
GC26·3837·2

File No. S370·30

OS/VS1 Data Management
Systems for System Programmers

Release 5

./

Third Edition (November 1975)
This edition replaces the previous edition (numbered GC26-3837-l) and its technical
newsletter (numbered GN26-Q183) and makes them both obsolete.

This edition applies to Release 5 of OS/VSl and to all subsequent releases of the system
unless otherwise indicated in new editions or technical newsletters.

Information on the IBM 3800 Printing Subsystem, IBM 3350 Direct Access Storage, and
IBM 3344 Direct Access Storage Qevice is provided for planning purposes only until the
products are available.

Significant system changes are summarized under "Summary of Amendments" following
the list of figures. In addition, miacellaneous editorial and technical changes have been
made through?ut the publiCation.

Information in this publication is subjectJo significant change. Any such changes will be
published in new editions or technleal nelffsletters. Before using the publication, consult the

/latest IBM Syslt!m/370 Bibliography, G<pO-OOOI, and the technical newsletters that amend
the bibliography, to learn which editions'and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' commen~ are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM COrporation, General Products
Division, Programming Publishing Department J57, 1501 California Avenue, Palo Alto,
California 94304. All comments and suggestions-become the property of IBM.

@ Copyright International Businessldachines Corporation 1973,1974,1975

PREFACE

•

I,

This publication provides information on how to modify and extend the data
management capabilities of the OS/VS system control program; the intended
audience is system programmers.

/

Some topics included are:

• 	 Maintaining the OS/VS System Catalog

• 	 Maintaining the Volume Table of Contents

• 	 Executing Your Own Channel Programs

• 	 Using XDAP to Read and Write Data Sets on Direct-Access Devices

• 	 Password Protecting Your Data Sets

The OS/VS sY!ltem control program provides simpler ways (for example, job
control language, utility programs, access method routines) to do each of
these things. The information presented in this book (consisting of macro
specifications and how-to information) is intended to provide greater
flexibility of implementation methods.

Other topics presented are:

• 	 Using System Macro Instructions to Refer to, Validate, and Modify System
Control Blocks

• 	 Adding a UCS Image or FCB Image to the System Image Library.

Readers are expected to understand how to:

• 	 Code programs in assembler language as described in
OS/VS - DOS/VS - VM/370 Assembler Language, GC33-4010.

• 	 Use the standard linkage conventions as described in OS/VSl Supervisor
Services and Macro Instructions, GC24-S103.

• 	 Maintain the catalog and VTOC as described in OS/VSl JCL Services,
GC24-S100, OS/VS Utilities, GC3S-OOOS, and OS/VS· Data
Management Services Guide, GC26-3783.

• 	 Use the access methods to do input/output using the data management
macros as described in OS/VS Data Management Services Guide,
GC26-3783, and OS/VS Data Management Macro Instructions,
GC26-3793.

• 	 Protect data sets as described under "IEHPROGM" in OS/VS Utilities,
GC3S-000S.

More specific prerequisite reading is listed at the beginning of each chapter, as
it relates to the particular topic.

/ ,

Preface 3

How to Use 17Iis Book

All of the chapters of this publication make reference to OS/VS1 System .\
Data ATeDS, SY28-0605. This book presents detailed descriptions of system"
control blocks and common work areas. More specific related reading is listed
at the beginning of each chapter, as it relates to the topic under discussion.

Other publications referenced in this manual are:

• 	 IBM System/370 Principles of Operation, GA22-7000

• 	 IBM 2821 Control Unit Component Description, GA24-3312

• 	 IBM 3211 Printer, 3216 Interchongeable Train Cartridge, and 3811
Printer Control Unit Component Description and Operator's Guide,
GA24-3543

• 	 IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846

• 	 OS/VS1 Access Method Services, GC26-3840

• 	 OS/VS1 Catalog Management Logic, SY35-0003 •
• 	 OS/VS1 DADSM Logic, SY26-3837

• 	 OS/VS1 1/0 Supervisor Logic, SY24-5156

• 	 OS/VS1 JCL Reference, GC24-5099

• 	 OS/VS1 Open/Close/EOV Logic, SY26-3839

• 	 OS/VS1 Planning and Use Guide, GC24-5090

• 	 OS/VS1 System Data AreDS, SY28-0605

• 	 OS/VS1 System Generation Reference, GC26-3791 J
• 	 OS/VS1 Virtual Storage Access Method (VSAM) Logic, SY26-384.1

• 	 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide,
GC26-3838

You can use the macro specifications, coding examples, and how-to
information in the chapter about catalog maintenance to code your own ..
routines to add, delete, and update entries in the system catalog. This section
contains data area layouts for and descriptions of the fields of all the control
blocks that can appear in the system catalog.

r
H you want to read a data set control block, rename a data set, or delete a
data set using the system macros, the chapter on maintaining the volume table
of contents (VTOC) provides macro specifications, coding examples, and
how-to information.

H you want to code your own channel programs to modify the control
program or to provide support for unsupported I/O devices, the chapter on
using EXCP provides detailed descriptions of which control blocks you must
provide and the functions you must perform.

Macro specifications and how-to information are provided for using the
XDAP macro instruction to read from and write to direct-access devices
without using the access method routines (SAM, ISAM, or BDAM).

4 OS/VSl Data Management for System Programmers

H you want to implement data set protection for your facility, the chapter on
data set protection:

1. Tells how to build a PASSWORD data set.

2. Describes how the system control program responds to job control
language and IEHPROGM utility statements in maintaining the
PASSWORD data set.

3. Tells you how to use the PROTECT macro instruction to maintain (add
records to, delete records from, changes records in) and read the
PASSWORD data set.

The chapter on system macro instructions provides how-to information and
macro specifications for:

1. Using system mapping macros to allow you to access system control blocks
and work areas using symbolic names.

2. Examining device-type information in unit control blocks (UCBs).

3. Modifying a job file control block (JFCB) before opening a data set.

4. Removing queued requests and restoring requests to queues.

5. Protecting your data sets ,by verifying data extent blocks.

You can use the coding examples and how-to information in the last chapter
,to help you add a universal character set (UCS) image or a forms control
buffer (FCB) image to the system image library (SYS1.IMAGELm) .

•

Preface 5

•

•

J

..

CONTENTS

Preface .. 3

Prerequisite Reading .. 3

Related Reading , .. '" , 4

How to Use This Book ... 4

Figures ... 11

Summary of Amendments .. 13

I Release 5 .. 13

Release 4 .. 13

Release 3.1 ... 13

Maintaining the OS/VS System Catalog ... 15
,
Introduction .. 15

Reading a Block From the Catalog ... 16

Reading a Block by Data Set Name (LOCATE and CAMLST NAME) 16

• 	 Reading a Block by Generation Data Set Name (LOCATE and

CAMLST NAME) .. 19

Reading a Block by Relative Block Address (LOCATE and CAMLST

Cataloging a Data Set When Index Levels Exist (CATALOG and

Cataloging a Data Set by Creating Required Index Levels (CATALOG

and CAMLST CATBX) ... :34

Uncataloging a Data Set While Retaining Index Levels (CATALOG

Uncataloging a Data Set and Removing Index Levels (CATALOG and

Reading a Block by Alias (LOCATE and CAMLST NAME) 20

BLOCK) ... 22

Building and Deleting Indexes .. 23

Building an Index (INDEX and CAMLST BLDX) 23

Building a Generation Index (INDEX and CAMLST BLDG) 25

Deleting an Index (INDEX and CAMLST DL TX)•. 26

Assigning an Alias for an Index (INDEX and CAMLST BLDA) 27

Deleting an Alias for an Index (INDEX and CAMLST DLTA) 28

Connecting and Disconnecting Control Volumes ,• 29

Connecting Control Volumes (INDEX and CAMLST LNKX) ; 29

Disconnecting Control Volumes (INDEX and CAMLST DRPX) 31

Working with Data Set Catalogs .. 32

CAMLST CAT) .. .32

and CAMLST UNCAT) ... 35

CAMLST UCATDX) ... 36

Recataloging a Data Set (CATALOG and CAMLST RECAT) 37

Catalog Block Entries ... 39

Volume Index Control Entry ... 39

Index Control Entry ... 40

Index Link Entry and Index Pointer Entry .. 41

Data Set Pointer Entry ... 42

Volume Control Block Pointer Entry ... 43

Volume Control Block ... 44

Control Volume (CVOL) Pointer Entry ... ; 45

Control Volume Pointer Entry (OLD) .. 45

Alias Entry ... 46

Generation Index Pointer Entry ... 46

Contents 7

Maintaining the Volume Table of Contents .. 47

Introduction .. 47

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH) 48

Reading a DSCB by Actual Device Address (OBTAIN and CAMLST

SEEK) ... 49

Deleting a Data Set (SCRATCH and CAMLST SCRATCH) 50

Renaming a Data Set (RENAME and CAMLST RENAME) 53

Executing Your Own Channel Programs .. 57

Executing Channel Programs in System and Problem Programs 58

System Use of EXCP ... 58

Use of EXCP in Problem Programs ... 59

EXCP Operations in a Nonpageable Region ... 59

EXCP Requirements .. 60

Channel Program ... 60

Control Blocks ... 61

Input/Output Block (lOB) .. 61

Event Control Block (ECB) .. 61

Data Control Block (DCB) ... 61

Data Extent Block (DEB) ... 61

Channel Program Execution ... 62

Initiation of the Channel Program .. 62

Modification of a Channel Program During Execution 63

Completion of Execution ... 64

Interruption Handling and Error Recovery Procedures 64

Appendages .. 65

Page Fix (PGFX) and Start I/O (SIO) Appendage 68

Page Fix (PGFX) Appendage ... 68

Page Fix List Processing .. 68

Start I/O (SIO) Appendage ... 68

Program Controlled Interruption (PCI) Appendage 70

End-of-Extent Appendage ... 71

Channel End (CE) Appendage .. 72

Abnormal End (XCE) Appendage .. 72

Block Multiplexer Channel Programming Notes .. 74

Macro Specifications for Use With EXCP ... 75

DCB-Define Data Control Block for EXCP ... 75

Foundation Block Parameters .. 76

EXCP Interlace Parameters .. 77

Foundation Block Extension and Common Interlace Parameters 78

Device-Dependent Parameters .. 79

OPEN-Initialize Data Control Block ... 82

EXCP-Execute Channel Program ... 83

A TLAS--Assigning an Alternate Track and Copying Data from the

Defective Track ... 84

Using ATLAS .. 85

Operation of the ATLAS Program .. 86

EOV-End of Volume ... 89

CLOSE-Restore Data Control Block .. 90

Control Block Fields ... 91

Input/Output Block Fields ... 91

Event Control Block Fields .. 93

Data Extent Block Fields ... 93

EXCPVR-Execute Channel Program, Virtual Request (Fixed) 94

EXCPVR Fix List .. 95

Address Translation-Indirect Address List (IAL) 96

8 OS/VS 1 Data Management for System Programmers

•

•

J

..

Using XDAP to Read and Write to Direct-Access Dences 97

Introduction .. 97

XDAP Requirements .. 97

Macro Specifications for Use With XDAP ... 98

DCB-Define Data Control Block .. 98

OPEN-Initialize Data Control Block ... 98

XDAP-Execute Direct-Access Program .. 99

EOV-End of Volume ... 101

CLOSE-Restore Data Control Block .. 101

Control Blocks Used with XDAP ... 102

Event Control Block .. 102

Input/Output Block ... 102

Direct-Access Channel Program .. 103

Conversion of Relative Block Address to Actual Device Address 104

Conversion of Actual Device Address to Relative Track Address 105

Obtaining Sector Number of a Block on a Device With the RPS Feature .. 105

Password Protecting Your Data Sets ... 107

Introduction .. 107

PASSWORD Data Set Characteristics ... 108

Creating Protected Data Sets ... 109

Protection Feature Operating Characteristics .. 109

Termination of Processing ... 109

Volume Switching .. 109

Data Set Concatenation ... 110

SCRATCH and RENAME Functions ... 110

Counter Maintenance .. 110

Using the PROTECT Macro Instruction to Maintain the PASSWORD

Data Set .. 110

PASSWORD Data Set Characteristics and Record Format When You

Use the PROTECT Macro Instruction ... 111

Number of Records for Each Protected Data Set 111

Protection Mode Indicator ... 111

PROTECT Macro Specification ... 112

Return Codes From the PROTECT Macro ... 116

System Macro Instructions .. 117

Introduction .. 117

Mapping System Data Areas .. 117

IEFUCBOB-Mapping the UCB .. 117

IEFJFCBN-Mapping the JFCB ... 118

CVT-Mapping the CVT .. 118

Obtaining I/O Device Characteristics .. 118

DEVTYPE Macro Specification .. 118

Device Characteristics Information .. 119

Reading and Modifying a Job File Control Block 122

OPEN-Initialize Data Control Block for Processing the JFCB 123

RDJFCB-Read a Job File Control Block .. 124

Ensuring Data Security by Validating the Data Extent Block 127

DEBCHK-Macro Specification ... 128

Removing Queued Requests and Restoring the Requests 130

PURGE-Remove an RQE From a Queue ... 131

RESTORE-Return Purged lOBs to Queues .. 134

Contents 9

Adding a UCS Image or FeB Image to the System Image Ubrary 135

Adding a UCS Image to the Image Library .. 136 '\

Adding an FCB Image to the Image Library .. 138 ...",

Introduction .. 135

Retrieving an FCB Image ... 140

Index ... 143

•

..

10 OS!VSI Data Management for System Programmers

FIGURES

•

Figure 1. The Volume Index Control Entry .. 39

Figure 2. The Index Control Entry .. 40

Figure 3. The Index Link and Index Pointer Entries 41

Figure 4. The Data Set Pointer Entry .. 42

Figure 5. The Volume Control Block Pointer Entry 43

Figure 6. The Volume Control Block .. 44

Figure 7. The Control Volume (CVOL) Pointer Entry 45

Figure 8. The Alias Entry .. 46

Figure 9. The Generation Index Pointer Entry ... 46

Figure 10. The Request Queue Element (RQE) ... 67

Figure 11. Entry Points, Returns, and Available Work Registers for

the I/O Supervisor Appendages ... 67

Figure 12. Relationship of SIO Extended Parameter

List to Requestor's CCW Chains ... 70

Figure 13. Data Control Block for EXCP (After Open) 76

Figure 14. Error Locations and Return Codes if CCHH is in the Count

Area Field .. 88

Figure 15. Error Locations and Return Codes if CCHHRKDD is in

the Count Area Field ... 89

Figure 16. Input/Output Block Format .. 92

Figure 17. Event Control Block After Posting of Completion

Code (EXCP) .. 94

Figure 18. Relationship of CCW to Indirect Address List 96

Figure 19. Event Control Block After Posting of Completion

Code (XDAP) .. 102

Figure 20. The XDAP Channel Programs ... 103

Figure 21. Parameter List for ADD Function ... 113

Figure 22. Parameter List for REPLACE Function 114

Figure 23. Parameter List for DELETE Function 115

Figure 24. Parameter List for LIST Function .. 115

Figure 25. Return Codes from the PROTECT Macro Instruction 116

Figure 26. Output Obtained from Issuing DEVTYPE Macro 121

Figure 27. Sample Code Using RDJFCB Macro 126

Figure 28. Macro Definition, JCL and Utility Statements for

Adding the PURGE Macro to Your Macro Library 131

Figure 29. Macro Definition, JCL, and Utility Statements for

Adding the RESTORE Macro to Your Macro Library 131

Figure 30. PURGE Parameter List .. 132

Figure 31. Purge Chain for Restoring lOBs .. 134

Figure 32. Sample Code to Add a 1403 UCS Image to

SYS1.IMAGELm .. 137

Figure 33. Sample Code to Add a 3211 UCS Image to

SYS1.IMAGELm .. 138

Figure 34. Sample Code to Assemble and Add FCB Load Module to

SYS1.IMAGELm .. 140

Figures 11

SUMMARY OF AMENDMENTS

Release 5

New Progmmm;ng Support

• 	 The IBM 3800 Printing Subsystem is supported with this release. For
additional programming information for the 3800 and the IEBIMAGE
utility program, see IBM 3800 Printing Subsystem Programmer's Guide,
GC26-3846. Information on the 3800 is provided for planning purposes
only until the product is available.

• 	 The IBM 3350 Direct Access Storage is supportep with this release. For
additional information on the 3350, see Introduction to IBM 3350
Direct Access Storage, GA26-1638. Information on the 3350 is provided
for planning purposes only until the product is available.

• 	 The IBM 3344 Direct Access Storage is supported with this release. For..
additional information on the 3344, see Reference Manual for IBM
3340 Disk Storage, GA26-1619. Information on the 3344 is provided for
planning purposes only until the product is available.

Other Changes

The descriptions of the EXCPVR and IMGLIB macros, which were
previously documented in OS/VSl Planning and Use Guide, GC24-5090,
are now documented in this manual.

Release 4

New Devices

• 	 IBM 3850 Mass Storage System: Some restrictions are given for using the
RDJFCB macro instruction if the data set resides on MSS virtual volumes.
The DEVD code for MSS virtual volumes is provided. The MSS
information contained in this publication is only for planning purposes until
the product becomes available.

Release 3.1
• 	 This update contains VTAM related changes to the PURG parameter list.

Summary of Amendments 13

MAINTAINING THE OS/VS SYSTEM CATALOG

Introduction

This chapter contains detailed information on how to maintain and modify the
OS/VS system catalog.

More detailed information about the OS/VS catalog routines is available in
OS/VSl Catalog Management Logic.

Before using the information in this chapter, you should be familiar with the
information contained in the following publications:

• 	 OS/VS - DOS/VS - VM/370 Assembler Language, which contains
information you will need in order to code programs in the assembler
language.

• 	 OS/VS Data Management Services Guide, which contains a general
description of the structure of catalog indexes and generation data groups.

• 	 OS/VS Utilities, which tells how to use utility programs to maintain the
system catalog.

• 	 OS/VSl JCL Services, which tells how to catalog and uncatalog data sets
using job control language statements.

• 	 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide,
OS/VSl Access Method Services, and OS/VSl Virtual Storage Access
Method (VSAM) Logic, which gives information on VSAM master and
user catalogs.

The catalog management routines that maintain and modify the catalog are
called by the assembler language macro instructions presented in this chapter.
These macros are most commonly used by the system control program or the
IEHPROGM utility, but you may use them in your own routines.

Catalog management is a component of the OS/VS system control program
that is used for keeping track of data sets when a problem program provides
only the name of a cataloged data set. The catalog, itself a system data set
(DSNAME=SYSCTLG), contains data set names correlated with the volume
identification (volume serial number) and device type.

The physical organization of the catalog is the same as that of a partitioned
data set directory. It is formatted into 256-byte blocks, containing
variable-length entries. Data area layouts and detailed descriptions of the
fields of each entry are provided in Figures 1 through. 9 at the end of this
chapter.

The functions you can perform using the catalog management macro
instructions are:

• 	 Reading a block from the catalog.

• 	 Building an index.

• 	 Building a generation index.

• 	 Deleting an index.

• 	 Assigning an alias.

• 	 Deleting an alias.

Maintaining the OS/VS System Catalog 15

• Connecting control volumes.

• Disconnecting control volumes.

• Cataloging a data set.

• Removing data set references from the catalog.

• Recataloging a data set.

Specifications for coding the macro instructions are presented with each
function to be performed. Accompanying the descriptions are coding
examples and programming notes; exceptional-return condition codes follow
the coding examples. In the functional descriptions, offsets into data areas are
numbered from zero (the first byte is byte zero).

Reading a Block From the Catalog
To read an entry from the catalog, use the LOCATE and CAMLST macro
instructions. You may specify the entry you want to read into your work area
by using either (1) the fully or partially qualified name of a data set, or (2)
the relative block address (TTR) of the block containing the entry. If you
specify a fully qualified data set name, a list of volumes on which the data set
resides will be read into your work area. This volume list always begins with a
2-byte entry that is the number of volumes in the list. If the data set resides
on more than 20 volumes, the address of a volume control block will follow
the volume list entries.

If you specify a partially qualified data set name, the first block in the catalog
corresponding to the lowest-level index specified will be read into your work
area.

If you specify a relative block address (TTR), the block at that relative
address in the catalog will be read into your work area.

See Figures 1 through 9 for descriptions of the contents of the volume control
block and the other catalog data areas.

Reading a Block by Datil Set Name (LOCATE and
CAMLST NAME)

When you specify a data set name and the named data set resides on five or
fewer volumes, a volume list is built in your work area. A volume list consists
of an entry for each volume on which part of the data set; it is preceded by a
2-byte field that contains a count of the number of volumes in the list. The
count fields is followed by a variable number of 12-byte entries. Each 12-byte
entry consists of a 4-byte device code, a 6-byte volume serial number, and a
2-byte data set sequence number.

If, however, the named data set resides on more than five volumes, a volume
. control block is read into your work area. A volume control block has
essentially the same contents as a volume list, except that it can contain as
many as 20 entries and can be linked to another volume control block (see
Figure 6). The count field of each volume control block contains the
remaining number of volume entries. For example, if a data set resides on 61
volumes, the count field would be decreased by 20 (61, 41, 21, 1) as you read
each successive volume control block into your area. The first two bytes of
the block contain the number of volume pointers for the data set. Each
volume pointer is a 12-byte field that contains a 4-byte device code, a 6-byte
volume serial number, and a 2-byte data set sequence number.

16 OS/VSI Data Management for System Programmers

to

Device codes are presented in OS/VSl System Data Areas in the section
"The VCBTYP Field in the VCB."

If the named data set is stored on more than 20 volumes, bytes 252-254 of
the block contain the relative track address of the next volume control block
for the named data set; the last block has binary zeros in bytes 252-254. Byte
255 contains a binary zero.

If the named data set is stored on only one volume, bytes 242-243 of your
area contain the relative track address of the DSCB for that data set;
otherwise these bytes are zero. Byte 255 contains a binary zero.

The format is:

[symbol] LOCATE 	 list-addrx
listname CAMLSf 	 NAME

, dsname-relexp

,[cvol-re1exp]

,area-re1exp

list-addrx
points to the parameter list (labeled listname) CAMLST macro instruction.

NAME
this operand must be coded as shown in order to read a block from the
catalog by name.

dsname-re1exp
specifies the virtual storage location of a fully qualified data set name. The
area that contains the name must be 44 bytes long. The name may be
defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

area-re1exp
specifies the virtual storage location of your 265-byte work area, which
you must define. The work area must begin on a doubleword boundary.
The first 256 bytes of the work area will contain a volume list or the
volume control block that is read from the catalog, and the last 6 bytes will
contain the serial number of the volume on which the block was found. If
the data set resides on one volume, bytes 252-254 may contain the relative
track address of the DSCB. This address is relative to the beginning of the
VTOC.

Example: In the following example, the catalog entry containing a list of the
volumes on which data set A.B resides is read into virtual storage. The search
for the catalog entry starts on the system residence volume.

LOCATE INDAB

Check Exception~ RehHns

READ CATALOG ENTRY FOR* INDAB CAMLST NAME,AB"LOCAREA DATA SET A.B INTO
AB DC CL44'A.B' VIRTUAL STORAGE AREA

NAMED LOCAREA.* LOCAREA DS OD LOCAREA ALSO CONTAINS
DS 265C 3-BYTE TTR AND 6-BYTE

SERIAL NUMBER*

Maintaining the OS/VS System Catalog 17

The LOCATE macro instruction points to the CAMLST macro instruction.

NAME, the first operand of CAMLST, specifies that the system is to search

the catalog for an entry using the name of a data set. AB, the second operand,
specifies the virtual storage location of a 44-byte area into which you have Jplaced the fully qualified name of a data set. LOCAREA, the fourth operand,
specifies a 265-byte area you have reserved in virtual storage.

After execution of these macro instructions, the 265-byte area contains: a
volume list or a volume control block for the data set A.B and the 6-byte
serial number of the volume on which the entry was found (in bytes
259-264). If data set A.B resides on only one volume, bytes 252-254 of your
area may contain the relative track address of the DSCB for data set A.B
(relative to the beginning of the volume).

If a code of 4 is returned in register 15 indicating that the required control
volume (CVOL) was not mounted, bytes 259-264 of the work area will
contain the volume serial number of this required volume. If LOCATE finds
an old CVOL pointer entry, and the CVOL is not mounted, binary zeros will
be returned in bytes 252-255 of the work area. However, if a new CVOL
pointer entry is found, the 4-byte device code of the CVOL will be returned
in those bytes.

Control will be returned to your program at the next executable instruction
after the LOCATE macro instruction. If the block has been successfully read
from the catalog, register 15 will contain zeros. Otherwise, register 15 will
contain one of the following exceptional return codes:

Code 	 interpretation

4 	 Either the required control volume was not mounted, there is a closed chain of
control volume pointers, or the spe.ified volume does not contain a catalog data
set (SYSCTLG). The work area contains the volume serial number (in bytes
259-264) and the device code of the volume, if available (in bytes 252-255). Your J
work area contains the last block that was searched.

8 	 The last entry found was a control volume pointer or one of the names of the
qualified name was not found or an unidentified entry was found. Register 0
contains the number of the last valid name in the qualified name. For example, if
the qualified name A.B.C.D were specified, but name C did not exist at the level
specified, register 0 would contain the binary number 2. The work area contains
the serial number of the volume containing the index (in bytes 259-264). *

12 	 Either an index or an alias was found when the list of qualified names was
exhausted.* If an index pointer entry was found, the work area contains the first
block of the specified index.

16 	 A data set resides at some level of the index other than the lowest index level
specified. The work area contains the serial number of the volume containing the
index in which a data set was found (in bytes 259-264). *

20 	 A syntax error exists in the name (for example, nine characters, a double
delimiter, blank name field, or a qualified name when a simple name is needed).

24 	 A permanent I/O error was found when processing the catalog.

28 	 Relative track address (TTR) supplied to LOCATE is out of the SYSCTLG data
set extents. *

32 	 Invalid work area pointer (for example, not a doubleword boundary).

48 	 Invalid parameter list. See CAMLSTD DSECT in OS/VSl Catalog Management
Logic.

* Rellister 0 contains the number of index levels that were searched before the failure was encountered.

18 OS/VSl Data Management for System Programmers

..

RMding II Block by GMUlltio1l Datil Sd Nllllle (LOCATE 1I11d

CAMLST NAME)

You specify the name of a generation data set by using the fully qualified
generation index name and the relative generation number of the data set.
The value of a relative generation number reflects the position of a data set in
a generation data group. The following values can be used:

• 	 Ze..-specifies the latest data set cataloged in a generation data group.

• 	 Negative number-specifies a data set cataloged before the latest data set.

• 	 Positive number-specifies a data set not yet cataloged in the generation
data group.

When you use zero or a negative number as the relative generation number, a
volume list or volume control block (depending on whether these are more
than five volumes in the data set) is read into virtual storage and the relative
generation number is replaced by the absolute generation name.

When you use a positive number as the relative generation number, an
absolute generation name is created and replaces the relative generation
number. Nothing is read into your work area, because there are no entries in
the catalog data sets.

The format is:

[symbol] LOCATE 	 list-addrx
listname CAMLST 	 NAME

, dsname-relexp
,[cvol-relexp]
,area-relexp

Iist-addrx
points to the parameter list (labeled Iistname) set up by the CAMLST
macro instruction.

NAME
this operand must be coded as shown in order to read a block from the
catalog by generation data set name.

dsname-relexp
specifies the virtual storage location of the name of the generation index
and the relative generation number. The area that contains these must be
44 bytes long. The name may be defined by a C-type define constant (DC)
instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

area-relexp
specifies the virtual storage location of your 265-byte work area, which
you must define. The work area must begin on a doubleword boundary.
The first 256 bytes of the work area will contain a volume list or the
volume control block that is read from the catalog, and the last 6 bytes will
contain the serial number of the volume on which the block was found. H
the data set resides on one volume, bytes 252-254 may contain the relative
track address of the DSCB. This address is relative to the beginning of the
volume.

Maintaining the OS/VS System Catalog 19

Example: In the following example, the list of volumes that contain generation
data set A.PAY(-3) is read into virtual storage. The search for the catalog
entry starts on the system residence volume.

LOCATE INDGX 	 READ CATALOG ENTRY
FOR*

Check Exceptional Returns

INDGX CAMLST NAME,APAY"LOCAREA DATA SET APAY(-3) INTO
APAY DC CL44'A.PAY(-3)' YOUR STORAGE AREA
* 	 NAMED LOCAREA.
LOCAREA 	 DS 00 LOCAREA ALSO CONTAINS

DS 265C 6-BYTE VOLUME SERIAL
* 	 NUMBER

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to search
the catalog for a catalog entry by using the name of a data set. APAY, the
second operand, specifies the virtual storage location of a 44-byte area into
which you have placed the name of the generation index and the relative
generation number of a data set in the generation data group. LOCAREA,
the fourth operand, specifies a 265-byte area you have reserved to receive the •
catalog information.

After execution of these macro instructions, your 265-byte area
contains: the catalog entry for generation data set A.PAY(-3) and the
6-byte serial number of the volume on which the block was found (in bytes
259-264). If data set A.PAY(-3) resides on one volume, bytes 252-254 of
your area may contain the relative track address of the DSCB for that data set
(relative to the beginning of the volume). In addition, the system will have
replaced the relative generation number that you specified in your 44-byte
area with the data set's absolute generation name. Control will be returned to
your program at the next executable instruction after the LOCATE macro
instruction. If the index block has been located and read successfully, register
15 will contain zeros. Otherwise, register 15 will contain one of the
exceptional return codes described in the previous example.

Reading a Block by Alias (LOCATE and CAMLST NAME)

For each of the preceding functions, you can specify an alias as the first name
in the qualified name of an index level, data set, or generation data set. Each
function is performed exactly as previously described, with one

" exception: the alias name specified is replaced by the true name. Be aware,
however, that if the true name of the data set is longer than the alias, the fully
qualified name may exceed 44 characters.

The format is:

[symbol] LOCATE 	 list-addrx
listname CAMLST 	 NAME

, dsname-relexp
,[cvol-relexp]
,area-relexp

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

20 OS/VSl Data Management for System Programmers

•

NAME
this operand must be coded as shown in order to read a block from the
catalog by name.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name, the
first or only name of which is the alias. The area that contains the name
must be 44 bytes long. The name may be defined by a C-type define
constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

area-relexp
specifies the virtual storage location of your 265-byte work area, which
you must define. The work area must begin on a doubleword boundary.
The first 256 bytes of the work area will contain a volume list or the
volume co~trol block that is read from the catalog, and the last 6 bytes will
contain the serial number of the volume on which the block was found. If
the data set resides on one volume, bytes 252-254 may contain the relative
track address of the DSCB. This address is relative to the beginning of the
volume.

Example: In the following example, the catalog entry containing a list of the
volumes on which data set A.B.C resides is read into virtual storage. (Data set
A.B.C, however, is addressed by an alias name-X is an alias for A.) The
search for the catalog entry starts on the system residence volume.

LOCATE INDAB READ CATALOG ENTRY
* FOR

Check Exceptional Returns

INDAB CAMLST NAME,ABC"LOCAREA DATA SET X.B.C INTO
ABC DC CL44 ' X . B . C. ' VIRTUAL STORAGE AREA

NAMED LOCAREA.* LOCAREA DS OC LOCAREA ALSO CONTAINS
DS 265C 3-BYTE TTR AND 6-BYTE

SERIAL NUMBER*
The LOCAIE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to search
the catalog for an entry using the name of a data set. ABC, the second'
operand, specifies the virtual storage location of a 44-byte area into which
you have placed the fully qualified name of a data set. (In this case, data set
A.B.C is addressed by its alias X.B.C.) LOCAREA, the fourth operand,
specifies a 265-byte area you have reserved in virtual storage.

After execution of these macro instructions, the 265-byte area contains: a
volume list or a volume control block for the data set A.B.C and the 6-byte
serial number of the volume on which the entry was found (in bytes
259-264). If data set A.B.C resides on only one volume, bytes 252-254 of
your area may contain the relative track address of the DSCB for data set
A.B.C (relative to the beginning of the volume).

If a code of 4 is returned in register 15 indicating that the required control
volume (CVOL) was not mounted, bytes 259-264 of the work area will
contain the volume serial number of this required volume. If LOCAIE finds
an old CVOL pointer entry, and the CVOL is not mounted, binary zeros will
be returned in bytes 252-255 of the work area. However, if a new CVOL

Maintaining the OS/VS System Catalog 21

L

pointer entry is found, the 4-byte device code of the CVOL will be returned
in those bytes.

Reading a Block by Relative Block Address (LOCATE and 	 J
CAMLST BWCK)

You can read anyblock in the catalog by specifying, in the form TIR, the
identification of the block and its location relative to the beginning of the
catalog. IT is the number of tracks from the beginning of the catalog, R is the
record number of the desired block on the track.

The format is:

[symbol] LOCATE 	 list-addrx
listname CAMLSf 	 BLOCK

, ttr-relexp
,[cvol-relexp]
,area-relexp

•list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

BLOCK.
you must code this operand as shown.

ttr-relexp
specifies the virtual storage location of a 3-byte relative block address
(TIR). This address indicates the position relative to the beginning of the
catalog data set, of the track containing the block (IT), and the block
identification (R) on that track. J

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

area-relexp
specifies the virtual storage location of your 265-byte work area, which

you must define. The work area must begin on a doubleword boundary.

The first 256 bytes of the work area will contain the block that is read ".

from the catalog, and the last 6 bytes will contain the serial number of the

volume on which the block was found. If the data set resides on one

volume, bytes 252-254 will contain the relative track address of the DSCB.

Example: In the following example, the block at the location indicated by
TIR is read into virtual storage. The specified block is in the catalog on the
system residence volume.

LOCATE BLK

Cbeck Exceptional Returns

BLK CAMLST BLOCK,TTR"LOCAREA 	READ A BLOCK INTO
VIRTUAL STORAGE. AREA* NAMED LOCAREA* TTR DC H'S' RELATIVE TRACK S

DC X'03' BLOCK 3 ON TRACK
LOCAREA DS OD LOCAREA ALSO CONTAINS

DS 26SC 6-BYTE SERIAL NO.

The LOCATE macro instruction points to the CAMLST macro instruction.
BLOCK, the first operand of CAMLST, specifies that the system is to search

22 OS/VS1 Data Management for System Programmers

the catalog for the block indicated by TIR, the second operand. LOCAREA,
the fourth operand, specifies a 265-byte area you have reserved in virtual
storage.

After execution of these macro instructions, the 265-byte area contains: the
256-byte block and the 6-byte serial number of the volume on which the
block was found (in bytes 259-264).

Control will be returned to your program at the next executable instruction
following the LOCATE macro instruction. If the index block at the address
you specified has been successfully located and read into your work area,
register 15 will contain zeros. Otherwise, register 15 will contain one of the
exceptional return codes described with the first example in this section.

Building and Deleting Indexes
You handle indexes-build them, delete them, etc.-by using combinations
of the INDEX and CAMLST macro instructions .

• Building an Index (INDEX and CAMLST BLDX)

To build a new index structure and add it to the catalog, you may create each
level of the index separately. (You can also create index levels while you are
cataloging a data set onto those index levels. See "Cataloging When Index
Levels Exist (CATALOG and CAMLST CAT)" and "Cataloging by
Creating Required Index Levels (CATALOG and CAMLST BLDX).") To
create each level of the index, use the INDEX and CAMLST macro
instructions.

