
Systems

GC26-3901-1
File No. S370-32

OS/VS1 Utilities

Release 7

---- ------ ----- --. --- -. ---- - - ------_ .. -----_.-

,
],',

Second Edition (October 1983)

This is a major revision of, and makes obsolete, GC26-3901-0, and its technical newsletters,
GN26-092 ,GN26-0979, and GN26-0989.

This e . ion applies to Release 1.2 of IBM Data Facility Device Support, Program Product
5740-AM6, as well as to Release 7 of OS/VS1, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Amendments" following the
list of figures. Specific changes are indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page affected. Editorial changes that
have no technical significance are not noted.

Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370 and 4300
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or imply that only IBM's program
product may be use~: Any functionally equivalent program may be used instead.

Publications are not stocked at the address given below; requests for IBM publications should
be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute whatever information
.you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright Inte~national Business Machines Corporation 1977, 1983

HOW TO USE THIS PUBLICATION

This publication describes how to use the OS/VS utility programs. To use this
book, you should be familiar with VS terms and concepts.

In addition to the preface you are now reading, a table of contents, and a list of
figures, this publication has the following major parts:

Title

"Summary of Amendments"

"Introduction"

"Guide to Utility
Program Functions"

Utility Programs

"Appendix A: Exit
Routine Linkage"

"Appendix B: Invoking
Utility Programs from
a Problem Program"

"Appendix C: DD Statements
for Defining Mountable
Devices"

Function

an abstract of the major technical changes
reflected in this and previous editions.

a summary of the utility programs and
information on the differences among system,
data set, and independent utility programs. This
chapter contains basic information about how the
programs are executed and about the utility
control statements used to specify program
functions. New or infrequent users of the utility
programs should give particular attention to this
chapter.

a table arranged in alphabetic order of
utility program functions and the programs that
perform them. This table enables you to find the
program that can do what you need to have done.

individual chapters for each utility program
arranged in alphabetic order. For a discussion of
the organization of these chapters, see
"Organization of Program Descriptions" below.

information about linking to and returning from
optional user-supplied exit routines. This
appendix should be read only if you plan to code
or use an exit routine. If you are coding an exit
routine, this appendix provides linkage
conventions, descriptions of parameter lists, and
return codes. If you are using an existing exit
routine, you may be interested in the meaning of
return codes from the exit routine.

description of the macro instructions used to
invoke a utility program from a problem program
rather than executing the utility program by job
control statements or by a procedure in the
procedure library. This appendix should be read
only if you plan to invoke a utility program from a
problem program.

a review of how to define mountable volumes to
ensure that no one else has access to them.
For a definitive explanation of this subject, see
OS/VSl JCL Reference, GC24-S099.

How to Use This Publication iii

"Appendix D: Processing
User Labels"

"Index"

description of the user-label processing that can
be performed by IEBGENER, IEBCOMPR,
IEBPTPCH, IEHMOVE, IEBTCRIN, and
IEBUPDTE. This appendix should be read only if
you plan to use a utility program for processing
user labels.

a subject index to this publication.

Organization of Program Descriptions
Program descriptions are organized, as much as possible, the same way to enable
you to find information more easily. Most programs are discussed according to the
following pattern:

• Introduction to and description of the functions that can be performed by the
program. This description typically includes an overview of the program's use,
definitions of terms, illustrations, etc.

• Functions supported by the utility and the purpose of each function.

• Input and output (including return codes) used and produced by the program.

• Control of the program through job control statements and utility control
statements. Explanation of utility control statement parameters are presented in
alphabetical order in tabular format, showing applicable control statements,
syntax, and a description of the parameters. Any general information,
restrictions, and relationships of a given utility control statement to other control
statements are described in the sections concerning the statements or in the
section for restrictions.

• Examples of using the program, including the job control statements and utility
control statements.

Required Publications

iv OS/VS 1 Utilities

The reader should be familiar with the following publications:

I • OSjVS Message Library: VSl Utilities Messages, GC26-3919, which contains a
complete listing and explanation of the messages and codes issued by the utility
programs.

• OS/VSl JCL Reference, GC24-S099, which contains a complete explanation
of the job control statements available for the operating system.

• OS/VSl Data Management Services Guide, GC26-3874, which describes the
input/ output facilities of the operating system. It contains information on record
formats, data set organization, access methods, direct access device
characteristics, data set disposition, space allocation, and generation data sets.

• OS/VSl Supervisor Services and Macro Instructions, GC24-S103, which
contains information on how to use the services of the supervisor. Among the
services of the supervisor are program management, task creation and
management, virtual storage management, and checkpoint and restart.

• OS/VSl Data Management Macro Instructions, GC26-3872, which contains a
description of the WRITE SZ, LINK, and RETURN macro instructions, and
contains the format and contents of the DCB.

Related Publications
The additional publications referred to in this publication are:

• OS/VSl Storage Estimates, GC24-5094, which contains storage estimates.

• OS/VSl System Data Areas, SY28-0605, which contains a complete
description of the control blocks used by the operating system.

• IBM System/3 70 Principles of Operation, GA22-7000, which contains a
description of system structure; of the arithmetic, logical, branching, status
switching, and input/output operations; and of the interruption system.

• OS/VS Mass Storage System (MSS) Services: General Information,
GC35-0016, which contains information on the copy or restore of a staging
volume.

• OS/VSl Access Method Services, GC26-3840, which contains information on
generation data groups and SMF record types 63 and 67.

• OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide,
GC26-3838, which contains information on cataloging VSAM data sets.

• OS/VSl Data Management for System Programmers, GC26-3837, which
contains information on data set password protection.

• IBM 50 Magnetic Data Inscriber Component Description, GA27-2725, which
contains information on the MTDI cartridge used by the IBM 2495 Tape
Cartridge Reader (TCR) when used by the IEBTCRIN utility program.

• OS/VSl Planning and Use Guide, GC24-5090, which contains information
about program authorization (APF).

• IBM 3203 Printer Component Description and Operator's Guide, GA33-1515,
which contains details on loading the special 3203 "cleaning" paper.

I · Device Support Facilities User's Guide and Reference, GC35-0033, describes
initialization and maintenance of direct access storage devices (DASD).

• Data Facility Device Support: User's Guide and Reference, 8C26-3952, has
detailed information on processing DASD volumes with indexed VTOC.

• Data Facility Data Set Services: User's Guide and Reference, 8C26-3949,
describes DASD utility functions such as dump or restore, and reduction or
elimination of free space fragmentation.

• IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846, includes
reference information on using the 3800 printing subsystem.

• OS/VS Utilities Logic, SY35-0005 (or, for DFDS Release 1.2, LY26-3948) con
tains detailed information on the logic of the 08/VS utility programs.

How to Use This Publication v

Utilities Not Explained in This Book

vi OS/VSl Utilities

There are several specialized utilities not discussed in this book. The following list
shows their names, functions, and which book contains their explanation.

Utility

IDCAMS

Device Support
Facilities

Data Facility
Data Set Services

Function

Allows users to define,
manipulate, or delete
VSAM data sets, define and
manipulate VSAM Catalogs,
copy, print or convert
SAM and ISAM data sets to
VSAM data sets.

To be used for the
initialization and maintenance
of DASD volumes.

Describes DASD utility functions
such as dump/restore and
reduction of free space
fragmentation.

Reference

OS/VSl Access Method
Services, GC26-3840

Device Support Facilities
User's Guide and
Reference, GC35-0033.

Data Facility Data Set
Services: User's Guide
and Reference, SC26-3949

,""".k ,,4I..\M' ! , •. " "', ·"j.\oIO ••• ~_r .#_1'1',""'""_,.,,,,,, _dH_* __ ·'_'e_" ____________ _

CONTENTS

How to Use This Publication .. iii
Organization of Program Descriptions ... iv
Required Publications ... iv
Related Publications .. v
Utilities Not Explained in This Book ... v

Figures .. xv

Summary of Amendments .. xix

Introduction .. 1-1
Device Support .. 1-3
Control .. 1-3

Job Control Statements ... 1-3
Utility Control Statements .. 1-4

Continuing Utility Control Statements ... 1-4
Restrictions ... 1-5

Notational Conventions ... 1-5
KEYWORD=device=list ... 1-5

Special Referencing Aids ... 1-6
Guide to Utility Program Functions .. 1-7

mCDASDI Program .. 2-1
Initializing a Direct Access Volume .. 2-1
Assigning an Alternate Track .. 2-1
Executing IBCDASDI ... 2-2

Input and Output ... 2-2
Control .. 2-2

Utility Control Statements .. 2-3
JOB Statement .. 2-3
MSG Statement .. 2-3
DADEF Statement ... 2-3
VLD Statement ... 2-4
VTOCD Statement ... 2-4
IPL TXT Statement ... 2-4
GET AL T Statement ... 2-4
END Statement ... 2-5
LASTCARD Statement .. 2-5

IBCDASDI Examples .. 2-10

mCDMPRS Program ... 3-1
Executing mCDMPRS .. 3-1
Input and Output .. 3-1
Control .. 3-2

Utility Control Statements ... 3-2
JOB Statement .. 3-2
MSG Statement .. 3-2
DUMP Statement ... 3-2
VORL Statement .. 3-3
RESTORE Statement ... 3-3
END Statement ... 3-3

mCDMPRS Examples ... 3-6

ICAPRTBL Program .. 4-1
Executing ICAPR TBL ... 4-1

Contents vii

viii OS/VS 1 Utilities

Input and Output ... 4-1
Control .. 4-2

Utility Control Statements .. 4-2
JOB Statement .. 4-2
DPN Statement ... 4-2
UCS Statement .. 4-2
FCB Statement ... 4-2
END Statement ... 4-3

ICAPRTBL Examples ... 4-6

IEBCOMPR Program .. 5-1
Input and Output.. 5 -2
Control .. 5-2

Job Control Statements ... 5-2
Utility Control Statements.. 5-3

COMPARE Statement ... 5-3
EXITS Statement .. 5-3
LABELS Statement.. 5-4
Restrictions ... 5-6

IEBCOMPR Examples · ... 5-6

IEBCOPY Program .. 6-1
Copying Members That Have Aliases ... 6-1
Creating a Backup Copy... 6-2
Copying Data Sets ... 6-2
Copying or Loading Unloaded Data Sets .. 6-2
Selecting Members to be Copied, Unloaded, or Loaded 6-2
Replacing Identically Named Members... 6-3
Replacing Selected Members... 6-4
Renaming Selected Members.. 6-4
Excluding Members from a Copy Operation.. 6-4
Compressing a Data Set.................. ... 6-4
Merging Data Sets... 6-5
Re-creating a Data Set.. 6-5

Input and Output... 6-5
Control.. 6-6

Job Control Statements ... 6-6
PARM Information on the EXEC Statement.... 6-7
Space Allocation... 6-7

Utility Control Statements 6-8
COpy Statement 6-8
SELECT Statement ... , 6-11
EXCLUDE Statement .. 6-12
Restrictions ... 6-15

IEBCOPY Examples ... 6-16

IEBDG Program... 7-1
IBM-Supplied Patterns .. 7-1
User-Specified Pictures ... 7-2
Modification of Selected Pields... 7-2

lnput and Output... 7-3
Control.. 7-4

Job Control Statements.................... ... 7-4
PARM Information on the EXEC Statement. .. 7-5

Utility Control Statements.. 7-6
DSD Statement... 7-6
PD Statement .. 7-6

'''1111'' ... ',,"1<',,··,''',''''' '' _______ _

CREATE Statement ... 7-8
REPEAT Statement .. 7-9
END Statement ... 7-11
Restrictions ... 7-19

IEBDG Examples .. 7 -19

IEBEDIT Program ... 8-1
Input and Output ... 8-1
Control .. 8-1

Job Control Statements .. · 8-2
Utility Control Statement .. 8-2

EDIT Statement .. 8-2
Restrictions ... 8-5

IEBEDIT Examples ... 8-5

IEBGENER Program 9-1
Creating a Backup Copy ... 9-1
Producing a Partitioned Data Set from Sequential Input 9-1
Expanding a Partitioned Data Set ... 9-2
Producing an Edited Data Set ... 9-3
Reblocking or Changing Logical Record Length .. 9-4

Input and Output ... 9-4
Control .. 9-5

Job Control Statements ... 9-5
Utility Control Statements .. 9-5

GENERATE Statement ... 9-6
EXITS Statement .. 9-6
LABELS Statement ... 9-.7
MEMBER Statement ... ~ 9-7
RECORD Statement .. 9-7
Restrictions ... 9-14

IEBGENER Examples .. 9-14

IEBIMAGE Program .. 9-23
General Information .. 9-23

Storage Requirements ... 9-23
For IEBIMAGE .. 9-23
For SYS1.1MAGELIB .. 9-23

Maintaining the SYS1.1MAGELIB Data Set.. .. 9-25
General Module Structure ... 9-26
Naming Conventions for Modules ... 9-26

Using IEBIMAGE .. 9-27
Creating a Forms Control Buffer Module .. 9-27

3800 FCB Module Structure .. 9-27
FCB Module Listing ... 9-28

Creating a Copy Modification Module ... 9-30
COPYMOD Module Structure .. 9-30
COPYMODModule Listing .. 9-31

Creating a Character Arrangement Table Module .. 9-31
TABLE Module Structure .. 9-32
TABLE Module Listing .. 9-34

Creating a Graphic Character Modification Module ... 9-35
GRAPHIC Module Structure .. 9-35
GRAPHIC Module Listing ... 9-36

Creating a Library Character Set Module .. 9-37
CHARSET Module Structure ... 9-38
CHARSET Module Listing ... 9-38

Contents ix

Input and Output .. 9-39
Return Codes .. 9-40

Control ... 9-40
Job Control Statements .. 9-40

SYSPRINT DD Statement. ... 9-41
SYSUT1 DD Statement. ... 9-41
SYSIN DD Statement .. 9-41

Utility Control Statements ... 9-41
Operation Groups .. 9-42

FCB Statement .. 9-42
COPYMOD Statement ... 9-43
TABLE Statement ... 9-43
GRAPHIC Statement ... 9-45
CHARSET Statement .. 9-46
INCLUDE Statement ... 9-46
NAME Statement ... 9-47
OPTION Statement .. 9-47

Using OVERRUN ... 9-48
IEBIMAGE Examples .. 9-67

IEBISAM Program ... 10-1
Copying an Indexed Sequential Data Set .. 10-1
Creating a Sequential Backup Copy .. 10-1
Specifying a Load Operation ... 10-2
Creating an Indexed Sequential Data Set from an Unloaded Data Set 10-3
Printing the Logical Records of an Indexed Sequential Data Set.. 10-3

Input and Output ... 10-4
Control .. 10-5

Job Control Statements ... 10-5
PARM Information on the EXEC Statement ... 10-5

IEBISAM Examples .. 10-8

IEBPfPCH Program .. 11-1
Printing or Punching a Data Set .. 11-1
Printing or Punching Selected Members ... 11-1
Printing or Punching Selected Records ... 11-2
Printing or Punching a Partitioned Directory .. 11-2
Printing or Punching an Edited Data Set .. 11-2

Input and Output ... 11-2
Control .. 11-3

Job Control Statements ... 11-3
Utility Control Statements .. 11-3

PRINT Statement ... 11-4
PUNCH Statement ... 11-5

TITLE Statement .. 11-5
EXITS Statement .. 11-5
MEMBER Statement .. 11-5
RECORD Statement .. 11-6
LABELS Statement .. 11-15
Restrictions ... 11-15

JEBPTPCH Examples ... 11-15

IEBPTRCP Program ... 11-23
IEBPTRCP Output .. 11-23

Job Control Statements ... 11-23
IEBPTRCP Examples .. 11-24

x OS/VS I Utilities

IEBTCRIN Program ... 12-1
MTDI Editing Criteria .. 12-1

MTDI Editing Restrictions ... 12-2
End-of-Cartridge ... 12-7
Error Records .. 12-8
Error Description Word (EDW) ... 12-8
Sample Error Records ... 12-10

Input and Output ; .. 12-12
Control .. 12-12

Job Control Statements ... 12-12
Utility Control Statements .. 12-14

TCRGEN Statement .. ~ 12-14
EXITS Statement · ... 12-14
Restrictions ... 12-19

IEBTCRIN Examples .. 12-19

IEBUPDTE Program ... 13-1
Creating and Updating Symbolic Libraries ... 13-1
Incorporating Changes .. 13-1
Changing Data Set Organization ... 13-1

Input and Output ... 13-2
Control .. 13-2

Job Control Statements ... 13-2
P ARM Information on the EXEC Statement.. ... 13-3

Utility Control Statements ... : 13-4
Function Statement ... 13-4

Function Restrictions ... 13-5
Detail Statement ... 13-7

Detail Restrictions .. 13-7
Data Statement ... 13-8
LABEL Statement ... 13-8
ALIAS Statement ... 13-10
ENDUP Statement ... 13-10
Restrictions .. 13-17

IEBUPDTE Examples ... 13-18

IEHA TLAS Program .. 14-1
Input and Output , ... 14-1
Control ... ~ .. 14-2

Job Control Statements ... 14-2
Utility Control Statement .. 14-2

TRACK or VTOC Statement .. 1 4-2
Return Codes .. 14-3

Restrictions ... ; ... 14-5
IEHATLAS Examples ... 14-5

IEHDASDR Program ... 15-1
Initializing a Direct Access Volume .. 15-1
Initialize-MSS Staging Volumes ... 15-3
Changing the Volume Serial Number of a Direct Access Volume 15-3
Assigning Alternate Tracks for Specified Tracks .. 15-3
Creating a Backup, Transportable, or Printed Copy 15-3
Copying Dumped Data to a Direct Access Volume .. 15-4

Dumping and Restoring Unlike Devices ... 15-5
Formatting a Direct Access Volume ... 15-5
Writing IPL Records and a Program on a Direct Access Volume 15-5

Input and Output ... 15-7

Contents xi

Control .. 15-7
Job Control Statements ... 15-8

PARM Information on the EXEC Statement ... 15-9
Utility Control Statements .. 15-11

ANALYZE Statement .. 15-12
ANALYZE MSS Statement .. 15-13
FORMAT Statement .. 15-13
LABEL Statement .. 15-13
GET AL T Statement ... 15-14
DUMP Statement ... 15-14
RESTORE Statement ... 15-15
IPL TXT Statement ... 15-15
PUTIPL Statement ... 15-16
Restrictions ... 15-23

IEHDASDR Examples .. 15-24

IEHINITI Program .. 16-1
Placing a Standard Label Set on Magnetic Tape ... 16-2

Input and Output ... 16-2
Control .. 16-3

Job Control Statements ... 16-3
P ARM Information on the EXEC Statement ... 16-3

Utility Control Statement .. 16-3
INITT Statement ... 16-4
Restrictions ... 16-6

IEHINITT Examples ... 16-6

IEHIOSUP Program .. 17-1
Input and Output ... 17-1
Control .. 17-1

Job Control Statements ... 17-1
Restrictions .. 17-1

IEHIOSUP Examples .. 17-2

IEHLIST Program .. 18-1
Listing Catalog Entries .. 18-1
Listing a Partitioned Data Set Directory ... 18-1

Edited Format .. ~-.. 18-2
Unedited (Dump) Format ... 18-3

Listing a Volume Table of Contents ... 18-3
Edited Format ... 18-3
Unedited (Dump) Format ... 18-3

Input and Output ... 18-3
Control .. 18-3

Job Control Statements ... 18-5
P ARM Information on the EXEC Statement. .. 18-5

Utility Control Statements .. 18-6
LISTCTLG Statement .. 18-6
LISTPDS Statement .. 18-7
LISTVTOC Statement .. 18-8
Restrictions ... 18-10

IEHLIST Examples ... 18-10

IEHMOVE Program .. 19-1
Reblocking .. 19-4
Moving or Copying a Data Set .. 19-4
Moving or Copying a Group of Cataloged Data Sets 19-8

xii OS/VS 1 Utilities

Moving or Copying a Catalog ... 19-8
Moving or Copying a Volume of Data Sets .. 19-9
Moving or Copying Direct Data Sets with Variable Spanned Records 19-10

Input and Output ... 19-10
Control .. 19-11

Job Control Statements ... 19-11
PARM Information on the EXEC Statement ... 19-13
Job Control Language for the Track Overflow Feature 19-14

Utility Control Statements .. 19-14
MOVE DSNAME Statement ... 19-15
COpy DSNAME Statement ... 19-15
MOVE DSGROUP ... 19-16
COpy DSGROUP .. 19-16
MOVE PDS Statement ... 19-17
COpy PDS Statement .. 19-17
MOVE CATALOG Statement ... 19-18
COpy CATALOG Statement .. 19-18
MOVE VOLUME Statement ... 19-19
COpy VOLUME Statement .. 19-19
INCLUDE Statement ... 19-19
EXCLUDE Statement .. 19-20
SELECT Statement ... 19-20
REPLACE Statement ... 19-20
Restrictions ... 19-26

IEHMOVE Examples .. 19-27

IEHPROGM Program .. 20-1
Scratching a Data Set or Member ... 20-1
Renaming a Data Set or Member .. 20-1
Cataloging or Uncataloging a Data Set ... 20-2
Building or Deleting an Index ... 20-3
Building or Deleting an Index Alias .. 20-3
Connecting or Releasing Two Control Volumes ... 20-4
Building and Maintaining a Generation Index .. 20-6
Maintaining Data Set Passwords ... 20-6

Adding Data Set Passwords .. 20-8
Replacing Data Set Passwords .. 20-8
Deleting Data Set Passwords .. 20-9
Listing Password Entries .. 20-9

Input and Output ... 20-10
Control .. 20-10

Job Control Statements ... 20-10
P ARM Information on the EXEC Statement ... 20-11

Utility Control Statements .. 20-12
SCRATCH Statement .. 20-12
RENAME Statement ... 20-12
CA TLG Statement ... 20-13
UNCATLG Statement .. 20-13
BLDX (Build Index) Statement .. 20-14
DL TX (Delete Index) Statement .. 20-14
BLDA (Build Index Alias) Statement ... 20-14
DLTA (Delete Index Alias) Statement ... 20-14
CONNECT Statement .. 20-14
RELEASE Statement ... 20-15
BLDG (Build Generation Index) Statement ... 20-15

Contents xiii

ADD (Add a Password) Statement .. 20-1~
REPLACE (Replace a Password) Statement ... 20-1 C
DELETEP (Delete a Password) Statement .. 20-1 C
LIST (List Information from a Password) Statement 20-1C
Restrictions .. 20-2:

IEHPROGM Examples ... 20-2~

IFHST A TR Program .. 21- J

Assessing the Quality of a Tape Library ... 21- J

Input and Output ... 21-~
Control .. 21-~

Job Control Statements ... 21-~
IFHST ATR Example ... 21-~

Appendix A: Exit Routine Linkage ... 22-]
Linking to an Exit Routine .. 22-]

Label Processing Routine Parameters ... 22-]
Nonlabel Processing Routine Parameters .. 22-~

Returning from an Exit Routine ; ... 22-~

Appendix B: Invoking Utility Programs from a Problem Program 23-]
LINK or ATTACH Macro Instruction ... 23-]
LOAD· Macro Instruction ... 23-~
CALL Macro Instruction .. 23-~

Appendix C: DD Statements for Defining Mountable Devices 24-]
DD Statement Examples .. 24-]

Appendix D: Processing User Labels .. 25-]
Processing User Labels as Data Set Descriptors ... 25-]
Exiting to a User's Totaling Routine ... 25-~
Processing User Labels as Data .. 25-~

Index ... 26-1

xiv OS/VSl Utilities

FIGURES

Figure 1-1. System Utility Programs ... 1-1
Figure 1-2. Data Set Utility Programs ... 1-2
Figure 1-3. Independent Utility Programs ... 1-2
Figure 1-4. Locating the Right Program .. 1-6
Figure 1-5. Locating the Right Example ... 1-6
Figure 1-6. Tasks and Utility Programs ... 1-7
Figure 2-1. IBCDASDI Utility Control Statements 2-3
Figure 2-2. VTOC Entries per Track .. 2-6
Figure 2-3. IBCDASDI Example Directory .. 2-10
Figure 3-1. IBCDMPRS Utility Control Statements 3-2
Figure 3-2. Valid 7-Track Tape Unit Modes in IBCDMPRS 3-4
Figure 3-3. IBCDMPRS Example Directory ... 3-6
Figure 4-1. ICAPRTBL Wait-State Codes .. 4-1
Figure 4-2. ICAPRTBL Utility Control Statements 4-2
Figure 4-3. ICAPRTBL Example Directory .. 4-6
Figure 5-1. Partitioned Directories Whose Data Sets

Can Be Compared Using IEBCOMPR 5-1
Figure 5-2. Partitioned Directories Whose Data Sets

Cannot Be Compared Using IEBCOMPR 5-2
Figure 5-3. IEBCOMPR Job Control Statements 5-3
Figure 5-4. IEBCOMPR Utility Control Statements 5-3
Figure 5-5. IEBCOMPR Example Directory .. 5-6
Figure 6-1. IEBCOPY Job Control Statements .. 6-6
Figure 6-2. Changing Input Record Format Using IEBCOPY 6-7
Figure 6-3. IEBCOPY Utility Control Statements 6-8
Figure 6-4. Multiple Copy Operations Within a Job Step 6-10
Figure 6-5. IEBCOPY Example Directory .. 6-16
Figure 6-6. Copying a Partitioned Data Set-Full Copy 6-17
Figure 6-7. Copying from Three Input Partitioned Data Sets 6-19
Figure 6-8. Copy Operation with "Replace" Specified

on the Data Set Level ... 6-21
Figure 6-9. Copying Selected Members with Reblocking

and Deblocking ... 6-22
Figure 6-10. Selective Copy with "Replace" Specified

on the Member Level. ... 6-25
Figure 6-11. Selective Copy with "Replace" Specified

on the Data Set Level ... 6-26
Figure 6-12. Renaming Selected Members Using IEBCOPY 6-28
Figure 6-13. Exclusive Copy with "Replace" Specified for One Input

Partitioned Data Set .. 6-29
Figure 6-14. Compress-in-Place Following Full Copy

with "Replace" Specified .. 6-33
Figure 6-15. Multiple Copy Operations/Copy Steps 6-35
Figure 6-16. Multiple Copy Operations/Copy Steps Within a Job Step 6-38
Figure 7-1. IBM-Supplied Patterns ... 7-1
Figure 7-2. IEBDG Actions .. 7-3
Figure 7-3. IEBDG Job Control Statements ... 7-4
Figure 7-4. IEBDG Utility Control Statements ... 7-6
Figure 7-5. Defining and Selecting Fields for Output Records

Using IEBDG .. 7-7
Figure 7-6. Field Selected from the Input Record

for Use in the Output Record ... 7-7

Figures xv

Figure 7-7. Compatible IEBDG Operations .. 7-8
Figure 7-8. Default Placement of Fields Within an

Output Record Using IEBDG ... 7-9
Figure 7-9. Creating Output Records with Utility Control Statements 7-10
Figure 7-10. Repetition Due to the REPEAT Statement Using IEBDG 7-11
Figure 7-11. IEBDG Example Directory ... 7 -19
Figure 7-12. Output Records at Job Step Completion 7-22
Figure 7-13. Output Partitioned Member at Job Step Completion 7-23
Figure 7-14. Partitioned Data Set Members at Job Step Completion 7-25
Figure 7-15. Contents of Output Records at Job Step Completion 7-27
Figure 8-1. IEBEDIT Job Control Statements .. 8-2
Figure 8-2. IEBEDIT Utility Control Statement. .. 8-2
Figure 8-3. IEBEDIT Example Directory ... 8-5
Figure 9-1. Creating A Partitioned Data Set From Sequential Input

Using IEBGENER .. 9-2
Figure 9-2. Expanding a Partitioned Data Set Using IEBGENER 9-3
Figure 9-3. Editing a Sequential DataSet Using IEBGENER 9-4
Figure 9-4. IEBGENER Job Control Statements 9-5
Figure 9-5. IEBGENER Utility Control Statements 9-6
Figure 9-6. IEBGENER Example Directory ... 9-15

Figure 9-7 3800 General Module Header .. 9-26
Figure 9-8 3800 FCB Module Structure ... 9-28
Figure 9-9 Deleted.
Figure 9-10 Deleted.
Figure 9-11 Deleted.

. Figure 9-12 IEBIMAGE Listing of a 3800 Forms Control Buffer Module 9-29
Figure 9-13 Copy Modification Module Structure .. 9-30
Figure 9-14 IEBIMAGE Listing of Three Segments of a Copy

Modification Module ... 9-31
Figure 9-15 Character Arrangement Table Module Structure 9-33
Figure 9-16 IEBIMAGE Listing of a Character Arrangement Table Module 9-34
Figure 9-17 Graphic Character Modification Module Structure 9-36
Figure 9-18 IEBIMAGE Listing of Two Segments of a Graphic

Character Modification Module ... 9-37
Figure 9-19 Library Character Set Module Structure .. 9-38
Figure 9-20 IEBIMAGE Listing of Two Segments of a Library

Character Set Module ... 9-39
Figure 9-21 IEBIMAGE Return Codes , ... 9-40
Figure 9-22 Job Control Statements for IEBIMAGE .. 9-41
Figure 9-23 Utility Control Statements for IEBIMAGE 9-42
Figure 9-24 IEBIMAGE Listing of a Copy Modification Module with

Overrun Notes ... 9-48
Figure 9-25. IEBIMAGE Example Directory ... 9-67

Figure 10-1. An Unloaded Data Set Created Using IEBISAM I0-3
Figure 10-2. Record Heading Buffer Used by IEBISAM 10-4
Figure 10-3. IEBISAM Job Control Statements ... 10-5
Figure 10-4. IEBISAM Example Directory ... 10-8
Figure 11-1. IEBPTPCH Job Control Statements 11-3
Figure 11-2. IEBPTPCH Utility Control Statements 11-4
Figure 11-3. IEBPTPCH Example Directory .. 11-15
Figure 11..:4. IEBPTRCP Job Control Statements 11-23
Figure 12-1. Special Purpose Codes .. 12-4
Figure 12-2. MTDI Codes from TCR ... 12-5
Figure 12-3. MTST Codes from TCR ... 12-6

xvi OS/VS 1 Utilities

Figure 12-4. MTST Codes after Translation by IEBTCRIN
with TRANS=STDCL ... 12-7

Figure 12-5. Tape Cartridge Reader Data Stream 12-10
Figure 12-6. Record Construction ... 12-11
Figure 12-7. IEBTCRIN Job Control Statements 12-13
Figure 12-8. IEBTCRIN Utility Control Statements 12-14
Figure 12-9. IEBTCRIN Example Directory .. 12-19
Figure 13-1. IEBUPDTE Job Control Statements 13-3
Figure 13-2. IEBUPDTE Utility Control Statements 13-4
Figure 13-3. Format of System Status Information 13-5
Figure 13-4. NEW, MEMBER, and NAME Parameters 13-6
Figure 13-5. IEBUPDTE Example Directory .. 1 3-18
Figure 13-6. Sequence Numbers and Data Statements to Be Inserted 13-24
Figure 13-7. Sequence Numbers and Seven Data Statements

to be Inserted .. 13-25
Figure 14-1. IEHATLAS Job Control Statements 14-1
Figure 14-2. IEHATLAS Utility Control Statements 14-2
Figure 14-3. Return Codes from ATLAS ... 14-4
Figure 14-4. IEHATLAS Example Directory ... 14-6
Figure 15-1. Direct AccessVolume Initialized Using IEHDASDR 15-1
Figure 15-2. Format of a Direct Access Volume Dumped to a Printer

Using IEHDASDR .. 15-4
Figure 15-3. Input Data Set with Three Program Records 15-6
Figure 15-4. Cylinder 0, Track 0 Fragment Without User Labels 15-6

Figure 15-5. Cylinder 0, Track 0 Fragment With User Labels 15-7
Figure 15-6. IEHDASDR Job Control Statements 15-8
Figure 15-7. RACF Authorization Required for IEHDASDR Function .. 15-11
Figure 15-8. IEHDASDR Utility Control Statements 15-12

. Figure 16-1. IBM Standard Label Group After Volume Receives Data 16-1
Figure 16-2. IEHINITT Job Control Statements .. 16-3
Figure 16-3. Printout of INITT Statement Specifications

and Initial Volume Label Information 16-4
Figure 16-4. . IEHINITT Example Directory .. 16-5
Figure 17-1. IEHIOSUP Job Control Statements 17-1
Figure 17-2. IEHIOSUP Example Directory ... 17-2
Figure 18-1. Index Structure-Listed by IEHLIST 18-1
Figure 18-2. Sample Directory Block .. 18-2
Figure 18-3. Edited Partitioned Directory Entry ... 18-3
Figure 18-4. Sample Partitioned Directory Listing 18-4
Figure 18-5. Sample Printout of a Volume Table of Contents 18-5
Figure 18-6. IEHLIST Job Control Statements .. 18-6
Figure 18-7. IEHLIST Utility Control Statements 18-7
Figure 18-8. IEHLIST Example Directory .. 18-8
Figure 19-1. Move and Copy Operations-Direct Access Receiving

Volume with Size Compatible with Source Volume 19-3
Figure 19-2. Move and Copy Operations-Direct Access Receiving

Volume with Size Incompatible with Source Volume 19-3
Figure 19-3. Move and Copy Operations-Non-Direct Access

Receiving Volume ... 19-6
Figure 19-4. Moving and Copying Sequential and

Partitioned Data Sets .. 19-6
Figure 19-5. Partitioned Data Set Before and After an IEHMOVE

Copy Operation .. 19-7
Figure 19-6. Merging Two Data Sets Using IEHMOVE 19-7
Figure 19-7. MergingThree Data Sets Using IEHMOVE 19-7

Figures xvii

Figure 19-8. Moving and Copying a Volume of Data Sets 19-8
Figure 19-9. Moving and Copying a Group of Cataloged Data Sets 19-9
Figure 19-10. Moving and Copying the Catalog ... 19-10
Figure 19-11. IEHMOVE Job Control Statements 19-11
Figure 19-12. 'IEHMOVE Utility Control Statements 19-14
Figure 19-13. IEHMOVE Example Directory .. 19-27
Figure 20-1. Cataloging a Data Set Using IEHPROGRAM 20-2
Figure 20-2. Uncataloging a Data Set Using IEHPROGM 20-3
Figure 20-3. Index Structure Before and After an IEHPROGM

Build Operation .. 20-4
Figure 20-4. Building an Index Alias Using IEHPROGM 20-4
Figure 20-5. Connecting a Volume (CVOL) to a Second Volume

Using IEHPROGM ... 20-5
Figure 20-6. Connecting Three Volumes Using IEHPROGM 20-5
Figure 20-7. Building a Generation Index Using IEHPROGM 20-6
Figure 20-8. Relationship Between the Protection Status of a

Data Set and Its Passwords ... 20-7
Figure 20-9. Listing of a Password Entry .. 20-9
Figure 20-10. IEHPROGM Job Control Statements 20-11
Figure 20-11. IEHPROGM Utility Control Statements 20-12
Figure 20-12. IEHPROGM Example Directory .. 20-23
Figure 20-13. Index Structure After Generation Data Sets

Are Cataloged ... 20-24
Figure 21-1. Type 21 (ESV) Record Format. ... 21-1

Figure 21-2. Sample Output from IFHSTATR ... 21-2
Figure 21-3. IFHSTATR Job Control Statements 21-2
Figure 22-1. Parameter Lists for Nonlabel Processing Exit Routines 22-2
Figure 22-2. Return Codes Issued by User Exit Routines 22-4
Figure 23-1. Typical Parameter Lists .. 23-2
Figure 23-2. Sequence of DDNMELST Entries .. 23-3
Figure 25-1. System Action at OPEN, EOV, or CLOSE Time 25-2

xviii OS/VSl Utilities

r&rib#t btt bf:irle

SUMMARY OF AMENDMENTS

OS/VSl Data Facility Device Support Release 1.2

Major Technical Changes

Major Editorial Changes

The IEBIMAGE utility, formerly documented in IBM 3800 Printing Subsystem
Programmer's Guide, GC26-3846, is now included in this book. Information on
IEBIMAGE follows the IEBGENER utility description in Chapter 9.

The IBM 3380 Direct Access Storage Device is now supported by all utility
programs except IBCDASDI, IBCDMPRS, and IEHDASDR. Refer to Device
Support Facilities User's Guide and Reference for information on initialization and
maintenance of 3380 volumes. Refer to Data Facility Data Set Services: User's
Guide and Reference for information on 3380 dump, restore, and reduction of free
space fragmentation.

The preface and index have been updated to include references to IEBIMAGE.

The preface has also been updated to include current book titles and order
. numbers ..

OS/VSl DASD Support

Major Technical Changes

o Two utilities have been added to those not explained in this book. A description
of them is contained in the following manuals:

- Device Support Facilities User's Guide and Reference, GC35-0033. This
utility is used for the initialization and maintenance of direct access storage
devices (DASD). It supersedes IBCDASDI and IEHDASDR for these
functions. In addition, it supports the IBM 3375 and 3380 Direct Access
Storage and volumes with indexed VTOC.

- Data Facility Data Set Services: User's Guide and Reference, SC26-3949.
describes DASD utility functions such as dump or restore, and reduction or
elimination of free space fragmentation .

• The IBM 3375 Direct Access Storage is not supported by IBCDASDI, IBCDMPRS,
or IEHDASDR. Refer to Device Support Facilities User's Guide and Reference
for information on initialization and maintenance of such DASD volumes. Refer
to Data Facility Data Set Services: User's Guide and Reference for information
on additional support of such DASD volumes, such as dump or restore, and
reduction or elimination of free space fragmentatioB.

• DASD volumes with indexed VTOC are not supported by IBCDASDI or
IEHDASDR. Refer to Device Support Facilities User's Guide and Reference for
information on initialization and maintenance of such DASD volumes. IEHLIST
supports volumes with indexed VTOC. Refer to Data Facility Device Support:
User's Guide and Reference for additional information.

JULy 1980 (TNL GN26-(979)

Major Technical Changes

The IBM 3262 Printer has been added to the printers supported by the ICAPRTBL
utility program.

Summary of Amendments xix

December 1978 (TNL GN26-0920)

Major Technical Changes

• Miscellaneous editorial and maintenance changes have been made throughout
the manual.

• IEBPTRCP print train cleaning program description, for mM 1403 and 3203-4
printers, added to the IEBPTPCH utility section.

December 1977 Edition

Major Technical Changes

• Separate manual created for OS/VS2 MVS Utilities, GC26-3902.

• IEHUCAT description deleted.

• Numerous technical descriptions expanded throughout.

• Statement of non-support for 3036 consoles by the Independent (Stand-alone)
Utilities.

Major Editorial Changes

OS/VSl Release 6

• All chapters revised to include a tabular description of utility control card
parameters.

• A Device Support section included in the Introduction portion of the manual.

• Specific device support information added to the IBCDASDI and IEHDASDR
chapters.

• Grouping of 3330, 3340, 3344, 3350 as Buffered-Log DASD throughout.

Major Technical Changes

VSl Release 5

• Added device support in IBCDASDI, mCDMPRS, and ICAPRTBL (see new
VS1 section) for the IBM 3203 Model 4 Printer.

• Miscellaneous editorial and technical changes have been made throughout the
manual.

Major Technical Changes

xx OS/VS 1 Utilities

• Included references to the IBM 3800 Printing Subsystem and to the 3800 printer
utility, IEBIMAGE. The IEBIMAGE utility program is described in the IBM
3800 Printing Subsystem Programmer's Guide, GC26-3846.

• Added device support in mCDASDI and IBCDMPRS for the IBM 3800
Printing Subsystem.

• Added device support in IBCDASDI, mCDMPRS, IEHDASDR, IEHLIST, and
IEHATLAS for the mM 3350 Direct Access Storage.

• Added function to the GET AL T function of IEHDASDR to support the mM
3350 Direct Access Storage.

INTRODUCTION

OS!VS provides utility programs to assist in organizing and maintaining data. Each
utility program falls into one of three classes of programs, determined by the
function performed and the type of control of the utility.

System utility programs are used to maintain and manipulate system and user data
sets. Entire volume manipulation, for example, copying or restoring, is also
provided. These programs must reside in an authorized library and are controlled
by JCL statements and utility control statements.

They can be executed as jobs or can be invoked as subroutines by authorized
programs. The invocation of utility programs and the linkage conventions are
discussed in "Appendix B: Invoking Utility Programs from a Problem Program."

Refer to Figure 1-1 for a list of system utility programs and unique notes when
using them.

System Utility Purpose

· IEHATLAS to assign alternate tracks and recover usable data records when
defective tracks are indicated.

· IEHDASDR* to initialize and label direct access volumes, to assign alternate tracks
when defective tracks are indicated, or to dump or restore data.

· IEHINITT to write standard labels on tape volumes.

· IEHLIST to list system control data.

· IEHMOVE to move or copy collections of data.

· IEHPROGM to build and maintain system control data.

· IFHSTATR to select, format, and write information about tape errors from the
IF ASMFDP tape or the SYS 1. MAN data set.

When using system utility programs, be sure that:

· Each data set to be used by programs other than IEHPROGM, IEHMOVE, and
IEHLIST must be defined on a DD statement specifying the data set name. When updating
activity is being performed by -IEHPROGM, IEHMOVE, or IEHLIST in a multiprogramming
environment, other tasks should not be allowed to access the data set being updated. (Refer
to "Appendix C: DD Statements for Defining Mountable Devices" for precautions to be
taken.)

· DD statements defining mountable devices must specify that volumes mounted on those
devices cannot be shared.

· Mountable volumes are not made available to the system until the user is requested by the
system to mount the specified volumes.

· A reader procedure is used that will direct input and output data sets to volumes other than
those which are to be modified by a system utility program.

· When executing a SCRATCH operation, the data set or volume being scratched is not being
used by a program executing concurrently.

Figure 1-1. System Utility Programs

Data set utility programs are used to reorganize, change, or compare data at the
data set and! or record level. These programs are controlled by JCL statements and
utility control statements.

These utilities manipulate partitioned, sequential, or indexed sequential data sets
provided as input to the programs. Data ranging from fields within a logical record
to entire data sets can be manipulated.
*This utility program is no longer supported by IBM. Device Support Facilities and Data

Facility Data Set Services should be used in place of IBCDASDI, IBCDMPRS, and
IEHDASDR. Introduction 1-1

1-2 OS/VSl Utilities

Data set utility programs can be executed as jobs or can be invoked as subroutines
by a calling program. The invocation of utility programs and the linkage
conventions are discussed in "Appendix B: Invo1;dng Utility Programs from a
Problem Program."

Refer to Figure 1-2 for a list of data set utility programs.

Data Set Utility Purpose

· IEBCOMPR to compare records in sequential or partitioned data sets.

· IEBCOPY to copy, compress, or merge partitioned data sets, to select or
exclude specified members in a copy operation, and to rename
and/or replace selected members of partitioned data sets.

· IEBDG to create a test data set consisting of patterned data.

· IEBEDIT to selectively copy job steps and their associated JOB statements.

· IEBGENER to copy records from a sequential data set or to convert a data set
from sequential organization to partitioned organization.

• IEBIMAGE to modify, print, or link modules for use with the IBM 3800
Printing Subsystem.

· IEBISAM to place source data from an indexed sequential data set into a
sequential data set in a format suitable for subsequent
reconstruction.

· IEBPTPCH to print or punch records that reside in a sequential or partitioned
data set.

· IEBTCRIN to construct records from the input data stream that have been
read from the IBM 2495 Tape Cartridge Reader.

· IEBUPDTE to incorporate changes to sequential or partitioned data sets.

Figure 1-2. Data Set Utility Programs

Independent utility programs are used to prepare cdevices for system use when the
operating system is not available. They operate outside of, and in support of, the
operating system, are controlled by utility control statements, and cannot be
invoked by a calling program. They do not support, however, the 3036 display
console or the 3066 console.

Refer to Figure 1-3 for a list of independent utility programs.

Independent Utility Purpose

· IBCDASDI* to initialize a direct access volume and to assign alternate
tracks.

· IBCDMPRS* to dump and restore the data contents of a direct access
volume.

· ICAPRTBL to load the forms control and Universal Character Set buffers
of a 3211 after an unsuccessful attempt to IPL, with the 3211
printer assigned as the output portion of a composite console.

Figure 1-3. Independent Utility Programs

The selection of a specific program is dependent on the nature of the job to be
performed. For example, renaming a data set involves modifying system control
data. Therefore, a system utility program can be used to rename the data set. In
some cases, a specific function can be performed by more than one program. Figure
1-6 at the end of this chapter, is provided to help you find the program that
performs the function you need.

*This utility program is no longer supported by IBM. Device Support Facilities and Data
Facility Data Set Services should be used in place of IBCDASDI, IBCDMPRS, and
IEHDASDR.

Device Support

Control

Job Control Statements

The IEHDASDR system utility program can be used with volumes containing
VSAM and/or non-VSAM data sets. The other utility programs that manipulate
data sets and are contained in this manual cannot be, used with VSAM data sets.
Information about VSAM data sets can be found in OS/VSl Access Method
Services.

Except where noted, all of the following devices are supported by all Utility
programs. Restrictions and peculiar device support will be noted in the individual
Utility sections.

The table below indicates specific devices supported, and the notation to be used to
reference them. The term Buffered-log DASD includes all DASD except
2314/2319 and 2305 devices.

DASD:

Tape:

Device-id Notation

2314

2305

3330

3330-1

3330V

3340

3350

3375

3380

2400

3400

2495

Devices

2314,2319

2305 Model 1 & 2

3330, 3333 and 3350 in 3330-MODl compatibility
mode

3330-MODll, 3333-MOD11 and 3350 in
3330-MODll compatibility mode

3850 MSS Virtual Volumes

3340, 3344- (both 35 & 70 megabyte models)

3350 Native mode

3375

3380

2400 (all models)

3400 (all models)

2495 (IEBTCRIN only)

System and data set utility programs are controlled by job control statements and
utility control statements. Independent utility programs are controlled by utility
control statements; because these programs are independent of the operating
system, job control statements are not required. The job control statements and
utility control statements necessary to use utility programs are provided in the
major discussion of each utility program.

A system or data set utility' program can be introduced to the operating system in
different ways:

• Job control statements can be included in the input stream.

• Job control statements, placed in a procedure library or defined as an inline
procedure, can be included by means of the EXEC job control statement.

• A utility program can be invoked by a calling program.

If job control statements are placed in a procedure library, they should satisfy the
requirements for most applications of the program; a procedure, of course, can be
modified or supplemented for applications that require additional parameters, data
sets, or devices. The data set utility IEBUPDTE can be used to enter a procedure
into a procedure library; see "IEBUPDTE Program."

Introduction 1-3

A job that modifies a system data set (identified by SYS 1.) must be run in a single
job environment; however, a job that uses a system data set, but does not modify
it, can be run in a multiprogramming environment. The operator should be
informed of all jobs that modify system data sets.

DD statements should ensure that the volumes on which the data sets reside cannot
be shared when update activity is being performed.

Job control statements can be continued on subsequent lines, but the continued
line must begin in columns 4 through 16. No continuation mark is required in
column 72, unless the continued line is a comment.

Utility Control Statements

Utility control statements are used to identify a particular function to be performed
by a utility program and, when required, to identify specific volumes or data sets to
be processed.

The control statements for the utility programs have the following standard format:

label operation operand

The label symbolically identifies the control statement and, with the exception of
system utility program IEHINITT, can be omitted. When included, a name must
begin in the first position of the statement and must be followed by one or more
blanks. It can contain from one to eight alphameric characters, the first of which
must be alphabetic.

The operation identifies the type of control statement. It must be preceded and
followed by one or more blanks.

The operand is made up of one or more keyword parameters separated by commas.
The operand field must be preceded and followed by one or more blanks. Commas,
parentheses, and blanks can be used only as delimiting characters.

Comments can be written in a utility statement, but they must be separated from
the last parameter of the operand field by one or more blanks.

Continuing Utility Control Statements

1-4 OS/VS 1 Utilities

Utility control statements are coded on cards or as card images and are contained in
columns 1 through 71. A statement that exceeds 71 characters must be continued
on one or more additional cards. A nonblank character must be placed in column
72 to indicate continuation. A utility statement can be interrupted either in column
71 or after any comma.

The continued portion of the utility control statement must begin in column 16 of
the following statement.

Comments can be placed on any card containing a complete or partial statement.
However, when a card is included for the sole purpose of continuing a comment,
the continuation must begin in column 16.

Note: The IEHPROGM, IEBCOPY, IEBPTPCH, IEBGENER, IEBCOMPR, and
IEBDG utility programs permit certain exceptions to these requirements (see the
applicable program description).

The utility control statements are discussed in detail, as applicable, in the remaining
chapters.

Restrictions

• Unless otherwise indicated in the description of a specific utility program, a
temporary data set can be processed by a utility program only if the user
specifies the complete name generated for the data set by the sy~tem (for
example, DSNAME=SYS68296.T000051.RPOOl.JOBTEMP.TEMPMOD).

• Standard utility programs do not normally support VSAM. Refer to the various
program descriptions for certain exceptions.

Notational Conventions

keyword=dev;ce=l;st

A uniform system of notation describes the format of utility commands. This
notation is not part of the language; it simply provides a basis for describing the
structure of the commands.

The command-format illustrations in this book use the following conventions:

• Brackets [] indicate an optional parameter.

• Braces { } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

• Required parameters will not have brackets or braces surrounding them.

• Items separated by a vertical bar (I) represent alternative items. No more than
one of the items may be selected.

• An ellipsis ... indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

• Other punctuation (parentheses, commas, spaces, etc.) must be entered as
shown. A space is indicated by b.

• Boldface type indicates the exact characters to be entered. Such items must be
entered exactly as illustrated.

• Italic type specifies fields to be supplied by the user.

• Underscored type indicates a default option. If the parameter is omitted, the
underscored value is assumed.

The term KEYWORD is replaced by VOL, FROM, or TO.

The term device is replaced by either a generic name, for example, 3330; or a
substitute for a generic name, for example DISK, if this substitute has been
generated into your system. For direct access devices, the term list is replaced
by one or more volume serial numbers separated by commas. When there is
more than one, the entire list field must be enclosed in parentheses.

For tape, the term list is replaced by either one or more volume serial
number-comma-data set sequence number pairs. Each pair is separated from the
next pair by a comma. When there is more than one pair, the entire list field
must be enclosed in parentheses; for example:
FROM=2400= (tapeA, 1 ,tapeB, 1).

All volumes needed for output should be specified in list.

Introduction 1-5

Special Referencing Aids

1-6 OS/VSl Utilities

Two special referencing aids are included in this publication to help you:

1. Locate the right utility program.

2. Locate the right example.

To locate the right utility program, refer to Figure 1-6 in "Guide to Utility Program
Functions," at the end of this section. Figure 1-4 shows a portion of the table. The
figure shows that you can use IEHINITT to label a magnetic tape volume or
IEHLIST to list a volume table of contents.

Task

Label

List

Definition of Task

magnetic tape volumes

a password entry
a volume table of contents
partitioned directories

Figure 1-4. Locating the Right Program

Utility Program

IEHINITT

IEHPROGM
IEHLIST

To locate the right example, use the figure-called an "example directory" -that
precedes each program's examples. Figure 1-5 shows a portion of the example
directory for IEHMOVE. The figure shows that IEHMOVE Example 1 is an
example of moving a sequential data set and that IEHMOVE Example 2 is an
example of copying a sequential data set.

Operation Devices

MOVE Sequential Disk

COpy Sequential Disk

Figure 1-5. Locating the Right Example

Comments

Source volume is demounted
after job completion.
Two mountable disks.

Three cataloged sequential
data sets are to be copied.

Example

2

Guide to Utility Program Functions
Figure 1-6 shows a list of tasks that the utility programs can be used to perform.
The left column shows tasks that you might want to perform. The middle column
more specifically defines the tasks. The right column shows the utility programs
that can be used for each task. Notice that in some cases more than one program
may be available to perform the same task.

Task

Add

Analyze

Assign alternate
tracks

Build

Catalog

Change

Clean

Compare

Compress-in
place

Connect

Construct

Convert to
partitioned

Convert to
sequential

Copy

Create

a password

tracks on direct access

to a direct access volume
to a direct access volume and
recover usable data

a generation index
a generation
an index

a data set
a generation data set

data set organization
logical record length

Utility Program

IEHPROGM

IEHDASDR *, IBCDASDI*

IEHDASDR*, IBCDASDI*

IEHATLAS

IEHPROGM
IEHPROGM
IEHPROGM

IEHPROGM
IEHPROGM

volume serial number of direct access volume

IEBUPDTE
IEBGENER
IEHDASDR*

an IBM 1403 or 3203-4 print train

a partitioned data set
sequential data sets

a partitioned data set

volumes

records from MTST and MTDI input

IEBPTPCH(IEBPTRCP)

IEBCOMPR
IEBCOMPR

IEBCOPY

IEHPROGM

IEBTCRIN

a sequential data set created as a result of an unload IEBCOPY
sequential data sets IEBUPDTE,IEBGENER

a partitioned data set
an indexed sequential data set

a catalog
a direct access volume
a partitioned data set
a volume of data sets
an indexed sequential data set
cataloged data sets

IEBUPDTE, IEBCOPY
IEBISAM, IEBDG

IEHMOVE
IEHDASDR * , IBCDMPRS*, IEHMOVE

IEBCOPY,IEHMOVE
IEHMOVE

IEBISAM
IEHMOVE

dumped data from tape to direct access
job steps

IEHDASDR*, IBCDMPRS*
IEBEDIT

IEBGENER, IEBUPDTE, IEBDG
IEBCOPY, IEHMOVE

IEBGENER, IEHMOVE, IEBUPDTE
IBCDMPRS*

members
selected members
sequential data sets
to tape

a library of partitioned members
a member
a sequential output data set
an index
an indexed sequential data set
an output job stream
3800 printer control modules

IEBUPDTE
IEBDG
IEBDG

IEHPROGM
IEBDG

IEBEDIT
IEBIMAGE

Figure 1-6 (Part 1 of 3). Tasks and Utility Programs

*This utility program is no longer supported by IBM. Device Support Facilities and Data
Facility Data Set Services should be .used in place of IBCDASDI, IBCDMPRS, and
IEHDASDR.

Introduction 1-7

1-8 OS/VS 1 Utilities

Task

Delete

Dump

Edit

Edit and convert
to partitioned

Edit and copy

Edit and list

Edit and print

Edit and punch

Enter

Exclude

Expand

a password
an index structure
records in a partitioned data set

a direct access volume

MTDI input

a sequential data set

a job stream
a sequential data set

error statistics by volume (ESV) records

a sequential data set

a sequential data set

a procedure into a procedure library

a partitioned data set member from a copy
operation

a partitioned data set
a sequential data set

DASD volumes

test data

Utility Program

IEHPROGM
IEHPROGM
IEBUPDTE

IEHDASDR*, IBCDMPRS*

IEBTCRIN

IEBGENER, IEBUPDTE

IEBEDIT
IEBGENER, IEBUPDTE

IFHSTATR

IEBPTPCH

IEBPTPCH

IEBUPDTE

IEBCOPY,IEHMOVE

IEBCOPY
IEBGENER

IEHDASDR * , IBCDASDI*

IEBDG

Format

Generate

Get alternate
tracks on a direct access volume IEHDASDR*, IBCDASDI*, IEHATLAS

Include

Initialize

Insert records

Label

List

changes to members or sequential data sets

a direct access volume

into a partitioned data set

magnetic tape volumes

a password entry
a volume table of contents
contents of direct access volume on system output
device
number of unused directory blocks and tracks
partitioned directories
the contents of the catalog (SYSCTLG data set)

Load a previously unloaded partitioned data set
an indexed sequential data set
an unloaded data set
UCS and FCB buffers of a 3211 or a 3203

Merge partitioned data sets

Modify a partitioned or sequential data set

3800 printer control modules

Move a catalog
a volume of data sets
cataloged data sets
partitioned data sets
sequential data sets

Number records in a new member
in a partitioned data set

Figure 1-6 (Part 2 of 3). Tasks and Utility Programs

IEBUPDTE

IEHDASDR *, IBCDASDI*

IEBUPDTE

IEHINITT

IEHPROGM
IEHLIST

IEHDASDR*
IEBCOPY
IEHLIST
IEHLIST

IEBCOPY
IEBISAM

IEHMOVE
ICAPRTBL

IEHMOVE, IEBCOPY

IEBUPDTE

IEBIMAGE

IEHMOVE
IEHMOVE
IEHMOVE
IEHMOVE
IEHMOVE

IEBUPDTE
IEBUPDTE

*This utility program is no longer supported by IBM. Device Support Facilities and Data
Facility Data Set Services should be used in place of IBCDASDI, IBCDMPRS, and
IEHDASDR.

Task

Password protect add a password
delete a password
list passwords
replace a password

Utility Program

IEHPROGM
IEHPROGM
IEHPROGM
IEHPROGM

Print a sequential data set
partitioned data sets
selected records

IEBGENER, IEBUPDTE, IEBPTPCH
IEBPTPCH
IEBPTPCH

Punch

Read

Reblock

Recover

Release

Rename

Renumber

Replace

Restore

Scratch

Uncatalog

Unload

Update

Write

3800 printer control modules

a partitioned data set member
a sequential data set
selected records

Tape Cartridge Reader input

a partitioned data set
a sequential data set

data from defective tracks on direct
access volumes

tracks flagged as defective on some DASD

a connected volume

a partitioned data set member
a sequential or partitioned data set
moved or copied members

logical records

a password
data on an alternate track
identically named members
logical records
members
records in a member
records in a partitioned data set
selected members
selected members in a move or copy
operation

3800 printer control modules

a dumped direct access volume from tape

a volume table of contents
data sets

data sets

a partitioned data set
a sequential data set
an indexed sequential data set

in place a partitioned data set
TTR entries in the supervisor call library

IPL records and a program on a direct access
volume

Figure 1-6 (Part 3 of 3). Tasks and Utility Programs

IEBIMAGE

IEBPTPCH
IEBPTPCH
IEBPTPCH

IEBTCRIN

IEBCOPY
IEBGENER, IEBUPDTE

IEHATLAS
IEHDASDR *, IBCDASDI*

IEHPROGM

IEBCOPY,IEHPROGM
IEHPROGM

IEHMOVE

IEBUPDTE

IEHPROGM
IEHATLAS

IEBCOPY
IEBUPDTE
IEBUPDTE
IEBUPDTE

IEBUPDTE, IEBCOPY
IEBCOPY

IEBCOPY, IEHMOVE

IEBIMAGE

. IBCDMPRS*, IEHDASDR *

IEHPROGM
IEHPROGM

IEHPROGM

IEHMOVE, IEBCOPY
IEHMOVE

IEBISAM

IEBUPDTE
IEHIOSUP

IBCDASDI*, IEHDASDR*

*This utility program is no longer supported by IBM. Device Support Facilities and Data
Facility Data Set Services should be used in place of IBCDASDI, IBCDMPRS, and
IEHDASDR.

Introduction 1-9

'NyI.1ItH •• Idij JW+ tnltHNri\'.ttt¥Httt

IBCDASDI PROGRAM

Note: IBCDASDI is no longer supported for OS/VSl. DASD initialization and
maintenance should be performed with Device Support Facilities, Program Product
5652-VSl, as described in Device Support Facilities User's Guide and Reference.

IBCDASDI is an independent utility used to initialize direct access volumes for use
and to assign alternate tracks on direct access storage volumes. IBCDASDI jobs
can be performed continuously by stacking complete sets of control statements.

Initializing a Direct Access Volume

IBCDASDI can be used to initialize a direct access volume by two methods;

A non-QUICK DASDI will:

1. Unassign all alternate tracks

2. Rewrite the home address and/or record zero (HA/RO) on all tracks

3. Test flagged defective tracks and recover them if no errors are detected

4. Assign defective tracks to new, alternate tracks

5. Perform all other functions of QUICK DASDI

A QUICK DASDI will:

1. Write IPL records on track 0 (records 1 and 2)

2. Write volume labels on track 0 (record 3) and provide space for additional
records, if requested (reads alternate tracks and decreases the total count of the
alternates by one when an alternate is found defective or assigned)

3. Construct and write a volume table of contents (VTOC)

4. Write an IPL program, if requested, on track 0

5. Optionally, check for tracks that have been previously designated as defective
(flagged) and have had alternate tracks assigned

6. Optionally, write a track descriptor record (record 0) and erase the remainder of
each track. May also attempt to reclaim any track that has the defective bit on in
the flag byte of the home address.

Assigning an Alternate Track

IBCDASDI can be used to: (1) test a track* and, if necessary, assign an alternate
or (2) bypass testing and automatically assign an alternate.

If testing is performed, an alternate track is assigned for any track found defective.
If the defective track is an unassigned alternate, it is flagged to prevent its future
use. The alternate track address is made known to the operator.

If a track is tested and not found to be defective, no alternate is assigned. The
operator is notified by a message.

If testing is bypassed, an alternate track can be assigned for the specified track or
its alternate, whether it is defective or not. If the specified track is an unassigned
alternate, it is flagged to prevent its future use.

*Only 2314 and 3350 (native) devices are tested before alternate tracks are assigned.

IBCDASDI Program 2-1

Executing IBCDASDI

Input and Output

Control

2-2 OS/VS 1 Utilities

mCDASDI is loaded as a card deck or as card images on tape. Control statements
for the requested program can follow the last card or card image of the program, or
can be entered on a separate input device. To execute IBCDASDI:

1. Place the object program deck in the reader or mount the tape reel that contains
the object program.

2. Load the object program from the reader or tape drive by setting the load
selector switches and pressing the console LOAD key. When the program is
loaded, the wait state is entered and the console lights display the hexadecimal
value FFFF.

3. Define the control statement input device in one of the following ways:

a. Press the REQUEST key of the console typewriter and, in response to the
message "DEFINE INPUT DEVICE", enter "INPUT=xxxx,cuu". The xxxx
is the device type, c is the channel address, and uu is the unit address. The
device type can be 1402,2400,2501,2540, 3402, or 3505.

b. If the console typewriter is not available or unsupported, enter at storage
location 0110 (hexadecimal): lcuu for a 1442 Card Read Punch; 2cuu for a
2400 9-track tape unit; or Ocuu for a 2540 Card Read Punch, 2501 card
reader, 3410 tape, or 3420 tape. Press the console INTERRUPT key.

4. Control statements are printed on the message output device. At the end of the
job, "END OF JOB" is printed on the message output device, and the program
enters the wait state.

IBCDASDI uses as input a control data set, which consists of utility control
statements.

IBCDASDI produces as output an initialized direct access volume and a message
data set.

IBCDASDI is controlled by utility control statements. Because IBCDASDI is an
independent utility, operating system job control statements are not used.

Use IEHDASDR for online initialization of all supported DASD.

Utility Control Statements

JOB Statement

MSG Statement

DADEF Statement

All utility control statements/operands must be preceded and followed by one or
more blanks.

IBCDASDI utility control statements in the order in which they must appear are:

Statement

JOB

MSG

DADEF

VLD

VTOCD

IPLTXT

GETALT

END

LASTCARD

Use

Indicates the beginning of an IBCDASDI job.

Defines an output device for operator messages.

Defines the volume to be initialized.

Contains information for constructing an initial volume label and for
allocating space for additional labels.

Contains information for controlling the location of the volume table
of contents.

Separates utility control statements from any IPL program text
statements.

Assigns an alternate track on a volume.

Indicates the end of an IBCDASDI job.

Ends a series of stacked IBCDASDI jobs.

Figure 2-1. IBCDASDI Utility Control Statements

The JOB statement indicates the beginning of an mCDASDI job.

The format of the JOB statement is:

[label] JOB [user-information]

The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement is:

[label] MSG TODEV=xxxx

,TOADDR=cuu

The DADEF statement defines the direct access volume to be initialized.

The format of the DADEF statement is:

[label] DADEF TODEV=xxxx

,TOADDR=cuu

[,IPL={YES I NO}]

,VOLID={ serial I SCRATCH}

[,FLAGTEST={NO I YES}]

[,PASSES=n]

[,BVPASS={YES I NO}]

[,MODEL=n]

IBCDASDI Program 2~3

VLD Statement

VTOCD Statement

IPL TXT Statement

GET AL T Statement

2-4 OS/VS 1 Utilities

The VLD Statement contains information for constructing an initial volume label
and for allocating space for additional labels.

The format of the VLD statement is:

[label] VLD NEWVOLID=serial

[,VOLPASS={!! Il}]

[,OWNERID=xxxxxxxxxx]

[,ADDLABEL=n]

The VTOCD statement contains information for controlling the location of the
volume table of contents (VTOC).

The format of the VTOCD statement is:

[label] VTOCD STRTADR=nnnnn

,EXTENT=nnnn

The IPL TXT statement separates utility control statements from IPL program text
statements. It is required only when IPL text is included.

The format of the IPLTXT statement is:

IPLTXT

IPL TXT must be preceded by at least one blank space.

When IPL text is included, END must start in column 2. See "END Statement"
below.

The GETALT statement is used to assign an alternate track on a volume. Any
number of alternate tracks can be assigned in a single job by including a GET AL T
statement for each track.

Note: A GETALT statement that applies to a 3330,3330-1, or 3340/3344 device
causes an alternate track to be assigned automatically without testing.

The format of the GETALT statement is:

[label] GETALT TODEV=xxxx

,TOADDR=cuu

, TRACK = cccchhhh

,VOLID=serial

[,FLAGTEST={NO I YES}]

[,PASSES=n]

[,BVPASS={YES I NO}]

[,MODEL=n]

t"tS f" l'f t °fWtf 'bp'i' U Lti$!#U'rF'r ,*,*:I1t*'t irji,i", +W riit*\d**WM+'itt"'Y '!I'!, '2M 'Wt ¥'f'h It' '5' IH"W 't*B'ithrtM!e!,*\" 'i'. ..,. MMtHWH*¥

END Statement

LASTCARD Statement

The GET AL T function should not be used immediately after a RESTORE
operation that did not complete successfully. Before using GETALT in such a case,
reinitialize the volume, if possible.

The END statement denotes the end of job. It appears after the last function
definition statement.

The format of the END statement is:

[label lEND [user-information 1

END must be preceded and followed by at least one blank.

END must start in column 2 if IPL TXT is included.

The LASTCARD statement is required only when an IBCDASDI job or a series of
stacked IBCDASDI jobs is followed by other statements on the control statement
input device. The LASTCARD statement must follow the last END statement
applying to an IBCDASDI job.

The format of the LASTCARD statement is:

LASTCARD

LAST CARD must be preceded by at least one blank space.

IBCDASDI Program 2-5

Operands

ADDLABEL

BYPASS

EXTENT

App6cable
Control
Statement

VLD

DADEF

GETALT

VTOCD

2-6 OS/VS 1 Utilities

Description of Operands/Parameters

ADDLABEL=n
specifies the total number of additional labels for which space is to be
allocated. The value of n can be 1 through 7.

Default: 0

BVPASS = YES
specifies that no check is to be made for defective tracks.

If 2314: write standard RO on each track. No check will be made for
defective tracks.

If Buffered-log DASD: the BYPASS parameter is not applicable.

Default: NO

IF 2314:
If FLAGTEST=NO write HA and 7294 byte RO, then test (read RO).
Write HA and standard RO on each track.

If FLAGTEST= YES, write 7294 byte RO then test (read RO). Write
standard RO on each track.

BYPASS=YES

Applicable to 2314 and 3350 only. Causes an alternate track to be
assigned without testing the track to be flagged.

Default: BYPASS=NO

Test the track to be flagged and assign an alternate only if the test results
are in error (data check).

EXTENT=nnnn
specifies the length (number of tracks) of the VTOC.

Device VTOC Entries per Track

2314 25
2319 25
2305-1 18
2305-2 34
3330 39
3330-1 39
3340/3344 22
3350 47

Figure 2-2. VTOC Entries per Track

IIr»lw' l"'H N' tJlfiW Mtt'PRJt'P"f'Z ••.• ; .. " " •• * t #'.'W'bfdttinHt:::tlptijHtnttHriWtWtIN

Operands

FLAGTEST

IPL

MODEL

NEWVOLID

OWNERID

Applicable
Control
Statement

DADEF

GETALT

DADEF

DADEF
GETALT

VLD

VLD

Description of Operands/Parameters

FLAGTEST={NO I YES}

If 2314: FLAGTEST=NO specifies that all tracks will be tested whether
flagged defective or not. Write HA on each track if BYPASS=NO is also
specified.

If Buffered-log DASD: the FLAG TEST parameter is not applicable.

Default: YES
If 2314: check for and maintain all flagged (defective) tracks by assigning
alternates.

If Buffered-log DASD: the FLAGTEST parameter is not applicable.

If 2314: FLAGTEST=NO specifies previously flagged tracks will be tested
before assigning alternates (see BYPASS).

Default: YES

If 2314: previously flagged tracks will remain flagged.

IPL={YES I NO}
specifies that an IPL program is to be written on the volume. An IPL
initialization program must be written on a device to be used for system
residence.

Default: No IPL program is written.

MODEL=n
specifies a decimal model number (lor 2). This parameter corresponds
to the 2305-1 and 2305-2, respectively. MODEL is required when a
2305 is to be initialized.

NEWVOLID=serial
specifies a one- to six-character volume serial number.

OWNERID=xxxxxxxxxx
specifies a one- to ten-character field that identifies the owner of the
volume.

Default: no identification given.

IBCDASDI Program 2-7

Operands

PASSES

STRTADR

TOADDR

TODEV

2-8 OS/VS 1 Utilities

Applicable
Control
Statement

DADEF

GETALT

VTOCD

MSG
DADEF
GETALT

MSG

Description of Operands/Parameters

PASSES=n

For 2314:
specifies the number of passes per track to be made in checking for
defective tracks. (n= 1 :255)

For 3330:
If PASSES=O, do a QUICK DASDI.
If P ASSES= 1, write RO on each track.
If PASSES> 1, write RO on each track 'n' times. No surface analysis is
performed.

For 3340:
If P ASSES=O, do a QUICK DASDI.
If PASSES> 1, test all flagged (defective) tracks and recover (unflag)
those that test okay. Write RO on each track.

For 3350:
If PASSES=O, do a QUICK DASDI.
If PASSES> = 1, write HA/RO on each track. Test all flagged tracks and
recover (unflag) those with no errors.

For 2314:
specifies the number of passes per track to be made in checking for
defective tracks. (n= 1 :255)

For Buffered-log DASD:
the PASSES parameter is not applicable.

STRTADR=nnnnn
specifies the one- to five-byte decimal track address, relative to the
beginning of the volume, at which the VTOC is to begin. The VTOC
cannot occupy track 0 or any alternate track.

To improve system performance when reading from and writing to the
VTOC, it is recommended that every VTOC end on the last track of a
cylinder (a cylinder boundary). This means that you should determine
the starting address for the VTOC by subtracting the number of tracks
allocated to the VTOC from the nearest larger track that ends on a
cylinder boundary. For example, if the VTOC requires 5 tracks on a
3336 disk pack, which has 19 tracks per cylinder, the starting track
should be specified as track 14, so that the VTOC will end on track 18
(the last track of the first cylinder). .

TOADDR=cuu
specifies the channel number, c, and unit number, UU, of the message
output device (MSG), or the direct access device (GETALT and
DADEF).

TODEV=xxxx
specifies the type of device to receive messages. All supported Tape drives
(see Introduction - Device Support) and the following unit-record devices:
1403, 1443, 1052, 3203-4, 3210, 3215, 3211, and 3800.

Operands

TRACK

Applicable
Control
Statement

DADEF
GETALT

GETALT

user-information JOB
END

VOLID

VOLPASS

Restrictions

DADEF
GETALT

VLD

Description of Operands/Parameters

specifies the type of DASD device (see Introduction - Device Support for
proper device notation).

TRACK=cccchhhh
specifies the hexadecimal address of the track for which an alternate is
requested, where cccc is the cylinder number and hhhh is the head
number.

[user-information]
specifies user explanation of action.

VOLID={serial I SCRATCH}
specifies the volume serial number of the volume to which an alternate
track is to be assigned. If serial does not match the volume serial number
found on this volume, the operator is notified and the job is terminated.
SCRATCH specifies that no volume serial number made check is to be
made.

VOLPASS={!! Il}
specifies the value of the volume security bit.

o specifies that the volume is not security protected.
1 specifies that the volume is security protected.

IBCDASDI does not support volumes with indexed VTOC or the IBM 3375 or
3380. See Device Support Facilities User's Guide and Reference for information
on initialization and maintenance of such DASD volumes.

IBCDASDI Program 2-9

Restrictions

mCDASDI should not be used to format Mass Storage System staging volumes
because the disk format written by this utility is incompatible with the disk format
required for staging volumes. IBCDASDI may be used to initialize a pack that has
been formatted for use as a staging pack. You must use the DADEF option,
P ASSES= 1, to re-initialize a staging pack for normal system use.

IBCDASDI Examples

IBCDASDI Example 1

2-10 OS/VS 1 Utilities

The examples that follow illustrate some of the uses of mCDASDI. See the
IBCDASDI utility control statement descriptions for complete device dependent
information. Figure 2-3 can be used as a quick reference guide to IBCDASDI
examples. The numbers in the "Example" column point to examples that follow:

Operation

Initialize

Initialize

Initialize

Initialize

Initialize

Assign alternate
tracks

Comments

A disk volume is to be initialized with
surface analysis. (2305 and 2314 only)

A disk volume is to be initialized without
surface analysis. (2305 and 2314 only)

A disk volume to be used as the system
residence volume is to be initialized. An IPL
program is included in TXT format.

A 3350 volume is to be formatted for
compatible 3330-1 mode and initialized

A 3344 volume is to be initialized.
Flagged (defective) tracks are to be
tested and recovered if no (data check)
errors occur.

Three alternate tracks are to be assigned
on a disk volume.

Figure 2-3. IBCDASDI Example Directory

Example

2

3

4

5

6

Note: Examples which use disk in place of actual device-ids, must be changed
before use. See the Device Support section, in the Introduction to this manual, for
valid device-id notation.

In this example, a 2305 volume is initialized with surface analysis.

INIT JOB 'INITIALIZE 2305'
MSG TODEV=1403,TOADDR=00E

72

DADEF TODEV=2305,TOADDR=140,VOLID=SCRATCH,FLAGTEST=NO, C
MODEL=2
VLD NEWVOLID=111111

VTOCD STRTADR=40,EXTENT=8
END

The control statements are discussed below:

• JOB initiates the IBCDASDI job.

• MSG defines the 1403 on channel 0, unit OE, as the output message device.

• DADEF specifies that a 2305 volume on channell, unit 40, is to be initialized.
No check is to be made for previously flagged tracks.

fW'P!'Mf'Diit"'reww\r,mWfflIL'*n'*"l:nlr\'$f t t ttW t*WHd±t » b*Wttrl WHt"tt

IBCDASDI Example 2

IBCDASDI Example 3

• VLD specifies 111111 as the volume serial number of the volume to be
initialized.

• VTOCD specifies the starting address and length in tracks of the volume table of
contents.

In this example, a disk volume is initialized. No surface analysis is performed with
the initialization.

INIT JOB INITIALIZE DISK
MSG TODEV=1403,TOADDR=00E

DADEF TODEV=disk, TOADDR= 140, VOLID=SCRATCH, BYPASS=YES
VLD NEWVOLID=230500

VTOCD STRTADR=1,EXTENT=7
END

The control statements are discussed below:

• DADEF specifies that a disk volume is to be initialized and specifies the channel
and unit number. No check is to be made for the volume serial number or for
defective tracks.

• VLD specifies the volume serial number of the volume to be initialized.

• VTOCD specifies that the volume table of contents is to begin on track 1 and is
to extend over seven tracks. The VTOC terminates on the last track of the first
cylinder.

• END specifies the end of the IBCDASDI job.

In this example, a disk volume is initialized for later use as a system residence
volume. An IPL program is included in standard TXT format.

INIT JOB 'INITIALIZE DISK'
MSG TODEV=1403,TOADDR=00E

DADEF TODEV=disk, TOADDR= 1 50, IPL=YES , VOLID=SCRATCH
VLD NEWVOLID=P10000,OWNERID=BROWN,ADDLABEL=2

VTOCD STRTADR=2,EXTENT=7
IPLTXT

(IPL program text statements)

END

The control statements are discussed below:

• DADEF specifies that a disk volume is to be initialized and specifies the channel
number and unit number. An IPL program is to be included.

• VLD specifies a volume serial number and owner identification for the volume
to be initialized. It also specifies that space is to be allocated for two additional
labels.

• VTOCD specifies that the volume table of contents is to begin on track 2 and is
I to extend over seven tracks.

I • IPLTXT specifies the beginning of IPL program text statements.

• END specifies the end of IPL program text statements. Because IPL text is
included, END begins in column 2.

IBCDASDI Program 2-11

IBCDASDI Example 4

IBCDASDI Example 5

IBCDASDI Example 6

2-12 OS/VSl Utilities

In this example, a 3350 volume (in 3350 or 3330 format) will be reformatted to
compatible 3330-1 format. HA and RO fields will be rewritten. Each flagged
(defective) track encountered will be recovered.

INIT JOB
MSG

DADEF

VLD
VTOCD

END

'INITIALIZE 3350 TO 3330-1 FORMAT'
TODEV=1403,TOADDR=00E
TODEV=3330-1,TOADDR=360,VOLID=SCRATCH,
PASSES=l
NEWVOLID=333011
STRTADR=7675,EXTENT=19

The control statements are discussed below:

72

C

• DADEF specifies that a 3350 in 3330-1 compatibility mode is to be reformatted
to 3330-1 format and initialized. Flagged (defective) tracks will be tested and
recovered (unflagged) if no errors occur.

• VLD specifies 333011 as the volume serial number.

• VTOCD specifies a one cylinder VTOC in the center of the 3330-1 volume.

In this example, a 3344 volume will be initialized. Flagged (defective) tracks will be
tested and recovered (unflagged) if no errors occur. RO will be rewritten on each
track.

INIT JOB
MSG

DADEF

VLD
VTOCD

END

'INITIALIZE 3344'
TODEV=1403,TOADDR=00E
TODEV=3340,TOADDR=259,VOLID=SCRATCH,
PASSES=l,BYPASS=NO
NEWVOLID=3340AA
STRTADR=2,EXTENT=10

The control statements are discussed below:

• DADEF specifies a 3340 volume is to be initialized.

• VLD specifies 3340AA as the volume serial number.

72

C

• VTOCD specifies starting address and length of the volume table of contents.

In this example, three alternate tracks are assigned to a disk volume, without
reinitialization of the volume. The check for a defective track is bypassed when the
first two of the three tracks are assigned.

72
ALTRK JOB ASSIGN ALTERNATE TRACKS ON DISK

MSG TODEV=1052,TOADDR=009
STMTl GETALT TODEV=d~k,TOADDR=150,VOLID=P20000, C

BYPASS=YES,TRACK=006FOOOl
STMT2 GETALT TODEV=disk, TOADDR=150, VOLID=P20000, C

BYPASS=YES,TRACK=0091 0004
STMT3 GETALT TODEV=d~k,TOADDR=150, C

TRACK=004BOO07,VOLID=P20000
END

iLflhWHIjW-tiUf,&Ut¥"lb!vt 'Ir W'.Htldtrt±t'·bl ttri tHHd"d*\

The control statements are discussed below:

• The first and second GET AL T statements bypass the check for defective tracks.

• The third GET AL T statement causes the check for a defective track to be made
because BYPASS is not included.

IBCOASOI Program 2-13

IBCDMPRS PROGRAM

Note: IBCDMPRS is no longer supported for OS/VS1. DASD dump, restore, and
reduction of free space fragmentation should be performed with Data Facility Data
Set Services, Program Product 5740-UT3, as described in Data Facility Data Set
Services: User's Guide and Reference.

IBCDMPRS is an independent utility used to dump and restore data on direct
access volumes.

The data contents of a direct access volume (all data except the home address) can
be dumped to supported DASD or tape volumes of the 2400 or 3400 series and
restored to a direct access volume that resides on the same type of device as the
source volume. Both the source volume and the volume to which data is to be
restored must have been initialized according to operating system specifications.
IBCDMPRS is useful for preparing transportable copies and backup copies of
direct access volumes.

IBCDMPRS cannot be used to dump or restore a staging volume. For further
information see OS /VS Mass Storage System (MSS) Services: General
Information.

I IBCDMPRS does not support graphic console devices.

Executing IBCDMPRS

Input and Output

IBCDMPRS is loaded as a card deck or as card images on tape. Control statements
for the requested program can follow the last card or card image of the program, or
can be entered on a separate input device. To execute IBCDMPRS:

1. Place the object program deck in the reader or mount the tape reel that contains
the object program.

2. Load the object program from the reader or tape drive by setting the load
selector switches and pressing the console LOAD key. When the program is
loaded, the wait state is entered and the address portion of the current PSW is
set to X'FFFF'.

3. Define the control statement input device in one of the following ways:

a. Press the REQUEST key of the console typewriter and, in response to the
message "DEFINE INPUT DEVICE", enter "INPUT =xxXX,cuu ". The xxxx
is the device type, c is the channel address, and uu is the unit address. The
device type can be 1442,2400,2501,2540, or 3505.

b. If the console typewriter is not available, enter at storage location 0110
(hexadecimal): 1cuu for a 1442 Card Read Punch; 2cuu for a 2400 9-track
tape unit; or Ocuu for a 2540 Card Read Punch, 2501 card reader, 3410
tape, or 3420 tape. Press the console INTERRUPT key.

4. Control statements are printed on the message output device. At the end of the
job, "END OF JOB" is printed on the message output device, and the program
enters the wait state with the address portion of the current PSW set to X'EEEE'.

IBCDMPRS uses as input:

• A control data set, which contains utility control statements.

• A data set to be dumped to tape or to be restored to a direct access volume.

IBCDMPRS Program 3-1

Control

IBCDMPRS produces as output:

• A data set dumped to tape or a data set restored to a direct access volume.

• A message data set.

mCDMPRS is controlled by utility control statements. Because IBCDMPRS is an
independent utility, operating system job control statements are not used.

Utility Control Statements

JOB Statement

MSG Statement

DUMP Statement

3-2 OS/VS 1 Utilities

All utility control statement operands must be preceded and followed by one or
more blanks.

IBCDMPRS utility control statements are:

Statement

JOB

MSG

DUMP

VDRL

RESTORE

END

Use

begin an IBCDMPRS job.

Defines an output device for operator messages.

Identifies the volume to be dumped and the receiving volume.

Specifies the upper and lower track limits of a partial dump.

Identifies the source volume whose data is to be restored and the receiving
volume.

Indicates the end of an IBCDMPRS job.

Figure 3-1. IBCDMPRS Utility Control Statements

The JOB statement indicates the beginning of a job.

The format of the JOB statement is:

[label] JOB [user-information]

The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement is:

[label] MSG TODEV=xxxx

,TOADDR=cuu

The DUMP statement is used to identify both the source volume whose contents
are to be dumped and the receiving volume. The data contents of the entire source
volume are dumped, including any data on alternate tracks. If both the source and
receiving volumes reside on the same type of direct access device, the receiving
volume is an exact replica of the source volume.

Dump time can be minimized by selecting devices assigned to different channels.
For example:

DUMP FROMDEV =3330,FROMADDR= 150,TODEV =2400,TOADDR=282

VORL Statement

RESTORE Statement

END Statement

The format of the DUMP statement is:

[label] DUMP FROMDEV =xxxx

,FROMADDR=cuu

,TODEV=xxxx

,TOADDR=cuu

[,VOLID=serial [, serial]]

[,MODE=mm]

[,MODEL=n]

The VDRL (volume dump/restore limits) statement is used to specify the upper
and lower limits of a partial dump. If a track within these limits has had an alternate
assigned to it, the data on the alternate track is included in the dump. When the
VDRL statement is used, it must be preceded by a DUMP statement and must be
followed by an END statement.

The format of the VDRL statement is:

[label] VDRL BEGIN={nnnnn I!H
[,END=nnnnn]

The RESTORE statement is used to identify both the source volume whose data
contents are to be restored and the receiving volume.

Restore time can be minimized by selecting devices assigned to different channels.
For example:

RESTORE FROMDEV =2400,FROMADDR=282, TODEV =3330, TOADDR= 150

The format of the RESTORE statement is:

[label] RESTORE FROMDEV =xxxx

,FROMADDR=cuu

,TODEV =xxxx

,TOADDR=cuu

, VOLID=serial

[,MODE=mm]

[,MODEL=n]

Note: IBCDMPRS can be used to restore a tape created by IEHDASDR.
Conversely, IEHDASDR can be used to restore a tape created by IBCDMPRS.

The END statement marks the end of job. It appears after the last function
definition statement.

The format of the END statement is:

[label] END [user-information]

IBCD MPRS Program 3-3

Operands

BEGIN

END

FROMADDR

FROMDEV

MODE

MODEL

TOADDR

3-4 OS/VS 1 Utilities

Applicable
Control
Statements

VORL

VORL

DUMP
RESTORE

DUMP
RESTORE

DUMP
RESTORE

DUMP
RESTORE

MSG
DUMP
RESTORE

Description of Operands/Parameters

BEGIN={nnnnn I!!}
specifies a one- to five-byte relative decimal track address that identifies
the first track to be dumped.

END=nnnnn
specifies the relative decimal track address of the last track to be
dumped. If only one track is to be dumped, this address is the same as the
beginning address.

Default: the last track of the volume, excluding those tracks reserved as
alternates, is assumed to be the upper limit.

FROMADDR=cuu
specifies channel number, c, and unit number, uu, of the source device.

FROMDEV =xxxx
specifies the type of the source device.

MODE=mm
specifies the bit density for data written to the receiving tape volume.
This parameter must match the mode specified when data was written to
the source volume. MODE should not be specified if the source or
receiving volumes are not tape or if MODE was not specified when data
was written to the source volume. This parameter is applicable to tape
units with density selections of 800, 1600, and 6250 bits per inch. Valid
modes for 7-track page are shown in Figure 3-2. (Only those modes that
set the data converter on are accepted.) For 9-track tape with density
selections of 800, 1600, and 6250 bits per inch, the mode settings are
CB, C3, and D3, respectively. If the receiving device is not a tape unit,
the MODE parameter is ignored. If the receiving device is a tape device
but no mode is specified, the data is written at the highest density
supported by the device.

Mode Density Data

(mm) (bits per inch) Translator Converter Parity

13 200 Off On Odd

53 556 Off On Odd

93 800 Off On Odd

Figure 3-2. Valid 7-Track Tape Unit Modes in IBCDMPRS

MODEL=n
specifies a decimal model number (1 or 2) for a 2305. This parameter is
applicable only when a 2305 is specified.

Default: 2305-1 is assumed.

TOADDR=cuu
specifies the channel number, c, and unit number, uu, of the message
output device (MSG) or the receiving device (DUMP and RESTORE).

Operands

TODEV

Applicable
Control
Statements

DUMP
RESTORE

MSG

user-information JOB
END

VOLID

Restrictions

DUMP
RESTORE

Description of Operands/Parameters

TODEV =xxxx
specifies the type of receiving device. For RESTORE, this device type
must be the same as the device that originally contained the volume. If the
receiving device is a tape unit and no MODE parameter is specified, the
data is written at the highest density supported by the device. (For
7-track tape, the default mode is 93.)

TODEV=xxxx
specifies the type of device to receive messages. All supported Tape
drives (see Introduction - Device Support) and the following unit-record
devices: 1403, 1443, 1052, 3203-4, 3210, 3215, 3211, and 3800.

[user-information]
specifies user explanation of action, and comments.

VOLID=serial [,serial] ...
specifies the volume serial numbers of the receiving volumes. VOLID is
required when the receiving volume has a standard label. If serial does
not match the volume serial number found on the receiving volume, the
operator is notified and the job is terminated. If VOLID is not specified
and the receiving volume contains a volume serial number, the operator
is notified.

IBCDMPRS does not support volumes with indexed VTOC or the mM 3375 or
3380. See Data Facility Data Set Services: User's Guide and Reference for
information on this support.

IBCDMPRS Program 3-5

IBCDMPRS Examples
The examples that follow illustrate some of the uses of IBCDMPRS. Figure 3-3 can
be used as a quick reference guide to the examples. The numbers in the "Example"
column point to examples that follow.

Operation

DUMP

RESTORE

Comments

A direct access volume is to be
dumped to a tape volume.

A data set dumped to tape is to be

Devices

disk, tape

restored to a direct access volume. disk, tape

Figure 3-3. IBCDMPRS Example Directory

Example

2

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device id notation.

IBCDMPRS Example 1

In this example, a direct access volume is dumped to a tape volume:

DUMP

END

JOB DUMP DISK ONTO TAPE
MSG TODEV=3210,TOADDR=009

DUMP FROMDEV=disk, FROMADDR=150,
TODEv=tape, TOADDR=280

IBCDMPRS Example 2

3-6 OS/VS 1 Utilities

In this example, dumped data is restored to a direct access volume:

RESTORE JOB
MSG

RESTORE

END

RESTORE DISK FROM TAPE
TODEV=3210,TOADDR=009
FROMDEV=tape, FROMADDR=280 ,TODEv=disk,
TOADDR=150,VOLID=PZ1111

72

c

72

c

ICAPRTBL PROGRAM

Executing ICAPRTBL

Input and Output

ICAPRTBL is an independent utility used to load the Universal Character Set
(UCS) buffer and the forms control buffer (FCB) for an IBM 3211, 3203- 4, or
3262 Printer.

ICAPRTBL is used when the 3211/3203-4/3262 is assigned as the output portion
of a composite console and an unsuccessful attempt has been made to initialize the
operating system because the UCS and FCB buffers contain improper bit patterns.
ICAPRTBL is used to properly load the buffers so the operating system can be
initialized.

Note: When an operable console printer keyboard is available, the buffers are
loaded under the control of the operating system.

ICAPRTBL must be loaded from a card reader. Control statements must follow the
last card of the program. Only one printer can be initialized each time the program
is executed.

To execute ICAPRTBL:

1. Mount the correct train on the printer and ready the printer.

2. Place the object program deck and the control cards in the card reader. Ready
the reader and press the END OF FILE key.

3. Load the object program from the reader by setting the load selector switches
and pressing the console LOAD key.

Wait state codes will be displayed in the address portion of the PSW for normal
termination and for input/output, system or control card errors. Code B01 is issued
for normal termination; B02 through B07 are issued for control card errors; BOA
through BOC are issued for system errors; and B11 through B1D are issued for
input/ output errors. Figure 4-1 shows these codes and their meanings.

Code Meaning Code Meaning

BOI Visually check the train B12 Reader not ready.
image printed on the B13 Reader unit check (display low
3211/3203-4/3262. main storage location 2 through

B02 Missing control card or 7 for sense information).
control card out of order. B14 Reader channel error.

B03 Incorrect JOB statement. B15 No device end on reader.
B04 Incorrect DFN statement. Bl9 Printer not online.
B05 Incorrect DCS statement. BIA Printer not ready.
B06 Incorrect FCB statement. BIB Printer unit check (display low
B07 Incorrect END statement. virtual storage location 2 through
BOA External interrupt. 7 for sense information).
BOB Program check interrupt. BIC Printer channel error.
BOC Machine check interrupt. BID No device end on printer.
Bll Reader not online.

Figure 4-1. ICAPRTBL Wait-State Codes

ICAPRTBL uses as input utility control statements that contain images to be
loaded into the Universal Character Set and/or Forms Control Buffer. ICAPRTBL
produces as output properly loaded UCS and FCB buffers.

ICAPRTBL Program 4-1

Control
ICAPRTBL is controlled by utility control statements. Because ICAPRTBL is an
independent utility, operating system job control statements are not used.

Utility Control Statements

JOB Statement

DFN Statement

UCS Statement

FCB Statement

4-2 OS/VS 1 Utilities

All utility control statement operands must be preceded and followed by one or
more blanks.

ICAPRTBL utility control statements are:

Statement

JOB

DFN

UCS

FCB

END

Use

Indicates the beginning of an ICAPRTBL job.

Defines the address of the 3211, 3203-4, or 3262.

Contains an image of the characters to be loaded into the UCS buffer.

Defines the image to be loaded into the FCB.

Indicates the end of an ICAPRTBL job.

Figure 4-2. ICAPRTBL Utility Control Statements

The JOB statement indicates the beginning of an ICAPRTBL job.

The format of the JOB statement is:

[label] JOB [user-information]

The DFN statement is used to define the address of the 3211,3203-4, or 3262, to
specify that lowercase letters are to be printed in uppercase when the lowercase
print train is not available, and to identify UCS and FCB image-ids.

The format of the DFN statement is:

DFN ADDR=cuu [,FOLD= {V I N}]
[,DEVT={321il3203-413262}]
[,UCS=ucs~]
[,FCB=fcbname]

The ues statement contains an image to be loaded into the UCS buffer.

The format of the UCS statement is:

[ucsname] UCS ucs-image

The FCB statement defines the image to be loaded into the forms control buffer.
The FCB statement may precede or follow the UCS statement.

The format of the FCB statement is:

ffcbname] FCB LPI={618}

,LNCH=«/, c)[,(1, c ,) ...])

,FORMEND=x

wen_UWQ rW ,ew 'rtftnH "etttt!!lt

END Statement

The END statement signals the end of the ICABPRTBL job.

The format of the END statement is:

[label] END [user-information]

ICAPRTBL Program 4-3

Operands

ADDR

DEVT

FCB

FOLD

FORMEND

LNCH

LPI

App6cable
Control
Statements

DFN

DFN

DFN

DFN

FCB

FCB

FCB

4-4 OS/VS 1 Utilities

Description of Operands/Parameters

ADDR=cuu
specifies the channel number, c, and unit number, uu, of the 3211.

DEVT={3211 13203-4 1 3262}
specifies the device type for which the ADDR parameter addresses.

FCB={fcbname I STD11 ST02}
specifies a one- to eight-character name of the image loaded into the
forms control buffer. The actual image loaded into the buffer is not
affected by this name, but serves as a meaningful reference when printed
on the printer, fcbname should be the same as the FCB image being
used.

FOLD={YIN}
specifies whether lowercase letters are to be printed as uppercase letters
when the lowercase print train is not available. These values can be
coded:

Y

N

specifies that lowercase letters are to be printed as uppercase letters
when the lowercase print train is not available.

specifies that lowercase letters are not to be printed as uppercase
letters.

FORMEND=x
specifies the number of lines (maximum 180) on the printer form. For an
11 inch form, spacing six lines per inch, x must be 66.

LNCH=«I,c)[,(l,c) ...])
specifies the channels of the FCB image. Each set of parentheses must
contain the line number (1-180), a comma, and the channel number
(1-12) to be assigned to that line. One or all of the 12 channels may be
assigned in any order. Each set must be separated by commas and the
entire group surrounded by parentheses.

LPI={618}
specifies the number of lines per inch that will be printed on the
document. These values can be coded:

6
specifies that six lines per inch will be printed.

8
specifies that eight lines per inch will be printed.

te*w*rl'rWpp,tt¥' trtr ** ¥trW

Operands

ues

ucs-image

eMti't"WMtd!#

Applicable
Control
Statements

DFN

ues

user-information JOB
END

Description of Operands/Parameters

ucs=:{ucsname I AN I Alli SG64}
. is a one- to eight-character alphameric name of the image loaded into the
ues buffer. This name is printed on the printer to serve as a reference to
the print train being used.

AN
is the default for 3203-4 devices.

All
is the default for 3211 devices.

SG64
is the default for 3262 devices.

ucs-image
specifies characters to be loaded into the ues buffer. The characters
must be contained in columns 16 through 71. The first ues statement
contains the first 56 characters; subsequent statements contain
continuations of the image to be loaded into the ues buffer.

[user-information]
specifies user explanation of action, and comments.

ICAPRTBL Program 4-5

ICAPRTBL Examples
The examples that follow illustrate some of the uses of ICAPRTBL. Figure 4-3 can
be used as a quick reference guide to the examples. The numbers in the "Example"
column point to examples that follow.

Devices

3211

3211

3203-4

3262

Example

2

3

4

Figure 4-3. ICAPRTBL Example Directory

lCAPRTBL Example 1

JOB
DFN

A11 UCS

STD2 FCB

END

In this example, a 3211 UCS image (All) and an FCB image are loaded into the
UCS and FCB buffers.

72
LOAD A 11 IMAGE
ADDR=002,FOLD=N

1<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGF
EDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGFEDCBA*$
RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGFEDCBA*$-RQPONMLK
J%,&ZYXWVUTS/@#0987654321<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXW
VUTS/@#0987654321<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0
987654321<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/23098765432
1<.=IHGFEDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#0987654321<.=IHGF
EDCBA*$-RQPONMLKJ%,&ZYXWVUTS/@#098765432
LPI=6,
LNCH=((4, 1), (10,2) , (16,3) , (22,4) , (28,5) , (34,6) , (40, 7) ,
(46,8) , (52, 10) , (58, 11), (64, 12) , (66,9)) ,
FORMEND=66

The control statements are discussed below:

• DFN specifies the channel and unit number of the 3211 and specifies that
lowercase letters are not to be printed as uppercase letters when the lowercase
print train is not available.

• ues specifies the characters to be loaded into the UCS buffer.

• FeB specifies the values to be loaded into the forms control buffer.

C
C
C

lCAPRTBL Example 2

4-6 OS/VS 1 Utilities

In this example, a 3211 ues image (P1l) and an IBM standard FeB image are
loaded into the ues and FeB buffers by specifying images via the UCS and FCB
parameter of the DFN statement.

JOB LOAD 3211 P11 IMAGE
DFN UCS=P11,ADDR=004,FCB=STD1
END

The DFN control statement is discussed below:

• By omitting the DEVT parameter, the default device type is 3211.

• The ues parameter specifies the ues image-id to be loaded into the ues
buffer from standard image tables provided by the utility.

H'i'WM!!'!"!! 5M'U'wt1rI'tHUs:'u MF'/Nth ole.' * . . H' tN' ttWtl::W h**"Ht!tt'WMn!1

ICAPRTBL Example 3

ICAPRTBL Example 4

• The ADDR parameter specifies the channel and unit number of the 3211.

• By omitting the FOLD parameter, the default FOLD value N is selected,
specifying that lowercase letters are not to be printed as uppercase letters when
the lowercase print train is not available.

• The FCB parameter specifies the standard FCB image-id (SID1) to be loaded
into the FCB buffer from standard image tables provided by the utility.

In this example, a 3203-4 UCS image (AN by default) and a standard FCB image
(STD2 by default) are loaded into the UCS and FCB buffers.

JOB
DFN DEVT=3203-4,ADDR=002
END

The DFN statement is discussed below:

• The DEVT parameter specifies the device type as 3203-4.

• The ADDR parameter specifies the channel and unit number of the 3203.

• By omitting the FOLD parameter, the default FOLD value N is selected
specifying that lowercase letters are not to be printed as uppercase letters when
the lowercase print train is not available.

• By omitting both a UCS statement and the UCS parameter, the default 3203
UCS image (AN) is loaded into the UCB buffer from standard image tables
provided by the utility.

• By omitting both an FCB statement and the FCB parameter, the default FCB
image (STD2) is loaded into the FCB buffer from standard image tables
provided by the utility.

In this example, a 3262 UCS image (SG64 by default) and a provided FCB image
are loaded, respectively, into the ues and FCB buffers.

72
JOB LOAD 3262 SG64 UCS IMAGE AND A USER FCB

USER FCB FORMEND=88,LPI=8,LNCH=«4,1),(12,2), C
(20,3),(28,4),(36,5),(44,6),(52,7), C
(60,8) , (68, 10) , (76, 11) , (84, 12) , (88,9))

DFN FOLD=Y, C
FCB=STD1, C
ADDR=003, C
DEVT=3262

END

The control statements are discussed below:

• The FCB statement specifies the values to be loaded into the forms control
buffer.

• The specification of the FCB parameter on the DFN statement is overridden by
the FCB statement specification.

• The DEVT parameter of the DFN statement specifies the device type as 3262.

• The ADDR parameter specifies the channel and unit number of the 3262.

• The FOLD parameter specifies that lowercase letters are to be printed as
uppercase letters when the lowercase print train is not available.

ICAPRTBL Program 4-7

4-'8 OS/VS 1 Utilities

• By omitting both a DeS statement and the DeS parameter of the DFN
statement, the default 3262 DeS image (SG64) is loaded from standard image
tables provided by the utility.

IEBCOMPR PROGRAM

IEBCOMPR is a data set utility used to compare two sequential or two partitioned
data sets at the logical record level to verify a backup copy. Fixed, variable, or
undefined records from blocked or unblocked data sets or members can be
compared.

Two sequential data sets are considered equal, that is, are considered to be
identical, if:

• The data sets contain the same number of records, and,

• Corresponding records and keys are identical.

If these conditions are not met, an unequal comparison results. If records are
unequal, the record and block numbers, the names of the DD statements that
define the data sets, and the unequal records are listed in a message data set. Ten
successive unequal comparisons terminate the job step unless a user routine is
provided to handle error conditions.

Two partitioned data sets are considered equal if:

• Corresponding members contain the same number of records.

• Note lists are in the same position within corresponding members.

• Corresponding records and keys are identical.

If these conditions are not met, an unequal comparison results. If records are
unequal, the record and block numbers, the names of the DD statements that
define the data sets, and the unequal records are listed in a message data set. After
ten successive unequal comparisons, processing continues with the next member
unless a user routine is provided to handle error conditions.

Partitioned data sets can be compared only if all the names in one or both of the
directories have counterpart entries in the other directory. The comparison is made
on members identified by these entries and corresponding user data.

Figure 5-1 shows the directories of two partitioned data sets. Directory 2 contains
correspondIng entries for all the names in Directory 1; therefore, the data sets can
be compared.

Oirectory 1
ABCDGL

Figure 5-1. Partitioned Directories Whose Data Sets Can Be Compared Using IEBCOMPR

Figure 5-2 shows the directories of two partitioned data sets. Each directory
contains a name that has no corresponding entry in the other directory; therefore,
the data sets cannot be compared, and the job step is terminated.

User exits are provided for optional user routines to process user labels, handle
error conditions, and modify source records. See "Appendix A: Exit Routine
Linkage" for a discussion of the linkage conventions to be followed when user
routines are used.

IEBCOMPR Program ~-l

Input and Output

Control

Job Control Statements

5-2 OS/VSl Utilities

Directory 2.
ABFqHIJ

Figure 5-2. Partitioned Directories Whose Data Sets Cannot Be Compared Using IEBCOMPR

At the completion or termination of IEBCOMPR, the highest return code
encountered within the program is passed to the calling program.

IEBCOMPR uses the following input:

• Two sequential or two partitioned data sets to be compared.

• A control data set that contains utility control statements. This data set is
required if the input data sets are partitioned or if user routines are used.

IEBCOMPR produces as output a message data set that contains informational
messages (for example, the contents of utility control statements), the results of
comparisons, and error messages.

IEBCOMPR provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 08, which indicates an unequal comparison. Processing continues.

• 12, which indicates an unrecoverable error. The job step is terminated.

• 16, which indicates that a user routine passed a return code of 16 to
IEBCOMPR. The job step is terminated.

IEBCOMPR is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke IEBCOMPR and to
define the data sets that are used and produced by IEBCOMPR. The utility control
statements are used to indicate the input data set organization (that is, sequential or
partitioned), to identify any user routines that may be provided, and to indicate
whether user labels are to be treated as data.

Figure 5-3 shows the job control statements necessary for using IEBCOMPR.

One or both of the input data sets can be passed from a preceding job step.

Input data sets residing on different device types can also be compared. Input data
sets with a sequential organization written at different densities can also be
compared.

Statement

JOB

EXEC

Use

Initiates the job.

Specifies the program name (PGM=IEBCOMPR) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT D D Defines a sequential message data set, which can be written to a system output
device, a tape volume, or a direct access volume.

SYSUTI DD

SYSUT2DD

SYSINDD

Defines an input data set to be compared.

Defines an input data set to be compared.

Defines the control data set or specifies DUMMY if the input data sets are
sequential and no user routines are provided. The control data set normally
resides in the input stream; however, it can be defined as a member within a
library of partitioned members.

Figure 5-3. IEBCOMPR Job Control Statements

Utility Control Statements

COMPARE Statement

EXITS Statement

The utility control statements used to control IEBCOMPR are:

Statement Use

Indicates the organization of a data set.

Identifies user exit routines to be used.

COMPARE

EXITS

LABELS Indicates whether user labels are to be treated as data by
IEBCOMPR.

Figure 5-4. IEBCOMPR Utility Control Statements

The COMPARE statement is used to indicate the organization of data sets to be
compared.

The COMPARE statement, if included, must be the first utility control statement.
COMPARE is required if the EXITS or LABELS statement is used or if the input
data sets are partitioned data sets.

The format of the COMPARE statement is:

[label] COMPARE TYPORG={PS I PO}

The EXITS statement is used to identify any user exit routines to be used. The
EXITS statement is required if a user exit routine is to be used. If more than one
valid EXITS statement is included, all but the last EXITS statement are ignored.
For a discussion of the processing of user labels as data set descriptors, see
"Appendix D: Processing User Labels."

The format of the EXITS statement is:

[label] EXITS [INHDR=routinename]

[,INTLR=routinename]

[,ERROR=routinename]

[,PRECOMP=routinename]

IEBCOMPR Program 5....:.3

LABELS Statement

5-4 OS/VS 1 Utilities

The LABELS statement specifies whether user labels are to be treated as data by
IEBCOMPR. For a discussion of this option, refer to "Processing User Labels as
Data" in "Appendix D: Processing User Labels."

The format of the LABELS statement is:

[label] LABELS [DATA = {YES I NO I ALL I ONLY}]

Note: LABELS DATA=NO must be specified to make standard user label (SUL)
exits inactive when input/output data sets with nonstandard labels (NSL) are to be
processed.

If more than one valid LABELS statement is included, all but the last LABELS
statement are ignored.

Operands

DATA

ERROR

INHDR

INTLR

PRECOMP

TYPORG

Applicable
Control
Statements

LABELS

EXITS

EXITS

EXITS

EXITS

COMPARE

Description of Operands/Parameters

DATA={YES!NO!ALL!ONLY}
specifies whether user labels are to be treated as data. The values that
can be coded are:

YES
specifies that any user labels that are not rejected by a user's label
processing routine are to be treated as data. Processing of labels as data
stops in compliance with standard return codes.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels are to be treated as data regardless of any return
code. A return code of 16 causes IEBCOMPR to complete processing of
the remainder of the group of user labels and to terminate the job step.

ONLY
specifies that only user header labels are to be treated as data. User
header labels are processed as data regardless of any return code. The
job terminates upon return from the OPEN routine.

ERROR=routinename
specifies the symbolic name of a routine that is to receive control after
each unequal comparison for error handling. If this parameter is omitted
and ten consecutive unequal comparisons occur while IEBCOMPR is
comparing sequential data sets, processing is terminated; if the input data
sets are partitioned, processing continues with the next member.

INHDR=routinename
specifies the symbolic name of a routine that processes user input header
labels.

INTLR=routinename
specifies the symbolic name of a routine that processes user input trailer
labels.

PRECOMP=routinename
specifies the symbolic name of a routine that processes logical records
(physical blocks in the case of VS or VBS records longer than 32K
bytes) from either or both of the input data sets before they are
compared.

TYPORG={PS! PO}
specifies the organization of the input data sets. The values that can be
coded are:

PO
specifies that the input data sets are partitioned data sets.

PS
specifies that the input data sets are sequential data sets.

IEBCOMPR Program 5-5

Restrictions

• The SYSPRINT DD statement must be present for each use of IEBCOMPR.

• The SYSIN DD statement is required.

• The logical record lengths of the input data sets must be identical; otherwise,
unequal comparisons result. The block sizes of the input data sets can differ;
however, block sizes must be multiples of the logical record length.

• The block size specified in the SYSPRINT DD statement must be a multiple of
121. The block size specified in the SYSIN DD statement must be a multiple of
80.

IEBCOMPR Examples
The examples that follow illustrate some of the uses of IEBCOMPR. Figure 5-5
can be used as a quick reference guide to IEBCOMPR examples. The numbers in
the "Example" column point to examples that follow.

Data Set
Operation Organization Devices Comments Example

COMPARE Sequential Tape No user routines. Blocked input.

COMPARE Sequential 7-track Tape No user routines. Blocked input. 2

COMPARE Sequential 7-track and User routines. Blocked input.
9-track Tape Different density tapes. 3

COMPARE Sequential Card Reader, No user routines. Blocked input.
Tape 4

COMPARE Partitioned Disk 'No user routines. Blocked input. 5

COpy (using Sequential Tape No user routines. Blocked input.
IEBCOPY) Two job steps; data sets are
and COMPARE passed to second job step. 6

COpy (using Partitioned Disk User routine. Blocked input.
IEBCOPY) and Two job steps; data sets are
COMPARE passed to second job step. 7

Figure 5-5. IEBCOMPR Example Directory

Note: Examples which use disk or tape, in place of actual device.,;ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device id notation.

lEBCOMPR Example 1

5-6 OS/VS 1 Utilities

In this example, two sequential data sets that reside on tape volumes are to
be compared.

IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=tape ,LABEL=(,NL),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DD UNIT=tape ,LABEL=(,NL) ,DISP=(OLD ,KEEP),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=1040),
II VOLUME=SER=001235
IISYSIN DD DUMMY
1*

Because no user routines are to be used and the input data sets have a sequential
organization, utility control statements are not used.

