JES, support modifications to other system routines, and
provide some functions not available in MFT. All scheduler components
can operate paged in 64K of virtual storage and are structured to
minimize the occurrence of page faults .•

Initiator

A VSl initiator is pageableand a large portion of it is reentrant.
The sequence of loading initiator modules in VSl is changed to eliminate
the loading of job selection routines at times when they are not
required. This is done to improve the performance of job scheduling in
VS!.

As in ¥~T, the initiator operates in a partition to perform its
scheduling function. Initiators schedule problem program job steps
(both pageable and nonpageable), system tasks, and JES readers and
writers. Initiators interface with the job list manager to access the
resident job list and the SYSl.SYSJOBQE data set. Initiators interface
with SWADS management to access SYS1.SYSWADS, SWADS, and SWAs.

60 OS/virtual Storage 1 Features Supplement

---~----------
-~--~

,~
\

The EXCPVR=NO parameter is supported for the EXEC statement of
initiator procedures in VS1. If specified, this new parameter indicates,
that the EXCP macro instead of the EXCPVR macro is to be used to
initiate I/O operations to the SWADS for this initiator, if any. If
this parameter is not specifed, the EXCPVR macro is used.

Since the I/O tables associated with an EXCPVR request are maintained
in fixed SQA, less paging activity will usually be required to process
an SWADS using EXCPVR instead of EXCP, and system performance may be
improved. Use of EXCPVR for SWADS processing increases the fixed SQA
space requirements. Therefore EXCPVR=NO can be specified when the real
storage available for fixed SQA space is limited. The IB~supplied
initiator procedures do not contain the EXCPVR=NO parameter. The
EXCPVR=NO parameter can be specified in the START command for an
initiator.

The VSl initiator supports a queued problem program start faCility,
which enables the operator to start more than one cataloged procedure to
the same partition. The started procedures are queued and initiated on
a first-in, first-out basis. System task starts must be Single-step
procedures while problem program starts may be multistep procedures.

The VS! initiator also supports an operator option that is not
provided in MFT. If all the data sets required by the job that is being
initiated are not currently available, the operator can request that the
job be placed in the input: queue in held status,. The operator can then
release the job at a later time when the data sets become available. In
MFT, the operator can only cancel the job or request another allocation
attempt.

A selective initiator-posting facility is implemented in VS1. In
MFT, when a job is placed in the input queue, each initiator that
handles the job class to which the job is assigned is posted whether or
not the partition the initiator schedules is busy. 'In VS1, when a job
is queued, the selective posting routine determines' :whether all
initiators that handle the job's class are busy. If so, all these
initiators are posted. In this case, the first initiator that becomes
available processes the job, as would occur in an MFT environment.
However, if all the initiators that handle the job's class are not busy,
the selective posting routine posts only one of these waiting initiators
according to a priority scheme, as follows.

The partitions to which a specific job class is assigned are
prioritized for processing jobs with that class according to the
priority at which the class was specified within'the partition during
system generation or system operation (first job class specified has,the
highest priority, last job class specified has the lowest priority).' If
a job class is specified at the same priority within two or more
partitiOns, the partition with the highest dispatching priority has the
highest priority among the two or more partitions for processing jobs
with that class assigned,. When more than one partition with a given job
class assigned is not busy when a job with that class is queued, the
initiator for the available partition with the highest priority for
processing jobs with that job class is posted.

For example, assume the following job class assignments have been
made to four partitions:

Class assignment in high-to-Iow priority
Partition seguence within the partition

PO BAC
Pl AB
P2 AC
p3 CBA

OS/Virtual Storage 1 Features Supplement 61

---- -------- -- --- - ------

Given the specified assignments, partitions, are prioritized for
processing each job class as follows.

Job class High-to-Iow ErioritI: for Erocessing: the class

A Pl, P2, PO, P3
B PO, Pl, P3
C P3, P2, PO

Assuming the priorities above, if a job with class Cis queued and
only partition PO is busy, only the initiator in partition P3 is posted
and the job is processed in partition P3. In an MFT environment, the
initiators for partitions PO, P2, and P3 would be posted and the job
would be processed in partition P2.

The selective posting discussion above also applies to the posting of
JES writers.. That is, when a SYSOUT data set is queued, only one of the
writers that handles its SYSOUT class is posted when one or more of
these writers are not busy. When two or more writers have the same
priority for processing a SYSOUT class, the first writer in the chain of
these writers that is maintained by the job list manager is posted.

InterEreter

The interpreter is pageable and a large portion of it is reentrant. o
It operates as a subroutine of the initiator. The interpreter is
invoked at the initiation of each job. The interpreter reads procedures
directly from SYS1.PROCLIB (via data management) and interfaces with
JECS spool management to read all the JCL and any PROC spool data sets
that are associated with the job to be scheduled. It interprets all the
job control for the job, constructs the required scheduler control
blocks, and writes them in the appropriate SWADS or SWA (using SWADS
management) for use by the other job scheduler components.

Interpreter messages are placed in system message spool data sets in
VSl instead of in the SYS1.SYSJOBQE data set as in MFT. Commands are
sent to the master scheduler for processing when they are encountered.
Jobs that were being interpreted when abnormal system termination
occurred do not have to be resubmitted during the warm start procedure,
as they do in MFT.

The interpreter accepts all the job control statements supported in
MFT. UNIT and SPACE parameters on a SYSOUT DD statement are ignored as
they are no longer required. New DO statement parameters for VSAM
(~iscussed in Section 90:30) are added to the jOb control language as
well as the following new parameters:

• 	 ADDRSPC=VIRT or REAL and the REGION parameter on JOB and EXEC

statements (discussed in Section 90:10)

• 	 TYPRUN=SCAN on a JOB statement to indicate that the job control for

the job is to be analyzed for errors but that the job is not to be

executed

• 	 COPIES=nnn on SYSOUT DO statements to request multiple copies of

system output data sets

• 	 DLM=cc onSYSIN data set OD statements (DO* and DD DATA). This

parameter can be used to specify a delimiter other than /* or // to

indicate the end of job step data in the input stream.

• 	 HOLD parameter on SYSOUT DD statements. When HOLD=YES is specified

on the DO statement for a SYSOUT data set. the data set is placed in

held status in a SYSOUT queue in the resident job list and will not

62 	 OS/Virtual Storage 1 Features Supplement

---- -----~-- --- -.~--------

be written by an output writer until the operator releases it by
issuing a RELEASE or ROUTE command. Since the operator is not
notified by job management when a SYSOUT data set is placed in held
status, the operator must be informed by the user. The notification
can be accomplished by placing a SEND command in the input stream
that sends a message to the operator. ROUTE and SEND are new
commands that are provided by RES support (see "Remote Entry
Services· later in this subsection).

• 	 DEST and HOLD parameters on SYSOUT DD statements sutmitted via RES
(see "Remote Entry services")

• 	 OSID and MSVGP parameters on DD statements. The OSlO parameter is
used to assign a data set identification to the SYSIN and SYSOUT
data sets that are contained on 3540 diskette devices. '!he MSVGP
parameter is used to assign an identification to a group of mass
storage volumes that are contained in a 3850 Mass Storage System.

• 	 CHKPT=EOV on DD statements ·to cause a Checkpoint to be taken by VSl
at end of volume for multivolume QSAM or BSAM data sets,

• 	 PROFILE and MPROFlLE parameters on JOB statements and the PROFILE
subparameter on SYSOUT DD statements to supply installation
specified selection parameters for work classes and priority, as
discussed below

• 	 CHARS, FLASH, and BURST parameters on DD statements with or without
SYSOUT specified also. These parameters apply only to the 3800
Printing Subsystem. CHARS can specify the names of up to four
character arrangement tables that resiqe in SYSl.IMAGELIB and that
are to be used in printing the data set,.. FLASH .specifies the forms
overlay frame to be inserted in the 3800 and the number of copies of
the data set on which the overlay is to' 'be flashed. BURST indicates
whether the printed output is to be burst or left in continuous
form. 	 .

• 	 CHARS=DUMP and FCB=STD3 parameters on a SYSABEND or SYSUDUMP DD
statement. These two parameters are supported only for the' 3800
Printing Subsystem and provide the ~bility to take a high-density
~E*,)-q{.fup for a problem prograR\ • These two oI?t,ions are not
aval:lable for SNAP dumps and system tasks. ..

The CHARS=DUMP (condensed line) option causes each line of the dump
to contain 64 bytes of storage data plus the EBCDIC translation
instead ~"Qf 32 bytes plus the translation. The FCB=STD3 (condensed
page)' option causes each page to have 80 lines (8 lines per inch)
instead of 55 lines (6 lines per inch). The options can be
specified together or singly.

• 	 MODIFY parameter on DO statements with or without SYSOUT also
specified. This parameter is supported only for the 3800 printing
Subsystem. It specifies the name of a copy modification module and
a character arrangement table for the 3800 that reside in
SYSl. IMAGELIB.

• 	 COMPACT parameter on the SYSOUT DD statement for·a 3790
Communication System supported by RES. This parameter specifies the '
compaction table to be used.

In VSl and ~FT, a specific job input class and priority, message.
class, and SYSOUT data set class can be asSigned by the user via the
CLASS, PRIORITY, MSGCLASS, and SYSOUT job control parameters,
respectively, in JOB and SYSOUT DD statements. Class, in effect,
represents a set of processing characteristics and relates work to be
processed to a specific initiator or output writer. In VSl, the

OS/Virtual Storage 1 Features Supplement 63

standard installation-specified selection parameters (ISSP) function can
also be used to assign classes and priority to jobs.

The ISSP function enables the user to specify processing
characteristics in JOB and SYSOUT DD statements instead of specific
classes and priorities. The parameters used to describe processing
characteristics are installation-defined. When ISSP is used bya job,
the scheduler assigns specific classes and priorities to the job, using
a set of installation-defined tables that matbh installation-defined
processing characteristic parameters to specific classes and priorities.

Both standard job control parameters for classes and priority (CLASS,
PRIORITY, MSGCLASS, and SYSOUT) and parameters defined by the ISSP
function can be used in the job control statements for a job. (a specific
SYSOUT class specified in some SYSOUT DD statements in the job and ISSP
parameters for class specified in other SYSOUT DD statements, for
example) '. Input jobs, message data sets, and SYS:>UT data sets are
queued in the same way whether standard job control or ISSP parameters
are used to assign class and priority.

In order for the ISSP function to be used, a set of exit definition
macros must be prepared by the installation, assembled, and link-edited
into the JES portion of the VSl control program (IEFJES load module),.
The exit definition macros can be assembled during or after system .
generation. In order to aSSEmble thEm other than at system generation
time, the SYS1.ISPMAC data' set, which contains the macros required for
the assembly, must be provided,. This data set can be created during
system generation.•

Each exit definition macro defines either input job classes and
priorities (JOBCLASS definition) or system messages and job output
SYSOUT data set classes (OUTCLASS definition). An exit definition macro
defines the following:

• 	 A set of keywords, their acceptable values, and optionally, a
default value. These keywords represent processing characteristics
and can be used either in JOB statements (if this is a JOBCLASS
definition) or JOB and DD statEments (if this is an OUTCLASS
definition) in place of the standard class and priority' p.arameters.

2;:". _ ;', ~:'.

• 	 A scheduling profile,. The statements in a scheduling profile aSSign
job classes (A to Z,O to 9) if this is a JOBCIASS defitu.tion, or
message and SYSOUT classes (A to Z, 0 to 9) if this is an OUTCLASS
definition, to the processing characteristics that are specified,
using only the keywords defined in this exit definiti'o'n~:macro.

• 	 Job priority assignments, if this is a JOBCLASS definition. This
portion of the exit definition relates job priorities (0 to 13) to
the processing characteristics that are specified, using only the
keywords defined in this exit definition macro.

The PROFILE and MPROFILE parameters are added to the JOB and DD job
control statements in support of the ISSP function as shown below:

// JOB PROFILE="job profile string",MPROFILE="message profile string"

// DD SYSOUT=(••• ,PROFILE="SYSOUT profile string")

The keywords and values that can be specified in the profile string
of a PROFILE parameter on a JOB statement are only those that have b,een
defined in a JOBCLASS exit definition. Similarly, the keywords and
values that can be specified in the profile string of an MPROFILE
parameter or a PROFILE subparameter on a SYSOUT DD statement are only
those that have been defined in an OUTCLASS exit definition. If the
PROFILE parameter is specified on a JOB statement, it overrides the

OS/virtual Storage 1 Features SUpplement

~

-~

..

64

CLASS and PRIORITY parameters if they are specified also. Similarly, an
MPROFILE par,ameter on' a JOB statement overrides an MSGCLASS parameter if
one is present •

When the interpreter encounters an ISSP keyword on a JOB or SYSOUT DD
statement, the tables generated by/the assembly of exit definition
macros are inspected to select the appropriate class and/or priority .for
assignment. The class or priority assigned to a given set of proceSSing
characteristics can be changed via modification and reassembly of the
appropriate exit definition macro. AS long as the same keywords are
used for processing characteristics, the new class or priority is then
automatically assigned to jobs with these characteristics without the
necessity of changing the job control statements for these jobs,• ..

The DISPLAY command is expa·nded to enable the operator to display the
following when the P parameter is specified:

..
• 	 The processing characteristics defined for a specific input or

output class (IN=class and OUT=class parameters). The processing
characteristics contained in the scheduling profile of the JOBCLASS
or OUTCLASS exit definition that contains the specified class are
displayed

• 	 The class or classes assigned to the set of input or output
processing characteristics that are specified in the DISPLAY P
command

I

• 	 All the classes that contain the processing characteristic(s)
specified in the DISPLAY P command

Jobs whose job control statements contain ISSP keywords can be
executed under control of a VSl system that does not contain the
specific assembled exit definition macros required by the jObs. The
first time a job with ISSP keywords is encountered in the job stream,
the operator is, notified of the absence of the required JOBCLASS or
OUTCLASS exit definition table and must specify CANCEL or IGNORE as a
response to the message.. If CANCEL' is specified, this job and all
successive jobs that need the JOBCLASS or OUTCLASS table specified in
the message are rejected without being executed. This process continues
until the neit IPL. . .

'. .' t..t·f \.:,~, 	 ":1 . . .
If IG~ORE.is specified, jobs with ISSP keywords will be executed as

follo·ws •. ' When a CLASS, MSGCLASS, or PRTY parameter is present on a JOB
statement-, ~~addition to ISSP kE;!ywords, .the value specified in this
parameter ,j.s.used in place of the PROFILE or MPROFILE specification. If
a ClASS, MSGCLASS, or PRl'Y parameter is not present, the standard system
defaults for these parameters are used in place of the PROFILE and
MPROFILE specifications. When a SYSOUT class and a PROFILE keyword are
specified in the SYSOUT parameter on a DD statement, the specified
SYSOUT class is used instead of the PROFILE specification. If a SYSOUT
class is not present, the default for the system message class is used
instead of the PROFILE specification,.

Allocation

The allocation routine in VSl operates as a subroutine of the
initiator to allocate and deallocate I/O devices to job steps, issue
mount messages to the operator, etc., as in MFT. The VSl allocation
routine differs from the MFT allocation routine in that it supports.
dedicated work data sets (supported in MVT but not in MFT) and a new I/O
device allocation algorithm.

The dedicated work data sets facility enables a job step to use disk
data sets that are assigned to the initiator that schedules their

OS/Virtual storage 1 Features Supplement 65

http:IG~ORE.is

execution. Job scheduling time is reduced by the elimination of
temporary disk data set allocation and deallocation processing,. The new
I/O device allocation algorithm, is designed to minimize contention among
I/O devices by better balancing channel loads.

i! 	 .

The channel load~balancing algorithm for nonspecific disk device requests
that is used by the MFT allocation routine is replaced in VSI by a new '
I/O load-balancing algorithm unless the latter is specifically excluded
by the user during system generation. In MFT, the load on a direct
access device is assumed to be directly proportional to the number of
data sets allocated to the device. However, because data sets have
different activity levels, experience has shewn that a count of the
number of data sets present does not accurately indicate the load on ~he
device.

In VSI, a different algorithm for determining the activity on a direct
access device is used. This I/O load-balancing algorithm is called by the
allocation routine to allocate devices for new disk data sets that do not
have specific volume serial numbers indicated in theirDD statements
(nonspecific device requests). The SEP parameter on DD statements is not
effective for new nonspecific direct access device requests when this
load-balancing algorithm is used, sin:ce the algorithm is designed to
balance the load across the entire configura:tion. (The algorithm used
for allocating a device to an old data set without a spe~ific device
request that has not been premounted is the same as that used in MFT.)

The utilization of a tape or a direct access device is determined in
VSl by counting the number of I/O requests (EXCP macros and pci'
interruptions) for the device in a given interval. Data from the
previous interval is also maintained. The length of the time interval
varies by system1370 model. An exit is taken during I/O supervisor
proceSSing in order to acc:;:umulate these counts I (EXCP rate per device).
When I/O devices.must be: selected for new nonspecific direct access
device requests, current I/O device and channel utilization is
calculated, taking into account the potential load that will be added by
the allocation of specifically requested tape and disk devices for the
job step.

Channel utilization is determined by taking intoaccOu~t'JEXCP rate,
number of allocated data sets, and ayerage EXCP rate peri'dictt'ci set for
the channel. Device utilization'is based on the amount d of"f6'ha'nnel time
used (taking into account the average data transfer rate of the device)
and for disk the number of standalone seeks issued (taking into account
average seek time for the device). The device determined to be the best
candidate for allocation to a given data set is theri sei'ected. If the
volume mounted on a selected direct access device does not have enough
available tracks to satisfy the space request, the next best candidate
is selected.

In order to make the most effective use of this algorithm, the
follOWing should be done:

• 	 Public devices should be distributed evenly across Channels.

• 	 Public devices should be distributed evenly across control u~its on

the same channel.

• 	 DD statements should be sequenced in the expected order of data set

activity (most active before less active).

• 	 Nonspeci~ic volume requests should be made whenever. possible.

OS/Virtual Storage 1 Features supplement 66

Terminator
/

The terminator is pageable and a large portion of it is reentrant.
Like the .initiator, the terminator places messages in system message
spool data sets,. No other functions different from those of MFT are
supported by a VSl terminator (except those related to supporting a
paging environment).

Direct SYSOUT (Q§Q) writers

The same functions are supported by DSO writers in VSl as in MFT,
except that a VSl 050 writer can handle up to 15 job classes instead of
only 8, as in MFT.

System Management Facilities (SMF)

SMF for VS1 provides all the same functions it does in MFT and is
expanded to include additional accounting data and exits,. SMF records
(SYS1.MANX and SYS1,.MNY data sets) can be written only on disk in VS1.
They cannot be written on tape as in NFT. The SYS1. MANX and SYS1. MANY
data sets must be cataloged in VS1,. The SMF keywords PRM, ALT, and MDL
are not accepted in VS1,. The SID parameter is expanded in VS1 to
include the MDL parameter value.

The SMF option desired ,is chosen at system generation from the
following:

• 	 NOTSUPPLIED - No SMF data is provided. However, the OUTLIM facility
is still available (without the OUTLIM exit, which is supported only
if SMF is present).

• 	 BASIC - User-written accounting routines are to be provided. These
routines can be newly written or those currently being used with
MFr,. The latter need net be modified for operation in VSl. The
additional JES accounting information is made available as are the
user exits IEFUSO, IEFUJP (not provided in MFT), and IEFACTR~.

• 	 FULL - SMF routines are to be included. This option should be
selected if SMF is currently being used in MFT. The same options

. are supported as in MFT. Additional accounting data and three exits
that are not available in MFT are provided also,.

The following are the major differences between SMF in VS1 and MFT:

• 	 Three exits are added to SMF in VSl. The IEFUJP exit is taken at
job purge time and can be used to include additional statistics in
SMF output records.. The IEFUIV exit is taken each time a JOB
statement is read from the input stream. The return from this exit
can indicate whether the job is to be processed. The lEFU83 exit is
taken each time an SMF record is to be written to the SMF data set.
The return from this exit can indicate whether the record is to be
written. .

• 	 The user routine executed at exits IEFUJI, lEFUSI, and IEFACTRT in
VS1 can write to installation-defined data sets. This is not
permitted in MFT.

• 	 Additional record types (62, 63, 64, 67, 68, and 69) are added for
VSAM accounting data.

• 	 Record type 22 is added to provide configuration data about the 3850
Mass storage System.

• 	 Record type 50 is added to contain statistics about VTAM that can be
used for tuning purposes.

OS/Virtual Storage 1 Features Supplement 67

• 	 Record type 20 is changed from a data set activity record to a job
accounting record.

• 	 Record type 6 (output writer accounting record) is expanded to

include accounting information for the 3800 Printing Subsystem.

• 	 Additional record types (43, 44, 45, 47, 48, and 49) are added to
contain RTAM accounting data for both binary synchronous and
synchronous data link control communications.

The SMF record types and formats produced by SMF routines in VSl are
compatible with those produced in MFT, for the most part. Additional
accounting information is supplied, minor changes to existing fields
have been made, and certain fields have a different meaning in VS1. For
example, in the job step termination record the storage-requested and
storage-used fields reflect the virtual storage used. If the job. step
ran in nonpaged mode, these fields also reflect the real storage used.
SMF records that are modified in VSl are the IPL (type 0), system
statistics (type 1), step termination (type 4), job termination (type
5), output writer (type 6), end of day (type 12), and dynamic storage
configuration (type 13) '.

The additional job accounting information provided by JES at job
purge time is:

• 	 Time required to read the job (elapsed time calculated from JES

reader start and stop times)

• 	 Number of cards read

• 	 Job priority and job class

• 	 Elapsed time for SYSOUT print proceSSing and number of lines printed

• 	 Elapsed time for SYSOUT punch processing and number of cards punched

• 	 Elapsed time for SYSOUT tape processing and number of SYSOUT records
written to tape

The page supervisor provides the following data to SMF:
, ,

• 	 Number of page-ins per job step (including user and system page-ins)
and number of page-ins for the entire system (reclaimed pages are
not included in this count)

• 	 Number of page-outs per job step (including user and system page
outs) and number of 'pagE-outs for the entire system

• 	 Number of reclaimed pages for the entire system

The initialization of SMF during system initialization involves the
processing of an SMFxxxxx member or the IBM-supplied SMFPRMOO member in
SYS1.PARMLIB, as covered in the automated system initialization
discussion (see Section 90:10). These members replace the SMFDEFLT
member used in MFT,.

NOte that in MFT the job step wait time limit (number of consecutive
minutes all the tasks of a job step can remain in an SVC wait state) can
be specified by the user via the JWT parameter of SMF (from 1 to 999
minutes) only if SMF is included in the generated system. In MFT
systems without SMF, the wait time limit is always 30 minutes.

In VS1, the wait time limit (from 1 to 932 minutes) can be specified
at system generation via the WAIT parameter of the C~ROG macro fOr
systems without SMF,. If the WAIT parameter is not specified for a VS1

OS/Virtual storage 1 Features,Supplement

'"

68

system without SMF, the default wait time is 30 minutes,. '!he wait time
limit for VSl systems with SMF is specified via the JWT parameter. . In
VS1, as in MFT, the wait time limit can be made ineffective for a job
step by specifying TIME=1440 in the EXEC statement for the step.

General Flow of Job Scheduling

Figure 90.20.2 illustrates JES and job scheduling flow in VS1.
Active JES readers read input streams. Data read (job control
statements, procedures, input data, commands) is passed to spool
management without interpretation of job control statements. Spool
management requests the allocation of spool space (one logical cylinder
is allocated per spool data set) and blocks input stream data, which is
written in spool data sets by the DASD work area manager•

. Whenever a complete job has been read, the JES reader creates a disk
entry record (DER), job management record (JMR), and route table for the
job and passes them to the job list manager. Space for these control
blocks, the job accounting table, and the SYSOUT class directory is
obtained from SYS1.SYSJOBQE by the job list manager, which then writes
the control blocks created by the JES reader in SYS1.SYSJOBQE. The job
list manager queues the job in an input q·ueue in the resident job list
by priority within job class and marks it held if appropriate. The JES
reader continues reading its input stream.

Started initiators ar~ selectively posted by the job list manager
when a job is queued that has a job class they are assigned to handle.
Once a job for an initiator is dequeued from the resident job list and
the DER for the job has been read, the initiator passes control to the
interpreter. The interpreter obtains the job control statements for the
job from the appropriate JCL spool data set (s) via spool management and,
if necessary, from SYS1.PROCLIB. Job control statements are interpreted
and scheduler control blocks are built for the job. The control blocks
are placed (by SWADS management) in the SWADS or SWA associated with the
initiator.

Spool space for SYSOUT spool data sets is allocated. One logical
cylinder is allocated to each SYSOUT spool data set at this time.
Commands within the job are routed to the master scheduler and
interpreter messages are placed in a system message spool data set.
Control is given to the allocation routine, which attempts to allocate
I/O devices to the first step. Allocation messages are written in a
system message spool data set and the job step is begun.

During job step execution, the problem program obtains SYSIN data
using QSAM or BSAM, which interfaces with spool management via the JES
translator to read the appropriate SYSIN spool data sets. The problem
program can write SYSOUT spool data sets in the same way. When the job
step completes, the terminator performs I/O device deallocation and
places messages in a system message spool data set.

Initiation of successive steps of the job continues until end of job
OCCUJ:S. The job terminator requests that the job list manager enqueue
the SYSOUT spool data sets for the job in output queues in the resident
job list by priority within SYSOUT class. The spool space allocated for
SYSIN spool data sets for the job is released. The initiator begins
processing the next job for which it has been posted, if any.•

Started JES writers interface with job list management to select a
SYSOUT spool data set with a class they are assigned to handle from the
resident job list. A JES writer obtains SYSOUT logical records via
spool manage!flent. When all the SYSOUT spool data sets for a job are
processed, the job list manager purges the job f~om the resident job
list and SYS1.SYSJOBQE. and spool management frees the SYSOUT spool
space allocated to the job.

OS/Virtual Storage 1 Features Supplement 69

--
Spool

Spool Management
Volumes

~ R~ad ~

~ite

,
ite

Spoo,
Mana gement

. ..
Read

SPOOI

~ Management
JCL

~

ite ~7

Initiator A
• Select job

"

Interpreter
• 	Interpret JCl·

for job
• Build blocks

Allocation"
• 	 Allocate job

step 1/0
• 	 Attach job step

,

Problem program
execution

~.

Terminator
(job step)

6

Request
job

Job List... ..
~ Manager-

4~

Resident
job
list

\

Job List
Manager~

SWADSW:::---"
Managementscheduler

control
blocks in
SWADS

SWADS...
~ Management

Read scheduler
control blocks

Spool
;"

--."- ./
Management

.. " c -. SYSOUT
Write ,datasety

'- .-/

"

,r
"- ./

... SYS1 .
SYSJOBOE

'-- ./

Select job and obtain
its control blocks

;"

'-. ./Update
--.

SYS1.
SYSJOBOE

'-- ./

;" ,
'-- ./.. SWADS..

for

~nitiator A.-/

.......

I'-. ./

~ - SWADS
for

.. r

~nitiator~

.

Figure 90.20.2. General flow of JES and job scheduling in OS/VSl

os/Virtual storage 1 Features SUpplement 70

..;::.

REMOTE ENTRY SERVICES

Remote entry services (RES) is a fully integrated functional
extension of JES. Using binary synchronous communications (ESC) and
synchronous data link control (SDLC) comnunications, RES enables remote
users to submit jobs to a central computing system via a workstation
(terminal) .and to receive the output from these jobs.

RES presents remotely submitted jobs to JES readers, which in turn
place the jobs in the input work queue in the resident job list. JES
writers present output from completed remotely submitted jobs to RES,
which transmits the output to remote workstations. Hence, the unit
record devices at remote workstations (readers, printers, punches) are
logically operated by JES as if they were part of the central system•

The same reader and writer facilities are provided for remote unit
record devices as for local unit record devices except that user-written
writer routines are not supported for remote devices.

The 3110 Data Communication System (nonprogrammable models) and 3190
Data Communication System are supported as systems network archi tecture
<SNA) terminals using synchronous data link control communications,. SNA
terminals controlled by RES can be attached to the central system
remotely via 3104/3105 Communications Controllers operating in NCP mode
or locally via a channeL

The following are suppo~ted by RES as non-SNA remote workstations
using binary synchronous communications:

• 1130 system
• System/3
• System/360 Models 20 to 195
• System/310 Models 115 to.168 (operating in BC mode only>
• System/310 Model 195
• 2110 Data Communications system
• 2180 Data Transmission Terminal
• 2922 Programmable Terminal
• 3141 Data Station Model 2 and 3141 programmable Work Station Model 4
• 3780 Data Communications Terminal

The maximum number of remote workstations supported is 200. However,
a practical maximum number of remote workstations is from 55 to 65.
This maximum is limited by the CPU size and workstation configurations.

USASCII code is supported only for the 2170,2780, and 3780,.
Terminals can be attached to pOint-to-pointleased and pOint-to-point
dial-up lines. Multidropped leased lines and dial-up lines are not
supported.· Lines can be two-wire half-duplex or four-wire half-duplex.
Full-duplex lines are not supported. A 2701, 2103, or 3104/3705 is
required in the central system configuration. The integrated
communications adapter (lCA) instead of a 2701 can be used on a Model
135 or 138.

Remote workstations using binary synchronous communication that
include a CPU and the 2922 Programmable Terminal are called BSC CPU
workstations,. A remote workstation using BSC that does not contain a
CPU (a 2110, 2780, 3741, or 3780) is called a BSC non-CPU workstation.
BSC CPU workstations operate under the control of standalone workstation
programs. Work station programs for System/360 and System/370 models
are distributed with the VSl control program. Work station program!:! for
System/3 and the 1130 system must be ordered separately.

Generation procedures must be performed to tailor a workstation
program to the configuration of each CPU workstation that is to be
supported by RES,. The standalone programs provided for RES remote

OS/Virtual Storage 1 Features supplement 71

workstations are the same ones that are provided' for HASP, II RJE remote
workstations.

RES enables a user at a remote workstation to:
'~ 	 /

• 	 Transmit jobs to a central system for processing using standard VSl

job control statements and operator commands. Two additional job

control parameters and five additional operator commands are

provided also.•

• 	 Route the output from each completed job to the central system or a

specific remote workstation, which need not be the one from which it

was submitted.. output destination can be indicated in job control

statements or via an RES command.

• 	 Display the status of his workstation and the status of his

submitted jobs

• 	 Send messages to, and receive messages from, other remote

workstation users and the central system operator

RES functions are provided by the following components of VSl:

• 	 The remote terminal access method (RTAM), which handles all data

transmission to and from remote workstations

• 	 The SYS1.• UADS and SYS1.BRODCAST data sets, which define the

attributes of RES workstation users and contain workstation

messages, respectively, and the SYS1.RMl'MAC and SYS1.RM'l'OBJ data

sets, which are required for RTAM generati~n

• 	 A standard ACCOUNl' Facility program URJRBBMP), which is used to

create and maintain the SYS1.UADS and'SYS1.BRODCAST data sets

• 	 The RES commands LOGON, LOGOFF, ROUTE, SEND, LISTBC, which enable

remote users and the central operator to control remote job

processing and to communicate with each other. WTO and WTOR macros

are extended to support remote users via the addition of the QID

operand. (In order to issue a WTO/WTOR macro with the QID operand,

a task must have storage protect key zero assigned, operate in

supervisor state, or be autborizedvia the authorized program

facility.)'

• 	 JES readers and JES writers that interface with Rl'AM and support

remote input and output stream,s. (COlumn binary is not supported.)

• 	 An interface with V~ to enable systems network architecture

workstations to communicate with the central system via synchronous

data link control communications lines.

Figure 90.20.3 shows how RES components interact with each other and
interface with JES to support high-speed remote job entry.

RTAM

If RES is to be used, this fact must be indicated during system'.
generation. The RrAM module that is required to support the RES
terminal configuration must be generated via a separate RTAM generation
procedure that can be performed any time' after Stage I of the VSl
generation procedure is completed. All other RES support except VTAM.is
always present in a generated VSl system.

RTAM is the only access method used by RES for non-SNA workstations.
RTAM executes as a system task in a pseudo partition in the pageable
supervisor area in VS1. It supports only the RES terminal network and

OS/Virtual storage 1 Features ~upplement 12

except for VTAM does not interface with any other terminal networks
(TCAM or BTAM, for example) that may be included in the system
configuration. RTAM communicates with SNA workstations using the normal
application interface to VTAM. SNA workstations must be defined to both
R'I'AM and VTAM.

In order to handle binary synchronous terminals, RTAM is started on a
communication line basis and handles all teleprocessing functions for
the workstations attached to binary synchronous lines. To handle SNA
terminals, RTAM functions on a workstation basis while VTAM handles all
teleprocessing functions (communication line control, SNA terminal
logons, and resolution of transmission code dependencies) for the SNA
terminals attached to lines operating in synchronous data link control
mode.

Non-SNA
Remote
Work Stations

Binary Started for
SSC Synchronous toeal job submission

Non-CPU Communication

Lines

Remote JES writers
use'

asc
CPU

Standalone
Remote
use, Work Station

Program

Started for
remote users

RTAM

SNA JES writers

Remote

Work Station$

Remote
use,

11SI

(locally and

Remote remolely subml Hed

user jobs)

'--____ ~~~:7i~~ous '-------'

Control Lines

Permanent
SYS1.SYS1.UADS Logon
BRODCAST

Oala Sel ..,

Figure 90.20.3. RES interface with JES

RTAM directly controls ESC non-CPU workstations and interfaces with
BSC CPU workstations using a MULTI-LEAVING technique that is not
supported by OS RJE. MULTI-LEAVING is a more efficient way to transmit
data between two computers using binary synchronous communication
facilities because it reduces the number of line turnarounds required
and enables more data to be transmitted before line turnaround occurs.
MULTI-LEAVING permits data from more than one unit record device in a
workstation configuration to be sent during a single transmiSSion, and
allows transmission acknowledgment to be sent together with data in the
same record.

OS/Virtual Storage 1 Features Supplement 73

For example, a workstation can transmit a record containing text from
two or more input stream unit record devices to the central system. The
central system can respond by sending a record that acknowledges receipt
of the text. and that includes text for one or more output stream unit
record devices in the workstation configuration. This capability
.eliminates an individual transmission for each text record and each
acknowledgment,.

MULTI-LEAVING support must be included in RTAM when ESC CPU
workstations are part of the RES terminal configuration. Multitasking
support is a standard feature of the standalone programs provided for
ESC CPU workstations.

RTAM· interfaces with GTF to provide a trace facility that can be used
as a debugging aid,. When this trace facility is active, RTAM calls GTF
at channel-end time for each line to produce a trace record of .the line
DCT (device control table) and another trace record consisting of the
first 256 bytes of data in the buffer associated with the I/O operation.
RTAM tracing is activated by starting GTF, if it is not already
operational, and specifying the TRACE=USR and MODE=EXT options.

RES Data Sets and Logon Procedures

The user attributes data set, SYS1.UADS, is a partitioned data set
that is required during sys~em operation when RES is used. It is used
to control remote user access to the central system via RES. SYS1.~DS
contains one or more members for each user that is authorized to access
the central system. Members contain control information and identifying
attributes for each RES user, such as user identification, one or more
passwo~ds (optionaily), the name of one or more logon procedures to be
used during a logon (optionally), and a job priority limit for the jobs
submitted by this remote user.

The logon procedures for RES users can contain one or more commands
that are automatically issued during the logon procedure. RES commands
and VS1 commands that a remote user can issue from a remote workstation
(see Table 90.20.1) can be placed in a logon procedure. The logon
procedures that are to be used by remote users and the centr~ operator
must be user-defined and placed in SYS1.PROCLIB. An installcition can
establish logon procedures' that are tq be used only h1 autpOrt~ed remote
users. ., r.

The scheduling priority of jobs submitted by remote user,s p~ be
limited by using the PRIORITY parameter in the members of SYS1,. UADS.
When a job from a remote user is received, the job priority' llnlit in the
SYS1.~S member for the user is compared to the jab priority specified
in the JOB statement for the job,. If the joh priority in SYS1. UADS is
less than that specified in the JOB statement, it is assigned to the job
instead of the priority in the JOB statement. However, the priority
assigned to the SYSOUT data sets from a remote job is always that
specified on the JOB statement.

During system initialization, a queue identification (QID) table is
buil t in pageable SQA in virtual storage. when a cold start is
performed, all the user attribute data from the SYS1.UADS data set is
placed in the QID table and a checkpOint of the table is written in
SYS1.SYSPOOL. When a warm start is performed, the QID table is read in
from SYS1.SYSPOCL. .

Whenever a remote user attempts to log on, the QID table is
inspected. If there is no entry for the user or an invalid request is
made (user specifies a logon procedure he is not authorized to use, for
example), the user is not permitted to log on. The SYS1.UADS data set
must be created and maintained using the IBM-supplied ACCOUNT Facility

OS/Virtual Storage 1 Fea ture s Supplement

..

..

.~

74

..

..~

. ~.

program, which provides tbe capability of adding or deleting users,
changing fields in existing user members, listing user members, and
listing all the user identifications in the SYS1.UADS data set.

The SYS1.BRODCAST data set is also required when RES is used during
system operation. It is created and maintained using the ACCOUNT
Facility program. It is used to hold messages that have been issued by
remote users and t;he central operator using the SEND command but that
have not yet been sent.

SYS1.BRODCAST is divided into a notices section and a mail section.
The notices section contains messages that are available to all remote
users and the central operator. Themail section contains messages that
were issued only for specific users. Themail section can be a~cessed
by the central operator as well.

~ Commands

Five additional commands (LOGON, LOGOFF, ROUTE, SEND, and LISTBC) are
included in the set of VSl operator commands, and parameters (DEST and
HOLD) have been added to some existing commands to control RES
functions. Table 90.20.• 1 lists VSl commands that can be issued by a
remote workstation user in addition to the new commands for RES.
Commands not shown are rejected as invalid with a diagnostic message if
issued from a remote workstation. A remote user can issue commands to
control only his jobs ancd output data. The central operator can use all
VSl operator commands and .has access to all remotely submitted jobs.

Table 90.• 20.1. 	 OS/vSl operator commands that can be issued from an RES
remote workstation

CANCEL LOG RELEASE START
DISPLAY MODIFY REPLY STARTF
HOm MONITOR RESET STOP,STOPMN

SEl'PRT WRITER

A user at a remote workstation issues a LOGON command to establish
connection with the central system, that is, begin a workstation
session. The parameters of the LOGON command for SNA and non-SNA
terminals are slightly different. During the logon procedure, user
identification, terminal identification, and password (if any) are
verified using information contained in the QID table. Any JES readers
and writers identified in the logon procedure specified in the LOGON
command or SYS1. UADS data set are started. If they were requested in
the LOGON command, mail and notices contained in SYS1.BRODCAST are
retrieved and sent to the user during logon processing.

If the LOGON command is valid, the user can begin transmitting jobs
and messages.. If the LOGON command is invalid, a message is sent to the
central operator, since two-way communication between the workstation
and RES ~ not possible until a logon is successfully performed. The
central operator can be contacted by a remote user if the reason for the
invalid LOGON is not apparent.

JES readers and writers for any remote user can also be started
(using START or STARTF) and stopped by the central operator and a remote
user can start and stop readers and writers for his own workstation
only. Note that reader and writer procedures for remote workstations
must be defined by the user. None are IBM-supplied•

The LOGOFF command is issued by a remote user to indicate
communication with the central system is finished, that is, to indicate

OS/Virtual storage 1 Features Supplement 75

the workstation session is finished. This command can be entered via an
input stream between two jobs. The central operator can also issue the
LOGOFF command to terminate operations at a remote workstation. Logoff
processing includes the stopping of all readers and writers that were
started for the remote user. For an SNA worksta tion r the LOGOFF command
can be submitted to VTAM instead of to RTAM, if desired. RTAM is then
notified and takes the required action.

The central operator can issue the LOGON CENTRAL command with or
without a password specified. The advantage of this command is that it
can also specify a procedure that can contain all the commands required
to start the readers and writers required,. This command need not be
specified in order for the central operator to access RTAM,.

The central operator, if logged on, can issue a LOGOFF CENTRAL
command to stop all the tasks he started. Once the central operator
logs off, no other users can log, on or start readers or writers,.

If the LOGOFF command does not specify the SLOW parameter r readers
and writers for the remote workstation are stopped when they complete
processing of the current data set. When SLOW is specified, each reader
and writer is stopped when no more work is available for it to process.