These two macro instructions can also be used to add index levels to existing
index structures.

The format is:

[symbol] INDEX 	 list-addrx
listname CAMLST 	 BLDX

, namerelexp
,[cvol-relexp]

list-addrx•
points to the parameter list (labeled Iistname) set up by the CAMLST
macro instruction.

BLDX
this operand must be coded as shown.

namerelexp
specifies the virtual storage location of the fully qualified name of a data
set or index level. The name cannot exceed 44 characters. If the name is
less than 44 characters, it must be followed by blanks. The name may be
defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

Maintaining the OS/VS System Catalog 23

Example: In the following example, index structure A.B.C is built on the
control volume whose serial number is 000045.

INDEX INDEXA BUILD INDEX A
Check Exc:eptional Returns J

INDEX INDEXB BUILD INDEX STRUCTURE
A.B*

Check Exceptio Returns

INDEX INDEXC BUILD INDEX STRUCTURE

A.B.C*

Check Exc:eptional Returns

INDEXA CAMLST BLDX,ALEVEL,VOLNUM
INDEXB CAMLST BLDX,BLEVEL,VOLNUM
INDEXC CAMLST BLDX,CLEVEL,VOLNUM
VOLNUM DC CL6'000045' VOLUME SERIAL NUMBER
ALEVEL DC CL2'A' INDEX STRUCTURE NAMES
BLEVEL DC CL4'A.B' FOLLOWED BY A BLANK
CLEVEL DC CL6'A.B.C' WHICH DELIMITS FIELDS

Each INDEX macro instruction points to an associated CAMLST macro
instruction. BLDX, the first operand of CAMLST, specifies that an index
level be built. The second operand specifies the virtual storage location of the
area into which you have placed the fully qualified name of an index level.
The third operand specifies the virtual storage location of the area into which
you have placed the 6-byte serial number of the volume on which the index
level is to be built.

Control will be returned to your program at the next executable instruction
following the INDEX macro instruction. If the index has been built
successfully, register 15 will contain zeros. Otherwise, register 15 will contain
one of the following exceptional return codes:

Code 	 Interpretatioa J
4 	 Either the required control volume was not mounted, or the specified volume does

not contain a catalog data set (SYSCTLG).

8 	 The existing catalog structure is inconsistent with the operation performed. (Because
the INDEX macro instruction uses the search routine of the LOCATE macro
instruction, register 1 contains the condition code that would be given by the
LOCATE macro instruction, and register 0 contains the number of index levels
referred to during the search.)

12 	 An attempt was made to delete an index or generation index that has an alias or has
indexes or data sets cataloged under it. The index is unchanged. •

16 	 The qualified name specified when building an index or generation index implies an
index structure that does not exist; the high level index, specified when connecting
control volumes, does not exist.

20 	 Space is not available on the specified control volume.

24 	 Not used with the INDEX macro instruction.

28 	 A permanent I/O error was found when processing the catalog.

48 	 Invalid parameter list. See CAMLSTD DSECT in OS/VSI Catalog Management
Logic.

72 	 The VTOC of a DOS volume could not be converted to OS format.

24 OS/VSI Data Management for System Programmers

Building a Generation Index (INDEX a1Ul CAMLST BLDG)

You build a generation index by using the INDEX and CAMLST macro
instructions. All higher levels of the index must exist. If the higher levels of
the index are not in the catalog, you must build them. How to build an index
has been explained previously.

The format is:

[symbol] INDEX 	 list-addrx
listname CAMLST 	 BLDG

, namerelexp
,[cvol-re1exp]
,,[DELETE]
,[EMPIY]
, number-absexp

list-addrx
.. points to the parameter list (labeled listname) set up by the CAMLST

macro instruction.

BLDG
this operand must be coded as shown.

namerelexp
specifies the virtual storage location of the fully qualified name of a data
set or index level. The name cannot exceed 44 characters. If the name is
less, it must be followed Iby blanks. The name may be defined by a C-type
define constant (DC) instruction.

cvol-re1exp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

DELETE
specifies that all data sets on direct-access volumes that are removed from
a generation data group are to be deleted, that is, the space allocated to the
data set(s) is to be made available for reallocation. A SCRATCH macro
instruction will be issued by the catalog management routines to delete the

• data set, which will be deleted from the volume if there are no conditions
preventing deletion (e.g., expiration date not passed, password not verified,
volume not mounted, permanent I/O error encountered while trying to
delete the data set).

EMPTY
specifies that references to all data sets in a generation data group
cataloged in the generation index are to be removed from the index when
the number of entries specified is exceeded.

number-absexp
specifies the number of data sets to be included in a generation data group.
This number must be specified, and cannot exceed 255.

Maintaining the OS/VS System Catalog 25

,

Example: In this example, generation index D is built on the control volume,
serial number 000045. The higher level indexes A.B.C already exist. When
the number of generation data sets in the generation index D exceeds four,
the oldest data set is uncataloged. When the data set has been successfully
uncataloged and the DELETE operand has been specified, the catalog
management routines issue a SCRATCH macro (see "Maintaining the
Volume Table of Contents") to delete the data set. If there are no conditions
preventing the data set from being deleted (for example, the expiration date
was not passed, the password could not be verified, or a permanent II0 error
was encountered when trying to delete the data set), the data set will be
deleted.

INDEX GENINDX BUILD GENERATION INDEX
Check Exceptional Returns

GENINDX CAMLST BLDG,DLEVEL,VOLNUM"DELETE,,4
DLEVEL DC CL8 ' A. B . C . D ' ONE BLANK, DELIMITER
VOLNUM DC CL6'000045'

The INDEX macro instruction points to the CAMLST macro instruction.
BLDG, operand of CAMLST, specifies that a generation index be built.
DLEVEL specifies the virtual storage location of an area into which you have
placed the fully qualified name of a generation index. VOLNUM specifies the
virtual storage location of the area into which you have placed the 6-byte
serial number of the volume on which the generation index is to be built.
DELETE specifies that all data sets dropped from the generation data group
are to be deleted. The final operand, 4, specifies the number of data sets that
are to be maintained in the generation data group. Control will be returned to
your program at the next executable instruction following the INDEX macro
instruction. If the generation index was built successfully, register 15 contains
zeros. Otherwise, register 15 will contain one of the exceptional return codes
described under "Building an Index (INDEX and CAMLST BLDX)."

Deleting an Index (INDEX and CAMLST DLTX)

You can delete any number of index levels from an existing index structure.
Each level of the index is deleted separately. Generation indexes are also
removed this way. (You can also delete index levels automatically when they
are no longer needed. See "Uncataloging a Data Set While Retaining Index
Levels (CATALOG and CAMLST UNCAT)" and "Uncataloging a Data Set
and Removing Index Levels (CATALOG and CAMLST UCATDX)" in this
chapter for details). You delete each level of the index by using the INDEX
and CAMLST macro instructions.

If an index level either has an alias, or has other index levels or data sets
cataloged under it, it cannot be deleted.

The format is:

[symbol] INDEX list-addrx
listname CAMLSf DLTX

, namerelexp
,[cvol-relexp]

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

26 OS/VS I Data Management for System Programmers

J

..

DLTX
this operand must be coded as shown.

namerelexp
specifies the virtual storage location of the fully qualified name of a data
set or index level. The name cannot exceed 44 characters. If the name is
less than 44 characters, it must be followed by blanks. The name may be
defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

Example: In the following example, index level C is deleted from index
structure A.B.C. The search for the index level starts on the system residence
volume.

INDEX DELETE ·DELETE INDEX LEVEL
C FROM INDEX STRUCTURE* A.B.C*

Cbed Exceptional Returns

DELETE CAMLST DLTX,LEVELC
LEVELC DC CL6'A.B.C' ONE BLANK FOR

DELIMITER*
The INDEX macro instruction points to the CAMLST macro instruction.
DLTX, the first operand of CAMLST, specifies that an index level be
deleted. LEVELC, the second operand, specifies the virtual storage location
of the area into which you have placed the fully qualified name of the index
structure whose lowest level is to be deleted. Control will be returned to your
program at the next executable instruction following the INDEX macro
instruction. If the index level(s) was successfully deleted, register 15 contains
zeros. Otherwise, register 15 contains one of the exceptional return codes
described in "Building an Index (INDEX and CAMLST BLDX)."

Assigning lUI Alias for an Index (INDEX and CAMLST BLDA)

You assign an alias to an index level by using the INDEX and CAMLST
macro instructions. An alias can be assigned only to a high level index; e.g.,
index A of index structure A.B.C can have an alias, but index B cannot.

• Assigning an alias to a high level index effectively provides aliases for all data
sets cataloged under that index. An alias cannot be assigned to a generation
index with only one level.

The format is:

[symbol] INDEX 	 list-addrx
listname CAMLSf 	 BLDA

,index namerelexp
,[cvol-relexp]
,alias namerelexp

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

BLDA
this operand must be coded as shown.

Maintaining the OS/VS System Catalog 27

index namerelexp
specifies the virtual storage location of the name of a high-level index. The

area that contains the name must be 8 bytes long. The name may be \

defined by a C-type define constant (DC) instruction. ...""

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

alias namerelexp
specifies the virtual storage location of the name that is to be used as an
alias for a high-level index. The area that contains the name must be 8
bytes long. The name may be defined by a C-type define constant (DC)
instruction.

Example: In the following example, index level A is assigned an alias of X.
The search for the index level starts on the system residence volume.

*
INDEX ALIAS BUILD

A HIGH
AN ALIAS FOR
LEVEL INDEX

Check Exceptiooal Returns

ALIAS CAMLST BLDA,DSNAME"DSALIAS
DSNAME DC CLB' A' MUST BE 8-BYTE FIELDS
DSALIAS DC CLB'X'

The INDEX macro instruction points to the CAMLST macro instruction.

BLDA, the first operand of CAMLST, specifies that an alias be built.

DSNAME, the second operand, specifies the virtual storage location of an

8-byte area into which you have placed the name of the high-level index to be

assigned an alias. DSALIAS, the fourth operand, specifies the virtual storage. '\

location of an 8-byte area into which you have placed the alias to be assigned. .,.""

Control will be returned to your program at the next executable instruction

following the INDEX macro instruction. If the alias has been successfully

assigned, register 15 will contain zeros. Otherwise, register 15 will contain

one of the exceptional return codes described in "Building an Index (INDEX

and CAMLST BLDX)."

Deleting an Alias for all Illdex (INDEX allll CAMLST DLTA)

You can delete an alias previously assigned to a high level index by using the •
INDEX and CAMLST macro instructions.

The format is:

[symbol] INDEX 	 list-addrx
listname CAMLST 	 DLTA

,alias namerelexp
,[cvol-relexp]

Iist-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

DLTA
this operand must be coded as shown.

J

28 OS!VSI Data Management for System Programmers

alias namerelexp
specifies the virtual storage location of the name that is tq be used as an
alias for a high-level index. The area that contains the name must be 8
bytes long. The name may be defined by a C-type define constant (DC)
instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

Example: In the following example, alias X, previously assigned as an alias for
index level A, is deleted. The search for the alias starts on the system
residence volume.

INDEX DELALIAS 	 DELETE AN ALIAS FOR
A HIGH LEVEL INDEX*

Check Exceptional Returns

DELALIAS CAMLST DLTA,ALIAS
ALIAS DC CLS'X' MUST BE S-BYTE FIELD

The INDEX macro instruction points to the CAMLST macro instruction.
DLTA, the first operand of CAMLST, specifies that an alias be deleted.
ALIAS, the second operand, specifies the virtual storage location of the
8-byte area into which you have placed the alias to be deleted.

Connecting and Disconnecting Control Volumes
You connect and disconnect control volumes by using combinations of the
INDEX and CAMLST macro instructions.

Connecting Control Volumes (INDEX and CAMLST LNKX)

You connect two control volumes (CVOLs) by using the INDEX AND
CAMLST macro instructions. If a control volume is to be connected to the
system residence volume, you need supply only the serial number of the
volume to be connected and the name of a high level-index associated with
the volume to be connected.

If a control volume is to be connected to a control volume other than the
• system residence volume, you must supply the serial numbers of both volumes

and the name of a high-level index associated with the volume to be
connected.

The result of connecting control volumes is that the volume serial number of
the control volume connected and the name of a high-level index are entered
into the volume index of the volume to which it was connected. This entry is
called a control volume pointer.

Maintaining the OS/VS System Catalog 29

The format is:

[symbol] INDEX list-addrx Jlistname CAMLST LNKX
,index namerelexp
,[cvol-relexp]
,new cvol-relexp

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

LNKX
this operand must be coded as shown.

index namerelexp
specifies the virtual storage location of the name of a high-level index. The
area that contains the name must be 8 bytes long. The name may be
defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

new cvol-relexp
specifies the virtual storage location of the 4-byte device code and 6-byte
volume serial number of the control volume that is to be connected to
another control volume.

Example: In the following example, the control volume whose serial number is
001555 is connected to,the control volume numbered 000155. The name of
the high-level index is HIGHINDX.

INDEX CONNECT 	 CONNECT TWO CONTROL
VOLUMES*

Check Exceptional Returns

CONNECT CAMLST LNKX,INDXNAME,OLDCVOL
* 	 WHOSE SERIAL NUMBERS
INDXNAME DC CL8'HIGHINDX' ARE 000155 AND 001555.

OLDCVOL DC CL6'000155'

NEWCVOL DC X'30C02008' 2314 DISK DEVICE CODE

DC CL6'001555'

The INDEX macro instruction points to the CAMLST macro instruction.
LNKX, the first operand of CAMLST, specifies that control volumes be
connected. INDXNAME, the second operand, specifies the virtual storage
location of the 8-byte area into which you have placed the name of the
high-level index of the volume to be connected. OLDCVOL, the third
operand, specifies the virtual storage location of a 6-byte area into which you
have placed the serial number of the volume to which you are connecting.
NEWCVOL, the fourth operand, specifies the virtual storage location of a
lO-byte area into which you have placed the 4-byte binary device code of the
volume to be connected followed by the 6-byte area to contain the volume
serial number of the volume to be connected.

Control will be returned to your program at the next executable instruction
following the INDEX macro instruction. If the control volumes have been
successfully connected, register 15 will contain zeros. Otherwise, register 15
will contain one of the exceptional return codes described in the section
"Building an Index {INDEX and CAMLST BLDX)."

30 OS/VS 1 Data Management for System Programmers

Disconnecting Control Volumes (INDEX and CAMLST DRPX)

You disconnect two control volumes by using the INDEX and CAMLST
macro instructions. If a control volume is to be disconnected from the system
residence volume, you need supply only the name of the high-level index
associated with the volume to be disconnected.

If a control volume is to be disconnected from a control volume other than
the system residence volume, you must supply, in addition to the name of the
high-level index, the serial number of the control volume from which you
want to disconnect.

The result of disconnecting control volumes is that the control volume pointer
is removed from the volume index of the volume from which you are
disconnecting.

The format is:

[symbol] INDEX list-addrx
listname CAMLSf DRPX

•index namerelexp
.[cWJ1-relexp]

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

DRPX
this operand must be coded as shown.

index namerelexp
specifies the virtual storage location of the name of a high-level index. The
area that contains the name must be 8 bytes long. The name may be
defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

Example: In the following example, the control volume that contains the
• high-level index HIGHINDX is disconnected from the system residence

volume.

INDEX DISCNECT 	 DISCONNECT TWO
CONTROL VOLUMES*

Check Exceptional Returns

DISCNECT CAMLST DRPX,INDXNAME
INDXNAME DC CL8'HIGHINDX' MUST BE 8-BYTE FIELD

The INDEX macro instruction points to the CAMLST macro instruction.
DRPX, the first operand of CAMLST, specifies that control volumes be
disconnected. INDEXNAME, the second operand, specifies the virtual
storage location of the 8-byte area into which you have placed the name of
the high-level index of the control volume to be disconnected.

Control will be returned to your program at the next executable instruction
following the INDEX macro instruction. If the control volumes were
successfully disconnected, register 15 will contain zeros. Otherwise, register
15 will contain one of the exceptional return codes described in the section
"Building an Index (INDEX and CAMLST BLDX)."

Maintaining the OS/VS System Catalog 31

Working with Data Set Catalogs
You catalog, uncatalog, and recatalog data sets by using combinations of the
CATALOG and CAMLST macro instructions.

When you catalog a data set, the CATALOG macro instruction points to the
CAMLST macro instruction; parameters of the CAMLST macro instruction
specify the options for cataloging a data set. When the CAT parameter is
used, all index levels required to catalog the data set must exist in the catalog.
The index structure need not exist when the CATBX parameter is used; any
missing index levels are automatically created. CATBX does not apply to
generation indexes.

You must build a complete volume list in virtual storage. This volume list
consists of an entry for each volume on which the data set is stored. The first
two bytes of the list indicate the number of entries in the volume list; the
number cannot be zero. Each 12-byte volume list entry consists of a 4-byte
device code, a 6-byte volume serial number, and a 2-byte data set sequence
number. The sequence number is always zero for direct-access volumes.

Device codes are presented in OS/VSl System Data Areas in the section
"The VCBTYP Field in the VCB."

When you uncatalog or recatalog a data set, you use CATALOG and
CAMLST in much the same way they are used in cataloging.

Cataloging a Datil Set When Index Leve& Exist (CATALOG and
CAMLSTCAT)

When the index levels already exist for a data set, you can use the CAT
parameter of the CAMLST macro instruction to catalog the data set. Missing
index levels cause an exceptional return code to be set.

The format is:

[symbol] CATALOG list-addrx
listname CAMLST CAT

, namerelexp
,[cvol-re/exp]
, vol list-relexp
,[DSCB1TR= dscb ttr-re/exp]

Iist-addrx
points to the parameter list (labeled Iistname) set up by the CAMLST
macro instruction.

CAT
this operand must be coded as shown.

namerelexp
specifies the virtual storage location of the fully qualified name of a data
set or index level. The name cannot exceed 44 characters. If the name is
less than 44 characters, it must be followed by blanks. The name may be
defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

32 OS/VS1 Data Management for System Programmers

vol list-relexp
specifies the virtual storage location of an area that contains a volume list.
The area must begin on a half-word boundary.

DSCBTIR= dsch ttr-relexp
specifies the virtual storage location of the 3-byte relative block address
(TTR) of the format-l data set control block (DSCB) for a data set that
resides on only one volume. The address is relative to the beginning of the
volume.

Example: In the following example, the data set named A.B.C is cataloged
under an existing index structure A.B. The data set is stored on two volumes.

CATALOG ADDABC 	 CATALOG DATA SET A.B.C.
THE INDEX STRUCTURE A.B* EXISTS*

Check Exceptional Returns

ADDABC CAMLST CAT, DSNAME, ,VOLUMES
DSNAME DC CL6'A.B.C' ONE BLANK FOR DELIMITER
VOLUMES DC H'2' DATA SET ON TWO VOLUMES

DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000014' VOLUME SERIAL NUMBER
DC H'O' DATA SET SEQUENCE

NUMBER* DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000015' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro instruction.
CAT, the first operand of CAMLST, specifies that a data set be cataloged.
DSNAME, the second operand, specifies the virtual storage location of the
area into which you have placed the fully qualified name of the data set to be
cataloged. VOLUMES, the fourth operand, specifies the virtual storage
location of the volume list you have built.

Control will be returned to your program at the next executable instruction
following the CATALOG macro instruction. If your data set has been
successfully cataloged, register 15 will contain zeros. Otherwise, register 15
will contain one of the following exceptional return codes.

Code Interpretation

4 	 Specifies one of the following:

• 	 The required control volume was not mounted.

• 	 The specified volume does not contain a catalog data set (SYSCTLG).

• 	 An attempt was made to uncatalog a qualified data set name for which there is
no index structure.

8 	 The existing catalog structure is inconsistent with the operation performed or an
attempt was made to uncatalog a data set that is not in the catalog. (Because the
CATALOG macro instruction uses the SEARCH option of the LOCATE macro
instruction, register 1 contains the return code that would be returned by the
LOCATE macro instruction. See the exceptional return considered as a result of the
execution of a LOCATE macro under "Reading a Block from the Catalog." Register
ocontains the number of the index levels referred to before the exception was
noted.)

12 	 Not used with the CATALOG macro instruction.

16 	 The index structure necessary to catalog the data set does not exist.

20 	 Space is not available on the specified control volume.

24 	 An attempt was made to catalog an improperly named generation data set, or the
generation index is full and the named data set is older than any currently in the
index.

Maintaining the OS/VS System Catalog 33

L

Code InterpretatioD

28 A permanent I/O error was encountered when processing the catalog.

48 Invalid parameter list. See CAMLSTD DSECT in OS/VSl Catalog Management
Logic.

72 The VTOC of a DOS volume could not be converted to OS format.

Cataloging a Data Set by Creating Required Index Levels
(CATALOG and CAMLST CATBX)

When index levels are missing, you can use the CATBX parameter of the
CAMLST macro instruction to automatically create them before cataloging
the data set.

The format is:

[symbol] CATALOG list-addrx
Iistname CAMLST CATBX

, namerelexp
,[cvol-relexp]
, vol list-relexp
,[DSCBTIR= dscb ttr-relexp]

Iist-addrx
points to the parameter list (labeled Iistname) set up by the CAMLST
macro instruction.

CATBX
this operand must be coded as shown.

namerelexp
specifies the virtual storage location of the fully qualified name of a data
set or index level. The name cannot exceed 44 characters. If the name is
less than 44 characters, it must be followed by blanks. The name may be
defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

vol Iist-relexp
specifies the virtual storage location of an area that contains a volume list.
The area must begin on a half-word boundary.

DSCBTIR= dscb ttr-relexp
specifies the virtual storage location of the 3-byte relative block address
(TIR) of the identifier (format-I) DSCB for a data set that resides on only
one volume. The block address is relative to the beginning of the volume.

"

34 OS/VSl Data Management for System Programmers

Example: In the following example, the index structure A.B is created and
data set A.B.C is cataloged. The data set is stored on one volume.

CATALOG CTBXABC 	 CATALOG DATA SET A.B.C.
CREATE NEEDED INDEX* LEVELS*

Ched. Exeeptlonal Returns

CTBXABC CAMLST CATBX,DSNAME"VOLUMES,DSCBTTR=TTR
DSNAME DC CL6'A.B.C' ONE BLANK FOR
VOLUMES DC H'l' DELIMITER ONE VOLUME

DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000015' VOLUME SERIAL NUMBER
DC H'O' DATA SET SEQUENCE

TTR DC XL3'000103' NUMBER TTR OF DSCB
* 	 RELATIVE TO BEGINNING
* 	 OF VOLUME

The CATALOG macro instruction points to the CAMLST macro instruction.
CATBX, the first operand of CAMLST, specifies that a data set is to be
cataloged and any required higher level indexes are to be created. DSNAME,
the second operand, specifies the virtual storage location of an area into

.. 	 which you have placed the fully qualified name of the data set to be
cataloged. VOLUMES, the fourth operand, specifies the virtual storage
location of the volume list you have built. DSCBTTR=TTR, the fifth
operand, specifies the virtual storage location into which you have placed the
relative track address of the DSCB for the data set to be cataloged. The
DSCBTTR operand is optional and is ignored for data sets residing on more
than one volume.

Control will be returned to your program at the next executable instruction
following the CATALOG macro instruction. If the index levels have been
successfully created, register 15 will contain zeros. Otherwise, register 15 will
contain one of the exceptional return codes described in the previous
example.

Uncataloging a Data Set While Retaining Index Levels

(CATAWG and CAMLST UNCAT)

When the UNCAT operand of the CAMLST macro instruction is used, a data
set reference is removed, but all index levels are retained.

The format is:•

[symbol] CATALOG 	 list-addrx
listname CAMLST 	 UNCAT

, namerelexp
,[cWJI-relexp]

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

UNCAT
this operand must be coded as shown.

namerelexp
specifies the virtual storage location of the fully qualified name of a data
set or index level. The name cannot exceed 44 characters. If the name is
less than 44 characters, it must be followed by blanks. The name may be
defined by a C-type define constant (DC) instruction.

Maintaining the OS/VS System Catalog 35

L

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed. J

In the following example, references to data set A.B.C are removed from the
catalog.

CATALOG REMOVE 	 REMOVE REFERENCES TO
DATA SET A.B.C FROM*
CATALOG*

Check Exceptioaal Returns

REMOVE CAMLST UNCAT,DSNAME
DSNAME DC CL6'A.B.C' ONE BLANK FOR

DELIMITER*
The CATALOG macro instruction points to the CAMLST macro instruction.
UNCAT specifies that references to a data set be removed from the catalog.
DSNAME specifies the virtual storage location of the area into which you
have placed the fully qualified name of the data set whose references are to
be removed.

Uncatalogmg a Datil Set and RemoJ1mg Index LeJ1e& (CATALOG
and CAMLST UCATDX)

When the UCATDX operand of the CAMLST macro instruction is used, a
data set reference and unneeded indexes, with the exception of the
highest-level index, are removed from the catalog.

The format is: .

[symbol] CATALOG 	 list-addrx J
listname CAMLSf 	 UCAIDX

, namerelexp
,[cvol-relexp]

Iist-addrx
points to the parameter list (labeled Iistname) set up by the CAMLST
macro instruction.

UCAIDX •
this operand must be coded as shown.

namerelexp
specifies the virtual storage location of the fully qualified name of a data
set or index level. The name cannot exceed 44 characters. If the name is
less than 44 characters, it must be followed by blanks. The name may be
defined by a C-type define constant (DC) instruction.

cvol-re/exp
specifies the virtual storage location of a 6-byte volume serial number for
the volume to be processed. If this parameter is not specified, the system
residence volume is processed.

36 OS/VSl Data Management for System Programmers

Example: In the following example, references to data set A.B.C are removed
from the catalog. Index B is removed unless it contains references to other
data sets. Index A remains because it is the highest-level index.

CATALOG RMDSNNDX REMOVE REFERENCES TO DATA
* 	 SET A.B.C FROM CATALOG

Check Exceptional Returns

RMDSNNDX CAMLST UCATDX, DSNAME AND REMOVE UNNEEDED
* 	 INDEXES
DSNAME DC CL6 ' A. B • C ' ONE BLANK FOR
* 	 DELIMITER

The CATALOG macro instruction points to the CAMLST macro instruction.
UCATDX, the first operand, specifies that references to a data set be
removed from the catalog. DSNAME, the second operand, specifies the
virtual storage location of the area into which you have placed the fully
qualified name 'of the data set whose references are to be removed.

Control will be returned to your program at the next executable instruction
following the CATALOG macro instruction. If the data set has been
successfully uncataloged and its related index levels removed, register 15 will
contain zeros. Otherwise, register 15 will contain one of the exceptional
return codes described in the section titled "Cataloging a Data Set When
Index Levels Exist (CATALOG and CAMLST CAT)."

Recataloging a Data Set (CATALOG and CAMLST RECAT)

You recatalog a cataloged data set by using the CATALOG and CAMLST
macro instructions. Usually, a data set is recataloged when a new volume is
added to the data set.

As in the original cataloging procedure, you must build a complete volume list
in virtual storage. This volume list consists of an entry for each volume on
which the data set resides. The first 2 bytes of the list indicate the number of
entries in the list; the number may not be zero. Each 12-byte volume pointer
consists of a 4-byte device code, a 6-byte volume serial number, and a 2-byte
data set sequence number. The sequence number is always zero for
direct-access volumes.

Device codes are presented in OS/VSl System Data Areas in the section
"The UCBTYP Field in the UCB."

The format is:

[symbol] CATALOG 	 list-addrx
listname CAMLST 	 RECAT

, namerelexp
,(cvol-relexp]
, vollist-relexp
,[DSCBTfR= tisch ttr-relexp]

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

RECAT
this operand must be coded as shown.

Maintaining the OS/VS System Catalog 37

namere/exp
specifies the virtual storage location of the fully qualified name of a data

set or index level. The name cannot exceed 44 characters. If the name is

less than 44 characters, it must be followed by blanks. The name may be

defined by a C-type define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for

the volume to be processed. If this parameter is not specified, the system

residence volume is processed.

vol list-re/exp
specifies the virtual storage location of an area that contains a volume list.

The area must begin on a half-word boundary.

DSCBITR= tiscb ttr-re/exp
specifies the virtual storage location of the 3-byte relative track address

(TIR) of the identifier (format-l) DSCB for a data set that resides on only

one volume. The address is relative to the beginning of the volume.

Example: In the following example, the two-volume data set named A.B.C is
recataloged to add a third volume. An entry is added to the volume list, which
previously contained only two entries.

CATALOG RECATLG RECATALOG DATA SET
A.B.C ADDING A NEW* VOLUME*

Check Exceptional Returns

RECATLG CAMLST RECAT,DSNAME"VOLUMES
DSNAME DC CL6'A.B.C' POINTER TO THE VOLUME
* LIST.
VOLUMES DC H'3' FOR DELIMITER ONE
* BLANK THREE VOLUMES. J

DC X' 30C02008' 2314 DISK DEVICE CODE
DC CL6'000014' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000015' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC X' 30C02008' 2314 DISK DEVICE CODE
DC CL6'000016' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro instruction.
RECAT, the first operand of CAMLST, specifies that a data set be
recataloged. DSNAME, the second operand, specifies the virtual storage
location of an area into which you have placed the fully qualified name of the
data set to be recataloged. VOLUMES, the fourth operand, specifies the
virtual storage location of the volume list you have built.

In this example, the entry for the new volume is added to the existing data set
pointer entry by replacing the old volume list with the new volume list. If the
total number of volumes in the data set had been increased to six or more, the
data set pointer entry would have been replaced with a volume control block,
which would contain an entry for each volume of the data set.

Control is returned to your program at the next executable instruction
following the CATALOG macro instruction. If the data set has been
successfully recataloged, register 15 will contain zeros. Otherwise, register 15
will contain one of the exceptional return codes described in the section
"Cataloging a Data Set When Index Levels Exist (CATALOG and CAMLST
CAT)."

38 OS/VS 1 Data Management for System Programmers

~.~r
~

"

•

Catalog Block Entries
This section describes the format and contents of each of the entries that may
appear in the catalog.

Volume Index Control Entry

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8
X'OOOOOOOOOOOOOOO 1 • 05 00 00
Name TIR of last Count TTR of last TTR of first Unused

block in block in unused block bytes
volume SYSCTLG in SYSCTLG
index data set data set

I...:...____________8_____ Tot::Length
1
:
2

22 bytes ___1_5___1_6______1_9___20_-t••1

The volume index control entry contains information about the entire catalog and the volume index. It is always the first entry in
the catalog. It is 22 bytes long and contains eight fields.

Field 1: Name (8 bytes)--contains only a binary one to ensure that this entry is the first entry in the first block of the index.

Field 2: Last-block address (3 bytes)--contains the relative track address (TTR) of the last block in the volume index.

Field 3: Halfword count (l byte)--contains a binary five to indicate that five haHwords follow.

Field 4: Catalog upper limit (3 bytes)--contains the relative track address (TTR) of the last block in the catalog data set.

Field 5: Zero field (1 byte)--contains binary zeros.

Field 6: First-available-block address (3 bytes)--contains the relative track address (TTR) of the unused block in the catalog
that is closest to the beginning of the catalog data set.

Field 7: Zero field (1 byte)--contains binary zeros.

FIeld 8: Unused (2 bytes)

Figure 1. The Volume Index Control Entry

Maintaining the OS/VS System Catalog 39

Index Control Entry

Field 1 	 Field 2 Field 3 Field 4 Field 5 Field 6
X'OOOOOOOOOOOOOOOI' 	 03
Name 	 TTR of last Count TTR of first Alias Unused

block in this block in count bytes
index this index

8 11 12
15 16 I

Total Length: 18 bytes -----------...~

This index control entry is quite similar to a volume index control entry, but it only
contains information about the index, which it begins. It is 18 bytes long and contains six
fields.

Fleld 1: 	 Name (8 bytes)....,..contains only a binary one to ensure that this entry, because it
has the lowest binary name value, is the first entry in the first block of the index.

Fleld 2: 	 Last block address (3 bytes)....,..contains the relative track address (TTR) of the
last block assigned to this index.

Fleld 3: 	 Halfword count (t byte)....,..contains a binary three to indicate that 3 halfwords
follow.

Fleld 4: 	 Index lower limit (3 bytes)....,..contains the relative track address (TTR) of the
block in which this entry appears.

Fleld 5: 	 Number of aliases (t byte)....,..contains the binary count of the number of aliases
assigned to the index. If the index is not a high level index, this field is zero.

Fleld 6: 	 Unused (2 bytes)

Figure 2. 	 The Index Control Entry J

•

40 OS/VSl Data Management for System Programmers

Index Link Entry and Index Pointer Entry

Index Link Entry

Field I
X'FFFFFFFFFFFFFFFF'
Name

Field 2

TIR of next

Field 3
00
Count

block in
index
(or zero if no
next block)

~ ______ Tot" L'"gth, :2 by'" ____ ~1"'. 	 I_l_...

Index Pointer Entry

Field 1 	 Field 2 Field 3
00

Index name (padded TIR of index Count
to right with blanks
if necessary)

~...________ Total Length: :2 bytes ____I_I_...~1
The index link and index pointer entries are quite similar. An index link entry is used to
chain several blocks of an index together, and an index pointer entry is used to chain an
index to the next lower level index. An index link entry is always the last entry in any index
block. These blocks contain three fields and are 12 bytes long.

Field 1: 	 Name (8 bytes)-contains the name of the index to which this entry points. If
the entry is an index link entry, the name field contains X'FF FF FF FF FF FF
FFFF.

Field 2: 	 Address (3 bytes)-contains either the relative block address (ITR) of th first
block of the index if it is an index pointer entry, or the relative block address
(TTR) of the next block of the index if it is an index link entry.

Field 3: 	 Halfword count (l byte)-contains 1 byte of binary zeros to indicate that the
entry ends here.

Figure 3. 	 The Index Link and Index Pointer Entries

Maintaining the OS/VS System Catalog 41

Data Set Pointer Entry

Field 1 	 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7

Lowest level Dummy Count Volume Device Serial number Data set

name of data pointer count code of volume on sequence

set or complemented field: zeros which data number

generation number set resides (zero for

(if part of GDG) direct

access)

8 11 12 t4 18 ~ 24
[

j
Repeated for each volume

"".....---------11,1-'------- Total Length: 26 to 74 bytes ------------------t~

The data set pointer entry can appear in any index. It contains the simple name of a data set and from one to five 12-byte fields,
each of which identifies a volume on which the named "data set resides. If the data set resides on more than five volumes, a volume
control block pointer entry is substituted for the data set pointer entry. A volume control block pointer entry points to a volume
control block or chain of volume control blocks that point to the volumes that contain the data set.

The data set pointer entry varies in length. The length is determined by the formula 14 + 12m, where m is the number of volumes
containing the data set. The variable m can be from one to five. The data set pointer entry can appear in any index, and it
contains five fields.

Field 1: 	 Name (8 bytes)--contains the simple name of the data set whose volumes are identified in field 5.

Field 2: 	 DSCB TTR (3 bytes)--contains the track address (TTR) of the data set control block if the data set resides on one
volume. If the data set resides on more than one volume, this field contains binary zeros.

Field 3: 	 Halfword count (t byte)--contains the binary count of the number of halfwords that follow. The number is found by
the formula 6m + 1, where m is the number of volumes on which the data set resides. The variable m can be from one
to five.