The control statements are discussed below:

• SYSUTI DD defines an input data set, which resides on an unlabeled, 9-track
tape volume. The blocked data set was originally written at a density of 800 bits
per inch.

• SYSUT2 DD defines an input data set, which resides on an unlabeled, 9-track
tape volume. The blocked data set was originally written at a density of 800 bits
per inch.

• SYSIN DD defines a dummy data set.

IEBCOMPR Example 2

In this example, two sequential data sets that reside on 7 -track tape volumes are to
be compared.

IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=SET1,LABEL=(2,SUL),DISP=(OLD,KEEP),
II VOL=SER=001234,DCB=(DEN=2,RECFM=FB,LRECL=80,
II BLKSIZE=2000,TRTCH=C),UNIT=2400
IISYSUT2 DD DSNAME=SET1,LABEL=(,SUL),DISP=(OLD,KEEP),
II VOL=SER=001235,DCB=(DEN=2,RECFM=FB,LRECL=80,
II BLKSIZE=2000,TRTCH=C),UNIT=2400
IISYSIN DD *

1*

COMPARE TYPORG=PS
LABELS DATA=ONLY

The control statements are discussed below:

• SYSUTI DD defines an input data set, which resides on a labeled, 7-track tape
volume. The blocked data set was originally written at a density of 800 bits per
inch with the data converter on.

• SYSUT2 DD defines an input data set, which is the first or only data set on a
labeled, 7 -track tape volume. The blocked data set was originally written at a
density of 800 bits per inch with the data converter on.

• SYSIN DD defines the control data set, which follows in the input stream.

• COMPARE specifies that the input data sets are sequentially organized.

• LABELS specifies that only user header labels are to be compared.

IEBCOMPR Program 5-7

IEBCOMPR Example 3

In this example, two sequential data sets written at different densities on different
device types are to be compared.

IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
I/SYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SET1,LABEL=(,SUL),DISP=(OLD,KEEP),
II VOL=SER=001234,DCB=(DEN=1,RECFM=FB,LRECL=80,
II BLKSIZE=320,TRTCH=C),UNIT=2400
IISYSUT2 DD DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640),UNIT=mpe,
II VOLUME=SER=001235
IISYSIN DD *

1*

COMPARE TYPORG=PS
EXITS

LABELS
INHDR=HDRS,INTLR=TLRS
DATA=NO

The control statements are discussed below:

• SYSUTI DD defines an input data set, which is the first or only data set on a
labeled, 7 -track tape volume. The blocked data set was originally written at a
density of 556 bits per inch with the data converter on.

• SYSUT2 DD defines an input data set, which is the first or only data set on a
labeled tape volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• COMPARE specifies that the input data sets are sequentially organized.

• EXITS identifies the names of routines to be used to process user input header
labels and trailer labels.

I • LABELS specifies that the user inpllt header and trailer labels are not to be
compared.

IEBCOMPR Example 4

5-8 OS/VS 1 Utilities

In this example, two sequential data sets (card input and tape input) are to be
compared.

IICARDTAPE JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSIN DD DUMMY
IISYSUT2 DD UNIT=tape, VOLUME=SER=OO 1234, LABEL=(, NL) ,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),DISP=(OLD,KEEP)
IISYSUT1 DD DATA

(input card data set)

1*
The control statements are discussed below:

• SYSIN DD defines a dummy control data set. Because no user routines are
provided and the input data sets are sequential, utility control statements are not
used.

• SYSUT2 DD defines an input data set, which resides on an unlabeled
tape volume.

• SYSUTI DD defines an input data set (card input).

'ti'triW+ittMMirtAb.Mrlh'tW=Mb¥Wi'i"llH'il't$tYW'·y't"'IIwt!l!"IN" * !"Btr"ij'¥!!iW."'Wlll,ttW;,m h # M#'httHtHt#e

lEBCOMPR Example 5

In this example, two partitioned data sets are to be compared.

IIDISKDISK JOB 09#660,SMITH
II EXEC PGM=IEBCOMPR
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=PDSSET,UNIT=d~k,DISP=SHR,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=PDSSET,UNIT=d~k,DISP=SHR,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
II VOLUME=SER=111113
IISYSIN DD *

COMPARE TYPORG=PO
1*
The control statements are discussed below:

• SYSUTI DD defines an input partitioned data set. The blocked data set resides
on a disk volume.

• SYSUT2 DD defines an input partitioned data set. The blocked data set resides
on a disk volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set consists of one utility control statement.

lEBCOMPR Example 6

In this example, a sequential data set is to be copied and compared in two job steps.

IITAPETAPE JOB 09#660,SMITH
IISTEPA EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSN=COPYSET, UN I T=tape , DISP=(OLD, PASS),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640),LABEL=(,SL),
II VOLUME=SER=001234
IISYSUT2 DD DSNAME=COPYSET,DISP=(,PASS),LABEL=(,SL),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640),UNIT=mpe,
II VOLUME=SER=001235
IISYSIN DD DUMMY
1*

EXEC PGM=IEBCOMPR
DD SYSOUT=A

IlsTEPB
IISYSPRINT
IISYSUT1
IISYSUT2
IISYSIN

DD DSNAME=*.STEPA.SYSUT1,DISP=(OLD,KEEP)
DD DSNAME=*.STEPA.SYSUT2,DISP=(OLD,KEEP)
DD DUMMY

1*
The first job step copies the data set and passes the original and copied data sets to
the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

• SYSUTI DD defines an input data set passed from the preceding job step. The
data set resides on a labeled tape volume.

• SYSUT2 DD defines an input data set passed from the preceding job step. The
data set, which was created in the preceding job step, resides on a labeled
tape volume.

• SYSIN DD defines a dummy control data set. Because the input is sequential
and no user exits are provided, no utility control statements are required.

IEBCOMPR Program 5-9

lEBCOMPR Example 7

5-10 OS/VS 1 Utilities

In this example, a partitioned data set is to be copied and compared in two job
steps.

IIDISKDISK JOB 09#660,SMITH
IISTEPA EXEC PGM=IEBCOPY
IISYSPRINT DO SYSOUT=A
IISYSUTl DD DSNAME=OLDSET, UNIT=disk ,DISP=SHR,
II VOLUME=SER=111112,DCB=(RECFM=FB,LRECL=80,
II BLKSIZE=640)
IISYSUT2 DD DSNAME=NEWMEMS, UN I T=disk ,DISP=(, PASS),
II VOLUME=SER=111113,SPACE=(TRK,(5,5,5)),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=640)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(l))
IISYSUT4 DO UNIT=SYSDA,SPACE=(TRK,(l))
IISYSIN DO *

1*

COPY OUTDD=SYSUT2,INDD=SYSUTl
SELECT MEMBER=(A,B,D,E,F)

IISTEPB EXEC PGM=IEBCOMPR
IISYSPRINT DO SYSOUT=A
IISYSUTl DD DSNAME=OLDSET,DISP=(OLD,KEEP)
IISYSUT2 DO OSNAME=NEWMEMS,DISP=(OLD,KEEP)
IISYSIN DD *

1*

COMPARE TYPORG=PO
EXITS ERROR=SEEERROR

The first job step copies the data set and passes the original and copied data sets to
the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

• SYSUTI DD defines a blocked input data set that is passed from the preceding
job step. The data set resides on a disk volume.

• SYSUT2 DD defines a blocked input data set that is passed from the preceding
job step. The data set resides on a disk volume.

• SYSIN DD defines the control data set, which contains a COMPARE statement
and an EXITS statement.

• SYSUT3 and SYSUT4 define temporary system data sets, to be used for work
files if needed.

• COMPARE specifies partitioned organization.

• EXITS specifies that a user routine, SEEERROR, is to be used.

Because the input data set names are not identical, the data sets can be retrieved by
their data set names.

IEBCOPY PROGRAM

IEBCOPY is a data set utility used to copy one or more partitioned data sets or to
merge partitioned data sets. A partitioned data set which is copied to a sequential
dataset is said to be 'unloadeq.' The sequential data set created by an unload
operation can be loaded to any direct access device. When one or more data sets
created by an unload operation are used to recreate a partitioned data set, this is
called a 'load' operation. Specific members of a partitioned or unloaded data set
can be selected for, or excluded from, a copy, unload, or load process.

IEBCOPY can be used to:

• Create a backup copy of a partitioned data set.

• Copy one or more data sets per copy operation.

• Copy one partitioned data set to a sequential data set (unload).

• Copy one or more data sets created by an unload operation to any direct access
device (load).

• Select members from a data set to be copied, unloaded, or loaded.

• Replace identically named members on data sets (except when unloading).

• Replace selected data set members.

• Rename selected members.

• Exclude members from a data set to be copied, unloaded, or loaded.

• Compress partitioned data sets in place (except when the data set is an unloaded
data set).

• Merge data sets (except when unloading).

• Re-create a data set that has exhausted its primary, secondary, or directory space
allocation.

In addition, IEBCOPY automatically lists the number of unused directory blocks
and the number of unused tracks available for member records in the output
partitioned data set. If LIST=NO is coded (see "COpy Statement"), the names of
copied, unloaded, or loaded members listed by the input data set are suppressed.

Copying Members That Have Aliases

When copying members that have aliases, the following should be noted:

• When the main member and its aliases are copied, they exist on the output
partitioned data set in the same relationship they had on the input partitioned
data set.

• When one alias is copied without its main member, it becomes a main member.

• When two or more aliases are copied, unloaded, or loaded without the main
member, the lowest alias (in alphameric collating sequence) becomes the main
member; any remaining aliases become aliases of the new main member. Note
that if an old main member name is present in an alias entry, it remains there.

• When members with alias names are copied using the SELECT or EXCLUDE
member option, those aliases that are to be selected or excluded must be
explicitly named.

IEBCOPY Program 6-1

The rules for replacing or renaming members apply to both aliases and members;
no distinction is made between them. Note, however, that the replace option (on
the SELECT statement) does not apply to an unload operation.

At the completion or termination of the program, the highest return code
encountered within the program is passed to the calling program.

Creating a Backup Copy

Copying Data Sets

IEBCOPY can be used to create a backup copy of a data set by copying
(unloading) it to a sequential data set. A partitioned data set can be totally or
partially unloaded to any tape volume or direct access device supported by BSAM.
A data set is unloaded when physical sequential organization space allocation is
specified for the output data set on a direct access device or when the output data
set is a tape volume. To unload more than one partitioned data set to the same
volume in one execution of IEBCOPY, multiple copy operations must be used and
multiple sequential data sets must be allocated on the same volume.

A data set with a physical sequential organization resulting from an unload
operation can, in turn, be copied.

IEBCOPY can be used to copy a partitioned data set, totally or in part, from one
direct access volume to another. In addition, a data set can be copied to its own
volume, provided its data set name is changed. If the data set name is not changed,
the data set is compressed in place.

Note that copied members are not reordered. Members are copied in the order in
which they exist on the original data set. If the members are to be reordered,
IEHMOVE can be used for the copy operation (see "IEHMOVE Program").

Copying or Loading Unloaded Data Sets

. Data sets can be copied or loaded, totally or in part, from one or more direct access
volumes or tape volumes to a single direct access volume. To copy or load more
than one input partitioned data set, specify more than one input data set with the
COPY Statement. The input data sets are copied or loaded in the order in which
they are specified.

Selecting Members to be Copied, Unloaded, or Loaded

6-2 OS/VS 1 Utilities

Members can be selected from one or more input data sets. Selected members can
be copied, unloaded, or loaded from the input data sets specified on the INDD
statement preceding a SELECT statement.

Selected members are searched for in a low-to-high (a-to-z) collating sequence,
regardless of the order in which they are specified; however, they are copied in the
same physical sequence in which they appear on the input partitioned data set.

Once a member of a data set has been found, no search is made for it on any
subsequent input data set. Similarly, when all of the selected members are found,
the copy or load step is terminated even though all of the input data sets may not
have been searched. For example, if members A and B are specified and A is found
on the first of three input data sets, it is not searched for again; if B is found on the
second input data set, the copy or load operation is successfully terminated after
the second input data set has been processed, although both A and B may also exist
on the third input data set.

However, if the first member name is not found on the first input data set, the
search for that member stops and the first data set is searched for the second
member. This process continues until the first input data set has been searched for
all specified members. All the members that were found on the input data set are
then processed for copying, unloading, or loading to the output data set. This
process is repeated for the second input data set (except that the members that
were found on the first input data set are not searched for again).

Multiple unload operations are allowed per job step; multiple INDD statements are
not allowed per unload operation.

Note: Only one data set can be processed if an unload operation is to be
performed. Multiple unload operations are allowed per job step; multiple INDD
statements are not allowed per unload operation.

Replacing Identically Named Members

In many copy and load operations, the output partitioned data set may contain
members that have names identical to the names of the input partitioned data set
members to be copied or loaded. When this occurs, the user may specify that the
identically named members are to be copied from the input partitioned data set to
replace existing members.

The replace option allows an input member to override an existing member on the
output partitioned data set with the same name. The pointer in the output
p"artitioned data set directory is changed to point to the copied or loaded member.

If the replace option is not specified, input members are not copied when they have
the same name as a member on the output partitioned data set.

The replace option can be specified on the data set or member level. The level is
specified on a utility control statement.

When replace is specified on the data set level with a COpy or INDD statement,
the input data is processed as follows:

• In a full copy or load process, all members on an input partitioned data set are
copied to an output partitioned data set; members whose names already exist on
the output partitioned data set are replaced by the members copied or loaded
from the input partitioned data set.

• In a selective copy or load process, all selected input members will be copied to
the output data set, replacing any identically named output data set members.

• In an exclusive copy process, all nonexcluded members on input partitioned data
sets are copied or loaded to an output partitioned data set, replacing those
duplicate named members on the output partitioned data set.

When replace is specified on the member level (specified on a SELECT statement),
only selected members for which replace is specified are copied or loaded, and
identically named members on the output partitioned data set are replaced.

There are differences between full, selective, and exclusive copy or load processing.
These differences should be remembered when specifying the replace option and all
of the output data sets contain member names common to some or all of the input
partitioned data sets being copied or loaded. These differences are:

• When a full copy or load is performed, the output partitioned data set contains
the replacing members that were on the last input partitioned data set copied.

• When a selective copy or load is performed, the output partitioned data set
contains the selected replacing members which were found on the earliest input

IEBCOPY Program 6-3

partitioned data set searched. Once a selected member is found, it is not
searched for again; therefore, once found, a selected member is copied or
loaded. If the same member exists on another input partitioned data set it is not
searched for, and hence, not copied or loaded.

• When an exclusive copy or load is performed, the output partitioned data set
contains all members, except those specified for exclusion, that were on the last
input partitioned data set copied or loaded.

Replacing Selected Members

The user may specify the replace option on either the data set or the member level
when members are being selected for copying or loading.

If the replace option is specified on the data set level, all selected members found
on the designated input data sets replace identically named members on the output
partitioned data set. This is limited by the fact that once a selected member is found
it is not searched for again.

If the replace option is specified on the member level, the specified members on the
input data set replace identically named members on the output partitioned data
set. Once a member is found it is not searched for again. (See "Replacing
Identically Named Members" earlier in this chapter.)

Renaming Selected Members

Selected members on input data sets can be copied and renamed on the output data
set; the input and output data set names must not be the same. However, in the
case of a copy or load operation, if the new name is identical to a member name on
the output data set, the input member is not copied or loaded unless the replace
option is also specified. See "SELECT Statement" below for information on
renaming selected members.

Note: Renaming is not physically done to the input data set directory entry. The
output data set directory, however, will contain the new name.

Excluding Members from a Copy Operation

Members from one or more input data sets can be excluded from a copy, unload, or
load operation. The excluded member is searched for on every input data set in the
copy, unload, or load operation and is always omitted. Members are excluded from
the input data sets named on an INDD statement that precedes the EXCLUDE
statement. (See "COpy Statement" and "EXCLUDE Statement" in this chapter.)

The replace option can be specified on the data set level in an exclusive copy or
load, in which case, nonexcluded members on the input data set replace identically
named members on the output data set. See "Replacing Identically Named
Members" earlier in this chapter for more information on the replace option.

Compressing a Data Set

6-4 OS/VS 1 Utilities

A compressed data set is one that does not contain embedded, unused space. After
copying or loading one or more input partitioned data sets to a new output
partitioned data set (by means of a selective, exclusive, or full copy or load that
does not involve replacing members), the output partitioned data set contains no
embedded, unused space.

To make unused space available, either the entire data set must be scratched or it
must be compressed in place. A compressed version can be created by specifying

Merging Data Sets

Re-creating a Data Set

Input and Output

the same data set for both the input and the output parameters in a full copy step.
A backup copy of the partitioned data set to be compressed in place should be kept
until successful completion of an in-place compression is indicated (by an
end-of-job message and a return code of 00).

An in-place compression does not release extents assigned to the data set.
Inclusion, exclusion, or renaming of selected members cannot be done during the
compression of a partitioned data set.

Note: When the same ddname is specified for the INDD and OUTDD keywords
(see "COpy Statement" below) and the DD statement specifies a block size
different from the block size specified in the DSCB, the DSCB block size is
overridden; however, no physical reblocking or deblocking is performed by
IEBCOPY.

A merged data set is one to which an additional member is copied or loaded. It is
created by copying or loading the additional members to an existing output
partitioned data set; the merge operation-the ordering of the output partitioned
data set's directory-is automatically performed by IEBCOPY.

Note: If there is a question about whether or not enough directory blocks are
allocated to the output partitioned data set to which an input data set is being
merged, the output partitioned data set should be re-created with additional
directory space prior to the merge operation.

A data set can be re-created by copying or loading it and allocating a larger amount
of space than was allocated for the original data set. This application of IEBCOPY
is especially useful if insufficient directory space was allocated to a data set. Space
cannot be allocated in this manner for an existing partitioned data set into which
members are being merged.

IEBCOPY uses the following input:

• An input data set, which contains the members to be copied, loaded, merged, or
unloaded to a sequential data set.

• A control data set, which contains utility control statements. The control data set
is required if members are to be selected for or excluded from a copy, unload,
load, or merge operation.

If no utility control statements are supplied, a full copy of the input partitioned data
set is attempted. In this case, SYSUTI and SYSUT2 are required ddnames for the
input partitioned data set and output partitioned data set, respectively, as described
under "Job Control Statements" below.

IEBCOPY produces the following output:

• An output data set, which contains the copied, merged, unloaded, or loaded
data. The output data set is either a new data set (from a copy, load, or unload)
"or an old data set (from a merge, compress-in-place, copY,or load).

• A message data set, which contains informational messages (for example, the
names of copied, unloaded, or loaded members) and error messages, if
applicable.

IEBCOPY Program 6-5

Control

Job Control Statements

6-6 OS/VS 1 Utilities

• Spill data sets, which are temporary data sets used to provide space when not
enough virtual storage is available for the input and/or output partitioned data
set directories. These data sets are opened only when needed.

IEBCOPY produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates a condition from which recovery may be possible.

• 08, which indicates an unrecoverable error. The job step is terminated.

IEBCOPY is controlled by job control statements and utility control statements.

Figure 6-1 shows the job control statements necessary for using IEBCOPY.

Statement

JOB

EXEC

SYSPRINT DD

anynamel DD

anyname2 DD

SYSUT3 DD

SYSUT4DD

SYSIN DD

Use

Initiates the job.

Specifies the program name (PGM=IEBCOPY) or, if the job control
statements reside in the procedure library, the procedure name. This
statement can include optional P ARM information to define the size of the
buffer to be used; see "PARM Information on the EXEC Statement" below.

Defines the sequential message data set used for listing statements and
messages. This data set can be written to a system output device, a tape
volume, or a direct access volume.

Defines an input partitioned data set. These DD statements can describe
partitioned data sets on direct access devices or sequential data sets, created
as a result of unload operations, on tape or direct access devices. The data
set can be defined by a data set name, as a cataloged data set, or as a data
set passed from a previous job step.

Defines an output partitioned data set. These DD statements can describe
partitioned data sets on direct access devices or sequential data sets, created
as a result of unload operations, on tape or direct access devices.

Defines a spill data set on a direct access device. SYSUT3 is used when there
is no space in virtual storage for some or all of the current input partitioned
data set's directory entries. SYSUT3 may also be used when not enough
space is available in virtual storage for retaining information during table
sorting.

Defines a spill data set on a direct access device. SYSUT4 is used when there
is no space in virtual storage for the current output partitioned data set's
merged directory and the output partitioned data set is not new.

Defines the control data set, if supplied. The control data set normally
resides in the input stream; however, it can reside on a system input device,
a tape volume, or a direct access volume.

Figure 6-l. IEBCOPY Job Control Statements

Fixed or variable records can be reblocked. Reblocking or deblocking is done if the
block size of the input partitioned data set is not equal to the block size of the
output partitioned data set. Reblocking or deblocking cannot be done if either the
input or the output data set has undefined format records, keyed records, track
overflow records, note lists, or user TTRNs, or if compress-in-place is specified.

An unloaded partitioned data set will have a variable spanned record format. When
an unloaded data set is subsequently loaded, the output data set will have the same

characteristics it had before the unload operation, unless specified differently by
the user.

IEBCOPY Unloaded Data Set Block Size

The block size for unloaded data sets is determined as follows:

1. The minimum block size for the unloaded data set is calculated as being equal to
the larger of:

• 284 bytes, or

• 16 bytes + the block size and key length of the input data set.

2. If a user-supplied block size was specified, and it is larger than the minimum size
calculated in step 1 (above), it will be passed to step 3 (below). Otherwise, the
minimum size is passed.

3. The block size value passed from step 2 (above) is then compared with the
largest block size acceptable to the output device. If the output device capacity is
less than the block size passed in step 2, the unloaded data set block size is set to
the maximum allowed for the output device.

4. The logical record length (LRECL) is then set to the block size minus 4 bytes.

Note: Reference source-IEBCOPY module IEBLDUL.

For unload and load operations, requests are handled in the same way as for a copy
operation.

Figure 6-2 shows how input record formats can be changed. In addition, any record
format can be changed to the undefined format (in terms of its description in the
DSCB).

Input Output

Fixed Fixed Blocked
Fixed Blocked Fixed
Variable Variable Blocked
Variable Blocked Variable

Figure 6-2. Changing Input Record Format Using IEBCOPY

System data sets should not be compressed in place unless the subject partitioned
data set is made non-sharable. The libraries in which IEBCOPY resides
(SYSl.LINKLIB andSYSl.SVCLIB) must not be compressed by IEBCOPY unless
IEBCOPY is first transferred to a JOBLIB.

Refer to OS/VSl Data Management Services Guide for information on estimating
space allocations.

Refer to OS/VSl Storage Estimates to determine when spill data sets are
required; see "Space' Allocation" below for a description of how to determine the
amount of space to allocate.

P ARM Information on the EXEC Statement

The EXEC statement for IEBCOPY can contain P ARM information that is used to
d~fine the number of bytes used as a buffer. The PARM parameter can be coded:

PARM='SIZE=nnnnnnnn[K],

The nnnnnnnn can be replaced by one to eight digits. The K causes the nnnnnnnn
to be multiplied by 1024.

IEBCOPY Program 6-7

Space ADocation

If P ARM is not specified, or is invalidly specified, or a value below the minimum
buffer size is specified, IEBCOPY defaults to the minimum buffer size, which is
twice the maximum of the input or output block sizes, or four times the input or
output track capacities.

The maximum buffer size that can be specified is equal to the storage remaining in
the storage area gotten when IEBCOPY issues a conditional one-megabyte storage
request (GETMAIN) for work areas and buffers. If the value specified in PARM
exceeds this maximum, IEBCOPY defaults to the maximum .

. Note: A request for too much buffer storage may result in an increased system
paging rate or even in a system abend 800. To avoid either of these conditions,
either specify a smaller value for SIZE= on the EXEC statement, or omit the SIZE
·parameter and allow the system to select the buffer size.

Sometimes it is necessary to allocate space on spill data sets (SYSUT3 and
SYSUT4). The space to be allocated for SYSUT3 depends on the number of
members to be copied or loaded. The space to be allocated for SYSUT4 depends on
the number of directory blocks to be written to the output data set.

To conserve space on the direct access volume, an initial quantity and a secondary
quantity for space allocation may be used, as shown in the following SPACE
parameter:

SPACE=(c,(x,Y»

The c value should be a block length of 80 for SYSUT3 and of 256 for SYSUT4.
The x value is the number of blocks in the primary allocation, and the y value is the
number of blocks in a secondary allocation.

For SYSUT3, x + 15y must be equal to or greater than the number of entries in the
largest input partitioned data set in the copy operation, multiplied by 1.05.

For SYSUT4, x + 15y must be equal to or greater than the number of blocks
allocated to the largest output partitioned data set directory in the IEBCOPY job
step.

For example, if there are 700 members on the largest input partitioned data set,
space could be allocated for SYSUT3 as follows:

SPACE=(80,(25,45))

However, the total amount of space required for SYSUT3 in the worst case is used
only if needed. If space is allocated in this manner for SYSUT4, the user must
specify in his SYSUT4 DD statement:

DCB=(KEYLEN=8)

Note that IEBCOPY ignores all other DCB information specified for SYSUT3
and/ or SYSUT4. Multivolume SYSUT3 and SYSUT4 data sets are not supported.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, the SYSUT3 and SYSUT4 DD statements
should always appear in the job stream.

Utility Control Statements

6-8 OS/VS 1 Utilities

IEBCOPY is controlled by the following utility control statements:

In addition, when INDD, a COpy statement parameter, appears on a card other
than the COpy statement, it is referred to as an INDD statement; it can function
as a control statement in this context.

COpy Statement

Statement

COpy

SELECT

EXCLUDE

Use

Indicates the beginning of a COpy operation.

Specifies which members in the input data set are to be copied.

Specifies members in the input data set to be excluded from the
copy step.

Figure 6-3. IEBCOPY Utility Control Statements

Utility control statements may be continued on subsequent cards provided that all
the data is contained in columns 2 through 71. Control statement operation and
keyword parameters can be abbreviated to their initial letters; COPY, INDD,
OUTDD, and LIST can be abbreviated to C, I, 0, and L.

The COpy Statement is required to initiate one or more IEBCOPY copy, unload,
or load operations. Any number of operations can follow a single COpy statement;
any number of COpy statements can appear within a single job step.

IEBCOPY Program 6-8.1

.... ·11 h !!Ira·me trW ft». I"hdtt tt M:!tHsn± tttIHH

IEBCOPY copy, unload, and load operations are specified by a combination of job
control language and utility control statements. The OUTDD and INDD keyword
parameters on COpy statements name DD statements that define the input and
output data sets to be copied, unloaded, or loaded. For example:

II COpy JOB accountnb, 'name',MSGLEVEL=(l,l)
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIIN DD DSN=xxxxx,UNIT=yyyy,VOL=SER=yyyyyy,DISP=OLD
IloUT DD DSN=xxxxx,UNIT=yyyy,VOL=SER=yyyyyy,
II DISP=NEW,SPACE=xxxx
IISYSUT3 DD DSN=TEMP1,UNIT=SYSDA,DISP=(NEW,DELETE),
II SPACE=(CYL,(2,2))
IISYSUT4 DD DSNAME=TEMP2,UNIT=DA,DISP=(NEW,DELETE),
II SPACE=(CYL,(2,2))
IlsYSIN DD *

COPY OUTDD=OUT,INDD=IN
1*
The INDD parameter names the DD statement that identifies the input data set.

The OUTDD parameter names the DD statement that identifies the output data
set.

The characteristics of the input and output data sets depend on the operation to be
performed, as follows:

• If a data set is to be copied, the input and output data sets must both be
partitioned data sets.

• If a data set is to be loaded, the input data set may be either partitioned or
sequential; the output data set must be partitioned.

• If a data set is to be unloaded, the input data set must be either a partitioned
data set or a sequential data set that was created as a result of a previous unload
operation. The output data set may reside on either a direct access or tape
volume. If the output data set is to reside on a direct access volume, the
organization of the data set must be specified as sequential. To specify
sequential organization for a direct access data set, specify the SPACE
parameter, omitting the directory or index value.

A COPY statement must precede a SELECT or EXCLUDE statement when
members are selected for or excluded from a copy, unload, or load step.Jn addition,
if an input ddname is specified on a separate INDD statement, it must follow the
COpy statement and precede the SELECT or EXCLUDE statement to which it
applies. If one or more INDD statements are immediately followed by the /* card
or another COpy statement, a full copy, unload, or load is invoked onto the most
recent output partitioned data set previously specified.

IEBCOPY uses a copy operation/copy step concept. 1 A copy operation starts with
a COpy statement and continues until either another COpy statement or the end
of the control data set is found. Within each copy operation, one or more copy
steps are present. Any INDO statement directly following a SELECT or
EXCLUDE statement marks the beginning of the next copy step and the end of the
preceding copy step within the copy operation. If such an INDD statement cannot
be found in the copy operation, then the copy operation consists of only one copy
step.

1 The same applies to an unload or load operation or step.

IEBCOPY Program 6-9

6-10 OS/VS 1 Utilities

Figure 6-4 shows the copy operation/copy step concept. Two copy operations are
shown in the figure: the first begins with the statement containing the name
COPOPERl, and the second begins with the statement containing the name
COPOPER2.

1st
Copy
Operation

STEP 1

STEP 2

2nd
Copy
Operation
STEP 1

STEP 2

Job Control Statements

COPOPER1 COPY

SELECT
SELECT

EXCLUDE

COPOPER2 COpy
SELECT

OUTDD=AA,INDD=ZZ
INDD=BB,CC
INDD=DD
INDD=EE
MEMBER=MEMA, MEMB
MEMBER=MEMC

INDD=GG
INDD=HH
MEMBER=MEMD, MEMH

OUTDD=YY,I=(MM,PP),LIST=NO
MEMBER=MEMB

INDD=KK
INDD=LL,NN

Figure 6-4. Multiple Copy Operations Within a Job Step

There are two copy steps within the first copy operation shown in Figure 6-4: the
first begins with the COpy statement and continues through the two SELECT
statements; the second begins with the first INDD statement following the two
SELECT statements and continues through the EXCLUDE statement preceding
the second COpy statement. There are two copy steps within the second copy
operation: the first begins with the COpy statement and continues through the
SELECT statement; the second begins with the INDD statement immediately
following the SELECT statement and ends with the same /* (delimiter) statement
that ended the copy operation.

The format of the COpy statement is:

[label] COpy OUTDD=ddname

[,INDD= {ddnamel [, ddname2] ... 1

ddnamel [, ddname2][,(ddname2 ,R)] ... I
« ddnamel ,R)[, ddname2] ...)}]

[,LIST=NO]

Note: The control statement operation and keyword parameters can be
abbreviated to their initial letters; for example, COPY can be abbreviated to C and
OUTDD can be abbreviated to O. Only one INDD and one OUTDD keyword may
be placed on a single card. OUTDD must appear on the COPY statement. When
INDD appears on a separate card, no other operands may be specified on that card.
If INDD appears on a separate card, it is not preceded by a comma.

If there are no keywords on the COpy card, compatibility with the previous
version is implied. In this case, comments may not be placed on this card.

If more than one ddname is specified, the input partitioned data sets are processed
in the same sequence as that in which the ddnames are specified.

A full copy, unload, or load is invoked only by specifying different input and output
ddnames; that is, by omitting the SELECT or EXCLUDE statement from the copy
step.

The compress-in-place function is valid for partitioned data sets. Compress-in-place
is normally invoked by specifying the same ddname for both the OUTDD and
INDD parameters of a COpy statement. If mUltiple entries are made on the INDD

'UvWlH"'''*'tl5 W W·,··j"'JS'dH1 MWJ,'r.Llr:.1'rrf , t'd'r .-..!:tWY'I"iIlIt IW ... "Iyp'!!"b'rittrHrtt#'d'hb#tt IHfffl W#±M'ttb"W#tIftW t

SELECT Statement

statement, a compress-in-place will occur if one of the input ddnames is the same as
the ddname specified by the OUTDD parameter of the COpy statement, provided
that SELECT or EXCLUDE is not specified.

When a compression is invoked by specifying the same ddname for the INDD and
OUTDD parameters, and the DD statement specifies a block size that differs from
the block size specified in the DSCB, the DSCB block size is overridden; however,
no physical reblocking or deblocking is done by IEBCOPY.

The SELECT statement specifies members to be selected from input data sets to be
copied, loaded, or unloaded to an output data set. This statement is also used to
rename and/or replace selected members on the output data set. More than one
SELECT statement may be used in succession, in which case the second and
subsequent statements are treated as a continuation of the first.

The SELECT statement must follow either a COpy statement that includes an
INDD parameter or one or more INDD statements. A SELECT statement cannot
appear with an EXCLUDE statement in the same copy, unload, or load step, and it
cannot be used with a compress-in-place function.

When a selected member is found on an input data set, it is not searched for again,
regardless of whether it the member is copied, unloaded, or loaded. A selected
member will not replace an identically named member on the output partitioned
data set unless the replace option is specified on either the data set or the member
level. (For a description of replacing identically named members see "Replacing
Identically Named Data Set Members" and "Replacing Selected Members" in this
chapter.) In addition, a renamed member will not replace a member on the output
partitioned data set that has the same new name as the renamed member, unless the
replace option is specified.

The format of the SELECT statement is:

[label]SELECT MEMBER= U(] name1[, name2][, ...][)] I
({(name1, newname [, R])[, ...] I

(name1, newname)[, ...] I
(name1" R)[, ...]})}

where:

MEMBER =

R

specifies the members to be selected from the input data set. The values that
can be coded are:

name
specifies the name of a member that is to be selected in a copy step. Each
member name specified within one copy step must be unique; that is,
duplicate names cannot be specified as either old names, or new names, or
both, under any circumstances.

newname
specifies a new name for a selected member. The member is copied,
unloaded, or loaded to the output partitioned data set using its new name.
If the name already appears on the output partitioned data set, the member
is not copied unless replacement (R) is also specified.

specifies that the input member is to replace any identically named member
that exists on the output partitioned data set. The replace option is not valid
for an unload operation.

IEBCOPY Program 6-11

EXCLUDE Statement

6-12 OS/VSl Utilities

The control statement operation and keyword parameter can be abbreviated to
their initial letters; SELECT can be abbreviated to S and MEMBER can be
abbreviated to M.

To rename a member, the old member name is specified in the SELECT statement,
followed by the new name and, optionally, the R parameter. When this option is
specified, the old member name and new member name must be enclosed in
parentheses. When any option within parentheses is specified anywhere in the
MEMBER field, the entire field, exclusive of the MEMBER keyword, must be
enclosed in a second set of parentheses.

The EXCLUDE statement specifies members to be excluded from the copy,
unload, or load step. Unlike the selective copy, unload, or load, an exclusive copy,
unload, or load causes all members specified on each EXCLUDE statement to be
omitted from the operation.

More than one EXCLUDE statement may be used in succession, in which case the
second and subsequent statements are treated as a continuation of the first. The
EXCLUDE statement must follow either a COpy statement that includes an
INDD parameter or one or more INDD statements. An EXCLUDE statement
cannot appear with a SELECT statement in the same copy, unload, or load step;
however, both may be used following a COpy statement for a copy or load
operation. The EXCLUDE statement cannot be used with a compress-in-place
function.

The format of the EXCLUDE statement is:

Uabel] EXCLUDE MEMBER=[(l membernamel [, membername2 l ... [)l

The control statement operation and keyword parameter can be abbreviated to
their initial letters; EXCLUDE can be abbreviated to E and MEMBER can be
abbreviated to M.

nailiw'vWMr\r' 19" l'tbftM,rfirw.a*'W"""M!INI/ HI m!'.fflWtHft*.* ttW Wrtltlhte

Operands

INDD

LIST

MEMBER

Applicable Control
Statements

COpy

COpy

SELECT

Description of Operands/Parameters

INDD=[(] ddnamel[, ddname2]['(ddname3,R)][, ...][)]
specifies the names of the input partitioned data sets.
INDD may, optionally, be placed on a separate card
following a COpy statement containing the OUTDD
parameter, another INDD statement, a SELECT
statement, or an EXCLUDE statement. These values can
be coded:

ddname
specifies the ddname, which is specified on a DD
statement, of an iIiput data set. For an unload operation,
only one ddname may be specified per COpy statement. If
more than one ddname is specified in the case of a copy or
load operation, the input data sets are processed in the
same sequence as the ddnames are specified.

R
specifies that all members to be copied or loaded from
this input data set are to replace any identically named
members on the output partitioned data set. (In
addition, members whose names are not on the output
partitioned data set are copied or loaded as usual.)
When this option is specified with the INDD parameter,
it does not have to appear with the MEMBER
parameter (discussed in "SELECT Statement" in this
chapter) in a selective copy operation. When this option
is specified, the ddname and the R parameter must be
enclosed in a set of parentheses; if it is specified with
the first ddname in INDD the entire field, exclusive of
the INDD parameter, must be enclosed in a second set
of parentheses.

LIST=NO
specifies that the names of copied members are not to be
listed on on SYSPRINT at the end of each input data set.

Default: The names of copied members are listed.

MEMBER={[(] namel[, name2][, ...][)] I
({(namel,newname[,R])[, ...] I
(namel,newname)[, ...] I
(namel "R)[, ...]})}

specifies the members to be selected from the input data
set. The values that can be coded for SELECT are:

name

specifies the name of a member that is to be selected in
a copy step. Each member name specified within one
copy step must be unique; that is, duplicate names
cannot be specified as either old names, or new names,
or both, under any circumstances.

IEBCOPY Program 6-13

Operands

MEMBER
(continued)

OUTDD

Applicable Control
Statements

EXCLUDE

COpy

6-14 OS/VSl Utilities

Description of Operands/Parameters

newname

R

specifies a new name for a selected member. The
member is copied, unloaded, or loaded to the output
partitioned data set using its new name. If the name
already appears on the output partitioned data set, the
member is not copied unless replacement (R) is also
specified.

specifies that the input member is to replace any
identically named member that exists on the output
partitioned data set. The replace option is not valid for
an unload operation.

MEMBER=[(1 membernamel[, membername21 ... [)1
specifies members on the input data set that are not to be
copied, unloaded, or loaded to the output data set. The
members are not deleted from the input data set unless the
entire data set is deleted. (This can be done by specifying
DISP=DELETE in the operand field of the input DD job
control statement.) Each member name specified within
one copy step must be unique.

OUTDD= ddname
specifies the name of the output partitioned data set. One
ddname is required for each copy, unload, or load
operation; the ddname used must be specified on a DD
statement.

't tt' h#,;'lfrJemtttHtrttt *nHt*rte HM *tH't* f ttf #* wwnW

Restrictions

• SYSPRINT and SYSIN are mandatory DD statements. The block size for the
SYSPRINT data set must be a multiple of 121. The block size for the SYSIN
data set must be a multiple of 80. Any blocking factor may be specified for these
data sets, with a maximum allowable block size of 32,767 bytes.

• The SYSPRINT DD statement must define a data set with fixed blocked or fixed
records.

• INPUT DD and OUTPUT DD statements are required. There must be one
INPUT DD statement for each unique data set used for input and one OUTPUT
DD statement for each unique data set used for output in the job step.

• Input data sets cannot be concatenated.

• The SYSIN DD statement must define a data set with fixed block or fixed
records.

• Compress-in-place or adding members on SYS 1.LINKLIB or SYS 1.SVCLIB
currently used by IEBCOPY cannot be done.

• Variable spanned and variable block spanned format data sets are not supported.

• The maximum block size for input data sets to be unloaded is 32,767 (input key
length + 20).

• Reblocking or deblocking cannot be done if either the input or the output data
set has undefined format records, keyed records, track overflow records, note
lists, or user TTRNs, or if compress-in-place is specified.

• When merging into or compressing system libraries, do not specify DISP=SHR.
The results of a merge into or compress of the current SYS 1.LINKLIB or
SYS 1.SVCLIB would be unpredictable.

• IEBCOPY does its own buffering; therefore, coding the BUFNO parameter will
cause allocation of buffers that will not be used and could cause an ABEND
because of lack of storage.

The compress-in-place function cannot be performed for the following:

• An unloaded data set.

• A data set with track overflow records.

• A data set with keyed records.

• A data set for which reb locking is specified in the DCB parameter.

• An unmovable data set.

IEBCOPY Program 6-15

IEBCOPY Examples

6-16 OS/VSl Utilities

The following examples illustrate some of the uses of IEBCOPY. Figure 6-5 can be
used as a quick reference guide to IEBCOPY examples. The numbers in the
"Example" column point to examples that follow.

Operation Device Comments Example

COpy Disk Full Copy. The input and output
data sets are partitioned.

COpy Disk Multiple input partitioned data sets.
Fixed blocked and fixed record formats. 2

COpy Disk All members are to be copied.
Identically named members on the
output data set are to be replaced.
The input and output data sets are
partitioned. 3

COpy Disk Selected members are to be copied.
Variable blocked data set is to be
created. Record formats are variable
blocked and variable. The input and
output data sets are partitioned. 4

COpy Disk Selected members are to be copied.
One member is to replace an
identically named member on the
output data set. The input and
output data sets are partitioned. 5

COpy Disk, and Selected members are to be copied.
2305 Fixed Members found on the first input data set
Head Storage replace identically named members on

the output data set. The input and
output data sets are partitioned. 6

COpy Disk Selected members are to be copied.
Two members are to be renamed. One
renamed member is to replace an
identically named member on the
output data set. The input and
output data sets are partitioned. 7

COpy Disk Exclusive Copy. Fixed blocked and
fixed record formats. The input and
output data sets are partitioned. 8

Unload and Disk and Copy a partitioned data set to
Compress- Tape tape (unload) and compress-in-
in-place place if the first step is successful. 9

COpy and Disk Full copy to be followed by a compress-
Compress- in-place of the output data set. Replace
in-place specified for one input data set. The

input and output data sets are
partitioned. 10

COpy Disks Multiple copy operations. The input and
output data sets are partitioned. 11

COpy Disks Multiple copy operations. 12

Unload Disk, and A partitioned data set is to be
Tape unloaded to tape. 13

Load Tape,and An unloaded data set is to be loaded
Disk to disk. 14

Unload, Disk, and Selected members are to be unloaded,
Load,and Tape loaded, and copied. The input data set
COpy is partitioned; the output data set is

sequential. 15

Figure 6-5. IEBCOPY Example Directory

IEBCOPY Example 1

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

In this example, a partitioned data set (DATASET5) is to be copied from one disk
volume to another. Figure 6-6 shows the input and output data sets before and
after processing.

II COpy JOB 06#990, MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUT4 DD DSNAME=DATASET4,UNIT=3350,VOL=SER=111112,
II DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))
IIINOUT5 DD DSNAME=DATASET5,UNIT=3350,VOL=SER=111113,
II DISP=SHR
IISYSUT3 DD
IISYSUT4 DD
IISYSIN DD

UNIT=3350,SPACE=(TRK,(1))
UNIT=3350,SPACE=(TRK,(1))

*
COPYOPER COPY OUTDD=INOUT4,INDD=INOUT5
1*

Input

Output
DATASET4

Before
copy
operation

DATASET5

::::l~:~:::::::

.~::::@ ll.:::.·

After
processing
DATASET5

Figure 6-6. Copying a Partitioned Data Set-Full Copy

The control statements are discussed below:

• INOUT4 DD defines a new partitioned data set (DATASET4) that is to be kept
after the copy operation. Five tracks are allocated for the data set on a 3350
volume. Two blocks are allocated for directory entries.

IEBCOPY Program 6-17

IEBCOPY Example 2

6-18 OS/VSl Utilities

• INOUT5 DD defines a partitioned data set (DATASET5), that resides on a
3350 volume and contains two members (A and C).

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a 3350
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a 3350
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement.

• COPY indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. The OUTDD parameter
specifies INOUT4 as the DD statement for the output data set (DATASET4);
the INDD parameter specifies INOUT5 as the DD statement for the input data
set. After the copy operation is finished, the output data set (DAT ASET4) will
contain the same members that are on the input data set (DATASET5);
however, there will be no embedded, unused space on DATASET4.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, members are to be copied from three input partitioned data sets
(DATASET 1 , DATASET5, and DATASET6) to an existing output partitioned
data set (DATASET2). The control statement sequence controls the manner and
sequence of processing the partitioned data sets. Figure 6-7 shows the input and
output data sets before and after processing.

II COpy JOB
IIJOBSTEP EXEC
IISYSPRINT DD
IIINOUT1 DD
II DISP=SHR
IIINOUT5 DD
II DISP=OLD

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A

DSNAME=DATASET1,UNIT=3330,VOL=SER=111112,

DSNAME=DATASET5,UNIT=3350,VOL=SER=111114,

IIINOUT2 DD DSNAME=DATASET2,UNIT=3350,VOL=SER=111115,
II DISP=(OLD,KEEP)
IIINOUT6 DD DSNAME=DATASET6,UNIT=3350,VOL=SER=111117,
II DISP=(OLD,DELETE)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *
COPYOPER COPY OUTDD=INOUT2

INDD=INOUTl
INDD=INOUT6
INDD=INOUT5

1*
The control statements are discussed below:

• INOUT1 DD defines a partitioned data set (DATASETl). This data set, which
resides on a 3330 volume, contains three members (A, B, and F) in fixed format
with a logical record length of 80 bytes and a block size of 80 bytes.

• INOUT5 DD defines a partitioned data set (DATASET5), which resides on a
3350 volume. This data set contains two members (A and C) in fixed blocked
format with a logical record length of 80 bytes and a block size of 160 bytes.

• INOUT2 DD defines a partitioned data set (DATASET2), which resides on a
3350 volume. This data set contains two members (C and E) in fixed blocked

Output
DATASET2

Before
copy
operation

tbMH tw#tW

Input
DATASET1

After
processing
DATASET1

Input
DATASET6

After
processing
DATASET6

Figure 6-7. Copying from Three Input Partitioned Data Sets

Input
DATASET5

After
processing
DATASET5

format. The members have a logical record length of 80 bytes and a block size of
240 bytes.

• INOUT6 DD defines a partitioned data set (DATASET6), which resides on a
3350 volume. This data set contains three members (B, C, and D) in fixed
blocked format with a logical record length of 80 bytes and a block size of 400
bytes. This data set is to be deleted when processing is completed.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk \
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement and three INDD statements.

• COpy indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. The OUTDD parameter
specifies INOUT2 as the DD statement for the output data set (DATASET2).

• The first INDD statement specifies INOUTl as the DD statement for the first
input data set (DATASETl) to be processed. All members (A, B, and F) are
copied to the output data set (DATASET2).

IEBCOPY Program 6-19

IEBCOPY Example 3

6-20 OS/VS t Utilities

• The second INDD statement specifies INOUT6 as the DD statement for the
second input data set (DAT ASET6) to be processed. Processing occurs, as
follows: (1) members Band C, which already exist on DATASET2, are not
copied to the output data set (DATASET2), (2) member D is copied to the
output data set (DATASET2), and (3) all members on DATASET6 are lost
when the data set is deleted.

• The third INDD statement specifies INOUT5 as the DD statement for the third
input data set (DATASET5) to be processed. No members are copied to the
output data set (DATASET2) because all of them exist on DATASET2.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, members are to be copied from an input partitioned data set
(DATASET6) to an existing output partitioned data set (DATASET2). In addition,
all copied members are to replace identically named members on the output
partitioned data set.

Figure 6-8 shows the input and output data sets before and after processing.

IICOPY JOB
IIJOBSTEP EXEC
IISYSPRINT DO
IIINOUT2 DO
II DISP=OLD

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET2,UNIT=3330-1,VOL=SER=111113,

IIINOUT6 DO DSNAME=DATASET6,UNIT=3350,VOL=SER=111117,
IIDISP=(OLD,KEEP)
IISYSUT3 DO UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DO UNIT=SYSDA,SPACE=(TRK,(1))
I/SYSIN DO *
COPYOPER COPY OUTDD=INOUT2

INDD=((INOUT6,R))
1*
The control statements are discussed below:

• INOUT2 DD defines a partitioned data set (DATASET2), which resides on a
3330-1 volume. This data set contains two members (C and E).

• INOUT6 DD defines a partitioned data set (DATASET6), which resides on a
3350 volume. This data set contains three members (B, C, and D).

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement and an INDD statement.

• COPY indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. The OUTDD parameter
specifies INOUT2 as the DD statement for the output data set (DATASET2).

• INDD specifies INOUT6 as the DD statement for the input data set
(DATASET6). Members B, C, and D are copied to the output data set
(DATASET2). The pointer in the output data set directory is changed to point
to the new (copied) member C; thus, the space occupied by the old member C is
embedded unused space. Member C is copied even though the output data set

IEBCOPY Example 4

Input
DATASET6

Output
DATASET2

Before
copy
operation

After
processing
DATASET6

Figure 6-8. Copy Operation with "Replace" Specified on the Data Set Level

already contains a member named "C" because the replace option is specified
for all identically named members on the input data set; that is, the replace
option is specified on the data set level.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, five members (A, C, D, E, and G) are to be selected from two
input partitioned data sets (DATASET6 and DATASET2) to be copied to a new
output partitioned data set (DATASET4). Figure 6-9 shows the input and output
data sets before and after processing.

IEBCOPY Program 6-21

6-22 OS/VS 1 Utilities

Output
DATASET4

Before
copy
operation

Input
DATASET6

After
processing
DATASET6

Input
DATASET2

After
processing
DATASET2

Figure 6-9. Copying Selected Members with Reblocking and Deblocking

IICOPY JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUT2 DD DSNAME=DATASET2,UNIT=3330,VOL=SER=111114,
II DISP=(OLD,DELETE)
IIINOUT6 DD DSNAME=DATASET6,UNIT=3350,VOL=SER=111117,
II DISP=(OLD,KEEP)
IIINOUT4 DD DSNAME=DATASET4,UNIT=3350,VOL=SER=111116,
II DISP=(NEW ,KEEP), SPACE=(TRK, (5, ,2)),
II DCB=(RECFM=VB,LRECL=96,BLKSIZE=300)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *
COPYOPER COpy OUTDD=INOUT4

1*

INDD=INOUT6
INDD=INOUT2

SELECT MEMBER=C,D,E,A,G

The control statements are discussed below:

• INOUT2 DO defines a partitioned data set (DATASET2), which resides on a
3330 volume. This data set contains two members (C and E) in variable blocked
format with a logical record length of 96 bytes and a block size of 500 bytes.
This data set is to be deleted when processing is completed .

• INOUT6 DD defines a partitioned data set (DATASET6), which resides on a
3350 volume. This data set contains three members (B, C, and D) in variable
format with a logical record length of 96 bytes and a block size of 100 bytes.

• INOUT4 DD defines a partitioned data set (DATASET4). This data set is new
and is to be kept after the copy operation. Five tracks are allocated for the data
set on a 3350 volume. Two blocks are allocated for directory entries. In addition,
records are to be copied to this data set in variable blocked format with a logical
record length of 96 bytes and a block size of 300 bytes.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement, two INDD statements, and a SELECT
statement.

• COpy indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD parameter specifies INOUT4 as
the DD statement for the output data set (DATASET4).

• The first INDD statement specifies INOUT6 as the DD statement for the first
input data set (DATASET6) to be processed. The members specified on the
SELECT statement are searched for. The found members (C and D) are copied
to the output data set (DAT ASET4) in the order in which they reside on the
input data set, that is, in TTR order. In this case, member D is copied first, and
then member C is copied.

• The second INDD statement specifies INOUT2 as the DD statement for the
second input data set (DATASET2) to be processed. The members specified on
the SELECT statement and not found on the first input data set are searched
for. The found member (E) is copied onto the output data set (DATASET4). All
members on DAT ASET2 are lost when the data set is deleted.

• SELECT specifies the members to be selected from the input data sets
(DATASET6 and DATASET2) to be copied to the output data set
(DATASET4).

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

IEBCOPY Program 6-23

IEBCOPY Example 5

6-24 OS/VSl Utilities

In this example, two members (A and B) are to be selected from two input
partitioned data sets (DATASET5 and DATASET6) to be copied to an existing
output partitioned data set (DATASET1). Member B is to replace an identically
named member that already exists on the output data set. Figure 6-10 shows the
input and output data sets before and after processing.

IlcoPY JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUTl DD DSNAME=DATASET1,UNIT=3330,VOL=SER=111112,
II DISP=(OLD,KEEP)
IIINOUT6 DD DSNAME=DATASET6,UNIT=3350,VOL=SER=11111S,
II DISP=OLD
IIINOUT5 DD DSNAME=DATASET5,UNIT=3330,VOL=SER=111116,
II DISP=(OLD,KEEP)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *
COPYOPER COpy OUTDD=INOUTl

1*

INDD=INOUT5,INOUT6
SELECT MEMBER=((B"R),A)

The control statements are discussed below:

• INOUTI DD defines a partitioned data set (DATASETl). This data set resides
on a 3330 volume and contains three members (A, B, and F).

• INOUT6 DD defines a partitioned data set (DATASET6). This data set resides
on a 3350 volume and contains three members (B, C, and D).

• INOUT5 DD defines a partitioned data set (DATASET5). This data set resides
on a 3330 volume and contains two members (A and C).

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT 4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement, an INDD statement, and a SELECT
statement.

• COpy indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD parameter specifies INOUTI as
the DD statement for the output data set (DATASET1) .

• INDD specifies INOUT5 as the DD statement for the first input data set
(DATASET5) to be processed and INOUT6 as the DD statement for the second
input data set (DATASET6) to be processed. ProcessIng occurs, as follows: (1)
selected members are searched for on DATASET5, (2) member A is found, but
is not copied to the output data set because it already exists on DATASET2 and
the replace option is not specified, (3) selected members not found on
DATASET5 are searched for on DATASET6, and (4) member B is found and
copied to the output data set (DATASETl), even though a member named B
already exists on the output data set, because the replace option is specified for
member B on the member level. The pointer in the output data set directory is
changed to point to the new (copied) member B; thus, the space occupied by the
old member B is unused.

IEBCOPY Example 6

Output
DATASETl

Before
copy
operation

Input
DATASET5

Alter
processing
DATASET5

Input
DATASET6

Alter
processing
DATASET6

Figure 6-10. Selective Copy with "Replace" Specified on the Member Level

• SELECT specifies the members to be selected from the input data sets
(DATASET5 and DATASET6) to be copied to the output data set
(DATASETl).

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, two members (A and B) are to be selected from two input
partitioned data sets (DATASET5 and DATASET6) to be copied to an existing
output partitioned data set (DATASETl). All members found on DATASET5 are
to replace identically named members on DATASET1. Figure 6-11 shows the input
and output data sets before and after processing.

IEBCOPY Program 6-25

6-26 OS/VS 1 Utilities

Output
DATASETl

Before
COpy
operation'

Input
DATASET5

Alter
procesSIng
DATASET5

Input
DATASET6

Alter
process1nq
DATASET6

Figure 6-11. Selective Copy with "Replace" Specified on the Data Set Level

IlcOPY JOB
IIJOBSTEP EXEC
IISYSPRINT DD
IIINOUT1 DD
II DISP=(OLD,KEEP)

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET1,UNIT=3350,VOL=SER=111112,

IIINOUT5 DD DSNAME=DATASET5,UNIT=3330,VOL=SER=111114,
II DISP=(OLD,DELETE)
IIINOUT6 DD DSNAME=DATASET6,UNIT=2305,VOL=SER=111115,
II DISP=(OLD,KEEP)
IISYSUT3 DD
IISYSUT4 DD
IISYSIN DD
COPYOPER COpy

SELECT
1*

UNIT=SYSDA,SPACE=(TRK,(1))
UNIT=SYSDA,SPACE=(TRK,(1))

*
OUTDD=INOUT1
INDD=((INOUT5,R),INOUT6)
MEMBER=(A,B)

The control statements are discussed below:

• INOUTI DDdefines a partitioned data set (DATASETl). This data set resides
on a 33S0 volume and contains three members (A, B, and F).

• INPUTS DD defines a partitioned data set (DATASETS). This data set contains
two members (A and C) and resides on a 3330 volume. This data set is to be
deleted when processing is completed.

• INOUT6 DD defines a partitioned data set (DAT ASET6). This data set contains
three members (B, C, and D) and resides on a 230S volume.

IEBCOPY Example 7

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement, an INDD statement, and a SELECT
statement.

• COpy indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD operand specifies INOUT1 as
the DD statement for the output data set (DATASETl).

• INDD specifies INOUT5 as the DD statement for the first input data set
(DATASET5) to be processed and INOUT6 as the statement for the second
input data set (DATASET6) to be processed. Processing occurs, as follows: (1)
selected members are searched for on DATASET5, (2) member A is found and
copied to the output data set (DATASET1) because the replace option was
specified on the data set level for DATASETS, (3) member B, which was not
found on DATASETS is searched for and found on DATASET6, (4) member B
is not copied because DATASET1 already contains a member called member B
and the replace option is not specified for DAT ASET6. The pointer in the
output data set directory is changed to point to the new (copied) member A;
thus, the space occupied by the old member A is unused.

• SELECT specifies the members to be selected from the input data sets
(DATASETS and DATASET6) to be copied to the output data set
(DATASET1).

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, four members (A, B, C, and D) are to be selected from an input
partitioned data set (DAT ASET6) to be copied to an existing output partitioned
data set (DATASET3). Member B is to be renamed H; member C is to be renamed
J; and member D is to be renamed K. In addition, member C (renamed J) is to
replace the identically named member (1) on the output partitioned data set. Figure
6-12 shows the input and output data sets before and after processing.

IICOPY JOB #990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUT3 DD DSNAME=DATASET3, UNIT=disk, VOL=SER=111114,
II DISP=(OLD,KEEP)
IIINOUT6 DD DSNAME=DATASET6,UNIT=d~k,vOL=SER=111117,
II DISP=(OLD,DELETE)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *
COPYOPER COPY OUTDD=INOUT3, INDD=INOUT6

SELECT MEMBER=((B,H),(C,J,R),A,(D,K))
1*
The control statements are discussed below:

• INOUT3 DD defines a partitioned data set (DATASET3). This data set contains
four members (D, G, H, and 1) and resides on a disk volume.

IEBCOPY Program 6-27

6-28 OS/VS1 Utilities

Input

Output
DATASET3

Before
copy
operatic.n

DATASET6

After
processing
DATASET6

Figure 6-12. Renaming Selected Members Using IEBCOPY

• INOUT6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) and resides on a disk volume. DAT ASET6 is to be
deleted when processing is completed; thus, all members on this data set are lost.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement, an INDD statement, and a SELECT
statement.

• COPY indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD parameter specifies INOUT3 as
the DD statement for the output data set (DATASET3).

• INDD specifies INOUT6 as the DD statement for the input data set
(DATASET6). Processing occurs, as follows: (1) selected members are searched
for on DATASET6, (2) member B is found, but is not copied to DATASET3
because its intended new name (H) is identical to the name of a member (H),
which already exists on the output data set, and replace is not specified, (3)
member C is found and copied to the output data set (DATASET3), although its
new name (1) is identical to the name of a member (1), which already exists on
the output data set, because the replace option is specified for the renamed
member, and (4) member D is copied onto the output data set (DATASET3)
because its· new name (K) does not already exist there.

.Mt.;jf\' 1'£1'·\····, !i.·wH+ftlWIWMWilWH,·eljt§lWW\l9Wif"I!WUW,,,,,\;'t'P*,U"'W!1l'li!wWtIft'" I hztdtbt**'. HMti

lEBCOPY Example 8

• SELECT specifies the members to be selected from the input data set
(DATASET6) to be copied to the output data set (DATASET3).

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, five members (A, B, C, J, and L) are to be excluded from the copy
operation when each of the input partitioned data sets (DATASET 1 , DATASET3,
and DATASET6) is processed. In addition, replace is specified for the last input
partitioned data set (DAT ASET6) to be processed; thus, with the exception of the
members specified on the EXCLUDE statement, all members on DAT ASET6 will
replace any identically named members on the output partitioned data set
(DATASET4). Figure 6-13 shows the input and output data sets before and after
processing.

Output
DATASET4

Before
copy
operation

Input
DATASETl

After
processing
DATASETl

Input
DATASET3

Input
DATASET6

Copy

i'C---_____ ~F-----------_member

After
processing
DATASET3

After
processing
DATASET6

Figure 6-13. Exclusive Copy with "Replace" Specified for One Input Partitioned Data Set

IEBCOPY Program 6-29

6-30 OS/VS 1 Utilities

IICOPY JOB
IIJOBSTEP EXEC
IISYSPRINT DD
IIINOUT1 DD
II DISP=(OLD,KEEP)
IIINOUT3 DD
II DISP=OLD

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET 1 , UNIT=disk , VOL=SER= 11111 2,

DSNAME=DATASET3,UNIT=d~k,vOL=SER=111114,

IIINOUT4 DD DSNAME=DATASET4, UNIT=disk, VOL=SER= 111115,
II DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2)),DCB=(LRECL=100,
II RECFM=FB,BLKSIZE=400)
IIINOUT6 DD DSNAME=DATASET6, UNIT=disk, VOL=SER= 111116,
II DISP=OLD
IISYSUT3 DD
IISYSUT4 DD
IISYSIN DD
COPYOPER COPY

EXCLUDE
1*

UNIT=SYSDA,SPACE=(TRK,(1))
UNIT=SYSDA,SPACE=(TRK,(1))

*
OUTDD=INOUT4,INDD=INOUT1,INOUT3,(INOUT6,R)
MEMBER=A,J,B,L,C

The control statements' are discussed below:

• INOUTI DD defines a partitioned data set (DATASETl). This data set contains
three members (A, B, and F) and resides on a disk volume. The record format is
fixed blocked with a logical record length of 100 bytes and a block size of 400
bytes.

• INOUT3 DD defines a partitioned data set (DATASET3), which resides on a
disk volume. This data set contains four members (D, G, H, and 1) in fixed
blocked format with a logical record length of 100 bytes and a block size of 600
bytes.

• INOUT4 DD defines a new partitioned data set (DATASET4). Five tracks are
allocated for the copied members on a disk volume. Two blocks are allocated for
directory entries. In addition records are to be copied to this data set in fixed
blocked format with a logical record length of 100 bytes and a block size of 400
bytes.

• INOUT6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) in fixed format. The records have a logical record
length of 100 bytes and a block size of 100 bytes. This data set resides on a disk
volume.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement and an EXCLUDE statement.

• COPY indicates the start of the copy operation. The presence of an EXCLUDE
statement causes an exclusive copy. The OUTDD parameter specifies INOUT4
as the DD statement for the output data set (DATASET4). The INDD
parameter specifies INOUTI as the DD statement for the first input data set
(DATASETl) to be processed, INOUT3 as the DD statement for the second
input data set (DAT ASET3) to be processed, and INOUT6 as the DD statement
for the last input data set (DATASET6) to be processed. Processing occurs, as
follows: (1) member F, which is not named on the EXCLUDE statement, is
copied from DATASET 1 , (2) members D, G, and H, which are not named on
the EXCLUDE statement, are copied from DATASET3, and (3) member D is
copied from DAT ASET6 because the replace option is specified for nonexcluded
members. The pointer in the output data set directory is changed to point at the

lJiliil"UlUNI.··hlm\OW,"ou = * t. p ,'W.-tN •• # * t tit .. dr.#' \ ,tt

lEBCOPY Example 9

new (copied) member D; thus, the space occupied by the old member D (copied
from DATASET3) is unused.

• EXCLUDE specifies the members to be excluded from the copy operation. The
named members are excluded from all of the input partitioned data sets specified
in the copy operation.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, a partitioned data set is to be unloaded to a tape volume to create a
backup copy of the data set. If this step is successful, the partitioned data set is to
be compressed in place.

IISAVE
IISTEP1
IISYSPRINT
IIINPDS
II DISP=OLD

JOB 123456, 'name' ,MSGLEVEL=(1,1)
EXEC PGM=IEBCOPY
DD SYSOUT=A
DD DSNAME=PARTPDS, UNIT=disk, VOL=SER=PCPOO 1 ,

IIBACKUP DD DSNAME=SAVDATA,UNIT=tape,vOL=sER=TAPE03,
II DISP=(NEW,KEEP),LABEL=(,SL)
IISYSUT3 DD DSNAME=TEMP 1 , UN I T=disk , VOL=SER= 111111 ,
II DISP=(NEW,DELETE),SPACE=(80,(60,45»
IISYSIN DD *

COPY OUTDD=BACKUP,INDD=INPDS
1*
I/STEP2 EXEC PGM=IEBCOPY,COND=(O,NE),
II PARM='SIZE=99999999K'
IISYSPRINT DD SYSOUT=A
IICOMPDS DD DSNAME=PARTPDS,UNIT=d~k,DISP=OLD,
II VOL=SER=PCP001
IISYSUT3 DD DSNAME=TEMPA, UNIT=disk, VOL=SER=111111 ,
II DISP=(NEW,DELETE),SPACE=(80,(60,45»
IISYSUT4 DD DSNAME=TEMPB,UNIT=d~k,vOL=SER=111111,
II SPACE=(256,(15,1 »,DCB=KEYLEN=8
IISYSIN DD *

COpy OUTDD=COMPDS,INDD=COMPDS
1*
The control statements are discussed below:

• INPDS DD defines a partitioned data set (PARTPDS) that resides on a disk
volume and has 700 members. The number of members is used to calculate the
space allocation on SYSUT3.

• BACKUP DD defines a sequential data set to hold PARTPDS in unloaded form.
Block size information can optionally be added; this data set must be new.

• SYSUT3 DD defines the temporary spill data set.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement.

• COPY marks the beginning of the unload operation; the absence of an
EXCLUDE or SELECT statement causes the entire partitioned data set
(INDD=INPDS) to be unloaded to a sequential data set (OUTDD=BACKUP).

• The second EXEC statement marks the beginning of the compress-in-place
operation. The SIZE parameter indicates that the buffers are to be as large as
possible. The COND parameter indicates that the compress-in-place is to be
performed only if the unload operation was successful.

IEBCOPY Program 6-31

IEBCOPY Example 10

6-32 OS/VSl Utilities

• COMPDS DD defines a partitioned data set (PARTPDS) that contains 700
members and resides on a disk volume.

• SYSUT3 DD defines the temporary spill data set to be used if there is not
enough space in main storage for the input data set's directory entries.

• SYSUT4 DD defines the temporary spill data set to be used if there is not
enough space in main storage for the output partitioned data set's directory
blocks.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement.

• COpy marks the beginning of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. Because the same DD
statement is specified for both the INDD and OUTDD operands, the data set is
compressed in place.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream. Note, however, that the
SYSUT4 data set is never used for an unload operation.

Note: For an unload operation, only one INDD data set may be specified for one
OUTDD data set.

In this example, two input partitioned data sets (DAT ASET5 and DAT ASET6) are
to be copied to an existing output partitioned data set (DATASET1). In addition,
all members on DATASET6 are to be copied; members on the output data set that
have the same names as the copied members are replaced. After DAT ASET6 is
processed, the output data set (DATASET 1) is to be compressed in place. Figure
6-14 shows the input and output data sets before and after processing.

IICOPY JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUT1 DD DSNAME=DATASET1,UNIT=3330,VOL=SER=111112,
II DISP=(OLD,KEEP)
IIINOUTS DD DSNAME=DATASETS,UNIT=33S0,VOL=SER=111114,
II DISP=OLD
IIINOUT6 DD DSNAME=DATASET6,UNIT=33S0,VOL=SER=11111S,
II DISP=(OLD,KEEP)
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSIN DD *
COPYOPER COPY OUTDD=INOUT1

INDD=INOUTS,(INOUT6,R),INOUT1
1*
The control statements are discussed below:

• INOUT1 DD defines a partitioned data set (DATASETl). This data set contains
three members (A, B, and F) and resides on a 3330 volume.

• INOUT5 DD defines a partitioned data set (DATASET5). This data set contains
two members (A and C) and resides on a 3350 volume.

• INOUT6 DD defines a partitioned data set (DAT ASET6). This data set contains
three members (B, C, and D) and resides on a 3350 volume.

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

Input

Output
DATASET1

Before
copy
operation

DATASET5

After
processing
DATASET5

DATASET6

After
Processing
DATASET6

DATASET1

After
compressing
in place

Figure 6-14. Compress-in-Place Following Full Copy with "Replace" Specified

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement and an INDD statement.

• COpy indicates the start of the copy operation. The OUTDD operand specifies
INOUTl as the DD statement for the output data set (DATASETl). The
absence of a SELECT or EXCLUDE statement causes a default to a full copy.

• INDD specifies INOUT5 as the DD statement for the first input data set
(DATASET5) to be processed. It then specifies INOUT6 as the DD statement
for the second input data set (DATASET6) to be processed; in addition, the
replace option is specified for all members copied from DATASET6. Finally, it
specifies INOUTl as the DD statement for the last input data set (DATASETl)
to be processed; this causes a compress-in-place of DATASETl because it is
also specified as the output data set. Processing occurs, as follows: (I) member
A is not copied from DATASET5 onto the output data set (DATASETl)
because it already exists on DATASETl and the replace option was not
specified for DATASET5, (2) member C is copied from DATASET5 to the
output data set (DATASET I) , occupying the first available space, and (3) all

IEBCOPY Program 6-33

IEBCOPY Example 11

6-34 OS/VS 1 Utilities

members are copied from DATASET6 to the output data set (DATASET1),
immediately following the last member. Members Band C are copied even
though the output data set already contains members with the same names
because the replace option is specified on the data set level. The pointers in the
output data set directory are changed to point to the new members Band C;
thus, the space occupied by the old members Band C is unused. The members
currently on DAT ASET1 are compressed in place, thereby eliminating
embedded unused space.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

In this example, members are to be selected, excluded, and copied from input
partitioned data sets onto an output partitioned data set. This example is designed
to illustrate mUltiple copy operations. Figure 6-15 shows the input and output data
sets before and after processing.

IICOPY JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIINOUTA DD DSNAME=DATASETA, UNIT=disk, VOL=SER=111113,
II DISP=OLD
IIINOUTB DD DSNAME=DATASETB,UNIT=d~k,vOL=SER=111115,
II DISP=(OLD,KEEP)
IIINOUTC DD DSNAME=DATASETC, UNIT=disk, VOL=SER= 111114,
II DISP=(OLD,KEEP)
IIINOUTD DD DSNAME=DATASETD,UNIT=d~k,vOL=SER=111116,
II DISP=OLD
IIINOUTE DD DSNAME=DATASETE, UNIT=disk, VOL=SER= 111117 ,
II DISP=OLD
IIINOUTX DD DSNAME=DATASETX, UNIT=disk, VOL=SER=111112,
II DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2))
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(l))
IISYSIN DD *
COPERST1 COPY O=INOUTX,I=INOUTA

1*

COpy OUTDD=INOUTA,INDD=INOUTA
INDD=INOUTB

COPY O=INOUTA
INDD=INOUTD

EXCLUDE MEMBER=MM
INDD=INOUTC

SELECT MEMBER=«ML,MD,R))
INDD=INOUTE

The control statements are discussed below:

• INOUTA DD defines a partitioned data (DATASETA). This data set contains
eight members (MA, MB, MC, MD, ME, MF, and MG) and resides on a disk
volume.

• INOUTB DD defines a partitioned data set (DAT ASETB). This data set resides
on a disk volume and contains two members (MA and MJ).

• INOUTC DD defines a partitioned data set (DATASETC), which resides on a
disk volume. The data set contains four members (MF, ML, MM, and MN).

• INOUTD DD defines a partitioned data set (DATASETD). This data set resides
on a disk volume and contains two members (MM and MP).

'MM"H'''lIt'P''''''tH¥'¥¥H' 'CljWt'W\tt,I_Vwt'W,WIiMOO,W¥'PFIeMifmrW I,\\, ie, tIP.' *'tH't it nfflt Hut

Second copy operation

Output
DATASETA

Before
copy
operation

DATASETA

After
compressong
in place

DATASETB

After
processing
DATASETB

Figure 6-15 (Part 1 of 2). Multiple Copy Operations/Copy Steps

• INOUTE DD defines a partitioned data set (DATASETE). This data set
contains four members (MD, ME, MF, and MT) and resides on a disk volume .

• INOUTX DD defines a partitioned data set (DATASETX). This data set is new
and is to be kept after the copy operation. Five tracks are allocated for the data
set on a disk volume. Two blocks are allocated for directory entries.

IEBCOPY Program 6-35

6-36 OS/VS 1 Utilities

Third cop", operation

Before
copy
operation

MG

MJ

DATASETD

Alter
processing
DATASETD

member

DATASETC

MJ

After
processing
DATASETC

Figure 6-15 (Part 2 of 2). Multiple Copy Operations/Copy Steps

DATASETE

Member MD

Alter
processing
DATASETE

• SYSUT3 nn defines a temporary spill data set. One track is allocated on a disk
volume .

• SYSUT4 nn defines a temporary spill data set. One track is allocated on a disk
volume.

IEBCOPY Example 12

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains two COpy statements, several INDD statements, a SELECT
statement, and an EXCLUDE statement.

• The first COpy statement indicat~s the start of the first copy operation. This
copy operation is done to create a backup copy of DATASET A, which is
subsequently compressed in place.

• The second COpy statement indicates the start of another copy operatiop.. The
absence of a SELECT or EXCLUDE statement causes a default to a full copy;
however, the same DD statement, INOUTA, is specified for both the INDD and
OUTDD parameters, causing a compress-in-place of the specified data set.

• INDD specifies INOUTB as the DD statement for the input data set
(DATASETB) to be copied. Only member MJ is copied because member MA
already exists on the output data set.

• The third COpy statement indicates the start of the third copy operation. The
OUTDD parameter specifies INOUT A as the DD statement for the output data
set (DATASETA). This copy operation contains more than one copy step.

• The first INDD statement specifies INOUTD as the DD statement for the first
input data set (DATASETD) to be processed. Only member MP is copied to the
output data set (DATASETA) because member MM is specified on the
EXCLUDE statement.

• EXCLUDE specifies the member to be excluded from the first copy step within
this copy operation.

• The second INDD statement marks the beginning of the second copy step for
this copy operation and specifies INOUTC as the DD statement for the second
input data set (DATASETC) to be processed. Member ML is searched for,
found, and copied to the output data set (DATASETA). Member ML is copied
even though its new name (MD) is identical to the name of a member (MD) that
already exists on the output data set, because the replace option is specified for
the renamed member.

• SELECT specifies the member to be selected from the input data set
(DAT ASETC) to be copied to the output partitioned data set.

• The third INDD statement marks the beginning of the third copy step for this
copy operation and specifies INOUTE as the DD statement for the last data set
(DATASETE) to be copied. Only member MT is copied because the other
members already exist on the output data set. Because the INDD statement is
not followed by an EXCLUDE or SELECT statement, a full copy is performed.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

The output data set is compressed in place first to save space because it is known
that it contains embedded, unused space.

In this example, members are to be selected, excluded, and copied from input
partitioned data sets to an output partitioned data set. This example is designed to
illustrate multiple copy operations. Figure 6-16 shows the input and output data
sets before and after processing.

IEBCOPY Program 6-37

6-38 OS/VS 1 Utilities

First copy operation

Output
DATASETA

Before
copy
operation

Input
DATASETE

After
processing
DATASETE

Input
DATASETC

After
processing
DATASETC

Figure 6-16 (Part 1 of 3). Multiple Copy Operations/Copy Steps Within a Job Step

Second copy operation

Output
DATASETB

Before
copy
operation

rt"WlldfHWto'

Input
DATASETD

After
processing
DATASETD

Input
DATASETC

After
processing
DATASETC

Input
DATASETB

After
compressing
in place

Figure 6-16 (Part 2 of 3). Multiple Copy Operations/Copy Steps Within a Job Step

IEBCOPY Program 6-39

6-40 OS/VS 1 Utilities

Third copy operation

Output
DATASETD

Before
copy
operation

member

Input
DATASETB

Directory
MA MF MJ ML
MM MN MP

Member MA

MJ

MP

MF

ML

MN

After
processing
DATASETB

Figure 6-16 (Part 3 of 3). Multiple Copy Operations/Copy Steps Within aJob Step

IICOPY JOB
IIJOBSTEP EXEC
IISYSPRINT DD
IIINOUTA DD
II DISP=OLD
IIINOUTB DD
II DISP=(OLD,KEEP)
IIINOUTC DD
II DISP=(OLD,KEEP)
IIINOUTD DD
I I UNIT=disk
/IINOU'1'E DD
/ I UNIT=disk
//SYSUT3 DD
//SYSUT4 DD
//SYSIN DD

1*

COpy

SELECT

EXCLUDE
COpy

COPY
SELECT

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASETA,UNIT=d~k,vOL=SER=111113,

DSNAME=DATASETB, VOL=SER=111115, UNIT=disk,

DSNAME=DATASETC,VOL=SER=111114,UNIT=disk,

DSNAME=DATASETD,VOL=SER=111116,DISP=OLD,

DSNAME=DATASETE,VOL=SER=111117,DISP=OLD,

UNIT=SYSDA,SPACE=(TRK,(1))
UNIT=SYSDA,SPACE=(TRK,(1))

*
OUTDD=INOUTA
INDD=INOUTE
MEMBER=MA,MJ
INDD=INOUTC
MEMBER=MM,MN
O=INOUTB,INDD=INOUTD
I=((INOUTC,R),INOUTB)
O=INOUTD,I=((INOUTB,R))
MEMBER=MM

¥N' In IItll' Y hWdW'Wij"', wn"" 'rr"'" rWW2 IIHeM,,'" il*' Mme",.""·",I,, "H,iN'.'W"'wMHWttdttHtn#t#tW $

The control statements are discussed below:

• INOUTA DD defines a partitioned data set (DATASETA). This data set
contains three members (MA, MB, and MD) and resides on a disk volume.

• INOUTB DD defines a partitioned data set (DATASETB). This data set resides
on a disk volume and contains two members (MA and MJ).

• INOUTC DD defines a partitioned data set (DATASETC), which resides on a
disk volume. This data set contains four members (MF, ML, MM, and MN).

• INOUTD DD defines a partitioned data set (DATASETD). This data set resides
on a disk volume and contains two members (MM and MP).

• INOUTE DD defines a partitioned data set (DATASETE), which resides on a
disk volume. This data set contains three members (MA, MJ and MK).

• SYSUT3 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSUT4 DD defines a temporary spill data set. One track is allocated on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains three COpy statements, SELECT and EXCLUDE statements,
and several INDD statements.

• The first COpy statement indicates the start of a copy operation. The OUTDD
operand specifies INOUT A as the DD statement for the output data set
(DATASETA).

• The first INDD statement specifies INOUTE as the DD statement for the first
input data set (DAT ASETE) to be processed. Processing occurs, as follows: (1)
member MA is searched for and found, but is not copied because the replace
option is not specified, and (2) member MJ is searched for, found, and copied to
the output data set. Members are not searched for again after they are found.

• SELECT specifies the members (MA and MJ) to be selected from the input data
set (DATASETE) to be copied.

• The second INDD statement marks the end of the first copy step and the
beginning of the second copy step within the first copy operation. It specifies
INOUTC as the DD statement for the second input data set (DAT ASETC) to
be processed. Members MF and ML, which are not named on the EXCLUDE
statement, are copied because neither exists on the output data set.

• EXCLUDE specifies the members (MM and MN) to be excluded from the
second copy operation.

• The second COpy statement indicates the start of another copy operation. The
absence of a SELECT or EXCLUDE statement causes a default to a full copy.
The 0 (OUTDD) parameter specifies INOUTB as the output data set
(DATASETB). The INDD parameter specifies INOUTD as the first input data
set (DATASETD) to be processed. Members MP and MM are copied to the
output data set.

• INDD(I) specifies INOUTC as the DD statement for the second input data set
(DATASETC) and INOUTB as the DD statement for the third input data set
(DATASETB) to be processed. Members MF, ML, MM, and MN are copied
from DATASETC. Member MM is copied, although it already exists on the
output partitioned data sets, because the replace option is specified. Because
DATASETB is also the data set specified in the OUTDD parameter, a
compress-in-place takes place. (The pointer in the output data set directory is

IEBCOPY Program 6-41

IEBCOPY Example 13

6-42 OS/VS I Utilities

changed to point to the new (copied) member MM; thus the space occupied by
the replaced member MM is embedded, unused space.)

• The third COPY statement indicates the start of another copy operation. The 0
(OUTDD) parameter specifies INOUTD as the DD statement for the output
data set (DATASETD). The I (INDD) parameter specifies INOUTB as the DD
statement for the input data set (DATASETB).

• SELECT specifies the member (MM) to be selected from the input partitioned
data set (DATASETB) to be copied. The replace option is specified on the data
set level.

The temporary spill data sets mayor may not be opened, depending on the amount
of virtual storage available; therefore, it is suggested that the SYSUT3 and
SYSUT4 DD statements always appear in the job stream.

Data sets used as input data sets in one copy operation can be used as output data
sets in another copy operation, and vice versa.

In this example, a partitioned data set (SYSl.LINKLIB) is to be unloaded to a tape
volume.

IIUNLOAD JOB
IISTEP1 EXEC
IISYSPRINT DD
IIINPDS DD
II VOL=SER=666666

246803, 'name' ,MSGLEVEL=(l,l)
PGM=IEBCOPY,PARM='SIZE=100K'
SYSOUT=A
DSNAME=SYS1.LINKLIB,UNIT=d~k,DISP=SHR,

IIOUTTAPE DD DSNAME=LINKLIB,UNIT=mpe,VOL=SER=TAPEOO,
II LABEL=(,SL),DISP=(NEW,KEEP)
IISYSUT3 DD DSN=TEMP 1 , UNIT=disk, VOL=SER= 111111 ,
II DISP=(NEW~DELETE),SPACE=(80,(60,45))
IISYSIN DD *

1*

COPY OUTDD=OUTTAPE
INDD=INPDS

The control statements are discussed below:

• EXEC specifies the execution of IEBCOPY. The P ARM parameter specifies the
size of the input/output buffer to be used.

• INPDS DD defines a partitioned data set (SYSl.LINKLIB), which resides on a
. disk volume. This data set has 700 members; the number of members is used to

calculate the space allocation for SYSUT3.

• OUTT APE DD defines a sequential data set to which SYS 1.LINKLIB is to be
unloaded. The unloaded data set is named LINKLIB. This data set must be new;
if a tape volume is used, it can be standard labeled or unlabeled.

• SYSUT3 DD defines a temporary spill data set on a disk volume. This data set is
used if there is not enough space in virtual storage for the input partitioned data
set's directory entries. This data set mayor may not be opened depending on the
amount of virtual storage available; therefore, it is suggested that the statement
always appear in the job stream.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy and INDD statement.

• COpy indicates the start of an unload operation because the OUTDD parameter
refers to OUTT APE DD, which specifies a sequential output data set. Because
of the absence of an EXCLUDE or SELECT statement, the entire data set is
unloaded.

IEBCOPY Example 14

• INDD refers to INPDS DD, which defines the input partitioned data set to be
unloaded. Note that for an unload operation, only one INDD data set may be
specified for each OUTDD data set.

The SYSUT4 data set is never used for an unload operation. The SYSUT3 data set
for an unload operation is used under the same conditions as it is used for a copy
operation.

Note: If too much space is allocated, the paging process slows down because the
buffer areas are fixed.

In this example, a sequential data set created by an IEBCOPY unload operation is
to be loaded.

IILOAD JOB 246803,'name',MSGLEVEL=(1,1)
IlsTEPA EXEC PGM=IEBCOPY,PARM='SIZE=14588'
IISYSPRINT DD SYSOUT=A
IISEQIN DD DSNAME=UNLOADSET, UNIT=tape, LABEL=(, SL) ,
II VOL=SER=TAPE01,DISP=OLD
IIINOUT4 DD DSNAME=DATASET4,UNIT=d~k,vOL=SER=2222222,
II DISP=(NEW,KEEP},SPACE=(CYL,(10,5,10))
IISYSUT3 DD DSN=TEMP1,UNIT=d~k,vOL=SER=111111,
II DISP=(NEW,DELETE),SPACE=(80,(15,l))
IISYSIN DD *

COpy OUTDD=INOUT4,INDD=SEQIN
1*
The control statements are discussed below:

• EXEC specifies the execution of IEBCOPY. The PARM parameter allocates
two tracks on a disk volume. If less space· is specified, two tracks are allocated
because two tracks are the minimum required by IEBCOPY when the unloaded
data set's block size does not exceed the track capacity.

• SEQIN DD defines a sequential data set that was previously unloaded by
IEBCOPY. The data set contains 28 members in sequential organization.

• INOUT4 DD defines a partitioned data set on a disk volume. This data set is to
be kept after the load operation. Ten cylinders are allocated for the data set; ten
blocks are allocated for directory entries.

• SYSUT3 DD defines a temporary spill data set on a disk volume. This data set is
used if there is not enough virtual storage for the input data set's directory
entries. This data set mayor may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the statement always
appear in the job stream. Note that the space allocated for this data set is based
on the number of members in the input data set.

• SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COpy statement.

• COPY indicates the start of a load operation because the INDD parameter refers
to SEQIN DD, which defines a sequential data set, and OUTDD refers to
INOUT4 DD, which defines a direct access volume.

Because the output data set in this example is new, the SYSUT4 data set is not
needed. SYSUT4 should be specified, however, when the output data set is old.

Note: Reblocking may be specified for the output partitioned data set.

IEBCOPY Program 6-43

IEBCOPY Example 15

6-44 OS/VS 1 Utilities

In this example, members are to be selected, excluded, unloaded, loaded, and
copied. Processing will occur, as follows: (1) unload, excluding members, (2)
unload, selecting members, and (3) load and copy to merge members.

IICOPY JOB 06#990, 'name' ,MSGLEVEL=(1,1)
IISTEP EXEC PGM=IEBCOPY
IISYSPRINT DD SYSOUT=A
IIPDS1 DD DSNAME=ACCOUNTA,UNIT=3350,VOL=SER=333333,
II DISP=OLD
IIPDS2 DD DSNAME=ACCOUNTB,UNIT=3350,VOL=SER=333333,
II DISP=OLD
IISEQ1 DD DSNAME=SAVAC,UNIT=3350,VOL=SER=333333,
II DISP=(NEW,KEEP),SPACE=(CYL,(5,2))
I ISEQ2 DD DSNAME=SAVACB, UNIT=tape, VOL=SER=T01911,
II DISP=(NEW,KEEP),LABEL=(,SL)
IINEWUP DD DSNAME=NEWACC,UNIT=wpe,VOL=SER=T01219,
II DISP=OLD,LABEL=(,SL)
IIMERGE DD DSNAME=ACCUPDAT,UNIT=3330-1,VOL=SER=22222222,
II DISP=OLD
IISYSUT3 DD DSNAME=TEMP1,VOL=SER=666666,UNIT=3330-1,
II DISP=(NEW,DELETE),SPACE=(80,(1,1))
IISYSUT4 DD DSNAME=TEMP2,VOL=SER=666666,UNIT=3330-1,
II DISP=(NEW,DELETE),SPACE=(256,(1,1)),DCB=(KEYLEN=8)
IISYSIN DD *

1*

COpy OUTDD=SEQ1,INDD=PDS1
EXCLUDE MEMBER=(D,C)
COpy OUTDD=SEQ2,INDD=PDS2
SELECT MEMBER=(A,K)
COpy OUTDD=MERGE,INDD=((NEWUP,R),PDS1,PDS2)
EXCLUDE MEMBER=A

The control statements are discussed below:

• PDS 1 DD defines a partitioned data set that contains six members (A, B, C, D,
E, and F) and resides on a 3350 volume.

• PDS2 DD defines a partitioned data set that contains three members (A, K, and
L) and resides on a 3350 volume.

• SEQ1 DD defines a new sequential data set on a 3350 volume.

• SEQ2 DD defines a new sequential data set on a tape volume.

• NEWUP DD defines an old sequential data set that is the unloaded form of a
partitioned data set that contains eight members (A, B, C, D, M, N, 0, and P). It
resides on a tape volume.

• MERGE DD defines a partitioned data set that contains six members (A, B, C,
D, Q, and R) and resides on a 3330-1 volume.

• The first COpy statement indicates the start of the first unload operation. (The
input data set is partitioned; the output data set is sequential.)

• The first EXCLUDE statement specifies that members D and C are to be
excluded from the unload operation specified by the preceding COPY statement.

• The second COpy statement indicates the start of the second unload operation.
(The input data set is partitioned; the output data set is sequential.)

• The SELECT statement specifies that members A and K are to be included in
the unload operation specified by the preceding COpy statement.

• The third COpy statement indicates the start of the copy and load operations.
The replace option is specified for the NEWUP data set; therefore, members in

this data set replace identically named members on the output data set. The first
INDD data set is an unloaded data set that is to be loaded. The second and third
INDDdata sets are partitioned data sets that are to be copied. (The input data
sets are sequential and partitioned; the output data set is partitioned.)

IEBCOPY Program 6-45

IEBDG PROGRAM

IBM-Supplied Patterns

IEBDG is a data set utility used to provide a pattern of test data to be used as a
programming debugging aid.

An output data set, containing records of any format, can be created through the
use of utility control statements, with or without input data. An optional user exit is
provided to pass control to a user routine to monitor each output record before it is
written. Sequential, indexed sequential, and partitioned data sets can be used for
input or output.

The user codes utility control statements to generate a pattern of data that he can
analyze quickly for predictable results.

When the user defines the contents of a field, he decides:

• What type of pattern-IBM-supplied or user-supplied-he wishes to place
initially in the defined field.

• What action, if any, is to be performed to alter the contents of the field after it is
selected for each output record.

IBM supplies seven patterns: alphameric, alphabetic, zoned decimal, packed
decimal, binary number, collating sequence, and random number. The user may
choose one of them when he defines the contents of a field. All patterns except the
binary and random number patterns repeat in a given field, provided that the
defined field length is sufficient to permit repetition. For example, the alphabetic
pattern is:

ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG ...

Figure 7-1 shows the IBM-supplied patterns.

Type

Alphameric

Alphabetic

Zoned Decimal

Packed Decimal

Binary Number

Expressed in
Hexadecimal

C1 C2 ... E9 FO ... F9

C1 C2 ... E9

FOFO ... FOF1

()()()() . . . 00 1 C
(Positive pattern)
0000 ... 0010
(Negative pattern)

00 ... 01
(Positive pattern)
FF ... FF
(Negative pattern)

Expressed in
Printable Characters

AB ... ZO ... 9

AB ... Z

00 ... 01

Not applicable

Not applicable

Collating Sequence 40 ... F9 'b¢.«+ I &!$*);..,-/,%_>?:#@'="
A ... ZO ... 9

Random Number Random hexadecimal digits Not applicable

Figure 7-1. IBM-Supplied Patterns

Note: A packed decimal or binary number is right aligned in the defined field.

IEBDG Program 7 - 1

User-Specified Pictures

The user can specify a starting character when defining an alphameric, alphabetic,
or collating-sequence field. For example, a ten-byte alpl)abetic field for which "H"
is specified as the starting character would appear as:

HIJKLMNOPQ

The same ten-byte alphabetic field with no specified starting character would
appear as:

ABCDEFGHIJ

The user can specify a mathematical sign when defining a packed decimal or binary
field. If no sign is specified, the field is assumed to be positive.

Instead of selecting an IBM -supplied pattern, the user can specify a picture to be
placed in the defined field. The user can provide:

• An EBCDIC character string.

• A decimal number to be converted to packed decimal by IEBDG.

• A decimal number to be converted to binary by IEBDG.

When the user supplies a picture, he must specify a picture length that is equal to or
less than the specified field length. An EBCDIC picture is left aligned in a defined
field; a decimal number that is converted to packed decimal or to binary is right
aligned in a defined field.

The user can initially load (fill) a defined field with either an EBCDIC character or
a hexadecimal digit. For example, the 10-byte picture "BADCFEHGJI" is to be
placed in a 1S-byte field. An EBCDIC "2" is to be used to pad the field. The result
is BADCFEHGJI22222. (If no fill character is provided, the remaining bytes
contain binary zeros.) Remember that the fill character, if specified, is written in
each byte of the defined field prior to the inclusion of an IBM-supplied pattern or
user-supplied picture.

Modification of Selected Fields

7 - 2 OS/VS 1 Utilities

IEBDG can be used to change the contents of a field in a specified manner. One of
eight actions can be selected to change a field after its inclusion in each applicable
output record. These actions are ripple, shift left, shift right, truncate left, truncate
right, fixed, roll, and wave.

Figure 7-2 shows the effects of each of the actions on a six-byte alphabetic field.
Note that the roll and wave actions are applicable only when a user pattern is
supplied. In addition, the result of a ripple action depends on which type of
pattern-IBM -supplied or user-supplied-is present.

If no action is selected, or if the specified action is not compatible with the format,
the fixed action is assumed by IEBDG.

JMllIIJW1\fIW'Wi!.\NtlMMJ.!!,' r u :ltWWID'Jt\W*W,,"'YtPWWffflf t t "Wdtt'Tt'Ut $ t*¢bttttt*Wil*WO"ustW

Input and Output

Ripple-user
supplied picture

ABCDEF

BCDEFA

CDEFAB

DEFABC

EFABCD

FABCDE

ABCDEF

BCDEFA

Truncate left

ABCDEF

BCD E F

CD E F

DE F

E F

F

ABCDEF

BCD E F

R ipple-I BM
supplied format

ABCDEF

BCDEFG

CDEFGH

DEFGHI

EFGH IJ

FGHI JK

GHIJKL

HIJKLM

Truncate right

ABCDEF

ABCDE

ABCD

ABC

AB

A

ABCDEF

ABCDE

Figure 7-2. IEBDG Actions

Shift left

ABCDEF

BCDEF

CDEF

DE F

E F

F

ABCDEF

BCD E F

Fixed

ABCDEF

ABCDEF

ABCDEF

ABCDEF

ABCDEF

ABCDEF

ABCDEF

ABCDEF

IEBDG uses the following input:

Shift right

ABCDEF

ABCDE

ABCD

ABC

AB

A

ABCDEF

ABCDE

Roll-user
supplied picture

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

Wave-user
supplied picture

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

• An input data set, which contains records that are to be used in the construction
of an output data set or partitioned data set member. The input data sets are
optional; that is, output records can be created entirely from utility control
statements.

• A control data set, which contains any number of sets of utility control
statements.

IEBDG produces the following output:

• An output data set, which is the result of the IEBDG operation. One output data
set is created by each set of utility control statements included in the job step.

• A message data set, which contains informational messages, the contents of
applicable utility control statements, and any error messages.

Note that input and output data sets may be sequential, indexed sequential, or
partitioned data set members.

BDAM is not supported.

IEBDG produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a user routine returned a code of 16 to IEBDG. The job
step is terminated at the user's request.

IEBDG Program 7 - 3

Control

Job Control Statements

7 - 4 OS/VS 1 Utilities

• 08, which indicates that an error occurred while processing a set of utility control
statements. No data is generated following the error. Processing continues
normally with the next set of utility control statements, if any.

• 12, which indicates that an error occurred while processing an input or output
data set. The job step is terminated.

• 16, which indicates that an error occurred from which recovery is not possible.
The job step is terminated.

IEBDG is controlled by job control statements and utility control statements. The
job control statements are used to execute or invoke IEBDG and define the data
sets used and produced by IEBDG. Utility control statements are used to control
the functions of the program and to define the contents of the output records.

Figure 7-3 shows the job control statements necessary for using IEBDG.

Statement

JOB

EXEC

SYSPRINTDD

SYSINDD

seq inset DD

parinset DD

seqout DO

parout 00

Use

Initiates the job.

Specifies the program name (PGM=IEBDG) or, if the job control
statements reside in a procedure library, the procedure name. Additional
information can be specified in the EXEC statement; see "p ARM
Information on the EXEC Statement" below.

Defines a sequential message data set. The data set can be written on a
system output device, a tape volume, or a direct access volume.

Defines the control data set, which contains the utility control statements
and, optionally, input records. The data set normally resides in the input
stream; however, it can be defined as a sequential data set or as a member
of a partitioned data set.

Defines an optional sequential or indexed sequential data set used as input
to IEBDG. The data set can reside on a tape volume or on a direct access
volume. Any number of these statements (each having a ddname different
from all other ddnames in the job step) can be included in the job step.
Each DD statement is subsequently referred to by a DSD utility control
statement.

Defines an optional input partitioned data set member residing on a direct
access volume. Any number of these statements (each having a ddname
different from all other ddnames in the job step) can be included in the job
step. The "parinset" DD statement is referred to by a DSD utility control
statement.

Defines an output (test) sequential or indexed sequential data set. Any
number of "seqout" DD statements can be included per job step; however,
only one "seqout" statement is applicable per set of utility control
statements.

Defines an optional output partitioned data set member to be created and
placed on a direct access volume. Any number of "parout" DD statements
(each OD statement referring to the same or to a different data set) can be
included per job step; however, only one "parout" statement is applicable
per set of utility control statements.

Figure 7-3. IEBDG Job Control Statements

Both input and output data sets can contain fixed, variable, or undefined records.

"!l!!wfttitea,Lli»lNy!!,iliW,ilf'iWH'HW'"';N"UP 'W"PW'¥ ItH;Q**,*W.·" ' .. WNwrW hHH'H Wst'. nt' dttiWttf t

Refer to OS/VSl Data Management Services Guide for information on estimating
space allocations.

The "seqinset" DD statement can be entered:

/ /seqinset DD DSNAME=setname,UNIT=xxxx,DISP=(OLD,KEEP),
/ / VOLUME=SER=xxxxxx,LABEL=(. .. , ...),
/ / DCB=(applicable subparameters)

The LABEL parameter is included only for a magnetic tape volume. If the input
data set has an indexed sequential organization, DSORG=IS should be coded in
the DCB parameter.

The "parinset" DD statement can be. entered:

/ /parinset DD DSNAME=setname(membername),UNIT=xxxx,DISP=(OLD,
/ / KEEP),VOLUME=SER=xxxxxx,
/ / DCB=(applicable subparameters)

The "seqout" DD statement can be entered:

/ /seqout DD DSNAME=setname, UNIT=xxxx,
/ / DISP=(,KEEP),VOLUME=SER=xxxxxx,
/ / DCB=(applicable subparameters)

The LABEL parameter is included only for magnetic tape; the SPACE parameter is
included for direct access.

The "parout" DD statement can be entered:

/ /parout DD DSNAME=setname(membername),UNIT=xxxx,
/ / DISP=(,KEEP),VOLUME=SER=xxxxxx,DCB=(applicable
/ / subparameters),DISP=(,KEEP),
/ / SPACE=(applicable subparameter)

The SPACE parameter is included on the parout DD statement when creating the
first member to be placed in a partitioned data set.

P ARM Information on the EXEC Statement

The EXEC statement can include an optional P ARM parameter to specify the
number of lines to be printed between headings in the message data set, coded as
follows:

PARM =LINECT =nnnn

The nnnn is a four-digit decimal number that specifies the number of lines (0000 to
9999) to be printed per page of output listing.

If P ARM is omitted, 58 lines are printed between headings (unless a channel 12
punch is encountered in the carriage control tape, in which case a skip to channel 1
is performed and a heading is printed).

Note: If IEBDG is invoked, the line-count option can be passed in a parameter list
that is referred to by a subparameter of the LINK or ATTACH macro instruction.
In addition, a page count can be passed in a six-byte parameter list that is referred
to by a subparameter of the LINK or ATTACH macro instruction. For a discussion
of linkage conventions, refer to "Appendix B: Invoking Utility Programs from a
Problem Program."

IEBDG Program 7 - 5

Utility Control Statements

DSD Statement

FD Statement

7 - 6 OS/VS 1 Utilities

Any number of control statement sets can appear in a single job step. Each set
defines one data set.

The maximum length of the operand parameters is eight bytes, except for the 'data'
subparameter of the PICTURE operand. Continuation of PICTURE parameter
statements requires a nonblank character in column 72 and must begin in column 4
on the next statement.

IEBDG is controlled by the following utility control statements:

Statement

DSD

FD

CREATE

REPEAT

END

Use

Specifies the ddnames of the input and output data sets. One DSD
statement must be included for each set of utility control statements.

Defines the contents and lengths of fields to be used in creating output
records.

Defines the contents of output records.

Specifies the number of times a CREATE statement or a group of
CREATE statements are to be used in generating output records.

Marks the end of a set of IEBDG utility control statements.

Figure 7-4. IEBDG Utility Control Statements

The DSD statement marks the beginning of a set of utility control statements and
specifies the data sets that IEBDG is to use as input. The DSD statement can be
used to specify one output data set and any number of input data sets for each
application of IEBDG.

The format of the DSD statement is:

[label] DSD OUTPUT=(ddname)

[,INPUT = (ddname , ...)]

Note: The ddname SYSIN must not be coded in the INPUT parameter. Each
parameter should appear no more than once on any DSD statement.

The FD statement defines the contents and length of a field that will be used
subsequently by a CREATE statement (or statements) to form output records. A
defined field within the input logical record may be selected for use in the output
records if it is referred to, by name, by a subsequent CREATE statement.

Figure 7 -5 shows how fields defined in FD statements are placed in buffer areas so
that subsequent CREATE statements can assign selected fields to specific output
records.

Figure 7 -6 shows how the FD statement is used to specify a field in an input record
to be used in output records. The left side of the figure shows that a field in the
input record beginning at byte 50 is selected for use in the output record. The right
side of the figure shows that the field is to be placed at byte 20 in the output
record.

Note: When retrieving data sets with RECFM=F and RKP>O, the record consists
of the key plus the data with embedded key. To copy the entire record, the output
DCB=LRECL has to be input LRECL + KEYLEN. If only the data is to be

H'f,t'S'fl'i)'\ I! "i"l!!I 'mWfwuu'trtilNt'rYi!iMW\' let!!! tU 1 "J'" 't' fWw" ••• a ••• eW,\tW 'M' Isd» '*tiff tWM*ttttM"r h

copied, the FROMLOC must point to start of the data, that is
FROMLOC = keylength.

FD Statements-define fields

Contents are placed in buffers [
so that subsequent CREATE
statements can selectively Field 1
create output records.

Field 2

CREATE Statement-creates output record from setected fields

Field 3

Figure 7-5. Defining and Selecting Fields for Output Records Using IEBDG

I nput record
1

Figure 7-6. Field Selected from the Input Record for Use in the Output Record

The format of the FD statement is:

[label] FD NAME=name

,LENGTH=length-in-bytes

[,ST ARTLOC=starting-byte-location]

[,FILL={' character' I X' 2-hexadecimal-digits'}]

{[,FORMAT=pattern [, CHARACTER = character] I

,PICTURE = length ,I' character-string' I

[,SIGN =sign]

[,ACTION=action]

P' decimal-number' I
B' decimal-number'}]}

[,INDEX=number [,CYCLE=number][,RANGE=number]]

[,INPUT =ddname]

[,FROMLOC=number]

IEBDG Program 7 - 7

CREATE Statement

7 - 8 OS/VS 1 Utilities

Some of the FD keywords do not apply when certain patterns or pictures are
selected by the user; for example, the INDEX, CYCLE, RANGE and SIGN
parameters are used only with numeric fields. Figure 7 -7 shows which IEBDG
keywords can be used with the applicable pattern or picture chosen by the user.
Each keyword should appear no more than once on any FD statement.

FORMAT/PICTURE

Format

AL
AN
CO

Format

ZD
PD
BI

Picture

PD
81

Picture

EBCDIC

Compatible Operations

Action

SL
SR
TL
TR
FX
RP

Index
Cycle
Range
Sign*

Index
Cycle
Range
Sign

Action

SL
SR
TL
TR
FX
RP
WV
RO

*Zoned decimal numbers (ZD) do not include a sign.

Figure 7-7. Compatible IEBDG Operations

The CREATE statement defines the contents of a record (or records) to be made
available to a user routine or to be written directly as an output record (or records).

The format of the CREATE statement is:

[label] CREATE [QUANTITY=number]

[,FILL = {' character' I X' 2-hexadecimal-digits'}]

[,INPUT= {ddname I SYSIN[(cccc)]}]

[,PICTURE = length , startloc {,' character-string' I
,P' decimal-number' I
,B'decimal-number'}]

[,NAME= {name I (name1, namen ...) I
{{name (COPY=number, name1 , namen ...) ..•)}]

[,EXIT =routinename]

After processing each potential output record, the user routine provides a return
code to instruct IEBDG how to handle the output record. The user codes are:

'l!L!tt!''''rW1'"WH' uf'H'I';r'I'o "IWPfILOml tst*#fitil @h*".dW#**W#tHM *MMtttHtW

• 00, which specifies that the record is to be written.

• 04, which specifies that the record is not to be written. The skipped record is not
to be counted as a generated output record; processing is to continue as though a
record were written. If skips are requested through user exits and input records
are supplied, each skip causes an additional input record to be processed in the
generation of output records. For example, if a CREATE statement specifies
that ten output records are to be generated and a user exit indicates that two
records are to be skipped, 12 input records are processed.

• 12, which specifies that the processing of the remainder of this set of utility
control statements is to be bypassed. Processing is to continue with the next
DSD statement.

• 16, which specifies that all processing is to halt.

Note: When an exit routine is loaded and when the user returns control to IEBDG,
register one contains the address of the first byte of the output record. Each
keyword should appear no more than once on any CREATE statement.

Figure 7-8 shows the addition of field X to two different records. In record 1, field
X is the first field referred to by the CREATE statement; therefore, field X begins
in the first byte of the output record. In record 2, two fields, field A and field B,
have already been referred to by a CREATE statement; field X, the next field
referred to, begins immediately after field B. Field X does not have a special
starting location in this example.

Record 1

80

Record 2

41 80

Figure 7-8. Default Placement of Fields Within an Output Record Using IEBDG

The user can also indicate that a numerical field is to be modified after it has been
referred to n times by a CREATE statement or statements, that is, after n cycles, a
modification is to be made. A modification will add a user-specified number to a
field.

The CREATE statement constructs an output record by referring to previously
defined fields by name and/or by providing a picture to be placed in the record.
The user can generate multiple records with a single CREATE statement.

When defining a picture in a CREATE statement, the user must specify its length
and starting location in the output record. The specified length must be equal to the
number of specified EBCDIC or numeric characters. (When a specified decimal
number is converted to packed decimal or binary, it is automatically right aligned.)

Figure 7-9 shows three ways in which output records can be created from utility
control statements.

As an alternative to creating output records from utility control statements alone,
the user can provide input records, which can be modified and written as output
records. Input records can be provided directly in the input stream, or in a data set.
Only one input data set can be read for each CREATE statement.

IEBDG Program 7 - 9

7 - 10 OS/VS 1 Utilities

1. Fields only Output record

3. Picture only

(CREATE Picture

Figure 7-9. Creating Output Records with Utility Control

As previously mentioned, the CREATE statement is responsible for the
construction of an output record. An output record is constructed in the following
order:

1. A fill character, specified or default (binary zero), is initially loaded into each
byte of the output record.

2. If the INPUT operand is specified on the CREATE statement, and not on an FD
statement, the input records are left aligned in the corresponding output record.

3. If the INPUT operand specifies a ddname in any FD statement, only the fields
described by the FD statement(s) are placed in the output record.

4. FD fields, if any, are placed in the output record in the order of the appearance
of their names in the CREATE statement.

5. A CREATE statement picture, if any, is placed in the output record.

IEBDG provides a user exit so that the user can provide his own routine to analyze
or further modify a newly constructed record before it is placed in the output data
set.

A set of utility control statements contains one DSD statement, any number of FD,
CREATE, and REPEAT statements, and one END statement when the INPUT
parameter is omitted from the FD card.

When selecting fields from an input record (FD INPUT=ddname), the field must
be defined by an FD statement within each set of utility control statements. In this
case, defined fields for field selection are not usable across sets of utility control
statements. Such an FD card may be duplicated and used in more than one set of
utility control statements within the job step.

"1M' .'M! "fllm' ntt*. b IrHtt rt MIIII'iilW L HbiMft'rbl*'WWHtltt

REPEAT Statement

END Statement

The REPEAT statement specifies the number of times a CREATE statement or
group of CREATE statements is to be used repetitively in the generation of output
records. The REPEAT statement precedes the CREATE statements to which it
applies.

Figure 7-10 shows a group of five CREATE statements repeated n times.

Figure 7-10. Repetition Due to the REPEAT Statement Using IEBDG

The format of the REPEAT statement is:

[label] REPEAT QUANTITY=number[,CREATE=number]

The END statement is used to mark the end of a set of utility control statements.
Each set of control statements can pertain to any number of input data sets and a
single output data set.

The format of the END statement is:

[label] END

IEBDG Program 7 - 11

Operands

ACTION

CREATE

EXIT

Applicable Control
Statement

FD

REPEAT

CREATE

7 - 12 OS/VS 1 Utilities

Description of Operands/Parameters

ACTION =action
specifies that the contents of a defined field are to be
altered after the field's inclusion in an output record. These
values can be coded:

SL
specifies that the contents of a defined field are to be
shifted left after the field's inclusion in an output record.

SR
specifies that the contents of a defined field are to be
shifted right after the field's inclusion in an output
record.

TL
specifies that the contents of a defined field are to be
truncated left after the field's inclusion in an output
record.

TR
specifies that the contents of a defined field are to be
truncated right after the field's inclusion in an output
record.

RO
specifies that the contents of a defined field are to be
rolled after the field inclusion in an output record. RO
can be used only for a user-defined field.

WV
specifies that the contents of a defined field are to be
waved after the field's inclusion in an output record.
WV can be used only for a user-defined field.