When an intervention-required (line down) condition occurs on an
active binary synchronous line, the action taken depends on the AUTOLOG
option specified for the line at RTAM generation. If AUTOLOG=YES was
specified, the line is restarted and the remote user of the line is
automatically logged off, which ends the workstation session. This
option can be specified to force another logon for security reasons. If
AUTOLQG=NO was specified (the default), the remote user is not
automatically logged off. The workstation session for an SNA terminal
ends automatically if the SNA terminal becomes disconnected from VTAM.

The ROUTE command is provided to allow a remote user to control the
destination of the SYSOUT data sets associated with his job. The ROUTE
command is effective for a job only if it is issued after the job has
been submitted and before the SYSOUT data sets to which it refers have
been selected for processing,. All keywords for the ROUTE command have a
single-character abbreviation.

A user can issue the ROUTE command to cause all his SYSOUT data sets,
all the SYSOUT data sets from only one of his jobs, or the SYSOUT data
sets with the specified SYSOUT classes from one or all of his jobs to be
routed to another remote user or the central operator. The routed
SYSOUT data sets are placed in the SYSOUT queue (s) of the specified user
based on the SYSOUT class they are currently assigned (as specified in
SYSOUT DD statements) unless the CLASS parameter is included in the
ROU'IE command to change the SYSOUT class. By specifying HOLD=YES in the
ROUTE command, a user can cause his SYSOUT data sets to be placed in
held status in the output queue to which they are routed.

The ROUTE command can also be issued to override the destination
indicated in the DEST parameter on SYSOUT DD statements for submitted
jobs or to release the SYSOUT data sets for a job for which the HOLD
command was specified.

A remote user can route his output only to another remote RES user
whose routing mask is equal to or greater than his own. Routing mask is
a value in the range of 0 to 255 that is specified in each user
identification member in the SYS1.UADS data set.. When a remote user has
a routing mask between 0 and 254, his output can be routed to another
user by himself and the central operator. When a remote user has a
routing mask of 255, only the remote user himself can route his own
output.

~\

76 OS/Virtual Storage 1 Features Supplement

Messages can be transmitted among remote users and between the
operator and remote users via the SEND command. A given message can be
sent to one or more (up to 20 maximum) specific remote users or to all
of them. The central operator can request that a message be saved in
the SYS1.BRODCAST data set instead of being transmitted immediately.
The SEND command can also be used to delete previously saved messages
from SYS1.BRODCAST. The LISTBC command enables a remote user to list
all notices and the mail that belongs only to him. The central operator
can list mail belonging to any user as well as all notices.

The DEST and HOLD parameters can be placed on the DD statements for
SYSOUT data sets that are created by remotely submitted jobs.. A SYSOUT
data set for a remote job is returned to the remote user that submitted
the job unless the DEST parameter is placed on the SYSOUT DD statement
for the output data set.. ')he DEST parameter indicates the location to
which the SYSOUT data set is to be sent •

.. The HOLD=YES parameter can be specified on a SYSOUT DD statement to
indicate the SYSOUT data set is to be placed in held status in the
SYSOUT queue for the remote user. A held SYSOUT data set is not
processed until a ROUTE or RELEASE command is issued. The central
operator issues the ROUTE or RELEASE command unl-ess the DEST parameter
was also specified on the SYSOUT DD statement. In this case, the ROUTE
or RELEASE command must be issued from the location indicated in the
DEST parameter.

The central operator or the user at the location specified in a DEST
parameter should be notified when HOLD=YES is specified for a SYSOUT
data set since this is not automatically done ~ the system. This
notification can be accomplished via a SEND command.

The LISTBC, LOGON CENl'RAL, LOGOFF CENTRAL, ROUTE, and SEND commands
can be issued by the central operator of a VSl system with RT.ruM support
included even when RTAM has not been started.•

RES Initialization and Termination

When RTAM is included in a VSl system, during system initialization
an R~M system task partition is allocated adjacent to the JES routines
area in the pageable supervisor area. The RTAM module is loaded into
the RTAM partition and initialized. The RTAM parameters specified
during generation of the RTAM module are used unless they are overridden
by parameters in a specified RESxxxxx or the RESPARMS member in
SYS1. PARMLIB.

In order to initiate RES processing, the central operator must enter
a S~RT command for the RTAM procedure, which is a user-defined
procedure. This causes RTAM to be activated and the lines indicated in
the RTAM procedure are enabled. If required to handle SNA workstations,
the interface with VTAM is also established. The operator is notified
if VTAM is not yet active. The central operator can issue the MODIFY
command any time thereafter to enable additional lines, disable enabled
lines, reenable lines, or activate/deactivate the VTAM interface.

During the RTAM initialization procedure, workstations that are
identified in the permanent logon data set are automatically logged on.
The permanent logon data set is a user-created sequential or partitioned
data set that contains a LOGON command for each workstation that is to
be permanently logged on. This optional permanent logon facility
enables BSC non-CPU terminals (2770, 2780, and 3780) and SNA ~erminals
that are connected to dial or leased lines to be aut~atically logged on
whenever RTAM is started,. A permanently logged-on workstation remains
logged on until the user issues a LOGOFF command or the workstation is

OS/Virtual storage 1 Features supplement 77

logged off as a result of a disastrous error, STOP command, or RESTART
command.

Once RTAM is started, any terminals attached to the enabled lines
that are not part of the permanent logon group must be connected to th¢
system via execution of the logon procedure. While remote RES users
cannot log on until RTAM is started, the central operator can log on
from his console before RTAM is started by using the CENTRAL user
identification, which must be user-defined and placed in the SYS1.UADS
data set,. Once operations at a workstation that is connected to a
switched line are finished, the user can log off and, thereby, release
the line and make it available for use by another remote workstation
connected to it,.

..The MODIFY command can also be used to alter certain characteristics
of a remote terminal that were established during RTAM generation.
MODIFY can be issued to determine whether or not the following are used:
compression, transparency, compaction, and horizontal format features.
The changes specified take affect at the beginning of processing of the
next data set.

The compression feature is supported for 2770, 3780, BSC CPU, and SNA
workstations (not 2780 or 3741 workstations). This feature cannot be
turn"ed off for BSC CPU workstations. It also cannot be turned on for
any SNA workstations if support of the feature is excluded during RTAM
generation (SNACOMP=NO).

For 2770 and 3780 workstations, the compression/expansion and
transparency features cannot be used simultaneously for the same job.
Compression of data sent from a 2770 or 3780 is controlled b¥ the remote
operator using the compression/expansion switch on the workstation.
Compression of data sent to a 2770 or 3780 is controlled b¥ RTAM
parameters. For BSC CPU workstations, compression and transparency can
be active at the same time,. Compression always OCQlrs on data sent to,
and received from, a BSC CPU workstation.

Compression is an optional feature for SNA workstations. If
selected, compression of both successive blanks and successive duplicate
characters occurs for data sent to, and received from, the SNA
workstation. CompreSSion and transparency can be used at the same time
for SNA workstations.

Compaction is also optional for SNA workstations. It requires use of
the compression feature as well. Compaction is a technique of
compressing nonduplicate characters that uses a compaction table. IBM
supplied or user-defined compaction tables can be used.

Horizontal format control for printer data is supported for 2770,
2780, and 3780 workstations only. This feature provides limited blanks
compression (a tab character replaces a trailing set of blanks in each ",

group of ten data characters in each print line). Compression is more
efficient than horizontal format control but the latter can be used at
the same time as the transparency feature.

Table 90.20.2 summarizes the major characteristics of RES
workstations.

OS/Virtual storage 1 Features Supplement 78

Table 90.20,.2. Characteristics of RES workstations

Characteristic

Line protocol

Runs under the
immediate control
of own work
station programs

May have console
for entering of
operator commands
and receipt of
messages

May be
permanently
logged on

Multiple
readers, printers,
and punches
attached

Interrupt
printing/punching
of data to
enter reader data

Data transmission
code

Transparency
feature

Compression

Compaction

Horizontal format
control

BSC CPU
Work stations

Binary Synchronous
(MULTI-LEAVING
technique is
used for data
transmission)

Yes. A
separate generation
of workstation
program is
required,.

Yes

No

Yes

No

EBCDIC only

Yes, for
transmitting and
receiving

Yes (cannot be
turned off)

No

No

BSC Non-CPU
Work Stations

Binary Synchronous

No. Controlled by
hardware design,
RTAM generation
parameters, and
remote operator.

No. Commands
entered via a
card reader and
messages printed
in between
printing of
data sets.

Yes

Maximum one
reader and
one punch.
Maximum
one printer
except for 2110
(up to three)
and 3180 (up to two)

Printing can
be interrupted

EBDIC or
ASCII

Yes, for
transmitting and
receiving

Optional for
2110 and 3180 only

No

Optional for
2110, 2780, and
3780 workstations
only

SNA
Work Stations

System network
architecture/
synchronous data
1 ink control

Mayor may
not

Yes

Yes

Multiple readers
and/or printers
may be attached.

printing and
punching can be
interrupted.
Reading can
be interrupted
to send data from
the console or
another reader.

EEDIC or ASCII

Yes, for transmitting
and (required
f or) receiving

Optional

Optional

No

OS/Virtual storage 1 Features Supplement 79

Using the MODIFY command, a remote work station can be placed in
attended or unattended mode. When a workstation is operating in
unattended mode, WTOR messages for the work station are sent to the .
central operator, instead of the workstation, so that the central
operator can issue a reply. WTO messages for the remote station
continue to be sent to the station. In addition, for unattended mode
RTAM does not attempt to recover from any error that requires operator
intervention. Thus, if a binary synchronous line drops, the workstation
is logged off and the line is restarted (without regard for the AUTOLOG
specification for the line). When operator intervention is required for
an SNA workstation, the affected output writer is abnormally terminated.

The central operator issues a STOP command to initiate the
termination of RES operations. This command prevents the logon of any
additional users, prevents the starting of any additional lines, stops
each started line after the logged-on remote user logs off and
processing of any input or output currently being handled by the user's
readers and writers is completed, stops lines that are to be restarted
because of an I/O error, and stops lines that were stopped via a MODIFY
command. The actual termination of all RES processing occurs as soon as
all lines have been stopped,. To stop all lines and users, a specific
line or user, all binary synchronous lines, or all SNA users .
immediately, the MODIFY command with the STOP operand specified should
be issued. .

Virtual Storage Requirements

The size of the R~ partition in the pageable supervisor area varies
depending on such factors as whether both ESC CPU and BSC non-CPU
workstations are supported, whether SNA workstations are supported, the
numper pf lines and remote unit record devices in the RES configuration,
the number and size of the buffers in the RES buffer pool for all RES
workstations, the number of WTQ/WTOR buffers specified for each work
station defined, and the amount of contingency space reserved for a
WTOL/wTOR buffer pool for all workstations.

The RTAM task (executable code) requires approximately 40K bytes if
only ESC CPU (MULTI-LEAVING) or only BSC non-CPU (non-MULTI-LEAVING)
workstation support is present,. The maximum RTAM module size is
apprOximately 64K for support of ESC CPU, BSC non-CPU, and SNA
workstations.. When RTAM is started, 6K to 12K bytes of the RTAM task
are long-term fixed until RTAM is stopped, as are the 120 bytes of
virtual storage that are required for each line defined in the RES
configuration. Certain other tables and control blocks are also long
term fixed for the entire time RTAM is in operation. The minimum RTAM
partition size is approximately 60K bytes.

RES Advantages ~ M!.

AS a replacement for RJE, RES supports facilities equivalent to those
of RJE and offers the follOWing advantages:

• 	 RES is fully integrated within VSl and uses the normal system job
scheduling facilities (such as JES readers and writers, scheduling
routines, and the job list manager).. Only the RTAM module is
optional.

• 	 RES is designed to operate in a paging environment and can provide
better performance than RJE partly because of MULTI-LEAVING support.

c.

.~.

,_.....,.

OS/Virtual Storage 1 Features Supplement 80

• 	 RES requires less real storage for its operation.

• 	 RES SYSOUT classes are independent of the central SYSOUT classes and
more flexible SYOOUT routing is provided by RES (a unique set of
output queues is associated with each remote RES user that
represents the SYSOUT data sets only for that remote user).

• 	 The RES remote user command language is a compatible subset of the
Os/VS1 central operator command language (the job entry control
language of RJE is not). JObs can be submitted locally or remotely
using the same job control statements and commands.

• 	 System/3, the 2922 programmable Terminal, the 3770 Data
Communication system, 3780 Data Communications Terminal, and 3790
Data Communication System are supported as remote work stations.

CONVERSATIONAL REMmE JOB ENl'RY

The facilities offered by CRJE are the.same in ~~T and VS1. CRJE can
operate in paged mode in a minimum partition of 128K. However, a
minimum of 60K of real storage is fixed by CRJE. Therefore, a system
wi th more than 160K of real storage is required to operate CRJE. The
3330-series Model 11 and 3340 disk storage drives are not supported by
CRJE.

OS/Virtual storage 1 Features Supplement 81

90: 25 TASK MANAGEMENl'

VSl task management routines are modified as required to operate in a
paging environment, interface with other modified control program
rou~ines, and support EC instead of BC mode of system operation
(different PSW format, interruption codes in permanently assigned
locations above 121,for example). Minor functional additions have been
made as well to certain task management routines, as follows.

VSl provides the same checkpoint restart facilities as MFT and is
extended to support facilities of VSl that are not present in MFT, such
as support of VSAM and the 3850 Mass Storage System. Note that
checkpoint records are always 2K in size in'VS1, and that MSGLEVEL=l is
no longer a required parameter on the JOB statement.·

In addition, the VSl checkpoint facility incllXies a system routine to
take a checkpoint automatically when end of volume occurs for a
multivolume QSAM or BSAM data set or concatenated QSAM or BSAM data
sets. This capability is requested for a data set by specifying the
CHKPT=EOV parameter on the DD statement for the data set. A SYSCKEOV DD
statement must also be included in the job step t.o define the checkpoint
data set in which end-of-volume checkpoint records are to be written.

This checkpoint capability eliminates the necessity of h~ing user
written routines to take end-of-volume checkpoints,. The volume. serial
numbers of the tape data set.s that were mounted when each checkpoint was
taken can be listed using the CBKLIST function of the VSAM Access Method
Services program (see' "Virtual Storage ACCess Method" in Section 90:.30).

An abnormal termination ~ump of virtual storage can be obtained for
system tasks that can be started in a partition (GTF, for example, and
JES readers and writersin the JES pseudo partition as already
discussed) by including a,; SYSUDUMP or. SYSABEND DD statement in the
procedure for the system.task. ~ svc dump of all virtual storage is
automatically wri~ten to the SYS1. DUMP dev.ice when a system task that
does not execute in a partition ilbnormally terminates. The indicative
dump in VSl is expanded to include system and user completion oodes, the
interruption address, the contents of· the floating-point registers, and
all request blocks (REs) from the active RB chain. qS -'.. ;, ~

A user-written dump formatting routine that receives ~ontJfol during
SNAP and ABDUMP processing can be inciuded in a VSl (but riot· MFT·)
system. This routine, Which executes in supervisor state with protect
key 0 in effect, must be located in SYS1.LINKLIB and its· nam~ (IEAAAD03)
added to the resident access method list,. The formatting routine can
determine whether the dump is one .that the routine is des igned to handle
and, if so, format certain data (such as control block information or
user work areas)~ The output produced by the user-written formatting
routine is in addition to the dump output from the system.

Other supervisor routines have been altered to provide major new
functions, such as dynamic task dispatching, fetch protection, and
improvements in system integrity and timing facility support. The
following identifies the major functional differences between VSl and
MFT task management routines.

INTERRUPTION SUPERVISOR

Interruption handling is essentially the same in VSl and MFT; .
however, additional interruptions are recognized (specifically, segment
and page transla~ion exception, translation specification exception~
monitor call, program event recording, and SET SYSTEM MASK instruction
interruptions), the SVC transient area is 2K instead of lK, and the SVC
table and its mapping table have been restructured to simplify SVC

OS/Virtual storage 1 Features,supplement

' '

...

..

82

~
\

..

interruption handling processing that is required to locate an SVC
routine.

The SPIE facility has been expanded to allow the user program to gain
control after a segment translation exception (invalid bit is on in the
addressed segment table entry), which is treated as an addressing
exception. In addition, authorized routines can gain control after a
page fault (page translation exception caused by invalid bit on in the
page table entry for the referenced virtual storage page), which
normally is handled by page management. A routine is authorized to
receive control after a page fault if it operates in supervisor mode,
has protect key 0 aSSigned, or is authorized via the authorized program
facility•

An authorized routine gains control after both disabled and enabled
page faults and the system lock (described under "Task Supervisor") is
set off. Therefore, this capability of the SPIE facility should be used
carefully.

The data presented to a user-written SPIE routine has the same fOrmat
in VSl as in MFT so that SPIE routines that operate in BC mode will
operate in EC mode without modification.

MONITOR CALL instructions are contained in various portions of the
control program in order to alert the control program to the occurrence
of certain events. For example, lOS uses the hardware monitoring
facility to collect statistics about paging operations that are
presented to SMF and to monitor the I/O events requested via the
generalized trace facility (GTF). When appropriate, GTF is given
control after a monitor call interruption occurs. When program event
recording is operative, the dynamic support system (DSS) is entered
after a PER interruption. (GTF and DSS are discussed in Section 90:40.)

The interruption supervisor also recognizes an SSM (SET SYSTEM MASK
instruction) special operation exception that occurs when an SSM
instruction is executed. Control is given to a routine that analyzes
the masking requests indicated, which are assumed to be in BC mode
format. This routine then puts the system in the requested state. (The
new supervisor lock, described below, is tested prior to alteration of
the system mask, if necessary.)

A new supervisor macro, MODESET, is implemented that is designed to
be used in VSl in place of the SSM instruction. MODESET, which is
restricted via the authorized program facility, can be used to request a
system mask setting, storage protect key alteration, and the setting of
problem program or supervisor state in the PSW. The MODESET macro can
be issued only by a task that has protect key 0, operates in supervisor
state, or is authorized via the authorized program facility.

TASK SUPERVISOR

VSl supports the same task management macros as MFT. In VS1, the
ATTACH macro also has a TASKLIB operand that can be used to specify a
task library. A task library is available only to the task for which it
was specified in the ATTACH macro and replaces the job or step library
that would otherwise be available to the task. A program that is to use.
a task library must specify a DCB and issue an OPEN macro for the task
library.

Dynamic Dispatching

A Significant new optional feature of the VSl task supervisor is
dynamic dispatching, which is also sometimes referred to as heuristic

OS/Virtual Storage 1 Features Supplement 83

dispatchin9~ The dynamic dispatching and. time-slicing options are
mutually exclusive' within the same VS1 control program.

The dynamic dispatcher dispatches a user-specified group of tasks on
the basis of their operational characteristics relative to one another,
either more CPU-oriented or more I/O-oriented. The CPO and I/O
characteristics of this group of tasks are constantly monitored during
their execution, and changes are dynamically taken into account in the
dispatching process. paging I/O is not considered to be part of the I/O
requirement of a task.

The dynamic dispatcher is designed to improve system performance in
larger JIIIlltiprogranuning environments (Model 155 II and up) by more
readily adapting task dispatching to the changing CPU and I/O usage it

requirements of a group of programs,.

When dynamic dispatching is included in a VS1 system, at system
generation one or more partitions are designated as belonging to the
dynamic ,dispatching group. ~e partitions specified can be changed
during system initialization or the dynamic dispatching capability can
be canceled for the IPL. When two or more partitions are specified,
they must be contiguous.

All tasks that execute in the dynamic dispatching partitions
(including those created via a user-issued ATTACH macro) are dispatched
according to dynamic dispatching rules. Tasks that exeOlte in all other
partitions are dispatched according to normal partition priority rules.
A problem program task cannot issue a CHAP macro to cause itself to be
moved into or out of a dynamic dispatching partition. Such CHAP macros
are treated as NOPs,. This restriction does not apply to system tasks.

For dispatching purposes, the tasks in the dynamiC dispatching
partitions are treated as a logical subset of all the existing (system
and user) tasks in the system. As shown in Figure 90.25.1, tasks are
logically connected in high-to-IOW dispatching priority sequence, with
dynamic dispatching tasks logically divided into an I/O-oriented
subgroup and a CPU-oriented subgroup. The I/O subgroup is positioned
within the dynamic dispatching group to have higher priority than the
CPU subgroup. When the dispatcher is ready to give CPU control to a
task, the task queue shown is searched from left to right~.

Tasks in the highest Tasks in the dynamic Tasks in the lowest
priority partitions dispatching partitions priority partitions

r'---------~~--------~

Tee

r-----------------'~~--------------~~

~______~~~-------J --_ __.........,.--..J

;---~~---

I/O subgroup CPU subgroup

Figure 90.25.1. Task queue containing a dynamic dispatching group of task:

The operating characteristic of each task in the dynamic dispatching
group is determined by constantly monitoring its use of CPU time. Each
time a task in the dynamic dispatching group is dispatched, a time
interval is established for the task. The same interval is used for r----..
each task during a period of time called the statistics interval (from 1
to 99,999 ms). The initial statistics interval value is user-specified

OS/Virtual Storage 1 Features Supplenent 84

at system generation and can be overridden during system initialization
via a SETxxxxx member or by the operator. If the entire interval is
used (task processing continues until the interval elapses), the task is
assumed to be more CPU-oriented and is associated with the CPU subgroup.

Tasks are positioned in the CPU subgroup in such a way that they are
dispa'tched in a cyclic manner to ensure that available CPU time is
distributed evenly among them and that no task is kept at the end of the
CPU-oriented subgroup indefinitely.

If a task does not use its entire time interval, it is assumed to be
more I/O-oriented and is associated with the I/O subgroup. Note that
I/O-oriented tasks are not positioned within their subgroup according to
the amount of the time interval they used, as is done in the automatic
priority group facility of VS2,. Initially, all tasks in the dynamic
dispatching partitions are placed in the I/O-oriented subgroup. When a
subtask enters the dynamic dispatching group of tasks as a result of the
issuing of an ATTACH macro, it is placed at the beginning of the I/O
subgroup. The task-switching rules for dynamic dispatching tasks are
summarized in Table 90,.25.1.

The dynamic dispatcher is designed to be self-adjusting to ensure
that it is accurately differentiating between CPU- and I/O-oriented
tasks. At the end of each statistics interval of time, the
effectiveness of the time 'interval currently being used is determined.
If the time interval does not adequately distinguish between 1/0
oriented and CPU-oriented tasks, the time interval value is increased or
decreased (as required) by the user-specified incremental value (from 1
to 99 ms). A lower limit (from 1 to 999 ms) for the adjusted time
interval is also user-specified, as is a ratio value that is used to
determine whether the current time interval is effective. These values
~re specified at system generation and can be overridden during system
initialization.

The dynamic task dispatching facility is most useful in larger VS1
environments in which the operating characteristics of many jobs are
variable and/or unknown and these jobs do not have a high completion
priority,. The dynamic dispatcher attempts tp balance CPU usage among
such jobs if 'they are executed in dynamic dispatching partitions.

Jobs that require a certain response time (such as teleprocessing
jobs) or that require fast turnaround should be executed in a partition
with a higher priority than that of any partition in the dynamic
dispatching group. Jobs that do not have a high completion priority or
that are known to be heavily CPU-oriented can be executed in a partition
with a priority lower than that of any partition in the dynamic
dispatching group. (See Appendix 3 in 0s/VS1 Planning and Use Guide,
GC2_-5090, for additional guidelines regarding the use of dynamiC
dispatching..)

When dynamic dispatching support is included in a VS1 control program
for a MOdel 135 or 1_5, extended timer support should also be included
if the system to be used has the CPU timer and clock comparator feature
installed. Less control program time is needed to support dynamiC
dispatching when the extended timer facility is present.

OS/virtual Storage 1 Features supplement 85

Table 90.• 25.1. Task-switching rules for dynamically dispatched tasks

Reas on for Loss
of CPU Control

preemption by a
task with a
higher priority
than that of any
dynamic dispatch
ing task

Time interval
ends

Voluntary
surrender

Voluntary
surrender
without expira
tion of time
interval

CUrrent Status New status
of Task of Task

I/O-oriented I/O-oriented

cPu-oriented CPU-oriented

I/o-oriented Cpu-oriented

CPU-oriented CPU-oriented

I/O-oriented I/O-oriented

CPU-oriented I/O-oriented

Actions Taken

• 	 preempting task
is dispatched.•
Remaining portion
of the interval
is saved for' use
next time this
dynamic dispatch
ing task is
dispatched.

-Dynamic dispatch
ing task is moved
to the end of the
CPU-oriented
subgroup..

- preempting task
is dispatched.

- Dynamic dispatch
ing task is moved
to the beginning
of the CPU-oriented
subgroup.

• 	 I/O-oriented sub
group is searched
for a ready task
beginning with the
task queued after
the one just moved
to the CPu-oriented
subgroup.

- DynamiC dispatching
task is moved to
the end of the cpu
oriented subgroup..

• 	 CPU-oriented sub
group is searched
for a ready task
beginning ,with
the task queued
after the one just
moved.

• 	 I/O-oriented sub
group is searched
for a ready task
beginning with
the task queued
after the one that
just gave up CPU
control.

• 	 Dynamic dispatch
ing task is moved
to the end of the
I/O-oriented
subgroup.

OS/Virtual storage 1 Features,Supplement 86

Table 90.25.1 (continued)

Reason for Loss Current status New Status Actions Taken
of CPU Control of Task of Task 0 .

"
"

• CPU-oriented sub
group is searched
for a ready task
beginning with the
task queued after
the one just moved.

voluntary
surrender with'

CPu-oriented CPU-oriented • Dynamic dispatch
ing task is moved

expiration of
time interval

to the end of the
CPU-oriented

l subgroup.
• CPU-oriented sub

..

group is searched
for a ready task

\

, 	

beginning with the
task queued after

--' the one just moved.

Authorized Program Facility

The ,authorized program facility (APF), not available in MFT, is a
system integrity feature that is standard in VS1. It is designed to
prevent unauthorized programs from performing functions that are
designated as restricted.

Programs (load modules) that are to be, authorizeq via APF must reside
in SYS1. SVCLIB, SYSLIMAGELIB" SYS1.LINKLIB, or an authorized library.
A library in an installation is a~thorized by placing its name in the
IEAAPFOO member in SYS1,.PARMLIB. In addition, the name of each
authorized program must be placed in the list of authorized programs
that is maintained in a module (IEFSDPPT) of the job scheduler. (The
linkage editor control statement parameter that is supported in VS2 to
identify'! an authorized program at link-edit time is ignored in VS1.)

, ~~~ 	 ,

During"system ini tialization, an' APF table is built in the pageable ,
supervisor area (pageable SQA) that contains the names of APF authorized
programs,. When the first module of a job step is loaded, the scheduler
inspects 'the-' APF table. If the load module name is in the table, an
authorization bit in the JSCB for the job step 1S turned on. Whenever a
task attempts to use a restricted system function, the TESTAUTH routine
is invoked u~ the restricted function (via a branch or the new TES~UTH
macro) to check the authorization code of the requesting task. If the
task is not authorized, it is abnormally terminated.

When an authorized module issues an ATTACH, LINK, LOAD, or XCTL
,macro, the called module is also authorized if it resides in
SVS1,.SVCLIB, SYS1.LINKLIB, SYS1,.IMAGELIB, or an authorized library. If
the called module does not reside in one of these libraries,
authorization for the entire job step is revoked (authorization,bit is
turned off),.

The system functions that are restricted (either partially or fully)
are SPIE, MGCR, WTO/WTOR~ CHAP, DEQ, ENQ, DOM, MODESET, PGFIX, PGFREE,
PGLOAD, CVOL, EXCPVR, OLTEP, EVENTS. the service interface routine .
(SIR), and certain VTAM routines,. The system utilities and OLTEP are
authorized via APF to use the restricted facilities.

OS/Virtual storage 1 Features SUpplement ' 87

SUpervisor Locks

Two lock fields are implemented in the VSl task supervisor to ensure
prOper system operation when a disabled page fault occurs. In VS1, a
page fault can occur during the execution of a routine that has disabled
the CPU for interruptions (I/O and/or external). This is called a
disabled page fault. A routine normally operates with the CPU disabled
for interruptions because it is not reentrant and, therefore, should not
be reentered before its completion, or because it modifies or references
a serially reusable resource,.

The processing of a page fault, which requires I/O interruptions to
be enabled to allow the I/O interruption for a completed page-in
operation to be presented, can allow code that operates with the CPU
disabled to be reentered, with improper processing the result.

To prevent this situation, two lock fields are implemented in VS1, a
system lock and a supervisor lock, which can be set on (locked) or off
(unlocked). When a disabled page fault occurs in an executing task, the
appropriate lock, system or supervisor, as indicated by the task, is
turned on.

When the system lock is on, no task can be dispatched except one that
is related to paging operations,. The system is placed ina wait state
if the page supervisor is not ready to execute when the system lock is
on. When the supervisor lpck is on, ready tasks that are to operate
with the CPU enabled for interruptions can be dispatched but no oode
that operates with the CPU disabled can be executed except code that is
related to paging and task dispatching operations. If no such task is
ready to execute, the system is placed in the wait state. The lock used
remains on until the disabled page fault is processed.

Code is included within the control program to recognize an attempt .~
made by code to enter the disabled state by executing an SSM instruction
or a MODESET macro, and to place such a task in the wait state, when
necessary (the appropriate lock is on) .•

certain resident control program routines (105, page supervisor, task
dispatching routines, for example) are structured to aVOid disabled page
faults in VSl. User-written type 1 and type 2 SVCs thatc,ar,e to be added
to a VSl control program should also avoid disabled page' faults, if
possible. If disabled page faults are incurred by a user-.written type 1
or 2 SVC routine, the system lock will be used.

. ;. ";l ...

The lock approach implemented in VSl has the advantageqf allowing
routines to encounter disabled page faults, when necessary, in order to
avoid fixing a large number of pages, and when the supervisor lock is
used, the approach taken also avoids delaying total system operation
while a disabled page, fault condition is handled.

DEB Validity Checkinq

A more comprehensive method of ensuring that a task cannot access a
data set associated with another task is provided in VSl via
implementation of an expanded DEB (data extent block) validity-checking
scheme. A new DEBCHK macro and SVC routine are implemented. The DEECHK
macro is designed to be used by control program routines that modify a
DEB or that use or modify a control block that is located via accessing
a DEB. The DEBCHK macro can also be used by system programmers (most
options of the macro require the issuing task to be operating in '
supervisor state).

Routines that perform DEB validity checking in MFT, such as OPEN and
CLOSE, are modified in VSl to use the DEBCBK macro for DEB processing.

OS/Virtual Storage 1 Features supplement 88

In VS1, however, the I/O supervisor (IOS) is also modified to issue the
DEBCHK macro each time a DEB is passed to it via an EXCP macro to
determine whether the DEB is associated with the task that issued the
EXCP. (The DEB validity-checking routine eQSures that the specified DEB
is in the DEB table for the task.) A task is' abnormally terminated if
the DEB validity-checking routine finds the DEB to be invalid in any
way.

In VS1, DEB validity checking by OPEN, CLOSE, and IOS is a standard
facility. However, DEB validity cheCking by IOS (that is, extended DEB
validity checking) can be excluded during system generation. DEB
validity checkin9 is performed only by OPEN and CLOSE routines when
extended DEB validity checking is excluded.

~ Mul tipIe wait

The fast multiple wait facility, not available in MFT, is standard in
VS1. It is desi9Ded to improve the perfornance of the multiple wait
facility that is supported in both MFT and VSl. When a program waits
for the completion of One or more multiple events using the fast
multiple wait facility, it need not include processing to test the ECBs

, (event cO'ntrol blocks) for all the events being waited upon to determine
which one(s) completed. The posted ECBs are made available in a
predefined table by the multiple wait facility. The COMPARE AND SWAP
and COMPARE DOUBLE AND SWAP instructions are used by the fast multiple
wait facility.

The EVENTS macro is provided to support fast nultiple wait. It must
be issued once to perform each of the following functions: define an
EVENTS table for the events that are to be waited on concurrently,
initialize all the ECBs that are associated with the events represented
by the EVENTS table, and wait on the multiple events,. An EVENTS table
can be associated with up to 32,767 events.· Once the EVENTS macro is
issued to establish the multiple wait, as soon as any event represented
by the EVENTS table completes, its ECB is posted canplete and the
address of the ECB is placed in the EVENTS table. The EVENTS macro-that

'establishes the multiple wait can indicate that the program is to be
notified whenever one event completes or, after multiple (up to a maximum
of 504) fi~~e~completed.

,_, _1 _1

A task that operates with protect key 0 or in supervisor state, or
that is authorized via APF can specify the SHARED=YES parameter on an
EVENTS macro that defines an EVENTS task. This enables the EVENTS table
to be shared"'with all the other tasks in the partition.. The other tasks
can initialize ECBs in the shared EVENTS table and/or wait on ECBs in
the shared table,. Only one task can wait on a shared EVENTS table at a
time.

~ Macro

In MFT and VS1, an 'STAE (specify task asynchronous exit) macro can be
issued by a task to specify the user-written exit routine that is to be
entered when the task abnormally terminates. In MFT, a user-written
exit routine does not- receive control when certain condit ions caus e the
abnormal termination. In VS1, an option is provided that allows the
exit routine to be entered when One of these conditions occurs.

In VS1, a program that is authorized via APF can specify the TERM=YES
parameter in an STAE macro to indicate that the exit routine is to
receive control after an abnormal termination of the task is caused by
one of the following: CANCEL command issued by the operator (completion
codes 122 and 222), the DETACH macro is issued for a subtask that has
not completed (completion code 13E), the execution of a job, jOb step,

OS/Virtual storage 1 Features Supplement 89

or cataloged procedure took longer than the time limit specified in the
time parameter of the JOB or EXEC statement or the time'specified in the
reader procedure (completion code 322), or the output limit specified by ,~
the OUTLIM keyword on a SYSOUT DD statement for a job step was exceeded
(completion code 722). J

Programs not authorized via APF cannot specify the TERM=YES
parameter.· The TERM=NO parameter can be specified in an STAE macro that
is issued by any program to indicate that the exit routine is not to
receive control after an abnormal termination caused by one of the
preceding. This is the default. .

VIRTUAL STORAGE SUPERVISOR

The virtual storage supervisor is responsible for allocating and
deallocating virtual storage in response to user (GETMAIN ~d FREEMAIN)
and system requests for storage. Except for V=R requests, real storage
is not assigned to allocated virtual storage until the virtual storage
is referenced during processing. When a FREEMAIN is issued for the last
allocated area in a virtual storage page, the appropriate page table'
entry user bit is turned off,. If a page frame is allocated to ,that
virtual storage page, it is released and,made available for
reassignment. The virtual storage supervisor is functionally equivalent
to the main storage supervisor in MFT except for the following
modifications: .

• 	 SUpport of a dynamically expandable fixed SQA instead of a

nonexpandable fixed SQA as well as a pageable SQA to minimize system

terminations because of the lack of SQA space

• 	 Implementation of a protected queue area (PQA) in problem program

partitions to enhance system integrity

• 	 Allocation of virtual storage to minimize or eliminate page faults

during virtual storage supervisor execution,. For example, the

control blocks that describe the virtual storage available in a

problem program partition (except those for pageable PQA) are

contained in the fixed PQA.

• 	 Expansion of the GETMAIN macro to request allocation Cit virtual

storage on a page boundary and to specify a subpoolnumb'er.'· The

FREEMAIN macro in VSl can specify the number of the subpool to be

freed.

A validity check routine (IEAXYZ5A) is provided that can be used to
validate the following storage management areas and queues, which can be
destroyed by routines that operate with protect key zero: fixed SQA,
gotten queue elements (GQES), problem program protected free queue
elements (PFQES), pageable PQA PFQEs, and fixed PQA free queue elements
(FQAS). Allor only selected queues can be validated when IEAXYZ5A is
active am the queues in all or only selected partitions can be checked,.

The validity check routine is executed each time the SVC first level
interrupt handler is entered. If it finds an error in a queue, it sets
the current task nOndispatchable, terminates its own operations, and
loads a disabled wait state PSW that contains a code to identitY the
queue in which the error was fpund. A standalone dump should be taken
to preserve the error status.

The validity check routine can be activated by executing the IEAHONST
(alias HONESTY) service routine or by link-editing the-routine into the
fixed nucleus. IEAHONST executes in a problem program partition. After
activating the validity check routine to perform checking according to

OS/Virtual Storage 1 Features Supplement 90

the user-specified options. the IEAHONST routine terminates and the
partition becomes available for another job.

lEAHONST can be initiated using the IBM-supplied cataloged procedure
HONESTY,. The operator can issue a START command or enter job control
statements to invoke the HONESTY procedure. The options desired can be
specified in the START command or EXEC statement used to invoke the
procedure. or supplied via the operator console.

The lEAHONST program is also used to restart the validity check
routine with a different set of options specified and to stop its
operation. Since system performance is degraded when the validity check
routine is operating, it should be used selectively and when queue
errors are suspected,.

PROGRAM FETCH

Load modules in VS1 have a starting virtual storage address of zero
and are stored in partitioned data sets in the same format that is used
in MFT. Hence, when a load module is fetched in VS1, it must be
relocated to the beginning address of the virtual storage area to which
it is asSigned and virtual storage address constants must be modified,
just as in MFT.

The standard program fetch routine in VS1 is identical to its MFT
counterpart, and it uses the channel program translation and page-fixing
facilities of lOS. Load module record loading and virtual storage
address constant relocation are performed serially (the text record is
read in and then the address constants are modified), as in MFT.

The optional PCI fetch routine is modified for operation in a paging
environment. PCI fetch does not use the channel program translation
facility of lOS. It uses the EXCPVR macro (discussed in Section 90:30)
instead of EXCP.

In VS1, PCI fetch requests the allocation and fixing of up to six
page frames (12K) for the execution of each read operation (START I/O
instruction).. Text records are read into these page frames. During
execution of the CCW chain, PCI chaining is suppressed if it is
determined that execution of the next COW list with a text ccw will
cause the fixed real storage area associated with the I/O operation to
be exceeded,. The channel program then terminates and the page frames
used during the operation are unfixed. PCI fetch performs address
constant relocation during read operations (adds the relocation factor
to virtual storage address constants contained in text records), just as
in MFT.

When a program is loaded by program fetch, its pages are not
automatically written on external page storage as part of the program
loading procedure. Page-outs of one or more pages of a program that is
being loaded (or that is loaded) occur for the first time when the real
storage occupied by any pages of the program is required for allocation
to other pages, and the page supervisor considers these pages to be
eligible for replacement as per its page replacement algorithm. The
change and reference bits for each page frame that contains program text
are on as a result of the I/O operation that reads in the text. Hence,
before the page frames allocated to a program that is being loaded (or
to a recently loaded program) can be reassigned, a page-out will be
performed. The fact that the change bit is turned on by the fetch
operation is what causes the first and only page-out of pages that are
never modified (refreshable pages).

The PCl fetch routine should not be included in VSl control programs
that are generated for Model 135 or 145 systems unless these systems

OS/Virtual Storage 1 Features supplement 91

have 2314/2319 disk storage. The internal speed of Models 135 and 145
is not fast enough to take advantage of PCI fetch for 3330-series. 3340.
3350, or 2305 MOdel 2 disk storage ..

Note that in OS and os/VS there is a distinction between a
refreshable module and a reentrant module. A refreshable module is one
that is never modified, and such a module can be used by concurrently
executing tasks. A reentrant module is one that can be used by
concurrently executing tasks but that may modify itself during
execution. A module can modify itself and still be sharable if the
module prevents task switching during the time it is in a changed state
(disables the CPU for I/O and external interruptions, makes a change,
changes altered data to its original value, and reenables the CPU for
I/O and external interruptions).

Refreshable modules that are pageable will be paged out only once,
since their change bits will never be turned on during execution of the
module. Pages of reentrant pageable modules that are changed during
their execution will have their change bit turned on. These pages will
be paged out if they become inactive and their page frames are needed
and taken for reassignment to other pages.

TIMER SUPERVISOR

The standard timing facilities of VS1 include support of time of day
and date, job step timing and limiting, and interval timing (optional in
MFT). These facilities are functionally the same in VS1 and MFT.
However, in VS1 the time of day that is maintained in the time-of-day
clock is Greenwich Mean Time (GMT) with a base of January 1, 1900,
instead of local time with a base of January 1. 1960. as in MFT. The
time-of-day clock can be set only during system initialization. The
CLOCK parameter must contain the time of day as a GMT value and the new
GHT parameter must be specified in order for the time-of-day clock. to be
set.