Field 4: 	 Volume count (2 bytes)--contains the binary count of the number of volumes identified in field 5 of this entry.

Field 5: 	 Device code (4 bytes)--contains the device code of the device on which the volume with the volume serial number in
field 6 can be mounted.

Device codes are presented in OS/VSl System Data Areas in the section "The UCBTYP Field in the UCB."

Field 6: 	 Volume serial number (6 bytes)--contains the volume serial number of one of the volumes of the data set.

Field 7: 	 Volume sequence number (2 bytes)--contains the sequence number of the data set on a magnetic tape volume. It is
zero for any other device class.

Figure 4. 	 The Data Set Pointer Entry

..

42 OS/VSl Data Management for System Programmers

Yolume Control Block Pointer Entry

Field 1 Field 2 Field 3 Field 4
01 00

Lowest level TIRof Count Dummy
of data set volume data
name control entry

block

~.....--------Total Length~ 14 bytes ___1_1___1_2__.....1

The volume control block pointer entry is used instead of a data set pointer entry when the
data set resides on more than five volumes. This entry points to a volume control block,
which, in tum, describes the data set. The entry is 14 bytes long.

FIeld 1: 	 Name (8 bytes}-contains the last name of the qualified name of the data set
identified by this entry.

Field 2: 	 Address (3 bytes)--contains the relative block address (TTR) of the volume
control block identifying the volumes containing the data set named in field I.

FIeld 3: 	 Halfword count (1 byte)--contains a binary one to indicate that one halfword
follows.

Field 4: 	 Zero field (2 bytes)--contains binary zeros.

Figure 5. 	 The Volume Control Block Pointer Entry

•

•

..

Maintaining the OS/VS System Catalog 43

Volume Control Block

Field 1 Field 2 Field 3 Field 4 Field 5 	 Field 6 Field 7 J
00

Count Device Serial Data set sequence Ten bytes 	 TTR of next
code number number for the of zeros volume

of volume n volume described control
in field 5. Zero block, or
for direct access zero if nor,

o m m+4 m+l0 242 	 252 55

1~Repeated once for each volume; total 6 to 20

....1------------------Total Length: 256 bytes ---------------11

A volume control block contains the description of all the volumes of a data set that resides on more than five volumes. One
volume control block can describe as many as 20 volumes. Volume control blocks may be chained together to catalog a data set
residing on more than 20 volumes.

The volume control block is always 256 bytes long, regardless of the number of volumes described.

Field 1: 	 Volume count (2 bytes)-the first volume control block contains the binary count of the total number of volumes on
which the data set resides. The value of this field is reduced by 20 for each subsequent volume control block. If, for
example, the data set resides on 61 volumes, there will be four volume control blocks for the data set. The volume
count field of each will contain 61, 41, 21, and 1, respectively.

Fields 2,3, Volume identification 02 to 240 bytes)--contains from one to twenty
and 4: each of which identifies a volume on which the data set resides. Each entry contains a 4-byte device code, a 6-byte

volume serial number, and a 2-byte data set sequence number. The data set sequence number is zero for data sets on
direct-access volumes.

Field S: 	 Zero field 00 bytes)--contains binary zeros.

Field 6: 	 Chain address (3 bytes)--contains the relative block address (TTR) of the next volume control block, if additional
blocks are needed to describe the data set. If this is the last volume control block for the data set, this field will be set
to binary zeros. J

Field 7: 	 Zero field (l byte)--contains binary zeros.

Figure 6. The Volume Control Block

•

44 OS/VS I Data Management for System Programmers

Control Yolume (CYOL) Pointer Entry

Field 1 Field 2 Field 3 Field 4 Field 5
05

Name of index on Dummy pointer Count Device code of Serial number of
other control volume field: zeros control volume control volume

:_-------------8----Total ::ngth: ~11... :: bytes _______16__________--I...

Note: Prior to Release 17, the control volume pointe!; entry contained a count of 03 and did not have a device code field (field 4).

The CVOL pointer entry is used to indicate that a particular index resides on a volume other than the system residence volume.

Control volume pointer entries can exist only in the volume index. They are 22 bytes long.

Field 1: Name (8 bytes)-contains a high-level index name that appears in the volume index of the control volume identified in

fields 4 and S.

Field 2: Address (3 bytes)-contains zeros, because this entry references no other entry in the catalog.

Field 3: Halfword count (I byte)-contains the number S to indicate that five halfwords follow.

Field 4: CVOL device code (4 bytes)-This field contains the device code of the specified control volume.

Field 5: CVOL volume serial number (6 bytes)-contains the volume serial number of the control volume which has an entry in
its volume index of the same name as this entry.

Figure 7. The Control Volume (CVOL) Pointer Entry

Control Yolume Pointer Entry (OLD)

Until Release 17 of OS MFT /MVT, the control volume pointer entry was the
same as the present control volume pointer, except that there was no field 4
(device code). The old CVOL pointer entry was 18 bytes long; after Release
17, it is 22 bytes long. Since some control volumes may still contain entries in
the old format, and since the catalog management routines still check for it, it
is mentioned here .

..

•

Maintaining the OS/VS System Catalog 4S

Alias Entry

Field 1 	 Field 2 Field 3 Field 4 J
04

Name of alias TTR of index Count Name of high level index
named in to which this is an alias
field 3

0 	 8 11 12 I
1..
"'.-.--------------- Total Length: 20 bytes --------------....~

The alias entry is used to specify a substitute name for a high-level index. Alias entries only appear in the volume index. They are
20 bytes long.

Field 1: 	 Name (4 bytes)~ontains the alias of the high-level index identified in field 2. ..
Field 2: 	 Address (3 bytes)~ontains the relative block address (TTR) of the first block of the index named in field 4.

Field 3: 	 Halfword count (1 byte)~ontains a binary four to indicate that four halfwords follow.

Field 4: 	 True name field (8 bytes)~ontains the name of the index whose alias appears in field I. The address of the index is in
field 2.

Figure 8. 	 The Alias Entry

Generation Index Pointer Entry

Field 1 	 Field 2 Field 3 Field 4 Field 5 Field 6
02

Name of 	 TTRof Count Flags Count Count of
generation generation 	 genera tions bits meaning

index index 0-5 Reserved currently

6 Delete in index
7 Empty

~ 	 8 11 12 13 14 II
"'._.---------------- Total Length: 16 bytes ---------------......

The generation index pointer entry points to a generation index. It is basically the same as an index pointer entry, except that is
includes the flag and count fields. It is 16 bytes long. ..
Field 1: 	 Name (8 bytes)~ontains the lowest level name of the generation data group. That is, a generation data set named

WEEKLY.INVNTRY.GOOOI YOO would have the name INVNTRY in the generation index pointer entry name field.

Field 2: 	 Address field (3 bytes)~ontains the relative block address (TTR) of the generation index named in field l.

Field 3: 	 Halfword count (l byte)~ontains a binary two to indicate that two halfwords follow.

Field 4: 	 Flags (I byte)~ontains flags that govern the uncataloging of data sets as specified by the DELETE and EMPTY
options of the INDEX macro instruction. The options and their hexadecimal codes are:

EMPTY = 01, DELETE = 02, and EMPTY and DELETE = 03; if no option was specified this byte is 00.

Field 5: 	 Maximum number of generations allowed (1 byte)~ontains the binary count of the maximum number of generations
allowed in the index at one time, as specified in the INDEX macro instruction.

Field 6: 	 Current generation count (2 bytes)~ontains the binary count of the number of generations cataloged in the index.

Figure 9. 	 The Generation Index Pointer Entry

46 OS/YSI Data Management for System Programmers

MAINTAINING THE VOLUME TABLE OF

CONTENTS

•

Introduction

This chapter contains information on how to read and change the volume
table of contents (VTOC) used on direct-access storage device volumes. The
information consists of how-to information, macro specifications, and coding
examples for the OBTAIN, SCRATCH, and RENAME macro instructions.

More detailed information about how the routines called by these macros
work is available in OS/VSl DADSM Logic.

Before using the information in this chapter you should be familiar with the
information contained in the following publications:

• 	 OS/VS - DOS/VS - VM/370 Assembler Language, which contains

information you will need in order to code programs in the assembler

language.

• 	 OS/VS Data Management Services Guide, contains a general description
of direct-access device characteristics and the volume table of contents .

• 	 OS/VS Utilities, tells how to use utility programs to maintain the volume
table of contents.

• 	 OS/VSl System Data Areas, contains descriptions, (1) of the data set

control block (DSCB) formats and (2) the contents of the fields of each

DSCB.

In the same way that the catalog management routines keep track of
cataloged data sets, the direct-access device space management (DADSM)

. routines maintain the volume table of contents (VTOC) on direct-access
storage devices. This chapter tells how to use the OBTAIN, SCRATCH, and
RENAME macro instructions. These macros are most commonly used by the
system control program and the data set utility programs (IEHMOVE,
IEBCOPY, and IEHPROGM), but you may use them in your own routines.
The functions you can perform with these macros are:

• 	 Reading a data set control block from the VTOC-OBTAIN

• 	 Deleting a data set-SCRATCH

• 	 Changing the name of a data set-RENAME

You can read a data set control block (DSCB) into virtual storage by using
the OBTAIN and CAMLST macro instructions. There are two ways to
specify the DSCB that you want to read: by using the name of the data set
associated with the DSCB, or by using the absolute track address of the
DSCB. You must provide a 148-byte data area in virtual storage, into which
the DSCB will be read. When you specify the name of the data set, an
identifier (format-l) DSCB is read into virtual storage. To read a DSCB other
than a format-l DSCB, you must specify an absolute track address (see
second example). (DSCB formats and field descriptions are contained in
OS/VSl System Data Areas.)

You can delete a data set by using the SCRATCH and CAMLST macro
instructions. This causes the DSCBs for the data set to be deleted.

Maintaining the Volume Table of Contents 47

L

You can change a data set name by using the RENAME and CAMLST macro
instructions. This causes the data set name in the identifier (format-I) DSCB
for the data set to be replaced with a new name.

Accompanying the descriptions of the macro instructions are coding
examples, programming notes, and exceptional return code descriptions.

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH)

When a data set name is specified, the 96-byte data portion of the identifier
(format-I) DSCB, and the absolute track address of the DSCB are read into
virtual storage. The absolute track address is a 5-byte field in the form
CCHHR. When the absolute track address of a DSCB is specified, the
44-byte key portion and the 96-byte data portion of the DSCB are read into
virtual storage, as shown in the second coding example.

[symbol] OBTAIN 	 list-addrx
listname CAMLST 	 SEARCH

,dsname-relexp
, vol-relexp ..
, wkarea-relexp

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

SEARCH
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The
area that contains the name must be 44 bytes long. If the name is shorter
than 44 bytes, it must be followed by blanks.

vol-relexp
specifies the virtual storage location of the 6-byte volume serial number of
the volume on which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 148-byte work area that you must

define. The work area must begin on a doubleword boundary. ..

Example: In the following example, the identifier (format-I) DSCB for data
set A.B.C is read into virtual storage using the SEARCH option. The serial
number of the volume containing the DSCB is 770655.

OBTAIN DSCBABC 	 READ DSCB FOR DATA
SET A.B.C INTO DATA* AREA NAMED WORKAREA*

Check Exceptional· Returns

DSCBABC CAMLST SEARCH,DSABC,VOLNUM,WORKAREA
DSABC DC CL44'A.B.C' DATA SET NAME
VOLNUM DC CL6'770655' VOLUME SERIAL NUMBER
WORKAREA DS OD 148 BYTE WORK AREA

DS 148C

The OBTAIN macro instruction points to the CAMLST macro instruction.
SEARCH, the first operand of CAMLST, specifies that a DSCB be read into
virtual storage, using the data set name you have supplied at the address
indicated in the second operand. DSABC, the second operand, specifies the
virtual storage location of a 44-byte area into which you have placed the fully

48 OS/VSI Data Management for System Programmers

..

qualified name of the data set whose format-l DSCB is to be read.
VOLNUM, the third operand, specifies the virtual storage location of a
6-byte area into which you have placed the serial number of the volume
containing the required DSCB. The volume must be already mounted on the
system. WORKAREA, the fourth operand, specifies the virtual storage
location of a 148-byte work area into which the DSCB is to be read.

Control will be returned to your program at the next executable instruction
following the OBTAIN macro instruction. If the DSCB has been successfully
read into your work area, register 15 will contain zeros. If your system
contains VSAM catalogs and the requested format-l DSCB is not found on
the volume's VTOC, the VSAM catalogs open under that job step are
searched for the specified data set. If the data set is found in one of the
VSAM catalogs, catalog information is used to create a DSCB, which is
passed bac~ to OBTAIN's caller. Otherwise, register 15 will contain one of
the following exceptional return codes:

Code Interpretation

4 	 The required volume was not mounted.

8 	 The format-l DSCB was not found in VTOC of specified volume.

12 	 A permanent I/O error was encountered or an invalid format-l DSCB was found
when processing the specified volume.

16 	 Invalid work area pointer.

After execution of these macro instructions, the first 96 bytes of the work
area contain the data portion of the identifier (format-I) DSCB; the next 5
bytes contain the absolute track address (CCHHR) of the DSCB. These 5
bytes will contain zeros for a VSAM data set.

Reading a DSCB by Actual Device Address (OBTAIN and
CAMLST SEEK)

You can read any DSCB from a VTOC using the SEEK option.

The format is:

[symbol] OBTAIN list-addrx
listname CAMLST SEEK

, cchhr-relexp
, vol-relexp
, wkarea-relexp

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

SEEK
this operand must be coded as shown.

cchhr-relexp
specifies the virtual storage location of the 5-byte absolute device address
(CCHHR) of a DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume serial number of
the volume on which the DSCB is located.

Maintaining the Volume Table of Contents 49

wkarea-relexp
specifies the virtual storage location of a 148-byte work area that you must
define. The work area must begin on a doubleword boundary.

Example: In the following example, the DSCB at actual-device address X'OO
0000 01 07' is read into the virtual storage location READAREA, using the
SEEK option. The DSCB resides on the volume with the volume serial
number 108745.

*
*
*
*

OBTAIN ACTADDR READ THE DSCB AT
ACTUAL DEVICE ADDRESS
AT LOCATION CCHHR
INTO STORAGE LOCATION
NAMED READAREA

Check Exceptional Returns

ACTADDR CAMLST SEEK,CCHHR,VOLSER,READAREA
CCHHR DC XL5'0000000107' ABSOLUTE TRACK ADDRESS
VOLSER DC CL6'108745' VOLUME SERIAL NUMBER
READAREA DS OD 148 BYTE WORK AREA

DS 148C

The OBTAIN macro points to the CAMLST macro. SEEK, the first operand
of CAMLST, specifies that a DSCB be read into virtual storage. CCHHR, the
second operand, specifies the storage location that contains the 5-byte
actual-device address of the DSCB. VOLSER, the third operand specifies the
storage location that contains the volume serial number of the volume on
which the DSCB resides. The fourth operand, READAREA, specifies the
storage location into which the 140-byte DSCB is to be read. The last 8 bytes
are used by the OBTAIN routine.

Control will be returned to your program at the next executable instruction
following the OBTAIN macro instruction. If the DSCB has been successfully
read into your work area, register 15 will contain zeros. Otherwise, register 15
will contain one of the following exceptional return codes:

Code InterpretatiOD

4 	 The required volume was not mounted.

12 	 A permanent I/O error was encountered or an invalid format-4 DSCB was found
when processing the specified volume.

16 	 Invalid work area pointer.

20 	 CCHH not within boundaries of the VTOC extent.

Deleting a Datil Set (SCRATCH and CAMLST SCRATCH)

You delete a data set stored on direct-access volumes by using the
SCRATCH and CAMLST macro instructions. This causes all data set control
blocks (DSCBs) for the data set to be deleted, and all space occupied by the
data set to be made available for reallocation. If the data set to be deleted is
sharing one or more cylinders with one or more data sets (a split-cylinder data
set), the space will not be made available for reallocation until all data sets on
the shared cylinders are deleted.

Unless you choose to ignore the expiration date, a data set cannot be deleted
if the expiration date in the identifier (format-I) DSCB has not passed. Note
that the current date is considered a passed date. You specify that the
expiration date is to be ignored by using the OVRD option in the CAMLST
macro instruction.

If a data set to be deleted is stored on more than one volume, either a device
must be available on which to mount the volumes, or at least one volume must

50 OS/VS 1 Data Management for System Programmers

•

J

be mounted. In addition, all other required volumes must be serially
mountable.

When deleting a data set, you must build a volume list in virtual storage. This
volume list consists of an entry for each volume on which the data set resides.
The first two bytes of the list indicate the number of entries in the list. Each
12-byte entry consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte scratch status code. Device codes are presented in
OS/VSl System Data Areas.

If the space to be deleted is a VSAM data space, you must use the DELETE
command provided by access method services, the VSAM utility program. For

I	complete information about the DELETE command, see OS/VSl Access
Method Services.

Volumes are processed in the order that they appear in the volume list. The
volume at the beginning of the list is processed first. If a volume is not
mounted, a message is issued to the operator requesting him to mount the
volume. This is only done if you indicate the direct-access device on which
unmounted volumes are to be mounted by loading register 0 with the address
of the UCB associated with the device to be used. If you do not load register " owith a UCB address, its contents must be zero, and at least one of the
volumes in the volume list must be mounted before the SCRATCH macro
instruction is issued.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then set in the
last byte of the volume pointer (the second byte of the scratch status code)
for the unavailable volume, and the next volume indicated in the volume list is
processed.

If the volume is mounted on a unit that does not belong to your job step, or
register 0 contains the address of a UCB that does not belong to your job
step, a 130 ABEND may occur in the SCRATCH routines with the possibility
of destroying a VTOC. This can be prevented by ensuring that the unit is
allocated in a DD statement or by TSO dynamic allocation before using
SCRATCH.

The format is:

..
[symbol] SCRATCH list-addrx- listname CAMLSf 	 SCRATCH

, dsname-relexp
" vol list-relexp
" [OVRD]

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

SCRATCH
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The
area that contains the name must be 44 bytes long. If the name is shorter
than 44 bytes, it must be followed by blanks.

Maintaining the Volume Table of Contents 51

vol list-relexp
specifies the virtual storage location of an area that contains a volume list.
The area must begin on a half-word boundary.

OVRD
when coded as shown, specifies that the expiration date in the DSCB
should be ignored.

Example: In the following example, data set A.B.C is deleted from two
volumes. The expiration date in the identifier (format-I) DSCB is ignored.

SR 0,0 SET REG 0 TO ZERO
SCRATCH DELABC DELETE DATA SET A.B.C.

* 	 FROM TWO VOLUMES
* 	 IGNORING THE
* 	 EXPIRATION DATE IN THE
* 	 DSCB

Check Exceptional Returns

DELABC CAMLST SCRATCH,DSABC"VOLIST"OVRD
DSABC DC CL44'A.B.C' DATA SET NAME
VOLIST DC H'2' TWO VOLUMES

DC X'30C02008' 2314 DISK DEVICE CODE ,
DC CL6'000017' VOLUME SERIAL NUMBER
DC H'O' SCRATCH STATUS CODE
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000018' VOLUME SERIAL NUMBER
DC H' 0 ' SCRATCH STATUS CODE

The SCRATCH macro instruction points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that a data set be
deleted. DSABC, the second operand, specifies the virtual storage location of
a 44-byte area into which you have placed the fully qualified name of the data
set to be deleted. VOLIST, the fourth operand, specifies the virtual storage
location of the volume list you have built. OVRD, the sixth operand, specifies
that the expiration date in the DSCB of the data set to be deleted be ignored. J
When you attempt to delete a password-protected data set, the operating
system issues a message (IEC301A) to ask the operator at the console or
terminal operator of a remote console to enter the password. The data set will
be scratched only if the password supplied is associated with a "WRITE"
protection mode indicator. The protection word indicator is described in the
chapter titled "Data Set Protection."

Control is returned to your program at the next executable instruction •following the SCRATCH macro instruction. If the data set has been
successfully deleted, register 15 will contain zeros and the scratch status code
in the volume list entry for each volume will be set to zero. Otherwise,
register 15 will contain one of the exceptional return codes that follow. To
determine whether the data set has been successfully deleted from each
volume on which it resides, you must examine the scratch status code, the last
byte of each entry in the volume list.

52 OS/VSl Data Management for System Programmers

Return
Code in
Reg. 15 Interpretation

4 No volumes containing any part of the data set were mounted, nor did register 0
contain the address of a unit that was available for mounting a volume of the
data set.

S An unusual condition was encountered on one or more volumes.

12 Invalid volume list (not accompanied by the setting of the last byte of each
volume pointer).

After the SCRATCH macro instruction is executed, the last byte of each
12-byte entry in the volume list indicates the following conditions in binary
codes:

Intel'pretatlon

The DSCB for the data set has been deleted from the VTOC on the volume
pointed to.

The VTOC of this volume does not contain the format-l DSCB for the data set
to be deleted.

The macro instruction failed when the correct password was not supplied in the

two attempts allowed, or the user tried to scratch a VSAM data set.

The data set was not deleted from this volume because either the OVRD option

was not specified or the retention cycle has not expired.

A permanent I/O error was encountered or an invalid format-l DSCB was found

when processing this volume.

It could not be verified that this volume was mounted and a device for mounting

this volume was unavailable.

The operator was unable to mount this volume.

Renaming a Data Set (RENAME and CAMLST RENAME)

You rename a data set stored on one or more direct-access volumes b)T'using
the RENAME and CAMLST macro instructions. This causes the data set
name in all identifier (format-I) DSCBs for the data set to be replaced by the
new name that you supply.

If a data set to be renamed is stored on more than one volume, either a device
must be available on which to mount the volumes, or at least one volume must -
be mounted. In addition, all other volumes of the data set must be serially
mountable.

If the space to be renamed is a VSAM data space, you must use the ALTER
command provided by access method services, the VSAM utility program.
Note that only unique VSAM data spaces may acquire new names. For

I complete information about the ALTER command, see OS/VSl Access
Method Services.

When renaming a data set, you must build a volume list in virtual storage.
This volume list consists of an entry for each volume on which the data set
resides. The first two bytes of the list indicate the number of entries in the list.
Each 12-byte volume list entry consists of a 4-byte device code, a 6-byte
volume serial number, and a 2-byte rename status code. Device codes are
presented in OS/VSl System Data Areas. Volumes are processed in the
order they appear in the volume list. The first volume on the list is processed
first. If a volume is not mounted, a message is issued to the operator
requesting him to mount the volume. This is only done if you indicate the

Maintaining the Volume Table of Contents 53

direct-access device on which unmounted volumes are to be mounted by
loading register 0 with the address of the UCB associated with the device to
be used. If you do not load register 0 with a UCB address, its contents must
be zero, and at least one of the volumes in the volume list must be mounted Jbefore the RENAME macro instruction is executed.

If the operator cannot mount a volume in the volume list, he issues a reply
indicating that he cannot fulfill the request. A condition code is then set in the
last byte of the volume list entry (the second byte of the rename status code)
for the unavailable volume, and the next volume indicated in the volume list is
processed or requested.

If the volume is mounted on a unit that does not belong to your job step, or if
register 0 contains the address of a UCB that does not belong to your job
step, a 130 ABEND may occur in the RENAME routines with the possibility
of destroying the VTOC. This can be prevented by ensuring that the unit is
allocated in a DD statement or by TSO dynamic allocation before using
RENAME.

The format is:

[symbol] RENAME 	 list-addrx
listname CAMLSf 	 RENAME

,dsname-re1exp

,new namerelexp

, vol list-relexp

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

RENAME J
this operand must be coded as shown.

dsname-re1exp
specifies the virtual storage location of a fully qualified data set name. The

area that contains the name must be 44 bytes long. If the name is shorter

than 44 bytes, it must be followed by blanks.

new namere1exp
specifies the virtual storage location of a fully qualified data set name that

is to be used as the new name. The area that contains the name must be 44

bytes long. If the name is shorter than 44 bytes, it must be followed by

blanks.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list.

The area must begin on a halfword boundary.

54 OS/VSl Data Management for System Programmers

..

•

Example: In the following example, data set A.B.C is renamed D.E.F. The
data set resides on two volumes.

SR
RENAME

0,0
DSABC

SET REG 0
CHANGE DATA

TO
SET

ZERO

* NAME A.B.C. TO D.E.F
Check Exceptioaal Returns

DSABC
OLDNAME

CAMLST
DC

RENAME,OLDNAME,NEWNAME,VOLIST
CL44'A.B.C'

NEWNAME DC CL44'D.E.F'
VOLIST DC H'2' TWO VOLUMES

DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000017' VOLUME SERIAL NUMBER
DC H'O' 	 RENAME STATUS CODE
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000018' VOLUME SERIAL NUMBER
DC H'O' RENAME STATUS CODE

The RENAME macro instruction points to the CAMLST macro instruction.
RENAME, the first operand of CAMLST, specifies that a data set be
renamed. OLDNAME, the second operand, specifies the virtual storage
location of a 44-byte area into which you have placed the fully qualified name
of the data set to be renamed. NEWNAME, the third operand, specifies the
virtual storage location of a 44-byte area into which you have placed the new
name of the data set. VOLIST, the fourth operand, specifies the virtual
storage location of the volume list you have built.

Control is returned to your program at the next executable instruction
following the RENAME macro instruction. If the data set has been
successfully renamed, register 15 will contain zeros, and the rename status
code in the volume list entry for each volume will be set to zero. Otherwise,
register 15 will contain one of the exceptional return codes that follow. To
determine whether the data set has been successfully renamed on each
volume on which it resides, you must examine the rename status code, the last
byte of each entry in the volume list.

Return
Code in
Reg. 15 Interpretation

4 	 No volumes containing any part of the data set were mounted, nor did register 0
contain the address of a unit that was available for mounting a volume of the
data set.

8 	 An unusual condition was encountered on one or more volumes.

12 	 Invalid volume list (not accompanied by the setting of the last byte of each
volume pointer).

After the RENAME macro instruction is executed, the last byte of each
12-byte entry in the volume list indicates the following conditions in binary
code:

Rename
Status
Code interpretation

o 	 The DSCB for the data set has been renamed in the VTOC on the volume
pointed to.

The VTOC of this volume does not contain the format-l DSCB for the data set
to be renamed.

2 	 The macro instruction failed when the correct password was not supplied in the
two attempts allowed, or the user tried to rename a VSAM data set.

3 	 A data set with the new name already exists on this volume.

4 	 A permanent I/O error was encountered or an invalid format-l DSCB was found
when processing this volume.

Maintaining the Volume Table of Contents 55

Rename
Status
Code Interpretation

5 	 A device for mounting this volume was unavailable or a mount for this volume
was not verified.

6 	 The operator was unable to mount this volume.

When you attempt to rename a password-protected data set, the operating
system issues a message (IEC301A) to ask the operator or remote console
operator to verify the password. The data set will be renamed only if the
password supplied is associated with a "WRITE" protection mode indicator.
The chapter titled "Password Protecting Your Data Sets" provides a
description of the protection mode indicator.

"

56 OS/VSl Data Management for System Programmers

EXECUTING YOUR OWN CHANNEL PROGRAMS

..

..

The execute channel program (EXCP) macro instruction provides you with a
device-dependent means of performing the I/O operations. This chapter
contains a general description of the function and application of the EXCP
macro instruction, accompanied by descriptions of specific control blocks and
macro instructions used with EXCP. Factors that affect the operation of
EXCP, such as device variations and program modification, are also
discussed.

Before reading this chapter, you should be familiar with system functions and
with the structure of control blocks, as well as with the operational
characteristics of the I/O devices required by your channel programs.
Operational characteristics of specific I/O devices are contained in IBM
publications for each device .

To understand this chapter, you need to understand the information in these
publications:

• 	 OS/VS Data Management Services Guide, explains the standard
procedures for I/O processing under the operating system.

• 	 OS/VS - DOS/VS - VM/370 Assembler Language, contains the
information necessary to code programs in the assembler language.

• 	 OS/VS Data Management Macro Instructions, describes the system
macro instructions that can be used in programs coded in the assembler
language.

• 	 OS/VSl System Data Areas, contains format and field descriptions of
the system control blocks referred to in this chapter.

The execute channel program (EXCP) macro instruction causes a
supervisor-call interruption to pass control to the I/O supervisor. EXCP also
provides the I/O supervisor with control information regarding a channel
program to be executed. When the IBM standard data access methods are
being used, the access method routines are responsible for issuing EXCP. If
you are not using the standard access methods, you may issue EXCP in your
program. Direct use of EXCP provides you with device dependence in
organizing data and controlling I/O devices.

You issue EXCP primarily for I/O programming situations to which the
standard access methods do not apply. When you are writing your own data
access methods, you must include EXCP for I/O operations. EXCP must also
be used for processing nonstandard labels, including reading and writing
labels and positioning magnetic tape volumes.

To issue EXCP, you must provide a channel program (a list of channel
command words) and several control blocks in your program area. The I/O
supervisor then schedules I/O requests for the device you have specified,
executes the specified I/O commands, handles I/O interruptions, directs error
recovery procedures, and posts the results of the I/O requests.

Executing Your Own Channel Programs 57

Executing Channel Programs in System and Problem
Programs J

This section briefly explains the procedures performed by the system and the
programmer when EXCP is issued by the routines of the standard data access
methods. The additional procedures that you must perform when issuing
EXCP yourself are then described by direct comparison.

System Use of EXCP

When using a standard data access method to perform I/O operations, the
programmer 'is relieved of coding channel programs and of constructing the
control blocks necessary for the execution of channel programs. To permit
1/0 operations to be handled by an access method, the programmer need
only issue the following macro instructions:

• 	 A DCB macro instruction that produces a data control block (DCB) for
the data set to be retrieved or stored. If appendages are not being used, a
short DCB is constructed. Such a DCB does not support reduced error
recovery.

• 	 An OPEN macro instruction that initializes the data control block and
produces a data extent block (DEB) for the data set.

• 	 A macro instruction (e.g., GET, WRITE) that requests I/O operations.

Access method routines will then:

1. 	 Create a channel program that contains channel commands for the I/O
operations on the appropriate device. J2. 	 Construct an input/output block (lOB) that contains information about
the channel program.

3. 	 Construct an event control block (ECB) that is later posted with a
completion code each time the channel program terminates.

4. 	 Issue an EXCP macro instruction to pass the address of the lOB to the
routines that initiate and supervise the I/O operations.

The input/output supervisor will then:
«

5. 	 Construct a request queue element (RQE) for scheduling the request.

6. 	 If the requestor is in pageable partition, fix the pages to be referenced
during the I/O operation so that they cannot be paged out; this includes
pages for I/O control blocks and appendages.

7. 	 If the requestor is in a pageable partition, translate the requestor's
virtual channel program into a real channel program in the System
Queue Area and fix the pages to be used as data areas during the I/O
operation.

8. 	 Issue a start input/output (SIO) instruction to cause the channel to
execute the real channel program.

9. 	 Process I/O interruptions and schedule error recovery procedures when
necessary.

10. 	 If the requestor is in a pageable partition, retranslate the "last CCW+8"
address in the channel status word (CSW) to the corresponding virtual
address.

58 OS/VSl Data Management for System Programmers

•

11. 	 H the requestor is in a pageable partition, free the real storage used for
the channel program translation and unfix the pages that were fixed
especially for the just completed 110 operation.

12. 	 Post a completion code in the event control block after the channel
program has been executed.

Note: H the requestor is in a nonpageable partition, he provides a real channel
program, so items 6, 7, 10, and 11 are not performed.

The programmer is not concerned with these procedures and does not know
the status of I/O operations until they are completed. Device-dependent
operations are limited to those provided by the macro instructions of the
particular access method selected.

Use 0/ EXCP in Problem Programs

To issue the EXCP macro instruction directly, you must perform the
procedures that the access methods perform, as summarized in items 1
through 4 of the preceding discussion. You must, in addition to constructing
and opening the data control block with the DCB and OPEN macro
instructions, construct a channel program, an inputloutput block, and an
event control block before you can issue EXCP. The I/O supervisor always
handles items 5 through 12.

After issuing EXCP, you should issue aWAIT macro instruction specifying
the event control block to determine whether the channel program has
terminated. H volume switching is necessary, you must issue an EOV macro
instruction. When processing of the data set has been completed, you must
issue a CLOSE macro instruction to restore the data control block.

EXCP Operations in a Nonpageable Region

User-constructed channel programs for 1/0 operations in a nonpageable
region are not translated. Because the partition is nonpageable, any CCWs
created by the user have correct real data addresses. (Translation would only
recreate the user's channel program, so the CCWs are used directly.)

System requests for I/O on behalf of a user, however, do not always operate
in the user's nonpageable region. These requests make use of areas with a
protection key of 0, which are page able. Therefore, system requests for I/O
on behalf of the user can require translation.

Modification of an active channel program by data read in or by CPU
instructions is legitimate in a nonpageable region, but not in a pageable
region. Refer to the section "Modification of a Channel Program During
Execution. "

Executing Your Own Channel Programs 59

EXCP Requirements

Channel Program

This section describes the channel program that you must provide in order to
issue EXCP. The control blocks that you must either construct directly, or
cause to be constructed by use of macro instructions, are also described.

The channel program supplied by you and executed through EXCP is
composed of channel command words (CCWs) on doubleword boundaries.
Each channel command word specifies a command to be executed and, for
commands initiating data transfer, the area to or from which the data is to be
transferred. Channel programs to be executed in a page able partition are
restricted to no more than 239 CCWs. The I/O supervisor abnormally
terminates an I/O requestor whose translated channel program exceeds that
limit. The actual number of CCWs allowed in virtual channel program
depends on its structure. If a virtual channel program includes a TIC CCW
which causes any other CCW to be translated more than once, the maximum
allowable length of the virtual channel program will be less than 240 CCWs.

Channel command word formats used with specific I/O devices can be found
in mM Systems Reference Library publications for each device. All channel
command words described in these publications can be used, with the
exception of REWIND and UNLOAD (RUN). In addition, both data
chaining and command chaining may be used.

Chaining is the successive loading of channel command words into a channel
from contiguous doubleword locations in real storage. Data chaining occurs
when a new channel command word loaded into the channel defines a new
storage area for the original I/O operation. Command chaining occurs when
the new channel command word specifies a new I/O operation. For detailed
information about chaining, refer to IBM System/370 Principles 0/
Operation.

To specify either data chaining or command chaining, you must set
appropriate bits in the channel command word, and indicate the type of
chaining in the input/output block. Both data and command chaining should
not be specified in the same channel command word; if they are, data
chaining takes precedence. •

When a channel program includes a list of channel command words that chain
data for reading operations, no channel command word may alter the
contents of another channel command word in the same list. (If such
alteration were allowed, specifications could be placed into a channel
command word without being checked for validity. If the specifications were
incorrect, the error could not be detected until the chain was completed. Data
could be read into incorrect locations and the system could not correct the
error.)

J

•

60 OS/VSI Data Management for System Programmers

Control Blocks

Input/Output Block (lOB)

Event Control Block (ECB)

Data Control Block (DCB)

Data Extent Block (DEB)

When using EXCP, you must be familiar with the function and structure of an
input/output block (lOB), an event control block (ECB), a data control
block (DCB), and a data extent block (DEB). Brief descriptions of these
control blocks follow. Their fields are illustrated in the section "Macro
Specifications for Use with EXCP."

