
Systems 

SY28-0762-0 
File No. S370-36 

OS/VS2 
System Logic Library 
Volume 2 

VS2.03.807 



This minor revision incorporates the following Selectable Unit: 

Supervisor Perf<'Imance #2 VS2.03.807 

The selectable unit to which the information applies, is noted in the upper corner of the page. 

First Edition (July, 1976) 

This is a reprint of SY28-0714-0 incorporating changes released in the following 
Selectable Unit Newsletter: 

SN28-2729 (dated May 28, 1976) 

This edition applies to Release 3.7 of OS/VS2 and to all subsequent releases ofOS/VS2 until 
otherwise indicated in new editions or Technical Newsletters. Changes are continually made to 
the information herein; before using this publication in connection with the operation of IBM 
systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that are 
applicable and current. 

Requests for copies of IBM publications should be made to your IBM representative or to the 
113M branch office serving your locality. 

A form for readers' comments is provided at the back of this publication. If the form has been 
removed, comments may be addressed to IBM Corporation, Publications Development, 
Department 058, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. Comments become 
the property of IBM. 

©Copyright International Business Machines Corporation 1976 



System Logic Library comprises seven volumes. 
Following is the content and order number for each 
volume. 
OS / VS2 System Logic Library, 
Volume 1 contents: SY28-0713 

MVS logic introduction 
Abbreviation list 
Index for all volumes 

Volume 2 contents: SY28-0714 
Method of Operation diagrams for 
Communications Task 
Command Processing 
Region Control Task (RCT) 
Started Task Control (STC) 
LOGON Scheduling 

Volume 3 contents: SY28-0715 
Method of Operation diagrams for 
System Resources Manager (SRM) 
System Activity Measurement Activity (MF /1) 
JOB Scheduling 

-Subsystem Interface 
-Master Subsystem 
-Initiator /Terminator 
-SWA Create Interface 
-Converter /Interpreter 
-SW A Manager 
-Allocation/U nallocation 
-System Management Facilities (SMF) 
-System Log 
-Checkpoint/Restart 

Volume 4 contents: SY28-0716 
Method of Operation diagrams for 
Timer Supervision 
Supervisor Control 
Task Management 
Program Management 
Recovery /Termination Management (R/ TM) 

Volume 5 contents: SY28-0717 
Method of Operation diagrams for 
Real Storage Management (RSM) 
Virtual Storage Management (VSM) 
Auxiliary Storage Management (ASM) 

Volume 6 contents: SY28-0718 
Program Organization 

Volume 7 contents: SY28-0719 
Directory 
Data Areas 
Diagnostic Aids 

Preface 

Please note that if you use only one order 
number, you will only receive that volume. To 
receive all seven volumes, you must either use all 
seven form numbers or, simply the following 
number: SBOF-8210. If you use SBOF-8210, you 
will receive all seven volumes. 

The publication is intended for persons who are 
debugging or modifying the system. For general 
information about the use of the MVS system, refer 
to the publication Introduction to OS/VS Release 
2, GC28-0661. 

How This Publication is Organized 
This publication contains six chapters. Following, is 
a synopsis of the information in each section: 

• Introduction and Master Index - an 
overview of each of the functions this 
publication documents, an abbreviation list of 
all acronyms used in the publication, and a 
complete index for all seven volumes. 

• Method of Operation - a functional 
approach to each of the subcomponents, using 
both diagrams and text. Each subcomponent 
begins with an introduction; all the diagrams 
and text applying to that subcomponent 
follow. 

• Program Organization - a description of 
module-ta-module flow for each 
subcomponent; a description of each module's 
function, including entry and exit. The 
module-to-module flow is ordered by 
subcomponent. The module descriptions are 
in alphabetic order without regard to 
subcomponent. 

• Directory - a cross-reference from names in 
the various subcomponents to their place in 
the source code and in the publication. 

• Data Areas - a description of the major 
data areas used by the subcomponents (only 
those, however, that are not described in 
OS / VS Data Areas, SYB8-0606, which is 
on microfiche); a data area usage table, 
showing whether a module reads or updates a 
data area; a control block overview diagram 
for each SUbcomponent, showing the various 
pointer schemes for the control blocks 
applicable to each subcomponent; a table 
detailing data area acronyms, mapping macro 
instructions, common names, and symbol 
usage table. 

Preface 3 



• Diagnostic A ids - the messages issued, 
including the modules that issue, detect, and 
contain the message; register usage; return 
codes; wait state codes; and miscellaneous 
aids. 

4 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 

Corequisite Reading 
The following publications are corequisites: 

• OS/VS2 JES2 Logic, SY28-0622 
• OS/VS Data Areas, SYB8-0606 (This 

document is on microfiche.) 
• OS/VS2 System Initialization Logic, 

SY28-0623 



Contents 

Section 2: Alphabetic List of Diagrams 

Section 2: Method of Operation 
Communications Task . 

Major Function 
Supporting Functions 

Console Attention 
External Interrupt 
I/O Complete Processing . 
Unconditional Message to Inactive Console (QREGO Processing Routine) 

Console Device Support 
SVC 72 ................... . 

Method of Operation Diagrams . . . . . . . . . . . 
1-1. Communication Task Overview ...... . 
1-2. Communication Task Processing (IEAVMQWR) 
1-3. Opening a Console ............ . 
1-4. Closing a Console .............. . 
1-5. WTO and WTOR Macro Instruction Processing Overview (SVC 35) 
1-6. WTO and WTOR Macro Instruction Processing (SVC 35) 

(IEAVMQWR) ...................... . 
1-7. Write-to-Programmer Processing Overview (IGC0203E) ..... . 
1-8. Write-to-Programmer Processing (IGC0203E) ......... . 
1-9. Multiple-Line WTO (MLWTO) Processing (SVC 350 (IEAVMWTO) 
1-10. WTO and WTOR Communication Task Processing Overview 

(lEAVMQWR, IEAVMWSV) ............... . 
1-11. WTO and WTOR Communication Task Processing (IEAVMQWR, 

13 

2-1 
2-3 
2-3 
2-4 
2-4 
2-4 
2-4 
2-5 
2-5 
2-6 
2-7 

· 2-12 
· 2-14 
· 2-18 
· 2-22 
· 2-26 

· 2-28 
· 2-48 
· 2-50 
· 2-72 

2-96 

lEA VMWSV) ....................... 2-98 
1-12. Unconditional Message to Inactive Console (QREGO) (IEAVMQRO) 2-114 
1-13. Writing Single-Line Messages to a 1052, 1443, 2740, or 3284/3286 

Console . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-120 
1-14. Displaying Single-Line Messages on Graphics Consoles (DIDOCS) 2-122 
1-15. Writing MUltiple-Line Messages to a 1052, 1443, 2740, or 3284/3286 

Console . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-124 
1-16. Displaying Multiple-Line Messages on Graphics Consoles (DIDOCS) 2-128 
1-17. I/O Complete Processing . . . . . . . . . . . . . . . . 2-130 
1-18. DOM Macro Instruction Processing Overview (SVC 87) 

(lEAVXDOM) ................... . 
1-19. DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) 
1-20. DOM Communication Task Processing Overview (IEAVMDOM) 
1-21. DOM Communication Task Processing (IEAVMDOM) 
1-22. DOM Device Support Processing (DIDOCS) ..... . 
1-23. External Interrupt Processing (Automatic Console Switch) 

(lEA VVCRX) .................. . 
1-24. Attention Interrupt Processing (Command Request) (IEAVVCRA) 
1-25. Processing Commands From a 1052, 2540, or 2740 Console 
1-26. Processing Typed Commands from a Graphics Console (DIDOCS) 

(lEECVETt) ...................... . 
1-27. Processing Light-Pen and PFK Commands from a Graphics Console 

2-138 
2-140 
2-152 
2-154 
2-166 

2-168 
2-174 
2-182 

2-184 

(DIDOCS) (IEECVETF) ................ 2-186 
1-28. Operator-Requested Message Deletion (DIDOCS) (IEECVET8) 2-188 
1-29. PFK Definition or Redefinition (DIDOCS) (IEECVETB) 2-190 
1-30. Changing Message Deletion Specifications (DIDOCS) (IEECVET A) 2-192 
1-31. Erasing or Displaying the PFK Display Line (DIDOCS) (IEECVETB) 2-194 
1-32. Erasing/Holding/Framing/Updating Status Displays (DIDOCS) 

(IEECVEFTP) . . . . . . . .•. . . . . . . . . . . . . . 2-196 
1-33. Roll-Mode Message Deletion (DIDOCS) .... . . . . . .. 2-198 
1-34. Communication Task Functional Recovery Routine or EST AE Controller 

Overview (lEA VMFRR) ................... 2-200 
1-35. Communication Task Functional Recovery Routine or ESTAE Controller 

(IEA VMFRR) .............. 2-202 
1-36. Communication Task Recovery STAR Routine 2-212 

Command Processing 2-225 
General Considerations . . 2-225 
Command Execution . . . 2-225 
Reconfiguration Commands 2-226 
Command Processing Modifications 2-226 

Contents 5 



Command Processing Method-of-Operation Diagram Summary . . . . . . 
Method-of-Operation Diagrams .. . . . . . . . . . . . . . . . . . . 

2-1. SVC 34 Common Processing/Initialization - Overview (lGC0003D) 
2-2. Creating ST AE Environment for SVC 34 Command Processing 

(lEE0003D) ...................... . 
2-3. SVC 34 STAE Routine (lEE5103D) ............. . 
2-4. SVC 34 General Message Assembly Routine (lEE0503D) 
2-5. Manipulation of Command Control Blocks (QEDIT) (lEE0303D) 
2-6. Command Translation (lEE5403D) and Routing (lEE0403D) Routines 
2-7. Creating CSCB for Task-Creating Commands (lEE0803D) 
2-8. Master Scheduler Wait (lEEVWAIT) . . . . . . . . . 
2-9. Master Scheduler Wait Recovery and Retry (lEEVWAIT) . 
2-10. Obtaining a New Virtual Memory (lEE0803D) ..... 
2-11. Cancelling Background (Batch) and Foreground (TSO) Jobs 

(lEE3703D) ................. . 
2-12. System-Initiated Cancelling of TSO User (lKJL4TOO) 
2-13. Changing Dump Parameters (lEEMB815) ..... 
2-14. CONTROL Command Processing (lEE6703D) 
2-15. DISPLAY and TRACK Command Preprocessing (lEE3503D) 
2-16. Displaying and Tracking System Status (lEECB800) . . 
2-17. Displaying Console Status (lEEXEDNA) . . . . . . . 
2-18. Displaying CONTROL Command Operands (lEEI011O) 
2-19. Displaying a Matrix of System Status (lEEMPDM) 
2-20. Displaying Operator-Action Requests (lEE2903D) ... 
2-21. Display of Program-Function-Key Definitions (lEE4011O) 
2-22. Displaying Unit Status (lEE2011O) . . . . . . . . . . . 
2-22A. Displaying Parameters of Domains (lEEDISPD) (VS2.03.807) 
2-23. Dumping Virtual Storage (lEECB800) .......... . 
2-24. HALT, SWITCH, and TRACE Command Initialization (lEEI403D) 
2-25. HALT and SWITCH Command Processing (IEE70110) ..... 
2-26. Processing LOG and WRITELOG Commands (lEEI603D) 
2-27. SWAP (lGF2503D) and MODE (lGF2603D) Command Processing 
2-28. STOP/MODIFY Command Processing (lEE0703D) 
2-29. Starting Monitoring Functions (lEE7103D) .. 
2-30. Routing Messages to Consoles (lEE6303D) .. 
2-31. Quiescing a System IEEMPS03 ...... . 
2-32. Replying to Information Requests (lEA VVRPI) 
2-33. RESET Command Processing (lEEMB810) .. 
2-34. Sending/Saving/Listing Messages (lEEVSEND) 
2-35. Setting Local Time (lEE0603D) ...... . 
2-36. Changing IPS Values (lEEMB811) ..... . 
2-37. Stopping Periodic Track (Status) Displays (lEE7503D) 
2-37. Unloading I/O Devices (IEEMB813) ....... . 
2-39. Routing of VARY Commands (lEE3203D) .... . 