LOcal time of day is also maintained. The difference between GMT and
local time can be specified at system generation via the TZ parameter.
The time differential can also be specified during system initialization
or via the SET command after system initialization, in which case the
system generation time differential specification, if any, is
overridden. This is accomplished by specifying the CLOCK parameter with
a local time value and Omitting the GMT parameter. If the TZ parameter
is not specified during system generation and a CLOCK parameter without
a GMT parameter is not specified during or after system initialization,
GNT and local time will be the same. (Note that in VS1, the SET command
is used only to change the time differential between local time and GMT
and, hence. must not contain a GMT parameter.)

The operator can take one of the follOWing actions regarding time of
day during system initialization:

• 	 Set or change the GMT value in the time-of-day clock. The operator

is also prompted to specify local time (and date) after the time-of

day clock is set,.

• 	 Supply the local time of day (and date) and accept the time-of- day

clock GMT value (this causes the time differential between GMT and

local time to be changed).

• 	 Accept the current time-of-day clock value and local time

differential specification without change.
 ~\

OS/Virtual Storage 1 Features,supplement 92

The local time of day aM date are supplied by the timer supervisor
whenever a TIME macro is issued,. If GMT time-of -day and date values are
required, they must be obtained using the STORE CLOCR instruction.

Extended timing facilities are provided in VSl for systems that have
the clock.comparator and CPU timer installed. Extended timer support is
automatically included in a VSl control program that is generated to
support a Model 135-3, 138, 145-3, 148, 155 II, 158, 165 II, or 168,
since the clock comparator and CPU timer are standard in these models.
Optionally, extended timer support can be included in a VSl control
program generated for a Model 135 Model 0 or 145 Model 0 or 2, for which
the clock comparator and CPU timer are optional.

When extended timer support is not. present in a ,VS1 control program,
the interval timer at location 80 is used by job step timing, interval
timing (STlMER and TTlMER macros), and if necessary, time-slicing or
dynamic dispatching support. When extended timer support is present,
the intezval timer is used only by time-slicing or dynamic dispatching
support. The CPU timer and clock comparator are used by job step timing
and interval timing support, which results in reduced execution time for
these timing routines because certain program logic that is required to
handle the interval timer is eliminated (conversion of doubleword time
of-day clock units to single-word interval timer units and use of the
ENQ/DEQ routines). In addition, use of the clock comparator and CPU
timer improves the repeatability of timing data gathered by SMF.

The STlMERE macro is also provided by extended timing support. This
macro offers timing functions that are not provided by the STIMER and
TTIMER macros.. The STIMERE macro can be used to set, test, cancel, test
and cancel, or replace a specified interval of real time. It cannot be
used to set an interval of task time or to establish an interval that is
to elapse at a specific time of day. Such intervals must be established
using the STIMER macro.. (The CPU timer is used to indicate the end of
an interval of task time and the clock comparator to indicate the end of
a time-of-day interval.)

The STlMERE macro provides the following capabilities that are not
provided by the STIMER and TTIMER macros:

• 	 An interval of real time longer than 24 hours (Up to approximately
100 hours) can be set.

• 	 A time interval can be specified in microsecond units as well as in
binary and decimal units,.

• 	 A task can have multiple intervals set at the same time instead of a
.maxinum 	of one. A user-specified identifica tion is assigned to each
interval that is set using the STIMERE macro.

• 	 The time remaining in an interval can be tested and canceled at the
same time (that is, by issuing one STlMERE macro).

• 	 A task can replace an established interval that was set by any of
its subtasks, as well as one that it set.

• 	 An ECB can be specified when an interval is established upon which
the issuing task will subsequently wait. This allows the task to
set an interval, perform some processing, and then wait for the
interval to expire. The task can also choose (1) to wait after
setting an interval or (2) indicate a routine that is to receive·
control after the interval expires and continue processing, as is
possible when the STIMER macro is issued.

OS/Virtual Storage 1 Features Supplement 93

90: 30 DATA MANAGEMENI'

Data management components are altered where necessary to operate in
a paging environment and to interface with JES and the modified VSl
input/output supervisor (lOS). The significant functional differences
between data management in VSl and MFT are changes in lOS to handle
channel program translation and page fixing, the availability of new
access methods called Virtual storage Access Method (VSAM) and Virtual
Telecommunications Access Method (VTAM), and support of a channel-to
channel adapter. VSl also supports many newSystem/370 I/O devices that
are not supported by MFT for Systeml310.

CLOSE, EOV, and DADSM routines for VSl and MFT are functionally
equivalent. The OPEN routines in VSl support all the functions provided
by MFT and two additional options: EXTEND and OUTINX. When one of
these options is specified for an existing SAM or ISAM data set, records
can be added to the end of the data set regardless of the disposition
specified in the DO statement for the data set, that is, OISP=MOO does
not have to be specified. In all other respects, the EXTEND option is
equivalent to OUTPUT and the OUTINX option is equivalent to OUTIN•.

VSl supports all the access methods provided in MFT except Q1' AM. The
same functions the access methods provide in MFT are also supported in
VS1. Programs that use these access methods can be executed without
modification in VSl either in paged or nonpaged mode.

For performance reasons, ~ertain access methods have been modified to
reduce the total amount of code they contain that operates with the CPU
disabled for interruptions or to prevent page faults in any such code.

The access methods do not support a parameter that can be used to
cause buffers to be aligned on page boundaries when buffers are
allocated by the access method. If an ASsembler Language programmer
wishes to have buffers aligned on a page boundary and/or ensure that
buffers are packaged such that they do not cross page boundaries,
buffers must be defined and aligned by the programmer.

All the VSl access methods except VTAM, TCAM, and VSAM interface with
lOS via the EXCP macro and, therefore, use the channel program
translation and page-fixing facilities of lOS. TCAM can operate in a
pageable partit'ion but requires certain of its message control program
elements (such·:as. control blocks and the buffer pool) to be long-term
fixed in real storage during the entire time TCAM is in operation. TCAM
interfaces with lOS via the new EXCPVR macro and performs its own
channel program :translation. TCAM does not require long-term fixing of
any portion of the message processing programs that it services. In
VS1, TCAM message queues can be written on 2314/2319, 3330-series (all
models), or 3340 (all models) direct access storage devices.

VTAM is the teleprocessing access method that is designed to operate
efficiently in a virtual storage environment and that supports advanced
communications faCilities, such as 3704/3105 Communications Controllers
operating in network control program (NCP) mode, systems network
architecture (SNA), and synchronous data link control (SDLC) line
discipline. VTAM uses the COMPARE AND SWAP and COMPARE DOUBLE AND SWAP
instructions, which are optional on Models 135 Model 0 and 145 Models a
and 2.

VTAM operates in a problem program partition. vrAM application
programs operate in one or more other problem program partitions. VTAM
must be started in a partition by the operator before it can be used.
The minimum size partition required by VTAM is approximately 900K.
During the entire time VTAM is operative in a partition, a certain
number of page frames it is allocated are fixed,. VTAM is terminated
using the HALT command. The CANCEL command cannot be used for' VTAM.

as/Virtual storage 1 Features supplement 94

to

VTAM ~an be used with BTAM and TCAM in VS1. VTAM .. BTAM .. and TeAM,
each with a separately defined network and each in a separate partition,
can operate concurrently in the same VSl system.. TCAM message control
programs and application programs and VTAM application programs can
execute in the same VSl partition and share the resources of a V~
network. BTAM and VTAM can be used concurrently in the same partition
to support separate networks if the requirements of both access methOds
are met,.

CHANNEL-TO-CHANNEL COMMUNICATION SUPPORT

support of a channel-to-channel adapter that connects two channels in
the same or different systems operating under VSl control is optional.
This support enables two job steps in the same or different systems to
communicate with each other via the interconnected channels, using read
and write CCws. The EXCP macro is used for this communication•.

When channel-to-channel communication support is to be used, a
channel-to-channel adapter must be defined during system generation via
the IODEVICE macro to cause a UCB (unit control block) to be generated
f or the adapter. Job steps that are to 'pse the adapter must specify
UNIT=CTC in a DD statement to cause allocation of the adapter. For
details regarding the use of this facility, see OS/VSl Planning and ~
Guide (GC24-S090).

INPUT/OUTPUT SUPERVISOR

In VS1, 105 provides the follOWing additional functions:

• 	 Translation of the virtual storage addresses contained in CCW lists.
The CCW translation routine performs this function. prior to the
issuing of the S~T I/O instruction (or enqueuing of the request)
for each I/O operation requested by a pageable routine via the EXCP
macro. A new CCW list with translated addresses is built in fixed
SQA. This new list is used for the actual I/O operation,. A CCW
list with up to 239 CCWs can be translated.

..: r 	C)~lLS !,':

• 'Construction of indirect data address lists UDAL".$:')~,*twhen
necessary,. If the buffer specified in a CCW cross:eSi.a, virtual
storage page boundary or if the buffer is larger .than 2K, the
appropriate IDAL's, consisting of indirect data address words
(IDAW's), are constructed in fixed SQA also. (Cheektng to determine
whether a buffer that crosses a virtual page boundary is assigned
contiguous page frames is not performed.)

• 	 Short-term fixing of the pages associated with an 1/0 operation to
prevent the occurrence of page faults during the operation. Each
time an I/O request (EXCP) is received. 105 ensures that pages it
will reference to service the I/O request are short-term fixed.
This includes pages that contain control blocks (IOB. DCB, DEB,
ECBIDECB. and AVT), required lOS appendage routines • and buffers,.

• 	 Translation of the real storage address in the channel status word
to a virtual storage address at the completion of the I/O operation.
In addition, pages that were short-term fixed before the I/O
operation are unfixed •

..
The same five I/O appendage interfaces that are provided in MFT are

supported in VS1, and one new appendage interface is defined. There
also are new returns from the SIO and the PCI appendages. The new page
fix appendage is actually part of the 510 appendage and it is entered:
using a new entry point into the 510 appendage. The page fix appendage

OSIVirtual storage 1 Features Supplement 	 9S

is provided to enable an EXCP user to request short-term fixing of up to
seven different virtual storage areas that will be referenced during an
EXCP request but that are not automatically fixed by rOSe

A user-written EXCP program with user-written I/O appendages that can
incur page faults can use the new appendage to short-term fix the areas
referenced by the I/O appendages. The new PGFX parameter for the EXCP
data control block (DCB) is provided to indicate that the page fix
appendage is to be used.•

In addition to the EXCP macro, VS1 lOS supports anew macro, EXCPVR,
that can be used to request an 1/0 operation. This macro can be issued
only by the page .supervisor or by subsystem routines, such as JES
components and TCAM. A routine is identified as a subsystem via a bit
in the TCB or the JSCB. A problem program can .use the EXCPVR macro if
it identifies itself as a subsystem, the appropriate bit in the
appendage vector table (AVT) for the data set is turned on by the user,
or the program is authorized via APF. When lOS receives an EXCPVR
macro, it does not perform channel program translation, page fixing, or
validity checking. It is assumed that, where necess ary, these functions
have been performed by the requester prior to issuing the EXCPVR macro.

When the EXCPVR macro is used instead of EXCP. the time required for
lOS to initiate an 1/0 operation is reduced,. The EXCPVR macro should be
used carefully, however, because the 1/0 supervisor does not perform any
of the storage protection functions it provides when the EXCP macro is
issued (checking to determine whether all the control blocks, buffers,
etc.• , associated with the I/O request belong to the requesting task).•
Hence, a task that uses EXCPVR could inadvertently store information
outside its partition and impair the integrity of the system.

VIRT~L STORAGE ACCESS METHOD

General Description

Virtual Storage Access Method (VSAM) is a new component of OS/VS data
management that is supported in VS1 and VS2.. VSAM provides a data set
organizati~p and access method for direct access devices that is
different from existing OS data set organizations and access methods for
direct access 'devices (SAM, ISAM, DAM, PAM). In a VSl environment, VSAM
supports the 3850 Mass storage system and 2314/2319, 3330-series (all
models), 3340/3344 (all models), 3350 (native or 3330-compatibility
mode), and 2305- (Models 1 and 2) direct access devices.' Rotational
position sensing is used when the feature is present.

VSAM uses System/370 instructions not available in System/360 and is
designed to operate efficiently in a paging environment. Hence, like
VS1 and VS2, VSAM can operate'only on Systeml370 models with dynamic
address translation hardware and cannot run on System/360 models. VSAM
uses the EXCPVR macro for 1/0 requests .•

VSAM is also supported by DOS/vS. The VSAM Assembler Language macros
used in OS/VS and DOS/VS are compatible, except for OPEN and CLOSE.. In
addition, a VSAM file contained on a DOS/VS volume can be processed by
OS (VS1 or VS2) programs. Similarly, a VSAM data set contained on an
OS/VS volume can be processed by DOS/VS programs.. This compatibility
enables VSAM data sets or files to be processed by both OSIVS and
DOS/VS, and aids in the transition from DOS/VS to OS/Vs.

VSAM supports both sequential and direct processing and is deSigned
to supersede ISAM, although the two access methods can coexist in the
same OS/VS1 operating system. VSAM supports functions equivalent to
those of ISAM and 'offers several additional features. VSAM also can

OSIVirtual storage 1 Features Supplement 96

provide better performance than ISAM, particularly when the number or
level of additions in the data set is high,.

In addition, the three data organizations supported by VSAM enable it
to be used in place of QSAM or BSAM for sequel)tial data sets and in
place of BDAM for certain directly organized data sets. The new
structure and features of VSAM make it more suited to data base and
online environments than other OS/VSl access methods.

VSAM support consists of the following:

• 	 Access method routines with which the user interfaces to process
logical records in VSAM data sets. These routines are reentrant.

• 	 VSAM catalog/DADSM routines that manage direct access volumes and
space used by VSAM data sets and catalogs. VSAM data sets are
cataloged in the new required VSAM master catalog or, optionally, a
VSAM user catalog.

• 	 The access method services multifunction service program, which

provides required VSAM services, such as data set creation,

reorganization, and printing and VSAM catalog maintenance.

• 	 The ISAM interface routine, which enables the transition from ISAM
to VSAM to be made with little or no modification of ISAM programs.
This routine is reent;rant.

) 	 ,
This discussion describes Release 2 of VSAM. The conditional

swapping instructions must be present in a system in which OS/VSl with
Release 2 of VSAM is executed.

General Description of ~ Data Set OrganizatiOns

VSAM supports three different data set organizations, key-sequenced,
entry-sequenced, and relative record, all of which allow both sequential
and direct processing, record addition without data set rewrite, and
record deletion. The primary difference among these three organizations
is the sequence in which logical records are stored.•

~.. J ~- ~-: ~'ia

I<ey-sequenced organization is logically comparable t~:,~SAM
organization in that logical records, either fixed or"variable in
length, are placed in the data set in ascending collating sequence by a
key field, which is called the primary key. Records added after the
key-sequenced data set is created are inserted in prin,lary.: key sequenc~
and existing logical records are moved when necessary. In VSAM key
sequenced data set organization, as in ISAM, each logical record must
have a unique, embedded, fixed-length primary key located in the same
posi tion within each logical record,.

A key-sequenced data set always has a primary index containing
primary key values. The entire primary index is used to process records
directly and a portion is used to process records sequentially.•
Optionally, one or more alternate indexes can be created for a key
sequenced data set to enable logical records to be accessed sequentially
and directly by one or more fields in addition to the primary key field,.
A! ternate indexe s are not supported by ISAM,.

An entry-sequenced VSAM data set, which has no ISAM counterpart,
contains either fixed- or variable-length records sequenced in the o.rder
in which they were submitted for inclusion in the data set (like a SAM
data set). Records added to an existing entry-sequenced data set are
placed at the end of the data set after the last record. Therefore,
records are sequenced by their time of arrival rather than by any field
in the logical record. A primary index is never created for an entry-

OS/Virtual Storage 1 Features Supplement 91

sequenced data set,. Optionally, however" one or more alternate indexes
can be constructed to enable logical records to be accessed sequentially
and directly by different fields. 	 '

A relative record VSAM data set is similar in organization to a
fixed-length BDAM data set that is processed by relative record number,.
Records in a relative record data set are in sequence by ascending
relative record number (from 1 to N). A relative record data set
consists of a number of fixed-length slots, each of which has a unique
relative record number and can contain one logical record. A record is
placed in the slot specified by a user-supplied or VSAM-supplied
relative record number,. Relative record data sets cannot have a primary
or alternate index,.

Physical structure of VSAM Data ~

The way in which the extents of the logical records of a VSAM key
sequenced, entry-sequenced, or relative record data set are physically
stored on direct access volumes is quite different from the way in which
ISAM logical record extents are stored.

Each extent of a VSAM data set that contains logical records is
divided into a number of control areas. Each control area contains a
number of control intervals that are on contiguous tracks on the direct
access device,. A control interval is composed of one or more fixed
length physical disk records_ Better performance is obtained when a
cylinder contains an integra'! number of control areas rather than a
fractional number.

Unlike physical records in an ISAM data set, the physical records in
a VSAM data set can be 512, 1024" 2048, or (except on 2314/2319 devices)
4096 bytes in size only, and they are written without a key (count and
data disk record format). VSAM chooses the physical record size based
on the user-specified buffer size and the device characteristics~ When
buffer size is large enough, the physical record size chosen is that
Which makes best use of the track capacity of the direct access device
used.

A 	control. i'nterval can be a maximum of 32,768 (32K) bytes in size and
't! .(-"~.'~'-

contains an::,3:!!:i;.egral number of physical records. If a control interval
is greatertha!l 8192 bytes, it must be a multiple of 20fJS bytes in size,.
Listed below are the default control area sizes,.

• 	 For 3330-series and 2305 Model·2 devices, a control area is two

tracks and contains 40 control intervals (20 control intervals per

track) •

• 	 For a 3350 in native mode, a control area is two tracks and contains

5fJ control intervals (27 control intervals per track) •

• 	 For a 2305 Model 1, a control area is three tracks and contains fJS

control intervals (15 control intervals per track).

• 	 For a 3340/3344, a control area is four tracks and contains 48

control intervals (12 contrel intervals per track) •

• 	 For a 2314/2319, a control area is four tracks and contains fJfJ

control intervals (11 control intervals per track).

A control interval contains logical records" free space (for key-.
sequenced data sets only), system control information about the logical'
records (record definition fields), and system control 'information about,~,
the free space (control interval definition field), in that sequence,.
There is one control interval definition field per control interval and

98 as/Virtual Storage 1 Features Supplement

---~----------------------~

usually multiple record definition fields, depending on the number of
logical records in the control interval.

A logical record and its control information (record definition
field) ,although not contiguous within a control interval, are called a
stored record. A complete control interval is the unit of data transfer
between a VSAM data set and real storage. Hence, command-chained
reads/writes are used when a control interval contains more than one
physical disk record.

A logical record in a VSAM data set can span physical records within
a control interval. A logical record in a key-sequenced or entry
sequenced (but not a relative record) data set can also span two or more
control intervals within the same control area, in which case it is
called a spanned record. If a key-sequenced or entry-sequenced data set
is to ha~ spanned logical records, this fact must be specified when the
data set is defined, as the default for these organizations is not to
permit spanned records.

Spanned records enable logical record size to be greater than maximum
control interval size. The maxiIlUm size of a nonspanned record is
32,161 bytes.. The maximum size of a spanned logical record is control
area size minus ten bytes (for VSAM control information) per control
interval in the control area.•

A spanned record always. starts at the beginning of a control
interval.. If· the last segm~nt of a spanned record does not completely
fill a control interval, the unused space is allocated as free space
that can be used only to extend the size of the spanned record. No
other logical record can be placed in this free space. When spanned
records are used, the maximum size of a logical record is the size of
the control area.

Figure 90 .. 30.• 1 shows an example of a control area. that consists of
three control intervals. '!here are three physical records in each
control interval. The number of control intervals in a control area is
determined by VSAM and for a key-sequenced data set is chosen taking
into account the amount of space allocated to the data set, index and
data control interval Size, and buffer space available to the data set.
The maximum size of a control area on disk is one cylind~r, and a
control area contains an integral number of control intervals.. '!he size
of a control interval can be specified by the user and is used as long
as it is within the limits defined by VSAM; othenfise, a user-specified
control interval size is ignored.

When a VSAM data set is loaded, VSAM does or does not preforroat
control areas, depending on the attribute specified when the data set is
defined, RECOVERY or SPEED, respectively. When RECOVERY (the default)
is specified, during loading VSAM preformats each control area
immediately before loading any records into it.. Preformatting for a
key-sequenced data set consists of putting the appropriate control
information in each control interval and an end-of-file indication in
the first control interval in the next control area after the control
area just preformatted. All zeros in the control interval definition
field indicates end of file or end of key range for a key-sequenced data
set. For an entry-sequenced or relative record data set, control
information and an end-of-file indication are placed in each control
interval of the control area during preformatting.

OS/virtual storage 1 Features Supplement 99

Control Area N

r~---/'--~,

Control Control Control

Interval 1 Interval 2 Interval 3

r~------~--------~'1 r--------""- 'I rr-------.r..~-----.......'1

[[][][B[]l][]OO[IJ

4 5 6 8 9PhYSical 1

record
within
control LA ~ Logical record
area FS::: Free space (key..-sequenced data set only)

SC ::: System controlmformation (record definition fields
for the logical records and one control interval definition
field)

Figure 90.30,.1. Organization of a control area for a VSAM data set

The RECOVERY option ensures that if an error that prevents further
processing occurs while a control area is being loaded, the previously
loaded control areas are not lost. Loading can resume from the first or
only end-of-file indicator., preformatting is always done when records
are added to an existing VSAM data set.

When SPEED is specified, records are loaded without preformatting
each control area before loading and the end-of-file indicator is not
written until the data set is closed. When this option is chosen,
loading proceeds more rapidly, but if an error that prevents further
processing occurs, all the records loaded up to that point may be lost
and loading would have to resume at the beginning of the data set.

Like an ISAM data set, a VSAM data set can be multi-extent and
mUltivolume,. Secondary space allocation can be specified when a key
sequenced, entry-sequenced, or relative record data set is defined so
that the data set can be extended when logical records are added, if
necessary (this facility is not supported in ISAM). A VSAM data set can
have a maximum of 126 extents of logical records.

VSAM data sets can be placed on disk volumes that contain data sets
with other organizations. Space on a volume that is defined for
exclusive use by VSAM is called a data space. A YSAM data space can
consist of a maximum of 16 extents on a volume that need not be
contiguous. A volume can contain multiple data spaces. The maximum
size ofa data space is one volume. A data space on a VOlume can
contain one or more data sets and a data set can occupy one or more data
spaces on one or more volumes.

Before a VSAM data set or catalog can be loaded, its attributes and
space requirements must" be defined using the DEFINE function of the
access method services program. In order to delete a VSAM data set or
uncatalog and make the space available for reassignment, the DELETE
function of the access method services program must be used. VSAM space
cannot be deleted using the OS/VS job control DISP parameter or an OS/VS
data set utility.

When a VSAM data set is defined, it can be allocated space within a
previously defined data space or the data set and the data space it is
to occupy can be defined at the same time. In the latter case, the data
space can contain only the data set defined with it and the data set is
called unique.

100 Os/Virtual storage 1 Features Supplement

~------

"" ----- ----------------~

"

The REUSABLE attribute can be specified for a VSAM data set when it
is defined to al'low it to be reused, mul tiple times (as a work fi Ie, for
example), without having to delete it and then redefine it using the
access method services program.•

The REUSABLE attribute can be specified for a key-sequenced, ,entry
sequenced, or relative record data set that resides on one or more
volumes. A key~sequenced or entry-sequenced data set with an alternate
index or a key-sequenced data set with key ranges specified per volume
cannot 'be reused. However, an alternate index can have the REUSABLE
attribute if it does not contain unique keys (that is, does not have the
UNIQUE attribute specified),.

, , .
When a data set with the REUSABLE parameter specified is opened, it

is set to the status of a data set opened for the first time for
creation (reset to empty status).. Any allocated secondary extents are
deallocated. Preformatting (putting control information in all the ,
control areas of the data set) is performed rut the logical reoords are
not erased.

The data in a VSAM data set is considered to be mapped into a byte .
space that can be' over 4,.2 bill ion bytes in size. The physical locati on
of a logical record or index entry within a data set is given in the
form of a relative byte address rather than a CCHHR disk record address.
The relative byte address (RBA) of a logical record or an index entry is
the byte displacement of the logical record or index entry relative to
the beginning of the data set. The first record ina data set has an
RBA of 0.. The RBA of a logical record or index entry, therefore, is
independent of the phySical characteristics of the direct access device
tyPe on which it reSides, the number of extents in the dataset, the
size of a control interval, etc.

All pOinters to data that are contained in an indeX or a oontrol
interva1 are in terms, of relative byte address instead, of the disk
reoord address (CCHHR) that is used in ISAM painter fields.~ In order to
locate a desired index or logical record, the VSAM acceSs method ,
calculates the disk address of the physical record, using the RBA of the
record and the physical characteristics of the data set.. As a result,
VSAM data sets are device-type- independent. A VSAM data set can be
moved from one device type to another and its index data',:s.et(s) need not
be re-created. ';i,t!:

The logical records of a VSAM data set can be processed by keyed
and/or addressed access depending on the organization.. For keyed J

access, lOgical records are processed in a sequentialr"'.skip-sequential
(key-sequenced organization only), or direct fashion by a key field,
which must be contained in each logical record.. For addressed access,
records are processed in a sequential or direct fashion by RBA.. With
keyed or addressed processing, a VSAM data set is processed by the user
on the basis of logical records, and VSAM always manages the I/O
buffers. '

Access to a VSAM data set by control interval is also supported,
primarily for use by system programmers. This type of access allows the
user to read and write a VSAM dataset on a control interval basis.
That is, each read or write accesses an entire control intervai 'of data.
A data set that is opened for control interval access can be processed
by keyed and addressed access at the same time (assuming keyed or
addressed is supported for its organization) as long as VSAM manages the
I/O buffers.

When control interval access is used, I/O buffers can be managed by
VSAM or the user. When buffers are managed by the user, control
intervals cannot be processed in the I/O buffer' (a work area must be
used) but the improved control interval processing option can be

OS/Virtual storage 1 Features Supplement 101

specified. This option provides faster processing by control interval
access than does normal control interval processing but requires that
certain restrictions be met (see OS/VS Virtual Storage Access Method
Options for Advanced Applications, GC26-3819, for these restrictions).

Use of the improved control interval processing option also permits
the user to have the control blocks and I/O buffers for the VSAM data
set long-term fixed in real storage for the duration of processing of
the data set instead of short-term fixed only when the control blocks
and buffers are in use during an I/O operation. Use of the fixing
option can further improve the performance achieved during control
interval access. In order to use the fixing option, a program must
execute in supervisor state, have protect key 0 assigned, or be
authorized via APF.

VSAM Macros

The macros provided to define and process VSAM data sets are divided
into control block macrOs and request macros. The control block macros
are used to define, modify, display, and test the contents of VSAM
control blocks and lists. The request macros are used to specify the
processing action (read, write, etc.) to be taken on data and index
records.•

The following are the VSAM control block macros:

• 	 ACB (generate an access control block). The ACB macro is the VSAM

counterpart of the DCB macro that is used for other OS/VS data set

organizations. It causes an access control block to be generated

during program assembly. One ACB (or GENCB) macro must be specified

in a program for each VSAM data set that is to be processed by the

program. More than one ACB can be specified in a program for the

same VSAM data set. In this case, ·the ACB's are connected to the

same VSAM control block structure and the same set of I/O buffers is

used for all requests issued to the data set,. The access control

block for a VSAM data set must be opened before any processing of

the data set can occur.

The AC~: specifies the following for a VSAM data set: name of the DD

statement for the data set, address of a list of exit routine

addresses for user-written exit routines, blffer space requirements,

the password required for the type of processing to be done, all

processing options to be used with the data set (keyed, addressed,

and/or control interval, sequential, skip-sequential, and/or direct,

etc,.), and the number of requests that can be outstanding·

concurrently for the data set using this ACB.

• 	 EXLST (generate an exit list). The EXLST macro is used to define a

list of the addresses of the user-written exit routines that are to

be entered when certain conditions occur during the processing of a

VSAM data set. The EXLST macro causes an exit list to be generated

during program assembly..

Exit to a user-written routine can be taken when end of data set is

reached (EODAD exit), a logical error occurs (LERAD exit), an

uncorrectable physical I/O error occurs (SYNAD exit), or to perform

a journaling operation (JRNAD exit),. Each exit routine can be

marked active or inactive. An exit routine that is inactive is not

entered when its associated condition occurs. The exits to be used

during the processing of a given VSAM data set are specified in its

ACB (the address of an EXLST macro can be given). More than one ACB

can specify the same EXLST macro.

.~.

OS/Virtual storage 1 Featur~s Supplement 102

...

The journaiing exit is taken by V5AM at the following times:
whenever a GET, PUT, or ERASE macro is issued to the V5AM data set;
each time data is shifted within a control interval or moved to
another control. interval (key-sequenced data sets only); and each
time a physical I/O error occurs.

A user-written journaling routine can be used, therefore, to keep
track of any RBA changes for the logical records of a key-sequenced
data set, if it is to be processed by RBA, and/or to record the V5AM
transactions that are processed against a V5AM data set (for
recovery and reconstruction purposes, for example),.

• 	 RPL (generate a request parameter list) '. An RPL macro is used to'
generate a.request parameter list during program assembly. This
list defines a request for processing. Certain request macros (GET,
PUT, ERASE, POINT, CHECK, ENDREQ, GETIX, and PUTIX) must specify the
address of a.request parameter list to indicate the processing to be
performed. The same RPL can be specified in more than one .type of
request macro.

An RPL macro specifies the following: the ACB of the data set with
which it is to be used (multiple RPL macros can specify the same
ACB): the size and address of a work area if logical records are not
to be processed in an I/O buffer; the search argument to be used
during direct retrieval, skip-sequential retrieval, and positioning
(full key, generic key, RBA, or relative record number): address of
an ECB if this is an asynchronous request (optional parameter); the
type of processing for this request, such as keyed or addressed,
sequential or direct, forward or backward, synchronous or
asynchronous request, etc,.

When a synchronous request is specified in the RPL indicated by a
GET or PUT macro, control is not returned to the instruction after
the GET/PUT macro until processing of the request is completed. The
logical record is then available for processing. When an
asynchronous request is specified, control 'returns to the
instruction after the GET/PUT macro as sOOn as the request has been
scheduled. The user must then test for completion of the I/O
operation (usually using a CHECK macro). Asynchronous processing of
a request permits the overlap of I/O operations witfiap~ogram
execution and is particularly useful with skip-seq~en£ial and direct
processing. Up to 255 asynChronous requests (RPL's)~can be
outstanding concurrently for the same V5AM data set.

Two or more RPLs can be chained together via' a pointer field in the
RPL itself. A chained parameter list can be used to read or write
several records (one for each RPL in the chain) using one GET or PUT
macro instead of multiple macros. Chained parameter lists can be
used only to retrieve several existing records or to add several new
records.. It cannot be used to retrieve-for-update, update, or
delete existing records •

• 	 GENeB (generate a control block or list). The GENCB macro can be
used to generate an ACB, EXLST, or RPL during program execution
instead of program assembly. The GENCB macro can be used to
eliminate changing these control macros and reassembling VSAM
programs when control block formats change in new versions of VSAM.

The same parameters can be specified in a GENCB macro as in ACB,
EXLST, and RPL macros. However, a GENeB macro can specify that·
multiple copies of the control block are to be gen~rated and
parameter values can be specified in more ways (such as in general
registers) '.

OS/Virtual storage 1 Features Supplement 103

• 	 MODCB (modify the contents of a control block or list). The MODCB
macro is used to change, during program execution, the contents of
an unopened ACB, an EXLST, or an inactive RPL (one not currently
involved in a.processing operation).

• 	 SHOWCB (display the contents of a control block or list). The
SHOWCB macro is used to place the contents of user-specified fields
of an ACB, EXLST, or RPL in a user-specified work area.

• 	 TESTCB (test the contents of a control block or list). The TESTCB
macro is used to have VSAM compare a user-specified value with a
field in an ACB, EXLST, or RPL.. The condition code in the PSW is
set to indicate the results of the comparison.

• 	 SHOWCAT (display fields in a VSAM catalog). The SHOWCAT macro can
be used to cause selected fields from the catalog entry for a
specified data set to be moved to a user-provided work area. The
data set whose catalog entry is being inspected need not be open in
order for the SHOWCAT macro to be issued .•

The following request macros are used to process VSAM data sets:

• 	 OPEN - A VSAM data set must be opened before it can be processed by
other request macros.. The OPEN macro provides the same types of
processing functions for VSAM data sets as for other types of data
sets. OPEN causes the volumes of the VSAM data set to be mounted if
necessary, constructs the control blocks required (in addition to
those already created by EXLST, ACB, and GENCB macros) for the type
of processing to be done, overrides information in the ACB and EXLST
with any parameters specified in the DD statement for the data set,
causes the loading into virtual storage of any VSAM routines
required (in addition to the resident VSAM routines) for the
processing specified, and verifies that the password given is
correct. Any parameter not specified via job control or the ACB is
taken from the catalog entry for the data set.

Both sequential and direct processing can be performed on a VSAM
data set using one OPEN macro and one ACB. Closing and reopening of
the data set to switch modes, as is required for an ISAM data set,
is nothec~ssary •

. J.;_ :-.

• 	 GEl' - This Iitacro is used for retrieval only and for retrieval and
update (GET for update) operations.. The RPL specified by a GET
macro i~4icates whether the request is for a retrieval only or a
retrieve 'and update operation. A record that was retrieved by a
GET-for-update request need not be written back if it is not to be
changed.•

Locate mode (logical record made available in the input buffer) can
be specified for retrieval ~nly (GET) and retrieve for update
without record length change (GET-for-update) operations.. In the
latter case, however, the updated record must be placed in a work
area before it is rewritten.. Move mode (logical record made
available in a work area) is supported for all read and write
requests and is required for all write (PUT and ERASE) operations•

• s 	 PUT - This macro is used to write a new record in a data set during
its creation or insert a new record in an existing data set. A PUT
for update is used to change the contents of an existing record
(update it or mark it deleted with a user-defined deletion
indication).. A PUT-for-update request must be preceded by a GET
for-update request.. Write verification .(automatic reading by VSAM
after each write operation) is optional.

OS/Virtual storage 1 Features Supplenent

• 	 ERASE - This macro is used to delete a logical record from a key
sequenced or relative record data set. The record is pbysically
removed from the data set. An ERASE macro must be preceded b¥ a
GET-for-update macro.•

• 	 POINT - This macro is used to position VSAM to a particular logical
record in the data set from which processing is to continue.
PoSitioning can be in a forward or backward direction and a key
value (including a relative record number) or RBA can be used to
identify the logical record at which positioning is set.

• 	 CHECR - This macro is used to cause VSAM to determine whether
processing of a specific asynchronous request has been completed and
to suspend program execution until processing is completed for an
incomplete request. CHECR also causes the appropriate active user
written exit routine to be entered, if necessary, at the completion
of the request.

A test for the completion of an asynchronous request can also be
made by specifying an ECB in the RPL for the request and testing the
completion bit.. completion can be tested using the TESTCB macro
(IO=COMPLETE operand) as well. These two completion tests can be
used to delay issuing the CHEeR macro until the operation is
completed so that processing" is not suspended by the CHEeR macro.•

• 	 ENDREQ - This macro is, used to terminate the processing of an
asynchronous request whose completion is no longer required or to
free VSAM from keeping track of a position in a data set. VSAM can
maintain knowledge of the same number of positions as the number of
requests that can be outstanding concurrently (specified in the ACB
or GENCB macro) .•

• 	 GETIX and PUTIX - These macros are used to process an index
component of a key-sequenced data set (see discussion later under
wProcessing a Rey-sequenced Data Set IndexW).

• 	 CLOSE - The CLOSE macro provides the same types of processing 1

functions for VSAM data sets as for other types of data sets.. It
causes VSAM to write any unwritten data or index records remaining
in the output buffers if their contents have chang~~'J Hpdate the
catalog entry for the data set, if necessary (if th~ l:ocation of the
end-of-file indicator has changed, for example), and~write SMF
records if SMF is being used. The access method control block(s)
for the data set (such as the ACB's) are restored to what they were
before the data set was opened and virtual storage:that was obtained
during OPEN processing for additional VSAM controlbloeks andVSAM
routines is released.

once a VSAM data set has been closed, it I1Ust be reopened before any
additional processing can be performed on it.. A CLOSE macro with
TYPE=T (temporary CLOSE) can be issued to cause VSAM to complete any
outstanding I/O operations, update the catalog if necessary, and
write any required" SMF records. processing can continue after a
tenporary CLOSE without the issuing of an OPEN macro.

Figure 90.30.• 2 illustrates the relationships among the most
frequently used control macros and the request macros.

OS/Virtual Storage 1 Features SUpple~ent 105

.,..-------- Control Macros ------~~

Request
Macros

User-
Written

Exit
Routines

End of
Data
Set

Logical
Error

Physical
1/0 Error

Journaling

"

is

Figure 90.30.2. Relationships among VS1IM control and request macros

~/

OS/Virtual storage 1 Features Supplement 106

An interface to VSAM that is designed to be used in a data base/data
cOlllJllllnications environment is also provided.. Five macros are available

.-~ that enable I/O buffers, I/O-related control blocks, and channel
programs to be shared among several VSAM data sets and permit the user
to manage I/O 	buffers. The sharing of I/O resources and the buffer
management available can speed up the direct processing,of VSAM data
sets whose activity is unpredictable and the processing of one
tranSaction that requires access to several data sets.

The BWVRP and DLVRP macros are provided to build and delete,
respectively, a shared resource pool. A resource pool in VS1 can be
shared by the VSAM data sets being processed in the same partiti~ The
WRTBFR macro causes the writing of a buffer and can be used when .. 	 deferred processing is specified in the ACB. Wbendeferred processing
is specified, VSAM does not write a buffer after a PUT for direct
processing is issued.

The SCHBER macro is provided to search the shared buffer pool for a
particular range of RBAS (locate a buffer) and the MRKBFR macro causes a
buffer to be marked for output witmut issuing a PUT for update.
Details regarding the use of these five macros are contained in OS/VS
Virtual storage Access Method: Options for Advanced Applications.•

Note that several parts of a VSAM data set can be accessed
concurrently via sequential and direct processing by a program or its
subtasks using the same ~CB without the necessity of closing and
reopening the data .set.. E~ch request is processed independently and
asynchronously with respect to all other outstanding requests. This is
called concurrent request processing and is made possible ~ the fact
that VSAM can keep account of multiple positions in the data se~ at one
time. The number of concurrent requests that, can be outstanding is
specified in the ACB but is extended by VSAM during processing if
necessary.•

Concurrently outstanding requests for a data set can be any
combination of sequential and direct processing requests. Each
outstanding request can specify one RPL or a list of RPLs (chained RPLs)
and synChronous or asynchronous processin9. When a request consists of
a list of RPLS, the first RPL in the list determines whether synchronous
or asynchronous processing is performed for the request. .

When synchronous processing is requested in the first RPL, mntrol is
not returned to the user until all requests in the list have been
processed. When asynchronous processing is specified in the first RPL,
mntrol is returned to the user as soon as the chained request is
accepted by VSAM.' and the processing status of the list must be checked
by the user by issuing a CHECK macro for each RPL in the list.

Key-Sequenced 	Data Set organization and processing

The logical organization of a key-sequenced VSAM data set is very
different from that of an ISAM data set. The primary index (index
component) and logical records (data component) in key-sequenced
organization are two distinct data sets with separate data set names,
al though a portion of the primary index. can be placed within the logical
record data set area to improve performance. A key-sequenced data set
does not have a separate additions (overflow) area, as can be defined
for~n ISAM data set, and additions to a key-sequenced data set are
always blocked.

The primary index data set and the logical record data set of a key
sequenced data set form a cluster. Each alternate index built for a
key-sequenced data set also consists of an index component and a data

OS/Virtual storage 1 Features Supplement 107

component. These two components form an alternate index cluster for the
key-sequenced data set, which is then referred to as the ~ cluster.