The input/output block is used for communication between the problem
program and the system. It provides the addresses of other control blocks, and
maintains information about the channel program, such as the type of
chaining and the progress of I/O operations. You must define the
input/output block and specify its address as the only parameter of the EXCP
macro instruction.

The event control block provides you with a completion code that describes
whether the channel program was completed with or without error. AWAIT
macro instruction for synchronizing I/O operations with the problem program
must be directed to the event control block. You must define the event
control block and specify its address in the input/output block.

The data control block provides the system with information about the
characteristics and processing requirements of a data set to be read or written
by the channel program. A data control block must be produced by a DCB
macro instruction that includes parameters for EXCP. If appendages are not
being used, and OPTCD is not specified, a short DCB is constructed. Such a
DCB does not support reduced error recovery. You specify the address of the
data control block in the input/output block.

The data extent block contains one or more extent entries for the associated
data set, as well as other control information. An extent defines all or part of
the physical boundaries on an I/O device occupied by, or reserved for, a
particular data set. Each extent entry contains the address of a unit control
block (UCB), which provides information about the type and location of an
I/O device. More than one extent entry can contain the same UCB address.
(Unit control blocks are set up at system generation time and need not
concern you.) For all I/O devices supported by the operating system, the data
extent block is produced during execution of the OPEN macro instruction for
the data control block. The system places the address of the data extent block
into the data control block.

Executing Your Own Channel Programs 61

Channel Program Execution
This section explains how the system uses your channel program and control
blocks after you issue EXCP.

Initiation 0/ the Channel Program

By issuing EXCP, you request the execution of the channel program specified
in the input/output block. The I/O supervisor validates the request by
checking certain fields of the control blocks associated with this request. If
the I/O supervisor detects invalid information in a control block, it initiates
abnormal termination procedures.

The I/O supervisor gets:

• 	 the address of the data control block from the input/output block

• 	 the address of the data extent block from the data control block

• 	 the address of the unit control block from the data extent block

The I/O supervisor places the lOB, TCB, DEB, and UCB addresses and
other information about the channel program into an area called a request
queue element (ROE). The I/O supervisor uses ROEs to form logical channel
queues of scheduled I/O operations. Unless you are providing appendage
routines (described in the section "Appendages"), you should not be
concerned with the contents of ROEs.

If you are operating in a page able partition, the I/O supervisor now prepares
to translate your virtual channel program into a real channel program. It does
this by initializing translation tables and fixing the pages containing the
control blocks associated with your request. If you are providing appendages,
the I/O supervisor also passes control to your page fix appendage to permit
you to specify the pages that must be fiXed to prevent page exceptions from
occurring during execution of one of your appendages. These pages do not
include the appendages themselves as they are automatically fixed by the I/O
supervisor. Note that a page exception during appendage execution causes
abnormal termination. The I/O supervisor then fixes the pages you specify
upon return from your page fix appendage.

Next the I/O supervisor determines whether a channel and the requested I/O
device are ready for the channel program. If they are not ready, the ROE is
placed in the appropriate logical channel queue, and control is returned to the
problem program. Later, when a channel and device are ready, the I/O
supervisor resumes control to start the I/O operation.

If you have provided a start I/O (SIO) appendage, the I/O supervisor now
passes control to it. The return address from the SIO appendage determines
whether the I/O supervisor must:

• 	 execute the I/O operation normally,

• 	 skip the I/O operation, or

• 	 perform extended translation on the channel program before beginning the
I/O operation.

See "Appendages" in this chapter for a description of the SIO appendage and
its linkage to the I/O supervisor. If you are issuing EXCP from a pageable

•

62 OS/VSl Data Management for System Programmers

•

partition, the channel program you construct contains virtual addresses.
However, because channels cannot use virtual addresses, the I/O supervisor
must:

• 	 translate your virtual channel program into one that uses only real
addresses, and

• 	 fix in real storage the pages used as I/O areas for the data transfer
operations specified in your channel program.

The I/O supervisor builds the translated (real) channel program in a portion
of real storage called the System Queue Area. If the I/O device is other than
a direct-access device or a magnetic tape device, the I/O supervisor then
places the address of the start of the translated channel program into the
channel address word (CAW) and issues a start input/output (SIO)
instruction.

Before issuing the SIO instruction for a 2314 or 2319 direct-access device,
the I/O supervisor issues an initial (or stand-alone) seek, which is overlapped
with other operations. You specify the seek address in the input/output block.
When the seek has completed, the I/O supervisor constructs a command
chain to reissue the seek, sets the file mask specified in the data extent block,
and passes control to your real channel program. For all other direct-access
devices, the I/O supervisor constructs a command chain to issue a seek, sets
the file mask, and passes control to your real channel program. (You cannot
issue the initial seek or set the file mask yourself. The file mask is set to
prohibit seek cylinder commands, or, if space is allocated by tracks, seek track
commands. If the data set is open for INPUT or ROBACK, write commands
are also prohibited.)

Before issuing SIO for a magnetic tape device, the I/O supervisor constructs a
command chain to set the mode specified in the data extent block and passes
control to your real channel program. (You cannot set the mode yourself.)

Modification of a Channel Program During Execution

Any user problem program that modifies an active channel program by data
read in by either the I/O operation or by CPU instructions must run in a
nonpageable partition. It cannot run in a pageable partition because of the
channel program translation performed by the I/O supervisor. (In a pageable
partition, an attempt to modify an active channel program affects only the
virtual image of the channel program, not the real channel program being
executed by the channel.)

A program of this type can be changed to run in a pageable partition by
either:

• 	 executing the modified portion of the channel program as a separate I/O
operation, or

• 	 using the SIO extend and PCI modify appendage interfaces of the I/O
supervisor, described in the section on append~ges.

Executing Your Own Channel Programs 63

Completion of Execution

The system considers the channel program completed when it receives an
indication of a channel end condition in the channel status word (CSW). J
When channel end occurs, the request element for the channel program is
made available, and a completion code is placed into the event control block.
The completion code indicates whether errors are associated with channel
end. If device end occurs simultaneously with channel end, errors associated
with device end (Le., unit exception or unit check) are also accounted for.

If device end occurs after channel end and an error is associated with device
end, the completion code in the event control block does not indicate the
error. However, the status of the unit and channel is saved in the unit control
block (UCB) for the device, and the UCB is marked as intercepted. The
input/output block for the next request directed to the I/O device is also
marked as intercepted. The error is assumed to be permanent, and the •
completion code in the event control block for the intercepted request
indicates interception. The IFLGS field of the data control block is also
flagged to indicate a permanent error. Note that when a write tape mark or
erase long gap CCW is the last (or only) CCW in your channel program, the
I/O supervisor will not attempt recovery procedures for device end errors. In
these circumstances, command chaining a NOP CCW to your write tape mark
or erase long gap CCW ensures initiation of device end error recovery
procedures.

To be prepared for device end errors, you should be familiar with device
characteristics that can cause such errors. After one of your channel programs
has terminated, you should not release buffer space until you have determined
that your next request for the device has not been intercepted. You may
reissue an intercepted request.

/nten-uption Hllndling lind Error Recovery Procedures

An I/0 interruption allows the CPU to respond to signals from an I/O device
which indicate either termination of a phase of I/O operations or external
action on the device. A complete explanation of I/O interruptions is
contained in IBM System/370 Principles of Operation. For descriptions of
interruptions by specific devices, refer to mM publications for each device.

If error conditions are associated with an interruption, the I/O supervisor •
schedules the appropriate device-dependent error routine. The channel is then
restarted with another request that is not related to the channel program in
error. (The paragraphs following this one under this topic discuss "related"
channel programs.) If the error recovery procedures fail to correct the error,
the system places ones in the first two bit positions of the IFLGS field of the
data control block. You are informed of the error by an error code that the
system places into the event control block.

Related channel programs are requests that are associated with a particular
data control block and data extent block in the same job step. They must be
executed in a definite order, i.e., the order in which the requests are received
by the I/O supervisor. A channel program is not started until all previous
requests for related channel programs have been completed. You specify, in
the input/output block, whether the channel program is related to others.

If a permanent error occurs in a channel program that is related to other
requests, the request elements for all the related channel programs are
removed from their queue and made available. This process is called purging.

64 OS/VS 1 Data Management for System Programmers

..

Appendages

•

The addresses of the input/output blocks for the related channel programs
are chained together, with the address of the first input/output block in the
chain placed into the DEBUSPRG field of the data extent block. The address
of the second input/output block is placed into the IOBRESTR field of the
first input/output block, and so on. The last input/output block in the chain
is indicated by all ones in the last byte of the IOBRESTR field. The chain
defines the order in which the request elements for the related channel
programs are removed from the request queue.

For all requests related to the channel program in error, the system places
completion codes into the event control blocks. The DCBIFLGS field of the
data control block is also flagged. Any requests for a data control block with
error flags are posted complete without execution. To reissue requests related
to the channel program in error, you must reset the first two bits of the
DCBIFLGS field of the data control block to zeros. You then issue a
RESTORE macro instruction, specifying, as the only parameter, the address
of the DEBUSPRG field of the data extent block. This causes execution of all
the related channel programs. (The RESTORE macro definition and how to
add it to the macro library are in "System macro Instructions.") Alternatively,
to restart only particular channel programs rather than all of them, you may
reissue EXCP for each channel program desired.

This section discusses the appendages that you may optionally code when
using EXCP. Before a programmer-written appendage can be executed, it
must be included in the SVC library. These procedures are explained first;
descriptions of the routines themselves and of their coding specifications
follow.

An appendage must be a member of the SVC library. The full member name
of an appendage is eight bytes in length, but the first six bytes are required by
IBM standards to be the characters IGG019. The last two characters must be
provided by you as an identification; they may range in collating sequence
from WA to Z9.

The SVC library is a partitioned data set named SYSl.SVCLIB. You can
insert an appendage into the SVC library during the system generation
process or by link-editing it into the SYSl.SVCLIB .

To enter a routine into the SVC library during system generation, use the
SVCLIB macro instruction, which is described in OS/VSl System
Generation Reference.

An appendage is a programmer-written routine that provides additional
control over I/O operations. By providing appendages, you can examine the
status of I/O operations and deternline the actions to be taken for various
conditions. An appendage may receive control when one of the following
occurs:

• Page fixing

• Start I/O

• Program controlled interruption

• End of extent

Executing Your Own Channel Programs 6S

• Channel end

• Abnormal end

An appendage is executed in supervisor state. An appendage must not issue J
any SVC instructions or instructions that change the status of the computing
or operating system (for example, WTO or LPSW). Because an appendage
runs disabled for all types of interrupts except for machine checks, it must not
enter loops that test for completion of I/O operations. An appendage must
not alter storage that is used by either the supervisor or the I/O supervisor.

The last two characters of an appendage's 8-character name must be specified
in the DCB macro instruction, as described in the section "Macro
Specification for Use with EXCP." When an OPEN macro instruction for the
data control block is issued, any appendages specified in the DCB macro
instruction are loaded into the problem program partition. They are loaded
into virtual storage if the partition is pageable.

Your appendage routines are made available to the I/O supervisor when the
DCB for the data set is opened. The address of each appendage you have
provided (and the number of 2K segments of storage each occupies) is placed
in a table called the appendage vector table. This table is always constructed
by the system when OPEN is issued; if an appendage is not provided, the
table contains the address of a branch (BR 14) instruction that immediately
returns control to the I/O supervisor. Using the appendage vector table, the
I/O supervisor branches and links to each appendage at the appropriate time.

The I/O supervisor uses registers to pass parameters to the appendages as
follows:

• 	 Register 1: Address of the request queue element (RQE) for the channel
program. The RQE consists of 20 bytes formatted as shown in Figure 10.

• 	 Register 2: Address of the input/output block (lOB).

• 	 Register 3: Address of the data extent block (DEB).

• 	 Register 4: Address of the data control block (DCB).

• 	 Register 7: Address of the unit control block (UCB).

• 	 Register 14: Address of the location in the I/O supervisor to which
control is to be returned after execution of the appendage. When returning
control to the I/O supervisor, you may use displacements from the return
address in register 14. Allowable displacements are summarized in the
following table and described later for each appendage.

• 	 Register 15: Address of the entry point of the appendage, except in the
instance of the page fix appendage. Refer to the following table.

You may not change register 1 in an appendage; this is reserved in case an
abnormal condition occurs while the appendage is in control. Register 9, if
used, must be set to binary zero before control is returned to the system. All
other registers, except those indicated in the descriptions of each appendage,
must be saved and restored if they are used. Figure 11 summarizes register
conventions.

66 OS/VSl Data Management for System Programmers

..

..

0(0) 2(2)

TSTLNK - Address of next TSTUCB - Address of UCB

RQE in this queue

4(4) 5(5)

TSTIDT - TCB TSTIOB - Address of lOB

identification

8(8) 9(9)

TSTPRI - Requestor's TSTDEB - Address of DEB

priority

12(0C) 13(00)

TSTKEY - Requestor's TSTTCB - Address of TCB

protection key

16(10) 17(11)

Channel program Address of Channel Program

transla tion flags Translation Header Block

Figure 10. The Request Queue Element (RQE)

Appendages Entl'y Point 	 Returns Available Work Reg.*

PGFX Reg 15 + 4 	 Reg 14 + 0 Fix list Reg. 10, 11, and 13
Reg 14 + 4

SIO Reg 15 	 Reg 14 + 0 Normal Reg. 10, 11, and 13
Reg 14 + 4 Skip
Reg 14 + 8 Extend

PCI Reg 15 	 Reg 14 + 0 Normal Reg. 10, 11, 12, and 13
Reg 14 + 4 Modify

EOE Reg 15 	 Reg 14 + 0 Return
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Try Again

CE Reg 15 	 Reg 14 + 0 Normal
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP
Reg 14 + 12 By-Pass

XCE Reg 15 	 Reg 14 + 0 Normal
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP
Reg 14 + 12 By-Pass

• 	 Certain register conventions for passing parameters from appendages to the I/O supervisor must be
followed. These conventions are described in the appendage descriptions.

Figure 11. Entry Points, Returns, and Available Work Registers for the I/O Supervisor

Appendages

The types of appendages are listed in the following paragraphs, with
explanations of when they are entered, how they return control to the system,
and which registers they may use without saving and restoring.

Executing Your Own Channel Programs 67

Page Fix (PGFX) and Start I/O (SIO) A.ppendage

Page Fix (PGFX) Appendage

Page Fix List Processing

Start I/O (SIO) Appendage

This appendage comprises two essentially independent appendages. The total
appendage can be viewed as a re-enterable subroutine having two entry
points, one for SIO and one for PGFX.

The SIO entry point is offset 0 in the subroutine; it may be a branch to
another area of the appendage. The entry point to the PGFX appendage is at
offset +4 in the subroutine.

The purpose of this appendage is to list all of the areas that must be fixed
(made nonpageable) to prevent paging exceptions from occurring during the
execution of appendages related to the current I/O request. The system may
enter this appendage more than once. However, each time it enters the
appendage, it must create the same list of areas to be fixed, including the
boundary of any items used to create the list. After the first entry to this
appendage, any paging exceptions occurring during processing of this or
related appendages cause abnormal termination. ."

On entry to this appendage, register 10 points to a work area for a list of 10
page fix entries of 8 bytes each. Each page fix entry placed in the list by the
appendage must have the following doubleword format:

X'OO' 	 Starting virtual X'OO' Ending virtual

address of area address of area

to be fixed to be fixed + 1

I 1 byte II""'~----- 3 bytes ----l..~1 1 byte "'1~------ 3 bytes ---I"~I

On return to the I/O supervisor (via the return address provided in register
14), register 10 must point to the first page fix entry in the work area, and
register 11 must contain the number of page fix entries in the work area. The
I/O supervisor then fixes the pages corresponding to the areas listed by the
PGFX appendage. The pages remain fixed until the associated I/O operation
is completed.

If your DCB, lOB, or ECB (DECB) exceed the sizes fixed by the I/O
supervisor, you must include one or more entries in the fix list that contain
these control blocks. The sizes of the control blocks fixed by I/O supervisor
follow:

DCB 104 bytes
lOB 80 bytes + a 16-byte prefix, for a total of 96 bytes.
ECB (DECB) 40 bytes

The virtual channel program is also fixed.

Unless an error procedure is in control, the I/O supervisor passes control to
the SIO appendage just before the I/O supervisor translates your channel
program. You have an opportunity to modify or extend the channel program
after you request the I/O operation. However, you should not alter the
10BSTART field of your lOB in the SIO appendage; changing the address in J

68 OS/VS1 Data Management for System Programmers

•

10BSTART has no effect on where the 1/0 supervisor begins CCW
translation. If the system does not initiate the I/O activity because of a busy
condition and the I/O request has not been translated, this appendage is
reentered before the SIO instruction is issued; otherwise, it is not reentered
unless bit 2 (DEBRSIOA) in byte 14 (DEBFLGSl) of the DEB is set to 1.
You may set this bit prior to issuing an EXCP if you wish to reenter your start
I/O appendage each time the SIO instruction is retried due to a busy
condition. If the 1/0 request has already been translated, however, it will not
again be translated despite iterated executions of the start 1/0 appendage.
Note that the routine used to set the bit must run in protection key O.

Optional return vectors give the 1/0 requester the following choices:

Reg. 14 + 0: Normal return. Normal channel program translation and SIO
instruction execution occur.

Reg. 14 + 4: 'Skip the 1/0 operation. The channel program is not posted
complete, but the request queue element is made available. The 1/0 requester
may post the channel program as follows:

1. Save necessary registers.

2. 	Place pointer to post entry address from the communications vector table
(CVT) in register 15.

3. Place TCB address from the RQE in register 12.

4. Place ECB address from the lOB in register 11.

5. Set the completion code in the high-order byte in register 10.

6. Go to POST using BALR 14,15.

Reg. 14 + 8: Extended channel program translation. This appendage must be
included in your program if you modify CCWs with the PCI appendage. In
the SIO appendage, you must build an extend parameter list which gives the
number of continguous CCWs in each chain and the address of the beginning
virtual CCW in that chain (including the CCW chain pointed to by the
10BSTART field of the lOB, the normal starting CCW location). You must
also include, in the SIO extend parameter list, the maximum number of
indirect address list (IAL) entries required for each CCW that is modified by
the PCI appendage (if needed). The number of IAL entries is required by 1/0
supervisor to reserve space for additional IAL entries needed when translating
CCWs at PCI time. See OS/VSl I/O Supervisor Logic, for additional
information on the SIO extend parameter list and IAL.

To use the channel program translation, you must provide the address of the
SIO extend parameter list in register 10 and the number of entries in the SIO
extend parameter list in register 11. The format of an entry in the SIO extend
parameter list is as follows:

Count Address of a virtual CCW

~ I Byte ••~I~.t---- 3 Bytes ---..~~I
If an entry is to contain the number of contiguous CCWs in a chain, you must
set bit 0 of the count field (called the I bit) to O. The number of contiguous
CCW s in this chain must be placed in bits 1-7 of the count field. If an entry is
to contain the maximum number of IAL entries required for a CCW, the I bit

Executing Your Own Channel Programs 69

must be set to 1 and the maximum number of IAL entries required must be
placed in bits 1-7 of the count field. The maximum number of IAL entries
required can be determined by taking the maximum CCW data length to be
used divided by 2048. The entry containing the number of contiguous CCWs
in a chain must precede the entry that contains the maximum number of IAL
entries required for a CCW in that chain. Figure 12 shows an SIO extend
parameter list and its relationship to the requestor's virtual CCW chains.

}
SID Extend Parameter List Requestor's

Virtual
CCWChains

05 Address of CCW1 Entry I
CCW1

} CCW2
82 Address of CCW3 Entry 2

CCW3

CCW4
03 Address of CCW6 Entry 3

CCW5

84 Address of CCW4 Entry 4
CCW6

} CCW7
83 Address of CCW7 Entry 5

CCW8

Figure 12. Relationship of SIO Extend Parameter List to Requestor's CCW Chains

Program Controlled Interruption (Pel) A.ppendage

The system enters this appendage when a program controlled interruption
occurs. At the time of the interruption, the contents of the channel status
word will not have been placed in the "channel status word" field of the
input/output block. The channel status word can be obtained from location
64. The CCW address in the CSW is a virtual address in the virtual channel
program.

You may use registers 10 through 13 in a PCI appendage without saving and
•restoring their contents. The system may reenter this appendage for the same

channel program if the error recovery procedure is in the process of retrying a
CCW with the program controlled interrupt (PCI) bit set on. The lOB error
flag is set when the error recovery procedure is in control (IOBFLAG 1 =
X'20').

Refer to the topic "Block Multiplexor Channel Programming Notes" later in
this chapter for special PCI conditions encountered with command retry.

To return control to the I/O supervisor for normal interruption processing,
use the return address in register 14. To make use of the PCI modify interface
of the I/O supervisor, use register 14 + 4 as the return address.

The PCI modify interface enables you to make changes to translated (real)
CCWs in the midst of an I/O operation. In the PCI appendages you can
make changes to the virtual image of the channel program whose execution is
interrupted. To cause the I/O supervisor to make corresponding changes to
the real channel program, you must construct a PCI modify parameter list in a
fixed area of storage that you provide. The list must contain the virtual

70 OS!VSI Data Management for System Programmers

End-of-Exte"t Appendage

address of each CCW changed. Each entry in the list consists of four bytes as
follows:

X'OO' Address of a virtual CCW

I-- 1 Byte1.....1--- 3 Bytes ---.....1

On exit from the PCI appendage (via register 14 + 4), register 10 must point
to the first entry in the list, and register 11 must contain the number of entries
in the list.

The I/O supervisor then finds the real CCW corresponding to each virtual
CCW specified in the list, translates the virtual CCW to real, and replaces the
real CCW. If the CCW requires an IAL, it must already exist.

Transfer-in-channel (TIC) commands are resolved to previously defined
CCW strings only, and cannot be used to expose new CCW strings. Also,
new pages to be fixed cannot be exposed now.

Error conditions created by incorrect specifications of PCI modify parameter
list entries abnormally terminate the I/O requestor. Examples of such error
conditions are:

• 	 The virtual CCW listed exposes a new CCW string or data page.

• 	 A page exception is encountered in accessing an entry in the list.

This appendage is entered when the seek address specified in the
input/output block is outside the allocated extent limits indicated in the data
extent block.

If you use the return address in register 14 to return control to the system, the
abnormal end appendage is entered. An end-of-extent error code (X'42') is
placed in the "ECB code" field of the input/output block for subsequent
posting in the ECB. You may use the following optional return addresses:

• 	 Contents of register 14 plus 4-The channel program is posted complete;
its request element is returned to the available queue.

• 	 Contents of register 14 plus 8-The request is tried again.

You may use registers 10 through 13 in an end-of-extent appendage without
saving and restoring their contents.

Note: If an end-of-cylinder or file-protection condition occurs, the I/O
supervisor updates the seek address to the next higher cylinder or track
address, and re-executes the request. If the new seek address is within the
data set's extent, the request is executed; if the new seek address is not within
the data set's extent, the end-of-extent appendage is entered. If you wish to
try the request in the next extent, you must move the new seek address into
the UCB at UCB+48.

If a file-protection condition is caused by a full seek (command code=07)
embedded within a channel program, the request is flagged as a permanent
error, and the abnormal end appendage is entered.

Executing Your Own Channel Programs 71

Channel End (CE) Appendage

This appendage is entered when a channel end (CE), unit exception (UEX)
with or without channel end, or channel end with wrong length record (WLR)
occurs without any other abnormal end conditions.

If you use the return address in register 14 to return control to the I/O
supervisor, the channel program is posted complete, and its request element is
made available. In the case of unit exception or wrong length record, the error
recovery procedure is performed before the channel program is posted
complete, and the 10BEX flag (X'04') in 10BFLAG1 is set on. The condition
code may be directly tested by using a BC instruction. A CC=O means no
UEX or WLR accompanied this interruption. The CSW status may be
obtained from the 10BCSW field.

If the appendage takes care of the wrong length record and/or unit exception,
it may tum off the 10BEX (X'04') flag in 10BFLAGI and return normally.
The event will then be posted complete (completion code X'7F' under normal
conditions, taken from.the high-order byte of the 10BECBCC field). If the
appendage returns normally without resetting the 10BEX flag to zero, the
request will be routed to the associated device error routine, and then the
abnormal end appendage will be immediately entered with 10BECBCC
completion code is set to X'41'.

You may use the following optional return addresses:

• 	 Contents of register 14 plus 4-The channel program is not posted
complete, but its request element is made available. You may post the
event by using the calling sequence described under the start I/O
appendage. This is especially useful if you wish to post an ECB other than
the 10BECB.

• 	 Contents of register 14 plus 8-The channel program is not posted
complete, and its request element is placed back on the request queue so
that the I/O operation can be retried. For correct re-execution of the
channel program, you must re-initialize the IOBFLAGl, IOBFLAG2, and
IOBFLAG3 fields of the input/output block and set the "error counts"
field to zero. As an added precaution, the IOBSENSO, 10BSENSl, and
IOBCSW fields should be cleared.

• 	 Contents of register 14 plus 12-The channel program is not posted
complete, and its request element is not made available. (The request
element is assumed to be used in a subsequent asynchronous exit routine.)

You may use registers 10 through 13 in a channel end appendage without
saving and restoring their contents.

Abnormal End (XCE) Appendage

This appendage may be entered on abnormal conditions, such as: unit check,
unit exception, wrong length indication, program check, protection check,
channel data check, channel control check, interface control check, chaining
check, out-of-extent error, and intercept condition (Le., device end error). It
may also be entered when an EXCP is issued for a DCB that has already
been purged.

1. 	When this appendage is entered due to a unit exception and/or wrong
length record indication, the IOBECBCC is set to X'41'. For further
information on these conditions see "Channel End Appendage."

\
....,

J

..

72 OS/VSl Data Management for System Programmers

flo

2. 	When the appendage is entered due to an out-of-extent error, the
10BECBCC is set to X'42'.

3. When this appendage is entered with the 10BECB code set to X'4B', it is
due to:

a. 	 the tape ERP having been entered after a repositioning for error
recovery has been done and, if there was a unit check, a check has been
made in the sense byte for load point, or

b. the tape ERP finding zeros as the lOB CSW command address.

The ERP exits to the I/O supervisor with a permanent error indication
given.

4. When the appendage is first entered due to an intercept condition, the
10BECBCC is set to X'7E'.1f it is then determined that the error
condition is permanent, the appendage will be entered a second time with
the 10BECBCC set to X'44'. The intercept condition signals that an error
was detected at device end after channel end on the previous requests.

5. 	When the appendage is entered due to an EXCP being issued to an already
purged DCB, this request will enter the abnormal end appendage with the
10BECBCC set to X'48'. This applies only to related requests.

6. 	When the appendage is entered with the 10BECBCC set to X'7F', it may
be due to a unit check, program check, protection check, channel data
check, channel control check, interface control check, or chaining check.
When the 10BECBCC is X'7F', it is the first detection of an error in the
associated channel program. When the 10BEX flag (bit 5 of the
IOBFLAG1) is on, the 10BECBCC field will contain a 41,42,48, 4B, or
4F in hexadecimal, indicating a permanent I/O error.

To determine if an error is permanent, you should check the 10BECBCC
field of the lOB. To determine the type of error, check the channel status
word and the sense information in the lOB. However, when the 10BECBCC
is X'42' or X'48', these fields are not applicable. For X'44' the CSW is
applicable, but the sense is valid only if the unit check bit is set. If you use the
return address in register 14 to return control to the system, the channel
program is posted complete, and its request element is made available. (The
SYNADAF macro instruction, described in OS/VS Data Management
Macro Instructions, may be used in an error analysis routine to analyze
permanent I/O errors.) You may use the following optional return addresses:

• 	 Contents of register 14 plus 4-The channel program is not posted
complete, but its request element is made available.

• 	 Contents of register 14 plus 8-The channel program is not posted
complete, and its request element is placed back on the request queue so
that the request can be retried. For correcCre-execution of the channel
program, you must re-initialize the IOBFLAG1, IOBFLAG2, and
IOBFLAG3 fields of the input/output block and set the 10BERRCT field
to zero. As an added precaution, the 10BSENSO, 10BSENSl, and
IOBCSW fields should be cleared.

• 	 Contents of register 14 plus 12-The channel program is not posted
complete, and its request element is not made available. (The request
element is assumed to be used in a subsequent asynchronous exit.)

You may use registers 10 through 13 in an abnormal end appendage without
saving and restoring their contents.

Executing Your Own Channel Programs 73

http:X'7E'.1f

Block Multiplexer Channel Programming Notes

Command retry is a function of the block multiplexer channel supporting the
3330 Disk Storage and the 2305 Fixed Head Storage devices. When the Jchannel receives a retry request, it repeats the execution of the channel
command word (CCW) requiring no additional input/output interrupts. For
example, a control unit may initiate a retry procedure to recover from a
transient error.

A command retry during the execution of a channel program may cause any
of the following conditions to be detected by the initiating program:

• 	 Modifying CCWs: A CCW used in a channel program must not be
modified before the CCW operation has been successfully completed.
Without the command retry function, a command was fetched only once
from storage by a channel. Therefore, a program could determine through
condition codes or program controlled interruptions (PCI) that a CCW had
been fetched and accepted by the channel. This permitted the CCW to be
modified before re-execution. With the command retry function, this
cannot be done, since the channel will fetch the CCW from storage again
on a command retry sequence. In the case of data chaining, the channel
will command retry starting with the first CCW in the data chain.

• 	 Program Controlled Interrupts: A CCW containing a PCI flag may cause
multiple program controlled interruptions to occur. This happens if the
PCI-flagged CCW was retried during a command retry procedure, and a
PCI could be generated each time the CCW is re-executed.

• 	 Residual Count: If a channel program is prematurely terminated during the
retry of a command, the residual count in the channel status word (CSW)
will not necessarily indicate how much storage was used. For example, if
the control unit detects a "wrong length record" error condition, an
erroneous residual count is stored in the CSW until the command retry is
successful. When the retry is successful, the residual in the CSW is the
correct length of the data transfer. Since the channel will not allow more
data to be transferred than is specified in the count field of the CCW, this
situation will occur only when reading variable records or unknown record
types.

• 	 Command Address: When data chaining with command retry, the CSW
may not indicate how many CCWs have been executed at the time of a
PCI. For example:

CCW# CbaDnel Program

1 Read, data chain
2 Read, data chain
3 Read, data chain, PCI
4 Read, command chain

In this example, assume that the control unit signals command retry on
Read #3 and the CPU accepts the PCI after the channel resets the
command address to Read #1 because of command retry. The CSW stored
for the PCI will contain the command address of Read #1, when actually
the channel has progressed to Read #3.

• 	 "Bit Spinning" on Data Read: Any program that tests a data storage
location to determine when a CCW has been executed and continues to
execute based on this data may get incorrect results if an error is detected
and the CCW is retried. An example of this is a PCI appendage in which
ones are placed in a buffer area that will be overlaid with zeros when a

74 OS!VSl Data Management for System Programmers

..

•

J

..

record is read. When the PCI appendage is entered, a check for zeros is
made and the appendage will continue to loop until the record is read into
the buffer (indicated by ones changed to zeros). If the appendage uses the
data from this record to modify a channel program, the results will be
unpredictable during a command retry sequence, as the CCW has not been
correctly executed.

Macro Specifications for Use With EXCP
If you are using the EXCP macro instruction, you must also use DCB, OPEN,
CLOSE, and, in some cases, the EOV macro instruction. The parameters of
these macro instructions and the EXCP macro instructions are explained here.
A diagram of the data control block is included with the description of the
DCB macro instruction.

DCB-Deline Data Control Block lor EXCP

The EXCP form of the DCB macro instruction produces a data control block
that can be used with the EXCP macro instruction. You must issue a DCB
macro instruction for each data set to be processed by your channel programs.
Notation conventions and format illustrations of the DCB macro instruction
are given in the OS/VS Data Management Macro Instructions publication.
DCB parameters that apply to EXCP may be divided into four categories,
depending on the following portions of the data control block that are
generated when they are specified:

• 	 Foundation block. This portion is required and is always 12 bytes in length.
You must specify two of the parameters in this category.

• 	 EXCP interface. This portion is optional. If you specify any parameter in
this category, 20 bytes are generated.

• 	 Foundation block extension and common interface. This portion is optional
and is always 20 bytes in length. If this portion is generated, the device
dependent portion is also generated.

• 	 Device dependent. This portion is optional and is generated only if the
foundation block extension and common interface portion is generated. Its
size ranges from 4 to 20 bytes, depending on specifications in the DEVD
parameter. However, if you do not specify the DEVD parameter (and the
foundation extension and common interface portion is generated), the
maximum 20 bytes for this portion are generated.

Some of the procedures performed by the system when the data control block
is opened and closed (such as writing file marks for output data sets on direct
access volumes) require information from optional data control block fields.
You should make sure that the data control block is large enough to provide
all information necessary for the procedures you want the system to handle.

Figure 13 shows the relative position of each portion of an opened data
control block. The fields corresponding to each parameter of the DCB macro
instruction are also designated, with the exception of DDNAME, which is not
included in a data control block that has been opened. The fields identified in
parentheses represent system information that is not associated with
parameters of the DCB macro instruction.

Sources of information for data control block fields other than the DCB
macro instruction are data definition (DD) statements, data set labels, and
data control block modification routines. You may use any of these sources to

Executing Your Own Channel Programs 75

specify DCB parameters. However, if a portion of the data control block is
not generated by the DCB macro instruction, the system does not accept
information intended for that portion from any alternative source. J
~e device dependent portion of the data control block varies ,,}

~ in length and format according to specifications in the DSORG !-.
and DEVD parameters. Illustrations of this portion for each de
vice type are included in the description of the DEVD parameter.

20
BUFNO BUFCB

24

BUFL DSORG

28

IOBAD

32 BFTEK,
BFALN EODAD
HIARC

36

RECFM EXLST

40

(TIOT) MACRF

44

(lFLGS) (DEB Address)

48

(OFLGS) Reserved

52

OPTCD Reserved

56
Reserved

60
EOEA PCIA

64
SIOA,PGFX CENDA

----.--------------------------~----------~
68

XENDA Reserved

Figure 13. Data Control Block Format for EXCP (After OPEN)

Foundation Block Parameters

Device
Dependent

Common
Interface

Foundation
Block
Extension

Foundation
Block

EXCP
Interface

•

..

J

,

DDNAME= symbol
The name of the data definition (DD) statement that describes the data set
to be processed. This parameter must be given.

76 OS/VSl Data Management for System Programmers

EXCP Interface Parameters

MACRF=(E) .
The EXCP macro instruction is to be used in processing the data set. This
operand must be coded. If, however, you are processing a multivolume,
direct data set (DSORG=DA), you should code MACRF=(W) or (R).
This results in the operating system's performing automatic parallel volume
mounting and causes the Open routines to complete the data extent block
(DEB) that represents all volumes of the data set. Note that the user must
modify the A VT to ensure that the BDAM appendages are not entered. Do
not use BDAM if you want to use your own appendages; they will not be
loaded.

REPOS= {YIN}
Magnetic tape volumes: If your system generation statements include the
dynamic device reconfiguration (DDR) entry, then this parameter indicates
to the DDR routine whether or not the user is keeping an accurate block
count. If the user is keeping an accurate bloc~ count, the DDR routine can
attempt to swap the volume. (You must maintain the block count in the
IOBINCAM field.)