2-228 
2-232 
2-232 

2-234 
2-236 
2-238 
2-240 
2-242 
2-244 
2-246 
2-248 
2-250 

2-254 
2-256 
2-260 
2-262 
2-272 
2-280 
2-286 
2-288 
2-290 
2-292 . 
2-294 
2-296 

2-297.0 
2-298 
2-300 
2-302 
2-306 
2-311 
2-312 
2-314 
2-318 
2-320 
2-324 
2-330 
2-332 
2-336 
2-340 
2-342 
2-346 
2-348 

2-40. Changing Console Status, Routing Codes and Command Authorization 
(lEE3603D) ......... 2-350 

2:"41. VARY CN Processing (lEECB900) ........... 2-356 
2-42. VARY CN Processing (lEECB90l) ........... 2-358 
2-43. Varying Devices (Console or I/O Units) Online and Offline 

(lEE4203 D) ................. . 
2-44. Varying a Range of Device Addresses (lEECB904) 
2-45. VARY HARDCPY Command Processing (lEE4703D) .. . 
2-46. Master Console Switching (lEE4303D) ......... . 
2-47. Varying a CPU or Channel Offline or Online (Overview) (lEEVCPU) 
2-48. Varying a CPU Online (IEEVCPU) 
2-49. Varying a CPU Offline (IEEVCPU) 
2-50. Varying a Channel Online (lEEVCPU) 
2-51. Varying a Channel Offline (lEEVCPU) 
2-52. Varying the Path to a Device (lEEVPTH) 
2-53. Varying the Status of Real Storage (lEEMPVST) 
2-54. Teleprocessing (TP) Commands . . . . . . . . 
2-55. Holding and Releasing Teleprocessing Messages (lEE0803D) 
2-56. Processing Commands With the "NET" Operand . . . . . 
2-57. Stopping and Restarting (Via an Interrupt) the System (lEESTPRS) 
2-58. Device Information Subroutine (lEEVDEV) ..... . 
2-59. Deleting a Virtual Memory (lEA VEMDL) ...... . 
2-60. SETDMN Command Processing (lEE8603D) (VS2.03.807) 

Region Control Task (RCT) . . . . . . . . . . . . . . . . . 
Method-of-Operation Diagrams ... . . ... _ ..... . 

3-1. RCT Initialization/Termination Routine (lEAVAROO) 
3-2. RCT Common Processing Routine (lEAVAROl) ... 

6 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

2-360 
2-364 
2-366 
2-368 
2-370 
2-372 
2-374 
2-376 
2-378 
2-380 
2-384 
2-'387 
2-388 
2-391 
2-392 
2-396 
2-400 

2-401.0 
2-403 
2-406 
2-406 
2-408 



3-3. Quiesce Routine (IEAVAR02) ....... 2-410 
3-4. Restore Routine (IEAVAR03) ....... 2-414 
3-5. Attention Exit Scheduler Routine (IEAVAR04) 2-416 
3-6. ST AX Service Routine (lEA V AXOO) 2-418 
3-7. Attention Exit Prolog Routines (lEA V AR07) 2-420 
3-8. Attention Exit Epilog Routine (lEA V AR06) 2-422 
3-9. Attention Exit Purge Routine (IEAV AR07) 2-424 
3-10. RCT EST AE Processing (lEA V AROO) 2-426 

Started Task Control (STC) ....... 2-429 
Method-of-Operation Diagram 2-430 

4-1. Started Task Control Processing 2-430 
LOGON Scheduling . . . . . . . . . . . 2-439 

Method-of-Operation Diagrams 2-442 
5-1. LOGON Initialization (IKJEFLA) 2-442 
5-2. LOGON Scheduling (IKJEFLB) 2-444 
5-3. LOGON Initialization and Scheduling Recovery Routine (lKJEFLS) 2-446 
5-4. LOGON Monitor (IKJEFLC) ........... 2-448 
5-5. LOGOFF Processing (IKJEFLL) .......... 2-452 
5-6. LOGON/LOGOFF Verification (IKJEFLE, IKJEFLES) 2-454 
5-7. LOGON Pre-Prompt Exit Interface (IKJEFLI) 2-460 
5-8. LOGON Monitor Recovery (lKJEFLGB) 2-462 
5-9. Pre-TMP Exit (lKJEFLJ) 2-464 
5-10. Post-TMP Exit (lKJEFLK) 2-466 

Index 1-1 

Contents 7 



Figures 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

2-1 Key to Symbols Used in Method-of-Operation Diagrams 2-2,3-2,4-2,5-2 
2-2 The Communications Task ..... 2-3 
2-3 SVC 72 . . . . . . . . . . . . . . . . . . . . . . . 2-6 
2-4 Communications Task Visual Contents '. . . . . . . . . 2-8 
2-5 Command Processing Method-of-Operation Diagram Summary 2-228 
2-6 Region Control Task Visual Contents ..... 2-405 
2-7 LOGON Scheduling Visual Contents . . . . . . 2-441 
2-8 Data Areas Containing LOGON User Information 2-459 

8 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 



Alphabetic List of Diagrams 

ABDUMP Processing (lEAVTABD) 
ACTUPDT .. 

ACTGETN 
FINISH .. 
GETALLX 
GETERASE 
GETEXTS 
GETONE . 
PUTASPCT 
PUTONE . 
SAVEPUT 
SVRLGGET .... 

Address Space Purge Processing (lEA VTMMT) 
Address Space Purge Resource Managers (lEA VTMMT) 
Address Space Termination Processing (lEA VTMTC) . 
Address Space/Lock Verification Processing (lEAVELCR) 
Algorithm Processor (lRARMCEL) (VS2.03.807) 
Algorithm Processor (lRARMCEL) .......... . 
Allocate Request to Unit (lEFAB434) ......... . 
Allocation Via Algorithm (lEFAB476) ........ . 
Allocation/Volume Mount and Verify (VM&V) Interface (lEFAB492) 
Alternate CPU Recovery (ACR) Overview (lEA VT ACR) . 
ASCBCHAP Processing (lEA VEACO) ...... . 
Asynchronous Timer Recovery Routine (lEAVRTOD) 
ATTACH Processing (lEA VEATO) . . . . 
Attention Exit Epilog Routine (lEA V AR06) . . 
Attention Exit Prolog Routines (lEA V AR05) 
Attention Exit Purge Routine (lEA V AR07) 
Attention Exit Scheduler Routine (lEA VAR04) 
Attention Interrupt (lEFXB60l) Processing Command Request (lEA VVCRA) 
Automatic Checkpoint Restart (lEFXB60l) 
Automatic Step Restart (lEFXB60l) 
Auxiliary Storage Management Overview 

BLDL/Program Fetch Interface (lEAVLKOl) 
Build Quickcell Pool Routine (lEA VBLDP) 
Building a Step Header Record for the Job Journal (lEFXB604) 

Cancelling Background (Batch) and Foreground (TSO) Jobs (lEE3703D) 
Change Key Routine (lEA VCKEY) (VS2.03.805) . . . . . . . . . . . 
Changing Console Status, Routing Codes, and Command Authorization 

(lEE3603D) ........................ . 
Changing Dump Parameters (lEEMB815) . . . . . . . . . . . . 
Changing IPS Values (lEEMB81l) .............. . 
Changing Message Deletion Specifications (DIDOCS) (lEECVET A) 
Channel Initialization (lRBMFIHA) 
Channel Sampling Module (lRBMFECH) 
CHAP Routine (lEA VECHO) .... . 
CHNGDUMP (lEEMB815) ..... . 
Closing a Console . . . . . . . . . . . . . . . 
Collect Data for MF/l (lRARMWR3) (VS2.03.807) .. 
Command Translation (lEE5403D) and Routing (lEE0403D) Routines 
Common Allocation Cleanup (lEFAB490) . . . . 
Common Allocation Control (IEF AB421 ) . . . . . . . . . . . . . 
Common Request Router (lEFJRASP) ............. . 
Common Unallocation Control (lEFAB4AO) .......... . 
Communication Task FRR or EST AE Controller Overview (lEA VMFRR) 
Communication Task FRR or EST AE Controller (lEA VMFRR) 
Communication Task Overview ............ . 
Communication Task Processing (lEAVMQWR) . . . . . . 
Communication Task Recovery STAR Routine (lEA VST AA) 
CONTROL Command Processing (lEE6703D) 
Control Swap-In (lRARMCSI) (VS2.03.807) . 
Control Swap-In (lRARMCSI) . . . . . . . 
Control Swap-Out (lRARMCSO) (VS2.03.807) 
Control Swap-Out (lRARMCSO) ..... . 

4-392 
5-306 
5-316 
5-314 
5-318 
5-326 
5-320 
5-308 
5-332 
5-312 
5-328 
5-322 
4-408 
4-410 
4-426 
4-176 
· 3-30 
· 3-30 
3-300 
3-346 
3-384 
4-436 
· 4-60 
· 4-38 
4-198 
2-422 
2-420 
2-424 
2-416 
2-174 
3-498 
3-500 
5-120 

4-288 
5-108 
3-512 

2-254 
5-115.0 

2-350 
2-260 
2-340 
2-192 
3-100 
3-140 
4-214 
4-462 
· 2-22 
3-73.8 
2-242 
3-376 
3-278 
3-170 
3-430 
2-200 
2-202 
· 2-12 
· 2-14 
2-212 
2-262 
· 3-40 
· 3-40 
· 3-42 
· 3-42 

Section 2: Alphabetic List of Diagrams 9 



Converter: Converting Statement to Internal Text OEFYFA) 
Converter: Entering Defaults into Internal Text OEFYFA) 
Converter: Identifying Verbs on JCL Statements . . . . . . 
Converter: Initialization (IEFYH 1) . . . . . . . . . . . . 
Converter: Processing Commands in the Input Stream OEFYHM) 
Converter: Processing In-Stream and Cataloged Procedures OEFYINA) 
Converter: Processing Symbolic Parameters OEFYFA, IEFYFB) .. 
Converter: Termination (lEFYHF) . . . . . . . . . . . . . . . 
Converter/Interpreter Interface (IEFJCNTL) ......... . 
CPU Activity Init. (IRBMFICP) or Paging Activity Init. ORBMFIPP) 
CPU Load Balancing Swap Analysis (IRARMCL2) 
CPU Management (lRARMCPM) (VS2.03.807) 
CPU Management (IRARMCPM) 
Create Address Space (lEAYGCAS) 
Create Segment (lEAYCSEG) 
Creating CSCB for Task-Creating Commands (IEE0803D) 
Creating STAE Environment for SVC 34 Command Processing (IEE0003D) 

Data Control (lRBMFDT A) . . . . . 
Data Set Name Assignment (IEFDSNA) 
DD Function Control (lEFAB454) 
Ddname Allocation Control (lEFDB490) 
Deferred Action Processor (lRARMCEN) 
Deferred Action Processor (lRARMCEN) (VS2.03.807) 
Delete Address Space Routine (lEA VDLAS) 
Delete Quickcell Pool (lEA VD ELP) 
DELETE Routine (IEAVLKOO) 
Deleting a Virtual Memory (lEA YEMD L) 
Demand Allocation (lEFAB479) 
DEQ Processing (lEA VENQ 1) . . . . . 
Destroy Segment (lEAVDSEG) 
DETACH Processing (lEA VEEDO) . . . 
Device Information Subroutine (lEEVDEV) 
Device Initialization (lRBMFIDV) 
Device Sampling Module (IRBMFEDV) .. 
Dispatcher (lEA VEDSO) ....... . 
DISPLAY and TRACK Command Preprocessing (lEE3503D) 
Display of Program-Function-Key Definitions (lEE40110) 
Displaying a Matrix of System Status (lEEMPDM) ... 
Displaying and Tracking System Status (lEECB800) 
Displaying Console Status (lEEXENDA) ...... . 
Displaying CONTROL Command Operands (IEElOllO) 
Displaying Multiple-Line Messages on Graphics Consoles (DIDOCS) 
Displaying Operator-Action Requests (lEE2903D) ... .... 
Displaying Parameters of Domains (IEEDISPD) (VS2.03.807) .. 
Displaying Single-Line Messages on Graphics Consoles (DIDOCS) 
Displaying Unit Status (lEE2011O) ........... .. . 
Disposition Processing (lEF AB4A2) ............ . 
DOM Communication Task Processing Overview (IEAVMDOM) 
DOM Communication Task Processing (IEA VMDOM) . . . . . 
DOM Device Support Processing (DIDOCS) ........ . 
DOM Macro Instruction Processing Overview (SVC 87) (lEAVXDOM) 
DOM Macro Instruction Processing (SVC 87) (lEA VXDOM) 
Dumping Virtual Storage (lEECB800) 
Dynamic Allocation Control (lEFDB41O) 
Dynamic Concatenation (lEFDB450) .. 
Dynamic Deconcatenation (lEFDB460) . 
Dynamic Information Retrieval (lEFDB470) 
Dynamic Unallocation (lEFDB4AO) 

Emergency Signal Second Level Interrupt Handler (lEAVEES) 
ENQ/DEQ/Reserve Recovery (lEAVENQI) ....... . 
ENQ/Reserve Processing (lEA VENQ 1) . . . . . . . . . . . 
Erasing or Displaying the PFK Display Line (DIDOCS) (lEECVETB) . 
Erasing/Holding/Framing/Updating Status Displays (DIDOCS) (IEECVFTP) 
EVENTS Processing (lEA VEVTO) 
EXIT Prolog Processing (lEA VEEXP) ........ . 
EXIT Processing (IEAVEOR) ........ . 
External Call Second Level Interrupt Handler (lEA YEXS) 
External Interrupt Processing (Automatic Console Switch) (lEA VVCRX) 
External First Level Interrupt Handler (lEA VEEXT) . . . . . . . . . 