All extents of logical records (the data component extents) in a key
sequenced data set must reside on direct access volumes of the same
type. The primary index data set and any alternate index data set
cluster, however, can be placed on a device type that is different from
that of the logical record data set. The primary index data set and
alternate index data sets need not reside on the same type of direct
access device either. In addition, the index component of an alternate
index can be on a different device type than the data component of the
alternate index.

When a key-sequenced data set is created, the range of primary key
values that are to be allocated to each volume of the data component
data set can be user-specified.. This cannot be done for an ISAM data
set. Unlike ISAM data set volumes, all volumes of the data component of
a key-sequenced data set need not always be mounted at OPEN time.
Subset mounting by user-specified volume serial numbers in job control
statements is supported for certain types of sequential proceSSing.•

A control interval in the data component data set of a key-sequenced
data set contains logical records in ascending primary key sequence.
LOgical records must have a unique primary key. A primary key must be
fixed in length and in a fixed position within each logical record.
Primary key size can be a ~inimum of 1 byte and a maximum of 255 bytes.
If spanned records are used, the primary key must be contained within
the first control interval. •

The data component of a key-sequenced data set is divided into
control areas and control intervals in order to distribJ.te free space
throughout the data set for the addition of logical records.. When a
key-sequenced data set is defined, the percentage of unused control
intervals that are to be left in each control area and the percentage of
free space to be left at the end of each control interval during data
set loading can be user-specified.

For example, if 30 percent free control intervals in control areas
and 20 percent free space in control intervals are specified, 70 percent
of the total number of control intervals in each control area will be
used for data in the data component when the key-sequenced data set is
created. Each of the control intervals actually used for data will be
80 percent filled at load time. The unused space in control intervals
and the unused control intervals in each control area are available for
additions.

The use of free space requires less record procesSing to add a record
and to retrieve an addition than would be needed in ISAM, since there
are no overflow chains in key-sequenced organization. When a record
must be added to a control interval, records are shifted to the right
within the control interval to make room for the new record (if the
reoord does not belong at the end of the control interval) '. As long as
there is enough free space in the control interval, no other control
interval is involved in the addition process.

If a control interval does not contain enough space to add another
logical record, control interval splitting occurs. . Some of the logical
records and their control infor~ation are taken from the full control
interval and moved to an empty control interval at the end of th€! same
control area, if another control interval is available. The logical
record is then added to the appropriate control interval in primary key
sequence.

When control interval splitting occurs, the physical sequence of
control intervals within a control area no longer represents the correct

108 OS/Virtual Storage 1 Features Supplement

http:distribJ.te

sequence of logical records within the control area. Therefore, the
primary index must be updated to reflect this condition.' The only times
the lowest level of the primary index must be updated are when control
interval splitting occurs and when a record is added to the end of the
data set. Hence, less primary index maintenance is required for, a key
sequenced VSAM data set than for an ISAM data set.

If there is no free control interval within a control area when one
is required, control area splitting occurs if there is free space at the
end of the extent or if secondary allocation was specified at the time
the data set was defined. A new control area is established and the
contents of some of the control intervals in the full control area are
moved to the new control area. The new logical record is then inserted
in the appropriate control area in primary key sequence.

In general, when inserting records into a key-sequenced data set
directly Or skip-sequentially, control intervals and control areas are
split in their middle, and VSAM attempts to use all the free space
available in each control interval and control area. When records are
inserted sequentially, the affected control interval and control area
are split at the pOint of record insertion and VSAM att'empts to reserve
the free space quantity defined for the data set.

The time required to sequentially retrieve records is only slightly
affected by control area splitting.. Since ,the amount of space allocated
to the data set is affected by control area splitting, the number of
split control areas in a key-sequenced data set should be a factor that
is considered when determining whether or not to reorganize the data
set.

Logical records can be phy~ically deleted from-a key-sequenced data
set, using the ERASE macro, and the length of a logical record in a
variable-length key-sequenced data set can be increased or decreased.
When space becomes available as a result of deleting or shortening a
record, records within the control interval are shifted toward the
beginning of the control interval to reclaim the free space and make it
available for additions and record extensions.

The way in which free space can be distributed throughout a key
sequenced data set, support of space reclamation, and .implementation of
control interval and control area splitting are all factors 'that can
minimize or possibly eliminate, in some cases, the need toreozganize a
key-sequenced data set. This design makes VSAM key-sequenced
organization more suited than ISAM to an online environment.

LOgical organization of the primary index dat'a set for key-sequenced
organization. Like t~e index for an ISAM data set, the primary index
for a key-sequenced VSAM data set contains key values and pointers. It
is built when the key-sequenced data set is initially loaded,. Unlike an
ISAM index, a VSAM primary index also contains informatiOn regarding
available ,space in the primary index data set. '

The primary index for a key-sequenced VSAM data set also has a
totally different logical structure from that used for an ISAM index. A
key-sequenced primary index data set consists of two or more levels of
index records structured as a balanced tree, and the highest inqex level
contains only one index record (physical disk record). The one
exception to this organization is discussed later.

Primary index records are fixe9 in length and of system-determined
size.. Each physical index record contains a number of index ,entries and
a pointer to the next physical/index record at the same, index level.
(The last index record in a level'does not have such a pointer.) ,Index
entries contain primary keys in ascending collating sequence.

OS/Virtual Storage 1 Features Supplement 109

/

---------- ------------

The lowest level of the primary index is called the sequence set.
All levels above the lowest are oollectively referred to as the index
set. The sequence set index level points to all the control intervals
in the key-sequenced data set and contains the high compressed primary
key value in each control interval. Since the sequence set does not
contain an entry for each logical record in the key-sequenced data set,
it is a nondense index level .•

The structure of the primary index for a VSAM key-sequenced data set
is shown in Figure 90.30.3. Where a key is specified, it refers to a
primary key.•