Y-The user is keeping an accurate block count and the DDR routine can
attempt to swap the volume.

N-The block count is unreliable and the DDR routine cannot and will not
attempt to swap the volume.

If the operand is omitted, N is assumed.

EOEA= symbol
2-byte identification of an end-of-extent appendage that you have entered
into the SVC library. (See Note A.)

PCIA= symbol
2-byte identification of a program controlled interruption (PCl) appendage
that you have entered into the SVC library. (See Note A.)

SIOA= symbol
2-byte identification of a start I/O (SIO) appendage that you have entered
into the SVC library. (See Note A.)

CENDA= symbol
2-byte identification of a channel end appendage that you have entered
into the SVC library. (See Note A.)

XENDA= symbol
2-byte identification of an abnormal end appendage that you have entered
into the SVC library. (See Note A.)

Note A: The full name of an appendage is 8 bytes in length, but the first six
bytes are required by IBM standards to be the characters IGG019. You
provide the last two characters as the identification; they may range in
collating sequence from WA to Z9.

PGFX={YIN}
A yes response indicates the existence of a user page fix appendage. If you
specify PGFX=yes, also specify SIOA=XX. If this operand is omitted,
'NO' is assumed.

Executing Your Own Channel Programs 77

OPTCD==Z
indicates that for magnetic tape (input only) a reduced error recovery
procedure (5 reads only) will occur when a data check is encountered. It
should be specified only when the tape is known to contain errors and the
application does not require that all records be processed. Its proper use
would include error frequency analysis in the SYNAD routine.
Specification of this parameter will also cause generation of a foundation
block extension. This parameter is ignored unless it was selected at system
generation.

IMSK= value
Any specification indicates that the system will not use mM-supplied error
routines.

Foundation Block Extension and Common Interface Parameters

EXLST== address
the address of an exit list that you have written for exceptional conditions.
The format of this exit list is given in OS/VS Data Management
Services Guide.

EODAD== address
the address of your end-of-data set routine for input data sets. If this
routine is not available when it is required, the task is abnormally
terminated.

DSORG== { PS IPO IDA IIS }
the data set organization (one of the following codes). Each code indicates
that the format of the device-dependent portion of the data control block
is to be similar to that generated for a particular access method:

Code DCB Format for

PS QSAM or BSAM
PO BPAM
DA BDAM
IS QISAM or BISAM

Note: For direct-access devices, if you specify either PS or PO, you must
maintain the following fields of the device-dependent portion of the data
control block so that the system can write a file mark for output data sets:

• 	 The track balance (DCBTRBAL) field, which contains a 2-byte binary
number that indicates the remaining number of bytes on the current
track.

• 	 The full disk address (DCBFDAD) field, which indicates the location of
the current record. The address is in the form MBBCCHHR.

These fields are written into the format-l DSCB and are used by Open
routines for staging MSS data sets. Staging is done only up to the last
cylinder specified by these fields if the data set is re-opened for OUTPUT,
INOUT, or OUTIN.

If you specify PO for a direct-access device, the DCBDIRCT field will not
be updated. Therefore, you should be careful when using EXCP with the
STOW macro.

78 OS/VSl Data Management for System Programmers

Device-Dependent Parameters

IOBAD= address
the address of an input/output block (lOB). If a pointer to the current lOB
is not required, you may use this field for any purpose.

The following parameters are not used by the EXCP routines, but they
provide cataloging information about the data set. This information can be
used later by access method routines that read or update the data set.

RECFM= code
the record format of the data set. Record format codes are given in
OS/VS Data Management Macro Instructions. When writing a data set
to be read later using one of the access method routines, the RECFM,
LRECL, KEYLEN, and BLKSIZE should be specified to identify the data
set attributes. LRECL and BLKSIZE can only be specified in a job file
control block (JFCB) created by a DD statement, since these fields do not
exist in a DCB used by EXCP.

BFfEK=1 S IE}
the buffer technique, either simple or exchange.

BF	ALN= { F I D }
the word boundary alignment of each buffer, either fullword or
doubleword.

BUFL= length
the length in bytes of each buffer; the maximum length is 32,767.

BUFNO= number
the number of buffers assigned to the associated data set; the maximum
number is 255.

BUFCB= address
the address of a buffer pool control block, i.e., the 8-byte field preceding
the buffers in a buffer pool.

DEVD= code
the device on which the data set may reside. The codes are listed in order
of descending space requirements for the data control block:

Code Device

DA Direct access
T A Magnetic tape
PT Paper tape
PR Printer
PC Card punch
RD Card reader

Note: If you do not wish to select a specific device until job set-up time,
you should specify the device type requiring the largest area. For MSS
virtual volumes, DA should be used.

The following diagrams illustrate the device-dependent portion of the data
control block for each device type specified in the DEVD parameter, and for
each data set organization specified in the DSORG parameter. Fields that
correspond to device-dependent parameters in addition to DEVD are
indicated by the parameter name. For special services, you may have to
maintain the fields shown in parentheses. The special services are explained in
the note that follows the diagram.

Executing Your Own Channel Programs 79

Device-dependent portion of data control block when DEVD=DA and
DSORG=PS or PO:

4
Reserved

8
DCBFDAD

13
DCBDVTBL

16 17 18

DCBKEYLE DCBDEVT DCBTRBAL

Note: For output data sets, the system uses the contents of the full disk
address (DCBFDAD) field plus one to write a file mark when the data
control block is closed, provided the track balance (DCBTRBAL) field
indicates that space is available. You must maintain the contents of these two
fields yourself if the system is to write a file mark. OPEN will initialize
DCBDVTBL and DCBDEVT.

Device-dependent portion of data control block when DEVD=DA and
DSORG=IS or DA:

161 DCBKEYLE Reserved

Device-dependent portion of data control block when DEVD=TA and
DSORG=PS:

12
DCBBLKCT

16 17 18 19
DCBTRTCH Reserved DCBDEN Reserved

Note: For output data sets, the system control program uses the contents of
the block count (DCBBLKCT) field to write the block count in trailer labels
when the data control block is closed or when the EOV macro instruction is
issued.

The lOS tape trapcode routine updates this field by adding the value in
IOBINCAM to DCBBLKCT.

When using EXCP to process a tape data set open at a checkpoint, you must
be careful to maintain the correct value in IOCINCAM; otherwise, the system
may position the data set incorrectly when restart occurs.

If your system generation statements include the dynamic device
reconfiguration entry, IOBINCAM must be maintained by you for
repositioning. Also, your DCB macro instruction must include the REPOS=Y
entry.

80 OS/VSl Data Management for System Programmers

J

•

Device-dependent portion of data control block when DEVD=PT and
DSORG=PS:

116 ReservedDCBCODE

Device-dependent portion of data control block when DEVD=PR and
DSORG=PS:

116 ReservedDCBPRTSP

Device-dependent portion of data control block when DEVD=PC or RD and
DSORG=PS:

16

DCBMODE,DCBSTACK Reserved

The following DCB operands pertain to specific devices and may be specified
only when the DEVD parameter is specified.

KEYLEN= length
for direct-access devices, the length in bytes of the key of a physical
record, with a maximum value of 255. When a block is read or written, the
number of bytes transmitted is the key length plus the record length.

CODE= value
for paper tape, the code in which records are punched:

Value Code

I IBM BCD
F Friden
B Burroughs
C National Cash Register
A ASCII
T Teletype l

N no conversion (format-F records only)

If this parameter is omitted, N is assumed.

1 Trademark of Teletype Corporation

Executing Your Own Channel Programs 81

DEN=value
for magnetic tape, the tape recording density in bits per inch:

Density
Value 7-Track Tape '-Track. Tape Jo 200

1 556
2 800 800 (NRZI)
3 1600 (PE)
4 6250 (GCR)

NRZI-Non-retum-to-zero-inverse mode
PE-Phase encoded mode
GCR-Group coded recording mode

If this parameter is omitted, the highest density on the device is assumed.

TRTCH= value
for 7 -track magnetic tape, the tape recording technique:

Value Tape Recording Technique

C Data conversion feature is available.
E Even parity is used. (If omitted, odd parity is assumed.)
T BCDIC to EBCDIC translation is required.

MODE= value
for a card reader or punch, the mode of operation. Either C (column
binary mode) or E (EBCDIC code) may be specified.

STACK= value
for a card punch or card reader, the stacker bin to receive cards, either 1 or
2.

PRTSP= 	value
for a printer, the line spacing, either 0, 1, 2, or 3.

OPEN-Initializ.e Data Control Block

The OPEN macro instruction initializes one or more data control blocks so
that their associated data sets can be processed. You must issue OPEN for all
data control blocks that are to be used by your channel programs. (A dummy
data set may not be opened for EXCP.) Some of the procedures performed
when OPEN is executed are:

• 	 Construction of data extent block (DEB).

• 	 Transfer of information from DD statements and data set labels to DCB.

• 	 Verification or creation of standard labels.

• 	 Tape positioning.

• Loading of your appendage routines.

The three parameters of the OPEN macro instruction are:

(deb address, [(options)] , ...)

deb address -A-type Address or (2-12)
the address of the data control block to be initialized. (More than one data.
control block may be specified.)

82 OS/VS1 Data Management for System Programmers

option 1

the intended method of I/O processing of the data set. You may specify
this parameter as either INPUT, RDBACK, OUTPUT, !NOUT, OUTIN,
orUPDAT.

If this parameter is omitted, INPUT is assumed.

option 2

the volume disposition that is to be provided when tape volume switching
occurs. The operand values and meanings are as follows:

REREAD
Reposition the volume to process the data set again.

LEAVE
No additional positioning is performed at end-of-volume processing.

DISP
The disposition indicated on the DD statement is tested and appropriate
positioning provided. This service is assumed if this operand is omitted
and volume positioning is applicable. If there is no disposition specified
in the DD statement when this operand is specified, LEAVE is assumed.

When you code MACRF==(E) in the DCB macro instruction, indicating that
your program uses the EXCP macro instruction, the Open routines process
your data control block as if it represents a single-volume, physical-sequential
data set, except that the DCB fields are merged (from and to the DSCB and
JFCB for the data set) according to the DSORG you specify in the DCB
macro instruction.

However, if you are concatenating partitioned data sets, mount messages will
be issued, volume verification will be performed, and a DEB will be built that
represents all the extents and volumes of the concatenated data sets.

You should recognize that if you are opening multiple-volume direct or
index-sequential data sets, only the first volume of the data set is verified to
be mounted by the operating system, and the DEB built by the Open routines
for the data set will represent only the first volume.

The list and execute forms of the OPEN macro instruction are described in
OS/VS Data Management Macro Instructions.

EXCP.-Execllte Channel Program

The EXCP macro instruction requests the initiation of the I/O operations of
a channel program. You must issue EXCP whenever you want to execute one
of your channel programs. The only parameter of the EXCP macro
instruction is:

I[symbol] IEXCP I iob-address

iob-address-A-type address, (2-12), or (1)
the address of the input/output block of the channel program to be
executed.

Executing Your Own Channel Programs 83

ATLAS-Assigning an Altel7Ulte Track and Copying Data from
the Defective Track

A program that uses the EXCP macro instruction for input and output may
use the ATLAS macro instruction, during the execution of the program, to
obtain an alternate track and to copy a defective track onto the alternate
track. With the use of ATLAS, the program can recover from permanent
(hard) errors encountered in the execution of the following types of I/O
commands:

• 	 Search ID.

• 	 Write. (The error condition must be confirmed during the execution of the
channel program by a CCW that checks the data written.)

• 	 Read count. Errors in the CCHHR part of the count area can be recovered
from unless the record is the home address or record zero. Errors in the
KDD part of the count area cannot be recovered from unless the user has
identified the defective record.

Note: ATLAS cannot be used with MSS virtual devices (3330V).

Your DCB must include the DCBRECFM field and the field must show
whether the data set is in the track overflow format. If it is, recovery from
errors in last records on tracks depends on your identifying the track overflow
record segments.

Recovery takes the form of obtaining an alternate good track and copying the
defective track onto the good alternate one. Unless a re-execution of the
channel program by ATLAS can correct the defect, the user should examine,
and if necessary replace, defective records in a subsequent job if the data set
is to be processed again. JThe format is:

[symbol] ATLAS 	 PARMADR={address}
[,CHANPRG-{R INR }]
[,CNTPTR= {~ fiq]
[,WRITS={YES INO}]

PARMADR
Address of a parameter address list of the following format:

t
0

Parameter list

4 t lOB for the channel program that encountered the error

t
8

Count area field

The count area field contains the CCHHRKDD of a defective record or
the CCHH of a track that is to be copied.

address-(2-12) or (1)
Address is given as the symbolic label of the address list or as the number
of a general register that contains the address of the list.

84 OS/VSI Data Management for System Programmers

•

Using ATLAS

CHANPRG=I R INR }
specifies whether the channel program that encountered the error can be
executed again.

R
Channel program may be executed again by ATLAS. Before permitting
re-execution of the channel program by ATLAS, you must reset the
error indications of the previous execution fields in the DCBIFLGS.
(See the example of the use of ATLAS below.)

NR
Channel program may not be executed again.

If this parameter is omitted, R is assumed.

CNTPTR= { PI F }
specifies whether the count area field contains a full count area
(CCHHRKDD) or a partial count area (CCHH).

P
Part of the count area (the CCHH address of the track to be copied).

F
Full count area (CCHHRKDD count of the record that was found
defective).

If this parameter is omitted, P is assumed.

WRITS= { YES INO }
track overflow segment identification.

If your data set is in the track overflow format, this identification
determines recovery from errors in last records on tracks.

YES
If this is the last record on the track, it is a segment other than the last
of a track overflow record. "'

NO
If this is the last record on the track it is the last or only segment of a
track overflow record.

If this parameter is omitted, it is assumed that it cannot be established
whether a last record is a segment of an overflow record .

If a channel program encounters a unit check condition (shown in the CSW)
in its execution, the I/O supervisor program will place the sense bytes in the
lOB. ATLAS can be used to recover from sense conditions shown by the
following bit settings:

Setting Meaning

IOBSENSO X'08' Data check (except in the count area)

IOBSENS 1 X'80' Data check in the count area

IOBSENS 1 X'02' Missing address marker (see the following for
combinations of this bit setting which ATLAS cannot
handle.)

Executing Your Own Channel Programs 85

However, defects in the home address record or the record zero record cannot
be recovered from through the use of ATLAS. These conditions are shown
by:

IOBSENSI X'02' and IOBSENSO X'OI '-home address defect.

IOBSENSI X'OA'-record zero defect, or, home address cannot be
located.

Also, before using ATLAS, you must reset the DCBIFLGS error indications
as follows:

NI DCBIFLGS, X' 3F'

The ATLAS program will attempt to find a good alternate track and will
attempt to copy the defective track onto the good track, including all error
conditions in either key or data areas. The error conditions may be rectified
by re-executing the channel program or through the use of the IEHATLAS
utility program in a subsequent step.

Example: the following illustrates the use of the ATLAS macro instruction.

EXCP
WAIT
TM
BO

*
TM
BZ

*
TM
BO
TM
BO
TM

*
*

BO
ATLASGO EQU
*

NI
ATLAS

MYIOB
ECB=MYECB
MYECB, X ' 20 '
NEXT

IOBCSW+3,X'02'
OTHER

IOBSENSO,X'08'
ATLASGO
IOBSENS1,X'80'
ATLASGO
IOBSENS 1 , X ' OA '

OTHER
*
DCBIFLGS,X'3F'

TEST FOR I/O ERROR
NO, SUCCESSFUL, GO TO
ANOTHER ROUTINE
UNIT CHECK
NO, DO OTHER ERROR
PROCESSING
DATA CHECK
YES, VALID ERROR
DATA CHECK IN COUNT
YES, VALID ERROR
MISSING ADDRESS MARKER
AND NO RECORD FOUND
YES, ATLAS CANNOT HANDLE
ERROR; DO OTHER ERROR
PROCESSING NO, MISSING
ADDRESS MARKER ONLY
RESET ERROR INDICATORS

PARMADR=THERE,CHANPRG=R

Operation of the ATLAS Program

The ATLAS program (SVC 86):

• 	 Establishes the availability and address of the next alternate track from the
format-4 DSCB of the VTOC.

• 	 Brings all count fields from the defective track into storage to establish the
description of the track.

• 	 Initializes the alternate track. (Write home address, write record zero.)

• 	 Brings the key and data areas of each record into storage, one at a time,
and combines them with their new count area to write the complete record
onto the alternate track.

• 	 When the copying is finished, chains the alternate to the defective track
and updates the VTOC.

Control is returned to your program at the next executable instruction
following the ATLAS macro instruction. The success of the ATLAS macro
instruction can be determined by examining the contents of register 15, which

86 OS!VSl Data Management for System Programmers

..

1t

will contain one of the return codes described below. If register 15 contains 0,
36, 40, or 44, the contents of register °may be significant.

Decimal
Return
Code Interpretation

o Successful completion. Key and data areas have been copied from the defective
track onto a good alternate one. The only error encountered was in the record
identified by the user's CCHHRKDD value.

If the channel program is re-executable, it has been successfully re-executed.

4 This device type does not have alternate tracks that can be assigned by
programming.

8 All alternate tracks for the device have been assigned.

12 A request for storage (GETMAIN macro instruction) could not be satisfied.

16 All attempts to initialize and transfer data to an alternate track failed. The
number of attempts made is equal to 10% of the assigned alternates for the
device.

20 The type of error shown by the sense byte cannot be handled through the use
of the ATLAS macro instruction. The condition is other than a data check (in
the count or data areas) or a missing address marker.

24 The format-4 DSCB of the VTOC cannot be read, therefore alternate track
information is not available to ATLAS.

28 The record specified by the user was the format-4 DSCB and it could not be
read.

32 An error found in count area of last record on the track cannot be handled
because last-record-on-track identification is not supplied.

36 An error was encountered when reading or writing the home address record or
record zero. No error recovery has taken place. If register 0 contains X'OI 00
00 00', the defect is in record zero.

40 Successful completion. Key and data areas have been copied from the defective
track onto a good alternate one. However, the alternate track may have
records with defective key or data areas. Register 0 identifies the first three
found defective as follows:

nRRR

n-Number of record numbers that follow (0, 1,2, or 3).

R-The number of the record found defective but copied anyhow.

If the channel program is re-executable, it has been successfully re-executed .

44 Error(s) encountered and no alternate track has been assigned. The return
parameter register (register 0) will contain the R of a maximum of three error
records.

Error conditions that return this code are:

ATLAS received an error indication for a record with a data length in the
count field of zero. Recovery was not possible because a distinction cannot
be made between an EOF record and an invalid data length.

An error occurred while reading the count field of a record and the KDD
(key length-data length) was found to be defective.

More than three records on the specified track contained errors in their
count fields.

48 No errors found on the track, no alternate assigned. ATLAS will not assign an
alternate unless a track has at least one defective record.

52 I/O error in re-executing user's channel program. A good alternate is chained
to the defective track and data has been transferred. The user's control blocks
will give indication of the error condition causing failure in re-execution of his
channel program.

Executing Your Own Channel Programs 87

Decimal
Return
Code Interpretation J

56 The DCB reflects a track overflow data set, but the UCB device type shows

that the device does not support track overflow.

60 The CCHH of the user-specified count area is not within the extents of his data

set.

64 The device is an MSS virtual device, which is not supported.

Figures 14 and 15 summarize the return codes that reflect track error
conditions by error location.

Record in Error Area in Error

Count Area Key Area Data Area

CCHHR KDD

Record r (r*O)

Not last on track 0 44 40 40

Last on track

WRITS=YES 0 44 40 40

WRITS=NO 0 44 40 4U

Omitted* 32 44 40 40

Record zero 36 36 36 36 J
Home address 36

*Omitted and the data set is in the track overflow format

Figure 14. Error Locations and Return Codes if CCHH is in the Count Area Field

88 OS/VSI Data Management for System Programmers

•

EOV.-End of Volume

•

Record in error Area in error

Count Area Key Area Data Area

CCHHR KDD

Record n (n=R in CCHHRKDD)

Not last on track 0 0 0 0

Last on track

WRITS=YES 0 0 0 0

WRITS=NO 0 0 0 0

Omitted* 32 32 0 0

Record m (m*R in CCHHRKDD)

Not last on track 0 44 40 40
Last on track

WRITS=YES 0 44 40 40

WRITS=NO 0 44 40 40

Omitted* 32 44 40 40

Record zero 36 36 36 36

Home address 36

*Omitted and the data set is the track overflow format.

Figure 15. Error Locations and Return Codes if CCHHRKDD is in the Count Area Field

The EOY macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition, EOY causes switching of
volumes and verification or creation of standard labels. For an end-of-data set
condition, EOY causes your end-of-data set routine to be entered. Before
processing trailer labels on a tape input data set, you must decrement the
DCBBLKCT field. You issue EOY if switching of magnetic tape or
direct-access volumes is necessary, or if secondary allocation is to be
performed for a direct-access data set opened for output.

For magnetic tape, you must issue EOY when either a tapemark is read or a
reflective spot is written over. In these cases, bit settings in the I-byte
DCBOFLGS field of the data control block determine the action to be taken
when EOY is executed. Before issuing EOY for magnetic tape, you must
make sure that appropriate bits are set in DCBOFLGS. Bit positions 2,3,6,
and 7 of DCBOFLGS are used only by the system; you are concerned with
bit positions 0,1,4, and 5. The use of these DCBOFLGS bit positions is as
follows:

Bit 0:
set to 1 indicates that a write command was executed and that a tape mark
is to be written.

Executing Your Own Channel Programs 89

Bit 1:
indicates that a backward read was the last I/O operation.

Bit 4:
indicates that data sets of unlike attributes are to be concatenated.

Bit 5:
indicates that a tape mark has been read.

If bits 0 and 5 of DCBOFLGS are both off when EOV is executed, the tape
is spaced past a tapemark, and standard labels, if present, are verified on both
the old and new volumes. The direction of spacing depends on bit 1. If bit 1 is
off, the tape is spaced forward; if bit 1 is on, the tape is backspaced.

If bit 0 is on when EOV is executed, a tapemark is written immediately
following the last data record of the data set. Standard labels, if specified, are
created on the old and the new volume.

When issuing EOV for sequentially organized output data sets on
direct-access volumes, you can determine whether additional space has been
obtained on the same or a different volume. You do this by checking the
volume serial number in the unit control block (UCB) both before and after
issuing EOV.

The only parameter of the EOV macro instruction is:

I[symbol] IEOV Ideb address

deb address--A-type address, (2-12), or (1)
the address of the data control block that is opened for the data set. If this
parameter is specified as (1), register 1 must contain this address.

CLOSE-Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You must issue
CLOSE for all data control blocks that were used by your channel programs.
Some of the procedures performed when CLOSE is executed are:

• 	 Release of data extent block (DEB)

• 	 Removal of information transferred to data control block fields when
OPEN was executed

• 	 Verification or creation of standard labels

• 	 Volume disposition

• 	 Release of programmer-written appendage routines

1[""",boll 1CWSE I(deb address
,[option 1, ...)

deb address--A-type address or (2-12)
the address of the data control block to be restored. More than one data
control block may be specified.

J

90 OS/VS1 Data Management for System Programmers

Control Block Fields

Input/Output Block Fields

option
the type of volume disposition intended for the data set. You may specify
this parameter as LEAVE, REREAD, REWIND, or DISP. The
corresponding volume disposition when CLOSE is executed is as follows:

LEAVE

Volume is positioned at logical end of data set.

REREAD
Volume is positioned at logical beginning of data set.

REWIND
Volume is positioned at load point

DISP
The disposition indicated on the DD statement is tested, and appropriate
positioning is provided. This service is assumed if this operand is omitted
and volume positioning is applicable. If there is no disposition specified
in the DD statement when this operand is specified, LEAVE is assumed.

This parameter is ignored if specified for volumes other than magnetic
tape or direct access.

Note: When CLOSE is issued for data sets on magnetic tape volumes, labels
are processed according to bit settings in the DCBOFLGS field of the data
control block. Before issuing CLOSE for magnetic tape, you must set the
appropriate bits in DCBOFLGS. The DCBOFLGS bit positions that you are
concerned with are listed in the EOV macro instruction description. The list
and execute forms of the CLOSE macro instruction are described in OSjVS
Data Management Macro Instructions.

The fields of the input/output block, event control block, and data extent
block are illustrated and explained here; the data control block fields have
been described with the parameters of the DCB macro instruction in the
section "EXCP Programming Specifications."

The input/output block (lOB) is not automatically constructed by a macro
instruction; it must be defined as a series of constants and must be on a
fullword boundary. For unit record and tape devices, the lOB is 32 bytes in
length. For direct access, teleprocessing, and graphic devices, 8 additional
bytes must be provided.

In Figure 16, the shaded areas indicate fields in which you must specify
information. The other fields are used by the system and must be defined as
all zeros. You may not place information into these fields, but you may
examine them.

IOBFLAGI (l byte): the type of channel program. You must set bit positions
0, 1, and 6. One bits in positions 0 and 1 indicate data chaining and command
chaining, respectively. (If both data chaining and command chaining are
specified, the system does not use error recovery routines except for the 2671,
1052,2150, and the direct access devices.) A one bit in position 6 indicates
that the channel program is not related to any other channel program. Bit
positions 2,3,4,5, and 7 are used only by the system.

IOBFLAG2 (l byte): is used only by the system.

Executing Your Own Channel Programs 91

IOBFLAG2 IOBSENSO IOBSENSI

IOBECBCC

8(8)
IOBFLAG3

IOBCSW
12(C) ..

All
Devices16(10)

IOBSIOCC

20(14) ..
Reserved

24(18)

IOBRESTR

J
Direct
Access
Storage
Devices
(DASD)

IOBRESTR+l

IOBERRCT

Figure 16. Input/Output Block Format

IOBSENSO and IOBSENSI (2 bytes): are placed into the input/output block
by the system when a unit check occurs. If the two sense bytes are X'lOFE',
the supervisor received unit checks while attempting to issue a sense
command to reset a unit check.

IOBECBCC (1 byte): the first byte of the completion code for the channel
program. The system places this code in the high-order byte of the event
control block when the channel program is posted complete. The completion
codes and their meanings are listed under "Event Control Block Fields."

IOBECBPf (3 bytes): the address of the 4-byte event control block that you
have provided.

IOBFLAG3 (I byte): is used only by the system.

IOBCSW (7 bytes): the low-order seven bytes of the channel status word,
which are placed into this field each time.a channel end occurs.

92 OS/VSl Data Management for System Programmers

..

Event Control Block Fields

Data Extent Block Fields

IOBSIOCC (1 byte): in bits 0 and 1, the instruction-length code; in bits 2
and 3, the start I/O (SIO) condition code for the SIO instruction the system
issues to start the channel program; and in bits 4 through 7, the program
mask.

IOBSTART (3 bytes): the starting address of the channel program to be
executed.

Resened (1 byte): used only by the system.

IOBDCBPT (3 bytes): the address of the data control block of the data set to
be read or written by the channel program.

IOBRESTR (l byte): used by the system for volume repositioning in error
recovery procedures.

IOBRESTR+l (3 bytes): used by the system to indicate the starting address
of a channerprogram that performs special functions for error recovery
procedures. The system also uses this field in procedures for making request
elements available, as explained under "Error Recovery Procedures for
Related Channel Programs."

IOBINCAM (2 bytes): for magnetic tape, the amount by which the block
count (DCBBLKCT) field in the device-dependent portion of the data
control block is to be incremented. You may alter these bytes at any time. For
forward operations, these bytes should contain a binary positive integer
(usually +1); for backward operations, they should contain a binary negative
integer. When these bytes are not used, all zeros must be specified.

IOBERRCT (2 bytes): the number of retries attempted during error recovery
procedures.

lOB SEEK «("D'St byte, M): direct-access devices: Extent entry in the data
extent block that is associated with the channel program (0 indicates the first
extent; 1 indicates the second, etc.). Teleprocessing and graphic devices: The
UCB index.

lOB SEEK (last 7 bytes, BBCCHHR): for direct-access devices, the seek
address for your channel program.

You must define an event control block (ECB) as a 4-byte area on a fullword
boundary. When the channel program has been completed, the input/output
supervisor places a completion code containing status information into the
ECB (Figure 17). Before examining this information, you must test for the
setting of the complete bit. If the complete bit is not on, and your problem
program cannot perform other useful operations, you should issue aWAIT
macro instruction that specifies the event control block. Under no
circumstances may you construct a program loop that tests for the complete
bit.

The data extent block (DEB) is constructed by the system when an OPEN
macro instruction is issued for the data control block. You may not modify
the fields of the DEB, but you may examine them. The DEB format and field
description are contained in OS/VSl System Data Areas.

Executing Your Own Channel Programs 93

L

WAIT bit COMPLETE bit Completion code

bit
31

WAIT bit
A one bit in this position indicates that the WAIT macro instruction has been issued,
but that the channel program has not been completed.

o 	 2

COMPLETE bit
A one bit in this position indicates that the channel program has been completed; If it
has not been completed, a zero bit is in this position.

Completion Code
This code, which includes the wait and complete bits, may be one of the following
4-byte hexadecimal expressions:

Code 	 Interpretation

1FOOOOOO 	 Channel program has terminated without error.

41000000 	 Channel program has terminated with permanent error.

42000000 	 Channel program has terminated because a direct-access extent address
has been violated.

43000000 	 I/O ABEND condition occurred for the task loading a transient error
routine. (CSW contents do not apply.)

4400000O 	 Channel program has been intercepted because of permanent error
associated with device end for previous request. You may reissue the
intercepted request. (CSW contents do not apply.)

48000000 	 Request element for channel program has been made available after it
has been purged. (CSW contents do not apply.)

4BOOOOOO 	 One of the following errors occurred during tape error recovery
processing.

• The CSW command address in the lOB is zeros.

• An unexpected load point was encountered.

4FOOOOOO 	 Error recovery routines have been entered because of direct-access
error but are unable to read home address or record O. (CSW contents
do not apply.)

Figure 17. Event Control Block After Posting of Completion Code (EXCP)

,.

EXCPVR-Execute Channel Program, Virtual Request
(Fixed)

The EXCPVR macro instruction requests the initiation of the I/O operations
of a channel program. The format of the EXCPVR macro instruction is:

I[symbolj IEXCPVR Iiob-address

iob-addres9---A-type address, (2-12)
the address of the lOB of the channel program to be executed.

The EXCPVR macro instruction provides you with the same functions as the
EXCP macro instruction (that is, a device-dependent means of performing
I/O operations.) Also, it allows your program to improve the efficiency of
1/0 operations in a paging environment by translating its own virtual channel
programs to real channel programs. That is, authorized programs can execute
in a pageable area while your program provides the 110 supervisor with real

94 OS/VSl Data Management for System Programmers

•

EXCPVR Fix List

channel programs. This eliminates the translation of channel programs by the
I/O supervisor and minimizes the amount of real storage that must be fixed to
execute a channel program.

Problem programs are authorized to use the EXCPVR macro under the
authorized program facility (APF). A description of how to authorize a
program can be found in OS/VSl Planning and Use Guide.

To use EXCPVR, you must do all the things you would do for EXCP; you
must also:

1. Fix in real storage the data areas containing your channel programs,
appendages, and control blocks. To fix your data areas, build a fix list in
your page-fix appendage. For information about which data areas must be
fixed and how to build a fix list, see "Page Fix (PGFX) and Start I/O
(SIO) Appendage."

2. 	Determine whether the data areas in virtual storage, specified in the
address fields of your CCWs, cross page boundaries. If they do, you must
build an indirect address list (IAL) and put a pointer to the IAL in the
affected CCW.

3. Translate the addresses in your CCWs from virtual to real addresses.

You must do items 2 and 3 in your start I/O (SIO) appendage.

The EXCPVR interface in the I/O supervisor expects a variable-length list of
data areas to be fixed. As with the EXCP macro instruction, you must pass
the address of the list in register 10 and a count of the number of entries in
the list inregister 11. The contents of each entry in the fix list is the same as
with the list used with EXCP, except that it can contain as many entries as
you need:

X'OO' Starting virtual X'OO' Ending virtual
address of area address of area
to be fixed to be fixed + 1

1 	 1 byte 1,.......--- 3 bytes ----I..~I I byte 1.......---- 3 bytes ----1• .-11

Consider fixing these data areas in real storage:

1. The fix list itself. If needed, this must be the first entry in the list.

2. The channel program.

3. The appendages.

4. Data areas from which your channel program will be writing and to which
your channel program will be reading.

5. 	Control blocks-lOB, ECB, and DCB.

6. 	Any other control blocks referred to in your SIO appendage (the DEB, for
example).

Executing Your Own Channel Programs 95

Address Translation-Indirect Address List (IAL)

If you are using EXCPVR to execute your channel program, translate the J.
virtual addresses in your channel program to real addresses, build the IAL (if .
required) in your SIO appendage, and turn on the IAL indicator in the CCW.

You can use the load real address (LRA) instruction to convert the virtual
addresses in the channel program to real addresses. Also, you must check the
data areas starting at the addresses (bits 8-31) of your CCWs to determine
whether the data areas cross page boundaries. If they do, you must provide an
entry in the IAL for each page boundary crossed. The I/O supervisor uses the
IAL to identify the address to which the channel will continue reading to, or
writing from, when it crosses the page boundary. You can use the LRA
instruction to translate the virtual address of each entry in the IAL to a real
address, then add it to the indirect address list. The address of the IAL must
be put in the data address field of the CCW.

Figure 18 shows the relationship of the CCW to the indirect address list.

CCW { IAL

(Indicator (Bit 37)

Command IAL

Code
 \

0 8 31

HEX -

0
Chain pointer

(Points to a second· Size Jary IAL if needed)

8 1st indirect address 2nd indirect address

10.
Space for four more indirect addresses
if needed.

IV ,."
t r

Indirect Address List (lALl

•
Note 1: Put one entry in this list for each page boundary your data area crosses.

Note 2: If the CCW has an IAL rather than a data address, bit 37 must be on to signal this
to the channel.

Figure 18. Relationship of CCW to Indirect Address List

96 OS/VSI Data Management for System Programmers

USING XDAP TO READ AND WRITE TO
DIRECT-ACCESS DEVICES

..
Introduction

..

XDAP Requirements

The execute direct-access program (XDAP) macro instruction provides you
with a means of reading, verifying, or updating blocks on direct-access
volumes without using an access method and without writing your own
channel program. This chapter explains what the XDAP macro instruction
does and how you can use it. The control block generated when XDAP is
issued and the macro instruction used with XDAP are also discussed.

Since most of the specifications for XDAP are similar to those for the execute
channel program (EXCP) macro instruction, you should be familiar with the
"Executing Your Owh Channel Programs (EXCP)" chapter of this
publication, as well as with the information contained in OS/VS Data
Management Services Guide, which provides how-to information for using
the access method routines of the system control program .

Execute direct-access program (XDAP) is a macro instruction that you may
use to read, verify, or update a block on a direct-access volume. If you are not
using the standard IBM data access methods, you can, by issuing XDAP,
generate the control information and channel program necessary for reading
or updating the records of a data set.

You cannot use XDAP to add blocks to a data set, but you can use it to
change the keys of existing blocks. Any block configuration and any data set
organization can be read or updated.

Although the use of XDAP requires much less storage than do the standard
access methods, it does not provide many of the control program services that
are included in the access methods. For example, when XDAP is issued, the
system does not block or deblock records and does not verify block length.