10 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

3-234 
3-238 
3-224 
3-222 
3-228 
3-230 
3-232 
3-240 
3-176 

3-96 
3-66 
3-62 
3-62 

5-102 
· 5-18 
2-244 
2-234 

3-106 
3-186 
3-320 
3-426 

3-28 
· 3-28 
· 5-60 
5-114 
4-294 
2-400 
3-352 
4-246 

· 5-20 
4-206 
2-396 
3-104 
3-144 

· 4-54 
2-272 
2-294 
2-290 
2-280 
2-286 
2-288 
2-128 
2-292 

2-297.0 
2-122 
2-296 
3-438 
2-152 
2-154 
2-166 
2-138 
2-140 
2-298 
3-412 
3-416 
3-418 
3-420 
3-414 

4-128 
4-248 
4-242 
2-194 
2-196 
4-234 
4-258 
4-256 
4-126 
2-168 

4-98 



EXTRACT Processing (lEA VTBOO) 

Find Page Routine (lEA VFP) 
Fixed Device Control (lEFAB430) 
Free Address Space (lEA VGCAS) 
FREECELL Routine (lEA VFRCL) 
Freeing a V =R Region (lEA VEQR) 
FREEMAIN Routine (lEA VGMOO) . . . . 
FREEMAIN Release Processing (lEA VRELS) 
FREE PART Routine (lEAVPRTO) . 
FRR Stack Initialization (lEA VTSIN) 
Full Analysis (lRARMCAS) 

General Frame Allocation (lEAVGFA) 
Generic Allocation Control (lEFAB47t) 
GETCELL Routine (lEAVGTCL) 
GETMAIN Routine (lEA VGMOO) 
GETPART Routine (lEAVPRTO) 
Global SRB Dispatcher (lEA VEDSO) 

HALT, SWITCH, and TRACE Command Initialization (lEEI403D) 
HALT and SWITCH Command Processing (lEE7011O) ... 
Holding and Releasing Teleprocessing Messages (lEE0803D) 

IDENTIFY Routine (lEA VIDOO) 
ILRACTOO Overview 

ACTCACE 
ACTCLUP 
ACTCOND 
ACTFREE 
ACTGETB 
ACTINIT . 
ACTINPR . 
ACTREEN 
ACTSLOT 

ILRALSOO .. 
ALSPROC 
RLGSG04 . 
RLGSG05 . 
SAVSG061 
SAVSG062 
SAVSG063 

ILRASNOO Overview 
ASPCTIt 
ASPCTI2 ... . 

ILREOTOO .... . 
ILREOTOO-ILRETXR 
ILREOTOO-ILRRETRY 

ILRFRROO Overview 
ILRFRROO-ILREXO 1 

ILRINTOO Overview 
ACTIVATE ... . 
ARLSEG .... . 
ASSIGN .... . 
Chain ACE ILRCEPOO 
FREECORE 
GETACE .. 
GETCORE 
GETLGN .. 
Input/Output 
RELLG .. 
RELLP .. 
SAVE 
SAVEACT 
SWAPCHK 
TRPAGE . 
WTOMSG 

ILRINTOI Overview 
ILRFRROO-ILRDETOO 
ILRFRROO-ILRFRRO 1 

4-254 

· 5-78 
3-292 
5-104 
5-112 
· 5-12 
· 5~96 
· 5-16 
5-100 
4-440 
· 3-34 

· 5-24 
3-336 
5-110 

· 5-94 
· 5-98 
· 4-72 

2-300 
2-302 
2-388 

4-296 
5-238 
5-254 
5-270 
5-248 
5-268 
5-244 
5-~60 
5-252 
5-242 
5-254 
5-334 
5-336 
5-348 
5-350 
5-338 
5-340 
5-342 
5-212 
5-212 
5-214 
5-470 
5-474 
5-472 
5-476 
5-478 
5-122 
5-124 
5-158 
5-134 
5-130 
5-136 
5-132 
5-128 
5-126 
5-148 
5-138 
5-140 
5-142 
5-152 
5-150 
5-144 
5-156 
5-448 
5-452 
5-454 

Section 2: Alphabetic List of Diagrams 11 



ILRINTOI .... 
ILRIOCOO Overview 

ADDSLOT . 
BADSLOT 
BUFCRROC 
COMPBRST 
NOTREADY 
RECHAIN .. 

ILRMONOO Overview 
BLDTSKQ 
FINDPE . 
GETANIOE 
GETLPME 
GMAFREE 
GMAGET 
ILRARLS 
INTMON . 
MONQIO . 
NOAIE .. 
PLPASAVE 
PROCLG . 
QUEIOE . 
QUIET .. 
QUE READ 
QUEWRITE 
REMOVA . 
REVERSER 
SECCHK . 
STARTOP 
STINDV 
TRPAGE . 

ILMONOI 
ILREFRROO-ILRIOBO 1 
ILRIOCOI . 

ILRPTMOO .. 
ADRTTRE 
BADSORT 
BILDMSKS 
GRDMASK 
CLEANUP 
CYSCANCYL 
FINDSLOT 
FREEIOE . 
GETBUFC 
GETLOLEC 
GET READ 
GETRDCYL 
GETWCYL . 
GETWRTQ . 
ILRSRTOO ... 
ILRSRTOO Overview 
INITBUFC 
INITLZ .. 
10 .... 
IOCHAIN . 
PROCHIT 
PROCPARE 
PROCREQS 
RCHAINUP 
REMVNODE 
REPBUFC 
REPWRTQ . 
SFTWRITE . 
SORTREAD 
WRTUPDTE 

ILRRLGOO Overview 
RLGSGOI ... . 
RLGSG02 ... . 
RLGSG03 ... . 

ILRRLPOO Overview 
CTRUPDTE 

12 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

5-448 
5-422 
5-438 
5-434 
5-428 
5-440 
5-442 
5-432 
5-160 
5-184 
5-198 
5-204 
5-190 
5-166 
5-164 
5-188 
5-172 
5-196 
5-176 
5-186 
5-168 
5-208 
5-178 
5-202 
5-206 
5-192 
5-174 
5-200 
5-180 
5-182 
5-210 
5-456 
5-460 
5-462 
5-362 
5-380 
5-370 
5-404 
5-388 
5-420 
5-382 
5-408 
5-398 
5-402 
5-390 
5-412 
5-384 
5-384 
5-364 
5-374 
5-362 
5-396 
5-376 
5-418 
5-400 
5-394 
5-368 
5-390 
5-416 
5-414 
5-372 
5-366 
5-416 
5-378 
5-406 
5-294 
5-302 
5-304 
5-306 
5-220 
5-216 



RLPSGOI ... . 
SEGRLSE ' .. . 

ILRSA VOO Overview 
ADDLSID 
SAVSG04 
SAVSG06 
SAVSG08 
SAVSGI0 
SAVSGll 

ILRTMCOO . 
TMCMSG 
TMCSG06 
TMCSG10 

ILRTMOO 
ILRTMROI Overview 

ILRTMROI 
ILRTMROI Error Processing 

ILRTRPOO Overview 
TRPSG02 ... . 
TRPSG03 ..... . 
TRPSG04 ..... . 

ILRACT (VS2.03.807) . . 
REBUILD (VS2.03.807) 

ILRCMP (VS2.03.807) . . 
ABNTERM (VS2.03.807) 
BADPACK (VS2.03.807) 
BADSLOT (VS2.03.807) 
ILRCMP AE (VS2.03.807) 
ILRCMPDI (VS2.03.807) 
ILRCMPNE (VS2.03.807) 
POSTCMP (VS2.03.807) 
PROCCCWS (VS2.03.807) 
RECERR (VS2.03.807) . 
RECHAIN (VS2.03.807) . 

ILRCMPOI (VS2.03.807) ... 
ILRFMTOO (VS2.03.807) . . . . . . . . . . . . . . . . 
ILRFRROI (Control Block and Queue Verifiers) (VS2.03.807) 

COMQRTN (VS2.03.807) 
ILRPSRMT (VS2.03.807) .. . . 
ILRV ACE (VS2.03.807) . . . . . 
ILRV ACEQ (VS2.03.807) . . . . 
ILRV AIA/ILRVPCB (VS2.03.807) 
ILRVAIAC (V'S2.03.807) 
ILRV AIAQ (VS2.03.807) 
ILRV ASGQ (VS2.03.807) 
ILRVIOE (VS2.03.807) . 
ILRVIOEQ (VS2.03.807) 
ILRVIO RB (VS2.03.807) 
ILRVLGE (VS2.03.807) . 
ILRVLPRQ (VS2.03.807) 
ILRVPCBQ (VS2.03.807) 
ILRVPCCW (VS2.03.807) 
ILRVPCWQ (VS2.03.807) 
ILRVSCCW (VS2.03.807) 
ILRVSCWQ (VS2.03.807) 
ILRVSPAQ (VS2.03.807) 
ILRVSWTQ (VS2.03.807) 

ILRFRSL T (VS2.03.807) . . 
ILRGOS (VS2.03.807) . . . 

ILRFRELG (VS2.03.807) 
ILRGOSOI (VS2.03.807) .. 
ILRIOFRR (VS2.03.807) .. 

ILRCQIOE (VS2.03.807) 
RECPAGIO (VS2.03.807) 
RECPCOMP (VS2.03.807) 
RECPOS (VS2.03.807) 
RECSCOMP (VS2.03.807) 
RECJ'RP AG (VS2.03.807) 
RECVIOCM (VS2.03.807) 

ILRJTERM (VS2.03.807) . 
ILRJTMO 1 (VS2.03.807) 

5-222 
5-224 
5-272 
5-280 
5-276 
5-282 
5-286 
5-288 
5-278 
5-352 
5-358 
5-354 
5-356 
5-480 
5-358 
5-466 
5-468 
5-228 
5-230 
5-232 
5-236 
5-225 
5-227 
5-184 
5-193 
5-194 
5-191 
5-186 
5-185 
5-187 
5-190 
5-188 
5-192 
5-189 
5-278 
5-341 
5-311 
5-333 
5-332 
5-322 
5-328 
5-320 
5-319 
5-314 
5-311 
5-331 
5-318 
5-329 
5-323 
5-312 
5-327 
5-326 
5-325 
5-324 
5-315 
5-316 
5-313 
5-149 
5-210 
5-213 
5-288 
5-257 
5-259 
5-268 
5-265 
5-267 
5-261 
5-269 
5-263 
5-219 
5-221 

Section 2: Alphabetic List of Diagrams 13 



ILRMSGOO (VS2.03.807) . . . 
CLEARWTQ (VS2.03.807) 
ILRMSGSP (YS2.03.807) 
TERMSYS (VS2.03.807) 
WRITEMSG (YS2.03.807) 

ILROPSOO (VS2.03.807) .. 
DYNALLO (VS2.03.807) 
GETCORE (VS2.03.807) 
LOCPAGE (YS2.03.807) 
LOCSW AP (VS2.03.807) 
VMTVER (YS2.03.807) . 

ILRPAGCM (VS2.03.807) . 
PAGECOMP (VS2.03.807) 
SW APCOMP (VS2.03.807) 

ILRPAGIO (VS2.03.807) . 
ILRQIOE (VS2.03.807) 

ILRPEX (YS2.03.807) . . 
ILRPG EXP (YS2.03.807) 

EST AER (YS2.03.807) 
ILRPOS (YS2.03.807) .. 

ILRESTRT (YS2.03.807) 
ILRTRANS (VS2.03.807) 
ILRTRPAG (YS2.03.807) 

ILRPREAD (YS2.03.807) 
EST AEXIT (VS2.03.807) 
PREADABN (YS2.03.807) 
PREADTRM (VS2.03.807) 

ILRPTM (YS2.03.807) . . . 
ADRTTREE (YS2.03.807) 
DSFULL (VS2.03.807) 
GETWRTQ (YS2.03.807) 
SORTREAD (VS2.03.807) 

ILRRLG (YS2.03.807) . . . 
RLGLPME (VS2.03.807) 

ILRSA V (YS2.03.807) . . . 
SA VEDASP (YS2.03.807) 
SA VLIMBO (VS2.03.807) 
SA VLPME (YS2.03.807) 
UNSA VLPM (YS2.03.807) 

ILRSRBC (YS2.03.807) 
ILRSRBOI (VS2.03.807) .. 

FREECELL (VS2.03.807) 
ILRSR T (YS2.03.807) ... 

BILDMSKS (YS2.03.807) 
BRDMASK (YS2.03.807) 
CLEANUP (VS2.03.807) 
CSCANCYL (YS2.03.807) 
FINDSLOT (YS2.03.807) 
GETLOLEC (YS2.03.807) 
GETRDCYL (VS2.03.807) 
GETREAD (YS2.03.807) 
GETWCYL (YS2.03.807) 
INITLZ (YS2.03.807) . 
10 (YS2.03.807) 
IOCHAIN (YS2.03.807) . 
PROCHIT (YS2.03.807) . 
PROCREQS (YS2.03.807) 
RCHAINUP (YS2.03.807) 
REMVNODE (YS2.03.807) 
SETWRITE (YS2.03.807) . 
WRTUPDTE (YS2.03.807) 

ILRSRTOI (YS2.03.807) .. 
ILRSW AP (YS2.03.807) .. 

ILRSLSQA (VS2.03.807) 
ILRSWPD R (YS2.03.807) 
ILRSWPO 1 (YS2.03.807) . . 