Always only 'one
level

index record
index

Index

Set
Index

Component
Data

Set

Lowest

Sequence { level

Set index

~~~ponent [ 
Key
Sequenced 

Data Set \.L___-' ...,.....---___/ 


~-------...,.....---------	 ~~------~--....-------
Control Area N \ Control Area 1 	 Control Area 2 

Figure 90.30.3. 	 Structure of the primary index for a VSAM key-sequenced 
data set 

Each physical index record in the sequence set contains a number of 
index entries that is equal to the number of control intervals in a 
control area. Hence, there is one sequence set index record per control 
area in the data set.. An index entry in a sequence set index reoord 
consists of a primary key value, control information, and a pointer to 
the control'interval in the data component data set that contains the 
record with that primary key value. The key in the index entry is the 
highest compressed primary key in the indicated control interval. 

When the logical record data set has few enough control intervals 
that one physical index record can contain all the required index 
entries, there is only one level of primary index and it consists of one 
sequence set index record. 

When a key-sequenced data set is processed sequentially, the sequence 
set index level is used to indicate the order in which control intervals 
are to be accessed. To improve performance during sequential 
processing, the sequence.set index level can be separated from the rest 
of the primary index data set (index set levels) and stored with the 
logical records in the data component data set.. When this option is 
chosen, the index records for a control area are placed on the first 
track(s) of the control area so that both index and logical records can 
be accessed without moving the disk arm (similar to the location of the 
track index within \the prime area in an ISAM data set). 

When the sequence _set index level is stored within the data component
data set, sequence set records are also replicated. That is, each 
sequence set index record is allocated one track at the beginning of the 
control area. The index record is duplicated on the track as many times 
as it will fit. This technique significantly minimizes the rotational 

110 OS/Virtual storage 1 Features Supplement 

~--~--



delay involved in arrivin9 at the be9innin9 of an index record. If 
there is only one control area in a cylinder, sequence set index records 
will be replicated be9innin9 with track O. If there are two control 
areas in a cylinder, initial tracks of the first area will contain 
replicated index records for the first control area, while initial 
tracks of the second area will contain replicated index records for the 
second control area,. 

Index set index records, like sequence set index records, contain 
blocked index entries~ The index entries in each level of the index set 
point to index records of the next lower index level. An index entry 
within the index set .contains a poi:nter to an index record, the hi9hest 
primary key in that indeX record, and control information. Index set. 
index levels can also be replicated. When this option is chosen, one 
track is required for each index record in the entire index set. An 
index record is duplicated on its aSSigned track as many times as it 
will fit. 

The index set mayor may not be replicated when the index set and the 
sequence set of the primary index are physically separate (sequence set 
stored with logical records) '. However, when the index set and the 
sequence set are stored together, both are replicated or neither is 
replicated. 

The entire primary index (index and sequence sets) is used to process 
a key-sequenced data set directly by user-specified primary key values. 
Each index level is inspect~d be9inning with the highest level. One 
index block in each level must be inspected to obtain a pointer to the 
next lower level. 

An advantage of this structure over that of ISAM index structure is 
the fact that the time needed to locate any record directly is based on 
the number of levels in the primary index and on the current location of 
the index records to be inspected (on the direct access device or in 
real storage). Therefore, the same amount of time is required to locate 
an addition as an ori9inal record. In ISAM, additional rotation time is 
required to locate an addition that is not the first addition in the 
chain in the cylinder overflow area of a prime cylinder. 

The primary index of a key-sequenced data set is desi9D~ to require 
as little direct access space as possible. In addition,:,t;o'being 
nondense, the index entries contain front and rear compressed keys. 
Compression is done to eliminate redundant characters in adjacent keys 
in the index and thereby reduce the amount of key data ·that must be 
stored. .... ', 

Since physical index records are written without a key, index entries 
are blocked within index records, and keys are compressed, an index 
record must be present in real storage in order for the user-supplied 
key value to be compared with the key values contained in an index 
record (this comparison cannot be done on disk as for ISAM 
organization). As much of the total index set as possible, up to the 
entire index set, can be resident in virtual storage if enough buffer 
storage is specified by the user. Note that VSAM does not preload index 
record buffer(s) with as many primary index records as will fit. Index 
records are allocated space in a buffer and loaded when required,~ 

/ 

The primary index records that are resident in virtual storage are 
pageable; however, heavy referencing of an index record can tend to 
cause the page containing the index record to remain in real storage. 
<Index records cannot be fixed in real storage.) If an index. J?eoord· 
that is not resident in virtual storage is required, and there is not 
enough room in the buffer area provided to add the index record, the 
access method deletes an existing index record to make room. In 
general, an index record is selected that has been in the buffer the 

OS/virtual storage 1 Features supplement 111 



longest time and that belongs to the lowest level index represented in 
the buffer. 

The compressed index entries in an index record cannot be inspected 
using a binary search techinque; however, the entries are not inspected 
sequentially. Index entries are divided into sections for the purpose 
of searChing. The number of sections in an index record is 
approximately equal to the square root of the number of index entries in 
the index record. 

A primary index search is begun by comparing the search key with the 
highest key in the first section of the index record,. If the search key 
is less than the highest key, the search continues with the first key .in 
the first section. An equal or the first greater than comparison 
terminates the search operation,. If the search key is higher than the 
highest key in the first section, it is then compared with the highest 
key in the second section, etc. 

USing this technique, the average number of indeK entries inspected 
to locate the desired entry is approximately equal-to the square root of 
the number of entries in the index record. On the average, half of the 
number of entries in an index record would have to be searched if a 
linear search technique were used. 

Physical structure of the primary index of ~ key-sequenced data ~. 
Primary index records are stored in control intervals as are the logical 
records in the data component. of a key-sequenced data set,. However, 
there is only one physical index record written in a control interval, 
control intervals are not grouped into control areas, and no free space 
is left within a control interval between a logical record (index entry) 
and its control information. Physical index record size is the same as 
physical record size in the data component. 

The physical index records associated with each index level of the 
primary index are not necessarily stored together in contiguous control 
intervals (except when the sequence set level is stored separately from 
the index set levels). When a primary index is created or a new index 
record is added to an existing primary index, the new indexreoord is 
placed in the next available control interval after the last existing 
index recorq,.,. The level to which each index record belongs is indicated 
in the contr~l "information (header field~ in the index record. 

In addition to header information and variable-length index entries, 
a sequence set index record (but not an index set record) can contain a 
set of free control interval entries. These entries indicate the 
location of available control intervals in the data component that are 
within the control area governed by the sequence set index record. 

Alternate indexes for key-sequenced data sets. Optionally, one or 
more alternate indexes can be built for an existing key-sequenced data 
set. An alternate index cannot be built for another alternate index 
data set or for a key-sequenced data set with the REUSABLE option
assigned,. 

Alternate indexes enable the logical records of a key-sequenced data 
set to be accessed sequentially and directly by more than one field. 
This eliminates the necessity of having the same data stored in multiple 
key-sequenced data sets that are sequenced by different fields for 
different applications. The support of nultiple indexes for a given 
data set makes VSAM key-sequence~ organization particularly suitable for 
data base applications. 

The alternate key for an alternate index can be any fixed-length 
field in a fixed position in the logical record. An alternate key, like 
a primary key, can be a minimum of 1 byte and a maxinum of 255 bytes in 

OS/Virtual Storage 1 Features Supplement 112 



length. If logical records in the data component are spanned, the 
alternate key field must be present in the first control interval of the 
spanned record. The alternate key field can overlap the primary key 
field and any other alternate key fields when multiple alternate indexes 
are defined. 

When an alternate key appears in only one logical record in the base 
key-sequenced data set, it is a unique alternate key. If it appears in 
multiple logical records, it is a duplicate or nonunique alternate key. 
Nonunique alternate keys can appear in a maximum of 32,767 logical 
records in the base key-sequenced data set as long as the maximum 
possible length for a spanned record in the data component of the 
alternate index is not exceeded by the record for that alternate key. 
The data component of an alternate index is always permitted to have 
spanned records. 

An alternate index can have nonunique alternate keys only if the 
NONUNIQUE attribute is specified when the alternate index is defined.• 
When the NONUNIQUE parameter is not specified, any attempt to add a 
nonunique key to an alternate index is rejected as a logical error when 
VSAM is handling alternate index updating. 

The index component of an alternate index cluster contains compressed 
alternate keys in ascending collating sequence and is physically and 
logically structured like the primary index for a key-sequenc~d data 
set, as shown in Figure 90~30.3. That is, the index component consists 
of an index set that pOints to successively lCMer levels of the 
alternate index and a sequence set that points to the highest alternate 
key in each of the control intervals in the data component of the 
alternate index. Physical index records are fixed in length and contain 
blocked index entries. Index entries in a primaJ;y and alternate index 
contain the same type of information. 

The data component of an alternate index is identical in physical 
format to the data component of a key-sequenced data set. It contains 
one variable-length logical record for each unique alternate key value. 
For a key-sequenced data set, this alternate key record contains system 
header information, the alternate key value (not compressed), and the 
primary key field (not compressed) of the logical record in the base 
key-sequenced data set that contains the alternate key. If... :the 
alternate key appears in more than one logical record in the base data 
set, the primary key of each of these logical records is contained in 
the alternate key record for that alternate key,. 

primary keys are ordered in time-of-arrival sequence within the 
logical record for a nonunique alternate key. That is, when another 
primary key is added to an alternate key record in the data component of 
an alternate index, it is placed at the end of the existing list of 
primary keys,. 

A path is the means by which a base key-sequenced data set is related 
to pne of its alternate indexes.. A path is defined and named using the 
access method services program. Optionally, a password can be assigned 
to the path,. one path must be defined for each of the alternate indexes 
of a key-sequenced data set. When a given alternate index is to be used 
to process a key-sequenced data set, the path associated with that 
alternate index must be specified in an OPEN macro. This causes both 
the key-sequenced data set and the alternate index to be opened. 

When a path is opened, only keyed processing requests can be used., 
Addressed and control interval access are not permitted. The keyed
proceSSing that can be performed on a key-sequenced data set 'using an 
alternate key is the same as can be performed using a primary key:. That 
is, existing records in the base cluster can be retrieved, updated, or 
deleted, and new records can be added using alternate key values. These 

OS/Virtual storage 1 Features supplement 113 



· . 

operations can be performed using keyed sequential, keyed 'skip
sequential, or keyed direct processing. 

An alternate index cluster (index and data component data sets) has 
'its own name and can be processed as a key-sequenced data set 
independently from its associated base key-sequenced data set. To 
process an alternate index cluster independently, the OPEN macro must 
state the alternate index name or the path name associated with the 
alternate index,. In the latter case, the AIX option must be specified 
in the ACB for the alternate index to cause independent processing of 
the a~ternate index. . 

When a key-sequenced data set is being accessed by an alternate 'key, 
the index component of the associated alternate index is searched, using 
the same technique as is used for a primary index, to find a pointer to 
the appropriate control i~terval in the data component of the al~ernate 
index.' When the desired alternate key record is located in the data 
component, the primary key is obtained and is used in the search of the 
primary index, which pOints to the control interval in the base data set 
that contains the desired logical record. 

An alternate index must be defined, using the acceSs method services 
program, before it can be created. An alternate index can be defined 
only after its associated base data set has been defined, and it can be 
loaded only after the base data set has been loaded. An alternate index 
can be created using the access method services program (BLDINDEX 
command). Alternatively, a user-written program that performs the same 
functions as the BLDINDEX command can be used. 

The BLDINDEX command causes a sequential scan of the specified key
sequenced base data set, -during which alternate key values and the 
primary keys of the logical records in which they reside are extracted. 
The extracted alternate keys are sorted into ascending sequence.' 
Alternate index.- records are constructed from the sorted alternate keys 
and their associated primary keys. These index records are then placed 
in the alternate index (a key-sequenced data set). . 

Alternate index maintenance can be handled ~ the user or 
automatically by VSAM. Alternate index updating by VSAM is requested by 
specifying the UPGRADE attribute for an alternate index when it is 
defined. .Sp~cifying the UPGRADE attribute for an alternate index'makes 
the index a part of the Upgrade set of alternate indexes for a given 
key-sequenced data set,. An alternate index can be part of the upgrade 
set. for a ~eX7"-i3~,quenced data set even though it is not a member of a 
path for the key-sequenced data set,. The maximum number of alternate 
indexes that can be part of the upgrade set for a given key-sequenced 
data set is 125. . 

Whenever a key-sequenced data set is opened for keyed or addressed 
output operations, VSAM automatically opens for output all the alternate 
indexes in the upgrade set for the base data set, unless the NOUPDATE 
job control parameter is specified for the key-sequenced data set. If 
NOUPDATE is not specified, then, whenever an existing logical record is 
erased or updated or a new logical record is added during processing of 
the base data set (~ a primary or an alternate key), the upgrade set of 
al ternate indexes is updated as appropriate.. This updating is done as 
part of the processing of the logical record. The journaling exit is 
not,taken during updating of the alternate indexes. 

The upgrade set of alternate indexes is not updated by VSA!>1 if 
control interval access is used to process a base data ,set. In 
addition" VSAM does not update any alternate indexes for a base key
sequenced data set when the NOUPGRADE attribute is specified for the 
alternate index. updating must be performed by the user. VSAM assumes 
all required updating of the alternate indexes for a key-sequenced data 

OS/Virtual storage 1 Features Supplement 114 



set has been done and does not make any synchronization checks between a 
key-sequenced data set and its alternate indexes during OPEN processing. 

During processing of a base key-sequenced data set via an alternate 
index, an error can occur while processing the key-sequenced data set, 
the alternate index being used to access the base, or an alternate index 
in the upgrade set. When an error occurs, VSAM returns a function code 
to the RPL used in the request that indicates which data set was 
involved in the error. 

Key-sequenced ~ set processing. The records in a key-sequenced 
data set can be processed sequentially, skip-sequentially, or directly 
using the primary or an alternate key. SUch processing is called keyed 
sequential, keyed skip-sequential, or keyed direct processing, 
respectively,. Keyed access can be used for a key-sequenced data set 
that contains nonspanned or spanned records,. All volumes of a key
sequenced data set must be mounted at OPEN time for keyed processing. 

Records can also be processed sequentially or directly by relative 
byte address. SUch processing is called addressed sequential or 
addressed direct processing, respectively. Control interval access is 
supported as well. When addressed sequential processing is used, all 
volumes of the data set need not be mounted at OPEN time. As many 
volumes as there are available direct access devices can be mounted at 
OPEN and the mounting of additional volumes will be requested as they 
are required, as is done for SAM data sets. 

Addressed processing cannot be used with key-sequenced data sets that 
contain spanned records, since the spanned record may not be contained 
in physically contiguous control intervals. Spanned records cannot be 
processed in locate mode (in the I/O buffer). A work area is required. 

The RBA of a logical record in an existing key-sequenced data set can 
change only when a record is inserted or deleted, or the size of a 
variable-length record is altered. A user-written routine should be 
included to record changes in REA"s when REA is used for update. This 
routine is entered from VSAM via the journaling exit when appropriate. 
Programs that process a key-sequenced data set by RBA need not be 
modified if direct access device type is changed. 

Keyed sequential processing of a key-sequenced data set is like 
sequential processing of an ISAM data set. It is used to load a key
sequenced data set and to retrieve, update, delete, and add logical 
records to an existing key-sequenced data set. When keyed sequential 
processing is used, records can be processed in .ascending sequence by 
primary key, using GET and PUT macros. This is called forward 
processing. The ERASE macro (not supported by ISAM) can be used to 
physically delete records. 

Key values need not be user-supplied for keyed sequential processing, 
since VSAN automatically obtains the next logical record in sequence. 
The POINT macro can be issued at any time during processing to position 
VSAM at a specific logical record from which sequential processing is to 
proceed. Positioning can be in a forward or backward direction. Only 
the sequence set of the primary index is referenced for keyed sequential 
processing by primary key and only for control interval sequencing. 

The following types of operations, which are not supported by ISAM, 
can be performed on key-sequenced data sets using keyed sequential 
processing: 

• 	 Records can be processed sequentially by an alternate key. Existing 
logical records can be retrieved, updated, and erased and new 
records can be added to a key-sequenced data set using keyed 
sequential processing by an alternate key. Logical records 

OS/Virtual storage 1 Features supplement 115 



containing the same nonunique alternate key are presented in the 
sequence in which they were entered in the data component of the 
alternate index {for both forward and back~ard processing, which is 
described below>. The sequence set of the alternate index and the 
primary index are used during this type of processing. 

• 	 Records can be processed in descending primary or alternate key 
sequence. This is called previous or backward processing. GET, PUT 
(for update only>, ERASE, and POINT macros can be used with backward 
processing as with forward processing.. S~itching between forward 
and backward processing can be accomplished using the POINT macro or 
a GET macro for direct processing • 

• 	 A mass sequential insertion technique is automatically used by VS~M 
when additions are sequenced and made using keyed sequential 
processing. When VSAM determines that two or more logical records 
are to be inserted between two existing logical records, the control 
interval (and its sequence set index record if control interval 
splitting occurs) is not written until the control interval has been 
packed with all the additions that will fit. Mass sequential 
insertion is also used by VSAM to add logical records after the last 
existing record (extend a key-sequenced data set). 

The time required to make additions and update the primary index is 
reduced by using the mass sequential insertion facility of keyed 
sequential processing.' If additions are not sorted and keyed direct 
processing is used to add the records, the entire primary index must 
be searched to determine where each logical record is to be placed. 

Keyed skip-sequential processing, which is not supported by ISAM, is 
a variation of direct processing. It can be used for retrieval, update, 
add, and delete operations (GET, PUT, and ERASE macros). Keys of the 
logical records to be processed must be presented by the user in 
ascending seque~ce~ Previous processing is not supported for skip
sequential operations. primary or alternate keys can be used. Only the 
sequence set of 'the primary index is used for skip-sequential processing 
using the primary key. When an al terna te key is used, the sequence set 
of the alternate index and the entire primary index are used. 

If a nonunique alternate key is encountered during skip-sequential
retrieval operations, the first logical record indicated in the 
alternate index record in the data component of the alternate index is 
presented in response to the GET macro, and an indication is given that 
additional records exist. These must be retrieved by keyed sequential
processing. 

When a relatively small number of transactions that are in primary 
(or altemate) key sequence are to be processed, skip-sequential 
proceSSing can be used to retrieve the records directly by key.. Since 
the primary keys presented are in sequence, the access method uses only 
the sequence set index level of the primary index to locate the desired 
records. Skip-sequential processing can be used to avoid retrieving the 
entire data set sequentially to process a relatively small percentage of 
the total number of records, or to avoid using direct retrieval of the 
desired records, which causes the entire primary index to be searched 
for each record. Skip-sequential processing by alternate key offers the 
advantage of eliminating a search of the index set of the alternate 
index for each record to be processed. 

Keyed direct processing of a key-sequenced data set is like direct 
proceSSing of an ISAM data set. I t can be used to retrieve, update,
delete, and add logical records. A key value (primary or altemate) 
must be presented by the user for each logical record that is to be 
processed. For a retrieval operation, the key can be the exact key of 
the desired record, a generic key, or a key that is less than or equal 

OS/Virtual storage 1 Features Supplement 

---~----- ------~ 

116 



.. 


.. 

., 

to the key of the desired record. In ISAM, direct retrieval by exact 
key value only is supported. Positioning by generic key or key less 
than or equal to the desired record is supported but the record must be 
retrieved sequentially via a separate operation,. 

The entire primary index (or an entire alternate index and the entire 
'primary index) is searched to locate the requested logical record during 
keyed direct processing,. As for keyed skip-sequential processing, if a 
nonunique alternate key is specified, only the first logical record with 
that alternate key is presented and the user must obtain the others via 

.keyed sequential processing,. 

Addressed sequential can be used to process the logical records of a 
key-sequenced data set in ascending (forward) or descending (backward) 
RBA sequence.. It can be used to retrieve, update, or delete logical 
records (GET, PUT for update, and ERASE macros). Addressed sequential 
cannot be used to add logical records to a key-sequenced data set or to 
change the length of existing variable-length records. 

The user need not supply RBA's during addressed sequential 
processing. VSAM automatically retrieves records in RBA sequence. 
Logical records will not be presented in primary key sequence if there 
have been any control interval or control area splits. Positioning to a 
given RBA can be accomplished using the POINT macro, as for keyed 
sequential processing. 

Addressed direct proceSSing enables the logical records of a key
sequenced data set to be processed directly by user-specified RBA's. As 
for addressed sequential processing, only retrieval, update, and delete 
operations can be performed. Additions and record length changes can
not be made using addressed direct processing. 

sequential and direct processing of a key-sequenced data set by 
control intervals is also supported•. Skip-sequential processing by 
control intervals is not supported. For sequential access, records are 
processed in ascending sequence by control interval. Backward 
processing is not permitted. Each GET causes the next control retrieval 
in sequence to be presented. For direct access, the RBA of each desired 
control interval must be supplied by the user. Requests can be 
synchronous or asynchronous and control intervals can be, p.r()cessed in 
the I/O buffer (except when chained RPL"S are used) or in q work area. 

The GET, PUT for update, POINT, CHECK, and ENDREQ macros can be used 
with control interval processing. When updating using control interval 
access, a control interval can be rewritten witho~t first having been 
retrieved. The ERASE macro cannot be used nor can PUT macros be issued 
to load or extend a key-sequenced data set when control interval 
processing is utilized• 

ProceSSing of the primary ~ alternate index data set for.! m
sequenced data set~ The primary index component of a key-sequenced data 
set can be processed independently from the data component,. If a key
sequenced data set cluster is opened, the GETIX and PUTIX macros can be 
used to process the primary index. Index records can be retrieved and 
updated (GETIX for update fOllowed by a PUTIX for update). Only direct 
processing by control interval can be used with the GETIX and PUTIX 
macros. The RBA of the desired mntrol interval must be specified with 
each reques~ 

The primary index of a key-sequenced data set can also be processed 
using GET and PUT macros,. In this case the index component (data set) 
must be opened alone,. The primary index can then be processe$l like an 
entry-sequenced data set. It can be accessed using addressed or control 
interval processing. The alternate indexes for a key-sequenced data set 
can be processed in the same ways as can a key-sequenced data set. 

OS/Virtual storage 1 Features supplement 117 



ProceSSing summary. Table 90,.30.1 summarizes the primary types of 
processing supported for key-sequenced VSAM data sets (control interval 
processing is not in~luded in the table). 

Table 90.30.1. 	Types of processing supported for VSAM key-sequenced data 
sets. (An entry indicates whether the access type is 
supported, a key or REA is required, and keys or REA"s 
must be presented in sequence. Where keyed processing is 
specified, the key can be the primary or an alternate 
key.) 

Type of 
Access 

Retrieval 
only (GET 
without 
uf?date) 

Retrieval and 
update, 
including 
changing 
record size 
(GET and PUT 
for update) 

Create and 
add (PUT 
without 
update) 

""-~. 

", 

Delete 
(ERASE) 

Reyed 
sequential 
(forward 
and 
backward 
processing) 

No keys 

required 


No keys 

required 


, 

Creation 

using 

primary 

key only. 

Forward 


. processing 
only. NO 
keys 
required. 

No keys 

required 


Keyed Skip-
Sequential 
(forward 
processing 
only) 

Reys in 
ascending 
sequence 

KE;Ys in 
ascending 
sequence 

Keys in 
ascending 
sequence 

Keys in 
ascending 
sequence 

Keyed 
Direct 

Keys not 
in 
sequence 

Keys not 
in 
sequence 

Keys not 
in 
sequence 

Keys not 
in 
sequence 

Addressed 
Sequential 
(forward 
and 
backward 
processing) 

No REA'S 
required 

Retrieval 
and update 
only. No 
REA"s 
required. 

No REA's 
required 

Addressed 
Direct 

REA'S not 
in 
sequence 

Retrieval 
and update 
only. REA's 
not in 
sequence. 

REA's not 
in sequence 

.. 


~ 

/\ 
, 
,~ .

::> 

Entry~Sequenced Data set organization and proceSSing 

The logical records in an entry-sequenced data set are ordered by the 
sequence in which they are presented for entry into the data set. Free 
space cannot be left within the control intervals and control areas of 
an entry-sequenced data set when it is defined. Additions to an 
existing entry-sequenced data set are placed in any available space left 
at the end of the data set. Extents can be added to an existing entry
sequenced data set if secondary allocation was specified when the data 
set was defined. Although an entry-sequenced data set consists only bf 
a data component and cannot have a primary index, it is .still referred 
to as a cluster. 

OS/Virtual Storage 1 Features Supplement 118 



.. 


,.----.,..,. 
\ 

All logical record extents of an entry-sequenced data set must be 
placed on volumes of the same direct access type. However, an entry
sequenced data set and its alternate index data set(s), if any, can be 
placed on different direct access device types. The index component and 
the data component for an alternate index can also be on different 
device types. 

The ERASE macro is not supported for entry-sequenced data sets. A 
record that is to be deleted must be marked deleted with an 
installation-defined identification. Space made available by marking a 
record deleted is not reclaimed. The space occupied by a record marked 
deleted can be reused only by storing a new record of the same size in 
the space. 

Available space at the end of the data set is also used when the size 
of an existing record in a variable-length entry-sequenced data set is 
to be changed.· The existing record must be marked deleted by the user 
with an installation-defined deletion identification, and the lengthened 
or shortened record must be written at the end of the data set. 

The only time a change is made in the RBA of a logical record in an. 
entry-sequenced data set is when the size of the logical record is 
changed by the user.. Other records are not affected since the changed 
record is moved to the end of the data set. An entry-sequenced data set 
can also be moved from one direct access device type to another, and 
programs need not be modified because the RBAS of the logical records do 
not change. 

Alternate indexes for entry-sequenced data sets. Optionally, one or 
more alternate indexes can be built for an existing entry-sequenced data 
set. An alternate index cannot be built for another alternate index 
data set or for an entry-sequenced data set with the REUSABLE option 
assigned. An alternate index for an entry-sequenced data set has the 
same physical structure, logical organization, and attributes as an 
al ternate index for a key-sequenced data set, and both types of 
alternate index are created and maintained using the same techniques 
(see alternate index discussion under "Key-Sequenced Data Set 
Organization and Processing"). 

The only way an alternate index for an entry-sequenced data set 
differs from one for a key-sequenced data set is that it: contains RBA 
values instead of primary keys in its data component. That is. each 
alternate key record in the data component contains one or moreRBA'·s of 
the logical record(s) in the entry-sequenced data set that contain that 
al ternate key. The REAs obtai ned from the alternate index are used to 
directly retrieve the required logical records from the entry-sequenced 
data set. 

If an alternate index for an entry-sequenced data set is to be 
created and/or maintained by the user instead of by using BLDINDEX and 
VSAM upgrade set support, REA values must be obtained. Whenever a new 
logical record is placed in an entry-sequenced data set (either during 
data set creation or when making additions), VSAM returns the REA of the 
record. These RBAs can be gathered and used to create and maintain the 
al ternate index.. An alternate index must be updated only when a new 
record is added to, or deleted from. the base entry-sequenced data set 
or when the size of an existing record is increased or decreased, (a 
record size change causes a change in the REA of the'record). 

Entry-sequenced data set processing. Addressed sequential, addressed 
direct, and control interval processing are supported for entry
sequenced data sets that do or do not contain spanned records~ When 
addres~ed sequential is used. records can be processed 'in ascending or 
descending RBA sequence, using GEl' and PUT macros.. The POINT macro can 
be used for forward Or backward positioning to a specific RBA. For 

( 

.OS/virtual storage 1 Features Supplement 119 



addressed sequential processing, no RBA is given by the user.. VS1\M 
automatically presents records in RBA sequence. 

When addressed sequential is used to process records in ascending RBA 
sequence, existing records can be retrieved, updated (but not changed in 
size), and marked deleted, and new records can be added. Record size 
changes can be accomplished by the procedure described previously. When 
addressed sequential is used to process records in descending RBA 
sequence, records can be retrieved, updated, and marked deleted. New 
records cannot be added and the size of existing records cannot be 
changed. 

Addressed direct processing by user-supplied RBA's can be used to 
retrieve records, update their contents (but not change their size), and 
mark records deleted,. New records cannot be added and record size 
changes cannot be made during addressed direct processing. 

An entry-sequenced data set can be processed ~ control interval 
using addressed sequential or addressed direct (by RBA) access. For 
addressed sequential, only forward processing is permitted,. The control 
intervals in an existing entry-sequenced data set can be retrieved and 
updated (but new control.intervals cannot be added) using sequential or 
direct access and a new entry-sequenced data set can be created using 
sequential control interval processing. GET, PUT, POINT, CHECK, and 
ENDREQ macros can be used. If updating is to be performed, a work area 
must be used.• 

When an alternate index {s created for an entry-sequenced data set, 
the records it contains can be processed using sequential, skip
sequential, or direct processing by the alternate key value,. Records 
ca~ be retrieved, updated (but not changed in size), and marked deleted 
when the alternate index is used to access the entry-sequenced data set. 

An entry-sequenced data set can also be used like a BDAM data set. 
Instead of using an alternate index of REA and control field values to 
process the records directly, a randomizing routine can be used to 
associate the control field of a logical record with an RBA. The 
randomizing routine must include a technique for assigning an alternate 
REA to synonyms (records whose control field converts to the same REA as 
an existing ,.record in the data set). The entry-sequenced data set must 
be preformatted with dummy records before the logical records are placed 
in the data set .. 

Table 90.30.2 summarizes the primary types of processing supported 
for VSAM entry..,.sequenced data sets. Access ~ control interval is not 
included in the table. 

OS/Virtual Storage 1 Features Supplement 120 



r 

Table 90,.30.2. 	Types of processing supported for VSAM entry-sequenced 
data sets. (An entry indicates whether the access type is 
supported, an alternate key or RBA is required, and . 
alternate keys or REAS must be presented in sequence.) 

processing Not Using an processing Using an 
Alternate Index Alternate Index 

Type of 
Access 

Addressed 
Sequential 
(forward and 
backward 
processing) 

Addressed 
Direct 

Keyed 
Sequential 
(forward 
and back
ward 
processing) 

Keyed Skip
sequential 
(forward 
processing 
only) 

Keyed 
Direct 

Retrieval 
only (GET 
without 
update) 

No RBA 
required 

RBAS not 
in sequence 

No keys 
required 

Keys in 
ascending 
sequence 

Keys not· 
in 
sequence 

Retrieval 
ana update 
without 
record 

NO REA 
required 

RBAs not 
in sequence 

NO keys 
required 

Keys in 
ascending 
sequence 

Keys not 
in 
sequence 

size 
changes 
(GET and 
PUT for 
update) 

Create Forward 
and add 
(PUT 

processing
only,. No 

without RBA 
update) required,. 
after end 
of file 

Delete Records Records Records Records 2. Records 
marked marked marked marked.'···., marked 
deleted by deleted by deleted by deleted. by deleted by 
user user user user user 
identifica- identifica- identifica- identifica- identifica..,. 
tiona No tiona RBAS tiona No tion.. Keys tiona Keys 
RBAS not in keys in ascending .not in 
required,. sequence. required. sequence,. sequence,. 

Relative Record ~ set organization and procesSing 

A relative record data set consists of a number of fixed-length 
slots, 1 to N, where Nis the maximum number of records that the data 
set can contain. A slot has a uni que relative record number and can 
contain one logical record. Logical record size and the RBA of a 
logical.record cannot change. 

Each control interval in a relative record data set contains the same 
number of slots,. The record length specified for a relative record data 
set when it is created determines the size of a slot. Free space cannot 
be left within control intervals and control areas when a relative . 
record data set is defined. All extents of the data set must reside on 
the same device type. An index cannot be created for a relative record 
data set~ however, a relative record data set is still considered to be 
a cluster. 

OS/Virtual Storage 1 Features Supplement 121 



Keyed sequential, keyed skip-sequential, keyed direct, and control 
interval processing are supported for relative record data sets. The 
r~lative record number is used as a key'for keyed processing. A 
relative record data set can be created using keyed sequential, skip
sequential, or direct processing,. 

Keyed sequential processing of a relative record data set is like 
keyed sequential processing of a key-sequenced data set,. Records can be 
processed in ascending or descending sequence by relative record number. 
A key value <relative record number) is not supplied by the user. VSAM 
retrieves the records in slot number sequence and returns the relative 
record number of each logical record retrieVed. GET, PUT, and ERASE 
macros can be used to retrieve, update, add, and delete records. The 
POINT macro can be used to position VSAM forward or backward to a given 
relative record number. ' 

When the ERASE macro is issued to delete a record during keyed 
sequential processing, VSAM writes binary zeros in the indicated slot. 
The slot can then be reused. That is, another record of the same length 
can be placed in the slot. During sequential retrieval operations, 
deleted records are not presented to the user. When a new record is 
added during keyed sequential processing, it is placed in the next 
highest available slot relative to the current slot position and the 
relative record number of the selected slot is returned to the user,. 

Keyed skip-sequential apd keyed direct processing can be used to 
retrieve, update, add, and delete records in a relative record data set,. 
For keyed skip-sequential proceSSing, the relative record number of the 
desired records must be supplied by the user in ascending sequence. 
Backward processing is not supported. For keyed direct processing, the 
relative record numbers supplied need not be in any sequence •. 

VSAM converts the supplied relative record number to an REA value to ~ 

determine the control interval that contains the requested record for 
keyed skip-sequential and keyed direct processing. If a deleted record 
is requested, a no-record-found indication is returned. When a record 
is added to the data set, the relative record number of a slot that does 
not contain a record must be specified,. If a slot past the current end 
of file indicator is specified,' VSAM preformats the file from the 
current end--of file up to and including the control interval that is to 
contain thee-new record. 

A relative record data set can be processed by control interval using 
addressed sequential or addressed direct (by RBA) access. The control 
intervals in an existing entry-sequenced data set can be retrieved and 
updated (but new control, intervals cannot be added) using sequential or 
direct access, and a new relative record data set can be created using 
sequential control interval processing. Only forward processing is 
permitted for sequential operations. 

GET, PUT, POINT, CHECK, and ENDREQ macros can be used with control 
interval processing.. If updating is to be performed, a work area must 
be used. A relative reoord data set cannot be extended using control 
interval processing,. 

Table 90,.30.3 summarizes the primary types of procesSing supported 
for a relative record data set.. control interval access is not "included 
in the table. 

as/Virtual Storage 1 Features Supplement 122 



Table 90.30.• 3,. 	 Types of processing supported for VSAM relative record 
data sets. (An entry indicates whether the access type 
is supported, a key is required, and keys must be 
presented in sequence.• ) 

Type of Access Keyed Sequential Keyed Skip- Keyed Direct 
(forward and sequential 
backward processing' (forward pro

cessing only) 

Retrieval only No keys required Keys in ascending Keys not in 
(GET without sequence sequence 
update) 

Retrieval and No keys required Keys in ascending Keys not in 
update without sequence sequence 
record size change 
(GET and PUT for 
update) 

Create and No keys required Keys in as cending Keys not in 
add (PUT sequence sequence 
without update) 

Delete No keys required Keys in ascending Keys not in 
(ERASE) sequence sequence 

VSAM Catalogs 

Unlike :ISAM data sets, all VSAM data sets must he cataloged in a VSAM 
catalog,. :Information required to process a VSAM data set, such as its 
location and phySical characteristics, is contained in the VSAM catalog. 
Non-VSAM data sets that are not part of a generation data group can also 
be cataloged in a VSAM catalog. 

There must be one VSAM master catalog for a VS1 operating system that 
contains VSAM. (Note that a VSAM master catalog cannot be stored on a 
volume in a 3850 Mass Storage system.) Optionally, one or more VSAM 
user catalogs can be defined. Each catalog is an individua! data set. 
The VSAM master catalog data set is cataloged in the VS1 data set 
catalog (SYSCTLG), and each VSAM user catalog has an entry in the VSAM 
master catalog. Each VSAM data set is cataloged in the VSAM master 
catalog or a user catalog, but not both. All VSAM data sets on the same 
volume must be cataloged in the same VSAM catalog. Duplicate data set 
names in the same VSAM catalog are not permitted but a given data set 
name can appear in more than one V~M catalog. 

VSAM user catalogs can be used to reduce the size of the VSAM master 
catalog (to reduce catalog processing time), minimize the effect of a 
damaged catalog, and enable a VSAM data set to be portable from one 
system to another without having to use the access method services 
program to process VSAM master catalogs.• 

The following information is recorded in the catalog record for a 
VSAM data set: 

• 	 Device type and volume serial numbers of volumes containing the data 
set 

• 	 Location of the extents of the data set and secondary allocation, if 
any 

OS/virtual Storage 1 Features Supplement 123 



• 	 Attributes of the data set, such as control interval size, physical
record size, number of control intervals in a control area, location 
of the primary key field fora key-sequenced data set, etc. 

• 	 statistics, such as the number of insertiOns, the number of 

deletions, and the amount of remaining free space 


• 	 Password protection information 

• 	 An indication of the connection between data sets and their 
index(es): the index and data components of a key-sequenced data 
set; the index and data components of an alternate index cluster; 
the alternate index and the base cluster of a path; and an alternate 
index and upgrade set and its base cluster. . 

• 	 Information that indicates whether a key-sequenced data set or its 
primary index has been processed individually (without reference to 
the other) 

A VSAM catalog also contains information regarding the location of 
data spaces and available space on volumes that contain VSAM data sets. 
Therefore, a volume containing a VSAM data set need not be mounted in 
order to determine whether it contains available space. VSAM 
catalog/DADSM routines, instead of OS/VS catalog and DADSM routines, are 
used to process the catalog and to allocate space on VSAM catalog and 
data set volumes. Generatipn data groups of VSAM data sets cannot be 
defined in a VSAM catalog. ltn addition, temporary and concatenated VSAM 
data sets are not supported. 

Several types of entries are used in a VSAM catalog to describe the 
various objects the catalog defines (data sets, available space, etc.),. 
The entry types are cluster, data component, primary index component, 
alternate index component, path, upgrade set, user catalog, non-VSAM 
space or volume, and alias. A given data set may require more than one 
entry type for its description.. A key-sequenced data set, for example, 
requires a cluster, primary index component, and data component entry. 

A VSAM catalog is logically structured as a key-sequenced data. set 
that contains "4-byte keys and variable-length records.. The data 
component is physically divided into two address range areas.. One area 
is the high-address range and the other is the low-address range. The 
index component is phYSically embedded between the two address range 
areas. 

A VSAM catalog can be accessed as a catalog using access method 
services commands and the SHGfCAT, SHOWCB, and TESTCB macros. A VSAM 
catalog can also be opened and processed as a key-sequenced data set. 
Keyed, addressed, and control interval processing are permitted. 

A recovery facility is available for VSAM caealogs that enables VSAM 
data sets and catalog entries for both VSAM and non-VSAM data sets to be 
recovered in the event that a VSAM catalog cannot be read for any 
reason. Use of the recovery facility for a VSAM. catalog is specified 
via the RECOVERABLE attribute. USe of this facility is optional. 

When a catalog is to be recoverable, catalog information for each 
data set described by the catalog is recorded in both the catalog and a 
recovery area on the first volume of the data set on which a data space 
is defined. Thus, each volume identified by a recoverable catalog 
contains its own catalog information. 

A catalog recovery area is automatically reserved on a volume by VSAM 
when the first data space allocation occurs for the Volume,. Initially, 
one cylinder is allocated. If this space becomes filled, one additional 

OS/Virtual Storage 1 Features Supplement 124 



cylinder is allocated each time a cylinder is filled.. A catalog 
recovery area can contain a maximum of 16 cylinders. 

The location of the catalog recovery area is specified in the format 
~ label for the volume and is not indicated in the associated catalog. 
Whenever an entry in a recoverable catalog is updated, the corresponding 
catalog information in the catalog recovery area of the affected volume 
is .also automatically updated. 'Ibis means the affected volume must be 
mounted. 

The EXPORTRA, IMPORTRA, and LISTCRA commands of the access method 
services program are provided to recover catalog' entries and VSAM data 
sets. The EXPORTRA command accesses the catalog recovery area for the 
specifiedVSAM data sets in order to open them and then produce a copy 
of the specified VSAM data sets. Data set and catalog reorganization 
occurs during the rewriting process. The IMPORTRA command is then used 
to reestablish the copied VSAM data set and its catalog entry in a VSAM 

. catalog. For non-VSAM data sets, the EXPORTRA command extracts data 
from a catalog recovery area that can be used ~ the IMPORTRA qommand to 

. redefine the non-VSAM data set in a VSAM catalog. 

The LISTCRA command can be used to list the entire contents of one or 
more catalog recovery areas or to list only those entries that do not 
have a.corresponding entry in the specified VSAM catalog. 

The RESETCAT command can be used instead of EXPORTRA and IMPORTRA to 
recover a catalog ~hat is inconsistent with the catalog recovery areas 
of the volumes it defines. The RESETCAT command processes only the 
r.ecoverable catalog and its associated catalog recovery areas; that is, 
no movement of the data sets defined in the catalog occurs.• 

RESETCAT can be used to synchronize the entries in a recoverable 
catalog to the existing level of all the volumes it describes or to a 
previous level using a restored backup copy of the unusable catalog or 
restored backup copies of the associated catalog recovery area volumes, 
as appropriate. When RESETCAT is used, all catalog entries are reset. 
Selective resetting of specific entries is not permitted. The 
EXPORTRAIIMPORTRA method can be used to selectively repair specific 
catalog entries. 

A master or user catalog in one VS1 or VS2 operating sys~em can be 
shared with another VS1 or VS2 operating system as a 1l\aster or user 
catalog with one exception. A master catalog in oneVS2 operating 
system can be shared with another VS2 system only as a user catalog (not 
as a ·master catalog).. catalog management routines control this sharing. 

Access Method Services Program 

The access method services general purpose, multifunction service 
program is provided to support functions required to create, maintain, 
and back up VSAM data sets. Facilities to convert ISAM and SAM data 
sets to VSAM organization are also included.. The access method services 
program is invoked via a calling sequence and the functions desired are 
requested via a set of access method services commands. 

In VS1, the calling sequence and commands can be placed in the input 
stream or issued within a proceSSing program. The ATTACH, LINR, LOAD, 
or CALL macro can be issued in a program to invoke the access method 
services program. 

The access method services program is used to: 

• 	 Define and allocate direct access space for all VSAM data sets and 
all VSAM catalogs. The DEFINE function must be used to describe a 
VSAM data set or catalog before any data is placed in the data set 

OS/Virtual Storage 1 Features Supplement 125 



or the catalog. The DEFINE function is alSo used to define paths 

and data spaces and to catalog non-VSAM data sets in a VSAM catalog. 


• 	 Create, reorganize, and back up VSAM data sets. Input to the REPRO 
function can be an ISAM, SAM, or VSAM (key-sequenced, entry
sequenced, or relative record) data set,. The output can be a VSAM 
(key-sequenced, entry-sequenced, or relative record) or SAM data 
set. A range of records that are to be processed can be specified 
for the input file (by key, REA, or relative record number). When 
the input and the output organizations are different, conversion 
occuxs. The REPRO function, therefore, can be used to convert an 
ISAM data set to VSAM key-sequenced format, initially create a V~M 
data set from sequenced records, merge new logical records into an 
existing VSAM data set, and reorganize a VSAM data set,. 

• 	 Create a backup copy of a VSAM catalog and reload it if necessary. 
The REPRO function can be used to unload a VSAM catalog to a SAM 
data set or a VSAM key-sequenced or entry-sequenced data set. The 
copy cannot be used as a catalog but can be unloaded (using REPRO) 
into a VSAM catalog if the original catalog becomes unusable. The 
copy can be reloaded to an earlier or later version of the original 
catalog that was unloaded or to a newly defined catalog. 

• 	 Create an alternate index for a key-sequenced or entry-sequenced 
data set,. Multiple alternate indexes for the same data set can be 
built at the same time, 

• 	 Print all or the specified range of logical records of a SAM, ISAM, 
or VSAM data set or a VSAM catalog,. Three formats are supported: 
each byte printed as a single character, each byte printed as two 
hexadecimal digits, and a combination of the previous two (side by 
side). 

• 	 Maintain VSAM catalogs (alter, delete, or list catalog entries). 
Certain characteristics of a VSAM data set can be modified by 
altering the catalog entry for the data set. 

• 	 Delete data sets, data spaces, indexes, and catalogs and make the 
space available for reallocation. The freed space is overwritten 
with bin~ry zeros if the erase option is specified. The DELETE 
function is also used to delete paths and uncatalog non-VSAM data 
sets,. 

• 	 Perform processing required to make a VSAM data set portable from 
one system/370 to another if a VSAM user catalog is not available. 
The EXPORT command is used to copy a VSAM data set (any 
organization) to a tape or disk volume as a sequentially organized 
data set,. Required information is extracted from the catalog entry 
for the data set and written on the transporting volume as well. 
The IMPORT command is used to create a VSAM data set and its catalog 
entry from the data set created by an EXPORT command. 

Exportation can be· temporary or permanent. If it is temporary, a 

copy of the data set is retained in the exporting system. Thus, a 

copy of the data set exists in both the exporting and the importing 

systems. If exportation is permanent, the catalog entry and space 

for the data set are deleted from the exporting system so that the 

data set is contained only in the importing system. 


EXPORT and IMPORT are also used to disconnect a VSAM user catalog 
from one VSAM master catalog and catalog it in another VSAM master 
catalog. In this case, the volume containing the VSAM user catalog 
is transported from one system to another without copying.. .~ 

as/Virtual Storage 1 Features Supplement 126 



• 	 Create backup copies from VSAM data sets. The EXPORT command is 
used to create the backup copy (as for exportation) and the IMPORT 
command is used to load the backup copy into the system if 
necessary. 

• 	 Verify the accessibility of an existing VSAM data set (using the 
VERIFY command). This function involves checking for valid end-of
file or end-of-key-range information in the catalog entry for a VSAM 
data set.. If the catalog information does not agree with the actual 
end-of-file or end-of-key range in the data set, the catalog 
information is updated. . 

• 	 Perform catalog recovery functions using the EXPORTRA, I MPORTRA,and 