To issue XDAP, you must provide the actual device address of the track
containing the block to be processed. You must also provide either the block
identification or the key of the block, and specify which of these is to be used
to locate the block. If a block is located by identification, both the key and
data portions of the block may be read or updated. If a block is located by
key, only the data portion can be processed.

For additional control over I/O operations, you may write appendages, which
must be entered into the SVC library. Descriptions of these routines and their
coding specifications are contained in the "Executing Your Own Channel
Programs (EXCP)" section of this publication.

Before issuing the XDAP macro instruction, you must issue a DCB macro
instruction, which produces a data control block (DCB) for the data set to be
read or updated. You must also issue an OPEN macro instruction, which
initializes the data control block and produces a data extent block (DEB) .

..

Using XDAP to Read and Write to Direct-Access Devices 97

When the XDAP macro instruction is issued, another control block,
containing both control information and executable code, is generated. This .J
control block may be logically divided into three sections:

• 	 An event control block (ECB), which is supplied with a completion code
each time the direct-access channel program is terminated.

• 	 An input/output block (lOB), which contains information about the
direct-access channel program.

• 	 A direct-access channel program, which consists of three or four channel
command words (CCWs). The type of channel program generated depends
on specifications in the parameters of the XDAP macro instruction.

After this XDAP control block is constructed, the direct-access channel
program is executed. A block is located by either its actual address or its key,
and is either read or updated.

When the channel program \has terminated, a completion code is placed into
the event control block. After issuing XDAP, you should therefore issue a
WAIT macro instruction specifying the event control block to determine
whether the direct-access program has terminated. If volume switching is
necessary, you must issue an EOV macro instruction. When processing of the
data set has been completed, you must issue a CLOSE macro instruction to
restore the data control block.

Macro Specifications for Use With XDAP
When you are using the XDAP macro instruction, you must also issue DCB,
OPEN, CLOSE, and, in some cases, the EOV macro instructions. The
parameters of the XDAP macro instruction are listed and described here. For
the other required macro instructions, special requirements or options are
explained, but you should refer to "Macro Specifications for Use with EXCP"
for listings of their parameters.

DCB-Define Data Control Block

The EXCP form of the DCB macro instruction produces a data control block
that can be used with the XDAP macro instruction. You must issue a DCB
macro instruction for each data set to be read or updated by the direct-access Ii

channel program. The section "DCB--Define Data Control Block for
EXCP" contains a diagram of the data control block, as well as a listing of
the parameters of the DCB macro instruction.

OPEN-Initialize Data Control Block

The OPEN macro instruction initializes one or more data control blocks so
that their associated data sets can be processed. You must issue OPEN for all
data control blocks that are to be used by the direct-access program. Some of
the procedures performed when OPEN is executed are:

• 	 Construction of data extent block (DEB).

• 	 Transfer of information from DD statements and data set labels to the data
control block.

• 	 Verification or creation of standard labels.

• 	 Loading of programmer-written appendage routines.

98 OS/VSl Data Management for System Programmers

The two parameters of the OPEN macro instruction are the addressees) of the
data control block(s) to be initialized, and the intended method of I/O
processing of the data set. The method of processing may be specified as
either INPUT, OUTPUT, INOUT, OUTIN, or UPDAT; however, if nothing
is specified, INPUT is assumed.

XDAP-Execute DiNct-Access Program

The XDAP macro instruction produces the XDAP control block (i.e., the
ECB, lOB, and channel program) and executes the direct-access channel
program. The format of the XDAP macro instruction is:

[symbol] XDAP 	 eeb-symbol
,type
,deb-addr

• ,area-addr
, length-value
,[(key-addr, keylength-value)]
,blkref-addr
, [sector-addr]
,[MF== {LIE}]

eeb-symbol~ymbol or (2-12)
the symbolic name to be assigned to the XDAP control block. Registers
can be used only with MF=E or MF=L.

type - {RI IRK IWI IWK IVI IVK }

the type of I/O operation intended for the data set and the method by
which blocks of the data set are to be located. Two values must be coded
in this field. The following combinations are valid: RI, RK, WI, WK, VI,
and VK.

The codes and their meanings are:

R
Read a block.

W
Write a block.

v
Verify contents of a block but do not transfer data.

I
Locate a block by identification. (The key portion, if present, and the
data portion of the block are read or written.)

K
Locate a block by key. (Only the data portion of the block is read or
written.) If you code this value, you must code the key-addr and
key-length -value operands.

deb-addr-A-type address or (2-12)
the address of the data control block of the data set.

area-addr-A-type address or (2-12)
the address of an input or output area for a block of the data set.

Using XDAP to Read and Write to Direct-Access Devices 99 .

length-value-absexp or (2-12)
the number of bytes to be transferred to or from the input or output area.
If blocks are to be located by identification and the data set contains keys, .J.
the value must include the length of the key. The maximum number of
bytes transferred is 32,767.

key-addr-RX-type address or (2-12)
when blocks are to be located by key, the address of a virtual storage field
that contains the key of the block to be read or overwritten.

keylength-value-absexp or (2-12)
when blocks are to be located by key, the length of the key. The maximum
length is 255 bytes.

blkref-addr-RX-type address or (2-12)
the address of a field in virtual storage containing the actual device address
of the track containing the block to be located. The actual address of a
block is in the form MBBCCHHR, where M indicates which extent entry
in the data extent block is associated with the direct-access program; BB is
not used but must be zero; CC indicates the cylinder address; HH indicates
the actual track address; and R indicates the block identification. R is not
used when blocks are to be located by key. (See "Conversion of Relative
Block Address to Actual Device Address" later in this chapter for more
detailed information.)

sector-addr-RX-type address or (2-12)
the address of a I-byte field containing a sector value. The sector-address
parameter is used for rotational position sensing (RPS) devices only. The
parameter is optional, but its use will improve channel performance. When
the parameter is coded, a set-sector CCW (using the sector value indicated
by the data address field) precedes the search-ID-equal command in the
channel program. The sector-address parameter is ignored if the type
parameter is coded as RK, WK, or VK. If a sector-address is specified in
the list form of the macro, then a sector-address, not necessarily the same,
must be specified in the execute form.

Note: No validity check is made on either the address or the sector value
when the XDAP macro is issued. However, a unit check interrupt will
occur during the channel program execution if the sector value is larger
than the maximum for the device or if the sector-addr operand is used
when accessing a device without RPS. (See "Obtaining Sector Number of a
Block or a Device with the RPS Feature" later in this chapter for more
detailed information.)

MF=
you may use the L-form of the XDAP macro instruction for a macro
expansion consisting of only a parameter list, or the E-form for a macro
expansion consisting of only executable instructions.

MF=L
The first two operands (ecb-symbol and type) are required and must be
coded as symbols. All other operands are optional except blkref-addr,
which is ignored if coded. The last five operands must be coded as A-type
addresses.

100 OS/VSl Data Management for System Programmers

EOV-End of Volume

MF=E
The first operand (ecb-symbol) is required and may be coded as a symbol
or supplied in register 2-12. The type, dcb-addr, area-addr, and
length-value operands may be supplied in either the L- or E-form. The
blkref-addr operand may be supplied in the E-form or moved into the lOB
by you. The sector-addr is optional; it may be coded either in both the L
and E-form or in neither.

The dcb-addr, area-addr, blkref-addr, and sector-value operands may be
coded as RX-type addresses or supplied in register 2-12. The length-value
and keylength-value operands can be specified as a decimal digit or supplied
in register 2-12.

The EOV macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition, EOV causes switching of
volumes and verification or creation of standard labels. For an end-of-data set
condition, EOV causes your end-of-data set routine to be entered. When
using XDAP, you issue EOV if switching of direct-access volumes is
necessary, or if secondary allocation is to be performed for a direct-access
data set opened for output.

The only parameter of the EOV macro instruction is the address of the data
control block of the data set.

CLOSE-Restore Datil Control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You must issue
CLOSE for all data sets that were used by the direct-access channel program.
Some of the procedures performed when CLOSE is executed are:

• 	 Release of data extent block (DEB)

• 	 Removal of information transferred to data control block fields when
OPEN was executed

• 	 Verification or creation of standard labels

• 	 Release of programmer-written appendage routines

The only parameter of the CLOSE macro instruction is the address of the
data control block to be restored. (More than one data control block may be
specified.)

Using XDAP to Read and Write to Direct-Access Devices 101

Control Blocks Used with XDAP

The three control blocks generated during execution of the XDAP macro Jinstruction are described here.

Event Control Block

The event control block (ECB) begins on a fullword boundary and occupies
the first 4 bytes of the XDAP control block. Each time the direct-access
channel program terminates, the input/output supervisor places a completion
code containing status information into the event control block (Figure 19).
Before examining this information, you must test for the setting of the
complete bit by issuing aWAIT macro instruction specifying the event control
block.

Input/Output Block

The input/output block (lOB) is 40 bytes in length and immediately follows
the event control block. The "Control Block Guide" section in the EXCP
section of this publication contains a diagram of the input/output block. The
only fields with which the user of XDAP is concerned are the IOBSENSO,
IOBSENS1, and IOBCSW fields. You may wish to examine these fields when
a unit check condition or an II0 interruption occurs.

WAIT bit=O COMPLETE bit=1 Remainder of completion code

bit
o 1 2 31
WAIT Bit

A one bit in this position indicates that the direct-access channel program has not been
completed.

COMPLETE Bit
A one bit in this positior. indicates that the channel program has been completed; if it
has not been completed, a zero bit is in this position.

Completion Code
This code, which includes the WAlT and COMPLETE bits, may be one of the following
4-byte hexadecimal expressions:

Code 	 Interpretation

7F()()()()()() 	 Direct-access program has terminated without error.

41 ()()()()()() 	 Direct-access program has terminated with permanent error.

42()()()()()() 	 Direct-access program has terminated because a direct-access extent
address has been violated.

43()()()()()() 	 I/O ABEND condition occurred for the task loading a transient
error routine. (CSW contents do not apply.)

4400000O 	 Channel program has been intercepted because of permanent error
associated with device end for previous request. You may reissue the
intercepted request.

48()()()()()() 	 Request element for channel program has been made available after
it has been purged.

4F()()()()()() 	 Error recovery routines have been entered because of direct-access
error but are unable to read home address or record O.

Figure 19. Event Control Block After Posting of Completion Code (XDAP)

102 OS/VSl Data Management for System Programmers

Direct-Access Channel Program
The direct-access channel program is 24 bytes long (except when set sector is
used for RPS devices) and immediately follows the input/output block.
Depending on the type of I/O operation specified in the XDAP macro
instruction, one of four channel programs may be generated. The three
channel command words for each of the four possible channel programs
appear in Figure 20.

Type of I/O Operation CCW Command Code

Read by identification

Verify by identification!

1
2
3

Search ID Equal
Transfer in Channel
Read Key and Data

Read by key

Verify by key1

1
2
3

Search Key Equal
Transfer in Channel
Read Data

Write by identification
2
3

Search ID Equal
Transfer in Channel
Write Key and Data

Write by key 1
2
3

Search Key Equal
Transfer in Channel
Write Data

1For verifying operations, the third CCW is flagged to suppress the transfer of information to virtual storage.

Figure 20. The XDAP Channel Programs

When you specify a sector address with an RI, VI, or WI operation, the
channel program is 32 bytes long. Each of the channel programs in Figure 20
would be, in this case, preceded by a set sector command.

Using XDAP to Read and Write to Direct-Access Devices 103

Conversion of Relative Block Address to Actual

Device Address

To issue XDAP, you must provide the actual device address of the track
containing the block to be processed. If you know only the relative block
address, you can convert it to the actual address by using a resident system
routine. The entry point to this conversion routine is labeled IECPCNVT.
The· address of the entry point (CVTPCNVT) is in the communication vector
table (CVT). The address of the CVT is in location 16. (For the
displacements and descriptions of the CVT fields, see OS/VSl System Data
Areas).

The conversion routine does all its work in general registers. You must load
registers 0, 1,2, 14, and 15 with input to the routine. Register usage is as
follows:

Register Use

o 	 Must be loaded with a 4-byte value of the form ITRN, where IT is the
number of the track relative to the beginning of the data set, R is the
identification of the block on that track, and N is the concatenation number
of the data set. (0 indicates the first or only data set in the concatenation, 1
indicates the second, etc.)

Must be loaded with the address of the data extent block (DEB) of the data
set.

2 	 Must be loaded with the address of an 8-byte area that is to receive the
actual address of the block to be processed. The converted address is of the
form MBBCCHHR, where M indicates which extent entry in the data extent
block is associated with the direct-access program (0 indicates the first
extent, 1 indicates the second, etc.); BB indicates the bin number of the
direct-access volume; CC indicates the cylinder address; HH indicates the
actual track address; and R indicates the block identification.

3-8 	 Are not used by the conversion routine.

9-13 	 Are used by the conversion routine and are not restored.

14 	 Must be loaded with the address to which control is to be returned after
execution of the conversion routine.

15 	 Is used by the conversion routine as a base register and must be loaded with
the address at which the conversion routine is to receive control. If the
converted address is outside the limits of the data set, the conversion routine
places a return code of X'04' in the register and returns control to the user.
A return code of X'OO' indicates that the converted address is within the

limits of the data set.

When control is returned to your program, register 15 will contain one of the
following return codes:

Code Meaning

o 	 Successful conversion.

4 	 The relative block address converts to an actual device address outside the
extents defined in the DEB.

104 OS/VSl Data Management for System Programmers

Conversion of Actual Device Address to Relative Track

Address

To get the relative track address when you know the actual device address,
you can use the conversion routine labeled IECPRLTV. The address of the
entry point (CVTPRLTV) is in the communication vector table (CVT). The
address of the CVT is in location 16.

The conversion routine does all its work in general registers. You must load
the register, 1,2, 14, and 15 with input to the routine. Register usage is as
follows:

Register Use

0 	 Will be loaded with the resulting TIRO to be passed back to the caller.

Must be loaded with the address of the data extent block (DEB) of the data
.. set .

2 	 Must be loaded with the address of an 8-byte area containing the actual
address to be converted to a TTR. The actual address is of the form
MBBCCHHR.

3-8 	 Are not used by the conversion routine.

9-13 	 Are used by the conversion routine and are not restored.

14 	 Must be loaded with the address to which control is to be returned after
execution of the conversion routine.

15 	 Is used by the conversion routine as a base register and must be loaded with
the address at which the conversion routine is to receive control.

Obtaining Sector Number of a Block on a Device with the

RPS Feature

To obtain the performance improvement given by rotational position sensing,
you should specify the sector-addr parameter on the XDAP macro. For
programs which may be used for both RPS and non-RPS devices, the
UCBTYP field can be checked to determine whether or not the device has the
rotational position sensing feature.

The sector-addr paiameter on the XDAP macro specifies the address of a one
byte field in your region. You must store the sector number of the block to be
located in this field. You can obtain the sector number of the block by using a
resident conversion routine, IECOSCRI. The address of this routine is in field
CVTOSCRI of the CVT, and the address of the CVT is in location 16. The
routine should be invoked via a BALR 14, 15 instruction.

Using XDAP to Read and Write to Direct-Access Devices 105

L

For RPS devices, the conversion routine does all its work in general registers.
You must load registers 0, 2, 14, and 15 with input to the routine. Register
usage is as follows: J
Register Use

o 	 For fixed-length records, register 0 must be loaded with a 4-byte value in the

form DDKR, where DD is a 2-byte field containing the physical block size,

K is a I-byte field containing the key length, and R is a I-byte field

containing the number of the record for which a sector value is desired. The

high-order bit of register 0 must be turned off (set to 0) to indicate

fixed-length records.

For variable-length records, register 0 must be loaded with a 4-byte value in
the form BBIR, where BB is the total number of key and data bytes up to,
but not including, the target record; I is a I-byte key indicator (1 for keyed
records, 0 for records without keys); and R is a I-byte field containing the
number of the record for which a sector value is desired. The high-order bit
of register 0 must be turned on (set to I) to indicate variable-length records.

Not used by the sector convert routine.

2 	 Must be loaded with a 4-byte field in which the first byte is the UCB device

type code for the device (obtainable from UCB+ 19), and the remaining

three bytes are the address of a I-byte area that is to receive the sector value.

3-8,12,13 	 Not used.

9-11 	 Used by the convert routine and are not saved or restored.

14 	 Must be loaded with the address to which control is to be returned after

execution of the sector conversion routine.

15 	 Used by the conversion routine as a base register and must be loaded with

the address of the entry point to the conversion routine.

106 OS/VSI Data Management for System Programmers

PASSWORD PROTECTING YOUR DATA SETS

OS/VS password protection does not apply to VSAM data sets. Information
about VSAM data set protection is in OS/VS Virtual Storage Access
Method (VSAM) Programmer's Guide and OS/VSl Access Method
Services. To use the data set protection feature of the operating system, you
must create and maintain a PASSWORD data set consisting of records that
associate the names of the protected data sets with the password assigned to
each data set. There are three ways to maintain the PASSWORD data set:

• 	 You can write your own routines.

• 	 You can use the PROTECT macro instruction.

• 	 You can use the utility control statements of the IEHPROGM utility
program.

This chapter discusses only the first two of the three ways-it provides
technical detail about the PASSWORD data set that is necessary for writing

• 	 your own routines, and it describes how to use the PROTECT macro
instruction.

Before using the information in this chapter, you should be familiar with
information in several related publications. The following publications are
recommended:

• 	 OS/VS Data Management Services Guide, contains a general description
of the data set protection feature.

• 	 OS/VS Message Library: VSl System Messages, contains a description
of the operator messages and replies associated with the data set protection
feature.

• 	 OS/VSl JCL Reference, contains a description of the data definition
(DO) statement parameter used to indicate that a data set is to be
password protected.

• 	 OS/VSl DADSM Logic, contains a description of the PASSWORD data
set record format.

• 	 OS/VS Utilities, contains a description of how to maintain the
PASSWORD data set using the utility control statements of the
IEHPROGM utility program.

Introduction
In addition to the usual label protection that prevents opening of a data set
without the correct data set name, the operating system provides data set
security options that prevent unauthorized access to confidential data.
Password protection prevents access to data sets, until a correct password is
entered by the system operator.

The following are the types of access allowed to password protected data sets:

• 	 PWREAD/PWWRITE-A password is required to read or writer.

• 	 PWREAD/NOWRITE-A password is required to read. Writing is not
allowed.

• 	 NOPWREAD/PWWRITE-Reading is allowed without a password. A
password is required to write.

Password Protecting Your Data Sets 107

To prepare for use of the data set protection feature of the operating system,
you place a sequential data set, named PASSWORD, on the system residence
volume. This data set must contain at least one record for each data set placed \
under protection. In turn, each record contains a data set name, a password ...",
for that data set, a counter field, a protection mode indicator, and a field for
recording any information you desire to log. On the system residence volume,
these records are formatted as a "key area" (data set name and password)
and a "data area" (counter field, protection mode indicator, and logging
field). The data set is searched on the "key area."

You can write routines to create and maintain the PASSWORD data set. If
you use the PROTECT macro instruction to maintain the PASSWORD data
set, see the section in this chapter called "Using the Macro Instruction to
Maintain the PASSWORD Data Set." If you use the IEHPROGM utUity
program to maintain the PASSWORD data set, see OS/ VS Utilities.1bese
routines may be placed in your own library or the system library,
SYSl.LINKLIB. You may use a data management access method or EXCP
programming to read from and write to the PASSWORD data set.

If a data set is to be placed under protection, it must have a protection
indicator set in its label (format-l DSCB or header 1 tape label). This is done
by the operating system when the data set is created, by the IEHPROGM
utility program, or, by the PROTECT macro when creating or adding the
control password. The protection indicator is set in response to a value in the
LABEL= operand of the DO statement associated with the data set being
placed under protection. OS/VSI JCL Reference describes the LABEL
operand.

Note: Data sets on magnetic tape are protected only when standard labels are
used.

Password-protected data sets can only be accessed by programs that can
supply the correct password. When the system control program receives a
request to open a protected data set, it issues a message that requests that the
password be given. The message goes to the operator console. If you want the
password supplied by another method in your installation, you can modify the
READPSWD source module or code a new routine to replace READPSWD
in SYSl.SVCLffi.

PA.SSWORD Data Set Characteristics

The PASSWORD data set must reside on the same volume as your operating
system. The space you allocate to the PASSWORD data set must be
contiguous, i.e., its DSCB must indicate only one extent. The amount of space
you allocate depends on the number of data sets your installation wants to
protect. Each entry in the PASSWORD data set requires 132 bytes of space.
The organization of the PASSWORD data set is physical sequential, the
record format is unblocked, fixed-length records (RECFM=F). These records
are 80 bytes long (LRECL=80,BLKSIZE=80) and form the data area of the
PASSWORD data set records on direct-access storage. In these direct-access
storage records, the data area is preceded by a key area of 52 bytes
(KEYLEN=52). The key area contains the fully qualified data set name of up
to 44 bytes and a password of one to eight bytes, left justified with blanks
added to fill the areas. The password assigned may be from one to eight
alphameric characters in length. OS/VSI DADSM Logic, describes the
PASSWORD data set record format.

108 OS/VSl Data Management for System Programmers

You can protect the PASSWORD data set itself by creating a password
record for it when your program initially builds the data set. Thereafter, the
PASSWORD data set cannot be opened (except by the operating system
routines that scan the data set) unless the operator enters the password.

Note: If a problem occurs on a password-protected system data set,
maintenance personnel must be provided with the password in order to access
the data set and resolve the problem.

Creating Protected Data Sets

A data definition (DD) statement parameter (LABEL=) is used to indicate
that a data set is to be placed under protection. Operating procedures at your
installation must ensure that password records for all data sets currently under
protection are entered in the PASSWORD data set. You may, for example,
create a data set and set the protection indicator in its label, without entering
a password record for it in the PASSWORD data set. However, once the data
set is closed, any subsequent attempt to open results in termination of the
program attempting to open the data set, unless the password record is
available and the operator can honor the request for the password. (Note that
if the protection mode is NOPWREAD and the request is to open the data set
for input, no password will be required.)

Protection Feature Operating Cluzracteristics

Termination of Processing

Volume Switching

The topics that follow provide information concerning actions of the
protection feature in relation to termination of processing, volume switching,
data set concatenation, SCRATCH and RENAME functions, and counter
maintenance.

Processing is terminated when:

• 	 The operator cannot supply the correct password for the protected data set
being opened after two tries.

• 	 A password record does not exist in the PASSWORD data set for the
protected data set being opened.

• 	 The protection mode indicator in the password record, and the method of
I/O processing specified in the Open routine do not agree, e.g., OUTPUT
specified against a read-only protection mode indicator.

• 	 There is a mismatch in data set names for a data set involved in a volume
switching operation. This is discussed in the next topic.

The operating system end-of-volume routine does not normally request a
password for a data set involved in a volume switch. Continuity of protection
is handled in the following ways:

Input Data Sets-Tape and Direct-Access Devices: Processing continues if the
data set name in the tape label or DSCB on the volume switched to matches
the name of the data set opened with the password. If they do not match,
processing is terminater·.

Password Protecting Your Data Sets 109

If the protection mode on the new volume is PASSWORD and no previous
volumes of the same data set had a protection mode of PASSWORD, then a
password is requested.

Output Data Sets--Tape Devices: The protection indicator in the tape label
for the first data set on the volume switched to is tested:

• 	 If the protection indicator is set ON and the data set name in the label and
the name of the data set opened with the password match, processing
continues. An unequal comparison results in a call for another volume.

• 	 If the protection indicator is OFF, processing continues, and a new label is
written with the protection indicator set ON.

• 	 If only a volume label exists on the volume switched to, processing
continues, and a new label is written with the protection indicator set ON.

Output Data Sets--Direct-Access Devices: For existing data sets, if the data
set name in a DSCB on the volume switched to and the name of the data set
opened with the password match, processing continues. For new output data
sets, the volume switching mechanism ensures continuity of protection: the
DSCB created on the volume switched to will indicate protection. "

Data Set Concatenation

A password is requested for every protected data set that is involved in a
concatenation of data sets, regardless of whether the other data sets involved
are protected or not.

SCRA TCO and RENAME Functions

Each attempt to delete or rename a protected data set results in a request for
the password via the IEC301A message. The password supplied in response
to this message must be associated with a "WRITE" protection mode
indicator.

Counter Maintenance

Other than incrementing the count, the operating system does not maintain
the counter in the password record and no overflow indication will be given
(overflow after 65,535 openings). You may provide a counter maintenance
routine to check and, if necessary, reset this counter.

•

Using the PROTECT Macro Instruction to Maintain the
PASSWORD Data Set

To use the PROTECT macro instruction, your PASSWORD data set must be
on the system residence volume. The PROTECT macro can be used to:

• 	 Add an entry to the PASSWORD data set.

• 	 Replace an entry in the PASSWORD data set.

• 	 Delete an entry from the PASSWORD data set.

• 	 Provide a list of information about an entry in the PASSWORD data set;
this list will contain the security counter, access type, and the 77 bytes of
security information in the "data area" of the entry.

ItO OS/VSI Data Management for System Programmers

In addition, the PROTECT macro, updates the DSCB of a protected
direct-access data set to reflect its protection status; this feature eliminates
the need for you to use job control language whenever you protect a data set.

PASSWORD Datil Set CluIl'tlcteristics and Record Format Wllell
You Use the PROTECT Macro IlIStrrlctioli

When you use the PROTECT macro, the record format and characteristics of
the PASSWORD data set are no different from the record format and
characteristics that apply when you use your own routines to maintain it.

Number of Records for Each Protected Data Set

Protection Mode Indicator

When you use the PROTECT macro, the PASSWORD data set must contain
at least one record for each protected data set. The password (the last 8 bytes
of the "key area") that you assign when you protect the data set for the first
time is called the control password. In addition, you may create as many
secondary records for the same protected data set as you need. The passwords
assigned to these additional records are called secondary passwords. This
feature is helpful if you want several users to have access to the same
protected data set, but you also want to control the manner in which they can
use it. For example: one user could be assigned a password that allowed the
data set to be read and written, and another user could be assigned a
password that allowed the data set to be read only.

Note: The PROTECT macro will update the protection mode indicator in the
format-l DSCB in the protected data set only when you issue it for adding,
replacing, or deleting a control password.

You can set the protection mode indicator in the password record to four
different values:

• 	 X'OO' to indicate that the password is a secondary password and the
protected data set may only be read (PWREAD).

• 	 X'80' to indicate that the password is the control password and the
protected data set may only be read (PWREAD).

• 	 X'Ol' to indicate that the password is a secondary password and the
protected data set may be read and written (PWREAD/PWWRITE).

• 	 X'81' to indicate that the password is the control password and the
protected data set may be read and written (PWREAD/PWRITE).

Because the DSCB of the protected data set is updated only when the control
password is changed, you may request protection attributes for secondary
passwords that conflict with the protection attributes of the control password.

Because of the sequence in which the protection status of a data set is
checked, the following defaults will occur:

If control password Is: Secondary password must be:

PWREAD/PWRITE or PWREAD/PWWRITE or

PWREAD/NOWRITE PWREAD/NOWRITE

NOPWREAD/PWWRITE NOPWREAD/PWWRITE

If the control password is set to either of the settings in item 1 above, the
secondary password will be set to PWREAD/PWRITE if you try to set it to
NOPWREAD/PWWRITE.

Password Protecting Your Data Sets 111

If the control password is changed from either of the settings in item 1 to the
setting in item 2 above, the secondary password will automatically become
NOPWREAD/PWWRITE.

If the control password is changed from the setting in item 2 to either of the
settings in item 1 above, the secondary password is set by the system to
PWREAD/PWWRITE.

PROTECT Macro Specification

The format is:

I[symbol] IPROTECT Iparameter list address

parameter list address--A-type address, (2-12), or (1)
indicates the location of the parameter list. The parameter list must be set
up before the PROTECT macro is issued. The address of the parameter list
may be passed in register 1, in registers 2 through 12, or as an A-type
address. The first byte of the parameter list must be used to identify the
function (add, replace, delete, or list) you want to perform. See Figures 21
through 24 for the parameter lists and codes used to identify the functions.

•

..

112 OS/VSl Data Management for System Programmers

0
X'Ol'

4
Length of data set name

8
00

12
00

16
Number of yolumes

20
Protection code

• 	 24
String length

o 	 X'OI'

1
000000

5
Pointer to data set name

9
00 00 00

13
Pointer to control password

17
Pointer to volume list

21
Pointer to new password

25
Pointer to string

Entry code indicating ADD function.

13 	 Pointer to control password.
The control password is the password assigned when the data set was placed under
protection for the first time. The pointer can be 3 bytes of binary zeros if the new
password is the control password.

16 	 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you
have to specify the number of volumes in this field. A zero indicates that the catalog
information should be used.

17 	 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you
provide the address of a list of volume serial numbers in this field. Zeros indicate
that the catalog information should be used.

20 	 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates default
protection (for the ADD function; the default protection is the type of protection

.. 	 specified in the control password record of the data set); X'Ol' indicates that the
data set is to be read and written; X'02' indicates that the data set is to be read only;
and X'03' indicates that the data set can be read without a password, but a password
is needed to write into it. The PROTECT macro will use the protection code value,
specified in the parameter list, to set the protection mode indicator in the password
record.

21 	 Pointer to new password.
If the data set is being placed under protection for the first time, the new password
becomes the control password. If you are adding a secondary entry, the new
password is different from the control password.

24 	 String length.
The length of the character string (maximum 77 bytes) that you want to place in the
optional information field of the password record. If you don't want to add
information, set this field to zero.

25 	 Pointer to string.
The address of the character string that is going to be put in the optional
information field. If you don't want to add additional information, set this field to
zero.

Figure 21. Parameter List for ADD Function

Password Protecting Your Data Sets 113

0 	 1
X'02' 	 000000 J

4 S

Length of data set name Pointer to data set name

8 9

00 Pointer to current password

12 13

00 Pointer to control password

..

16 17

Number of volumes Pointer to volume list

20 21

Protection code Pointer to new password

24 2S

String Length Poin ter to string

o 	 X'02'
Entry code indicating REPLACE function.

9 	 Pointer to current password.
The address of the password that is going to be replaced.

13 	 Pointer to control password.
The address of the password assigned to the data set when it was first placed under
protection. The pointer can be set to 3 bytes of binary zero if the current password is
the control password.

16 	 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you
have to specify the number of volumes in this field. A zero indicates that the catalog
information should be used.

17 	 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you
have to provide the address of a list of volume serial numbers in this field. If this
field is zero, the catalog information will be used. ..

20 	 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates that the
protection is default protection (for the REPLACE function the default protection is
the protection specified in the current password record of the data set); X'OI'
indicates that the data set is to be read and written; X'02' indicates that the data set
is to be read only; and X'03' indicates that the data set can be read without a
password, but a password is needed to write into the data set.

21 	 Pointer to new password.
The address of the password that you want to replace the current password.

24 	 String length.
The length of the character string (maximum 77 bytes) that you want to place in the
optional information field of the password record. Set this field to zero if you don't
want to add additional information.

25 	 Pointer to string.
The address of the character string that is going to be put in the optional
information field of the password record. Set the address to zero if you don't want to
add additional information.

Figure 22. Parameter List for REPLACE Function J
114 OS!VSl Data Management for System Programmers

0
X'03'

4
Length of data set name

8
00

12
00

16
Number of volumes

o 	 X'03'.

1

000000

5
Pointer to data set name

9

Pointer to current password

13
Pointer to current password

17
Pointer to volume list

Entry code indicating DELETE function.

9 	 Pointer to current password.
The address of the password that you want to delete. You can delete either a control
entry or a secondary entry.

13 	 Pointer to control password.
The address of the password assigned to the data set when it was placed under
protection for the first time. The pointer can be 2 bytes of binary zero if the current
password is also the control password.

16 	 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you
have to specify the number of volumes in this field. A zero indicates that the catalog
information should be used.

17 	 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you
have to provide the address of a list of volume serial numbers in this field. If this
field is zero, the catalog information will be used.

Figure 23. Parameter List for DELETE Function

0
X'04'

4
Length of data set name

8
00

o X'04'.

1
Pointer to 80 byte buffer

5
Pointer to data set name

9
Pointer to control password

Entry code indicating LIST function.

Address of 80-byte buffer.

The address of a buffer where the list of information can be returned to your

program by the macro instruction.

Pointer to current password.

The address of the password of the record that you want listed.

Figure 24. Parameter List for LIST Function

Password Protecting Your Data Sets 115

9

Return Codes From the PROTECT Macro

When the PROTECT macro finishes processing, register 15 contains a return
code that indicates what happened during the processing. Figure 25 contains
the return codes and their interpretation.

Register 15 Interpretation

o 	 The updating of the PASSWORD data set was successfully completed.

4 The PASSWORD of the data set name was already in the password
data set.

8 The password of the data set name was not in the PASSWORD data
set.

12 A control password is required or the one supplied is incorrect.

16 The supplied parameter list was incomplete or incorrect.

20 There was an I/O error in the PASSWORD data set.

224 The PASSWORD data set was full.

28 The validity check of the buffer address failed.

132 	 The LOCATE macro failed. LOCATE's return code is in register 1,
and the number of indexes searched is in register O.

The OBTAIN macro failed. OBTAIN's return code is is in register 1.

The DSCB could not be updated.

The PASSWORD data set does not exist.

Tape data set cannot be protected.

Data set in use.

For these return codes, the PASSWORD data set has been updated, but the DSCB has not been flagged to
indicate the protected status of the data set.

2 For this return code, a message is written to the console indicating that the PASSWORD data set is full.

Figure 25. Return Codes from the PROTECT Macro Instruction

~ 1,
!

116 OS/VSl Data Management for System Programmers

SYSTEM MACRO INSTRUcnONS

This chapter describes miscellaneous macro instructions that allow you either
to modify control blocks or to obtain information from control blocks and
system tables.

Before reading this chapter, you should be familiar with the information in the
following pUblications:

• 	 OS/VS - DOS/VS - VM/370 Assembler Language, contains the
information necessary to code programs in the assembler language.

• 	 OS/VSl System Data Areas, contains format and field descriptions of
the system control blocks referred to in this chapter.

Introduction
The system macro instructions are described in these functional groupings:

• 	 Mapping (IEFUCBOB, IEFJFCBN, and CVT)

• 	 Obtaining device characteristics (DEVTYPE)

• 	 Manipulating the JFCB (ROJFCB)

• 	 Data security (DEBCHK)

• 	 Manipulating queues (PURGE and RESTORE)

Mapping System Data Areas
The IEFUCBOB, IEFJFCBN, and CVT macro instructions are used as
DSECT expansions that define the symbolic names of fields within the unit
control block (UCB), job file control block (JFCB), and communication
vector table (CVT), respectively. When coding these instructions, you must
precede each with a DSECT statement.

The IEFUCBOB, IEFJFCBN, and CVT macro definitions are in a system
generation library (SYSl.AMODGEN) and must be copied (using
IEBCOPY) into SYSl.AMACLffi, or SYSl.AMODGEN may be .. 	 concatenated to the macro library before reference can be made to it.

The fields in these blocks are shown and described in OS/VSl System Data
Areas.

lEFUCBOB-Mapping the UCB

This macro instruction defines the symbolic names of all fields in the unit
control block (UCB). Code this macro instruction with blank name and
operand fields, and precede it with a DSECT statement.