FX
specifies that the contents of a defined field are to be
fixed after the field's inclusion in an output record.

RP
specifies that the contents of a defined field are to be
rippled after the field's inclusion in an output record.

Default: FX

CREATE=number
specifies.the number of following CREATE statements to
be included in the group.

Default: One CREATE statement is repeated.

EXIT =routinename
specifies the name of a user routine that is to receive
control from IEBDG before writing each output record.

~LNt*tWl!nWtWKflt""'me IU,.", M'r'.IOOnw,Uti e**'*dtit"'" •• I ... ,M'WM.*#, h+bn:WttMt "nN' M

Operands

FILL

FORMAT

Applicable Control
Statement

CREATE
FD

FD

Description of Operands/Parameters

FILL = I 'character' I X '2 -hexadecimal-digits'}
ecifies a 1 byte value that is to be placed in each byte of the

output record before any other operation in the
construction of the record takes place. These values can be
coded:

'character'
specifies an EBCDIC character that is to be placed in
each byte of the output record.

X '2 -hexadecimal-digits'
specifies two hexadecimal digits (for example,
FILL=X'40', or FILL=X'FF') to be placed in each
byte of the output record.

Default: Binary zeros are used as fill characters.

FORMAT =pattern[,CHARACTER=character]
specifies an IBM=supplied pattern that is to be placed in
the defined field. FORMAT must not be used when
PICTURE is used. The values that can be coded are:

pattern
specifies the IBM=supplied patterns, as follows:

AN
specifies an alphameric pattern.

ZD
specifies a zoned decimal pattern.

PD
specifies a packed decimal pattern.

CO
specifies a collating sequence pattern.

HI
specifies a binary pattern.

AL
specifies an alphabetic pattern.

RA
specifies a random binary pattern.

CHARACTER=eharacter
specifies the starting character of a field.

IEBDG Program 7 - 13

Operands

FROMLOC

INDEX

INPUT

Applicable Control
Statement

FD

FD

DSD

7 - 14 OS/VS 1 Utilities

Description of Operands/Parameters

FROMLOC=number
specifies the location of the selected field within the input
logical record. The number represents the position in the
input record. If, for example, FROMLOC= 10 is coded,
the specified field begins at the tenth byte; if
FROMLOC= 1 is coded, the specified field begins at the
first byte. (For variable records, significant data begins on
the first byte after the four-byte length descriptor.)

Default: The start of the input record.

INDEX= number[,CYCLE= number][,RANGE= number]
specifies a number to be added to this field whenever a
specified number of records have been written. These
additional values can be coded:

CYCLE= number
specifies a number of output records (to be written as
output or made available to an exit routine) that are
treated as a group by the INDEX keyword. Whenever
this field has been used in the construction of the
specified number of records, it is modified as specified
in the INDEX parameter. For example, if CYCLE=3 is
coded, output records might appear as 111 222333 444
etc. This parameter can be coded only when INDEX is
coded. If CYCLE is omitted and INDEX is coded, a
CYCLE value of 1 is assumed; that is, the field is
indexed after each inclusion in a potential output record.

RANGE =number
specifies an absolute value which the contents of this
field can never exceed. If an index operation attempts to
exceed the specified absolute value, the contents of the
field as of the previous index operation are used.

Default: No indexing is performed.

INPUT = (ddname , .•.)
specifies the ddname of a DD statement defining a data set
used as input to the program. Any number of data sets can
be included as input-that is, any number of ddnames
referring to corresponding DD statements can be coded.
Whenever ddnames are included on a continuation card,
they must begin in column four.

Note: The ddname SYSIN must not be coded in the
INPUT parameter of DSD or FD. Each parameter should
appear no more than once on any statement.

Operands

INPUT
(continued)

LENGTH

NAME

h d .* d****'bMIHbMIMfttltMtt.* Ht'ttt

Applicable Control
Statement

FD

CREATE

FD

FD

'#:t#fttWWffl

Description of Operands/Parameters

INPUT =ddname
specifies the ddname of a DO-statement defining a data set
used as input for field selection. Only a portion of the
record described by the FD statement will be placed in the
output record. If the record format of the output data set
indicates variable length records, the position within the
output record will depend upon where the last insert into
the output record was made.

A corresponding ddname must also be specified in the
associated CREATE statement in order to have the input
record(s) read.

INPUT = {ddname I SYSIN[(cccc]}
defines an input data set whose records are to be used in
the construction of output records. If INPUT is coded,
QUANTITY should also be coded, unless the remainder of
the input records are all to be processed by this CREATE
statement. If INPUT is specified in an FD statement
referenced by this CREATE statement, there must be a
corresponding ddname specified in the CREATE
statement in order to allow the input record(s) to be read.
These values can be coded:

ddname
specifies the ddname of a DD statement defining an
input data set.

SYSIN[(ecce)]

specifies that the SYSIN data set (input stream)
contains records (other than utility control statements)
to be used in the construction of output records. If
SYSIN is coded, the input records follow this CREATE
statement (unless the CREATE statement is in a
REPEAT group, in which case the input records follow
the last CREATE statement of the group). When
INPUT=SYSIN with no ecce value is coded, the input
records are delimited from any additional utility control
statements by a record containing $$$E in columns 1
through 4. If this value is coded, the input records are
delimited by a record containing EBCDIC characters
beginning in column 1; the ecce can be any combination
of from one to four EBCDIC characters.

LENGTH=length-in-bytes
specifies the length in bytes of the defined field. For
variable records, four bytes of length descriptor are added.

NAME = name
specifies the name of the field defined by this FD
statement.

IEBDG Program 7 - 15

Operands

NAME
(continued)

OUTPUT

Applicable Control
Statements

CREATE

DSD

7 - 16 OS/VSl Utilities

Description of Operands/Parameters

NAME={ name I (namel,namen •••) I (name, (COPY=
number, name 1 ,namen •••) ••• n

specifies the name or names of previously defined fields to
be included in the applicable output records. If both
NAME and PICTURE are omitted, the fill character
specified in the CREATE statement appears in each byte
of the applicable output record. These values can be
coded:

(namel, •.•)
specifies the name or names of a field or fields to be
included in the applicable output record(s). Each field is
included in an output record in the order in which its
name is encountered in the CREATE statement.

COpy = number
indicates that all fields named in the inner parentheses
(maximum of twenty) are to be treated as a group and
included the specified number of times in each output
record produced by this CREATE statement. Any
number of sets of inner parentheses can be included
with NAME; however, sets of parentheses cannot be
embedded. Within each set of inner parentheses, COpy
must appear before the name of any field.

OUTPUT={ddname)
specifies the ddname of the DD statement defining the
output data set.

-

Applicable Control
Operands Statement

PICTURE FD
CREATE

Description of Operands/Parameters

PICTURE =length ,
,P'decimal-number'l ,B 'decimal-number'}
specifies the length, starting byte (for CREATE only), and
the contents of a user-supplied picture. For FD, PICTURE
must not be used when FORMAT is used. If both
PICTURE and NAME are omitted, the fill character
specified in the CREATE statement appears in each byte
of applicable output records. These values can be coded:

length
specifies the number of bytes that the picture will
occupy.

startloc (CREATE only)
specifies a starting byte (within any applicable output
record) in which the picture is to begin.

'character-string'
specifies an EBCDIC character string that is to be
placed in the applicable record(s). The character string
is left aligned at the defined starting byte. A character
string may be broken in column 71, followed by a
nonblank character in column 72, and must be
continued in column 4 of the next statement.

P'decimal-number'
specifies a deCimal number that is to be converted to
packed decimal and right aligned (within the boundaries
of the defined length and starting byte) in the output
records (CREATE) or defined field (FD).

B'decimal-number'
specifies a decimal number that is to be converted to
binary and right aligned (within the boundaries of the
defined length and starting byte) in the output records
(CREATE) or defined field (FD). In all cases for FD,
the number of characters within the quotation marks
must equal the number specified in the length
subparameter.

IEBDG Program 7 - 17

Operands

QUANTITY

SIGN

STARTLOC

Applicable Control
Statement

CREATE

REPEAT

FD

FD

7 - 18 OS/VS 1 Utilities

Description of Operands/Parameters

QUANTITY =number
specifies the number of records that this CREATE
statement is to generate; each record 'is specified by the
other parameters. If both QUANTITY and INPUT are
coded, and the quantity specified is greater than the
number of records in the input data set, the number of
records created is equal to the number of input records to
be processed plus the generated data up to the specified
number.

Default: If QUANTITY is omitted and INPUT is not
specified, only one output record is created. If
QUANTITY is omitted and INPUT is specified, the
number of records created is equal to the number of
records in the input data set.

specifies the number of times the defined group of
CREATE statements is to be used repetitively. This
number cannot exceed 65,535.

SIGN= {± I-I
specifies a mathematical sign (+ or -), which is used when
defining a packed decimal or binary field.

ST ARTLOC =starting-byte-location
specifies a starting location (within all output records using
this field) in which a field is to begin. For example, if the
first byte of an output record is chosen as the starting
location, the keyword is coded ST ARTLOC = 1; if the
tenth byte is chosen, STARTLOC =10 is coded, etc. For
variable records, the starting location is the first byte after
the length descriptor.

Default: The field will begin in the first available byte of
the output record (determined by the order of specified
field names in the applicable CREATE statement).

trtnt'Wte#tttwH btiW 1'!:I!tet#b,htt:tl.tM

Restrictions

IEBDG Examples

• The DSORG subparameter must be included in the DCB subparameters if the
input or output data set has an indexed sequential organization (DSORG=IS). If
members of a partitioned data set are used, DSORG=PO or DSORG=PS may
be coded. If the DSORG subparameter is not coded, DSORG=PS is assumed.

• If the SYSPRINT DD statement is omitted, no messages are written.

• For an indexed sequential data set, the key length must be specified in the DCB.

• The block size for the SYSPRINT data set must be a multiple of 121. The block
size for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes.

The following examples illustrate some of the uses of IEBDG. Figure 7-11 can be
used as a quick reference guide to IEBDG examples. The numbers in the
"Example" column point to examples that follow.

Operation

Place binary zeros in
selected fields.

Ripple alphabetic
pattern

Create output records
from utility control
statements

Modify records from
partitioned members
and input stream

Create partitioned
members for utility
control statements

Roll and wave user
supplied patterns

Create indexed
sequential data set
using field selection
and data generation

Data Set
Organization

Sequential

Sequential

Sequential

Partitioned,
Sequential

Partitioned

Sequential

Sequential,
Indexed
sequential

Figure 7-11. IEBDG Example Directory

Device

Tape

Tape
and Disk

Disk

Disk

Disk

Disk

Disk

Comments

Blocked input and
output.

Blocked input and
output.

Blocked output.

Reblocking is performed.
Each block of output
records contains ten
modified partitioned
input records and two
input stream records.

Blocked output. One set
of utility control
statements per member.

Output records are
created from utility
control statements.

Output records are
created by augmenting
selected input fields
with generated data.

Example

2

3

4

5

6

7

Note: Examples which use disk or tape, inplace of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

IEBDG Program 7 - 19

IEBDG Example 1

7 - 20 OS/VS 1 Utilities

In this example, binary zeros are to be placed in two fields of records copied from a
sequential data set. After the operation, each record in the copied data set
(OUTSET) contains binary zeros in locations 20 through 29 and 50 through 59.

IICLEAROUT JOB "MSGLEVEL=1
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IISEQIN DD DSNAME=INSET,UNIT=tape,DISP=(OLD,KEEP),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),LABEL=(,NL),
II VOLUME=SER=222222
IISEQOUTDD DSNAME=OUTSET,UNIT=tape,VOLUME=SER=222333,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),DISP=(,KEEP),
I I LABEL=(,NL)
IISYSIN DD *

1*

DSD
FD
FD
CREATE
END

OUTPUT=(SEQOUT),INPUT=(SEQIN)
NAME=FIELD1,LENGTH=10,STARTLOC=20
NAME=FIELD2,LENGTH=10,STARTLOC=50
QUANTITY=100,INPUT=SEQIN,NAME=(FIELD1,FIELD2)

The control statements are discussed below:

• SEQIN DD defines a sequential input data set (INSET). The data set was
originally written on a unlabeled tape volume.

• SEQOUT DD defines the test data set (OUTSET). The output records are
identical to the input records, except for locations 20 through 29 and 50 through
59, which contain binary zeros at the completion of the operation.

• SYSIN DD defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

• The first and second FD statements create two 10-byte fields (FIELDI and
FIELD2) that contain binary zeros. The fields are to begin in the 20th and 50th
bytes of each output record.

• CREA TE constructs 100 output rcords in which the contents of previously
defined fields (FIELD I, FIELD2) are placed in their respective starting
locations in each of the output records. Input records from data set INSET are
used as the basis of the output records.

• END signals the end of a set of utility control statements.

IEBDG Example 2

In this example, a ten-byte alphabetic pattern is to be rippled. At the end of the job
step the first output record contains "ABCDEFGHIJ", followed by data in location
11 through 80 from the input record; the second record contains "BCDEFGHIJK"
followed by data in locations 11 through 80, etc.

72
IIRIPPLE JOB "MSGLEVEL=l
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IISEQIN DD DSNAME=INSET,DISP=(OLD,KEEP) ,VOL=SER=222222 ,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),UNIT=mpe
IISEQOUT DD DSNAME=OUTSET, UNIT=disk , VOLUME=SER= 111111 ,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),DISP=(,KEEP),
II SPACE=(TRK,(10,10))
IISYSIN DD *

1*

DSD OUTPUT=(SEQOUT),INPUT=(SEQIN)
FD NAME=FIELD1,LENGTH=10,FORMAT=AL,ACTION=RP, C

STARTLOC=l
CREATE QUANTITY=100,INPUT=SEQIN,NAME=FIELD1
END

The control statements are discussed below:

• SEQIN DD defines an input sequential data set (INSET). The data set was
originally written on a standard labeled tape volume.

• SEQOUT DD defines the test output data set (OUTSET). Twenty tracks of
primary space and ten tracks of secondary space are allocated for the sequential
data set on a disk volume.

• SYSIN 00 defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DO statements defining the input and output data sets.

• The FO statement creates a 10-byte field in which the pattern ABCDEFGHIJ is
placed. The data is rippled after each output record is written.

• CREATE constructs 100 output records in which the contents of a previously
defined field (FIELD 1) are included. The CREATE statement uses input
records from data set INSET as the basis of the output records.

• END signals the end of a set of utility control statements.

IEBDG Program 7 -21

IEBDG Example 3

7 - 22 OS/VS 1 Utilities

~ In this example, output records are to be created entirely from utility control
statements. Three fields are to be created and used in the construction of the
output records. In two of the fields, alphabetic data is to be truncated; the other
field is a numeric field that is to be incremented (indexed) by one after each output
record is written. Figure 7-12 shows the contents of the output records at the end
of the job step.

I Field 1 I Field 2 Field 3 (packed decimal)

1 131 61 71 80

ABCDEFGHIJKLMNOPORSTUVWXYZABCD I A~CDEFGHIJK LMNOPORSTUVWXYZABCD FF ... FF 123 ... 90

BCDE FG HIJ K LMNOPORSTUVWX YZABCD I ABCDE FG H IJKLMNOPORSTUVWXYZABC FF ... FF 123 ... 91

-- CDE FG H IJK ~MNOPORSTUVWXYZ~BCDE F G H IJK LMNOPORSTUVWXYZAB FF ... FF 123 ... 92

DEFGHIJK~MNOPORSTUVWXYZABC'?..0BCDEFGHIJKLMNOPORSTUVWXYZA FF ... FF 123 ... 93

EFGHIJKL.MNOPORSTUVWXYZABCDI ABCDEFGHIJKLMNOPORSTUVWXYZ FF ... FF 123 ... 94

Figure 7-12. Output Records at Job Step Completion

IIUTLYONLY JOB "MSGLEVEL=1
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IISEQOUT DD DSNAME=OUTSET, UNIT=disk ,DISP= (, KEEP) ,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(10.10)),
II VOLUME=SER=111111
IISYSIN DD DATA

DSD OUTPUT=(SEQOUT)
FD NAME=FIELD1,LENGTH=30,STARTLOC=1,FORMAT=AL,ACTION=TL
FD NAME=FIELD2,LENGTH=30,STARTLOC=31,FORMAT=AL,ACTION=TR

72

FD NAME=FIELD3,LENGTH=10,STARTLOC=71,PICTURE=10, C
P'1234567890' ,INDEX=1
CREATE QUANTITY=100,NAME=(FIELD1,FIELD2,FIELD3),FILL=X'FF'

END
1*
The control statements are discussed below:

• SEQOUT DD defines the test output data set. Ten tracks of primary space and
ten tracks of secondary space are allocated for the sequential data set on a disk
volume.

• SYSIN DO defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the output data set.

• FD defines the contents of three fields to be used in the construction of output
records. The first field contains 30 bytes of alphabetic data to be truncated left
after each output record is written. The second field contains 30 bytes of
alphabetic data to be truncated right after each output record is written. The
third field is a ten-byte field containing a packed decimal number (1234567890)
to be incremented by one after each record is written.

• CREATE constructs 100 output records in which the contents of previously
defined fields (FIELD 1, FIELD2, and FIELD3) are included.

• END signals the end of a set of utility control statements.

tt!#dttt * ettrrW'dHMd!b HwttWt*W"ftHMWttlH'

IEBDG Example 4

In this example, two partitioned members and input records from the input stream
are to be used as the basis of a partitioned output member. Each block of 12 output
records is to contain ten modified records from an input partitioned member and
two records from the input stream. Figure 7-13 shows the content of the output
partitioned member at the end of the job step.

Figure 7-13. Output Partitioned Member at Job Step Completion

IIMIX JOB "MSGLEVEL=l
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IIPARINl DD DSNAME=INSETl (MEMBA), UN I T=disk , DISP=OLD,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),
II VOLUME=SER=llllll
IIPARIN2 DD DSNAME=INSET2 (MEMBA) , UNIT=disk, DISP=OLD,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PS},
II VOLUME=SER=222222
IIPAROUT DD DSNAME=PARSET(MEMBA), UNIT=disk, DISP=(, KEEP),
II VOLUME=SER=333333,SPACE=(TRK,(10,10,5)),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=960,DSORG=PS)
IISYSIN DD DATA

DSD OUTPUT=(PAROUT),INPUT=(PARIN1,PARIN2)
FD NAME=FIELD1 , LENGTH=13, PICTURE=13, 'DEPARTMENT 21'
REPEAT QUANTITY=10,CREATE=2
CREATE QUANTITY=10,INPUT=PARIN1,NAME=FIELD1
CREATE QUANTITY=2,IN~UT=SYSIN

(input records I through 20)

IEBDG Program 7 - 23

IEBDG Example 5

7 - 24 OS/VS 1 Utilities

$$$E
REPEAT
CREATE
CREATE

QUANTITY=1 0, CREATE=2
QUANTITY=10,INPUT=PARIN2,NAME=FIELD1
QUANTITY=2,INPUT=SYSIN

(input records 21 through 40)

$$$E
END

/*

The control statements are discussed below:

• PARINI DD defines one of the input partitioned members.

• PARIN 2 DD defines the second of the input partitioned members. (Note that
the members are from different partitioned data sets.)

• PAROUT DD defines the output partitioned member. This example assumes
that the partitioned data set does not exist prior to the job step; that is, this DD
statement allocates space for the partitioned data set.

• SYSIN DD defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

• FD creates a 13-byte field in which the picture "DEPARTMENT 21" is placed.

• The first REPEAT statement indicates that the following group of two
CREATE statements is to be repeated ten times.

• The first CREATE statement creates ten output records. Each output record is
constructed from an input record (from partitioned data set INSETl) and from
previously defined FIELD 1.

• The second CREATE statement indicates that two records are to be constructed
from input records included next in the input stream.

• The $$$E record separates the input records from the REPEAT statement. The
next REPEAT statement group is identical to the preceding group, except that
records from a different partitioned member are used as input.

• END signals the end of a set of utility control statements.

In this example, output records are to be created from three sets of utility control
statements and written in three partitioned data set members. Four fields are to be
created and used in the construction of the output records. In two of the fields
(FIELD 1 and FIELD3), alphabetic data is to be shifted. The other two fields are to
be fixed alphameric and zoned decimal fields. Figure 7 -14 shows the partitioned
data set members at the end of the job step.

MEMBA
Field 1 Field 3 Field 2 Binary zeros
1 31 51 71 80

ABeD E FGH IJ K LMNOPQRSTUVWX YZABCD ABCDEFGHIJKLMNOPQRST 00000000000000000001 fill

BCDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRS 00000000000000000001 fill

CDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQR 00000000000000000001 fill

~GHIJKI MW)PQRSTUVWXYZAB~ ABCDEFGHIJKI MI\I()PQ QOOooooooooooo~n1 .iii I -
MEMBB
Field 3 Field 3 Field 3 Field 2

1 21 41 61 80

ABCDE FGH IJK LMNOPQRST ABCDEFGHIJKLMNOPQRST ABCDE:FGHIJKLMNOPQRST 00000000000000000001

ABCDEFGHIJKLMNOPQRS ABCDEFGHIJKLMNOPQRS ABCDEFGHIJKLMNOPQRS 00000000000000000001

ABCDEFGHIJLKMNOPQR ABCDEFGH IJKLMNOPQR ABCDEFGHIJKLMNOPQR 00000000000000000001
~BCDEFGHIJKLMNOPQ ABCDEFG HIJKLMI\I()P() ABCI).E.Cr,HIJI<' I "',,,po ooon()()OOOOO('l~nnnn.1 - -

MEMBC
Field 4 Field 1 Binary zeros

1 31 61 80

ABCDE FGHIJKLMNOPQRSTUVWXYZ0123 ABCDEFG H IJK LMNOPQRSTUVWX YZABCD fill

ABCDE FGH IJK LMNOPQRSTUVWXYZ0123 BCDEFGHIJKLMNOPQRSTUVWXYZABCD fill

ABCDE FGH IJK LMNOPQRSTUVWX YZ0123 CDEFGHIJKLMNOPQRSTUVWXYZABCD fill

ABCDE FGHI.IK LMNOPQRSTUVWYYZ0123 DEFGHIJKI MI\!QPQRSZ!.!\'WXY7J\n,,1') fill --
Figure 7-14. Partitioned Data Set Members at Job Step Completion

IluTSTS JOB "MSGLEVEL=1
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IIpAROUT1 DD DSNAME=PARSET(MEMBA), UNIT=disk, DISP=(, KEEP),
II VOLUME=SER=111111,SPACE=(TRK,(10,10,5)),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=800,DSORG=PS)
IIpAROUT2 DD DSNAME=PARSET(MEMBB),UNIT=AFF=PAROUT1,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),DISP=OLD,
II VOLUME=SER=111111
IIpAROUT3 DD DSNAME=PARSET(MEMBC), UNIT=AFF=PARO::T1 ,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),DISP=OLD,
II VOLUME=SER=111111
IISYSIN DD DATA

1*

DSD OUTPUT=(PAROUT1)
FD NAME=FIELD1,LENGTH=30,FORMAT=AL,ACTION=SL
FD NAME=FIELD2,LENGTH=20,FORMAT=ZD
FD NAME=FIELD3,LENGTH=20,FORMAT=AL,ACTION=SR
FD NAME=FIELD4,LENGTH=30,FORMAT=AN
CREATE QUANTITY=4,NAME=(FIELD1,FIELD3,FIELD2)
END
DSD
CREATE
END
DSD
CREATE
END

OUTPUT=(PAROUT2)
QUANTITY=4,NAME=«COPY=3,FIELD3),FIELD2)

OUTPUT=(PAROUT3)
QUANTITY=4,NAME=(FIELD4,FIELD1)

The control statements are discussed below:

• PAROUTI DD defines the first member (MEMBA) of the partitioned output
data set. This example assumes that the partitioned data set does not exist prior
to this job step; that is, this DD statement allocates space for the data set.

• PAROUT2 and PAROUT3 DD define the second and third members,
respectively, of the output partitioned data set. Note that each DD statement
specifies DISP=OLD and UNIT=AFF=PAROUTl.

• SYSIN DD defines the control data set, which follows in the input stream.

IEBDG Program 7 - 25

7 - 26 OS/VS 1 Utilities

• DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the member applicable to that set of utility control
statements.

• FD defines the contents of a field that is used in the subsequent construction of
output records.

• CREATE constructs four records from combinations of previously defined
fields.

• END signals the end of a set of utility control statements.

IEBDG Example 6

In this example, ten fields containing user-supplied EBCDIC pictures are to be used
in the construction of output records. After a record is written, each field is rolled
or waved, as specified in the applicable FD statement. Figure 7-15 shows the
contents of the output records at the end of the job step.

FIELD' F I ELD2 FIELD3 FIELD4 FIE LD5 FI ELD6 FIELD7 F·IELD8 FIELD9 FIELD 10

AAAAA BBBBB A AA BB B AAA eeeee DODD .e ee 0 0 0 eee
AAAAA BBBBB A AA BB B AAA eeeee DODD e ee DO 0 eee

AAAAA BBBBB A AA BB B AAA eeeee DODD e ee 0 0 eee
AAAAA BBBBB A AA '88-"8 AAA "--- ceeee DODD -e ee DO 0 eee

AAAAA BBBBB A AA BB B AAA ___ eeeG~ DODD e ee DO 0 eee
AAAAA BBBBB A AA BB JL. AAA eeeee -"-

DODD C ee 0 0 eee
AAAAA BBBBB A AA BB B r.-.-. AAA eeeee DODD e ee DO 0 eee

AAAAA BBBBB A AA BB B AAA t----------
eeece" DODD c"-te DO 0 eee

AAAAA BBBBB A AA BB "8 AAA --eee"ee DODD e ee 0 0 eee
AAAAA BBBB!3_ _A __ A~_ ~§--"~ AAA eeeee DDi5D" e ee DO 0 eee
~ --- '--- - -
Figure 7-15. Contents of Output Records at Job Step Completion

IIROLLWAVE JOB "MSGLEVEL=1
II EXEC PGM=IEBDG
IISYSPRINT DD SYSOUT=A
IIOUTSET DD DSNAME=SEQSET, UN I T=disk , DISP=(, KEEP) ,
II VOLUME=SER=SAMP,SPACE=(TRK,(10,10)),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=800)
IISYSIN DD *

DSD OUTPUT=(OUTSET)
FD NAME=FIELD1,LENGTH=8,PICTURE=8,' AAAAA' , ACTION=RO
FD NAME=FIELD2,LENGTH=8,PICTURE=8,'BBBBB ',ACTION=RO
FD NAME=FIELD3,LENGTH=8,PICTURE=8,'A AA ',ACTION=RO
FD NAME=FIELD4,LENGTH=8,PICTURE=8,' BB S' , ACTION=RO
FD NAME=FIELD5,LENGTH=8,PICTURE=8,' AAA ',ACTION=RO
FD NAME=FIELD6,LENGTH=8,PICTURE=8,' CCCCC',ACTION=WV
FD NAME=FIELD7,LENGTH=8,PICTURE=8,' DDDD ',ACTION=WV
FD NAME=FIELD8,LENGTH=8,PICTURE=8,' C CC ',ACTION=WV
FD NAME=FIELD9,LENGTH=8,PICTURE=8,' DD D',ACTION=WV

-

72

FD NAME=FIELD10,LENGTH=8,PICTURE=8,' CCC ',ACTION=WV
CREATE QUANTITY=300,NAME=(FIELD1,FIELD2,FIELD3, C

END
1*

FIELD4,FIELD5,FIELQ6,FIELD7,FIELD8, C
FIELD9,FIELD10)

The control statements are discussed below:

• OUTSET DD defines the output sequential data set on a disk volume. Twenty
tracks of primary space and ten tracks of secondary space are allocated to the
data set.

• SYSIN DD defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the output data set.

• FD defines a field to be used in the subsequent construction of output records.
Note that the direction and frequency of the initial roll or wave depends on the
location of data in the field.

• CREATE constructs 300 records from the contents of the previously defined
fields.

• END signals the end of a set of utility control statements.

-

IEBDG Program 7 - 27

IEBDG Example 7

7 - 28 OS/VS I Utilities

In this example, the-first ten bytes of the output record contain data generated in
zoned decimal format. This field serves as the key field for the output record in the
output indexed sequential data set. The key field is incremented (indexed) by one
for each record. The input sequential data set provides an additional 80-byte field
to complete the output record.

IICREATEIS JOB MSGLEVEL=l
IIBEGIN EXEC PGM=IEBDG
IITAPEIN DD DCB=(BLKSIZE=80,LRECL=80,RECFM=F),
I I DISP=(OLD, KEEP), UN I T=tape , LABEL=(, SL),
II DSNAME=TAPEIT,VOL=SER=MASTER
IIDISKOUT DD DCB=(BLKSIZE=270,LRECL=90,RECFM=FB,
II DSORG=IS,NTM=2,OPTCD=MY,RKP=O,KEYLEN=10,
II CYLOFL=l),UNIT=d~k,sPACE=(CYL,l),DISP=(NEW,KEEP),
II VOL=SER=111111,DSNAME=CREATIS
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

DSD OUTPUT=(DISKOUT),INPUT=(TAPEIN)

72

FD NAME=DATAFD,LENGTH=80,FROMLOC=1, C
STARTLOC=ll,INPUT=TAPEIN

FD NAME=KEYFD,LENGTH=10,STARTLOC=1,FORMAT=ZD,INDEX=1
CREATE INPUT=TAPEIN,NAME=(KEYFD,DATAFD)
END

1*
The control statements are discussed below:

• T APEIN DD defines the sequential input data set.

• DISKOUT DD defines the indexed sequential output data set.

• SYSIN DD defines the control data set, which follows in the input stream.

• DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the output data set.

• FD defines a field that will be used in the subsequent construction of output
records. The first FD statement in this example defines and locates an 80-byte
field of input data. The data is field selected from one of the input logical
records and placed at start location 11 of the output logical record. The second
FD statement defines and locates the ten-byte key field.

• CREATE constructs a 90-byte output record by referring to the previously
defined fields.

• END signals the end of a set of utility control statements.

hfltt_ _1WHbb:W'rtti:tul!:!ijtttMlrlH

IEBEDIT PROGRAM

Input and Output

Control

IEBEDIT is a data set utility used to create an output data set containing a
selection of jobs or job steps. At a later time, the data set can be used as an input
stream for job processing.

When IEBEDIT encounters a selected job step containing an input record having
the characters " .. *" in columns 1 through 3, the program automatically converts
that record to a termination statement (/* b statement) and places it in the output
data set.

IEBEDIT uses the following input:

• An input data set, which is a sequential data set consisting of a job stream. The
input data set is used as source data in creating an output sequential data set.

• A control data set, which contains utility control statements that are used to
specify the organization of jobs and job steps in the output data set.

IEBEDIT produces the following output:

• An output data set, which is a sequential data set consisting of a resultant job
stream.

• A message data set, which is a sequential data set that contains applicable
control statements, error messages, if applicable, and, optionally, the output data
set.

IEBEDIT provides a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that an error 'occurred. The output data set may not be
usable as a job stream. Processing continues.

• 08, which indicates that an unrecoverable error occurred while attempting to
process the input, output, or control data set. The job step is terminated.

IEBEDIT is controlled by job control statements and utility control statements. The
job control statements are required to execute or invoke the program and to define
the data sets used and produced by the program. The utility control statements are
used to control the functions of the program.

IEBEDIT Program 8 - 1

Job Control Statements

Figure 8-1 shows the job control statements necessary for using IEBEDIT.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBEDIT) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access volume.

SYSUTI DD Defines a sequential input data set on a card reader, tape volume, or direct
access device.

SYSUT2 DO Defines a sequential output data set on a card punch, printer, tape volume, or
direct access device.

SYSIN DD Defines the control data set. The data set normally is included in the input
stream; however, it can be defined as a member of a procedure library or as a
sequential data set existing somewhere other than in the input stream.

Figure 8-1. IEBEDIT Job Control Statements

Utility Control Statement

EDIT Statement

8 - 2 OS/VSl Utilities

Figure 8-2 shows that the only utility control statement for IEBEDIT is the EDIT
statement.

Statement

EDIT

Use

Indicates what step or steps or a specified job in the input data set are to be
included in the output data set.

Figure 8-2. IEBEDIT Utility Control Statement

The EDIT statement indicates which step or steps or a specified job in the input
data set are to be included in the output data set. Any number of EDIT statements
can be included in an operation, thus including selected jobs in the output data set.

EDIT statements must be included in the same order as the input jobs that they
represent. If no EDIT statement is present in the control data set, the entire input
data set is copied.

The format of the EDIT statement is:

[label] EDIT [START=jobname]

[,TYPE = {POSITION I INCLUDE I EXCLUDE}]

[,STEPNAME= {(name-nameLname-name] I name[,name], ... }

[,NOPRINT]

!,HyhWtiNnh 'I tnt.*" 1\ '.'!:'ttrltb±tt'*t** \ .. Itt Ht'ttHtttH':ItoH Hetti tttht tHH# W#rtWM."tm

Operands

NOPRINT

START

STEPNAME

Applicable Control
Statements

EDIT

EDIT

EDIT

Description of Operands/Parameters

NOPRINT
specifies that the message data set is not in include a listing
of the output data set.

Default: The resultant output is listed in the message data
set.

ST ART=}obname
specifies the name of the input job to which the EDIT
statement applies. (Each EDIT statement must apply to a
separate job.) If START is specified without TYPE and
STEPNAME, the JOB statement and all job steps for the
specified job are included in the output.

Default: If START is omitted and only one EDIT
statement is provided, the first job. encountered in the
input data set is processed. If START is omitted from an
EDIT statement other than the first statement, processing
continues with the next JOB statement found in the input
data set.

STEPNAME=(lname-name (, name-name] I name (, name 11, •••)
specifies the first job step to be placed in the output
data set when coded with TYPE=POSITION. Job steps
proceding this step are not copied to the output data set.
When coded with TYPE = INCLUDE or
TYPE=EXCLUDE, STEPNAME specifies the names of
job steps that are to be included in or excluded from the
operation. For example,
STEPNAME= (STEP A,STEPF-STEPL,STEPZ) indicates
that job steps STEP A, STEPF through STEPL, and
STEPZ are to be included in or excluded from the
operation.

Default: If STEPNAME is omitted, the entire input job
whose name is specified on the EDIT statement is copied.
If no job name is specified, the first job encountered is
processed.

IEBEDIT Program 8 - 3

Operands

TYPE

Applicable Control
Statements

EDIT

8 - 4 OS/VS 1 Utilities

Description of Operands/Parameters

TYPE=IPOSITION I INCLUDE I EXCLUDE}
specifies the contents of the output data set. These values
can be coded:

POSITION
specifies that the output is to consist of a JOB
statement, the job step specified in the STEPNAME
parameter, and all steps that follow it. All job steps
preceding the specified step are omitted from the
operation.

INCLUDE
specifies that the output data set is to contain a JOB
statement and all job steps specified in the STEPNAME
parameter.

EXCLUDE
specifies that the output data set is to contain a JOB
statement and all job steps belonging to the job except
those steps specified in the STEPNAME parameter.

Restrictions

IEBEDIT Examples

lEBEDIT Example 1

The block size for the SYSPRINT data set must be a mUltiple of 121. If not, the job
step is terminated with a return code of 8. The block size for the SYSIN, SYSUT1,
and SYSUT2 data sets must be a multiple of 80. Any blocking factor can be
specified for these block sizes.

The following examples show some of the uses of IEBEDIT. Figure 8-3 can be
used as a quick reference guide to IEBEDIT examples. The numbers in the
"Example" column point to examples that follow.

Operation Devices

COPY Tape

COpy Tape

Comments

The input data set contains three jobs. One job is
to be copied.

The output data set is the second data set on the
volume. One job step is to be copied from each of

Example

three jobs. 2

COpy Disk and Include a job step from one job and exclude a
Tape job step from another job. 3

COpy Disk Latter portion of a job stream is to be copied. 4

COpy Tape All records in the input data set are to be copied.
The *" record is converted to a .. /*b"
statement in the output data set. 5

Figure 8-3. IEBEDIT Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

In this example, one job (JOBA), including all of its job steps (A, B, C, and D), is
to be copied into the output data set. The input data set contains three jobs: JOBA,
which has four job steps; JOBB, which has three job steps; and JOBC, which has
two job steps.

IIEDIT1 JOB 09#440,SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=tape, DISP=(OLD, KEEP) , VOLUME=SER=OO 1234
IISYSUT2 DD UNIT=tape,DISP=(NEW,KEEP),VOLUME=SER=001235,
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),DSNAME=OUTTAPE
IISYSIN DD *

EDIT START=JOBA
1*
The control statements are discussed below:

• SYSUT1 DD defines the input data set. The data set resides on a 9-track,
standard labeled tape volume (001234).

• SYSUT2 DD defines the output data set. The data set is to reside as the first
data set on a standard labeled tape volume (001235).

• SYSIN DD defines the control data set, which follows in the input stream.

• EDIT indicates that JOBA is to be copied in its entirety.

IEBEDIT Program 8 - 5

IEBEDIT Example 2

IEBEDIT Example 3

8 - 6 OS/VS 1 Utilities

This example copies: (1) the JOB statement and steps STEPC and STEPD for
JOBA, (2) the JOB statement and STEPE for JOBB, and (3) the JOB statement
and STEPJ for JOBC. The input data set contains three jobs: JOBA, which
includes STEPA, STEPB, STEPC, and STEPD; JOBB, which includes STEPE,
STEPF, and STEPG; and JOBC, which includes STEPH and STEPJ.

IIEDIT2 JOB 09#440,SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO DISP=(OLD,KEEP),VOLUME=SER=001234,
I I UNIT=tape
IISYSUT2 DO DSNAME=OUTSTRM,UNIT=wpe,DISP=(NEW,KEEP),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),
II LABEL=(2,SL)
IISYSIN DO

1*

EDIT
EDIT
EDIT

*
START=JOBA,TYPE=INCLUDE,STEPNAME=(STEPC,STEPD)
START=JOBB,TYPE=INCLUDE,STEPNAME=STEPE
START=JOBC,TYPE=INCLUDE,STEPNAME=STEPJ

The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set resides on a standard
labeled tape volume (001234).

• SYSUT2 DD defines the output data set. The data set is to reside as the second
data set on a standard labeled tape volume (001235).

• SYSIN DD defines the control data set, which follows in the input stream.

• The EDIT statements copy the indicated JOB statements and job steps.

This example copies: (1) the JOB statement and steps STEPF and STEPG for
JOBB and (2) the JOB statement and STEPH, excluding STEPJ, for JOBC. The
input data set contains three jobs: JOBA, which includes STEP A, STEPB, STEPC,
and STEPD; JOBB, which includes STEPE, STEPF, and STEPG; and JOBC,
which includes STEPH and STEPJ.

IIEDIT3 JOB 09#440,SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO DSNAME=INSET,UNIT=d~k,DISP=(OLD,KEEP),
II VOLUME=SER=111111
IISYSUT2 DO DSNAME=OUTTAPE, UNIT=tape, LABEL(, NL),
II DCB=(DEN=2,RECFM=F,LRECL=80,BLKSIZE=80),DISP=(,KEEP)
IISYSIN DO *

1*

EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=(STEPF-STEPG)
EDIT START=JOBC, TYPE=EXCLUDE,STEPNAME=STEPJ

The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set resides on a disk volume
(111111).

• SYSUT2 DD defines the output data set. The data set is to reside as the first or
only data set on an unlabeled (800 bits per inch) tape volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• The EDIT statements copy selected JOB statements and job steps.

WI #rt...... cd H ttttt t. tt' tertH" hlbtt'trtd ttH#dHnt"H

lEBEDIT Example"

IEBEDIT Example 5

»tt IfW H ffl tnMbWbWttbtft"M'WbHbtH:t±

This example copies the JOBA JOB statement, the job step STEPF, and all the
steps that follow it. The input data set contains one job (JOBA), which includes
STEP A, STEPB, ... STEPL. Job steps STEP A through STEPE are not included in
the output data set.

IIEDIT4 JOB 09#440 , SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=INSTREAM, UN I T=disk ,DISP=(OLD ,KEEP),
II VOLUME=SER=111111
IISYSUT2 DD DSNAME=OUTSTREM,UNIT=duk,DISP=(,KEEP),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),VOLUME=SER=222222,
II SPACE=(TRK,2)
IISYSIN DD *

EDIT START=JOBA,TYPE=POSITION,STEPNAME=STEPF
1*
The control statements are discussed below:

• SYSUT1 DD defines the input data set. The data set resides on a disk volume
(111111).

• SYSUT2 DD defines the output data set-The data set is to reside on a disk
volume (222222).

• SYSIN DD defines the control data set, which follows in the input stream.

• EDIT copies the JOB statement and job steps STEPF through STEPL.

This example copies the entire input (SYSUT1) data set. The record containing the
characters" .. *" in columns 1 through 3 is converted to a "/* b" statement in the
output data set.

IIEDITS JOB 09#440,SMITH
II EXEC PGM=IEBEDIT
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD DSNAME=OUTTAPE,UNIT=lape,VOLUME=SER=001234,
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80),DISP=(NEW,KEEP)
IISYSIN DD DUMMY
IISYSUT1 DD DATA
IIBLDGDGIX JOB
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDD 1 DD UNIT=disk, VOLUME=SER= 111111 ,DISP=OLD
IISYSIN DD *

BLDG INDEX=A.B.C,ENTRIES=10,EMPTY

*
1*
The control statements are discussed below:

• SYSUT2 DD defines the output data set. The data set is to reside as the first
data set on a tape volume (001234).

• SYSIN DD defines a dummy control data set.

• SYSUT1 DD defines the input data set, which follows in the input stream. The
job is terminated when the termination statement (/* b) is encountered.

IEBEDIT Program 8-7

» • em w tt

IEBGENER PROGRAM

IEBGENER is a data set utility that can be used to:

• Create a backup copy of a sequential data set or a partitioned member.

• Produce a partitioned data set or member from a sequential input data set.

• Expand an existing partitioned data set by creating partitioned members and
merging them into the data set that is to be expanded.

• Produce an edited sequential or partitioned data set.

• Reblock or change the logical record length of a data set.

• Copy user labels on sequential output data sets. (Refer to "Appendix D:
Processing User Labels.")

• Provide optional aditing facilities and exits for user routines that process labels,
manipulate input data, create keys, and handle permanent input/output errors.
Refer to "Appendix A: Exit Routine Linkage" for a discussion of linkage
conventions that are applicable when user routines are provided.

At the completion or termination of IEBGENER, the highest return code
encountered within the program is passed to the calling program.

Creating a Backup Copy

A backup copy of a sequential data set or partitioned member can be produced by
copying the data set or member to any IBM-supported output device. For example,
a copy can be made from tape to tape, from direct access to tape, etc.

A data set that resides on a direct access volume can be copied to its own volume,
provided that its data set name is changed. A partitioned data set cannot reside on a
magnetic tape volume.

Producing a Partitioned Data Set from Sequential Input

Through the use of utility control statements, the user can logically divide a
sequential data set into record groups and assign member names to the record
groups. IEBGENER places the newly created members in a partitioned output data
set.

Note: A partitioned data set cannot be produced if an input or output data set
contains spanned records.

Figure 9-1 shows how a partitioned data set is produced from a sequential data set
used as input. The left side of the figure shows the sequential data set. Utility
control statements are used to divide the sequential data set into record groups and
to provide a member name for each record group. The right side of the figure shows
the partitioned data set produced from the sequential input.

IEBGENER Program 9 - t

Utility control
names first

names new

Sequential
input

Partitioned
output

r-----~ Record

REC 1

LASTREC n

group
1

Record
group
2

Record
group
n

Directory
123456n
" 1 ~

..

M~t~ers 1 I LASTREC 1

K=
~I ,g.- ffi

K 2 1.·... LASTREC 2 --+---- I
I 'I
I 1 I

~ "1 jTREC"

Figure 9-1. Creating a Partitioned Data Set from Sequential Input Using IEBGENER

Expanding a Partitioned Data Set

9 - 2 OS/VS 1 Utilities

An expanded data set is a data set into which an additional member or members
have been merged. IEBGENER creates the members from sequential input and
places them in the data set being expanded. The merge operation-the ordering of
the partitioned directory-is automatically performed by the program.

Figure 9-2 shows how sequential input is converted into members that are merged
into an existing partitioned data set. The left side of the figure shows the sequential
input that is to be merged with the partitioned data set shown in the middle of the
figure. Utility control statements are used to divide the sequential data set into
record groups and to provide a member name for each record group. The right side
of the figure shows the expanded partitioned data set. Note that members B, D, and
F from the sequential data set were placed in available space and that they are
sequentially ordered in the partitioned directory.

Utility control statements
define record groups
Name members

tt tz thd
•

~t,;:~U~lll.'O'

input

Member
B

t xlstrng
data set

r-=-........ -.---~
Directory

~.-~~.-.-----
Members .t..

LASTREC

Member
D

.. ~?-~
, G '------

LASTREC

Member
F

Available space

Figure 9-2. Expanding a Partitioned Data Set Using IEBGENER

Producing an Edited Data Set

Expanded
data set

IEBGENER can be used to produce an edited sequential or partitioned data set.
Through the use of utility control statements, the user can specify editing
information that applies to a record, a group of records, selected groups of records,
or an entire data set.

An edited data set can be produced by:

• Rearranging or omitting defined data fields within a record.

• Supplying literal information as replacement data.

• Converting data from packed decimal to unpacked decimal mode, unpacked
decimal to packed decimal mode, or H~set BCD to EBCDIC mode.

Figure 9-3 shows part of an edited sequential data set. The left side of the figure
shows the data set before editing is performed. Utility control statements are used
to identify the record groups to be edited and to supply editing information. In this
figure, literal replacement information is supplied for information within a defined
field. (Da,ta is rearranged, omitted, or converted in the same manner.) The BBBB
field in each record in the record group is to be replaced by CCCC. The right side
of the figure shows the data set after editing.

Note: IEBGENER cannot be used to edit a data set if the input and output data
sets consist of variable spanned (VS) or variable blocked spanned (VBS) records
and have equal block sizes and logical record lengths. In this case, any utility
control statements that specify editing are ignored, that is, for each physical record
read from the input data set, the utility writes an unedited physical record on the
output data set.

IEBG ENER Program 9 - 3

---------...t:"l::-IRecord
Utility control statement
Defines record group. contains
literal replacement data (CCCC).
Applies to all records within
the group.

»
»
»

1

Record
2

Record
group

Record
n

Figure 9-3. Editing a Sequential Data Set Using IEBGENER

»
»
»

Reblocking or Changing Logical Record Length

Input and . OUtput

9 - 4 OS/VSl Utilities

IEBGENER can be used to produce a reblocked output data set containing either
fixed or variable records. In addition, the program can produce an output data set
having a logical record length that differs from the input logical record length.
If the data set is copied without editing, and the output record format is variable or
variable blocked, the copy will not be successful unless the output logical record
length is equal to or greater than the input logical record length.

IEBGENER uses the following input:

• An input data set, which contains the data that is to be copied, edited, converted
into a partitioned data set, or converted into members to be merged into an
existing data set. The input is either a sequential data set or a member of a
partitioned data set.

• A control data set, which contains utility control statements. The control data set
is required if editing is to be performed or if the output data set is to be a
partitioned data set.

IEBGENER produces the following output:

• An output data set, which can be either sequential or partitioned. The output
data set can be either a new data set (created during the current job step) or an
existing partitioned data set that was expanded.

• A message data set, which contains informational messages (for example, the
contents of utility control statements) and any error messages.

IEBGENER provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates probable successful completion. A warning message is
written.

• 08, which indicates that processing was terminated after the user requested
processing of user header labels only.

Control

Job Control Statements

• 12, which indicates an unrecoverable error. The job step is terminated.

• 16, which indicates that a user routine passed a return code of 16 to
IEBGENER. The job step is terminated.

IEBGENER is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke IEBGENER and to
define the data sets that are used and produced by the program. The utility control
statements are used to control the functions of IEBGENER.

Figure 9-4 shows the job control statements necessary for using IEBGENER.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBGENER) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access volume.

SYSUTI DD Defines the input data set. It can define a sequential data set or a member of a
partitioned data set.

SYSUT2 DD Defines the output data set. It can define a sequential data set, a member of a
partitioned data set, or a partitioned data set.

SYSIN DD Defines the control data set, or specifies DUMMY when the output is
sequential and no editing is specified. The control data set normally resides in
the input stream; however, it can be defined as a member within a library of
partitioned members.

Figure 9-4. IEBGENER Job Control Statements

IEBGENER always uses two buffers, regardless of what was specified in the DCB.

If both the SYSUTI and the SYSUT2 DD statements specify standard user labels
(SUL), IEBGENER copies user labels from SYSUTI to SYSUT2. See "Appendix
D: Processing User Labels" for a discussion of the available options for user label
processing.

Both the input data set and the output data set can contain fixed, variable,
undefined, or variable spanned records. These records can be reblocked by the
specification of a new maximum block length on the SYSUT2 DD statement.
During reblocking, if the output data set resides on a direct access volume:

• For fixed or variable records, keys can be retained only by using the appropriate
user exit.

• For variable spanned records, keys can never be retained.

Refer to OS/VSl Data Management Services Guide for information on estimating
space allocations. .

Utility Control Statements

The control statements are included in the control data set as required. If no utility
control statements are included in the control data set, the entire input data set is
copied sequentially.

IEBGENER Program 9 - 5

GENERATE Statement

EXITS Statement

9 - 6 OS!VS 1 Utilities

IEBGENER is controlled by utility control statements. The statements and the
order in which they must appear are:

Statement

GENERATE

EXITS

LABELS

MEMBER

RECORD

Use

Indicates the number of member names and alias names, record identifiers,
literals, and editing information contained in the 6ontrol data set.

Indi6ates that user routines are provided.

Specifies user-label processing.

Specifies the member name and alias of a member of a partitioned data set to
be created.

Defines a record group to be processed and supplies editing information.

Figure 9-5. IEBGENER Utitily Control Statements

When the output is to be sequential and editing is to be performed, one
GENERATE statement and as many RECORD statements as required are used. If
user exits are provided, an EXITS statement is used.

When the output is to be partitioned, one GENERATE statement, one MEMBER
statement per output member, and RECORD statements, as required, are used. If
user exits are provided, an EXITS statement is used.

Utility control statements may be continued on subsequent cards provided that the
data starts in columns 4 through 16. A nonblank character in column 72 is optional
for IEBGENER.

The GENERATE statement is required when: (1) output is to be partitioned, (2)
editing is to be performed, or (3) user routines are provided and/or label
processing is specified. The GENERATE statement must appear before other
statements. If it contains errors or is inconsistent with other statements,
IEBGENER is terminated.

The format of the GENERATE statement is:

[label] GENERATE [MAXNAME=n]

[,MAXFLDS=n]

[,MAXGPS=n]

[,MAXLITS=n]

The EXITS statement is used to identify exit routines supplied by the user.
Linkages to and from exit routines are discussed in "Appendix A: Exit Routine
Linkage."

For a detailed discussion of the processing of user labels as data set descriptors, and
for discussion of user label totaling, refer ro "Appendix D: Processing User
Labels."

The EXITS statement is used when user routines are provided.

j&h"ij'ri·",1' .. ··w.'·,' II' "¥ "'rw" $ 'H''i'HfIM'etJS'''P@' 'M '!''l'!L!h!!l1t"'MMf'' HPn'M'p,'p" r rt t r re*we tHtHw. tttMtrttfu **ddt tit ±MtWffl'W

LABELS Statement

MEMBER Statement

RECORD Statement

The format of the EXITS statement is:

[label] EXITS [INHDR=routinename]

[,OUTHDR=routinename]

[,INTLR=routinename]

[,OUTTLR=routinename]

[,KEY =routinename]

[,DATA=routinename]

[,IOERROR=routinename]

[,TOTAL=(routinename, size)]

The LABELS statement specifies whether or not user labels are to be treated as
data by IEBGENER. For a detailed discussion of this option, refer to "Processing
User Labels as Data," in "Appendix D: Processing User Labels."

The LABELS statement is used when the user wants to specify that: (1) no user
labels are to be copied to the output data set, (2) user labels are to be copied to the
output data set from records in the data portion of the SYSIN data set, or (3) user
labels are to be copied to the output data set after they are modified by the user's
label processing routines. If more than one valid LABELS statement is included, all
but the last LABELS statement are ignored.

Note: LABELS DATA=NO must be specified to make standard user label (SUL)
exits inactive when input/output data sets with nonstandard labels (NSL) are to be
processed.

The format of the LABELS statement is:

[label] LABELS [DATA= {YES I NO I ALL I ONLY I INPUT}]

The MEMBER statement is used when the output is to be partitioned. One
MEMBER statement must be included for each member to be created by
IEBGENER. The MEMBER statement provides the name and aliases of a member
that is to be created.

All RECORD statements following a MEMBER statement pertain to the member
named in that MEMBER statement. If no MEMBER statements are included, the
output data set is organized sequentially.

The format of the MEMBER statement is:

[label] MEMBER NAME = (name [, alias]. ..)

The RECORD statement is used to define a record group and to supply editing
information. A record group consists of records that are to be processed identically.

The RECORD statement is used when: (1) the output is to be partitioned, (2)
editing is to be performed, or (3) user labels for the output data set are to be
created from records in the data portion of the SYSIN data set. The RECORD
statement defines a record group by identifying the last record of the group with a
literal name.

IEBGENER Program 9 - 7

9 - 8 OS/VS 1 Utilities

If no RECORD statement is used, the entire input data set or member is processed
without editing. More thanone RECORD statement may appear in the control
statement stream for IEBGENER.

Within a RECORD statement, one IDENT parameter can be used to define the
record group; one or more FIELD parameters can be used to supply the editing
information applicable to the record group; and one LABELS parameter can be
used to indicate that this statement is followed immediately by output label records.

The format of the RECORD statement is:

[label] RECORD [IDENT=(length,' name', input-location)]

[,FIELD=([length],[{ input-location I 'literal'}],[conversion]
[, output-location])[,FIELD=]]

[,LABELS=n]

,i;WMAAWWH/,h I' 'W 'It' ! " 'I"'! ' I "'h/ljtiJPle*NMifi !U t"VeWi!\wlttj"lLuW WtVWfLt"fI*, \ le.I.' tt it rt $# ·tHt h#tffl#M#M

Operands Statements

DATA EXITS

LABELS

Description of Operands/Parameters

DAT A=routinename
specifies the symbolic name of a routine that modifies the
physical record (logical record for VS or VBS type
records) before its processed by IEBGENER.

DATA={YES I NO I ALL I ONLY I INPUT}
specifies whether user labels are to be treated as data by
IEBGENER. These values can be coded:

YES
specifies that any user labels that are not rejected by a
user's label processing routine are to be treated as data.
Processing of labels as data ends in compliance with
standard return codes.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels in the group currently being
processed are to be treated as data regardless of any
return code. A return code of 16 causes IEBGENER to
complete processing the remainder of the group of user
labels and to terminate the job step.

ONLY
specifies that only user header labels are to be treated as
data. User header labels are processed as data regardless
of any return code. The job terminates upon return from
the OPEN routine.

INPUT
specifies that user labels for the output data set are
supplied as 80-byte input records in the data portion of
SYSIN. The number of input records that should be
treated as user labels must be identified by a RECORD
statement.

IEBGENER Program 9 - 9

Operands

FIELD

Applicable Control
Statements

RECORD

9 -] 0 OS/VS] Utilities

Description of Operands/Parameters

FIELD = ([length],[{input-location I 'litera!'}],
[conversion],[output-location])[,FIELD= ...]

specifies field-processing and editing information. Only the
contents of specified fields in the input record is copied to
the output record, that is, any field in the output record
that is not specified will contain meaningless information.
The values that can be coded are:

length
specifies the length (in bytes) of the input field or literal
to be processed. If length is not specified, a length of 80
bytes is assumed. If a literal is to be processed, a length
of 40 bytes or less must be specified.

input-location
specifies the starting byte of the field to be processed.

Default: Byte 1 is assumed.

'literal'
specifies a literal (maximum length of 40 bytes) to be
placed in the specified output location. If a literal
contains apostrophes, each apostrophe must be written
as two consecutive apostrophes.

conversion
specifies a two-byte code that indicates the type of
conversion to be performed on this field. If no
conversion is specified, the field is moved to the output
area without change. The values that can be coded are:

PZ
specifies that data (packed decimal) is to be
converted to unpacked decimal data.

ZP
specifies that data (unpacked decimal) is to be
converted to packed decimal data.

HE
specifies that data (H -set BCD) is to be converted to
EBCDIC.

output -location
specifies the starting location of this field in the output
records.

If conversion is specified in FIELD, the following
restrictions apply:

• PZ-type (packed-to-unpacked) conversion is
impossible for packed decimal records longer than
16K bytes .

• For ZP-type (unpacked-to-packed) conversion, the
normal 32K-type maximum applies.

• When the ZP parameter is specified, the conversion is

II' te, " •• ,." it .b" t" rt tt t itt_eN d t:!r hit hh bHtH'ftttWth tltit

Operands
Annlicahlp Control

Statements Description of Operands/Parameters

performed in place. The original unpacked field is
replaced by the new packed field. Therefore, the ZP
parameter must be omitted from subsequent
references to that field. If the field is needed in its
original unpacked form, it must be referenced prior to
the use of the ZP parameter.

If conversion is specified in the FIELD parameter, the
length of the output record can be calculated for each
conversion specification. When L is equal to the length
of the input record, the calculation is made, as follows:

• For a PZ (packed-to-unpacked) specification, 2L-1.

• For a ZP (unpacked-to-packed) specification, (L/2)
+ C. If L is an odd number, Cis 1/2; if L is an even
number, C is 1.

• For an (H-set BCD to EBCDIC) specification, L.

If both output header labels and output trailer labels are
to be contained in the SYSIN data set, the user must
include one RECORD statement (including the
LABELS parameter), indicating the number of input
records to be treated as user labels, for header labels
and one for trailer labels. The first such RECORD
statement indicates the number of user header labels;
the second indicates the number of user trailer labels. If
only output trailer labels are included in the SYSIN data
set, a RECORD statement must be included to indicate
that there are no output header labels in the SYSIN data
set (LABELS=O). This statement must precede the
RECORD LABELS=n statement which signals the
start of trailer label input records.

For a detailed discussion of the LABELS option, refer
to "Processing User Labels As Data," in "Appendix D:
Processing User Labels."

Default: Byte 1 is assumed.

IEBGENER Program 9 - II

Operands

IDENT

INHDR

INTLR

IOERROR

KEY

LABELS

Applicable Control
Statements

RECORD

EXITS

EXITS

EXITS

EXITS

RECORD

9 - 12 OS/VS 1 Utilities

Description of Operands/Parameters

IDENT=(length, 'name', input-location)
identifies that last record of the input group to which the
FIELD parameters of MEMBER statement applies. If the
RECORD statement is not followed by additional
RECORD or MEMBER statements, IDENT also defines
the last record to be processed.

These values can be coded:

length
specifies the length (in bytes) of the identifying name.
The length cannot exceed eight characters.

'name'
specifies the exact literal that identifies the last input
record of a record group. If no match for name is
found, the remainder of the input data considered to be
in one record group; subsequent RECORD and
MEMBER statements are ignored.

input-location
specifies the starting location of the field that contains
the identifying name in the input records. If IDENT is
omitted, the remainder of the input data is considered to
be in one record group; subsequent RECORD and
MEMBER statements are ignored.

INHDR= routinename
specifies the symbolic name of a routine that processes
user input header labels.

INTLR= routinename
specifies the symbolic name of a routine that processes
user input trailer labels

IOERROR= routinename
specifies the symbolic name of a routine that handles
permanent input/output error conditions.

KEY = routinename
specifies the symbolic name of a routine that creats the
output record key. (This routine does not receive control
when a data set consisting of VS or VBS type records is
processed because no processing of keys is permitted for
this type of data.)

LABELS= n
is an optional parameter that indicates the number of
records in the SYSIN data set to be treated as user labels.
The number n, which is a number from 1 to 8, must
specify the exact number of label records that follow the
RECORD statement. If this parameter is included,
DATA=INPUT must be coded on a LABELS statement
before it in the input stream.

, '# 'W*"'W+'y'lftUblW!N!'l"t' '9tl'''d'W,,'W'f'W'U dR
''' JiwtJIWtNt.'''t'''. ,tnt ht I nr, p1Wnllir.1e bl'e#);tt d' t.txt 'HtttWdtM#' Wd -

Operands Statements

MAXFLDS GENERATE

MAXGPS GENERATE

MAXLITS GENERATE

MAXNAME GENERATE

NAME MEMBERS

OUTHDR EXITS

OUTTLR EXITS

TOTAL EXITS

Description of Operands/Parameters

MAXFLDS= n
specifies a number that is no less than the total number of
FIELD parameter appearing in subsequent RECORD
statements. MAXFLDS is required if there are any FIELD
parameters in subsequent RECORD statements.

MAXGPS= n
specifies a number that is no less than the total number of
IDENT parameters appearing in subsequent RECORD
statements. MAXGPS is required if there are any IDENT
parameters in subsequent RECORD statements.

MAXLITS= n
specifies a number that is no less than the total number of
characters contained in the FIELD literals of subsequent
RECORD statements. MAXLITS is required if the FIELD
parameters of subsequent RECORD statements contain
literals. MAXLITS does not pertain to literals used in
IDENT parameters.

MAXNAME= n
specifies a number that is no less than the total number of
member names as aliases appearing in subsequent
MEMBER statements. MAXNAME is required if there are
one or more MEMBER statements.

NAME=(name[, alias] ... }
specifies a member name followed by a list of its aliases. If
only one name appears in the statement, it need not be
enclosed in parentheses.

OUTHDR= routinename
specifies the symbolic name of a routine that creates user
output header labels. OUTHDR is ignored if the output
data set is partitioned.

OUTTLR=routinename
specifies the symbolic name of a routine that processes
user output trailer labels. OUTTLR is ignored if the output
data set is parititioned.

TOTAL=(routinename,size}
specifies that exits to a user's routine are to be provided
prior to writing each record. The keyword OPTCD=T
must be specified for the SYSUT2 DD statement. TOTAL
is valid only when the utility is used to process sequential
data sets. These values must be coded:

routine name
specifies the name of a user-supplied totaling routine.

size
specifies the number of bytes needed to contain totals,
counters, pointers, etc.

IEBGENER Program 9 - 13

Restrictions

• The SYSPRINT DO statement is required for each use of IEBGENER.

• The block size for the SYSPRINT data set must be a multiple of 121. The block
size for the SYSIN data set must be amultiple of 80. Any blocking factor can be
specified for these block sizes.

• If the output data set is on a card punch or a printer, the user must specify OCB
information on the SYSUT2 OD statement. OCB parameters in a SYSUT2 DO
statement defining an expanded partitioned data set must be compatible with the
specifications made when the data set was originally created.

The SYSIN DD statement is required for each use of IEBGENER.

Concatenated data sets with unlike attributes are not allowed as input to
IEBGENER. For information on concaten~ted data sets, see OS/VSJ Data
Management Services Guide.

• When RECFM, BLKSIZE, and LRECL are not specified in the JCL for the
output data set, values for each are copied from the input data set's OSCB.

Always specify the output block size when the logical record length and record
format (except for U) are specified. The default RECFM is U for the output
data set. The output LRECL must be specified when editing is to be performed
and the record format is FB, YS, or YBS. In all other cases, a default LRECL
value is generated by IEBGENER.

• The input data set must always have a BLKSIZE parameter specified. The
default RECFM is U for the input data set. The input LRECL must be specified
when the record format is FB, YS, or YBS. In all other cases, a default LRECL
is generated by IEBGENER.

• RECFM (except for undefined data sets), BLKSIZE, and LRECL (except for
undefined data sets) must be specified on the SYSUT1/SYSUT2 DO statement
when the data set is new, a dummy data set, a card punch, or a printer.

IEBGENER Examples

9 -14 OS/VS1 Utilities

The examples that follow illustrate some of the uses of IEBGENER. Figure 9-6 can
be used as a quick reference guide to IEBGENER examples. The numbers in the
"Example" column point to the examples that follow.

n 4- C'II",.

Operation Organization Devices Comments Example

COpy Sequential Card Reader Blocked output.
and Tape

COPY-with Sequential Card Reader Blocked output.
editing and Tape 2

COPY-with Sequential Card Reader Blocked output. Input includes
editing and Tape / /cards. 3

COPY-with Sequential Card Reader Blocked output. Input includes
editing and Disk / / cards. 4

PRINT Sequential Card Reader Input includes / / cards. System
and Printer output device is a printer. 5

CONVERT Sequential Tape and Blocked output. Three members
input, Disk are to be created.
Partitioned
output 6

COPY-with Sequential Disk Blocked output. Two members are
editing to be merged into existing data set. 7

COPY-with Sequential Tape Blocked output. Data set edited as
editing one record group. 8

COPY-with Sequential Disk Blocked output. New record length
editing specified for output data set. Two

record groups specified. 9

COPY-with Sequential Tape Blocked output. Data set edited as
editing one record group. 10

Figure 9-6. IEBGENER Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be

IEBGENER Example 1

changed before use. See the Device Support section, in the Introductionto this
manual, for valid device-id notation.

In this example, a card-input, sequential data set is to be copied to a tape
volume.

IlcDTOTAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DUMMY
IISYSUT2 DD DSNAME=OUTSET,UNIT~ape,LABEL=(,SL),
II DISP=(,KEEP),VOLUME=SER=001234,DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSUTl DD *
(input card data set)

1*
The control statements are discussed below:

• SYSIN DD defines a dummy data set. No editing is to be performed; therefore,
no utility control statements are needed.

• SYSUT2 DD defines the output data set. The data set is written to a tape
volume. The data set is to reside as the first (or only) data set on the volume.

• SYSUTI DD defines the card-input data set. The data set can contain no / / or
/* cards.

IEBGENER Program 9 - 15

IEBGENER Example 2

In this example, a card-input, sequential data set is to be copied to a tape volume.
The control data set is a member of a partitioned data set.

IICDTOTAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DSNAME=CNTRLIBY(STMNTS) , UN I T=disk ,
II DISP=(OLD,KEEP),VOLUME=SER=111112
IISYSUT2 DD DSNAME=OUTSET, UN I T=tape , LABEL=(, SL) ,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
II DISP=(,KEEP),VOLUME=SER=001234
IISYSUTl DD *
(input card data set)

1*
The control statements are discussed below:

• SYSIN DD defines the control data set, which contains the utility control
statements. The control statements reside as a member, STMNTS, in a
partitioned data set.

• SYSUT2 DD defines the output data set. The data set is written as the first data
set on the tape volume.

• SYSUTI DD defines the card-input data set. The data set can contain no / / or
/* cards.

IEBGENER Example 3

9 -16 OS/VSl Utilities

In this example, a card-input, sequential data set is to be copied to a tape volume.
The input contains cards that have slashes (/ /) in columns 1 and 2. The control
data set is a member of a partitioned data set.

IICDTOTAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DSNAME=CNTRLIBY(STMNTS) , UNIT=disk,
II DISP=(OLD,KEEP),VOLUME=SER=111112
IISYSUT2 DD DSNAME=OUTSET, UN I T=tape , LABEL=(2, SL) ,
II VOLUME=SER=001234,DCB=(RECFM=FB,LRECL=80,
II BLKSIZE=2000),DISP=(,KEEP)
IISYSUTl DD DATA

(input card data set, including / / cards)

1*
The control statements are discussed below:

• SYSIN DD defines the data set containing the utility control statements. The
statements reside as a member, STMNTS, in a partitioned data set.

• SYSUT2 DD defines the copied sequential data set (output). The data set is
written as the second data set on the specified tape volume.

• SYSUTI DD defines the card-input data set. The data set is to be edited as
specified in the utility control statements (not shown). The input data set
contains / / cards.

.i.h4e.ltuiMiWitW¥-':";'· '"JI'efiW1'wrl'l' PhlJ'WbWld' 'tbrWl'ftItlL'lLtP*tttly't¥I"N IM'WIltl!¥5Pl¥ "·8 "*' dhMrt"Mtff !tWItIti:Ht inHWWW tfHtWWW!

IEBGENER Example 4

.1.1.1. "'1.1.1.t.:J \,;AU.l.J.J.P.1"", "'" """'".&."'" .a.A.JL.Y_"", ...,-""1.-_ _ ... ---- _- _ -- - - - -.1----

The input data set contains / / cards.

IICDTODISK JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DSNAME=CNTRLIBY(STMNTS), UNIT=disk,
II DISP=(OLD,KEEP),VOLUME=SER=111112

1""\......... AI _. _ 1 __ ~ __ _

IISYSUT2 DD DSNAME=OUTSET, UNIT=disk, VOLUME=SER= 111113,
II DISP=(,KEEP),SPACE=(TRK,(10,10)),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSUT1 DD DATA

(input card data set, including / / cards)

1*
The control statements are discussed below:

• SYSIN DD defines the control data set, which contains the utility control
statements. The control statements reside as a member, STMNTS, in a
partitioned data set.

IEBGENER Example 5

• SYSUT2 DD defines the output data set. Ten tracks of primary storage space
and ten tracks of secondary space are allocated for the data set on a disk
volume.

• SYSUTI DD defines the card-input data set. The data set is to be edited as
specified in the utility control statements (not shown). The input data set
contains / / cards.

In this example, the content of a card data set is to be printed. The printed output is
to be left-aligned, with one 80-byte record appearing on each line of printed
output.

JOB 09#660,SMITH
EXEC PGM=IEBGENER
DD SYSOUT=A
DD DUMMY

IICDTOPTR
II
IISYSPRINT
IISYSIN
IISYSUT2
IISYSUT1

DD SYSOUT=A,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
DD DATA

(input card data set, including / / cards)

1*
The control statements are discussed below:

• SYSIN DD defines a dummy data set. No editing is to be performed; therefore,
no utility control statements are required.

• SYSUT2 DD indicates that the output is to be written on the system output
device (printer). Carriage control can be specified by changing the RECFM=F
subparameter to RECFM=FA.

• SYSUTI DD defines the input card data set. The input data set contains / /
cards.

IEBGENER Program 9 - 17

IEBGENER Example 6

9 ... 18 OS/VSl Utilities

In this example, a partitioned data set (consisting of three members) is to be
created from sequential input.

IITAPEDISK JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=INSET, UN I T=tape , LABEL=(, SL),
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DD DSNAME=NEWSET,UNIT=d~k,DISP=(,KEEP),
II VOLUME=SER=111112,SPACE=(TRK,(10,5,5)),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
IISYSIN DD *

GENERATE MAXNAME=3,MAXGPS=2
MEMBER NAME=MEMBER1

GROUP 1 RECORD IDENT=(8,'FIRSTMEM',1)
MEMBER NAME=MEMBER2

GROUP2 RECORD IDENT=(8,'SECNDMEM',1)
MEMBER NAME=MEMBER3

1*
The control statements are discussed below:

• SYSUTI DD defines the input data set (INSET). The data set is the first data
set on the tape volume.

• SYSUT2 DD defines the output partitioned data set (NEWSET). The data set is
to be placed on a disk volume. Ten tracks of primary space, five tracks of
secondary space, and five blocks (256 bytes each) of directory space are
allocated to allow for future expansion of the data set. The output records are
blocked to reduce the space required by the data set.

• SYSIN DD defines the control data set, which follows in the input stream. The
utility control statements are used to create members from sequential input data;
the statements do not specify any editing.

• GENERATE indicates that: (1) three member names are included in subsequent
MEMBER statements and (2) the IDENT parameter appears twice in
subsequent RECORD statements.

• The first MEMBER statement assigns a member name (MEMBER 1) to the first
member.

• The first RECORD statement (GROUPO identifies the last record to be placed
in the first member. The name of this record (FIRSTMEM) appears in bytes 1
through 8 of the input record.

• The remaining MEMBER and RECORD statements define the second and third
members.

... w liij! "ttl!it!lti!Pli!mel!5!,","WI!!"5'!!!!!H!b"ittw\e#!#"t"'wti!!i!",I~'_""""_'_!.!" __ tHt ___ IIoIIiH __ ' .. _____________________________ _

IEBGENER Example 7

In thIS example, sequentIal InpUt IS lU UC: l:UI1V\;;ll\;;U lULU LVVU lUll uuvuvu lUV1"~"'L!J'

The newly created members are to be merged into an existing partitioned data set.
User labels on the input data set are to be passed to the user exit routines.

IIDISKTODK JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=INSET,UNIT=d~k,DISP=(OLD,KEEP),
II VOLUME=SER=111112
I I LABEL=(, SUL)
IISYSUT2 DD DSNAME=EXISTSET,UNIT=d~k,DISP=(MOD,KEEP),
II VOLUME=SER=111113
IISYSIN DD *

GENERATE MAXNAME=3,MAXGPS=1
EXITS INHDR=ROUT1,INTLR=ROUT2

MEMBER NAME=(MEMX,ALIASX)
GROUP 1 RECORD IDENT=(8,'FIRSTMEM',1)

MEMBER NAME=MEMY
1*
The control statements are discussed below:

• SYSUTl DD defines the input data set (INSET). The input data set, which
resides on a disk volume, has standard and user labels.

• SYSUT2 DO defines the output partitioned data set (EXISTSET). The members
created during this job step are merged into the partitioned data set.

• SYSIN DD defines the control data set, which follows in the input stream. The
utility control statements are used to create members from sequential input data;
the statements do not specify any editing.

• GENERATE indicates that: (1) two member names and one alias are included
in subsequent MEMBER statements and (2) an IDENT parameter appears in a
subsequent RECORD statement.

• EXITS defines the user routines that are to process user labels.

• The first MEMBER statement assigns a member name (MEMX) and an alias
(ALIASX) to the first member.

• The first RECORD statement identifies the last record to be placed in the first
member. The name of this record (FIRSTMEM) appears in bytes 1 through 8 of
the input record.

• The second MEMBER statement assigns a member name (MEMY) to the
second member. The remainder of the input data set is included in this member.

IE13GENER Program <) - 19

IEBGENER Example 8

9 - 20 OS/VS t Utilities

In this example, a sequential input data set is to be edited and copied.

-:~ 72
IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=OLDSET,UNIT=mpe,DISP=(OLD,KEEP),
II VOLUME=SER=001234,LABEL=(3,SL)
IISYSUT2 DD DSNAME=NEWSET,UNIT=tape,DISP=(NEW,PASS),
II VOLUME=SER=001235,LABEL=(,SL)
IISYSIN DD *

GENERATE MAXFLDS=3,MAXLITS=11
RECORD FIELD=(10,'**********' ,,1), C

FIELD=(5, 1 ,HE,ll) ,FIELD=(1, '=',,16)
EXITS INHDR=ROUT1,OUTTLR=ROUT2

LABELS DATA=INPUT
RECORD LABELS=2

(first header label record)
(second header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

1*
The control statements are discussed below:

• SYSUTI DD defines the sequential input data set (OLDSET). The data set was
originally written as the third data set on a tape volume.

• SYSUT2 DD defines the sequential output data set (NEWSET). The data set is
written as the first or only data set on a tape volume. The output records are
blocked to reduce the space required by the data set and to reduce the access
time required when the data set is subsequently referred to. The data set is
passed to a subsequent job step.

• SYSIN DD defines the control data set, which follows in the input stream.

• GENERATE indicates that: (1) a maximum of three FIELD parameters is
included in subsequent RECORD statements and (2) a maximum of 11 literal
characters are included in subsequent FIELD parameters.

• EXITS indicates that the specified user routines require control when SYSUTI is
opened and when SYSUT2 is closed.

• LABELS indicates that labels are included in the input stream.

• The first RECORD statement controls the editing, as follows: (1) asterisks are
placed in positions 1 through 10, (2) bytes 1 through 5 of the input record are
converted from H-set BCD to EBCDIC mode and moved to positions 11
through 15, and (3) an equal sign is placed in byte 16.

• The second RECORD statement indicates that the next two records from SYSIN
should be written out as user header labels on SYSUT2.

• The third RECORD statement indicates that the next two records from SYSIN
should be written as user trailer labels on SYSUT2.

Note: This example shows the relationship between the RECORD LABELS
statement and the EXITS statement. IEBGENER attempts to write a first and
second label trailer as user labels at close time of SYSUT2 before returning control
to the system; the user routine, ROUT2, can review these records and change
them, if necessary.

'Nlllme,MeM IW'""Mf'!iiH t. h it 1 rtt Wth"'HW* t tt ffttM# nbttdtt **bdtb# ** ttt#'*W# ¥ dttW't!

IEBGENER Example 9
... .. 'II

1.11 llll~ CiAal11111~, a ,:)""""iu'-"J.J. ... J.uJ. J.J.J.P""'''' u."'u. ~ '" ..1.1..1 ... _____ 41. ... ___ _-- --r---~

IIDISKDISK JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=OLDSET, UN I T=disk , DISP=(OLD, KEEP) ,
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=NEWSET,UNIT=d~k,DISP=(NEW,KEEP),
II VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=80,
II BLKSIZE=640),SPACE=(TRK,(20,10))
IISYSIN DD *

GENERATE MAXFLDS=4,MAXGPS=1
EXITS IOERROR=ERRORRT

72

GROUP 1 RECORD IDENT=(8,'FIRSTGRP',1), C
FIELD=(21 ,80, ,60) , FIELD=(59, 1 , , 1)

GROUP2 RECORD FIELD=(11,90,,70),FIELD=(69,1,,1)
1*
The control statements are discussed below:

• SYSUT1 DD defines the input data set (OLDSET).

• SYSUT2 DD defines the output data set (OUTSET). Twenty tracks of primary
storage space and ten tracks of secondary storage space are allocated for the
data set on a disk volume. The logical record length of the output records is 80
bytes, and the output is blocked.

• SYSIN DD defines the control data set, which follows in the input stream.

• GENERATE indicates that: (1) a maximum of four FIELD parameters is
included in subsequent RECORD statements and (2) a maximum of one IDENT
parameter appears in a subsequent RECORD statement.

• EXITS identifies the user routine that handles input/output errors.

• The first RECORD statement controls the editing of the first record group, as
follows: (1) FIRSTGRP, which appears in bytes 1 through 8 of the input record,
is defined as being the last record in the first group of records and (2) bytes 80
through 100 of each input record are moved into positions 60 through 80 of
each corresponding output record. (This example implies that bytes 60 through
79 of the input records in the first record group are no longer required; thus, the
logical record length is shortened by 20 bytes.) The remaining bytes within each
input record are transferred directly to the output records, specified in the
second FIELD parameter.

• The second RECORD statement indicates that the remainder of the input
records are to be processed as the second record group. Bytes 90 through 100 of
each input record are moved into positions 70 through 80 of the output records.
(This example implies that bytes 70 through 89 of the input records from group
2 are no longer required; thus, the logical record length is shortened by 20
bytes.) The remaining bytes within each input record are transferred directly to
the output records, specified in the second FIELD parameter.

If the logical record length of the output data set differs from that of the input data
set, as in this example, all positions in the output records must undergo editing to
justify the new logical record length.

IEBGENER Program 9 - 21

IEBGENER Example 10

9 - 22 OS/VS 1 Utilities

In the example, a sequential input data set is to be edited and copied.

IITAPETAPE JOB 09#660,SMITH
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=OLDSET,UNIT=mpe,DISP=(OLD,KEEP),
II VOLUME=SER=001234,LABEL=(3,SUL)
IISYSUT2 DD DSNAME=NEWSET,UNIT=lape,DISP=(NEW,PASS),
II VOLUME=SER=001235,LABEL=(,SUL),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSIN DD *

GENERATE MAXFLDS=3,MAXLITS=11

72

RECORD FIELD=(10,'**********' ,,1), C
FIELD=(5,1 ,HE, 11) ,FIELD=(1, '=' ,,16)

LABELS DATA=INPUT
RECORD LABELS=3

(first header label record)
(second header label record)
(third header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

1*
The control statements are discussed below:

• SYSUT1 DD defines the input data set (OLDSET). The data set resides on a
tape volume.

• SYSUT2 DD defines the output data set (NEWSET). The data set is written as
the first data set on a tape volume. The output records are blocked to reduce the
space required by the data set and to reduce the access time required when the
data set is subsequently referred to. The data set is passed to a subsequent job
step.

• SYSIN DD defines the control data set, which follows in the input stream.

• GENERATE indicates that: (1) a maximum of three FIELD parameters is
included in subsequent RECORD statements and (2) a maximum of 11literal
characters are included in subsequent FIELD parameters.

• LABELS indicates that label records are included in the input stream.

• The first RECORD statement controls the editing, as follows: (1) asterisks are
placed in positions 1 through 10, (2) bytes 1 through 5 of the input record are
converted from H-set BCD to EBCDIC mode and moved to positions 11
through 15, and (3) an equal sign is placed in byte 16.

• The second RECORD statement indicates that three 80-byte records (cards), to
be written as user labels on the output data set, immediately follow. The third
RECORD statement indicates that the following two cards are to be treated as
trailer labels.

""U,, 1.'.," t tt* t # \ttHttttt '-'t'WW#th mttt. e '#ttttJ we

IEBlMAGE Program

General Information

Storage Requirements

For IEBIMAGE

For SYSl.IMAGELIB

IEBIMAGE is a data set utility that creates and maintains the following types of 3800
printing subsystem modules and stores them in a library:

• Forms control buffer modules for the 3800, which specify controls for the
vertical line spacing and anyone of 12 channel codes per line.

• Copy modification modules for the 3800, which specify data that is to be
printed on every page for specified copies of the output data set.

• Character arrangement table modules for the 3800, which translate the input
data into printable characters and identify the associated character set(s) and
graphic character modification module(s).

• Graphic character modification modules for the 3800, which contain the scan
patterns of user-designed characters and/or characters from ffiM-supplied
modules.

• Library character set modules for the 3800, which contain the scan patterns of
IBM-supplied character sets and/or user-defined character sets.

The IEBIMAGE program can be used to create and maintain all modules required
for use on the 3800 printing subsystem.

The IEBIMAGE utility program is mM-supplied and requires pageable .virtual
storage in which to operate. The storage needed by mBlMAGE is given by the
formula:

Storage requirements (in bytes) = 44K+4B+H

B is the largest block size in the job step, rounded to the next highest multiple of
2K. If the format specified for the data set is VS and LRECL is less than 32K,
then B is the maximum logical record length, rounded to the next highest multiple
of2K.

H is the size of the largest member to be loaded from SYS1.IMAGELffi, rounded
to the next highest multiple of 2K.

K is 1024 bytes.

The auxiliary storage requirement in tracks for SYSl.IMAGELIB is:

Number of tracks = (A+B)/T

IEBIMAGE Program 9-23

9-24 OS/VSl Utilities

A is the total number of 1403 UCS images, 3211 UCS images, 3211 FCB images,
3525 data protection images, 3886 format records, 3890 SCI programs, 3800 FCB
modules, and 3800 character arrangement tables (both IBM-supplied and
user-defined images or modules, as applicable). A also includes the 4245 UCS
image table.

IBM supplies twelve 1403 UCS images, five 3211 UCS images, four 3211 FCB
images, one 3800 FCB image, fourteen 3800 character arrangement tables, and
one 4245 UCS image table, if the appropriate printer is in the system. According
to the TABLE parameter coded on the DATAMGT system generation macro, IBM
supplies the following number of additional character arrangement tables:

5 if T3211 is specified

13 if T 1403 is specified

10 if TOCR is specified

3 if TKA T is specified

3 if TFMT is specified

If TABLE = ALL is coded, add all the above numbers. If ALL, T3211 , or T 1403 is
coded, add one more for the GRAFSPCl graphic character modification module.

Note that IBM supplies no 4245 UCS images in SYS1.IMAGELIB. The 4245
printers load their own UCS images into the UCS buffer at power-on time. IBM
does supply 4245 FCB images which may be used. See OS/VSl Data Management
for System Programmers for more information on printer-supplied UCS or FCB
images.

B is (V+600)/15-00 for each 3800 graphic character modification module and library
character set module, each 3800 copy modification module, and each 3890 SCI program
that is over about 600 bytes. V is the virtual storage requirement in bytes for each
module. The virtual storage requirement for the IBM-supplied 3800 graphic character
modification module containing the World Trade National Use Graphics is 32420 bytes.
The virtual storage requirement for the IBM-supplied 3800 library character set is
4680 bytes.

T is the approximate number of members per track, depending on type of volume.
Because of the overhead bytes and blocks in a load module, the difference in space
requirements for an 80-byte module and a 400-byte module is small. These constants
assume an average member of 8 blocks, including a file mark, with a total data length of
800 bytes. For example, on a 3330 with 135 bytes of block overhead, the assumed
average is 1880 bytes. If a different average member data length and average number of
blocks per member are anticipated, these constants should reflect the actual number of
members per track. To determine the number of members per track, divide the average
member length, including block overhead, into the track capacity for the device. Track
capacity for DASD is given in OS/VSl Data Management Macro Instructions.

t dt' t WWtffltbdtMIHtrt d't#tthtthbH'bf H±h ** i #WWh tMnH ttt£iHWM * 'e!t:b±Ht'Whb

T 3 for a 2305-1
6 for a 2305-2
4 for a 2314/2319
/ Ior a .:U .5U or a .5.5.5U- I I

4 for a 3340
4 for a 3344
8 for a 3350
8 for a 3375
9 for a 3380

The result, (A+B)/T, is the track requirement.

The number of directory blocks for SYS l.IMAGELIB is given by the formula:

Number of directory blocks = (A+C+D)/6

A is as calculated to determine the track requirement.

C is the number of modules used to calculate B, when calculating the track
requirement.

D is the number of aliases. The IBM-supplied 1403 UCS images have four aliases
and the IBM-supplied 3211 UCS images have six aliases. These aliases can be
scratched after system generation if they will not be used.

Maintaining the SYSl.lMAGELIB Data Set

You will normally maintain SYS I.1MAGELIB using several programs in
conjunction with IEBIMAGE. For example, you may find it necessary to rename
or delete modules or to compress or list the entire contents of the data set. Utility
programs such as IEBCOPY, IEBPTPCH, IEHLIST, IEHMOVE, and
IEHPROGM (as described in this book) and HMASPZAP or AMASPZAP (as
described in OS/VSl Service Aids) should be used to help maintain
SYS1.1MAGELIB.

If you use programs other than.IEBIMAGE for maintenance, you must specify the
full name for each module. The module's full name consists of a 4-character prefix
followed by its 1- to 4-character user-assigned name. It is thus a 5- to 8-character
member name in the form:

FCBlxxxx, which identifies a 1403 FCB module

FCB2xxxx, which identifies an FCB module that may be used with a 3203,
3211, 3262, or 4245 printer.

FCB3xxxx, which identifies a 3800 FCB module

MODlxxxx, which identifies a 3800 copy modification module

XTBlxxxx, which identifies a 3800 character arrangement table module

GRAFxxxx, which identifies a 3800 graphic character modification module

LCSlnn, which identifies a 3800 library character set module

where:

IEBIMAGE Program 9-25

General Module Structure

xxxx
is the 1- to 4-character user-assigned name of the module.

nn
is the 2-character user-assigned 10 of the module.

Alias names are not supported by IEBIMAGE, so you should be careful if you use
them. For example, if you change a module by specifying its alias name, the alias
name becomes the main name of the new module, and the old module is no longer
accessible via the alias but is still accessible via its original main name.

Each module contains eight bytes of header information preceding the data. For
the 3800 printing subsystem, the module header is shown in Figure 9-7.

Length (in hexadecimal) of module, excluding the
8 bytes of header information

Reserved - (x'OOOO')

A 1- to 4-character identification of the module,
left-justified (excluding the system-assigned prefix)

Figure 9-7. 3800 General Module Header

The SETPRT SVC uses the name, if present, to:

• Identify the module in the image library

• Store the name in the UCB extension

The SETPRT SVC uses the length to:

• Obtain sufficient storage for the module

• Build channel programs to load the data into the printer

Naming Conventions for Modules

9-26 OS/VSl Utilities

Each module placed in a library by the IEBIMAGE utility has a 4-character
system-assigned prefix as the first part of its name. These prefixes are:

FCB3 for 3800 forms control buffer modules

MODI for 3800 copy modification modules

XTBI for 3800 character arrangement table modules

GRAF for 3800 graphic character modification modules

Using IEBIMAGE

LCSI for 3800 library character set modules

You can assign a 1- to 4-character identifier (name) to the module you create by
using the NAME control statement in the operation group you use to build the
module. If the module is a library character set, the ID assigned to it must be
exactly two characters. Each of those characters must be within the range 0
through 9, and A through F; and the second character must represent an odd
hexadecimal digit. However, the combinations X'7F' and X'FF' are not allowed.
This identifier is used in the J CL, the SETPR T parameter, or the character
arrangement table to identify the module to be loaded.

While IEBIMAGE refers only to the 1- to 4-character name or the 2-character ID
(the suffix) that is appended to the prefix, the full name must be used when using
other utilities (such as IEBPTPCH or IEHPROGM).

Creating a Forms Control Buffer Module

3800 FeB Module Structure

The forms control buffer (FCB) module is of variable length and contains vertical
line spacing information (6, 8, or 12 lines per inch for the 3800). The FCB module
can also identify one of 12 carriage-control channel codes for each line.

The FCB module is created and stored in an image library, using the FCB and
NAME utility control statements of the IEBIMAGE program. For the 3800, IBM
supplies a default FCB image in SYSl.IMAGELIB.

The FCB data following the header information is a series of I-byte line control
codes for each physical line of the form. There are 18 to 144 of these bytes,
depending on the length of the form.

Each byte is a bit pattern describing one of 12 channel codes for vertical forms
positioning and one of the allowed lines-per-inch codes for vertical line spacing.
The structure of the 3800 FCB module is shown in Figure 9-8.

IEBIMAGE Program 9-27

FeB Module Listing

9-28 OS/VSl Utilities

Bit Pattern

Reserved Channel Code
(00)

Binary Hex Channel

0000 0 - (null)

Lines pl!r inch 0001 1

00 = 6lpi 0010 2 2

01 = 8lpi 0011 3 3
11 = 12 lpi 0100 4 4

0101 5 5
0110 6 6
0111 7 7
1000 g 8
1001 9 9
1010 A 10
1011 B II
1100 (' 12

Figure 9-8. 3800 FCB Module Structure

• The top and bottom 1/2 inch of each page are unprintable, and the bytes
corresponding to these positions must be void of any channel codes. Three
bytes of binary zeros are supplied by the IEBIMAGE utility for the top and
bottom 1/2 inch.

• The total number of lines defined in the module must be equal to the length of
the form. The printable lines defined must start 1/2 inch below the top and
stop 1/2 inch from the bottom of the form.

Figures 9-9 through 9-11 are deleted.

Figure 9-12 shows the IEBIMAGE listing of a 3800 FCB module. The notes that
follow the figure describe the items in the figure that are marked with circled
numbers.

I'HUt.) "MWMMY"ww,lrt$errWr'tWete •• 11#!::. '''Hre'''.,'! t ntt_tHee '.'bMW tslHH#d+*

PRINT
G(~

LINE 1 AT 6 LINES PER ItICH - HAS CHANNEL 1 CODE.
PRINT LINE 2 AT 8 LINES PER INCH
PRINT LINE 3 AT 8 LINES PER nlCH
PRINT LINE 4 AT 12 LIt~ES PER IUCH
PRINT LINE 5 AT 12 LINES PER INCH
FRINT LINE 6 AT 12 LINES PER nlCH
PF?INT LINE 7 AT 12 LINES PER INCH
PRINT LINE 8 AT 12 LINES PER IUCH
PR!NT LINE 9 AT 12 LINES PER tUCH
PRINT LINE 10 AT 12 LINES PER IUCH
PRINT LINE 11 AT 12 LINES PER INCH
PPINT LINE 12 AT 12 LINES PER INCH
PRINT LINE 13 AT 12 LINES PER UICH
PRINT LINE 14 AT 12 LIttES PER INCH
PRINT LINE 15 AT 12 LINES PER It~CH

PRINT LINE 16 AT 12 LINES PER INCH
PRINT LINE 17 AT 12 LINES PER INCH
PRINT LINE 18 AT 12 LItIES PER It~CH
PRINT LINE 19 AT 12 LIt~ES PER INCH
PRINT LINE 20 AT 12 LItiES PER UICH
PRINT LINE 21 AT 12 LINES PER IHCH
PRnn LIt~E 22 AT 12 LINES PER It~CH
PRINT LINE 23 AT 12 LINES PER INCH
PRINT LItlE 24 AT 12 LINES ,.. ...
PRINT LINE 25 AT 12 ,
PRINT LINE 26 AT •
PRINT LINE 27
"'un LIN~ •

•
•

.·~R INCH
... NES PER ItlCH

.. '- LINES PER IUCH
AT 12 LINES PER INCH

~. 98 AT 12 LItIES PER INCH
PRHc·. L.ItIE 99 AT 12 LItIES PER IUCH
PRINT LINE 100 AT 12 LItIES PER INCH - HAS CHANNEL 12 CODE.
PRItn LItlE 101 AT 12 LItIES PER nlCH
PRINT LItlE 102 AT 12 LINES PER ItICH
PRINT LINE 103 AT 12 LItIES FER IHCH
PRINT LINE 104 AT 12 LIttES PER nlCH
PRINT LItlE 105 AT 12 LINES PER INCH
PRINT LINE 106 AT 12 LIt~ES PER INCH
PRINT LINE 107 AT 12 LINES PER ItICH
PRINT LItlE 108 AT 12 LIttES PER nlCH
PRINT LINE 109 AT 12 LItIES PER INCH
PRINT LINE 110 AT 12 LItIES PER UtCH
PRINT LINE III AT 12 LINES PER IUCH
PRINT LINE 1U AT 12 LINES PER IHCH
PRINT LINE 113 AT 12 LIt~ES PER ItICH
PRINT LINE 114 AT 12 LItiES PER ItKH
PRINT LIHE 115 AT 12 lItIES PEP. IUCH
PRIttT LIt~E 116 AT 12 LItlES PER IUCH
PRINT LINE 117 AT 12 LIHES PER nlCH
PRINT LINE 118 AT 12 LINES PER ItKH

Figure 9-12. IEBIMAGE Listing of a 3800 Forms Control Buffer Module

IEBIMAGE Program 9-29

Notes to Figure 9-12:

1. The line number. Each line of the form is listed in this fashion.

2. The vertical spacing of the line, in lines per inch.

3. The channel code, printed for each line that includes a channel code.

Creating a Copy Modification Module

COPYMOD Module Structure

9-30 OS/VSl Utilities

The 3800 copy modification module contains predefined data for modifying some
or all copies of an output data set. Segments of the module contain predefined
text, its position on each page of the output data set, and the copy or copies the
text applies to.

The copy modification module is created and stored in an image library using the
INCLUDE, OPTION, COPYMOD, and NAME utility control statements of
IEBIMAGE.

The INCLUDE statement identifies a module that is to be copied and used as a
basis for the newly created module. The OPTION statement with the OVERRUN
parameter allows the user to suppress the printing of line overrun condition
messages for those vertical line spacings that are not applicable to the job. The
COPYMOD statement is used to describe the contents of one of the new module's
segments. The NAME statement is used to identify the new module and to
indicate whether it is new or is to replace an existing module with the same name.

The copy modification data following the header information is a series of
segments. Each segment is of variable length and is composed of the components
shown in Figure 9-13.

Segment I Segment 2

L---------Modifying tcxt

'-----------Number of by tcs of tcx t

L----------Starting print position

L---______ Number of lines to be modified

'-------Starting line number

'-------Numberof copies to be modified

'------Starting copy number

Figure 9-13. Copy Modification Module Structure

A, B, C, D, E, and F are each 1-byte fields.

TEXT

• If the module contains more than one segment, the starting copy number must
be equal to or greater than the starting copy number in the previous segment.

'tit" t ." '9" b tClMrtf t t 'tM±tttrtt * ****!kt !:loWe'"".

• Any string of the same character within the text may be compressed into 3
bytes. The first such byte is X'FF', the second byte is the number of

• The size of the module is limited to 8192 bytes of data and 8 bytes of header
information.

COPYMOD Module Listing

SEGMENT

2

3

cb

INITIAL
COpy NO.

2

2

Figure 9-14 shows the listing of three segments of a copy modification module.
This listing shows only the positioning of the modifying text. To print out the text
itself, you can use the IEBPTPCH utility program. The numbered notes that
follow the figure describe the items marked with the circled numbers.

~MODIHANK

NUMBER OF INITIAL NUMBER OF INITIAL NUMBER OF
COPIES LINE NO. LINES PRINT POS. CHARACTERS

4 58 35 18

1 50 7.3

1 34 v 3 75 10

~ V
Figure 9-14. IEBIMAGE Listing of Three Segments ofa Copy Modification Module

Notes to Figure 9-14:

In this example, each note refers to the module's third segment.

1. The name of the copy modification module as it exists in the SYS I.IMAGELffi
data set's directory (including the 4-byte system-assigned prefix).

2. The segment number of the modification segment.

3. This segment applies only to the second copy of the output data set.

4. The text of the segment is located on lines 34, 35, and 36.

5. The text on each line starts at the 75th character, and occupies 10 character
spaces.

Creoting a Character Arrangement Table Module

The 3800 character arrangement table module is fixed length and consists of three
sections:

• System control information, which contains the module's name and length.

IEBIMAGE Program 9-31

TABLE Module Structure

9-32 OS/VSl Utilities

The translate table, which contains 256 one-byte translate table entries,
corresponding to the 8-bit data codes (X'OO' through X'FF'). A translate table
entry can identify one of 64 character positions in anyone of four writable
character generation modules (WCGMs) except the last position in the fourth
WCGM (WCGM 3), which would be addressed by X'FF'. The code X'FF' is
reserved to indicate an unprintable character. When an entry of X'FF' is
detected by the printer as a result of attempting to translate an invalid 8-bit
data code, the printer prints a blank and sets the data-check indicator on
(unless the block-data-check option is in effect).

• Identifiers, which identify the character sets and the graphic character
modification modules associated with the character arrangement table.

If the character set identifier is even, the character set is accessed from the printer's
flexible disk. If the identifier is odd, the character set is retrieved from the image
library.

The character arrangement table is created using the INCLUDE, TABLE, and
NAME utility control statements. The INCLUDE statement identifies an existing
character arrangement table that is to be copied and used as a basis for the new
module. The TABLE statement describes the new or modified module's contents.
The NAME statement identifies the character arrangement table and indicates
whether it is new or is to replace an existing module with the same name.

See IBM 3800 Printing Subsystem Programmer's Guide for information on
IBM -supplied character arrangement tables and character sets.

Note: All characters in a character set might not be referred to by the character
arrangement table you select. The character arrangement table corresponds to a
print train, which is sometimes a subset of one or more complete character sets.
When the character set is loaded, all characters of the set (up to 64) are loaded into
the printer's WCGM; only those characters that are referred to by a translate table·
can be printed.

The character arrangement table data following the header information is
composed of the following components:

• A 256-byte translate table

• Four 2-byte fields for codes identifying character sets and their WCGM
sequence numbers

Four 4-byte fields for graphic character modification module names

The translate table consists of 256 one-byte entries, each pointing to one of 64
positions within one of four WCGMs:

• Bits 0 and 1 of each translate table byte refer to one of four WCGMs and bits
2 through 7 point to one of 64 addresses (0-63) within the WCGM. If
SETPRT loads a character set into a WCGM other than the WCGM called for,
SETPRT, using a copy of the translate table, alters bits 0 and 1 of each
non-X'FF' byte of the translate table to correspond with the WCGM loaded.
Figure 9-15 describes the structure of the character arrangement table module.

wwpg' rtf! teeY'I'NW'3#'YtM 'M 'P ,t,yl",,, "'p ,.Md) '** tw $tH Itt tib hhhb rt* rt*rW rtW W ##b1

ThL'\e 6 hll\ rt'ferel1L'e one of 64
Jddre\se\ (0-63) in the \VCGM,

OO=W('GMO
01=WCGM 1
\O=WCCM2
11'-=W(,CM3

Figure 9-15. Character Arrangement Table Module Structure

• A byte value of X'FF' indicates an invalid character and prints as a blank and
gives a data check. The data check is suppressed if the block data check option
is selected.

• One translate table can address mUltiple WCGMs, and multiple translate tables
can address one WCGM. The translate tables supplied by IBM address either
one or two WCGMs.

The next two components provide the linkage to character sets and graphic
character modification modules. They consist of four 2-byte fields containing
character set IDs with their corresponding WCGM sequence numbers, followed by
four 4-character names of graphic character modification modules. The format is
as follows:

Each CGMID is a I-byte character set ID containing two hexadecimal digits
that refers to a library character set (as listed in the IBM 3800 Printing
Subsystem Programmer's Guide). Each WCGMNO refers to the corresponding
WCGM sequence (X'OO' to X'03'). Each name is the 4-character name of a
graphic character modification module.

CGMIDO WCGMNOO CGMIDl WCGMNOl

CGMID2 WCGMN02 CGMID3 WCGMN03

Namel

Name2

Name3

Name4

• Most of the standard character arrangement tables do not need graphic
character modification. The names are blank (X'40's) if no modules are
referred to.

The CGMIDx and the WCGMNOx are both X'OO' when there are no
character sets referred to after the first one.

IEBIMAGE Program 9-33

TABLE Module Listing

ox

IX

JX

4X

7X

ex

9X

AX

ex

cx

ox

Figure 9-16 shows the listing of a character arrangement table module. Each of the
notes following the figure describes the item in the figure that is marked with the
circled number.

XTB1TI1T~
XO Xl X2 X3 X4 X5 X7 X8 X9 XA XB xc xo XE XF

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

• • • • • • • • • • • • •
o 00 • • • • • • • • o OA 0 OB 0 oc 0 00 0 OE 0 OF

o 10 • • • • • • • o 1A 0 1B 0 1e 0 10 0 1E 0 IF

o 20 0 21 • • • • • • • • 0 2B 0 2C 0 20 0 2E 0 2F

• • • • • • • • • o 3A 0 3B 0 3C 0 3D 0 3E 0 3F

• 1 01 1 02 1 03 1 04 1 05 1 06 1 07 1 08 1 09 • 1 00 1 OC 1 3C 1 3B 1 lA

• 1 11 1 12 1 13 1 14 15 1 16 1 17 1 18 1 19 • 1 10 0 2A 1 3D 1 OE 1 OF

1 3A 1 10 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 • 1 2A 1 2C 1 OA 1 2E 1 OB

1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 • 1 20 1 2B 1 1B 1 21 1 lC

• o 01 0 ~2 0 03 0 04 0 05 0 06 0 07 • • • • •
• o 11 0 12 0 13 0 14 0 15 0 16 0 17 • • • • •

EX • • 0 22 0 23 0 24 0 25 0 26 0 27 • • •
FX 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 • • •

CGM IDENTIFICATION ORDER 0 1 2 :3

CGI1 IDENTlflCATION 8E '0"" • •

G ,C _"'C'TlON .ECORD. VAF~ ~

Figure 9-16. IEBIMAGE Listing of a Character Arrangement Table Module

9-34 OS!VS1 Utilities

Notes to Figure 9-16:

1. The name of the character arrangement table module, as it exists in the image
library's directory (including the 4-byte system-assigned prefix).

2. The I-byte identifier of an mM-supplied character set (in this example, the
Text 1 and Text 2 character sets, whose identifiers are X'8E' and X'10').

All character sets in SYSl.IMAGELIB are represented by odd-numbered
identifiers.

d¥fNIM."ewP' e -'P'. • "m '''1'''* • ',.' .. '. tt .ett'tl't** tt't#le# trttW

3. The sequence number of the WCGM that is to contain the character set

4. The sequence number of the WCGM that contains the scan pattern for the
8-bit data code that locates this translate table entry.

5. Your 8-bit data code X'B9' transmitted to the 3800 addresses this, the B9
location in the translate table, where the value X'39' in turn is the index into
the WCGM that contains the scan pattern to be used (in this example, the Text
2 superscript 9).

6. An asterisk is shown in the listing for each translate table entry that contains
X'FF'. This indicates that the 8-bit data code that addresses this location does
not have a graphic defined for it and is therefore unprintable.

7. An asterisk in the list of character set identifiers indicates that no character set
is specified to use the corresponding WCGM. If you specify 7F or FF as a
character set identifier (to allow accessing a WCGM without loading it), a 7F
or FF prints here.

8. The name of a graphic character modification module, as the name exists in the
library's directory (including the system-assigned prefix).

Creating a Graphic Character Modification Module

GRAPHIC Module Structure

The 3800 graphic character modification module is variable length and contains up
to 64 segments. Each segment contains the 1 byte of descriptive information and
the 72-byte scan pattern of a graphic character.

The graphic character modification module is created using the IEBIMAGE
program's INCLUDE, GRAPHIC, and NAME utility control statements.

The INCLUDE statement identifies an existing graphic character modification
module that is to be copied and used as a basis for the new module.

A GRAPHIC statement, when followed by one or more data statements, defines a
user-designed character. A GRAPHIC statement can also select a character
segment from another graphic character modification module. Each GRAPHIC
statement causes a segment to be created for inclusion in the new module.

The NAME statement identifies the new module and indicates that the module is to
be added to the library or is to replace an existing module of the same name. More
than one GRAPHIC statement can be coded between the INCLUDE and NAME
statements, and all such GRAPHIC statements apply to the same graphic character
modification module.

The graphic character modification data following the header information is a series
of 73-byte segments. A maximum of 64 such segments is allowed in a module.
The module structure is shown in Figure 9-17.

IEBIMAGE Program 9-35

GRAPHIC Modale Listing

9-3~ OS/VSl Utilities

Segment 2

II I ---------- 72 173174 ,------- i45J
72 bytes of I:()din~ that r~presl'nt the raster Sl.:<ln
pattern of one graphk dlaral.:ter and its system data.

"-'------- Tran .. bte Tabh! Code - The 8-bit dat;1 code lIsed as an inde, into the
translate table. Usually thc code is the EBCDIC assi!!lllllcnt fur the dlaral.·ter.

Figure 9-17. Graphic Character Modification Module Structure

When a graphic character is to be modified, the 3800 uses the translate table code
to index into the translate table. The contents found at that location (a I-byte
WCGM code) determine the WCGM location into which the scan pattern and
system data are to be placed.

The 72-byte graphic definition that makes up the scan pattern and system data for
one character is divided into 24 3-byte groups. Each 3-byte group represents a
horizontal row of eighteen I-bit elements (plus parity information).

Figure 9-18 shows an extract from a listing of a graphic character modification
module. This extract contains the listing of two segments of the module. Each of
the notes following the figure describes the item in the figure that is marked with
the circled number.

SEGMENT~O~ ~
ASSIGNMENT 6A PITCH 15

123456789012345678
1 •
2 •
3 •
4 .
5 .
6 .
7 •
8 .
9 •

10 .
11.
12 •
13 •
14 •
15 .
16 •
1 7 •
18 .
19 •
20 .
21 •
22 •
23 •
24 .

**** ***

*** ****

SEGMENT 004
ASSIGNMENT 9A PITCH 10

123456789012345678
1 •
2 •
3 •
4 · 5 ·
6 · 7 · 8 · 9 · 10 · 11

12 · 13 · 14 · 15 · 16 · 17 · 18 · 19 · 20 ·
21 · 22 · 23 ·
24 ·

**** ****
*** ***
*** ****
*** ******
*** ******
*** ****
*** ****
*** ***
*** ***
*** **** **** .
*** *******
*** *****

Figure 9-18. IEBIMAGE Listing of Two Segments of a Graphic Character Modification Module

Notes to Figure 9-18:

1. The segment number of the character segment within the module.

2. The 8-bit data code for the character.

3. The pitch of the character.

4. The scan pattern for the character. A dollar sign ($) is printed instead of an
asterisk if the bit specified is out of the pitch range.

Creating a Library Character Set Module

The library character set module is a fixed-length module made up of 64 segments.
Each segment contains the 73 bytes of information including the scan pattern of a
graphic character and a code (OO-3F) that identifies the WCGM location into
which the scan pattern is to be loaded.

The library character set module is created using the INCLUDE, CHARSET, and
NAME control statements.

IEBIMAGE Program 9-37

CHARSET Module Structure

CHARSET Module Listing

9-38 OS/VSl Utilities

The INCLUDE statement identifies an existing module.

A CHARSET statement, when followed by one or more data statements, defines a
user-designed character. A CHARSET statement can also select a character
segment from another library character set or from a graphic character
modification module.

The NAME statement specifies the ID of the character set being created and
indicates if it is to replace an existing module. More than one CHARSET
statement can be coded between the INCLUDE and NAME statements; all such
CHARSET statements apply to the same library character set module.

The library character set data following the header information is a series of
73-byte segments. Each module contains 64 segments. For each segment left
undefined in a library character set module, IEBIMAGE inserts the graphic symbol
for an undefined character. The structure of a library character set module is
shown in Figure 9-19.

Segmenl I Sl"gmenl 2

.... 0....-_1 =========:;;:::::::::::-::-::-_-_72....J 173174 --------- 145)
72 bytes of coding that represent the raster scan
pattern of one graphic character and its system data.

'------ The 6-bit code that is the WCGM location
assignment for the graphic character.

Figure 9-19. Library Character Set Module Structure

A library character set is loaded directly into a WCGM. SETPRT uses the 6-bit
code contained in the first byte of each 73-byte segment as the address of the
WCGM location into which the remaining 72 bytes are loaded.

The 73-byte graphic definition that makes up the scan pattern for one character is
divided into 24 3-byte groups. Each 3-byte group represents a horizontal row of
eighteen I-bit elements.