ASETRCVY (YS2.03.807) 
ILRCSLSQ (YS2 .. 03.807) 
ILRCSW AP (YS2.03.807) 
RBDIORB (YS2.03.807) 
SCCWRCVY (YS2.03.807) 

14 OS/YS2 System Logic Library Yolume 2 (YS2.03.807) 

5-195 
5-200 
5-197 
5-198 
5-199 
5-351 
5-358 
5-361 
5-353 
5-355 
5-357 
5-135 
5-138 
5-144 
5-122 
5-126 
5-340 
5-346 
5-350 
5-205 
5-207 
5-208 
5-209 
5-364 
5-368 
5-366 
5-367 
5-156 
5-164 
5-162 
5-159 
5-161 
5-235 
5-238 
5-228 
5-230 
5-232 
5-231 
5-234 
5-214 
5-296 
5-299 
5-165 
5-175 
5-174 
5-183 
5-168 
5-176 
5-178 
5-172 
5-179 
5-173 
5-166 
5-170 
5-171 
5-167 
5-169 
5-182 
5-181 
5-180 
5-177 
5-278 
5-130 
5-131 
5-134 
5-270 
5-277 
5-273 
5-272 
5-275 
5-276 



ILRTERMR (VS2.03.807) 
TERMRFRR (VS2.03.807) 

ILRTMIO 1 (VS2.03.807) . . 
CKRETR Y (VS2.03.807) 
SETRETR Y (VS2.03.807) 
TMIPROC (VS2.03.807) 

ILRTMRLG (VS2.03.807) 
TMRLPME (VS2.03.807) 

ILRVIOCM (VS2.03.807) 
ILRVSAMI (VS2.03.807) . . 

GET ASPCT (VS2.03.807) 
GETONE (VS2.03.807) . 
PUT ASPCT (VS2.03.807) 
PUTONE (VS2.03.807) . 
RETERASE (VS2.03.807) 

Individual User Evaluation (lRARMWM3) (VS2.03.807) 
Initialization Mainline (MFIMAINL) . . . . . 
Initialize Address Space Routine (lEA VIT AS) . 
Initialize for MF/l (lRARMWR1) (VS2.03.807) 
Initiator: Job Initiation 
Initiator: Recovery Processing ..... 
Initiator: Step Initiation . . . . . . . . 
Initiator: Step and Job Deletion 
Initiator/Allocation Interface (lEFBB40l) 
Initiator/Unallocation Interface (lEFBB41O) 
Initiator/ Allocation Interface (lEFBB40l) . 
Input Merge Control (lRBMFINP) 
Interpreter: Analyzing Parameter Values 
Interpreter: Creating and Chaining Tables (lEFVGT) 
Interpreter: Initialization (IEFNB903) . . . . . . 
Interpreter: Termination (IEFVHN) ..... . 
Interpreter: Writing Tables into SW A (IEFVHH) 
Interval MG Routine for Channels (lRBMFDHP) 
Interval MG Routine for CPU (lRBMFDCP) 
Interval MG Routine for Devices (lRBMFDDP) 
Interval MG Routine for Paging (lRBMFDPP) 
Interval Routine for Workload (lRBMFDWP) . 
I/O Complete Processing ......... . 
I/O Interrupt Handler (lEAVEIO) ..... . 
I/O Load Balancing Swap Analysis (lRARMIL2) 
I/O Load Balancing User I/O Monitoring (IRARMILO) (VS2.03.807) 
I/O Load Balancing User I/O Monitoring (IRARMILO) 
I/O Management (lRARMIOM) (VS2.03.807) 
I/O Management (lRARMIOM) 
I/O Request Overview ....... . 

JFCB Housekeeping Control (lEF AB451) 
JLOCA TE (lEF AB469) ....... . 
Job Journal to SW A Merging (lEFXB60l) 
Job Unallocation (IEFBB416) ..... 
Journal for Restarted Jobs (lEFXB500) 
Journal Merge.Error Processing (lEFXB601) 
Journal Merge Reading (lEFXB601) 

LINK Routine (lEA VLKOO) 
List Option Subroutine (MFLISTOP) 
LOAD Routine (lEA VLKOO) . . . . 
Local SRB Dispatcher (lEA VEDSO) 
Local Supervisor Dispatcher (lEA VEDSO) 
Log Writer Processing (lEEMB803) 
LOGO FF Processing (lKJEFLL) . . . . 
LOGON Initialization (IKJEFLA) 
LOGON Monitor (lKJEFLC) ..... 
LOGON Monitor Recovery (IKJEFLGB) 
LOGON Pre-Prompt Exit Interface (lKJEFLI) 
LOGON Scheduling (IKJEFLB) ..... . 
LOGON/LOGOFF Verification (IKJEFLE, IKJEFLES) 
LSQA/SQA Allocation (lEA VSQA) ...... . 
LSQA/Swap I/O Initiator (IEAVPIOI) (VS2.03.807) 

5-336 
5-339 
5-300 
5-304 
5-302 
5-307 
5-239 
5-241 
5-217 
5-242 
5-243 
5-249 
5-245 
5-248 
5-246 

3-73.0 
· 3-90 
· 5-58 
3-73.6 
3-194 
3-210 
3-198 
3-206 
3-394 
3-400 
3-394 

· 3-84 
3-246 
3-250 
3-244 
3-256 
3-254 
3-1jO 
3-118 
3-134 
3-122 
3-126 
2-130 
· 4-94 
· 3-56 
· 3-58 
· 3-58 
· 3-54 
· 3-54 
5-362 

3-312 
3-332 
3-491 
3-408 
3-525 
3-508 
3-518 

4-278 
· 3-88 
4-292 
· 4-74 
· 4-76 
3-474 
2-452 
2-442 
2-448 
2-462 
2-460 
2-444 
2-454 

5-6 
· 5-52 

Section 2: Alphabetic List of Diagrams 15 



Manipulation of Command Control Blocks (QEDIT) 
Mark Slot Available . . . . . . . . . . . . . . . 
Master Console Switching (lEE4303D) ..... . 
Master Scheduler Wait (lEEVW AIT) . . . . . .. . 
Master Scheduler Wait Recovery and Retry (lEEVW AIT) . 
Measurement Facility Control (MFC) Mainline (IRBMFMFC) 
Memory Switch (lEA VEM50) 
Merge Cleanup (IEFXB60l) .. . . . 
MF/l Message Processor (lRBMFMPR) 
MFDATA SVC Mainline (IGXOOO14) 
MFROUTER Processor (IRBMFEVT) 
MFSTART Mainline (IGXOOO13) ... 
MODESET Processing (IEA VMODE) ............ . 
Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) 

Nonspecific Volume Allocation Control (IEFAB436) 
Obtain/Free SQA Storage (IRARMI04) (VS2.03.807) 
Obtaining a New Virtual Memory (IEE0803D) ... 
Offline/Allocated Device Allocation (IEFAB486) 
Opening a Console .............. . 
Operator-Requested Message Deletion (DIDOCS) (IEECVET8) 
Overlay Supervisor (IEWSUOVR, IEWSWOVR) 

Page Invalidation Routine (IEA VINT) 
Page I/O Completion Processing (IEAVIOCP) 
Page I/O Initiator (IEAVPIOI) .. . 
Page I/O Post (IEA VPIOP) ..... . 
Page Release Processing (lEA VRELS) 
Page Services Interface (lEAVPSI) 
Page Termination Services (lEA VTERM) 
Partial Analysis (IRARMCAP) ..... 
PCB Manager (IEA VPCB) . . . . . . . 
Periodic Entry Point Scheduling (IRARMCET) 
Periodic Entry Point Scheduling (IRARMCET) (VS2.03.807) 
PFK Definition or Redefinition (DIDOCS) 
PFTE Enqueue/Dequeue Routine (lEA VPFTE) 
PGFIX/PGLOAD Processor (IEA VFXLD) 
PGFIX/PGLOAD Root Exit (lEAVFXLD) 
PGFREE Routine (IEA VFREE) 
PGOUT Routine (lEAVOUT) 
POST Processing (IEA VSY50) . . . . . . 
Post-TMP Exit (IKJEFLK) . . . . . . . . 
Pre-TMP Exit (IKJEFLJ) ....... . 
Preparing Abended Job Step for Restart (lEFRPREP) 
Process Hardware Errors (IEAVTRT2) ...... . 
Processing Commands From a 1052, 2540, or 2740 Console 
Processing Commands with the "NET" Operand 
Processing Data Set Descriptor Records (IEFXB609) ... 
Processing Light-Pen and PFK Commands From a Graphics Console (DIDOCS) 

(lEECVETF) .. . . . . . . . . . . . . . . . . . . . 
Processing LOG and WRITELOG Commands (IEEI603D) ......... . 
Processing Log Task Abnormal Termination (lEEMB806) ......... . 
Processing SLIH Requests (lEA VTRTM) ................. . 
Processing Typed Commands From a Graphics Console (DIDOCS) (lEECVETl) 
Program Check Interruption Handler (PC IH) (lEA VEPC) 
Program Fetch (lEWFETCH) ........ . 
Program Check Interruption Extension (lEA VPIX) 
Pseudo Access Method (lEFJACTL) 
PURGEDQ Processing (lEA VEPDO) . . . . . . 

Unconditional Message to Inactive Console QREGO (lEA VMQRO) 
Queue Verification (lEAVEQVO) 
Quiesce Routine (lEA V AR02) 
Quiescing a System (IEEMPS03) . . . . . . . 

RCT Common Processing Routine (IEAVAROl) 
RCT ESTAE Processing (IEAVAROO) 
RCT Initialization/Termination Routine (lEA V AROO) 
Real Frame Replacement (IEA VRFR) 
Real Storage Reconfiguration (IEAVRCF) ..... . 

16 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

2-240 
2-316 
2-368 
2-246 
2-248 
· 3-80 
· 4-84 
3-502 
3-112 
3-114 
3-138 

· 3-82 
4-268 
· 2-72 

3-262 
3-9.6 
2-250 
3-364 
· 2-18 
2-188 
4-306 

· 5-76 
· 5-30 
· 5-52 
· 5-28 
· 5-14 

5-32 
· 5-62 
· 3-36 
· 5-74 
· 3-32 

'. 3-32 
2-190 
· 5-72 

5-34 
· 5-36 
· 5-38 
· 5-40 
4-222 
3-466 
3-464 
3-516 
4-348 
2-182 
3-391 
3-486 

2-186 
3-306 
3-476 
4-352 
2-184 
4-104 
4-308 
· 5-22 
3-180 
4-144 

2-114 
4-170 
2-410 
2-320 

.2-408 
2-426 
2-406 

5-64 
· 5-68 



Recording Processing (lEA VTRER) 4-466 
Recover Task Processing (lEA VT AS 1) 4-388 
Recovery Allocation (lEFAB485) . . 3-356 
Recursion Processor 1 (lEAVTRT2) 4-384 
Recursion Processor 2 (lEAVTRTE) 4-386 
Remove In-Use Attribute (lEFDB480) ... 3-422 
Replying to Information Requests (lEA VVRPI) 2-324 
Report Generator Control (lRBMFRGM) . . . 3-146 
Report Generators for CPU, Paging, Workload, Channels, and Devices (lRBMFRCR, 

IRBMFRPR, IRBMFRWR, IRBMFRHR, and IRBMFRDR) 3-150 
Requeue SRM TQE (lRARMI05) (VS2.03.807) 3-9.8 
Reschedule Locally Locked Task or SRB (lEAVTRTM) 4-372 
Reschedule RTMI (lEAVTRTM) . . . . . . . . . . . . . 4-366 
RESET Command Processing (lEEMB81O) ........ 2-330 
Resource Monitor Periodic Monitoring (lRARMRM 1) (VS2.03.807) . . 3-66 
Resource Monitor MPL Adjustment Processing (lRARMRM2) (VS2.03.807) 3-67.0 
Restart Interface Processing (lEFXB602) . 3-510 
Restart Interrupt Handler (lEA VERES) . . 4-116 
Restore Routine (lEA V AR03) ...... 2-414 
Resume Routine (lEAVETCL) (VS2.03.807) 4-191.6 
Roll-Mode Message Deletion (DIDOCS) 2-198 
Routing Messages to Consoles (lEE6303D) 2-318 
Routing of VARY Commands (lEE3203D) 2-348 
Routing to FRRs (lEAVTRTS) . . . . . . 4-354 
Routing to Searching Routines (lEAVLKOl) . 4-284 
RSM Functional Recovery Routine (lEA VRCV) . 5-82 
RSM Preferred Area Steal (lEA VPREF) . 5-84 
RTMI Clean-up Processing (lEAVTRTM) 4-374 
RTMI Exit Processing (lEAVTRTl) 4-376 
RTMI Overview (lEAVTRTM) 4-342 
RTMI Initialization (lEAVRTRl) 4-344 
RTMI Recursion Processing (lEAVTRTR) 4-362 
RTM2 Exit Processing (lEAVTRTE) 4-420 
RTM2 Initialization (lEA VTRT2) ... 4-382 
RTM2 Overview (lEAVTRT2) . . . . . 4-378 