The format is:

I[,ymbolll DSECf

· . IEFUCBOB

System Macro Instructions 117

IEFJFCBN-Mapping the JFCB

CVT--Mapping the CVT

This macro instruction defines the symbolic names of all fields in the job file
control block (JFCB). Code this macro instruction with blank name and
operand fields, and precede it with a DSECT statement.

The format is:

I[symbol] IDSEcr
. .IEFJFCBN

This macro instruction defines the symbolic names of all fields in the
communication vector table (CVT). Code this macro instruction with blank
name and operand fields, and precede it with a DSECT statement.

The format is:

Obtaining I/O Device Characteristics
Use the DEVTYPE macro instruction to request information relating to the
characteristics of an I/O device, and to cause this information to be placed
into a specified area. (The results of a DEVTYPE macro instruction executed
before a checkpoint is taken should not be considered valid after a
checkpoint/restart occurs.)

The topics that follow discuss the macro itself, device characteristics, and
particular output for particular devices.

DEVTYPE Macro Specification

The format is:

[symbol] DEVTYPE ddloc-addrx
,area-addrx
[,DEVTAB]
[,RPS]

ddloc-addrx
the address of an 8-byte field that contains the symbolic name of the DD
statement to which the device is assigned. The name must be left justified
in the 8-byte field, and must be followed by blanks if the name is less than
eight characters. The doubleword need not be on a doubleword boundary.

area-addrx
the address of an area into which the device information is to be placed.
The area can be one, two, five, or six fullwords, depending on whether or
not the DEVTAB and RPS operands are specified. The area must be on a
fullword boundary.

118 OS/VSl Data Management for System Programmers

DEVTAB
This operand is only required for direct-access devices. If DEVTAB is
specified, the following number of words of information is placed in your
area:

• For direct-access devices - 5 words

• For non-direct-access devices - 2 words

If you do not code DEVTAB, one word of information is placed in your
area if the reference is to a graphics or teleprocessing devices; for any
other type of device, two words of information are placed in your area.

RPS
If RPS is specified, DEVTAB must also be specified. The RPS parameter
causes one additional full word of RPS information to be included with the

.. 	 DEVT AB information .

Note: Any reference for a DUMMY data set in the DEVTYPE macro
instruction will cause eight bytes of zeros to be placed in the output area. Any
reference to a SYSIN or SYSOUT data set causes X'000OO102' to be placed
in word 0 and 32,760 (X'OO007FF8') to be placed in word 1 in the output
area.

Device Cllllracteristics Ill/ormatioll

The following information is placed into your area as a result of issuing a
DEVTYPE macro:

Word 0
Describes the device as defined in the UCBTYP field of the UCB. For a
complete description of this field, refer to OS/VSl System Data Areas.

Word 1
Maximum blocksize. For direct-access devices, this value is the maximum
size of an unkeyed block; for magnetic or paper tape devices, this value is
the maximum blocksize allowed by the operating system. For all other
devices, this value is the maximum blocksize accepted by the device.

If DEVTAB is specified, the next three fullwords contain the following
information about direct-access devices:

Word 2
Bytes 0-1 The number of physical cylinders on the device.

Bytes 2-3 	 The number of tracks per cylinder.

Word 3
Bytes 0-1 	 Maximum track length. Note that for the 2305, 3330,

3330-1,3340/3344, and 3350 direct-access devices, this
value is not equal to the value in word one (maximum
blocksize) as it is for other IBM direct-access devices.

Byte 2 	 Block overhead, keyed block-the number of bytes required
for gaps and check bits for each keyed block other than the
last block on a track.

Byte 3 	 Block overhead-the number of bytes required for gaps and
check bits for a keyed block that is the last block on a track.

Note: Before using bytes 2 and 3, please read the description
of word 4.

System Macro Instructions 119

Word 4
Byte 0 	 Block overhead, block without key-the number of bytes to

be subtracted if a block is not keyed. J
Byte 1 	 bit 0 If 1, indicates that the number of cylinders

indicated in word 2, bytes 0-1, are invalid. This bit
will be set to 1 only for 3340 devices with no
volume currently mounted on the unit.

bits 1-3 	 Reserved.
bit 4 	 If 1, bytes 2 and 3 of word 3 contain a half word

giving the block overhead for any block on a
track, including the last block.

bits 5-6 	 Reserved.
bit 7 	 If 1, a tolerance factor must be applied to all

blocks except the last block on the track.

Bytes 2-3 	 Tolerance factor-this factor is used to calculate the effective

length of a block. The calculation should be performed as

follows:

Step 1 - add the block's key length to the block's data
length.

Step 2 - test bit 7 of byte 1 of word 4. If bit 7 is 0, perform
step 3. If bit 7 is 1, multiply the sum computed in
step 1 by the tolerance factor. Shift the result of
the multiplication nine bits to the right.

Step 3 - add the appropriate block overhead to the value
obtained above.

If DEVTAB and RPS are specified and the device supports the RPS feature,
the next fullword contains the following information: J
Word 5

Bytes 0-1 RO overhead for sector calculations

Byte 2 	 Nmnber of sectors for the device

Byte 3 	 Number of data sectors for the device

Figure 26 shows the actual output for each device type as a result of issuing
the DEVTYPE macro.

Control is returned to your program at the next executable instruction
following the DEVTYPE macro instruction. If the information concerning the
DDNAME you specified has been successfully moved to your work area,
register 15 will contain zeros. Otherwise, register 15 will contain one of the
following exception re ..um codes.

Code Meaning

04 DDname not found.

08 Invalid area address. The address of the output area either violates protection,
or it is Ollt of the range of virtual storage.

120 OS/VSl Data Management for System Programmers

L
Maximum
Record Size DEVfAB RPS

"

(Word 1, (Words 1, 3, aDd 4, (Word 5,
Devicel In Dedmal) In Hexadecimal) (In Hexadecimal)

2540 Reader SO Not Applicable Not Applicable
2540 Reader w/CI SO Not Applicable Not Applicable
2540 Punch SO Not Applicable Not Applicable
2540 Punch w/CI SO Not Applicable Not Applicable

1442 Reader-Punch SO Not Applicable Not Applicable
1442 Reader-Punch w/CI SO Not Applicable Not Applicable
1442 Serial Punctl SO Not Applicable Not Applicable
1442 Serial Punch w/CI SO Not Applicable Not Applicable

2501 Reader SO Not Applicable Not Applicable
2501 Reader w/CI SO Not Applicable Not Applicable

2520 Reader-Punch SO Not Applicable Not Applicable
2520 Reader-Punch w/CI SO Not Applicable Not Applicable
2520B2-B3 SO Not Applicable Not Applicable
2520 B2-B3 w/CI SO Not Applicable Not Applicable

12S7 Optical Reader 0 Not Applicable Not Applicable
12SS Optical Reader 0 Not Applicable Not Applicable
1419/1275 Reader/Sorter 0 Not Applicable Not Applicable
3505 Reader SO Not Applicable Not Applicable
3505 Reader w/CI SO Not Applicable Not Applicable
3525 Punch .SO Not Applicable Not Applicable
3525 Punch w/CI SO Not Applicable Not Applicable
3SS6 Optical Reader 0 Not Applicable Not Applicable
3S90 Reader Sorter 0 Not Applicable Not Applicable

1403 Printer 12()2 Not Applicable Not Applicable
1403 w/UCS 12()2 Not Applicable Not Applicable
1404 Printer 12()2 Not Applicable Not Applicable
1443 Printer 12()2 Not Applicable Not Applicable
3211 Printer 1322 Not Applicable Not Applicable
3SOO Printing Subsystem 1363 Not Applicable Not Applicable

2671 Paper Tape Reader 32760 Not Applicable Not Applicable

1052 Printer-Keyboard 130 Not Applicable Not Applicable
1053 Printer Not Applicable Not Applicable

3210 Printer-Keyboard 130 Not Applicable Not Applicable
3215 Printer-Keyboard 130 Not Applicable Not Applicable

2400 (9-track) 32760 Not Applicable Not Applicable
2400 (9-track, p.e.) 32760 Not Applicable Not Applicable
2400 (9-track, d.d.) 32760 Not Applicable Not Applicable
2400 (7-track) 32760 Not Applicable Not Applicable
2400 (7-track, d.c.) 32760 Not Applicable Not Applicable
2495 Tape Cartridge Reader 0 Not Applicable Not Applicable

3400 (9-track,p.e.) 32760 Not Applicable Not Applicable
3400 (9-track, d.d.) 32760 Not Applicable Not Applicable
3400 (7 track) 32760 Not Applicable Not Applicable

Legend

CI-card image feature, d.c.-data conversion, d.d.-dual density, p.e.-phase encoding, UCS-universal character set, w I-with

1 UCB Type Field (Word 0) - Device codes are presented in OS/VSl System Data Areas, "The UCBTYP Field of the UCB."

2 Although certain models can have a larger line size, the minimum line size is assumed.

3 The 3SOO Printing Subsystem can print 136 characters per line at 10-pitch, 163 characters per line at 12-pitch, and 204 characters
per line at 15-pitch. The machine default is 136 characters per line at 100pitch.

Figure 26 (Part 1 of 2). Output Obtained from Issuing DEVTYPE Macro

System Macro Instructions 121

Maximum
Record SIze DEVfAB RPS
(Word I, (Words 1, 3, ad 4, (Word 5,

Device1 InDedmal) In Hexadedmll) (In Hexadecimal)

2314/2319 DAS Facility 7294 OOCBOO 141 C7E922D2DO 1 0216 Not Applicable

2305-1 Fixed-Head Storage 14136 0030000S 3 SES027 SCA OS0200 029S5A57

2305-2 Fixed-Head Storage 14660 OO6OOS0S3AOAOI215BOS0200 o14OB4BI

3330 (or 3333 Model 1)
Disk Storage 13030 019BOOI3336DBFBF3S000200 OOEDS07C

3330V MSS Virtual Volume 13030 019BOOI3336DBFBF3S000200 OOEDS07C

3330-1 (or 3333 Model 11)
Disk Storage 13030 032FOOI3336DBFBF38000200 OOEDS07C

3340 Oisk Storage (35-megabyte) 836S 015I>OOOC2157F2F24BOOO200 0125403D

3340/3344 I>isk Storage
(70-megabyte) 836S 02BAOOOC2157F2F24EOOO200 0125403D

3350 Direct Access Storage 19069 0230001E4BBAOI0952080200 0181S07C

2250-1 Display Unit Not Applicable Not Applicable
2250-2 Display Unit Not Applicable Not Applicable
2253-3 I>isplay Unit Not Applicable Not Applicable

Legend

CI-card image feature, d.c.-data conversion, d.d-dual density, p.e.-phase encoding, UCS-universal character set, wi-with

1 UCB Type Field (Word 0) - Device codes are presented in OS/VSl System Data Areas, "The UCBTYP Field of the UCB."

Communication Equipment Record SIze

I 030, I 050,83B3, TWX,2250, S360 Not Applicable
1060,11 5A,1130 Not Applicable
27S0 Not Applicable
2740 Not Applicable J
Figure 26 (Part 2 of 2). Output obtained from Issuing I>EVTYPE Macro

Reading and Modifying a Job FOe Control Block
To accomplish the functions that are performed as a result of an OPEN macro
instruction, the Open routine requires access to information that you have
supplied in a data definition (DO) statement. This information is stored by
the system in a job file control block (JFCB).

Usually, the programmer is not concerned with the JFCB itself. In special
applications, however, you may find it necessary to modify the contents of a
JFCB before issuing an OPEN macro instruction. To assist you, the system
provides the RDJFCB macro instruction. This macro instruction causes a
specified JFCB to be read into virtual storage from the job queue
(SYS1.SYSJOBQE) or system work area data set in which it has been stored.
The format and field descriptions of the JFCB are contained in OS/VSl
System Data Areas.

When subsequently issuing the OPEN macro instruction, you must indicate,
by specifying the TYPE-J option, that you have supplied a modified JFCB to
be used during the initialization process.

122 OS/VSl I>ata Management for System Programmers

The JFCB is returned to SYSl.SYSJOBQE or the system work area data set
by the Open routine or the OPENJ routine, if any of the modifications in the
following list occur. These modifications can occur only if the information is
not in the JFCB when the OPEN macro instruction is issued.

• 	 Expiration date field and creation date field merged into the JFCB from
the DSCB.

• 	 Secondary quantity field merged into the JFCB from the DSCB.

• 	 DCB fields merged into the JFCB from the DSCB.

• 	 DCB fields merged into the JFCB from the DCB.

• 	 Volume serial number fields added to the JFCB.

• 	 Data set sequence number field added to the JFCB.

• 	 Number of volumes field added to the JFCB.

Note: Care must be taken in using RDJFCB if the data set resides on MSS
(Mass Storage System) virtual volumes such that:

• 	 The expiration date added does not conflict with other volumes within the
specified MSVGP (mass storage volume group).

• 	 The secondary allocation quantity should be in cylinder increments.

• 	 Any volume serial numbers added to the JFCB should exist in the
MSVGP.

• 	 The number of volumes must not exceed the number available in the
specific MSVGP.

If you make these, or any other modifications, and you want the JFCB
returned to the job queue or system work area data set, you must set the
high-order bit of field JFCBMASK+4 to one. This field is in the JFCB.
Setting the high-order bit of field JFCBMASK+4 to zero does not necessarily
suppress the return of the JFCB to the job queue or system work area data
set. If the Open or OPENJ routines have made any of the above
modifications, the JFCB is returned to the job queue or system work area
data set. To inhibit writing the JFCB back to the job queue or system work
area data set during an OPENJ, the field JFCBTSDM should be set to X'OS'
prior to issuing the OPEN macro.

OPEN-Initialize /JIlta Control Block for Processing tM JFCB

The OPEN macro instruction initializes one or more data control blocks so
that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro instruction, except for
the TYPE=J option, is contained in OS/VS Data Management Macro
Instructions. The TYPE=J option, because it is used in conjunction with
modifying a JFCB, should be used only by the system programmer or only
under his supervision.

[symbol] OPEN 	 dcb-addr
,[(options)], ...]
[,TYPE=J]

System Macro Instructions 123

TYPE=J
specifies that for each data control block referred to, you have supplied a
job file control block (JFCB) to be used during initialization. A JFCB is an
internal representation of information in a DD control statement.

During initialization of a data control block, its associated JFCB may be
modified with information from the data control block or an existing data
set label or with system control information.

The system always creates a job file control block for each DD control
statement. The job file control block is placed in a job queue on
direct-access storage. Its position, in relation to other JFCBs created for
the same job step, is noted in a table in virtual storage.

When this operand is specified, you must also supply a DD control
statement. However, the amount of information given in the DD statement
is at your discretion, because you can ignore the system-created job file
control block. If you ~pecify DUMMY on your DD statement, the Open
routine will ignore the JFCB DSNAME and open the data set as Dummy.
(See the examples of the RDJFCB macro instruction for a technique for
modification of a system-created JFCB.)

Note: The DD statement must specify at least:

• 	 Device allocation (refer to OS/VSI JCL Reference for methods of
preventing share status).

• 	 A ddname corresponding to the associated data control block
DCBDDNAM field.

RDnCB-Read a Job File Control Block
The RDJFCB macro instruction causes a job file control block (JFCB) to be
read from the job queue or system work area data set into virtual storage for
each data control block specified.

[symbol] RDJFeB (deb-address
,[(options)]
,...)

deb-address, (options)
(same as dcb, optionl, and optionz operands in OPEN macro instruction)

Although the option operands are not meaningful during the execution of
the RDJFCB macro instruction, these operands can appear in the L-form
of either the RDJFCB or OPEN macro instruction to generate identical
parameter lists, which can be referred to with the E-form of either macro
instruction.

To accomplish the functions that are performed as a result of an OPEN macro
instruction, the Open routine requires access to information that you have
supplied in a DD statement. This information is stored by the system in a
JFCB.

Usually, the programmer is not concerned with the JFCB itself. In special
applications, however, you may find it necessary to modify the contents of a
JFCB before issuing an OPEN macro instruction. To assist you, the system
provides the RDJFCB macro instruction. This macro instruction causes a
specified JFCB to be read into real storage from the job queue in which it has

124 OS/VS 1 Data Management for System Programmers

J

..

J

"

been stored. Format and field descriptions of the JFCB are contained in
OS/VSl System Data Areas.

When subsequently issuing the OPEN macro instruction, you must indicate,
by specifying the TYPE=J option, that you have supplied a modified JFCB to
be used during the initialization process.

The JFCB is returned to the job queue by the Open routine or the OPENJ
routine, if any of the modifications in the following list occur:

• 	 Expiration date field and creation date field merged into the JFCB from
the DSCB.

• 	 Secondary quantity field merged into the JFCB from the DSCB.

• 	 DCB fields merged into the JFCB from the DSCB.

• 	 DCB fields merged into the JFCB from the DCB.

• 	 Volume serial number fields added to the JFCB.

• 	 Data set sequence number field added to the JFCB.

• 	 Number of volumes field added to the JFCB.

These modifications can occur only if the information is not originally in the
JFCB.

If you made these or any other modifications and you want the JFCB
returned to the job queue, you must set the high-order bit of field
JFCBMASK+4 to 1. This field is in the JFCB. Setting the high-order bit of
field JFCBMASK+4 to 0 does not necessarily suppress the return of the
JFCB to the job queue. If the Open or OPENJ routines have made any of the
preceding modifications, the JFCB is returned to the job queue. To inhibit
writing the JFCB back to the job queue during an OPENJ, the field
JFCBTSDM should be set to X'OS' prior to issuing the OPEN macro.

Examples: In Figure 27, the macro instruction at EXl creates a parameter list
for two data control blocks: INVEN and MASTER. In creating the list, both
data control blocks are assumed to be opened for input; option2 for both
blocks is assumed to be DISP. The macro instruction at EX2 reads the
system-created JFCBs for INVEN and MASTER from the job queue into
virtual storage, thus making the JFCBs available to the problem program for
modification. The macro instruction at EX3 modifies the parameter list entry
for the data control block named INVEN and indicates, through the TYPE=J
operand, that the problem program is supplying the JFCBs for system use.

System Macro Instructions 125

EXl RDJFCB (INVEN" MASTER), MF=L

EX2 RDJFCB MF=(E,EX1)

EX3 OPEN (,(RDBACK,LEAVE)),TYPE=J,MF=(E,EX1)

INVEN DCB EXLST=LSTA, .. .
MASTER DCB EXLST=LSTB, .. .
LSTA DS OF

DC X'07'
DC AL3(JFCBAREA)

JFCBAREA DS OF,176C

LSTB DS OF

Figure 27. Sample Code Using RDJFCB Macro

Any number of data control block addresses and associated options may be
specified in the RDJFCB macro instruction. This facility makes it possible to
read job file control blocks in parallel. J
An exit list address must be provided in each data control block specified by
an RDJFCB macro instruction. Each exit list must contain an active entry
that specifies the virtual storage address of the area into which a JFCB is to
be placed. A full discussion of the exit list and its use is contained in OS/VS
Data Management Services Guide. The format of the job file control block
exit list entry is as follows:

Type of Exit Hexadecimal Code Coatents of Exit Ust Entry
LIst Eotry (bIgb-order byte) (tbe low-order bytes)

Job file 07 Address of a 176-byte area to be provided if the
control block RDJFCB or OPEN (TYPE=J) macro instruction is

used. This area must begin on a fullword boundary
and must be located within the user's region. •

The virtual storage area into which the JFCB is read must be at least 176
bytes long.

The data control block may be open or closed when this macro instruction is
executed.

If the JFCB is read successfully for all DCBs in the parameter list, a return
code of zero is placed in register 15. If the JFCB is not read for any of the
DCBs because the DDNAME is blank or a DD statement is not provided,
then a return code of 4 is placed in register 15.

126 OS/VSl Data Management for System Programmers

Cautions: The following errors cause the results indicated:

Error 	 Result

A DD control statement has not A return code of 4 is placed in
been provided. register 15.

DDNAME field in DeB is blank. 	 A write-to-programmer is issued, the
request for this DeB is ignored, and
a return code of 4 is placed in
register 15.

A virtual storage address has Abnormal termination of task.
not been provided.

Note that if you want to open a VTOC data set to change its contents (that
is, open it for OUTPUT, OUTIN, INOUT, or UPDAT), your program must
be authorized under the Authorized Program Facility (APF). APF provides
security and integrity for your data sets and programs. Details on how you

• 	 authorize your program are provided in the OS/VSl Planning and Use
Guide.

Ensuring Data Security by Validating the Data

Extent Block

Protecting one user's data from inadvertent or malicious access by an
unauthorized user depends on protection of the data extent block (DEB). The
DEB is a critical control block because it contains information about the
device a data set is mounted on and describes the location of data sets on
direct-access device storage volumes. The DEB also contains the address of
the appendage vector table (AVT). Using the A VT, a user with malicious
intent can modify the A VT to give control to his own routine in supervisor
state to read from and write to data sets to which he would otherwise be
denied access.

To guarantee protection of the DEB, the DEBCHK macro instruction is
provided. The DEBCHK macro is issued by several components of the system
control program. For example:

• 	 The Open access method executors issue the macro to add the address of a
DEB they have built to a list of valid addresses called the DEB table. The
DEB validity checking routine builds and maintains a DEB table for each
job step.

• 	 The I/O supervisor uses the macro to verify that the DEB passed with
each EXCP request is in the DEB table.

• 	 The Close component issues the macro to remove a DEB from the DEB
table.

H you code a routine that builds a DEB, you must add the address of the DEB
you built to the DEB table. H you code a routine that depends on the validity
of a DEB that is passed to your routine, you should verify that the DEB
passed to your routine has a valid entry in the DEB table. Use the
TYPE = ADD and the TYPE=VERIFY operands of the macro, respectively.

Additional details about the functions provided by the DEB validity checking
routine and about the contents of the DEB table are available in OS/VSl
Open/ Close/ EOV Logic.

System Macro Instructions 127

The DEBCHK macro instruction provides four functions:

• 	 Adds the address of a DEB to the DEB table, which is located in protected
storage. The DEB table contains the address of every user DEB associated
with a given job step. Every system control program component that builds
a user DEB must add the address of that DEB to a DEB table.

• 	 Verifies that the DEB table associated with a given job step contains the
address of a valid DEB. Any system control program component or
problem program can use this function to verify that a DEB is valid.

• 	 Deletes the address of a DEB from the DEB table. Any program that
deletes a user DEB must, before it deletes the DEB, issue a DEBCHK
macro with a TYPE= DELETE operand to delete the address of the DEB
from the DEB table. If the DEB validity checking routine encounters an
error while deleting the address from the DEB table, the job step is
abnormally terminated.

• 	 Deletes the address of a DEB from the DEB table in the same way as the
preceding function, except that, instead of terminating the job step, this
function merely returns an error code in register 15:

Return
eodem
Register 15 Interpretation

4 The indicated DEB pointer is not in the DEB table.

8 Invalid TYPE is specified.

12 The caller is in problem state and TYPE~VERIFY.

16 DEBDCBAD does not point to the DCB.

20 Access method value does not equal DEBAMTYP value.

24 DEB not on TCB chain for TYPE=ADD. J
28 DEBAMTYP or DEBTBLOF~O for TYPE=ADD.

32 DEB table contains 32,760 bytes for TYPE=ADD.

This function is provided to prevent recurring abnormal termination. The
format of the DEBCHK and a description of the operands follow.

If the DEBCHK routine is completed successfully, register 15 will be set to
oand register 1 will contain the address of the DEB when control is
returned to your program.

DEBCHK-Macro Specification

[symbol] DEBCHK 	 chaddr
[,TYPE={VERIFY IADD IDELETE IPURGE}]
[,AM={amtjpel(amaddr) I (amreg)}]

chaddr - RX-Type Address, (2-12), or (1)
a control block address passed to the DEBCHK routine. This operand is
ignored if MF=L is coded. For verify, add, and delete requests, cbaddr is
the address of a data control block (DCB) that points to the DEB whose
address is either verified to be in the DEB table, added to the DEB table,
or deleted from the DEB table. For the purge function, cbaddr is the
address of the DEB whose pointer is to be purged from the table: no
reference is made to the DCB.

128 OS/VSl Data Management for System Programmers

TYPE = { VERIFY IADD IDELETE IPURGE}
indicates the function to be performed. If MF=L is coded, TYPE is
ignored. The functions are:

VERIFY This function is assumed if the TYPE operand is not coded. The
control program checks the DEB table to determine whether the DEB
pointer is in the table at the location indicated by the DEBTBLOF field
of the DEB; the DEBAMTYP field in the DEB is compared to the AM
operand value, if given. The two must be equal. TYPE = VERIFY can be
issued in either supervisor or problem state.

ADD
Before the DEB pointer can be added to the table, the DEB must be
queued on the current TCB DEB chain (the TCBDEB field contains the
address Qf the first DEB in the chain). The DEB address is added to the
DEB table at some offset into the table. That offset value is placed in
the DEBTBLOF field of the DEB, and the access method type is
inserted into the DEBAMTYP field of the DEB. A zero is placed in the
DEBAMTYP field if the AM operand is not coded. TYPE=ADD can
be issued only in supervisor state.

DELETE
The DEB and the DCB must point to each other before the DEB
address can be deleted from the DEB table. TYPE=DELETE can be
issued only in supervisor state.

PURGE
The DEB pointer is removed from the DEB table without checking the
DCB. TYPE = PURGE can be issued only in supervisor state.

AM= {amtype I (amaddr) I (amreg) }
specifies an access method value. Each value corresponds to a particular
access method type (note that BPAM and SAM have the same values):

Type Value

ISAM X'SO'

BDAM X'40'

SAM X'20'

BPAM X'20'

TAM X'to'

GAM X'OS'

TCAM X'04'

EXCP X'02'

VSAM x'or

NONE X'OO'

The operand can be coded in one of the following three ways, only the first
of which is valid for the list form (MF=L) of the instruction.

amtype
refers to the actual access method type: ISAM, BDAM, SAM, BP AM,
TAM, GAM, TCAM, or EXCP.

amaddr
is the RS-type address of the access method value. This format may not
be coded when MF=L is used.

amreg
is one of the general registers 1-14 that contains the access method
value in its low-order byte (bit positions 24-31). The high-order bytes
are not inspected. This form may not be used when MF=L is coded.

System Macro Instructions 129

The use of amaddr and amreg should be restricted to those cases where
the access method value has been generated previously by the MF=L form
of DEBCHK. If MF =L is not coded, the significance of the AM operand
depends upon the TYPE.

If TYPE is ADD and AM is specified, the access method value is inserted
in the DEBAMTYP field of the DEB, and all subsequent DEBCHK
macros referring to this DEB must either specify the same AM or omit the
operand. When the AM operand is omitted for TYPE=ADD, a null value
(0) is placed in the DEB and all subsequent DEBCHK macros must omit
the AM operand.

If AM is specified when the TYPE is PURGE, DELETE, or VERIFY, the
access method value is compared to the value in the DEBAMTYP field of
the DEB. If AM is omitted, no comparison is made.

MF
indicates the list form of the DEBCHK macro instruction. When MF=L is
coded, a parameter list is built consisting of the access method value that
corresponds to the AM keyword. This value may be referenced by name in
another DEBCHK macro by coding AM= (amaddr), or it may be inserted
into the low-order byte of a register before issuing another DEBCHK
macro by coding AM= ((amreg)).

Removing Queued Requests and Restoring the Requests
You can stop the processing of I/O requests for a specific task or against a
particular data set, using the PURGE macro instruction. The function of the
Purge macro instruction is to call the Purge routine which removes request
queue elements (ROEs) from queues and frees ROEs. You can subsequently
requeue the requests by issuing the RESTORE macro. The PURGE and
RESTORE macros give control to routines documented in OS/VSl I/O
Supervisor Logic. The logic of the routines and additional details are
available in that publication.

You can give control to the Purge and Restore routines in two ways: (1) by
loading register 1 with the address of your parameter list and issuing the
assembler language SVC instructions or (2) by issuing the PURGE and
RESTORE macro instructions. If your installation requires the use of macro
instructions, you must add the macro definitions to the macro library
(SYSl.MACLm) or place them in a partitioned data set and concatenate this
data set to the macro library. The macro definitions, JCL, and utility
statements needed to add the macros to your macro library are presented in
Figures 28 and 29. Whether you issue the macro instructions or the SVC
instructions, you must first build a parameter list. The SVC instructions are
SVC 16 for PURGE and SVC 17 for RESTORE.

130 OS/VS 1 Data Management for System Programmers

PURGE Macro Definition
MACRO

&NAME PURGE &LIST
AIF ('&LIST'EQ" J.E1

&NAME 	 IHBINNRA &LIST LOAD REG 1
SVC 16
MEXIT

.E1 	 IHBERMAC 01,147 LIST ADDR MISSING
MEND

Control Statements Required

/ /jobname JOB { parameter }
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD *
./ ADD NAME=PURGE,LIST=ALL

PURGE macro definition

./ ENDUP
/*
Figure 28. Macro Definition, JCL, and Utility Statements for Adding the PURGE Macro

to Your Macro Library

RESTORE 	 Macro Definition
MACRO

&NAME RESTORE &LIST
AIF ('&LIST' EQ I, J.E1

&NAME 	 IHBINNRA &LIST LOAD REG 1
SVC 17 ISSUE SVC FOR RESTORE
MEXIT

.E1 	 IHBERMAC 01,150 LIST ADDR MISSING
MEND

Control Statements Required

/ /jobname JOB { parameters }
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD DATA
./ ADD NAME=RESTORE,LIST=ALL

RESTORE 	 macro definition

./ ENDUP
/*
Figure 29. Macro Definition, JCL, and Utility Statements for Adding the RESTORE

Macro to Your Macro Library

PURGE--Remove an RQE From a Queue

The Purge routine stops the processing of I/O requests by removing ROEs
from queues. The queues from which ROEs can be removed are:

• a logical channel queue

• the task supervisor request block queues

• the task supervisor asynchronous exit queue

System Macro Instructions 131

• the dynamic device reconfiguration (DDR) WAIT queue

The macro instruction used to call the Purge routine is coded as follows:

I[symbol] IPURGE Iparameter-list address

parameter list address - RX-type address, (2-12) or (1)
specifies the address of a parameter list you have built on a full word
boundary in your region. The parameter list address can be specified as an
RX-type constant or in registers 2-12 or 1. You specify which queues you
want altered by bit setting in the first field (PRGOPT) of the parameter
list. You also can choose to either halt any currently active I/O operation
(requests cannot be restored) or allow the operation to quiesce (requests
can be restored), again by using a bit setting in the PRGOPT field of the
parameter list (see Figure 30).

•
Note that you can bypass the purge of the request blocks chained to a TCB

(or to be chained to a TCB) by setting bit 5 of the PRGOPT field to 1.

0(0) 1(1)

PRGOPT - Purge options PRGDEB - Address of data extent block

4(4) 5(5)

PRGCOD - Complete code PRGTCB - Address of task control block

8(8) 9(9)

PRGCTR - Quiesce count PRGCHN - Address of fIrst link in chain

12(C) 	 14(E) JPRGVTM - Purge AIOI status 	 PRGCSW - CSW status

Figure 30. PURGE Parameter List

Bytes and Field
Offset Alignment Name Description

0(0) 	 PRGOPT Purge options.
0 ... 	 Purge request queue elements for all entries

in the data extent block (DEB) chain,
starting with the DEB whose address is in
PRGDEB.

1. .. Purge only the request queue element for the
DEB whose address is in PRGDEB.

.0 .. Do not post the event control blocks for the
purged request queue elements.

.1.. 	 Post the event control blocks for the purged
request queue elements. (A X' 48' completion
code is used.)

..0. 	 Allow the activity to quiesce .

.. 1. 	 Halt the I/O activity. (The effect of the halt
I/O instruction is simulated if the operation
is a seek.)

... 0 	 Purge all requests .

... 1 	 Purge only related requests .
0 ... Normal purge.
1... Used only for TSO tasks.
.0 .. 	 Purge the asynchronous exit queue, the

request block queue, the logical channel
queue, and the DDR wait queue. J

132 OS!VS 1 Data Management for System Programmers

Byte5lDd Field
Offset AlIgnment NUDe Description

.1..

1(1)

4 (4)

5 (5)

.3

.3

.. 0.

.. 1.

... 1

... 0

PRGDEB

PRGCOD

PRGTCB

8 (8) PRGCTR

9 (9) .3 PRGCHN

12(C) PRGVTM
1...
.1..

13(D)

14(E)

.1

.. 2

..xx
1...
.xxx

PRGCSW

Purge the logical channel queue, the '

asynchronous exit queue (removing only

RQEs for requests in error), and the DDR

wait queue. Bypass the request blocks .

Purge by data extent block .

Purge by task control block. When this bit is

on, the setting of bit 0 is ignored .

Return status of HIO to VTAM.

Do not use VTAM/TOLTEP/PURGE/HIO

interface.

Address of data extent block. If you are

purging by TCB, not required.

Purge routine completion code X'7F posted

here by purge routines.

Address of task control block from which

I/O is to be purged.

If zero, the current TCB is used. When not

purging by TCB address, this field must be

zero.

Quiesce count. The number of active request

queue elements for which I/O activity has

not yet been completed.

Address of the first link in the chain of lOBs

which are purged. The first link can be

located in the user's area, or in the

DEBUSPRG field of the DEB. It will point to

the first lOB in the chain. The last lOB in the

chain ~ill contain ones in the low-order byte

of the restart address (IOBR) field. A

diagram of the purge chain is shown in

Figure 30.

Status after Purge.

HIO issued by Purge.

Interrupt is pending, condition code equals 0

or 2. Condition code is 1 with CSW status of

O. CSW status is saved only on condition

code 1.

Condition code (set by HIO) .

Channel logout occurred.

Reserved

Reserved

CSW status when HIO issued (condition code
equals 1).

If you are purging all the I/O requests currently in a queue for a given data
set using the quiesce option, a chain of lOBs will be built whose addresses
represent ROEs that have been removed from a queue. When control is
returned to your program, the address of a pointer to the first lOB that was
dequeued will be in the PRGCHN field of your parameter list. This address is
used to restore the requests to queues. For the contents of word four of the
parameter list to be useful, you must specify the purge by data set option for
only one request at a time.

System Macro Instructions 133

RESTORE - Retum Purged lOBs to Queues

You can restore 110 requests to the queues from which they were purged by
issuing the RESTORE macro instruction, which can be coded as follows:

I[symbol] IRESTORE Ipurge chain-address

purge chain-address - RX-type address, (2-12) or (1)
specifies the address of the first of one or more lOBs you want restored to
queues. The purge chain address may be specified as either an RX-type
constant or loaded into registers 2-12 or 1. This field can be either (1) the
address of the DEBUSPRG field (offset 17 (X'11 '» in a DEB or (2) a
fullword in your region. The IOBRESTR field (offset 24 (X'18'» of the
lOB is used to chain lOBs. The last three bytes of the IOBRESTR field of
the last lOB in the chain are set to X'FF' (see Figure 31).

Fullword in your region

l J
I lOBI

IOBRESTR

-or-

I125(19)

DEBUSPRG

I117(11)
I

I

IOBRESTR

*Bytes 26 - 28 (lA-Ie)
contain X'FF' to indicate
that this is the last
lOB in the chain

Figure 31. Purge Chain for Restoring lOBs

134 OS!VSl Data Management for System Programmers

ADDING A UCS IMAGE OR FCB IMAGE TO THE
SYSTEM IMAGE LIBRARY

Introduction

This chapter provides a detailed description of how to add either an mM ues
(universal character set) image or an mM FeB (forms control buffer) image
to SYS1.IMAGELm. It also describes a procedure that can be used to read
an FeB image into virtual storage for the purpose of modifying it before
loading it into the forms control buffer.