Figure 9-20 shows an extract from a listing of a library character set module. This
extract contains the listing of two segments of the library character set. The
numbered notes that follow the figure describe the items marked with the circled
numbers.

SEGMENT 018 SEGMENT 019
,

ASSIGNMENT 1 1 PITCH 10

LCS109.......... ~?
ASSIGNMENT ~2 PITCH 10

123456789012345678 123456789012345678
1 *** 1 ****
2 *** 2 ****
3 *** 3 · **** · 4 *** 4 ****
5 *** 5 · **** · 6 *** 6 ****
7 *** 7 **** · 8 *** 8 :o::o::o::o:~
9 *** 9 **** · 10 *** 10 ****

1 1 *** 1 1 ***********
12 *********** 12 · ***********
13 *********** 13 · *********** · 14 *** 14 **** · 15 *** 15 **** · 16 *** 16 ****
17 *** 17 **** · 18 *** 18 ****
19 *** 19 ****
20 *** 20 ****
2 1 *** 2 1 ****
22 *** 22 ****
23 *** 23 · **** · 24 *** 24 · **** ·

Figure 9-20. IEBIMAGE Listing of Two Segments of a Library Character Set Module

Input and Output

Notes to Figure 9-20:

1. The name of the library character set module, including the four-byte
system-assigned prefix.

2. The segment number of the character segment within the module.

3. The 6-bit code for the WCGM location.

4. The pitch of the character.

5. The scan pattern for the character. A dollar sign ($) is printed instead of an
asterisk if the bit specified is out of the pitch range.

IEBIMAGE uses as input a control data set that contains utility control statements.

IEBIMAGE produces the following output:

• A new module or modules for use with the 3800 printing subsystem, to be
stored in an image library. These may be of one of the following types:

Forms control buffer modules (3800 only)

Copy modification modules (3800 only)

IEBIMAGE Program 9-39

Return Codes

Control

Job Control Statements

9-40 OS/VSl Utilities

Character arrangement table modules (3800 only)

Graphic character modification modules (3800 only)

Library character set modules (3800 only)

• An output data set listing for each new module which includes:

Module identification

Utility control statements used in the job

Module contents

Messages and return codes

IEBIMAGE returns a code in register 15 that represents the most severe error
condition encountered during the program execution. This return code is also
printed in the output listing. The codes are described below.

Codes

00 (00 hex)

04 (04)

08 (08)

12 (OC)

16 (10)

20 (14)

24 (18)

Meaning

Successful completion; operation(s) performed as requested.

Operation(s) performed; investigate messages for exceptional
circumstances.

Operation(s) not performed; investigate messages.

Severe exception; processing may end.

Catastrophic exception; the job step is terminated.

SYSPRINT data set could not be opened; the job step is
terminated.

User parameter list invalid; the job step is terminated.

Figure 9-21. IEBIMAGE Return Codes

IEBIMAGE is controlled by job control statements and utility control statements.

Figure 9-22 shows the job control statements for IEBIMAGE.

eiW'M.»iM'\Wl ", 'ri'tiN'*f\f' PM't1" W 'HNb"" HL 'Ume!rl 'n"". INIt\WWtu3b b *t_ tt hH· Wi tt#ttbbfft¥W,* HH****Wwt*

SYSPRINT DD Statement

SYSUTl DD Statement

SYSIN DD Statement

Utility Control Statements

Statement

JOB

EXEC

Use

Initiates the job.

Specifies the program name (PGM=IEBIMAGE) or, if the job
control statements reside in the procedure library, the procedure
name. No P ARM parameters can be specified.

SYSPRINT DD Defines the sequential message data set used for listing statements
and messages on the system output device.

SYSUTl DD Defines the library data set (SYS 1.IMAGELm or a user-defined
library).

SYSIN DD Defines the control data set, which normally resides in the input
stream.

Figure 9-22. Job Control Statements for IEBIMAGE

Block size for the SYSPRINT data set should be 121 or a multiple of 121. Any
blocking factor may be specified. The first character of each 121-byte output record
is an ANSI control character.

To ensure that the library data set is not updated by other jobs while the IEBIMAGE job
is running, DISP=OLD should be specified on the SYSUTI DD statement.

Block size for the SYSIN data set should be 80 or a multiple of 80. Any blocking
factor can be specified.

IEBIMAGE is controlled by the following utility control statements.

Continuation requirements for utility control statements are discussed under
"Continuing Utility Control Statements" in the Introduction.

IEBIMAGE Program 9-41

Operation Groups

9-42 OS/VSl Utilities

Statement Use

FCB Creates a 3800 forms control buffer module and stores it in an
image library.

COPYMOD Creates a 3800 copy modification module and stores it in an image
library.

TABLE Creates a 3800 character arrangement table module and stores it in
an image library.

GRAPHIC Creates a 3800 graphic character modification module and stores it
in an image library.

CHARSET Creates a 3800 library character set module and stores it in an
image library.

INCLUDE Identifies an existing image library module to be copied and used as
a basis for the new module.

NAME Specifies the name of a new or existing library module.

OPTION Specifies COPYMOD overrun lines per inch for an IEBIMAGE
job.

Figure 9-23. Utility Control Statements for IEBIMAGE

IEBIMAGE utility control statements are grouped together to create or print a
library module. Each group of statements is called an operation group. Your job's
input stream can include many operation groups. The operation groups (shown
below without operands) that can be coded are:

• To create or print an FCB module:

FCB
NAME

• To create or print a copy modification module:

[INCLUDE]
[OPTION]
COPYMOD
[additional COPYMOD statements]
NAME

• To create or print a character arrangement table module:

[INCLUDE]
TABLE
NAME

• To create or print a graphic character modification module:

FCB Statement

COPYMOD Statement

[INCLUDE]
{GRAPHIC I GRAPHIC, followed immediately by

[additional GRAPHIC statements]
NAME

• To create or print a library character set module:

[INCLUDE]
{CHARSETICHARSET, followed immediately by
data statements}
[additional CHARSET statements]

NAME

To print any module, you need only supply the function statement (that is, FCB,
COPYMOD, TABLE, GRAPHIC, or CHARSET) with no operands specified,
followed by the NAME statement naming the module.

The FCB statement specifies the contents of a forms control buffer (FCB) module
for the 3800 printer: spacing codes (lines per inch), channel codes (simulated
carriage-control channel punches), and the length of the form (size and total lines).

The FCB statement must always be followed by a NAME statement.

An FCB statement with no operands specified, followed by a NAME statement
that identifies a 3800 FCB module in the image library, causes the module to be
formatted and printed. To build an FCB module, you must code the FCB
statement with at least one operand. The format of a printed 3800 FCB module is
shown in "FCB Module Listing. "

The format of the FCB statement is:

[laben FCB [LPI=«l[,n])[,(l[,n]) •••])]

[,CHx=(line[,line •.•])[,CHx=(line •••) •••]]

[,SIZE = length]

[,LINES= lines]

A copy modification module consists of header information followed by one or
more modification segments. The header information contains the module's name
and length. Each modification segment contains the text to be printed, identifies
the copy (or copies) the text applies to, and specifies the position of the text on
each page of the copy.

A COPYMOD statement specifies the contents of one of the modification
segments of a copy modification module. More than one COPYMOD statement
can be coded in an operation group; all COPYMOD statements so coded apply to
the same copy modification module.

IEBIMAGE Program 9-43

9-44 OS/VSl Utilities

IEBIMAGE analyzes the modification segments specified for a copy modification
module to anticipate line overrun conditions that might occur when the module is
used in the printer. A line overrun condition occurs when the modification of a line
is not completed in time to print that line. The time available for copy modification
varies with the vertical line spacing (lines per inch) at which the printer is being
operated.

When IEBIMAGE builds a copy modification module from the user's
specifications, the program calculates an estimate of the time the modification will
require during the planned printing. If the modification can be done in the time
available for printing a line at 12lpi (lines per inch), it can also be done at 6 or 8
lpi. On the other hand, if the copy modification module being built is too complex
to be done in the time available for printing a line at 6 lpi, it certainly cannot be
done at 8 or 121pi. (Note that at 12lpi there is much less time available for
printing a line than at 6 lpi.)

When IEBIMAGE determines that a copy modification module is likely to cause an
overrun if it is used when printing at a specified number of lines per inch, the
program produces a warning message to that effect. If the warning applies to 6lpi,
the overrun condition is also applicable to 8 and 12 lpi. If the warning applies to 8
lpi, the condition is also applicable for 121pi.

If you are planning to use a particular copy modification module only while printing
at 6lpi, you can request suppression of the unwanted warning messages for 8 and
12lpi by specifying the OPTION statement with 6 as the value of the OVERRUN
parameter. If you are planning to print only at 8 lpi, you can use the OPTION
statement with OVERRUN = 8 to request suppression of the unwanted warning
messages for 121pi. See "Using OVERRUN" for more information on coding
OVERRUN.

For information about using your copy modification module, see the IBM 3800
Printing Subsystem Programmer's Guide. The copy modification text can be printed
using the same character size or style, or one different from the size or style used to
print the data in the output data set.

The COPYMOD statement must always be followed by a NAME statement or
another COPYMOD statement and can be preceded by an INCLUDE statement.
When more than one COPYMOD statement is coded, IEBIMAGE sorts the
statements into order by line number within copy number. A COPYMOD
statement with no operands specified, followed by a NAME statement that
identifies a copy modification module, is used to format and print the module. The
format of the printed module is shown under "Module Listing".

The format of the COPYMOD statement, when used to create a copy modification
module's segment, is:

[label] COPYMOD COPIES= (starting-copy[,copies»,

LINES = (starting-line[,lines]),

POS= position,

TEXT = «([d]t,'text')[,([d]t,'text')

flZIII'IWfH\,,.,""Wi*i"b"fWwe'}WI'NWlf"tl''''pWflt1MfMM''g'M t".± ht'fih b"t #d_ *t

TABLE Statement

GRAPHIC Statement

The TABLE statement is used to build a character arrangement table module.
When a character arrangement table is built by IEBIMAGE and an INCLUDE
statement is specified, the contents of the copied character arrangement table are
used as a basis for the new character arrangement table. If an INCLUDE
statement is not specified, each translate table entry in the new character
arrangement table module is initialized to X'FF', the graphic character modification
module name fields are set with blanks (X'40'), and the first character set identifier
is set to X'83' (which is the Gothic lO-pitch set). The remaining identifiers are set
to X'OO'.

After the character arrangement table is initialized, IEBIMAGE modifies the table
with data specified in the TABLE statement: character set identifiers, names of
graphic character modification modules, and specified translate table entries. The
character arrangement table, when built, must contain a reference to at least one
printable character. Only one TABLE statement can be specified for each
operation group. The TABLE statement can be preceded by an INCLUDE
statement and an OPTION statement and must always be followed by a NAME
statement.

A TABLE statement with no operands specified, followed by a NAME statement
that identifies a character arrangement table module in the library, causes the
module to be formatted and printed. The format of the printed character
arrangement table module is shown under "Module Format."

The format of the TABLE statement is:

[label] TABLE [CGMID=(setO[,setJ •••])]

[,GCMLIST={(gcml[,gcm2 ••]) I DELETEH

[,LOC=«xloc[,{cloc[,setno] I FFI])]

The GRAPHIC statement specifies the contents of one or more of the character
segments of a graphic character modification module. A graphic character
modification module consists of header information followed by from 1 to 64
character segments. Each character segment contains the character's 8-bit data
code, its scan pattern, and its pitch.

By using the INCLUDE statement, you can copy an entire module, minus any
segments deleted using the DELSEG keyword. In addition, you can select
character segments from any module named with the GCM keyword on the
GRAPHIC statement. The GRAPHIC statement can also specify the scan pattern
and characteristics for a new character.

The GRAPHIC statement must always be followed by a NAME statement, another
GRAPHIC statement, or one or more data statements. The GRAPHIC statement
can be preceded by an INCLUDE statement. More than one GRAPHIC statement
can be coded in the operation group. The operation group can include GRAPHIC
statements that select characters from existing modules and GRAPHIC statements

IEBIMAGE Program 9-45

CHARSET Statement

9-46 OS/VSl Utilities

that create new characters. The GRAPHIC statement, pre"ceded by an INCLUDE
statement, can be used to delete one or more segments from the copy of an existing
module to create a new module.

A GRAPHIC statement with no operands specified, followed by a NAME
statement that identifies a graphic character modification module, is used to format
and print the module.

The format of the GRAPHIC statement, when it is used to select a character
segment from another graphic character modification module, is:

[label] GRAPHIC REF = ((segno[,xloc]) [,(segno[,xloc]) •••])

[,GCM=name]

The format of the GRAPHIC statement, when it is used to specify the scan pattern
and characteristics of a newly created character, is:

[label] GRAPHIC ASSIGN = (xloc[,pitch])

data statements

The CHARSET statement specifies the contents of one or more of the character
segments of a library character set module. A library character set module consists
of header information followed by 64 character segments. Each character segment
contains the character's 6-bit code for a WCGM location, its scan pattern, and its
pitch. You can use the INCLUDE statement to copy an entire module, minus any
segments deleted using the DELSEG keyword. In addition, you can use the
CHARSET statement to select character segments from any module named with a
library character set ID or the GCM keyword. The CHARSET statement can also
specify the scan pattern and characteristics for a new character.

The CHARSET statement must always be followed by a NAME statement,
another CHARSET statement, or one or more data statements. The CHARSET
statement can be preceded by an INCLUDE statement. More than one
CHARSET statement can be coded in the operation group. The operation group
can include CHARSET statements that select characters from existing modules and
CHARSET statements that create new characters. The CHARSET statement,
preceded by an INCLUDE statement, can be used to delete one or more segments
from the copy of an existing module to create a new module.

A CHARSET statement with no operands specified, followed by a NAME
statement that identifies a library character set module, is used to format and print
the module.

The format of the CHARSET statement, when it is used to select a character
segment from another module, is:

'!W'f M'] H!"eWWIt t, t it tit t w * t'.'*I±k'H tf It WdttttlriMWWtMttttW#*Hrt

INCLUDE Statement

NAME Statement

, "r" _ _ _ _ 1 __ '\ 1,\ 1

The format of the CHARSET statement, when it is used to specify the scan pattern
and characteristics of a newly created character, is:

[label) CHARSET ASSIGN = (c/oc[,pitch»

data statements

When an IEBIMAGE operation group is used to create a new module, the
INCLUDE statement can identify an existing image library module to be copied
and used as a basis for the new module. When the operation group is used to
update an image library module, the INCLUDE statement identifies the module to
be referred to and must be specified.

The format of the INCLUDE statement is:

[label) INCLUDE module name

[,DELSEG= (segno[,segno ••• »]

• When the INCLUDE statement is coded in an operation group, it must precede
any COPYMOD, TABLE, GRAPHIC, or CHARSET statements.

• Only one INCLUDE statement should be coded for each operation group. If
more than one is coded, only the last is used; the others are ignored.

• You cannot copy a 3800 FCB module with INCLUDE.

The NAME statement can name a new library module to be built by the
IEBIMAGE program. The NAME statement can also specify the name of an
existing library module. The NAME statement is required, and must be the last
statement in each operation group.

The format of the NAME statement is:

IEBIMAGE Program 9-47

OPTION Statement

Using OVERRUN

Segment

1

Note(O)1 2

Note(1)2 3

Note(2)3 4

Note(2) 5

Note(3)4 6

Note(3) 7

Note(3) 8

Note(3) 9

The OPTION statement with the OVERRUN parameter is used only in a
COPYMOD operation group and can be placed before or after any INCLUDE
statement for the group. The value in the OVERRUN parameter specifies the
greatest line density for which the user wants the overrun warning message
IEBA33I to be printed. (See the "Using OVERRUN" for information about
overrun conditions and suppression of overrun warning messages.) An effective
use of the OPTION statement with the OVERRUN parameter would be to
determine the greatest print-line-density (6, 8, or 12) at which the copy
modification module will be used, then specify that density in the OVERRUN
parameter to eliminate the warning messages for higher line densities.

The format of the OPTION statement is:

The OPTION statement applies only to the operation group that follows it. If used,
the OPTION statement must be specified for each operation group in the job input
stream.

Figure 9-24 shows the listing of segments of a copy modification module where an
overrun warning was in order. Even if the OPTION statement specifies
OVERRUN=O and the overrun warning message is not printed, a note is printed to
the left of each segment description for which an overrun is possible.

Initial Number Initial Number Initial Number
Copy of Line of Print of
No. Copies No. Lines Pos. Characters

1 200 10 96 10 180

2 200 10 _ 96 11 180

3 200 10 96 12 180

4 200 10 96 10 180

5 200 10 96 11 180

6 200 10 96 12 180

7 200 10 96 10 180

8 200 10 96 11 180

9 200 10 96 12 180

Figure 9-24. IEBIMAGE Listing of a Copy Modification Module with Overrun Notes

9-48 OS/VSl Utilities

Notes to Figure 9-24:

Note 0 indicates that, for segment 1, you might have a copy modification
overrun if your are printing at 12 LPI.

2 Note 1 indicates that, for segments 2 and 3, you might have a copy
modification overrun if you are printing at 8 LPI.

tHtHhWtt t'kddl * bt t

3 Note 2 indicates that, for segments 4 and 5, you might have a copy
modification overrun if you are printing at 8 or 12 LPI.

4 Note 3 indicates that, for segments 6, 7,8, and 9, you might have a copy
modification overrun if you are printing at 6, 8, or 12 LPI. In other words,
you might have an overrun at any LPI.

Factors used in determining a line overrun condition are:

• Number of modifications per line

• Number of segments per module

Combining COPYMOD segments reduces the possibility of a line overrun
condition.

For the algorithm for calculating when a copy modification module might cause a
line overrun condition, see the Reference Manual for the IBM 3800 Printing
Subsystem.

IEBIMAGE Program 9-49

Applicable
Control

Parameters Statements Description of Parameters

ASSIGN CHARSET ASSIGN = (c!oc[,pitch])
identifies a newly-created character and its
characteristics. The ASSIGN parameter specifies the
new character's 6-bit code and its pitch. When
IEBIMAGE detects the ASSIGN parameter, the
program assumes that all following statements, until a
statement without the characters SEQ= in columns 25
through 28 is encountered, are data statements that
specify the character's scan pattern.

c!oc
specifies the character's 6-bit code for a WCGM
location and can be any value between X'OO' and
X'3F'. doc is required when ASSIGN is coded.

pitch
specifies the character's horizontal size and is one
of the following decimal numbers: 10, 12, or 15.
If pitch is not specified, the default is 10.

At least one data statement must follow a CHARSET
statement containing the ASSIGN parameter.

9-50 OS/VSl Utilities

------ --
Parameters Statements Description of Parameters

ASSIGN GRAPHIC ASSIGN = (xloc[,pitch»
identifies a newly-created character and its
characteristics. The ASSIGN parameter specifies the
new character's 8-bit data code and its pitch. When
IEBIMAGE detects the ASSIGN parameter, it assumes
that all following statements, until a statement without
the characters SEQ= in columns 25 through 28 is
encountered, are data statements that specify the
character's scan pattern.

xloc
specifies the character's 8-bit data code, and can
be any value between X'OO' and X'FF'. You
should ensure that xloc identifies a translate table
entry that points to a character position in a
WCGM (that is, the translate table entry doesn't
contain X'FF'). The xloc is required when
ASSIGN is coded.

pitch
specifies the character's horizontal size and is one
of the decimal numbers 10, 12, or 15. If pitch is
not specified, the default is 10.

At least one data statement must follow a GRAPHIC
statement containing the ASSIGN parameter.

IEBIMAGE Program 9-51

Applicable
Control

Parameters Statements Description of Parameters

CGMID TABLE CGMID= (setO[,setl •••])
identifies the character sets that are to be used with the
character arrangement table. (The IBM-supplied
character sets are described in the IBM 3800 Printing
Subsystem Programmer's Guide.) When CGMID is
specified, all character set identifiers are changed. If
only one character set is specified, the other three
identifiers are set to X'OO'.

setx
is a I-byte identifier of a character set. Up to
four character set identifiers can be specified;
setO identifies the character set that is to be
loaded into the first writable character generation
module (WCGM); set! is loaded into the second
WCGM; etc. You should ensure that the
character set identifiers are specified in the
proper sequence, so that they are coordinated
with the translate table entries.

See the IBM 3800 Printing Subsystem Programmer's
Guide for a list of the character set identifiers.

9-52 OS/VSl Utilities

'itt I', ''Wf'f')IN''''W\'''''Wtltt''W''''J'.II'. eM t#d,.*\W,,!I:t!ltrW.lt=.,rlLdtt

I Applicable
r'.n. n.1

Parameters Statements Description of Parameters

CHx FCB CHx= (line(, line •••))
specifies the channel code (or codes) and the line
number (or numbers) to be skipped to when that code
is specified.

CHx
specifies a channel code, where x is a decimal
integer from 1 to 12.

line
specifies the line number of the print line to
contain the channel code, and is expressed as a
decimal integer. The first printable line on the
page is line number 1.

The value of line cannot be larger than the line
number of the last printable line on the form.

Only one channel code can be specified for a print line.
However, more than one print line can contain the same
channel code.

Conventions:

• Channel 1 is used to identify the first printable line on the
form. The job entry subsystem and the CLOSE routines
for direct allocation to the 3800 with BSAM or QSAM
require a channel 1 code even when the data being
printed contains no skip to channell.

• Channel 9 is used to identify a special line. To avoid I/O
interrupts that are caused by use of channel 9, count lines
to determine the line position instead.

• Channel 12 is used to identify the last print line on the
form to be used. To avoid I/O interrupts that are caused
by use of channel 12, count lines to determine the page
size instead.

• Use of an FCB that lacks a channel code to terminate a
skip operation causes a data check at the printer when the
corresponding skip is issued. This data check cannot be
blocked.

IEBIMAGE Program 9-53

Applicable
Control

Parameters Statements Description of Parameters

COPIES COPYMOD COPIES = (starting-copy[,copies])
specifies the starting copy number and the total number
of copies to be modified.

starting-copy
specifies the starting copy number and is
expressed as a decimal integer from 1 to 255.
The starting-copy value is required.

copies
specifies the number of copies that are to contain
the modifying text and is expressed as a decimal
integer from 1 to 255. When copies is not
specified, the default is 1 copy.

The sum of starting-copy and copies cannot exceed 256
(255 for JES3).

data GRAPHIC data statements
statements CHARSET describe the design of the character as it is represented

on a character design form. For details of how to
design a character and how to use the character design
form, see the IBM 3800 Printing Subsystem
Programmer's Guide. Each data statement represents a
line on the design form. Each nonblank line on the
design form must be represented with a data statement;
a blank line can also be represented with a data
statement. You can code up to 24 data statements to
describe the new character's pattern. On each
statement, card columns 1 through 18 can contain
nonblank grid positions when the character is 10-pitch.
Any nonblank character can be punched in each card
column that represents a nonblank grid position.
Columns 1 through 15 can contain nonblank grid
positions when the character is 12-pitch. Columns 1
through 15 can contain nonblank grid positions when
the character is 15-pitch.

9-54 OS/VSl Utilities

\""'1 §1ft' 'Wt\t"tlMfU' RIt' mm H' ' t .. ftff t t ttl ,e·' ,1,' •• * *""""*'1tbtbHtM' e.

Parameters

DELETE

DELSEG

GCM

Statements

TABLE

INCLUDE

CHARSET
GRAPHIC

Description of Parameters

DELETE
specifies that all graphic character modification module
name fields are to be set to blanks.

DELSEG=(segno[,segno •..))
specifies the segments of the copied module that are to
be deleted when the module is copied. Segment
numbers can be specified in any order. In this
parameter, segment 1 is used to refer to the first
segment of the module.

When you code the DELSEG parameter, you should
use a current listing of the module's contents to ensure
that you are correctly identifying the unwanted
segments.

GCM=name
can be coded when the REF parameter is coded and
identifies the graphic character modification module
that contains the character segments referred to by the
REF parameter.

name
specifies the 1- to 4-character user-specified
name of the graphic character modification
module.

If GCM is coded, REF must also be coded. GCM
should not be coded with ID.

When neither GCM nor ID is coded, the segments are
copied from the IBM -supplied World Trade National
Use Graphics graphic character modification module.

IEBIMAGE Program 9-55

Applicable
Control

Parameters Statements Description of Parameters

GCMLIST TABLE GCMLIST= (gem 1 [,gem2 •••])
names up to four graphic character modification
modules to be associated with the character
arrangement table. When GCMLIST is specified, all
graphic character modification module name fields are
changed (if only one module name is specified, the
other three name fields are set to blanks).

gemx
is the 1- to 4-character name of the graphic
character modification module. Up to four
module names can be specified. The name is put
into the character arrangement table, whether or
not a graphic character modification module
currently exists with that name. However, if the
module doesn't exist, IEBIMAGE issues a
warning message to the user. The character
arrangement table should not be used unless all
graphic character modification modules it refers
to are stored in an image library.

ID CHARSET ID=xx
can be coded when the REF parameter is coded and
identifies a library character set that contains the
character segments referred to by the REF parameter.

xx
specifies the two-hexadecimal-digit ID of the
library character set module. The second digit
must be odd, and '7F' and 'FF' are not allowed.

ID should not be coded with GCM.

When neither ID nor GCM has been coded, the
segments are copied from the IBM -supplied World
Trade National Use Graphics graphic character
modification module.

9-56 OS/VSl Utilities

*M h.',

------ --
Parameters Statements Description of Parameters

LINES COPYMOD LINES = (starting -line[,lines))
specifies the starting line number, and the total number
of lines to be modified.

starting-line
specifies the starting line number, and is
expressed as a decimal integer from 1 to 132.
The starting-line value is required.

lines
specifies the number of lines that are to contain
the modification segment's text, and is expressed
as a decimal integer from 1 to 132. When lines is
not specified, the default is 1 line.

The sum of starting-line and lines cannot exceed 133.
If the sum exceeds the number of lines specified for the
form size (see the "FCB Statement"), the modifying
text is not printed on lines past the end of the form.

FCB LINES = lines
specifies the total number of lines to be contained in an
FCB module.

lines
is the decimal number, from 1 to 256, which
indicates the number of lines on the page.

When the LINES, SIZE and LPI parameters are
specified in the FCB statement, each parameter value is
checked against the others to ensure against conflicting
page-length specifications.

When LINES is not specified, the form length defaults
to the value of LPI multiplied by the value of SIZE, in
inches. If no SIZE parameter is specified, LINES
defaults to 11 times the value of LPI.

IEBIMAGE Program 9-57

Applicable
Control

Parameters Statements Description of Parameters

LOC TABLE LOC=«xloc[,{doc[,setno] I FF}])[,(xloc .••) ..•])
specifies values for some or all of the 256 translate
table entries. Each translate table entry identifies one
of 64 character positions within one of the WCGMs.

xloc
is an index into the translate table, and is
specified as a hexadecimal value from X'OO' to
X'FF'; xloc identifies a translate table entry, not
the contents of the entry.

doc
identifies one of the 64 character positions within
a WCGM, and is specified as a hexadecimal value
between X'OO' and X'3F'. doc and setno specify
the contents of the translate table entry located
by xloc. When doc is not specified, the default is
X'FF', an invalid character. You can specify the
same doc and setno values for more than one
xloc.

setno
identifies one of the WCGMs, and is specified as
a decimal integer from 0 to 3. doc and setno
specify the contents of the translate table entry
located by xloc. When setno is not specified, the
default is O. The setno cannot be specified unless
doc is also specified. You can specify the same
doc and setno values for more than one xloc.

9-58 OS!VSl Utilities

8

f1" f!!!HHtiP' rffwi"wP' "it\Htdw. "'idew wuWtluW.tulMmH tWH ***

arameters Statements

,PI FCB

Description of Parameters

LPI=«l[,n»[,(l[,n» ... »
specifies the number of lines per inch and the number
of lines to be printed at that line spacing.

specifies the number of lines per inch, and can be
6, 8, or 12 (for the 3800).

n
specifies the number of lines at a line spacing of I.
When the printer uses common-use paper sizes, n
is a decimal value from 1 to 60 when I is 6; from
1 to 80 when I is 8; and from 1 to 120 when I is
12.

When the printer uses ISO paper sizes, n is a
value from 1 to 66 when I is 6; from 1 to 88
when I is 8; or from 1 to 132 when lis 12. See
IBM 3800 Printing Subsystem Programmer's
Guide for the paper sizes.

It is the user's responsibility to ensure that the total
number of lines specified results in a length that is a
multiple of 1/2 inch.

The total number of lines cannot result in a value that
exceeds the usable length of the form. For the 3800, do
not specify coding for the top and bottom 1/2 inch of
the form; IEBIMAGE does this for you.

When the SIZE, LINES and LPI parameters are
specified in the FCB statement, each parameter value is
checked against the others to ensure against conflicting
page-length specifications. For example, SIZE=35
specifies a 3-1/2 inch length; acceptable LPI values
cannot define more than the printable 2-1/2 inches of
this length.

When you specify more than one (/,n) pair, I must be
specified for each pair and n must be specified for each
pair except the last.

When you specify 12 lines per inch, use one of the
condensed character sets. If other character sets are
printed at 12 lines per inch, the tops or bottoms of the
characters may not print.

IEBIMAGE Program 9-59

App6cable
Control

Parameters Statements Description of Parameters

LPI FCB
(continued) (continued) When only I is specified, or when I is the last parameter

in the LPI list, all remaining lines on the page are at I
lines per inch.

When LPI is not specified, all lines on the page are at 6
lines per inch.

If the total number of lines specified is less than the
maximum number that can be specified, the remaining
lines default to 6 lines per inch.

module INCLUDE module name
name NAME names or identifies a library module. The module name

is 1 to 4 alphameric and national ($, #, and @)
characters, in any order, or, for a library character set
module, a 2-character ID that represents two
hexadecimal digits (0-9, A-F), the second digit being
odd. Note that 7F and FF cannot be used.

For a 3800 INCLUDE operation, the named module
must be the same type as the module being created.

9-60 OS/VSl Utilities

- -------

Parameters Statements Description of Parameters

OVERRUN OPTION OVERRUN={O 1618112}
specifies the greatest number of lines per inch for which
message IEBA33I is to be printed for a COPYMOD
operation. For example, OVERRUN=8 allows the
message for 6 and 8 lines per inch, but suppresses it for
12 lines per inch. Specifying OVERRUN=O suppresses
message IEBA33I for every case. If you specify
OVERRUN = 12, none of the messages will be
suppressed.

If the OPTION statement is omitted, the OVERRUN
parameter default value is 12, and messages are not
suppressed. If the OVERRUN parameter is omitted,
the default value is also 12.

If the parameter specification is invalid (for instance, if
OVERRUN = 16 is specified), the entire operation
group does not complete successfully.

See "Using OVERRUN" for details on using the
OVERRUN parameter with COPYMOD.

POS COPYMOD POS=position
specifies the starting print position (the number of
character positions from the left margin) of the
modifying text.

position
specifies the starting print position and is
expressed as an integer from 1 to 204. See the
restriction noted for the TEXT parameter below.

The maximum number of characters that can fit in a
print line depends on the pitch of each character and
the width of the form. See IBM 3800 Printing
Subsystem Programmers Guide for the maximum number
of characters that can fit in a 3800 print line for each
form width.

IEBIMAGE Program 9-61

Applicable
Control

Parameters Statements Description of Parameters

(R) NAME (R)
indicates that this module is to be replaced by a new
module with the same name, if it exists. (R) must be
coded in parentheses.

9-62 OS/VSl Utilities

"''''=Wfft:tb±dtttM+bn+bW±t # W

I ~!~~~~Ie
larameters Statements

~F CHARSET

Description of Parameters

REF = «segno,doc) [,(segno,c[oc) •••])
identifies one or more character segments within an
existing graphic character modification module or
library character set module. If the reference is to a
GCM, the scan pattern and pitch of the character
referred to are used, and a 6-bit WCGM location code
is assigned. If the reference is to a character in a library
character set, the entire segment, including the 6-bit
WCGM location code, is used, unless the doc
subparameter is specified for that segment. The REF
parameter cannot be used to change a character's pitch
or scan pattern.

segno

doc

is the segment number, a decimal integer between
1 and 999. When a character segment is copied
from the IBM-supplied World Trade National
Use Graphics graphic character modification
module, segno can be greater than 64. When the
character segment is copied from a graphic
character modification or library character set
module built with the IEBIMAGE program, segno
is a number from 1 to 64.

specifies a 6-bit code that points to a WCGM
location, and can be any value between X'OO'
and X'3F'. When a library character set segment
is referred to, if doc is not specified, the
character's 6-bit code remains unchanged when
the segment is copied. If a graphic character
modification segment is referred to, cloc must be
specified.

The REF parameter can be coded in a CHARSET
statement that includes the ASSIGN parameter.

IEBIMAGE Program 9-63

Applicable
Control

Parameters Statements Description of Parameters

REF GRAPHIC REF = «segno[,xloc])[,(segno[,xloc]) •••])
(continued) identifies one or more character segments within an

existing graphic character modification module. Each
character segment contains the scan pattern for a
character and the 8-bit data code (used to locate its
translate table entry). The 6-bytes of descriptive
information can be respecified with the xloc
subparameter. The REF parameter cannot be used to
change a character's pitch or scan pattern.

segno
is the segment number, a decimal integer between
1 and 999. When a character segment is copied
from the IBM -supplied World Trade National
Use Graphics graphic character modification
module, segno can be greater than 64. When the
character segment is copied from a graphic
character modification module built with the
IEBIMAGE program, segno is a number from 1
to 64.

xloc
specifies an 8-bit data code for the character, and
can be any value between X'OO' and X'FF'. You
should ensure that xloc identifies a translate table
entry that points to a character position in the
WCGM (that is, the translate table entry doesn't
contain X'FF'). If xloc is not specified, the
character's 8-bit data code remains unchanged
when the segment is copied.

The REF parameter can be coded in a GRAPHIC
statement that includes the ASSIGN parameter.

9-64 OS/VSl Utilities

II t .rt I t ttrrb H Wt \ 'Writ #*t*tt"HtW'W# tttfftttM

I Applicable
,",UIlt.lUI

rameters Statements Description of Parameters

~Q CHARSET SEQ=nn
GRAPHIC specifies the sequence number that must appear in

columns 25 through 30 of the data statement and
identifies the line as a data statement; nn specifies a line
number (corresponding to a line on the character design
form) and is a 2-digit decimal number from 01 to 40.

ZE FCB SIZE = length
specifies the vertical length of the form, in tenths of an
inch. See the IBM 3800 Printing Subsystem
Programmer's Guide for allowable lengths for the 3800.
The complete length of the form is specified (for
example, with the 3800, SIZE= 110 for an II-inch
form) even though the amount of space available for
printing is reduced by the 1/2 inch top and bottom
areas where no printing occurs.

When the SIZE, LINES, and LPI parameters are
specified in the FCB statement, each parameter value is
checked against the others to ensure against conflicting
page-length specifications. For example, SIZE=35
specifies a 3-1/2 inch length; acceptable LPI values
with the 3800 cannot define more than the printable
2-1/2 inches of this length.

When SIZE is not specified, the form length defaults to
the value specified in LINES. If LINES is not specified,
SIZE is assumed to be 11 inches (110).

IEBIMAGE Program 9-65

Applicable
Control

Parameters Statements Description of Parameters

TEXT COPYMOD TEXT = «([d]t,'text')[,([d]t,'text') •••])
specifies the modifying text. The text is positioned on
the form based on the LINES and POS parameters and
replaces the output data set's text in those positions.

d
specifies a duplication factor (that is, the number
of times the text is to be repeated). The dis
expressed as a decimal integer from 1 to 204. If
d is not specified, the default is 1.

t
specifies the form in which the text is entered: C
for character, or X for hexadecimal. The t is
required.

text
specifies the text and is enclosed in single
quotation marks.

If the text type is C, you can specify any valid
character. Blanks are valid characters. A single
quotation mark is coded as two single quotation
marks. You are not allowed to specify a
character that results in a X'FF'. If the text type
is X, the text is coded in increments of two
characters that specify values between X'OO' and
X'FE'. You are not allowed to specify X'FF'.

The sum of the starting print position (see the POS
parameter) and the total number of text characters
cannot exceed 205. If the width of the form is less than
the amount of space required for the text (based on
character pitch, starting position, and number of
characters), characters are not printed past the right
margin of the form.

If a text character specifies a character whose translate
table entry contains X'FF', the printer sets the Data
Check error indicator when the copy modification
module is loaded. This error indicator can be blocked.

9-66 OS/VSl Utilities

.'W tit 1:$ t thtr ted 'h e.»trW._ Wett t

,IMAGE Examples

The following examples illustrate some of the uses of IEBIMAGE. Figure 9-25
can be used as a quick reference guide to the examples that follow.

[odule Created Comments Example

CB (3800) II-inch form 1

CB (3800) 5-1/2 inch form, replaces existing SYSl.IMAGELIB member. 2
Multiple channel codes specified.

CB (3800) 3-1/2 inch form, replaces existing SYSl.lMAGELIB member. 3
Varied vertical spacing.

CB (3800) 7 -inch form, varied vertical spacing. 4

CB (3800) 12-inch ISO form. Replaces IBM-supplied module. 5

CB (3800) 7-1/2 inch ISO form. Varied vertical spacing. 6

OPYMOD 4 modification segments. 8

OPYMOD Existing module used as basis for new module. OVERRUN 9
specified.

ABLE IBM -supplied module modified to include another character. 10

ABLE Existing module used as basis for new module. Pitch changed. 11

ABLE Existing module used as basis for new module. Includes 12
user-designed characters of GRAPHIC module.

ABLE Existing module used as basis for new module. New module 13
deletes all GRAPHIC references and resets translation table
entries.

fRAPHIC Entire IBM-supplied module printed. 14

fRAPHIC Segments copied from IBM-supplied module. 15

fRAPHIC New module contains a user-designed character. Existing character 16
arrangement (TABLE) modified to include new character.

fRAPHIC Segments copied from existing module. User-designed character 17
created.

rRAPHIC New GRAPHIC module contains a user-designed character. 18
Existing character arrangement (TABLE) modified to include new
character. COPYMOD created to print new character. Result
tested.

:HARSET Entire library character set with scan patterns printed. 19

:HARSET Segments copied from IBM-supplied GRAPHIC module. 20

:HARSET New module contains a user-designed character. Existing character 21
arrangement (TABLE) modified to include new character.

re 25 (Part 1 of 2). IEBIMAGE Example Directory

IEBIMAGE Program 9-67

Module Created Comments Example

CHARSET Segments copied from existing module. User-designed character 22
created.

Figure 9-25. IEBIMAGE Example Directory

Example 1: Building a New 3800 Forms Control Buffer Module

In this example, the vertical spacing and channel codes for an II-inch form are
specified, and the module is added to the SYS1.IMAGELIB data set as a new
member.

IIFCBMOD1 JOB
1 1 EXEC PGM=IEBIMAGE
IISYSUT1 DD DSNAME=SYSl.IMAGELIB,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

1*

FCB CH1=1,CH12=80,LPI=8
NAMEIJ

The control statements are discussed below.

• The SYSUT1 DD statement includes DISP=OLD to ensure that no other j01
can modify the data set while this job is executing.

• CHI = 1 specifies channell code for line 1, allowing for positioning at line 1

• CH12=80 specifies channel 12 code for line 80, allowing for positioning at 1
80 and a unit exception indication at line 80 (the last printable line on the
page.)

• LPI=8 specifies that the entire form is to be at a vertical spacing of 8 lines J:
inch. Because the SIZE parameter is omitted, the form length defaults to 11
inches. Because there are 10 inches of printable space in an II-inch form, 8
lines are printed at 8 lines per inch.

• The name of the new FCB module is IJ, and it is stored as a member of the
SYS 1.IMAGELIB data set.

Example 2: Replacing a 3800 Forms Control Buffer Module

9-68 OS/VSl Utilities

In this example, the size and channel codes for a 5-1/2 inch form are specified,
the module is added to the SYS1.IMAGELIB data set as a replacement for an
existing member. The new module is added to the end of the data set; the name
the data set's directory is updated so that it points to the new module; the old
module can no longer be accessed through the data set's directory.

rue· mil , 'Wttt'Ltt! 'fi * \ V' ' I 'I tt t. ¢ wnwt N t tt) ,tat _wwt \HI !W#' MWHWMMtWttHHWt

/ / t'C.HMUU..l. JU.H

/ / EXEC PGM=IEBIMAGE
/ /SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *

/*

FCB CH1=(1,7,13,20),CH12=26,SIZE=55
NAME S55(R)

The control statements are discussed below.

• The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

CH1=(1,7,13,20) specifies channell code for printable line 1, line 7, line 13,
and line 20.

CH12=26 specifies channel 12 code for printable line 26.

SIZE=55 specifies the length of the form as 55 tenths of an inch, or 5-1/2
inches.

• Because the LPI parameter is omitted, the vertical spacing defaults to 6 lines
per inch. Because there are 4-1/2 inches of printable lines in a 5-1/2 inch
form, there are 27 print lines on this form.

• The name of the FCB module is S55, and it replaces an existing FCB module
of the same name. The new FCB module is stored as a member of the
SYS 1.IMAGELIB data set.

mple 3: Replacing a 3800 Forms Control Buffer Module

In this example, the vertical spacing, channel codes, and size for a form are
specified, and the module is added to the SYS1.IMAGELIB data set as a
replacement for an existing member. The new module is added to the end of the
data set; the name in the data set's directory is updated so that it points to the new
module; the old module can no longer be accessed through the data set's directory.

72
/ /FCBMOD3 JOB
/ / EXEC PGM=IEBIMAGE
/ /SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *

FCB CH1=1,CH2=4,CH5=11,SIZE=35, X
LPI= « 6,2),(8,3),(6,4),(8,9»

NAMEHL(R)
/*

The control statements are discussed below.

IEBIMAGE Program 9-69

• The SYSUT1 DD statement includes DISP=OLD to ensure that no other jo1
can modify the data set while this job is executing.

• CH1 = 1 specifies channel 1 code for printable line 1.

• CH2=4 specifies channel 2 code fOf line 4.

• CH5 = 11 specifies channel 5 code for line 11.

• LPI=«6,2),(8,3),(6,4),(8,9» specifies vertical spacing for the first 18
printable lines in the form:

(6,2) specifies lines 1 through 2 are at a vertical spacing of 6 lines per in
and take up 2/6 inch. .

(8,3) specifies lines 3 through 5 are at a vertical spacing of 8 lines per in
and take up 3 / 8 inch.

(6,4) specifies lines 6 through 9 are at a vertical spacing of 6 lines per in
and take up 4/6 inch.

(8,9) specifies lines 10 through 18 are at a vertical spacing of 8 lines per
inch, and take up 1-1/8 inch.

• SIZE=35 specifies the length of the form as 35 tenths of an inch, or 3-1/2
inches. Because there are 2-1/2 inches of printable space on a 3-1/2 inch
form, and since the LPI parameter specifies vertical spacing for 2-1/2 inche
of lines, the vertical spacing of all lines in the form is accounted fOf.

• The name of the FCB module is HL; it replaces an existing module of the same n
The new FCB module is stored as a member of the SYSI.lMAGELIB data set.
SYS 1.IMAGELIB data set.

Example 4: Building a New 3800 Forms Control Buffer Module

9-70 OS/VSl Utilities

In this example, the vertical spacing, channel codes, and length of a form are
specified, and the module is added to the SYS 1.IMAGELIB data set as a new
member.

/ /FCBMOD4 JOB
/ / EXEC PGM=IEBIMAGE
/ /SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *

/*

FCB CH1=1,CH6=33,8IZE=70,
LPI=«8,32),(12,2»

NAMETGT

The control statements are discussed below.

• The SYSUT1 DD statement includes DISP=OLD to ensure that no other jc
can modify the data set while this job is executing.

rttt tHtstt t "HI t" t tefflMtrtWk

• CHI = 1 specifies channell code for printable line 1.

• CH6=33 specifies channel 6 code for line 33.

• LPI=«8,32),(12,2» specifies that the first 32 printable lines of the form are to
be at a vertical spacing of 8 lines per inch, and the next 2 printable lines are to
be at a vertical spacing of 12 lines per inch.

• SIZE=70 specifies that the length of the form is 70 tenths of an inch, or 7
inches. Because there are 6 inches of printable lines in a 7-inch form and th~
LPI parameter specifies 32 lines at 8 lines per inch, or 4 inches, and 2 lines at
12 lines per inch, or 1/6 inch, the vertical spacing for the remaining 1-5/6
inches defaults to 6 lines per inch.

Therefore, the form consists of lines 1 through 32 at 8 lines per inch, lines 33
through 34 at 12 lines per inch, and lines 35 through 45 at 6 lines per inch,
with channel codes at line 1 and line 33.

The name of the new FCB module is TGT; it is stored as a member of the
SYS 1.IMAGELIB data set.

ample 5: Replacing the 3800 Forms Control Buffer Module STD3

In this example, an FCB module is defined that uses ISO paper sizes, replacing the
IBM-supplied module named STD3. This must be done before the
dump-formatting routines that print high-density dumps can print them at 8 lines
per inch on that printer.

IIFCBMOD5 JOB
1 1 EXEC PGM=IEBIMAGE
IISYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

1*

FCB CH1=1,CH12=88,LPI=(8,88),SIZE=120
NAME STD3(R)

The control statements are discussed below.

• The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

• CH1=1 specifies channell code for printable line 1; CH12=88 specifies
channel 12 code for line 88.

• LPI=(8,88) specifies that all 88 printable lines of the form are to be at a
vertical spacing of 8 lines per inch.

• SIZE= 120 specifies that the length of the form is 120 tenths of an inch, or 12
inches, which is the longest ISO paper size.

• The name of the new FCB module is STD3, and it is to replace the existing
module of that same name on SYS 1.IMAGELIB.

IEBIMAGE Program 9-71

Example 6: Building a New 3800 Forms Control Buffer Module for Additional ISO Paper Sizes

In this example, an FCB module is defined that uses ISO paper sizes and has the
ISO Paper Sizes Additional Feature installed.

/ /FCBMOD6 JOB
/ / EXEC PGM=IEBIMAGE
/ /SYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *

FCB CHl=I,CHI2=74,SIZE=75,
LPI=«(10,35),(12,4),(10,35),(6,l) .

NAMEARU
/*

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no other jol
can modify the data set while this job is executing.

CHI = 1 specifies channell code for line 1, allowing for positioning at line 1

• CH12=74 specifies channel 12 code for line 74, allowing for positioning at 1
74 and a unit exception indication at line 74 (the last printable line on the
page.)

• LPI=«(10,35),(12,4),(10,35),(6,l) specifies vertical spacing for the entire
printable area on the form. The last printable line on the form must have
vertical spacing of 6 lines per inch.

• SIZE=75 specifies the length of the form as 75 tenths of an inch, or 7-1/2
inches, although the printable area is 7-1/3 inches.

• The name of the new FeB module is ARU; it is stored as a member of the
SYSl.IMAGELIB data set.

Example 8: Building a New Copy Modification Module

9-72 OS/VSl Utilities

In this example, a copy modification module that contains four modification
segments is built. The module is added to the SYS I.IMAGELIB data set as a m
member.

/ /COPMODl JOB
/ / EXEC PGM=IEBIMAGE
/ /SYSUTl DD DSNAME=SYSl.IMAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *
COPYl COPYMOD COPIES=(1,l), X

LINES = (1,l),POS=50, X
TEXT=(C,'CONTROLLER"S COPY')

COPY2A COPYMOD COPIES=(2,l), X
LINES=(1,l),POS=50, X
TEXT = (C,'SHIPPING MANAGER"S COPY')

COPY2B COPYMOD COPIES=(2,1), X
LINES=(34,3),POS=75, X
TEXT=(10C,' ')

COPYALL COPYMOD COPIES=(1,4), X
LINES=(58,l),POS=35, X
TEXT = « C,'***'),(C,'CONFIDENTIAL'), X
(3X,'5C'»

NAME RTOl
/*

The control statements are discussed below.

• The SYSUTl DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

• The COPYl COPYMOD statement specifies text that applies to each page of
the first copy of the output data set: .

LINES=(1,l) and POS=50 specify that the text is to be on the first printable
line of each page, starting at the 50th print position from the left.

The TEXT parameter identifies each page of the copy as being the
"Controller's Copy."

• The COPY2A COPYMOD statement specifies text that applies to each page
of the second copy of the output data set. The text is to be on the first line of
each page, at the 50th print position from the left, with each page of the copy
being the "Shipping Manager's Copy."

• The COPY2B COPYMOD statement specifies that part of the second copy's
output data set text is to be blanked out, so that the first, third, and subsequent
copies contain information that is not printed on the second copy. The blank
area is to be on lines 34, 35, and 36, beginning at the 75th print position from
the left. The text on lines 34, 35, and 36, between print positions 75 and 84, is
to be blank (that is, the character specified between the TEXT parameter's
single quotation marks is a blank).

• The COpy ALL COPYMOD statement specifies text that applies to the first
four copies of the output data set. This example assumes that no more than
four copies are printed each time the job that produces the output data set is
executed. The text is to be on the 58th line on each page, at the 35th print

IEBIMAGE Program 9-73

position from the left. The legend "***CONFIDENTIAL***" is to be on e,
page of the copy. Note that the text can be coded in both character and
hexadecimal format.

• The name of the copy modification module is RT01, and it is stored as a
member of the SYS 1.IMAGELIB data set.

Example 9: Building a New Copy Modification Module from an Existing Copy

9-74 OS/VSl Utilities

In this example, a copy of an existing copy modification module, RT01, is used ~
the basis for a new copy modification module. The new module is added to the
SYS1.IMAGELIB data set as a new member. The existing module, RT01, rema
unchanged and available for use.

/ /COPMOD2 JOB
/ / EXEC PGM=IEBIMAGE
/ /SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *

/*

INCLUDE RT01,DELSEG=1
OPTION OVERRUN=8
COPYMOD COPIES = (2,3),

LINES = (52,6),POS= 100,
TEXT = (X,' 40404040404040405C5C')

NAME AP

The control statements are discussed below.

• The SYSUT1 DD statement includes DISP=OLD to ensure that no other jol
can modify the data set while this job is executing.

• The INCLUDE statement specifies that a copy of the copy modification
module named RT01 is used as a basis for the new module, and that the firs
modification segment of RTO 1 is to be deleted from the copy.

• OVERRUN=8 in the OPTION statement specifies that the IEBIMAGE
program is to print a warning message if the copy modification could cause a
line overrun condition when printing at 6 and 8 lines per inch. The program
also to suppress any warning messages that apply to printing at 12 lines per
inch.

• The COPYMOD statement specifies text that applies to each page of the
second, third, and fourth copies of the output data set:

LINES=(52,6) and POS= 100 specify that the text is to be on the 52nd line
and repeated for the 53rd through 57th lines of each page, starting at the 10
print position from the left.

The TEXT statement specifies the text in hexadecimal form: eight blanks
followed by two asterisks (in this example, the assumption is made that X'4(

t enlt'lllUF:lL! Ill'tlutW'" m 'WPWH eli mfl!tf'1i nitre.' Wi'N ".,!It' '.'W" t 'tt " . rt ht t 'f' t t,rt",.Mi, MM 'ttn wt*MHtH

prints as a blank and that X'5C' prints as an asterisk; in actual practice, the
~h~r~~ter arram~:ement table used with the CODY modification module might
translate X'40' and X'5C' to other printable characters).

The name of the new copy modification module is AP; it is stored as a member
of the SYSl.IMAGELIB data set.

rlmple 10: Adding a New Character to a Character Awangement Table Module

In this example, an IBM-supplied character arrangement table module is modified
to include another character, and then added to the SYSI.lMAGELIB data set as a
replacement for the IBM-supplied module.

/ /CHARMODI JOB ...
/ / EXEC PGM=IEBIMAGE
/ /SYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *

/*

INCLUDE GFIO
TABLE LOC=«2A,2A),(6A,2A),(AA,2A),(EA,2A»
NAME GFIO(R)

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

• The INCLUDE statement specifies that a copy of the character arrangement
table named GFIO is to be used as a basis for the new module.

• The TABLE statement specifies updated information for four translate table
entries: X'2A', X'6A', X' AA', and X'EA'. (These four locations are unused in
the IBM-supplied GFIO table.) Each of the four translate table entries is to
point to the '2A' (43rd character) position in the first WCGM, which contains
the scan pattern for a lozenge.

• The name of the character arrangement table is GFIO, and it is stored as a new
module in the SYS I.lMAGELIB data set. The data set's directory is updated
so that the name GFIO points to the new module; the old GFIO module can no
longer be accessed through the data set's directory.

rample 11: Building a New Character Awangement Table Module from an Existing Copy

In this example, an existing character arrangement table module is copied and used
as a basis for a new module. The new character arrangement table is identical to
the old one, except that it uses the Gothic 15-pitch character set instead of Gothic
IO-pitch.

IEBIMAGE Program 9-75

IICHARMOD2 JOB ...
II EXEC
IISYSUTI DD
IISYSPRINT DD
IISYSIN DD

1*

INCLUDE All
TABLE CGMID=86
NAME Al15

PGM=IEBIMAGE
DSNAME=SYSI.lMAGELIB,DISP=OLD
SYSOUT=A

*

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no other jol
can modify the data set while this job is executing.

• The INCLUDE statement specifies that a copy of the character arrangemen1
table named All is to be used as a basis for the new module. The All
character arrangement table translates 8-bit data codes to printable characte
in the Gothic 10-pitch character set.

• The TABLE statement specifies a new character set identifier, X'86', which
the identifier for the Gothic 15-pitch character set. No other changes are me
to the character arrangement table. The new table calls for characters in the
Gothic 15-pitch character set.

• The name of the new character arrangement table is A115, and it is stored a:
member of the SYS I.lMAGELIB data set.

Example 12: Including Graphic Charaders in a Character A"angement Table Module

9-76 OS/VSl Utilities

In this example, an existing character arrangement table module is copied and us'
as the basis for a new module that will include user-designed characters of a
graphic character modification module. The new module is then added to the
SYSI.lMAGELIB data set.

IICHARMOD3 JOB ...
I I EXEC PGM=IEBIMAGE
IISYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

1*

INCLUDEONB
TABLE GCMLIST=ONBI,

LOC=«6F,2F,I),(7C,3C,I),(6A,2A,O»
NAME ONBZ

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no other jo
can modify the data set while this job is executing.

«

• The INCLUDE statement specifies that a copy of the character arrangement
t~ hlp. ml1np.n ()N'R i~ to hp. 1l"p.c1 ~" ~ h~"i~ for the new module. ONB refers to
twoWCGMs.

• The TABLE statement identifies a graphic character modification module and
stipulates the translate table entries for each of its segments:

GCMLIST=ONB1 identifies the graphic character modification module named
ONB 1. The LOC parameter specifies the translate table entry location,
character position, and WCGM number for each segment of the module:

The first segment corresponds to the 8-bit data code X'6F'. The segment's
scan pattern is to be loaded at character position X'2F' (that is, the 48th
character position) in the second WCGM.

The second segment corresponds to the 8-bit data code X'7C'. The
segment's scan pattern is to be loaded at character position X'3C' (that is,
the 61st character position) in the second WCGM.

The third segment corresponds to the 8-bit data code X'6A'. The
segment's scan pattern is to be loaded at character position X'2A' (that is,
the 43rd character position) in the first WCGM.

• The name of the new character arrangement table is ONBZ, and it is stored as
a new module in the SYS l.1MAGELIB data set.

rmple 13: Deleting Graphic References from a Character Arrangement Table Module

In this example, an existing character arrangement table module is copied and used
as a basis for a new one. The new character arrangement table deletes references
to all graphic character modification modules and resets the translate table entries
that were used to point to character positions for the segments of a graphic
character modification module.

/ /CHARMOD4 JOB ...
/ / EXEC PGM=IEBIMAGE
/ /SYSUT1 DD DSNAME=SYS1.1MAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *

/*

INCLUDE ZYL
TABLE GCMLIST=DELETE,LOC=«6A),(6B»
NAME ZYLA

The control statements are discussed below.

• The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

• The INCLUDE statement specifies that a copy of the character arrangement
table named ZYL is to be used as a basis for the new module.

• The TABLE statement deletes references to graphic character modification
modules and resets two translate table entries:

IEBIMAGE Program 9-77

GCMLIST=DELETE specifies that all names of graphic character
modification modules included with the module when the ZYL character
arrangement table was copied are to be reset to blanks (X'40').

The LOC parameter identifies two locations in the translate table, X'6A' anc
X'6B', that are to be set to X'FF' (the default value when no character posit
or WCGM values are specified).

• The name of the new character arrangement table is ZYLA, and it is stored;
a member of the SYS l.IMAGELIB data set.

Example 14: Listing tile World Trade National Use Graphics Graphic Character Modification Moduj

In this example, each segment of the IBM-supplied graphic character modificatio
module containing the World Trade National Use Graphics is printed. Each
segment is unique, although the scan patterns for some segments are identical to
other segments' scan patterns, with only the 8-bit data code being different.

IIGRAFMODI
II
IISYSUTI
IISYSPRINT
IISYSIN

GRAPHIC
NAME *

1*

JOB ...
EXEC PGM=IEBIMAGE
DD DSNAME=SYS1.IMAGELIB,DISP=SHR
DD SYSOUT=A
DD *

The control statements are discussed below.

• DISP=SHR is coded because the library is not being updated.

• The World Trade National Use Graphics graphic character modification
module is identified with the pseudonym of "*". The scan pattern of each 0

the characters in the module is printed.

Example 15: Building a Graphic Character Modification Module from the World Trade GRAFMOl

9-78 OS/VSl Utilities

In this example, a graphic character modification module is built. Its characters;
segments copied from the World Trade National Use Graphics graphic character
modification module. (See IBM 3800 Printing Subsystem Programmer's Guide for the
EBCDIC assignments for the characters.) The new module is stored in the
SYSl.IMAGELIB system data set.

! .t/ * &t . t ttL drl'tHt±**rthb •• r\!I\±tHrtttbbtsbdrHt'tt

/ /GRAFMOD2 JOB ...
/ / EXEC PGM=IEBIMAGE
/ /SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *

GRAPHIC REF=«24),(25),(26),(27),(28), X
(31),(33),(35),(38),(40»

NAME CSTW
/*

The control statements are discussed beiow.

• To ensure that no other job can modify the data set while this job is executing, the
SYSUTI DD statement includes DISP=OLD.

• By not specifying the GCM keyword, the GRAPHIC statement identifies the
World Trade National Use Graphics graphic character modification module.
Ten of its segments are to be copied and used with the new module.

• The name of the graphic character modification module is CSTW, and it is
stored as a new module in the SYS 1.IMAGELIB data set.

ample 16: Building a New Graphic Charader Modification Module and Modifying a Character
rangement Table to Use It

In this example, a graphic character modification module is built. The module
contains one user-designed character, a reverse 'E', whose 8-bit data code is
designated as X'EO' and whose pitch is 10. An existing character arrangement
table is then modified to include the reverse E.

IEBIMAGE Program 9-79

9-80 OS/VSl Utilities

/ /GRAFMOD3 JOB ...
/ / EXEC PGM=IEBIMAGE
/ /SYSUTI DO DSNAME=SYS1.IMAGELIB,DISP=OLD
/ /SYSPRINT DO SYSOUT=A
/ /SYSIN DO *

/*

GRAPHIC ASSIGN=(EO,10)
XXXXXXXXXXXXXXX SEQ=07
XXXXXXXXXXXXXXX SEQ=08

XXXX SEQ=09
XXXX SEQ=10
XXXX SEQ=11

XXXXXXXXXXXXX SEQ=12
XXXXXXXXXXXXX SEQ=13

XXXX SEQ=14
XXXX SEQ=15
XXXX SEQ=16
XXXX SEQ=17

XXXXXXXXXXXXXXX SEQ= 18
XXXXXXXXXXXXXXX SEQ= 19
NAME BODE
INCLUDE GS 1 0
TABLE CGMID=(83,FF),

GCMLIST=BODE,
LOC=(EO,03,l)

NAME REI0

The control statements are discussed below.

• To ensure that no other job can modify the data set while this job is executing, tl
SYSUTI DD statement includes DISP=OLD.

• The GRAPHIC statement's ASSIGN parameter establishes the 8-bit data C(J

X'EO', and the width, to-pitch, for the user-designed character. The data
statements that follow the GRAPHIC statement describe The character's sca
pattern.

• The name of the graphic character modification module is BODE, and it is
stored as a new module in the SYS l.IMAGELIB data set.

• The INCLUDE statement specifies that a copy of the GSI0 character
arrangement table is to be used as the basis for the new table.

• The TABLE statement specifies the addition of the reverse E to that copy oj
the GS 1 0 table.

CGMID=(83,FF) specifies the character set identifier X'83' for the Gothic
set (which is the set already used by the GS 1 0 table) and specifies X'FF' as
character set identifier to allow accessing of the second WCGM without
loading it.

GCMLIST=BODE identifies the graphic character modification module
containing the reverse E for inclusion in the table.

t ert ".',rd't'tlMt>. ;liL tN*' b

LOC=(EO,03,l) specifies that the reverse E, which has been assigned the 8-bit
.... ~ .. ~ "".;10 V''OIV 1c! tn h~ ln~t1p.t1 into nm:ition X'03' in the second WCGM.
Because this second WCGM is otherwise unused, any position in it could have
been used for the reverse E.

• The new character arrangement table is named RE 1 0 and stored as a new
module in SYSl.1MAGELffi.

ample 17: Building a Graphic Character Modification Module from Multiple Sources

In this example, a graphic character modification module is created. Its contents
come from three different sources: nine segments are copied from an existing
module with the INCLUDE statement; the GRAPHIC ~_. '<ement is used to select
another segment to be copied; the GRAPHIC statement is also used to establish
characteristics for a user-designed character. The new graphic character
modification module, when built, is added to the SYS 1.IMAGELffi.

//GRAFMOD4 JOB
// EXEC PGM=IEBIMAGE
//SYSUTl DD DSNAME=SYSl.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE CSTW,DELSEG=3
GRAPHIC REF=(l,6A),GCM=BODE,ASSIGN=9A
******** SEQ=06

********** SEQ=07
**** **** SEQ=08
*** *** SEQ=09
*** **** SEQ=lO
*** ****** SEQ=ll
*** ****** SEQ=l2
*** **** SEQ=l3
*** **** SEQ=l4
*** *** SEQ=l5
*** *** SEQ=16
*** **** **** SEQ=17
*** ******* SEQ=l8
*** ***** SEQ=19

NAME JPCK

The control statements are discussed below.

• The SYSUTI DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is execllting.

• The INCLUDE statement specifies that a copy of the graphic character
modification module named CSTW is to be included with the new module. All
segments of CSTW, except the third segment (as a result of DELSEG=3), are
to be copied into the new module and become the module's first through ninth
modification segments.

The GRAPHIC statement specifies the module's tenth and eleventh segments:

IEBIMAGE Program 9-81

REF=(l,6A) and GCM=BODE specify that the tenth segment of the new
module is to be obtained by copying the first segment from the graphic
character modification module named BODE. In addition, the segment's 8-1
data code is to be changed so that its character is identified with the code
X'6A'.

ASSIGN=9A specifies that the new module's eleventh segment is a
user-designed character whose 8-bit data code is X'9A' and whose width is
lO-pitch (the default when no pitch value is specified). The GRAPHIC
statement is followed by data statements that specify the character's scan
pattern.

• The name of the graphic character modification module is JPCK, and it is
stored as a new module in the SYSl.lMAGELIB data set.

Example 18: Defining and Using a Character in a Graphic Character Modification Module

9-82 OS/VSl Utilities

In this example, a graphic character modification module containing a
user-designed character is built. Next, a Format character arrangement table is
modified to include that new character. Then, a copy modification module is
created to print the new character enclosed in a box of Format characters. Final
the result is tested to allow comparison of the output with the input.

H I ntH. =* tit .ttl rrI $&' tsshM 'tt .1_Itt'IWMzt

~~ I
//CHAR JOB
/ /BUILD EXEC PGM=IEBIMAGE
/ /SYSUTl DD DSNAME=SYS l.IMAGELm,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *
STEPl GRAPHIC ASSIGN=5C
XXXXXXXX XXXXXXXX SEQ=03
XXXXXXXX XXXXXXXX SEQ=04

XX XX XX SEQ=05
XX XX XX SEQ=06

XXXXXXX XXXXXXXX SEQ=07
XXXXXXX XXXXXXXX SEQ=08

XX XX XX SEQ=09
XX XX XX SEQ=lO

XXXXXXXX XXXXXXXX SEQ=ll
XXXXXXXX XXXXXXXX SEQ=l2

SEQ=l3
SEQ=l4

XXXXXXXX XXXXXXXX SEQ=l5
XXXXXXXX XXXXXXXX SEQ=l6
XX XX xx XX SEQ=l7
XX XX xx XX SEQ=l8
XX XX XX XX SEQ=l9
XX XX XX XX SEQ=20
XX XX XX XX SEQ=2l
XX XX XX XX SEQ=22
XXXXXXXX XXXXXXXX SEQ=23
XXXXXXXX XXXXXXXX SEQ=24

NAMEAIBM
STEP2 INCLUDE FMlO

TABLE GCMLIST=AmM,LOC=(5C,2C)
NAME BIBM

STEP 3 COPYMOD COPIES = l,LINES=58,POS=5, X
TEXT = (C,'W6X')

COPYMOD COPIES=l,LINES=59,POS=5, X
TEXT = (C,'7*7')

COPYMOD COPIES=l,LINES=60,POS=5, X
TEXT = (X,'E9F6E8')

NAME CIBM
/*
/ /TEST EXEC PGM=IEBIMAGE
/ /SYSUTl DD DSNAME=SYS1.IMAGELm,DISP=OLD
/ /SYSPRINT DD SYSOUT= A, CHARS = (GFlO,BmM),
/ / MODIFY=(CIBM,l)
/ /SYSIN DD *

GRAPHIC
NAME AIBM

/*

The control statements are discussed below.

IEBIMAGE Program 9-83

9-84 OS/VSl Utiqties

• The SYSUTI DD statement includes DISP=OLD to ensure that no other jot
can modify the data set while this job is executing.

• The GRAPHIC statement's ASSIGN parameter specifies that the 8-bit data
code for the user-designed character is X'5C' and the width is 10-pitch (the
default when no pitch is specified). The GRAPHIC statement is followed b)
data statements that specify the character's scan pattern for vertical line
spacing of 6 lines per inch.

• The name of the graphic character modification module is AIBM, and it is
stored as a new module in SYS I.IMAGELIB.

• At STEP2, the INCLUDE statement specifies that a copy of the FMIO
character arrangement table is to be used as a basis for the new module.

• The TABLE statement identifies the graphic character modification module
named AIBM, created in the previous step. The TABLE statement's LOC
parameter specifies the translate table entry location (the character's 8-bit da
code) of X'5C' and the position (X'2C') at which that character is to be loaded
into the WCGM.

• The name of the new character arrangement table, which is added to
SYSI.IMAGELIB, is BIBM.

• At STEP3, the three COPYMOD statements specify text that is to be placed
on lines 58, 59, and 60 of the first copy of the output data set, starting at priJ
position 5 on each line. When used with the BIBM character arrangement
table, the characters W, 6, and X print as a top left corner, horizontal line
segment, and top right corner, all in line weight 3. The characters 7, *, and 7
print as a weight-3 vertical line segment on both sides of the user-designed
character built at STEPI (the asterisk has the EBCDIC assignment 5C, whic:
addresses that character). The hexadecimal E9, F6, and E8 complete the
line-weight-3 Format box around the character.

• The name of the copy modification module is CIBM, and it is stored as a neVI
module on SYS I.IMAGELIB.

• At TEST, the EXEC statement calls for another execution of the IEBIMAG1
program to test the modules just created. On the SYSPRINT DD statement
the BIBM character arrangement table is the second of two specified, and tht
CIBM copy modification module is specified with a table reference character
of I, to use that BIBM table.

• The GRAPHIC statement with no operand specified calls for printing of the
module, AIBM, specified with the NAME statement that follows it. Each pa,
of the output listing for this IEBIMAGE run has the following modification
printed in the lower left corner:

f38l
~

'!'!It 'HiH'itWm1ifJ!t\!trMfn. U 'tf'Hw"l'W'*W'*ttttw'f '\ '"" "'1'\ "P I"" 11 d. Ht .. \' t W t' '#rts#t' btt't.ttItW ttft"t¥HIttttH

rlmple 19: Listing a Library Character Set Module

In this example, eacn segment 01 a llorary "Ui11i1"1.\;il i:)l;il. Ii:) }l111U.~U • .I.U" »""
pattern of each of the characters in the module is printed.

I ILIBMOD1
II
IISYSUT1
IISYSPRINT
IISYSIN

1*

CHARSET
NAME 83

JOB
EXEC PGM=IEBIMAGE
DD DSNAME=SYS1.IMAGELIB,DISP=SHR
DD SYSOUT=A
DD *

The control statements are discussed below.

• NAME specifies the name of the library character set (83).

~ample 20: Building a Library Character Set Module

In this example, a library character set module is built. Its characters are segments
copied from the World Trade National Use Graphics graphic character
modification module. (See the IBM 3800 Printing Subsystem Programmer's Guide
for the listing of all the segments of that module. The EBCDIC assignments for
the characters are replaced by WCGM-Iocation codes.) The new module is stored
in the SYS l.IMAGELm system data set.

72
IILIBMOD2 JOB
I I EXEC PGM=IEBIMAGE
IISYSUT1 DD DSNAME=SYSl.IMAGELIB,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

CHARSET REF=«24,01),(25,02),(26,03),(27,04),(28,05), X
(31,06),(33,07),(35,08),(38,09),(40,OA»

NAME 73
1*

The control statements are discussed below.

• The SYSUT1 DD statement includes DISP=OLD to ensure that no other job
can modify the data set while this job is executing.

• By not specifying the GCM keyword or a library character set ID, the
CHARSET statement identifies the World Trade National Use Graphics
graphic character modification module. Ten of its segments are to be copied
and used with the new module. For example, the 24th segment is to be copied
and assigned the WCGM location Ol. See the REF parameter (24,01).

• The name of the library character set module is 73, and it is stored as a new
module in the SYS 1.IMAGELIB data set.

IEBIMAGE Program 9-85

Example 21: Building a Library Charader Set Module and Modifying a Charader Arrangement Tab
to Use It

9-86 OS/VSl Utilities

In this example, a library character set module is built. The module contains one
user-designed character, a reverse 'E', whose 6-bit WCGM-Iocation code is
designated as X'03', and whose pitch is 10. An existing character arrangement
table is then modified to include the reverse E.

/ /LmMOD3 JOB
/ / EXEC PGM=IEBIMAGE
/ /SYSUTI DD DSNAME=SYSl.IMAGELIB,DISP=OLD
/ /SYSPRINT DO SYSOUT=A
/ /SYSIN 00 *

/*

CHARSET ASSIGN=(03,10)
XXXXXXXXXXXXXXX SEQ=07
XXXXXXXXXXXXXXX SEQ=08

XXXX SEQ=09
XXXX SEQ=lO
XXXX SEQ=ll

XXXXXXXXXXXXXX SEQ=12
XXXXXXXXXXXXXX SEQ=13

XXXX SEQ=14
XXXX SEQ=15
XXXX SEQ=16
XXXX SEQ=17

XXXXXXXXXXXXXXX SEQ=18
XXXXXXXXXXXXXXX SEQ= 19
NAME 73
INCLUDE GSI0
TABLE CGMIO=(83,73),LOC=(EO,03,l)
NAME RElO

The control statements are discussed below.

To ensure that no other job can modify the data set while this job is executing,
the SYSUTI DD statement includes DISP=OLD.

• The CHARSET statement's ASSIGN parameter establishes the 6-bit
WCGM-Iocation code, X'03', and the width, 10-pitch, for the user-designed
character. The data statements that follow the CHAR SET statement descril:
the character's scan pattern.

• The name of the library character set module is 73, and it is stored as a new
module in the SYS l.lMAGELIB data set.

• The INCLUDE statement specifies that a copy of the GSlO character
arrangement table is to be used as the basis for the new table.

• The TABLE statement specifies the addition of the . library character set
containing the reverse E to that copy of the GS 1 0 table.

HHttIt!n't tNW *

CGMID=(83,73) specifies the character set identifier X'83' for the Gothic-l0
__ L ~ ___ t..!_t.. !_ .. t..~ _~+ ."l .. """,A ",,,,,A hu thP n.~1 0 t~hlp) ~nn ~nedfies X t73' as a

character set identifier to allow loading of the second WCGM with the library
character set 73.

LOC=(EO,03,l) specifies that the reverse E, which has been assigned the
WCGM location 03 in the second WCGM, is to be referenced by the EBCDIC
code X'EO'.

• The new character arrangement table is named RE 1 0 and stored as a new
module in SYSl.1MAGELffi.

'lmple 22: Building a Library Character Set Module from Multiple Sources

In this example, a library character set module is created. Its contents come from
three different sources: 62 segments are copied from an existing module with the
INCLUDE statement; the CHARSET statement is used to select another segment
to be copied; a second CHARSET statement is used to establish characteristics for
a user-designed character. The new library character set module, when built, is
added to the SYSl.1MAGELIB.

/ /LIBMOD4 JOB
/ / EXEC PGM=IEBIMAGE
/ /SYSUTI DD DSNAME=SYSl.1MAGELIB,DISP=OLD
/ /SYSPRINT DD SYSOUT=A
/ /SYSIN DD *

INCLUDE 33,DELSEG=(3,4)
CHARSET REF = (1,02) ,GCM=BODE,ASSIGN =03
******** SEQ=06
********** SEQ=07
**** **** SEQ=08
*** *** SEQ=09
*** **** SEQ= 10
*** ****** SEQ= 11
*** ****** SEQ= 12
*** **** SEQ= 13
*** **** SEQ= 14
*** *** SEQ= 15
*** *** SEQ= 16

The control statements are discussed below.

• To ensure that no other job can modify the data set while this job is executing,
the SYSUTI DD statement includes DISP=OLD.

The INCLUDE statement specifies that a copy of the library character set
module named 33 is to be included with the new module. All segments of 33,
except the third and fourth segments (as a result of DELSEG=3,4), are to be
copied into the new module and become the basis for the new module.

IEBIMAGE Program 9-87

9-88 OS/VSl Utilities

• The CHARSET statement specifies the module's third and fourth segments:

REF=(1,02) and GCM=BODE specify that the third segment of the new
module is to be obtained by copying the first segment from the graphic
character modification module named BODE. The segment's 6-bit
WCGM-Iocation code is to be set so that its character is identified with the
code X'02'.

ASSIGN =03 specifies that the new module's fourth segment is a user-design
character whose 6-bit WCGM-Iocation code is X'03' and whose width is
to-pitch (the default when no pitch value is specified). The CHARSET
statement is followed by data statements that specify the character's scan
pattern.

• The name of the library character set module is 53, and it is stored as a new
module in the SYS t.lMAGELIB data set.

'Htmi HttHtt tj '#Hctt Hht' h * -

IEBIMAGE Program 9-89

~"trm!lt!'\wtM!MiA' .. tt\,\'nl'l1!M"re\f*H • ., LflMf"Wl&'Rt, "/Jwli'fNLWI"'M

IEBISAM PROGRAM

IEBISAM can be used to:

• Copy an indexed sequential (IS AM) data set directly from one direct access
volume to another.

• Create a backup (transportable) copy of an ISAM data set by copying
(unloading) it into a sequential data set on a direct access or magnetic tape
volume.

• Create an ISAM data set from an unloaded data set. The sequential (unloaded)
data set is in a form that can be subsequently loaded, that is, it can be converted
back into an ISAM data set.

• Print an ISAM data set.

At the completion or termination of IEBISAM, the highest return code encountered
within the program is passed to the calling program.

Copying an Indexed Sequential Data Set

IEBISAM can be used to copy an indexed sequential data set directly from one
DASD volume to another. When the data set is copied, the records marked for
deletion are only deleted if the DELETE parameter was specified in the OPTCD
(optional control program service) field. Those records that are contained in the
overflow area of the original data set are moved into the primary area of the copied
data set. The control information characteristics such as BLKSIZE and OPT CD
can be overridden by new specifications. Caution should be used, however, when
overriding these characteristics (see "Specifying a LOAD operation").

Creating a Sequential Backup Copy

An unloaded sequential data set can be created to serve as a backup or
transportable copy of source data from an indexed sequential data set. Records
marked for deletion within the indexed sequential data set are automatically deleted
when the unloaded data set is created. When the data set is subsequently
loaded -reconstructed into an indexed sequential data set-records that were
contained in the overflow area assigned to the original data set are moved
sequentially into the primary area.

An unloaded data set consists of 80-byte logical records. The data set contains:

• Fixed records from an indexed sequential data set.

• Control information used in the subsequent loading of the data set.

Control information consists of characteristics that were assigned to the indexed
sequential data set. These characteristics are:

• Optional control program service (OPTCD)

• Record format (RECFM)

• Logical record length (LRECL)

• Block size (BLKSIZE)

• Relative key position (RKP)

• Number of tracks in cylinder index (NTM)

IEBISAM Program 10-1

• Key length (KEYLEN)

• Number of overflow tracks on each cylinder (CYLOFL)

Specifying a Load Operation

10-2 OS/VS 1 Utilities

When a load operation is specified, these characteristics can be overridden by
specifications in the DCB parameter of the SYSUT2 DD statement (refer to "Job
Control Statements" for a discussion of the SYSUT2 DD statement). Caution
should be used, however, because checks are made to ensure that:

1. Record format is the same as that of the original indexed sequential data set
(either fixed (F) or variable (V) length).

2. Logical record length is greater than or equal to that of the original indexed
sequential data set when the RECFM is variable (V) or variable blocked (VB).

3. For fixed records, the block size is equal to or a multiple of the logical record
length of the records in the original indexed sequential data set. For variable
records, the block size is equal to or greater than the logical record length plus
four.

4. Relative key position is equal to or less than the logical record length minus the
key length. Following are relative key position considerations:

• If the RECFM i~ V or VB, the relative key position should be at least 4.

• If the DELETE parameter was specified in the OPTCD field and the RECFM
is F or fixed blocked (FB), the relative key position should be at least 1.

• If the DELETE parameter was· specified in the OPTCD field and the RECFM
is V or VB, the relative key position should be at least 5.

5. The key length is less than or equal to 255 bytes.

6. For a fixed unblocked data set with RKP=O, the LRECL value is the length of
the data portion, not, as in all other cases, the data portion and key length. When
changing the RECFM from fixed unblocked and RKP=O to fixed blocked, the
new LRECL must be equal to the old LRECL plus the old key length.

If either RKP or KEYLEN is overridden, it might not be possible to reconstruct the
data set.

The number of 80-byte logical records in an unloaded data set can be determined
by the formula:

x = n(y+2) + 158

78

where x is the number of 80-byte logical records created, n is the number of
records in the indexed sequential data set, and y is the length of a fixed record or
the average length of variable records.

Figure 10-1 shows the format of an unloaded data set for the first three 100-byte
records of an indexed sequential data set. Each is preceded by two bytes (bb) that
indicate the number of bytes in that record. (The last record is followed by two
bytes containing binary zeros to identify the last logical record in the unloaded data
set.) The characteristics of the indexed sequential data set are contained in the first
two logical records of the unloaded data set. Data from the indexed sequential data
set begins in the third logical record. Each logical record in the unloaded data set
contains a binary sequence number (aa) in the first two bytes of the record.

tI±W'ddtdtrlHttbWirt P:#dW 'H"'"t'I

~----~---- --------------- ov uy t.Co:»

a a blbJ Characteristics

a a Characteristics

a a blbl 76 bytes ~f data

a a 24 bytes of data iblbl 52 bytes of data

a a 48 bytes of data

a a 72 bytes of data

Figure to-I. An Unloaded Data Set Created Using IEBISAM

Creating an Indexed Sequential Data Set
from an Unioaded Data Set

Iblbl 28 bytes of data

Ibl bl

An indexed sequential data set can be created from an unloaded version of an
indexed sequential data set. When the unloaded data set is loaded, those records
that were contained in the overflow area assigned to the original indexed sequential
data set are moved sequentially into the primary area of the loaded indexed
sequential data set.

Printing the Logical Records 0/ an Indexed Sequential Data Set

The records of an indexed sequential data set can be printed or stored as a
sequential data set for subsequent printing. Each input record is placed in a buffer
from which it is printed or placed in a sequential data set. When the DELETE
parameter is specified in the OPTCD field, each input record not marked for
deletion is also placed in a buffer from which it is printed or placed in a sequential
data set. Each printed record is converted to hexadecimal unless specified otherwise
by the user.

IEBISAM provides user exits so that the user can include his own routines to:

• Modify records before printing.

• Select records for printing or terminate the printing operation after a certain
number of records have been printed.

• Convert the format of a record to be printed.

• Provide a record heading for each record if the record length is at least 18 bytes.
If no user routines are provided, each record is identified in sequential order on
the printout.

When a user routine is supplied for a print operation, IEBISAM issues a LOAD
macro instruction. A BALR 14,15 instruction is used to give control to the user's
routine. When the user's routine receives control, register ° contains a pointer to a
record heading buffer; register 1 contains a pointer to an input record buffer. (Note
that the user must save registers 2 through 14 when control is given to the user
routine.)

The input record buffer has a length equal to the length of the input logical record.

Figure 10-2 shows the record heading buffer.

The user returns control to IEBISAM by issuing a RETURN macro instruction (via
register 14) or by using a BR 14 instruction after restoring registers 2 through 14.

A user routine must place a return code in register 15 before returning control to
IEBISAM. The possible return codes and their meanings are:

• 00, which indicates that buffers are to be printed.

IEBISAM Program 10-3

Input and Output

10-4 OSjVS1 Utilities

Register 0

Available to the user ~

t-------Total length = line length of applicable printer-------

Register 1

tp"' ,~,d
I. -Total length = input logical record length (LRECL) ------

Figure 10-2. Record Heading Buffer Used by IEBISAM

• 04, which indicates that the buffers are to be printed and the operation is to be
terminated.

• 08, which indicates that this input record is not to be printed; processing
continues.

• 12, which indicates that this input record is not to be printed; terminate the
operation.

IEBISAM uses an input data set (the organization of the input data set depends on
the operation to be performed) as follows:

• If a data set is to be copied, unloaded, or printed in logical sequence, the input is
an indexed sequential data set.

• If a data set is to be loaded, the input is an unloaded version of an indexed
sequential data set.

IEBISAM produces as output:

• An output data set, which is the result of the IEBISAM operation.

• A message data set, which contains information messages and any error
messages.

IEBISAM provides a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a return code of 04 or 12 was passed to IEBISAM by
the user routine.

• 08, which indicates that an error condition occurred that caused termination of
the operation.

• 12, which indicates that a return code other than 00,04,08, or 12 was passed to
IEBISAM from a user routine. The job step is terminated.

• 16, which indicates that an error condition caused termination of the operation.

W"''',' '!'p·,· = "NtH l' N »tIt t Isttf) $'" tt ct« Ittt >. t tith rtt • H H WI \tbWt

Control

Job Control Statements

IEBISAM is controlled by job control statements. No utility control statements are
required.

Figure 10-3 shows the job control statements necessary for using IEBISAM.

Statement

JOB

EXEC

SYSUTI DD

SYSUT2 DD

SYSPRINTDD

Use

Initiates the job.

Specifies the program name (PGM=IEBISAM). Additional information is
required on the EXEC statement to control the execution of IEBISAM; see
"PARM Information on the EXEC Statement" below.

Defines the input data set.

Defines the output data set.

Defines a sequential message data set, which can be written to a system
output device, a tape volume, or a direct access device.

Figure 10-3. IEBISAM Job Control Statements

If the block size of the SYSPRINT data set is not a multiple of 121, a default value
of 121 is taken (no error message is issued, and no condition code is set).

PARM Information on the EXEC Statement

The P ARM parameter on the EXEC statement is used to control the execution of
IEBISAM.

Note: Exit routines must be included in either the job library or the link library.

For a COpy operation, the SYSUT2 DD statement must include a primary space
allocation that is sufficient to accommodate records that were contained in
overflow areas in the original indexed sequential data set. New overflow areas can
be specified when the data set is copied.

For an UNLOAD operation, specifications that are implied by default or included
in the DCB parameter of the SYSUT2 DD statement (for example, tape density)
must be considered when the data set is subsequently loaded. If a block size is
specified in the DCB parameter of the SYSUT2 DD statement, it must be a
multiple of 80 bytes.

For a LOAD operation, if the input data set resides on an unlabeled tape, the
SYSUT1 DD statement must specify a BLKSIZE that is a multiple of 80 bytes.
Specifications that are implied by default or included in the DCB parameter of the
SYSUT1 DD statement must be consistent with specifications that were implied or
included in the DCB parameter of the SYSUT2 DD statement used for the
UNLOAD operation. The SYSUT2 DD statement must include a primary space
allocation that is sufficient to accommodate records that were contained in
overflow areas in the original indexed sequential data set. If new overflow areas are
desired, they must be specified when the data set is loaded.

For a PRINTL operation, if the device defined by the SYSUT2 DD statement is a
printer, the specified BLKSIZE must be equal to or less than the physical printer
size; that is 121, 133, or 145 bytes. If BLKSIZE is not specified, 121 bytes is
assumed. LRECL (or BLKSIZE when no LRECL was specified) must be between
55 and 255 bytes.

IEBISAM Program 10-5

10-6 OS/VSl Utilities

If a user routine is supplied for a PRINTL operation, IEBISAM issues a LOAD
macro instruction to make the user routine available. A BALR 14,15 instruction is
subsequently used to give control to the routine. When the user routine receives
control, register 0 contains a pointer to a record heading buffer; register 1 contains
a pointer to an input record buffer.

Operands

PARM

AnnliC'9hle Control

Statements

EXEC

Description of Operands/Parameters

PARM={COPY I UNLOAD I LOAD I PRINTL I PRINTL[,N]}
[,EXIT =routinename]

The P ARM values have the following meaning:

• COpy specifies a copy operation.

• UNLOAD specifies an unload operation.

• LOAD specifies a load operation.

• PRINTL specifies a print operation in which each record is
converted to hexadecimal before printing. The N is an
optional value that specifies that records are not to be
converted to hexadecimal before printing.

• EXIT is an optional value that specifies the name of an exit
routine that is to receive control before each record is
printed.

IEBISAM Program 10-7

IEBISAM Examples

IEBISAM Example 1

10-8 OS/VS1 Utilities

The following examples illustrate some of the uses of IEBISAM. Figure 10-4 can
be used as a quick reference guide to IEBISAM examples. The numbers in the
"Example" column point to the examples that follow.

Data Set
Operation Organization Devices Comments Example

COPY Indexed Disks Unblocked input; blocked output.
sequential Prime area and index separation.

UNLOAD Indexed- Disk and Blocked output.
sequential, 9-track
Sequential Tape 2

UNLOAD Indexed Disk and Blocked output. Data set written
sequential, 7-track as second data set on input
Sequential Tape volume. 3

LOAD Sequential, 9-track Input data set is second data set
Indexed Tape on tape volume.
sequential and Disk 4

PRINTL Indexed Disk and Blocked input. Output not
sequential, System converted.
Sequential Printer 5

Figure 10-4. IEBISAM Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

In this example, an indexed sequential data set is to be copied from two DASD
volumes. The output data is blocked.

IICPY JOB 09#770,SMITH
II EXEC PGM=IEBISAM,PARM=COPY
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=ISAM01,VOLUME=SER=(222222,333333),
I I DISP=(OLD, DELETE), UNIT=(disk, 2), DCB=(DSORG=IS,
II LRECL=500,BLKSIZE=500,RECFM=F,RKP=4)
IISYSUT2 DD DSNAME=ISAM02(INDEX), UN I T=disk , DISP=(NEW,
II KEEP),VOLUME=SER=444444,DCB=(DSORG=IS,BLKSIZE=1000,
II RECFM=FB),SPACE=(CYL,(2))
II DD DSNAME=ISAM02(PRIME),UNIT=(d~k,2),
II DCB=(DSORG=IS,BLKSIZE=1000,RECFM=FB),SPACE=(CYL,(10)),
II VOLUME=SER=(444444,555555),DISP=(NEW,KEEP)
1*
The control statements are discussed below:

• EXEC specifies the program name and the COpy operation.

• SYSUTI DD defines an indexed sequential input data set, which resides on two
disk volumes.

• SYSUT2 DD defines the output data set index area; the index and prime areas
are separated.

• The second SYSUT2 DD defines the output data set prime area. Ten cylinders
are allocated for the prime area on each of the two disk volumes.

~"'M ... l \PI *,,, , ' ••• t tn.: t t •• '''''''', "M'''''meRe "" L #t±'t*fflWdtHt't ft_ * MNbttIIW

fEBfSAM Example 2

fEBfSAM Example 3

fEBfSAM Example 4

In this example, indexed sequential input is to be converted into a sequential data
set; the output is to be placed on a 9-track tape volume.

IISTEP1 JOB 09#770,SMITH
II EXEC PGM=IEBISAM,PARM=UNLOAD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=INDSEQ, UN I T=disk , DISP=(OLD, KEEP),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=UNLDSET,UNIT=tape,LABEL=(,SL),
II DISP=(,KEEP),VOLUME=SER=001234,DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=640)
1*
The control statements are discussed below:

• EXEC specifies the program name and the UNLOAD operation.

• SYSUTI DD defines the indexed sequential input data set, which resides on a
disk volume.

• SYSUT2 DD defines the unloaded output data set. The data set consists of fixed
blocked records, and is to reside as the first or only data set on a 9-track tape
volume. The data set is to be written at a density of 800 bits per inch.

In this example, indexed sequential input is to be converted into a sequential data
set and placed on a 7 -track, tape volume.

IISTEPA JOB 09#770,SMITH
II EXEC PGM=IEBISAM,PARM=UNLOAD
IISYSPRINT DD SYSOUT=A
I ISYSUT 1 DD DSNAME=INDSEQ, UNIT=disk, DISP= (OLD, KEEP) ,
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=UNLDSET,UNIT=2400-2,LABEL=(2,SL),
II VOLUME=SER=001234,DCB=(DEN=2,RECFM=FB,LRECL=80,
II BLKSIZE=1040,TRTCH=C),DISP=(,KEEP)
1*
The control statements are discussed below:

• EXEC specifies the program name and the UNLOAD operation.

• SYSUTI DD defines the input data set, which is an indexed sequential data set.
The data set resides on a disk volume.

• SYSUT2 DD defines the unloaded output data set. The data set consists of fixed
blocked records, and is to reside as the second data set on a 7-track tape volume.
The data set is to be written at a density of 800 bits per inch.

In this example, an unloaded data set is to be converted to the form of the original
indexed sequential data set.

IISTEPA JOB 09#770,SMITH
II EXEC PGM=IEBISAM,PARM=LOAD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=UNLDSET,UNIT=tape,LABEL=(2,SL),
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DD DSNAME=INDSEQ,DISP=(,KEEP),DCB=(DSORG=IS),
I I SPACE=(CYL, (1)) , VOLUME=SER= 111112, UN I T=disk
1*

IEBISAM Program 10-9

fEBfSAM Example 5

100to OS/VSl Utilities

The control statements are discussed below:

• EXEC specifies the program name and the LOAD operation.

• SYSUT1 DD defines the input data set, which is a sequential (unloaded) data
set. The data set is the second data set on a 9-track tape volume.

• SYSUT2 DD defines the output data set, which is an indexed sequential data set.
One cylinder of space is allocated for the data set on a disk volume.

In this example, the logical records of an indexed sequential data set are to be
printed on a system output device.

IlpRINT JOB 09#770,SMITH
II EXEC PGM=IEBISAM,PARM='PRINTL,N'
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=ISAM03,UNIT=d~k,DISP=OLD,
II VOLUME=SER=222222
IISYSUT2 DD SYSOUT=A
/*

The control statements are discussed below:

• EXEC specifies the program name and the PRINTL operation. The output
records are not to be converted to hexadecimal prior to printing.

• SYSUT1 DD defines the input data set, which resides on a disk volume.

• SYSUT2 DD defines the output data set. A logical record length (LRECL) of
121 bytes is assumed.

tu deNte" we' MiM~!lI!Il@'dAi!lw+¥tw'!'f*·we'titNwfl!Lf,¥!'H·t!l\·'f"twM!hl*l!" 'I" 1 ¢' p ._!ret,,,.1 ttt#5#rtHhhMtttlr:ttdsWbtWdt tt

IEBPTPCH PROGRAM

IEBPTPCH is a data set utility used to print or punch all, or selected portions, of a
sequential or partitioned data set. Records can be printed or punched to meet either
standard specifications or user specifications.

The standard specifications are:

• Each logical record begins on a new printed line or punched card.

• Each printed line consists of groups of 8 characters separated by 2 blanks. Each
punched card contains up to 80 contiguous bytes of information.

Characters that cannot be printed appear as blanks.

• When the input is blocked, each logical record is delimited by "*" and each
block is delimited by "* *" .

User formats can be specified, provided that no output record exceeds the
capability of the output device.

IEBPTPCH provides optional editing facilities and exits for user routines that can
be used to process labels or manipulate input or output records.

IEBPTPCH can be used to:

• Print or punch a sequential or partitioned data set in its entirety.

• Print or punch selected members from a partitioned data set.

• Print or punch selected records from a sequential or partitioned data set.

• Print or punch the directory of a partitioned data set.

• Print or punch an edited version of a sequential or partitioned data set.

At the completion or termination of the program, the highest return code
encountered within the program is passed to the calling program.

Printing or Punching a Data Set

IEBPTPCH can be used to print or punch a sequential data set or a partitioned
data set in its entirety. Data to be printed or punched can be either hexadecimal or
a character representation of valid alphameric bit configurations. For a print
operation, packed decimal data should be converted to unpacked decimal or
hexadecimal mode to ensure that all characters are printable.

For a standard print operation, each logical record is printed in groups of eight
characters. Each set of eight characters is separated from the next by two blanks.
Up to 96 data characters can be included on a printed line. (An edited output can
be produced to omit the blank delimiters and print up to 144 characters per line.)

Data from an input logical record is punched in contiguous columns in the punched
card(s) representing that record. Sequence numbers can be created and placed in
columns 73 through 80 of the punched cards.

Printing or Punching Selected Members

IEBPTPCH can be used to print or punch selected members of a partitioned data
set. Utility control statements are used to specify members to be printed or
punched.

IEBPTPCH Program 11-1

Printing or Punching Selected Records

IEBPTPCH can be used to print selected records from a sequential or partitioned
data set. Utility control statements can be used to specify:

• The termination of a print or punch operation after a specified number of
records has been printed or punched.

• The printing or punching of every nth record.

• The starting of a print or punch operation after a specified number of records.

Printing or Punching a Partitioned Directory

IEBPTPCH can be used to print or punch the contents of a partitioned directory.
Each directory block is printed in groups of eight characters. If the directory is
printed in hexadecimal representation, the first four printed characters of each
directory block indicate the total number of used bytes in that block. For details of
the format of the directory, see OS/VSl System Data Areas.

Data from a directory block is punched in contiguous columns in the punched cards
representing that block.

Printing or Punching an Edited Data Set

Input and Output

11-2 OS/VS 1 Utilities

IEBPTPCH can be used to print or punch an edited version of a sequential or a
partitioned data set. Utility controi statements can be used to specify editing
information that applies to a record, a group of records, selected groups of records,
or an entire member or data set.

An edited data set is produced by:

• Rearranging or omitting defined data fields within a record.

• Converting data from packed decimal to unpacked decimal or from alphameric
to hexadecimal representation.

IEBPTPCH uses the following input:

• An input data set, which contains the data that is to be printed or punched. The
input data set can be either sequential or partitioned.

• A control data set, which contains utility control statements. The control data set
is required for each use of IEBPTPCH.

IEBPTPCH produces the following output:

• An output data set, which is the printed or punched data set.

• A message data set, which contains informational messages (for example, the
contents of the control statements) and any error messages.

IEBPTPCH provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that either a physical sequential data set is empty or a
partitioned data set has no members.

• 08, which indicates that a member specified for printing does not exist in the
input data set. Processing continues with the next member.

ijMIn'¥MWfwJtW:Wit'ti¥ff"f'"B f f"'Qt'!fIt,bWltl'M,1 ""'\"H'\YW""1!8M,MeWWfWM1,,,'V,y' ttttttntttHhrt bt 'bbht .. dt*ttW#h*I'¥H"W NtH ttlt*'rItbtWIt*

Control

Job Control Statements

• 12, which indicates that an unrecoverable error occurred or that a user routine
", ... ",,,,,,,,..1 ". .. ""fl """..1"" ""f 1,., t"" TPRPTPr'l-l Thp 1nh C!tpn 1c! tprnl1"~tpr1

• 16, which indicates that a user routine passed a return code of 16 to
IEBPTPCH. The job step is terminated.

IEBPTPCH is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke the IEBPTPCH
program and to define the data sets that are used and produced by the program.
The utility control statements are used to control the functions of IEBPTPCH.

Figure 11-1 shows the job control statements necessary for using IEBPTPCH.

Statement Use

JOB Initiates the job step.

EXEC Specifies the program name (PGM=IEBPTPCH) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DO Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access device.

SYSUTI DD Defines a sequential or partitioned input data set.

SYSUT2DD Defines the output (printed or punched) data set.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a member in a partitioned data set.

Figure 11-1. IEBPTPCH Job Control Statements

The input data set can contain fixed, variable, undefined, or variable spanned
records.

Both the output data set and the message data set can be written to the system
output device if it is a printer. Variable spanned records are allowed only when the
input is sequential.

If the logical record length of the input records is such that the output would
exceed the output record length, the utility divides the record into multiple lines or
cards in the case of standard printed output, standard punched output, or when the
PREFORM operand was specified. Otherwise, only part of the input record is
printed (a maximum of 144 characters) or punched (a maximum of 80 characters).

Utility Control Statements

IEBPTPCH is controlled by utility control statements. The control statements are
shown in the order in which they must appear in Figure 11-2.

The control statements are included in the control data set, as required. Any
number of MEMBER and RECORD statements can be included in a job step.

A nonblank character in column 72 is optional for IEBPTPCH continuation
statements.

IEBPTPCH Program 11-3

PRINT Statement

11-4 OS/VSl Utilities

Statement

PRINT or
PUNCH

TITLE

EXITS

MEMBER

RECORD

LABELS

Use

Specifies that the data is to be either
printed or punched.

Specifies that a title is to precede the printed or punched data.

Specifies that user routines are provided.

Specifies that the input is a partitioned data set and that a selected member is
to be printed or punched.

Specifies whether editing is to be performed, that is, records are to be printed
or punched to nonstandard specifications.

Specifies whether user labels are to. be treated as data.

Figure 11-2. IEBPTPCH Utility Control Statements

The PRINT statement is used to initiate the IEBPTPCH operation. If this is a print
operation, PRINT must be the first statement in the control data set.

The format of the PRINT statement is:

[label] PRINT [PREFORM= {A I M}]

[,TYPORG={~ I PO}]

[,TOTCONV={XE I PZ}]

[,CNTRL= {n I!}
[,STRTAFT =n]

[,STOPAFT=n]

[,SKIP=n]

[,MAXNAME=n]

[,MAXFLDS=n]

[,MAXGPS=n]

[,MAXLITS=n]

[,INITPG=n]

[,MAXLINE=n]

PUNCH Statement

TITLE Statement

EXITS Statement

MEMBER Statement

1 ne rUN CM statement IS use a to mmate tne Ibtlr lrCM operauon. 11 tfilS IS a
punch operation, PUNCH must be the first statement in the control data set.

The format of the PUNCH statement is:

[label] PUNCH [PREFORM = {A I M}]

[,TYPORG={PS I PO}]

[,TOTCONV={XE I PO}]

[,CNTRL={ n I !}]
[,STRTAFT=n]

[,STOPAFT=n]

[,SKIP=n]

[,MAXNAME=n]

[,MAXFLDS=n]

[,MAXGPS=n]

[,MAXLITS=n]

[,CDSEQ=n]

[,CDINCR=n]

The TITLE statement is used to request title and subtitle records. Two TITLE
statements can be included for each use of IEBPTPCH. A first TITLE statement
defines the title, and a second defines the subtitle. The TITLE statement, if
included, follows the PRINT or PUNCH statement in the control data set.

The format of the TITLE statement is:

[label] TITLE ITEM=(' title'[, output-location]) [,ITEM ...]

The EXITS statement is used to identify exit routines supplied by the user. Exits to
label processing routines are ignored if the input data set is partitioned. Linkage to
and from user routines are discussed in "Appendix A: Exit Routine Linkage."

The EXITS statement, if included, must immediately follow any TITLE statement
or follow the PRINT or PUNCH statement.

The format of the EXITS statement is:

[label] EXITS [INHDR=routinename]

[,INTLR=routinename]

[,INREC=routinename]

[,OUTREC=routinename]

The MEMBER statement is used to identify members to be printed or punched. All
RECORD statements that follow a MEMBER statement pertain to the member
indicated in that MEMBER statement only. When RECORD and MEMBER
statements are used, at least one MEMBER statement must precede the first

IEBPTPCH Program 11-5

RECORD Statement

LABELS Statement

11-6 OS/VSl Utilities

RECORD statement. If no RECORD statement is used, the member is processed
to standard specifications.

If no MEMBER statement appears, and a partitioned data set is being processed,
all members of the data set are printed or punched. Any number of MEMBER
statements can be included in a job step.

If the NAME parameter is specified in the MEMBER statement, MAXNAME
must be specified in a PRINT or PUNCH statement.

The format of the MEMBER statement is:

[label] MEMBER NAME= {membername I aliasname }

The RECORD statement is used to define a group of records, called a record group,
that is to be printed or punched to the user's specifications. A record group consists
of any number of records to be edited identically.

If no RECORD statements appear, the entire data set, or named member, is
printed or punched to standard specifications. If a RECORD statement is used, all
data following the record group it defines (within a partitioned member or within
an entire sequential data set) must be defined with other RECORD statements.
Any number of RECORD statements can be included in a job step.

A RECORD statement referring to a partitioned data set for which no members
have been named need contain only FIELD parameters. These are applied to the
records in all members of the data set.

If a FIELD parameter is included in the RECORD statement, MAXFLDS must be
specified in the PRINT or PUNCH statement.

If an IDENT parameter is included in the RECORD statement, MAXGPS must be
specified in the PRINT or PUNCH statement. If a literal is specified in the IDENT
parameter, MAXLITS must be specified in the PRINT or PUNCH statement.

The format of the RECORD statement is:

[label] RECORD [IDENT=(length,' name',input-location)]

[,FIELD=(length ,[input-location],[conversion]
,[output-location D[,FIELD= ...]

The LABELS statement specifies whether user labels are to be treated as data. For
a detailed discussion of this option, refer to "Processing User Labels as Data," in
"Appendix D: Processing User Labels."

Note: LABELS DATA=NO must be specified to make standard user label (SUL)
exits inactive when an input data set with nonstandard labels (NSL) is to be
processed.

If more than one valid LABELS statement is included, all but the last LABELS
statement are ignored.

The format of the LABELS statement is:

[label] LABELS [CONY = {PZ I XE} I
,DATA = {YES I NO I ALL I ONLY}]

Operands

CDINCR

CDSEQ

CNTRL

CONY

Aoolicable Control
Statements

PUNCH

PUNCH

PRINT

PUNCH

LABELS

Description of Operands/Parameters

CDINCR=n
specifies the increment to be used in generating sequence
numbers ..

Default: lOis the increment value.

CDSEQ=n
specifies the initial sequence number of a deck of punched
cards. This value must be contained in columns 73 through
80. Sequence numbering is initialized for each member of a
partitioned data set. If the value of n is zero, 00000000 is
assumed as a starting sequence number.

Default: Cards are not numbered.

CNTRL= {n I !}
specifies a control character for the output device that
indicates line spacing, as follows: 1 indicates single spacing;
2 indicates double spacing; and 3 indicates triple spacing.

specifies a control character for the output device that.is
used to select the stacker, as follows: 1 indicates the first
stacker and 2 indicates the second stacker.

CONV={PZ I XE}
specifies a two-byte code that indicates the type of
conversion to be performed on this field before it is printed
or punched. The values that can be coded are:

PZ
specifies that data (packed decimal) is to be converted
to unpacked decimal data. The converted portion of the
input record (length L) occupies 2L - 1 output
characters.

XE
specifies that data (alphameric) is to be converted to
hexadecimal data. The converted portion of the input
record (length L) occupies 2L output characters.

Default: The field is moved to the output area without
change.

IEBPTPCH Program 11-7

Operands

DATA

Applicable Control
Statements

LABELS

11-8 OS/VSl Utilities

Description of Operands/Parameters

DATA = {YES I NO I ALL I ONLY}
specifies whether user labels are to be treated as data. The
values that can be coded are:

YES
specifies that any user labels that are not rejected by a
user's label processing routine are to be treated as data.
Processing of labels as data stops in compliance with
standard return codes.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels are to be treated as data
regardless of any return code. A return code of 16
causes the utility to complete the processing of the
remainder of the group of user labels and to terminate
the job step.

ONLY
specifies that only user header labels are to be treated as
data. User header labels are processed as data regardless
of any return code. The job terminates upon return from
the OPEN routine.

tlHtidtrttltWrtltdtbdtHb Mdt' bH#d#t'btHittt *Wb#H±,tt± ritstti WhH:HewwtWt!t¥'HtitH"WWht¥ #t':rtH:bb'itbt+!ttr'HWtlt

Operands Statement

FIELD RECORD

Description of Operands/Parameters

FIELD = (Iength,[input-location],[conversion],[output-loc ation])
[,FIELD= ...]

specifies field-processing and editing information. These
values can be coded.

length
specifies the length (in bytes) of the input field to be
processed.

Note: The length must be equal to or less than the initial
input LRECL.

. input-location
specifies the starting byte of the input field to be
processed.

Default: 1

Note: The sum of the length and the input location must be
equal to or less than the input LRECL plus one.

conversion
specifies a two-byte code that indicates the type of
conversion to be performed on this field before it is
printed or punched. The values that can be coded are:

PZ
specifies that data (packed decimal) is to be
converted to unpacked decimal data. The converted
portion of the input record (length L) occupies 2L - 1
output characters when punching, and 2L output
characters when printing.

XE
specifies that data (alphameric) is to be converted to
hexadecimal data. The converted portion of the input
record (length L) occupies 2L output characters.

Default: The field is moved to the output area without
change.

output -location
specifies the starting location of this field in the output
records. Unspecified fields in the output records appear
as blanks in the printed or punched output. Data that
exceeds the SYSUT2 printer or punch size is not printed
or punched. The specified fields may not exceed the
logical output record length minus one. When specifying
one or more FIELDs, the sum of all lengths and all extra
characters needed for conversions must be equal to or
less than the output LRECL minus one.

Default: 1

IEBPTPCH Program 11-9

Operands

IDENT

INHDR

INITPG

INREC

INTLR

Applicable Control
Statement

RECORD

EXITS

PRINT

EXITS

EXITS

11-10 OS/VSl Utilities

Description of Operands/Parameters

IDENT = (length, 'name', input -location)
identifies the last record of the record group to which the
FIELD parameters apply. The values that can be coded
are:

length
specifies the length (in bytes) of the field that contains
the identifying name in the input records. The length
cannot exceed eight bytes.

'name'
specifies the exact literal that identifies the last record of
a record group. The literal contains apostrophes, each
must be written as two consecutive apostrophes.

input -location
specifies the starting location of the field that contains
the identifying name in the input records.

Note: The sum of the length and the input location must
be equal to or less than the input LRECL plus one.

Default: If IDENT is omitted and STOPAFT is not
included with the PRINT or PUNCH statement, record
processing halts after the last record in the data set. If
IDENT is omitted and STOP AFT is included with the
PRINT or PUNCH statement, record processing halts
when the STOP AFT count is satisfied or after the last
record of the data set is processed, whichever occurs first.

INHDR= routinename
specifies the symbolic name of a routine that processes
user input header labels.

INITPG=n
specifies the initial page number; the pages are numbered
sequentially thereafter. The INITPG parameter must not
exceed a value of 9999.

Default: 1

INREC=routinename
specifies the symbolic name of a routine that manipulates
each logical record (or physical block in the case of VS or
VBS records longer than 32K bytes) before it is processed.

INTLR= routinename
specifies the symbolic name of a routine that processes
user input trailer labels.

tMMtW::IHt!sHW '** t f • 't* ,tlrH'tlttrf:thrlMh::!±:tlWteHblrtW *H:fW'HltW LIt, He. HtHwtrtt

Operands

ITEM

MAXFLDS

MAXGPS

MAXLINE

MAXLITS

MAXNAME

4nnlir9hlp Control

Statements

TITLE

PRINT
PUNCH

PRINT
PUNCH

PRINT

PRINT
PUNCH

PRINT
PUNCH

.iIiIIItIt '*#wtltM

Description of Operands/Parameters

ITEM = ('title'[,output-location])[,ITEM •••]
specifies title or subtitle information. The values that can
be coded are:

'title'
specifies the title or subtitle literal (maximum length of
40 bytes), enclosed in apostrophes. If the literal contains
apostrophes, each apostrophe must be written as two
consecutive apostrophes.

output -location
specifies the starting position at which the literal for this
item is to be placed in the output record. The specified
title may not exceed the output logical record length
minus one.