LISTCRA commands or the RESETCAT command, as previously described 

• 	 Convert \entries in the OS or OS/VS system catalog to entries in an 
existing VSAM master or user catalog, using the CNVTCAT command 

• 	 Read checkpoint data sets to identify the tape data sets that were 
in use at the time each checkpoint was taken. The CHKLIST command 
causes the follOwing to be listed for each tape data set open at the 
time of the identified checkpoint: data set name, DO name, type of 
unit on which the volume was mounted, sequence number of the mounted 
volume, and volume serial numbers of the mounted volumes.. This 
information identifies the tape volumes needed for a restart. 

, 
Since VSAM data sets must be cataloged, and the access method 

services program must be used to define and allocate spaoe for VSAM data 
sets, a minimum number of job control parameters for DD statements are 
used by VSAM. 

Three new DD statement keywords are defined for VSAM. The 00 names 
JOBCAT and STEPCAT are provided for specifying the VSAM user catalogs 
available to a job or job step, respectively.. The AMP .parameter is 
provided for overriding ACB, EXLST, and GENCB parameters that are 
specified in the processing program, supplying missing ACB or GENCB 
macro operands, indicating checkpoint/restart options, specifying lSAM 
interface options, requesting storage dumps of VSAM access method 
control blocks, and indicating that the DD statement defines a VSAM data 
set under certain conditions (DUMMY specified in the D:o;::st,at,ement, for 
example). di no; .. 

Password Protection 

An expanded password protection facility is supported for VSAM. 
Optionally, passwords can be defined for clusters, cluster components 
(data component and index component), alternate indexes. paths, and VSAM 
catalogs.. Passwords are kept in VSAM catalog entries,. The password can 
be supplied by the programmer via the ACB. If password protection is 
indicated for a VSAM, data set and the ACB does not specify a password or 
specifies it incorrectly, the operator must supply the correct password
in order for the data set to be opened. Up to seven retries can be 
made,. 

Multiple levels of protection are provided: 

• 	 Full access, which allows access to a data set, its index(es), and 
its catalog entry. Any operation (read, add, update, delete) can be 
performed on the data set and its catalog entry.. The master . 
password of the base key-sequenced data set must be specified when 
an alternate index is to be created for the base. 

• 	 Control interval access, which allows the user to read and write 
entire control intervals using the control interval interface. All 

OS/Virtual storage 1 Features Supplement 121 



read r write, and update operations can be performed at the logical

record level as well. This facility is not provided -for' general use 

and should be reserved for system programmer use only. 


• 	 Update access, which allows logical records to be retrieved, 

updated, deleted, or added. Limited modification of the catalog 

entries for the data set is permitted (definition of new objects and 

alteration of" existing objects) r but an entry cannot be deleted. 


• 	 Read access, which allows access to a data set for read operations 

only. Read access to the catalog entries of the data set is 

permitted also. No writing is allowed. 


A password can be defined for a given VSAM data set for each level of 
protection: master password, control interval access password r read
write-add-delete password, and read-only password. When multiple 
passwords are defined for a data set, the password given when the data 
set is opened establishes the level of protection to be in effect for 
this OPEN. 

AuthOrization to process a VSAM data set can be supplemented ~ a 
user-written security authorization routine,. If supplied. such a 
routine must reside in SYS1 ,.LINKLIB. It is entered during OPEN 
processing after password verification has been performed ~ VSAM, 
unless the master access password was specified. A user security 
authorization record of up.to 255 bytes maximum can also be added to the 
catalog entry for the data s~. This record can supply data to the 
user-written security authorization routine during its processing. 

Data Set Sharing 

A VSAM data set can be accessed concurrently by two or more subtasks 
within the same partition and two or more job steps (partitions) when 
DISP=SHR is specified for the VSAM data set ~ each job step. Both 
types of sharing can be used for a VSAM data set at the same time. The 
type of data set sharing permitted for two or more partitions is
controlled by USing the SHAREOPTIONS parameter of the DEFINE command 
when the VSAM data set is defined. The following types of cross
partition-sharing options are supported: 

• 	 The data set can be opened by one user for output proceSSing (to 

update or add records) or the data set can be opened by multiple 

users for read operations only. Full read and write integrity is 

provid¢d'ny'this option (SHAREOPTIONS 1). 


• 	 The data set can be opened by one user for updating or record 

addition (output operations) and by multiple users for read-only 

processing. Since only one user can perform write operations, write 

integrity is provided by this option. However, read integrity must 

be provided by each user since users can read a record that is in 

the process of being updated (SHAREOPTIONS 2). 


• 	 The data set can be opened by any number of users for both read and 

write operations. Data set integrity must be maintained by the 

user. No integrity (read or write) is provided ~ VSAM 

(SHAREOPTIONS 3)·. 

• 	 The data set can be opened by any number of users for both read and 
write operations,. The ENQ and DEQ macros must be issued by users to 
maintain data integrity,. For direct proceSSing operations, VSAM' 
provides a new buffer for eaCh request (SHARIDPTIONS 4). Control 
interval splitting should be avoided when this option is used. -~ 

OS/Virtual Storage 1 Features Supplement 128 



Data set sharing t¥ subtasks within the same partition can be 
accomplished using one DO statement for the VSAM data set or multiple DD 
statements. When a single DD statement is used, multiple subtasks in 
the same partition can perform read and update operations on the V~ 
data set. VSAM uses the exclusive control faciJity to maintain 
integrity during update operations,. The SHR disposition parameter need 
not be specified in order to share a VSAM data set when one DD statement 
is used. However, if DISP=5HR is specified when one DD statement is 
used, both subtask sharing and cross-partition sharing (as described 
above) can be used concurrently. 

When multiple DD statements are used, multiple subtasks within a 
partition can share a VSAM data set using the same o~ions as are 
supported for cross-partition sharing. The DISP=SHR parameter must be 
specified on the DD statements. 

VSAM data sets can also be shared across systems as follows: 

• The 	data set can be opened by any number of users for both read and 
write operations. VSAM provides a new buffer for each direct 
processing request and RESERVE and RELEASE macros must be issued by 
users to maintain data set integrity. All job steps that are 
accessing a VSAM data set concurrently must specify DISP=SHR if data 
set integrity is to be maintained. Control interval splitting 
should be aVOided. 

• 	 The data set can be opened by any number of users for both read and 
write operations. Data 'set integrity is a user responsibility as ' 
VSAM does not provide any. 

NOte the follOwing restriction when DISP=SHR is specified for cross
partition or cross-system sharing, VSAM is providing a new buffer for 
each direct processing request, and users are issuing ENQ/DEQ or 
RESERVE/RELEASE macros to ensure data set integrity (SHAREOPTION 4 is 
speci~ied). VSAM will not allow a control area.split for this sharing 
of a key-sequenced data set. VSAM indicates no space available if an 
attempt is made to add or change the size of a record and a control area 
split is required to p~rform the operation,. 

ISAM Interface Routine 
,~~- ,- -;

The ISAM interface routine is provided as an aid in converting from 
ISAM organization to VSAM organization. It enables existinj programs 
that process ISAM data sets to be used to process key-s~~ced VSAM 
data sets without modification of the ISAM macros. The VSAM data sets 
can be newly created or those that have been converted from ISAM format 
to VSAM key-sequenced format. 

The ISAM interface routine permits VSAM key-sequenced data sets to be 
processed by both ISAM programs and VSAM programs. This capability 
allows existing ISAM application programs to be used and additional 
applications that take advantage of new VSAM facilities to process the 
same VSAM data sets,. The ISAM interface routine can be used in 
Assembler, COBOL, and PL/I programs. The PL/I Optimizing and PL/I 
Checkout compilers and FULL ANS COBOL support VSAM organization 
directly, that is, without use of the ISAM interface routine,. 

The ISAM interface routine operates in conjunction with VSAM access 
method routines. The interface routine intercepts ISAM requests and 
converts them to equivalent VSAM requests. Hence, only functions of 
ISAM that are equivalent to those of VSAM are supported by the ISAM· 
interface routine. There are a few ISAM facilities that the ISAM 
interface routine does not support. These are discussed in detail in 
OS/VS Virtual storage Access Method programmer'ls Guide (GC28-3838). 

OS/virtual Storage 1 Features supplement 129 



Similarly, if VSAM facilities that are not supported by ISAM are to be 

used, an existing ISAM program must be modified to define a VSAM data 

set and to use VSAM macros. Assembler Language macros for lSAM and VSAM ~ 


are not compatible. 


When the ISAM interface routine is used by an ISAM program, existing 
job control for the ISAM data must be modified as appropriate. The ISAM 
interface routine and the access method services program simplify the 
amount of effort required to replace ISAM data set organization with 
VSAM organization within an installation. 

Virtual Storage ReguireJnents. 

VSAM routines, which require 382,800 bytes of virtual storage, are 
.. 

automatically made resident in the pageable supervisor area during 
system initialization when VSAM support is present in a VSl system. 
Virtual storage within a problem program partition is required for VSAM 
control blocks, VSAM buffers, the access method services routines (when 
usedh and ISAM interf?lce routines and control blocks (when used). 

Summary 

Highlights of VSAM when it is compared with ISAM are as follows. 

VSAM provides new featur~s: 

• 	 Three data organizations are supported. 

• 	 Data sets are direct access device-type-independent. 

• 	 Direct access space utilization is maximized by device type by using 

spanned blocked logical records within a control interval. 


• 	 Multiple indexes are supported for key-sequenced and entry-sequenced 

data sets. 


• 	 Additions and index entries are blocked, and disk space requirements 

are therefore reduced. 


• 	 Secondary space allocation is supported so that an existing data set 

can be extended. 


• 	 Free space for additions can be allocated at more frequent intervals 

throughout the allocated extents when a key-sequenced data set is 

created,. 


• 	 Free space reclamation capabilities are expanded considerably. This 

factor can eliminate or Significantly increase the time between key

sequenced data set reorganizations,. 


• 	 Subset mounting by volume serial number is supported for sequential 

process ing.• 


• 	 Records can be retrieved sequentially in descending as well as 

ascending key or RBA sequence. 


• 	 Password protection is extended to provide more levels of protection, 

and user-written security protection routines are supported,. 


• 	 Disk volumes containing VSAM data sets are portabl~ between DOS/VS

and OS/vS,. 


OS/Virtual storage 1 Features Supplement 130 



VSAM provides performance enhancements: 

• 	 Mass insertion processing reduces the time required to insert a 
group of new sequenced records between two existing logical records 
or at the end of the data set. 

• 	 Skip-sequential processing reduces the time required to sequentially 
process a low volume of transactions. 

• 	 TOtal index size is reduced by compressing keys and blocking index 
entries. Index search time is thus minimized. 

• 	 Overflow chains are eliminated. and the time required to make an 
addition to a key-sequenced data set is therefore reduced. 

• 	 The same time is required to retrieve an added record as an original 
record in key-sequenced organization. 

• 	 Index set and sequence set index records can be .replicated to 
Significantly reduce rotational delay when acceSSing index records 
on disk. 

• 	 Index set records. up to a maximum of all index set records, can be 
resident in virtual storage. 

Table 90.30.4 compares the features of VSAM and ISAM as supported in 
OS/VS1. 

OS/Virtual Storage 1 Features supplem.ent 131 



I-' Table 90.30.4. comparison table of VSAM and ISAM facilities for OSlVS1
W 
IV Characteristic 

1. 	Supporting OS environments 

2. 	Direct access devices 
supported 

a. 	RPS supported 
b. 	Track overflow supported 

3. Types of organization 
a. 	Key-sequenced 

0 en 
~ b. 	Entry-sequenced.... 
to; 

rt' 


re .... 
en c. 	Relative record 
rt' 

~ 
-! 
m ... II • Multiple extents and volumes 

for a data set 
a. 	Secondary space allocation~ 

III indicated at creation 
rt' b. Volumes of the same device 

type requiredR m 
fIl 

en 
~ c. 	All vOlumes must be online'tj 
'tj at OPEN regardless of the .... type of proceSSingm 
~ 

d. Free space available ~ 	 within the logical record 
area 

- " ( ) 
-'> 

VSAM -OS/vS1 

VS1 and VS2 (VS2 Releases 1, 1.6, 
and 1.7 support VSAM Release 1 only) 

23111/2319, 3330-series (all models), 
33110/331111 (all models), 3350 (in
native and 3330-c~patibility mode), and 
2305 Models 1 and-Z 
Yes 
No 

Yes 
Records are maintained in ascending 
sequence by a primary key. A primary 
index is always provided. The logical
records and the primary index are 
two separate data "sets. ~e key
sequenced data set contains logical 
records, distributed free space for 
additions (as an option), and 
optionally. the sequence set index level 
of the primary index. one or more 
alternate indexes are optional.
Yes 
Records are sequenced in the order in 
which they are placed in the data set. 
New records are added to the end of an 
existing data set. One or more alternate 
indexes are optional. 
Yes 
Fixed-length records are sequenced
by ascending relative record (slat) 
number sequence. Indexes are not 
supported. 

Yes 

Yes 

Yes for logical record extents.. The 
primary index data set and any alternate 
index data sets can be on a device type
that is different from that which 
contains the key-sequenced or 
entry-sequenced logical records. 
No 
Subset mounting by volume serial number 
is supported for sequential processing 
by RBA. 

Yes (for key-sequenced data sets only). 
within control intervals and control 
areas. Free space is distr ibuted within 

" 	
) 

ISAM - OS/VS1 

VS1 and Vs2 

Same as VSAM 

Yes 
No 

Yes 
Records are maintained in ascending 
sequence by key. An index is provided 
that is part of the I SAM data set. The 
prime area contains logical records, the 
track index, and optionally, overflow 
tracks in each cyl inder for additions. 
A sep"llrate additions area can exist also. 
The cylinder and master index levels are 
a separate extent. Alternate indexes are not 
supported. 

Not supported 

Not supported 

Yes 

NO 

Yes for all the volumes containing prime 
and separate overflow area extents. Index 
levels can be on a device type that is 
different from that which contains prime 
and overflow areas. 

Yes 

Yes, optionally, at the end of each prime 
cylinder. Free space on tracks within 
the prime cylinders can be created only by 

'f 	
)

'" 



o 
Ul 
"<::.... 
I'i 
rt 
re 
I-' 

Ul 
rt 
~ 
III 

IQ 
CIl 

.... 
"l 
CIl 
III 

" ~ 
rt 

en 
Ul 

:g" 
..... 
CIl 

~ 
~ 

.... 
w 
w 

) 	
(1

" ~ 

) 

Table 90.30.4. Comparison table of VSAM and ISAM facilities for Os/VSl (continued) 

Characteristic 

e. 	Data set is direct 
access device independent 

5. 	Key-sequenced organization
data set characteristics 
a. 	Fixed- and variable-length 

logical records 

b. 	Key field is written on 
disk 

c. 	Key field must be embedded 
within each logical record 

d. 	 Key must be fixed length 
e. 	Logical records with 

duplicate keys permitted 
f. 	Physical record sizes 

supported 
g. 	Allocation of logical

records to volumes by key 
range 

6. 	 Index structure 
a. 	Number of levels 

b. 	Nondense index 
c. 	Key field written 

d. 	Logical index records are 
blocked 

e. 	Physical index record Size 

f. 	Keys are compressed in the 
'index component 

g. 	Index record replicated 
on track to reduce 
rotational delay 

h. 	sequence set index level 
placed adjacent to logical 
records for key-sequenced 
organization 

VSAM - OS/vSl 

the tracks of a cylinder. 

Yes 
RBA pOinters are used in the control 
interval and in all indexes 

Yes 
Spanned blocked record format is used 
within a control interval. A logical 
record can span control intervals. 
Original records and additions are 
blocked. 

No 
Physical disk records are written in 
count and data format. 
Yes 

Yes 
No for primary key. Nonunique 
alternate keys are supported• 
512, 1024, 2048, and 4096 bytes only 

Yes 

Two to N tased on the number of index 
entries required and their size. Index 
is a balanced tree with one index record 
in the highest level index. 
Yes ' 
No 
Index records are written in count 
and data disk record format. 
Yes 

Fixed length and' de~ermined by system 

Yes ',':J.. 

Front and rear comPression 
eliminates redundant characters. 
Yes, as an option. 

Optional
If chosen, seqUence Bet index records 
are replicated at the beginning of 
each control interval area. 

ISAM - OS/VSl 

including deleted records when the data 
set is created. 
No 
Record address ID (CCHHR) is used in 
index pointers 

Yes 
Fixed or variable, blocked or unblocked 
record formats are used for prime records • 
Records in an overflow area are always unblocked. 

Yes 
Physical.disk records are written in 
count,,, key, and data format. 
Yes, except for unblocked fixed-length 
records. 
Yes 
t'i 0 

Block size specified by the user up to a 
maximum of the track size. 
No 

Track and cylinder index levels are 
required. Up to three master index 
levels are optional. 

Yes 
Yes 
Index records are written in count, key, 
and data disk record format. 
No 

Data field is always ten bytes. Key field 
is key size. 
No 
Full key is always written. 

No 

Standard 
Track index is always on the first track(s) of 
prime cylinders. 



.... 
w Table 90.30.4. Comparison table of VSAM and 1SAM facilities for OS/VSl (continued) 

Characteristic "" 
i. 	Index resident in virtual 

storage 

j. 	Multiple indexes for the 
same key-sequenced or entry
sequenced data set 

1. 	Types of processing supported
for key-sequenced data sets 
a. 	Sequential retrieval and 

update without presenting
key 

b. Skip-sequential retrieval, 

0 addition, and update (by

C/l keys specified in ascending
"- sequence)<: 

c. 	sequential retrieval and~. 
update by record address

rt" 

i d. sequential updating by 
..... sequenced keys without 

retrieVing records
CIl e. Direct retrieval and
rt" 

update by generic key,
~ equal key, or key greater

III 

IQ than the specified key 
CD f. Direct retrieval and 

update by record address .... g. Additions by direct 
PIj processing 
CD h. Additions by mass insertion 
III using sequential processing
rt" and key-sequenced additions 

i. Concurrent sequential and 
CD direct processing of the 
C/l same data set with a Single

OPEN 

~ 

CIl 
~ 
~ j. Deletions physically 
~ removed ..... 
CD 

i 
~ 

VSAM - OS/vSl 


Standard 

AS many index records as will fit in 

the user-specified buffer can be 

reSident, up to a maximum of all index 

set records. ;, 

Yes 


Yes 

Each logical record is presented in 

ascending or descending primary or 

alternate key sequence. An alternate 

index (and the primary index) or the 

sequence set index level of the primary

index is used. 

Yes 

An alternate index (and the primary

index) or only the sequence set index 

of the pr imary index is used. 

Yes, via RBA 


No 

A record DUSt be retrieved to be updated. 


Yes 


Yes, via RBA 


Yes 


Yes 


Yes 


Yes 

Records are shifted and free space

is reclaimed. 


ISAM - OS/VSl 

Optional

Only the highest level can be made reSident. 

Residence of part of an index .is not supported. 


No 

Yes 
Each logical record is presented in ascending key 
sequence. The track index is used. ProceSSing
in descending key sequence is not supported. 

No 

Positioning via a SETL macro using record 1D 
(CCHHR) is supported. Record must be 
retrieved sequentially after positioning. 
Yes 

Yes for equal key. Gener ic key and key 
greater than specified key can be used in a 
SETL macro for posi tioRing. ']he record IIUSt 
be retrieved separately using sequential mode. 
Yes, via record 1D (CCHHR) 

Yes 

No 

No 
The data set must be closed and reopened to 
change modes. Alternatively two DCB's, 
one for sequential and one for direct 
processing, can be used. 
Limited 
Records are flagged when deleted • 
Deletions are physically removed only if 
they are forced off a prime track or when a 
full track of variable-length records is 
reorganized for an addition. A record that 
i.s marked deleted can be replaced with a 
record of the exact same size. 

) 
() 	 ( ) 

\I 
)

~ 	 .~ 



11 

,1 J1/::> 1l

) 	 ~) ) 


o Table 	90.30.4. Comparison table of VSAM and ISAM facilities for OS/vS1 (continued)
Ul 

.~ Characteristic .... 
k. Variable-length iogical
g records can be lengthened 


or shortened 
~ 	 1. Multiple-request processing 
is supported within aen 

S single program or a program 
and its subtasks 

Ii m. 	 Write check·after a write 
n. 	Locate and move mode~ 

(D 	 processing 
o. 	OPEN validation of end-of

~ da ta indica tion 
I'Ij 

re 8. Checkpoint/restart facilities 
rt 
~ 9. 	 PasswOrd .protectionIi 
(l) 

Ul 


Ul
c: 
~ 
~ 
m 
~ 

a. 	User-written authorization 
routines supported 

10~ Data set sharing 
a. 	Within a partition . 
b. 	Across partitions(DISP=SHR) 
c. 	Across. systems 

11. Da~ set cataloging 

12. Languages supporting 
(for 	VSAM directly and via 
lSAM interface) . 

~ 13. VSAM data set direct input 
UI to 'sort/merge 
W 

VSAM - OS/vS1 	 ISAM - OS/VS1 

Yes, lmd space is' rec'laimed f or', a' - yeS (with space reclamation as 
shortened record. indicated above) 

Yes, with one ACB. 	 Yes, using Il1Ultiple DeB's. 

optional Optional 
Locate mode for read-only operations and Yes 
move mode supported 

_Yes Yes 
Abnormal termination never occurs Abnormal termination can occur during OPEN 
during OPEN processing. processing. 

Yes, same as for ISAM 	 Yes 

Yes ., Yes 
Levels supported for the user are: Two levels of protection are provided. If the 
• 	 Master access - allOWS access to the curren€ password is presented, the data 


data· set, its index data sets,· and set can be opened for read only or for read 

its catalog entry for all operations and write processing. 


• 	 COntrol interval access allows 

read/write of entire control interval 

as well as of individual logical records. 


• 	 Update access - allows access to the 

data set and its indexes, for retrieval, 

updating, deletions, and additions. 

Limited modification of the catalog 

entries for the data set is permitted 

but an entry 'cannot be deleted. 


• 	 Read access'- allows retrieval of 
data records oilly. (no writing). 


Yes No 


Yes Yes 

Yes Yes 

Yes Yes 


Required Optional 
The VSAM master catalog or a The OS/VS data set catalog (SYSCTG) is us~d. 
VSAM user"c'iltalog must be used. There is no special catalog for ISAM data sets • 

. ot,~ ~ •.; W9"lC( 

Assembler Assembler 
COBOL COBOL 
PLiI PL/I 

~FG 

Yes, OS/VS ~ort/Merge only 	 NO 



~ Table 90.30.'. Comparison table of VSM and ISAM facilities for Os/VSl (continued) 
0\ 


Characteristic 


U. Utility proqram functions 

o 
~ 

~ 


i 
11 

..... 
en 
S' 
I't 

~ 
<D ... 
:: 

i 
III 

III 

en 

~ 
~ 
I 
~ 

VSAM - OSIVSl 

Access method services proq ram can 
'perform the following: 
• 	 Define and delete direct access space 

for a VSAM data ~~~ cataloq, index, 
etc. ".'::: ~! 

• 	 List, alter, or"4.~,ete an existing 
VSM cataloq el1t~ ~, 

• 	 create new and't'ebrqanize existing 

VSAM data sets 


• 	 Copy a VSM, lSAM, or SAM disk 
data set to a new SAM data set or into 
an existing VSAMdata set 

• 	 List some or all of the records in a 
VSM, lSAM, or· SAM data set . 

• 	 perform functions required to make a 
VSM data set or catalog- portable from 
one system to another 

• 	 Verify and reestablisb, if necessary, 
the end-of-file marker in one VSAM 
data set 

• 	 Build alternate indexes 
• 	 Process checkpoint data sets to deter

mine the tape volumes required for 
a restart 

lSAM - aI/vSl 

IEBISAM utility can perform the following: 
• 	 copy an lSAM data set from one disk 

volume to another, dropping deletions 
and merging additions into the prime 
area 

• 	 Unload an ISM data s.t onto a tape or 
a disk volume, dropping deletiOns and 
creating a backup s.equential data set 
suitable for input to the load operation 
to re-create the ISAM data set 

• 	 Load a previously unloaded ISAM data 
set from tape o·r disk onto a disk 
volume, merging additions into the 
prime area 

• 	 Retriweand print the records of an 
ISAM data set, except deletions, or 
create f sequentially organized data 
set ~~om active records 

( ) ,. -$ 	
') 

III ~~ 
\. ) 



I 
~ 

.. 

~, 

90:35 PAGE MANAGEMENT 

GENERAL FUNCTIONS 

Page management consists of a set of routines that manage real 
storage and external page storage. Page management implements demand 
paging and provides the programming support required by dynamic' address 
translation hardware for implementation of a virtual storage 
environment,. The following routines are part of the page management
function and are contained in the resident (nonpaged) nucleus: 

• 	 Page exception handler 
• 	 Service interface routine 
• 	 Task switch analysis routine 
• Real storage management routines 

~ • External page storage management routines 

The page exception handler and service interface routines channel 
requests to the task switch analysis routine, which processes certain 
types of requests and passes others to real storage management and 
external page storage management routines for servicing,. The last two 
routines are referred to as the page supervisor, and operate as a task. 
The page supervisor is the highest priority task in the system. 

The page exception handler (PEH) is entered after an impl'icit request 
for a page management service occurs (page translation exception). The 
PEH constructs a control block to describe the request and passes it to 
the service interface routine as an explicit request,. 

The service interface routine receives all explicit requests for page 
management services. The following services can be requested via page 
management macros: 

• Make 	one or more virtual storage pages addressable and mark them 
fixed (PGFIX macro) ,. Available page frames are allocated to the 
virtual storage pages and, if necessary, page~in operations are 
schedUled to cause the contents of the virtual storage pages to be 
loaded. A release parameter can be specified to indicate that a 
page-in is not required, such as when page frames are.:, C4-1ocated for 
buffer space. Pages marked fixed cannot be paged ou.t:], uritil a PGFREE 
macro is issued,. PGFIX requests can also request tl!l,at the real 
addresses of the page frames assigned be made available to the 
requester. 

; 

• 	 Make one or more virtual storage pages addressable (PGLOAD macro). 
The service performed is like that for PGFIX except that the page 
frames allocated are not fixed. The PGLOAD macro provides a page
ahead facility. Teleprocessing application programs can be 
authorized to use PGLOAD to identify the pages required to process 
the current transaction, for example,. 

• 	 Page out one or more pages (PGOUT macro). Unchanged page frames 
specified in a PGOUT macro are placed in the available page queue 
without a page-out while changed page frames are placed in the page
out queue for a paging device. The PGOUT macro performs the 
opposite function from the PGLOAD macro and can be used to cause 
unwanted page~ to be paged out immediately so that their assigned 
page frames become available for reassignment more quickly,. 

• 	 Mark the page frames allocated to the virtual storage pages
indicated unfixed (PGFREE macro). A release parameter can also be 
specified to indicate that the contents of the unfixed pages are no 
longer required, so that a page-out is avoided. 

OS/Virtual storage 1 Features Supplement 131 



• 	 Deallocate t~e page frames allocated to the virtual storage pages
indicated (PGRLSE macro).. The page frames are made available for 
allocation without a page-out. The virtual storage pages specified 
are marked invalid in the appropriate page table entries.• 

Page manag~ment services are implemented primarily for use by control 
program routines. The PGOUT and PGRLSE macros are the only page 
management macros that can be issued by any problem program. The other 
page management macros can be issued by a task if the task operates in 
supervisor state, has a protect key of zero, or is authorized via APF. 

REAL STORAGE MANAGEMENT 

Real storage management routines process requests for the allocation 
and deallocation of real storage (page frames). The technique 
implemented is designed to keep real storage allocated to the pages that 
are deemed to be the most active at any time. Real storage management 
also monitors the availability of real storage and, when it is about to 
become totally allocated such that thrashing will occur, takes steps to 
prevent this condition. 

The status of all real storage in the system is reflected in the real 
storage page table (RSPT), which is located at the end of the resident 
nucleus in the nonpageable area of virtual storage. The RSPT contains 
one 16-byte entry for each 2,K page frame in the system. The entries in 
the RSPT are logically arrang~d in several page status queues. That is, 
entries are connected by pOinters to form various queues. The RSPT 
entries are initialized during system initialization and thereafter 
always reflect the current status of each page frame .• 

An RSPT entry contains the TeB identification of the partition that 
caused the page frame to be assigned, the number of the virtual storage 
page to which the page frame is aSSigned or zeros if the page frame is 
unassigned, a fix counter, flags to indicate its status (such as long
term fixed, being paged in or out, conditionally allocated to a 
nonpageable job step), and queue pOinters that indicate the page status 
queue of which the RSPT entry is a part (if any). 

LOgically, the following page status queues are maintained: 

• 	 Available page queue, which indicates the page frames that are 
available for allocation when page faults and page load/fix requests 
occur. When page frames are released, such as at end of job step, 
they are;~.pl'i.i.ced in this queue. Allocated page frames that are 
considered to be inactive, as per the page replacement algorithm, 
are placed in this queue. An available page count (APe) is 
maintained that always reflects the number of page frames in this 
queue. 

A low threshol9 value and a high threshold value are also maintained 
for the APC.. These two APe threshold values are system-determined 
and cannot be changed by the user. The APe low threshold value 
determines when page frames should be added to the available page 
queue and does not vary during system operation. The APe high
threshold value determines the number of page frames that are.added 
to the available queue and varies during system operation, depending 
on the number of active initiators. The high threshold value is 
changed each time an initiator is activated or deactivated. 

• 	 In-use queues, which reflect the allocated page frames that are not 
fixed. As page frames in the in-use queues are determined to be 
inactive, they are subject to being placed in the available page 
queue. 

OSlVirtual storage 1 Features Supplement 138 



• 	 Logical page I/O-in-progressqueue, which indicates the page frames 
involved in a page-in or page-out operation. RSPT entries for these 
page frames are not actually connected to form a queue. 

• 	 LOgical fix queue, which indicates the page frames that are in lonq
or short-term fixed status (fixed SQA, fixed PQA, nonpaged job step 
pages, nucleus pages, I/O buffer pages, etc.). RSPT entries for 
fixed pages are not actually connected to form a queue. 

• 	 Malfunctioning page queue, which contains the page frames that 

cannot be assigned because the MeH routine indicated they are 

malfunctioning (see discussion in Section 90:40) 


The dynamic storage allocation routine is responsible for SerV1C1ng 
real storage allocation requests,. The allocation technique implemented 
attempts to (1) minimi ze paging requirements associated with the real 
storage allocation process itself, (2) minimize task wait time 
associated with real storage allocation, and (3) keep real storage 
assigned to the most active pages to reduce paging activity for 
executing tasks. 

Real storage is allocated from the available page queue, which 
contains unassigned page frames,. Frequently referenced page frames are 
normally not taken from one task to be allocated to another. If a 
situation arises in which there are no unassigned page frames available 
for allocation to a task, .the real storage release routine is entered to 
make real storage available, by taking allocated page frames from the in
use queues,. If enough allocated page frames that were not recently
referenced are not available to satisfy the request, a partition 
deactivation procedure is entered to make real storage available,. 

Tasks execute on a priority basis and, therefore, requests for page 
frames are received and serviced on a priority basis. However, page 
management does not ever attempt to ensure that a given number of page 
frames are allocated to each task (page frames are allocated to the 
currently most active pages without regard for the task to which they , 
belong),. Unauthorized pageable problem programs do not have any control 
over when or how many page frames are allocated to their pages. 

Real Storage Allocation Procedure 

The following is done to service a real storage allocation request 
(refer to Figure 90.35,.1). The real storage reclama tion routine, a 
subroutine of the dynamic storage allocation routine, determines whether 
a page-in can be avoided because the contents of the referenced virtual 
storage page are still in real storage. This condition exists when the 
page frame last aSSigned to the virtual storage page has not yet been 
reassignetl and the required page is not currently in the process of 
being paged in. If the RSPT entry for a desired page frame is still in 
the available page queue, an in-use queue, the page-out queue, or the 
logical fix queue, page reclamation is possible and the page frame is 
reaSSigned without a page~in. 

Note that when a page frame is deallocated from a virtual storage 
page, the invalid bit in the associated page table entry is turned on. 
However, the user bit is left on and the address of the page frame being 
deallocated is not zeroed. Therefore, a page table entry indicates the 
page frame last assigned to its associated virtual storage page until 
the page frame is reassigned,. 

OS/Virtual Storage 1 Features Supplement 139 



-------------

Service Interlace 	 I nspect level 0 
Routine 	 in-use queue 

Task Switch 
Analysis Routine 

Real Storage 

Reclamation 

Routine 

Dynamic S tarage 
Allocation 
Routine 

Turn reference bit 
off and move RSPTE 
to level N queue 

Place in page-out 	 Place in available 
queue 	 queue 

Yes 	 A /locate page Request 
frame satisfied 

No 

No 	 Request 
Satisfied 

~ 

A /locate page 
Yes Task Deactivation frame and schedu Ie 

Routinepage-in if necessary 

Figure 90.35.1. Flow of the real storage allocation procedure 

OSlViaual storage 1 Features Supplement 140 



If reclamation is not possible, the dynamic storage allocation 
routine attempts to allocate the requested number of page frames from 
the ayailable page queue,. If the number of page frames requested can·be 
allocated from this queue, their RSPT entries are removed from the queue 
and the availabl·e page count is decremented. If a page-in is required 
for a page (user bit in the page table entry is on), the RSPl' entry of 
the page frame assigned is placed in the appropriate page- in device. 
queue. _ othezwise, the RSPT entries are placed in· an in-use queue or in 
fixed status and the allocated page frames are initialized to zero (for 
data security protection). The appropriate page table entries are 
updated to reflect the allocation of real storage. 

If the allocation request does not indicate long-term fixing, page. 
frames are allocated from the beginning of the· available page queue.. If. 
the· request does indicate long-term fixing, an optimization routine is 
entered to select a page frame that will least fragment real storage. 
This is done to leave as much contiguous real storage available as 
possible for allocation to nonpageable job steps,. A page frame close to 
the end of the resident control program or the V=R line that is not 
currently fixed, conditionally allocated to a nonpageable job step, or 
in a page-out operation is chosen as the optimum page frame. If ,the 
optimum frame chosen is currently allocated to a.virtual storage page, 
an available page frame is obtained and the contents of the .selected 
optimum page frame are moved to it,. 

A request for fixed SQA, has the highest real storage allocation 
priority,. If a fixed SQA r~uest cannot be satisfied, the requesting 
task is terminated or system proceSSing terminates, depending on the 
reasons for the fixed SQA request. 

If the available page queue. does not contain enough page frames to 
service a'request, or if the APe reaches or falls below the APe low 
threshold value as a result of page frame allocation, the dynamic 
storage allocation routine gives control to the real storage release 
routine. The APe low threshold is used to indicate the point at which 
the available page queue should be replenished with the least recently 
referenced page frames from the in-use queues. The real storage release 
routine performs the replenishment function,. 

The aim of the real storage release routine is to keep enough page 
frames in the available page queue to enable the dynamic storage 
allocation routine to allocate real storage without the necessity· of a 
page-out operation. This routine calculates the n~r of page frames 
that should be placed in the available page queue in orde~ to satisfy a 
request and raise the APe value to the APC high ~reshold :value that is . 
currently in effect.. A request for the number of page frames calculated. 
is passed to the page replacement algorithm. . ( 

. 
The function of the page replacement algorithm is to replenish the 

available page queue by enqueuing on it least recently referenced page 
frames taken from the in-use queues. If a page-out operation is 
required (change bit for the page frame is on), the RSPT entry is routed 
to the appropriate page I/O device queue,. The technique used to 
determine which page frames to remove from the in-use queues is deSigned 
to ensure that the most recently referenced pages remain in real . 
storage. 

The relative activity of pages is determined by manipulating the in
use queues, which contain the RSPl' entries for page frames that are 
alloea'ted to nonfixed pages. The number of in-use queues that exist at 
any given time is deterlliined by the number of active initiator~. The 
maximum number of in-use queues supported is twelve. "'. 

Each in-use queue is aSSigned a reference level sequence number, 
which can be from 0 to 11. The first in-use queue is assigned. reference 

OS/Virtual Storage 1 Features Supplement 141 



level sequence number 0.. The last existing in-use queue at any time is 
referred to as the level N queue instead of by its actual number•. 

The level 0 in-use queue contains RSPT entries for the page frames 
referenced longest ago and, hence, tends to identify the least active 
pages. The level N queue contains RSPT entries for the page frames most 
recently allocated and referenced and tends to identify the most active 
pages. The level N-l queue indicates the next most active pages, etc. 

When nine or more initiators are active, there are twelve active in
use queues. During system initialization, three in-use queues (level 0, 
level 1, and level 2) are activated to account for the paging activity 
required by system routines in the pageable supervisor area (JES tasks, 
pageable type 3 and 4 SVC routines, pageable reentrant routines, 
pageable access methods, etc.). Thereafter, additional in-use queues 
are activated as initiators are activated and deactivated as initiators 
are deactivated. 

An additonal in-use queue is activated, which becomes the new level N 
queue, whenever one of the following events occurs to cause initiator 
activation: 

• A 	START initiator command is processed to activate an initiator and 
partition. 

• 	 An activated initiator,that is waiting for work receives a job to 
process. 

• A partition in deactivated status is reactivated by the operator via 
a DEFINE command or by the paging algorithm.. 

• 	 RTAM or VTAM is started by the operator. 

The highest level in-use queue (level N) is deactivated (and the 
level N-1 queue is made the new level N queue) whenever one of the 
following events occurs to cause initiator deactivation: 

- A STOP initiator command is processed to deactivate an initiator and 
partition. 

- An activated initiator enters the wait state because there are no 
queued jobs with the class(es) it is assigned to handle. 

-The partition deactivation routine deactivates an operating 
partition. 

• 	 RTAM or VTAM is stopped by the operator. 

A start/stop routine is entered whenever an initiator is activated or 
deactivated. This routine adds or deletes an in-use queue, changes the 
APC high threshold value, and changes certain other values that are used 
by the page replacement algorithm and the page measurement routine, as 
discussed later. 

An RSPT entry is placed at the end of the level N in-use queue when 
its associated page frame is assigned to a virtual storage page. If the 
RSPT is taken from the available page queue, its reference bit is turned 
on. If a page-in operation was required prior to placing the RSPT in 
the level N queue, the reference bit is already on as a result of the 
I/O operation. 

Page management ensures that the reference bit is turned on when a 
page frame is allocated so the RSPT entry will cycle through the in-use 
queues at least twice before it becomes eligible for placement on the 
available page queue. This technique allows a task to use a page frame 

OS/Virtual storage 1 Features supplement 

-----.---~.----------------------------.---- 

"--" 

.. 


.~. 



it has been assigned before the page frame becomes eligible for 
assignment to another page,. 

The activity (frequency of reference) of a page frame is determined 
by inspecting its reference bit setting at certain intervals. The page 
measurement routine is called to measure the frequency of reference of 
page frames in the in-use queues at task dispatch time and system wait 
time. 

Activity measurement is not performed every time a task switch takes 
place. The frequency of measurement is based on the number of active 
initiators. AS the number of active initiators increases, the frequency 
of measurement decreases.. AS the number of active initiators decreases, 
the frequency of measurement increases. In addition, the number of 
problem program task switches that occur between measurements can vary. 

When the page measurement routine receives control from the task 
dispatcher immediately before a ready task is to be dispatched, it 
returns control to the task dispatcher without performing activity 
measurement if the next task to be dispatched is of higher priority than 
the communications task or a subtask of a non-problem program partition. 
If a main task is to be dispatched, the execution frequency value is 
decremented by one and tested. The execution frequency value determines 
the number of main task dispatches that must occur before activity 
measurement is performed .• 

The value to which the ex~cution frequency is initialized is based on 
the number of initiators currently active. Each time an initiator is 
activated or deactivated, the execution frequency value in effect is 
changed by the start/stop routine to reflect a change in the number of 
active initiators. The page measurement routine initializes the 
execution frequency to the appropriate value, using a table of nine 
frequency values for from one to nine or more active initiators. 

Except when the number of active initiators is one, the default 
execution frequency value is equal to the number of active initiators. 
For one active initiator, the default execution frequency value is 3.• 
The execution frequency values to be used for various numbers of active 
initiators can also be established by the operator, using the PAGETUNE 
command.. 

When the execution frequency value is decremented, control is 
returned to the task dispatcher without performing activity measurement 
if the decremented value is greater than zero. If the decremented value 
is zero, activity measurement is performed if (1) .the page supervisor is 
neither the task to be dispatched at this time nor the task last 
dispatched and (2) the number of page frames in the available page queue 
is greater than the low threshold value for the APe. After activity 
measurement has been performed, the execution frequency value is 
reinitialized, based on the number of active initiators, and control is 
returned to the task dispatcher. 

The page measurement routine is called by the page supervisor wait 
routine when both of the follOWing conditions exist: (1) the system is 
to enter the enabled wait state because no task is ready to execute and 
(2) no paging activity is occurring.. Activity measurement is always 
performed at this time, regardless of the current execution frequency 
value. Once measurement is completed, the execution frequency value is 
reinitialized, based on the number of active initiators, and control is 
returned to the page supervisor wait routine. 

The page measurement routine performs activity measurement as 
follows. All the RSPT entries from the reference level 1 queue, if any, 
are moved to the end of the level 0 queue. Then, the RSPT entries in 
all reference level queues except the level 0 queue are shifted to the 

OS/Virtual Storage 1 Features supplement 



next lowest reference level queue (all level 2 entries are placed in the 
level 1 queue, all level 3 entries are placed in the level 2 queue, all 
level N entries are placed in the level N-1 queue). Reference bits are 
not reset. 

Once the level shifting is complete, the reference bit of each RSPT 
entry in the reference level 0 queue, up to a maximum of 30 entries, 
unless there is a partition in dea.ctivated status, is inspected 
beginning with the first entry in the level 0 queue. Only 30 entries 
are inspected in order to limit the time required to process the level 0 
queue. If the reference bit in the page frame associated with an RSPT 
entry is on, indicating the page was referenced during processing that 
occurred since frequency of reference was last measured, the RSPT entry 
is placed at the end of the level N queue and its associated reference 
bit is turned off. If the reference bit is off, the entry is left in 
the level 0 queue. Level 0 then contains entries only for pages that 
have not been referenced since the last measurement (if it contains .. 
fewer than 31 entries and no partition is in deactivated status) .• 

This technique causes page frame entries to move toward the level 0 
queue. If the page to which an RSPT entry is assigned has not been 
referenced during the period of time it takes the entry to get to the 
level 0 queue, the entry is considered to be assigned to an inactive 
page and is subject to being placed in the available page queue. The 
available page queue is not replenished at measurement time. (Figure 
90.35.2 illustrates page activity measurement processing.) 

, 
When the page replacement algorithm receives a replenish request, it 

attempts to satisfy the request by placing the indicated number of page 
frames in the available page queue.. Initially, only page frames 
contained in the reference level 0 queue are eligible to satisfy a 
replenish request. . 

To determine the activity of the pages represented in the level 0 
queue, the page replacement algorithm inspects the reference bits 
associated with the RSPT entries in this queue, starting with the first 
RSPT' entry in the queue.. If the reference bit is on for a page frame, 
its RSPT entry is placed at the end of the reference level N queue and 
the reference bit is turned off. If the reference bit is off, the 
change bit determines where the entry is placed. If the change bit is 
off, the entry is placed in the available page queue. If the change bit 
is on, the entry is placed in the appropriate pa<Je I/O device queue so 
that the contents of its associated page frame can be written out befOre 
the entry is placed in the available page queue. 

Inspection of the level 0 queue RSPT entries continues until enough 
unreferenced page frames to satisfy the request are selected or until 
the entire level 0 queue has been searched. If the request is not 
satisfied by the search of the level 0 queue, the number of in-use 
queues searched thereafter, if any, is determined by the current 
location of the STOP line. Only queues after the level 0 queue up to 
the location of the STOP line are searched to satisfy a ~equest. .. 

The STOP line is set by the start/stop routine in front of the level 
1 queue as long as two or more initiators are active.. If only one 
initiator is active, the STOP line is set after the level N (last) in
use queue. ThUS, when more than one initiator are active, only the 
level 0 queue is searched to satisfy a real storage request,. When only 
one initiator is active, all the in-use queues (level 0 to N) are 
searched.• 

Whenever an initiator is activated or deactivated, the new number of 
active initiators is inspected by the start/stop routine to determine 
whether the location of the STOP line should be moved. The location of 

oS/Virtual storage 1 Features supplement 144 



-----

the STOP line can be controlled by the operator via the PAGE'l'UNE <x>mmand 
instead of by the system, as discussed later. 

Status of page queues and page frames at activity measurement time 

I n-use queues ~A~__________________~~__________________ 

Reference 
level 0 

~ 
o Page 9 0 !'age 18 0 Page 0 o Page 7 

0 Page 19 0 Page 1 o Page 8 o Page 10 

0 Page 20 0 Page 2 o Page 5 Page 12 H-:"';:::"":-:-:-; J'RSPTE'S 
0 Page 21 0 Page 3 Page 6 Page 13 Page 17 


0 Page 22 1 Page 4 Page 11 


Page frames , 0 = page frame reference bit is off 
available 

"'{1 = page frame reference bit is on
for allocation 

Status of page queues and page frames after activity measurement time 

Available Reference Reference Reference 
queue level 0 level 1 level N·1 

~ 1 .~ J 
0 Page 18 0 Page 0 0 Page 9 1 Page 14 

0 Page 19 0 Page 1 0 Page 10 1 Page 15 


0 Page 20 0 Page 2 1 Page 12 1 Page 16 


0 Page 21 0 Page 3 1 Page 13 1 Page 17 


0 Page 22 0 Page 7 1 Page 11 


0 Page 8 


0 Page 5 


Measurement steps 

1. 	Append RSP'l' entries (RSPTEs) from the level 1 queue to the level 0 
queue (RSPTEs for pages 7, 8, 5, 6). 

2. 	 Shift RSP'l'Es on all reference level queues one level to the left, 
except for RSPTES on the level 0 queue, plaCing shifted RSPTE"sat 
the end of the new queue,. 

3. 	Move all RSP'l'Es from the level 0 queue to the level Nqueue that have 
their reference bit on in the associated page frame, and reset the 
reference bit to zero (RSPTEs for pages 4 and 6). 

Figure 90.35.2. Example of page activity measurement 

OS/Virtual Storage 1 Features Supplement 	 145 

---~------------



The page replacement algorithm returns 'Control to the real storage 

release routine and, if the replenish request could not be satisfied, 

indicates how many of the page frames requested could not be released 

(placed in the available page queue or a page I/O device queue). This 

. data is returned to the dynamic storage allocation routine. If the 
request was satisfied, the next queued real storage request is 
initiated. If the request was not satisfied, which signifies that real 
storage could not be allocated unless it was taken away from other 
active pages, the partition deactivation/reactivation module is entered. 

Partition Deactivation and Reactivation 

The primary function of the deactivation/reactivation module is to 

adjust the paging activity of the system to the availability of real 

storage so that thrashing is avoided. When real storage is totally 

allocated (no unreferenced page frames are in the level 0 queue in a 

multiprogramming environment) and a real storage request must be 

satisfied, the deactivation routine attempts to select active page 

frames to satisfy the request such that paging activity is reduced. 


S~.n";.larly. thE reactivation routine does not attempt to reactivate a 
':'" ._...~.,~. until it deter.xines to,.' rec,l storage is not being 


fully utilized so that reactivating a partition will not cause excessive 

paging to recur,. The operator also has· control over certain of the 

parameters that are used by'the deactivation routine and can choose to 

reactivate a deactivated partition if necessary.• 


Note that the deactivation/reactivation module does not issue a 

message to the operator when a partition is deactivated or reactivated 

and no statistics regarding these two actions are maintained.hy the 

control program.• 


The partition deactivation routine attempts to suspend the processing 

of a pageable problem program task (mark it nondispatchable) so that the 

nonfixed real storage currently allocated to the partition in which it 

is executing can be released and made available for allocation. System 

task partitions and problem program partitions with a nonpageable job 

step in execution are not eligible for deactivation. 


,SOl 3':." 

The elig:i!<1>iLity for deactivation of each defined pageable problem 

program partition 'can be specified by the operator during system 

initialization and thereafter whenever a DEFINE command is issued. The 

operator can designate each problem program partition as eligible or not 

eligible for'deactivation. If no specification is made by the operator, 

all partitions except PO are eligible for deactivation. PO is not 

eligible. 


oOnly eligible pageable problem program partitions that (1) contain at 
least one dispatchable problem program task, (2) are not in a disabl.ed 
state, (3) do not have system-must-complete-ENQ"s outstanding, and (4) 
have not caused the system lock to be set are considered for .. 
deactivation. In addition, an eligible partition is not deactivated if 
it currently is the only dispatchable partition. When multiple problem 
program partitions satisfy the criteria for deactivation, the one with 
the lowest dispatching priority is chosen for deactivation. 

When a partition is selected for deactivation, all the tasks in the 

partition are marked nondispatchable. The deactivation routine then 

searches all the in-use queues for page frames that are currently 

allocated to the deactivation partition. ,Since the in-use queues 

contain only the page frames that are allocated to nonfiXed pages, page 

frames that contain fixed pages are not released when a partition is 

deactivated. The page frames found are placed in the level 0 in~use 

queue and their reference bit is turned off.. A count of the number of 


OS/Virtual storage 1 Feature~ supplement 146 

http:disabl.ed
http:maintained.hy


e 

page frames that were released ~ the deactivation routine is maintained 
for use by the reactivation routine. 

The deactivation routine then determines whether a real time interval 
penalty factor should be assigned to the deactivated partition by
calculating the amount of time that has elapsed since the last partition 
was deactivated. No penalty factor is assigned if more than 30 seconds 