For the 3800 Printing Subsystem a utility, IEBIMAGE, has been provided to
build the 3800 control modules (character arrangement table modules, forms
control buffer modules, graphic character modification modules, and copy
modification modules) and store them in SYSl.IMAGELm. For additional
information, see IBM 3800 Printing Subsystem Programmer's Guide.

Before reading this section, you should be familiar with the information in
these publications:

• 	 IBM 2821 Control Unit Component Description contains the
information necessary to create a user-designed chain/train for the 1403
Printer.

• 	 OS/VS Data Management Macro Instructions describes the SETPRT
macro instruction that loads a ues image and an FeB image into their
respective buffers.

• 	 OS/VS1 JCL Reference describes the UeB and FeB parameters that
can be specified in a DD statement to load the ues and FeB buffers when
they are opened.

• 	 IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and 3811
Control Unit Component Description and Operator's Guide contains the
information necessary to create a user-designed train for the 3211 Printer.

Unlike most other chapters in this publication, this chapter does not explain
macro instructions. Rather, it shows how you can use the assembler and
linkage editor to place an image in the library; no executable code is
generated-the assembler prepares Des and the linkage editor puts them in
the library.

The remainder of this chapter discusses, first, ues images, and, then, FeB
images.

Adding a UCS Image or FCB Image to the System Image Library 135

Adding a ues Image to the Image Library
The mM standard character set images listed in the following table may be
included in SYSl.IMAGELIB at system generation by using the ues macro
instruction. You code a member name for an image in the image library by
prefixing a character set code shown in the table with UeSl or UeS2. ueSl
denotes a 1403 printer image and UeS2 denotes a 3211 printer image (for
example, UeSlAN or UeS2All).

Printer Image

1403 AN, RN, PCAN, PCRN, PN, QNC, QN, RN, SN, TN, XN, YN

3211 All, GIl, HIl, P11, Ttl

You may add a user-designed character image to the image library or make an
existing image a default image by following these rules:

1. The member name must be either the four characters UeSI for the 1403
or UeS2 for the 3211 printer. The member name must be followed by a
unique character set code that is one to four characters long. This character
set code can be any valid combination of letters and numbers according to
the rules for assembler language symbols. The single letters U or e should
not be used as a character set code since they are symbols for special
conditions recognized by the system. The assigned character set code must
be specified on the DD statement or SETPRT macro instruction to load the
image into the ues buffer.

2. The first byte in the load module of a character set image specifies whether
or not the image is a default. A default image is indicated by X'80', and is
used when the ues parameter is not coded in the DD statement. X'OO'
specifies that the image is not to be used as a default.

3. The second byte of the load module indicates the number of lines (n) to be
printed for image verification.

4. Each byte of the next n bytes indicates the number of characters to be
printed on each verification line. (Note: For the 3211 printer, the
maximum number of characters printed per line is 48; the associative bytes
are not printed during verification.)

5. A 240-byte 1403 ues image or a 512-byte 3211 ues image must follow
the previously described fields. (A 3211 ues image has 432 characters,
followed by 15 bytes of X'OO', 64 bytes of associative bits, and a reserved
byte (byte 512) of X'OO'.) Because of assembler language syntax, two
apostrophes or two ampersands must be coded to represent a single
apostrophe or a single ampersand, respectively, which is a part of a
character set image.

Figure 32 is an example of adding a 1403 ues image, YN, to the image
library.

136 OS/VSl Data Management for System Programmers

II

IIADDYN 	 JOB MSGLEVEL=l
IISTEP 	 EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

PARM.LKED='LIST,OL,REFR,RENT,XREF'(See note)
IIASM. SYSIN 	 DD *
UCS1YN 	 CSECT

DC X'80' (THIS IS A DEFAULT IMAGE)

DC AL1(6) (NUMBER OF LINES TO BE PRINTED)

DC AL1(39) (39 CHARACTERS PRINTED ON 1ST LINE)

DC AL1(42) (42 CHARACTERS PRINTED ON 2ND LINE)

DC AL1(39) (39 CHARACTERS PRINTED ON 3RD LINE)

DC AL1(39) (39 CHARACTERS PRINTED ON 4TH LINE)

DC AL1(42) (42 CHARACTERS PRINTED ON 5TH LINE)

DC AL1(39) (39 CHARACTERS PRINTED ON 6TH LINE)

DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'

DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'

DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'

DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'

DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'

DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'

END

1*
IILKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS1YN),DISP=OLD

INote: The RENT and REFR linkage editor attributes are used for performance considerations in a paging environment and may
be omitted.

Figure 32. Sample Code to Add a 1403 UCS Image to SYSl.IMAGELlB

Figure 33 shows the code used to add a 3211 ues image (All) to the image
library. A 3211 ues image has 432 characters, followed by 15 bytes of
X'OO', 64 bytes of associative bits, and a reserved byte (byte 512) of X'OO'.
Two ampersands must be coded to represent a single ampersand that is part
of the character set image.

The 64 bytes of associative bits must be coded to avoid data checks. To
determine how to code these bits for a particular chain, see IBM 3211
Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer Control
Unit Component Description and Operator's Guide.

Adding a UCS Image or FeB Image to the System Image Library 137

//ADDAll 	 JOB MSGLEVEL=l
//STEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

1// PARM.LKED='LIST,OL,REFR,RENT,XREF'(See note)
/ /ASM. SYSIN 	 DD * JUCS2Al1 	 CSECT

DC X'80' (THIS IS A DEFAULT IMAGE)
DC AL1(9) (NUMBER OF LINES TO BE PRINTED)
DC ALl (48) (48 CHARACTERS PRINTED ON 1ST LINE)
DC ALl (48) (48 CHARACTERS PRINTED ON 2ND LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 3RD LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 4TH LINE)
DC ALl (48) (48 CHARACTERS PRINTED ON 5TH LINE)
DC ALl (48) (48 CHARACTERS PRINTED ON 6TH LINE)
DC ALl (48) (48 CHARACTERS PRINTED ON 7TH LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 8TH LINE)
DC ALl (48) (48 CHARACTERS PRINTED ON 9TH LINE)

THE FOLLOWING NINE LINES REPRESENT* THE TRAIN IMAGE* DC C'l<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'l< +IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432 '
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432 I

DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432 I

DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC 15X'OO' RESERVED FIELD, BITS 433-447

* THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
* 	 UCSB BYTE POSITIONS 448-511

DC X'C01010l010101010101000404042400040l0'

DC X'1010l0l01010101010004041000040401010'

DC X'101010101010004040000000101010101010'

DC X'10101010004040444800'

DC X'OO' RESERVED FIELD, BYTE 512

END

/* 	 J//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS2Al1),DISP=OLD

INote: The RENT and REFR linkage editor attributes are used for performance considerations in a paging environment and may
be omitted.

Figure 33. Sample Code to Add a 3211 UCS Image to SYSl.IMAGELIB

Note: Executing the ASMFCL procedure does not actually generate
executable code. The assembler/linkage editor is used as a vehicle to load the
UCS image into the image library.

Adding an FeB Image to the Image Ubrary
Two standard FCB images, SID1 and SID2, can be included in
SYS1.IMAGELIB during system generation for a 3211 printer. SID1 prints
six lines per inch on a 8 1/2 inch form. STD2 prints six lines per inch on an
eleven inch form. Channels for both images are evenly spaced with channel
one on the fourth line and channel nine on the last line.

In addition to the IBM-supplied images, user images can be defined. Each
user image is added to the image library as part of a load module. To add an
FCB image to the image library, follow these rules:

• 	 The member name cannot exceed eight bytes. The first four characters of
this member name must be FCB2. The characters that follow FCB2
identify the FCB image and are referred to as the image identifier. Any
combination of characters that are valid in assembler language can be used
with the exception of a single "S"or a single "U" as an image identifier.
The image identifier must be specified in a DD statement or in the
SETPRT macro instruction to load the image in the FCB buffer.

138 OS!VS 1 Data Management for System Programmers

mailto:C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432
mailto:C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432
mailto:C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432
mailto:C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432
mailto:C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432
mailto:C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432
mailto:C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432
mailto:C'l<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432

•

• 	 The first byte of the load module of a forms control image specifies
whether or not the image is a default. A default image is indicated by X'SO'
and is used for all jobs that do not have the FCB parameter coded on the
DO statement; X'OO' indicates that the image is not to be used as a default.

• 	 The second byte of the load module indicates the number of bytes to be
transferred to the control unit to load the FCB image. This count includes
the byte, if used, for the print position indexing feature.

• 	 The third.byte of the load module (the first byte of the FCB image) is
either the print position indexing byte or the lines per inch byte. The print
position indexing byte is optional and, when used, precedes the lines per
inch byte. A description of the print position indexing feature and its use
may be found in IBM 3211 Printer, 3216 Interchangeable Train
Cartridge, and 3811 Printer Control Unit Component Description and
Operator's Guide.

The form image begins with lines per inch byte and must be as long as the
form. For example, if you are printing six lines per inch on an eleven inch
form, the form image must be 66 bytes long. The lines per inch byte
defines the number of lines per inch and a channel:

• 	 X'ln' means eight lines are printed per inch.

• 	 X'On' means six lines are printed per inch.

All remaining bytes (lines) must contain X'On' except the last byte. The
last byte must be X'ln'. The letter n can be a hexadecimal value from 1 to
C, representing a channel (one to twelve); or it can be zero (0), which
means no channel is indicated.

In Figure 34, an FCB load module is assembled and added to
SYS1.IMAGELffi. The image defines a print density of eight lines per inch on
an eleven inch form with a right shift of 15 line character positions (11/2
inches).

Adding a UCS Image or FCB Image to the System Image Library 139

II

IIADDFCB JOB MSGLEVEL=1

IISTEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

PARM.LKED='LIST,OL,REFR,RENT,XREF' (See note)
IIASM. SYSIN DD *
FCB2ID1 CSECT
*THIS EXAMPLE IS FOR A FORM LENGTH OF 11 INCHES
*WITH 8 LINES OF PRINT PER INCH (88 LINES)

DC X'80' THIS IS A DEFAULT IMAGE
DC AL1(89) LENGTH OF FCB IMAGE
DC X'SF' OFFSET PRINT LINE 15

*CHARACTER POSITIONS TO THE RIGHT
DC X'10' 8 LINES PER INCH-NO CHANNEL FOR POSITION 1
DC XL4'0' 4 LINES NO CHANNEL
DC X'01' CHANNEL 1 IN POSITION 6
DC XL6'0' 6 LINES NO CHANNEL
DC X'02' CHANNEL 2 IN POSITION 13
DC XL6'0'
DC X'03'
DC XL6'0'
DC X'04'
DC XL6' 0'
DC X'05'
DC XL6'0'
DC X'06'
DC XL6'0'
DC X'07'
DC XL6'0'
DC X'08'
DC XL6'0'
DC X' 09'
DC XL6'0'
DC X'OA'
DC XL6'0'
DC X'OB'
DC XL6'0'
DC X'OC' CHANNEL 12 IN POSITION 83
DC XL4'0' 4 LINES NO CHANNEL
DC X'10' POSITION 88 LAST LINE IN IMAGE J
END

1*
IILKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(FCB2ID1),DISP=OLD

Note: The RENT and REFR linkage editor attributes are used for performance considerations in a paging environment and may
be omitted.

Figure 34. Sample Code to Assemble and Add FeB Load Module to SYSl.IMAGELIB

Retrieving an FeB Image
If you want to modify an FCB image in virtual storage before loading it into a forms
control buffer, you can use this sequence of macro instructions to read the FCB image
into virtual storage:

1. An IMGLm macro instruction, with the OPEN parameter.

2. 	A BLDL macro instruction, to determine whether the FCB image you want
is in the image library.

3. A LOAD macro instruction, to load the image into virtual storage.

After the image has been read in, it is necessary to issue another IMGLm
macro, but this time with the CLOSE parameter and the address of the DCB
that was built by the first IMGLm macro. A SETPRT macro instruction can
be used to load the forms control buffer with the modified image.

The format of the BLDL and the SETPRT macros is given in OS/VS Data
Management Macro Instructions; the format of the LOAD macro is given in

140 OS!VSl Data Management for System Programmers

OS/VSl Supervisor Services and Macro Instructions. Shown here is the
format of the IMGLm macro:

I[symbol] IIMGLIB I{OPEN ICLOSE,addr }

OPEN
specifies that a DeB is to be built for SYS1.IMAGELm and that
SYS1.IMAGELm is to be opened. The address of the DeB is returned in
register 1.

CLOSE
specifies that SYS1.IMAGELm is to be closed.

addr
RX-type address of word that points to the DeB. H coded in the form
(1-12), then 'the register contains the address of the DeB, not the address
of the fullword.

Return codes for IMGLm OPEN:

DedmaI
Return Code Meaning

o Successful.

4 Either the volume containing SYSl.IMAGELIB is not mounted or a
required catalog volume was not mounted.

8 Either SYS l.IMAGELIB does not exist on the volume to which the catalog
points, or it is not cataloged.

12 An error occurred in reading the catalog or VTOC.

BLDL and LOAD are the only macros that may refer to the DeB built by the
IMGLm macro.

Adding a DCS Image or FCB Image to the: System Image Library 141

J

INDEX

For additional information about any subject listed in this
index, refer to the publications that are listed under the same
subject in OS/VSl Master Index, GC24-5104.

A
abnormal end appendage (XCE) 72-73

access method services

ALTER command 53

DELETE command 51

alias name

assigning for an index (INDEX and CAMLST

BLDA) 27-28

• 	 coding example 28

exceptional return codes 24

macro specifications 27

deleting for an index (INDEX and CAMLST
DLTA) 28-29

coding example 29

exceptional return codes 24

macro specifications 28

entry in catalog 46

ALTER command 53

alternate track, assigning 84

AM operand of DEB macro 129-130

APF (authorized program facility)

to use EXCPVR 95

appendages 65-73

~e I/O supervisor appendages)

naming convention 65

programming restrictions 65-66

assigning an alternate track (ATLAS macro) 84

ATLAS macro

coding example 86

description 84-86

how to use 85-86

operations performed 86

return codes 87-88

specification 84-85

with track overflow option 84

authorized program facility (APF)

to use EXCPVR 95

B
BFALN operand of DCB macro 79

BFTEK operand of DCB macro 79

bit spinning on data read 74-75

BLDA operand of INDEX CAMLST macros 27-28

BLDG operand of INDEX CAMLST macros 25-26

BLDL macro, use of 140

BLDX operand of INDEX CAMLST macros 23-24

block multiplexer programming notes 74-75

BLOCK operand of LOCATE, CAMLST macros 22-23

BPAM data set

restriction with EXCP 78

BUFCB operand of DCB macro 79

BUFL operand of DCB macro 79

BUFNO operand of DCB macro 79

building a generation index (INDEX and CAMLST

BLDG) 25-26

exceptional return codes 24

coding example 26

macro specifications 25

building an index (INDEX and CAMLST BLDX) 23-24

coding example 24

exceptional return codes 24

macro specifications 23

c
CAMLST macro

BLDA operand 27-28

BLDG operand 25-26

BLDX operand 23-24

BLOCK operand 22-23

CAT operand 32-34

CATBX operand 34-35

DLTA operand 28-29

DLTX operand 26-27

DRPX operand 31

LNKX operand 29-30

NAME operand

to read a block by alias name 20-22

to read a block by data set name 16-18

to read a block by generation data set name 19-20

RECAT operand 37-38

UCATDX operand 36-37

UNCAT operand 35-36

catalog block entries, data format 39-46

CATALOG macro

CAT operand 32-34

CATBX operand 34-35

RECAT operand 37-38

UCATDX operand 36-37

UNCAT operand 35-36

cataloging data sets
when index levels exist (CATALOG and CAMLST
CAT) 32-34

coding example 33

exceptional return codes 33-34

macro specifications 32

when index levels must be created (CATALOG and
CAMLST CATBX) 34-35

coding example 35

exceptional return codes 33-34

macro specifications 34

CAW (channel address word), use of 63

CCW (channel command word)

(See also EXCP and EXCPVR macros)

erase long gap 64

in nonpageable region 59

in pageable region 94-95

modifying 69-70

translation by I/O supervisor 60,67

Write a tape mark 64

CE (channel end) appendage 72

CENDA operand, DCB macro 77

channel address word, use of 63

channel end appendage 72

channel program

appendages for use with 65-66

completion 64

execution

~e EXCP macro)

Index 143

initiation 62-63 fields merged into JFCB 123,125

modification of 63 in page fix list processing 68

related 64

channel status word (CSW), use of 64

checkpointed data sets, processing with EXCP 80

checking the data extent block (DEB) 127-128

CLOSE macro

with EXCP 90-91

operations performed 90-91

options 91

specification 90

with XDAP 101

CLOSE operand of IMGLIB macro 141

CODE operand of DCB macro 81

Command chaining

aNOPCCW 64

construction by I/O Supervisor 63

inCCW 60

command retry for 3330 and 2305 74

communication vector table (CVT) mapping macro 118

completion code

(see return codes)
inECB

with EXCP 93

with XDAP 102

control password 111

control block fields, EXCP 91

control blocks

DCB 75-82

ECB 93

FCB 135

control volumes
connecting (INDEX and CAMLST LNKX) 29-30

coding example 30

exceptional return codes 24

macro specifications 30

disconnecting (INDEX and CAMLST DRPX) 31

coding example 31

exceptional return codes 24

macro specifications 31

control volumes (CVOL) pointer entry 45

before OS release 17 45

conversion

of sector value for RPS devices (IECOSCRt) 105

relative block address to actual device address

(IECPCNVT) 104

return codes 104

creating protected data sets 109

CSW (channel status word), use of 64,70

CVOL

(see control volume)

CVT (communication vector table) mapping macro 118

D
DADSM routines 47

data chaining in CCW 60

data control block (See DCB)

data extent block (See DEB)

data set catalogs 32-38

data set control block

(see DSCB)

data set pointer entry 42

data set security

(see password protection and DEBCHK macro)

DCB (data control hlock)

description 61

144 OS/VSl Data Management for System Programmers

initializing 82-83

when formed 75
 JDCB macro
appendage name specified 66

for EXCP 75-82

forXDAP 98

DCBBLKCT field of DCB 80

DCBDIRCT field of DCB 78

DCBFDAD, maintaining 80

DCBIFLGS field of DCB, permanent I/O error

indicatOls 64,65

DCBOFLGS field of DCB 89

for issuing EOV 89-90

DCBTRE:AL, maintaining 80

DDNAME operand, DCB macro 76

DDR (dynamic device reconfiguration)

repositioning tape data sets 77

DEB (data extent block)

description 61

fields with EXCP 93

file mask in 63

validating 127-128

DEB macro, EXCP 93

DEBCHK macro instruction

functions of 128-130

specification 128

defective track
(see AlLAS macro instruction) 84

DELETE command 51

deleting a. data set

coding example 52

exceptional return codes 53

macro instructions for (SCRATCH and CAMLST

SCRATCH) 50-52

with password protection 52

when volume not mounted 51

deleting an index 26-27

coding example 27

exceptional return codes 24

macro specification for (INDEX and CAMLST

DLTX) 26-27

DEVD operand of DCB macro 79

DEVD=DA, maintaining DCBFDAD and

DCBTRBAL 79-80

DEVD=TA, maintaining DCBBLKCT

for checkpointed data sets 80

for output data sets 80

for systems with dynamic device reconfiguration 80

device characteristics 119-120

device-dependent parameters, EXCP 79-82

DEVTYPE macro instruction

description 118-119

for RPS devices 118,119

output from 119-122

specification 118

direct-access device
channel program (XDAP macro) 97-98,99-101

DISP operand pf OPEN macro 83

DLT A operand of INDEX CAMLST macros 28-29

DLTX operand of INDEX CAMLST macros 26-27

DRPX operand of INDEX CAMLST macros 31

DSCB, reading from VTOC (OBTAIN macro)

by data set name (SEARCH option) 48-49

coding example 48

1/

t

exceptional return codes 49

macro specifications (OBTAIN and CAMLST

SEARCH) 48-49

by relative block address (SEEK option) 49-50

coding example 50

exceptional return codes 50

macro specifications (OBTAIN and CAMLST

SEEK) 49-50

space management (DADSM) routines 47

DSECT expansions

(see CVT, IEFJFCBN, IEFUCBOB)

DSORG operand of DCB macro 78

E
ECB (event control block)

EXCP 61,93

in page fix list processing 68

posting completion in 64

XDAP 102

end-of-cylinder condition 71

end-of-extent appendage 71

end-of-volume

condition 89

macro instruction (EOV) 90

on magnetic tape data sets 89

EODAD operand DCB macro 78

EOEA operand, DCB macro 77

EOV (end-of-volume) macro (SVC 55)

with EXCP 89-90

with XDAP 101

erase long gap CCW 64

error recovery procedures 64-65

event control block (See ECB)

EXCPmacro

command chaining 60

control blocks used with

DCB 61,75-82

DEB 61,93

ECB 61,93

IOB 61,91-93

data chaining 60

description 83

in nonpageable region 59

in problem programs 60

multivolume data set restriction 83

other macros used with

ATLAS 84-86

CLOSE 90-91

EOV 89-90

OPEN 82-83

restriction with stow 78

specification 83

validation of control blocks by I/O supervisor 127-128

EXCPVR macro

description 94-95

fix list 95

indirect address list (IAL) 96

executing channel programs

in problem programs 60

in system control programs 58-59

exit list entry for RDJFCB 126

EXLST operand of DCB macro 78

expiration date overriding 50

extend parameter list 69

extended channel program translation 69

F
FCB (See forms control buffer image)

file-protection condition 71

format-l DSCB, reading from VTOC 47

forms control buffer (FCB) image

adding to SYSl.IMAGELIB 138-139

retrieving from SYSLIMAGELIB 140-141

rules 138-139

G
generation data set, reading a catalog block for 19

generation index pointer entry in catalog 46

I

IAL (indirect address list)

description 96

for SIO appendage 69

use of 95

IEBIMAGE utility, use of 135

IECPCNVT

conversion routine 104

IECPRLTV conversion routine 105

IECOSCRI (sector conversion routine) 105-106

IEFJFCBN macro 118

IEFUCBOB macro 117

IEHA TLAS utility program 82

IEHPROGM utility 15

IMGLIB macro 141

IMSK operand of DCB macro 78

INDEX macro instruction

with BLDA operand 27-28

with BLDG operand 25-26

with BLDX operand 23-24

with DLT A operand 28-29

with DLTX operand 26-27

with DRPX operand 31

with LNKX operand 29-30

index entries in catalog

control entry 39

link entry 41

pointer entry 41

index
C$ee alias, assigning for an index; alias deleting

for an index; building a generation index;

building an index; deleting an index)

indirect address list (IAL)

description 96

use of 95

INOUT option

for OPEN macro 83

INPUT option

for OPEN macro 63,83

input/output block (See lOB)

interruption handling and error recovery procedures 64-65

lOB (input/output block)

EXCP 61,91-93

in page fix list processing 68

requesting address in EXCPVR 94

setting chaining type in 60

specifyinl channel program relationship in 64-65

specIfyinI seek address in 63

Index 145

XDAP 102
EOV10BAD operand of DCB macro 79

with EXCP 89-9010BSENS fields with macro instruction 85-86 with XDAP 101
10BSTART field, restriction 68-69 EXCP 83 JI/O device characteristics 118-120 EXCPVR 94-95
I/O interruption 64
I/O supervisor appendages

abnormal end (XCE) 72-73
channel end (CE) 72
end-of-extent 71
entry points _67
page fix (PGFX) 68
program-controlled interrupt (PCl) 7~71
register usage 66
returns 67
start I/O (SIO) 68-70
use with EXCP 57

J
JFCB (job file control block)

mapping macro (IEFJFCBN) 118
processing 122-123
processing during ROJFCB 124-125

JFCBMASK+4 field of JFCB 123,125
JFCBTSDM field of JFCB 125
job file control block

(s-ee JFCB)
job queue 122-123,125

K
KEYLEN operand of DCB macro 81

L
LABEL=operand of DD statement, password
protected data set 108

LEAVE operand of OPEN macro 83
LNKX operand with INDEX CAMLST macros 29-30
LOAD macro, use of 140
LOCATE macro instruction

reading a catalog entry by name (NAME operand)
for data sets 16-18
for generation data sets 19-20
using alias name 2~22

reading a catalog entry by TTR 22-23
with BLOCK operand 22-23

LPSW instruction, restriction 66
LRA instruction 96

M
MACRF=(E), DCB operand for EXCP 77
macro specifications for US\; with EXCP 75
macros

ATLAS 84-86

CATALOG 32-38

CLOSE

withEXCP 90
with XDAP 101

CVT 118

DCB 75-82,98

DEB 93

DEBCHK 128

DEVTYPE 118-119

ECB 93,102

146 OS/VSl Data Management for System Programmers

IEFJFCBN 118
IEFUCBOB 117
IMGLIB 141
INDEX 23-31
lOB 91-93,102
LOCATE 16-23
OBTAIN 48-50
OPEN

for JFCB 123-124
with EXCP 82-83
with XDAP 98-99

PROTECT 112
PURGE 131-133 ...
ROJFCB 124
RENAME 53-56
RESTORE 134
SCRATCH 5~53
XDAP 99-101

maintaining the PASSWORD data set 107-109
(s-ee also PROTECT macro)

maintaining the system catalog 15-38
maintaining the volume table of contents (VTOC) 47-56
mapping macros

CVT 118
IEFJFCBN 118
IEFUCBOB 117

MODE operand of DCB macro 82
modification of a channel program during execution 63
multivolume direct and index-sequential data sets 83

N
nonpageable region/partition, EXCP operations in 59,63,68
NOPWREAD 107,111,112
NOWRITE 107,111

o
OBTAIN Macro 48-50
obtaining a sector number (RPS devices)
OPEN macro

105-106
•

appendage processing 66
dummy data set restriction 82
for EXCP 82-83
for ROJFCB 124-125

..
procedures performed 82-83
volume disposition 83

for XDAP 98-99
TYPE-J 124

OPEN operand of IMGLIB macro 141
opening a VTOC to change its contents restriction 127
OPENJ (OPEN, TYPE ...J) 123-124
OPTCD=Z operand, DCB macro 78
OUTIN option

for OPEN macro 83
output data sets, maintaining DCBBLKCT with EXCP 80
OUTPUT option

for OPEN macro 83

p
page boundaries, crossing 96

page fix (PGFX) appendage 68

pageable partition 62,63

paging environment, improving efficiency 94

Partitioned data set (See BP AM)

password

control 111

parameter list

add a record 113

delete a record 115

list a record 115

replace a record 114

protection mode indicator 111

record 109

secondary 111

standard label restriction 109

PASSWORD data set

characteristics 108-109

creating 109

password protecting your data sets 107

password protection processing

counter maintenance 110

data set concatenation 110

termination 109

volume switching 109-110

PCI (program controlled interrupt)

appendage 70-71

modify interface 70

parameter list 70-71

PCIA operand, DCB macro 77

PGFX (page fix)

appendage 68

operand of DCB 77

posting of completion code in ECB

EXCP 94

XDAP 102

printerimage 135

forms control buffer (FCB) 138-140

universal character set (UCS) 13(i..138

program controlled interrupt (PCl) appendage 70-71

PROTECT macro instruction

description 110-112

parameter list 113-115

return codes 116

specification 112

protection mode indicator 108,111

PRTSP operand of DCB macro 82

PURGE

chain 134

macro instruction 132-133

adding to macro library 131

specification 132

PWREAD 107,111-112
PWWRITE 107,111-112

R
ROBACK option

fpr OPEN macro 62,83
ROIFCB macro instruction

coding examples 126

description 124-127

exceptional return codes 127

exit list entry for 125

specification 124

read a job file control block (IFCB) 122

reading a block from the catalog 16

reading a catalog block

using alias name 20-22

coding example 21

exceptional return codes 18

macro specification 20

using a data set name 16-18

coding example 17

exceptional return codes 18

macro specification 17

using a generation data set name 19-20

coding example 20

exceptional return codes 18

macro specification 19

using a relative block address 22-23

coding example 22

exceptional return codes 18

macro specifications 22

reading and modifying a JFCB 122

READPSWD module 108

recataloging a data set 37-38

coding example 38

exceptional return codes 33-34

macro specification 37

RECFM operand of DCB macro 79

recovering from permanent I/O errors 84

(ret' ATLAS macro instruction)

register conventions for appendages 67

usage by conversion routine 104,105,106

usage by I/O supervisor with EXCP 66

related channel programs 64

RENAME macro 53-56

rename status code 55-56

renaming a data set 53-54

coding example 55

exceptional return codes 55

macro specification 54

status code 55-56

with password protection 56

REPOS operand, DCB macro 77

request queue element

(ret' RQE)

REREAD operand of OPEN macro 83

RESTORE macro instruction

adding to macro library 131

definition 134

specification 134

use of 65

restoring lOBs 134

return codes

ATLAS macro 87-88

CATALOG macro 33-34

DEBCHK macro 128

DEVTYPE macro 120

IECPCNVT conversion routine 104

Index 147

IMGLIB macro 141

INDBX macro 24

LOCATE macro 18

OBTAIN macro 49,50

PROTECT macro 116

ROlFCB macro 127

RENAME macro 55

SCRATCH macro 53

rotational position sensing (See RPS)
RPS

obtaining sector number 105-106

with XDAP macro 103

RQE (request queue element)

freeing 130

illustration of 67

removing from queue 64

restoring 130

updating 62

s
SCRATCH macro 50-53

scratch status code 53

scratching a data set

coding example 52

description 50-51

exceptional return codes 53

macro specification 51

when volume not mounted 51

with password protection 52

secondary password 111

sector

address in XDAP macro 99,100

conversion routine (IECOSCRl) 105-106

SETPRT macro, use of 140

SIO (start I/O)

appen"age 68-70

use of 63

SIOA operand, DCB macro 77

SQA (system queue area), use of 63

ST ACK'operand of DCB macro 82

standard label restriction, password

data sets 108

stand-alone seek for 2314 and 2319 63

start I/O appendages 68-70

start I/O instruction(SIO), use of 63

status code

deleting a multivolume data set 53

renaming a multivolume data set 55-56

STOW macro

restriction with EXCP 78

SVC instruction, restriction 66

SVCLIB system generation macro instruction 65

system catalog, maintaining 15-38

using CATALOG macro 32-38

using INDEX macro 23-31

using LOCATE macro 16-23

system control blocks, macros for
mapping 117

CVT 118

IEFlFCBN 118

IEFUCBOB 117

modifying

DEBCHK, TYPE=ADD, DELETE, PURGE 128-130

dl>EN, TYPE=l 123-124

PURGE 131-133

ROlFCB 124-127

RESTORE 134
obtain information from

DEBCHK, TYPE-VERIFY 128-130

DEVTYPE 118-120

system macro instructions 117

(.see also system control blocks, macros for)

system queue area(SQA), use of 63

system work area data set 123

SYSl.IMAGELIB 135,136,138,141

SYS1.SVCLIB 65

SYS1.SYSJOBQE 122,123

T
TIC (transfers-in-channel) command, restriction 71

translation of channel programs by I/O supervisor

extended 69

in nonpageable regions 59

in pageable regions 94-95

normal 69

TRTCH operand of DCB macro 82

TTR 104

TYPE operand

of DEB macro 129

of OPEN macro 125

u
UCB (unit control block)

getting information from
uee DEVTYPE macro)

mapping macro (IEFUCBOB) 117

use of 64

UCS (universal character set) image 135

adding to SYSl.IMAGELIB 136-138

for 1403 printer 136-138

for 3211 printer 136-138

UEX (unit exception) 72

uncataloging a data set 35

retaining index levels 35-36

coding example 36

exceptional return codes 33-34

macro specification 35

removing index levels 36-37

coding example 37

exceptional return codes 33-34

macro specification 36

unit check with ATLAS 85

unit control block(See UCB)

universal character set image(See UCS image)

unit exception, CE appendage 72

UPDAT option

for OPEN macro 83

v

validating the DEB 127-128

virtual-real

(.fee nonpageable region)

virtual storage access method (VSAM)

catalogs 49

deleting a data space 51

renaming a data space 53

volume control block
pointer entry 43

volume index control entry 39

volume table of contents (VTOC), maintaining

148 OS/VSl Data Management for System Programmers

-

using OBTAIN macro 48-50 output from DEVTYPE 122
using RENAME macro 53-56 3344 direct-access device
using SCRATCH macro 50-53 output from DEVTYPE 122

volume list 3350 direct-access device
in cataloging maintenance 16 output from DEVTYPE 122
definition 16 3400 tape
rename status code 55-56 output from DEVTYPE 121
scratch status code 53 3800 printer

volume status code 53,55-56 FCB image for 135
volume switching 83 output from DEVTYPE 121
VSAM

~ee virtual storage access method)
VSI use of SVCLIB for I/O supervisor appendages 65
VTOC

C$ee volume table of contents)

w
WAlT macro instruction

withEXCP 59
WLR (wrong-length record)

C$ee channel end appendage)
Write a tape mark CCW 64
"WRITE" protection mode indicator
WTO instruction, restriction 66

x
XCE (abnormal end)

appendage 72-73
XDAPmacro

control blocks used with
ECB 102
lOB 102

description 99-101
macros required with

CLOSE 101
DCB 98
EOV 101
OPEN 98-99

specification 99-10 I
XDAP channel program 103
XENDA operand, DCB macro 77

123
1403 printer

output from DEVTYPE 121
UCS image 136-138

coding example 137
2314 direct-access device

outputfrom DEVTYPE 121
stand-alone seek 63

2319 direct-access device
outputfrom DEVTYPE 121
stand-alone seek 63

2400 tape
output from DEVTYPE 121

3211 printer
FCB image 138-141

coding example 140
output from DEVTYPE 121
UCS image 136-138

coding example 138
3330 direct-access device

output from DEVTYPE 122
3333 direct-access device

Index 149

\

GC26-3837-2

0
U)

---< ~ U)....
0
Q)....
Q)

:s::
QI
:J
QI

CQ
('I)

3
('I)

:J
Q
U)
<
II>....
('I)

3
"'C
0

CQ

J....
Q)

3
3
('I)...,
II>

~

ti"
z
?
U)
w
0 w
9
"'C
~.
:J
('I)
Q.

;5.

c
en
;t>
C)
(")
II.)

~
~
N

!Irn~
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only'

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International'

OS!VSI Data Management for
System Programmers
GC26-3837-2

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

"•....

I
I

Reader's

Comment

Form

Fold on two lines, staple, and mail_ No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26-3837-2

Fold and Staple

First Class Permit
Number 439
Palo Alto, California

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation
General Products Division

Programming Publishing-Department J57

1501 California Avenue

Palo Alto, California 94304

Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 Unitad Nations Plaza, New York, New York 10017
(I nternationa!)

CIl
-<

<J)...
(1)

3
ij

o
<C

'" 3
3
~
<J)

" ro
z
o
CIl

W

-....J

o
W o

c
01 !
!>
Gl
(")
I\.)
O"l
W

co

W

-....J

N