Default: 1

MAXFLDS=n
specifies a number no less than the total number of FIELD
parameters appearing in subsequent RECORD statements.
The value must not exceed 32,767.

Default: If MAXFLDS is omitted when there is a FIELD
parameter present, the print or punch request is terminated.

MAXGPS=n
specifies a number no less than the total number of IDENT
parameters appearing in subsequent RECORD statements.
The value must not exceed 32,767.

Default: If MAXGPS is omitted when there is an IDENT
parameter present, the print or punch request is terminated.

MAXLINE=n
specifies the maximum number of lines to a printed page.
Spaces, titles, and subtitles are included in this number.
The value must not exceed 32,767.
Default: 60

MAXLITS=n
specifies a number no less than the total number of
characters contained in the IDENT literals of subsequent
RECORD statements. The value must not exceed 32,767.

Default: If MAXLITS is omitted when there is a literal
present, the print or punch request is terminated.

MAXNAME=n
specifies a number no less than the total number of
subsequent MEMBER statements. The value must not
exceed 32,767.

Default: If MAXNAME is omitted when there is a
MEMBER statement present, the print or punch request is
terminated.

IEBPTPCH Program 11-11

Operands

NAME

OUTREC

PREFORM

Applicable Control
Statements

MEMBER

EXITS

PRINT
PUNCH

11-12 OS/VSl Utilities

Description of Operands/Parameters

NAME= {membername I aliasname}
specifies a member to be printed or punched. These values
can be coded:

membername
specifies a member by its member name.

aliasname
specifies a member by its alias.

OUTREC=routinename
specifies the symbolic name of a routine that manipulates
each logical record (or physical block in the case of VS or
VBS records longer than 32K bytes) before it is printed or
punched.

PREFORM={A I M}
specifies that a control character is provided as the first
character of each record to be printed or punched. The
control characters are used to control the spacing, number
of lines per page, page ejection, and selecting a stacker. That is,
the output has been previously formatted, and the standard
specifications are superseded. If an error occurs, the
print/punch operation is terminated. If PREFORM is coded,
any additional PRINT or PUNCH operands and all other
control statements, except for syntax checking, LABELS
statements and TYPORG operands, are ignored. PREFORM
must not be used for printing or punching data sets with VS or
VBS records longer than 32K bytes. These values can be
coded:

A

M

specifies that an ASA control character is provided as
the first character of ~ach record to be printed or
punched. If the input record length exceeds the output
record length, the utility uses the ASA character for
printing the first line, with a single space character on all
subsequent lines of the record (for PRINT), and
duplicates the ASA character on each output card of the
record (for PUNCH).

specifies that a machine-code control character is
provided as the first character of each record to be
printed or punched. If the input record length exceeds
the output record length, the utility prints allUnes of the
record with a print-skip-one-line character until the last
line of the record, which will contain the actual
character provided as input (for PRINT), and duplicates
the machine control character on each output card of
the record (for PUNCH).

Uperands

SKIP

STOPAFT

STRTAFT

Applicable Control
~tatements

PRINT
PUNCH

PRINT
PUNCH

PRINT
PUNCH

uescription of Uperands/ t"arameters

SKIP=n
specifies that every nth record (or physical block in the
case of VS or VBS records longer than 32K bytes) is to be
printed or punched.

Default: Successive logical records are printed or punched.

STOPAFf=n
specifies, for sequential data sets, the number of logical
records (or physical blocks in the case of VS or VBS
records longer than 32K bytes) to be printed or punched.
For partitioned data sets, this specifies the number of
logical records (or physical blocks in the case of VS or VBS
records longer than 32K bytes) to be printed or punched in
each member to be processed. The n value must not
exceed 32,767. If STOPAFT is specified and RECORD
statements are present, the operation is terminated when
the STOP AFT count is satisfied or at the end of the first
record group, whichever occurs first.

STRTAFf=n
specifies, for sequential data sets, the number of logical
records (physical blocks in the case of VS or VBS type
records longer than 32K bytes) to be skipped before
printing or punching begins. For partitioned data sets,
STR TAFT =n specifies the number of logical records to be
skipped in each member before printing or punching
begins. The n value must not exceed 32,767. If STRTAFT
is specified and RECORD statements are present, the first
RECORD statement of a member describes the format of
the first logical record to be printed or punched.

IEBPTPCH Program 11-13

Operands

TOTCONV

TYPORG

Applicable Control
Statements

PRINT
PUNCH

PRINT
PUNCH

11-14 OS/VSl Utilities

Description of Operands/Parameters

TOTCONV={XE I PZ}
specifies the representation of data to be printed or
punched. TOTCONV can be overridden by any user
specifications (RECORD statements) that pertain to the
same data. These values can be coded: .

XE
specifies that data is to be punched in
2-character-per-byte hexadecimal representation (for
example, C3 40 F4 F6). If XE is not specified, data is
punched in I-character per byte alphameric
representation. The above example would appear as
'C46'.

PZ
specifies that data (packed decimal mode) is to be
converted to unpacked decimal mode. If TOTCONV is
omitted, data is not converted. IEBPTPCH does not
check for packed decimal mode. The output is
unpredictable when the input is other than packed
decimal.

Default: If TOTCONV is omitted, data is not converted.

TYPORG={PS I PO}
specifies the organization of the input data set. These
values can be coded:

PS
specifies that the input data set is organized sequentially.

PO
specifies that the input data set is partitioned.

Restrictions

• IDe Il I IlrKU"I 1 vv statemenL IS n::lJ.uueu lUI ea\,;u use Ul .IDOC .IC'-'Cl. • .Iue

RECFM is always FBA, the LRECL is always 121. Output can be blocked by
specifying a block size that is a multiple of 121 on the SYSPRINT DD
statement. The default block size is 121.

• The SYSUT1 DD statement is required for each use of IEBPTPCH. The
RECFM (except for undefined records), BLKSIZE, and LRECL (except for
undefined and fixed unblocked records) must be present on the DD statement,
in the DSCB, or on the tape label.

• The SYSUT2 DD statement is required every time IEBPTPCH is used. The
RECFM is always FBA or FBM. The LRECL parameter, or, if no logical record
length is specified, the BLKSIZE parameter, specifies the number of characters
to be written per printed line or per punched card (this count includes a control
character). The number of characters specified must be in the range of 2 through
145. The default values for edited output lines are 121 characters per printed
line and 81 characters per punched card. The SYSUT2 data set can be blocked
by specifying both the LRECL and the BLKSIZE parameters, in which case,
block size must be a multiple of logical record length.

• The SYSIN DD statement is required for each use of IEBPTPCH. The RECFM
is always FB, the LRECL is always 80. Any blocking factor that is a multiple of
80 can be specified for the BLKSIZE. The default block size is 80.

• A partitioned directory to be printed or punched must be defined as a sequential
data set (TYPORG=PS). You must specify RECFM=U, BLKSIZE=256, and
LRECL=256 on the SYSUT1 DD statement.

IEBPTPCH Examples
The following examples illustrate some of the uses of IEBPTPCH. Figure 11-3 can
be used as a quick reference guide to IEBPTPCH examples. The numbers in the
"Example" column point to the examples that follow:

Data Set
Operation Organization Devices Comments Example

PRINT Sequential 9-track Tape and Standard format. Conversion to
System Printer hexadecimal.

PUNCH Sequential 7-track Tape and Standard format. Conversion to
Card Reader hexadecimal. 2

PRINT Partitioned Disk and Standard format. Conversion to
System Printer hexadecimal. Ten records from

each member are to be printed. 3

PRINT Partitioned Disk and Standard format. Conversion to
System Printer hexadecimal. Two members are

to be printed. 4

PRINT Sequential 9-track Tape and User-specified format. Input
System Printer data set is the second data set

on the volume. 5

Figure 11-3 (Part 1 of 2) IEBPTPCH Example Directory

IEBPTPCH Program 11-15

lEBPTPCH Example 1

11-16 OS/VSl Utilities

Data Set
Operation Organization Devices Comments Example

PUNCH Sequential Disk and User-specified format. Sequence
Card Reader numbers are to be assigned and
Punch punched. 6

PRINT Sequential, Disk and Standard format. Conversion to
Partitioned System Printer hexadecimal. 7

PUNCH Sequential Card Reader and Standard format. Control data
Card Read set is a member in a cataloged
Punch partitioned data set. 8

PRINT Sequential Disk and User-specified format. User
System Printer routines are provided.

Processing ends after the third record
group is printed or STOPAFT
is satisfied. 9

PRINT Sequential 9-Track Tape and SYSOUT format. SYSOUT data set
System Printer is on a tape volume. 10

Figure 11-3 (Part 2 of 2),IEBPTPCH Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

In this example, a sequential data set is to be printed according to standard
specifications. The input data set resides on a tape volume. The printed output is to
be converted to hexadecimal.

IIPRINT JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UN I T=tape , LABEL=(, NL), VOLUME=SER=OO 1234,
II DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=2000)
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT TOTCONV=XE
TITLE ITEM=('PRINT SEQ DATA SET WITH CONV TO HEX' ,10)

1*
The control statements are discussed below.

• SYSUTI DD defines the input data set. The data set contains undefined records;
no record is larger than 2,000 bytes.

• SYSUT2 DD defines the output data set. The data set is written to the system
output device (printer assumed). Each printed line contains groups (8 characters
each) of hexadecimal information. Each record begins a new line of printed
output.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT and TITLE statements.

• PRINT initiates the print operation and specifies conversion from alphameric to
hexadecimal representation.

• TITLE specifies a title to be placed beginning in column 10 of the printed
output. The title is not converted to hexadecimal.

lEBPTPCH Example 2

lEBPTPCH Example 3

.111 LUll) tiA(11111'1ti, (1 I)ti\{Utilll.1CU "''''''' ;:'01;;" I;:' '"V VII;.- }'Ul.l"-'l1"-'U ",,,-,,,-,vJ.ul1J.5 ,"v O>II.UJ..lUUJ.U

specifications. The input data set resides on a tape volume. The punched output is
converted to hexadecimal.

IIPUNCHSET JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=INSET,UNIT=tape,VOLUME=SER=001234,
II LABEL=(,NL),DISP=(OLD,KEEP),DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSUT2 DD SYSOUT=B
IISYSIN DD *

PUNCH TOTCONV=XE
TITLE ITEM=('PUNCH SEQ DATA SET WITH CONV TO HEX' ,10)

1*
The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set contains 80-byte, fixed
blocked records.

• SYSUT2 DD defines the system output device (card punch is assumed). Each
record from the input data set is represented by two punched cards.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PUNCH and TITLE statements.

• PUNCH initiates the punch operation and specifies conversion from alphameric
to hexadecimal representation.

• TITLE specifies a title to be placed beginning in column 10. The title is not
converted to hexadecimal.

In this example, a partitioned data set (ten records from each member) is to be
printed according to standard specifications. The input data set resides on a 3330
volume. The printed output is converted to hexadecimal.

IIPRINTPDS JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=PDS, UN I T=disk , DISP=(OLD, KEEP),
II VOLUME=SER=111112
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT TOTCONV=XE,TYPORG=PO, STOPAFT=1 0
TITLE ITEM=('PRINT PDS - 10 RECS EACH MEM' ,20)

1*
The control statements are discussed below:

• SYSUTI DD defines the input data set.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Each record begins a new line of printed output. The size of the
record determines how many lines of printed output are required per record.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT and TITLE statements.

IEBPTPCH Program 11-17

IEBPTPCH Example 4

IEBPTPCH Example 5

11-18 OS/VSl Utilities

• PRINT initiates the print operation, specifies conversion from alphameric to
hexadecimal representation, indicates that the input data set is partitioned, and
specifies that ten records from each member are to be printed.

• TITLE specifies a title to be placed beginning in column 20 of the printed
output. The title is not converted to hexadecimal.

In this example, two partitioned members are to be printed according to standard
specifications. The input data set resides on a disk volume. The printed output is to
be converted to hexadecimal.

IIPRNTMEMS JOB
EXEC II

IISYSPRINT DD
IISYSUTl DD
II
IISYSUT2
IISYSIN

DD
DD

PRINT
TITLE

MEMBER
MEMBER

1*

09#660,SMITH
PGM=IEBPTPCH
SYSOUT=A
DSNAME=PDS,DISP=(OLD,KEEP),VOLUME=SER=111112,
UN I T=disk
SYSOUT=A

*
TYPORG=PO,TOTCONV=XE,MAXNAME=2
ITEM=('PRINT TWO MEMBS WITH CONV TO HEX',10)
NAME=MEMBER1
NAME=MEMBER2

The control statements are discussed below:

• SYSUTI DD defines the input data set.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Each record begins a new line of printed output.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains PRINT, TITLE, and MEMBER statements.

• PRINT initiates the print operation, indicates that the input data set is
partitioned, specifies conversion from alphameric to hexadecimal representation,
and indicates that two MEMBER statements appear in the control data set.

• TITLE specifies a title to be placed beginning in column 10 of the printed
output. The title is not converted to hexadecimal.

• MEMBER specifies the member names of the members to be printed.

In this example, a sequential data set is to be printed according to user
specifications. The input data set is the second data set on a tape volume.

IIPTNONSTD JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SEQSET,UNIT=tape,LABEL=(2,SUL),
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

1*

PRINT
EXITS

RECORD
LABELS

MAXFLDS=1
INHDR=HDRIN,INTLR=TRLIN
FIELD=(80)
DATA=YES

IEBPTPCH Example 6

The control statements are discussed below:

• ~ I ~u 1 1 uu aennes lne mpUl aala set:.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains 80 contiguous characters (one record) of
information.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, RECORD, EXITS, and LABELS
statements.

• PRINT initiates the print operation and indicates that one FIELD parameter is
included in a subsequent RECORD statement.

RECORD indicates that each input record is to be processed in its entirety (80
bytes). Each input record is printed in columns 1 through 80 on the printer.

• LABELS specifies that user header and trailer labels are to be printed according
to the return code issued by the user exits.

• EXITS indicates that exits will be taken to user header-label and trailer-label
processing routines when these labels are encountered on the SYSUT 1 data set.

In this example, a sequential data set is to be punched according to user
specifications. The input data set resides on a disk volume.

IIPHSEQNO JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SEQSET,UNIT=d~k,LABEL=(,SUL),
II VOLUME=SER=111112,DISP=(OLD,KEEP)
IISYSUT2 DD SYSOUT=B
IISYSIN DD *

PUNCH MAXFLDS=1,CDSEQ=OOOOOOOO,CDINCR=20
RECORD FIELD=(72)
LABELS DATA=YES

1*
The control statements are discussed below:

• SYSUTI DD defines the input data set.

• SYSUT2 DD defines the system output class (assumed for punched card
output). Each record from the input data set is represented by one punched card.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PUNCH, RECORD, and LABELS statements.

• PUNCH initiates the punch operation, indicates that one FIELD parameter is
included in a subsequent RECORD statement, and assigns a sequence number
for the first punched card (00000000) and an increment value for successive
sequence numbers (20). Sequence numbers are placed in columns 73 through 80
of the output records.

• RECORD indicates that bytes 1 through 72 of the input records are to be
punched. Bytes 73 through 80 of the input records are replaced by the new
sequence numbers in the output card deck.

• LABELS specifies that user header labels and user trailer labels are to be
punched.

IEBPTPCH Program 11-19

IEBPTPCH Example 7

11-20 OS/VSl Utilities

Labels cannot be edited; they are always moved to the first 80 bytes of the output
buffer. In this example, no sequence numbers are present on the cards containing
user header and user trailer records.

In this example, the directory of a partitioned data set is to be printed. The input
data set resides on a disk volume. The printed output is to be converted to
hexadecimal.

IIPRINTDIR JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=PDS,UNIT=d~k,vOLUME=SER=111112,
II DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=256)
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT TYPORG=PS,TOTCONV=XE
TITLE ITEM=('PRINT PARTITIONED DIRECTORY OF PDS' ,10)
TITLE ITEM=('FIRST TWO BYTES SHOW NUM OF USED BYTES' ,10)

LABELS DATA=NO
1*
The control statements are discussed below:

• SYSUTI DD defines the input data set (the partitioned directory).

• SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Six lines of print are required for each record. Each record begins a
new line of printed output.

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, TITLE, and LABELS statements.

• PRINT initiates the print operation, indicates that the partitioned directory is
organized sequentially, and specifies conversion from alphameric to hexadecimal
representation.

• The first TITLE statement specifies a title, which is not converted to
hexadecimal.

• The second TITLE statement specifies a subtitle, which is not converted to
hexadecimal.

• LABELS specifies that no user labels are to be printed.

Note: Not all of the bytes in a directory block need contain data pertaining to the
partitioned data set; unused bytes are sometimes used by the operating system as
temporary work areas. The first four characters of printed output indicate how
many bytes of the 256-byte block pertain to the partitioned data set. Any unused
bytes occur in the latter portion of the directory block; they are not interspersed
with the used bytes.

IEBPTPCH Example 8

IEBPTPCH Example 9

In this example, a card deck containing valid punch card code or BCD is to be
dlln1ic~te(L The innnt c~rd deck re~ide~ in the innnt ~tre::4m

IIPUNCH
1/
IISYSPRINT
IISYSIN
IISYSUT2
IISYSUT1

JOB 09#660,SMITH
EXEC PGM=IEBPTPCH
DD SYSOUT=A
DD DSNAME=PDSLIB(PNCHSTMT),DISP=(OLD,KEEP)
DD SYSOUT=B
DD DATA

(input card data set including / / cards)
1*
The control statements are discussed below:

• SYSIN DD defines the control data set. The control data set contains a PUNCH
statement and is defined as a member of the partitioned data set PDSLIB. (The
data set is cataloged.) The RECFM must be FB and the LRECL must be 80 .

• SYSUT2 DD defines the system output class (assumed punch card output).

• SYSUTI DD defines the input card data set, which follows in the input stream.

In this example, three record groups are to be printed. A user routine is provided to
manipulate output records before they are printed.

IIPRINT JOB 09#660,SMITH
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=SEQDS,UNIT=d~k,DISP=(OLD,KEEP),
II LABEL=(,SUL),VOLUME=SER=111112
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT MAXFLDS=9,MAXGPS=9,MAXLITS=23,STOPAFT=32767
TITLE ITEM=('TIMECONV-DEPT D06),ITEM=(JAN10-17' ,80)

EXITS OUTREC=NEWTIME,INHDR=HDRS,INTLR=TLRS

72

RECORD IDENT=(6,'498414',l), C

1*

FIELD=(8,1,,10),FIELD=(30,9,XE,20)
RECORD IDENT=(2,'**' ,39),

FIELD=(8"XE,2),FIELD=(30,9,,20)
RECORD IDENT=(6, '498414',1), C

FIELD=(8,1,,10),FIELD=(30,9,XE,20)
LABELS CONV=XE,DATA=ALL

The control statements are discussed below:

• SYSUTI DD defines the input data set. The data set resides on a disk volume .

• SYSUT2 DD defines the output data set on the system output device (printer
assumed).

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, TITLE, EXITS, and RECORD statements.

• The PRINT statement: (1) initializes the print operation, (2) indicates that not
more than nine FIELD parameters are included in subsequent RECORD
statements, (3) indicates that not more than nine IDENT parameters are
included in a subsequent RECORD statement, (4) indicates that not more than
23 literal characters are included in the subsequent IDENT parameter, and (5)
indicates that processing is to be terminated after 32,767 records are processed

IEBPTPCH Program 11-21

. IEBPTPCH Example 10

11-22 OS/VS1 Utilities

or after the third record group is processed, whichever comes first. Because
MAXLINE is omitted, 60 lines are printed on each page.

• TITLE specifies a title.

• EXITS specifies the name of a user routine (NEWTIME), which is used to
manipulate output records before they are printed.

• The first RECORD statement defines the first record group to be processed and
indicates where information from the input records is to be placed in the output
records. Bytes 1 through 8 of the input records appear in columns 10 through 1 7
of the printed output, and bytes 9 through 38 are printed in hexadecimal
representation and placed in columns 20 through 79.

• The second RECORD statement defines the second group to be processed. The
parameter in the IDENT operand specifies that an input record containing the
two characters ** in positions 39 and 40 is to be the last record edited according
to the FIELD operand in this RECORD statement. The FIELD operand
specifies that bytes 7 through 8 of the input records are to be printed in
hexadecimal representation and placed in columns 2 through 17 of the printed
output, and bytes 9 through 38 are to appear in columns 20 through 49.

• The third and last RECORD statement is equal to the first RECORD statement.
An input record that meets the parameter in the IDENT operand ends
processing, unless the STOP AFT parameter in the PRINT statement has not
already done so.

• LABELS specifies that all user header or trailer labels are to be printed
regardless of any return code, except 16, issued by the user's exit routine. It also
indicates that the labels are to be converted from alphameric to hexadecimal
representation.

In this example, the input is a SYSOUT (sequential) data set, which was previously
written as the second data set of a standard label type. It is to be printed in
SYSOUT format.

IIPTSYSOUT

II
IISYSPRINT
IISYSUT1
II
IISYSUT2
IISYSIN

PRINT
1* -

JOB 09#660,SMITH
EXEC PGM=IEBPTPCH
DD SYSOUT=A
DD UNIT= tape, LABEL= (2 , SL) ,DSNAME=LI STING,

DISP=(OLD,KEEP) ,VOL=SER=001234
DD SYSOUT=A
DD *
PREFORM=A

The control statements are discussed below:

• SYSUTI DD defines the input data set. It is the second data set of a standard
label type, which has been assigned the name LISTING.

• SYSUT2 DD defines the output data set on the system output device (printer
assumed).

• SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT statement.

• The PRINT statement initiates the print operation and indicates that an ASA
control character is provided as the first character of each record to be printed.

IEBPTRCP Program

IEBPTRCP Output

Ine lbtlt' I.KCt' program IS OlSlTlDUleO W Clean {ne pnnt tram 01 ln~ IDIVI l'+U')· VI

3203 Model-4 Printers. This program causes a ripple pattern of all printer fonts to
be produced.

A special cleaning paper must be loaded prior to executing the program. For details
on loading the cleaning paper, see the IBM 3203 Printer Component Description
and Operator's Guide.

IEBPTRCP produces the following output:

• A 40-1ine set of IBM 1403 or 3203-4 Printer fonts, printed in a ripple pattern.

• Each output line is printed six times without intervening line spacing.

IEBPTRCP return codes:

• 00, indicates successful completion.

• 12, indicates the program terminated abnormally for one of the following
reasons:

- DCB did not open successfully (no other message).

- Invalid device specified on UNIT parameter (IEB455I).

- I/O error reading UCS image (IEB456I).

- I/O error loading USC image (IEB457I).

- I/O error restoring UCS image (IEB458I).

An associated error message, written to the operator's console, will indicate the
reason for the abnormal termination.

IEBPTRCP Job Control Statements

IEBPTRCP Restrictions

Figure 11-4 shows the job control statements necessary for using IEBPTRCP.

Statement

JOB

EXEC

IEFRDER

Use

Initiates the job step.

Specifies the program name (PGM=IEBPTRCP) or, if the job control
statements are in a procedure library, the procedure name.

Defines the output device (UNIT=cuu; where cuu represents the
channel and unit address of the IBM 1403 or 3203-4 Printer).

Figure 11-4. IEBPTRCP Job Control Statements

The IEFRDER DD statement is required for each use of IEBPTRCP. The only
required parameter is UNIT =cuu.

* Requires ues feature to be installed.

IEBPTRCP Program 11-23

IEBPTRCP Examples

IEBPTRCP Example 1

IEBPTRCP Example 2

11-24 OS/VSl Utilities

In this example, IEBPTRCP is executed via job control statements (JCL).

IICLEAN JOB 01660,SMITH
II EXEC PGM=IEBPTRCP
IIIEFRDER DD UNIT=016

The control statements are discussed below:

• IEFRDER defines the address of the IBM 1403 or 3203-4 Printer; that is,
channel 0 and unit 16.

In this example, IEBPTRCP is executed via a cataloged procedure that may be
started from an OS/VS 1 system operator's console.

IICLEAN1
IIIEFPROC
I IIEFl~DER

PROC
EXEC
DD

PGM=IEBPTRCP
UNIT=016

The control statements are discussed below:

• PROC identifies the following job control statements as a procedure, with the
name of CLEANI.

• EXEC identifies the program to be executed. The step name must be IEFPROC
to allow the procedure to be executed from a system operator's console.

• IEFRDER DD defines the address of the IBM 1403 or 3203-4 Printer.

The OS/VSl system operator may start the IEBPTRCP program from a system
console and override the unit address specified in the IEFRDER DD statement; for
example:

START CLEAN1.P1,UNIT=017

This command would start IEBPTR CP in partition PI, using the IBM 1403 or
3203-4 Printer at device address 017.

t e !ttM Mie 1& ''W' 'NtH IthLnt&We

IEBTCRIN PROGRAM

MTDI Editing Criteria

IEBTCRIN is a data set utility used to read input from the IBM 2495 Tape
Cartridge Reader (TCR), edit the data as specified by the user, and produce a
sequentially organized output data set.

IEBTCRIN can be used to construct records from the stream of data bytes read
sequentially from the Tape Cartridge Reader. The user has the option of gaining
temporary control (via a user-supplied exit routine) to process each logical record.

The input to IEBTCRIN is in the form of cartridges written by either the IBM
Magnetic Tape SELECTRIC Typewriter (MTST) or the IBM 50 Magnetic Data
Inscriber (MTDI). An input data set (one or more cartridges) must consist of either
all MTST cartridges or all MTDI cartridges. (For more information concerning the
MTDI use and an explanation of terminology used in this chapter, refer to IBM 50
Magnetic Data Inscriber Component Description.)

When MTDI input is edited, IEBTCRIN maintains information about each record
as it is being edited. This information is summarized in the Error Description Word
(EDW) which is described later. When the EDW contains a value other than zero
in either the level status (byte 0) or the type status (byte 1), the record is
considered an error record by the program and the EDW is appended to the start of
the record to aid the user in analyzing the error.

The cartridges created on the IBM 50 Magnetic Data Inscriber contain a
continuous stream of data bytes (that is, there are no interblock gaps). Therefore,
when editing is specified, IEBTCRIN extracts records one at a time from the data
stream. To accomplish this, IEBTCRIN scans for control codes written by MTDI.
IEBTCRIN uses start-of-record (SOR) and end-of-record (EOR) locations to
extract MTDI records from the input stream.

The (SOR) location is defined as:

• The location of the first character on a cartridge.

• The location of the first character after the previous record's (EOR) location.

• The location of an SOR code.

• The location of a group separator (GS) code.

The character in the SOR location is checked to determine if it is a valid
start-of-record character. A PI through P8, a cancel code, or a GS code are valid
start-of-record characters; all others are invalid.

The EOR location by priority sequence is:

1. The same location as the SOR location, if the SOR character was a valid OS
code.

2. The location of the first encountered record mark (RM) or verify okay (VOK)
code if that location is within the length of the maximum user-specified record
size.

3. The location of any code preceding either a valid SOR code or the end-of-media
(EOM) code, if that location is within the length of the maximum user-specified
record size.

IEBTCRIN Program 12-1

MTD I Editing Restrictions

12-2 OS/VS 1 Utilities

4. The location determined in 2 or 3, regardless of the maximum user-specified
record size if the SOR location· contains a cancel code.

5. If one of the previous EOR locations cannot be defined, an EOR condition will
be forced at the location where the record length equals the maximum
user-specified record size.

The character in the EOR location is checked to determine if it is a valid
end-of-record character. Valid EOR characters are the GS character (if the SOR
character was a GS code) and VOK or RM codes; all others are invalid. Each GS
code is considered a valid SOR code or EOR code and will be bypassed.

Following are the restrictions that apply when editing MTDI records:

• All canceled records are bypassed; they are not passed to any exit routines or
written on any data sets. The level status is set to o.

• All input records less than three bytes in length (SOR location, one data byte,
and EOR location) are treated as canceled records. The remaining portion of a
record that was longer than the user-specified maximum record size can result in
an input record of this size.

• Data duplication is accomplished by replacing the DUP (duplication) code with
the character from the corresponding location of the previous record.

• The record used for data duplication is the record returned from any user exits.

• GS codes will not affect the level status or duplication of following records.

• Data duplication does not occur for any of the following conditions:

1. The DUP code is encountered in the first record of a cartridge.

2. The DUP code is encountered in a record immediately following a canceled
record. A canceled record is one that contains a cancel code in the SOR
location or an input record of less than three bytes as described· above.

3. The DUP code is encountered in a position that would cause duplication of a
position beyond the last data byte of the previous record.

4. The DUP code is encountered in a position that would cause duplication of an
error-replace character.

In each case, the DUP code is replaced with the user specified error-replace
character, and a field error is indicated.

• Left-zero justification does not occur; the left-zero fill code (LZ) is replaced
with the user-specified error-replace character and a field error is indicated for
either of the following conditions:

1. The left-zero fill code (LZ) is encountered without first having encountered
its corresponding left-zero start code (LZS).

2. The user-specified maximum record size is exceeded before encountering the
valid end of a left-zero field. .

If MTDI is edited, an EDW which is four bytes long is appended to the front of
each error record describing the error condition. For further definition of the EDW,
see "Error Records" earlier in this chapter. If the SYSUT3 DD statement specified
variable length records, an RDW which is four bytes long is also appended to the
front of the record. For further description of the RDW, see OSjVSI Supervisor
Services and Macro Instructions ..

'th###Ubb b1:btLt'btlWWbrt*dibt'Lttttttt#f .*rl#dWb 'tt *eILLW*,rt'rtld Hd 't{lbd • trW.Wit !lirttWtt"' weNte

The user-supplied routines specified in ERROR and OUTREC can be used to

changed, subject to the following restrictions:

• A work area used to construct the records is allocated by the program equal in
size to the largest of (1) MAXLN, (2) LRECL on SYSUT2, or (3) LRECL on
SYSUT3.

• The record length must not be increased beyond this size. Overlaying of other
work areas may then occur, causing unpredictable results.

The new record length must be placed in the location pointed to by the second
parameter word as received at entry to the routine. This length must include the
EDW and RDW (if applicable). It is not necessary to modify the RDW because it is
re-created if the record is to be written by IEBTCRIN. However, if the user does
his own output from this routine, he must ensure that the RDW is correct for the
record.

If IEBTCRIN is to write the record, the length of the output record depends on the
RECFM specification, as follows:

• Fixed and variable records may have a maximum length equal to LRECL.
Records larger than this are truncated.

• Undefined records may have a maximum length equal to BLKSIZE. Records
larger than this are truncated.

These record lengths include the EDW and RDW, where applicable.

The record length returned from the error exit is used to establish the location of
the last data byte in the record. The location is used to control data duplication in
the following record. However, it is not used for checking the record length of
subsequent records.

Modifications to the EDW, record, or record length may affect the editing of
su\?sequent records. If the input is not edited, the user can examine and modify any
byte in the record. The record length can also be changed, subject to the
MTDI-editing restrictions.

If STDUC, STDLC, or name is specified, certain of the MTST codes are processed
in a special way before translation. Feed codes (FD), switch codes (SW), and
autosearch codes (AS), both uppercase and lowercase, are deleted from the data.
Each 61-character reference code is reduced to a single search code (SRC).

A st<?p code, whether uppercase (ST) or lowercase (st), indicates that all data on a
cartridge has been read. Therefore, when an MTST cartridge to be processed by
IEBTCRIN is created, the user must not use a stop code for any purpose other than
signaling end-of -data on the cartridge. Stop codes within meaningful data cause any
subsequent data on the cartridge to be lost because the cartridge is rewound and
unloaded when a stop code is encountered.

If EDITD or EDITR is specified, the edit consists of the following functions:

• Records are extracted one at a time from the input buffers by scanning for the
record-delimiting codes (SOR and EOR).

• DUP codes are replaced with the character from the corresponding location in
the preceding record.

• Left-zero fields are right aligned and leading zeros are inserted where necessary.

• Left-zero start codes are deleted from the records.

IEBTCRIN Program 12-3

12-4 OS/VSl Utilities

• Group separator codes and records that start with cancel record codes are
bypassed.

For MTDI input with editing specified, MAXLN is used to specify in bytes the
length of the longest valid record after editing. If the program encounters a record
in which a valid end-of-record cannot be determined within this length, an
end-of-record condition is forced and the record is considered an error record.

The values that can be specified for MINLN and MAXLN are:

• For MTST processing or MTDI processing without editing, MINLN is not
specified. MAXLN should equal the number of bytes to be passed as a record.

• For MTDI processing when EDIT=EDITD, MINLN should equal the number of
bytes in the shortest valid record after editing, excluding SOR and EOR codes.
MAXLN should equal the number of bytes in the longest valid record after
editing, excluding SOR and EOR codes.

• For MTDI processing when EDIT=EDITR, MINLN should equal the number of
bytes in the shortest valid record after editing, including SOR and EOR codes.
MAXLN should equal the number of bytes in the longest valid record after
editing, including SOR and EOR codes.

Note: The values for MINLN and MAXLN should not include the four bytes long
record descriptor word added to a variable length record.

Figure 12-1 shows the hexadecimal characters representing special purpose codes
that must not be used as replacement bytes.

MTDICodes

X'OO' (LZ) X'IE' (VOK) X'74' (P4)
X'Il' (DUP) X'3C' (RM) X'7S' (PS)
X'12' (LZS) X'71' (PI) X'76' (P6)
X'18' (CAN) X'72' (P2) X'77' (P7)
X'ID' (GS) X'73' (P3) X'78' (P8)

MTSTCodes

X'10' (cr) X'14' (CR) X'SI' (as)
X'II' (sw) X'IS' (SW) X'SS' (AS)
X'13' (fd) X'17' (FD) X'80' (src)

X'81 through X'FF'

Figure 12-1. Special Purpose Codes

The special purpose codes listed in Figure 12-1 are used by IEBTCRIN when
constructing records. Use of these codes causes a message to be issued and the
utility to be terminated.

Figure 12-2 shows the values that can be chosen to replace error bytes for MTDI
input.

Figure 12-3 shows the values that can be chosen to replace error bytes for MTST
input.

Figure 12-4 shows MTST codes after they have been translated by IEBTCRIN
when TRANS=STDLC is specified.

t# W htWt tot. t'dhddrt#*tH*** Httt#t#ttt'khft#¢tI ti MdMW Mel MWd'tWH:tIiJ'tt'be**'#W' WeNt MMT'':!W'#WIt±HtIb:#H±HHtH'!:h'NWhtHWIH'LtW'wWMNtltM''tJ±tti

....
"51

r-. is
<0' ~
It) "(3

~'
Q)

" 00 01 II> IU
C)(

0 Q)

";; ::r
"iii " 00 01 10 11 00 01 10
0 c

Q. 0 u
iii ~ 0 1 2 3 4 5

0000 0 LZ SP &

0001 1 DUP

0010 2 LZS

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8 CAN

1001 9 ED

1010 A d !

1011 B $

1100 C RM < *

1101 0 GS ()

1110 E ~OK + ;

1111 F I --,

This figure represents the character set and control
codes as read from an MTDI created cartridge"

Figure 12-2. MTDI Codes from TCR

6

I

%

>

?

10

11 00 01 10 t 1 00

7 8 9 A B C

P1 A"

P2 B

P3 C

P4 0
-

P5 E

P6 F

P7 G

P8 H

I

:

@

/

=

..

11

01 10

0 E

a 082

J

K S

L T

M U

N V

0 W

P X

Q y

R Z

11

F

0

1

2

3

4

5

6

7

8

9

Bit Positions 0,1

Bit Positions 2, 3

First Hexadecimai iJigit

Special Control:

LZ = Left zero fill
DUP = Duplicate
LZS = Left zero start
ED = End data
GS = Group Separator

Start of Record (SOR):

Pl = Program level 1
P2 = Program lev~'1 2
P3 = Program level 3
P4 = Program level 4
P5 = Program level 5
P6 = Program level 6
P7 = Program level 7
P8 = Program level 8
CAN = Cancel

End of Record (EOR):

RM = Record mark
VOK = Verify OK

IEBTCRIN Program 12-5

...
"5>

l"'- e
CD' ~
It) "u
~'

(I)

"0 00 en CO
C)(

0 (I)

";; J:
"en "0 00 01 10 11
0 c
0- 0 ... (J

as ~ 0 1 2 3

0000 0 z cr 5 0

0001 1 2 sw 6 9

0010 2 t e h

0011 3 n fd k b

0100 4 Z CR %)

0101 5 @ SW Ii (

0110 6 T E H

0111 7 N FD K B

1000 8 1 7 4

1001 9 3 st 8

1010 A x d I

1011 B u c

1100 C ± & $

1101 D # ST *

1110 E X D L

1111 F U C

cr and CR = Carrier return code
sw and SW = Switch code
fd and FD = Feed code
st and ST = stop code
tab and TAB = Tab code
as and AS = Automatic search
sp and SP = Space
bsp and BSP = Backspace
stx and STX = Stop transfer
src and SRC = Search

01

00 01 10

4 5 6

I tab
,

as i

j sp p

= q

0
TAB

,.

• AS I

J SP P

+ Q

m bsp r

v a

9 :

f stx

M BSP R

V A

G :

F STX

This figure represents the character set and control
codes as read from an MTST created cartridge.

Figure 12-3. MTST Codes from TCR

12-6 OS/VSl Utilities

10 11 Bit Positions 0, 1

11 00 01 10 11 00 01 10 11 Bit Positions 2. 3

7 8 9 A B C D E F First Hexadecimal Digit

s src

w

y

S SRC

W

Y

a

/

0

?

!!biNi ",$ttft" Ii frt#,nltt" M t*t'd#I1L# ht'WMi *HW tMttfWMMHt

U') '(j
V·

CI)

" 00 01 en ca
c: x
0 CI)

't= ::I:
'c;; " 00 01
0 c: 10 11 00 01 10 11
Q. 0 ... (J

en ~ 0 1 2 3 4 5 6 7

0000 0 SP &

0001 1 /

0010 2 STX

0011 3

0100 4

0101 5 TAB

0110 6 asp

0111 7

1000 8

1001 9

1010 A , ! :

1011 a $ #

1100 C * % @

1101 0 CR () -

1110 E SRC + ; =

1111 F ? ..

10

00 01 10 11 00

8 9 A B C

j 0

A a

b k s B

c I t C

d m u 0

e n v E

f a w F

g p x G

h q Y H

i r z I

±

11

01 10

0 E

J

K S

L T

M U

N V

0 W

P X

Q y

R Z

11

F

0

1

2

3

4

5

6

7

8

9

Bit Positions 0, 1

Bit Positions 2, 3

First Hexadecim'!!! Digit

TAB = Tab code
CR = Carrier return
BSP = Backspace
SRC = Search
STX = Stop transfer
SP = Space

Note: The STDUC option permits translating
both lowercase and uppercase alphabetic
characters to uppercase,

Figure 12-4. MTST Codes after Translation by IEBTCRIN with TRANS=STDCL

End-oJ-Cartridge

Unique codes, written by the MTST or the MTDI device, signal the program when
all data on a cartridge has been read. For MTST cartridges, this end-of-cartridge
code is a lowercase stop code (st) or an uppercase stop code (ST). For MTDI
cartridges, the end-of-cartridge code is the end-data code (ED).

IEBTCRIN terminates input from a cartridge upon encountering the
end-of -cartridge code and rewinds the cartridge. IEBTCRIN continues to process
cartridges until end-of-file is encountered.

IEBTCRIN Program 12-7

Error Records

End-of-file is signaled following a rewind operation when there are no more
cartridges in the feed hopper, the END OF FILE button is pressed, and
end-of-cartridge for the last cartridge is recognized. An end-of-file indication will
be passed to the OUTREC and/or ERROR exits if specified by setting register 1
equal to O.

If a record is found to be in error, the record is passed to the user error exit routine
if one is specified. If an error exit is not specified, the action to be taken is
determined by the option specified in a utility control statement.

When either MTST input or MTDI input without editing is specified, the only error
that can be recognized is a record containing one or more permanent data checks.
The data check bytes are replaced as described in a utility control statement. The
record is considered an error record, but because a data check is the only error that
can occur, no EDW is appended to the error record.

Error Description Word (EDW)

12-8 OS/VSl Utilities

The Error Description Word (EDW) consists of four bytes that are appended to the
start of an error record.

The error description word is in EBCDIC format; for example, a 2 is represented as
X'F2' and a C is represented as X'C3'. The information provided in each of the
four bytes of the EDW is discussed below.

Byte

Level Status
(Byte 0)

Indicator meaning

Identifies error records that result from interrecord
dependency that cannot be identified in the type status
byte.

Value Meaning

o Indicates any error record that will not cause
questionable data in the following records. A type
status other than zero accompanies this byte.

1 Indicates any error record that may cause
questionable data in the following records, and
for which the level status of the previous record
was O.

2 Indicates any error that contains questionable
data because the error level of the preceding
record was 1 or 2, or for any error record that
may cause questionable data in the following
records and for which the level status of the
previous record was 1 or 2.

A level status of 1 or 2 is presented with error records
resulting from the following:

• The start-of-record (SOR) location has a character
defined as an error.

• The record contains two or more data check bytes side by
side. These may have been an SOR and EOR
(end-of -record).

Byte

Type Status
(Byte 1)

• The record is longer than the user-specified maximum
lengtn recora.

• The length of the record is not equal to the length of the
first valid record of the same program level encountered
on this cartridge. For this purpose, a valid record is one
that contains no errors as identified in the type status,
with the possible exception of being shorter than the
user-specified minimum length.

• The record has a data-duplication dependency on a
previous record with one of the above errors.

The level status is set to 0 when IEBTCRIN encounters: (1)
a record without one of the previous errors, (2) a canceled
record, or (3) the first record of a cartridge.

Indicator Meaning

Identifies records in error because of SOR, EOR, length,
field, or data check error conditions.

Value Meaning

o Indicates any record that contains none of the
following identifiable errors, but contains
questionable data due to a level status other than
zero. (See Level Status above.)

1 Indicates any record that has: (1) an SOR
character of other than PI through P8 or a as
code, (2) an EOR character of other than a VOK
code for records when the user specified a record
verification check, or (3) an EOR character
of other record-verification check.

2 Indicates any record that has an incorrect length
because it is: (1) longer than the user-specified
maximum, (2) shorter than the user-specified
minimum, or (3) not encountered on this
cartridge.

4 Indicates any record that has a field error. A field
error occurs when duplication or left-zero
justification functions did not occur in a field
because of an error condition. See "MTDI
Editing Criteria" below.

8 Indicates any record that has a permanent data
check error.

The type-status indicator can also have values of 3, 5, 6, 7, 9, A, B, C, D, E, and F.
These values indicate a combination of SOR, EOR, length, field, and data check
errors. For example, a value of A indicates a record with a data check error (8), as
well as, an incorrect length (2).

Start-of ":Record
(Byte 2)

Indicates the start-of -record (SOR) character
associated with this record. The SOR character
can be 1 through 8, where 1 indicates PI, 2
indicates P2, etc., or E, which indicates the SOR
character is in error.

IEBTCRIN Program 12-9

Sample Error Records

12-10 OSjVSl Utilities

End-of -Record
(Byte 3)

Indicates the end-of -record (EOR) character
associates with this record. The EOR character
can be: U (unverified record); V (verified
record); or E (EOR character is in error).

Figure 12-5 shows a stream of data bytes read sequentially from the tape cartridge
reader.

p V
111372 RECORD NUMBER lAO

1 K

P DDDDDDDDDDDDDDD DV
357987UUUUUUUUUUUUUUU3UO

1 PPPPPPPPPPPPPPP PK

P R
358436 RECORD NUMBER 5

1 M

DDDDDDDDDDDDDDD DV
*111378uuuuuuuuUUUUUUU2UO
* PPPPPPPPPPPPPPP PK

p * V
358977 REC*RD NUMBER 4AO

1 * K

P DDDDDDDDDDDDDDD DV
358436UUUUUUUUUUUUUUU6UO

1 PPPPPPPPPPPPPPP PK

P V
998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREHOUSEO

3 K

P * VE
367*82 RECORD NUMBER 8AO

1 KD

Figure 12-5. Tape Cartridge Reader Data Stream

Figure 12-6 shows the records constructed by IEBTCRIN from the input records
shown in Figure 12-5. These records show some of the errors that can occur during
processing and their effect on the Error Description Word. The following
parameters were specified for these records:

TCRGEN TYPE=MTDI,EDIT=EDITR,VERCHK=VOKCHK,
MAXLN=50,REPLACE=X'5B'

72
C

IEBTCRIN classifies records 2 through 9 in Figure 12-6 as error records. The
records are classified as follows:

• Record 1 is a valid record. It contains a program-level 1 code, and thus
establishes the valid length for all program-level 1 records in this cartridge to be
25 bytes.

• Record 2 has a data check in the SOR location. Level status is set to 1 because
the SOR location might have contained a cancel code that would cause any data
duplicated on the following record to be questionable. The type status (9)

t HW;n:¥!IW*tb±dt=trntftiHtt

(Record 1) (Record 2)

V V
P 0 0
1111372 RECORD NUMBER 1AK 19EV $111378 RECORD NUMBER 2AK

(Record 3) (Record 4)

V V
p 0 p 0

201V 1357987 RECORD NUMBER 3AK 081V 1358977 REC$RD NUMBER 4AK

(Record 5) (Record 6)

V
P R P 0

131U 1358436 RECORD NUMBER 5M 241V 1358436 RECORD NUMBER 6$K

(Record 7) (Record 8)

P
233E 3998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREH

V
o

21EV OUSEK

(Record 9)

V
P 0

081V 1367$82 RECORD NUMBER 8AK

Resulting Error
Description Word

Figure 12-6. Record Construction

,
MAXLN ends here

(EOR Forced)

indicates the record has an incorrect SOR/EOR character (1) and a data check
error (8).

• Record 3 contains no identifiable error, but contains questionable data because
it requires duplication from the previous record, which had a level status of 1.

• Record 4 has a data check. Because it contained no DUP codes, the level status
is set to O.

• Record 5 is shorter than the first program-level 1 record on this cartridge (length
error). This record also contains an RM code rather than a VOK code in the
EOR location (VOKCHK was specified on the TCRGEN statement. Because
IEBTCRIN cannot determine why the record is short, all data duplicated from
this record is questionable; the level status is set to 1. The type status is set to 3
indicating an SOR/EOR error (1) and length error (2).

• Record 6 contains a DUP code that is beyond the last position of the preceding
record.

• The seventh input record is longer than the maximum user-specified record
length. Note that it is passed as two records. The first record (record 7) indicates
an EOR error and a length error; the second (record 8) indicates an SOR error.
Because record 7 is an error record, its length (50 bytes) is not established as the
valid length for all program-level 3 records on this cartridge.

• Record 9 has a data check. Because it contained no DUP codes, the level status
is set to O.

IEBTCRIN Program 12-11

Input and Output

Return Codes

Control

Job Control Statements

12-12 OS/VS1 Utilities

IEBTCRIN uses the following input:

• An input data set, which contains data on tape cartridges to be read from the
Tape Cartridge Reader (TCR). The input data set was created on either MTST
orMTDI.

• A control data set, which contains utility control statements that are used to
control the functions of IEBTCRIN.

IEBTCRIN produces the following output:

• An output data set, which contains the sequential output produced by the utility
as a result of processing the cartridge input according to the utility control
statements.

• An error output data set, which contains records that do not conform to the
specifications for a valid record.

• A message data set, which contains diagnostic messages.

IEBTCRIN produces the following return codes:

• 00, which indicates normal termination.

• 04, which indicates warning message issued; execution permitted. Conditions
leading to issuance of this code are: (1) SYSPRINT, SYSIN, SYSUT2, or
SYSUT3 DD statements missing and (2) DCB parameters missing SYSUT2 or
SYSUT3 DD statements.

• 12, which indicates diagnostic error message issued; execution terminated.
Conditions leading to issuance of this code are: (1) SYSUTI DD statement
missing, (2) conflicting DCB parameters in DD statements, and (3) invalid or
conflicting utility control statements.

• 16, which indicates terminal error message issued; execution terminated.
Conditions leading to issuance of this code are: (1) permanent input/output
errors (not including data checks on the TCR), (2) unsuccessful opening of data
sets, (3) requests for termination by user exit routine, (4) insufficient storage
available for execution, and (5) user exit routine not found.

IEBTCRIN is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke IEBTCRIN and to
define the data sets that are used and produced by the program. The utility control
statements are used to indicate the source of the input data cartridges (MTST or
MTDI) and to specify the type of processing to be done.

Figure 12-7 shows the job control statements necessary for using IEBTCRIN.

If the SYSPRINT DD statement is missing, a message is written on the operator
console and processing continues.

If some parameters are specified but others are omitted, IEBTCRIN attempts to set
defaults for the missing parameters that are consistent with those supplied. For
example, if RECFM=VBA is specified, IEBTCRIN assumes BLKSIZE=129 and

YW'd'f""IHiN!tnIJre i''1f'M9M'''' .IM"'**"".'.II+.'· W' h 1WWe".m'" ':#Wrib'±IIoI6I" \I.!!!I.leoIrWpjm t' ttti*\t#!H\8bt !LIt:!I19t

Statement Use

JUts lnlllates me JOO.

EXEC Specifies the program name (PGM=IEBTCRIN) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set, which can be written to any
QSAM-supported output device.

SYSUTI DD Defines the input data set.

SYSUT2 DO Defines a sequential output data set for valid records.

SYSUT3 DD Defines a sequential output data set for error records.

SYSIN DO Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a sequential data set or as a member of
a partitioned data set. If this statement is not included, all utility control
statement defaults are assumed and a message is issued to SYSPRINT. If
DUMMY is specified, all utility control statement defaults are assumed.

Figure 12-7. IEBTCRIN Job Control Statements

LRECL= 125. If LRECL, BLKSIZE, and RECFM are not specified, the defaults
are LRECL=121, BLKSIZE=121, and RECFM=FBA.

For the SYSUTI DD statement, only the UNIT keyword is required. The value
specified in UNIT=xxxx can be '2495', the device address, or any other name that
was generated in the system as a unit device name. The VOLUME=SER=keyword
may be specified to identify the tape cartridges to be mounted. The volume serial·
number must be an externally recognizable name associated with the cartridges to
be processed. A message is issued to the operator instructing that the cartridges
identified by that name be mounted. If VOLUME is not specified, the name
TCRINP is assumed and used in the mount message. The BUFL DCB parameter
can be specified to indicate the size of input buffers; if BUFL is not specified, a
value of 2000 is assumed.

Fixed and variable records on the SYSUT2 or SYSUT3 data set can be blocked
through the specification of the BLKSIZE and RECFM DCB parameters.

SYSUT2 DD and SYSUT3 DD statements may be omitted or specified as
DUMMY for other than sequential data sets. A message is issued on SYSPRINT
and processing continues.

The DCB parameters defining the SYSIN, SYSPRINT, SYSUT2, and SYSUT3 data
sets can be supplied from any valid source (for example, DD statements or a data
set label). Because the output (SYSUT2 and/or SYSUT3) data sets are not opened
until the first record is ready for output (after any OUTREC and/or ERROR
exits), DCB parameters to be supplied from an existing data set label are not
available for records constructed before the data set is opened. Therefore, the DCB
parameters should always be provided in the DD statement even though they may
already exist in the label. Otherwise, defaults are used to construct records until the
data set is opened.

If a permanent error occurs on SYSIN, SYSUTI (not including a data check),
SYSUT2, or SYSUT3, a message is issued on SYSPRINT and the program is
terminated. If a permanent input/output error occurs on SYSPRINT, both the
failing message and a SYNADAF message indicating the error are written on the
programmer's console and processing is terminated.

IEBTCRIN Program 12-13

Utility Control Statements

TCRGEN Statement

EXITS Statement

12-14 OS/VSl Utilities

Figure 12-8 shows the utility control statements necessary for using IEBTCRIN.

Statement

TCRGEN

EXITS

Use

Specifies whether MTDI or MTST input is to be processed and the type of
processing to be performed.

Specifies any exit routines provided by the user.

Figure 12-8. IEBTCRIN Utility Control Statements

If these statements contain errors or inconsistencies, the program is terminated and
the appropriate diagnostics are sent to the message data set. If TCRGEN is not
specified, standard defaults are used.

The TCRGEN statement is used to indicate the device (MTDI or MTST) on which
the input data was created and the type of processing to be performed on the input
data.

The format of the TCRGEN statement is:

[label] TCRGEN [TVPE= {MTDI I MTST·}]

[,TRANS= {STDUC I STDLC I name I NOTRAN}]

[,EDIT= {EDITD I EDITR I NOEDIT}]

[,VERCHK= {NOCHK I VOKCHK}]

[,MINLN=n]

[,MAXLN=n]

[,REPLACE=X'xx']

[,ERROPT= {NORMAL I NOERR}]

The EXITS statement is used to identify user-supplied exit routines, which must
exist in either the user job library or the link library.

Upon entry, a parameter list is supplied to the exit routine. Upon returning from the
exit routine, the user must provide an acceptable return code. See "Appendix A:
Exit Routine Linkage."

The format of the EXITS statement is:

[label] EXITS [ERROR=routinename]

[,OUTREC=routinename]

[,OUTHDR2=routinename]

[,OUTHDR3 =routinename]

[,OUTTLR2=routinename]

[,OUTTLR3=routinename]

Hi¥biH"t't tt'lhlWt liH"ure M 2trtt,,"M" t "Ht»Uit'MW" I'NMW' ,,,"htliH'P'rWn'r,.,, 'ttt 'N' Mil ',' ... I .. 'tn&t,...., #NHWMHth'Hif'MWMMtW

Operands

EDIT

ERROPT

ERROR

MAXLN

Annlicahle Control
Statements

TCRGEN

TCRGEN

EXITS

TCRGEN

Description of Operands/ Parameters

EDIT={EDITD I EDITR I NOEDIT}
specifies the type of processing to be performed on MTDI
input. These values can be coded:

ED lTD
specifies that the input is to be edited and that SOR and
EOR codes are to be deleted and not included as part of
the output record.

EDITR
specifies that the input is to be edited and SOR and
EOR codes are to be kept as part of the output record.

NOEDIT
specifies that no editing is to be performed. Data,
including any group separator (GS) codes, is passed
exactly as read from the cartridge.

ERROPT={NORMAL I NOERR}
specifies the disposition of all error records. ERROPT is
ignored if a user error routine is specified in the EXITS
statement. These values can be coded:

NORMAL
specifies that all error records are to be placed in the
error data set (SYSUT3).

NOERR
specifies that all records (including error records) are
placed in the normal output data set (SYSUT2). No
records are placed in the error data set (SYSUT3).

ERROR=routinename
specifies the symbolic name of a routine that receives
control before an error record is passed to the error output
data set (SYSUT3). This exit routine can be used to
analyze and, if possible, correct the error record. This
parameter nullifies any ERROPT value.

MAXLN=n
specifies the number of bytes, n, plus four for the record
descriptor word when variable records are specified, to be
contained in all but the last record passed to the output
routine when editing is not performed. IEBTCRIN does
not indicate the end of data from one cartridge and the
beginning of data from the next. Usually this transition
from one cartridge to another occurs within an output
record. The last record passed to the output routine
contains only the number of bytes remaining (plus four if
the record format is variable) and is the only record that
can be shorter than the length specified by MAXLN. The
size of the records actually written depends on the record
length (LRECL) specified for the output data set.

Default: 120 bytes

IEBTCRIN Program 12-15

Operands

MINLN

OUTREC

OUTHDR2

OUTHDR3

OUTTLR2

·OUTTLR3

Applicable Control
Statements

TCRGEN

EXITS

EXITS

EXITS

EXITS

EXITS

12-16 OS/VSl Utilities

Description of Operands/Parameters

MINLN=n
specifies in bytes the length, n, of the shortest valid, edited
record. This parameter is valid only when TYPE=MTDI
and either EDIT=EDITD or EDIT=EDITR are specified.
If IEBTCRIN encounters a record shorter than this
specified length, the record is considered an error record.

Default: No minimum length checking is performed.

OUTREC=routinename
specifies the symbolic name of a routine that receives
control before the record is passed to the normal output
data set (SYSUT2). In this exit routine, the user can
process the record and perform his own output if output
other than the SYSUT2 data set is desired. Any
modification of an editedMTDI record may affect the
editing of following records. The record returned from this
exit is used to accomplish data duplication in the record
that follows. If the SYSUT2 data set has specified variable
length records, an RDW which is four bytes long is
appended to the front of the record.

OUTHDR2 =routinename
specifies the symbolic name of a routine that receives
control during the opening of the SYSUT2 data set; this
exit routine can be used to create user output header labels
for the normal output data set (SYSUT2).

OUTHDR3 =routinename
specifies the symbolic name of a routine that receives
control during the opening of the SYSUT3 data set; this
exit routine can be used to create user output header labels
for the error data set (SYSUT2).

OUTTLR2=routinename
specifies the symbolic name of a routine that receives
control during the closing of the SYSUT2 data set; this exit
routine can be used to create user output trailer labels for
the normal output data set (SYSUT2).

OUTTLR3 =routinename
specifies the symbolic name of. a routine that receives
control during the closing of the SYSUT3 data set; this exit
routine can be used to create user output trailer labels for
the error data set (SYSUT3).

~tf:II~;.u,,;riW WWl;eUt"1I' MfF '/ W"HlHI'U*tA' \% It!Jl!u'V'' 't"P MM'M. j' , it "tth ',j b\ 1ntl\!:,h*b±bd f hrt t ttIH't'MtItWdWM' M¥ tN ffl'W

Operands Statements

REPLACE TCRGEN

TRANS TCRGEN

TYPE TCRGEN

Description of Operands/Parameters

REPLACE=X~'

specifies the hexadecimal representation of the character to
be used by IEBTCRIN to replace error bytes. REPLACE
allows the user to identify and possibly correct error bytes
on the error exit routine or in subsequent processing. The
specified REPLACE character should be one that does not
normally appear in the data. To replace error bytes on
MTDI data, select a value for xx from Figure 12-2. To
replace error bytes on MTST data, select a value for xx
from Figure 12-3. The replacement of error bytes is
accomplished before. any specified MTST translation.

Default: X' 19', end-of -data

TRANS={STDUC I STDLC I name I NOTRAN}
specifies the type of processing to be performed on MTST
input. These values can be coded:

STDVC
specifies that the MTST code is to be translated to
standard EBCDIC; alphabetic characters are translated
to uppercase.

STDLC
specifies that the MTST code is to be translated to
standard EBCDIC; alphabetic characters are not
translated to uppercase.

name
specifies a user translate table to be used by IEBTCRIN.
The translate table must exist as a load module named in
a user job library or the link library. This load module
must consist of a translate table which begins at the
entry point and conforms to the specifications for the
translate instruction (TR) found in IBM System/370
Principles of Operation.

NOTRAN
specifies that no translation and no special processing
are to be performed. Data is passed exactly as read from
the cartridge.

TYPE = {MTDI I MTST}
specifies the device on which the magnetic tape
cartridge(s) was written. These values can be coded:

MTDI
specifies that the input was created on a Magnetic Data
Inscriber.

MTST
specifies that the input was created on a Magnetic Tape
SELECTRIC ® typewriter.

IEBTCRIN Program 12-17

Operands

VERCHK

Applicable Control
Statements

TCRGEN

12-18 OS/VSl Utilities

Description of Operands/Parameters

VERCHK={NOCHK I VOCHK}
specifies whether a record-verification check is to be made
on MTDI input that is to be edited. This parameter is valid
only when TYPE=MTDI and either EDIT=EDITD or
EDIT=EDITR are specified. These values can be coded:

NOCHK
specifies that no record-verification check is to be made.
Either a record mark (RM) or a verify OK (VOK) code
is considered a valid end-of-record code.

VOKCHK
specifies that a record-verification check is to be made.
A record that does not contain a verify OK code is to be
considered an error record.

Restrictions

• Because Ih.l:STCKIN always conSUUCLS Lne .') l.')r.lUl"l.l lC\,;UlUI:) VV1U1 UIJ~IJ.I.

(type A) control characters, type A control characters should be indicated when
RECFM is specified.

• If a parameter that is not consistent with the other parameters is specified on
SYSPRINT DD, a message is issued and processing is ended.

• The SYSUT1 DD statement is required for each use of IEBTCRIN.

• The SYSUT2 DD and SYSUT3 DD statements must identify sequential data
sets; the data sets can have fixed, variable, variable spanned, or undefined
records. These data sets can be written on any QSAM-supported device.

• If editing of MTDI input is specified on the utility control statements; the
SYSUT3 LRECL parameter should be four bytes greater than the SYSUT2
LRECL parameter to include a four bytes long Error Description Word
appended to the front of the record by IEBTCRIN. (See "Error Records" earlier
in this chapter.) For variable records on either SYSUT2 or SYSUT3, the
LRECL and BLKSIZE DCB parameters must be large enough to include the
four bytes long record descriptor word.

• If inconsistent parameters are specified on SYSUT2 DD or SYSUT3 DD, a
message is issued and processing is ended.

IEBTCRIN Examples

IEBTCRIN Example 1

The following examples illustrate some of the uses of IEBTCRIN. Figure 12-9 can
be used as a quick reference guide to IEBTCRIN examples. The numbers in the
"Example" column point to examples that follow.

Data Set
Operation Organization Device Comments Example

Edit MDTI input Sequential Disk and
9-track Tape

Invoke IEBTCRIN
with LINK macro
instruction

Figure 12-9. IEBTCRIN Example Directory

Fixed blocked output. Error
exit routine specified

Assembler language
interface instructions

In this example, input from a tape cartridge is to be edited with normal records
written to a disk volume and error records written to a tape volume.

IIJOBNAME JOB O,SMITH,MSGLEVEL=l
IISTPNAME EXEC PGM=IEBTCRIN
IISYSPRINT DD SYSOUT=A

2

IISYSUTl DD UNIT=TCR,VOLUME=SER=MYTAPE,DCB=(BUFL=3000)
IISYSUT2 DD DSNAME=GOODSET, DISP=(NEW, CATLG) , UNIT=disk
IlvOLUME=SER=111222,SPACE=(TRK,(10,10)),DCB=(LRECL=100,
IIBLKSIZE=1000,RECFM=FB)
IISYSUT3 DD DSNAME=ERRSET,UNIT=tape,VOLUME=SER=OOOOOl,
II DISP=(NEW,KEEP),DCB=(BLKSIZE=104,RECFM=U)
IISYSIN DD *

TCRGEN TYPE=MTDI,EDIT=EDITD,MAXLN=100,REPLACE=X'5B'
EXITS ERROR=MYERR

1*

IEBTCRIN Program 12-19

IEBTCRIN Example 2

12-20 OS/VS1 Utilities

The control statements are discussed below:

• SYSUTI DD defines the input tape cartridge data set. A console message
instructs the operator to mount a set of cartridges named MYT APE. The two
input buffers are each 3000 bytes long (BUFL). The UNIT parameter assumes
that TCR has been system generated as a unit name for the Tape Cartridge
Reader.

• SYSUT2 DD defines a sequential data set for the normal output records. The
data will be written to a disk volume.

• SYSUT3 DD defines a sequential data set for the error records. The records are
undefined with a maximum block size of 104 bytes, including a 4-byte error
description word.

• SYSIN DD defines the control data set, which follows in the input stream.

• TCRGEN indicates MTDI input. The input is to be edited with SOR and EOR
codes deleted, the maximum valid record length is to be 100 bytes, and the
replace charabter is a hexadecimal "SB". VERCHK is defaulted to NOCHK.
Minimum record-length checking is not requested.

• EXITS indicates that a user has provided an exit routine to handle error records.
Because no job library has been specified, the exit routine (MYERR) must
reside in the link library.

In this example, IEBTCRIN is invoked via the LINK macro instruction in an
Assembler language program. An alternate name has been assigned to each of the
DD statements used by IEBTCRIN. The job control for this step must include DD
statements with the alternate DD names.

OPTLIST

DDNAME

LINK
CNOP
DC
CNOP
DC
DC
DC
DC
DC
DC
DC
DC

EP=IEBTCRIN,PARAM=(OPTLIST,DDNAME),VL=1
2,4 (OPTLIST must be on halfword boundary)
H' 0' (Length must be zero for IEBTCRIN)
2,4 (DDNAME list must be on halfword boundary)
H ' B 2' (Length of DDNAME list)
BF'O'
C ' NEWIN '(Alternate DDNAME for SYSIN)
C' NEWPRINT' (Alternate DDNAME for SYSPRINT)
2F'O'
C'NEWUT1
C'NEWUT2
C'NEWUT3

, (Alternate DDNAME for SYSUTl)
, (Alternate DDNAME for SYSUT2)
, (Alternate DDNAME for SYSUT3)

IEBUPDTE PROGRAM

IEBUPDTE is a data set utility used to incorporate IBM and user-generated source
language modifications into sequential or partitioned data sets. Exits are provided
for user routines that process user header and trailer labels.

IEBUPDTE can be used to:

• Create and update symbolic libraries.

• Incorporate changes to partitioned members or sequential data sets.

• Change the organization of a data set from sequential to partitioned or vice
versa.

At the completion or termination of IEBUPDTE, the highest return code
encountered within the program is passed to the calling program.

Creating and Updating Symbolic Libraries

Incorporating Changes

IEBUPDTE can be used to create a library of partitioned members consisting of (at
the most) 80-byte logical records. In addition, members can be added directly to an
existing library, provided that the original space allocations are sufficient to
incorporate the new members. In this manner, a cataloged procedure can be placed
in a procedure library, or a set of job or utility control statements can be placed as
a member in a partitioned library.

IEBUPDTE can be used to modify an existing partitioned or sequential data set.
Logical records can be replaced, deleted, renumbered, or added to the member or
data set.

A sequential data set residing on a tape volume can be used to create a new master
(that is, a modified copy) of the data set. A sequential data set residing on a direct
access device can be modified either by creating a new master or by modifying the
data set directly on the volume on which it resides.

A partitioned data set can be modified either by creating a new master or by
modifying the data set directly on the volume on which it resides.

Changing Data Set Organization

IEBUPDTE can be used to change the organization of a data set from sequential to
partitioned, or to change a member of a partitioned data set to a sequential data set
(the original data set, however, remains unchanged). In addition, logical records
can be replaced, deleted, renumbered, or added to the member or data set.

IEBUPDTE Program 13-1

Input and Output

Control

Job Control Statements

13-2 OS/VS 1 Utilities

IEBUPDTE uses the following input:

• An input data set (also called the old master data set), which is to be modified or
used as source data for a new master. The input data set is either a sequential
data set or a member of a partitioned data set.

• A control data set, which contains utility control statements and, if applicable,
input data. The data set is required for each use of IEBUPDTE.

IEBUPDTE produces the following output:

.An output data set, which is the result of the IEBUPDTE operation. The data
set can be either sequential or partitioned. It can be either a new data set (that
is, created during the present job step) or an existing data set, modified during
the .present job step.

• A message data set, which contains the utility program identification, control
statements used in the job step, modification made to the input data set, and
diagnostic messages, if applicable. The message data set is sequential.

IEBUPDTE provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a control statement is coded incorrectly or used
erroneously. If either the input or output is sequential, the job step is terminated.
If both are partitioned, the program continues processing with the next function
to be performed.

• 12, which indicates an unrecoverable error. The job step is terminated.

• 16, which indicates that a label processing code of 16 was received from a user's
label processing routine. The job step is terminated.

IEBUPDTE is controlled by job control statements and utility control statements.
The job control statements are required to execute or invoke IEBUPDTE and to
define the data sets that are used and produced by the program. The utility control
statements are used to control the functions of IEBUPDTE and, in certain cases, to
supply new or replacement data.

Figure 13-1 shows the job control statements necessary for using IEBUPDTE.

The input and output data sets contain blocked or unblocked logical records with
record lengths of up to 80 bytes. The input and output data sets may have different
block sizes as long as they are multiples of the logical record length.

If an ADD operation is specified with PARM=NEW in the EXEC statement, the
SYSUTI DD statement need not be coded.

If an UPDATE operation is specified, the SYSUT2 DD statement should not be
coded.

If the SYSUTI DD statement defines a sequential data set, the file sequence
number of that data set must be included in the LABEL keyword (unless the data
set is the first or only data set on the volume).

M,M!tll+bUPII'S'b' bW!

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEBUPDTE), or, if the job control
statements reside in a procedure library, the procedure name. Additional
information can be specified in the PARM parameter of the EXEC statement.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access volume.

SYSUTI DD Defines the input (old master) data set. It can define a sequential data set on a
card reader, a tape volume, or a direct access volume. Or, it can define a
partitioned data set on a direct access volume.

SYSUT2 DD Defines the output data set. It can define a sequential data set on a card
punch, a printer, a tape volume, or a direct access device. It can define a
partitioned data set on a direct access device.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a member of a partitioned data set.

Figure 13-1. IEBUPDTE Job Control Statements

If both the SYSUTI and SYSUT2 DD statements specify standard user labels
(SUL), IEBUPDTE copies user labels from SYSUTI to SYSUT2.

If the SYSUTI and SYSUT2 DD statements define the same partitioned data set,
the old master data set can be updated without creating a new master data set; in
this case, a copy of the updated member or members is written within the extent of
the space originally allocated to the old master data set. Subsequent referrals to the
updated member(s} will point to the newly written member(s}. The member names
themselves should not appear on the DD statements; they should be referenced
only through IEBUPDTE control statements.

P ARM Information on the EXEC Statement

Additional information can be coded in the P ARM parameter of the EXEC
statement, as follows:

PARM={NEW I MOD},[inhdr],[intlr]

Following are the PARM values:

• NEW, which specifies that the input consists solely of the control data set. The
input data set is not defined if NEW is specified.

• MOD, which specifies that the input consists of both the control data set and the
input data set. If neither NEW nor MOD is coded, MOD is assumed.

• "inhdr," which specifies the symbolic name of a routine that processes the user
header label on the volume containing the control data set.

• "intlr," which specifies the symbolic name of a routine that processes the user
trailer label on the volume containing the control data set.

IEBUPDTE Program 13-3

Utility Control Statements

Function· Statement

13-4 OS/VSl Utilities

Figure 13-2 shows the utility control statements used to control IEBUPDTE.

Statement

Function

Detail

Data

LABEL

ALIAS

ENDUP

Use

Initiates an IEBUPDTE
operation.

Used with the Function statement
for special applications.

A logical record of da\a to be used as a new or
replacement record in the output data set.

Indicates that the following data statements
are to be treated as user labels.

Assigns aliases.

Terminates IEBUPDTE.

Figure 13.2. IEBUPDTE Utility Control Statements

The Function statement is used to initiate an IEBUPDTE operation. At least one
Function statement must be provided for each member or data set to be processed.

A member or a data set can be added directly to an old master data set if the space
originally allocated to the old master is sufficient to incorporate that new member
or data set. ADD specifies that a member or a data set is to be added to an old
master data set. If a member is to be added and the member name already exists in
the old master data set, processing is terminated. If, however, PARM=NEW is
specified on the EXEC statement, the member is replaced. For a sequential output
master data set, PARM=NEW must always be specified on the EXEC statement.
At least one blank must precede and follow ADD.

When a member replaces an identically named member on the old master data set
or a member is changed and rewritten on the old master, the alias (if any) of the
original member still refers to the original member. However, if an identical alias is
specified for the newly written member, the original alias entry in the directory is
changed to refer to the newly written member. REPL specifies that a member of a
data set is being entered in its entirety asa replacement for a sequential data set or
for a member of the old master data set. The member name must already exist in
the old master data set. At least one blank must precede and follow REPL.
CHANGE specifies that modifications are to be made to an existing member or
data set. Use of the CHANGE Function statement without a NUMBER or
DELETE Detail statement, or a Data statement causes an error condition. At least
oneblank space must precede and follow CHANGE. REPRO specifies that a
member or a data set is to be copied in its entirety to a new master data set. At
least one blank must precede and follow REPRO.

Members can be deleted from a copy of a library by being omitted from a series of
REPRO Function statements within the same job step.

One sequential data set can be copied in a given job step. A sequential data set is
deleted by being omitted from a series of job steps which copy only the desired
data sets to a new volume. If the NEW sub parameter is coded in the EXEC
statement, only the ADD Function statement is permitted.

M.I**##I",.#" tW¥HIHtl\it¥Wt'Ht d '.WH.

Function Restrictions

Figure 13-3 shows how the system status information (SSI=OA3CI23B) is packed.

Change level F lag byte Ser-ial number

byte.1 byte 2 byte 3 byte 4

o A 3 C 2 I 3 B I
Figure 13.3. Format of System Status Information

The format of the Function statement is:

./ [label] {ADD-I CHANGE I REPL I REPRO}

[LIST=ALL]

When UPDATE is specified:

[,SEQFLD= { ddll ddl,ddl)}]

[,NEW = {PO IPS})

[,MEMBER=cccccccc]

[,COLUMN=dd]

[,UPDATE=INPLACE]

[,INHDR=cccccccc]

[,INTLR=cccccccc]

[,OUTHDR=cccccccc]

[,OUTTLR=cccccccc]

[,TOT AL= (routinename, size)]

[,NAME=cccccccc]

[,LEVEL=hh]

[,SOURCE=x]

[,SSI=hhhhhhhh]

• The SYSUT2 DD statement is not coded.

• TheP ARM parameter of the EXEC statement must imply or specify MOD.

• The NUMBER statement can be used to specify a renumbering operation.

• Data statements can be used to specify replacement information only.

• One CHANGE Function statement and one UPDATE parameter are permitted
per job step.

• No functions other than replacement, renumbering, and header label
modification (via the LABEL statement) can be specified.

• Only replaced records are listed unless the entire data set is renumbered.

• System status information cannot be changed.

Within an existing logical record, the data in the field defined by COLUMN is
replaced by data from a subsequent data statement, as follows:

IEBUPDTE Program 13-5

13-6 OS/VS 1 Utilities

1. IEBUPDTE matches a sequence number of a Data statement with a sequence
number of an existing logical record. In this manner, the COLUMN specification
is applied to a specific logical record.

2. The information in the" field within the Data statement replaces the information
in the field within the existing logical record. For example, COLUMN =40
indicates that columns 40 through 80 (assuming 80-byte logical records) of a
subsequent Data statement are to be used as replacement data for columns 40
through 80 of a logical record identified by a matching sequence number. (A
sequence number in an existing logical record or Data statement need not be
within the defined field.)

The COLUMN specification applies to the entire function, with the exception of:

• Logical records deleted by a subsequent DELETE Detail statement.

• Subsequent Data statements not having a matching sequence number for an
existing logical record.

• Data statements containing information to be inserted in the place of a deleted
logical record or records.

Figure 13-4 shows the use of NEW, MEMBER, and NAME parameters for
different input and output data set organizations.

Input Data Set
Organization

Partitioned

None

Partitioned

Sequential

Output Data Set
Organization

Partitioned

Partitioned (New)

Sequential

Partitioned

Parameter
Combinations

With an ADD Function statement, use NAME to
specify the name of the member. to be placed in the
partitioned data set defined by the SYSUT2 DD
statement. If an additional name is required, an ALIAS
statement can also be used.

With a CHANGE, REPL, or REPRO Function
statement, use NAME to specify the name of the
member within the partitioned data set defined by the
SYSUTI DD statement. If a different or additional
name is desired for the member in the partitioned data
set defined by the SYSUT2 DD statement, use an
ALIAS statement also.

With each ADD Function statement, use NAME to
assign a name for each member to be placed in the
partitioned data set.

With a Function statement, use NAME to specify the
name of the member in the partitioned data set defined
by the SYSUTI DD statement. Use NEW=PS to
specify the change in organization from partitioned to
sequential. (The name and file sequence number
assigned to the output master data set are specified in
the SYSUT2 DD statement.)

With a Function statement, use MEMBER to assign a
name to the member to be placed in the partitioned
data set defined by the SYSUT2 DD statement. Use
NEW =PO to specify the change in organization from
sequential to partitioned.

Figure 13-4. NEW, MEMBER, and NAME Parameters

For a detailed discussion of the processing of user labels as data set descriptors, and
for a discussion of user-label totaling, see "Appendix D: Processing User Labels."

I>etail Statemment

I>etail Restrictions

A Vetall statement IS US~U Wlln i:1 rUll~UVl1 ~Li:lLti111tilU. lVl "'~l\.a.lJ.. "ppu."'" .. J.VU.:>, .:> ... "'~ ..

as deleting or renumbering selected logical records. NUMBER specifies, when
coded with a CHANGE Function statement, that the sequence number of one or
more logical records is to be changed. It specifies, when coded with an ADD or
REPL Function statement, the sequence numbers to be assigned to the records
within new or replacement members or data sets. When used with an ADD or
REPL Function statement, no more than one NUMBER Detail statement is
permitted for each ADD or REPL Function statement. If NUMBER is coded, it
must be preceded and followed by at least one blank. DELETE specifies, when
coded with a CHANGE Function statement, thatone or more logical records are to
be deleted from a member or data set. If DELETE is coded, it must be preceded
and followed by at least one blank.

Note: Logical records cannot be deleted in part; that is, a COLUMN specification
in a Function statement is not applicable to records that are to be deleted. Each
specific sequence number is handled only once in any single operation.

The format of a Detail statement is:

./[label] {NUMBER I I>ELETEHSEQl = {cccccccc I ALL}]

[,SEQ2 =cccccccc]

[,NEWl =cccccccc]

[,INCR=cccccccc]

[,INSERT = YES]

WHEN INSERT is coded:

• The SEQ t parameter specifies the existing logical record after which the
insertion is to be made. The SEQ2 parameter need not be coded; SEQt =ALL
cannot be coded.

• The NEWt parameter assigns a sequence number to the first logical record to be
inserted.

• The INCR parameter is used to renumber as much as is necessary of the member
or data set from the point of the first insertion; the member or data set is
renumbered until an existing logical record is found whose sequence number is
equal to or greater than the next sequence number to be assigned. If no such
logical record is found, the entire member or data set is renumbered.

• Additional NUMBER Detail statements, if any, must specify INSERT. If a prior
numbering operation renumbers the logical record specified in the SEQ t
parameter of a subsequent NUMBER DetaIl statement, any NEWt or INCR
parameter specifications in the latter NUMBER statement are overridden. The
prior increment value is used to assign the next successive sequence numbers. If
a prior numbering operation does not renumber the logical record specified in
the SEQ t parameter of a subsequent NUMBER Detail statement, the latter
statement must contain NEWt and INCR specifications.

• The block of Data statements to be inserted must contain blank sequence
numbers.

IEBUPDTE Program 13-7

I>ata Statennent

LABEL Statennent

13-8 OS/VS 1 Utilities

• The insert operation is terminated when a Function statement, a Detail
statement, and end-of-file indication, or a Data statement containing a sequence
number is encountered.

• The SEQl, SEQ2, and NEWI parameters (except SEQl=ALL) specify eight
(maximum) alphameric characters. The INCR parameter specifies eight
(maximum) numeric characters. Only the significant part of a numeric sequence
number need be coded, for example, SEQl=OOOOOOlO may be shortened to
SEQl=lO.

A Data Statement is used with a Function statement, or with a Function statement
and a Detail statement. It contains a logical record used as replacement data for an
existing logical record, or new data to be incorporated in the output master data
set.

Each Data statement contains one logical record, which begins in the first column
of the Data statement. The length of the logical record is equal to the logical record
length (LRECL) specified for the output master data set. Each logical record
contains a sequence number to determine where the data is to be placed in the
output master data set.

When used with a CHANGE Function statement, a Data statement contains new
or replacement data, as follows:

• If the sequence number in the Data statement is identical with a sequence
number in an existing logical record, the Data statement replaces the existing
logical record in the output master data set.

• If no corresponding sequence number is found within the existing records, the
Data statement is inserted in the proper collating sequence within the output
master data set. (For proper execution of this function, all records in the old
master data set must have a sequence number.)

• If a Data statement with a sequence number is used and INSERT= YES was
specified, the insert operation is terminated. IEBUPDTE will continue
processing if this sequence number is at least equal to the next old master record
(record following the referred to sequence record).

When used with an ADD or REPL Function statement, a Data statement contains
new data to be placed in the output master data set.

Sequence numbers within the old master data set are assumed to be in ascending
order. No validity checking of sequence numbers is performed for data statements
or existing records.

Sequence numbers in Data statements must be in the same relative position as
sequence numbers in existing logical records. (Sequence numbers are assumed to be
in columns 73 through 80; if the numbers are in columns other than these, the
length and relative position must be specified in a SEQFLD parameter within a
preceding Function statement.)

The LABEL statement indicates that the following data statements are to be
treated as user labels. These new user labels are placed on the output data set. The
next Function statement indicates to IEBUPDTE that the last label Data statement
of the group has been read. LABEL must be preceded and followed by at least one
blank.

l' W%v tiM'" #'ilU1U fti H'#! ,,"WI "'P8*W', "It! tHer/Wi '"" tit tHtldHrci htt q t'tW"n e_we \:bttt tH

There can be no more than two LABEL statements for each execution of
~

LABEL statement. The first four bytes of each 80-byte label Data statement must
contain "UHLn" or "UTLn", where n is 1 through 8, for input header or input
trailer labels respectively, to conform to IBM standards for user labels. Otherwise,
data management will overlay the data with the proper four characters.

When IEBUPDTE encounters a LABEL statement, it reads up to eight Data
statements and saves them for processing by user output label routines. If there are
no such routines, the saved records are written by OPEN or CLOSE as user labels
on the output data set. If there are user output label processing routines,
IEBUPDTE passes a parameter list to the output label routines. This parameter list
is described fully in "Appendix A: Exit Routine Linkage." The label buffer
contains a label data record which the user routine can process before the record is
written as a label. If the user routine specifies (via return codes to IEBUPDTE)
more entries than there are label data records, the label buffer will contain
meaningless information for the remaining entries to the user routine.

The position of the LABEL statement in the SYSIN data set, relative to Function
statements, indicates the type of user label that follows the LABEL statement:

• To create output header labels, place the LABEL statement and its associated
label Data statements before any Function statements in the input stream. A
Function statement, other than LABEL,must follow the last label Data
statement of the group.

• To create output trailer labels, place the LABEL statement and its associated
label Data statements after any Function statements in the input stream, but
before the ENDUP statement. The ENDUP statement is not optional in this
case. It must follow the last label Data statement of the group if IEBUPDTE is
to create output trailer labels.

When UPDATE is specified in a Function statement, user input header labels can
be updated by user routines, but input trailer and output labels cannot be updated
by user routines. User labels cannot be added or deleted. User input header labels
are made available to user routines by the label buffer address in the parameter list.
See "Appendix D: Processing User Labels" for a complete discussion of the linkage
between utility programs and user-label processing routines. The return codes when
UPDATE is used differ slightly from the standard codes discussed in "Appendix D:
Processing User Labels," as follows:

• 0, which specifies that the system resumes normal processing; any additional
user labels are ignored.

• 4, which specifies that the system does not write the label. The next user label is
read into the label buffer area and control is returned to the user's routine. If
there are no more user labels, the system resumes normal processing.

• 8, which specifies that the system writes the user labels from the label buffer
area and resumes normal processing.

• 12, which specifies that the system writes the user label from the label buffer
area,then reads the next input label into the label buffer area and returns
control to the label processing routine. If there are no more user labels, the
system resumes normal processing.

IEBUPDTE Program 13-9

ALIAS Statement

ENDUP Statement

13-10 OS/VSl Utilities

If the user wants to examine the replaced labels from the old master data set, he
must:

1. Specify an update of the old master by coding the UPDATE parameter in a
Function statement.

2. Include a LABEL statement in the input data set for either header or trailer
labels.

3. Specify a corresponding user label routine.

If the above conditions are met, fourth and fifth parameter words will be added to
the standard parameter list. The fourth parameter word is not now used; the fifth
contains a pointer to the replaced label from the old master. In this case, the
number of labels supplied in the SYSIN data set must not exceed the number of
labels on the old master data set. If the user specifies, via return codes, more entries
to the user's header label routine than there are labels in the input stream, the first
parameter will point to the current header label on the old master data set for the
remaining entries. In this case, the fifth parameter is meaningless.

The format of the LABEL statement is:

./[label] LABEL

The ALIAS statement is used to create or retain an alias in an output (partitioned)
master directory. The ALIAS statement can be used with any of the Function
statements. Multiple aliases can be assigned to each member up to a maximum of
16 aliases.

Note: If an ALIAS statement is specifying a name which already exists on the data
set, the original TTR of that directory entry will be destroyed.

ALIAS must be preceded and followed by at least one blank. If multiple ALIAS
statements are used, they must follow the data records.

The format of the ALIAS statement is:

./[label] ALIAS NAME=cccccccc

An ENDUP statement can be used to indicate the end of SYSIN input to this job
step. It serves as an end-of-data indication if there is no other preceding delimiter
statement. The END UP statement follows the last group of SYSIN control
statements.

ENDUP must be preceded and followed by at least one blank. The ENDUP
statement must follow the last label Data statement if IEBUPDTE is used to create
output trailer labels.

The format of the ENDUP statement is:

./[label] ENDUP

P' 'M .w'f·tWl&f!d1,*,Wwlw'p,,,"~ Witt t bH b b \\Urie l
• tw"trltW#-.:it"dlt hIi'd*b#!:tItWM' t dHHi/bdhWMWtWI

Operands

./

COLUMN

INCR

INHDR

INSERT

INTLR

LEVEL

Annlil'ghl"" rnntrnl

Statements

ADD
REPL
CHANGE
REPRO
NUMBER
DELETE
LABEL
ALIAS
ENDUP

CHANGE

NUMBER

ADD
REPL
CHANGE
REPRO

CHANGE
NUMBER

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

Description of Operands/Parameters

./
is required and must appear in columns land 2; is also
needed in continuation cards.

COLUMN = Inn I !}
specifies, in decimal, the starting column of a data field
within a logical record image. The field extends to the end
of the image. Within an existing logical record, the data in
the defined field is replaced by data from a subsequent
Data statement.

INCR=cccccccc
specifies an increment value used for assigning successive
sequence numbers to new or replacement logical records,
or specifies an increment value used for renumbering
existing logical records.

INlIDR=eccccccc
specifies the symbolic name of the user routine that
handles any user input (SYSUTl) header labels. When
used with UPD ATE, this routine assumes a special
function. This parameter is valid only when a sequential
data set is being processed.

INSERT=YES
specifies the insertion of a block of logical records. The
records, which are Data statements containing blank
sequence numbers, are numbered and inserted in the
output master data set. INSERT is valid only when coded
with both a CHANGE Function statement and a
NUMBER Detail statement. SEQl, NEWl, and INCR are
required on the first NUMBER Detail statement.

INTLR=eccccccc
specifies the symbolic name of the user routine that
handles any user input (SYSUTl) trailer labels. INTLR is
valid only when a sequential data set is being processed,
but not when UPDATE is coded.

LEVEL=hh
specifies the change (update) level in hexadecimal
(00-FF). The level number is recorded in the directory
entry of the output member. This parameter is valid only
when a member of a partitioned data set is being
processed. This parameter has no effect when SSI is
specified.

IEBUPDTE Program 13-11

Operands

LIST

MEMBER

NAME

name

Applicable Control
Statements

. ADD
REPL
CHANGE
REPRO

ADD
·REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO
ALIAS

ADD
REPL
CHANGE
REPRO
NUMBER
DELETE
LABEL
ALIAS
ENDUP.,

13-12 OS/VS1 Utilities

Description of Operands/Parameters

LIST = ALL
specifies that the SYSPRINT data set is to contain the
entire updated member or data set and the control
statements used in its creation.

Default: For old data sets, if LIST is omitted, the
SYSPRINT data set contains modifications and control
statements only. If UPDATE was specified, the entire
updated member is listed only when renumbering has been
done. For new data sets, the entire member or data set and
the control statements used in its creation are always
written to the SYSPRINT data set.

MEMBER=eccccccc
specifies a name to be assigned to the member placed in
the partitioned data set defined by the SYSUT2.DD
statement. MEMBER is used only whenSYSUT 1 defines a
sequential data set, SYSUT2 defines a partitioned data set,
and NEW=PO is specified. Refer to Figure 13-4 for the
use of MEMBER with NEW.

For ALIAS:

NAME=eccccccc
specifies a one- to eight-character alias.

For all others:

NAME=cccccccc
indicates the name of the member placed into the
partitioned data set. The member name need not be
specified in the DD statement itself. NAME must be
provided to identify each input member. Refer to Figure
13-4 for the use NAME with NEW. This parameter is valid
only when a member of a partioned data set is being
processed.

name
specifies an optional name which begins in column 3 and
extends no further than column 10.

Operands

NEW

NEWI

OUTHDR

OUTTLR

Aoolicable Control
Statement

ADD
REPL
CHANGE
REPRO

NUMBER

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

Description of Op'erands/ Parameters

NEW={PO IPS}
specifies the organization of the old master data set and
the organization of the updated output. NEW should not
be specified unless the organization of the new master data
set is different from the organization of the old master.
Refer to Figure 13-4 for the use of NEW with NAME and
MEMBER. These values can be coded:

PO

PS

specifies that the old master data set is a sequential data
set, and that the updated output is to become a member of
a partitioned data set.

specifies that the old master data set is a partitioned data
set, and that a member of that data set is to be converted
into a sequential data set.

NEwt =eccccccc
specifies the first sequence number assigned to new or
replacement data, or specifies the first sequence number
assigned in a renumbering operation. A value specified in
NEWI must be greater than a value specified in SEQ1
(unless SEQ1 =ALL is specified, in which case this rule
does not apply).

OUTHDR=eccccccc
specifies the symbolic name of the user routine that
handles any user output (SYSUT2) header labels.
OUTHDR is valid only when a sequential data set is being
processed, but not when UPDATE is coded.

OUTTLR=eccccccc
specifies the symbolic name of the user routine that
handles any user output (SYSUT2) trailer labels.
OUTTLR is valid only when a sequential data set is being
processed, but not when UPDATE is coded.

IEBUPDTE Program 13-13

Operands

SEQ1

SEQ2

Applicable Control
Statements

NUMBER
DELETE

NUMBER
DELETE

13-14 OS!VS 1 Utilities

Description of Operands/Parameters

SEQI = {cccccccc I ALL}
specifies records to be renumbered, deleted, or assigned
sequence numbers. These values can be coded:

cccccccc
specifies the sequence number of the first logical record to
be renumbered or deleted. This value is not coded in a
NUMBER Detail statement that is used with an ADD or
REPL Function statement. When this value is used in an
insert operation, it specifies the existing logical record after
which an insert is to be made. It must not equal the number
of a statement just replaced or added. Refer to the
INSERT parameter for additional discussion.

ALL
specifies a renumbering operation for the entire member or
data set. ALL is used only when a CHANGE Function
statement and a NUMBER Detail statement are used. ALL
must be coded if sequence numbers are to be assigned to
existing logical records having blank sequence numbers. If
ALL is not coded, all existing logical records having blank
sequence numbers. copied directly to the output master
data set. When ALL is coded: (1) SEQ2 need not be coded
and (2) one NUMBER Detail statement is permitted per
Function statement. Refer to the INSERT parameter for
additional discussion.

SEQ2 =cccccccc
specifies the sequence number of the last logical record to
be renumbered or deleted. SEQ2 is required on all
DELETE Detail statements. If only one record is to be
deleted, the SEQ 1 and SEQ2 specifications must be
identical. SEQ2 is not coded in a NUMBER Detail
statement that is used with an ADD or REPL Function
statement.

Operands

SEQFLD

SOURCE

SSI

Statements

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

ADD
REPL
CHANGE
REPRO

Description of Operands/Parameters

SEQFLD= ~dll (ddl,ddl)}
ddl specifies, in decimal, the starting column (up to column
80) and length (8 or less) of sequence numbers within
existing logical records and subsequent Data statements.
Note that the starting column specification (dd) plus the
length (I) cannot exceed the logical record length (LRECL)
plus 1. Sequence numbers on incoming Data statements
and existing logical records must be padded to the left with
enough zeros to fill the length of the sequence field.

(ddl, ddl)
may be used when an alphameric sequence number
generation is required. The first ddl specifies the sequence
number columns as above. The second ddl specifies, in
decimal, the starting column (up to column 80) and length
(8 or less) of the numeric portion of the sequence numbers
in subsequent NUMBER statements. This information is
used to determine which portion of the sequence number
specified by the NEWI parameter may be incremented and
whkh portion(s) should be copied to generate a new
sequence number for inserted or renumbered records.

Note: The numeric columns must fall within the sequence
number columns specified (or defaulted) by the first ddl.
Acceptable alphameric characters are A-Z, 1-9, @, #, $, *.

Default: 738 is assumed, that is, an eight-byte sequence
number beginning in column 73. Therefore, if existing
logical records and subsequent data statements have
sequence numbers in columns 73 through 80, this keyword
need not be coded.

SOURCE=x
specifies user modifications when the x value is 0, or IDM
modifications when the x value is 1. The source is recorded
in the directory entry of the output member. This
parameter is valid only when a member of a partitioned
data set is being processed. This parameter has no effect
when SSI is specified.

SSI=hhhhhhhh
specifies eight hexadecimal characters of system status
information (SSI) to be placed in the directory of the new
master data set as four packed hexadecimal bytes of user
data. This parameter is valid only when a member of a
partitioned data set is being processed. SSI overrides any
LEVEL or SOURCE data given on the same Function
statement.

IEBUPDTE Program 13-15

Operands

TOTAL

UPDATE

Applicable Control
Statement

ADD
REPL
CHANGE
REPRO

CHANGE

13-16 OS/VSl Utilities

Description of Operands/Parameters

TOT AL= (routinename,size)
specifies that exits to a user's routine are to be provided
prior to writing each record. This parameter is valid only
when a sequential data set is being processed. These values
are coded:

routinename
specifies the name of the user's totaling routine.

size
specifies the number of bytes required for the user's data.
The size should not exceed 32K, nor be less than 2 bytes.
In addition, the keyword OPTCD=T must be specified for
the SYSUT2 (output) DD statement. Refer to "Appendix
A: Exit Routine Linkage" for a discussion of linkage
conventions for user routines.

UPDATE=INPLACE
specifies that the old master data set is to be updated
within the space it actually occupies. The old master data
set must reside on a direct access device. UPDATE is valid
only when coded with CHANGE. No other function
statements (ADD, REPL, REPRO) may be in the same
job step.

Restrictions

• The output data set can have a blocking factor that is different from the input
data set; however, if insufficient space is allocated for reblocked records, the
update request is terminated.

• The message data set has a logical record length of 121 bytes, and consists of
fixed length, blocked or unblocked records with an ASA control character in the
first byte of each record. The input and output data sets have a logical record
length of 80 bytes or less, and consist of standard fixed blocked (RECFM=FB)
or unblocked records. The control data set contains 80-byte, blocked or
unblocked records.

• The SYSIN DD statement is required for each use of IEBUPDTE.

• Space must be allocated for an output data set (SYSUT2 DD statement) that is
to reside on a direct access device, unless the data set is an existing data set.

• The SYSUT2 DD statement must not specify a DUMMY data set.

• When adding a member to an existing partitioned data set using an ADD
Function statement, any DCB parameters specified on the SYSUTI and
SYSUT2 DD statements (or the SYSUT2 DD statement if that is the only one
specified) must be the same as the DCB parameters already existing for the data
set.

• If the SYSUTI and SYSUT2 DD statements define the same sequential data set
(direct access only), only those operations that add data to the end of the
existing data set can be made. In these cases:

1. The PARM parameter of the EXEC statement must imply or specify MOD.
(See "PARM Information on the EXEC Statement" below.)

2. The DISP parameter of the SYSUTI DD statement must specify OLD.

3. The DISP parameter of the SYSUT2 DD statement must specify MOD.

• The SYSIN DD statement is required for each use of IEBUPDTE.

• When UPDATE=INPLACE is specified, there must be no other function
statements in the job step.

IEBUPDTE Program 13-17

IEBUPDTE Examples

13-18 OS/VS 1 Utilities

The following examples illustrate some of the uses of IEBUPDTE. Figure 13-5 can
be used as a quick reference guide to IEBUPDTE examples. The numbers in the
"Example" column point to examples that follow.

Data Set
Operation Organization Device Comments Example

ADD and Partitioned Disk SYSUTI and SYSUT2 DD statements
REPL define the same data set. A JCL

procedure residing in the IEBUPDTE
control data set is to be stored as
a new member of a procedure library
(PROCLIB). Another JCL procedure,
also in the control data set, is to
replace an existing member in PROCLIB.

CREATE a Partitioned Disk Input data is in the control data set.
partitioned Output partitioned data set is to
library contain three members. 2

CREATE a Partitioned Disk Input from control data set and from
partitioned existing partitioned data set. Output
data set partitioned data set is to contain four

members. 3

UPDATE Partitioned Disk Input data set is considered to be the
INPLACE and output data set as well; therefore, no
renumber SYSUT2 DO statement is required. 4

CREATE and Partitioned, Disk and Sequential master is to be created from
DELETE Sequential Tape partitioned disk input. Selected

records are to be deleted. Blocked
output. 5

CREATE, Sequential, Tape Partitioned data set is to be created
DELETE, and Partitioned and Disk from sequential input. Records are to
UPDATE be deleted and updated. Sequence

numbers in columns other than 73
through 80. One member is to be
placed in the output data set. 6

INSERT Partitioned Disk Block of logical records is to be
inserted into an existing member.
SYSUTI and SYSUT2 DO statements
define the same data set. 7

CREATE Sequential Card Reader, Sequential data set with user labels is
and Disk to be created from card input. 8

COPY Sequential Disk Sequential data set is to be copied
from one direct access volume to
another; user labels can be processed
by exit routines. 9

CREATE Partitioned Disk Create a new generation. 10

Figure 13-5. IEBUPDTE Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

!!t!WHi16!J \! 1" !'d'W!,"j'\LtilJtlW 'illlle!rlwe'i'W,"."'!: eW'rlI',wuNlwl,hhtltthttt eM rtt*t'lhttt brtwtWM#WWtNt#ridtt"t*tH#±lW,,*WWi**WHW'

IEBUPDTE Example 1

In this example, two procedures are to be placed in the cataloged procedure library,
SYS I.PROCLIB. The example assumes that the two procedures can be
accommodated within the space originally allocated to the procedure library.

IIUPDATE JOB 09#660,SMITH·
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=SYS1.PROCLIB,DISP=OLD
IISYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD
IISYSIN DD DATA
.1 ADD LIST=ALL,NAME=ERASE,LEVEL=01,SOURCE=O
~I NUMBER NEW1=10,INCR=10
IIERASE EXEC PGM=IEBUPDTE
IIDD1 DD UNIT=d~k,DISP=(OLD,KEEP),VOLUME=SER=111111
IISYSPRINT DD SYSOUT=A
.1 REPL LIST=ALL,NAME=LISTPROC
.1 NUMBER NEW1=10,INCR=10
IILIST EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DISP=SHR,
II DSN=SYS1.PROCLIB(&MEMBER)
IISYSUT2 DD SYSOUT=A,
II DCB=(RECFM=F,BLKSIZE=80)
IISYSIN DD DUMMY
.1 END UP
1*
The control statements are discussed below:

• SYSUTI and SYSUT2 DO define the SYSl.PROCLIB data set, which is
assumed to be cataloged.

• SYSIN DO defines the control data set. The data set contains the utility control
statements and the data to be placed in the procedure library.

• The ADD Function statement indicates that records (Data statements) in the
control data set are to be placed in the outpuL The newly created procedure is to
be listed in the message data set.

The ADD function will not take place if a member, named ERASE, already
exists in the new master data set referenced by SYSUT2.

• The REPL function statement indicates that records (data statements) in the
control data set are to replace an already existing member. The member is stored
in the new master data set referenced by SYSUT2.

The REPL function will only take place if a member named LISTPROC already
exists in the old master data set referenced by SYSUTI.

• The NUMBER Detail statement indicates that the new and replacement
procedures are to be assigned sequence numbers. The first record of each
procedure is to be assigned sequence number 10; the next record is to be
assigned sequence number 20, and so on.

IEBUPDTE Program 13-19

IEBUPDTE Example 2

IEBUPDTE Example 3

13.:..20 OS/VS 1 Utilities

In this example, a three member, partitioned library is to be created. The input data
is contained solely in the control data set.

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=NEW
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD DSNAME=OUTLIB, UNIT=disk) DISP= (NEW) KEEP))
II VOLUME=SER=111112,SPACE=(TRK,(50,,10)),DCB=(RECFM=F,
II LRECL=80,BLKSIZE=80)
IISYSIN DD DATA
· I . ADD NAME=MEMB 1 , LEVEL=OO, SOURCE=O, LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

.1 ADD NAME=MEMB2,LEVEL=OO,SOURCE=O,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

.1 ADD NAME=MEMB3,LEVEL=OO,SOURCE=O,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

.1 ENDUP
1*
The control statements are discussed below:

• SYSUT2 DD defines the new partitioned master OUTLIB. Enough space is
allocated to allow for subsequent modifications without creating a new master
data set.

• SYSIN DD defines the control data set. The data set contains the utility control
statements and the data to be placed as three members in the output partitioned
dataset.

• The ADD Function statements indicate that subsequent Data statements are to
be placed as members in the output partitioned data set. Each ADD Function
statement specifies a member name for subsequent data and indicates that the
member is to be listed in the message data set.

• The Data statements contain the data to be placed in the output partitioned data
set.

• ENDUP signals the end of control data set input.

Note: Because sequence numbers (other than blank numbers) are included within
the Data statements, no NUMBER Detail statements are included in the example.

In this example, a three-member, partitioned data set (NEWMCLIB) is to be
created. The data set is to contain:

• Two members (ATTACH and DETACH) copied from an existing partitioned
data set (SYS1.MACLIB).

• A new member (EXIT), which is contained in the control data set.

+t¥WHW*rl'*

IluPDATE JOB 09#770~SMITH
.... _...... --_ , ..., ~ ...

IISYSPRINT DO SYSOUT=A
I ISYSUT 1 DO DSNAME=SYS 1 . MACLIB, DISP=SHR, UNIT=disk
IISYSUT2 DO DSNAME=NEWMCLIB, VOLUME=SER= 111112, UNIT=disk
I I DISP=(NEW, KEEP), SPACE=(TRK, (100, , 1.0)) , DCB=(RECFM=F,
II LRECL=80,BLKSIZE=80)
IISYSIN DO DATA
.1 REPRO NAME=ATTACH,LEVEL=OO,SOURCE=l,LIST=ALL
.1 REPRO NAME=DETACH,LEVEL=OO,SOURCE=l,LIST=ALL
.1 ADD NAME=EXIT,LEVEL=OO,SOURCE=l,LIST=ALL
.1 NUMBER NEW1=10,INCR=100

(Data cards for EXIT member)

.1 ENDUP
1*
The control statements are discussed below:

• SYSUTI DD defines the input partitioned data set SYS 1.MACLIB, which is
assumed to be cataloged.

I • SYSUT2 DD defines the output partitioned data set NEWMCLIB. Enough space is
allocated to allow for subsequent modifications without creating a new master
data set.

• SYSIN DD defines the control data set.

• The REPRO Function statements identify the existing input members to be
copied onto the output data set. These members are also listed in the message
data set.

• The ADD Function statement indicates that records (subsequent Data
statements) are to be placed as a member in the output partitioned data set. The

. Data statements are to be listed in the message data set.

• The NUMBER Detail statement assigns sequence numbers to the Data
statements. (The Data statements contain blank sequence numbers in columns
73 through 80.) The first record of the output member is assigned sequence
number 10; subsequent records are incremented by 100.

• ENDUP signals the end of SYSIN data.

Note: The two named input members (ATTACH and DETACH) do not have to be
specified in the order of their collating sequence in the old master.

IEBUPDTE Example 4

In this example, a member (MODMEMB) is to be updated within the space it
actually occupies. Two existing logical records are to be replaced, and the entire
member is to be renumbered.

IluPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
jlSYSPRINT DO SYSOUT=A
IISYSUT1 DO DSNAME=PDS, UNIT=disk, DISP=(OLD, KEEP),
II VOLUME~SER=111112
IISYSIN DO *
.1 CHANGE NAME=MODMEMB,LIST=ALL,UPDATE=INPLACE
.1 NUMBER SEQ1=ALL,NEW1=10,INCR=5

(Data statement 1, sequence number 00000020)
(Data statement 2, sequence number 00000035)

1*

IEBUPDTE Program 13-21

IEBUPDTE Example 5

13-22 OS/VS 1 Utilities

The control statements are discussed below:

• SYSUT1 DD defines the data set that is to be updated in place. (Note that the
member name need not be specified in the DD statement.)

• SYSIN DD defines the control data set.

• The CHANGE Function statement indicates the name of the member to be
updated and specifies the UPDATE=INPLACE operation. The entire member
is to be listed in the message data set.

• The NUMBER Detail statement indicates that the entire member is to be
renumbered, and specifies the first sequence number to be assigned and the
increment value for successive sequence numbers.

• The Data statements replace existjng logical records having sequence numbers of
20 and 35.

In this example, a sequential master data set is to be created from partitioned input
and selected logical records are to be deleted.

IluPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=PARTDS, UNIT=disk,DISP=(OLD,KEEP),
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=SEQDS,UNIT=mpe,LABEL=(2,SL),
II DISP=(,KEEP),VOLUME=SER=001234,DCB=(RECFM=FB,
II LRECL=80,BLKSIZE=2000)
IISYSIN DD *
.1 CHANGE NEW=PS,NAME=OLDMEMBl

(Data statement 1, sequence number 00000123)

./ DELETE SEQ1=223,SEQ2=246

(Data statement 2, sequence number 00000224)

1*
The control statements are discussed below:

• SYSUT1 DD defines the input partitioned data set PARTDS.

• SYSUT2 DD defines the output sequential data set. The data set is to be written
as the second data set on a tape volume.

• SYSIN DD defines the control data set.

• . CHANGE identifies the input member (OLDMEMBl) and indicates that the
output is to be a sequential data set (NEW=PS).

• The first Data statement replaces the logical record whose sequence number is
identical to the sequence nu.mber in the Data statement (00000123). If no such
logical record exists, the Data statement is incorporated in the proper sequence
within the output data set.

• The DELETE Detail statement deletes logical records having sequence numbers
from 223 through 246.

• The second Data statement is inserted in the proper sequence in the output data
set.

Note: Only one member can be used as input when converting to sequential
organization.

!LiIiW.l.@ijufirtiH'Wi,!IfitliHltt'¥dltibWwWtlW*fwe4'·I.'M Mt \ P","w'Li"err\!h .. !le,It"',',plrc,,,1r V' tit i#* .\t'tl'» WI """**'tW"JIt***ltttt:tttt" bi'.' HWtl'HdMfd'LU.tttltfflh:lth

IEBUPDTE Example 6

In this example, a member of a partitioned data set is to be created from sequential
input and existing logical records are to be updated.

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT 1 DD DSNAME=OLDSEQDS, UNIT=tape
II DISP=(OLD,KEEP),VOLUME=SER=001234
IISYSUT2 DD DSNAME=NEWPART, UN I T=disk , DISP=(,KEEP),
II VOLUME=SER=111112,SPACE=(TRK,(10,5,5)),
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISYSIN DD *

72

.1 CHANGE NEW~PO,MEMBER=PARMEM1,LEVEL=01, C

.1 SEQFLD=605,COLUMN=40,SOURCE=0

(Data statement 1, sequence number 00020)

.1 DELETE SEQ1=220,SEQ2=250

(Data statement 2, sequence number 00230)
(Data statement 3, sequence number 00260)

.1
1*

ALIAS NAME=MEMB1

The control statements are discussed below:

• SYSUTI DD defines the input sequential data set (OLDSEQDS). The data set
resides on a tape volume.

• SYSUT2 DD defines the output partitioned data set. Enough space is allocated
to provide for members that might be added in the future.

• SYSIN DD defines the control data set.

• The CHANGE Function statement identifies the output member and indicates
that a conversion from sequential input to partitioned output is to be made. The
SEQFLD parameter indicates that a five-byte sequence number is located in

. columns 60 through 64 of each Data statement. The COLUMN parameter
specifies the starting column of a field (within subsequent Data statements) from
which replacement information is obtained.

• The first Data statement is used as replacement data. Columns 40 through 80 of
the statement replace columns 40 through 80 of the corresponding logical
record. If no such logical record exists, the entire card image is inserted in the
output member.

• The DELETE Detail statement deletes all of the logical records having sequence
numbers from 220 through 250.

• The second Data statement, whose sequence number falls within the range
specified in the DELETE Detail statement, is incorporated in its entirety in the
output member.

• The third Data statement, which is beyond the range of the DELETE Detail
statement, is treated in the same manner as the first Data statement.

• ALIAS assigns the alias MEMBI to the output member PARMEMI.

IEBUPDTE Program 13-23

IEBUPDTE Example 7

13-24 OS/VS 1 Utilities

In this example, a block of three logical records is to be inserted into an existing
member, and the updated member is to be placed in the existing partitioned data
set.

Figure 13-6 shows existing sequence numbers, new sequence numbers, and Data
statements to be inserted.

Sequence Numbers and
Data Statements to be
Inserted New Sequence Numbers

10
15
Data statement 1
Data statement 2
Data statement 3
20
25
30

10
15
20
25
30
35
40
45

Figure 13-6. Sequence Numbers and Data Statements to be Inserted

IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT 1 DD DSNAME=PDS, UN I T=disk , DISP=(OLD, KEEP) ,
II VOLUME=SER=111112
IISYSUT2 DD DSNAME=PDS, UN I T=disk , DISP= (OLD, KEEP) ,
II VOLUME=SER=111112
IISYSIN DD *
.1 CHANGE NAME=RENUM,LIST=ALL,LEVEL=01,SOURCE=O
.1 NUMBER SEQ1=15,NEW1=20,INCR=5,INSERT=YES

(Data statement 1)
(Data statement 2)
(Data statement 3)

1*
The control statements are discussed below:

• SYSUT1 and SYSUT2 DD define the partitioned data set (PDS).