have elapsed. Otherwise, a penalty factor of from 1 to 16 seconds is 
assigned to the deactivated partition. This penalty factor is used to 
prevent the occurrence ~f rapid deactivation/reactivation cycles. 

After this assignment, control is returned to the page replacement 
algorithm, which again attempts to satisfy the real storage request•. If 
deactivation of the partition did not release enough page frames to 
satisfy the request, the next lowest priority partition is deactivated 
if it is eligible. 

If no partitions are eligible for deactivation or if deactivation 
fails to make the required number of page frames available, a 
determination of whether any deferred V=R allocation requests are 
pending is made. If such a request is pending, it is overridden, and 
any page frames conditionally aSSigned to the V=R request are made 
available. The operator is notified and can request cancellation of the 
nonpageable job. 

If this procedure does 'not make enough page frames available, the 
task deactivation routine moves enough page frames from the in-use 
queues, starting at the beginning of the level 1 queue, to the level 0 
queue to satisfy the real storage request without regard for their 
reference bit setting. The reference bit in these page frames is set to 
zero. The page replacement algorithm is then recalled to search the 
level 0 queue and place unreferenced page frames in the available queue. 

The reactivation of deactivated partitions is normally performed ~ 
the partition reactivation routine when certain conditions of system 
activity or inactivity exist. However, the operator can also perform 
this function when necessary. The partition reactivation routine, which 
consists of a conditional reactivation portion and an unconditional 
reactivation portion, is entered when both of the follOwing conditions 
exist: (1) the system is to enter the enabled wait state because no 
tasks are ready to execute and (2) no paging activity is in progress.• 
The partition reactivation routine is entered after the page measurement 
routine performs its activity measurement function. 

If the partition deactivation routine determines that no partitions 
are currently in deactivated status, it returns control to the task 
dispatcher and the system enters the enabled wait state. otherwise, 
conditional partition reactivation is attempted. The highest priority 
deactivated partition is reactivated b¥ the conditional reactivation 
routine if certain conditions are met. Only one deactivated partition 
can be reactivated per entry into the partition reactivation routine. 

The highest priority deactivated partition is reactivated (all its 
tasks are marked dispatchable) when the following three conditions for 
conditional reac~vation are satisfied in the sequence in which they are 
listed: 

1,. 	 The real time interval penalty assigned to the deactivated 
partition by the partition deactivation routine, if any, has 
elapsed.• 

2. 	 Another real time interval has eiapsed during wnich paging 
activity met a satisfactory level,. When the oonditional 
deactivation routine determines that the real time interval 
penalty, if any, has elapsed, it establishes a real time interval 

OS/virtual storage 1 Features Supplement 147 



for reactivation based on the number of initiators currently 
active. Associated with each of these nine real time intervals 
is a page transmission value that indicates the maximum number of 
paging operations (total number of page-in and page-out 
operations) that can occur during the associated real time 
interval. 

A table of system-defined real time intervals and associated page 
transmission values for from one to nine or more active 
initiators is used to determine the values assigned. The default 
real time intervals vary from a mininum of 0 to a maximum of 6 
ros. The page transmission value associated with each real time 
interval varies from a minimum of 10 to a maximum of 16 depending 
on the amount of available real storage found during system 
initialization and the slowest direct access device that contains 
a page data set. The operator can change the values used for 
real time intervals and page transmissions ~ issuing the REACT 
system parameter during system initialization or the PAGETUNE . 
command. . 

Once a real time interval and page transmission value are 
established, each time the conditional deactivation routine is 
entered thereafter, it determines whether the real time interval 
has elapsed and the number of paging operations that have ' 
occurred.) If the number of paging operations exceeds the page 
transmission value in effect before the assigned real time 
interval expires, the· real time interval is reestablished and the 
accumulated number of paging operations is reset to zero. 
However, if the real time interval expires and the number of 
paging operations that occurred in the interval is less than or 
equal to the page transmission value, the second reactivation 
condition is deemed to be satisfied. 

3. 	 Enough page frames must be potentially available to satisfy the 
real storage requirements of the partition at the time it was 
deactivated as determined by the reactivation count. Once the 
above two conditions have been met, the conditional reactivation 
routine determines whether the number of page frames in the 
available page queue plus the number of unreferenced page frames 
in tHe'level 0 queue is equal to or greater than the reactivation 
courtt'''humber of page frames for the deactivated partition plus 
the':'APC::'high threshold number of page frames. If so, the highest 
priority deactivated partition is reactivated. 

Each time the conditional reactivation routine is entered and it 
cannot reactivate a partition, the unconditional reactivation routine is 
entered. This routine is designed to prevent the OCOlrrence of a 
potentially long system wait condition because no deactivated partition 
can. be reactivated under the rules of conditional reactivation. First 
the unconditional reactivation routine determines whether there are any 
pages in short-term fixed status. If there are, it determines whether 
all defined partitions are currently deactivated. If so, the highest 
priority deactivated partition is reactivated. 

When the unconditional reactivation routine finds. no pages in ~hort
term fixed status, the indication is that no I/O is in progress.· The 
unconditional reactivation routine enables the CPU for all I/O and all 
external interruptions. If ho such interruption is received within one 
second after the enabling, the system is assumed to be in an inactive 
state and on the verge of entering a long or indefinite wait state. . 
Therefore, the highest priority deactivated partition is reactivated 
wi thout concern for the conditions that must be met for" 'conditional 
reactivation. No reactivation is performed if an I/O or external 
interruption is received within one second. 

Os/Virtual storage 1 Featur~s SupplEment 148 



. r-'\ 
r , 

The operator can cause a deactivated partition to be reactivated. 
, 	This should be done only' in cases in which the partition has been in 

deactivated status for a relatively long period of time and the output 
of the job in the deactivated partition is t;leeded. The operator can 
determine whether a partition is deactivated by using the list fWlction 
of the DEFINE command or issuing a DISPLAY ACTIVE command. Reactivation 
can be accomplished in several ways: ' 

• 	 The operator can enter the SR parameter for the deactiva.ted 
partition in response to a DEFINE command to cause immediate 
reactivation of the partition. Note that if the SR.parameter is 
specified for a partition that is not in deactivated status, the 
partition will become ineligible for deactivation until processing 
of the current job is completed. The partition then returns to its 
previously specified deactivation eligibility status. 

• 	 The operator can place the job queue (all input queues) in hold 
status. As executing jobs terminate, paging activity should be 
reduced, and thereby should cause the reactivation of deactivated 
partitions. 

• 	 The operator can stop an active partition, and this action .should 
cause reactivation to occur as a result of reduced paging activity. 

• 	 The operator can cancel the. job in the deactivated partition, stop 
the deactivated partition, and return the job. to the job queue for 
initiation in another pa~tition. 

Careful consideration should be given to determining which'partition~ 
are to be ineligible for deactivation. Only those_partitions in which 
critical jobs execute should be declared ineligible and at no time 
should all active partitions be'marked ineligible for deactivation. In 
the latter Situation, the page supervisor is effectively, unable to 
prevent a thrashing condition.. In addition, whenever the operator 
determines that a partition should be reactivated, he should make sure 
that there is at least one active partition that is marked eligible for 
deactivation. 

The PAGETUNE command is provided to enable the operat:0~.~o display 
and alter certain of the parameters that are used to cont;R~ partition 
deactivation, page activity measurement, and ,partition r~a~ivation. 
The PAGETUNE command is designed to be us~d only inmultj,programming 
enVironments, that is, when two or more partitions are active ' 
concurrently. The PAGETUNE command can be issued automatically during 
system initialization by including it in a CMDxxxxx ,par~eter 
specification member in SYS1.PARMLIB •. It can also be issued anytime 
during system operation. '!he new values are effective only for the 
duration of the current IPL or until another PAGETUNE command is issued. 

The following operands can be specified in the PAGETUNE command to 
perform the functions indicated: 

• 	 DISPLAY - Displays the current values of the page management 
parameters that can be changed by the PAGETUNE command. It should 
be issued before any of these values are altered. The STOP 
suboperand causes the current location of the STOP line to be 
displayed. The PAGEMEAS suboperand causes the nine execution 
frequency values in effect (for one to nine or more active 
initiators) to be displayed. The REACT suboperand causes a display 
of the nine pairs of real time interval/page transmission values in 
effect (for one to nine or more active initiatorsl~ The STATUS . 
suboperand displays the current number of page frames that are 
available for paging operations,. This count excludes the page 
frames currently allocated to long-term fixed ~ages. 

OS/Virtual storage 1 Features Supplement 149 



• 	 STOP - This operand is used to set the location of the STOP line 

before a level 1 to 9 queue or after the level N queue. Although 

there can be up to twelve in-use queues, setting the stop line 

before the level 10 or 11 queue essentially has the same effect as 

setting it after the level N queue. Partition deactivation is 

effectively disabled when the STOP line is set after the level N 

queue. Note that any partitions that are in deactivated status when 

deactivation is disabled are not automatically reactivated at that 

time. The system STOP line settings can be reinstated as well 

through use of this operand. 


• 	 PAGEMEAS - This operand is used to alter one of more of the 

execution frequency values (for one to nine or more active 

initiators) that determine how frequently the page measurement 

routine is executed at task dispatch time. The execution frequency 

value specified for a given number of active initiators can vary 

from 0 to 99. If a zero frequency value is specified for all nine 
 ..of these values, execution of the page measurement routine at task 
dispatch time is suspended. The default execution frequencies can 
also be reinstated using this operand. 

• 	 REACT - This operand is used to alter one or more of the nine pairs 

of real time interval/page transmission values that are used by the 

conditional reactivation routine. The real time interval can be a 

value from 1 to 9 seconds. The page transmission value can vary 

from 0 to 255. The sy~tem default values can also be reinstated 

using. this operand. Note that the REACT system parameter can also 

be issued during system initialization to establish these values. 

If the REACT system parameter is specified, it causes all nine pairs 

of values to be changed. All the real time intervals are set to the 

value specified in the REACT parameter. All the page transmission 

values are set to zero. The REACI' system parameter can be used, for 

example, to cause the partition reactivation routine to operate as 

it did in Release 1 of VS1. 


Allocation of ~ V=R Area to ~ Nonpageable Job Step 

Real storage allocation requests for nonpageable job steps have the 
lowest allocation priority if they must be enqueued because they cannot 
be satisfied -immediately. Real storage that is allocated to a 
nonpageablejob step must be contiguous, and if a nonpageable job step 
is being restarted, the same page frames previously allocated must 
become available before the allocation request can be satisfied. 

Before passing a V=R storage allocation request to the V=R allocation 
routine, the task switch analysis routine determines whether the request 
is too large to be satisfied,. If allocation of the number of page 
frames indicated in a V=R request would cause the number of page frames 
available for paging operations to be reduced below the minimum 
requirement, a message is given to the operator indicating that the 
request cannot be satisfied. .. 

The V=R allocation routine inspects the RSPT for a contiguous area 
within the V=R area that is large enough to satisfy the request (areas 
between long-term fixed pages). If long-term fixed pages have 
fragmented real storage within the V=R area to the extent that there is 
not enough contiguous real storage to satisfy the request, the operator 
is informed and can reply with a cancel or a retry request,. 

If the required contiguous space is conditionally available (the area 
contains only page frames that are available, allocated but not fixed, 
or short-term fixed), the RSPT entries for the area are considered 
conditionally available and are marked for interception and allocation 
to the current V=R request. Available page frames in the area selected 

OS/Virtual storage 1 Features Supplement 150 



are allocated to the V=R request immediately and the residual allocation 
count, which indicates the number of additional page frames required to 
satisfy the request, is updated. As RSPT entries that are flagged as 
conditionally assigned are intercepted (when a PGRLSE macro is processed 
or when the available page queue is replenished, for example) and 
allocated to the V=R request, the residual count is decremented. When 
the count reaches zero, the V=R allocation request is satisfied. 

Real storage Release 

The task awitch analysis routine processes PGRLSE requests,. The 
entries for the page frames allocated to the virtual storage pages being 
released are taken from the queue on which they reside (in-use or page
out) and placed in the available page queue.. The appropriate page table 
entries are invalidated and the user bit in these entries is turned off. 
A page-out is not required.. In addition, the storage protect key is 
stored in the associated page table entry. 

EXTERNAL PAGE STORAGE MANAGEMENT 

External page storage management routines initiate I/O operations on 
paging devices in response to page-in and page-out requests. They also 
perform required processing after paging I/O operations terminate. Two 
sets of queues are used to maintain control over paging operations: the 
page I/O device queues and the page I/O in-progress queue., 

The page I/O device queues are constructed by real storage management 
routines and they contain page-in and page-out requests. There is a 
page-in and a page-out queue for each direct access device that contains 
a page data set. First-in, first-out queuing is used within the page-in 
queue and the page-out queue for a device. 

All page-in queues have priority over all page-out. queues. The page
in queues for paging devices are arranged in priority sequence according 
to the virtual storage addresses mapped on the paging devices, and are 
followed by page-out queues arranged in the same priority sequence. 
That is, the page-in queue for the paging device whose page data set is 
assigned to the highest addressed paged virtual storage~aa the highest 
initiation priority. The page-in queue for the paging ~eYrce assigned 
to the lowest addressed paged virtual storage (immediately '-above the V=R 
line) has the lowest initiation priority within the page-in queues~ The 
page-out queue for the paging device that is to contain the highest 
addressed paged virtual storage is next in the total paging queue, etc,. 

The page I/O in-progress queue indicates the page-in and page-out 
requests that have channel programs constructed.. Requests are moved 
from the page I/O device queues to this queue as they are selected and 
initiated. 

The page I/O processor routine initiates paging I/O operations in the 
sequence indicated by the page I/O device queues.. Page-in requests for 
a given page device wi+~ a movable arm have priority over page-out 
requests unless the requests can be merged into a single channel program 
because they refer to the same cylinder. 

A nonstandard interface to lOS for page I/O processing is required 
because of the specialized organization used for the page file. 
Therefore, the page I/O processor uses a tailored EXCPVR level to 
initiate paging I/O operations. It constructs its own CCW lists and" 
performs channel program translation using the page dev.ice descriptor 
tables, which are located at the end of the resident control program in 
the nonpageable area of real storage,. Channel programs are constructed 
such that the time taken for paging I/O operatiOns is minimized. 

OS/Virtual storage 1 Features Supplement 151 



Rotational position sensing is supported when present for the paging 
device. 

The number of requests in a paging channel program varies by paging 
device type,. Up to three page requests are combined in 2314/2319 and 
3340 channel programs to ensure that the channel is not busy for too 
long when servicing a paging I/O request to this device type. Up to 
five page requests are chained together in 3330-series channel programs. 
Up to six page requests are placed in a 2305 Model 2 channel program. 
Three nondedicated exposures per 2305 volume are used for paging so that 
three paging channel programs can be active concurrently. For 
performance reasons, page-out write operations are not verified by 
reexecution of the CCW list. 

When a page-in operation completes successfully, its associated RSPT 
entry is placed in the level N queue or in fixed status. The reference 
bit for the real storage page frame is left on but the change bit is 
turned off. The invalid bit in the page table entry for the virtual 
storage page whose contents were paged in is turned off. If a permanent 
I/O error occurs during a page-in I/O operation, the task that required 
the page-in is abnormally terminated. 

When a page-out operation completes successfully, its associated RSP'l' 
entry is placed in the available page queue, unless it was reclaimed 
during the page-out operation or flagged as part of a deferred V=R 
allocation request. The change bit associated with the page frame is 
reset. An unsuccessful page-out operation causes the affected page to 
be long-term fixed so that nO further attempts are made to write out the 
page. (Since virtual storage and external page storage are mapped on a 
one-to-one basis, no other slots on external page storage are available 
for allocation to the page.) The invalid bit in the page table Entry 
for the affected virtual storage page is turned off so that address 
translation can be performed. 

Requesting tasks that were placed in the wait state awaiting 
completion of a page-in operation are made ready after the successful 
completion of a paging operation.. 

.. 


/""'-. 

152 OS/Virtual storage 1 Features supplement 

- ..--.---.--------~---------- ---.---.-------_..- --~ 



90:40 RECOVERY MANAGEMENT 

RECOVERY MANAGEMENT SUPPORT 

The routines included in recovery management support are machine 
check handler (MCH), channel check handler (CCH), alternate path retry 
(APR), and dynamic device reconfiguration (DDR) '. MCH and CCH are 
standard. APR is automatically included in the generated system when 
alternate channels are specified,. DDR is automatically included unless 
specifically excluded by the user during system generation. 

The facilities provided by the MCH and CCH routines are functionally 
equivalent to those supported by OS MFT RMS routines for System/370 
models except for a few new features. MCH routines are structured so 
that a VS1 control program generated for one System/370 model can be 
executed on other system/370 models. When MCH recognizes that it is 
operating on a model other than the one for which it was specifically 
generated, error conditions that require processing by model--dependent 
routines are handled by model-independent routines. 

The SECMODS system generation parameter can be used to inc~de the 
model-dependent environment recording, editing, and printing (EREP) 
routines for each/model on which a VS1 control program is to operate. 

The MODE command is exp~nded in VS1 to enable the operator to 
establish full recording mode for single-bit control storage errors for 
Models 145 and 148. ' 

Extensions to recovery processing after a real storage error occurs 
have been made as well. When an uncorrectable real storage failure 
occurs after the IPL procedure has been completed, Mca determines 
whether the page frame in error is assigned to the resident nucleus or 
fixed SQA. If so, system operation is terminated. Otherwise, if the 
page frame is allocated to a virtual storage page in the pageable 
dynamic area, MCH attempts to isolate the page frame involved so that it 
will not be allocated by real storage management, and an attempt to 
recover the contents of the damaged page frame is made. 

If the page was unchanged before the uncorrectable storage error 
occurred, it is assigned another page frame and paged in again,. If the 
page was changed and it belongs to a user task, the task is abnormally 
terminated. If the page was changed and it belongs to a system task, 
MCH determines whether the task is critical or noncriticaL The system 
is placed in a wait state if the error is aSSociated with a critical 
system task. If the affected system task is noncritical, it is marked 
nondispatchable and system operation continues. 

In all cases, MCH determines whether the real storage error was 
intennittent or permanent. If the error is permanent, the RSPT entry 
for the affected page frame is placed in the malfunctioning page queue 
so that it will not be reassigned. This action is not taken if the 
error was intermittent.

CCH, APR, and DDR routines are alike in VS1 and MFT. DDR does not 
support the swapping of direct access volumes contained on paging 
devices or spooling (JES) devices in VS1. 

POwer Warning feature support, which is not provided for MFT, is a 
system-generation option that is provided for Model 158 and 168 users 
that have the optional Power Warning feature and uninterruptible power 
supplies installed for their systems. When this support is included in 
a generated VSl system and a warning machine check interruption occurs 
as a result of a power disturbance, actions are taken to prevent a 
system termination, if possible, or to save the contents of real storage 

OS/Virtual storage 1 Features supplement 153 

I 



on disk before a termination occurs so that system operations can be 
restarted when normal power is restored. 

Power Warning feature support requires a system to have 

uninterruptible power supplies for only a critical subset of the 

hardware configuration, that is, the central processing unit, all 

channels, two 3330-series drives, and all the paths to these two drives. 

When a system is fully protected by uninterruptible power supplies, 

system termination can be avoided after a power disturbance of short 

enough duration, that is, a disturbance of shorter duration than the 

interval of time during which the system can be powered by the reserve 

power supply. 


When Power Warning feature support is present in the generated VSl 
" control program, two warn data sets, SYS1,. WARNA and SYS1. WARNB, must be 


allocated on two separate 3330-series volumes of the same model (1, 2, 

or 11). These data sets cannot be placed on the system residence volume 

in VS1. Each data set must consist of one contiguous extent of 

cylinders that is large enough to contain the entire contents of real 

storage,. When required, the contents of real storage are dumped to 

SYS1. WARNA, which is the primary warn data set. The alternate warn data 

set, SYS1.WARNB, is used when the primary data set is not accessible. 


The two warn data sets must be placed on two 3330-series drives that 

have an uninterruptible power supply. The 3330-series drives that have 

an uninterruptible supply ,are identified by the user during system 

generation. During system ~itialization, the initialization routines 

ensure that the two warn data sets are mounted on 3330-series drives 

that have uninterruptible supplies and that a channel path to these 

devices exists. The DDR routine, if present, ensures that a volume with 

a warn data set is swapped only to another 3330-series device that has 

an uninterruptible power supply. 


For data security reasons, both warn data sets are always formatted 

during system initialization. The operator is notified if a warn data 

set contains dump data that was not used during a system restart. The 

operator must indicate that this dump data is to be restored or give 

control to a system routine that erases and reformats the warn data set. 

A user-written routine can be included in VSl that will be executed 

before the warn data sets are erased and reformatted. 


When a warning machine check interruption occurs, one of the 

following steps is taken, depending on the user specification at system 

generation for Power warning feature support: 


• 	 A real storage dump routine is entered immediately after the warning 
interruption. This routine dumps the contents of real storage to 
disk and terminates system operations. This option should be chosen 
when an I/O device critical to the operation of the system does not .. 
have an uninterruptible power supply. 

• 	 A timing routine is entered after the warning interruption occurs to 

determine whether the disturbance is transient before any other 

action is taken.• 


When the second option listed above is chosen, a system-supplied 

timing routine executes for an interval of time called the time'delay 

interval. This interval is user-specified at system generation. The 

length of the time delay interval specified should be limited by the 

amount of reserve power provided by the installed uninterruptible power 

supplies. During the time delay interval, the timing routine constantly 

enables the system for warning and all exigent maChine, check 

interruptions. The power disturbance is determined to be transient or 

nontransient, depending on the interruptions received during the time 


~ delay interval after each enabling of the system. 

OS/Virtual storage 1 Features Supplement 154 



If a warning interruption occurs after an enabling, the timing 
routine continues the enabling procedure. The disturbance is considered 
to be transient if a warning interruption is not received after an 
enabling, which indicates normal utility power has been restored. If a 
warning interruption is still occurring at the end of the time delay 
interval, the disturbance is considered to be nontransient,. The 
disturbance is also considered to be nontransient if an exigent machine 
check interruption occurs during the time delay interval. Operation of 
the timing routine terminates immediately after the occurrence of an 
exigent machine check interruption even though the time delay interval 
has not expired,. 

When a disturbance is determined to be transient, the warning 
condition is treated as a repressible machine check condition. MCH logs 
the error and returns control to the VSl supervisor so that system 
operations can continue,. When a power disturbance is found to be 
nontransient, control is passed to a user-written routine, if one 'is 
present, or to the real storage dump routine, which will write the 
entire contents of real storage. in a warn data set. system operation is 
terminated after the dump is taken. 

If a user-written routine is executed after a nontransient power 
disturbance occurs, the routine can determine whether system termination 
is required,. The user-written routine can return control to the VSl 
supervisor, so that system operations continue, or to the dump routine, 
as required. 

When a power disturbance causes a system termination, system 
operations can be restarted, using the contents of the warn data set 
after normal power is restored. The routine that restores the contents 
of real storage is contained in SYS1.LINI<LIB. When the operator 
indicates that restoration of real storage is to occur during system 
initialization, the restore routine is loaded into real storage. It 
reads the contents of the warn data set and places the data in the real 
storage locations from which it was dumped,. The system is placed in a 
disabled wait state after real storage has been successfully restored. 
System recovery and restart procedures can then be performed. 

OLTEP 

OLTEP is a standard feature of VSl and it supports the same functions 
as MFT OLTEP,. In VS1, OLTEP can execute in a pageable partition that is 
a minimum of 128K to control the execution of OLT"s. From 4K to 32K of 
real storage is fixed by OLTEP during the execution of certain OLTS that 
cannot operate in paged mode. A pageable partition of 192K m1D1mum is 
required to execute the logout analysis program for a Model 155 II, 158, 
165 II, or 168 under OLTEP. 

PROBLEM DETERMINATION FACILITIES 

Service Aids 

The service aids in VSl are designed to help diagnose a control or 
problem program failure by gathering information about the cause of the 
failure, formatting and printing the information in a readily usable 
form, and aiding in the development and application of an immediate fix 
for a given prOblem,. 

The following service aids are provided, all of which can operate in 
a pageable partition under VSl control except IMCJOBQD (which is a 
standalone program): 

OS/Virtual storage 1 Features Supplement 155 



• 	 HMAPTFLE is used to apply PTFs to a system. This .. aid also produces 

the job control required to apply the fix. Independent .component 

releases of VS1 are supported (not supported in MFT). HMAPTFLE is 

functionally superseded by the system modification program (SMP), 

which is called HMASMP. 


• 	 HMASMP (the system modification program) supersedes HMAPTFLE and is 

also provided forMFT (Releases 21.0, 21.6, 21.1, and 21.8.). HMASMP 

provides an improved and more comprehensive method of applying 

system modifications (PTF"s, component releases, and user 

modifications) to VSl distribution and system libraries. than does 

HMAPTFLE. 


• 	 HMBLISTreplaces the IMAPTFLS and IMDMDMAP service aids of';MFT and 

produces formatted listings that can be used for system 

serviceability and diagnostic purposes. It can print the following: 


Formatted load module listings 
Formatted object module listings 
Load module map and cross-reference listings 
Map and. cross-reference listings of the system nucleus 
Listings of the data stored in the CSECT identification ,records 

of load modules 
',Load module. map and cross-reference listings showing relocated 

addresses 
LOad . module summarY,data including entry point addresses, module 

att'ributes" andtpe contents of the module "s system status indelf 
Program modifications to a load module library 

• 	 HMASP.ZAP provides the capability of inspecting and modifying' any 

load module ina partitioned data set (PDS) or "any specific:data 

record on a direct access device. It also can be used to dump an 

entire data set, a specific member in a PDS, or any, portion of a 

data .set on a direct access device. In VS1, HMASPZAP can be' 

dynamically invoked from an executing problem program via a:CALL, 

LINK, XCTL, or ATTACH macro instruction (not supported in MFT). 


• 	 IMCJOBQD can be, used.to print the entire or selected contents of the', 

resident job list and SYS1.SYSJOBQE, entire contents of the. 

SYS1.•SYS.wADS~,data.,set, and entire contents of all or sel'ected, SWAnS 

afterc.:.a.::system. failure occurs. SWA'" s cannot be printed using 

IMCJOBQD. ':'An',SVC dump of real storage includes the contents of any:' 

active SWA's. An advantage of this service routine over IMCOOJQD, 

which is ",discussed below, is that it preserves the status of. the 

system' queues; and all of the res ident job list at the time. 0 f a 

system failure. . 


In VS1, the IMCJOBOD service routine is enhanced to allow, the 
operator to selectively print the contents of the local and r.emote 
(RES), output queues on a user basis. The new QlD parameter can be 
specified to indicate the local or remote user for which lMCOSJQD is 
to list the SYSOUT data sets that are queued. For example, the 
queue records for all SYSOUT data sets, only the SYSOUT data sets of 
the specified SYSOUT class, or all the SYSOUT data sets in held 
status in.the output queue for one or more .remote users·can be 
printed,. The queue records for the input jobs queued for s~cific 
remote users or the jobs queued in held status in the input queue 
for all remote users can be printed as well. 

• 	 IHeOS·JOD provides the same printing functions for job queues and 
scheduler control blocks as the IMCJOBQD standalone program. 
However, IMCOSJQD operates as a problem program under VS1 control 
(concurrently with other problem programs, if desired), using (\, 
standard access methods, instead of as a standalone program. 
Therefore, IMCOSJQD can be executed without the necessity of a stop 

OS/Virtual storage 1 Features Supplement 156 



.. 


and re-IPL of the system, as is required when IMCJOBQD is used. The 
other advantage of IMCOSJQD over IMCJOBQD is that it enables the 
operator to re-IPL using different volumes for SYS1.SYSJOBQE and 
SYS1.SYSWADS and execute IMCOSJQD to dump the previous SYS1.SYSJOBQE 
and SYS1.SYSWADS data set. 

• 	 HMDSADMP is a macro instruction that enables a user to generate a 
standalone, high-speed or low-speed real storage dump program. The 
high-speed ver·sion writes the contents of the control registers, 
real storage (including the seven-bit protect key), and, optionally, 
the page file to tape in large blocks (to be printed by HMDPRDMP), 
while the low-speed version prints the contents of the control 
registers and real storage or writes them to tape in unblocked 
printable format so they can be printed by IEBGENER or HMDPRDMP. 
The store status function must be performed by the operator before 
loading a standalone dump program. 

• 	 HMDPRDMP formats and prints a dump tape produced by a high-speed or 
low-speed version of HMDSADMP and the trace data gathered by the 
generalized trace function of GTF. It also can be used to print 
·selected pages from the page file. The VSl HMDPRDMP service aid 
formats a dump produced using a VSl HMDSADMP dump routine only. It 
will not format a dump produced using a VS2 dump routine. 

When the dump is written to a 3800 printing SUbsystem, the 
CHARS=DUMP option can be specified to obtain high-density lines of 
64 bytes instead of 32 bytes and the FCB=STD3 option can be 
specified to obtain high-density pages of 80 lines instead of 55 
.lines. The CHARS=DUMP option applies only to the printing of 

storage and not to the control block portion of the dump. 


• 	 IFCDIPOO initializes, reinitializes, and reallocates the SYS1.LOGREC 
data set, as in MFT. 

• 	 IFCEREPO formats and prints records contained in SYS1.LOGREC and 
creates a history tape, if desired, as in MFT. In VS1, a new SPOT 
CHECK report can be printed from the records in the SYS1.LOGREC data 
set or an accumulation (history) data set. The SPOT CHECK report 
lists all the I/O devices that had a permanent error during the time 
period covered by the error records in the input data set. The 
number of errors that occurred for each day in the time period (but 
not the type) is listed in chronological sequence for each I/O 
device.. The listing represents a summarization of the existing OBR 
and SDR records for each device. The report also lists the total 
number of each type of error record (MCH, CCH, OBR, EOD, etc.) that 
exists in the input data set for the time period. 

• 	 The Generalized Trace Facility (GTF) supports the same functions in 
VSl as those supported by GTF operating under OS MFT or MVT. It 
also supports tracing of VTAM network I/O operations and RTAM I/O 
operations. The full function offered by GTF can be used only in 
systems with 160K or more of real storage. When executing under VSl 
control, GTF uses the hardware monitoring facility and supports 
tracing of page fault interruptions. 

The generalized trace function of GTF is initiated via a START 
command. GTF is a system task and can be executed in a system tas k 
Or a problem program partition of 64K mininum. parameters (events 
to be traced, definition of trace output data set, for example) can 
be supplied to GTF via the START command or a SYS1.PARMLIB member. 
During its execution, the trace function requires a minimum of 22K 
of fixed real storage when trace data is contained in real storage 
and a minimum of 36K of fixed real storage when the data is written 
in a trace data set. If additional trace buffers are defined, more 
real storage is fixed. 

OS/Virtual Storage 1 Features Supplement 157 



- - ----------------------

The trace EDIT function of GTF is a part of the HMDPRDMP service aid 
and is invoked as a problem program via job control. A minimum 64K 
pageable partition is required for its execution. The trace EDIT 
function of VS1 will format only the trace data produced in a VS1 
environment. It will not format data traced using GTF in VS2, MFT, 
or MVT environments. However, MFT programs that use the GTRACE 
macro can be executed under VS1 control without modification. If 
user-written EDIT exit routines are being used in MFT, they may 
require modification for operation in a VS1 environment because of 
differences in the format of trace data for system events. 

While GTF and the current MFT resident trace facility coexist in a 
VSl control program, only one can be active at a time. GTF disables 
the trace facility whenever it activates its own tracing function 
and reenables the trace facility whenever GTF tracing is suspended. 

The storage dump facilities available in MFT are also provided in 
VS1. Real storage and/or the contents of selected areas of virtual 
storage can be dumped in VS1. 

Dynamic Support system (DSS> 

The dynamic support system is a general purpose debugging tool that 
is designed to help locate and temporarily repair a failure in most 
components of the VS1 contrGl program. DSS uses program event recording 
hardware in its interface with the operational VS1 operating system. 
DSS is designed to be .used by authorized personnel, such as an IBM FE 
Programming _Systems Representative. Note that DSS does not support 
Models 138 and 148. 

The DSS user can interface with DSS only via a reqJired primary 
console device type (3210 Modell, 3215 Modell, 3066, Model 158 display 
console) and communicates requests using a DSS language that conSists of 
severalcoromands. Secondary input can be entered via card readers and 
tape units. The SYS1.DSSVM data set is used to contain such things as 
DSS language processing routines, the paging data set for DSS, space for 
the DSS internal dump, and a nucleus swap area. 

The DSS user can: 

• 	 Display any portion of real storage or virtual storage and any 
register or system control block during system operation under DSS. 
Any of the preceding can alsO be altered except DSS, IPL, NIP, the 
resident portions of MCR, and interruption handlers. 

• 	 Monitor hardware events recognized by the PER feature and certain 
program events that are detected using the monitoring feature 

• 	 Stop the operation of the system at a given point, perform 

maintenance procedures, and then continue system operation 


• 	 Save data (register or real storage contents, etc.) accessed during 
DSS activation on sequential devices for later use 

Unauthorized use of DSS must be prevented by installation-designed 
procedures. The primary protection that DSS offers is the fact that 
only the primary system console device can be used for DSS operations. 

OS/Virtual storage 1 Features Supplement 158 



90: 45 LANGUAGE TRANSLATORS, SERVICE PROGRAMS. AND EMULATORS 

SYSTEM ASSEMBLER 
\ 

The System Assembler is a standard component of VSl and is the same 
assembler provided inVS2. It is the only language translator that is a 
standard component of VS1,. Program product and Type I language 
translators that are to be used with VSl must be obtained and added to 
the VSl system.. The system Assembler offers the same functions as OS 
Assembler F and many enhancements. including improved diagnostics and 
extended language capabilities. The system Assembler is compatible with 
OS Assemblers E and F. with a few minor exceptions (see OS/VS System' 
Assembler Language. GC33-40l0) '. The System Assembler is a compatible 
subset of Assembler H. 

The System Assembler supports all the new standard and optional 
System/370 instructions. The System Assembler and the OS Assembler H 
(Release 5) program product are the only OS Assembler programs that 
support all the following System/370 instructions: 

CLEAR I/O SET PREFIX 
COMPARE AND SWAP SET PSW KEY 
roMPARE DOUBLE AND SWAP SIGNAL PROCESSOR 
INSERT PSW KEY FROM ADDRESS STORE CLOCK COMPARATOR 
LOAD REAL ADDRESS STORE CPU ADDRESS 
PURGE TLB STORE CPU TIMER 
RESET REFERENCE BIT STORE PREFIX 
SET CLOCK COMPARATOR STORE THEN AND SYSTEM MASK 
SET CPU TIMER STORE THEN OR SYSTEM MASX 

The System Assembler is packaged to,cause fewer page faults in a 
paging environment than does Assembler F. The -System Assembler can 
operate in a partition of.64K; however, .fo~ more efficient operation. a 
partition of 128K or more is required. ' 

The System Assembler is reentrant., Therefore. it can be made 
resident in the pageable supervisor area and shared bY concurrently 
executing tasks. 

LINKAGE EDITOR 

The VSl Linkage Editor program is a standard componerit of VSl (and 
VS2). It can also operate under OS MFT and MVT.' A minimum pageable 
partition of 64Kis required for its operation under VS1; however, a 
partition of 192K bytes or more is recommended. The performance of the 
linkage editor increases with the availability of adqitional virtual 
storage. A partition as large in size as is practical within a -given 
VSl system (up to a maximum of 999K bytes) should be used to achieve the 
best performance from the linkage editor. 

The VSl linkage editor supports the same facilitieS as OS Linkage 
Editor Fi however, it is designed to operate in a paging environment and 
it also supports two new features that can be ,used to reduce the paging 
and real storage requirements of programs.. . 

One of the new functions supported is ORDER control statements to 
indicate the order in which control sections (CSECTs) ,and common areas 
appear in a program (load module). By' t'he reordering of control .. 
sections, existing OS MFT prograItG can be restructured (withou't a 
rewrite) for more efficient operation in a paging enVironment, if 
desired. 

OS/Virtual Storage 1 Features Supplement 159 



The other new feature of the linkage editor is the ability to specify 
which control sections and, common areas of a load module are to be 
aligned on a 2K or 4K page boundary in virtual storage (via an ALIGN 
statement). This new facility, like CSECT reordering, can be used to 
minimize page faults. 

The VSl linkage editor accepts as input all load modules produced by 
OS Linkage Editors E andf and the object modules that are produced by 
alIOS language translators.. Existing job control statements and 
Linkage Editor E and F control statements are accepted without 
modification except for the SIZE option. 

UTILITIES 

The same utilities that are provided in MFT are available in VSI and 
are updated to support I/O devices supported by VSl tut not MFr. In 
addition, the Analysis program-I (AP-I) is supported in VSl. 

The IEBCOPY system utility is enhanced to allow a partitioned data 
set to be unloaded to a removable volume (tape or disk) and later 
reloaded to the same or a different type disk volume. This utility is 
to be used during a system generation to place distribution libraries 
supplied with the VSI starter system on direct access volumes. The 
starter system, therefore, is independent of the direct access devices 
that will be used during a 'system generation. 

, f 

The IEHDASDR utility is modified to place a user-written or user
supplied IPL program on track 0 of an IPL volume, after the required IPL 
records and volume label(s). This function can be used to place an 
HMDSADMP dump program on disk so that it need not be IPLed from cards or 
tape. The disk volumes used to contain any user-written or user
supplied IPL program must have a track size that is large enough to 
contain the entire IPL program and the IPL records. (The IPL program 
must be totally contained on track 0.) 

Analysis proqram-I (AP-I) 

AP-I is" a problem determination utility program for 3344 and 3350 
Direct Access Storage, which do not have removable data volumes. When 
errors occur on a 3344 or 3350, AP-I can be used to determine whether 
the drive is failing or a problem exists on a recording disk. AP-l 
operates as a job step under VSI control. 

AP-I performs a drive test and then, optionally, a data verification 
test to determine the source of the error. The drive test exercises the 
drive by issuing SEEK, READ, and WRITE commands. Diagnostic messages 
are issued if a failure occurs and the customer engineer should be 
notified,. 

The data verification test issues a read command with the skip bit on 
to each data track in the volume, which prevents the data from being 
read into processor storage.. When an uncorrectable error occurs, the 
appropriateERP is invoked to attempt to correct the error. If the 
error is permanent, diagnostic messages are issued and installation 
recovery procedures should be initiated.. AP-I does not attempt any 
recovery. 

The .AP-I program resides in SYS1.LINKLIB.. It can be invoked using 
standard job control (a TESTDD DD statement identifies the volume to be' 
tested) or an AP-I procedure can be written that enable's the operator .to /\ 
invoke the AP-I program using a START command. . 

OS/Virtual storage I Features supplement 160 



SORT/MERGE PROGRAMS 

The OS Sort/Merge (S734-SM1) and OS/VS SOrt/Merge (S740-SMl) program 
products can be used in a VS1 environment for sorting and merging 
operations.. Both programs can operate in the minimum size virtual 
partition (64K). While the OS Sort/Merge program can operate in 
nonvirtual storage OS environments, the OS/VS Sort/Merge program 
operates only under VS1 and VS2 control. 

The OS/VS Sort/Merge supports the same functions, facilities, and 
options that the OS Sort/Merge supports. In addition, the OS/VS 
Sort/Merge supports features and I/O devices not supported by the OS 
sort/Merge and can also provide better performance via a new disk 
sorting technique for fixed- and variable-length records. 

The OS/VS sort/Merge is compatible with the OS Sort/Merge. 
Therefore, sort/merg~ control statements, job control, and user-written 
exit routines that are used with the OS Sort/Merge can be used with the 
OS/VS Sort/Merge without modification, except when they apply to direct 
access devices that the OS/VS sort/Merge does not support. 

Differences between the OS/VS Sort/Merge and the OS Sort/Merge are 
the following: 

• 	 The OS/VS Sort/Merge supports, as intermediate storage for sorting, 
3330-series Model 11 and· 3340 disk storage units, which are not 
supported by the OS Sort/Merge. The OS/VS Sort/Merge does not 
support, for intermediate storage, 2311 and 2301 direct access 
storage, which are supported for this function by the OS sort/Merge. 
The OS/VS sort/Merge supports up to 100 direct access devices for 
intermediate storage, the specification of secondary space 
allocation for an intermediate file, and noncontiguous intermediate 
work files, when the new disk sorting technique is used. Both 
sort/merge programs support 2314/2319, 3330-series Models 1 and 2, 
and all 3400-series tape units (from 3 to 32) for intermediate 
storage. 

• 	 A new sorting technique is implemented in the OS/VS Sort/Nerge. It 
is used for fixed- or variable-length records when disk storage is 
provided for intermediate work storage. This new technique takes 
advantage of any existing sequencing within the input file that is 
to be sorted. When the new technique is used, the input file is 
never written to interrrediate disk storage if it can be completely 
contained in virtual storage in the partition. 

• 	 The OS/VS Sort/Merge is also designed for more efficient operation 
in a virtual storage environment and is reentrant. These features 
can provide better performance, depending on the ratio of virtual 
storage allocated to the sort/merge and the amount of real storage 
dynamically available for allocation to the sort/merge. 

• 	 The OS/VS Sort/Merge supports key-sequenced, entry-sequenced, and 
relative record VSAMdata sets.as well as QSAM data sets as input 
and output for both sorting and merging operations. Any 1/0 devices 
supported by QSAM or VSAM can be used as the input or output device 
type,. The OS Sort/Merge program supports only QSAM organization for 
input and output data sets. VSAM input data sets cannot be 
concatenated as can QSAM data sets. The minimum amount of virtual 
storage required by the OS/VS sort/Merge is greater than 64K when 
VSAM data sets are sorted. Checkpoints cannot be written when the 
output from a merge operation is a VSAM data set. 

• 	 The OS/VS sort/Merge provides the capability of invoking a merge 
operation within a sorting operation for either a QSAM or VSAM input 

OS/virtual Storage 1 Features 'Supplement 161 



data set.. A new exit is provided that enables a user-written 
routin,e to supply input records to the invoked merge operation. 

• 	 The OS/vS Sort/~~rge can sort records based on a user-specified 
collating sequence, which is not supported by the OS Sort/Merge. 

• 	 The OS/vS sort/Merge handles up to 64 binary or character control 
fields, which can contain a total of 4092 bytes. The OS Sort/Merge 
handles up to 64 binary or character control fields with a total of 
256 bytes. 

• 	 The OS/VS sort/Merge provides the capability of maintaining the 
input order of records with equal control fields. This capability 
is not supported by the OS Sort/Merge. 

• 	 When fixed-length records are being sorted, the OS/VS Sort/Merge 
automatically provides a formatted dump of the sort/merge pro9ram 
when a program failure occurs that terminates sorting operations.• 
This capability is not provided by the OS sort/Merge program. 

INTEGRATED EMULATORS 

The following emulator programs that operate under MFT control will 
also operate under VS1 control: 

• 	 1401/1440/1460 emulator.Version 2 - operates on a Model.135, 138, 

145, 148, 155 II, or 158 


• 	 1410/7010 emulator - operates on a Model 145, 148, 155 II, or 158 


• 	 7070/7074 emulator - operates on a Model 155 II, 158, 165 II, or 168 


• 	 7080 emulator - operates on a Model 165 II or 168 


• 	 709/7090/7094/7094 II emulator - operates on a Model 165 II or 168 


• 	 DOS emulator Version 2 - operates on a Model 135, 138, 145, 148, 

155 II, or 158 to emulate a DOS Version 3 or 4 system (Releases 25, 

26, and 27) 


The functions supported by the integrated emulator programs listed 

above when they operate under VS1 are identical to the functions 

supported by these emulators when they operate under MFT except that VS1 

does not support the 2311 as an emulation device. These functions are 

discussed in appropriate system library publications and in Section 40 

of the 'following system/370 guides: 


• 	 A Guide to the IBM System/370 Model 135 (Ge2 0-1738) 
• 	 A Guide to the IBM System/370 Model 145 (GC20-1734) 
• 	 A Guide to the IBM System/370 Model 155 (GC20-1729) 
• 	 A Guide to the IBM System/370 Model 165 (GC20-1730) 

Version 3 of the 1401/1440/1460 emulator program runs under VS1 (and 
VS2) but not under MFT (or MVT). Version 3 suppor ts the same facilities 
as Version 2 and provides the follOWing new features : 

• 	 Support of multiple-volume 1400 files. Version 2 supports only 

single-volume 1400 files .• 


• 	 Carriage control commands for the 1403 printer are now emulated 

directly on the System/370 printer device. 


• 	 Stacker selection for the 3505 reader and 3525 punch is supported. 

,.---.....\ 


- -- -'" 

OS/Virtual storage 1 Features Supplement 162 



• 	 A 1401/1440/1460 simulator is supported,. This simulator is provided 
for use on Model 165 II and 168 systems for which a 1401/1440/1460 
Compatibility hardware feature is not available. This simulator can 
also be used under VS1 on Models 135, 138, 145, 148, 155 II, and 
158. The 1401/1440/1460 simulator supports the same functions as 
Version 3 of the 1401/1440/1460 emulator and requires 10K more of 
virtual storage. The additional virtual storage is required ~or 
programming that provides the functions of the 1401/1440/1460 
Compatibility feature. 

Version 3 of the DOS emulator program operates under OS/vS1 and 
OS/VS2 (SVS and MVS) control but not under OS MFT (or MVT) control. 
Version 3 supports several new features as well as all the functions of 
Version 2.. In addition to Do.S Versions 3 and 4 (Releases 25, 26, and 
27>, Version 3 of the DOS emulator can emulate DOS/vS systems (Releases 
28 to 32). 

The new features of these two releases of DOS/vS are emulated, such 
as support of a virtual storage environment, five partitions, the 
relocating loader, shared virtual area, generic I/O device assignment, 
3340/3344 and 3350 disk storage (as a restricted, shared, or substituted 
device), block multiplexing, rotational position senSing, and VSAM. The 
3350 is supported in 3330-compatibility mode only. 

Version 3 of the DOS emulator also provides the following new 
facilities: 

• 	 Device SUbstitution,. This facility enables a DOS or DOS/VS program 
that accesses one type of direct access device to access another 
type of (substituted) direct access device when operating under the 
DOS emulator,. program modification is not required. However, the 
DOS system being emulated must support the substituted device (3340 
cannot be used as a substituted device for programs that operate 
under an emulated DOS Version 3 or 4 system, for example). 

Programs that access a 2311 can execute using a 2314, 3330-series, 
virtual 3330 volume of a 3850 Mass storage system, or 3340 device. 
Programs that access a 2314 can execute using a 3330-series device, 
virtual 3330 volume, or 3340 device. Programs that access a 3330
series device can execute using a 2314 device, virtual 3330 volume, 
or 3340 device. Programs that access a 3340 can execute using a 
2314 device, 333O-series device, or virtual 3330 volume. 

• 	 Improvements in operator communication. The following enhancements 
are provided: easier end-of-block specification in response to a 
message from an emulated DOS or DOS/vS system, formatting of OOS or 
DOS/VS messages to distinguiSh them from OS/VS messages and messages 
from all other concurrently operating DOS emulator partitions, 
specification of the alternate DOS/VS supervisor to be used when 
more than one are present on a DOS/vS SYSRES volume via an emulator 
control statement instead of by operator intervention during the 
DOS/VS IPL, and support of user-specified message routing codes 
instead of only one~ 

• 	 Support of local 2260 Display System stations and local and remote 
3210 Information Display system stations that are accessed using DOS 
or DOS/vS BTAM,. 

• 	 Support of the 3540 Diskette Input/Output Unit as an OS/VS device. 
DOS/VS programs that use the 3540 will not run under the DOS 
emulator if they attempt to use a file without issuing an OPEN or 
OPENR macro, issue EXCP macros, use access methods not supported by 
DOS/VS or modified DOS/vS access methods, or attempt to use a 3540 