Schedule Dump Processing (lEA VTSDX) 
SCHEDULE Processing (lEA VESCO) . . 
Routing to FRRs (lEAVTRTS) ..... 
Searching the LPA Directory (lEA VLKOO) 
Second CPU Test Channel Sampling Module (lRBMFTCH) 
Select User for Swap-In (lRARMCPI) (VS2.03.807) . 
Select User for Swap-Out (lRARMCPO) (VS2.03.807) 
Sending/Saving/Listing Messages (lEEVSEND) . 
Set Clock Comparator Routine (lEAVRTIO) . . . . 
Set Specific Clock (SSC) Routine (lEAVRTOD) .. 
SETDIE Routine (lEAVRT02) (VS2.03.807) .... 
SETDMN Command Processing (lEE80603D) (VS2.03.807» 
SETFRR (SETFRR) ............ . 
SETLOCK Processing (lEA VELK) . . . . . . . . . . . 
Set Specific Clock (SSC) Routine (lEAVRTOD) .... . 
Setting Local Time (lEE0603D) ............. . 
Signal Service Routines (lPC) (lEAVERI, IEAVERP, IEAVEDR) 
SMF Cross-Memory POST Error Exit (lEEMB827) 
SNAP Dump Processing (lEAVADOI) 
Specific Volume Allocation Control .. . 
SPIE Processing (lEA VTBOO) .... . 
SRM Control (lRARMCTL) ..... . 
SRM Control (lRARMCTL) (VS2.03.807) 
SRM Interface (lRARMINT) ..... . 
SRM Interface (lRARMINT) (VS2.03.807) . . . 
SRM Service Routine (lRARMSRV) (VS2.03.807) 
ST AE/EST AE Processing (lEA VSTAO) . . 
ST AE Exit Processing for SMF (lEEMB825) 
Stage 1 Exit Effector (lEA VEFOO) 
Stage 2 Exit Effector (lEA VEEE2) . . . . 
Stage 3 Exit Effector (lEA VEEEO) . . . . . . . . . . . . . . 
Started Task Control (STC) (includes START/LOGON/MOUNT) 
Starting and Stopping Monitoring Functions (lEE7103D) 
STATUS Processing (lEA VSETS) 
ST AX Service Routine (lEA V AXOO) ........ . 

4-458 
4-138 
4-354 
4-286 
3-142 

3-43.0 
3-43.2 
2-332 
· 4-20 
· 4-26 
4-11.0 

2-401.0 
4-442 
4-148 
· 4-26 
2-336 
4-120 
3-460 
4-446 
3-296 
4-250 
· 3-28 
· 3-24 
· 3-6 
· 3-6 
3-9.2 

4-430 
3-458 
4-130 
4-132 
4-134 
2-430 
2-314 
4-260 
2-418 

Section 2: Alphabetic List of Diagrams 17 



Step Continue Processing (IEFXB60l) ............ . 
STIMER Service Routine (IEAVRTOO) ............. . 
STOP/MODIFY Command Processing (IEE0703D) ...... . 
Stopping and Restarting (Via an Interrupt) the System (IEESTPRS) 
Stopping Periodic Track (Status) Displays (lEE7503D) 
Storage Management (IRARMSTM) (VS2.03.807) 
Storage Management (IRARMSTM) ..... . 
Subsystem Determination (IEFJSDTN) . . . . . 
Subsystem Initiation (IEFJJOBS) . . . . . . . . 
Subsystem Initiation Message Writer (IEFJWTOM) 
Subsystem Interface (IEFJSREQ) ..... 
Subsystem Job Termination (IEFJJTRM) 
Super FRR (lEA VESPR) ....... . 
Suspend Routine (lEA VETCL) (VS2.03.807) 
SVC Dump Processing (lEA V ADOO) 
SVC Interrupt Handler (IEAVESVC) ... 
SVC 34 Common Processing/Initialization - Overview (IGC0003D) 
SVC 34 General Message Assembly Routine (lEE0503D) 
SVC 34 STAE Routine (lEE5103D) 
SVC 51 Overview (lEA V ADOO) 
SVC 99 Control (lEFDB400) . . . . . . 
SWA Create Interface (lEFIB600) 
SW A Manager: Locate Mode (lEFQB555) 
SWA Manager: Move Mode (IEFQB550) 
Swap Analysis (lRARMCAP) (VS2.03.807) . 
SWAP (lGF2503D) and MODE (lGF2603D) Command Processing 
Swap-In Processor Routine (lEAVSWIN) ........ . 
Swap-In Root Exit (lEA VSWIN) . . . . . . . . . . . . . 
Swap-Out Completion Processing (lEA VSWPC) (VS2.03.807) 
Swap-Out Processor (lEA VSOUT) ......... . 
Swap-Post Processor (lEA VSWPP) (VS2.03.807) . . . . 
Swap-Out Root Exit (lEA VSOUT) ......... . 
Swappable User Evaluation (lRARMWM2) (VS2.03.807) 
Switching Log Data Sets (lEEMB803) 
Switching SMF Data Sets (lEEMB829) ..... 
Synchronize Failing Tasks (lEAVTRTC) 
SYNCH Routine (lEA VLKOO) . . . . . . . . . 
Synchronous Timer Recovery Routine (lEA VR TI 1) 
Syntax Analyzer (lRBMFANL) ........ . 
SYSEVENT Processor (lRARMEVT) (VS2.03.807) 
SYSEVENT Processor . . . . . . . . . . . . . 
System-Directed Task Termination (lEAVTRTM) 
System-Initiated· Cancelling of TSO User 
System Log Initialization (IEEMB803) 
System Restart Processing (lEFXB60 1) 

Task Dispatcher (lEA VEDSO) 
Task Purge Processing (lEA VTSKT) 
Task Purge Resource Managers (lEAVTSKT) 
Task Termination (lEA VGCAS) 
Teleprocessing (TP) Commands 
Terminating the System Log (lEEMB803) 
Termination Processor (lRBMFTMA) 
TEST AUTH Processing (IEA VTEST) 
TIME Service Routine (lEA VRT01) 
Timer Action Analysis (lRARMCA T) 
Timer Functional Recovery Routine (lEA VR TIl) 
Timer Second Level Interrupt Handler Routine (IEAVRTIO) 
TOD Clock Operator Communication Routine (IEAVRTOD) 
TOD Clock Status Test Routine (IEAVRTOD) 
TOD Clock Synchronization Routine (JEAVRTOD) 
TQE Dequeue Routine (JEAVRTIO) 
TQE Enqueue Routine (IEAVRTlO) 
TQE Processing Routine (IEAVRTIO) . . . . . . . 
TQE Purge Routine (IEAVRTIO) ........ . 
Trace Processing (lEA VTRCE) ........ . 
Transfer Control-Transfer Logical (TCTL) (lEA VETCL) (VS2.03.807) 
Translate Real to Virtual (lEAVTRV) 
TTIMER Service Routine (lEA VRTOO) 

Unit Unallocation (IEFAB4A4) 

18 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

3-494 
· 4-8 
2-312 
2-392 
2-342 
.3-46 
· 3-46 
3-172 
3-174 
3-184 
3-159 
3-188 
4-172 

4-191.0 
4-452 
· 4-86 
2-232 
2-238 
2-236 
4-444 
3-410 
3-214 
3-264 
3-262 

· 3-36 
2-311 

5-42 
· 5-44 
· 5-50 
· 5-46 
5-45.0 
· 5-50 
· 3-70 
3-472 
3-454 
4-396 
4-290 
· 4-36 
· 3-86 
· 3-12 
· 2-34 
4-370 
2-154 
3-466 
3-496 

· 4-78 
4-398 
4-402 
5-\06 
2-387 
3-470 
3-110 
4-270 
· 4-6 
· 3-26 
· 4-24 
· 4-18 
· 4-30 
· 4-34 
· 4-32 
· 4-14 
· 4-12 
· 4-22 
· 4-16 
4-168 

4-191.2 
· 5-80 
.4-10 

3-442 



Unloading I/O Devices (lEEMB813) ...... . 
Updating the Virtual Addresses in SWA (lEFXB60t) 
User Ready Processing (IRARMHIT) (VS2.03.807) . 

Volume Mount and Verify (VM & V) Control (lEFAB493) 
V=R Region Allocation (lEAVEQR) .. 
Validity Check Processing (lEA VEV AL) ..... . 
VARY CN Processing (IEECB900) ........ . 
VARY CN Processing (lEECB90t) . . . . . . . . . 
VARY HARDCPY Command Processing (IEE4703D) 
Varying a Channel Offline (IEEVCPU) 
Varying a Channel Online (IEEVCPU) ...... . 
Varying a CPU Offline (IEEVCPU) ...... . 
Varying a CPU Online (lEEVCPU) ........ . 
Varying a CPU or Channel Offline or Online (Overview) (IEEVCPU) 
Varying aRange of Device Addresses (IEECB904) .~ ....... . 
Varying Devices (Console or I/O Units) Online and Offline (IEE4203D) 
Varying the Path to a Device (lEEVPTH) . . . 
Varying the Status of Real Storage (IEEMPVST) 
VIO Services Routine (lEA V AMSI) 

WAIT Processing (lEA VSY50) . . 
Wait Task Dispatcher (lEAVED SO) 
Workload Initialization (IRBMFIWK) 
Workload Management (lRARMWLM) 
Write-to-Programmer Processing Overview (lGCQ203E) 
Write-to-Programmer Processing (lGC0203E) 
Writing Blocks to the Job Journal (lEFXB500) . . . . 
Writing Data on the System Log (IEEMB804) . . ... . . 
Writing Multiple-Line Messages to a 1052, 1443, 2740, or 3284/3286 Console 
Writing Single-Line Messages to a 1052, 1443, 2740, or 3284/3286 Console . 
Writing SMF Records (lEEMB829, IEEMB830) ............ . 
WTO and WTOR Communication Task Processing Overview (lEA VMQWR, 

IEAVMWSV) ........................... . 
WTO and WTOR Communication Task Processing (lEAVMQWR, IEAVMWSV) 
WTO and WTOR Macro Instruction Processing Overview (SVC 35) .. 
WTO and WTOR Macro Instruction Processing (SVC 35) (lEAVVWTO) 

XCTL Routine (lEA VLKOO) . . . . . . . . . . . . . . . . . . . . 

2-346 
3-504 

3-73.2 

3-388 
· 5-8 
4-162 
2-356 
2-358 
2-366 
2-378 
2-376 
2-374 
2-372 
2-370 
2-364 
2-360 
2-380 
2-384 
· 5-54 

4-220 
· 4-82 
· 3-98 
· 3-70 
· 2-48 
· 2-50 
3-520 
3-480 
2-124 
2-120 
3-450 

2-96 
· 2-98 
· 2-26 
· 2-28 

4-300 

Section 2: Alphabetic List of Diagrams 19 



20 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 



This section uses diagrams and text to describe the 
functions performed by the scheduler, supervisor, 
MF /1. SRM. and ASM functions of the OS/VS2 

operating system. The diagrams emphasize 
functions performed rather than the program logic 
and organization. Logic and organization is 

" 0 . t' " described in Section 3: Program rgamza Ion. 
The method-of-operation diagrams are arranged 

by subcomponent as follows: 
• Communications Task. 
• Co~mand Processing (includes 

Reconfiguration Commands). 
• Region Control Task (RCT). 

• Started Task Control (STC) (includes 
ST ART /LOGON/MOUNT). 

• LOGON Scheduling 
• System Resources Manager 
• System Activity Measurement Facility 

(MF/l) 
• Job Scheduling: 

- Subsystem Interface. 
- Master Subsystem. 
- Initiator/Terminator. 
- SWA Create Interface. 
- Converter/Interpreter. 
- SW A Manager. 
- Allocation/U nallocation. 
- System Management Facilities (SMF). 

- System Log. 
- Checkpoint/Restart. 

• Timer Supervision. 
• Supervisor Control. 
• Task Management. 
• Program Management. 

Section 2: Method of Operation 41 
• Recovery/Termination Management (R/TM). 

• Real Storage Management (RSM). 
• Virtual Storage Management (VSM). 

• Auxiliary Storage Management (ASM). 

The diagrams for each subcomponent are 
preceded by an introduction that summarizes the 
subcomponent's function. Following each 
introduction is a visual table of contents that 
displays the organization and hierarchy of the 
diagrams for that subcomponent. 

The diagrams cross-reference each other using 
diagram numbers and module names. As an aid in 
locating the diagrams that are cross-referenced, an 
alphabetic list of all diagram names and their 
corresponding page numbers follows this 
introduction. 

Method-of -operation diagrams are arranged in 
an input-processing-output format: the left side of 
the diagram contains data that serves as input to 
the processing steps in the center of the diagram, 
and the right side contains the data that is output 
from the processing steps. Each processing step is 
numbered; the number corresponds to an amplified 
explanation of the step in the "Extended 
Description" area. The object module name and 
labels in the extended description point to the code 
that performs the function. 

Note: The relative size and the order of fields 
within input and output data areas do not always 
represent the actual size and format of the data 
area. 

Section 2: Method of Operation 2·1 



.. Primary processing - indicates major functional flow . 

••• lIIl. Secondary processing - indicates functional flow within a diagram. 

~ __ > Data movement, modification, or use. 

!.- - ..... Data reference - indicates the testing or read ing of a data area to 
determine the course of subsequent processing. 