• SYSIN DD defines the control data set.

• The CHANGE Function statement identifies the input member RENUM. The
entire member is to be listed in the message data set.

• The NUMBER Detail statement specifies the insert operation and controls the
renumbering operation.

• The Data statements are the logical records to be inserted. (Sequence numbers
are assigned when the Data statements are inserted.)

In this example, the existing logical records have sequence numbers 10, 15, 20, 25,
30, etc. Sequence numbers are assigned by the NUMBER Detail statement, as
follows:

1. Data statement 1 is assigned sequence number 20 (NEW1 =20) and inserted
after existing logical record 15 (SEQ1 = 15).

2. Data statements 2 and 3 are assigned sequence numbers 25 and 30 (INCR=5)
and are inserted after Data statement 1.

@¥W'IIIi'!II'l'1i"n*Y"WftiW''''f#'bW'lfbWh,f'?% W' tit. 'W·VW .. \ '1e!!"i1 ltW,!·ttlw,,!t 'M9.'*' d'rrlHbt t dtri'#ddttttUMtt"'rl**,****WM'tIttt'Ms6W'

IEBUPDTE Example 8

3. Existing logical records 20, 25, and 30 are assigned sequence numbers 35, 40,

4. The remaining logical records in the member are renumbered.

In this example, IEBUPDTE is used to create a sequential data set from card input.
User header and trailer labels, also from the input stream, are placed on this
sequential data set.

IILABEL JOB , MSGLEVEL=1
IICREATION EXEC PGM=IEBUPDTE,PARM=NEW
IISYSPRINT DO SYSOUT=A
IISYSUT2 DD DSNAME=LABEL, VOLUME=SER= 123456, UNIT=disk,
II DISP=(NEW,KEEP),LABEL=(,SUL),SPACE=(TRK,(15,3))
I/SYSIN DO *
./ LABEL

(First header label)

(Last header label)

./ ADD LIST=ALL,OUTHDR=ROUTINE1,OUTTLR=ROUTINE2

(First input data record)

(Last input data record)

./ LABEL

(First trailer label)
(Last trailer label)

./ ENDUP
1*
The control statements are discussed below:

• SYSUT2 DD defines and allocates space for the output sequential data set,
which resides on a disk volume.

• SYSIN DD defines the control data set. (This control data set includes the
sequential input data set and the user labels, which are on cards.)

• The first LABEL statement identifies the 80-byte card images in the input
stream which will become user header labels. (They can be modified by the
user's header-label processing routine specified on the ADD Function
statement.)

• The ADD Function statement indicates that the Data statements that follow are
to be placed in the output data set. The newly created data set is to be listed in
the message data set. User output header and output trailer routines are to be
given control prior to the writing of header and trailer labels.

• The second LABEL statement identifies the 80-byte card images in the input
stream which will become user trailer labels. (They can be modified by the user's
trailer-label processing routine specified on the ADD Function statement.)

• ENDUP signals the end of the control data set.

IEBUPDTE Program 13-25

IEBUPDTE Example 9

In this example, IEBUPDTE is used to copy a sequential data set from one direct
access volume to another. User labels are processed by user exit routines.

72
IILABELS JOB , MSGLEVEL=1
II EXEC PGM=IEBUPDTE,PARM=(MOD"MMMMMM)
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=OLDMAST,DISP=OLD,LABEL=(,SUL),
I I VOLUME=SER= 111111 , UNIT=disk
IISYSUT2 DD DSNAME=NEWMAST, DISP=(NEW, KEEP) , LABEL=(,SUL) ,
II UNIT=d~k,vOLUME=SER=XB182,SPACE=(TRK,(5,10))
IISYSIN DD DSNAME=INPUT,DISP=OLD,LABEL=(,SUL),
I I VOLUME=SER=222222, UN I T=disk
II
(Input data set)

.1

.1

.1
II

REPRO LIST=ALL,INHDR=SSSSSS,INTLR=TTTTTT,
OUTHDR=XXXXXX,OUTTLR=YYYYYY

ENDUP

The control statements are discussed below:

• SYSUTI DD defines the input sequential data set, which resides on a disk
volume.

C

• SYSUT2 DD defines the output sequential data set, which will reside on a disk
volume.

• SYSIN DD defines the control data set.

• The REPRO Function statement indicates that the existing input sequential data
set is to be copied to the output data set. This output data set is to be listed on
the message data set. The user's label processing routines are to be given control
when header or trailer labels are encountered on either the input or the output
data set.

• ENDUP indicates the end of the control data set.

IEBUPDTE Example 10

13-26 OS/VSl Utilities

In this example, a partitioned generation consisting of three members is to be used
as source data in the creation of a new generation. IEBUPDTE is to be used to add
a fourth member to the three source members and to number the new member. The
resultant data set is to be cataloged as a new generation.

II JOB
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSNAME=A.B.C(O),DISP=OLD
IISYSUT2 DD DSNAME=A. B. C(+1), DISP=(, CATLG), UNIT=disk,
II VOLUME=SER=111111,SPACE=(TRK,(100,10,10)),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
IISYSIN DD DATA
.1 REPRO NAME=MEM1,LEVEL=00,SOURCE=0,LIST=ALL
.1 REPRO NAME=MEM2,LEVEL=00,SOURCE=0,LIST=ALL
.1 REPRO NAME=MEM3,LEVEL=00,SOURCE=0,LIST=ALL
.1 ADD NAME=MEM4,LEVEL=00,SOURCE=O,LIST=ALL
.1 NUMBER NEW1=10,INCR=5

(data cards comprising MEM4)

.1 ENDUP
1*

The control statements are discussed below:

• SYSUT1 DD defines the latest generation, which is used as source data.

• SYSUT2 DD defines the new generation, which is created from the source
generation and from an additional member included as input and data.

• The REPRO Function statements reproduce the named source members in the
output generation.

• The ADD Function statement specifies that the data cards following the input
stream be included as MEM4.

• The NUMBER Detail statement indicates that the new member is to have
sequence numbers assigned in columns 73 through 80. The first record is
assigned sequence number 10. The sequence number of each successive record is
incremented by 5.

• ENDUP signals the end of input card data.

Note: This example assumes that a model DSCB exists on the catalog volume on
which the index was built.

IEBUPDTE Program 13-27

pJHWijt.#;I!ttWMW:!'¥"W· f#' t ' I Mft't '@'iHtW"dbILtHiHwIIWI'W'Nl'lM-" t t t 'V'M' It .. Wi' t#W:tt ***tHtH#\#dt# tttttHMH

lRHATl~AS PROGRAM

Input and Output

IEHATLAS is a system utility used with direct access device when a defective track
is indicated by a data check or missing address marker condition.

IEHA TLAS can be used to locate and assign an alternate track to replace the
defective track. Usable data records on the defective track are retrieved and
transferred to the alternate track. A replacement for the bad record is created from
data supplied by the user and placed on the alternate track.

In a simple application, IEHA TLAS is used as a separate job after an abnormal
termination of a problem program. Input data necessary for execution of
IEHATLAS-the address of the defective track and replacement records-may be
obtained from the dump and from backup data.

A more complex use of IEHATLAS may involve the preparation of a user's
SYNAD routine, which reconstructs the necessary input data and invokes
IEHATLAS dynamically.

When IEHATLAS is invoked, it attempts to write on the defective track. If the
subsequent read-back check indicates that the attempt was successful, a message is
issued on the SYSOUT device. If not, a supervisor call routine (SVC 86) is entered
automatically.

The SVC routine locates and assigns an alternate track. (If a defective track already
has an alternate and an error occurs on that alternate, the SVC routine assigns the
next available alternate. All of the valid data records on the defective track are
retrieved and transferred to the alternate track. The input record is written on the
alternate track in the correct position to recover from the previous error.

When a READ error occurs and a complete recovery is desired, IEHDASDR can
be used to produce a listing of error data on a track. Using this data, the input data
record for IEHATLAS can be created. The replace function can then be performed
by executing IEHA TLAS.

IEHATLAS supports all current DASD, as listed in the Device Support section of
this manual, except the MSS staging packs and virtual volumes.

IEHATLAS uses the following input: (1) a description of the defective track,
specifying the cylinder, track, record, key, and data length (in hexadecimal
notation), (2) an indication if WRITE Special is needed, and (3) a valid copy (in
hexadecimal notation) of the bad record.

IEHATLAS produces as output: (1) a message, issued on the SYSOUT device,
containing the user's control information, the input record, and diagnostics, (2) the
input record, written on either the original (defective) track or on an alternate track
containing the usable data taken from the defective track, and (3) the return
parameter list (specifying a maximum of three error record numbers in hexadecimal
when an unrecoverable error occurs).

lEHA TLAS Program t 4- t

Control

Job Control Statements

IEHATLAS is controlled by job control statements and utility control statements.
The job control statements are used to execute or invoke IEHA TLAS and to define
the data sets used and produced by IEHATLAS.

A utility control statement is used to specify whether the bad record is a member of
the volume table of contents or· a member of some other data set. It is also used to
indicate whether or not the WRITE Special CCW command is to be used for track
overflow records.

Figure 14-1 shows the job control statements necessary for using IEHATLAS.

Statement

JOB

EXEC

SYSPRINT DD

SYSUTI DD

SYSIN DD

Use

Initiates the job.

Specifies the program name (PGM=IEHATLAS) or, if the job control
statements reside in a procedure library, the procedure name.

Defines a sequential data set that contains the output messages issued by
IEHATLAS.

Defines the data set that contains the bad record.

Defines the control data set, which contains the utility control statement
and a copy of the bad record.

Figure 14-1. IEHATLAS Job Control Statements

Utility Control Statement

Figure 14-2 shows the utility control statements necessary for using IEHATLAS.

Statement

TRACK

VTOC

Use

Specifies that an alternate track is to be assigned for a track that does not
contain VTOC records.

Specifies that an alternate track is to be assigned for a track that contains
VTOC records.

Figure 14-2. IEHATLAS Utility Control Statements

TRACK or VTOC Statement

14-2 OS/VSl Utilities

The TRACK or VTOC statement is used to identify the defective record.

Care should be taken to ensure that the input record data length doe~ not exceed
the track size. This is especially important when the WRITE Special command is
specified because the error may not be recognized immediately by the system.

The TRACK or VTOC statement must not begin in column 1.

Input data (consisting of the hexadecimal replacement record) begins in column 1
immediately following the utility control data. Input data may continue through
column 80. -As many cards as necessary may be used to contain the replacement
record. All columns (1 through 80) are used on the additional cards.

IEHA TLAS is designed to replace an error record with a copy of that record. It
cannot be used to replace a record with another of a different key and/or data
length.

Return Codes

An end-of-file record cannot be changed; therefore, input for key and/or data
UtaU1S iii t; i!:;l1Ui t;U.

The format of the TRACK or VTOC statement is:

{TRACK=bbbbcccchhhhrrkkdddd [S] I
VTOC =bbbbcccchhhhrrkkdddd }

Return Code

o
4

8

12

16

20

24

28

32

36

40

48

52

56

60

Meaning

Successful completion; ATLAS has assigned an alternate track.

The device does not have software-assignable alternate tracks.

All the alternate tracks for the device have been assigned.

The requested main storage space is not available.

There was an I/O error in the alternate track assignment after N attempts
at assignment (where N= 10% of the assignable alternate tracks for this
device).

The error is a condition other than a data check or missing address
marker.

There is an error in the Format 4 DSCB that prevents ATLAS from
reading it.

The user-specified error record is the Format 4 DSCB, which ATLAS
cannot handle because the alternate track information is unreliable.

ATLAS cannot handle the error found in the count field of the last record
on the track.

There are errors in the Home Address or in Record Zero.

ATLAS found one or more errors in record(s) and assigned an alternate
track. 1) There was an error on an end-of-file record. 2) ATLAS
encountered an error in the count field. 3) There were errors in more than
three count fields.

ATLAS found no errors on the track and assigned no alternate track.

Because of an I/O error, ATLAS cannot reexecute the user's channel
program successfully.

The system does not support track overflow.

The track address provided does not belong to the indicated data set.

Figure 14-3. Return Codes from ATLAS

IEHA TLAS Program 14-3

Operands

bbbb

cccc

dddd

hhhh

rrkk

S

Applicable Control
Statements

TRACK
VTOC

TRACK
VTOC

TRACK
VTOC

TRACK
VTOC

TRACK
VTOC

TRACK

t 4-4 OS/VS t Utilities

Description of Operands/Parameters

bbbb
This number must be zeros.

ecce
is the number of the cylinder in which the defective track
was found.

dddd
is the data length of the bad record. (When a WRITE
Special command is used, dddd is the length of the record
segment.)

hhhh
is the defective track number.

rrkk

S

is the record number and key length for the bad record.

is an optional byte of EBCDIC information that specifies
that the WRITE Special command is to be used (when the
last record on the track overflows and must be completed
elsewhere) .

w.t!BWfWM' 'St 'WtlNwttfl'Ui" 1'0'" I .1 •• ulniI!t;U'Wif"Wtf '\te' t b th stwtM it tW'WettthWWW#' W'ttttttfH 'Wb 'tIHifW''ttrtMi'" ''NtttWd

Restrictions

• 1 ne OlOCK SIze lor [ne i:) I i:)r.KU~ 1 Ui:1Li:1 ~t;L 111U~L Ut; (1 1l1UH.11'1V VI .1 ~.1 • .1l.l~ UJ.v~n..

size for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified.

• DISP=SHR must not be coded on the SYSUTI DD statement.

IEHA TLAS Examples

IEHATLAS Example 1

The following examples illustrate some of the uses of IEHATLAS. Figure 14-4 can
be used as a quick reference guide to IEHATLAS examples. The numbers in the
"Example" column point to examples that follow.

Operation

Get Alternate
Track

Get Alternate
Track

Get Alternate
Track

Get Alternate
Track

Comments

Write Special is included because of a
track overflow condition.

Alternate track assigned for a bad
end-of-file record.

Alternate track assigned for a bad
VTOC record.

Replace defective record zero.

Figure 14-4. IEHATLAS Example Directory

Example

2

3

4

Note: Examples which use disk in place of actual device-ids, must be changed
before use. See the Device Support section in the Introduction to this manual for
valid device-id notation.

In this example, the data set defined by SYSUTI contains the bad record. An
alternate track on the specified unit and volume will be assigned to replace the
defective track.

IIJOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
IISTEP EXEC PGM=IEHATLAS
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=NEWSET,UNIT=d~k,vOLUME=SER=333333,
II DISP=OLD
IISYSIN DD *

TRACK=00000002000422020006S
F3F1C2C2FOFOOOOO
1*
The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages can be written.

• SYSUTI DD defines the data set that contains the bad record.

• SYSIN DD defines the control data set, which follows in the input stream.

• TRACK specifies the cylinder and track number for the defective track, and the
record number, key length, and data length of the bad record. In this example,
the input record is to be placed on cylinder two, track four, record 22; it has a
key length of two with a logical record length of six. The WRITE Special (S)
character is used because there is a track overflow condition.

IEHATLAS Program 14-5

IEHATLAS Example 2

IEHATLAS Example 3

The input record in this example is a typical hexadecimal record as defined by a
TRACK statement. The input record contains eight bytes (data length = 6, key
length = 2).

In this example, an alternate track is assigned for a bad end-of-file record.

//JOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
//STEP EXEC PGM=IEHATLAS
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=EOFSET,UNIT=d~k,vOLUME=SER=333333,
// DISP=OLD
//SYSIN DD *

TRACK=00000001000003000000
/*

The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages can be written.

• SYSUT1 DD defines the data set that contains the bad record.

• SYSIN DD defines the control data set, which follows in the input stream.

• TRACK defines an end-of-file record on cylinder one, track zero, record three.
Input data other than the utility control statement is not required.

In this example, an alternate track is assigned for a bad volume table of contents
record.

//JOBATLAS JOB 06#990,SMITH,MSGLEVEL=1
//STEP EXEC PGM=IEHATLAS
//SYSPRINT DD SYSOUT=A
/ /SYSUT1 DD UNIT=disk, VOLUME=SER=222222, DISP=OLD
//SYSIN DD *

VTOC=000000000005022C0060
D6C2D1C5C3E340
40404040F1F2F3F1F1FOF000014401360000000100
000040008000000FOOOF00033333333333333333310DDD00000100OOOAOOOOOOOAOOOOOOOOOOOOOO
00
/*

14-6 OS/VSl Utilities

The control statements are discussed below:

• SYSPRINT DD defines the device to which the output messages can be written.

• SYSUT1 DD defines the data set that contains the bad record.

• SYSIN DD defines the control data set, which follows in the input stream.

• VTOC defines the location of the bad VTOC record as track five of cylinder
zero. The record number is 2 with a key length of 44. Record length of the bad
record is 96.

The input record in this example is a typical hexadecimal record as defined by the
VTOC statement. The input record contains 140 bytes (data length = 96, key
length = 44).

"UM'Wf'uMLifb'¥'#'W*"t*WY'rt!\utI'P,±,'ltH'ehl¥;It' 1 .mw h" 'Ii' '"",Im!eft l'ilI"rt b # j I t tiM '\ rtf ti It HI dtthh'Htd'MW&tI:btHtthHtt±n: W.'.-tlLl._ MnNIbt' H f

IEHATLAS Example 4

In tnts example, tne replacement recoro IS .K.ecoro u.

JOB 06#990,SMITH,MSGLEVEL=1
EXEC PGM=IEHATLAS
DD SYSOUT=A

IIJOBATLAS
IISTEP
IISYSPRINT
IISYSUT1 DD DSNAME=NEWSET,UNIT=d~k,vOLUME=SER=333333,
II DISP=OLD
IISYSIN DD *

TRACK=00000002000400000008
0000000000000000
1*
The control statements are discussed below:

SYSPRINT DD defines the device to which the output messages can be written,

• SYSUTI DD defines the data set that contains the bad record.

• SYSIN DD defines the control data set, which follows in the input stream.

• TRACK specifies the bin, cylinder, and track number for the defective track,
and the record number, key length, and data length of the bad record. In this
example, the input record is to be placed on cylinder two, track four, record
zero; it has a key length of zero with a logical record length of eight. The input
record in this example is a typical hexadecimal record as defined by a TRACK
statement. The input record contains eight bytes (data length=8, key length=O).

IEHATLAS Program 14-7

IEHDASDR PROGRAM

Note: IEHDASDR is no longer supported for OS/VSl. DASD initialization and
maintenance should be done with Device Support Facilities, Program Product
5652-VSl, as described in Device Support Facilities User's Guide and Reference.

IEHDASDR is a system utility used to prepare direct access volumes for use and to
assign alternate tracks on direct access volumes.

In addition, IEHDASDR can be used to dump the entire contents or portions of a
direct access volume to a volume or volumes of the same direct access device type,
to a tape volume or volumes, or to a system output device. Data that is dumped to a
tape volume is arranged so that it can subsequently be restored to its original
organization by IEHDASDR or !BCDMPRS.

IEHDASDR can be used with volumes containing VSAM and non-VSAM data
sets. Information about VSAM data sets can be found in OS/VSl Access Method
Services.

Only the special MSS initialize function is allowed on MSS staging packs.

The program can be used to:

• FORMAT: Assign alternate tracks for defective tracks. Write RO and erase the
rest of the track. List the alternate and defective tracks. Then QUICK DASDI to
make the direct access volume suitable for operating system use.

• ANALYZE: Analyze tracks, assign alternate tracks for defective tracks, and
perform QUICK DASDI functions to make 2314 or 2305 direct access volumes
suitable for operating system use.

• LABEL: Change the volume serial number of a formatted direct access volume.

• GET AL T: Assign alternate tracks.

• DUMP: Create a backup or transportable copy of a direct access volume, or list
the contents on a system output device.

• RESTORE: Copy dumped data from a tape volume to a direct access volume.

• PUTIPL: Install a user-supplied IPL bootstrap and IPL text program on a
nonsystem residence DASD volume.

Initializing a Direct Access Volume

IEHDASDR can be used to initialize a direct access volume by two methods:

A non-QUICK DASDI:

1. Unassign all alternate tracks.

2. Rewrite the home address and/or record zero (HA/RO) on all tracks.

3. Test flagged defective tracks and recover them if no errors are detected.

4. Assign defective tracks to new, alternate tracks.

5. Perform all other functions of QUICK DASDI.

A QUICK DASDI:

1. Write IPL records on track 0 (records 1 and 2).

2. Write volume labels on track 0 (record 3) and provide space for additional
records, if requested (reads alternate tracks and decreases the total count of the
alternates by one when an alternate is found defective or assigned).

IEHDASDR Program 15-1

15-2 OS/VS 1 Uti1ities

3. Construct and write a volume table of contents (VTOC).

4. Write an IPL program, if requested, on track O.

5. Optionally, check for tracks that have been previously designated as defective
(flagged) and have had alternate tracks assigned.

6. Optionally, write a track descriptor record (record 0) and erase the remainder of
each track. May also attempt to reclaim any track that has the defective bit on in
the flag byte of the home address.

IEHDASDR can be used to format 3350 devices; a modified surface analysis will
be defaulted for OFFLINE ANALYZE (PASSES= 1). The analysis procedure will
be:

• Unassign all alternates.

• Rewrite the home-address and record-zero (HA/RO) on all tracks.

• Perform surface analysis on previously flagged defective tracks and reclaim them
if no errors are detected, otherwise, assign an alternate.

• Write a volume label, VTOC, and IPL text, if supplied.

Figure 15-1 shows a direct access volume after it has been prepared for use. A
direct access volume can be initialized in this manner using IEHDASDR.

Standard home
address

IPL
bootstrap
records

Figure 15-1. Direct Access Vo1ume Initialized Using IEHDASDR

Volume
label
record

~iHfii4tL4 kLI''t''\b e ij'Utttet'ltili'ily'Mt'uLffl'b HI!¥,"'WtW"*M'twtULIIM '¥NWKtM "'HtwW+ww, PUtl'";,,w,'NH'ke.· !·,'t &## Itt #&#*'\1\# »t' # 't'

IEHDASDR can be used to attempt to reclaim tracks on a 3340/3344 device with
..... ~ ...I~~""";HO h;+ ,.,. ... ; ... +ha h"' a "rlrlr<>cc (l-l A. '\ fbo h"tp Whpn thp AN A TY7.P

function is executed on these devices, with the FLAGTEST=NO option, the
volume is scanned for flagged defective tracks.

• When a track is found flagged (defective), the track is surface analyzed.

• If no defect is indicated, the track is returned to service with the defective bit off
in the home address flag byte and a standard RO is written.

• A defective primary track is assigned the next available alternate.

If over a period of time the same track on a particular 3340/3344 shows a history
of failures, or has been flagged by the manufacturer, the track is probably marginal
and should be assigned an alternate even if no error occurs on the surface analysis.

lnitialize-MSS Staging Volumes

IEHDASDR can be used to prepare a 3330 or 3330-1 volume for use with MSS as
a staging pack. The format of the staging pack is as follows:

Primary tracks

Alternate tracks

3330

0-408

409,410

3330-1

0-808

809-814

Note: A I-track VTOC will be written on track 2 of cylinder 0 with a format 5
DSCB that indicates no free tracks.

Changing the Volume Serial Number of a Direct Access Volume

IEHDASDR can be used to change the volume serial number of an initialized direct
access volume. Optionally, a one- to ten-character owner name can be placed in the
volume label record (record 3 of track 0). If an owner name already exists, it is
overwritten with the new name.

Note: All cataloged data sets residing on a volume whose label is changed must be
recataloged, if the catalog reflects the old serial number.

Assigning Alternate Tracks for Specified Tracks

IEHDASDR can be used to assign an alternate track on a disk volume. An
alternate track can be assigned for any track, whether it is defective or not. If the
specified track is an alternate, a new alternate is assigned; if the specified track is
an unassigned alternate, it is flagged to prevent its future use.

For 3350 volumes only, surface analysis will be performed to determine if the track
is defective. Alternates will be assigned only if an error is detected.

Creating a Backup, Transportable, or Printed Copy

IEHDASDR can be used to dump a direct access volume or a portion of a volume
to any number of tape volumes or volumes of the same direct access device type, or
to a system output device. The program can dump a single track, a group of tracks,
or an entire volume.

When an entire volume is dumped:

• All primary tracks (for which no alternate tracks are assigned) are dumped.

• When a defective primary track is found, the alternate track is dumped in place
of the primary track.

IEHDASDR Program 15-3

Each track to be dumped will have all of its data except the home address (HA)
and the count field of record zero (RO) copied to the receiving volume. The dump
function of IEHDASDR is dependent on the validity of the Count field of every
record on the track being dumped. The results of reading an erroneous R1 count
field are unpredictable, while R2 through Rn will cause the dump function to
terminate.

A receiving direct access volume retains its own serial number unless the user
specifies that it is to be assigned the serial number of the direct access volume being
dumped.

Except for a printing operation, only data that is owned is dumped; IEHDASDR
checks the first or only Free Space (Format 5) data set control block (DSCB) in
the volume table of contents. The Free Space (Format 5) DSCB identifies unowned
(unused) space on the direct access volume. Whenever an unowned track is
encountered, a dummy record, containing a home address and record zero, is
written on the receiving volume. When data is dumped to a system output device,
the entire range of specified tracks is dumped.

A printing operation prints each record in hexadecimal. In addition, all printable
characters are also represented in EBCDIC.

Figure 15-2 shows the format of printed output. Each track is identified by its
absolute track address (cccchhhh). The RO data field is printed on the same line as
the track address. Each printed record is preceded by a count field that identifies
the applicable track address (cccchhhh), the record number of the record being
printed (rr), and the key and data length (kk and dddd) of the record.

If an alternate track is printed in place of a primary track, it is identified in the
printout by the primary track address.

Copying Dumped Data to a Direct Access Volume

When a direct access volume is dumped to a tape volume, the data is placed in a
format that is specially suited for the tape volume. IEHDASDR can be used to
restore the format of the dumped data and place the data on the same type of direct
access volume as the original volume; that is, data originally dumped from a 2314
volume can be restored to a 2314 volume, etc.

Identical copies of dumped data can be restored to any number of volumes of the
same direct access device type as the original volume during the execution of a
single restore operation. In addition, data that was dumped by IBCDMPRS can be
restored.

A receiving direct access volume retains its own serial number unless the user
specifies that it is to be assigned the serial number of the direct access volume

*** TRACK cccchhhh RO DATA xxxxxxxxxxxxxxxx

COUNT cccchhhhrrkkdddd
key and data fields

(hexadecimal)

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxx xxx xx xxxxxxxx xxxxxxxx *
000032 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx *

etc.

COUNT cccchhhhrrkkdddd

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx *
000032 xxxxxxxx xxxxxxxx xxxxxxxx etc.

*** TRACK cccchhhh RO DATA xxxxxxxxxxxxxxxx

COUNT cccchhhhrrkkdddd

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxx xxx xx xxxxxxxx xxx xxx xx xxxxxxxx xxxxxxxx *
000032 xxxxxxxx xxxxxxxx etc.

key and data fields

(EBCDIC)

Figure 15-2. Format of a Direct Access Volume Dumped to a Printer Using IEHDASDR

15-4 OS/VSl Utilities

)"if II N" 'I .,/ •• 'M t t \' ,.,.·".tHtW ** tMt ttbWMt ttWtbbb ! .. '.e.tII.

originally dumped. If multiple direct access volumes are to be dumped to, and the

receiving volumes are assigned that serial number.

Dumping and Restoring Unlike Devices

With the 3330, 3330-1, and 3340, you have the capability of upward device
migration. That is, a 3330 can be dumped or restored to a 3330-1 volume, but a
3330-1 cannot be dumped or restored to a 3330. Likewise, a 3340, 35-megabyte
model can be dumped or restored to a 3340, 70-megabyte model, but the
70-megabyte model cannot be dumped or restored to the 35-megabyte model.

If the input volume contains a VSAM catalog or VSAM data sets, upward
migration with IEHDASDR to a different device type should not be done due to
device-dependent information in the VSAM catalog. The Access Method Services
utility must be used to move the VSAM catalog or data set.

When any of these device migration functions are performed, the 'DOS' bit in the
receiving volume's Format 4 DSCB is set to indicate the Format 5 DSCB is
incorrect. It is recommended that a job step be executed to allocate a temporary
data set for the receiving volume to cause the DADSM function to reset the DOS
bit and correct the Format 5 DSCB.

Formatting a Direct Access Volume

IEHDASDR can be used to format a direct access volume. A volume can be
formatted to:

• Check a direct access volume for previously flagged tracks. No formatting is
performed on known defective tracks. The defective and the alternate tracks are
printed.

• Format each track by writing RO and erase the rest of the track.

• Assign alternate tracks for defective tracks.

• Construct IPL bootstrap records (records 1 and 2 of track 0), a volume label
record (record 3 of track 0), and a volume table of contents (VTOC), whose
size and placement are determined by the user.

• Optionally, write an IPL program record and provide owner information in the
volume label record.

Writing IPL Records with the PUTIPL Function

IEHDASDR can be used, via the PUTIPL function, to write user-supplied IPL
bootstrap records and an IPL program on cylinder 0, track 0, of any initialized
DASD volume, other than the system residence volume. See Figure 15-1.

The contents of the IPL records and the contents of the records that make up the
program are not checked by IEHDASDR. It is the user's responsibility to ensure
that the IPL records can load an executable program.

The first IPL record must contain a PSW followed by two CCWs (channel
command words). The CCWs must have the following hexadecimal formats:

First CCW:

Second CCW:

06xxxxxx60000090

08xxxxxxOOOOOOOO

IEHDASDR Program 15-5

15-6 OS/VS 1 Utilities

The first CCW is a command to read in the second IPL record at main storage
address xxxxxx. The second CCW is a transfer-in-channel command (a branch) to
the CCW that begins the second IPL record.

The second IPL record must be a 144-byte channel program. Bytes 32 to 42 of this
record must contain zeros.

The program may consist of:

• One record, not longer than 3K (3072) bytes.

• Two records, neither longer than 3K (3072) bytes.

• Three records, none longer than 2K (2048) bytes.

Figure 15-3 shows an input data set with three program records.

IPL
Records

-
144

bytes

'- 24 bytes

Program Records

-

2K :b;'.,
I

Figure 15-3. Input Data Set with Three Program Records

2K ;;,., 80
bytes

If the output volume does not contain user labels, IEHDASDR writes program
records after the volume label record. Figure 15-4 shows where program records
are written when the output volume does not contain user labels.

Figure 15-4. Cylinder 0, Track 0 Fragment without User Labels

If user labels have been written after the volume label, the user can specify that
IEHDASDR:

• Write over the user labels.

• Put the program records after the user labels when a non-2314 volume is used.

Figure 15-5 shows program records to be written after user labels.

The following errors are possible when using IEHDASDR PUTIPL function to
write IPL records and a program on a direct access volume:

• A 2314 output volume contains user labels, but the user has not specified that
the user labels are to be overwritten.

• The total input (IPL records and program) consists of fewer than three records.

WI'L; til t' 'W" '+hMP"j*lbWLtl,lt!tIWtlM*tHMfHlifW"'tW ,. M' ;,'ID!ltf#bl2W' 1M! 'I ... WiW.+ *****b Wb h k#'Mt¥rta!t#:tWttW'W"WltWtt** *#tWMt*#*

Input and Output

WriTes Program Records Here

Figure 15-5. Cylinder 0, Track ° Fragment with User Labels

• The first and second IPL records are not 24 bytes and 144 bytes in length,
respectively.

• A third program record is longer than 2K bytes.

• The output device is not a direct access device.

• The output volume contains a VTOC on cylinder 0, track 0.

• The output volume is the system residence volume.

IEHDASDR uses as input a control data set containing utility control statements,
and optionally, IPL text.

The primary output or result of executing IEHDASDR is determined by the
application. A sequential message data set is created to list informational messages
(for example, control statements used), dumped data (for a print operation), and
any error messages.

IEHDASDR provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that an unusual condition was encountered; however, the
overall result is successful. A warning message is issued.

• 08, which indicates that a specified operation did not complete successfully. An
attempt is made to perform any additional operations.

• 16, which indicates that either an error occurred upon invoking IEHDASDR, or
IEHDASDR was unable to open the input or message data set. The job step is
terminated.

IEHDASDR Program 15-7

Control

Job Control Statements

15-8 OS/VS 1 Utilities

IEHDASDR is controlled by job control statements and utility control statements:
The job control statements are used to execute or invoke IEHDASDR and define
the data sets used and produced by IEHDASDR. The utility control statements are
used to control the functions of the program.

Figure 15-6 shows the job control statements necessary for using IEHDASDR.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHDASDR) or, if the job control
statements reside in a procedure library, the procedure name. Additional
information can be entered in the P ARM parameter of the EXEC statement;
see "PARM Information on the EXEC Statement" below.

STEPCAT Is required when a volume contains a VSAM data set which is not cataloged
on the master catalog.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access device.

any name DD Defines a direct access device type.

tapename DD Defines a magnetic tape unit.

SYSIN DD Defines the control data set. The control data set usually resides in the input
stream; however, it can be defined as a blocked or unblocked sequential data
set or as a member of a procedure library.

Figure 15-6. IEHDASDR Job Control Statements

The "anyname" DD statement can be entered:

Ilanyname DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

If more than one volume is to be processed on a single mountable device, deferred
mounting can be specified in the "anyname" DD statement by entering:

Ilanyname DD UNIT=(xxxx"DEFER),VOLUME=(PRIVATE, ...),

I I DISP=(NEW,KEEP)

The "anyname" DD statement is not used for an operation that analyzes an offline
direct access volume.

If the volume serial number of a volume to be processed online is not known, it
may be possible to make a nonspecific, PRIVATE volume request on a specific
unit; for example:

Ilanyname DD UNIT=(191"DEFER),VOLUME=PRIVATE,DISP=(NEW,KEEP),

II SPACE=(TRK,(1,l)

In this case, the operator is asked to mount a scratch volume on that unit. See
"Appendix C: DD Statements for Defining Mountable Devices" for the appropriate
DD statement and for a discussion of how to make a nonspecific unit request.

If an IEHDASDR operation produces a volume serial number that is a duplicate of
a volume serial number already allocated within the system, the volume to which
the duplicate number is assigned is made unavailable to the system. The operator is
asked to remove the applicable volume at the completion of the operation.

The "tapename" DD statement can be entered:

Iitapename DD UNIT=xxxx,VOLUME=SER=xxxxxx,LABEL=(... , ...),

ij _Hit. t* tddstH

/ / DISP=(. ... ,KEEP),DCB=(TRTCH=C,DEN=x)

unit,
deferred mounting can be specified by:

/ /tapename DD UNIT =(xxxx"DEFER), VOLUME=(PRIVATE, ...)

If standard labeled tapes are specified, the DSNAME should also be
provided.

The "anyname" DD and "tapename" DD statements are
referred to by utility
control statements for program operation.

Both the SYSIN and the SYSPRINT data set can have a blocking factor
of other than 1.

P ARM Information on the EXEC Statement

Considerations

The EXEC statement for IEHDASDR can contain PARM information that is used
by the program to control line density on output listings and to indicate the
maximum number of operations of the same type that can be performed
concurrently in the job step.

The EXEC statement can be coded:

/ / EXEC PGM=IEHDASDR{,PARM='N=n'}
{,PARM='LINECNT=xx'}
{,PARM='LINECNT=xx,N=n'}

The LINECNT value specifies the number of lines per page in the listing of the
SYSPRINT data set. The number xx is a 2-digit decimal number ranging from 01 to
99. If LINECNT is omitted, the number of lines per page is 58.

The N value specifies a decimal number from one to six that represents the
maximum number of like functions that can be performed concurrently by
IEHDASDR, assuming that adequate system resources are available. If N is
omitted, up to six ANALYZE, FORMAT, DUMP, or RESTORE operations are
performed concurrently-according to the number of successive like statements in
the input stream. (See "Utility Control Statements.")

System resources permitting, multiple output copies can be specified in any or all of
the concurrent operations.

For example, if N=2 and four DUMP statements appear in succession, the first two
dump operations are performed concurrently. As each dump operation is completed
and system resources become available, a new dump operation begins.

Data can be dumped from the system residence volume (the IPL volume); however,
this is the only IEHDASDR operation that can be performed on that volume.

To reformat native 3330, 3330-1, or 3340 VM packs to OS/VS format, use the
FORMAT function.

To reformat emulated 3330, 3330-1, or native 3350 VM packs to OS/VS format,
use the ANAL YZE (offline) function.

Because IEHDASDR can change serial numbers and existing data on a direct
access volume, operating precautions must be followed by users who have two or
more central processing units sharing the same direct access volume.

IEHDASDR Program 15-9

15-10 OS/VS 1 Utilities

If IEHDASDR is run in a multiprogramming environment, you must choose a
combination of DD statements (defining mountable devices) that will ensure that
volume integrity is maintained. Refer to "Appendix C: DD Statements for Defining
Mountable Devices."

If non-VSAM password-protected data sets reside on volumes that are used by
IEHDASDR, the following considerations must be made:

• When dumping from a volume containing read password-protected data sets,
each data set must be described in a separate DD statement having a unique
ddname. When the program is executed, the operator must supply the correct
password (in answer to a console message) for each password-protected data
set.

• When dumping to a tape volume from a direct access volume containing
non-VSAM password-protected data sets, the DD statement defining the tape
volume must include a DSNAME parameter: In addition, the LABEL parameter
must define a standard labeled tape, include a PASSWORD subparameter, and
specify or imply a file number of 1.

• When restoring from a tape volume, a DSNAME parameter must be included in
the DD statement defining the tape volume.

• During the DUMP, RESTORE, ANALYZE, and FORMAT functions (see
"Utility Control Statements"), the direct access "TO" volume is checked for
password-protected data sets. At this time the operator must supply the correct
password for each password-protected data set encountered.

Refer to OS/VSl Data Management for System Programmers for additional
information on non-VSAM data set password protection.

If VSAM data sets reside on volumes that are used by IEHDASDR, the following
considerations must be made:

• All VSAM data spaces are described by a Format-1 DSCB which indicates that
the data set is password protected. Therefore, the catalog in which the data
space is defined must be identified to IEHDASDR by a STEPCA T DD
statement or defaulted to the master catalog, whether or not any VSAM data set
is password protected.

• The catalog master password or the VSAM data set master password must be
supplied by the operator for all VSAM password-protected data sets within each
data space.

• A separate DD statement for each VSAM data set is not required as is the
requirement for non-VSAM password-protected data sets.

• When no non-VSAM password-protected data sets reside on a volume, the
restore tape(s) need not be password protected.

• PURGE~ YES option must be specified on the RESTORE control card, if the
receiving volume of a restore operation contains VSAM data spaces.

Refer to OS/VSl Access Method Services for additional information on VSAM
data set password protection.

IEHDASDR can perform up to six concurrent operations of ANAL YZE,
FORMAT, DUMP, or RESTORE operations (see "Utility Control Statements").
This feature, which can shorten the time required to execute the program, is
controlled by (1) the number of devices defined for use and (2) the physical
arrangement of utility control statements in the input stream. For example,
assuming that the required devices are defined and available, a combination of six

.. bib ,,,,,tli' illtlNltWtth ,,!!\!I" fIIM'M'.,,' ttl' 'tt ±" ,,",eP'ld"h* .'

successive statements of the same type permits six concurrent operations to take
",1 ... """ U"U7""..,,,,, ... f th.,. nt111tv £'nntrnl ~\-~tptnpnt~ ~rp ~rr~nD'Pc1 ~o that no onerations

of the same type appear in succession, no operations are performed concurrently,
even though many devices might be defined for use.

Note: The number of concurrent operations allowed can be overridden by an
EXEC statement P ARM value.

Utility Control Statements

ANALYZE Statement

Figure 15-7 shows the utility control statements necessary for using IEHDASDR.

Statement

ANALYZE

ANALYZEMSS

FORMAT

LABEL

GETALT

DUMP

RESTORE

IPLTXT

PUTIPL

Use

Analyzes the recording surface to test for defective tracks (2314 and 2305
only), assigns alternates for any defective tracks found, and initializes the
volume to make it ready for use. Format 3350 volumes in 3350 or 3330 or
3330-1 mode.

Analyzes the recording surface of a MSS device to test for defective
tracks, assigns alternates for any defective tracks found, and formats the
volume to make it ready for use.

Write RO on each track and initialize the volume to make it ready for use.

Changes the' volume serial number of a direct access volume and,
optionally, updates the owner field.

t)Test a track (2314 and 3350 only) and, if necessary, assign an alternate,
or 2) bypass testing and assign an alternate.

Dumps a single track, a group of tracks, or an entire direct access volume.

Restores a previously dumped direct access volume to a direct access
device.

Signals the beginning of IPL program text statements.

Specifies that IPL records and a program are to be written on a direct
access device.

Figure 15-7. IEHDASDR Utility Control Statements

For most operations, multiple copies of a source volume can be made. The program
can also perform from two to six ANALYZE, FORMAT, DUMP, or RESTORE
operations concurrently, according to the number of successive like statements in
the input stream; that is, up to six direct access volumes can be analyzed or
formatted, or dumped simultaneously, or up to six magnetic tape (restore) volumes
can be processed simultaneously.

The ANALYZE statement is used to analyze the recording surface of a 2314 or
2305. Bit patterns are written on a track, read, and tested for defects. If no defects
are found, the track is formatted to make it ready for system use.

An IEHDASDR job to initialize a Buffered-log device will not perform a surface
analysis. The ANAL YZE option can also perform a "QUICK DASDI".

When the ANALYZE option is performed on a 3340 with FLAGTEST=NO, an
attempt is made to reclaim any track that has the defective bit on in the flag byte of
the home address.

Note: If the device is online the volume label and VTOC are read, and the
information contained in them is used to initialize the volume. If the device is
offline, the volume label and VTOC information is ignored.

IEHDASDR Program 15-11

ANALYZE MSS Statement

FORMAT Statement

15-12 OS/VSl Utilities

The format of the ANALYZE statement is:

[label] ANALYZE TODD= {(cuu, ••.) I (ddname, •..)}

,VTOC=xxxxx

,EXTENT =xxxxx

[,NEWVOLID=serial]

[,IPLDD=ddname]

[,FLAGTEST= {YES I NO}]

[,PASSES= {n 10}]

[,OWNERID=name]

[,PURGE= {YES{NO}]

This statement is used to allow IEHDASDR to prepare a standard 3330 or 3330-1
volume for use as an MSS staging pack. Cylinders 409 and 410 for 3330 and 809
through 814 for 3330-1 will be assigned as alternates. Defective primary tracks will
be reassigned to this alternate area. A one track VTOC will be written on track 2
with a format 5 DSCB that indicates no free tracks.

The volume must be offline and the NEWVOLID must be specified. If other
ANALYZE parameters are specified, they will be ignored.

The format of the ANALYZE MSS statements is:

[label] ANALYZE TODD= {(cuu, ...)}

,NEWVOLID=serial

,MSS

[,OWNERID=name]

Note: To prepare an MSS staging pack for non-MSS use, an offline ANALYZE
followed by a FORMAT should be performed.

The FORMAT statement is used to prepare a volume for operating-system use.
Except for flag testing, no analysis is made prior to formatting a track. Previously
flagged disk tracks remain flagged; alternate tracks are assigned, where applicable.

The output includes a list of defective tracks and their assigned alternates.

Note: If a command reject is detected while a FORMAT operation is performed on
an assigned alternate track on an IBM 2305 Fixed Head Storage volume,
processing continues as if no alternate track existed. No action need be taken if
message IEH400I is typed out on the operator's console in response to this
condition.

If FORMAT cannot read a home address, it flags the track as being defective and
assigns an alternate track.

M'ft t 'Ib I rl t I ,elgH b Nit #+tCbl*tth" bl b Wi** rltth'ttW* 'Wb#. "tdtlt#ttHt #* eft' H. M.' 'd% 'ffltw* :ItHrd'H+b'±*Hh!iLk

LABEL Statement

GET AL T Statement

DUMP Statement

The format of the FORMAT statement is:

[label] FORMAT TODD=(ddname, ...)

,VTOC=xxxxx

,EXTENT =xxxxx

[,NEWVOLID=serial]

[,IPLDD=ddname]

[,OWNERID=name]

[,PURGE= {YES I NO}]

The LABEL statement is used to change the serial number of a direct access
volume and, optionally, to update the owner field in record 3 of track O. One
LABEL statement must be included for each volume that is to have its label
changed.

The format of the LABEL statement is:

[label] LABEL TODD= {cuu I ddname}

,NEWVOLID=serial

[,OWNERID=name]

The GET AL T statement is used to assign an alternate track for a specified disk
track if the volume was previously initialized.

For 3350 volumes, alternate tracks will be assigned only if an error is detected
during surface analysis.

Flags set by GETALT statement, for 3330 or 3330-1, tracks, cannot be removed
by IEHDASDR.

The format of the GET AL T statement is:

[label] GETALT TODD=ddname

,TRACK=cccchhhh

The DUMP statement dumps a single track, a group of consecutive tracks, or an
entire direct access volume to one or more direct access volumes of the same device
type, to one or more tape volumes, or to a system output device (printer assumed).
When dumping more than one file to the same tape volume, the tape is rewound to
the load point at the end of each dump operation.

An extra input/output error (data check) message is generated at the console when
the dump to SYSPRINT function encounters one of the following conditions:

• Missing address marker.

• Data check in count and key fields and/or data field.

• Input/output error on a search command.

• Missing address marker and no record found.

The additional data check message printed at the console is generated by the dump
function's error recovery procedure. However, the additional message is not

IEHDASDR Program 15-13

RESTORE Statement

15-14 OS/VSl Utilities

reflected by a SYNADAF message in the SYSPRINT data set. If a missing address
marker is encountered during a space count command, the function terminates with
a return code of 8.

Note: If multiple output volumes are specified in a DUMP statement and abnormal
completion of the DUMP operation occurs, the operation is terminated on all
output volumes.

Do not dump a volume and restore new data to that volume in the same job step.
IEHDASDR does not flush the input stream if an operation is unsuccessful; that is,
the program attempts to perform any remaining functions after encountering an
error. Thus, if a dump operation is unsuccessful, data is lost if a subsequent restore
operation places new data on the dumped volume.

Partial dumps of direct access volumes should be used with extreme caution.
Because only those tracks that are dumped are placed on the receiving volume, the
partially dumped data may not be usable. When partially dumped data is
subsequently restored, it is placed on the same tracks at it originally occupied.

When using the DUMP statement, do not specify the same ddname in more than
one TODD parameter in a single job step, except when the ddname is SYSPRINT.

When space permits, more than one direct access volume can be dumped to a
restore tape. Each dumped volume will be handled as a separate file.

When dumping to or restoring from a tape, specified as standard label or "BLP", a
disposition of KEEP should be specified in the DD statement for the tape.
Unlabeled tapes may have other disposition parameters.

When restoring from a restore file on a tape, the same file sequence number and
tape label format used in the dump operation must be used.

Intermixing of restore files with system data sets is not recommended because of
the unique format of the restore file.

The format of the DUMP statement is:

[label] DUMP FROMDD=ddname

,TODD=(ddname , •••)

[,CPYVOLID= {YES I NO}]

[,BEGIN =cccchhhh]

[,END=cccchhhh]

[,PURGE= {YES I NO}]

The RESTORE statement is used to restore a direct access volume or volumes from
a tape volume on which a dumped copy was previously placed.

Note: When a standard labeled restore tape created by IBCDMPRS is restored by
IEHDASDR, the DD card describing the tape for IEHDASDR can specify
LABEL = (2,BLP).

w.,wMM' it' ,"He., II t t t #' iff #*" L Wt rid Itdt+ ttM"._ t "tfflMrlrtd'''+'WWt

IPL TXT Statement

PUTIPL Statement

The format of the RESTORE statement is:

[label] RESTORE TODD=(ddname, ••.)

,FROMDD=ddname

[,CPYVOLID={YES I NO}]

[,PURGE{YES I NO}]

The IPL TXT statement is used to mark the beginning of IPL program text
statements. An ANALYZE or FORMAT statement must precede this statement.

IPL text need be included only once in the input stream; that is, IEHDASDR refers
to the first copy of IPL text encountered when performing multiple functions in a
single job step.

The format for the IPL TXT statement is:

[label] IPLTXT

The PUTIPL statement specifies that IPL bootstrap records and a program are to
be read from an input data set and written to cylinder 0, track 0 of a direct access
volume. As a result, cylinder 0, track 0 of the output volume will contain a program
that the user should be able to load from the console.

Note: If the PUTIPL function of IEHDASDR is used to write IPL records, the user
must supply both the IPL bootstrap records and the IPL (TXT) program. The
contents of the bootstrap records and the IPL text program are not checked by
IEHDASDR. The IPL text on SAMPLIB cannot be used, unless the user also
supplies the bootstrap records ahead of the IPL text.

The format of the PUTIPL statement is:

[label] PUTIPL FROMDD=ddname

,TODD=ddname

[,PURGE= {YES I NO}]

IEHDASDR Program 15-15

Operands

BEGIN

CPYVOLID

END

EXTENT

FLAGTEST

Applicable Control
Statement

DUMP

DUMP
RESTORE

DUMP

ANALYZE
FORMAT

ANALYZE

15-16 OS/VSl Utilities

Description of Operands/Parameters

BEGIN =cccchhhh
specifies, in hexadecimal, a cylinder number, cccc, and
head number, hhhh, that identify the first track to be
dumped. If BEGIN is omitted, the dump operation begins
with track O.

Default: Begins with track O.

CPYVOLID={YES I NO}
specifies whether receiving direct access volumes are to be
assigned the serial number of the dumped volume.

YES
specifies that all receiving direct access volumes are to be
assigned the serial number of the dumped volume.

NO specifies that receiving volumes are to keep their own
serial numbers.

END=eccchhhh
specifies in hexadecimal a cylinder number, cccc, and head
number, hhhh, that identify the last track to be dumped. If
only one track is to be dumped, both BEGIN and END
specify that track address.

Default: The last primary track of the volume is the last
track to be copied. (Alternate tracks are not dumped
unless they are assigned as alternates.)

EXTENT :::;xxxxxx
specifies the decimal length of the VTOC in tracks. The
VTOC cannot extend into the alternate track area or to a
second volume.

FLAGTEST={YESINO}
specifies whether a check is to be made for previously
flagged tracks. The default changes to NO for OFFLINE
initialization of 2314 or 2305 volumes. FLAGTEST is not
applicable to 3330, 3330-1, or 3350 volumes.

YES
specifies that each track is to be checked to see whether it
was previously flagged as defective. Alternate tracks are
re-assigned.

NO
specifies that surface analysis will be performed without a
check for previously flagged tracks on 2305 or 2314
volumes. On 3340 volumes "P ASSES= 1" is forced and
analysis is performed on each flagged (defective) track.

llWWMblWi/NtU*,ltlt*Lflf\!f±'tIl' ! , '\IH"\Y' N'¥".'W'lH,l, ,**,Ii u 1'1 "bt'ttrltHW *#1It *1#' tttld #tHeW". MtlLirttHLtt.#' Mt Hebe.±'

Operands

FROMDD

IPLDD

MSS

NEWVOLID

OWNERID

... __ I! __ L I _ r"'4 ___ .L_~ _ 1

Statement

DUMP
RESTORE
PUTIPL

ANALYZE
FORMAT

ANALYZEMSS

ANALYZE
ANALYZEMSS
FORMAT
LABEL

ANALYZEMSS
ANALYZE
FORMAT
LABEL

Description of Operands/Parameters

FROMDD=ddname
• specifies the ddname of the DD statement defining the

device containing the direct access volume from which a
copy or copies are to be made (for DUMP).

• specifies the ddname of the DD statement that defines
the tape volume containing the data to be restored. If
more than one tape volume is to be used as input, the
DD statement for the tape must indicate multiple
volumes for (RESTORE).

• specifies the ddname of the DD statement that identifies
the input data set. The DD statement must contain the
DSNAME and DISP parameters and, if the input data
set is not cataloged or passed from an earlier step, the
VOL and UNIT parameters (for PUTIPL).

IPLDD=ddname
specifies the ddname of a DD statement defining the data
set containing the IPL program. The IPL program can be
included in the SYSIN (input stream) data set, or it can be
defined as a sequential data set or a member of a
partitioned data set. If IPL text is included in the input
stream, an IPL TXT statement is used to separate the
ANAL YZE statement from the IPL program text
statements. Maximum IPL record size is restricted to 6,496
bytes.

MSS
specifies an MSS staging pack is to be prepared.

NEWVOLID=seriai
specifies a one- to six-character serial number. The serial
number is as-signed to all direct access volumes processed
through the use of this control statement. This parameter is
required for the analysis of a volume offline.

Default: The direct access volumes retain own serial
numbers.

OWNERID=name
specifies a one- to ten-character name or other identifying
information to be placed in the volume label record.
OWNERID is specified as a character string of any
alphameric, national character, hyphen (-), slash (/), or
period (.).

IEHDASDR Program 15-17

Operands

PASSES

Applicable Control
Statement

ANALYZE

15-18 OS/VSl Utilities

Description of Operands/Parameters

PASSES={n I O}
For 2305 or 2314: specifies the number of passes to be
made in analyzing a recording surface.

These values can be coded:

n

o

specifies the number of times a bit pattern test is to be
performed. The n value is a decimal number from 1 to
255.

specifies that the ANALYZE function is to perform a
QUICK DASDI.

Default: The bit pattern test is performed once on each
track.

For 3330:PASSES= 1 is not applicable; PASSES=O-do a
QUICK DASDI.

For 3340: PASSES is not applicable.

For 3350:PASSES= 1 (ONLINE) is not applicable;
PASSES=1 (OFFLINE)-write-HA and RO on each track
to convert volume format to 3330, 3330-1, or 3350 mode.
Test all defective (flagged) tracks and recover (unflag)
those that pass the surface analysis test. PASSES=O-do a
QUICK DASDI.

tWit _WI

Operands

PURGE

.HI

Statement

ANALYZE
FORMAT
DUMP
RESTORE
PUTIPL

Description of Operands/Parameters

PURGE= {YES I NO}
specifies whether the ANAL YZE, FORMAT, DUMP, or
RESTORE operations are to be terminated when an
unexpired data set is encountered, or, for PUTIPL only,
specifies whether user labels are to be overwritten.
PURGE does not apply when dumping to a restore tape.
PURGE = YES must be specified if the receiving volume of
a restore operation contains VSAM data spaces. If
PURGE is omitted and an unexpired data set is
encountered, the ANALYZE, FORMAT, DUMP, or
RESTORE operations are terminated. These values can be
coded:

YES
indicates that all unexpired data sets on the volume can be
overwritten provided that the operator signals his
concurrence when the first unexpired data set is
encountered, or, for PUTIPL only, specifies that the
program may be written over any user labels or over any
data that follows the volume label record.

If PURGE=YES is coded and an unexpired data set is
encountered, the operation is prompted. The operator
replies are:

• U, which indicates that all unexpired data sets on this
volume can be overwritten. (The ANAL YZE operation
continues.)

• T, which indicates that this volume contains unexpired
data sets that must not be overwritten.

NO
specifies that the various operations are to be terminated if
an unexpired data set is encountered, or, for PUTIPL only,
specifies that the program may not be written over
standard user labels. If the output device is a 2305 or
Buffered-log DASD, the program is written following any
standard user labels. If the output volume contains user
labels and the device is a 2314, there may not be enough
space on the track for the IPL program; in that case, the
write operation is terminated.

The PURGE parameter does not apply to
password-protected data sets; that is, the operator must
always respond with the proper password for each
password-protected data set encountered. If he is unable to
do so, the operation is terminated.

IEHDASDR Program 15-19

Operands

TODD

Applicable Control
Statements

ANALYZE MSS
ANALYZE
GETALT
DUMP
RESTORE
PUTIPL
FORMAT
LABEL

15-20 OS/VSl Utilities

Description of Operands/Parameters

For ANALYZE and LABEL:
TODD= {(CUll, ...) I (ddnanle, ...)}

For ANALYZE MSS:
TODD={cuu, ... }

For FORMAT, DUMP, and RESTORE:
TODD= (ddname), ...)

For GETALT and PUTIPL:

TODD=ddname

specifies the ddname for the volume to be processed. These
values can be coded:

(ccu, •..) or cuu
specifies the channel and unit address of a direct access
device containing a volume to be initialized or labeled. This
value is used only if the volume is offline, which includes
the first analysis of a volume or for labeling an offline
volume. If this value is coded, a DD statement defining the
device must not be provided. The specified devices must be
varied offline (by use of the VARY OFFLINE command)
prior to the execution of the job step.

ddname or (ddname, ...)
specifies (1) the ddname of the system output device
(SYSPRINT); (2) the ddnames of the DD statements
defining the devices containing the direct access or tape
volumes on which copies are to be made; and (3) the
ddname of the DD statement that identifies the volume
serial number of the output volume.

Note 1: If TODD=SYSPRINT is coded, the direct access
volume described by FROMDD is dumped to the system
output device. If a permanent data check or missing
address marker is encountered while reading the direct
access volume, the defective records are identified and
printed. The output may exceed the expected data size due
to a data check in the count field of the error record.

Note 2: If multiple output volumes are specified in a
FORMAT, ANALYZE or RESTORE statement and an
abnormal completion of the format or restore operation
occurs, the operation is terminated on all output volumes.

Operands

TRACK

VTOC

Aoolicable Control
Statements

GETALT

FORMAT
ANALYZE

Description of Uperands/ Yarameters

TRACK=cccchhhh
specifies in hexadecimal the cylinder number, ecce, and
head number, hhhh, on a track for which an alternate track
is requested. TRACK cannot specify track 0 or the first
track occupied by the VTOC.

VTOC :::;xxxxx
specifies a one- to five-byte decimal relative track address
representing a primary track on which the volume table of
contents is to begin. The VTOC cannot occupy track O.

To improve performance when reading from and writing to
the VTOC, it is recommended that every VTOC end on
the last track of a cylinder (a cylinder boundary). This
means that you should determine the starting address for
the VTOC by subtracting the number of tracks allocated to
the VTOC from the nearest larger track that ends on a
cylinder boundary. For example, if the VTOC requires 5
tracks on a 3336 disk pack, which has 19 tracks per
cylinder, the starting track should be specified as track 14,
so that the VTOC will end on track 18 (the last track of
the first cylinder).

IEHDASDR Program 15-21

Restrictions

t 5-22 OS/VSl Utilities

• If an error is detected in the VTOC, IEHDASDR may terminate this control
function and continue with the next control card.

• If IEHDASDR is used to change a volume serial number and a subsequent
operation is performed on the newly labeled volume in the same job step, two
"anyname" DD statements are required. The VOLUME parameter in the first
statement includes the old volume serial number; the VOLUME parameter in
the second statement specifies the new volume serial number. In addition, the
second statement specifies unit affinity with the first.

• One "anyname" DD statement is required for each device to be used in the job
step unless the device is to be processed offline.

• The "tapename" DD statement must be included if a data set is dumped to tape
or if a previously dumped data set is to be restored to a direct access volume.

• A tape created with the IEHDASDR DUMP function cannot be copied or
transmitted by other programs. Such attempts will yield unpredictable results due
to the physical layout of the tape. IEHDASDR allows copies to be produced as
required.

• If BLKSIZE is specified on the SYSIN DD statement, it must be a multiple of
80. If BLKSIZE is omitted from the statement, a block size of 80 bytes is
assumed.

• If BLKSIZE is specified on the SYSPRINT DD statement, it must be a multiple
of 121. If BLKSIZE is omitted or incorrectly specified, a block size of 121 bytes
is assumed.

• SYSIN attributes must be identical if SYSIN data sets are to be concatenated.

• If the PUTIPL function of IEHDASDR is used to write IPL records, the user
must supply both the IPL bootstrap records and the IPL (TXT) program. The
contents of the bootstrap records and the IPL (TXT) program is not checked by
IEHDASDR. The IPL TXT in SYS1.SAMPLIB can not be used, unless the user
also supplies the bootstrap records, with the PUTIPL function.

• The format 4 DSCB must be placed as record one (R 1) on a track due to
conform to IBM standards.

I· IEHDASDR does not support volumes with indexed VTOC or the IBM 3375 or
3380. See Device Support Facilities User's Guide and Reference for information
on initialization and maintenance of such DASD volumes. Also, refer to Data
Facility Data Set Services: User's Guide and Reference for information on
dumping or restoring such DASD volumes.

IEHDASDR Examples
The following examples illustrate some of the uses of IEHDASDR. Figure 15 can
be used as a quick reference guide to IEHDASDR examples. The numbers in the
"Example" column point to exa~ples that follow.

Operation Device Comments Example

INITIALIZE Disk QUICK DASDI to build a VTOC and change the
volume serial number.

INITIALIZE Disk FORMAT will verify HA and write a standard 2
RO on each track. IPL text is included
in the input stream. Volume serial id. is
changed.

INITIALIZE Disk Three previously initialized volumes are to be 3
initialized; their volids are to be changed.

INITIALIZE 3350 Change volume format to match hardware mode 4
(3330, 3330-1 or 3350).

INITIALIZE MSS Staging A staging volume for MSS
Volume is initialized. 5

WRITE Disk Write IPL books trap records and a program
PROGRAM on track 0 of a direct access volume. 6

GETALT Disk Get alternate tracks for a previously initialized
and LABEL volume and change its volume serial number. 7

DUMP Disk Dump a copy of one volume to three other
volumes. 8

DUMP Disk and Dump a group of tracks to the system output
system output device, which is assumed to be a printer.
device 9

DUMP Disk and Dump a disk volume to magnetic tape. Only
Tape one tape volume is required. 10

RESTORE Disk and A 3330 disk volume, previously dumped to
7-track Tape tape, is to be restored to direct access. 11

DUMP and Disks and Dump operations are to be performed
RESTORE Tape concurrently to minimize input/output time.

Restore operations are to be performed
concurrently to minimize input/output time. 12

RESTORE Disk and A 2314 volume, previously dumped to two tape
Tape volumes, is to be restored to disk. 13

DUMP and Disk and VSAM and non-VSAM password-protected data
RESTORE Tape sets are dumped and then restored. The

receiving volume does not contain a
VSAM user catalog. 14

DUMP and Disk and VSAM and non-VSAM password-protected data
RESTORE Tape sets are dumped and then restored. The

receiving volume contains a VSAM user catalog. 15

Figure 15-8. IEHDASDR Example Directory

Note: Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section, in the Introduction to this
manual, for valid device-id notation.

IEHDASDR Program 15-23

lEHDASDR Example 1

In this example, a disk volume is initialized with a VTOC and volume serial
number-a "QUICK DASDI" is performed.

IIDASDR13 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDISK DD UN I T=a'isk , DISP=OLD, VOL=(PRIVATE, , SER=(111111))
IISYSIN DD *

ANALYZE TODD=DISK,VTOC=00019,EXTENT=00019,NEWVOLID=333333
1*
The control statements are discussed below:

• DISK DO defines a buffered-log DASD, volume (111111).

• ANALYZE defines the starting location and extent of the volume table of
contents.

lEHDASDR Example 2

t 5-24 OS/VS t Utilities

In this example, a disk volume is formatted and assigned a new serial number.

72
IIDASDR11 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDISK DD UNIT=disk, DISP=OLD, VOL=(PRIVATE,
I I SER= (1111 1 1))
IISYSIN DD *

FORMAT TODD=disk, VTOC=00006, EXTENT=00005, C
NEWVOLID=333333,PURGE=YES,IPLDD=SYSIN

IPLTXT

IPL TXT (text) statements

1*
The control statements are discussed below:

• DISK DO defines the disk device on which the volume (111111) is mounted.

• SYSIN DD defines the control data set which follows in the input stream.

• FORMAT defines a starting location and extent of a volume table of contents,
specifies a new serial number, and indicates that the IPL text is included in the
input stream. Record 0 (RO) of each track is rewritten and the rest of the track is
erased. Assigns alternate tracks for flagged (defective) tracks.

• IPL TXT signals the start of IPL text.

...... R!t\"r!"'I!!!! Y''''·'' I ','bht"tltttidffl\Ie 'ril #H LttlWMWWWWdHltthhlHtrlttlhrlHbWH±HwWWW

IEHDASDR Example 3

In this example, three previously initialized disk volumes are to oe ImtlallZea ana
assigned new serial numbers.

72
IIDASDR2 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIVOL 1 DD UNIT=(disk, , DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(111111))
IIVOL2 DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222))
I IVOL3 DD UNIT=(disk, , DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(333333))
IISYSIN DD *

ANALYZE TODD=VOL1,VTOC=00003,EXTENT=00010, C
OWNERID=SMITH,NEWVOLID=DISK01,FLAGTEST=NO

ANALYZE TODD=VOL2,VTOC=00006,EXTENT=00010, C
OWNERID=SMITH,NEWVOLID=DISK02,FLAGTEST=NO

ANALYZE TODD=VOL3,VTOC=00004,EXTENT=00010, C
OWNERID=SMITH,NEWVOLID=DISK03,FLAGTEST=NO

1*
The control statements are discussed below:

• VOL1, VOL2, and VOL3 DD define three disk devices on which the volumes to
be initialized are mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• The ANALYZE statements indicate the ddnames of DD statements defining
devices on which the three disk volumes (111111, 222222, and 333333) are to
be mounted. The ANAL YZE statements also define starting locations and
extents of the three VTOCs, specify new owner names and serial numbers
(DISK01, DISK02, and DISK03), and indicate that no flag testing is to be
performed on these volumes.

IEHDASDR Example 4

In this example an OFFLINE 3350 volume (in 3350 or 3330 format) will be
reformatted to 3330-1 format. HA and RO fields will be rewritten. Each flagged
(defective) track encountered will be tested and recovered (unflagged) if no errors
are found.

IIDASDR4
IIS1
IISYSPRINT
IISYSIN

JOB
EXEC PGM=IEHDASDR
DD SYSOUT=A
DD *
ANALYZE TODD=130,VTOC=7676,EXTENT=19,

NEWVOLID=222222,IPLDD=SYSIN,
PASSES=1
IPLTXT

C
C

(IPL TEXT STATEMENTS)

1*

IEHDASDR Program 15-25

The control statements are discussed below:

• ANALYZE specifies that an OFFLINE 3350 is to be reformatted and
initialized.

• VTOC specifies a one cylinder VTOC in the center of the 3330-1 volume.

• PASSES= 1 causes HA and RO to be written on each track, to conform with the
device type defined for address 130.

IEHDASDR Example 5

In this example a staging volume for MSS is initialized. The example follows:

IIDASDR16 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

ANALYZE TODD=350,NEWVOLID=SSIDOO,MSS
1*
The control statements are discussed below:

• ANALYZE defines the staging device which is to be initialized.

• NEWVOLID specifies the new volume identification for the pack and MSS
specifies that it is to be formatted as an MSS staging volume.

IEHDASDR Example 6

15-26 OS/VS 1 Utilities

In this example, IPL bootstrap records and a program are to be written on track 0
of a direct access volume.

IIDASDR10 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DO SYSOUT=A
IIINPUT DD DSNAME=IPLPROG,UNIT=d~k,
II VOL=SER=222222,DISP=OLD
IIOUTPUT DO UN I T=disk , VOL=SER=111111 ,DISP=OLD
IISYSIN DO *

PUTIPL FROMDD=INPUT,TODD=OUTPUT,PURGE=YES
1*
The control statements are discussed below:

• INPUT DD defines the input data set, which contains the IPL records and
program to be written. The input data set resides on a disk volume (222222).

• OUTPUT DD defines the output data set, which is to reside on a disk volume
(111111).

• SYSIN DD defines the control data set, which follows in the input stream.

• PUTIPL identifies the DD statements (INPUT and OUTPUT) that define the
input and output data sets and specifies that the program to be written on the
disk A volume can be written over any data after the volume label record.

ttt»lt" trt LiL .ttffl*#'tirtrt' .""ttdtdtd'Wt# Wb ItHttbWnrP*ItnH"fHttotHtt.

IEHDASDR Example 7

In this example, alternate tracks are to be assigned for three suspected defective
tracks on a 3330 volume.

IIDASDR3 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIVOLUME1 DD UNIT=(3330"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(333000»
IISYSIN DD *

/*

GETALT TODD=VOLUME1,TRACK=OOOS0011
GETALT TODD=VOLUME1,TRACK=OOA00007
GETALT TODD=VOLUME1,TRACK=01010002

LABEL TODD=VOLUME1,NEWVOLID=DISKOO,OWNERID=SMITH

The control statements are discussed below:

• VOLUME1 DD defines a device that is to contain the 3330 volume (333000).

• SYSIN DD defines the control data set, which follows in the input stream.

• The GET AL T statements specify the ddname of the DD statement defining the
device on which the 3330 volume is mounted. The GETALT statements specify
the relative track addresses of the tracks for which alternates are to be assigned.

• LABEL specifies the ddname of the DD statement defining the device on which
the 3330 volume is mounted. The LABEL statement changes the serial number
of the 3330 volume from 333000 to DISKOO.

IEHDASDR Example 8

In this example, a copy of an entire volume (111111) is to be dumped to three
volumes (222222, 333333, and 444444).

IIDASDR4 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IIDUMPFROM DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(111111»
I IDUMPT01 DD UNIT=(disk, , DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222»
IIDUMPT02 DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(333333»
I IDUMPT03 DD UNIT=(disk, , DEFER) , DISP=OLD,
II VOLUME=(PRIVATE"SER=(444444»
IISYSIN DO *

72

DUMP FROMDD=DUMPFROM,TODD=(DUMPT01,DUMPT02,DUMPT03), C
PURGE=YES

1*
The control statements are discussed below:

• DUMPFROM DD defines a mountable device that is to contain a source
volume.

• DUMPTO 1, DUMPT02, and DUMPT03 DD define mountable devices that are
to contain the three receiving volumes.

IEHDASDR Program 15-27

• DUMP specifies the dump operation and identifies the DD statements defining
the applicable devices. All receiving volumes are to retain their own serial
numbers.

IEHDASDR Example 9

In this example, a copy of tracks 0 through 62 (of a 3330 DASD) is to be dumped
to a system output device.

IIDASDR5 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DO SYSOUT=A
IIDEV DO UNIT~d~k,DISP=OLD,
II VOLUME=(PRIVATE"SER=(111111)
IISYSIN DO *

DUMP FROMDD=DEV,TODD=SYSPRINT,BEGIN=OOOOOOOO,END=00030004
1*
The control statements are discussed below:

• DEV DD defines a device that is to contain the source volume.

• DUMP specifies the dump operation, identifies the DD statements defining the
source and receiving devices, and identifies the tracks that are to printed.

IEHDASDR Example 10

15-28 OS/VSl Utilities

In this example, a disk volume (111111) is to be dumped to a 9-track, 800 bits per
inch, tape volume (222222).

IIDASDR6 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DO SYSOUT=A
IISOURCE DO UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(111111)
IIRECEIVE DO UNIT=(mpe, ,DEFER) ,DISP=NEW, DSNAME=TAPE1 ,
II VOLUME=(PRIVATE"SER=(222222))
IISYSIN DD *

DUMP FROMDD=SOURCE,TODD=RECEIVE
1*
Note: This example assumes that only one tape volume is required. If more than
one is required, code the volume serial numbers of the additional volumes in the
VOLUME parameter of the DD statement that defines the magnetic tape device.
For unlabeled tapes, include a volume count in the DD statement.

The control statements are discussed below:

• SOURCE DD defines a mountable device that is to contain the source volume.

• RECEIVE DD defines a 9-track tape drive that is to contain the receiving tape
volume.

• DUMP specifies the dump operation and identifies the DD statements defining
the source and receiving devices.

IEHDASDR Example 11

In this example, three disk volumes (222222, 333333, 444444) are to be restored
from a 7-track, 556 bits per inch, standard-labeled tape volume.

IIDASDR7 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IITAPE DD UNIT=(2400-2"DEFER),DISP=OLD,
II DCB=(TRTCH=C,DEN=1),DSNAME=TAPE1,
II VOLUME=(PRIVATE"SER=(111111»
I IDIRACC1 DD UNIT=(disk, , DEFER) , DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222»
IIDIRACC2 DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(333333»
I IDIRACC3 DD UNIT=(disk, , DEFER) ,DISP=OLD;
II VOLUME=(PRIVATE"SER=(444444)
IISYSIN DD *

RESTORE TODD=(DIRACC1,DIRACC2,DIRACC3),FROMDD=TAPE
1*
The control statements are discussed below:

• TAPE DD defines a 7-track tape unit that is to contain the source tape volume.

• DIRACCl, DIRACC2, and DIRACC3 DD define mountable devices that are to
contain the three receiving volumes.

• RESTORE specifies the restore operation and identifies the DD statements
defining the source and receiving devices. The receiving volumes retain their
own serial numbers.

IEHDASDR Example 12

In this example, two direct access volumes are to be dumped concurrently to two
receiving volumes in one operation; two direct access volumes are to be restored
concurrently from two 9-track, 800 bits per inch, standard-labeled tape volumes in
another operation.

IIDASDR8 JOB
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IISOURCE1 DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(111111»
I ISOURCE2 DD UNIT=(disk, ,DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222»
I IT01 DD UNIT=disk, VOLUME=SER=333333 ,DISP=OLD
IIT02 DD UNIT=d~k,vOLUME=SER=444444,DISP=OLD
IISOURCE3 DD UNIT=(tape, , DEFER) , DISP=OLD, LABEL=(,NL) ,
II VOLUME=(PRIVATE"SER=(555555»
I ISOURCE4 DD UNIT=(tape, , DEFER) , DISP=OLD, LABEL=(, NL) ,
II VOLUME=(PRIVATE"SER=(666666»
IIT03 DD UNIT=AFF=T01,VOLUME=SER=777777,DISP=OLD
IIT04 DD UNIT=AFF=T02,VOLUME=SER=888888,DISP=OLD
IISYSIN DD *

1*

DUMP FROMDD=SOURCE1,TODD=T01
DUMP FROMDD=SOURCE2,TODD=T02

RESTORE TODD=T03,FROMDD=SOURCE3
RESTORE TODD=T04,FROMDD=SOURCE4

IEHDASDR Program t 5-29

The control statements are discussed below:

• SOURCEl and SOURCE2 DD define devices on which the source volumes for
, the dump operation are to be mounted.

• TO 1 and T02 DD define devices on which the receiving volumes for the dump
operation are to be mounted.

• SOURCE3 and SOURCE4 DD define devices on which the source tape volumes
for the restore operation are to be mounted.

• T03 and T04 DD define devices on which the receiving direct access volumes
for the restore operation are to be mounted. The receiving volumes for the
restore operation are to be mounted on the same devices as the receiving
volumes for the dump operation were mounted.

IEHDASDR Example 13

t 5-30 OS/VS 1 Utilities

In this example, a disk volume previously dumped to tape is to be restored; two
tape volumes were used in the dump operation.

IIDASDR9 JOB OO#990,SMITH
II EXEC PGM=IEHDASDR
IISYSPRINT DD SYSOUT=A
IITAPE DD UN I T=tape , VOL=(, ,,2, SER=(111111 ,222222)) ,
II DISP=OLD
IIDISK DD UNIT=disk, VOL=SER=333333,DISP=OLD
IISYSIN DD *

RESTORE FROMDD=TAPE,TODD=DISK
1*
The control statements are discussed below:

• TAPE DD defines the tape volumes that contain the data to be restored to disk.

• DISK DD defines the disk volume to which data is to be restored.

• RESTORE specifies that data is to be restored from the tape volumes defined in
the TAPE DD statement to the disk volume defined in the DISK DD statement.

Note: For unlabeled tapes, use the external volume identification and the
LABEL=(,NL) parameter on the associated tape DD card. Also, be sure the serial
numbers are entered in the same order as during the previous disk-to-tape dump.

It t±t\bt1Itht *b thWb hb '#nlWtN'HWH'tbtbl's WtIHt"bd'HfrJtthHf!l:Htbltn tl,+** 'tHr'W't.

lEHDASDR Example 14

In this example a disk volume containing VSAM and non-VSAM
password-protected data sets is dumped to a 9-track, standard labeled tape and
then restored. The receiving volume does not contain a VSAM user catalog.

IIDASDR14 JOB
IID14STEP1 EXEC PGM=IEHDASDR
IISTEPCAT DD DSNAME=VSAMCAT1,DISP=OLD
IISYSPRINT DD SYSOUT=A
I IDISK 1 DD UNIT=disk, VOL=SER=111111 , DISP=OLD
IITAPE 1 DD UNIT=tape, DISP=NEW, DSNAME=TAPE 1 ,
II VOL=(",2,SER=(222222,333333)),
II LABEL=(,SL,PASSWORD),DCB=DEN=4
IIDISKA DD UNIT=disk, VOL=SER=111111 ,DISP=OLD,
II DSNAME=DATASET1
IISYSIN DD *

DUMP FROMDD=DISK1,TODD=TAPE1
1*
IID14STEP2 EXEC PGM=IEHDASDR
IISTEPCAT DD DSNAME=VSAMCAT1,DISP=OLD
IISYSPRINT DD SYSOUT=A
IIDISK2 DD UNIT=d~k,vOL=SER=111111,DISP=OLD
IITAPE2 DD UNIT=tape, DISP=OLD, DSNAME=TAPE 1 ,
II VOL=(",2,SER=(222222,333333)),LABEL=(,SL)
IISYSIN DD *

RESTORE TODD=DISK2,FROMDD=TAPE2,PURGE=YES
1*
The control statements are discussed below:

• The STEPCAT DD statements define a VSAM user catalog in which VSAM
data sets on the volume are cataloged. The data sets are not cataloged in the
master catalog. This must be provided even when no data sets are VSAM
password protected.

• TAPEl defines a tape unit upon which a three-volume data set resides. This data
set must be password protected when any non-VSAM data sets on the volume
are password protected. If no oon-VSAM password data sets reside on the
volume, the tape need not be password protected.

• DISKl defines the device that is to contain the source volume.

• DISKA defines a non-VSAM password-protected data set which resides on the
source volume. This is necessary since password prompting is by DDname and
would cause confusion if more than one non-VSAM password-protected data set
resided on the volume.

• DISK2 defines the device that is to contain the receiving volume.

• T APE2 defines the tape unit that is to contain the source tape volumes.

• Dl4STEPl, during this job step the operator will be required to provide the
password for each non-VSAM password-protected data set identified by the
unique DDname provided in the JCL. The operator will also be required to
provide the catalog master password or the data set master password for each
VSAM password-protected data set.

• Dl4STEP2, during this job step the operator will be required to provide the
password for each non-VSAM password-protected data set residing on the
receiving volume. A DD statement need not be provided for those non-VSAM
data sets. The operator will also be required to provide the catalog master
password or the data set master password for each VSAM password-protected
data set.

IEHDASDR Program t 5-3 t

If the tape data set is password protected, its password must also be supplied.

PURGE = YES is specified since the receiving volume contains VSAM data
spaces.

IEHDASDR Example 15

15-32 OS/VS 1 Utilities

In this example a disk volume containing VSAM and non-VSAM
password-protected data sets is dumped to a 9-track, standard labeled tape and
then restored.

This example is intended to illustrate the specific situation where:

STEP 1 The volume dumped to tape contains VSAM and non VSAM
password-protected data sets.

and

STEP2 The receiving volume of the restore operation contains a VSAM user
catalog which describes the VSAM data sets to be overlayed.

IIDASDR15 JOB
IID15STEP1 EXEC PGM=IEHDASDR
IISTEPCAT DD DSNAME=VSAMCAT1,DISP=OLD
IISYSPRINT DD SYSOUT=A
IIDISK1 DD UNIT=disk, VOL=SER=333333, DISP=OLD
IITAPE 1 DD UNIT=tape , DISP=NEW, DSNAME=TAPE 1 ,
I I VOL=(, , ,2, SER=(111111 ,222222)) ,
II LABEL=(,SL,PASSWORD),DCB=DEN=4
IIDISKA DD UNIT=disk, VOL=SER=333333, DISP=OLD,
II DSNAME=DATASET1
IISYSIN DD *

DUMP FROMDD=DISK1,TODD=TAPE1
1*
IID15STEP2 EXEC PGM=IEHDASDR
IISTEPCAT DD DSNAME=VSAMCAT1,DISP=OLD
IISYSPRINT DD SYSOUT=A
IITAPE2 DD UNIT=tape,DISP=OLD,DSNAME=TAPE1,
II VOL=(",2,SER=(111111,222222)),LABEL=(,SL)
IISYSIN DD

RESTORE TODD=STEPCAT,FROMDD=TAPE2,PURGE=YES
1*
The control statements are discussed below:

• The STEPCAT DD statements define a VSAM user catalog in which VSAM
data sets on the volume are cataloged. The data sets are not cataloged in the
master catalog. This must be provided even when no data sets are VSAM
password protected. DISP=OLD must be specified to ensure the integrity of the
dumped data sets.

• TAPE! defines a tape unit upon which a three-volume data set resides. This data
set must be password protected when any non-VSAM data sets on the volume
are password protected. If no non-VSAM password data sets reside on the
volume, the tape need not be password protected.

• DISK! defines the device that is to contain the source volume.

• DISKA defines a non-VSAM password-protected data set which resides on the
source volume. This is necessary since password prompting is by DDname and
would cause confusion if more than one non-VSAM password-protected data set
resided on the volume.

• T APE2 defines the tape unit that is to contain the source tape volumes.

M Ifty'I.., ••• ,,,.. 'b 'ueth.'M'''!;',!' 11\' !" 'I \1 t»eW # kW *#ItWb:I+"*tfI*rlY+t'**bhft t!ti+"n""II+HIIttltlilltAM

• D15STEPl, during this job step the operator will be required to provide the
.t'''''"uu,.,....., ... _ ... _ ... --_ _ ---·-r-.... ~··---- c-------- .
unique DDname provided in the JCL. The operator will also be required to
provide the catalog master password or the data set master password for each
VSAM password-protected data set.

• D15STEP2, during this job step the operator will be required to provide the
password for each non-VSAM password-protected data set residing on the
receiving volume. A DD statement need not be provided for those non-VSAM
data sets.

The operator will also be required to provide the catalog master password or the
data set master password for each VSAM password-protected data set.

• The STEPCAT DD statement is required to allow the VSAM user catalog on the
receiving volume to be opened so that a check for password protection can be
made. Since IEHDASDR does not allow two DD statements to reference the
same volume for one control operation, the STEPCAT DD statement is also
used to describe the receiving volume. DISP=OLD must be specified to ensure
that the integrity of the volume is maintained during the restore operation.

If the tape data set is password-protected, its password must also be supplied.

IEHDASDR Program 15-33

IEHINITT PROGRAM

IEHINITT is a system utility used to place IBM volume label sets written in
EBCDIC, in BCD, or in ASCII (American Standard Code for Information
Interchange) onto any number of magnetic tapes mounted on one or more tape
units. Because IEHINITT can overwrite previously labeled tapes regardless of
expiration date and security protection, it is suggested that IEHINITT be moved
and deleted from SYS I.LINKLIB into an authorized password protected private
library. Each volume label set created by the program contains:

• A standard volume label with user-specified serial number and owner
identification.

• An 80-byte dummy header label. For IBM standard labels, this record consists
of HDRl followed by zeros. For labels written in ASCII, this record consists of
HDR 1 followed by zeros in the remaining positions, with the exception of
position 54, which contains an ASCII space.

• A tapemark.

Note: When a labeled tape is subsequently used as a receiving volume: (1) the tape
mark created by IEHINITT is overwritten, (2) the dummy HDRl record created by
IEHINITT is filled in with operating system data and device-dependent
information, (3) a HDR2 record, containing data set characteristics, is created, (4)
user header labels are written if exits to user label routines are provided, (5) a
tapemark is written, and (6) data is placed on the receiving volume.

Figure 16-1 shows an IBM standard label group after a volume is used to receive
data. Refer to OS/VSl Data Management Services Guide for a discussion of
volume labels.

Initial volume label

HDRl

HDR2

User header labels
(optional up to 8)

Tape mark

Data

......

Figure 16-1. IBM Standard Label Group After Volume Receives Data

IEHINITT Program 16-1

Placing a Standard Label Set on Magnetic Tape

Input and Output

16-2 OS/VS 1 Utilities

IEHINITT can be used to write BCD labels on 7-track tape volumes and EBCDIC
or ASCII labels on 9-track tape volumes. Any number of 7 -track and/or 9-track
tape volumes can be labeled in a single execution of IEHINITT.

Tape volumes are labeled in sequential order by specifying a serial number to be
written on the first tape volume. The serial number is incremented by 1 for each
successive tape volume. If only one tape volume is to be labeled, the specified serial
number can be either numeric or alphameric. If more than one volume is to be
.labeled, the serial numbers must be specified as six numeric characters.

• If any errors are encountered while attempting to label a tape, the tape is left
unlabeled. IEHINITT attempts to label any tapes remaining to be processed.

• The user can provide additional information, such as owner name, rewind or
unload specifications, and whether the label is to be written in ASCII.

• The user must supply all tapes to be labeled, and must include with each job
request explicit instructions to the operator about where each tape is to be
mounted.

• IEHINITT writes 7 -track tape labels in even parity (translator on, converter
off).

• Previously labeled tapes can be overwritten with new labels regardless of
expiration date and security protection.

For information on creating routines to write standard or non-standard labels, refer
to OS/VS Tape Labels.

IEHINITT uses as input a control data set that contains the utility control
statements.

IEHINITT produces an output data set that contains: (1) utility program
identification, (2) initial volume label information for each successfully labeled tape
volume, (3) contents of utility control statements, and (4) any error messages.

IEHINITT produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion. A message data set was created.

• 04, which indicates successful completion. No message data set was defined by
the user.

• 08, which indicates that the program completed its operation, but error
conditions were encountered during processing. A message data set was created.

• 12, which indicates that the program completed its operation, but error
conditions were encountered during processing. No message data set was defined
by the user.

• 16, which indicates thatthe program terminated operation because of error
conditions encountered while attempting to read the control data set. A message
data set was created if defined by the user.

Control

Job Control Statements

IEHINITT is controlled by job control statements and utility control statements.
The job control statements are used to execute or invoke IEHINITT and to define
data sets used and produced by IEHINITT. Utility control statements are used to
specify applicable label information.

Figure 16-2 shows the job control statements necessary for using IEHINITT.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHINITT) or, if the job control
statements reside in a procedure library, the procedure name. The EXEC
statement can include additional PARM information; see "PARM
Information on the EXEC Statement."

SYSPRINT DD Defines a sequential output data set.

anyname DD Defines a tape unit to be used in a labeling operation; more than one tape unit
can be identified.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a member of a partitioned data set or as
a sequential data set outside the input stream.

Figure 16-2. IEHINITT Job Control Statements

The "anyname" DD statement is entered:

/ /anyname DD DCB=DEN=x,UNIT=(xxxx,n,DEFER)

The DEN parameter specifies the density at which the labels are written. The UNIT
parameter specifies the device type, number of units to be used for the labeling
operation, and deferred mounting. The name "anyname" must be identical to a
name specified in a utility control statement to relate the specified unit(s) to the
appropriate utility control statement.

P ARM Information on the EXEC Statement

The EXEC statement can include P ARM information that specifies the number of
lines to be printed between headings in the message data set, as follows:

PARM= 'LINECNT=nn'

If P ARM is omitted, 60 lines are printed between headings.

If IEHINITT is invoked, the line count option can be passed in a parameter list that
is referred to by the "optionaddr" subparameter of the LINK or ATTACH macro
instruction. In addition, a page count can be passed in a six-byte parameter list that
is referred to by the "hdingaddr" subparameter of the LINK or ATTACH macro
instruction. For a discussion of linkage conventions, refer to "Appendix B:
Invoking Utility Programs from a Problem Program."

Utility Control Statement

IEHINITT uses a utility control statement to provide control information for a
labeling operation.

IEHINITT Program t 6-3

I~I1lf Statemment

16-4 OS/VS 1 Utilities

The INITT statement provides control information for the IEHINITT program.

Any number of INITT utility control statements can be included for a given
execution of the program. An identically named DD statement must exist for a
utility control statement in the job step.

Figure 16-3 shows a printout of a message data set including the INITT statement
and initial volume label information. In this example, one INITT statement was
used to place serial numbers 001122 and 001123 on two tape volumes.
VOL10011220 and VOL10011230 are interpreted, as follows:

• VOL1 indicates that an initial volume label was successfully written to a tape
volume.

• 001122 and 001123 are the serial numbers that were written onto the volumes.

• 0 is the Volume Security field.

No errors occurred during processing.

SYSTEM SUPPORT UTILITIES IEHINITT

ALL INITT SER=001122,NUMBTAPE=2,OWNER='P.T.BROWN',
DISP=REWIND

VOL10011220
VOL10011230

P.T. BROWN
P.T.BROWN

72
C

Figure 16-3. Printout of INITT Statement Specifications and Initial Volume Label Information

The format of the INITT statement is:

ddname INITT SER=xxxxxx

[,OWNER='cccccccccc [ecce]']

[,~UMBT APE = {n I .!J]
,DISP= {REWI~D I U~LOAD}

[,LABTYPE=AL]

Operands Statements

DISP INITT

LAB TYPE INITT

ddname INITT

NUMBTAPE INITT

OWNER INITT

SER IN ITT

Description of Op'erands/Parameters

DISP={REWIND I UNLOAD}
specifies whether a tape is to be rewound or unloaded.
These values can be coded:

REWIND
specifies that a tape is to be rewound (but not unloaded)
after the label has been written. If DISP=REWIND is
not specified, the tape volume is rewound and unloaded.

UNLOAD
specifies that a tape is to be unloaded after the label has
been written.

LABTYPE=AL
specifies that a volume label written in ASCII is to be
created.

Default: The tape is written in EBCDIC for 9-track tape
volumes and in BCD for 7 -track tape volumes.

ddname
specifies a name that is identical to a ddname in the name
field of a DD statement defining a tape unit(s). This name
must begin in column 1.

NUMBTAPE={n I!}
specifies the number of tapes to be labeled according to the
specifications made in this control statement. The value n
represents a number from 1 to 255. If more than one tape
is specified, the serial number must be numeric.

OWNER = 'cccccccccc[~ccc]'
specifies the owner's name or similar identification. The
information is specified as character constants, and can be
up to 10 bytes in length for EBCDIC and BCD volume
labels, or up to 14 bytes in length for volume labels written
in ASCII. The delimiting apostrophes can be omitted if no
blanks, commas, apostrophes, equal signs, or other special
characters (except periods or hyphens) are included. If an
apostrophe is included within the OWNER name field, it
must be written as two consecutive apostrophes.

SER=xxxxxx
specifies the volume serial number of the first or only tape
to be labeled. The serial number cannot contain blanks,
commas, apostrophes, equal signs, or special characters
other than periods or hyphens. A specified serial number is
incremented by one for each additional tape to be labeled.
(Serial number 999999 is incremented to 000000.) When
processing multiple tapes, the volume serial number must
be all numeric.

IEHINITT Program 16-5

Restrictions

• The SYSPRINT data set must have a logical record length of 121 bytes. It must
consist of fixed length records with an ASA control character in the first byte of
each record. Any blocking factor can be specified.

• The SYSIN data set must have a logical record length of 80. Any blocking factor
can be specified.

• Labels written in ASCII cannot be put on 7 -track tape volumes.

IEHINITf Examples

IEHINITT Example 1

16-6 OS/VS 1 Utilities

The following examples illustrate some of the uses of IEHINITT. Figure 16-4 can
be used as a quick reference guide to IEHINITT examples. The numbers in the
"Example" column point to examples that follow.

Operation Comments Example

LABEL Three tapes are to be labeled.

LABEL A tape is to be labeled. 2

LABEL Two groups of tape volumes are to be labeled. 3

LABEL Tape volumes are to be labeled. Sequence
numbers are to be incremented by 10. 4

LABEL Three tape volumes are to be labeled. An
alphameric label is to be placed on one volume;
numeric labels are placed on two volumes. 5

LABEL Two tape volumes are to be labeled. The
first volume is labeled at a density of 6250 bpi;
the second at a density of 1600 bpi. 6

Figure 16-4. IEHINITT Example Directory

Note: Examples which use tape in place of actual device-ids must be changed
before use. See the Device Support section, in the Introduction to this manual, for
valid device-id notation.

In this example, serial numbers 001234,001235, and 001236 are to be placed on
three tape volumes; the labels are to be written in EBCDIC at 800 bits per inch.
Each volume to be labeled is mounted, when it is required, on a single 9-track tape
unit.

JOB
EXEC
DD

IILABEL1
II
IISYSPRINT
IILABEL
IISYSIN
LABEL

DD
DD

INITT
1*

09#990,BROWN,MSGLEVEL=(1,1)
PGM=IEHINITT
SYSOUT=A
DCB=DEN=2, UNIT=(tape, 1 , DEFER)

*
SER=001234,NUMBTAPE=3

t'd'#Hrt. t rl J t t * "t ffl '¥tHd'H#trw6tH!:htf±t ± MtuIHtt!It!*5t **wtttW.,*ttmMbM#M

IEHlNlTI' Example 2

IEHINITT Example 3

IEHINITI' Example 4

In this example, serial number 001001 is to be placed on one Ascn tape volume;
the label is to be written at 800 bits per inch. The volume to be labeled is mounted,
when it is required, on a tape unit.

IILABEL2 JOB 09#990,BROWN,MSGLEVEL=(1,1)
II EXEC PGM=IEHINITT
IISYSPRINT DD SYSOUT=A
IIASCIILAB DD DCB=DEN=2, UNIT=(tape, 1 , DEFER)

* IISYSIN DD
ASCIILAB INITT SER=001001,OWNER='SAM A. BROWN',LABTYPE=AL
1*

In this example, two groups of serial numbers (001234,001235,001236, and
001334,001335,001336) are placed on six tape volumes. The labels are to be
written in EBCDIC at 800 bits per inch. Each volume to be labeled is mounted,
when it is required, on a single tape unit.

IILABEL3 JOB 09#990,BROWN,MSGLEVEL=(1,1)
II EXEC PGM=IEHINITT
IISYSPRINT DD SYSOUT=A
IILABEL DD DCB=DEN=2, UNIT=(tape, 1 , DEFER)
IISYSIN DD *
LABEL INITT SER=OO 1234, NUMB'l'APE=3
LABEL INITT SER=001334,NUMBTAPE=3
1*

In this example, serial numbers 001234, 001244, 001254, 001264, 001274, etc.,
are to be placed on eight tape volumes. The labels are to be written in EBCDIC at
800 bits per inch. Each volume to be labeled is mounted, when it is required, on
one of four tape units.

IILABEL4
II
IISYSPRINT
IILABEL
IISYSIN
LABEL

JOB 09#990,BROWN,MSGLEVEL=(1,1)
EXEC PGM=IEHINITT

LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
1*

DD SYSOUT=A
DD DCB=DEN=2, UNIT=(tape, 4, DEFER)
DD *

INITT
INITT
INITT
INITT
INITT
INITT
INITT
INITT

SER=001234
SER=001244
SER=001254
SER=001264
SER=001274
SER=001284
SER=001294
SER=001304

IEHINITT Program 16-7

IEHINITI' Example 5

IEHINITI' Example 6

16-8 OS/VS 1 Utilities

In this example, serial number TAPE1 is to be placed on a tape volume, and serial
numbers 001234 and 001235 are to be placed on two tape volumes. The labels are
to be written in EBCDIC at 800 and 1600 bits per inch, respectively.

IILABEL5 JOB 09#990,BROWN,MSGLEVEL=(1,1)
II EXEC PGM=IEHINITT
IISYSPRINT DO SYSOUT=A
IILABEL1 DO DCB=DEN=2,UNIT=(tape,1,DEFER)
IILABEL2 DO DCB=DEN=3,UNIT=(tape,1,DEFER)
IISYSIN DO *
LABEL 1 INITT SER=TAPE1
LABEL2 INITT SER=001234,NUMBTAPE=2
1*

In this example, the serial number 006250 is to be written in EBCDIC on a tape
volume at a density of 6250 bpi, and the serial number 001600 is to be written in
EBCDIC on a second volume at a density of 1600 bpi.

IILABEL6 JOB 09#990,BROWN,MSGLEVEL=(1,1)
II EXEC PGM=IEHINITT
IISYSPRINT DO SYSOUT=A
IIDDFIRST DO DCB=DEN=4,UNIT=(tape,1,DEFER)
IIDDSECOND DO DCB=DEN=3,UNIT=(tape,1,DEFER)
IISYSIN DO *
DDFIRST INITT SER=006250
DDSECOND INITT SER=001600
1*

rlhI'k '*1* *81' •• *1&_'

IEHIOSUP PROGRAM

Input and Output

Control

Job Control Statements

Restrictions

IEHIOSUP is a system utility automatically used to update TTR entries in the
transfer control tables of the supervisor call library (SVC library). IEHIOSUP must
be used after:

• The SVC library is moved.

• The OPEN, CLOSE, TCLOSE, EOV, FEOV, SCRATCH, ALLOCATE,
IEHATLAS, SETPRT, STOW, or any Machine Check Handler (MCH)
recovery management module is changed or replaced in the SVC library.

IEHIOSUP uses as input an object data set SYSl.SVCLIB that contains the
transfer control tables that are to be updated.

IEHIOSUP produces as output a message data set that contains any error messages
generated during the execution of the program.

IEHIOSUP produces a return code to indicate the results of program execution.
The return codes and their interpretations are:

• 00, which indicates successful completion.

• 12, which indicates an unrecoverable error. The job step is terminated.

IEHIOSUP is executed or invoked with job control statements. No utility control
statements are required.

Figure 17-1 shows the job control statements necessary for using IEHIOSUP.

Statement

JOB

EXEC

SYSPRINTDD

SYSUTI DD

Use

Initiates the job.

Specifies the program name (PGM=IEHIOSUP) or, if the job control
statements reside in a procedure library, the procedure name.

Defines a sequential message data set.

Defines the object data set (SYS1.SVCLIB). The DSNAME, DISP, UNIT,
and VOLUME parameters should be included.

Figure 17-1. IEHIOSUP Job Control Statements

If the SYSl.SVCLIB data set is cataloged, the UNIT and VOLUME parameters
are not required on the SYSUTI DD statement.

• The block size for the SYSPRINT data set must be a multiple of 121. Any
blocking factor can be specified.

• The last four bytes of each module (that contains an XCTL table) must consist
of a 3-byte EBCDIC supervisor call (SVC) code and a I-byte pointer to the
module's XCTL table. The SVC code is the fourth, fifth, and sixth letters of the
module name.

IEHIOSUP Program 17-1

IEHIOSUP Examples

lElHOSUP Example 1

The following examples illustrate some of the uses of IEHIOSUP. Figure 17-2 can
be used as a quick reference guide to IEHIOSUP examples. The numbers in the
"Example" column point to examples that follow.

Data set
Operation Organization Device Comments

UPDATE Partitioned, Disk and SVC library is to be updated.
Sequential system output SYSl.SVCLIB is not cataloged.

device System output device is a printer.

UPDATE Partitioned, Disk and SVC library is to be updated.
Sequential system output SYS I.SVCLIB is cataloged. System

device output device is a printer.

Figure 17-2. IEHIOSUP Example Directory

In this example, the TTR entries in the SVC library are to be updated.

IITTRUPDTE JOB
II EXEC PGM=IEHIOSUP

Example

2

- IISYSUT1 DD DSNAME=SYS1.SVCLIB,DISP=OLD,UNIT=d~k,
II VOLUME=SER=111111

lEHlOSUP Example 2

17-2 OS/VSl Utilities

IISYSPRINT DD SYSOUT=A
1*
The control statements are discussed below:

• SYSUTI DD defines the object data set (the SYSl.SVCLIB data set).

• SYSPRINT DD defines the message data set.

In this example, the TTR entries in the SVC library are to be updated.

IISVCUPDTE JOB
II EXEC PGM=IEHIOSUP
IISYSUT1 DD DSNAME=SYS1.SVCLIB,DISP=OLD
IISYSPRINT DD SYSOUT=A
1*
The control statements are discussed below:

• SYSUTI DD defines the object data set (the SYS1.SVCLIB data set). Because
the data set is cataloged, UNIT and VOLUME parameters are not required.

• SYSPRINT DD defines the message data set.

IEHLIST PROGRAM

Listing Catalog Entries

IEHLIST is a system utility used to list entries in a catalog, entries in the directory
of one or more partitioned data sets, or entries in a volume table of contents. Any
number of listings can be requested in a single execution of the program.

IEHLIST lists all as catalog entries that are part of the structure of a fuHy
qualified, data set name. Figure 18-1 shows an index structure for which IEHLIST
lists fully qualified names A.B.D.W, A.B.D.X, A.B.E.Y, and A.B.E.Z. Because
A.C.F does not represent a cataloged data set (that is, the lowest level of
qualification has been deleted), it is not a fully qualified name, and it is not listed.

F

Figure 18-1. Index Structure-Listed by IEHLIST

Note: IEHLIST will list only as catalogs (SYSCTLG data sets). To list VSAM
catalogs, use Access Method Services.

Listing a Partitioned Data Set Directory

IEHLIST can list up to ten partitioned data set directories in a single application of
the program. A partitioned directory is composed of variable length records
blocked into 256-byte blocks. Each directory block can contain one or more entries
which reflect member (and/or alias) names and other attributes of the partitioned
members in edited and unedited format.

Figure 18-2 shows a directory block as it exists in storage.

-------------,

(-
-------)

'-~------~~----~~----~----~~----~~----~~----~

(-- -- --

Figure 18-2. Sample Directory Block

IEHLIST Program 18 - 1

Edited Format

IEHLIST optionally provides the following information, which is obtained from the
applicable partitioned data set directory, when an edited format is requested:

• Member name

• Entry point

• Relative address of start of member

• Relative address of start of text

• Contiguous virtual storage requirements

• Length of first block of text

• Origin of first block of text

• System status indicators

• Linkage editor attributes

• APF authorization required

• Other information

Before printing the directory entries on the first page, an index is printed explaining
the asterisk (*), if any, following a member name, the attributes (fields 3 and 10),
and other information (field 12). Under the OTHER INFORMATION INDEX,
scatter and overlay format data is described positionally as it appears in the listing;
under the ATTRIBUTE INDEX, the meaning of each attribute bit is explained.

Each directory entry occupies one printed line, except when the member name is an
alias and the main member name and associated entry point appear in the user data
field. When this occurs, two lines are used and every alias is followed by an
asterisk. If the main member is renamed, the old member name will still be in the
alias directory entry and consequently printed on the second line.

Note: The FORMAT option applies only to a partitioned data set whose members
have been created by the linkage editor (that is, the directory entries are at least 34
bytes long). If a directory entry is less than 34 bytes, a message is issued and the
entry is printed in unedited format; if the entry is longer than 34 bytes, it is
assumed that it is created by the linkage editor.

Figure 18-3 shows an edited entry for a partitioned member (IEANUC01). The
entry is shown as it is listed by the IEHLIST program.

OTHER INFORMATION INDEX
SCATTER FORMAT SCTR=SCATTER/TRANSLATION TABLE TTR IN HEX, LEN OF SCRT LIST IN DEC, LEN OF TRANS TABLE IN DEC,

ESDID OF FIRST TEXT RCD IN DEC, ESDID OF CSECT CONTAINING ENTRY POINT IN DEC

OVERLAY FORMAT ONLY=NOTE LIST RCD TTR IN HEX, NUMBER OF ENTRIES IN NOTE LIST RCD IN DEC

ALIAS NAMES ALIAS MEMBER NAMES WILL BE FOLLOWED BY AN ASTERISK IN THE PDS FORMAT LISTING

ATTRIBUTE INDEX

BIT ON OFF BIT ON OFF BIT ON OFF BIT ON OFF

0 RENT NOT RENT 4 OL NOT OL NOT DC DC 12 NOT EDIT EDIT
REUS NOT REUS 5 SCTR BLOCK ZERO ORG NOT ZERO 13 SYMS NO SYMS
ONLY NOT ONLY 6 EXEC NOT EXEC 10 EP ZERO NOT ZERO 14 F LEVEL E LEVEL
TEST NOT TEST 1 TXT MULTI RCD 11 NO RLD RLD 15 REFR NOT REFER

MEMBER ENTRY ATTR REL ADDR-HEX CONTIG LEN 1ST ORB 1ST SSI VS AUTH OTHER
NAME PT-HEX HEX BEGIN 1ST TXT STOR-DEC TXT-DEC TXT-HEX INFO ATTR REQ INFORMATION

IEANUC01 000000 06E2 000004 00020F 000166248 0927 ABSENT 880000 NO SCTR=OOOOOO,
00484,01084,32,32

OF THE 00002 DIRECTORY BLOCKS ALLOCATED TO THIS PDS, 00001 ARE(IS) COMPLETELY UNUSED

Figure 18-3. Edited Partitioned Directory Entry

18 - 2 OS/VS 1 Utilities

Unedited (Dump) Format

The user may choose the unedited format. It this is the case, IEHLIST lists each
member separately.

Figure 18-4 shows how the information in Figure 18-2 is listed.

Note: A listing organized as shown in Figure 18-4 can also be obtained by using
IEBPTPCH (see "IEBPTPCH Program ").

MEMB A

MEMB B

MEMB C

MEMB n

TTR

TTR

TTR

TTR

USER DATA

USER DATA

USER DATA

USER DATA

Figure 18-4. Sample Partitioned Directory Listing

To correctly interpret user data information, the user must know the format of the
partitioned entry. The formats of directory entries are discussed in OS/VSl System
Data Areas.

Listing a Volume Table 01 Contents

Edited Format

IEHLIST can be used to list, partially or completely, entries in a specified volume
table of contents (VTOC). The program lists the contents of selected data set
control blocks (DSCBs) in edited or unedited form.

Note: VSAM data spaces are identified only; not the data sets within them.

Two edited formats are available. One is a comprehensive listing of the DSCBs in
the VTOC. It provides the status and attributes of the volume, and describes in
depth the data sets residing on the volume. This listing includes:

• Logical record length and block size

• Initial and secondary allocations

• Upper and lower limits of extents

• Alternate track information

• Available space information, in detail

• Option codes printed as two hexidecimal digits (not applicable with VSAM data
spaces)

• Record formats

A VTOC consists of as many as seven types of DSCBs which contain information
about the data sets residing on the volume:

• Identifier DSCB-Format 1

• Index DSCB-Format 2

• Extension DSCB-Format 3

• VTOC DSCB-Format 4

• Free Space DSCB-Format 5

• Shared. Extent DSCB-Format 6

• Free VTOC DSCB-Format 0

IEHLIST Program 18 - 3

18 - 4 OS/VS 1 Utilities

The first DSCB in a VTOC (and on your listing) is always a VTOC (Format 4)
DSCB. It defines the scope of the VTOC itself; that is, it contains information
about the VTOC and the volume rather than the data sets referenced by the
VTOC.

The VTOC (Format 4) DSCB is followed, when necessary, by the Free Space
(Format 5) DSCB, which describes the space available on the volume for allocation
to other data sets. More than one Format 5 DSCB may be required to describe the
available space on a volume because each Format 5 DSCB describes only 26
extents.

The Format 4 and Format 5 DSCBs are followed, in any order, by Format 1,2,3,
or 6 DSCBs.

Each Identifier (Format 1) DSCB contains information about a particular data set
residing on the volume. This type of DSCB describes the characteristics and up to
three extents of the data set.

For data sets having indexed sequential organization, additional characteristics are
specified in an Index (Format 2) DSCB pointed to by the Identifier (Format 1)
DSCB.

Additional extents are described in an Extension (Format 3) DSCB pointed to by
the Identifier (Format 1) DSCB or in the Index (Format 2) DSCB for an
indexed-sequential data set.

A Shared Extent (Format 6) DSCB is used for shared-cylinder allocation. It
describes the extent of space (one or more contiguous cylinders) that is being
shared by two or more data sets. The Shared Extent (Format 6) DSCB is pointed
to by the VTOC (Format 4) DSCB. Subsequent Format 6 DSCBs are pointed to
by the previous Format 6 DSCB.

A Free VTOC Record (Format 0) DSCB, which indicates space available for
another DSCB, is not listed by IEHLIST. They are 140-byte records, consisting of
binary zeros, that are overwritten with Format 1,2,3, and 6 DSCBs when a new
data set is allocated,· and with Format 5 DSCBs when space is released.

Figure 18-5 shows a sample listing of the edited format. This sample illustrates how
each DSCB will appear on a listing, although in many cases the VTOC may not
contain all possible types. The information is in columns, with the values or
numbers appearing underneath each item's heading.

The second edited format is an abbreviated description of the data sets. It is
provided by default when no format is requested specifically. It provides the
following information:

• Data set name

• Creation date (dddyy)

• Expiration date (dddyy)

• Password indication

• Organization of the data set

• Extent(s)

• Volume serial number

The last line in the listing indicates how much space remains in the VTOC.