file created. in the same emulator job. 

OS/Virtual Storage 1 Features Supplement 163 



The following restrictions apply to Version 3 of the DOS emulator in 
addition to the Version 2 restrictions: 

• 	 DOS/VS SDAIDS and OLTEP are not supported. 

• 	 VSAM is supported only on restricted DOS/VS volumes. 

• 	 DOS/VS programs that use the page fault appendage facility are not 

supported. 


• 	 Device substitution is supported only for nonrestricted direct 

access volumes. In addition, when device substitution is used, the 

emulated DOS or DOS/VS program must not contain any device-dependent 

coding other than the DTFs for the devices using the device 

substitution facility, and the initial block size in the DTF must be 

less than the track capacity of the substituted device. 


In general, the I/O devices that are supported by Version 3 of the 
DOS emulator operating under VSl are those that are supported by both 
the DOS or DOS/VS and the OS/VSl releases being used. The following I/O 
devices, which are supported by DOS/VS Releases 29 and up, are not 
supported by the DOS emulator operating in a VS1 environment: 

• 	 1017 Paper Tape Reader 
• 	 1018 Paper Tape Punch 
• 	 1255, 1259, and 1419 Magnetic Character Readers 
• 	 1287 and 1288 optical Gharacter Readers in document mode if response 


times are required for pocket selection 

• 	 2311 Disk storage Drive 
• 	 2321 Data Cell Drive 
• 	 2560 Multifunction Card Machine 
• 	 3203 Printer 
• 	 3504 card Reader /--", 
• 	 3881 Optical Mark Reader 
• 	 5203 Printer 
• 	 5213 Console Printer 
• 	 5425 hultifunction Card Unit 
• 	 7770 Audio Response Unit 

The minimum virtual storage size for a Version 3 emulator program is 
48K bytes. This minimum requirement includes 42K bytes of basic 
emulator program and 6K bytes for emulator control blocks for up to ten 
I/O devices per job step. For each additional device above ten, another 
300 bytes is required. The size of the emulator program is increased 
when it supports the following facilities: 

• 	 Staged devices (2.5K) 

• 	 Shared and/or substituted direct access devices (SK) 

• 	 OS ISAM files (SK) 

• 	 Emulator service aids (20K) 

All the integrated emulator programs for VS1 are pageable. An 
emulator program generated to operate on a Model 135, 145, 155, or 165 
under OS MFT control can operate on a Model 135 or 138, 145 or 148, 
158/155 II, or 16S/165 II, respectively, under VSl control. Emulator 
regenera tion is not required. The integrated emulator programs, 
al though SCPs, are not shipped with VSl. They must be ordered 
separately. 

OS/Virtual Storage 1 Features supplement 164 



90:50 VM/370 HANDSHAKING OPTION 

FUNCTIONS 

VM/370 Handshaking support is an optional feature for OS/VS1 
(Releases 4 and up). This support is designed to improve the 
performance of a VS1 system when it operates in a virtual machine under 
the control of a VM/370 control program that also includes handshaking 
support (Release 2 PLC 13 and· later releases). A VS1 system with 
handshaking support can also execute in a real machine without any 
special operator action. In this situation, handshaking support in the 
Vs1 control program is not activated during initialization processing. 

Handshaking support consists of a communication path between the VSl 
control program and the control program (CP) component of VM/370.. This 
communication path enables a VSl control program to determine during 
system initialization whether it is operating in a virtual machine under 
the control of a CP with handshaking support. If so, the VS1 control 
program eliminates certain functions it normally performs that are 
redundant or inefficient in a virtual machine environment and performs 
other functions that are designed to make it operate more efficiently in 
a virtual machine. Similarly, handshaking support enables CP to know 
that it is VS1 that is operating in a given virtual machine and 
optionally to provide an improved page fault handling capability. 

Any VS1 system determines whether it is executing in a virtual 
machine during system initialization by issuingtbe STORE CPU tD 
instruction. A version code of X' FF' returned to the VS1 control 
program indicates operation in a virtual machine. A VS1 control program 
with handshaking support then issues a DIAGNOSE inStru etion (code X'· 00 • ) 
to obtain the VM/370 extended identification code. If CP returns an 
extended identification code, handshaking support is indicated. 
Failure to return such a code indicates to the VS1 control program that 
this CP does not support handshaking. When the VS1 control program 
determines it is operating under the control of a Cp with handshaking 
support, it activates its own handshaking support during system 
initialization. . 

The handshaking support in VSl and VM/370 provides the following 
capabilities: 

• 	 The closing of CP spool files by VS1 at the end of each job step 

• 	 Improved handling of page faults for the VS1 virtual machine by CP 

• 	 A nonpaged mode of operation for a VS1 system executing in a virtual 
machine 

• 	 Nonexecution by the VSl control program of certain routines and 
privileged instructions that are inefficient or unnecessary in a 
virtual machine environment 

• 	 A BTAM AUTOPOLL enhancement 

CLOSING CP SPOOL FILES 

At the end of each job step and at end of job, VS1 uses the DIAGNOSE 
instruction to issue a CP CLOSE command for each output data set for the 
partition that is being written to a CP spool file•. This action _. " 
eliminates the need for ope~ator intervention, or other· programmed 
means, to close CP spool files at. the appropriate times. 

OS/Virtual Storage 1 Features Supplement 165 



PAGE FAULT HANDLING 

The improved pag~ fault handling capability for a VSl system 

operating in a,virtua~'ma~hin~ is en~bled when the virtual machine 

operator issues a SET PAGEX ON CP command. (The QUERY SET CP oomtnand 


'can be issued to determine the status of the page fau.lt handling 
capability.) ~f thiS 90mtnandis not i,ssued, page faults are handled as 
usual fortheVSl virtual machine. That is, when a page fault occurs in 
the VSl virtual machine, CP places the' entire virtual machine in the 
wait state until CP' processing' of the page fault is completed (the 
required page~in is completed). ,'This means the VSl dispatcher cannot' 
dispatch another readY',task .and,results in the highest priority 
partition receiving most'. of the execution time made available to the V~l 
virtual machine. ' 

When the SET PAGEX ON command is in effect for a VSl virtual machine 
and a page fault oCCUrs, CP does,'not place the VSl virtual machine' in 
the page and execution wait state. Instead, CP stores 'the virtual 
storage address that caused the page fault in location X'90" of virtual 
storage in the VSl virtual machine and presents a program interruption 
with interruption code X'14' .to the VSl virtual machine. 

When the VSl virtual machine recognizes the X'14' interruption oode, 
it places the task that caused 'the. page fault in the wait state and 
attempts to dispatch another ·ready'VSl ~ask. When CP has processed the 
VS1 page fault, it again presents a code X"14" program interruption to 
the VSl virtual mac~ine,after,turning on a,completion bit in the virtual 
storage address field to indicate page fault processing has been 
completed. The VSl control program then posts the affected task ready. 

The improved page fault handling capability can be used to increase 
the amount of multiprogramming that can actually occur in a VS1 virtual 
machine. 

NONPAGED MODE IN' A VIRTUAL MAcHINE 

Nonpaged mode for a VSl system executing in a virtual machine is an 
option for VSl virtual machines that have'a'minimum of 1024R and a 
maximum of 16,320R of virtual storage. Virtual storage size must also 
be 'a multiple of 64K. Nonpaged mode is invoked if the amount of virtual 
storage the VSl system is to support is equal to the amount' of virtual 
storage, in the virtual maChine, which to the VSl system is real storage 
(that is, as far as VSl is concerned, virtual storage size equals real 
storage size),. 

When nonpaged mode of operation is in effect in a VSl virtual 

machine, the follOwing occurs: 


• 	 VSl virtual storage is mapped, to virtual machine virtual storage 
(real storage to the VSl supervisor) on a one-for-one basis and 
paging by the VSl supervisor is not performed. VS1 marks all VSl 
virtual storage pages fixed during system initialization and the 
page file is not opened. Use of' the privileged instructions LOAD 
REAL ADDRESS and RESET REFERENCE BIT (veq frequently used 
instmctions in a paged.~de.of operation) is eliminated.• 

• 	 Page' tables are "not buiit in fixed' PQA for the defined partitions. 
All page tables ~e bUilt in'SQA~ 

• 	 The VSl I/O supervisor treats ail .1/0 requests as if they came from 
a nonpaged,partition and, thus e~iminates channel program' translation 

.. 

~,, 

. 

and indirect data address list' cOnstruction.. 	 '~ 

·OS/Virtual storage ,1 Features Supplement 166 

http:paged.~de.of


• 	 The START I/O appendage used by JES issues LOAD ADDRESS instructions 
(which are not privileged) instead of LOAD REAL ADDRESS instructions 
(which are privileged) and does not have to construct indirect data 
address lists since its I/O operations are performed in nonpaged 
mode as far as VS1 is concerned. 

The nonpaged mode of operation eliminates duplicate paging support by 
VS1 and enables VS1 to issue fewer privileged instructions.• 

MISCELLANEOUS ENHANCEMENTS 

When a VS1 system with handshaking support executes in a virtual. 
machine, the VS1 control program eliminates certain frequently used 
procedures and instructions that are redundant or less efficient in a 
virtual machine environment, as follows: 

• 	 The INSERT STORAGE KEY privileged instruction is not issued. 
Instead VS1 maintains a table of the protect key value assigned to 
each virtual storage page. 

• 	 Seek separation support (which is automatically provided by CP) for 
2314/2319 direct access storage facilities is not performed. 

• 	 Execution of the ENABLE/DISABLE sequence in the I/O supervisor is 
eliminated. 

• 	 The issuing of a TEST CHANNEL instruction before the issuing of each 
START I/O instruction is eliminated. 

The enhancements above result in a reduction in the CPU time used by 
the VS1 control program and the CPU time used by CP to handle privileged 
instructions issued by the VS1 control program. Reducing the total 
number of privileged instructions issued in a virtual machine is one of 
the primary ways to increase performance in a virtual machine 
environment. 

BTAM AUTOPOLL 

The BTAM AUTOPOLL facility is designed to improve the performance of 
BTAM in a virtual machine. VSl informs VM/370 via a DIAGNOSE 
instruction when a BTAM AUTOPOLL virtual CCW string is modified. This 
eliminates the need for this checking in CP,. Operation of BTAM AUTOPOLL 
in VM/370 is controlled by an operator command (SET AUTOPOLL ON/OFF). 
For additional information see Virtual Machine Facility/370 Features 
Supplement (GC20-1757),. 

90:55 OS/VSl ASSIST SUPPORT 

Support of the OS/VS1 Extended Control Program Support (ECPS) feature 
for the Model 158 and the VS1 hardware assist function of the Extended 
Control Program SUpport feature on Models 135 (Model 3), 145 (Model 3), 
138, and 148 is optional in VS1. During system generation the ECPS 
parameter of the CTRLPROG macro can be specified to indicate the CPU 
model to be used and the type of support desired. 

The following options are available: 

• 	 ECPS parameter is not specified. A nucleus that does not support 
the VSl assist function is supported (the default option). 

OS/Virtual Storage 1 Features· supplement 167 



• 	 ECPS=NO is specified. A nucleus that supports the VS1 assist 
function for the specified model is generated. It includes the VS1 
assist privileged instructions. only and not the supervisor code 
these instructions replace. This option provides the best 
performance improvement. 

when this option is selected, the VS1 control program can execute 
only on a system that has the VS1 assist function or OS/VS1 ECPS 
feature installed. Specifically, when ECPS=138R,NO or ECPS=148R,NO 
is specified, the VS1 control program can execute only on a Model 
135-3, 138, 145-3, or 148. When ECPS=158R,NO is specificed, the VS1 
operating system can execute on a Model 158 within the OS/VS1 
Extended control Program support feature installed or a Model 135-3, 
138, 145-3, or 148. In the latter case, the VS1 operating system 
uses only the subset of the VS1 hardware assist function that is 
included in the OS/VS1 ECPS feature for the Model 158. 

If a VS1 supervisor with only the VS1 assist instructions is IPLed 
on a system that does not contain a VS1 assist feature, the system 
enters the wait state with a wait state code that identifies the 
problem. A VS1 supervisor with VS1 assist support issues a VS1 
assist privileged instruction to determine whether the function is 
present • 

• 	 ECPS=YES is specified. A nucleus that supports the VSl assist 
function for the specif~ed model is generated. It includes both the 
VS1 assist instructions and the supervisor code they replace. 
Selection of this option 'makes the VS1 control program capable of 
executing on systems with and without the VS1 assist function 
installed. 

Note that when ECPS=158R, YES is specified and the generated OS/vSl 
control program operates on a Model 135-3, 138, 145-3, or 148, only 
the subset of the VS1 hardware assist function that is inCluded in 
the OS/VS1 ECPS feature for the Model 158 is utilized. This subset 
capability is also utilized when when ECPS=138R,YES or ECPS=148R,YES 
was specified for a VS1 operating system and it is executed on a 
Model 158 with the OS/VS1 ECPS feature installed. 

This option provides a lesser performance improvement because more 
fixed processor storage is required for the resident nucleus and 
additional instructions must be executed during system operation to 
determine whether the VS1 assist instruction or corresponding 
supervisor routine is to be used. (A bit is set in the CVT that 
must be tested.) 

When a VS1 supervisor has both the VS1 assist instructions and the 
corresponding supervisor routines, the operator has the option of 
determining whether the VS1 assist instructions or the supervisor 
routines are to be used for this IPL. A message is issued during system 
initialization to enable the operator to make the choice. 

The VS1 assist support can be utilized when VS1 is operating in 
virtual machines under the control of a VM/370 system, whether or not 
the VM/370 hardware assist function for Models 135-3, 138, 145-3, or 148 
or the Virtual Machine Assist feature for the Model 158 is also being 
utilized. 

.. 


.. 


.. 


OS/Virtual storage 1 Features supplement 168 



90:60 OS MFT 12 OS/VSl TRANSITION 

VSl is designed to be upward compatible with MFT as of Release 21.8 
and, therefore, migration from MFT to VSl should involve minimal 
conversion effort. Some additional education of installation personnel 
is required. For the most part, this involves their becoming 
knowledgeable about the additional facilities and new environment 
offered by VS1. 

system programmers must become acquainted with new interfaces to VSl 
(SMF exits and JES reader and writer procedures, for example),. 
Operators must learn how to use the new operater commands (WRITER, 
PAGETUNE, and if RES is used, the new RES commands), and how to respond 
to new system messages, such as those related to paging and spool 
devices,. Application programmers should learn how to use program
structuring techniques that are designed to improve system performance 
in a paging environment,. System designers must become familiar wi.th the 
new factors that affect system performance in a VSl environment so that 
the system can be designed and operated in a manner that will achieve 
the results desired. 

Once the VSl environment to be supported has been determined, a 
system generation must be performed. A VSl system control program is 
generated via a two-stage procedure, which is, in function, much like 
that required to generate an MFT control program. The system generation 
macros used to describe the desired control program are identical for 
MFT and VSl for like functio,ns. Some of the macros and parameters used 
in MFT are not required in VS1, while new macros are provided to 
describe additional or different functions of VSl (JES and page devices, 
for example),. 

As for MFT, a complete, nucleus-only, or I/Q-device-only VSl 

generation can be performed,. processor-only generations, supported in 

MFT, are not supported in VSl. AlIOS program products and Type I and 

Type II components that are to be used with the generated VSl SCP must 


, be added to the VSl operating system after its generation. Since 
processor generations for language translators cannot be performed using 
a VSl system, they must be done using OS MFT or MVT. 

The VSl starter system (available for 2314/2319, any 3330-series 
model, 3340, or 3350 residence) operates on any System/370 model with 
real storage of 160K or more that has dynamic address translation, one 
nine-track tape unit, one SYSIN device, one SYSOUT punch device, one 
SYSOUT print device, one console device, and four 2314/2319, three 3330
series, two 3350, three 3340 (Model 70/70F), or four 3340 (Model 35) 
direct access devices. 

The VSl starter system can be used only to generate a VSl control 
program and is required only for the first generation. Thereafter, a 
generated VSl system (Release 3.1 or higher if CS=YES is specified in 
the CENPROCS macro, otherwise Release 3 or higher) can be used. If the 
existing VSl system is not to be modified, the system generation can be 
performed concurrently with other executing jObs. 

The generated VSl system can operate on any System/370 Model 135, 
138, 145, 148, 158, 155 II, 168, or 165 II that has the hardware 
features and I/O devices required by the control program. The SECMODS 
parameter should be specified on the CENPROCS macro at system generation 
to cause inclusion in the generated VSl operating system of the model
dependent EREP for the secondary models on which the VSl control program 
is to be run, if any. 

A new feature of the VSl generation process is the installation 

verification procedure (IVP), which is designed to be performed after 

the VSl control program is generated. The IVP involves executing an 


OS/Virtual storage 1 Features Supplement 169 



-------- ---------- - ------------

IBM-supplied job s~ream (maintained in the SYS1.SAMPLIB data set> under 
control of the generated VSl operating system. The function of the IVP 
is to ex~cise the generated SCP system components to the degree that ~ 
general operation of the VSl operating system and support of the system 
hardware configuration specified is assured. 

The IVP program also displays the amount of virtual storage used by
the following: supervisor nucleus, fixed SQA, virtual=real area, 
partitions, RTAM, VTAM, job entry subsystem, and the pageable 
supervisor. 

If VTAM was included in the generated system for the first time, the 
control programs that are to execute in the 3104/3105 Communications. 
Controllers controlled by VTAM must be generated using a two-stage 
generation procedure. The network VTAM is to control must be defined 
and placed in the VTAM definition library (SYS1. VTAMLST) using the 
IEBUPDTE utility. Optionally, VTAM START parameters can be placed in 
SYS1. VTAMLST as well .• 

When support of an industry subsystem (3600, 3650, 3660, or 3190) is 
to be used, the required independent release must be obtained and a 
generation process performed. During this generation, the active load 
modules for the subsystem support services program are also generated. 
While industry subsystem support is standard in VS1, IND=YES must be 
specified during system generation in order to use the support as this/ 
parameter causes VSAM, VT~, and at least three megabytes of virtual 
storage to be included in the VSl control program and enables the 
subsystem support services'program to be included. 

Existing user-written programs that operate under MFT on a System/310 
model must be modified for correct operation under VSl if they do any of 
the fOllowing (otherwise, existing user-written executable programs, 
that is, load modules, can be used without change): (', 

• 	 Reference permanently aSSigned locations in lower real storage whose 

contents vary depending on whether BC or EC mode is specified 


• 	 Issue the LPSW instruction or directly reference fields in old or 

new PSW locations whose function or location is affected by which 

mode, BC or EC, is specified (such as the system mask field and the 

interruption code field). The MODESET macro should be used to 

selectively enable or disable the system for interruptions.• 


• 	 Access SYSIN or SYSOUT data sets using the EXCP macro. BSAM or 

QSAM must be used. In addition, DSCBs and user labels are not 

supported for SYSIN and SYSotn' spool data sets.. Problem programs 

that handle certain conditions for spooled output data sets (such as 

a printer overflow condition) by checking bits in the unit record 

OCB will not operate properly since JES does not create these OCB's 

for the spooled output data sets it writes .• 


• 	 Ose the trace EDIT exit of GTF, if fields are accessed whose 

location varies between MFT and VSl 


• 	 Depend on a nonstandard interface to the MFT control program. These 

programs may require modification, based on the specific dependency. 

(Note that HASP II for MFT depends on interfaces that are changed in 

VS1 and, thus, MFT HASP II cannot be included in a VS1 operating 

system. Conversion from an MFT HASP II environment to an OS/vS1 JES 

environment will require some additional conversion effort, 

particularly if user modifications to HASP II have been made.) 


• 	 Use QTAM to support teleprocessing operations. These programs must 

be altered to use TCAM (or VTAM) since QTAM is not supported in VS1. 

Minimal effort is required for this modification. (See OS/VS ~ 


110 OS/Virtual storage 1 Features Supplement 



1\ 

Programmer" s Guide, GC30-2034, for a discussion of running QTAM 
application programs under TeAM.) 

• 	 Modify an active channel program by data being read (channel program 
contains self-modifying CCWS) or by executing instructions, if the 
program is to be run in a pageable partition under VS1. Program 
modification is .not required if such programs operate in nonpaged 
mode under VSl control. This situation can apply to programs that 
use the EXCP macro instead of an access method. Such programs do 
not execute correctly because the modification affects the virtual 
channel program rather than the translated channel program that is 
actually controlling the I/O operation,. (See OS/VSl Data Management 
for System Programmers, GC26-3837, for a discussion of how to 
include a START I/O appendage in a program with channel programs 
that are dynamically modified via a PCI appendage.) , 

• 	 Use the EXCP macro and user-written I/O appendages that can 
encounter a disabled page .fault, if the program is to operate in 
paged mode. These programs do not require modification in order to 
run in nonpaged mode. These programs can operate in paged mode if 
they are altered to use the new page fix appendage in order to fix 
the required pages and avoid disabled page faults. 

• 	 Modify the task I/O table (TIOT). In VS1, the TlOT is in pageable 
PQA (subpool 255) within a partition so that it cannot be modified 
by the problem program,., 

In addition, the following must be done, if applicable to the 
existing MFT installation: 

• 	 Programs that issue the SET STORAGE KEY (SSK) or the INSERT STORAGE 
KEY (1S10 instruction should be inspected to determine whether 
implementation of a seven-bit protect key instead of a five-bit 
protect key affects the processing being performed. If the SET 
STORAGE KEY instruction is used, it should be used with the 
understanding that it causes the reference and change bits in the 
storage protect key to be set also. Alteration of these bits, 
particularly the change bit, can impair system integrity. Note also 
that these instructions use real and not virtual storage addresses. 

• 	 PL/I F programs that use the teleprocessing facilities of this 
language translator must be recompiled and relink-edited since PLII 
Fuses QTAM, which is not supported in VS1. The PLll Checkout or 
PL/I Optimizing Compiler, which use TCAM, should be used for these 
programs. 

• 	 TeAM message control programs must be reassembled and relink-edited 
in order to include the coding required for them to operate in a 
virtual storage environment. Modification of the source statements 
is not required,. TCAM message processing programs that use the 
lCOPY, TCCPY, QCOPY, or TCHNG macro must be reassembled and link
edited. TCAM message proceSSing programs that do not use any of 
these macros must be relink-edited. 

• 	 User-written SMF exit routines should be inspected to determine 

whether they are affected by SMF record changes.• 


• 	 User-written reader procedures (PARM field) must be modified to 

conform to VSl format. 


The job control statements for existing user-written problem progr"ams. 
do not require alteration except for those programs that must operate in 
nonpaged mode.. The ADDRSPC=REAL parameter must be added to the 
appropriate JOB or EXEC statements for nonpaged programs. If. I/O 
device-type changes are made and/or if unsupported device types-, such as 

OS/Virtual storage 1 Features Supplement 171 



------- - ----------------

those listed in section 90:05, are currently being used in an MFT 
environment, program and/or job control changes may be required to 
specify the supported I/O device that is used in a VSl environment. 

Existing data sets can be used without alteration, assuming device 
type or access method changes are not made. If VSAM is to be used to 
replace ISAM, the affected data sets must be converted from ISAM format 
to VSAM format, as discussed in Section 90:30, and appropriate changes 
to existing ISAM job control statements must be made. 

VSl does not support Systeml370 models that are part of an ASP 
multiprocessing configuration. However, a system under VSl control and 
a system under MFT or MVT control can share direct access devices using 
Shared DASD support.• 

If deSired, the structure of existing user-written MFT programs can 
be modified to minimize the occurrence of page faults and the use of 
real storage (as discussed in section 15:15 or 30:15 of the base " 
publication of which this supplement is a part). Such modification may
improve system performance but is not required to enable existing 
programs (load modules) to operate correctly in a VSl environment. 

For transition from a.System/360 MF'Tenvironment to a System/370 VSl 
environment, the considerations discussed in Section 60 of one of the 
following publications apply in addition to the preceding discussion: 

• A Guide to the IBM system/370 Model 135 (GC20-1738) 
• A Guide to the IBM SystE!ml370 Model 138 (GC20-1785 ) 
• A Guide to the IBM System/370 Model 145 (GC20-1734) 
• A Guide to the IBM System/370 Model 148 (GC20-1784 ) 
• A Guide to the IBM System/370 Model 155 (GC20-1729) 
• 	 A Guide to the IBM System/370 Model 158 for System/360 Users 

(GC20-1781 ) ~, 

• A Guide.to the IBM System/370 Model 165 (GC20-1730) 
• A Guide to the IBM System/370 Model 168 for System/360 Users 


(GC20-1787) 


OS/Virtual storage 1 Features Supplement 172 

http:Guide.to


90:65 SUMMARY OF ADVANTAGES 

AS a growth system for 05 MFT users, V51 offers many new facilities. 
Some are changes in the internal structure and organization/of the 
operating system control program to make its operation more efficie~t. 
SOme new facilities improve operational aspects by simplifying the job 
of the operator and by reducing causes of total system termination. 
Others provide functions not available to MFT users,. V51 can be more 
responsive to a dynamically changing daily workload than MFT, and it 
supports an environment in which design changes can be made more easily 
to accommodate maintenance changes and the addition of new functions or 
applications,. 

While VS1 supports many new features, including functions exclusive 
to System/370 (not provided in Systeml360), such as EC mode and dynamic 
address translation, VS1 remains upward compatible with MFT,. Control 
program modifications that are required to handle new features are 
transparent to the user so that operators and programmers interface with 
VS1 using basically the same operator commands, job control statements, 
data sets, and programs they use in an MFl' environment,. 

The single most significant new feature of VS1 is its support of a 
virtual storage environment. The general advantages that can result 
from using a virtual storage operating system are discussed in the 
Systern/370 guide base publication of which this supplement is a part 
(either in Section 15: 05 ,or 30 ;05). In addition to these, VS1 offers 
other specific advantages pver MFT, several of which also result from 
the implementation of virtual storage,. These are summarized below. 

Improved Job Scheduling 

• 	 Small partition scheduling and transient readers and writers are 
eliminated,. 

• 	 Job queue contention is reduced by the implementation of 
SYS1,.SYSWADS, SWADS, SWA'l s , and a resident job list. The time 
required to access scheduler data can be further reduced by the use 
of SWA'ls. 

• 	 Dedicated work files for initiators are supported and can be used to 
eliminate allocation and deallocation time for temporary disk data 
sets. 

• 	 A job can be placed in held status in the input queue during 

initiation when data sets it requires are not available. 


• 	 An initiator can handle up to 15 job classes instead of a maximum of 
3, and 36 job classes are supported instead of only 15. The 
installation-specified selection parameters facility enables the 
user to specify the processing characteristics of a job and have the 
job scheduler assign the appropriate class and/or priority,. 

• 	 More readers and writers can be active concurrently (the limitation 
of 3 readers and 36 writers is removed),. 

• 	 All partitions can be of equal size and large enough to contain the 
largest existing application to enable an application to execute in 
any available partition when priority is not important. Job class 
need not be related to partition size. In addition, job priority 
need not necessarily be associated with partition size so that" 
priority can be assigned on the basis of job characteristics rather 
than real storage requirements. 

OS/Virtual Storage 1 Features Supplement 173 



/ 

• A 	larger number of partitions can be defined to handle periods
during the day when the job queue contains many jobs with relatively 
small virtual storage requirements, if this situation exists. As 
long as enough resources are present (I/O devices, avai1able compute 
time, and real storage), a higher level of multiprogramming can 
automatically occur during these periods, through proper use of job 
classes, to cause all available partitions to be used. The system 
can automatically adjust to the change in the workload without the 
operator having to intervene to change partition sizes. 

Operational Enhancements 

• 	 The time required to initialize a VSl system without or with changes 
to previously specified parameters and automatic commands can be 
significantly reduced by use of the FASTNIP and automated system 
initialization functions, respectively. 

• 	 Significant new operator control over system output (SYSOUT data 
sets) processing is provided by the WRITER command. The PAGETUNE 
command enables the operator to modify the paging algorithm if this 
is necessary for better performance,. The functions provided by 
several commands that are also available in MFT have been expanded 
in VSl to give the operator more control or to reduce the amount of 
keyboarding required to control system operation. 

, 
• 	 The operator is relieved ,of most real storage management functions 

types for:~c~~o~~a~i\i:n~:r!!t~~:lS!~~~a::~. al tering partition 

• 	 The JES configuration can be modified during system initialization 
and does not require another system generation. 

• 	 The operator need not keep track of reader and writer partitions,. 

• A reader handling a card SYSIN device remains active when end of 
file occurs on the card reader (so the operator need not restart the 
reader from the console each time the card reader runs out of 
cards). 

• 	 High-priority jobs can be handled more easily. A high-priority 
partition can be established in virtual storage that is used only 
for these jobs. While this partition requires dedicated virtual 
storage (and, therefore, external page storage), real storage 
(except that required for fixed PQA) is required for the high
priority partition only when a job step is active in the partition,. 

• 	 Remote users entering jobs via RES use standard OS commands instead 
of a special job entry control language (as is used in RJE) and a 
job can be submitted remotely or locally without changing job 
control or operator commands. 

• 	 The VSl starter system is independent of the direct access device 
types to be used during a system generation. 

Improved System Integrity and Availability 

• 	 More control blocks (specifically, those in a problem program 
partition) are protected from accidental or intentional modifica~ion 
by a problem program,. 

• 	 Loss of an ABEND dump because of the lack of available storage in a 
partition can be eliminated,. (Partitions can be made larqe enough 
to ensure the availability of enough virtual storage to perform 

.. 


o 

.. 


OS/Virtual Storage 1 Features Supplement 114 



ABEND dump processing and a 12K dump area is provided to be used 
when a partition is too small.) 

• 	 Total system terminations that result from a lack of available SQA 
space are reduced because the fixed SQA requirement is reduced by 
the implementation of pageable SQA, fixed SQA is now dynamically 
expandable, and two page frames are held in reserve for allocation 
to fixed SQA and fixed PQA,. 

• 	 Fetch protection as well as store protection is available for all 
problem program partitions. 

• 	 The new authorized program facility is supported to prevent 

unauthorized use of routines that are identified as having 

restricted access. 


• 	 Extended DEB validity checking is available to ensure that data sets 
are accessed only by programs that are entitled to access the data. 

• 	 A module that checks for missing channel-end and I/o-device-end 
interruptions during system operation is provided to prevent system 
waits, indefinite job step waits, and job step cancellations because 
of an uncompleted I/O operation,. 

Improved utilization of Real storage 

• 	 Inefficient use of real storage caused by unused storage within 
defined partitions and/or residence of inactive portions of a 
program is minimized. Unused virtual storage in a pageable 
partition does not have real storage aSSigned, and real storage 
allocated to inactive pages of a program is released and allocated 
to active pages when necessary. 

• 	 JES and RES are pageable so that during any time interval they use 
only the amount of real storage required to handle the current 
activity. The operator need not perform any function to make real 
storage assigned to inactive readers or writers available for 
allocation to other programs,. 

• 	 The amount of real storage used by reentrant routines (such as SVC's 
and access methods) made resident in the pageable supervisor area is 
automatically increased and decreased based on the activity of these 
routines. The most active modules at any given time will tend to 
remain resident in real storage without the necessity of preplanning 
on the part of system designers,. 

• 	 The amount of storage allocated to fixed SQA dynamically expands and 
contracts as required,. SQA size cannot be varied during processing 
in MFT. 

• 	 Dynamic real storage management is provided for all programs that 
operate in paged mode in a VSl environment, regardless of the 
language in which they are written. DynamiC serial program 
structure implemented via the use of LINK, LOAD, and XCTL macros and 
dynamic storage allocation supported via GETMAIN and FREEMAIN 
macros, all of which are supported by the Assembler Language in MFT, 
are not supported by all high-level languages. 

• 	 The practice of leaving unused real storage between the end of the 
resident control program and the lowest priority partition in order' 
to leave room for control program expansion can be 'avoided. 

OS/virtual storage 1 Features Supplement 175 



Performance Enhancements 

• 	 Job scheduling improvements (as listed previously) are provided and 
initiator modules are reorganized to perform job scheduling more 
efficiently. 

• 	 Improved utilization of real storage (as listed previously) may 
enable a higher level of multiprogramming to be supported in a given 
amount of real storage in some environments,. 

• 	 A new I/O load-balancing algorithm is available to allocate tape and 
disk I/O devices such that I/O activity is more evenly distributed 
on available channels and contention among devices is reduced. 

• 	 A new task dispatching algorithm is provided that can increase 
system throughput by allocating CPU time to selected jobs (those in 
the dynamic dispatching partitions) on the basis of their changing 
operational characteristics (more CPU-oriented or I/O-oriented) 
rather than according to partition priorities. 

• 	 Extended timer support of the CPU timer and clock comparator reduces 
timer supervisor processing time and improves the repeatability of 
accounting data. 

• 	 JES is implemented to provide more efficient dat a spooling 
operations. Unit record, devices can be operated near rated speeds 
and intermediate disk sto~age is allocated and used more 
efficiently. Less real storage is required for multiple readers and 
writers. 

• 	 Contention for the SVC transient area (and the resulting 
serialization of processing that can occur) can be minimized by 
making the most frequently used SVC routines resident in the 
pageable supervisor area. Task wait time spent waiting to use the 
svc transient area is eliminated for these routines,. 

• 	 SVC area size is increased to 2K (page size) and type 4 SVC routines 
are loaded in 2K multiples, instead of 1K, to reduce the time 
required to load type 4 SVC routines,. SVC interruption handling 
processing time is reduced by the restructuring of the SVC table and 
its mapping table. 

• 	 Improved processing of certain operator commands is provided via use 
of the pageable 2K svc transient area. 

• 	 Since real storage management is provided by the VS1 control 
program, problem progranuners need not use LOAD, LINK, XCTL, GETMAIN, 
and FREEMAIN macros in new applications to efficiently manage real 
storage for partitions and can avoid the control program execution 
time required to service these requests '. 

• 	 The fast multiple wait facility is available to speed up the 

processing involved in determining which of the multiple events 

being waited on are completed. 


~ Features 

• 	 VSAM, a new access method for direct access devices that is designed 
to provide better performance and more function than ISAM, is 
provided,. 

• 	 VTAM, a new telecommunications access method, provides far more 
comprehensive telecommunications support than BTAM, QTAM, or TCAM. 

OS/Virtual storage 1 Features Supplement 176 

c 



• 	 Expanded system debugging capability is provided by the dynamic 
support system. 

The new facilities of OS/VSl make it a desirable growth operating 
system for any MFT user. However, many of the new features of VSl make 
it more suited-to an online environment than MET, as follows: 

• 	 Reducti~n of real storage restraints made possible by the 
implementation of virtual storage can be a significant advantage 
when deSigning, coding, and testing online applications that are 
typically larger and more complex than most batched jobs. 

• 	 New functions may be added to existing online applications more 
easily because the design of a program can be straightforward and 
need not involve the use of a complex dynamiC or planned overlay 
structure. 

• 	 Dynamic storage management is provided automatically by the system,
and real storage can be more efficiently used. storage management 
no longer need be the major effort in online application deSign, as 
it often is in MET. 

• More 	freedom in program design and better utilization of real 

storage may enable lower cost entry into online application 

processing. 


• 	 VSAM is designed to be more suitable than ISAM for an online or a 
data base environment. 

• A 	system operating with VSl should be less susceptible to the total 
termination of operations because of certain improvements made in 
the VSl control program. System integrity enhancements have also 
been made. 

• A 	system with a large online application need not be backed up with 
a system having the identical amount of real storage. A smaller 
amount can be used, assuming it provides acceptable performance. 

OS/Virtual Storage 1 Features Supplement 111 

--~~~~.----~~-------------~---



INDEX (Section 90) 

.r'\. 

abnormal termination 
dump area 14 
dumps for system tasks 82 
reader task 47 

access methods 
BDAM 4 
BPAM 4 
BSAM4 
BTAM 4 
GAM 4 

ISAM 5 

QSAM 4 

QTAM 3, 94 

RTAM 5, 16, 17, 72 

'!'CAM 5, 94 

VSAM 4, 96 

VTAl"1 5, 16, 17, 94 


access method services program 125 
accounting facilities 67 
ADDRSPC parameter 12 
advantages summary 173 
allocation routine 65 
alternate channels 4 
alternate nucleus 24 
alternate path retry (APR) 153 
AP-1 utility 160 
ASP 172 
authorized program facility 87 
automated system initialization 27-34 

AUTO parameter 33 
default member name list 29 
FASTNIP 34 
functions 27 
general operation 28 
member name list members 28 
NOLIST parameter 33, 34 
parameter specification members 

automatic commands 32 

DEFINE parameters 31 

JES parameters 30 

mass storage volume 32 

permanent resident volume list parameter s 31 

RTAM parameters 32 

SET parameters 31 

SMF parameters 32 

system parameters 30 


automatic commands 32 
automatic device status initialization 27 
automatic partition redefinition 31 
automatic volume recognition ·(AVR) 5 
available page count 138 
available page queue 138, 139 

BDAM 4 
BISAM .. 
BLDL table 15 
BPAM 4 
BSAM 4, 94 
BTAM 4, 94 

OS/Virtual storage 1 Features Supplement 178 



BTAM AUTOPOLL 167 
buffer management, JECS 52· 
BURST parameter 63 

channel check'handler (CCH) 9, 153 
channel program modification 13 
channel program translation 12, 17, 95 
channel-to-channel communication support 95 
CHARS parameter 63 
checkpoint/restart 

for JES writers 50 
for job steps 79 

clock comparator 93 
CLOSE routine 94 
communications task 38 
COMPACT parameter 63 
compatibility 

VSAM and ISAM 132 
VS1 and MFT 1, 170 

configuration, system 
minimum 2 
for system generation 169 

consoles 
device types supported 7 
support in VS1 37 

control and processing program components 36-37 
conversational remote job entry 81 
COPIES parameter 50 
CPUs supported by VS1 2 
CPU timer 93 

DADSM 94 
DASD work area management 52 
data management 94 

access methods 94 
CLOSE routine 94 
components 36 
DADSM routine 94 
EOV routine 94 
OPEN routine 94 
VSAM 4, 96 

deactivation, partition 146 
DEB validity checking 88 
DIDOes 37 
direct SYSOUT writers 17, 67 
disabled page faults 88 
diskette support 48 
dump area 14 
dumps 

for system tasks 82 
user-written exit routine 82 

dynamic address translation 2, 12, 17 
dynamic device reconfiguration 153 
dynamic dispatching 83 
dynamic support system 83, 158 

emulators 35, 162 
end-of-jobseparator option 50 
EOV routine 9 Ii 
EVENTS macro 89 
EXCP macro 94, 96 
EXCPVR macro 94, 96 
Extended Control Program Support feature 167 
extended fixed list 11 
e~tended timer support 93 

OS/Virtual Storage 1 Features Supplement 179 

----- ....-----.----.---.~~ .. 



external page storage 
contents 20 
direct access devices supported 21 
initialization 26 
organization 20-23 
page capacity by device type 22 

external page storage management 151 
page I/O device queues 151 
page I/O in-progress queue 151 
page I/O processor routine 151 

fast multiple wait 89 
FASTNIP routine 34 
fast start function /42 
features 

optional 5 
standard 4 
unsupported 3 

fetch protection 19 
fixed area in real storage 20 
fixed BLDL table 15 
fixed control program 9, 20 
fixed PQA 17, 24 
fixed SQA 11, 20, 24 
FLASH parameter 63 

GAM 'I 
general fUnctions 1-5 
generalized ST~T 61 
generalized trace facility ~~F) 80, 83, 157 

handshaking support, VM/370 165 
HASP II 170 
high-density dump 157 

indirect data address list UDAL) 95 
indirect data address word (IDAW) 95 
Industry Subsystem Support 35, 170 
initialization of storage

external page 26 , 
real 24 
virtual 24 

initiator 60 
input/output supervisor (lOS) 95 
installation-specified selection parameters 64 
installation verif1cation procedure (IVP) 169 
internal command processing 38 
interpreter 62 
interruption supervisor 82 
interval timer 92 
in-use queues 138, 141 
I/O appendages 95 
I/O devices supported ~n VS1 6-8 
I/O load balanCing 65 
I/O transient area 14 
IPL (see system initialization)
ISM 5 

JESDUMP service aid 59 
JES monitor task 47 
JES readers 44, '18 
JES writers 4'1, 49 
job classes 16 
job control 62 
job entry central services (JECS) 51-59 

OS/Virtual Storage 1 Features Supplement 180 



job entry peripheral services (JEPS) 47-51 
job entry subsystem (JES) 43-60 

advantages 45, 55 
allocation of spool space 52 
buffer management 52 
buffer pool area location 16 
DASD work area management 52 
general description 43 
qeneral fl<M of processing 68 
job list management 55 
location in virtual storage 10, 16 
monitor task 47 
orqanization 45 
parameter modification 44 
problem program access to SYSIN and SYSOUT data sets 51 
pseudo-partition location 16 
readers 44, 48 
spool data sets 53 
spool devices and capacity 53, 54 
spool management 51 
storage requirements 44 
SWAnS management 55 
writers 44, 49 

job list management 55 
job list verification program 59 
job log facility 50 
job manaqement 

advantages 38 

allocation routine 65 

communications task 38 

components 36 

CRJE 81 . 

direct SYSOUT writers 17, 67 

initiator 60 

interpreter 62 

JES 43 

master scheduler 38 

RES 71 

terminator 66 

job number 49 
job queue management 55 
job scheduler 60 
job sch~duling flow 69 

language translators supported 36, 37 
libraries 35 
linkage editor 159 
logical cylinders 53 

machine check handler (MCH) 
description 153 
storage requirements 9 

master scheduler 38 
MFT (multiprogramming with a fixed number of tasks) 

compatibility with VSl 1 
features not supported by VS1 3 
tranSition to VSl 169 

MGCR macro 38 
minimum system configuration 2 
missing interruption checker routine 26 
MODE command 153 
models supported 2 
MODESET macro 83 
MODIFY parameter 63 
MONITOR CALL instruction 83 

OS/Virtual storage 1 Features Supplement 181 



MPROFILE parameter 64 
multiple console support (MCS) 4 
multiprocessing 172 
multitasking 16 

nonpageable area 
real storage 20 
virtual storage 9 

nonpageable program execut.ion 12, 18 
nucleus area 9, 20 

OLTEP 155 
OPEN routine 94 
operator commands 

CANCEL 39 
DEFINE 39 
DISPLAY 39 
HOLD 40 
MODE 41 
MODIFY 40 
MONITOR 41 
PAGETUNE 149 
RELEASE 40 
REPLY 41 
RESET 41 
SET 41 
SETPRT 43 
START 41 
STARTF 42 
STOP 42 
WRITER 42 

operator communication at IPL 4 
optional features· 5 
OS/VS1 Extended Control program Support feature 167 
OUTLIM facility 52, 67 

pageable area 
real storage 20 
virtual storage 13 

pageable BLDL table 15 
pageable partitions 17 
pageable PQA 17 
pageable SQA 14 
pageable supervisor area 14 
pageable supervisor routines area 14 
page activity measurement 142 
page data set 21 
page fault, disabled 88 
page file 21 
page fixing 137 
page fix I/O appendage 95 
page I/O device queues 151 
page I/O in-progress queue 151 
page I/O processor routine 151 
page management 137 

accounting data provided 68 
external page storage management 151 
macros 137 
page exception handler 137 
queues 138 
real storage management 138 
service interface routine 137 
task switch analysis routine 137 

page measurement routine 143 
page reclamation 139 

OS/Virtual storage 1 Features Supplement 182 



page replacement algorithm 141 
page supervisor 131 
page tables 11, 24 
PAGETUNE command 149 
paging channel programs 151 
paging devices 22 
partitions 

classes 16 
deactivation 146 
fetch protection 19 
maximum number supported 16 
minimum size 16 
nonpageable 12. 18 
organization 18 
pageable 11 
priority 16 
problem program 16 
reactivation 141 
system task 19 

PCI fetch 5. 11, 91 
PGFIX macro 137 
PGFREE macro 137 
PGLOAD macro 137 
PGOUT macro 137 
PGRLSE macro 151 
Power Warning feature support 153 
printing on punch SYSOUT data sets 49 
problem determination facilities 

DSS 158 
service aids 155 

problem program area 16 
problem program partitions 16 
procedures 

initiator 61 
reader 47 
writer 47 

PROFILE parameter 64 
program event recording 2. 83, 158 
program fetch 91 
protected queue area (PQA) 11 

QSAM 4, 94 
QTAM 3 

reactivation, partition 147 
reader priorities 41 
reader procedures 47 
readers, JES 48 
real storage 

allocation procedure 139 
initialization 24 
management 138 
maximum supported 2 
minimum fixed requirements 24 
minimum system requirements 2 
organization 20 
page table 138 
release routine 141 

recovery management 153 
APR 15;3 
CCH 153 
components 36 
DDR 153 
MCH 153 
OLTEP 155 

OS/Virtual Storage 1 Features supplement 183 



storage requirement for RMS routines 9 -. 

REGION parameter 12 

remote entry services 11 


advantages over RJE 80 / 

components 72 .' . 


functions provided 72 

initialization 17 

logon procedures 74 

MODIFY command 78 

MULTI-LEAVING 73 

new commands 75 

new data sets 74 

RTArvl 12 

storage requirements 80 

termination 80 

tracing facility 14 

workstation characteristics 79 

work statlons supported 71 


remote job entry 3 
. resident access methods 15 

resident ATTACH 16 
resident BLDL table 15 
resident control program 9, 20 
resident error routines 15 
resident job list 55, 59 
resident lists, IBM-suppli~d 15 
resident reentrant modules 15 
resident supervisor area 15 ' 
resident svc routines 15 
RTAM 

fixed PQA requirements 11 

- functions 72' 

pseudo-partition location and size 16 


scheduler work area (See SfiA) 
scheduler work area data sets (See SWADS) 
segment table 24, 25 
service aids 155 
SETPRT macro 43 
SET SYSTEM MASK instruction interruption 83 
shared DASD support 5, 35 
short-term fixing 95 
slots 21 
sort/merge programs 161 
SPIE facility 83 .J 

spool buffers 52, 53 
spool data sets 53 
spool volumes 53 
STAB macro 89 
standard features 4 
STARTF command (fast start function) 42 
STIMERE macro 93 
STIMER macro 93 
STOP line 139 
storage hierarchies 3 
storage protection 9, 25 
supervisor locks 88 
SVC routines 88 
svc transient area 14, 38 
SWA 57, 59 
SfiADS 51, 59 
SYSIN devrces 48 
SYSOUT devices 49 , f'\ 
System Assembler 159 
system components 36 

Os/Virtual storage 1 Features Supplement 184 



system data sets 35 

system generation 169 

system initialization 23 

system'lock 88 

system log 4 

system management facilities (SMF) 67 

system queue area 


fixed 11, 20, 24 
pageable 14 

system task partitions 19 
System/310 models supported 2 
SYS1.BRODCAST 35, 15 

, \ 
SYS1,.DSSVM 35, 158 
SYS1.PAGE 21, 35 
SYS1.PARMLIB 

automated system initialization members 27 
DEFINE command parameters member 38 


SYS1.SYSJOBQE 55, 56, 58, 59 

SYS1.SYSPOOL 35, 53 

SYS1.SYSWADS 35, 56-58 

SYS1.UADS 35, 14 

SYS1.WARNA 35, 153 

SYS1.WARNB 35, 153 


task deactivation 146 

task lihrary83 

task management 82 


components 36 

interruption supervisor 82 

task supervisor 83 

timer supervisor 92 

virtual storage supervisor 90 


task supervisor 83 

TeAM 5, 94 

terminals supported 7 

terminator 67 

TESTAUTH routine and macro 81 

TESTRAN 3 

time-of-day clock support 92 

timer supervisor 92 

trace table 11 

,transient areas 14 
transition from MFT to VS1 1, 169 
translation mode 12, 17 
translation tables for output writers 51 
TTIMER macro 93 
Type I language translators supported in VSl 36 
TYPRUN parameter 62 l, 

utilities 160 

validity checking 
data extent blocks 88 
job list 59 
storage management queues 90 

virtual storage 
initialization 24 
organization 9-19 
size supported 9, 24 
supervisor 92 

VMV370 Handshaking 165 
VM/370-VS1 BTAM AUTOPOLL 167 
VSAM 4, 96 

access method services program 125 

addressed processing 


Os/Virtual Storage 1 Features Supplement 185 



entry-sequenced data sets 119 
key-sequenced data sets 117 


advantages 130 

alternate indexes 


for entry-sequenced data sets 119 
for key-sequenced data sets 112 


alternate key 112 

asynchronous requests 103 

backward processing 116, 119, 122 

catalogs 123 

chained parameter list 103 

cluster 108 

comparison with lEAM 132 

compatibility-with DOS/vS VSAM 96 

concurrent request processing 107 

control area 98, 108 

control interval 98, 108 

control interval processing 101, 117, 120, 122 

data base interface 107 

data set sharing 128 

data space 100 

devices supported 96 

entry-sequenced data sets 


organization 118 
processing 119 


free space 108 

general description 96 

index processing 117 

1:5AM interface routine 129 

journaling 103 

keyed processing 


key-sequenced data sets 115 

relative record data sets 122 

.~. 


key-sequenced data sets 

organization 107 

processing 115 


macros 102 

mass sequential insertion 116 

password protection 127 

paths 113 

physical structure of data sets 98 

preformatting 99 

primary index data set structure 109 

primary key 108 

relative byte address 101 

relative record data sets 


organization 121 
processing 122 


reusable data sets,101 

sharing I/O resources 107 

spanned record 99 

stored record 99 . 

synchronous request 103 

types of processing supported 


entry-sequenced data sets 121 

key-sequenced data sets 118 

relative record data sets 123 


virtual storage requirements 130 
VSl assist support 167 
VTAM 

fixed PQA requirement 17 
function 94 
use by RES 72 

V=R area 11 
V=R line 9, 12, 20, 21, 150 

OS/Virtual storage 1 Featur~ Supplement 186 



V=R mode 

descr iption 12 

performance 13 

programs that must run in 13 

real storage allocation 150 


wait limit for executing tasks 68 

WRI TER command 42 

writer priorities 47 

writer procedures 47 

writers 


direct SYSOUT 17, 67 

JES 49 


3540 Diskette Input/Output support 48 


---, 

/ 

OS/Virtual storage 1 Features Supplement 187 



GC20-17S2-3 

~ 

a. 

en--
0 

<
::;' 
-+ c 
!!!.. 
en 
5... 
til 
tel 

CI) 

~ 

"T1 
CI) 
II) 
-+ c..., 
CI) 
(I) 

en 
c 
"0 
"0 
(jj' (\
3 - ,CI) 
::I 
-+ 

"tI..., 

5' 

S 
0.. 

5' 
C 
en 
~ 
G) 
(") 
N 
9... 
--.J 
U1 
N 
W 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 ' 
(U.S.A. only) 

IBM World Trade Corporation 
360 Hamilton Avenue, White Plains, New York 10601 
(International) 



READER'S COMMENT FORM 


OSlVirtual Storage 1 GC20-1752-3 

Features Supplement 

Please comment on the usefulness and readability of this publication, suggest additions and 

deletions, and list specific errors and omissions (give page numbers). All comments and sugges

tions become the property of IBM. If you wisha reply, be sure to include your name and address. 


COMMENTS 

Fold Fold 

Fold Fold 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 
FOLD ON TWO LINES, STAPLE AND MAIL. 



c 

GC2Q-1752·3 

Your comments, please ••• 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

~ 

Fold 	 Fold 0 en 
~ ......c: 
~ 
en 

NO POSTAGE ... 
IIINECESSARY111111 	
g 

CD 
CDIF MAILED ....

INTHE 
UNITED STATES 	 ." 

CD 
III...c:... 
CD 
II> 

enBUSINESS REPLY MAIL c: 
'C r----..,'CFIRST CLASS PERMIT NO. 40 ARMONK. N.Y. iii 
3 
CD 
:I...POSTAGE WILL BE PAID BY ADDRESSEE: 

"'tI...
S·

International Business Machines Corporation lit 
Co1133 Westchester Avenue S· 

White Plains, New York 10604 c 
en 
~ 
C') 

Att: Technical Publications/Systems - Dept. 824 0 
N 

. ,. ........................................................................;............... . 9.... ..... 
en 
N 
WFold 	 Fold 

.. 

. 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
360 Hamilton Avenue. White Plains, New York 10601 . 
(International) 

-----------.-------------------------------------------------------------------------------------------~ 


	VS1_Feat_Supp_Rel_6_1-50
	VS1_Feat_Supp_Rel_6_51-100
	VS1_Feat_Supp_Rel_6_101-150
	VS1_Feat_Supp_Rel_6_151-end