----;.~ Pointer - indicates that a data area contains the address of another 
data area. 

I .. Indirect pointer - indicates intermediate pointers have been omitted. 

-D Connector - indicates that a diagram is continued on the next page. 

Figure 2-1. Key to Symbols Used in Method-of-Operation Diagrams 

2-2 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



Major Function 
The major function of the communication task is to 
transfer messages from user programs and system 
routines to the operators at the system consoles. 
This function includes the transfer of messages to 
TSO terminals that are operating in MONITOR 
mode. See Figure 2-2. 

With few exceptions, three macro instructions 
are used to call the communication task: WTO, 
WTOR, and DOM. 

Write To Operator (WTO) has two basic forms: 
1. Each time a user or system program issues a 

WTO macro instruction, one message/line is 
transferred to one or more operator consoles. 

2. A multiple line (MLWTO) permits user and 
system programs to transfer up to ten 
message lines to one or more operator 
consoles with one WTO macro instruction. 
System programs can attach an unlimited 
number of additional lines to the same 
message in 1-10 message sets per WTO macro 
instruction. 

Write To Operator with Reply (WTOR) permits 
any user program or system routine to 

OS/VS2 

r
l 

- - -, WTO orWTOR ,---
Any , ____ .~I 

I System ; ICommunication l Routine I I Task 

I I I 
L. ___ ..J I 

A 

... 
o 

f 

A 
User User 

Program Program 

Figure 2-2. The Communication Task 

Communications Task 

transfer one message to one or more consoles 
and provides a mechanism by which a console 
operator may respond to that message. The • 
reply is then returned to the program or ~ 
routine that issued the WTOR. (The MLWTO 
form is not available with the WTOR.) 

Delete Operator Message DOM has two basic 
forms: 

1. As used by all user programs and system 
routines, DOM deletes one to sixty WTO 
messages from graphic consoles. A DOM can 
be issued against a nongraphic console with 
no adverse effects. 

2. User programs and system routines can issue 
the DOM macro instruction with the operand 
REPLY = YES. REPLY = YES deletes one to sixty 
WTOR messages from all consoles, graphic 
and hardcopy, for which an operator has not 
responded. For example, an operator could 
reply to a system mount message with 
CANCEL or he could mount the volume. Since 
the system can recognize that the volume has 
been mounted, a reply is not needed from the 
operator; therefore, a system routine could 
issue the DOM macro instruction with 
REPLY = YES to remove the mount message 
from the queue of wTOR/messages requiring 
an operator response. 

Section 2: Method of Operation 2-3 



Supporting Functions 
In support of communications between user 
programs or system routines and the various 
consoles, the communication task also supplies 
either the modules that are incorporated into other 
system functions or performs the service itself. 

• Operator console initiation (documented with 
NIP). 

• Elimination of messages related to a 
terminating task (documented with task 
termination) . 

• Console attention, which permits a console 
operator to enter an operator command or 
reply to aWTOR message. 

• Switching the master console functions from 
the current master console to an alternate 
console. 

• Cleaning up the communication task's control 
block queues. 

• Error recovery-both from communication 
task errors and system errors. 

• Command processors for REPLY, DISPLAY R, 
and DISPLAY CONSOLES are supplied by the 
communication task (documented with 
command processors). 

Console Attention 
When the console operator presses the attention 
key, or its equivalent, an I/O interruption occurs. 
The lOS interrupt handler passes control to a 
communication· task routine that posts the 
communication task ECB. Eventually, the 
communication task will become the highest 
priority task to be executed by the system, at 
which time the dispatcher will give CPU time to the 
communication task. The communication task 
checks the posted ECB to determine what needs to 
be done and determines the console requiring 
service. The communication task then calls its own 
SVC 72 to issue the read command to the console 
device from which the interrupt came. 

The communication task then returns control to 
its wait service routine. If further communication 
task services have been posted to. a communication 
task ECB, those services are performed. When all 
services have been performed, that is, there are no 
outstanding posted items in the ECB, control is 
returned to the dispatcher. 

At this time, the console device is unlocked. The 
operator may enter an operator system command. 
That command will be processed by the operator 
command processor. 

2-4 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 

External Interrupt 
The computer operator presses the external 
interrupt button on the CPU to transfer the 
functions of the master console to a previously 
defined alternate console. This feature permits a 
console operator to signal the system when the 
master console is not operating properly; however, 
it can be used solely to switch master console 
functions from one console device to another. 

Note: If the master console was the only active 
console when the external interrupt button was 
pressed, the console operator can restore console 
operations by simply pressing the external interrupt 
button a second time. The system assumes that the 
first pressing of the button was an accident. The 
operator is alerted to this condition by the alarm 
bell ringing three times, provided the alarm bell 
feature is mounted on at least one of the system 
consoles. 

Pressing the external interrupt button causes a 
system external interruption, which is processed by 
the external first level interrupt handler. Finding 
that the interrupt came from the CPU, control is 
passed to the communication task interrupt handler 
module supplied to the external first level interrupt 
handler by the communication task. This module 
posts the communication task ECB. 

When the communication task becomes the 
highest priority task to be executed by the system. 
The dispatcher gives CPU time to the 
communication task who checks the posted ECB to 
determine what needs to be done. The 
communication task wait service routine calls SVC 
72, the communication task console switch routine, 
to transfer the functions of the master console to 
an alternate console. 

When the console switch operation is finished, 
control is given to the wait service routine. If 
further communication task services have been 
posted to the communication task ECB, those 
services are performed. When all services have 
been performed, that is, there are no outstanding 
posted ECBS, control is returned to the dispatcher. 

1/0 Complete Processing 
The I/O completion processor handles the I/O 
interruption that occurs when there is an operation 
on a console device. The thret:" situations that must 
be handled are when: 

• A message is sent to a console and there is 
no I/o error. 



• A system command was received from a 
console and there was no I/O error. 

• An I/O error occured during data 
transmission. 

After a message has been sent to the operator 
console, an I/O interruption occurs to inform the 
system of the status of that data transmission. If 
the message was received at the console without an 
error, the communication task flags the message 
(WQE) and the console's pointer to that message 
(CQE) for deletion at a later time. Control then 
returns to the wait service routine. 

When an operator enters a system command, he 
indicates the end of the command by pressing the 
end of block (EOB) button, which causes an I/O 

interruption. When the communication task 
receives control, the operator command processor 
(SVC 34) is called to process the command. When 
the operator command processor returns to the 
communication task, control is given to the wait 
srevice routine. 

An error causes the communication task to 
attempt a switch to another console device, if one 
is available. 

Unconditional Message to Inactive 
Console (QREGO Processing Routine) 
During system generation, an identification is 
assigned to each console and placed in the unit 
control module entry (UCME). Any system program 
needing to communicate with a specific console can 
obtain the console identification from the UCME 

and place it in register O. A message is then 
unconditionally transmitted to that console by using 
a WTO or WTOR macro instruction with the 
parameter MCSFLAGS=QREGO. Programs running 
under a problem program key, programs not 
running in supervisor state, or programs that are 
not authorized, are prevented from using this 
parameter. 

When the console identified in register 0 is 
active, the unconditional message is processed in 
the same manner as any other message, and the 
QP.EGO processing routine is not attached. QREGO 

processing is only for unconditional messages to 
inactive consoles. 

If the console is inactive, and if the QREGO 

processing routine were not present, unconditional 
messages could start to fill the allotted write queue 
element (WQE) and operator reply element (ORE) 

space without the knowledge of the master console 
operator. These messages would have no way out 
of the system until the inactive console is made 

active. Once the allotted WQE and ORE space is 
filled, system operator message service would be 
slowed; thereby, slowing the operator's response to 
all messages. If this were permitted, the system 
could be left in a situation where performance 
might be degraded. QREGO processing prevents this 
possible situation. 

To prevent performance degradation, the QREGO 

processing routine sends a WTOR message 
(IEA962A) to the master console operator. This 
message tells him that the system is in the process 
of queueing a message for an inactive console. He 
is given three possible responses: SEND, DELETE, 

and OK. SEND displays the message at the master 
console and deletes it from the queue of messages 
for the inactive console. DELETE simply deletes the 
message from the system. OK permits the queueing 
process to continue and assumes that the operator 
will activate the inactive console. 

If the operator enters some other response to 
the WTOR message (probably a typographical 
error), the QREGO routine issues a second WTOR 

message (IEA963A) informing him of his error and 
asking him to reenter his response. This message is 
repeated until the operator has entered one of the 
three acceptable responses. 

Console Device Support 
The communications task supports the following 
devices as consoles: 

• 1052 printer-keyboard. 
• 3210 console printer-keyboard. 
• 3215 console printer-keyboard. 
• 3213 console printer. 
• 2501 card reader. 
• 2520 card reader punch. 
• 2540 card reader punch. 
• 3505 card reader. 
• 3525 card punch. 
• 1403 printer. 
• 1443 printer. 
• 3211 printer. 
• 2250 display unit. 
• 2260 display station. 
• 3066 system console. 
• 3277 display station. 
• 3284 printer. 
• 3286 printer. 
• 2740 communication terminal. 
• System console for the Model 158. 

Section 2: Method of Operation 2-5 



The communications task modules that provide 
I/O support for these consoles are called device 
support processors (DSPS). The DSPs for graphics 
consoles are part of DIDoes (device-independent 
display operator console support). 

IEAVVCTR 

DSP 
Routing 
Module 

r I 
IEAV1052 IEAV1443 IEAV2540 

DSP for: DSP for: DSP for: 
1052 1403 2501 
3210 1443 2520 
3215 32n 2540 
3213 3505 

3525 

Figure 2-3. SVC 72 

SVC 72 

1 

2-6 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 

SVC 72 
All the DSPS (including the DIDoes DSPS) are part 
of sve 72 (see figure 2-3). Besides the DSPs, sve 
72 contains a routing module, which passes control 
to the appropriate DSP, and a console switch 
routine, which changes the master console from the 
current one to an alternate. 

I 
IEAVSWCH 

Console 
Switch 
Module 

1 I I 
IEEC2740 IEECVETW IEECVET1 

DSP for DSP for: DIDOCS DSPs 
2740 3284 for: 

3286 2250 
2260 
3066 
3277 
M158 console 



Method of Operation Diagrams 
The method of operation diagrams are based on 
the specific functions being performed by the 
communication task. See Figure 2-4. With the 
exception of the communication task's SYCs and a 
few program modules supplied to other functions of 
the operating system that interface with the 
communication task, the function to be performed 
is determined by the communication task's wait 
service routine (lEAYMQWR). 

Before the wait service routine is called by the 
dispatcher, at least one of several communication 
task event control blocks (ECBS) have been posted. 
From these ECBs, the wait service routine 
determines the function to be performed. The 
following is the sequence in which these ECBs are 
tested: 

ECB or Control Bit 
UCMARECB 

UCMXECB 

UCMAECB 

EILIOL 

UCMSYSJ 

or 

UCMPF 

UCMOECB 

UCMSYSI 

UCMDECB 

UCMNPECB 

Function to be Performed 
Alternate CPU Recovery 

(Documented with the ACR Routine 

in Recovery Termination 

Management). 

External Interrupt - Switches the 

master console to the next 

available alternate console. 

Attention Interrupt - Prepares 

the interrupting console to receive 

a keyboard entry. 

I/O Processing complete -

Handles the I/O interruption after 

a message has been displayed at 

a console. The EILIOL is each 

console's unit control module entry 

(UCME). 

Console or Hardcopy Output 

Pending - Causes the message 

already queued for output to be 

displayed on the respective 

hardcopy or console device. 

Queue Message for Output -

Prepares the message posted by a 

WTO macro instruction for output 

to the appropriate consoles. 

Clean Up the WQE chain -

Eliminates WQEs that are no longer 

needed. 

Delete Operator Message -

Deletes the message indicated by 

the DOM macro instruction. 

Write NIP routines. 