SYSTEMS SUPPORT UTILITIES---IEHLIST PAGE 1

FORMAT 4 DSCB NO AVAIL/MAX DSCB /MAX DIRECT NO AVAIL NEXT ALT FORMAT 6
(C-H-R)

LAST FMT 1 VTOC EXTENT THIS DSCB
(C-H-R) VI DSCBS PER TRK BLK PER TRK ALT TRK TRK (C-H) DSCB(C-H-R)/LOW(C-H) HIGH(C-H)

00 154 16 10 30 200 505 5 0 5 9 5 0

FORMAT 5 DSCB A = NUMBER OF TRKS IN ADDITION TO FULL CYLS IN THE EXTENT
TRK FULL TRK FULL TRK FULL TRK FULL TRK FULL TRK FULL

ADDR CYLS A ADDR CYLS A ADDR CYLS A ADDR CYLS A ADDR CYLS A ADDR CYLS A
17 3 3 110 189 0

DSCB(C-H-R) 0

---------------DATA SET NAME--------------- ID SER NO SEQ NO CREDT EXPDT NO EXT DSORG RECFM OPTCD BLKSIZE
EXAMPLE.OF.COMBINED.FORMATS.ONE.AND.TWO 1 EXAMPL 1 36699 27469 IS F 100

LRECL KEY LEN INITIAL ALLOC 2ND ALLOC/LAST BLK PTR (T-R-L) USED PDS BYTES FMT 2 OR 3 (C-H-R) /DSCB(C-H-R)
100 4 ABSTR 0 5 0 3 5 0 4

EXTENTS NO LOW(C-H) HIGH(C-H)
o 6 0 10 9

2MTND(M-R-r-H)j3MIND(M-R-r-H)/L2MFN(r-H-R)/T.1MTN(r-H-R)/rVT.AD(M-R-r-H)/ADLTN(M-B-C-H)/ADHTN(M-B-C-H)/NOBY1'/ NOTRK
o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 9 0 0 0 0 1 0 10 9 70 0

LTRAD(C-H-R)/LCYAD(C-H-R)/LMSAD(C-H-R)/LPRAD(M-B-C-H-R) /NOLFV /CYLOV/ TAGDT/ PRCTR / OVRCT/ RORG1/PTRDS(C-H-R)
6 0 3 10 9 1 0 0 0 1 0 6 1 12 1 0 20 0 0

----UNABLE TO CALCULATE EMPTY SPACE.

---------------DATA SET NAME--------------- ID SER NO SEQ NO CREDT EXPDT NO EXT DSORG RECFM OPTCD BLKSIZE
EXAMPLE.OF.COMBINED.FORMATS.ONE.AND.THREE 1 EXAMPL 1 36699 27069 16 PS V 3504

LRECL KEYLEN INITIAL ALLOC 2ND ALLOC/LAST BLK PTR(T-R-L) USED PDS BYTES FMT 2 OR 3(C-H-R)/DSCB(C-H-R)
3500 TRKS 1 15 1 1723 5 0 6 5 0 5

EXTENTS NO LOW(C-H) HIGH (C-H) NO LOW(C-H) HIGH (C-H) NO LOW (C-H) HIGH (C-H)
0 0 1 0 1 1 0 2 0 2 2 0 3 o 3

4 0 4 4 0 0 5 0 6 o 6
6 7 0 7 7 0 0 8 8 0 9 9
9 0 10 11 2

12 13 4 4 14 5
15 6

----ON THE ABOVE DATA SET, THERE ARE o EMPTY TRACK (S) •

THERE ARE 192 EMPTY CYLINDERS PLUS 3 EMPTY TRACKS ON THIS VOLUME
THERE ARE 154 BLANK DSCBS IN THE VTOC ON THIS VOLUME

Figure 18-5. Sample Printout of a Volume Table of Contents

Unedited (Dump) Format

Input and Output

This option produces a complete hexadecimal listing of the DSCBs in the VTOC.
The listing is in an unedited dump form, requiring the user to know the various
formats of applicable DSCBs. The VTOC overlay for IEHLIST listings of VTOCs
in dump format is useful in identifying the fields of the DSCBs.

Refer to OS/VSl System Data Areas for a discussion of the various formats that
data set control blocks can assume.

IEHLIST uses the following input:

• One or more source data sets that contain the data to be listed. The input data
set(s) can be: (1) a VTOC data set, (2) a partitioned data set, or (3) an OS
catalog data set (SYSCTLG).

• A control data set, which contains utility control statements that are used to
control the functions of IEHLIST.

IEHLIST produces as output a message data set which contains the result of the
IEHLIST operations. The message data set includes the listed data and any error
messages.

IEHLIST produces a return code to indicate the results of program execution. The
return codes and their meanings are:

• 00, which indicates successful completion.

IEHLIST Program 18 - 5

Control

Job Control Statements

18 - 6 OS/VSl Utilities

• 08, which indicates that an error condition caused a specified request to be
ignored. Processing continues.

• 12, which indicates that a permanent input/output error occurred. The job is
terminated.

• 16, which indicates that an unrecoverable error occurred while reading the data
set. The job is terminated.

IEHLIST is controlled by job control statements and utility contrbl statements. The
job control statements are used to execute or invoke IEHLIST and to define the
data sets used and produced by IEHLIST.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes to be modified.

Figure 18-6 shows the job control statements necessary for using IEHLIST.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHLIST) or, if the job control
statements reside in a procedure library, the procedure name. Additional
P ARM information can be specified to control the number of lines printed per
page. See "PARM Information on the EXEC Statement" below.

SYSPRINT DD Defines a sequential message data set.

anynamel DD Defines a permanently mounted volume.

anyname2 DD Defines a mountable device type.

SYSIN DD Defines the control data set. The control data set normally follows the job
control'language in the input stream; however, it can be defined as an
unblocked sequential data set or member of a procedure library.

Figure 18-6. IEHLIST Job Control Statements

The "anyname 1" DD statement can be entered:

/ /anynamel DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT'and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent deletion of the
data set. This statement is arbitrarily assigned the ddname DD 1 in the IEHLIST
examples.

When deferred mounting is required, the "anyname2" DD statement can be
entered:

/ /anyname2 DD UNIT=(xxxx"DEFER),VOLUME=(PRIVATE, ...),DISP=OLD

See "Appendix C: DD Statements for Defining Mountable Devices" for
information on defining mountable devices. This statement is arbitrarily assigned
the ddname DD2 in the IEHLIST examples. Statements defining additional
mountable devices are assigned ddnames DD3, DD4, etc.

With the exception of the SYSIN and SYSPRINT DD statements, all DD
statements in this table, are used as device allocation statements, rather than as true
data definition statements.

'le" b't" rttWHtffl,*,I'M Htt Wb 'tb'dttttMtttt***btltbtMftH:H#tt:!b' '±kWhtltttHMt • .. we ..

PARM Information on the EXEC Statement

Additional information can be specified in the P ARM parameter of the EXEC
statement to control the number of lines printed per page. The P ARM parameter
can be coded:

PARM='LINECNT=xx'

The LINECNT parameter specifies the number of lines, xx, to be printed per page;
xx is a decimal number from 01 through 99. If LINECNT is not specified, 58 lines
are printed per page. The P ARM field cannot contain embedded blanks, zeros, or
any other PARM keywords, or the default of 58 is used.

Utility Control Statements

LISTCTLG Statement

LISTPDS Statement

Statement Use

LISTCTLG

LISTPDS

LISTVTOC

Requests a listing of all or part of an as catalog (SYSCTLG).

Requests a directory listing of one or more partitioned data sets.

Requests a listing of all or part of a volume table of contents.

Figure 18-7. IEHLIST Utility Control Statements

The LISTCTLG statement is used to request a listing of either the entire catalog or
a specified portion of the catalog (SYSCTLG data set). The listing includes the
fully qualified name of each applicable cataloged data set and the serial number of
the volume on which it resides. Empty index levels are not listed.

The format of the LISTCTLG statement is:

[label] LISTCTLG [VOL=device =serial]

[,NODE=name]

The LISTPDS statement is used to request a directory listing of one or more
partitioned data sets that reside on the same volume.

Before printing the directory entries on the first page, an index is printed explaining
the attributes (fields 3 and 10) and other information (field 12). OTHER
INFORMATION INDEX explains scatter and overlay format data as it appears in
the listing; ATTRIBUTE INDEX explains each attribute bit.

Note: The Format option of the LISTPDS statement may be used only on a
partitioned data set whose members have been created by the linkage editor.
Members that have not been created by the linkage editor cause their directory
entries to be listed in unedited (DUMP) format.

The format of the LISTPDS statement is:

[label] LISTPDS DSNAME=ldsnamel I (dsname1(,dsname2)(, ••• J)}

[,VOL=device =serial]

[{,DUMP I ,FORMAT}]

IEHLIST Program 18 - 7

LISTVTOC Statement

18 - 8 OS/VS 1 Utilities

The LISTVTOC statement is used to request a partial or complete listing of the
entries in a specified volume table of contents.

The format of the LISTVTOC statement is:

[label] LISTVTOC [~DUMPIFORMAT} [,INDEXDSN=SYS1.VTOCIX.qualifiers]]

[,DATE=dddyy]

[,VOL=device =serial]

[,DSNAME=(name [, name] ...)]

t'MMflM L# * ¥,#t'\ttb\lthmW'ft t WhMW#*Hfid'iHlt'b&HW , , bHHtI'ltt:!Ww" bMW

Operands

DATE

DSNAME

DUMP

FORMAT

INDEXDSN

NODE

Applicable Control
Statement

LISTVTOC

LISTPDS

LISTVTOC

LISTPDS
LISTVTOC

LISTPDS

LISTVTOC

LISTVTOC

LISTCTLG

uescriptton oJ uperandS/ raramelers

DATE=dddyy
specifies that each entry that expires before this date is to
be flagged with an asterisk (*) in the listing. This
parameter applies only to the abbreviated edited format.
The date is represented by ddd, the day of the year, and
yy, the last two digits of the year.

Default: No asterisks appear in the listing ..

DSNAME=(name[,name]. ..)
specifies the fully qualified names of the partitioned data
sets whose directories are to be listed. A maximum of ten
names is allowed. If the list consists of a single name, the
parentheses can be omitted. A maximum of ten names is
allowed. If the list consists of a single name, the parentheses
can be omitted.

specifies the fully qualified names of the data sets whose
entries are to be listed.

DUMP
specifies that the listing is to be in unedited, hexadecimal
form.

Default: If both DUMP and FORMAT are omitted, an
abbreviated edited format is generated for LISTVTOC.
For LISTPDS, DUMP is the default used.

FORMAT
specifies that the listing is to be edited for each directory
entry.

specifies that a comprehensive edited listing is to be
generated.

Default: If both FORMAT and DUMP are omitted, an
abbreviated edited format is generated for LISTVTOC.
For LISTPDS, DUMP is the default used.

INDEXDSN=SYSI. VTOCIX. qualifiers

specifies that the index data set whose name is
SYSl.VTOCIX.qualifiers, is to be listed, in addition to the
VTOC, where qualifiers are one or more levels of
additional qualifiers. DUMP or FORMAT must be specified
if INDEXDSN is specified. For more information, refer to
Data Facility Device Support: User's Guide and Reference.

NODE=name
specifies a qualified name. All data set entries whose
names are qualified by this name are listed.

Default: All data set entries are listed.

IEHLIST Program 18 - 9

Operands

VOL

Restrictions

App6cable Control
Statement

LISTCTLG
LISTPDS
LISTVTOC

Description of Operands/Parameters

VOL=device=serial
specifies the device type and volume serial number of the
volume on which the catalog, PDS directory, or VTOC
resides.

Default: For LISTCTLG, the catalog is assumed to reside
on the system residence volume.

• The block size for the SYSPRINT data set must be a multiple of 121. The block
size for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes. '

• An "anyname 1" DD statement must be included for each permanently mounted
volume referred to in the job step. (The system residence volume is considered
to be a permanently mounted volume.)

• An "anyname2" DD statement must be included for each mountable device to
be used in the job step.

• Because IEHLIST modifies the internal control blocks created by device
allocation OD statements, IEHLIST job control statements must not include. the
OSNAME parameter. (All data sets are defined explicitly or implicitly by utility
control statements.)

• When IEHLIST is dynamically invoked in a job step containing another
program, the DO statements defining mountable devices for IEHLIST must be
included in the job stream prior to OD statements defining data sets required by
the other program.

• IEHLIST cannot support empty space calculations for data sets allocated in
blocks when the block sizes are approximately the same or larger than the track
size. The empty block calculation gives only approximate indications of available
space. When IEHLIST cannot supply an approximate number, the "Unable to
Calculate" message is issued.

• IEHLIST specifications do not allow for protection of the object being listed. If
another program updates a block of the data set just prior to IEHLIST reading
the data set, a message (IEH1051 or IEH108I) may be issued. If so, the output
produced by IEHLIST may be incorrect, and you should rerun the job.

• If you are using IEHLIST to both the VTOC and the index data set of an indexed
VTOC, refer to Data Facility Device Support: User's Guide and Reference.

• A DDR swap of an input or output device to another device cannot be done if doing
a multiple function within the same step. The volume mount routine cannot mount
the volume after a DDR swap that has changed the UCB lookup table.

18 - 10 OS/VS 1 Utilities

IEHLIST Examples
The following examples illustrate some of the uses of IEHLIST. Figure 18-8 can be
used as a quick reference guide to IEHLIST examples. The numbers in the
"Example" column point to examples that follow.

Note: Examples which use disk, in place of actual device-ids, must be changed
before use. See the Device Support section, in the Introduction to this manual, for
valid device-id notation.

Note: In the IEHLIST examples, the EXEC statement and the SYSPRINT DD
statement can be replaced with the following job control statement:

I I EXEC PROC=LIST

The EXEC statement invokes the following IBM-supplied cataloged procedure:

IILIST EXEC PGM=IEHLIST,REGION=44K
IIDDSRV DD VOLUME=REF=SYS1.SVCLIB,DISP=OLD
IISYSPRINT DD SYSOUT=A

IEHLIST Examples 18-10.1

+ IIIIi'i:tWl:wte'HH! HhWItti:lUthtHHhHH.tHlrtJ:IiW:t6HM'

IEHLIST Example 1

IEHLIST Example 2

Operation Devices

LIST

LIST

LIST

LIST

Disk and
system output
device

Disk system
residence device
and system
output device

Disk and
system output
device

Disk and
system output
device

Comments

Source catalog is to be listed on the
system output device.

Three catalogs and part of a fourth
are to be listed on the system
output dev.ice.

Three partitioned directories are to
be listed on the system output device.

Volume table of contents is to be
listed in edited form; selected
data set control blocks are listed
in unedited form.

Figure 18-8. IEHLIST Example Directory

Example

2

3

4

In this example, an OS catalog data set named SYSCTLG, residing on a disk
volume (111111), is to be listed.

The example follows:

IILISTCAT JOB 09#550,BLUE
II EXEC PGM=IEHLIST
IISYSPRINT DD SYSOUT=A
IIDD2 DD UNIT=dMk,vOLUME=SER=111111,DISP=OLD
IISYSIN DD *

LISTCTLG VOL=disk=111111
1*
The control statements are discussed below:

• DD2 DD defines a mountable device on which the volume containing the source
catalog is mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• LISTCTLG defines the source volume and specifies the list operation.

In this example, a catalog residing on the system residence volume, two catalogs
residing on disk volumes, and a portion of a catalog residing on another volume, are
to be listed.

IILISTCATS JOB 09#550,BLUE
II EXEC PGM=IEHLIST
IISYSPRINT DD SYSOUT=A
IIDD1 DD UNIT=dMkB,vOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=(diskA, , DEFER), DISP=OLD,
II VOLUME=(PRIVATE"SER=(232301»
IISYSIN DD *

1*

LISTCTLG
LISTCTLG
LISTCTLG
LISTCTLG

VOL=diskA =3 33 33 3
VOL=diskA =444444
VOL=dMkA=555555,NODE=A.B.C

The control statements are discussed below:

• DD1 DD defines a system residence device. (The first catalog to be listed resides
on the system residence volume.)

IEHLIST Program 18 - 11

IEHLIST Example 3

IEHLIST Example 4

18 - 12 OS/VSl Utilities

• DD2 DD defines a mountable device on which each diskA volume is mounted as
it is required by the program.

• SYSIN DD defines the control data set, which follows in the input stream.

• The first LISTCTLG statement indicates that the catalog residing on the system
residence volume is to be listed.

• The second and third LISTCTLG statements identify two diskA disk volumes
containing catalogs to be listed.

• The fourth LISTCTLG statement identifies a diskA volume containing a catalog
that is to be partially listed. All data set entries whose beginning qualifiers are
"A.B.C" are listed.

In this example, a partitioned directory existing on the system residence volume is
to be listed. In addition, two partitioned directories existing on another disk volume
are to be listed.

IILISTPDIR JOB
II EXEC
IISYSPRINT DD
IIDD1 DD
IIDD2 DD
IISYSIN QD

1*

LISTPDS
LISTPDS

09#550,BLUE
PGM=IEHLIST
SYSOUT=A
UNIT=diskB , VOLUME=SER=111111 ,DISP=OLD
UNIT=diskA , VOLUME=SER=222222, DISP=OLD

*
DSNAME=PARSET1
DSNAME=(PART 1 ,PART2), VOL=diskA=222222

The control statements are discussed below:

• DDl DD defines the system residence device.

• DD2 DD defines a mountable device on which a diskA volume (222222) is to
be mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• The first LISTPDS statement indicates that the partitioned data set directory
belonging to data set P ARSETl is to be listed. This data set exists on the system
residence volume.

• The second LISTPDS statement indicates that partitioned directories belonging
to data sets PARTl and PART2 are to be listed. These data sets exist on a disk
volume (222222).

In this example, a volume table of contents in edited form, is to be listed. The
edited listing is supplemented by an unedited listing of selected data set control
blocks.

IILISTVTOC JOB 09#550,BLUE
II EXEC PGM=IEHLIST
IISYSPRINT DD SYSOUT=A
IIDD2 DD UNIT=disk, VOLUME=SER=111111 ,DISP=OLD
IISYSIN DD *

LISTVTOC FORMAT, VOL=disk=111111
LISTVTOC DUMP, VOL=disk=111111 ,DSNAME=(SET1 ,SET2, SET3)

1*

The control statements are discussed below:

• DD2 DD defines a mountable device on which the volume contammg tne
specified volume table of contents is to be mounted.

• SYSIN DD defines the control data set which follows in the input stream.

• The first LISTVTOC statement indicates that the volume table of contents on
the specified disk volume is to be listed in edited form.

• The second LISTVTOC statement indicates that the data set control blocks
representing data sets SETl, SET2, and SET3 are to be listed in unedited form.

IEHLIST Program 18 - 13

IEHMOVE PROGRAM

IEHMOVE is a system utility used to move or copy logical collections of
operating system data.

IEHMOVE can be used to move or copy:

• A data set residing on from one to five volumes, with the exception of
ISAM data sets, and VSAM data spaces.

• A group of cataloged data sets.

• An OS catalog (CVOL) or portions of a CVOL.

• A volume of data sets.

The scope of a basic move or copy operation can be enlarged by:

• Including or excluding data sets from a move or copy operation.

• Merging members from two or more partitioned data sets.

• Including or excluding selected members.

• Renaming moved or copied members.

• Replacing selected members.

If, for some reason, IEHMOVE is unable to successfully move or copy
specified data, an attempt is made to reorganize the data and place it on the
specified output device. The reorganized data-called an unloaded data
set-is a sequential data set consisting of 80-byte blocked records that
contain the source data and control information for subsequently
reconstructing the source data as it originally existed.

When an unloaded data set is moved or copied to a device that will support
the data in its true form, the data is automatically reconstructed. For example,
if the user attempts to move a partitioned data set to a tape volume, the data
is unloaded to that volume. The user can re-create the data set simply by
moving the unloaded data set to a direct access volume.

A move operation differs from a copy operation in that a move operation
scratches source data if the data set resides on a direct access source volume,
and the expiration date has occurred, while a copy operation leaves source
data intact. In addition, for cataloged data sets, a move operation updates the
catalog to refer to the moved version (unless otherwise specified), while a
copy operation leaves the catalog unchanged.

Space can be allocated for a data set on a receiving volume either by the user
(through the use of DD statements in a prior job step) or by IEHMOVE in
the IEHMOVE job step. If the source data is unmovable (that is, if it contains
location dependent code), the user should allocate space on the receiving
volume using absolute track allocation to ensure that the data set is placed in
the sallle relative location on the receiving volume as it was on the source
volume. Unmovable data can be moved or copied if space is allocated by
IEHMOVE, but the data will not be in the same location on the receiving
volume as it was on the source volume. When data sets are to be moved or
copied between unlike DASD devices, a secondary allocation should be made
to ensure that ample space is available on the receiving volume.

IEHMOVE Program 19 - 1

19 - 2 OS/VS 1 Utilities

Space for a new data set cannot be allocated by the user when a direct data
set is to be moved or copied, as opposed to being unloaded, IEHMOVE
cannot determine if the new data set is empty.

If IEHMOVE performs the space allocation for the new data set, the space
requirement information of the old data set (if available) is used. This space
requirement information is obtained from the DSCB of the source data set, if
it is on a direct access device, or the control information in the case of an
unloaded data set.

If space requirement information is available, IEHMOVE uses this
information to derive an allocation of space for the receiving volume, taking
into account the differences in device characteristics, such as track capacity
and overhead factors. However, when data sets with variable or undefined
record formats are being moved or copied between unlike DASD devices, no
assumption can be made about the space that each individual record needs on
the receiving device.

In general, when variable or undefined record formats are to be moved or
copied, IEHMOVE attempts to allocate sufficient space. This might cause too
much space to be allocated under the following circumstances:

• When moving or copying from a device with a relatively large block
overhead to a device with a smaller block overhead, the blocks being small
in relation to the block size.

• When moving or copying from a device with a relatively small block
overhead to a device with a larger block overhead, the blocks being large in
relation to the block size.

Direct data sets with direct organization and variable or undefined record
format always have the same amount of direct access space allocated by
IEHMOVE. This practice preserves any relative track addressing system that
might exist within the data sets.

A move or copy operation results in: (1) a moved or copied data set, (2) no
action, or (3) an unloaded version of the source data set. These results
depend upon the compatibility of the source and receiving volumes with
respect to:

• Size of the volumes.

• Data set organization (sequential, partitioned, or direct).

• Movability of the source data set.

• Allocation of space on the receiving volume.

Two volumes are compatible with respect to size if (1) the source record size
does not exceed the receiving track size, or (2) the receiving volume supports
the track overflow feature and the output is to be written with track overflow.
(Refer to "Job Control Statements" for notes on the track overflow feature.)
When using direct data set organization, two volumes are compatible with
respect to size if the source track capacity does not exceed the receiving track
capacity. Direct data sets moved or copied to a smaller device type or tape are
unloaded. If the user wishes to load an unloaded direct access data set, it must
be loaded to the same device type from which it was originally unloaded.

Figure 19-1 shows the results of move and copy operations when the
receiving volume is a direct access volume that is compatible in size with the
source volume. The organization of the source data set is shown along with
the characteristics of the receiving volume.

Receiving Volume
""L ____ _-...!_ ! __ C"t ______ 4!_1 n_ :~..: ___ ... nI ___ ..

Space allocated moved or copied moved or copied moved or copied
byIEHMOVE
(movable data)

Space allocated moved or copied moved or copied no action
byIEHMOVE
(unmovable data)

Space previously moved or copied moved or copied no action
allocated, as yet
unused

Space previously no action moved or copied no action
allocated, partially (merged)
used

Fig"ure 19-1. Move and Copy Operations -DASD Receiving Volume with
Size Compatible with Source Volume

Figure 19-2 shows the results of move and copy operations when the
receiving volume is a direct access volume that is not compatible in size with
the source volume. The organization of the source data set is shown along
with the characteristics of the receiving volume.

Receiving Volume
Characteristics Sequential Partitioned Direct

Space allocated unloaded unloaded unloaded
byIEHMOVE

Space previously unloaded unloaded no action
allocated, as yet
unused

Space previously no action no action no action
allocated, partially
used

Figure 19-2. Move and Copy Operations -DASD Receiving Volume with
Size Incompatible with Source Volume

Figure 19-3 shows the results of move and copy operations when the
receiving volume is not a direct access volume. The organization of the source
data set is shown along with the characteristics of the receiving volume.

Receiving Volume
Characteristics

Movable data

Unmovable data

Sequential

moved or copied

unloaded

Partitioned

unloaded

unloaded

Direct

unloaded

no action

Figure 19-3. Move and Copy Operations -Non-DASD Receiving Volume

Space should not be previously allocated for a partitioned data set that is to
be unloaded unless the SPACE parameter in the DD statement making the
allocation implies sequential organization. Direct data sets should not be
previously allocated because IEHMOVE cannot determine if it is empty or
not.

If a move or copy operation is unsuccessful, the source data remains intact.

If a move or copy operation is unsuccessful and space was allocated by
IEHMOVE, all data associated with that operation is scratched from the

IEHMOVE Program 19 - 3

Reblocking

receiving direct access volume. If the receiving volume was tape, it will
contain a partial data set.

If a move or copy operation is unsuccessful and space was previously
allocated, no data is scratched from the receiving volume. If, for example,
IEHMOVE moved 104 members of a lOS-member partitioned data set and
encountered an input/output error while moving the 105th member:

• The entire partitioned data set is scratched from the receiving volume if
space was allocated by IEHMOVE.

• No data is scratched from the receiving volume if space was previously
allocated. In this case, after determining the nature of the error, the user
need move only the 105th member into the receiving partitioned data set ..

If a sequential data set, which is not an unloaded data set, on a non-DASD
volume is to be moved or copied to a DASD volume, and space attributes are
not available either through a previous allocation or from the data set control
block belonging to the source data set, IEHMOVE makes a default space
allocation. The default allocation consists of a primary allocation of 72,500
bytes of storage (data and gaps) and up to 15 secondary allocations of 36,250
bytes each.

When moving or copying a data set group or a volume containing
password-protected data sets, the user must provide the password each time a
data set is opened or scratched.

IEHMOVE always moves or copies any user labels associated with an input
data set. IEHMOVE does not take exits to a user's label processing routines.

Note: If a data set that has only user trailer labels is to be moved from a tape
volume to a direct access volume, space must be previously allocated on the
direct access volume to ensure that a track is reserved to receive the user
labels.

Data sets with fixed or variable records can be reblocked to a different block
size by previously allocating the desired block size on the receiving volume.
No reblocking can be performed when loading or unloading. Also, no reblocking can
be performed on data sets with variable-spanned or variable-blocked-spanned records.

When moving or copying data sets with undefined record format and
reblocking to a smaller block size (that is, transferring records to a device
with a track capacity smaller than the track capacity of the original device),
the user must make the block size for the receiving volume equal to or larger
than the size of the largest record in the data set being moved or copied.

Moving or Copying a Data Set

19 - 4 OS/VS 1 Utilities

IEHMOVE can be used to move or copy sequential, partitioned, and direct
access data sets, as follows:

• A sequential data set can be: (1) moved from one volume to another (or to
the same volume if it is a direct access volume), or (2) copied from one
volume to another (or to the same volume provided that the data set name
is changed and the receiving volume is a direct access volume).

• A partitioned data set can be: (1) moved from one direct access volume to
another (or to the same volume) or, (2) copied from one direct access
volume to another (or to the same volume provided that the data set name
is changed).

For optimum performance, it is recommended that IEBCOPY be used to copy very
l!'1T17P n!'lTtltionpr1 r1~t~ !:ph

• A direct access data set can be moved or copied from one DASD volume
to another, provided that the receiving device type is the same device type
or a larger device type, and that the record size does not exceed 32K.

IEHMOVE can also be used to move or copy multivolume data sets. To move
or copy a multivolume data set, specify the complete volume list in the
VOL=SER parameter on the DD statement. To move or copy a data set that
resides on more than one tape volume, specify the volume serial numbers of
all the tape volumes and the sequence numbers of the data set on the tape
volumes in the utility control statement. (You can specify the sequence
number even if the data set to be moved or copied is the only data set on a
volume.) To move or copy a data set to more than one tape volume, specify
the volume serial numbers of all the receiving volumes in the utility control
statement.

A data set with the unmovable attribute can be moved or copied from one
DASD volume to another or to the same volume provided that space has been
previously allocated on the receiving volume. Change the name of the data set
if move or copy is to be done to the same volume. SVCLIB can be moved or
copied to another location on the system residence volume, provided that
space has been previously allocated on that volume. IEHPROGM must be
used immediately after such a move operation to rename the moved version to
SYS 1.SVCLIB. After such a copy operation, IEHPROGM must be used to
scratch the old version and to rename the copied version. In either case,
IEHIOSUP must be used immediately after the IEHPROGM step to update
the new version of SVCLIB.

When moving or copying a direct data set from one device to another device
of the same type, relative track and relative block integrity are maintained.

When moving or copying a direct data set to a larger device, relative track
integrity is maintained for data sets with variable or undefined record
formats; relative block integrity is maintained for data sets with fixed record
formats.

When moving or copying a direct data set to a smaller device or a tape, the
data set is unloaded. An unloaded data set is loaded only when it is moved or
copied to the same device type from which it was unloaded.

IEHMOVE Program 19 - 5

19 - 6 OS/VS 1 Utilities

Figure 19-4 shows basic and optional move and copy operations for
sequential and partitioned data sets.

Operation

Move
Sequential

Move
Partitioned

Copy
Sequential

Copy
Partitioned

Basic Actions

Move the data set. For DASD,
scratch the source data. For cataloged
data sets, update the catalog
to refer to the moved data set.

Move the data set. Scratch the
source data. For cataloged
data sets, update the catalog to refer
to the moved data set.

Copy the data set. The source data set
is not scratched. The catalog is not
updated to refer to the copied data set.

Copy the data set. The source data is
not scratched. The catalog is not
updated to refer to the copied data
set.

Optional Actions

Prevent automatic cataloging of the
moved data set. Rename the moved
data set.

Prevent automatic cataloging of the
moved data set. Rename the moved
data set. Re-allocate directory space.
(Not possible if the space was not
allocated by IEHMOVE during this
move function.) Perform a merge
operation using members from two or
more data sets. Move only selected
members. Replace members. Unload the
data set.

Uncatalog the source data set. Catalog
the copied data set on the receiving
volume. Rename the copied data set.

Uncatalog the source data set. Catalog
the copied data set. Rename the
copied data set. Re-allocate
directory space. (Not possible if
the space previously allocated is
partially used.) Perform a merge
operation using members from two
or more data sets. Copy only
selected members. Replace members.
Unload the data set.

Figure 19-4. Moving and Copying Sequential and Partitioned Data Sets

IEHMOVE moves or copies partitioned members in the order in which they
appear in the partitioned directory. That is, moved or copied members are
placed in collating sequence on the receiving volume.

Figure 19-5 shows a copied partitioned data set. Note that the members are
copied in the order in which they appear in the partitioned directory.
IEBCOPY can be used to copy data sets whose members are not to be
collated.

Members A --------_ ... -

Figure 19-5. Partitioned Data Set Before and After an IEHMOVE Copy Operation

Members that are merged into an existing data set are placed, in collating
sequence, after the last member in the existing data set. If the target data set

contains a member with the same name as the from dataset, the member will
nnt hp n1nvpn /l'nnlp.n

Figure 19-6 shows members from one data set merged into an existing data
set. Members Band F are copied in collating sequence.

Existing data set
prior to merge

~
Directory

ACG

Existing data set
after merge

Source data set

Figure 19-6. Merging Two Data Sets Using IEHMOVE

Figure 19-7 shows how members from two data sets are merged into an
existing data set. Members from additional data sets can be merged in a like
manner. Members F, B, D, and E from the source data sets are copied in
collating sequence.

EXisting data set
prior to merge

Existing data set
after merge

Source data sets

New members
1.~~44~~4H··~""Y are placed In

collating sequence
after eXlstlnq
members

Figure 19-7. Merging Three Data Sets Using IEHMOVE

IEHM OVE Program 19 - 7

Moving or Copying a Group 0/ Cataloged Data Sets

IEHMOVE can be used to move or copy a group of data sets that are cataloged in
VSAM catalogs and whose names are qualified by one or more identical names.
For example, a group of data sets qualified by the name A.B can include data sets
named A.B.D and A.B.E, but could not include data sets named A.C.D or A.D.F.

If the user specifies that the data set group is cataloged in a CVOL, two additional
options are available. First, additional data sets not belonging to the specified data
set group can be included in the move or copy operation. Second, data sets
belonging to the group can be excluded from the requested operation.

If a group of data sets is moved or copied to magnetic tape, the data sets must be
retrieved one by one by data set name and file-sequence number, or by
file-sequence number for unlabeled or non-standard labeled tapes.

IEHLIST can be used to determine the structure of the catalog.

Figure 19-8 shows basic and optional move and copy operations for a group of
cataloged data sets.

Operation

Move group
of cataloged
data sets

Copy group
of cataloged
data sets

Basic Actions

Move the data set group (excluding
password-protected data sets) to the
specified volumes. Scratch the source
data sets (direct access only).
Merging is not done.

Copy the data set group (excluding
password-protected data sets).
Source data sets are not scratched.
Merging is not done.

Optional Actions

Prevent updating of the
catalog. Include
password-proteCted data
sets in the operation.
Unload data sets.

Include password-protected
data sets in the operation.
Uncatalog the source data
sets. Catalog the copied
data sets on the receiving
volumes. Unload a data
set or sets.

Figure 19-8. Moving and Copying a Group of Cataloged Data Sets

Moving or Copying a Catalog

19 - 8 OS/VS1 Utilities

IEHMOVE can be used to move or copy an OS catalog, totally or partially without
copying the data sets represented by the cataloged entries. If the catalog is in an
unloaded form, all entries are moved or copied. The SYSCTLG (system catalog)
data set need not be defined on the receiving volume before the operation. If,
however, SYSCTLG was defined before the operation, the data set organization
must not have been specified in the DCB field. Moved or copied entries are merged
with any existing entries on the receiving volume. Note that the receiving volume
must be a direct access volume unless the catalog is to be unloaded.

Figure 19-9 shows basic and optional move and copy operations for the catalog.

Operation

Move catalog

Copy catalog

Basic Actions

Move entnes nom lne calalOg LO lIlt:

specified direct access volume.
Scratch the last index of all
entries in the source catalog.

Copy entries from the catalog to the
specified direct access device. The
source catalog is not scratched.

Figure 19-9. Moving and Copying the Catalog

Optional Actions

operation. Move an unloaded
version of the OS catalog. Unload
the OS catalog to the magnetic
tape volume.

Exclude selected entries from
the operation. Copy an unloaded
version of the OS catalog. Unload
the as catalog to a tape volume.

Moving or Copying a Volume of Data Sets

Operation

Move a volume
of data sets

COpy a volume
of data sets

Basic Actions

IEHMOVE can be used to move or copy the data sets of an entire direct
access volume to another volume or volumes. A move operation differs from
a copy operation in that the move operation scratches source data sets, while
the copy operation does not. For both operations, any cataloged entries
associated with the source data sets remain unchanged. IEHPROGM can be
used to uncatalog all of the cataloged data sets and recatalog them according
to their new location.

If the source volume contains a SYSCTLG data set, that data set is the last to
be moved or copied onto the receiving volume.

If a volume of data sets is moved or copied to tape, sequential data sets are
moved, while partitioned and direct data sets are unloaded. The data sets must
be retrieved one by one by data set name and file-sequence number, or by
file-sequence number for unlabeled or non-standard labeled tapes.

When copying a volume of data sets, the user has the option of cataloging all
source data sets in a SYSCTLG data set on a receiving volume. However, if a
SYSCTLG data set exists on the source volume, error messages indicating
that an inconsistent index structure exists are generated when the source
SYSCTLG entries are merged into the SYSCTLG data set on the receiving
volume.

The move-volume feature does not merge partitioned data sets. If a data set
on the volume to be moved has a name identical to a data set name on the
receiving volume, the data set is not moved, or merged onto the receiving
volume.

The copy-volume feature does merge partitioned data sets. If a data set on the
volume to be copied has a name identical to a data set name on the receiving
volume, the data set is copied and merged onto the receiving volume.

Figure 19-10 shows basic and optional move and copy operations for a
volume of data sets.

Optional Actions

Move all data sets not protected by a
password to the specified direct access
volumes. Scratch the source data sets
from DASD volumes. The catalog

Include password-protected data
sets in the operation. Unload
the data sets.

is not updated.

Copy all data sets not protected by a
password to the specified direct access
volume. The source data sets are not
scratched.

Include password-protected data
sets in the operation. Catalog all
copied data sets. Unload the
data sets.

Figure 19-1O.Moving and Copying a Volume of Data Sets

IEHMOVE Program 19 - 9

Moving or Copying Direct Data Sets with Variable Spanned
Records

Input and Output

19 - 10 OS/VS 1 Utilities

IEHMOVE can be used to move or copy direct data sets with variable
spanned records from one DASD volume to a compatible DASD volume,
provided that the record size does not exceed 32K.

Because a DASD data set can reside on one to five volumes (all of which
must be mounted during any move or copy operation), it is possible for the
data set to span volumes. However, single variable spanned record~ are
contained on one volume.

Relative track integrity is preserved in a move or copy operation for spanned
records. Moved or copied direct access data sets occupy the same relative
number of tracks that they occupied on the source device.

If a direct data set is unloaded (moved or copied to a smaller device or tape),
it must be loaded back to the same device type from which it was originally
unloaded.

When moving or copying variable spanned records to a larger device, record
segments are combined and re-spanned if necessary. Because the remaining
track space is available for new records, variable spanned records are
unloaded before being moved or copied back to a smaller device.

If a user wishes to create a direct data set without using data management
BDAM macros, all data management specifications must be followed. Special
attention must be given to data management specifications for RO track
capacity record content, segment descriptor words, and the BFTEK=R
parameter.

When moving or copying a multivolume data set, the secondary allocation for
direct data sets should be at least two tracks. (See the "WRITE SZ" macro in
OS/VSl Data Management Macro Instructions.)

IEHMOVE uses the following input:

• One or more data sets, which contain the data to be moved, copied, or
merged into an output data set.

• A control data set, which contains utility control statements that are used
to control the functions of the program.

• A work data set, which is a work area used by IEHMOVE.

IEHMOVE produces the following output:

• An output data set, which is the result of the move, copy, or merge
operation.

• A message data set, which contains informational messages (for example,
the names of moved or copied data sets) and error messages, if applicable.

IEHMOVE produces a return code to indicate the results of program
execution. The return codes and their meanings are:

• 00, which indicates successful completion.

Control

Job Control Statements

• 04, which indicates that a specified function was not completely successful.

• 08, which indicates a condition from which recovery is possible. Processing
continues.

• 12, which indicates an unrecoverable error. The job step is terminated.

• 16, which indicates that is is impossible to OPEN the SYSIN or SYSPRINT
data set.

IEHMOVE is controlled by job control statements and utility control
statements. The job control statements are used to execute or invoke the
program, define the devices and volumes used and produced by IEHMOVE,
and prevent data sets from being deleted inadvertently.

Utility control statements are used to control the functions of the program
and to define those data sets or volumes that are to be used.

Figure 19-11 shows the job control statements necessary for using
IEHMOVE.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHMOVE) or, if the job control
statements reside in a procedure library, the procedure name. This
statement can include optional P ARM information; see "p ARM
Information on the EXEC Statement" below.

SYSPRINT DO Defines a sequential message data set. The data set can be written onto
a system output device, a magnetic tape volume, or a direct access
volume.

SYSUT1 DO Defines a volume on which 3 work data sets required by IEHMOVE
are placed.

anyname 1 DO Defines a permanently mounted volume. (The system residence volume
is considered to be a permanently mounted volume.)

anyname2 DO Defines a mountable device type.

tape DO Defines a tape volume to be used when moving or copying from or to a
7 -track tape volume, a 9-track tape volume not having standard labels,
or a 1600 bits per inch, 9-track tape volume on a single density unit, or
when copying to an 800 bits per inch tape on a dual density unit.

SYSIN DO Defines the control data set. The data set, which contains utility control
statements, usually follows the job control statements in the input
stream; however, it can be defined either as an unblocked sequential
data set or as a member of a procedure library.

Figure 19-11. IEHMOVE Job Control Statements

The SYSUTI DD statement must be coded:

/ /SYSUT1 DO UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

At least 3 utility work areas of 13, 13, and 26 contiguous tracks, respectively,
must be available for work space on the volume defined by the SYSUTI nn
statement. (This figure is based on a 2314 being the work volume. If a direct

IEHMOVE Program 19 - 11

19 - 12 OS/VS 1 Utilities

access device other than a 2314 is used, an equivalent amount of space must
be available.)

The anyname 1 DD statement can be coded:

/ /anynamel DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

In the anynamel DD statement, the UNIT and VOLUME parameters define
the device type and volume serial number. The DISP=OLD specification
prevents the inadvertent deletion of a data set. The anynamel DD statement
is arbitrarily assigned the ddname DDI in the IEHMOVE examples.

The anyname2 DD statement can be coded:

/ /anyname2 DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

When the number of volumes to be processed is greater than the number of
devices defined by DD statements, there must be an indication (in the
applicable DD statements) that multiple volumes are to be processed. This
indication can be in the form of deferred mounting, as follows:

/ /anyname2 DD UNIT=(xxxx"DEFER),VOLUME=(PRIVATE, ...),
/ / DISP=(. .. ,KEEP)

See "Appendix C: DD Statements for Defining Mountable Devices" for
information on defining mountable devices. The anyname2 DD statement is
arbitrarily assigned the ddname DD2 in the IEHMOVE examples. DD
statements defining additional mountable device types are assigned names
DD3, DD4, etc. When 7-track tape is to be used, the tape DD statement can
be coded:

/ /tape DD DSNAME=xxxxxxxx,UNIT=xxxx,VOLUME=SER=xxxxxx,
/ / DISP=(. .. ,KEEP),LABEL=(. .. , ...),DCB=(TRTCH=C,DEN=x)

A utility control statement parameter refers to the tape DD statement for
label and mode information.

The date on which a data set is moved or copied to a magnetic tape volume is
automatically recorded in the HDRI record of a standard tape label if a
TODD parameter is specified in a utility control statement. An expiration
date can be specified by including the EXPDT or RETPD subparameters of
the LABEL keyword in the DD statement referred to by a TODD parameter.

The sequence number for a data set on a tape volume, or a specific device
address (for example, unit address 190), must be specified in a utility control
statement instead of a DD statement. To move or copy a data set from or to a
tape volume containing more than one data set, specify the sequence number
of the data set in a utility control statement. To move or copy a data set from
or to a specific device, specify the unit address (rather than a group name or
device type) in the utility control statement. To copy to a unit record or
unlabeled tape volume, specify any standard name or number in the utility
control statement.

The tape DD statement can be used to communicate DCB attributes, of data
sets residing on tape volumes that do not have standard labels, to IEHMOVE.
If no DCB attributes are specified, an undefined record format and a block
size of 2560 are assumed. However, in order to recognize unloaded data sets
on an unlabeled tape volume, the DCB attributes must be specified as
follows:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800).

IEHMOVE automatically calculates and allocates the amount of space
___ ...1_...1 £ __ 4-L _ __ • __ lr ~_~~~ ~T~ C",OAr'I"IJ __ ~,.,.+"' .. +1-.o .. o.f" .. o "1-.,, .. 1,.1 1-..0 ,.,.,.,.1.0,.1

-
in the SYSUT1 DD statement. If, in the EXEC statement, POWER=3 is
. specified, the work space requirement is three times the basic requirements,
etc.

With the exception of the SYSIN and SYSPRINT DD statements, all DD
statements shown in Figure 19-11 are used as device allocation statements,
rather than as true data definition statements. Because IEHMOVE modifies
the internal control blocks created by device allocation DD statements, these
statements need not include the DSNAME parameter. (All data sets are defined
explicitly or implicitly by utility control statements.)

A merge operation requires that one DD statement defining a mountable
device be present for each source volume containing data to be included in
the merge operation.

Prior space allocations can be made by specifying a dummy execution of
IEHPROOM before the execution of IEHMOVE.

Blocked format data sets that do not contain user data TTRNs or keys can be
reblocked or unblocked by including the proper keyword subparameters in
the DCB operand of the DD statement used to previously allocate space for
the data set. The new blocking factor must be a multiple of the logical record
length originally assigned to the data set. For a discussion of user data
TTRNs, refer to OS/VSl Data Management Services Guide.

PARM Information on the EXEC Statement

The EXEC statement for IEHMOVE can contain P ARM information that is
used by the program to allocate additional work space and/or control line
density on output listings. The EXEC statement can be coded, as follows:

/ / EXEC PGM=IEHMOVE[,PARM= {'POWER=nnn'}
{'POWER=nnn,LINECNT =xx'}
{'LINECNT =xx'}]

The POWER=nnn parameter is used to request that the normal amount of
space allocated for·work areas be increased n (1 to 999) times. The POWER
parameter is used when 750 or more members are being moved or copied.
The progression for the value of n is:

• POWER=2 when 750 to 1,500 members are to be moved or copied.

• POWER=3 when 1,501 to 2,250 members are to be moved or copied.

• POWER=4 when 2,251 to 3,000 members are to be moved or copied.

If POWER=2, the work space requirement on the SYSUT1 volume is two
times the basic requirement; if POWER=3, work space requirement is three
times the basic requirement, etc. For example, if POWER=2, three areas of
26, 26, and 52 contiguous tracks on a 2314 must be available.

When moving or copying an OS catalog, the value of the POWER parameter
can be calculated, as follows:

n=(10D + V + 200)/4000

where D is the total number of data sets, aliases, and generation data set
entries (which is the number of data set names printed by IEHLIST when
LISTCTLO is specified); V is the total number of volumes used by these data

IEHMOVE Program 19-13

sets (which is the number of lines printed by IEHLIST when LISTCTLG is
specified); and G is the number of generation data sets. Approximate values
can be used:

• POWER=2 when 350 to 700 data sets are cataloged.

• POWER=3 when 701 to 1,050 data sets are cataloged.

• POWER=4 when 1,051 to 1,400 data sets are cataloged.

The LINECNT=xx parameter specifies the number of lines per page in the
listing of the SYSPRINT data set; xx is a two-digit number in the range 04
through 99.

Job Control Language for the Track Overflow Feature

Utility Control Statements

19 - 14 OS/VSl Utilities

A data set containing track overflow records can be moved or copied if the
source volume and the receiving volume are mounted on direct access devices
that support the track overflow feature. (For direct data sets, the source and
receiving devices must be the same device type.)

A data set that was written without track overflow can be moved or copied
with or without track overflow or vice versa if the following conditions are
met:

• Space was allocated for the data set prior to the request for a move or copy
operation.

• The DD statement used for that allocation included the subparameter to
specify the changed track overflow value and all other desired values. (The
RECFM specifications assigned when the data set was originally created
are overridden by the RECFM subparameter in this DD statement.)

If space has not been allocated, or if RECFM was not specified when space
was allocated, the data set is moved or copied in accordance with RECFM
specifications that were made when the data set was originally created.

The track overflow attribute is not retained for a sequential data set that is
moved or copied to a device other than a direct access device.

IEHMOVE is controlled by the following utility control statements:

Statement

MOVE DSNAME

COpy DSNAME

MOVE DSGROUP

COpy DSGROUP

MOVEPDS

COPYPDS

MOVE CATALOG

COpy CATALOG

MOVE VOLUME

COpy VOLUME

Use

Moves a data set.

Copies a data set.

Moves a group of cataloged data sets.

Copies a group of cataloged data sets.

Moves a partitioned data set.

Copies a partitioned data set.

Moves cataloged entries.

Copies cataloged entries.

Moves a volume of data sets.

Copies a volume of data sets.

Figure 19-12. IEHMOVE Utility Control Statements

MOVE DSNAME Statement

COpy DSNAME Statement

In addition, there are four subordinate control statements that can be used to
......... __1 --........ -------.-- .----------, --- - --------~-.-- --------7

COpy PDS, MOVE CATALOG, or COPY CATALOG operation. The
subordinate control statements are:

• INCLUDE statement, which is used to enlarge the scope of a MOVE
DSGROUP, COpy DSGROUP, MOVE PDS, or COpy PDS statement by
including a member or data set not explicitly included by the statement it
modifies.

• EXCLUDE statement, which is used with a MOVE DSGROUP, COPY
DSGROUP, MOVE PDS, COpy PDS, MOVE CATALOG, or COPY
CATALOG statement to exclude a data set, a member or a catalog entry
from a move or copy operation.

• REPLACE statement, which is used with a MOVE PDS or COpy PDS
statement to exclude a member from a move or copy operation and to
replace it with a member from another partitioned data set.

• SELECT statement, which is used with MOVE PDS or COPY PDS
statements to select members to be moved or copied and, optionally, to
rename the specified members.

FROM and CVOL should never appear in the same IEHMOVE utility
control statement. FROMDD must be specified in the control statement when
no data set label information is available. TODD must be specified in the
control statement when an expiration date (EXPDT) or retention period
(RETPD) is to be created or changed.

The MOVE DSNAME statement is used to move a data set, other than ISAM
or VSAM data sets or data spaces. The source data set is scratched.

If the data set is cataloged, the catalog is automatically updated unless
UNCATLG/FROM is specified.

The format of the MOVE DSNAME statement is:

[label] MOVE DSNAME=name

, TO=device = list

[{,FROM=device = list I ,CVOL=device =serial}]

(,UNCATLG]

[,RENAME=name]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

The COPY DSNAME statement is used to copy a data set, other than ISAM
or VSAM data sets or data spaces.

The source data set, if cataloged, remains cataloged unless UNCATLG is
specified.

IEHMOVE Program 19-15

MOVE DSGROUP Statement

COPY DSGROUP Statement

19 - 16 OS/VSl Utilities

The format of the COPY DSNAME statement is:

[label] COPY DSNAME=name

,TO =device = list

[{,FROM=device =list I ,CVOL=device =;Yerial}]

[,UNCATLG]

[,CATLG]

[,RENAME=name]

[,FROMDD=ddname]

[, TODD=ddname]

[,UNLOAD]

The MOVE DSGROUP statement is used to move groups of data sets that
are cataloged in the same catalog and whose names are partially qualified by
one or more identical names. Source data sets are scratched. Data set groups
to be moved must reside on direct access volumes. Only data sets that can be
moved by MOVE DSNAME or MOVE PDS can be moved by MOVE
DSGROUP.

INCLUDE and EXCLUDE statements, discussed later in this chapter, can be
used to add to or delete data sets from the group.

MOVE DSGROUP operations cause· the specified catalog to be updated
automatically unless UNCATLG is specified. The catalog will be updated
even if the TO device is a magnetic tape.

The format of the MOVE DSGROUP statement is:

[label] MOVE DSGROUP[=name]

, TO =device = list

[,CVOL=device =serial]

[,PASSWORD]

[,UNCATLG]

[, TODD=ddname]

[,UNLOAD]

The COPY DSGROUP statement is used to copy groups of data sets that are
cataloged in the same catalog and whose names are partially qualified by one
or more identical names. Data set groups to be copied must reside on direct
access volumes. Only data sets that can be copied by COPY DSNAME or
COpy PDS can be copied by COPY DSGROUP.

INCLUDE and EXCLUDE statements, discussed later in this chapter, can be
used to add to or delete data sets from the group.

The source data sets remain cataloged unless UNCATLG is specified.

MOVE PDS Statement

COPY PDS Statement

The format of the COPY DSGROUP statement is:

LtaOel J \.,vrl u~\:J'.KVUrL =name J

,TO=device = list

[,CVOL=device =serial]

[,PASSWORD]

[,UNCATLG]

[,CATLG]

[, TODD=ddname]

[,UNLOAD]

The MOVE PDS statement is used to move partitioned data sets. When used
in conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT
statements, the MOVE PDS statement can be used to merge selected
members of several partitioned data sets or to delete members.

If IEHMOVE is used to allocate space for an output partitioned data set, the
MOVE PDS statement can be used to expand a partitioned directory.

If the receiving volume contains a partitioned data set with the same name,
the two data sets are merged. The source data set is scratched.

MOVE PDS causes the specified catalog to be updated automatically unless
UNCATLG/FROM is specified.

The format of the MOVE PDS statement is:

[label] MOVE PDS=name

, TO=device =serial

[{,FROM=device=serial I ,CVOL=device=serial}]

[,EXP AND=nn]

[,UNCATLG]

[,RENAME=name]

[,FROMDD=ddname]

[, TODD=ddname]

[,UNLOAD]

The COPY PDS statement is used to copy partitioned data sets. When used in
conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT
statements, the COPY PDS statement can be used to merge selected members
of several partitioned data sets or to delete members.

If IEHMOVE is used to allocate space for an output partitioned data set, the
COpy PDS statement can be used to expand a partitioned directory.

If the receiving volume already contains a partitioned data set with the same
name, the two are merged.

The source partitioned data set remains cataloged unless UNCATLG/FROM
is specified.

IEHMOVE Program 19 - 17

MOVE CATALOG Statement

COpy CATALOG Statement

19 - 18 OS/VS 1 Utilities

The format of the COpy PDS statement is:

[label] COpy PDS=name

, TO=device =serial

[{,FROM=device =seriall ,CVOL=device :::;S'erial}]

(,EXP AND=nn]

[,UNCATLG]

[,CATLG]

[,RENAME=name]

[,FROMDD=ddname]

[, TODD=ddname]

[,UNLOAD]

The MOVE CATALOG statement is used to move the entries of an OS
catalog without moving the data sets associated with those entries. Certain
entries can be excluded from the operation by means of the EXCLUDE
statement. If the receiving volume contains a catalog, the source catalog
entries are merged with it.

The format of the MOVE CATALOG statement is:

[label] MOVE CATALOG[=name]

TO=device =serial

[{,CVOL=device=serial I ,FROM=device=serial}]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

The COpy CATALOG statement is used to copy the entries of an OS catalo
(SYSCTLG data set) without copying the data sets associated with these entri
Certain entries can be excluded from a copy operation with the EXCLUDE
statement. If the receiving volume contains an OS, the source OS catalog
catalog is merged with it.

The format of the COpy CATALOG statement is:

[label] COpy CATALOG[=name]

,TO =device =serial

[{,CVOL=device =seriall ,FROM=device=serial}]

[,FROMDD=ddname]

[,TODD=ddname]

[,UNLOAD]

MOVE VOLUME Statement

COpy VOLUME Statement

INCLUDE Statement

The MOVE VOLUME statement is used to move all the data sets residing on
a specified volume. Catalog entries associated with the data sets remain
unchanged. Data sets to be moved must reside on direct access volumes.

The format of the MOVE VOLUME statement is:

[label] MOVE VOLUME=device =serial

,TO=device =list

[,PASSWORD]

[, TODD=ddname]

[,UNLOAD]

The COpy VOLUME statement is used to copy all the data sets residing on a
specified volume. Catalog entries associated with the data sets remain
unchanged. Data sets to be copied must reside on direct access volumes.

If CATLG is specified, error messages indicating that an inconsistent index
structure exists are issued when the source SYSCTLG data set entries are
merged into the OS catalog on the receiving volume. (Because the SYSCTLG
data set is the last to be copied, only those entries representing cataloged data
sets not residing on the source volume are copied into a receiving volume's
SYSCTLG data set; entries representing all data sets residing on the source
volume have already been made in the receiving SYSCTLG data set.)

The format of the COpy VOLUME statement is:

[label] COpy VOLUME=device =serial

,TO=device =list

[,PASSWORD]

[,CATLG]

[,TODD=ddname]

[,UNI.OAD]

The INCLUDE statement is used to enlarge the scope of MOVE DSGROUP,
COpy DSGROUP, MOVE PDS, or COPY PDS statements by including a
member or a data set not explicitly defined in those statements. The
INCLUDE statement follows the MOVE or COpy statement whose function
it modifies. The record characteristics of the partitioned data set must be
compatible with those of the other partitioned data set(s) being moved or
copied. Any number of INCLUDE statements can modify a MOVE or COpy
statement. For a PDS, the INCLUDE statement is invalid when data is
unloaded or when unloaded data is moved or copied.

The format of the INCLUDE statement is:

[label] INCLUDE DSNAME=name

[,MEMBER=membername]

[{,FROM=device = list I ,CVOL=device =serial}]

IEHMOVE Program 19 - 19

EXCLUDE Statement

SELECT Statement

REPLACE Statement

19 - 20 OS/VSl Utilities

The EXCLUDE statement is used to restrict the scope of MOVE DSGROUP,
COPY DSGROUP, MOVE PDS, COpy PDS, MOVE CATALOG, or COpy
CATALOG statements by excluding a specific portion of data defined in those
statements.

Partitioned data set members excluded from a MOVE PDS operation cannot be
recovered (the source data set is scratched). Any number of EXCLUDE statements
can modify a MOVE PDS or COpy PDS statement.

Source data sets or catalog entries excluded from a MOVE DSGROUP or MOVE
CATALOG operation remain available. Only one EXCLUDE statement can
modify a MOVE DSGROUP, COpy DSGROUP, MOVE CATALOG, or COPY
CATALOG statement. The EXCLUDE statement is invalid when data is unloaded
or when unloaded data is moved or copied.

The format of the EXCLUDE statement is:

[label] EXCLUDE {DSGROUP=name I MEMBER=membername}

The SELECT statement is used with the MOVE PDS or COpy PDS
statement to select members to be moved or copied, and to optionally rename
these members. The SELECT statement cannot be used with either the
EXCLUDE or REPLACE statement to modify the same MOVE PDS or
COpy PDS statement. The SELECT statement is invalid when data is
unloaded or when unloaded data is moved or copied. Members not selected in
a MOVE PDS operation cannot be recovered since the source data set is
scratched after the move is completed.

The format of the SELECT statement is:

[label] SELECT {MEMBER=(name[, name] ...) I
MEMBER = «name , newname)[,(name, newname)] ...)}

The REPLACE statement is used with a MOVE PDS or COpy PDS
statement to exclude a member from the operation and replace it with a
member from another partitioned data set. The new member must have the
same name as the old member and must possess compatible record
characteristics. Any number of REPLACE statements can modify a MOVE
PDS or COpy PDS statement. The REPLACE statement is invalid when data
is unloaded or when unloaded data is moved or copied.

The format of the REPLACE statement is:

[label] REPLACE DSNAME=name

,MEMBER=name

[{,FROM=device =serial I ,CVOL=device =serial}]

Operands

CATALOG

CATLG

CVOL

DSGROUP

Statements

MOVE CATALOG
COPY CATALOG

COpy DSNAME
COPY DSGROUP
COPY PDS COPY
VOLUME

MOVE DSNAME
COpy DSNAME
MOVEPDS
COPYPDS
INCLUDE
REPLACE

MOVE DSGROUP
COPY DSGROUP

MOVE CATALOG
COPY CATALOG

MOVE DSGROUP
COPY DSGROUP

EXCLUDE

Description of Operands/Parameters

CAT ALOG[=name]
specifies the catalog entries to be moved or copied. If name
is not coded, all entries in the catalog are to be moved or
copied. If name is coded, all catalog entries whose names
are qualified by this name are moved or copied. If the
name is a fully qualified data set name, only the cataiog
entry that corresponds to that data set is moved or copied.

CATLG
specifies that the copied data set is to be cataloged on the
receiving volume, if it is a DASD volume. If a catalog does
not exist on the receiving DASD volume, a catalog is
created.

CVOL=device=serial
specifies the device type and serial number of the volume
on which the catalog search, for the data set, is to begin. If
the CVOL and FROM operands are omitted, the data set
is assumed to be cataloged on the system residence
volume.

CVOL=device=serial
specifies the device type and serial number of the volume
on which the catalog search for the data set(s) is to begin.
If the CVOL operand is omitted, the data set(s) is assumed
to be cataloged in the master catalog on the system
residence volume.

CVOL=device=serial
specifies the device type and serial number of the volume
from which the catalog is to be moved or copied. If the
CVOL and FROM operands are omitted, the catalog to be
moved or copied is assumed to be the master catalog on
the system residence volume.

DSGROUP=name
specifies the cataloged data set(s) to be moved or copied.
If name, is a fully qualified data set name, only that data
set is moved or copied. If name has one or more qualifiers,
all data sets whose names are qualified by name are moved
or copied. If name is omitted, all data sets whose names
are found in the searched catalog are moved or copied.

DSGROUP=name
specifies the cataloged data set(s) or the catalog entryOes)
to be excluded in a MOVE/ COPY DSGROUP or
CATALOG operation. If used in conjunction with
MOVE/ COPY DSGROUP, all cataloged data sets whose
names are qualified by name are excluded from the
operation. If used in conjunction with MOVE/COPY
CATALOG, all catalog entries whose names are qualified
by name are excluded from the operation.

IEHMOVE Program 19 - 21

Operands

DSNAME

EXPAND

Applicable Control
Statements

MOVE DSNAME
COPY DSNAME

INCLUDE

REPLACE

MOVEPDS
COPYPDS

19 - 22 OS/VSl Utilities

Description of Operands/Parameters

DSNAME=name
specifies the fully-qualified name of the data set to be
moved or copied.

DSNAME=name
specifies the fully qualified name of a data set. If used in
conjunction with MOVE/COPY DSGROUP, the named
data set is included in the group. If used in conjunction
with MOVE/ COpy PDS, either the entire named
partitioned data set or a member of it is included in the
operation.

DSNAME=name
specifies the fully qualified name of the partitioned data set
that contains the replacement member.

EXPAND=nn.
specifies the number of 256-byte records (up to 99
decimal) to be added to the directory of the specified
partitioned data set. EXPAND will be ignored if space is
previously allocated.

'"''''M- Ht1t#'t ii' h'uri.? ""tiHLHn##'tbl'bdf 'Ii '!MMWtM lcI:b+#'tH:l:tHhriW.-MM6IttWt"tt-t

Operands

FROM

FROMDD

Annli",~hl~ r'nntrnl

Statements

MOVE DSNAME
COpy DSNAME
MOVEPDS
COPYPDS
INCLUDE
SELECT
MOVE CATALOG
COPY CATALOG

MOVE DSNAME
COPY DSNAME
MOVEPDS
COPYPDS
MOVE CATALOG
COpy CATALOG

Description of Operands/Parameters

FROM=device= {list I serial}
specifies the device type and serial number(s) of the
volume(s) on which the data set resides if it is not
cataloged. If the data set is cataloged FROM should not be
specified.

The serial subparameter applies to PDS and CATALOG
operations.

The list subparameter applies to DSNAME operations, but
may also be used when referring to an unloaded PDS
residing on more then one DASD or tape volume, and
when referring to an unloaded catalog residing on more
than one tape volume.

When FROM is used in conjunction with a MOVE
DSNAME/PDS operation, the catalog will not be updated.
When FROM is used in conjunction with a MOVE/ COpy
CATALOG operation, it specifies where an unloaded
version of the catalog resides.

When FROM refers to a tape device and the data set to be
retrieved is not the first on the volume, the serial
subparameter must be enclosed in parentheses and the
volume serial number must be followed by the data set
sequence number, and separated from it by a comma.
When FROM refers to a specific device, code the unit
address in the device parameter, in place of device type.

If FROM and CVOL operands are omitted from a
MOVE/COPY DSNAME/PDS, INCLUDE or
REPLACE operation, the data set is assumed to be
cataloged in the master catalog on the system residence
volume. If FROM and CVOL operands are omitted from a
MOVE/ COPY CATALOG operation, the catalog to be
moved or copied is assumed to be the master catalog on
the system residence volume.

FROMDD=ddname
specifies the name of the DD statement from which DCB
and LABEL information (except data set sequence
number) for input data sets on tape volumes, can be
obtained. When FROMDD is used in conjunction with a
MOVE/COPY PDS/CATALOG operation, the tape data
set must be an unloaded version of a partitioned data set or
an unloaded version of a catalog. The FROMDD operand
can be omitted, provided the data set has standard labels
and resides on a 9-track tape volume.

IEHMOVE Program 19 - 23

Operands

MEMBER

PASSWORD

PDS

RENAME

TO

Applicable Control
Statements

INCLUDE
REPLACE

EXCLUDE

SELECT

MOVE DSGROUP
COpy DSGROUP
MOVE VOLUME
COpy VOLUME

MOVEPDS
COPYPDS

MOVE DSNAME
COpy DSNAME
MOVEPDS
COPYPDS

MOVE DSNAME
COPY DSNAME
MOVE DSGROUP
COpy DSGROUP
MOVEPDS

COPYPDS
MOVE VOLUME
COpy VOLUME
MOVE CATALOG
COpy CATALOG

19 - 24 OS/VS 1 Utilities

Description of Operands/Parameters

MEMBER = name
specifies the name of the partitioned data set named in the
DSNAME parameter on the INCLUDE/REPLACE
statement. When coded on an INCLUDE statement, the
member is merged with the partitioned data set being
moved or copied. When coded on a REPLACE statement,
the member replaces an equally named member in the
partitioned data set being moved or copied. Regardless of
the operation, neither the partitioned data set containing
the named member nor the member is scratched.

MEMBER=name
specifies the name of a member to be excluded from a
MOVE/ COpy PDS operation.

MEMBER = {name I (name[,name] ...) I
«name, newname)[,(name, newname)] ...)}

specifies the names of the members to be moved or copied
by a MOVE/ COpy PDS operation, and optional new
names to be assigned to the members.

PASSWORD
specifies that password protected data sets are to be
included in the operation.

Default: Only data sets that are not protected are copied or
moved.

PDS=name
specifies the fully qualified name of the partitioned data set
to be moved or copied.

RENAME=name
specifies that the data set is to be renamed, and indicates
the new name.

TO =device = list
specifies the device type and volumes to which the
specified data set(s) or group of data sets is to be moved or
copied. The list parameter may be used when unloading a
partitioned data set that must span tape volumes and when
doing a COpy or MOVE of a volume or a DSGROUP. All
volumes needed for output must be specified, or the output
message will not be complete when a multivolume data set is
copied or moved.

TO=device =serial

specifies the device type and volume serial number of the
volume to which the partitioned data or catalog entry is to
be moved or copied.

.... ' b1t b WdNtiW"'WkWW'tt\'dWW"H'ti'b*+!''tltWJ'* d#'''dtt! M

Operands

TODD

UNCATLG

UNLOAD

VOLUME

4.nnli,.ahlp Control

Statements

MOVE DSNAME
COpy DSNAME
MOVE DSGROUP
COpy DSGROUP
MOVEPDS
COPYPDS
MOVE VOLUME
COpy VOLUME
MOVE CATALOG
COpy CATALOG

MOVE DSNAME
COpy DSNAME
MOVE DSGROUP
COpy DSGROUP
MOVEPDS
COPYPDS

MOVE DSNAME
COpy DSNAME
MOVE DSGROUP
COpy DSGROUP
MOVEPDS
COPYPDS
MOVE VOLUME
COpy VOLUME
MOVE CATALOG
COpy CATALOG

MOVE VOLUME
COpy VOLUME

Description of Operands/Parameters

TODD=ddname
specifies the name of the DD statement from which DCB
(except RECFM, BLKSIZE and LRECL) and LABEL
(except data set sequence number) information for output
data sets on tape volumes, can be obtained.

When TODD is used in conjunction with a MOVE/ COpy
DSNAME/DSGROUP /VOLUME operation it describes
the mode and label information to be used when creating
output data sets on tape volumes. RECFM, BLKSIZE and
LRECL information, if coded, is ignored.

When UNLOAD is specified, or when TODD is used in
conjunction with a MOVE/COPY PDS/CATALOG
operation, it describes the mode and label information to
be used when creating unloaded versions of data sets on
tape volumes. RECFM, BLKSIZE and LRECL
information, if coded, must specify (RECFM=FB,
BLKSIZE=800, LRECL=80).

The TODD operand can be omitted for 9-track tapes with
standard labels and default density for the unit type
specified.

UNCATLG
specifies that the catalog entry pertaining to the source
partitioned data set is to be removed. This parameter
should be used only if the source data set is cataloged. If
the volume is identified by FROM, UNCA TLG is ignored.
For a MOVE operation, UNCATALOG inhibits
cataloging of the output data set.

UNLOAD
specifies that the data set is to be unloaded to the receiving
volume(s).

VOLUME =device = serial
specifies the device type and volume serial number of the
source volume.

IEHMOVE Program 19 - 25

19 - 26 OS/VS1 Utilities

Restrictions

• The block size for the SYSPRINT data set must be a multiple of 121. The block
size for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes.

• One anyname 1 DD statement must be included for each permanently mounted
volume referred to in the job step.

• One anyname2 DD statement must be included for each mountable device to be
used in the job step.

• When IEHMOVE is dynamically invoked in a job step containing another
program, the DD statements defining mountable devices for IEHMOVE must be
included in the job stream prior to DD statements defining data sets required by
the other program.

• When unloading a DASD data set to another DASD data set, the data set name
(DSN:;::) must be coded on the DD-card for the data set to be unloaded. If the
output (unloaded) data set was not preallocated, all unused space will be
released.

• An unloaded data set can only be loaded to the same device type as that from
which it was unloaded.

• A DDR swap of an input or output device to another device cannot be done if
doing a multiple function within the same step. The volume mount routine cannot
mount the volume after a DDR swap that has changed the DeB lookup table.

IEHMOVE Examoles
The following examples illustrate some of the uses of IEHMOVE. Figure
19-13 can be used as a quick reference guide to IEHMOVE examples. The
numbers in the "Example" column point to the examples that follow.

Data Set
Operation Organization Device Comments Example

MOVE Sequential Disk Source volume is demounted after
job completion. Two mountable
disks.

COpy Sequential Disk Three cataloged sequential data
sets are to be copied. The disks
are mountable. 2

MOVE Data Set Disk Data set group is to be
Group moved. The 2314 disks are

mountable. 3

MOVE Partitioned Disk A partitioned data set is to be
moved; a member from another
PDS is to be merged with it. 4

MOVE Catalog Disk Catalog is to be moved from
system residence volume to a second
volume. Source catalog is
scratched from system residence
volume. 5

MOVE Catalog Disk Selected catalog entries are to be
moved from system residence to a
second volume. SYSCTLG
is scratched. 6

MOVE Volume Disk Volume of data sets is to be moved. 7

MOVE Partitioned Disk A data set is to be moved to a
volume on which space was
previously allocated. 8

MOVE Partitioned Disk Three data sets are to be moved
and unloaded to a volume on which
space was previously allocated. 9

MOVE Sequential Disk and A sequential data set is to he
Tape unloaded to an unlabeled 9-track

tape volume. 10

MOVE Sequential Disk and Unloaded data sets are to be
Tape loaded from a single volume. 11

COpy Sequential Disk and Data sets are to be copied from
Tape separate source volumes. 12

COpy Partitioned Tape and Unloaded data sets are to be
Disk loaded from unlabeled tape to a

specific device. 13

Figure 19-13. IEHMOVE Example Directory

Note:Examples which use disk or tape, in place of actual device-ids, must be
changed before use. See the Device Support section in the Introduction to this
manual for valid device-id notation.

IEHMOVE Program 19 - 27

IEHMOVE Example 1

IEHMOVE Example 2

19 - 28 OS/VS 1 Utilities

In this example, three data sets (SEQSETt, SEQSET2, and SEQSET3) are to
be moved from a disk volume to three separate disk volumes. Each of the
three receiving volumes is mounted when it is required by IEHMOVE. The
source data sets are not cataloged. Space is allocated by IEHMOVE.

IIMOVEDS JOB 09#550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=d~k,vOLUME=SER=333333,DISP=OLD
IIDD1 DD UNIT=d~k,vOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=(d~k"DEFER),DISP=OLD,
II VOLUME=(PRIVATE"SER=(222222))
IIDD3 DD VOLUME=(PRIVATE,RETAIN,SER=(444444)),
II UNIT=d~k,DISP=OLD
IISYSIN DD *

MOVE DSNAME=SEQSET1 ,To=disk=222222 , FROM=disk=444444
MOVE DSNAME=SEQSET2, To=disk=222333 , FROM=disk=444444
MOVE DSNAME=SEQSET3, To=disk=222444 , FROM=disk=444444

1*
The control statements are discussed below:

• SYSUTt DD defines the device that is to contain the work data set.

• DDt DD defines the system residence device.

• DD2 DD defines the mountable device on which the receiving volumes will
be mounted as they are required.

• DD3 DD defines a mountable device on which the source volume is to be
mounted. Because the RETAIN subparameter is included, the volume
remains mounted until the job has completed.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE moves the source data sets to volumes 222222, 222333, and
222444, respectively. The source data sets are scratched.

In this example, three cataloged data sets are to be copied to a disk volume.
Space is allocated by IEHMOVE. The catalog is not updated. The source data
sets are not scratched.

IICOPYPDS JOB
II EXEC
IISYSPRINT DD
IISYSUT1 DD
IIDD1 DD
IIDD2 DD
IIDD3 DD
IISYSIN DD

1*

COpy
COpy
COpy

09#550 ,GREEN
PGM=I EHMOVE
SYSOUT=A
UN I T=disk ,VOLUME=SER=222222, DISP=OLD
UNIT=disk,vOLUME=SER=111111,DISP=OLD
UNIT=disk , VOLUME=SER=222222, DISP=OLD
UNIT=disk, VOLUME=SER=333333, DISP=OLD

*
DSNAME=SEQSET1,TO=d~k=333333
DSNAME=SEQSET3,TO=d~k=333333
DSNAME=SEQSET4,TO=d~k=333333

The control statements are discussed below:

• SYSUTt DD defines the device that is to contain the work data set.

• DDt DD defines the system residence device.

• DD2 DD defines a mountable device on which the source volume is
mounted.

IEHMOVE Example 3

• 003 DO defines a mountable device on which the receiving volume is
lllVU1.lL\;U.

• SYSIN DO defines the control data set which follows in the input stream.

• COpy copies the source data sets onto volume 333333.

In this example, the data set group A.B.C-which comprises data set
A.B.C.X, A.B.C.Y, and A.B.C.Z-is moved from two disk volumes onto a
third volume. Space is allocated by IEHMOVE. The catalog is updated to
refer to the receiving volume. The source data sets are scratched.

IIMOVEDSG JOB 09#550,GREEN
1/ EXEC PGM=IEHMOVE
I/SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
I/DD1 DD UNIT=d~k,vOLUME=SER=111111,DISP=OLD
I/DD2 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
//DD3 DD UNIT=d~k,vOLUME=SER=333333,DISP=OLD
//DD4 DD UNIT=d~k,vOLUME=SER=444444,DISP=OLD
//SYSIN DD *

MOVE DSGROUP=A. B . C, To=disk=2 22222
1*
The control statements are discussed below:

• SYSUTI DO defines the device that is to contain the work data set.

• DOl DO defines the system residence device.

• 002 DO defines a mountable device on which the receiving volume is to
be mounted.

• 003 DO defines a mountable device on which one of the source volumes
is to be mounted.

• DOt DO defines a mountable device on which one of the source volumes
is to be mounted.

• SYSIN DO defines the control data set, which follows in the input stream.

• MOVE moves the specified data sets to volume 222222.

Note: This example can be used to produce the same result without the use of
the 004 DO statement, using one less mountable disk device. With 003 and
004, both of the source volumes are mounted at the start of the job. With
003 only, the 333333 volume is mounted at the start of the job. After the
333333 volume is processed, the utility requests that the operator mount the
444444 volume. In this case the 003 statement is coded:

/ /D03 DD UNIT=(disk"OEFER),DISP=OLO,VOLUME=(PRIVATE"
/ / SER=(333333»

IEHMOVE Program 19 - 29

IEHMOVE Example 4

IEHMOVE Example 5

19 ...; 30 OS/VS 1 Utilities

In this example, a partitioned data set (PARTSET!) is to be moved to a disk
volume. In addition, a member (P ARMEM3) from another partitioned data
set (PARTSET2) is to be merged with the source members on the receiving
volume. The'source partitioned data set (P ARTSETl) is scratched. Space is
allocated by IEHMOVE.

//MOVEPDS
//
//SYSPRINT
//SYSUT1
//DD1
//DD2
//DD3
//DD4
//SYSIN

/*

MOVE
INCLUDE

JOB 09#550,GREEN
EXEC PGM=IEHMOVE
DD SYSOUT=A
DD UNIT=d~k,vOLUME=SER=333000,DISP=OLD
DD UNIT=disk,vOLUME=SER=111111,DISP=OLD
DD UNIT=d~k,vOLUME=SER=222111,DISP=OLD
DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
DD UNIT=d~k,vOLUME=SER=222333,DISP=OLD

DD *
PDS=PARTSET1 , TO=disk=222333, FROM=disk=222111
DSNAME=PARTSET2, MEMBER=PARMEM3, FROM=disk=222222

The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work data set.

• DDl DD defines the system residence device. '

• The DD2, DD3, and DD4 DD statements define mountable devices that
are to contain the two source volumes and the receiving volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE defines the source partitioned data set, the volume that contains it,
and its receiving volume.

• INCLUDE includes a member from a second partitioned data set in the
operation.

In this example, the SYSCTLG data set is to be moved from the system
residence disk volume to a mountable disk volume. Space is allocated by
IEHMOVE. The source catalog is scratched from the system residence
volume.

//MOVECAT1
//
//SYSPRINT
//SYSUT1
//DD1
//DD2
//SYSIN

JOB
EXEC
DD
DD
DD
DD
DD

MOVE
/*

09#550,GREEN
PGM=IEHMOVE,PARM='POWER=3'
SYSOUT=A
UNIT=disk, VOLUME=SER=333333, DISP=OLD
UNIT=disk, VOLUME=SER= 111111 , DISP=OLD
UNIT=d~k,vOLUME=SER=222222,DISP=OLD

*
CATALOG,TO=d~k=222222

The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work data set.

• DDl DD defines the system residence device which contains the catalog to
be moved.

• DD2 DD defines the mountable device on which the receiving volume is to
be mounted.

j 1hrllr.'dhrtth ntdHW!l:" **+ 1!+J\U!fnl *"***H"**H '* H'HJ +Ih+'!:.Wk++!:IIh/IH' ''IN

IEHMOVE Example 6

IEHMOVE Example 7

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE specifies the move operation and defines the receiving volume.

Note: See "PARM Information on the EXEC Statement" for a description of the
POWERPARM.

In this example, the data set group A.B.C -which comprises the entries
A.B.C.X, A.B.C.Y, and A.B.C.Z-is to be moved from a SYSCTLG data set
to a mountable disk volume. If no catalog exists on the receiving disk volume,
one is created; if a catalog does exist, the specified entries are merged into it.
The last INDEX of all entries in the source SYSCTLG is scratched. The work
data set is deleted when the job step is completed.

IIMOVECAT2 JOB 09#550,GREEN
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
IIDD1 DD UNIT=d~k,vOLUME=SER=111111,DISP=OLD
IIDD2 DD UNIT=d~k,vOLUME=SER=222222,DISP=OLD
IISYSIN DD *

MOVE CATALOG=A. B. C, TO=disk=222222
1*
The control statements are discussed below:

• SYSUTt DD defines the device that is to contain the work data set.
(Because IEHMOVE deletes the work data set at the completion of the
program, it can be contained on the receiving volume, provided there is
space for it.)

• DDt DD defines the system residence device. The system residence
volume contains the catalog where entries are to be moved.

• DD2 DD defines the mountable device on which the receiving volume is to
be mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE specifies a move operation for selected entries and defines the
receiving volume.

In this example, a volume of data sets is to be moved to a disk volume. All
data sets that are successfully moved are scratched from the source volume;
however, any catalog entries pertaining to those data sets are not changed.
Space is allocated by IEHMOVE. The work data set is deleted when the job
step is completed.

IIMOVEVOL JOB
II EXEC
IISYSPRINT DD
IISYSUT1 DD
IIDD1 DD
IIDD2 DD
IIDD3 DD
IISYSIN DD

MOVE
1*

09#550 ,GREEN
PGM=IEHMOVE
SYSOUT=A
UNIT=d~k,vOLUME=SER=222222,DISP=OLD
UNIT=d~k,vOLUME=SER=111111,DISP=OLD
UNIT=d~k,vOLUME=SER=222222,DISP=OLD
UNIT=d~k,vOLUME=SER=333333,DISP=OLD

*
VOLUME=disk=333333 , TO=disk=222222 , PASSWORD

IEHMOVE Program 19 - 31

IEHMOVE Example 8

19 - 32 OS/VS 1 Utilities

The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work data set. The
work data set is removed from the receiving volume when the job step is
completed.

• DDl DD defines the system residence device.

• DD2 DD defines the mountable device on which the receiving volume is to
be mounted.

• DD3 DD defines a mountable device on which the source volume is to be
mounted.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE specifies a move operation for a volume of data sets and defines
the source and receiving volumes. This statement also indicates that
password-protected data sets are to be included in the operation.

Note: IEHPROGM can be used to uncatalog catalog entries pertaining to
non-VSAM source data sets and to catalog the moved versions of those data
sets.

In this example, a partitioned data set is to be moved to a disk volume on
which space has been previously allocated for the data set. The source data
set is scratched. The work data set is deleted when the job step is completed.

IIALLOCATE JOB 09#550,GREEN
II EXEC PGM=IEFBR14
IISET1 DO OSNAME=POSSET1 , UN I T=disk , OISP=(NEW, KEEP),
II VOLUME=SER=222222,SPACE=(TRK,(100,10,10)),
IIOCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
II EXEC PGM=IEHMOVE
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO UNIT=d~k,vOLUME=SER=222222,OISP=OLO
11001 DO UNIT=d~k,vOLUME=SER=111111,OISP=OLO
11002 DO UNIT=d~k,vOLUME=SER=222222,OISP=OLO
11003 DO UNIT=d~k,vOLUME=SER=333333,OISP=OLO
IISYSIN DO *

MOVE POS=POSSET1 , TO=disk=222222, FROM=disk=333333
1*
The IEFBR14 job s!tep is used to allocate space for data set PDSSETI on
a disk volume.

The control statements are discussed below:

• SYSUTl DD defines the device that is to contain the work data set. The
data set is removed from the receiving volume at the completion of the
program.

• DDl DD defines the system residence device.

• DD2 DD defines the device on which the receiving volume is to be
mounted.

• DD3 DD defines a mountable device on which the source volume is to be
mounted.

\H!:f:tt'H±HU 6 "bHWHMWI#tM

lEiIMOVE Example 9

- 4i;.'!V4i;.'!T'hl nn ..1pf;np~ thp f'nntrnl r1~t~ ~p.t whi~h follow~ in the innllt ~tream_

• MOVE specifies a move operation for the partitioned data set PDSSETI and
defines the source and receiving volumes.

In this example, three partitioned data sets are to be moved from three separate
source volumes to a disk volume. The source data set PDSSET3 is unloaded. (The
record size exceeds the track capacity of the receiving volume.) The work data set
is deleted when the job step is completed.

IIALLOCATE JOB 09#550,GREEN
II EXEC PGM=IEFBR14
IISET1 DO OSNAME=POSSET1,UNIT=d~k,OISP=(NEW,KEEP),
II VOLUME=SER=222222,SPACE=(TRK,(50,10,5)),
IIOCB=(RECFM=FB,LRECL=80,BLKSIZE=1600)
IISET2 DO OSNAME=POSSET2,UNIT=d~k,OISP=(NEW,KEEP),
II VOLUME=SER=222222,SPACE=(TRK,(25,5,5)),
IIOCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISET3 DO OSNAME=POSSET3,UNIT=d~k,OISP=(NEW,KEEP),
II VOLUME=SER=222222,SPACE=(TRK,(25,5)),
IIOCB=(RECFM=U,BLKSIZE=5000)
II EXEC PGM=IEHMOVE
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO UNIT=d~k,vOLUME=SER=222222,OISP=OLO
11001 DO UNIT=d~k,vOLUME=SER=llllll,OISP=OLO
11002 DO UNIT=(d~k"OEFER),OISP=OLO,
II VOLUME=(PRIVATE"SER=(333333))
11003 OD UNIT=disk, VOLUME=SER=222222 ,DISP=OLD
IISYSIN DO *

MOVE POS=PDSSET1 , To=d~k=222222, FROM=disk=333333
MOVE POS=POSSET2, To=disk=222222, FROM=disk=222222
MOVE POS=POSSET3,TO=d~k=222222,

FROM=disk=444444 , UNLOAD
1*
The IEFBR14 job step is used to allocate space for the partitioned data sets
PDSSETl, PDSSET2, and PDSSET3 on the receiving volume. The SPACE
parameter in the SET3 DD statement allocates space for a sequential data set. This
is necessary to successfully unload the partitioned data set PDSSET3. The DeB
attributes of PDSSET3 are:

DCB=(RECFM=U,BLKSIZE=5000)

The unloaded attributes are:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

The control statements are discussed below:

• SYSUTI DD defines the device that is to contain the work data set.

• DD 1 DD defines the system residence device.

• DD2 DD defines a mountable device on which the source volumes are mounted
as they are required.

• DD3 DD defines a mountable device on which the receiving volume is mounted.

IEHMOVE Program 19 - 33

IEHMOVE Example 10

19 - 34 OS/VS 1 Utilities

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE specifies move operations for the partitioned data sets and defines
the source and receiving volumes.

Note: For a discussion on estimating space allocations, refer to OS/VSl Data
Management Services Guide.

In this example, a sequential data set is to be unloaded onto an
unlabeled tape volume (800 bits per inch). The work data set resides on the
source volume and is deleted when the job step is completed.

IluNLOAO JOB 09#550,GREEN 72
II EXEC PGM=IEHMOVE
IISYSPRINT DO SYSOUT=A
IISYSUT1 DO UNIT=d~k,vOLUME=SER=222222,OISP=OLO
1/001 DO UNIT=d~k,vOLUME=SER=111111,OISP=OLO
11002 DO UNIT=d~k,vOLUME=SER=222222,OISP=OLO
IITAPEOUT DO UNIT=tape,VOLUME=SER=SCRTCH,OISP=OLO,
IIOCB=(OEN=2,RECFM=FB,LRECL=80,BLKSIZE=800),
I I LABEL=(, NL)
IISYSIN DO *

MOVE OSNAME=SEQSET1,TO=mpe=SCRTCH, C
FROM=disk=222222, TOOO=TAPEOUT

1*
The control statements are discussed below:

• SYSUTt DD defines the device that is to contain the work data set.

• DDt DD defines the system residence device.

• DD2 DD defines a mountable device on which the source volume is
mounted.

• T APEOUT DD defines a mountable device on which the receiving tape
volume is mounted. This statement also provides label and mode
information.

• SYSIN DD defines the control data set which follows in the input stream.

• MOVE moves the sequential data set SEQSETt from a disk volume to the
receiving tape volume. The data set is unloaded. The TODD parameter in
this statement refers to the T APEOUT DD statement for label and mode
information.

lElIMOVE Example 11

IEHMOVE Example 12

In tIDS example, lnree UDloaueu seq uenual uala :sta:s an; LV UC IV(lUCU 11 V111 (I

labeled, 7-track tape volume (556 bits per inch) to a disk volume. Space is
allocated by IEHMOVE. The example assumes that the disk volume is
capable of supporting the data sets in their original forms.

IILOAD JOB 09#550,GREEN 72
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=disk, VOLUME=SER=222222 ,DISP=OLD
IIDD1 DD UNIT=disk, VOLUME=SER=111111 ,DISP=OLD
IIDD2 DD UNIT=disk, VOLUME=SER=222222, DISP=OLD
IITAPESETS DD UNIT=2400-2,
II VOLUME=SER=OG1234,DISP=OLD,
II LABEL=(1 ,SL),DCB=(DEN=1 ,TRTCH=C)
IISYSIN DD *

MOVE DSNAME=UNLDSET1 , TO=disk=222222 , C
FROM=2400-2=(001234,1),FROMDD=TAPESETS

MOVE DSNAME=UNLDSET2,TO=d~k=222222, C
FROM=2400-2=(001234,2),FROMDD=TAPESETS

MOVE DSNAME=UNLDSET3, TO=disk=222222, C
FROM=2400-2=(001234,3),FROMDD=TAPESETS

1*
The control statements are discussed below:

• SYSUTt DD defines the device that is to contain the work data set.

• DDt DD defines the system residence device.

• DD2 DD defines a mountable device on which the receiving volume is
mounted.

• T APE SETS DD defines a mountable device on which the source volume is
mounted. DCB information is provided in this statement.

• SYSIN DD defines the control data set, which follows in the input stream.

• MOVE moves the unloaded data sets to the receiving volume.

Note: To move a data set from a tape volume that contains more than one
data set, you must specify the sequence number of the data set in the list field
of the FROM parameter on the utility control statement.

In this example, two sequential data sets are to be copied from separate tape
volumes to a disk volume. Space is allocated by IEHMOVE. Only one
tape unit is available for the operation.

IIDEFER JOB 09#550,GREEN 72
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=disk, VOLUME=SER=222222, DISP=OLD
IIDD1 DD UNIT=disk, VOLUME=SER=111111 ,DISP=OLD
IIDD2 DD UNIT=disk, VOLUME=SER=222222 ,DISP=OLD
IITAPE1 DD VOLUME=SER=001234,UNIT=mpe,DISP=OLD
IITAPE2 DD VOLUME=SER=001235,UNIT=AFF=TAPE1,DISP=OLD
IISYSIN DD *

COpy DSNAME=SEQSET1 , TO=disk=222222, C
FROM=tape=(001234,2), FROMDD=TAPE1

COpy DSNAME=SEQSET9,TO=d~k=222222, C
FROM=tape= (001 235 , 4) , FROMDD=TAPE2

1*

IEHMOVE Program 19 - 35

The control statements are discussed below:

• SYSUT1 DD defines the volume that is to contain the work data set.

• DD1 DD defines the system residence device.

• DD2 DD defines a mountable device on which the receiving volume is
mounted.

• TAPE1 DD defines a mountable device on which the first volume to be
processed is mounted. The source data set is the second data set on the
volume.

• T APE2 DD defines a mountable device on which the second volume to be
processed is mounted when it is required. The source data set is the fourth
data set on the volume.

• SYSIN DD defines the control data set, which follows in the input stream.

• COpy copies the data sets to the receiving volume.

Note: To copy a data set from a tape volume that contains more than one
data set, you must specify the sequence number of the data set in the list field
of the FROM parameter on the utility control statement.

IEHMOVE Example 13

19- 36 OS/VSl Utilities

In this example, three unloaded partitioned data sets residing on an unlabeled
tape volume mounted on device 282 are copied to a 2314 volume mounted on
device 191.

IILOAD JOB MEDDAUGH,PS40300439,MSGLEVEL=1
II EXEC PGM=IEHMOVE
IISYSPRINT DD SYSOUT=A
IISYSABEND DD SYSOUT=A
IISYSUT1 DD UNIT=191,VOLUME=SER=231400,DISP=OLD
IIDD1 DD UNIT=191,VOLUME=SER=231400,DISP=OLD
IITAPE1 DD UNIT=282,VOLUME=SER=NLTAPE,DISP=OLD,
II LABEL=(,NL),DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
IISYSIN DD *

1*

COpy PDS=DSET1,FROM=282=(NLTAPE,1),TO=191=231400,FROMDD=TAPE1
COpy PDS=DSET2,FROM=282=(NLTAPE,2),TO=191=231400,FROMDD=TAPE1
COPY PDS=DSET3,FROM=282=(NLTAPE,3),TO=191=231400,FROMDD=TAPE1

The control statements are discussed below:

• SYSUT1 DD defines the work data set.

• DD1 DD defines the receiving volume.

• TAPE1 DD defines the source data sets. They are, in the order in which
they reside on the volume, DSET1, DSET2, and DSET3.

• SYSIN DD defines the control data set, which follows in the input stream.

• COpy copies the unloaded partitioned data sets from the unlabeled tape to
the receiving volume.

IEHPROGM PROGRAM

IEHPROGM is a system utility used to modify system control data and to maintain
data sets at an organizational level. IEHPROGM should only be used by those
programmers locally authorized to do so.

IEHPROGM can be used to:

• Scratch a data set or a member.

• Rename a data set or a member.

• Catalog or uncatalog a data set.

Build or delete an index or an index alias.

• Connect or release two volumes.

• Build and maintain a generation index.

• Maintain data set passwords.

At the completion or termination of the program, the highest return code
encountered within the program is passed to the calling program.

Scratching a Data Set or Member

IEHPROGM can be used to scratch the following from a direct access volume or
volumes:

• Sequential, indexed sequential, partitioned, or direct data sets.

• Members of a partitioned data set.

• Password-protected data sets.

• Data sets named by the operating system.

A data set is considered scratched when its data set control block is removed from
the volume table of contents (VTOC) of the volume on which it resides; its space is
made available for re-allocation.

The space occupied by a data set residing on a device that operates in split-cylinder
mode is not available for re-allocation until all data sets sharing the cylinder have
been scratched.

A member is considered scratched when its name is removed from the directory of
the partitioned data set in which it is contained. The space occupied by a scratched
member is not available for re-allocation until the partitioned data set is scratched
or compressed. (When scratching a member of a partitioned data set, all aliases of
that member should also be removed from the directory.)

Renaming a Data Set or Member

IEHPROGM can be used to rename a data set or member that resides on a direct
access volume. In addition, the program can be used to change any member aliases.

IEHPROGM Program 20-1

Cataloging or Uncataloging a Data Set

20-2 OS/VS 1 Utilities

IEHPROGM can be used to catalog or uncatalog a sequential, indexed sequential,
partitioned, or direct data set. A data set is cataloged when its fully qualified name
and volume identification are entered in one or more index levels of the SYSCTLG
-data set. The program catalogs a data set by generating an entry containing the
data set name and associated volume information, in the index of the catalog. If
higher level indexes are necessary to catalog the data set, they are automatically
created. -

The catalog function is used to: (1) catalog a data set that was not cataloged when
it was created, or (2) satisfy, if necessary, the requirement that a higher level index
or indexes be created. Figure 20-1 shows how data set A.F.G is cataloged on the
system residence volume. Note that the level F index does not exist in the
SYSCTLG data set before the catalog operation.

System residence
before cataloging A.F.G.

System residence
after cataloging A.F.G.

Figure 20-1. Cataloging a Data Set Using IEHPROGM

The catalog function of IEHPROGM differs from a DISP=(,CATLG) specification
in a DD statement in that the DISP=(,CATLG) specification cannot catalog a data
set on a volume other than the system residence volume unless the system residence
volume is properly connected to the other volume. (Refer to "Connecting or
Releasing Two Volumes" in this chapter for a discussion of connected volumes.)

IEHPROGM uncatalogs a data set by removing the data set name and associated
volume information from the lowest level index of the catalog.

The uncatalog function of the program differs from a DISP=(. .. ,UNCATLG)
specification in a DD statement in that the DISP=(. .. ,UNCATLG) specification
cannot remove an entry from the 8YSCTLG data set on a volume other than the
system residence volume unless the two volumes are properly connected.

It is not recommended that the IEHPROGM CATLOG/UNCATLOG functions
be used instead of DISP=(,CATALOG), DISP=(,UNCATALOG) in a multistep
job. If a data set is to be uncataloged during termination of a step, use
DISP=(OLD,UNCATALG). The system does not recognize an IEHPROGM
uncatalog operation; therefore, unpredictable events may result. Figure 20-2 shows
how data set A.F.G is uncataloged by the program. Prior to the operation, the fully
qualified name and associated volume information are represented in the catalog.

The uncatalog operation removes the lowest level·entry and all higher unneeded

System residence-
prior to uncataloging A.F .G.

System residence···
afteruncataloging A.F.G.

Figure 20-2. Uncataloging a Data Set Using IEHPROGM

Building or Deleting an Index

IEHPROGM can be used to build a new index in the catalog or to delete an
existing index. In building an index, the program automatically creates as many
higher level indexes as are necessary to complete the specified structure.

IEHPROGM can be used to delete one or more indexes from an index structure;
however, an index cannot be deleted if it contains any entries. That is, it cannot be
deleted if it refers to a lower level index or if it is part of a structure indicating the
fully qualified name of a cataloged data set.

Figure 20-3 shows an index structure before and after a build operation. The left
portion of the figure shows two cataloged data sets, A.Y.YY and A.B.X.XX, before
the build operation. The right portion of the figure shows the index structure after
the build opetation, which was used to build index A.B.C.D.E. Note in the left
portion of the figure that index levels C and D do not exist before the build
operation. These levels are automatically created when the level E index is built.

When the level E index is subsequently deleted, the level C and D indexes are not
automatically deleted by the program. To delete these index levels, delete:
A.B.C.D.E, A.B.C.D, and A.B.C, in that order. The level B index cannot be
deleted, because data set A.B.X.XX and the X level index are dependent upon the
level B index.

Building or Deleting an Index Alias

IEHPROGM can be used to assign an alternative name (alias) to the highest level
index of a catalog or to delete an alias previously assigned. An alias cannot,
however, be assigned to the highest level of a generation index.

Figure 20-4 shows an alias, XX, that is assigned to index A (a high level index).
The cataloged data set A.B.C can be referred to as either A.B.C or XX.B.C.

IEHPROGM Program 20-3

A

(------~

Before build operation After build operation

Figure 20-3. Index Structure Before and After an IEHPROGM Build Operation

Figure 20-4. Building an Index Alias Using IEHPROGM

Connecting or Releasing Two Volumes

20-4 OS/VSl Utilities

IEHPROGM can be used to connect a volume to a second volume by placing an
entry into a high level index on the first volume. The entry contains an index name
and the volume serial number and device type of the second volume. The program
can subsequently release the volumes by removing the entry from the high level
index. If two volumes are connected:

• The catalog (SYSCTLG data set) must be created on the second volume for
cataloging of data sets having the same high level index as the connected index.

• Normal JCL can be used to process (catalog, retrieve, uncatalog) data sets
cataloged on the second volume, if the high level index has been connected from
the first volume.

• A high level index can only be connected to one second volume, but chaining is
possible from a second to a third volume, etc.

If the SYSCTLG data set is extended to a second volume, it must be identified on
that volume.

Figure 20-5 shows how the system residence volume can be connected to a second
volnmp Anv ~nh~p(lnpnt lnciPY ~p::Ir~h for lnciPY X on thp ~v~tpm rp~lcipnl'p volnmp

is carried to the second volume.

System residence volume Connected volume

Figure 20-5. Connnecting-a Volume to a Second Volume Using IEHPROGM

Note: The index name of each high level index existing on the second volume must
be present in the first volume; when a new high level index is placed on a second
volume, the first volume should be connected to the second volume.

Figure 20-6 shows three volumes connected to the system residence volume. All
volumes are accessible (through high level indexes X, Y, and Z) to the operating
system.

System residence System residence

or

Figure 20-6. Connecting Three Volumes Using IEHPROGM

IEHPROGM Program 20-5

Building and Maintaining a Generation Index

IEHPROGM can be used to build an index structure for a generation data group
and to define what action should be taken when the index overflows.

The lowest level index in the structure can contain up to 255 entries for successive
generations of a data set. If the index overflows, the oldest entry is removed from
the index, unless otherwise specified (in which case all entries are removed). If
desired, the program can be used to scratch all generation data sets whose entries
are removed from the index.

Figure 20-7 shows the irtdex structure created for generation data group A.B.C. In
this example, provision is made for up to five subsequent entries in the lowest level
index.

Figure 20-7. Building a Generation Index Using IEHPROGM

Note: Before a generation data group can be cataloged as such, a generation index
must exist. Otherwise, a generation data set is cataloged as an individual data set,
rather than as a generation.

When creating and cataloging a generation data set, the user can provide necessary
DCB information. See OS/VSl Data Management Services Guide for a discussion
of how DCB attributes are provided for a generation data group.

Maintaining Data Set Passwords

20-6 OS/VS 1 Utilities

IEHPROGM can be used to maintain password entries in the PASSWORD data set
and to alter the protection status of direct access data sets in the data set control
block (DSCB). For a complete description of data set passwords and the
PASSWORD data set, see OS/VSl Data Management for System Programmers
and OS/VSl Data Management Services Guide.

A data set can have one of three types of password protection, as indicated in the
DSCB for direct access data sets and in the tape label for tape data sets (see
OS/VSl System Data Areas for a description of the DSCB and tape label). The
possible types of data set password protection are:

• No protection, which means that no passwords are required to read or write the
data set.

• Read/write protection, which means that a password is required to read or write
the data set.

• Read-without-password protection, which means that a password is required
only to write the data set; the data set can be read without a password.

Note: If a system data set is password protected and a problem occurs on the data
(l~t 1'n~1"tj:>"~"f"P np"(l,,""~l 1'nll(lt hp "~''''U1r1Pr1 u11th thp n~(l(lU1",.r1 1" "Tr1PT t" <>f"f"~(lC'

the data set and resolve the problem.

A data set can have one or more passwords assigned to it; each password has an
entry in the PASSWORD data set. A password assigned to a data set can allow
read and write access or only read access to the data set.

Figure 20-8 shows the relationship between the protection status of data set ABC
and the type of access allowed by the passwords assigned to the data set. Passwords
ABLE and BAKER are assigned to data set ABC. If no password protection is set
in the OSCB or tape label, data set ABC can be read or written without a password.
If read/write protection is set in the OSCB or tape label, data set ABC can be read
with either password ABLE or BAKER and can be written with password ABLE.
If read-without-password protection is set in the OSCB or tape label, data set ABC
can be read without a password and can be written with password ABLE; password
BAKER is never needed.

Protection status of data
set ABC-contained in
its OSCB or tape label The kind of protection pointed

at allows data set ABC to be:
No
password
protection

Read/Write
protection

ReadO-without
password
protection

Read or written on with
,.--no password

Password ABLE

~!IJ!IIlII!!I!IJ!IIlII!!I._m~~----- allows read/write

1'lII'III __ Read with
no password

System
residence
volume

Figure 20-8. Relationship Between the Protection Status of a Data Set andlts Passwords

Before IEHPROGM is used to maintain data set passwords, the PASSWORD data
set must reside on the system residence volume. IEHPROGM can then be used to:

• Add an entry to the PASSWORD data set.

• Replace an entry in the PASSWORD data set.

• Delete an entry from the PASSWORD data set.

• Provide a list of information from an entry in the PASSWORD data set.

Each entry in the PASSWORD data set contains the name of the protected data
set, the password, the protection mode of the password, an access counter, and 77
bytes of optional user data. The protection mode of the password defines the type
of access allowed by the password and whether the password is a control password
or secondary password. The initial password, added to the PASSWORD data set
for a particular data set, is marked in the entry as the control password for that data
set. The second and subsequent passwords added for the same data set are marked
as secondary passwords.

For direct access data sets, IEHPROGM updates the protection status in the DSCB
when a control password entry is added, replaced, or deleted. This permits setting
and resetting the protection status of an existing direct access data set at the same

IEHPROGM Program 20-7

Adding Data Set Passwords

time its passwords are added, replaced, or deleted. IEHPROGM automatically
alters the protection status of a data set in the DSCB if the following conditions
are met:

• The control password for the data set is being added, replaced, or deleted.

• The data set is online.

• The volume on which the data set resides is specified on the utility control
statement, or the data set is cataloged.

• The data set is not allocated within the IEHPROGM job.

For tape data sets, IEHPROGM cannot update the protection status in the tape
label when a password entry is added, replaced, or deleted. Protection status in a
tape label must be set with JCL.

Passwords to be added, replaced, deleted, or listed can be specified on utility
control statements or can be entered by the console operator. IEHPROGM issues a
message to the console operator when a password on a utility control statement is
either missing or invalid. The message contains the job name, step name, and utility
control statement name and identifies the particular password that is missing or
invalid. Two invalid passwords are allowed per password entry on each utility
control statement before the request is ignored; a total of five invalid passwords is
allowed for the password entries on all the utility control statements in a job step
before the step is canceled.

Note: If the current password is invalidly specified in the control statement, no
message to the operator is issued and the request is ignored.

When a password is added for a data set, an entry is created in the PASSWORD
data set with the specified data set name, password name, protection mode of the
password (read/write or read only), and the optional 77 characters of user-supplied
data. The access counter in the entry is set to zero.

The control password for a data set must always be specified to add, replace, or
delete secondary passwords. The control password should not be specified,
however, to list information from a secondary password entry.

Secondary passwords can be assigned to a data set to restrict some users to reading
the data set or to record the number of times certain users access the data set. The
access counter in each password entry provides a count of the number of times the
password was used to successfully open the data set.

If a control password for a direct access, online data set is added, the protection
status of the data set (read/write or read-without-password) is set in the DSCB.
However, the data set to be protected must not be allocated within the same job as
the one in which IEHPROGM is executed. If it is allocated, the DSCB cannot be
accessed and the protection status is not set. If the data set to be protected is being
created within the same job, use JCL to set the protection status in the DSCB.

Replacing Data Set Passwords

20-8 OS/VS 1 Utilities

Any of the following information may be replaced in a password entry: the
password, protection mode (read/write or read only) of the password, and the 77
'characters of user data. The protection status of a data set can be changed by
replacing the control entry for the data set.

If the control·entry of a direct access, online data set is replaced, the DSCB is also

reset to indicate any change in the protection status of the data set. Therefore, the
""'.0" ",).,.", .. 1,.1 .0"''''''''.0 th~t th"" u,,1111'1"1"" 1C nnl1np ,xThpn l'h~n(Jln(J thp nrotpl'tlon ~t~tll~ of

a direct access data set.

Deleting Data Set Passwords

Listing Password Entries

When a control password entry is deleted from the PASSWORD data set, all
secondary password entries for that data set are also deleted. However, when a
secondary entry is deleted, no other password entries are deleted.

If the control password entry is deleted for an online, direct access data set, the
protection status of the data set in the DSCB is also changed to indicate no
protection. When deleting a control password for a direct access data set, the user
should ensure that the volume is online. If the volume is not online, the password
entry is removed, but data set protection is still indicated in the DSCB; the data set
cannot be accessed unless another password is added for that data set.

If the control password entry is deleted for a tape data set, the user must change
the protection status in the tape label to indicate no protection; otherwise, the tape
volume cannot be accessed. The tape label may be changed using the IEHINITT
utility program, however, the data set cannot be retrieved afterwards.

The delete function should be used to delete all the password entries for a scratched
data set to make the space available for new entries.

A list of information from any entry in the PASSWORD data set can be obtained
in the SYSPRINT data set by providing the password for that entry. The list
includes: the number of times the password has been used to successfully open the
data set; the type of password (~ontrol password or secondary password) and type
of access allowed by the password (read/write or read-only); and the user data in
the entry. Figure 20-9 shows a sample list of information printed from a password
entry.

DECIMAL ACCESS COUNT= 000025
PROTECT MODE BYTE= SECONDARY, READ ONLY
USER DATA FIELD= ASSIGNED TO J. BROWN

Figure 20-9. Listing of a Password Entry

IEHPROGM Program 20-9

Input and Output

Control

Job Control Statements

20-10 OS/VS 1 Utilities

IEHPROGM uses as input a control data set that contains utility control statements
used to control the functions of the program and to indicate those data sets or
volumes that are to be modified.

IEHPROGM produces as output a modified object data set or volume(s), and a
message data set that contains error messages and information from the
PASSWORD data set.

IEHPROGM provides a return code to indicate the results of program execution.
The return codes and their meanings are:

• 00, which indicates successful completion.

• 04, which indicates that a syntax error was found in the name field of the control
statement or in the P ARM field in the EXEC statement. Processing is continued.

• 08, which indicates that a request for a specific operation was ignored because of
. an invalid control statement or an otherwise invalid request. The operation is not
performed.

• 12, which indicates that an input/output error was detected when trying to read
from or write to SYSPRINT, SYSIN or the VTOC.

• 16, which indicates an unrecoverable error. The job step is terminated.

IEHPROGM is controlled by job control statements and utility control statements.

Job control statements are used to:

• Execute or invoke the program.

• Define the control data set.

• Define volumes and/or devices to be used during the course of program
execution.

• Prevent data sets from being deleted inadvertently.

• Prevent volumes from being demounted before they have been completely
processed by the program.

• Suppress listing of utility control statements.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes that are to be modified.

Figure 20-10 shows the job control statements necessary for using IEHPROGM.

The anyname1 DD statement can be entered:

/ /anynamel DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent deletion of a data
set. The anyname1·DD statement is arbitrarily assigned the ddname DD1 in the
IEHPROGM examples.

Statement Use

JOB Initiates the job.

EXEC Specifies the program name (PGM=IEHPROGM) or, if the job control
statements reside in a procedure library, the procedure name. Additional
PARM information can be specified to control the number of lines per page
on the output listing and to suppress printing of utility control statements. See
"PARM Information on the EXEC Statement" below.

SYSPRINT DO Defines a sequential message data set.

anyname 1 DO Defines a permanently mounted volume. (The system residence volume is
considered to be a permanently mounted volume.)

anyname2 DO Defines a mountable device type.

SYSIN DO Defines the control data set. The control data set normally follows the job
control statements in the input stream; however, it can be defined as a
member of a procedure library.

Figure 20-10. IEHPROGM Job Control Statements

The anyname2 DD statement can be coded in the following ways:

/ /anyname2 DO VOLUME=SER=xxxxxx,UNIT=xxxx,DISP=OLD

/ /anyname2 DO VOLUME=(PRIVATE,SER=xxxxxx),
/ / UNIT=(xxxx"DEFER),DISP=OLD

The second example can be used to specify deferred mounting when a large number
of magnetic tapes or direct access volumes are to be processed in one application of
the program. The anyname2 DD statement is arbitrarily assigned the ddname DD2
in the IEHPROGM examples. DD statements defining additional mountable
devices are assigned names DD3, DD4, etc.

Refer to "Appendix C: DD Statements for Defining Mountable Devices" for
instructions on defining mountable volumes.