Section 2: Method of Operation 2-7 



2-8 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



tI} 
(D 

g. 
o· 
= 
~ 

~ 
(D 

[ 
o ..., 
o 

'Q 

~ 
~ o· 
= 
~ 

~ 

I I I 
r 1-2 Console 

Initialization 
Commun ication (See System Opening a 
Task Processing Initialization Console 
(IEAVMQWR) Logic, 

SY28-0623) 

Figure 2.4. Communications Task Visual Contents (part 1 of 3) 

~ 
Communications 
Task Overview 

I 
I I I 

To Part 2 

~ ~ Task Termination Alternate CPU 
Message Deletion Recovery (See 

Closing a (See Task Purge Alternate CPU 
Console Processing Recovery (ACR) 

(JEAVTSTK» (JEAVTACR» 



~ 
o 

o 
CI} 

<-CI} 
N 
CI} 

'< ra. e 
~ 
(;" 

t"" 
a: 
~ 
< o 
2' 
S 
(D 

N 

'< 
CI} 
N 

:;0 

f 
~ 
~ 

~ 

I 1-1 

Communications 
Task Overview 

I 
( I 

I 1-5 

WTOandWTOR 
Macro Instruction 
Processing Overview 
(lEAVVWTO) 

I 

1 1-6 

WTO and WTOR 
Macro Instruction 
Processing 
(lEAVVWTO) 

I 
I I I 

Write-to- ~ I 1-9 ~ 
WTO and WTOR Programmer Multiple-line WTO 
Communications Processing (MLWTO) 

Overview Processing (SVC 35) Task Processing 

(IGCOO03E) (IEAVMWTO) Overview 
(IEAVMOWR) 

I I 

~ ~ 
Write-to- WTO and WTOR 
Programmer Communications 
Processing Task Processing 
(lGCOO03E) (I EA VMOWR and 

IEAVMWSV) 

I 
I I I 

~ I 1-14 ~ 
Writing 

Displaying Single-line Writing Multiple-
Single-line Messages 

Messages on Graphics line Messages to a 
to a 1052, 1443, 

Consoles (DIDOCS) 1052, 1443, 2740, or 
2740, or 3284/3286 3284/3286 Console 
Console -

Figure 2-4. Communications Task Visual Contents (part 2 of 3) 

I I 
( 

E I 1-18 

DOM Macro 

I/O Complete Instruction 

Processing Processing Overview 
(SVC 87) 

I 
I 1-19 

DOM Macro 
Instruction Processi ng 
(SVC 87) 
(lEAVXDOM) 

I 
I 1-20 

DOM Communications 
Task Processing 
Overview 
(lEAVMDOM) 

E / 

Processing I 1-21 .. Unconditiona I - - Message to an DOM Communications 
I nactive Console Task Processing 
(OREGO) OEAVMDOM) 

I 
I ~ I 1-22 

Displaying Multiple-
line Messages on DOM Device Support 
Graphics Consoles Processing 
(DIDOCS) (DIDOCS) 



{,f.) 
(D 
() 

g. 
= t-J 

3: 
(l) 

[ 
o ..., 
o 
"0 
~ 
~ 

~. 

= 
~ 

From Part 2 

I J 
E ~ 

E xterna I I nterru pt Attention Interrupt 
Processing Processing (Command 
(Automatic Console Request) 
Switch) (IEAVVCRA) 
(lEAVVCRX) 

I 
I I 
~ ~ 

Processing Typed 
Processing Commands Commands from a 
from a 1052, 2540, Or Graphics Console 
2740 Console (DIDOCS) 

(lEECVET1) 

I 
I I 
~ ~ 

Operator-Requested PFK Definition or 

Message Deletion Redefinition 
(DIDOCS) (DIDOeS) 

(IEECVETB) (lEECVFTB) 

Figure 2.4. Communications Task Visu.a) Contents (Part 3 of 3) 

~ 
Commun ications 
Task Overview 

I 
I I 
~ I 1-34 ~ 

CommTask Communication Roll-mode Message Functional Recovery Task Recovery Deletion Routi ne or EST A E (ST AR) Routine (DIDOCS) Controller Overview (lEAVSTAR) 
(lEAVMFRR) 

I I 
Processing Light ~ ~ 
Pen and PFK Comm Task 
Commands from a Functional Recovery 
Graphics Console Routine or EST AE 
(DIDOCS) Controller 
(I EECVETF) (lEAVMFRR) 

I 
I J I 
~ ~ ~ 

Changing Message Erasing or Displaying Erasing/Holdi ng/ 
Deletion the PFK Display Framing/Updating 
Specifications Line (DIDOCS) Status Display 
(DIDOCS) (lEECVETB) (DIDOCS) 
(lEECVETA) (lEECVFTP) 



~ Diagram 1-1. Communication Task Overview (part 1 of 2) 
N 

o 
!;I.) 

"< !;I.) 
N 
!;I.) 

'< 
~ 

3 
E n· 
t: 
~ 

~ 
~ 
2' 
:3 
~ 

N 

<: 
!;I.) 
N 

:;tl 
~ 

i 
~ 
~ 

~ -

Input Dispatcher (lEAVEDSO) Process 
l:f\?·;:<l:1t;,'FYt\l:iL0fil~;'~;;\;i,~±:;;';d;;it·ty;,;;+.;<i;;:ei.;h0.it;j'i+i]jTf.L~~J. m;~~====S3mi:m=S3m==m~ 

Console 

CPU 

SVC 

Attention and I/O 
Complete 
(Input & Output) 

External Interrupt 

WTO/WTOR (SVC 35) 

DOM (SVC87) 

1 Determines function. 

2 Performs required function. 

Associated modu les 
(see lower level diagrams) 

Output 

Messages to 
Operator 
Console 

Primary 
Console 

Console 
Switch 
r---

Alternate 
Console 

Messages Deleted 
from 0 isplay 
Consoles 



l;I.l a o· 
= 
~ 

== S-
6' 
~ 

o .... 
o 

"C 

~ o· 
= 
~ 
~ 

Diagram I-I. Communication Task Overview (Part 2 of 2) 

Note: COMT ASK provides the modules that initialize the 
COMTASK and COMTASK control blocks for initialization. 
COMT ASK also supplies the module to task termination for 
deleting messages associated with the terminating task. These 
modules are respectively documented in the OS/VS2 System 
Initialization Logic, SY28-0623, and in the Recovery/Termi­
nation Management areas of this PLM. 

Extended Description 

1 The Communications Task (COMTASK) handles com-
munications between the operator(s) and the system. 

The types of communication that COMTASK handles are: 

• Operator commands from a console. 

• Output to the operator caused by the Write-To-Operator 
(WTO) , Write-To-Operator-with-Reply (WTOR), and the 
Delete-Operator-Message (DOM) macro instructions. 

• External interrupts, which are caused by the operator 
pressing the INTERRUPT key on the operator control 
panel. COMTASK switches the master console's func­
tions to an alternate. 

• Automatic console switching from a console to its alter­
nate when an unrecoverable I/O error occurs on the. 
console. 

• Console switching as a result of the VARY CHANNEL, 
VARY CPU, or VARY MSTCONS commands. 

• Console switching as a result of a CPU failure in a multi­
processing system is part of alternate CPU recovery 
(ACRI. 

Module 

Extended Description 

2 The COMTASK is an interrupt-driven system task. It 
has its own TCB, which is created at system generation 

time. 

Multiple Console Support (MCS) is a standard feature that 
supports up to 32 consoles. With MCS, messages can be 
routed to up to 15 different functional areas, according to 
the type of information in the message. 

Device Independent Display Operator Console Support 
(DI DOCS) is an option of the VS2 control program. It pro­
vides uniform operator console services for the: 

.2250 Display Unit, Models 1 and 3 

• 2250 Display Station, Model 1 with 2848 Display Control 
or Model 3 

• Model 165 II Display Console 

• 3277 Display Unit, Models 1 and 2 

• Model 158 Display Console 

Module 



~ Diagram 1-2. Communication Task Processing (IEAVMQWR) (part I of 4) 
~ 

~ 
"< (Il 
N 
(Il 

'< 
rA 

i 
r-' 
«i 
n' 
r-' 
5= 

~ 
< o = 3 
til 
N 

'< 
(Il 
N 

;lC 
til 
(i" 

~ 
1M 

~ 

Input 

Unit Control 
Module (UCM) 

r
': 
", A." 

~ 

UCMARECB 

UCMXECB 
* 
* l' 1 

A." 

UCMAECB 

Unit Control Module 
Entry (UCME) 

EILIOL 

~ 

I 

~ 

r r 
UCMPF 

~ '* UCMSYSJ 

A." 

From Step 3 

From the Dispatcher 
(lEAVEDSO) 

From other 
Communication 
Task Common 
Modules 

Process 

lEA VMQWR (Wait Service Routine) 

--'ro. 

r 

r 

1 Wait for work to do. 

2 Determine operation to be 
performed. 

,<1 _ WAIT Macro Instruction 

!:! 
l' 

t,

""""." v 

":,:" 
> a. Alternate CPU recovery. J _ IEAVSWCH 

(~ '>. 

';.{ 

",,",.« 
,~: , "-

> v 

"" 
v 

"" 

v 

b. External Interrupt. --.. 
IEAVSWCH 

r 

c. Attention Interrupt. 
... 

IEAVMDSV 
r 

d. I/O Complete Processing. 
_ ... 
P' 

IEAVMDSV 

e. Console output pending. ::1 _ lEA VMDSV 

f. Hardcopy output pending. 31 _ IEAVMDSV 



CI} 
~ 

Sl 
S· 
= 
~ 

~ 
~ g 
~ 

o ... 
o 

"0 
~ 
~ 
S· 
= 
~ 
(It 

Diagram 1-2. Communication Task Processing (IEAVMQWR) (part 2 of 4) 

Extended Description 

Wait Service Routine 

The communication task's wait service routine is a never 
ending task. It is given control by the dispatcher after one 
of the communication task's event control blocks (ECBs) 
has been posted. Upon each entry into this routine, the 
entire list of communication task ECBs is tested from top 
to bottom in priority sequence. The posted ECB determines 
the service that will be performed by the communication 
task. As each service is completed, control is returned to 
this routine and the entire I ist of ECBs is again tested for an 
active ECB. When no active ECBs are found, this routine 
issues the WAIT macro instruction. This macro instruction 
places this routine in the wait state until the next communi­
cation task ECB has been posted. 

1 The communication task's wait service routine issues 
a WAIT macro instruction when there is no further 

common processing to be performed by the communication 

task. 

2 When the dispatcher gives control back to the com-
munication task, control returns to this entry point. 

It is also the entry point for all communication task mod­
ules when returning control to the wait service routine. 

This step determines the function to be performed by the 
communkation task and then branches to the communica­
tion task module that is capable of doing the work. The 
sequence below represents the priority in which functions 
are handled by the communication task. 

Module Label 

IEAVMQWR 

Extended Description Module Label 

a. Alternate CPU recovery is the process of switching from I EAVMQWR WRACR 
one CPU to another in multiple CPU configurations. 

b. External interrupt switches the master console functions WREXT1 
from the current master console to the next available 
alternate console. 

c. Attention interrupt prepares the console from which 
the interrupt was received to accept an operator 
command. 

d. I/O processing complete is the operation performed after 
a message has been sent to or received from a console. 
The processing is the result of the interrupt an I/O device 
causes after performing each operation. 

e. Console output pending indicates that there is at least 
one message queued and ready for some console. The 
UCMPF bit is set if a console is busy when a WTO or 
WTOR message was queued for that console or one 
message was queued for several consoles. 

f. Hardcopy output indicates that at least one message is 
queued for hardcopy output. Note: Hardcopy is strictly 
for messages that are placed in some data set. When a 
console is used for the hardcopy function, the message 
is queued to that console as though the message was for 
that console originally and the hardcopy bit is not set; 
however, all messages displayed at the hardcopy console 
are in the hardcopy format. 

WRATTN 

WRIOCOMP 

WRDVSERV 

WROUTPUT 



~ Diagram 1-2. Communication Task Processing (IEAVMQWR) (part 3 of 4) 
0\ 

o 
CIl 

~ 
~ Input 
CIl ~~~~~~ __ ~ __ ~~~~~~, 
'< 
~ 
CP 

3 

f ;:;. 
t"'" ;: 

~ 
<: o = 3 
CP 

N 

'< en 
N 

::0 
CP 

i 
~ 
w 

~ 

Determine operation to be 
performed (continued) 

g. New WTO or WTOR 
for output. 

h. Clean up WOE chain. 

i. Delete operator messages. I 

j. Write NIP messages to buffer. I 

IEAVMWSV 

IEAVMDSV 

IEAVMDOM 

IEAVMWTL 

3 When no work exists, return to 
step 1. 

--_---l. Step 1 



til 
('D 
(") g. 
= 
N 

::: 
('D g 
c:;l. 

o .... 
o 

't:' 
~ 
0; g. 
= 
:!:! 
....... 

Diagram 1-2. Communication Task Processing (IEAVMQWR) (part 4 of 4) 

Extended Description 

2 (Continued) 

g. A WTO or WTOR macro instruction has previously pre­
pared a write queue element (WOE), possibly an operator 
reply element (ORE), and posted the communication 
task ECB (UCMOECBI. As a result of this ECB being 
posted, a console queue element (CaE) will be built 
for each console that is to receive this message. A 
search will be made of the unit control module entry 
(UCME) control blocks for the first console that is to 
receive that message. An attempt will then be made to 
send the message to that console. If the attempt is 
successful and that is the only console to receive the 
message, then control is returned to step 2. If the 
attempt is successful and there are other consoles to 
receive the same message, the console output pending 
bit is turned on and control is returned to step 2. If the 
attempt was unsuccessful, for example the console is 
busy, the console output pending bit is turned on and 
control is returned to step 2; a check is not made for a 
second console for multiple console messages. 

Module Label 

WRWTO 

Extended Description 

h. There are a few system functions, such a task termina­
tion, that modify communication task control blocks. 
If a write queue element (WOE) is marked for deletion 
during the execution of one of these system functions. 
the UCMSYSI bit is set. The communication task will 
eliminate these WOEs as a result of this bit being set. 

i. Delete Operator message indicates that a DOM macro 
instruction ,has been issued to delete a WTOR message 
that the console operator has not responded to or to 
delete a WTO message from the message display of a 
graphic console. 

j. Write NIP messages to buffer indicates that the NIP 
messages stored during NIP can now be written. 