PARM Information on the EXEC Statement

Additional information can be specified in the P ARM parameter of the EXEC
statement to control the number of lines per page on the output listing and to
suppress printing of utility control statements. The EXEC statement can be coded:

/ / EXEC
PGM=IEHPROGM[,PARM='LINECNT=xx,{PRINT I NOPRINT}']

The LINECNT parameter specifies the number of lines per page in the listing of
the SYSPRINT data set; xx is a 2-digit number, from 01 through 99. If LINECNT
is omitted, or if an error is encountered in the LINECNT subparameter, the
number of lines per page will be 45.

The PRINT value specifies that the utility control statements are to be written to
the SYSPRINT data set. If neither PRINT nor NOPRINT is coded, PRINT is
assumed.

The NOPRINT value specifies that utility control statements are not to be written
to the SYSPRINT data set. Suppressing printing of utility control statements
assures that passwords assigned to data sets remain confidential. However,
suppressing printing may make it difficult to interpret error messages because the
relevant utility control statement is not printed before the message.

IEHPROGM Program 20-11

Utility Control Statements

SCRATCH Statement

RENAME Statement

20-12 OS/VSl Utilities

Figure 20-11 shows the utility control statements necessary for using IEHPROGM.

Statement

SCRATCH

RENAME

CATLG

UNCATLG

BLDX

DLTX

BLDA

DLTA

CONNECT

RELEASE

BLDG

ADD

REPLACE

DELETEP

LIST

Use

Scratches a data set or a member from a direct access volume.

Changes the name or alias of a data set or member residing on a direct
access volume.

Generates an entry in the index of a catalog.

Removes an entry from the lowest level index of the catalog.

Creates a new index in the catalog.

Removes a low level index from the catalog.

Assigns an alias to an index at the highest level of the catalog.

Deletes an alias previously assigned to an index at the highest level of the
catalog.

Places a Control Volume Pointer Entry in a high level index of a catalog,
thus connecting it with another catalog.

Removes a Control Volume Pointer Entry from the high level index of a
catalog.

Builds an index for a generation data group and defines what action should
be taken when the index overflows.

Adds a password entry in the PASSWORD data set.

Replaces information in a password entry.

Deletes an entry in the PASSWORD data set.

Formats and lists information from a password entry.

Figure 20-11. IEHPROGM Utility Control Statements

When a card is included for the sole purpose of continuing a comment, the
continuation may start in any column between 1 and 71.

The SCRATCH statement is used to scratch a data set or member from a direct
access volume. A data set or member is scratched only from the volumes designated
in the seRA TCH statement. This function does not uncatalog scratched data sets.

The format of the SCRATCH statement is:

[label] SCRATCH{DSNAME=name I VTOC}

,VOL=device =list

[,PURGE]

[,MEMBER=name]

[,SYS]

The RENAME statement is used to change the true name or alias of a data set or
member residing on a direct access volume. The name is changed only on the
designated volume(s). The rename operation does not update the catalog.

CA TLG Statement

UNCATLG Statement

The format of the RENAME statement is:

Llabel J RENAME DSNAME=name

,VOL=device = list

,NEWNAME=name

[,MEMBER=name]

The CA TLG statement is used to generate an entry in the index of a catalog. If
additional levels of indexes are required in the catalog, this function automatically
creates them. When cataloging generation data sets, refer to "BLDG (Build
Generation Index) Statement" for the action to be taken when the index is full.

When device is represented by a group name (for example, SYSDA) instead of a
generic name (for example, 2314 or 2400) in the VOL parameter, the catalog
operation does not enter the device type code in the systep1 catalog. Instead, it
places a unique entry in the device type field of the catalog. The allocation of the
device for this entry may not be satisfactory to the~er. The generic name should
be used if the group name was generated for one or more device types. When the
system is subsequently generated, this entry may no longer be valid; that is, all such
group name entries should be uncataloged and then recataloged after a subsequent
generation of the system.

When cataloging data sets residing on tape, specify the data set sequence number
and the volume serial number, as follows:

VOL= device = (serial,seqno, ...)

If a data set is created on a 9-track dual density tape unit (2400-4), the data set can
be cataloged with a device specification of 2400 for an 800 bits per inch tape or
2400-3 for a 1600 bits per inch tape. If a device specification of 2400-4 is made
when the data set is cataloged, any subsequent retrieval of that data set is made on
a dual density unit.

If a data set is created on a 9-track dual density tape unit (3400-6), the data set can
be cataloged with a device specification of 3400-3 for an 1600 bits per inch tape or
3400-5 for a 6250 bits per inch tape. If a device specification of 3400-6 is made
when the data set is cataloged, any subsequent retrieval of that data set is made on
a dual density unit.

The format of the CATLG statement is:

[label] CATLG DSNAME=name

,VOL=device =list

[,CVOL=device =serial]

The UNCATLG statement is used to remove an entry from the lowest level index
of the catalog. If the entry removed was the last entry in the index, that index and
all higher unneeded indexes, except the highest-level index, will be removed from
the catalog.

The format of the UNCATLG statement is:

[label] UNCATLG DSNAME=name

[,CVOL=device =serial]

IEHPROGM Program 20--13

BLDX (Build Index) Statement

The BLDX statement is used to create a new index in the catalog. If the creation of
an index requires that higher level indexes be created, this function automatically
creates them.

The format of the BLDX statement is:

[label] BLDX INDEX=name

[,CVOL=device =serial]

DLTX (Delete Index) Statement

The DL TX statement is used to remove an index from the catalog. Only an index
that has no entries can be removed.

Because this function does not delete higher level indexes, it must be used
repetitively to delete an entire structure. For example, to delete index structure
A.B.C, delete index A.B.C, index A.B, and index A.

The format of the DLTX statement is:

[label] DLTX INDEX = name

[,CVOL=device =serial]

BLDA (Build Index Alias) Statement

The BLDA statement is used to assign an alias to an index at the highest level of
the catalog.

The format of the BLDA statement is:

[label] BLDA INDEX=name

,ALIAS=name

[,CVOL=device =serial]

DLTA (Delete Index Alias) Statement

CONNECT Statement

20-14 OS/VSl Utilities

The DLT A statement is used to delete an alias previously assigned to an index at
the highest level of the catalog.

The format of the DLTA statement is:

[label] DLT A ALIAS = name

[,CVOL=device =serial]

The CONNECT statement is used to place an entry in the high level index of the
catalog. The entry identifies a second volume by its device type and volume serial
number. In addition, it contains an index name identifying the index to be searched
for (during subsequent index searches) on the second volume.

This function does not create an index on the second volume.

The CONNECT statement does not create a SYSCTLG data set on the connected
volume. Before cataloging the first data set on a connected volume, the user must
define a SYSCTLG data set on that volume. This can be done with the following
DD statement:

/ /ddname DD DSNAME=SYSCTLG,UNIT=xxxx,DISP=(,KEEP),
/ / SPACE=(CYL, l),VOLUME=SER=xxxxxx

If a job requires an auxiliary control volume to complete a catalog search, the user
u'"''"'" u'V .. UU",", .. .u", UUA.l.l.la.l) ,",V.llIL..lV.l YV.lUH.l~ U.lVUll1 .. ~U U~lVl~ LU~ JVU 1~ Ut;gU11. \ 111t;

user does not have to remember the volume on which a particular data set is
cataloged.) The system directs the operator to mount an auxiliary control volume if
it is needed.

The format of the CONNECT statement is:

[label] CONNECT INDEX=name

RELEASE (Disconnect) Statement

, VOL = device =serial

[,CVOL=device =serial]

The RELEASE statement is used to remove an entry from the high level index of a
volume. This disconnects, in effect, a second volume from the first volume. The
RELEASE statement does not delete an index from the second volume.

The format of the RELEASE statement is:

[label] RELEASE

BLDG (Build Generation Index) Statement

INDEX=name

[,CVOL=device =serial]

The BLDG statement is used to build an index for a generation data group, and to
define what action should be taken when the index overflows.

The format of the BLDG statement is:

[label] BLDG INDEX=name

,ENTRIES=n

[,CVOL=device =serial]

[,EMPTY]

[,DELETE]

ADD (Add a Password) Statement

The ADD statement is used to add a password entry in the PASSWORD data set.
When the control entry for a direct access, online data set is added, the indicated
protection status of the data set is set in the DSCB; when a secondary entry is
added, the protection status in the DSCB is not changed.

The format of the ADD statement is:

[label] ADD DSNAME=name

[,PASWORD2 = new-password]

[,CPASWORD=control-password]

[, TYPE = code]

[,VOL=device =list]

[,DATA=' user-data']

IEHPROGM Program 20-15

REPLACE (Replace a Password) Statement

The REPLACE statement is used to replace any or all of the following information
in a password entry: the password name, protection mode (read/write or read
only) of the password, and user data. When the control entry for a direct access,
online data set is replaced, the protection status of the data set is changed in the
DSCB if necessary; when a secondary entry is replaced, the protection status in the
DSCB is not changed.

The format of the REPLACE statement is:

[label] REPLACE DSNAME=name

[,PASWORDl = current-password]

[,P ASWORD2 = new-password]

[,CPASWORD=control-password]

[, TYPE = code]

[,VOL=device =list]

[,DATA=' user-data']

DELETEP (Delete a Password) Statement

The DELETEP statement is used to delete an entry in the PASSWORD data set. I
a control entry is deleted, all the secondary entries for that data set are also delete(
If a secondary entry is deleted, only that entry is deleted. When the control entry
for a direct access, online data set is deleted, the protection status in the DSCB is
set to indicate that the data set is no longer protected.

The format of the DELETEP statement is:

[label] DELETEP DSNAME=name

[,PASWORDl =current-password]

[,CPASWORD=control-password]

[,VOL=device = list]

LIST (List Information from a Password) Statement

20-16 OS/VSl Utilities

The LIST statement is used to format and print information from a password entt)

The format of the LIST statement is:

[label] LIST DSNAME=name

,P ASWORDl = current-pass word

Operands

ALIAS

CPASWORD

CVOL

DATA

DELETE

Statements

BLDA
DLTA

ADD

REPLACE
DELETEP

CONNECT
RELEASE

CATLG
BLDX
DLTX
BLDG
UNCATLG

BLDA
DLTA

ADD
REPLACE

BLDG

Description of Operands/Parameters

ALIAS=name
specifies an unqualified name to be assigned as the alias or
to be deleted from the index. The unqualified name must
not exceed 8 characters.

CPASWORD=control-password
specifies the control password for the data set. The control
password must be specified unless this is the first password
assigned to the data set, in which case PASWORD2
specifies the password to be added.

If the control password is being changed or deleted, the
control password must be specified as PASWORDI.

CVOL=device=serial
specifies the device type and volume serial number of the
first volume.

CVOL=device=serial
specifies the device type and volume serial number of the
volume on which the catalog search for the index is to
begin. If the volumes are connected at the highest level of
the index and the control volume is mounted, CVOL need
not be specified.

CVOL=device=serial
specifies the device type and volume serial number of the
control volume where the search for the catalog entry is to
begin; contains the catalog entry to be deleted; or,
specifies where the catalog entry is to be made. If catalogs
are properly connected at the highest level of the index and
the control volume is mounted, CVOL need not be
specified.

Default (for all): System residence volumes

DATA=' user-data'
specifies the user data to be placed in the password entry.
The user data has a maximum length of 77 bytes and must
be enclosed in apostrophes.

If DATA is omitted from an ADD operation, 77 blanks are
used.

If DATA is omitted from a REPLACE operation, current
user data is not changed.

DELETE
specifies that generation data sets are to be scratched after
their entries are removed from the index.

IEHPROGM Program 20-17

Operands

DSNAME

EMPTY

ENTRIES

INDEX

MEMBER

Applicable Control
Statements

SCRATCH
RENAME
CATLG
UNCATLG
ADD
REPLACE
DELETEP
LIST

BLDG

BLDG

BLDG

BLDX
DLTX

BLDA

CONNECT
RELEASE

SCRATCH
RENAME

20-18 OS/VSl Utilities

Description of Operands/Parameters

DSNAME=name
specifies the fully qualified name of either the data set to
be scratched or renamed; or the partitioned data set that
contains the member to be scratched or renamed; or the
fully qualified name of the data set to be cataloged or
uncataloged; or the fully qualified name of the data set
whose password entry is to be changed, assigned, listed, or
deleted. The qualified name must not exceed 44 characters,
including delimiters.

EMPTY
specifies that all entries be removed from the generation
index when it overflows. This uncatalogs, in effect, all of
the generation data sets.

Default: The entries with the largest generation numbers
will be maintained in the catalog when the generation
index overflows.

ENTRIES=n
specifies the number of entries to be contained in the
generation index; it must not exceed 255.

INDEX=name
specifies the 1- to 35-character qualified name of the
generation index.

INDEX=name
specifies the qualified name of the index to be created or
deleted. The qualified name must not exceed 44 characters,
including delimiters.

INDEX=name
specifies the unqualified name of the index to which an
alias name is to be assigned. The unqualified name must
not exceed 8 characters.

INDEX=name
specifies the unqualified index name to be entered or
removed from the high level index on the first volume. The
unqualified name must not exceed 8 characters.

MEMBER=name
specifies a member name or alias of a member (in the
named data set) to be renamed or removed from the
directo-ry of a partitioned data set. This name is not validity
checked because all members must be accessible, whether
the name is valid or not.

Default: The specified data set name or volume of data sets
is changed or scratched.

Operands

NEWNAME

PASWORDI

PASWORD2

PURGE

SYS

Annli,.~hlp C'ontrol

Statements

RENAME

REPLACE
DELETEP
LIST

ADD
REPLACE

SCRATCH

SCRATCH

Description of Operands/Parameters

NEWNAME=name
specifies the new fully qualified name for the data set, or
the new member or alias.

PASWORDI =current-password
specifies the password in the entry to be listed. changed, or
deleted.

Default: The operator is prompted for the current
password.

PASWORD2=new-password
specifies the new password to be added or assigned to the
entry. If the password is to be changed, the current
password must also be specified as the new password. The
password can consist of one- to eight-alphameric
characters.

Default: The operator is prompted for a new password.

PURGE
specifies that each data set specified by DSNAME or
VTOC be scratched, even if its expiration date has not
elapsed.

Default: The specified data sets are scratched only if their
expiration dates have elapsed.

SYS
specifies that data sets that have names that begin with
"AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA." or
"SYSnnnnn. T" and "F" or "V" in position 19 are to be
scratched. These are names assigned to data sets by the
operating system. This parameter is valid only when
VTOC is specified.

If the name of the data set to be scratched begins with
SYS, nnnnn is the date.

IEHPROGM Program 20-19

Operands

TYPE

VOL

Applicable Control
Statements

ADD
REPLACE

CONNECT

SCRATCH
RENAME

CATLG

20-20 OS/VS 1 Utilities

Description of Operands/Parameters

TYPE = code
specifies the protection code of the password and, if a
control password entry is to be changed for or assigned to
a direct access, online data set, specifies the protection
status of the data set. The values that can be specified for
code are:

1

2

3

specifies that the password is to allow both read and
write access to the data set; if a control password is
being assigned or changed, read/write protection is set
in the DSCB.

specifies that the password is to allow only read access
to the data set; if control password is being assigned or
changed, read/write protection is set in the DSCB.

specifies that the password is to allow both read and
write access to the data set; if a control password is
being assigned or changed, read-without-password
protection is set in the DSCB.

Default: For ADD, if this parameter is omitted, the new
password is assigned the same protection code as the
control password for the data set. If a control password is
being "added," TYPE=3 is the default. For REPLACE,
the protection is not changed.

VOL=device=serial
specifies the device type and serial number of the second
volume. This information is placed in the high level index
of the first volume.

VOL=device= list
specifies the device type and serial number(s) of the
volume(s), limited to 50, that contain the data set(s):

to be scratched, or the data set or member whose name is
to be changed. If VTOC or MEMBER is specified, VOL cannot
specify more than one volume. Caution should be used when
specifying VTOC if VOL specifies the system residence
volume.

to be cataloged. For either a sequential or an indexed
sequential data set, the volume serial numbers must appear
in the same order in which they were originally
encountered (in DD statements within the input stream)
when the data set was created.

Operands

VOL
(continued)

VTOC

Aoolicable Control
Statements

ADD
REPLACE
DELETEP

SCRATCH

Description of Operands/Parameters

to be protected or whose protection status is to be changed
or whose password is to be deleted. If omitted, the
protection status in the DSCB is not set or changed, unless
the data set is cataloged. This parameter is not necessary
for secondary password entries, or if the desired protection
status in the DSCB is already set or is not to be changed
by ADD or REPLACE.

VToe
specifies that all data sets on the specified volume, except
those protected by a password or those whose expiration
dates have not expired, are to be scratched.
Password-protected data sets are scratched if the correct
password is provided. The effect of VTOC is modified
when it is used with PURGE or SYS.

IEHPROGM Program 20-21

Restrictions

20--22 OS/VS 1 Utilities

• The block size for the SYSPRIN'F (message) data set must be a multiple of 121.
The block size for the SYSIN (control) data set must be a multiple of 80. Any
blocking factor can be specified for these block sizes.

• With the exception of the SYSIN and SYSPRINT DD statements, all DD
statements in Figure 20-10 are used as device allocation statements, rather than
as true data definition statements. Because IEHPROGM modifies the internal
control blocks created by device allocation DD statements, the DSNAME
parameter, if supplied, will be ignored by IEHPROGM. (All data sets are
defined explicitly or implicitly by utility control statements.)

• One anyname1 DD statement must be included for each permanently mounted
volume referred to in the job step.

• One anyname2 DD statement must be included for each mountable device to be
used in the job step.

• When IEHPROGM is dynamically invoked in a job step containing a program
other than IEHPROGM, the DD statements defining mountable devices for
IEHPROGM must be included in the job stream prior to DD statements defining
data sets required by the other program.

• Unpredictable results may occur in multi-tasking environments where dynamic
allocation/ de allocation of devices, by other tasks, causes changes in the TIOT
during IEHPROGM execution.

• A DDR swap of an input or output device to another device cannot be done if doing
a multiple function within the same step. The volume mount routine cannot mount
the volume after a DDR swap that has changed the UCB lookup table.

• Data set names (DSNAMEs) must follow naming conventions (as specified in OS/VSl
leL Reference) for all operations except SCRATCH and RENAME.

IEHPROGM Examples
The following examples illustrate some of the uses of IEHPROGM. Figure 20-12
can be used as a quick reference guide to IEHPROGM examples. The numbers in
the "Example" column point to the examples that follow.

Operation Volumes Comments Example

SCRATCH Disk VTOC is to be scratched.

SCRATCH Disk Two data sets are to be scratched and
UNCATLG uncataloged.

RENAME, Disk A data set is to be renamed on two mountable
UNCATLG, devices; the old data set name is to be
CATLG removed from the catalog. The

data set is cataloged under its new name. Object
data set resides on two mountable devices.

UNCATLG Disk Three data sets are to be uncataloged; their
DLTX supporting index structures are to be deleted

from the catalog.

CONNECT Disk Connect system residence volume to a second
CATLG volume. Catalog data sets on second volume.

SYSCTLG was previously defined on the second
volume.

BLDG None A generation index is to be built,
RENAME three data sets are renamed and cataloged
CATLG into the generation index.

RENAME, Disk The object data set exists on one mountable
DELETEP, device.
ADD

LIST Disk The object data set exists on two mountable
REPLACE devices.

RENAME Disk Rename a member of a partitioned data set.

BLDG Disk Create a model DSCB and build a generation index.
Use IEBGENER to catalog a second generation.

Create and catalog a second generation in
index created in·l O.

Figure 20-12. IEHPROGM Example Directory

In the IEHPROGM examples, the EXEC statement and the SYSPRINT DD
statement can be replaced with the following job control statement:

V EXECPROC=MOD

which invokes the following IBM-supplied cataloged procedure:

/ /MOD EXEC PGM=IEHPROGM,REGION=44K
/ /DDSRV DO VOLUME=REF=SYS1.SVCLIB,DISP=OLD
/ /SYSPRINT DO SYSOUT=A

2

3

4

5

6

7

8

9

10

11

Note: In the IEHPROGM examples, the DD1 DD statement always refers to the
system residence volume.

IEHPROGM Program 20-23

IEHPROGM Example 1

In the following example, data sets are to be scratched from the volume table of
contents of a mountable volume. Because the system residence volume is not
referred to, no DDl DD statement is necessary in the job stream.

/ISCRVTOC JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
/IDD2 DD UNIT=d~k,vOL=SER=222222,DISP=OLD
IISYSIN DD *

SCRATCH VTOC,VOL=d~k=222222
/*

The SCRATCH statement, used in this example, indicates that all data sets
(including those system data sets beginning with
AAAAAA.AAAAAA.AAAAAA.AAAAAA) whose expiration dates have expired,
are to be scratched from the specified volume.

IEHPROGM Example 2

20-24 OS/VS 1 Utilities

In this example, two data sets are to be scratched: SETl is to be scratched on
volume 222222, and A.B.C.D.E is to be scratched on volume 222222. Both data
sets are to be uncataloged.

//SCRDSETS JOB 09#550,BROWN
1/ EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDD1 DD UNIT=disk, VOLUME=SER= 111111 ,DISP=OLD
I/DD2 DD UNIT=disk, DISP=OLD, VOLUME=SER=222222
//SYSIN DD *

/*

SCRATCH DSNAME=SET1,VOL=d~k=222222
UNCATLG DSNAME=SET1
SCRATCH DSNAME=A. B. C. D. E, VOL=disk=222222
UNCATLG DSNAME=A.B.C.D.E

The control statements are discussed below:

• The first SCRATCH statement specifies that SET l, which resides on volume
222222, is to be scratched.

• The first UNCATLG statement specifies that SETl is to be uncataloged.

• The second SCRATCH statement specifies that A.B.C.D.E, which resides on
volume 222222, is to be scratched.

• The second UNCATLG statement specifies that A.B.C.D.E is to be
uncataloged.

lEHPROGM Example 3

In this example, the name ot a data set IS to be cnangeo on two mountable VOlUmes.
The old data set name and index structure are to be removed from the catalog and
the data set is to be cataloged under its new data set name.

IIRENAMEOS JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DO SYSOUT=A
11001 DO VOLUME=SER=111111,UNIT=d~k,OISP=OLO
11002 DO UNIT=(d~k"OEFER),OISP=OLO,
II VOLUME=(PRIVATE,SER=(222222,333333))
IISYSIN DO *

1*

RENAME OSNAME=A.B.C,NEWNAME=NEWSET,
VOL=disk={ 222222,333333)

UNCATLG OSNAME=A.B.C
CATLG OSNAME=NEWSET,VOL=d~k=(222222,333333)

The control statements are discussed below:

72

C

• RENAME specifies that data set A.B.C, which resides on volumes 222222 and
333333, is to be renamed NEWSET.

• UNCATLG specifies that data set A.B.C is to be uncataloged.

• CATLG specifies that~NEWSET, which resides on volumes 222222 and
333333, is to be cataloged.

lEHPROGM Example 4

In this example, three data set generations-A.B.C.D.G0012VOO,
A.B.C.D.G0019VOO, and A.B.C.D.G0020VOO-are to be uncataloged and their
supporting index structures deleted from the catalog. It is assumed that the index
contains only three generations.

IIOLTSTRUC JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DO SYSOUT=A
11001 DO UNIT=d~k,vOLUME=SER=111111,OISP=OLO
IISYSIN DO *

1*

UNCATLG OSNAME=A.B.C.D.G0012VOO
UNCATLG OSNAME=A.B.C.0.G0019VOO
UNCATLG OSNAME=A.B.C.0.G0020VOO

OLTX INOEX=A.B.C.O
OLTX INOEX=A.B.C
OLTX INOEX=A.B
OLTX INOEX=A

The control statements are discussed below:

• The UN CA TLG statements specify that three data set generations are to be
uncataloged.

• The DL TX statements remove one level at a time of the index structures
associated with the uncataloged data set generations.

IEHPROGM Program 20-25

lEHPROGM Example 5

In this example, the master catalog on the system residence volume, is to be
connected to a second volume. Any subsequent index search for index level X, Y,
or Z will be carried to the second volume.

IICONNECT
II
IISYSPRINT
11001
11002
IISYSIN

1*

CONNECT
CONNECT
CONNECT

CATLG
CATLG
CATLG

JOB 09#550,BROWN
EXEC PGM=IEHPROGM
DO SYSOUT=A
DO UNIT=disk, VOLUME=SER=111111 ,OISP=OLO
DO UNIT=disk, VOLUME=SER=222222 ,OISP=OLO
DO *

INOEX=X, VOL=disk=222222 , CVOL=disk=222222
INOEX=Y ,vOL=disk=222222 , CVOL=disk=222222
INOEX=Z, VOL=disk=222222 , CVOL=disk=222222
OSNAME=X.BB.CCC,VOL=d~k=333333
OSNAME=Y.BB.CC,VOL=d~k=333333
OSNAME=Z.BB.XT,VOL=d~k=333333

The control statements are discussed below:

• The CONNECT statements identify the second volume. The specified index
names, along with the volume identification, are placed on the system residence
volume.

• The CATLG statements catalog three data sets (X.BB.CCC, Y.BB.CC, and
Z.BB.XT) on the second volume.

lEHPROGM Example 6

20-26 OS/VS 1 Utilities

In this example, a generation index for generation data group A.B.C is built. Three
existing non-cataloged, non-generation data sets are renamed; the renamed data
sets are cataloged as generations in the generation index.

72
IIBLOINOEX JOB
II EXEC PGM=IEHPROGM
IISYSPRINT DO SYSOUT=A
11001 DO UNIT=d~k,vOLUME=SER=111111,OISP=OLO
11002 DO UNIT=(disk, ,DEFER), OISP=OLO,
II VOLUME=(PRIVATE"SER=(222222))
IISYSIN DO *

BLDG INOEX=A.B.C,ENTRIES=10
RENAME OSNAME=OATASET1 ,vOL=disk=222222 , C

NEWNAME=A.B.C.G0001VOO
RENAME OSNAME=OATASET2, VOL=disk=222222 , C

NEWNAME=A.B.C.G0002VOO
RENAME OSNAME=OATASET3, VOL=disk=222222 , C

NEWNAME=A.B.C.G0003VOO
CATLG OSNAME=A.B.C.G0001VOO,VOL=d~k=222222
CATLG OSNAME=A.B.C.G0002VOO,VOL=d~k=222222
CATLG OSNAME=A.B.C.G0003VOO,VOL=d~k=222222

1*
The control statements are discussed below:

• DD 1 DD defines the system residence volume on which the SYSCTLG data set
resides.

• BLDG specifies the generation group name A.B.C and makes provision for ten
entries in the index. The oldest generation is to be uncataloged when the index
becomes full. No generations are to be scratched.

• The RENAME statements rename three non-generation data sets residing on a
r11<1k- volmnp (??????)

• CA TLG catalogs the renamed data sets in the generation index.

IEHPROGM Example 7

In this example, a data set is to be renamed. The data set passwords assigned to the
old data set name are to be deleted. Then two passwords are to be assigned to the
new data set name.

Note: If the data set is not cataloged, a message indicating that the LOCATE
macro instruction failed is issued. The return code is 8.

//ADDPASS JOB 09#550,BROWN
EXEC PGM=IEHPROGM, PARM= , NOPRINT ,

//SYSPRINT DD SYSOUT=A
//DD1 DD VOLUME=(PRIVATE,SER=222222),DISP=OLD,
/ / UNIT=(disk, ,DEFER)
//SYSIN DD *

RENAME DSNAME=OLD,VOL=d~k=222222,NEWNAME=NEW
DELETEP DSNAME=OLD,PASWORD1=KEY

72

ADD DSNAME=NEW, PASWORD2=KEY, TYPE=1 , C
DATA='SECONDARY IS READ'

A~Q DSNAME=NEW,PASWORD2=READ,CPASWORD=KEY,TYPE=2, C
DATA='ASSIGNED TO J. DOE' .

/*

The control statements are discussed below:

• DELETEP specifies that the entry for the password KEY is to be deleted.
Because KEY is a control password in this example, all the password entries for
the data set name are deleted. The VOL parameter is not needed because the
protection status of the data set as set in the DSCB is not to be changed;
read/ write protection is presently set in the DSCB, and read/write protection is
desired when the passwords are reassigned under the new data set name.

• The ADD statements specify that entries are to be added for passwords KEY
and READ. KEY becomes the control password and allows both read and write
access to the data set. READ becomes a secondary password and allows only
read access to the data set. The VOL parameter is not needed, because the
protection status of the data set is still set in the DSCB.

Note: The operator is required to supply a password to rename the old data set.

IEHPROGM Program 20-27

lEHPROGM Example 8

In this example, information from a password entry is to be listed. Then the
protection mode of the password, the protection status of the data set, and the user
data are to be changed.

IIREPLPASS JOB09#550,BROWN
EXEC PGM=IEHPROGM,PARM='NOPRINT'

IISYSPRINT DD SYSOUT=A
IIDD1 DD UNIT=d~k,vOLUME=SER=111111,DISP=OLD
IIDD2 DD VOLUME=(PRIVATE,SER=(222222,333333)),
II UNIT=(d~k"DEFER),DISP=OLD
IISYSIN DD *

LIST DSNAME=A.B.C,PASWORD1=ABLE

72

REPLACE DSNAME=A.B.C,PASWORD1=ABLE, C
PASWORD2=ABLE,TYPE=3, C
VOL=disk=(222222,333333), C
DATA='NO SECONDARIES; ASSIGNED TO DEPT 31'

1*
The control statements are discussed below:

• DD 1 defines the system residence volume.

• LIST specifies that the access counter, protection mode, and user data from the
entry for password ABLE are to be listed. Listing the entry permits the content
of the access counter to be recorded before the counter is further increased by
future access to the data set with the changed protection mode, set by the
REPLACE statement.

• REPLACE specifies that the protection mode of password ABLE is to be
changed to allow both read and write access and that the protection status of the
data set is to be changed to write only protection. The VOL parameter is
required because the protection status of the data set is to be changed and the
data set, in this example, is not cataloged. Because this is a control password, the
CPASWORD parameter is not required.

lEHPROGM Example 9

20-28 OS/VS 1 Utilities

In this example, a member of a partitioned data set is to be renamed.

IIREN
II
IISYSPRINT
IIDD1
IlsYSIN

RENAME

1*

JOB 09#550,BROWN
EXEC PGM=IEHPROGM
DD SYSOUT=A
DD VOL=SER=222222, DISP=OLD, UNIT=disk
DD *
vOL=d~k=222222,DSNAME=DATASET,NEWNAME=BC,
MEMBER=ABC

The control statements are discussed below:

• DDl DD defines a permanently mounted volume.

• SYSIN DD defines the input data set, which immediately follows in the input
stream.

• RENAME specifies that member ABC in the partitioned data set DATASET,
which resides on a disk volume, is to be renamed BC.

72

C

IEHPROGM Example 10

In this example, an IEHPROGM job step, STb.P A, creates a mooel U:SCH ana
builds a generation index. STEP B, an IEBGENER job step, creates and catalogs a
sequential generation from card input.

IIBLDINDX JOB
IISTEPA EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIBLDDSCB DD DSNAME=A.B.C,DISP=(,KEEP),SPACE=(TRK,(O)),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=800),
I I VOLUME=SER=llllll, UNIT=disk
IISYSIN DD *

1*
BLDG INDEX=A.B.C,ENTRIES=10,EMPTY,DELETE

IISTEPB EXEC PGM=IEBGENER
I/SYSPRINT DD SYSOUT=A
IISYSIN DD DUMMY
IISYSUT2 DD DSNAME=A. B. C(+1), UNIT=disk,DISP=(, CATLG),
II VOLUME=SER=222222,SPACE=(TRK,20)
I/SYSUT1 DD DATA

(input cards)

1*
The control statements are discussed below:

• BLDDSCB DD creates a model DSCB on the system residence volume.

• SYSIN DD indicates that a utility control statement (BLDG) is included next in
the input stream.

• BLDG specifies the generation data group name A.B.C and makes provision for
ten entries in the group. When the index is filled, it is to be emptied, and all of
the generations are to be deleted.

• SYSUT2 DD defines an output sequential generation. The generation is assigned
the absolute generation and version number GOOOI VOO in the index.

• SYSUTI DD defines the input card data set.

Any subsequent job that causes the deletion of the generations should include DD
statements defining the devices on which the volumes containing those generations
are to be mounted. Each generation for which no DD statement is included is
uncataloged at that time, but not deleted.

After the generation data group is emptied, the new generations continue to be
assigned generation numbers according to the last generation number assigned
before the empty operation. To reset the numbering operation (that is, to reset to
GOOOOVOO or GOOOI VOO), it is necessary to uncatalog all the old generation data
sets and then rename and recatalog, beginning with GOOOOVOO.

IEHPROGM Program 20-29

IEHPROGM Example 11

20--30 OS/VS 1 Utilities

In this part of the example, a second generation is created and cataloged in the
index built in Example 10. DCB attributes are included to override those attributes
that were specified when the model DSCB was created.

II JOB
II EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSIN DD DUMMY
IISYSUT2 DD DSNAME=A.B.C(+1),UNIT=disk,DISP=(,CATLG),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=1600),
II VOLUME=SER=222222,SPACE=(TRK,20)
IISYSUT1 DD DATA

(input cards)

1*
The control statements are discussed below:

• SYSUT2 DD defines an output sequential generation. The generation is assigned
the absolute generation and version number G0002VOO in the index. The
specified DCB attributes override those initially specified in the model DSCB.
The DCB attributes specified when the model DSCB was created remain
unchanged; that is, those attributes are applicable when you catalog a succeeding
generation unless you specify overriding attributes at that time.

• SYSUTI defines the input card data set.

IFHSTATR PROGRAM

IFHSTATR is a system utility used to format and print information from type 21
(error statistics by volume) records.

Figure 21-1 shows the format of the type 21 record.

4

o

4

8

12

16

20

24

28

32

36

40

Bytes of Record Descriptor Word

System Record Type Time of Day
Indicator

Time of Day Icontlnued) Current Date

Current Dale icontlnuedl System
Identification

System Identifier Length of rest of record
Including thiS field

Volume Serial Number

Volume Serial No Icont) 122 Channel 'Unit Address

UCB Type

Temporary Read Temporary Write Start I 'O's
Errors Errors

Permanent Read Permanent Write NOise Blocks Erase Gaps
Errors Errors

Erase Gaps Cleaner Actions Tape Dens.t y
Icontlnued)

Block Size Reserved

Figure 21-1. Type 21 (ESV) Record Format

Error statistics by volume (ESV) records should be retrieved from the IF ASMPDP
tape or from SYS 1.MAN (on tape). ESV can also be retrieved directly from
SYS1.MANX or SYS1.MANY (on a direct access storage device); however,
IFHSTATR does not clear the SYS 1.MANX (or SYS 1.MANY) data set or make it
available for additional records.

Assessing the Quality of a Tape Library
The statistics gathered by SMF in Type 21 records can be very useful in assessing
the quality of a tape library. IFHSTATR prints Type 21 records in the same order
that they were gathered, that is, date I time sequence. You may find it useful to sort
Type 21 records into volume serial number sequence, into channel unit sequence,
and into error occurrence sequence to aid in analyzing the condition of the library.

The IFHSTATR report helps to identify deteriorating media (tapes); occasionally
poor performance from a particular tape drive can also be identified. The
permanent read error counter or permanent write error counter is incremented by
one each time the Tape Error Recovery routines (ERPs) determine that the error is
permanent and is returned to the user with indication of a permanent 110 error. If
a SYNAD routine to handle such errors is present, the counts in these fields can be
greater than one. The temporary read error counter and temporary write error
counter are incremented when the ERP initially handles an error condition which is
corrected in the ERP. The severity of a temporary error can be estimated by
analyzing either the erase gap counter for write errors or the noise block and
cleaner action counters for read errors. The erase gap counter is incremented each
time a write error is retried. For example, if the temporary write error counter
contains 2 and the erase gap counter contains 5, the ERP was entered twice for
write error recovery. The average recovery actions were 2.5 per error (actually may

IFHST A TR Program 21-1

Input aDd Output

VOLUME CPU MOD TIME
SERIAL DATE ID NO OF DAY

001021 69/309 BB 40 15:55:07
001022 69/309 AA 40 15:56:02
000595 69/309 CC 50 15:56:20

have been 1 and 4). The cleaner action counter is only incremented every fourth
read retry. A ratio of one cleaner action to one temporary read error indicates, in
general, recovery on the fifth retry (the first retry after the cleaner action). A ratio
of ten cleaner actions to one temporary error indicates that recovery is, in general,
a result of rea4ing the tape in the opposite direction (reading backward on a read
forward tape or reading forward on a read backward tape). The noise block counter
is incremented once for each noise record (record less than minimum read length)
encountered.

In analyzing IFHSTATR reports, the usage (SIO) count should also be considered,
because it is the count of all Start IIO's to the tape drive, except those issued by
the ERP in the course of error recovery. The usage count can be used to determine
the ratio of error free accesses of the tape to total accesses of the tape.

IFHST ATR uses as input type 21 records, which contain information about errors
on magnetic tape. IFHSTATR processes only type 21 records; if none are found, a
message is written to the output data set.

IFHSTATR produces as output an output data set, which contains information
selected from type 21 records. The output takes the form of 121-byte unblocked
records, with an ASA control character in the first byte of each record.

Figure 21-2 shows a sample of printed output from IFHSTATR.

CHANNEL TEMP TEMP PERM PERM NOISE ERASE CLEANER USAGE TAPE BLOCK
/ UNIT READ WRITE READ WRITE BLOCKS GAPS ACTIONS (510' s) DENSITY LENGTH

181 1 0 0 0 1 0 0 10 0800 80
184 10 0 0 0 0 0 0 28 1600 121
283 0 10 0 0 0 10 0 28 0800 50

Figure 21-2. Sample Output from IFHSTATR

Control

21-2 OS/VSl Utilities

IFHST ATR is controlled by job control statements. Utility control statements are
not used.

Figure 21-3 shows the job control statements necessary for using IFHSTATR.

Statement

JOB

EXEC

SYSUTI DD

SYSUT2DD

Use

Initiates the job.

Specifies the program name (PGM=IFHSTATR).

Defines the input data set and the device on which it resides. The DSNAME,
UNIT, VOLUME, LABEL, DCB, and DISP parameters should be included.

Defines the sequential data set on which the output is to be written.

Figure 21-3. IFHSTATR Job Control Statements

The output data set can reside on any output device supported by BSAM.

Note: The LRECLand BLKSIZE parameters are not specified by IFHST ATR.
This information is taken from the DCB parameter on the SYSUTI DD statement
or from the tape label.

~HSTATR Example

This example shows the JCL needed to produce a report.

II JOB
II EXEC PGM=IFHSTATR
IISYSUT1 DD UNIT=2400,DSNAME=SYS1.MAN,LABEL=(,SL),
II VOLUME=SER=VOLID,DISP=OLD
IISYSUT2 DD SYSOUT=A
1*

IFHSTATR Program 21-3

APPENDIX A: EXIT ROUTINE LINKAGE

Utility programs can be linked to user-supplied exit routines for additional
processing.

Linking to an Exit Routine
Linking to an exit routine from a utility program is accomplished in one of the
following ways:

• If the exit routine is for label processing or totaling, or if the exit routine is
specified in the IEBTCRIN program by OUTREC or ERROR, linkage is
performed by the BALR instruction.

• In all other cases, linkage is performed by using the LINK macro instruction.

The LINK macro instruction contains the symbolic name of the entry point of an
exit routine and, if required, a list of parameters.

For further information on the use of the LINK macro instruction, see OS/VSl
Supervisor Services and Macro Instructions and OS/VSl Data Management
Macro Instructions.

At the time of the linkage operation:

• General register 1 contains the starting address of the parameter list, or contains
zero to indicate end-of-file on the input data set for the IEBTCRIN OUTREC
or ERROR exits.

• General register 13 contains the address of the register save area. This save area
must not be used by user label processing routines. See" Appendix D: Processing
User Labels."

• General register 14 contains the address of the return point in the utility
program.

• General register 15 contains the address of the entry point to the exit routine.

Registers 1 through 14 must be restored before control is returned to the utility
program.

The exit routine must be contained in either the job library or the link library.

The parameter lists passed to label processing routines and parameter lists passed to
nonlabel processing routines are described in the topics that follow.

Label Processing Routine Parameters

The parameters passed to a user's label processing routine are addresses of the
80-byte label buffer, the DCB being processed, the status information if an
uncorrectable input/output error occurs, and the totaling area.

The 80-byte label buffer contains an image of the user label when an input label is
being processed. When an output label is being processed, the buffer contains no
significant information at entry to the user's label processing routine. When the
utility program has been requested to generate labels, the label processing routine
constructs a label in the label buffer.

If standard user labels (SUL) are specified on the DD statement for a data set, but
the data set has no user labels, the system still takes the specified exits to the

Appendix A: Exit Routine Linkage 22-1

appropriate user's routine. In such a case, the user's input label processing routine is
entered with the buffer address parameter set to zerp.

The format and content of the DCB are presented in OS/VSI Data Management
Macro Instructions.

Bit 0 of flag 1 in the DCB-address parameter is set to a value of 0 except when:

• Volume trailer or header labels are being processed at volume switch time.

• The trailer labels of a MOD data set are being processed (when the data set is
opened).

If an uncorrectable input/output error occurs while reading or writing a user label,
the appropriate label processing routine is entered with bit Oof flag 2 in the status
information address parameter set on. The three low order bytes of this parameter
contain the address of standard status information as supplied for SYNAD routines.
(The SYN AD routine is not entered.)

Nonlabel Processing Routine Parameters

22-2 OS!VS 1 Utilities

Figure 22-1 shows the program from which exits can be taken to nonlabel
processing routines, the names of the exits, and the parameters available for each
exit routine.

Program Exit

IEBGENER KEY

DATA
IOERROR

IEBCOMPR ERROR
PRECOMP

IEBPTPCH INREC
OUTREC

IEBTCRIN ERROR

OUTREC

Parameters

Address at which key is to be placed (record follows key);
address of DCB.
Address of SYSUT 1 record; address of DCB.
Address of DECB; cause of the error and address of DCB.
(Address in lower order three bytes and cause of error in high
order byte.)

Address of DCB for SYSUTl; address of DCB for SYSUT2.1
Address of SYSUT 1 record; length of SYSUT 1 record, address
of SYSUT2 record; length of SYSUT2 record.

Address of input record; length of the input record.
Address of output record; length of output record.

Address of the error record; address of a full word which
contains the record length.
Address of the normal record; address of a full word which
contains the record length.

lThe IOBAD pointer in the DCB points to a location that contains the address of
the corresponding data event control block (DECB) for these records. The
format ofthe DECB is illustrated as part of the BSAM READ macro instruction
in OS!VSl Data Management Macro Instructions.

Figure 22-1. Parameter Lists for Nonlabel Processing Exit Routines

Returning from an Exit Routine
An exit routine returns control to the utility prog:- ~ by means of the macro return
instruction in the exit routine.

The format of the RETURN macro instruction is:

[label] RETURN

where:

(rl ,r2)

[(rl ,r2)]

[,RC={n I (IS)}]

specifies the range of registers to be reloaded by the utility program from the
register save area. If this parameter is omitted, the registers are considered
properly restored by the exit routine.

RC=
specifies a return code in register 15. If k~ is omitted, register 15 is loaded as
specified by (r 1 ,r2). These values can be coded:

n
specifies a return code to be placed in the 12 low order bits of register 15.

(15)
specifies that general register 15 already contains a valid return code.

The user's label processing routine must return a code in register 15 as shown in
Figure 22-2 unless:

• The buffer address was set to zero before entry to the label processing routine.
In this case, the system resumes normal processing regardless of the return code .

• The user's label processing routine was entered after an uncorrectable output
error occurred. In this case the system attempts to resume normal processing.

Figure 22-2 shows the return codes that can be issued to utility programs by user
exit routines. Slightly different return codes are used for the UPDATE=INPLACE
option of the IEBUPDTE program. See the discussion of UPDATE=INPLACE in
the chapter "IEBUPDTE Program."

Note: For a list of return codes issued by IEBTCRIN at job termination, see the
"IEBTCRIN Program" chapter of this publication.

Appendix A: Exit Routine Linkage 22-3

22-4 OS/VSl Utilities

Type of Exit

Input Header or
Trailer Label

Output Header or
Trailer Label

Totaling Exits

All other exits
(except IEBTCRIN's
ERROR and OUTREC,
and IEBPTPCH's
exit OUTREC)

ERROR

Return
Code

o
Action

The system resumes normal processing. If there are
more labels in the label group, they are ignored.

4 The next user label is read into the label buffer area and
control is returned to the user's routine. If there are no more
labels, normal processing is resumed.

16 The utility program is terminated on request of the user
routine.

o The system resumes normal processing.
No label is written from the label buffer area.

4 The user label is written from the label buffer area. The
system then resumes normal processing.

8 The user label is written from the label buffer area. If fewer
than eight labels have been created, the user's routine again
receives control so that it can create another user label. If
eight labels have been created, the system resumes normal
processing.

16

0

4

8

16

0-11
(Set to
next
mUltiple
of four)

12 or 16

0

4

8

The utility program is terminated on request of the user
routine.

Processing continues, but no further exits are taken.

Normal operation continues.

Processing ceases, except for EOD processing on output
data set (user label processing).

Utility program is terminated.

Return code is compared to highest previous return code;
the higher is saved and the other discarded. At the normal
end of job, the highest return code is passed to the
calling processor.

Utility program is terminated and this return code is passed
to the calling processor.

Record is not placed in the error data set. Processing
continues with the next record.

Record is placed in the error data set (SYSUT3).

Record is not placed in error data set but is processed as a
valid record (sent to OUTREC and SYSUT2 if specified).
IEBTCRIN removes the EDW from an edited MTDI record
before processing continues.

16

OUTREC (IEBTCRIN) 0

4

16

Utility program is terminated.

Record is not placed in normal output data set.

Record is placed in normal output data set (SYSUT2).

Utility program is terminated.

OUTREC (IEBPTPCH) 4

12 or 16

Any
other
number

Record is not placed in normal output data set.

Utility program is terminated.

Record is placed in normal output
data set (SYSUT2).

Figure 22-2. Return Codes Issued by User Exit Routines

Further information on the use of the RETURN macro instruction is contained in
OS/VSl Supervisor Services and Macro Instructions.

APPENDIX B: INVOKING UTILITY PROGRAMS

Utility programs can be invoked by a problem program through the use of the
ATTACH or LINK macro instruction. In addition, IEBTCRIN can be invoked
through the use of the LOAD or CALL macro instruction.

The problem program must supply the following to the utility program:

• The information usually specified in the P ARM parameter of the EXEC
statement.

• The ddnames of the data sets to be used during processing by the utility
program.

The following utility programs require that calling programs be authorized via
the Authorized Program Facility (APF):

IEBCOPY, IEHATLAS, IEHDASDR
IEHINIT, IEHMOVE, IEHPROGM

See the OS/VSl Planning and Use Guide for details on program authorization.

Note: When IEHMOVE, IEHPROGM, or IEHLIST is dynamically invoked in a
job step containing a program other than one of these, the DD statements defining
mountable devices for any of these programs must be included in the job stream
prior to DD statements defining data sets required by the other program.

LINK or ATTACH Macro Instruction

The LINK or A TT ACH macro instruction can be used to invoke a utility program
from a problem program.

The format of the LINK or ATTACH macro instruction is:

[label]{LINK I ATTACH} EP=progname

where:

[,PARAM=(optionaddr [, ddnameaddr]
[, hdingaddr])
[,VL=l]

EP=progname
specifies the symbolic name of the utility program.

PARAM=
specifies, as a sublist, address parameters to be passed from the problem
program to the utility program. These values can be coded:

optionaddr
specifies the address of an option list, which is usually specified in the
P ARM parameter of the EXEC statement. This address must be written
for all utility programs.

ddnameaddr
specifies the address of a list of alternate ddnames for the data sets used
during utility program processing. If standard ddnames are used and this is
not the last parameter in the list, it should point to a halfword of zeros. If it
is the last parameter, it may be omitted.

Appendix B: Invoking Utility Programs from a Problem Program 23-1

23-2 OS/VSl Utilities

hdingaddr
specifies the address of a six-byte list, HDNGLIST, which contains an
EBCDIC page count for the output device. If hdingaddr is omitted, the
page number defaults to 1.

VL=1
specifies that the sign bit of the last fullword of the address parameter list is
to be set to 1.

Figure 23-1 shows these lists as they exist in the user's DC area. Note that the
symbolic starting addresses for OPTLIST and DDNMELST fall on halfword
boundaries.

Starting address of
the optionaddr
parameter list
(OPTLIST)

Starting address of
the ddnameaddr
parameter list
(DDNMELST)

Starting address of
the hdingaddr
parameter list
(HDNGLlST)

Full word
boundary

word Half
bou ndary

L

100\ 08 N

-

00

00

00

T

H

I

Full word
boundary

Half word
boundary

,

>""

00 V E R

00 48 00

00 00 00 00

00 00 00

00 00 00 I

S E T W

P T R 00

00

Figure 23-1. Typical Parameter Lists

I F y

00 00 00

00 00 00

N P U

H I C

04 00 00

The P ARAM parameter of the LINK macro instruction in the calling program
provides the utility program with the symbolic addresses of the parameter lists
shown in Figure 145, as follows:

• The option list, OPTLIST, which includes the number of bytes in the list
(hexadecimal 08) and the NOVERIFY option.

• The alternate ddname list, DDNMELST, which includes the number of bytes in
the list (hexadecimal 48) and alternative names for the SYSIN, SYSUTl, and
SYSUT2 data sets.

• The heading list, HDNGLIST, which includes the number of bytes in the list
(hexadecimal 04) and indicates the starting page number (shown as 10) for
printing operations controlled through the SYSPRINT data set.

The option list, OPTLIST, must begin on a halfword boundary that is not also a
fullword boundary. The two high order bytes contain a count of the number of
bytes in the remainder of the list. (For all programs except IEHMOVE, IEHLIST,
IEHPROGM, IEHINITT, IEBUPDTE, and IEBISAM, the count must be zero.)
OPTLIST is free form, with fields separated by commas. No blanks or zeros should
appear in the list.

The ddname list, DDNMELST, must begin on a halfword boundary that is not also
a fullword boundary. The two high order bytes contain a count of the number of

LOAD Macro Instruction

CALL Macro Instruction

bytes in the remainder of the list. Each name of fewer than eight bytes must be left
~1!~_~,.1 ~_,.1 _~,.1,.1~,.1 .~.!+'" l~_lTn T.f ,,_ ,,1+""' ,,+0 AA ,..~o 1C< ,,~1 oA .f .. ",~ 0 1.", 0

- -
standard name is assumed. If the name is omitted within the list, the eight-byte
entry must contain binary zeros. Names can be omitted from the end by merely
shortening the list. Figure 23-2 shows the sequence of the eight-byte entries in the
ddname list pointed to by ddnameaddr.

Entry Standard Name

1 OOOOOOOO
2 00000000
3 OOOOOOOO
4 00000000
5 SYSIN
6 SYSPRINT
7 00000000
8 SYSUTI
9 SYSUT2

10 SYSUT3
11 SYSUT4

Figure 23-2. Sequence of DDNMELST Entries

The first two bytes of HDNGLIST contain the length in bytes of the heading list.
The remaining four bytes contain a page number that the utility program is to place
on the first page of printed output.

IEBTCRIN can be invoked through use of the LOAD macro instruction.

The LOAD macro instruction causes the control program to bring the load module
containing the specified entry point into main storage unless a copy is already there.
Control is not passed to the load module.

The format of the LOAD macro instruction is:

[label] LOAD {EP=IEBTCRIN I EPLOC=address of name}

where:

EP=IEBTCRIN
is the entry point name of the program to be brought into main storage.

EPLOC=address of name
is the main storage address of the entry point name described above.

The CALL macro instruction can be used to pass control to IEBTCRIN after
IEBTCRIN has been loaded into main storage.

Control can be passed to IEBTCRIN via a CALL macro instruction or via a branch
and link instruction. If the branch and link instruction is used, register 1 must be
loaded with the address of a parameter list of full words as described under "LINK
or ATTACH Macro Instruction." The last parameter list address must contain
X'80' in byte 1 to indicate the last parameter in the list.

The format of the CALL macro instruction is:

[label] CALL IEBTCRIN(, optionaddr [, ddnameaddr][, hdingaddr]), VL

Appendix B: Invoking Utility Programs from a Problem Program 23-3

23-4 OS/VS 1 Utilities

where:

IEBTCRIN
is the name of the entry point to be given control; the name is used in the
macro instruction as the operand of a V -type address constant.

optionaddr
specifies the address of an option list, OPTLIST, usually specified in the
PARM parameter of the EXEC statement. This address must be written for
all utility programs.

ddnameaddr
specifies the address of a list of alternate ddnames, DDNMELST, for the data
sets used during utility program processing. If standard ddnames are used and
this is not the last parameter in the list it should point to a halfword of zeros.
If it is the last parameter, it may be omitted.

hdingaddr
specifies the address of a six-byte list containing an EBCDIC page count for
the output device.

VL
specifies that the high order bit of the last address parameter in the macro
expansion is to be set to 1.

The option list, OPTLIST, must begin on a halfword boundary that is not also a
fullword boundary. The two high order bytes contain a count of the number of
bytes in the remainder of the list. (For all programs except IEHMOVE,
IEHPROGM, IEHINITT, and IEBISAM, the count must be zero.) The option list
is free form with fields separated by commas. No blanks or zeros should appear in
the list.

The ddname list, DDNMELST, must begin on a halfword boundary that is not also
a fullword boundary. The two high order bytes contain a count of the number of
bytes in the remainder of the list. Each name of fewer than eight bytes must be left
aligned and padded with blanks. If an alternate ddname is omitted from the list, the
standard name is assumed. If the name is omitted within the list, the eight-byte
entry must contain binary zeros. Names can be omitted from the end by merely

I

shortening the list. The sequence of the eight-byte entries in the ddname list
pointed to by ddnameaddr is shown earlier in Figure 23-2.

The first two bytes of the heading list, HDNGLIST, contain the length in bytes of
the heading list. The remaining four bytes contain a page number that the utility
program is to'place on the first page of printed output. im gc263901 -O/new ch24
im gc263 90 1 -0/ new ch25

APPENDIX C: DD STATEMENTS FOR DEFINING
MOUNTABLE DEVICES

When defining mountable devices to be used by system utility programs
IEHPROGM, IEHMOVE, IEHLIST, or IEHDASDR, the user must consider the
implications of the DD statements he uses to define those devices.

DD statement parameters must ensure that no one else has access to either the
volume or the data set. In any case, caution should be used when altering volumes
that are permanently resident or reserved.

Under normal conditions, a mountable device should not be shared with another
job step; that is, if a utility program is used to update a volume on a mountable
device, the volume being updated must remain mounted until the operation is
completed.

Following are ways to ensure that mountable devices are not shared:

• Specify DEFER in a DD statement defining a mountable device.

• Specify unit affinity on a second DD statement defining a mountable device.

• Specify a volume count in the VOLUME parameter of a DD statement that is
greater than the number of mountable devices to be allocated.

• Specify PRIV ATE in a DD statement defining a mountable device.

For a detailed discussion, see OS/VSl JCL.

DD Statement Examples

DDExample 1

In the following examples of DD statements, an IBM DASD is indicated as the
mountable device. Alternative parameters are stacked.

Note: Examples which use disk, in place of actual device-ids, must be changed
before use. See the Device Support section, in the Introduction to this manual, for
valid device-id notation.

This DD statement makes a specific request for a private, non-sharable volume or
volumes to be mounted on a single disk device.

IIDD1 DD UNIT=(.disk, ,DEFER) ,DISP=(,KEEP),
II VOLUME=(PRIVATE,SER=(123456)),SPACE=(CYL,(1,1))

A utility program causes a mount message to be issued for a specific volume when
the volume is required for processing by the program. The user should supply the
operator with the clearly marked volume or volumes to be mounted during the job
step.

This DD statement ensures that the volume integrity of a mountable volume is
maintained. If only one· volume is to be processed, it is mounted at the start of the
job step and demounted at the end of the step. If additional volumes are processed,
they are mounted and demounted when needed by the utility program. The last
volume to be processed is demounted at the end of the job step.

Appendix C: DD Statements for Defining Mountable Devices 24-1

DDExample 2

DDExample 3

DDExample 4

DDExample 5

24-2 OS/VS 1 Utilities

This DD statement makes a request for a private, non-sharable volume.

IIDD2
II

DD UNIT=(disk, , DEFER), VOLUME=PRIVATE, DISP=(NEW, KEEP),
SPACE=(CYL,(1,1))

The results of this statement are identical to those shown in DD Example 1.

If a specific unit is requested and the volume serial number is·not given in the DD
statement, the user must be certain that either: (1) the desired volume is already
mounted on that unit, or (2) a volume is not mounted, causing the system to issue a
mount message.

Note: This statement can be used only if the user is certain that a removable
volume, rather than a fixed volume, will be allocated by the scheduler. If there is
any chance that a fixed volume will be allocated, this statement must not be used.

This DD statement makes a specific request for a private, sharable volume to be
mounted on a disk device.

IIDD1DDUNIT=d~k,vOLUME=(PRIVATE,SER=(121212)),DISP=OLD

This DD statement does not ensure that volume integrity is maintained. It should be
used with extreme caution in a multiprogramming environment because there is the
possibility that a job step running concurrently might make a specific request for
the volume, use the volume, and demount it.

This DD statement makes a specific request for a public, non-sharable volume to be
mounted on a disk device.

IIDD3 DD UNIT=(d~k"DEFER),VOLUME=SER=789012,DISP=OLD

If the volume is already mounted, it is used. The volume remains mounted at the
end of the job step, and is not demounted until another job step requires the device
on which the volume is mounted.

This DD statement ensures that volume integrity is maintained between jobs; two
or more such statements in a single job can allocate the same device.

This DD statement makes a specific request for a public, sharable volume to be
mounted on a disk device.

IIDD1 DD UNIT=disk,vOLUME=SER=654321,DISP=OLD

If the volume is already mounted, it is used. The volume remains mounted at the
end of the job step, and is not demounted until another job step requires the device
on which the volume is mounted. (This DD statement can also be used to define
permanently resident devices.)

This DD statement does not ensure that the volume integrity of a mountable
volume is maintained. It should be used with extreme caution in a
multiprogramming environment because there is the possibility that a job step
running concurrently might use the device.

APPENDIX D: PROCESSING USER LABELS

User labels can be processed by IEBGENER, IEBCOMPR, IEBPTPCH,
IEHMOVE, IEBCTRIN, and IEBUPDTE. In some cases, user-label processing is
automatically performed; in other cases, you must indicate the processing to be
performed. In general, user label support allows the utility program user to:

• Process user labels as data set descriptors.

• Process user labels as data .

• Total the processed records prior to each WRITE command (IEBGENER and
IEBUPDTE only).

For either of the first two options, the user must specify standard labels (SUL) on
the DD statement that defines each data set for which user-label processing is
desired. For totaling routines, OPTCD=T must be specified on the DD statement.

The user cannot update labels by means of the IEBUPDTE program. This function
must be performed by a user's label processing routines. IEBUPDTE will, however,
allow you to create labels on the output data set from data supplied in the input
stream. See. the discussion of the LABEL statement in the chapter "IEBUPDTE
Program."

IEHMOVE does not allow exits to user routines and does not recognize options
concerning the processing of user labels as data. IEHMOVE always moves or

Program."

Volume switch labels of a multivolume data set cannot be processed by
IEHMOVE, IEBGENER, or IEBUPDTE. Volume switch labels are therefore lost
when these utilities create output data sets. To ensure that volume switch labels are
retained, process multivolume data sets one volume at a time.

Processing User Labels as Data Set Descriptors

When user labels are to be processed as data set descriptors, one of the user's label
processing routines receives control for each user label of the specified type. The
user's routine can include, exclude, or modify the user label. Processing of user
labels as data set descriptors is indicated on an EXITS statement with keyword
parameters that name the label processing routine to be used.

The EXIT keyword parameters indicate that a user routine should receive control
each time the OPEN, EOV, or CLOSE routine encounters a user label of the type
specified.

Figure 25-1 illustrates the action of the system at OPEN, EOV, or CLOSE time.
When OPEN, EOV, or CLOSE recognizes a user label and when SUL has been
specified on the DD statement for the data set, control is passed to the utility
program. Then, if an exit has been specified for this type of label, the utility
program passes control to the user routine. The user's routine processes the label
and returns control, along with a return code, to the utility program. The utility
program then returns control to OPEN, EOV, or CLOSE.

This cycle is repeated up to eight times, depending upon the number of user labels
in the group and the return codes supplied by the user's routine.

Appendix D: Processing User Labels 25-1

OPEN/EOV/CLOSE

processing routine

Figure 25-1. System Action at OPEN, EOV, or CLOSE Time

Exiting to a User's Totaling Routine

When an exit is taken to a user's totaling routine, an output record is passed to the
user's routine just before the record is written. The first halfword of the totaling
area pointed to by the parameter contains the length of the totaling area, and
should not be used by the user's routine. If the user has specified user label exits,
this totaling area (or an image of this area) is pointed to by the parameter list
passed to the appropriate user label routine.

Note: An output record is defined as a physical record (block), except when
IEBGENER is used to process and reformat a data set that contains spanned
records.

Processing User Labels as Data

25-2 OS/VS 1 Utilities

When user labels are processed as data, the group of user labels, as well as the data
set, is subject to the normal processing done by the utility program. The user can
have his labels printed or punched by IEBPTPCH, compared by IEBCOMPR, or
copied by IEBGENER.

To specify that user labels are to be processed as data, include a LABELS
statement in the job step that is to process user labels as data.

There is no direct relationship between the LABELS statement and the EXITS
statement. Either or both can appear in the control statement stream for an
execution of a utility program. If there are user label-processing routines, however,
their return codes may influence the processing of the labels as data. In addition, a
user's output label-processing routine can override the action of a LABELS
statement because it receives control before each output label is written. At this
time the label created by the utility as a result of the LABEL statement is in the
label buffer, and the user's routine can modify it.

The code returned by the user's totaling routine determines system response as
follows:

• 0, which specifies that processing is to continue, but no further exits are to be
taken.

• 4, which specifies that normal processing is to continue.

• 8, which specifies that processing is to terminate, except for EOD processing on
the output data set (user label processing).

• 16, which specifies that processing is to be terminated.

· INDEX

If more than one page number is given, the primary
discussion is listed first.

[] 1-5
{} 1-5

A
action on return codes 22-4
action (IEBDG) 7-3,7-12
access counter 20-28
ADD (IEBUPDTE) 13-5
ADD statement 19-14,19-7
adding data set passwords 20-8,20-15
adding new member to a symbolic library 13-1
ALIAS statement 13-10
alias names

listed by IEHLIST 18-2
processed by IEBCOPY 6-1

allocating space
with the IEBCOPYprogram 6-7
with the IEHMOVE program 19-1,19-2,19-3,19-13

alphameric tape labeling 22-1
alternate DD names, specifying 23-1,23-2
alternate tracks, assigning

with IBCDASDI 2-4
with IEHA TLAS 14-2
with IEHDASDR 15-3,15-14,15-22

Analysis program-l (AP-l) v
ANALYZE statement 15-11
AP-l (Analysis program-I) v
ASCII labels 16-1
ASSIGN parameter

CHARSET statement 9-50
GRAPHIC statement 9-51

assigning
alternate tracks

with IBCDASDI 2-4
with IEHATLAS 14-2
with IEHDASDR 15-3,15-14,15-22

sequence numbers 13-7
serial numbers (IEHDASDR) 15-3,15-13,15-17

asterisk in PDS directory entry 18-2
ATTACH macro instruction 23-1
attributes of DD statements defining

mountable volumes 24-1

B
backup copy, producing a

using IEBCOPY 6-2
using IEBGENER 9-1
using IEHDASDR 15-3,15-14

bad VTOC, assigning alternate track for 14-2
basic move and copy operations 18-1,6-1
BDAM data set, (see direct data sets)
BLDA statement 20-14
BLDG statement 20-15
BLDX statement 20-14
bold type, use of 1-5
bootstrap records, construction of 15-1,15-5
braces { }, use of 1-5
brackets [], use of 1-5

buffer
FCB, loading of 4-1,4-2
UCS, loading of 4-1,4-2

buffered log devices 1-3
building

a generation index 20-6
an index 20-3
an index alias 20-3

bypassing defective-track checking feature 2-1,2-6,2-7

c
carriage control, specifying 11-7
catalog

building index in 20-3,20-6
copying 19-8
listing entries of 18-1
moving 19-8
placing entries in 20-2

cataloged data sets, punching 11-1
cataloging

a data set 20-2
a generation data set 20-6,20-13
a procedure 13-1,13-18
with the IEHMOVE program 19-1
with the IEHPROGM program 2()';'2

cataloging moved or copied data, automatically 19-1
CA TLG statement 20-13
CGMID parameter

T ABLE statement 9-52
CHANGE (IEBUPDTE) 13-5
changing

a volume serial number 15-3
input record format (IEBCOPY) 6-15
the logical record length of a data set 9-3
the organization of a data set 13-1,9-1

character arrangement table module, creating 9-31
CHARSET statement 9-46
chart, utility program function 1-7
checking for flagged defective tracks

with the IBCDASDI program 2-1
with the IEHDASDR program 15-1,15-17,15-19

CHx parameter
FCB statement 9-53

CLOSE module, changing or replacing 18-1
codes, return

action on 22-4
for IEBCOMPR 5-2
for IEBCOPY 6-6
for IEBDG 7-3
for IEBEDIT 8-1
for IEBGENER 9-4
for IEBIMAGE 9-40
for IEBISAM 10-4
for IEBPTPCH 11-2
for IEBTCRIN 12-12
for IEBUPDTE 13-2
for IEHATLAS 14-3
for IEHDASDR 15-7
for IEHINITT 16-2
for IEHIOSUP 17-1
for IEHLIST 18-5
for IEHMOVE 19-10
for IEHPROGM 20-10

Index 1-1

issued by user exit routines 22-4
issued by user totaling routine 25-2

COLUMN specification of a data
field (IEBUPDTE) 13-6,13-11

combinations of NEW, MEMBER,
and NAME keywords 13-6

comments on utility control statements 1-4
COMPARE statement 5-3
comparing

partitioned directories 5-1
partitioned data sets 5-1
records 5-1
sequential data sets 5-1

compatible volumes 19-2
compress-in-place 6-4
compressing a data set 6-4
concurrent operations when

using IEHDASDR, specifying IS-II
CONNECT statement 20-14
connecting two control volumes 20-4,20-14
considerations for defining DD statements 24-1
continuing utility control statements 1-4
control passwords

adding 20-8
deleting 20-9
listing information from 20-9
maintaining 20-6
replacing 20-8

control statements
comments on 1-4
continuing 1-4
format of 1-4
restrictions 1-5

control volumes
connecting 20-4,20-14
copying 19-8
disconnecting 20-4,20-15
moving 19-8

controlling
IBCDASDI 2-2
IBCDMPRS 3-1
ICAPRTBL 4-2
IEBCOMPR 5-2
IEBCOPY 6-6
IEBDG 7-4
IEBEDIT 8-2
IEBGENER 9-S
IEBIMAGE 9-40
IEBISAM 10-5
IEBPTPCH 11-3
IEBTCRIN 12-12
IEBUPDTE 13-2
IEHATLAS 14-2
IEHDASDR IS-7
IEHINITT 16-3
IEHIOSUP 17-1
IEHLIST 18-6
IEHMOVE 19-11
IEHPROGM 20-10
IFHSTATR 21-2

conventions, notational 1-5
converting a data set

from sequential to partitioned
organization 9-1, 13-1, 13-13

converting a member of a partitioned
data set to a sequential data set 13-1, 13-6

1-2 OS/VS 1 Utilities

converting data
from alphameric to hexadecimal 11-7
from H-set BCD to EBCDIC 9-109-3
from packed to unpacked decimal' It-9,9-1O,9-3
from unpacked to packed decimal 9-10,9-3

COPIES parameter
COPYMOD statement 9-54

COpy statement 6-8
COpy CATALOG statement 19-18
COpy DSGROUP statement 19-16
COpy DSNAME statement 19-15
copy modification module, creating 9-30
COPYMOD statement 9-43
COpy PDS statement 19-17
COpy VOLUME statement 19-19
copying

a BDAM data set 19-5
a catalog 19-8,19-18
a data set 6-1,6-2,19-1,19-4,19-15
a direct data set with variable

spanned records 19-9
a dumped data set IS-4
a group of data sets 19-8,19-16
a member with an. alias 6-1
a partitioned data set 6-2,19-4,19-17
a volume of data sets 19-9, 19-19
an indexed sequential data set 10-1
an unloaded data set 6-1,6-2,19-1
members of a partitioned

data set 6-1,6-2,19-4,19-17
records 9-3
sequential data sets 6-2,19-4,19-15
user labels 9-5

counter, access 20-28
CREATE statement 7-8
creating

a backup copy
using IEBCOPY 6-2
using IEBGENER 9-1
using IEHDASDR 15-3

a character arrangement table module 9-31
a copy modification module 9-30
a forms control buffer module 9-27
a graphic character modification module 9-35
a library 13-1
a library character set module 9-37
a symbolic library 13-1
a partitioned data set from

sequential input 9-1
a sequential copy of an indexed

sequential data set 10-1
a sequential output data set 12-1,8-1
a sequential output job stream 8-1
an edited data set 9-2
user header labels 13-8
user trailer labels 13-8

CVOL (see catalog)

D
DADEF statement 2-3
DASD (see Direct Access Storage Devices) supported 1-3
DASDI, Quick 2-1,15-1
DASDI program (see IBCDASDI)
data

dumped 15-1,15-3,3-1

movable 19-3
rpC'{"\ndnlC'tp,ci 10-1 _ 19-1

reorganized 19-1
unloaded 10-1,19-1
unmovable 19-1,19-3

data set control block (DSCB), alter or set protection
status in 20-6,20-8,20-9,20-15,20-16

data set passwords
adding 20-8
deleting 20-9
listing 20-9
maintaining 20-6
replacing 20-8

data set utility programs
IEBCOMPR 5-1
IEBCOPY 6-1
IEBDG 7-1
IEBEDIT 8-1
IEBGENER 9-1
IEBIMAGE 9-23
IEBISAM 10-1
IEBPTPCH 11-1
IEBTCRIN 12-1
IEBUPDTE 13-1
introduction 1-1

data sets
adding 13-5
cataloging 20-2
changing 13-5
compressing 6-4
converting 9-1,13-1
copying 10-1,6-1,19-1
editing 9-2,9-3
expanding 9-2
loading 10-1
merging 6-1
modifying 13-5
moving 19-1
protecting 20-6
reconstructing 19-1
re-creating 6-5,19-1
renaming 20-1
rpnhirinp' 11-1

reproducmg 1 j-)

scratching 20-1,20-12
uncataloging 20-2,20-13
unloading 19-1,10-1

data sets, moving or copying a group of cataloged 19-8
data sets, partitioned (see partitioned data sets)
Data statement 13-8
DD names, alternate 23-1
DD statements, attributes of 24-1
DD statements, operational results of 24-1
deblocking with IEBCOPY 6-6
defective track

assign alternate tracks for 14-1,15-1,2-4,2-1
flagging 15-1
indicated by data check 14-1
indicated by IEHA TLAS 14-1
indicated by missing address marker 14-1
reclaiming on a 3340 15-3
recovering data from 14-1
testing for 15-1,2-1

deferred mounting, specifying 23-1
defining data sets

with the IEBCOMPR program 5-3
with the IEBCOPY program 6-6

with the IEBDG program 7-4
with the IEBEDIT program 8-2
with the IbHUhNhK program ~-)

with the IEBISAM program 10-5
with the IEBPTPCH program 11-4
with the IEBTCRIN program 12-13
with the IEBUPDTE program 13-2
with the IEHATLAS program 14-2
with the IEHDASDR program 15-8
with the IEHINITT program 16-3
with the IEHIOSUP program 17-1
with the IEHLIST program 18-6
with the IEHMOVE program 19-11
with the IEHPROGM program 20-10
with the IFHST A TR program 21-2

defining mountable devices 24-1
DELETE 13-7
DELETE parameter

TABLE statement 9-55
DELETEP statement 20-16
deleting

a logical record 13-7
an index 20-3
an index alias 20-3
data set passwords 20-9,20-16

DELSEG parameter
INCLUDE statement 9-55

demounting mountable volumes 24-2
Detail statement 13-6
device name 1-3
DFN statement 4-1
Direct Access Storage Devices (DASD) .6/1-3
direct access volumes

assigning alternate tracks to
using IBCDASDI 2-4
using IEHATLAS 14-2
using IEHDASDR 15-3,15-14,15-22

dumping 3-1,3-2,15-3,15-14
initializing

using IBCDASDI 2-1
using IEHDASDR 15-1,15-12

restoring 3-1, 15-15
direct data sets, moving or copying 19-5,19-9

directory entry, format of 18-2
directory, partitioned data set listing 18-1
disconnecting volumes 20-4
DLTA statement 20-14
D L TX statement 20-14
DSCB

set or alter protection status in 20-6,20-15,10-16
DSD statement 7-6
dumJ!lY header label 16-1
DUMP statement

for IBCDMPRS program 3-2
for IEHDASDR program 15-13

DUMP/RESTORE program (see IBCDMPRS)
dumping a direct access volume 3-1,3-2,15-3,15-14
dumping multiple volumes to a single restore tape 15-14
dumping unlike devices 15-5
DUP (see TCRGEN statement)

E
EDIT statement 8-2
edited format

Index 1-3

of a VTOC 18-2
of a PDS directory entry 18-2

editing
data 12-1
sequential data set 9-2
partitioned data set 9-2

editing facilities
with the IEBGENER program 9-2
with the IEBTCRIN program 12-1

ellipsis, use of 1-5
END statement

for IBCDASDI 2-5
for IBCDMPRS 3-3
for ICAPRTBL 4-3
for IEBDG 7-11

end-of-cartridge 12-7
end-of-file (EOF) record, assigning alternate track 14-3
end-of-record 12-3
END UP statement 13-10
ensuring volume integrity 24-1
entering job control statements into a

procedure library 13-19
EOR 12-2,12-3
EOV module, changing or replacing 17-1
ESVrecord

format 21-1
processing 21-1

examples
IBCDASDI 2-10
IBCDMPRS 3-6
ICAPRTBL 4-6
IEBCOMPR 5-6
IEBCOPY 6-16
IEBDG 7-19
IEBEDIT 8-6
IEBGENER 9-15
IEBIMAGE 9-67
IEBISAM 10-8
IEBPTPCH 11-15
IEBTCRIN 12-19
IEBUPDTE 13-18
IEHATLAS 14-5
IEHDASDR 15-25
IEHINITT 16-6
IEHIOSUP 17-2
IEHLIST 18-10
IEHMOVE 19-27
IEHPROGM 20-23
IFHSTATR 21-2

exceptions to control statement requirements 1-4
EXCLUDE statement

for IEBCOPY 6-12
for IEHMOVE 19-20

excluding data from move and copy operations 6-4,19-20
exclusive copy operation 6-4,6-12
executing

a data set utility program 1-1
a system utility program 1-1
an independent utility program 1-2

EXIT (on IEBISAM PARM) 10-7
exit routine linkage 22-1
exit routines

location of 22-1
parameter lists for 22-3
return codes issued by 21-4,24-2

EXITS statement
for IEBCOMPR 5-3

1-4 OS/VSl Utilities

for IEBGENER 9-6
for IEBPTPCH 11-5
for IEBTCRIN 12-14

expanding a partitioned data set 9-2
expiration date, specifying 19-12

F
FCB

creating module for 9-27
loading of 4-2

FCB statement
for ICAPRTBL 4-2
for IEBIMAGE 9-43

FD statement 7-6
FEOV module, changing or replacing 17-1
field processing and editing information,

specifying 9-10,11-9
flagged defective tracks, checking for 2-1,15-1
FORMAT statement 15-12
format of utility control statements 1-4
forms control buffer

creating module for 9-27
3800 9-27

loading 4-2
Function statement 13-4
functions, guide to utility program 1-7

G
GCM parameter

CHARSET statement 9-55
GRAPHIC statement 9-55

GCMLIST parameter
TABLE statement 9-56

general uses
for data set utility programs 1-2
for independent utility programs 1-2
for system utility programs 1-1

GENERATE statement 9-6
generating test data 7-1
GET AL T statement

for IBCDASDI program 2;.4
for IEHDASDR program 15-13

graphic character modification module, creating 9-35
GRAPHIC statement 9-45

H
header record, initializing 16-1
H-set BCD to EBCDIC conversion 9-10

I
IAPAPl00, Analysis program-l v
IBCDASDI program 2-1

control of
utility control statements 2-2

examples 2-10
executing 2-2
input and output 2-2
used to

assign an alternate track 2-1
initialize a direct access volume 2-1

utility control statements
DADEF 2-3
END 2-5
GETALT 2-4

IPLTXT 2-4
JOB 2-3
LA:STCAKU L-'
MSG 2-3
VLD 2-4
VTOCD 2-4

IBCDMPRS program 3-1
control of

utility control statements 3-1
examples 3-6
executing 3-1
input and output 3-1
used to

dump data 3-1,3-2
restore data 3-1,3-3

utility control statements
DUMP 3-2
END 3-3
JOB 3-2
MSG 3-2
RESTORE 3-3
VDRL 3-3

ICAPRTBL program 4-1
codes, wait state 4-1
control of

utility control statements 4-2
example 4-6
executing 4-1
input and output 4-1
used to

load forms control buffer 4-2
load Universal Character Set buffer 4-2

utility control statements
DFN 4-2
END 4-3
FCB 4-2
JOB 4-2
DCS 4-2

wait state codes 4-1
ID parameter

CHAR SET statement 9-56
IEBCOMPR program 5-1

codes. return 5-2
l;onuVI VI

job control statements 5-2
restrictions 5-6

utility control statements 5-3
examples 5-6
input and output 5-2
return codes 5-2
used to

compare partitioned data sets 5-1
compare sequential data sets 5-1
verify backup copies 5-1

utility control statements 5-3
COMPARE 5-3
EXITS 5-3
LABELS 5-4

IEBCOPY program 6-1
codes, return 6-6
control of

job control statements 6-6
restrictions 6-15
space allocation 6-7

utility control statements 6-8
examples 6-16

input and output 6-5
return codes 6-6
u~"'u I.V

compress a data set 6-4
copy data sets 6-2
create a backup copy 6-2
exclude members from a copy operation 6-4
load data sets 6-2
merge data sets 6-5
re-create a data set 6-5
rename selected members 6-4
replace identically named members 6-3
replace selected members 6-4
select members to be copied 6-2
select members to be loaded 6-2
select members to be unloaded 6-2

utility control statements
COPY 6-8
EXCLUDE 6-12
SELECT 6-11

IEBDG program 7-1
codes, return 7-3
control of

job control statements 7-4
PARM information 7-5
restrictions 7 -19

utility control statements 7-6
examples 7 -19
fields modified by 7-2
IBM-supplied patterns for 7-1
input and output 7-3
modifying selected fields with 7-2
patterns for - (supplied by IBM) 7-1
pictures for - (user-specified) 7-2
return codes 7-3
selected fields modified by 7-2
used to

generate test data 7-1
modify selected fields 7-2

user-specified pictures for 7-2
utility control statements

CREATE 7-8
DSD 7-6

FD 7-6
REPEAT 7-10

IEBEDIT program 8-1
codes, return 8-1
control of

job control statements 8-2
restrictions 8-6

utility control statement 8-2
examples 8-6
input and output 8-1
return codes 8-1
used to

copy an entire job 8-1
copy selected job steps 8-1

utility control statement 8-2
EDIT 8-2

IEBGENER program 9-1
codes, return 9-4
control of

job control statements 9-5
restrictions 9-15

utility control statements 9-5

Index 1-5

examples 9-15
input and output 9-4
return codes 9-4
used to

change logical record length 9-3
copy user labels on sequential output 9-7
create a backup copy 9-1
expand a partitioned data set 9-2
produce a partitioned data set

from sequential input 9-1
produce an edited data set 9-2
reblock 9-3

IEBGENER program (cont'd.)
utility control statements

EXITS 9-6
GENERATE 9-6
LABELS 9-7
MEMBER 9-7
RECORD 9-7

IEBIMAGE program 9-23
codes, return 9-40
control of

job control statements 9-40
utility control statements 9-41

examples 9-67
input and output 9-39
return codes 9-40
used to

maintain SYSI. IMAGELIB 9-25
create a character arrangement table module 9-31
create a copy modification module 9-3~

create a forms control buffer module 9-27
create a graphic character modification module 9-35
create a library character set module 9-37

utility control statements
CHARSET 9-46
COPYMOD 9-43
FCB 9-43
GRAPHIC 9-45
INCLUDE 9-47
NAME 9-47
OPTION 9-48
TABLE 9-45

IEBISAM program 10-1
codes, return 10-3
control of

job control statements 10-5
P ARM information 10-5

examples 10-8
input and output 10-4
return codes 10-4
used to

copy an indexed sequential data set 10-1
create a sequential copy of an

indexed sequential data set 10-1
create an indexed sequential data set

from an unloaded data set 10-3
print an indexed sequential data set 10-3

IEBPTPCH program 11-1
codes, return 11-2
control of

job control statements 11-3
restrictions 11-15

utility control statements 11-3
examples 11-15
input and output 11-2
return codes 11-2

1-6 OS/VS 1 Utilities

used to print or punch
a partitioned directory 11-2
an edited data set 11-2
data sets 11-1
selected members 11-1
selected records 11-2

utility control statements
EXITS 11-5
LABELS 11-5
MEMBER 11-5
PRINT 11-4
PUNCH 11-4
RECORD 11-6
TITLE 11-5

IEBPTRCP program 11-23
IEBTCRIN program 12-1

cartridge, end-of- 12-7
codes

MTDI, from TCR 12-5
MTST, after translation 12-7
MTST, from TCR 12-6
return 12-12
special purpose 12-4

control of
job control statements 12-12

restrictions 12-19
utility control statements 12-14

editing
criteria, MTD I 12-1
restrictions, MTDI 12-2

end-of-cartridge 12-7
error description word (EDW) 12-8

end-of -record byte 12-1
level status byte 12-1
start -of -record byte 12-1
type status byte 12-1

error records 12-1
samples of 12-10

examples 12-19
input and output 12-12
MTDI codes from TCR 12-5
MTDI editing criteria 12-1
MTDI editing restrictions 12-2
MTST codes after translation 12-7
MTST codes from TCR 12-6
record, end of 12-1
record, start of 12-1
records, error 12-1

samples of 12-10
return codes 12-12
special purpose codes 12-4
status, level 12-1
status, type 12-1
used to

editdata 12-1
produce sequential output data 12-1
read input 12-1

utility control statements
EXITS 12-14
TCRGEN 12-14

IEBUPDTE program 13-1
codes, return 13-2
control of

job control statements 13-2
PARM information 13-3
restrictions 13-17

utility control statements 13-4
examoles 13-18
input and output 13-2
return codes 13-2
used to

change data set organization 13-1
create and update symbolic libraries 13-1
incorporate source language modifications 13-1
modify data sets 13-1

utility control statements
ALIAS 13-10
Data 13-8
Detail 13-7
END UP 13-10
Function 13-4
LABEL 13-8

IEHATLAS module, changing or replacing 17-1
IEHA TLAS program 14-1

control of
job control statements 14-2

restrictions 14-5
utility control statement

examples 14-5
input and output 14-1
used to

assign an alternate track 14-1
indicate a defective track 14-1

utility control statement 14-2
TRACKorVTOC 14-2

IEHDASDR program 15-1
codes, return 15-7
control of

job control statements 15-8
P ARM information 15-9
restrictions 15-23

utility control statements 15-11
examples 15-24
initialize MSS staging volumes 15-3
input and output 15-7
reclaim defective tracks, 3340 15-3
return codes 15-7
used to

assie:n alternate tracks 15-3
cnange VOlUme senal numoers 1 ;:'-.)

copy dumped data 15-4
create a copy 15-3
dump unlike devices 15-5
initialize a Direct Access Volume 15-1
restore unlike devices 15-5
write IPL records and program 15.,.5

utility control statements
ANALYZE 15-11
ANALYZE MSS 15-12
DUMP 15-13
FORMAT 15-12
GETALT 15-13
IPLTXT 15-15
LABEL 15-13
PUTIPL 15-15
RESTORE !5-14

IEHINITT program 16-1
codes, return 16-2
control of

job control statements 16-3
PARM information 16-3
restrictions 16-6

utility control statement 16-3

examples 16-6
inout and outDut 16-2
return ·codes 16-2
used to place volume label sets on magnetic tape 16-1
utility control statement

IN ITT 16-4
IEHIOSUP program 17-1

codes, return 17-1
control of

job control statements 17-1
restrictions 17-2

examples 17-2
input and output 17-1
return codes 17-1
used to update TTRentries 17-1

!EHLIST program 18~ 1
codes, return 18-5
control of

job control statements 18-6
P ARM information 18-7
restrictions 18-10

utility control statements 18-7
examples 18-10
input and output 18-5
return codes 18-5
used to list

catalog entries 18-1
directories 18-1

members of (edited) 18-2
members of (unedited) 18-3

volume table of contents 18-3
entries in (edited) 18-3
entries in (unedited) 18-5

utility control statements
LISTCTLG 18-7
LISTPDS 18-7
LISTVTOC 18-8

IEHMOVE program 19-1
codes, return 19-10
control of

job control statements 19-11
for track overflow 19-14
P ARM information 19-13

utility control statements 19-14
examples 19-27
input and output 19-10
return codes 19-10
used to move or copy

a catalog 19-8
a data set 19-4
a group of cataloged data sets 19-8
a volume of data sets 19-9
direct data sets with variable spanned records 19-9

used to reblock data sets 19-4
utility control statements

COpy CATALOG 19-18
COpy DSGROUP 19-16
COpy DSNAME 19-15
COpy PDS 19-17
COpy VOLUME 19-19
EXCLUDE 19-20
INCLUDE 19-19
MOVE CATALOG 19-18
MOVE DSGROUP 19-16
MOVE DSNAME 19-15
MOVE PDS 19-17

Index 1-7

MOVE VOLUME 19-19
REPLACE 19-20
SELECT 19-20

IEHPROGM program 20-1
codes, return 20-10
control of

job control statements 20-10
PARM information 20-11
restrictions 20-22

utility control statements 20-12
examples 20-23
input and output 20-10
return codes 20-10
used to

add an entry to PASSWORD data set 2()"8
build a generation index 20-6
build an index 20-3
bt:~ . an index alias 20-3
catalog a data set 20-2
connecttwo volumes 20-4
delete an entry from PASSWORD data set 20-9
delete an index 20-3
delete an index alias 20-3
list information frQm PASSWORD

IEHPROOM program (cont'd.)
data set entries 20-9

maintain a generation index 20-6
maintain data set passwords 20-6
release two volumes 20-4
rename a data set or member 20-1
replace an entry iIi PASSWORD data set 20-8
scratch a data set or member 20-1
uncatalog a data set 20-2

utility control statements
ADD 20-15
BLDA 20-14
BLDG 20-15
BLDX 20-14
CATLG 20-13
CONNECT 20-14
D ELETEP 20-16
DLTA 20-14
DLTX 20-14
LIST 20-16
RELEASE 20-15
RENAME 20-12
REPLACE 20-16
SCRATCH 20-12
UNCATLG 20-13

IFHST A TR program 21-1
control of

job control statements 21-2
example 21-2
input and output 21-2
use of 21-1

INCLUDE statement
for IEBIMAGE 9-47
for IEHMOVE 19-19

independent utility programs
IBCDASDI 2-1
IBCDMPRS 3-1
ICAPRTBL 4-1
introduction to 1-2

index
building 20-3,20-14
deleting 20-3,20-14
generation 20-6,20-15

1-8 OS/VS 1 Utilities

index alias
building 20-3,20-14
deleting 20-3,20-14

index structure, listing 18-1
indexed sequential data sets

copying 10-1
creating, from unloaded data set 10-3
loading 10-1,10-2
printing 10-5,10-3
unloading 10-1,10-7

initializing direct access volumes
with IBCDASDI 2-1
with IEHDASDR 15-1
with surface analysis 2-1,15-12
without surface analysis 2-1,15-1,15-2

tNITT statement 164
input stream, organizing 8-1
input to and output from

IBCDASDI 2·2
IBCDMPRS 3-1
ICAPRTBL 4-1
iEBCOMPR 5-2
IEBCOPY 6-5
IEBDO 7-3
IEBEDIT 8-1
IEBGENER 9-4
IEBIMAGE 9-39
IEBISAM 10-4
IEBPTPCH 11-2
IEBTCRIN 12-12
IEBUPDTE 13-2
IEHATLAS 14-1
IEHDASDR 15-7
IEHINITT 16-2
IEHIOSUP 17-1
IEHLIST 18-5
IEHMOVE 19-10
IEHPROGM 20-10
IFHSTATR 21-2

inserting blocks of records 13-1,13-7
introduction

to data set utilities 1-1
to independent utilities 1-2
to system utilities 1-1

invoking utility programs 23-1
IPL bootstrap records, constructing 15-1,15-5,15-16
IPL TXT statement

for IBCDASDI 2-4
for IEHDASDR 15-15

IPL program 15-1,15-5
IPL program records 15-5,15-6
IPL records

contents 15-6
writing 15-5,15-6

IPL text 2-4,2-6, 15-12, 15-18
italic type, use of 1-5

J
job control statement requirements 1·3
job control statements for

IEBCOMPR 5-2
IEBCOPY 6-6
IEBDG 7-4
IEBEDIT 8-2
IEBGENER 9-5
IEBIMAGE 9-40
IEBISAM 10-5

IEBPTPCH 11-3

IEBUPDTE 13-2
IEHATLAS 14-2
IEHDASDR 15-8
IEHINITT 16-3
IEHIOSUP 17-1
IEHLIST 18-6
IEHMOVE 19-11
IEHPROGM 20-10
IFHSTATR 21-2

JOB statement
for IBCDASDI 2-3
for IBCDMPRS 3-2
for ICAPRTBL 4-2

job statements in an output data set 8-1
JOB steps, copying 8-1
job stream, organizing 8-1

K
keywords, combinations of NEW, MEMBER,
and NAME 13-6

L
label processing

using IEBCOMPR 5-4
using IEBGENER 9-7,9-13
using IEBPTPCH 11-5
using IEBUPDTE 13-8
using IEHMOVE 19-4

LABEL statement
for IEBUPDTE 13-8
for IEHDASDR 15-13

labels
processing user, as data 25-2
processing user, as data set descriptors 25-1

LABELS statement
for IEBCOMPR 5-4
for IEBGENER . 9-7
for IEBPTPCH 11-5

labeling a magnetic tape volume 16-1
LAST CARD statement 2-5
levels of index

creating 20-3
deleting 20-3,20-6

libraries, updating symbolic 13-1
library character set module, creating 9-37
LINES parameter

COPYMOD statement 9-57
FCB statement 9-57

LINK macro instruction 23-1
linking to an exit routine 23-1
LIST statement 20-16
listing

a catalog 18-1
a partitioned data set 11-1,18-1
a partitioned directory 11-2,18-1
a password entry 20-9,20-16
a printer control module 9-43
a sequential data set 11-1
a volume table of contents 18-3
data set passwords 20-9
error statistics by volume (ESV) records 21-1
system control data 18-1

LISTCTLG statement 18-7

LISTVTOC statement 18-8
LOAD 10-7
load operation, specified in P ARM parameter 10-7
loading

an indexed sequential data set 10-2
an unloaded data set 10-3
forms control buffer 4-2
Universal Character Set buffer 4-2

LOC parameter
TABLE statement 9-58

logical record length, changing 9-3
LPI parameter

FCB statement 9-59,9-60

M
magnetic tape volumes

labeling 16-1
moving a data set to 19-11
moving or copying a BDAM data set to 19-5
moving or copying a BDAM data set from 19-5
moving or copying a group of data sets to 19-8
moving or copying a volume of data to 19-9

Mass storage system
ANALYZE MSS (IEHDASDR) 15-13
initialize, staging volumes 15-3
restriction (IBCDASDI) 2-10

MEMBER, NEW,'and NAME keywords,
combinations of 13-6

MEMBER statement
for IEBGENER 9-7
for IEBPTPCH 11-5

members, partitioned data set
comparing 5-1
copying and merging 19-1,6-2
renaming 19-1,20-1,6-4
replacing 6-3,19-1
scratching 20-1

members of a symbolic library
adding 13-1
,..h",na;no 1 ~_1

methods of executing
data set utility programs 1-1
independent utility programs 1-2
system utility programs 1-1

modify selected fields 7-2
modifying partitioned or sequential data sets 13-1
modules, printer control

naming conventions 9-26,9-60
structure 9-26
3800 9-27

mountable devices, defining 24-1
MOVE CATALOG statement 19-18
MOVE DSGROUP statement 19-16
MOVE DSNAME statement 19-15
MOVE PDS statement 19-17
MOVE VOLUME statement 19-19
moving

a BDAM data set 19-5
a catalog 19-8
a data set 19-4
a direct data set with variable spanned records 19-9
a group of cataloged data sets 19-8
a multivolume data set 19-5,19-9

Index 1-9

a volume of data sets 19-9
the SYSCTLG data set 19-9

moving and copying
data 19-1
user labels t9-4

moving and copying operations
excluding data from 6-4,6-12,19-20
including data in 19-19
selecting members for 6-2,6-11,19-20

moving or copying a password
protected volume 19-4

MSG statement
for IBCDASDI 2-3
for IBCDMPRS 3-2

MSS (see Mass Storage System)
MTDI input 12-1,12-7
MTST input 12-1,12-7
multivolume data sets, moving or

copying 19-5,19-9

N
NAME statement 9-47
new master data set 13-1
NEW, MEMBER, and NAME keywords,
combinations of 13-6

nonsharable attribute, assigning 24-1
nonshara~le devices 24-1
notation conventions 1-5
NUMBER 13-7
numbering records 13-7
numeric tape labeling 16-1

o
OPEN module, changing or replacing 17-1
operand field (on utility control statements) 1-4
operating procedures for independent utilities 2-2,3-1,4-1
operation field (on utility control statements) 1-4
operation groups, IEBIMAGE 9-42
OPTION statement 9-48
order of moved or copied members with· the

IEHMOVE program 19-6
organizing an input stream 8-1
output from utility programs

(see input to and output from)
OVERRUN parameter

OPTION statement 9-48,9-61

p
packed to unpacked decimal conversion 9-10
parameter lists of exit routines 22-1,22-3
parameters passed to exit routines

for label processing 22-1
for nonlabel processing 22-3

P ARM information
with the IEBDG program 7-5
with the IEBISAM program 10-5
with the IEBUPDTE program 13-3
with the IEHDASDR program 15-9
with the IEHINITT program 16-3
with the IEHLIST program 18-7
with the IEHMOVE program 19-13
with the IEHPROGM program 20-11

partial dumps of direct access volumes 15-3,15-14
partitioned data sets

I-tO OS/VS 1 Utilities

comparing 5-1
compressing in place 6-4
converting to sequential 13-1
copying 6-1,6-2,19-4
copying selected members of 6-2,19-20
editing 9-2
expanding 9-2

excluding from move and copy
operations 6-4,19-20

listing 18-1
loading 6-2
merging members of 6-5,19-6,19-7
moving 19-4
numbering records in 13-7
produced from sequential input 13-1
re-creating 6-5
renaming 20-1,20-12
replacing records in 13-1
unloading 19-1
updating in place 13-1

partitioned data set directory
dump format 18-3
edited format 18-2
listing 18-1
unedited format 18-3

PASSWORD data set
adding entries to 20-8
deleting entries from 20-9
listing entries in 20-9
maintaining entries in 20-6
replacing entries in 20-8

password protected data sets, IEHDASDR 15-9
password protected volumes,

moving or copying 19-4
patterns of test data 7-1
picture, user-specified 7-2

POS parameter
COPYMOD statement 9-61

prerequisite publications iv
print specifications

standard 11-1
user 11-1

PRINT statement 11-4
printing

a partitioned directory 11-2,18-1
a printer control module 9-43
an edited data set 11-2
data sets 11-1
indexed sequential data sets 10-3
partitioned data sets 11-1
selected records 11-2
selected members 11-1
sequential data set 11-1

PRINTL 10-7
private attribute, assigning 24-1
procedure library, entering procedures in 13-1,13-19
processing user labels 25-1

as data 25-2
program classes

data set 1-1
independent 1-2
system 1-1

program selection 1-7
protecting data sets (see IEHPROGM utility program)
punch specifications

standard 11-1

user 11-1

punching
records 11-1,11-2
partitioned data sets 11-1,11-2
sequential data sets 11-1,11-2

punctuation, use of in control statements 1-5
purging unexpired data sets (IEHDASDR) 15-20

Q
Quick-DASDI 2-1,15-1

R
(R) parameter

NAME statement 9-62
reblocking

with IEBCOPY 6-6
with IEBGENER 9-3
with IEHMOVE 19-4

reclaiming defective tracks on a 3340 15-3
RECORD statement

for IEBGENER 9-7
for IEBPTPCH 11-6

record groups, assigning 9-1
records

adding 13-8
assigning sequence numbers to 13-7
comparing 5-1
copying 9-3
deleting 13-7
error 12-8,12-10
error statistic by volume 21-1
ESV 21-1
printing 11-1,11-2,11-5
punching 11-1,11-2,11-6
renumbering 13-7
replacing 13-8

re-creating a data set 6-5,19-1
REF parameter

CHARSFT dlltement C)-h~

liKAl"t11C statement ~-()4

related publications v
RELEASE statement 20-15
releasing two volumes 20-4,20-15
removable volumes, allocating 24-1
removing entries from

an index structure 20-3
RENAME statement 20-12
renaming

a data set 20-1,20-12
a member 20-1,20-12
a multivolume data set 20-12
selected numbers 6-4

renumbering logical records 13-1
REPEAT statement 7-10
REPL (IEBUPDTE) 13-5
REPLACE statement

{or IEHMOVE 19-20
for IEHPROGM 20-16

replacement data records 13-8
replacing

data set passwords 20-8,20-16
identically named members 6-3
logical records 13-1

members in move and copy
"'np .. ",t;"'n~ (:..? (:. . .,. 10.1

members of a symbolic library 13-1
records in a partitioned data set 13-1
selected members 6-2,6-3

REPRO (IEBUPDTE) 13-5
reproducing members of a symbolic library 13-4
required publications iv
requirements, job control statement 1-3
RESTORE statement

for IBCDMPRS 3-3
for IEHDASDR 15-14

restoring data to a direct access volume 3-1
restoring unlike devices 15-5
restrictions on utility control statements 1-5
RETURN macro instruction 22-3
return codes

for IEBCOMPR 5-2
for IEBCOPY 6-6
for IEBDG 7-3
for IEBEDIT 8-1
for IEBGENER 9-4
for IEBIMAGE 9-40
for IEBISAM 10-4
for IEBPTPCH 11-2
for IEBTCRIN 12-12
for IEBUPDTE 13-2
for IEHDASDR 15;..7
for IEHINITT 16-2
for IEHIOSUP 17-1
for IEHLIST 18-5
forlEHMOVE 19-to
forlEHPROGM 20-to

return codes, action on 22-4
return codes issued by user exit routines 22-4
return codes issued by user totaling routines 25-2
returning from an exit routine 22-3

s
SCRATCH module, changing or replacing 17-1
SCRATCH statement 20-12
sc.rlltc.hinp'

a Gata set LU-!

a member 20-1
a volume table of contents entry 20-1,20-12

secondary passwords
adding 20-8,20-15
deleting 20-9,20-16
listing 20-9,20-16
replacing 20-8

SELECT statement
for IEBCOPY 6-11
for IEHMOVE 19-20

selecting a program 1-7
selecting members to be loaded or unloaded 6-2
selecting members to be moved or copied 6-2
selective

copy 6-2
rename 6-4
replace 6-4

SEQ parameter
CHAR SET statement 9-65
GRAPHIC statement 9-65

sequential data sets
comparing 5-1

Index 1-11

compressing 6-4
converting to partitioned 13-1
creating 10-1,8-1,12-1
editing 8-1,12-1
printing 11-1
punching 11-1
unloading 19-1

sequential output job stream, creating 10-1,10-3,8-1
SETPRT module, changing or replacing 17-1
sharing mountable devices 24-2
simultaneous IEHDASDR operations 15-9
SIZE parameter

FCB statement 9-65
SOR 12-1,12-2,12-3
space allocation by IEHMOVE 19-1,19-2
specific request for mountable volumes 24-1
specific volumes, making requests for 24-1
specifying an expiration date 19-12
spill data sets, used with IEBCOPY 6-7
standard print operation 11-1
standard punch operation 11-1
storage requirements

for IEBiMAGE 9-23
for SYS1.IMAGELIB 9-23

STOW module, changing or replacing 17-1
straight copy 6-1
surface analysis of direct access volumes 15-12
SVC library, moving 17-1
symbolic libraries, updating 13-1
SYSCTLG data set

moving or copying 19-8
system control data, listing 18-1
system status information 13-5
system utility programs

IEHA TLAS 14-1
IEHDASDR 15-1
IEHINITT 16-1
IEHIOSUP 17-1
IEHLIST 18-1
IEHMOVE 19-1
IEHPROGM 20-1
IFHSTATR 21-1
introduction 1-1

SYS1.IMAGELIB, maintaining 9-25

T
TABLE statement 9-45
tape volumes, labeling 16-1,16-2
tapemark in a volume label set 16-1
TCLOSE module, changing or replacing 17-1
TCRGEN statement 12-14
test data

generating 7-1
patterns of 7-1

TEXT parameter
COPYMOD statement 9-66

TITLE statement 11-5
totaling routine return codes, user 25-2
TRACK statement 14-2
track overflow feature

with IEHMOVE 19-14
tracks (see alternate tracks and defective tracks)

dumping 3-1,15-14
getting alternate 15-1,2-1

transfer control tables, updating 17-1
TTR entries, updating 17-1
type 21 record processing 21-1.21-2

1-12 OS/VS1 Utilities

u
UCS

loading of 4-1
statement 4-2

uncataloging a data set 20-2
UNCATLG statement 20-13
underscore, use of 1-5
unexpired data sets encountered (IEHDASDR) 15-20
Universal Character Set buffer, loading the 4-1,4-2
unlike devices

dumping 15-5
restoring 15-5

UNLOAD 10-7
unloaded data 10-1
unloaded data sets

creating 10-1
loading 10-1,10-3
reconstructing 10-3
format of (IEBISAM) 10-2

unloading
indexed sequential data set 10-1
partitioned data setl 9-1,6-2
sequential data set 19-1

unmovable data sets, moving or copying 19-1
unpacked to packed decimal conversion 9-10
updating

symbolic libraries 13-1
transfer control tables 17-1
TTR entries in the SVC library 17-1

updating in place, a partitioned data set 13-3
user exits (see exit routines)
user labels

as data 24-2
as data set descriptors 24-1
copying 18-4
EXITS statement

for IEBCOMPR 5-3
for IEBGENER 9-6
for IEBPTPCH 11-5
for IEBTCRIN 12-14

LABEL statement
for IEBUPDTE 13-8
for IEHDASDR 15-13

LABELS statement
for IEBCOMPR 5-4
for IEBGENER 9-7
for IEBPTPCH 11-5

linkage with label processing exit routines 25-1
modifying 25-1
moving 19-4
processing 25-1
reserving space for 19-4
writing over 15-5
RECORD statement

for IEBGENER 9-7
for IEBPTPCH 11-6

relationship between EXITS and LABELS 25-2
return codes from exit routines 22-4,25-2
utility program handling of 24-1
volume switch labels 25-1
with IEBGENER 9-7
with IEBPTPCH 11-5

user print specifications 11-1
user punch specifications 11-1
user-specified picture 7-2
user totaling routine return codes 24-2

using NEW, MEMBER, and NAME keywords 13-6

comments on 1-4
continuing 1-4
format of 1-4
restrictions on 1-5

utility control statements (IBCDASDI)
DADEF 2-3
END 2-5
GETALT 2-4
IPLTXT 2-4
JOB 2-3
LASTCARD 2-5
MSG 2-3
VLD 2-4
VTOCD 2-4

utility control statements (IBCDMPRS)
DUMP 3-2
END 3-3
JOB 3-2
MSG 3-2
RESTORE 3-3
VDRL 3-3

utility control statements (ICAPRTBL)
DFN 4-2
END 4-3
FCB 4-2
JOB 4-2
UCS 4-2

utility control statements (IEBCOMPR)
COMPARE 5-3
EXITS 5-3
LABELS 5-4

utility control statements (IEBCOPY)
COpy 6-8
EXCLUDE 6-12
SELECT 6-11

utility control statements (IEBDG)
CREATE 7-8
DSD 7-6
END 7-11
FD 7-6
DPDPAT "L10

utility control statement (IEBEDIT)
EDIT 8-2

utility control statements (IEBGENER)
EXITS 9-6
GENERATE 9-6
LABELS 9-7
MEMBER 9-7
RECORD 9-7

utility control statements (IEBIMAGE) .
CHARSET 946
COPYMOD 9-43
FCB 9-43
GRAPHIC 9-45
INCLUDE 9-47
NAME 9-47
OPTION 9-48
TABLE 9-45

utility control statements (IEBPTPCH)
EXITS 11-5
LABELS 11-5
MEMBER 11-5
PRINT 11-4
PUNCH 11-4
RECORD 11-6
TITLE 11-5

utility control statements (IEBTCRIN)
PVT'T'~ 1"_1,1

TCRGEN 12-14
utility control statements (IEBUPDTE)

ALIAS 13-10
Data 13-8.
Detail 13-7
ENDUP 13-10
Function 13-4
LABEL 13-8

utility control statement (IEHA TLAS)
TRACK or VTOC 14-2

utility control statements (IEHDASDR)
ANALYZE 15-12
ANALYZE MSS 15-13
DUMP 15-14
FORMAT 15-13
GETALT 15-14
IPLTXT 15-15
LABEL 15-13
PUTIPL 15-16
RESTORE 15-15

utility control statement (IEHINITT)
INITT 16-4

utility control statements (IEHLIST)
LISTCTLG 18-7
LISTPDS 18-7
LISTVTOC 18-8

utility control statements (IEHMOVE)
COpy CATALOG 19-18
COPY DSGROUP 19-16
COPY DSNAME 19-15
COpy PDS 19-17
COpy VOLUME 19-19
EXCLUDE 19-20
INCLUDE 19-19
MOVE CATALOG 19-18
MOVE DSGROUP 19-16
MOVE DSNAME 19-15
MOVE PDS 19-17
MOVE VOLUME 19-19
REPLACE 19-20
~PTPr.T 1<)-?0

utility control statements UhtlYKUUM)

ADD 20-15
BLDA 20-14
BLDG 20-15
BLDX 20-14
CATLG 20-13
CONNECT 20-14
DELETEP 20-16
DLTA 20-14
DLTX 20-14
LIST 20-16
RELEASE 20-15
RENAME 20-12
REPLACE 20-16
SCRATCH 20-12
UNCATLG 20-13

utility programs
functions of 1-7
invocation of from a problem program 23-1

v
VORL statement 3-3
verify

Index 1-13

backup copies 5-1
portions of records 5-1

VLD statement 2-4
volume compatibility with respect to size 19-2
volume integrity, ensuring 24-1
volume label set, contents of 16-1
volume serial number, changing 15-3
volume switch labels, processing 25-1
volume table of contents

listing 18-3
dump format 18-5
edited format 18-3
unedited format 18-5

scratching 20-12
volumes

copying 19-9,19-19
mounting and dismounting 24-1
moving 19-9,19-19

VTOC, (see volume table of contents)
VTOC statement 14-2
VTOCD statement 2-4

w
write IPL records and a program

on a direct access volume 15-5,15-16

1-14 OS/VSl Utilities

OS/VSl Utilities

Reader's
f"'A"'Itr..-.
'-IUIIIIIIGII"

Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization. or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publict1tions are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications. or for assistance in using your IBM system. to your IBM representative or to
the IBM branch office servin!(your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

UstTNL __________________ _

Previous TNL _________ _

Previous TNL _________ _

Fold on two lines. tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-3901-1

Reader·s Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

I II II I

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

. "

.••• e. :

Fold and tap. Please do not staple Fold and tape

--..-------- ----- --- --. ---- - - -------------, -(p)

(

f

OSjVSl Utilities

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization. or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, ifany, are deemed
appropriate.
Note: Copies a/IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications. or for assistance in using your IBM system. to)lOUr IBM representative or to
the IBM branch office servinK your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them h(:re:

ustTNL __________________ _

Previous TNL -------------------
Previous TNL __________________ _

Fold on two lines. tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-3901-1

Reader's Comment Form

Fold and tapa

Fold and tapa

--..------- ----- - ------ -.---- -- ----------_.-
(q)

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

II
Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

OS/VSI Utilities

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization. or
subject matter, with the understanding that IBM may use or distribut~ whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, ifany, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications. or for assistance in using your IBM system, .to .')lour IBM representative or to

. • the IBM branch office servin!: your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL _________ _

Previous TNL _________ _

Previous TNL _________ _

Fold on two lines. tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-3901-1

Reader's Comment Form

Fold and tape

FOld and tape

--..------- ----- - ----- -. ---- - - ----------_.-
(J)

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

111111

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

GC26-3901-1

--------- ----- ---- - ---- - - ----------_.-
®