3 The wait service routine can only reach this point when 
there is no work to be performed by the communica­

tion task. As each function is performed, control returns 
to step 2. Having reached this point, control is returned to 
step 1 where a wait macro instruction will be issued 
causing the communication task to go into wait state until 
the ~ext communication task ECB is posted. 

Module Label 

WRCLNUP 

WRDOM 

PXFOXL 



~ Diagram 1-3. Opening a Console (part 1 of 4) 
00 

~ 
"< 
tI} 
N 
tI} 

'< 
~ 

~ 
t"" 
~ 
n' 
t"" 
0: 
e 
'< 
<: 
g, 
= :3 
~ 

N 

'< 
tI} 
N 

~ 
~ 

~ 
~ 
~ ;; 

t 

UCM entry 

Open pending (UCMTA) 

(Set by system 
initialization 
or VARY 
CONSOLE 
processing) 

From first console 
operation (I EAVVCTR) 

Opening a 1052, 1443,2540, 
3284/3286, or Graphics Devia! 
as a Console 

1 Determine that a device is to be 
opened, 

2 Initialize control blocks: 

• DCB. 

• GRAPHICS DEVICE ONLY 
Pageable DCM. 

3 Mark device active, 

Open device (CSAOPEN) 



en 
(!l 

~ 
5· 
= 
~ 

s:: 
(!l .... 
S-
o.. 
o -. 
o 
'e 
~ 
~ 
5· 
= 
!:: 
\0 

Diagram 1-3. Opening a Console (part 2 of 4) 

Extended Description 

Before the communications task performs a console opera­
tion, it finds out if the console is open. The first time that a 
console operation is requested, the console will not be open. 
The communications task must open the console prior to 
performing the console operation. The communications task 
opens the following devices as consoles (the corresponding 
communications task module that performs the open proc­
essing is shown to the right): 

Module Label 

.1052 printer-keyboard, 3210 console printer-keyboard, IEAV1052 PJOPEN 
3215 console printer-keyboard, and 3213 console printer. 

• 1403 printer, 1443 printer, and 3211 printer. IEAV1443 PJOPEN 

.2501 card reader, 2520 card reader punch, 2540 card 
reader punch, 3505 card reader, and 3525 card punch. 

.3284 printer and 3286 printer. 

• 2740 communication terminal. 

lEA V2540 PJOPEN 

IEECVETW 

IEEC2740 OPEN 

.2250 display unit, 2260 display station, 3066 system con- IEECVETG 
sole, 3277 display station, and Model 158 console. 

Extended Description 

Opening a 1052, 1443,2540,3284/3286, or Graphics 
Device as a Console 

1 During system initialization, NIP sets the open-pending 
bit (UCMTA) in a console's UCM entry to indicate 

that the console must be opened by the communications 
task. In the same manner, VARY CONSOLE processing sets 
the open-pending bit (UCMTA) in a console's UCM entry 
when a console is defined in response to a VARY CON­
SOLE command. When the communications task determines 
that the open-pending bit is on, it sets the open bit 
(CSAOPEN) in the CXSA . 

2 The communications task initializes control blocks for 
the device: 

• The communications task initializes the data control block 
(DCB) for the device . 

• For a graphics device that is being opened as a console, 
DIDOCS issues a GETMAIN macro instruction for space 
for the pageable display control module (TDCM). To 
initialize the TDCM, DIDOCS uses the model TDCM in 
the link pack area. DIDOCS chains the TDCM to the 
resident DCM (RDCM). 

3 The communications task sets bit UCMUF in the 
device's UCM entry to indicate that the device is 

active. 

EXIT After the communications task opens the console, 
it performs the console operation for which it 

received control initially. 

Module Label 

IEECVETG 



~ Diagram 1-3. Opening a Console (part 3 of 4) 
~ 
o 

o 
tI.l 

"< tI.l 
~ 

tI.l 
'< 
~ 
('I) 

3 

~ 
OQ 
(;. 

t""' 
a: 
; 
'< 
<: 
o 

=-3 
('I) 

~ 

'< 
tI.l 
~ 

~ 
('I) 

i 
~ 
w 
~ 

From first console 
operation 
(iEEC2740) 

Opening a 2740 Device as a 
Console 

4 Determine that a device 
is to be opened. 

5 Initialize control blocks: 

• DCB. 
• DECB. 
• AVT. 
• DEB. 
• lOB. 

6 Load BTAM and OLT modules. 

7 Add DEB to chain. 

8 Mark device active. 

9 Initialize the line to the 2740. 

10 

To perform other 
communications task operations 

Output 



c;n 
~ 

II 
S· 
= N 

s:: 
~ 

;. 
8-
o ..... 
o 

't:I 
~ 

C3 g: 
= 
N 
N -

Diagram 1-3. Opening a Console (Part 4 of 4) 

Extended Description 

Opening a 2740 Device as a Console 

4 During system initialization, NIP sets the open-pending 
bit (UCMTA) in a console's UCM entry to indicate that 

the console must be opened by the communications task. In 
the same manner, VARY CONSOLE proce,ssing sets the 
open-pending bit (UCMTA) in a console's UCM entry when 
a console is defined in response to a VARY CONSOLE com-

Module Label 

mand. The 2740 device support processor (DSP) finds the IEEC2740 IGCXX07B 
open-pending bit on and determines that it must.9pen the 
2740 communications terminal as a console. 

5 The 2740 DSP initializes and chains control blocks for 
the 2740 console: 

• Data control block (DCB). 

• Data event control block (DECB). 

• Appendage vector table (A VT). 

• Data extent block (DEB). 

• Input/output block (lOB). 

The 2740 DSP contains models of the above control blocks. 

6 The 2740 DSP uses the basic telecommunications 
access method (BTAM). The 2740 DSP loads the fol­

lowing BTAM modules from SYS1.SVCLlB: 

• IGG019MA - BTAM read/write module. 

• IGG019MB - BTAM channel end appendage. 

The 2740 DSP loads the following modules from 
SYS1.LPALlB: 

• IGG019MO - BTAM device I/O module. 

• IGG019MR - OL T control module. 

IEEC2740 OPEN 

Extended Description 

7 The 2740 DSP adds the 2740 DEB to the DEB chain 
pointed to by the communications task TCB. 

8 The 2740 DSP sets bit UCMUF in the 2740's UCM 
entry to indicate that the device is active. 

9 The 2740 DSP creates a channel program to initialize 
the line to the 2740, then issues an EXCP to execute 

the channel program. 

10 To indicate that the device is open, the 2740 DSP 
sets the following bits in the 2740's UCM entry: 

• Sets the open-pending bit (UCMTA) off. 

• Sets the I/O complete bit (UCMDEVE) off. 

• Sets the prepare bit (UCMDEVG) on. 

• Sets the HAL TIO bit (UCMDEVB) on. 

EXIT 

initially. 

After the 2740 DSP opens the console, it performs 
the console operation for which it received control 

Module Label 

IEEC2740 OPEND 

IEEC2740 OPENEND 



~ Diagram 1-4. Closing a Console (part 1 of 4) 
N 
N 

o 
v.l 

"< 
til 
N 
v.l 
'< ;a. 
(D 

3 
r-

From VARY CONSOLE 
or External I nterrupt Processing 
(JEAVVCTR) 

= 1 

Closing a 1052, 1443,2540, or 3284/3286 
Device as a Console 

~ riO ---- -- --~ .. ~ 1 Determine that the device is to be 
closed. r­

a: 
~ 

-< 
~ 
52-= 3 
(D 

N 

'< 
til 
N 

~ 
(D 

i 
~ 
~ 

~ 

UCB 

DCB 

Vary device offline 
(UCBCHGS) 

= 1 
~~~-------

From VARY 
CONSOLE or 

2 Free the DCB. 

3 Indicate device is no longer a console. M ./ 

4 I ndicate device is offline. "q . ,** '" 

5 Reinitialize the UCM entry. 

To perform other 
communications 
task operations 

Closing a 2740 Device as a Console 

6 Determine device is to be closed. 

7 Issue any outstanding messages. 

Allocated bit = 0 (UCBALOC) 

System console=O (UCBSYSR) 

Console status=O (UCBDADJ) 

Online bit:=O (UCBONLJ) 

UCBCHGS=O 

UCM entry 

Changing status=O (UCMAT04) 

Device active=O (UCMUF) 

UCMECB=O 

UCMDCB=O 

Busy.=O (UCMBF) 

Close pending=O (UCMCF) 

Open pending=O (UCMTA) 

8 Reset UCB so that device can be i~ >~,. v1 
allocated to another task. 2?1 IA-~ '------... 

9 Remove 2740 DEB from chain. 

10 Reinitialize UCM entry. ,I 

11 Delete BTAM and OLT modules. 

To perform other commun­
ications task operations 

UCM entry 

Device active=O (UCMUF) 

Close pending=O (UCMCF) 

Busy=O (UCMBF) 

UCMDCB=C 

UCMECB=O 



CI'.l 
g 
g. 
= N 

~ 
(!) .... 
5' 
Q. 

o 
000) 

o 
't' 
~ 
a 
(:S" 
= 

Diagram 1-4. Closing a Console (part 2 of 4) 

Extended Description 

When a device is removed from console status in response to 
a VARY CONSOLE command, VARY CONSOLE process­
ing sets the close-pending bit (UCMCF) in the console's 
UCM entry. In the same manner, when a device is removed 
from console status during console switch processing, the 
console switch routine sets the close-pending bit in the con­
sole's UCM entry. This bit indicates that the communica­
tions task must close the console. The communications task 
passes control to the appropriate device support processor 
to perform the close operation: 

• I E-AV1 052 for the 1052 printer-keyboard, 3210 console 
printer-keyboard, 3215 console printer-keyboard, and 

3213 console printer. 

• IEAV1443 for the 1443 printer, 1403 printer, and 3211 
printer. 

• lEA V2540 for the 2540 card reader punch, 2501 card 
reader, 2520 card reader punch, 3505 card reader, and 
3525 card punch. 

• I EEC2740 for the 2740 communication terminal. 

• IEECVETW for the 3284/3286 printer. 

• IEECVETG for a graphics console. 

Closing a 1052, 1443,2540, or 3284/3286 Device as a 

Console 

1 When the communications task determines that a close 
operation is pending, it sets the close bit (CSACLOSE) 

in the CXSA. Before the console is closed, all pending 
work is quiesced. 

2 The appropriate device support processor (DSP) frees 
the device's DCB. 

3 The DSP sets to zero the following bits in the device's 
UCB: 

• Allocated bit (UCBALOCl. 
• System console bit (UCBSYSRl. 
• Console status change bit (UCBDADIl. 

4 The DSP checks bit UCBCHGS to determine whether 
the device is to be offline. If the bit is on, the DSP sets 

~ the online bit (UCBONLI) to zero to indicate that the device 
~ is offline. 

Module Label 

IEAV1052 PJCLOSE 

IEAV1443 PJCLOSE 

IEAV2540 PJCLOSE 

IEEC2740 

IEECVETW 

IEECVETG 

IEAVVCTR 

(See above) 

CLOSE 

Extended Description 

5 The DSP resets the following UCM entry fields to zero: 

• Changing status bit (UCMAT04l. 
• Device active bit (UCMUF). 

• ECB (UCMECB). 
• DCB address (UCMDCB). 
• Busy bit (UCMBF). 
• Close-pending bit (UCMCFl. 
• Open-pending bit (UCMTAl. 

Closing a 2740 Device as a Console 

6 The 2740 DSP determines from bit UCMCF that the 
2740 device is to be closed. 

7 The 2740 DSP issues any messages that are on the 
device's message queue (WOE queue). 

8 The 2740 DSP sets fields in the UCB so that the 2740 
device can be allocated to another task. 

9 The 2740 DSP removes the DEB for the 2740 from 
the DEB chain pointed to by the communications task 

TCB. The 2740 DSP initialized and chained this DEB during 
device open processing (see steps 5 and 7 of "Opening a 
Console"). 

1 0 The 2740 sets the following UCM entry fields to 
zero: 

• Device active bit (UCMUF). 
• Close-pending bit (UCMCF). 

• Busy bit (UCMBF). 
• DCB address (UCMDCBI. 
• ECB (UCMECBI. 

11 Finally, the 2740 DSP deletes the BT AM modules 
that it loaded during opening of the console (see 

step 6 of "Opening a Console"): 

• IGG019MA - BT AM read/write module. 
• IGG019MB - BT AM channel end appendage. 
• IGG019MO - BT AM device I/O module. 

The 2740 DSP also deletes the OL T control module 
(lGG019MRI. 

Module Label 

IEEC2740 IGCXX07B 

IEEC2740 CLOSA 

IEEC2740 CLOSF 

IEEC2740 CLOSJ 

I EEC2740 CLOSJ 

IEEC2740 CLOSJ 



~ Diagram 1-4. Closing a Console (part 3 of 4) 
t-J 
~ 

@ 
"< 
C'-l 
t-J 
til 
'< 
~ 
CD 
3 

r 
OQ 
n' 
C 
0-

~ 
< o 
C 
3 
CD 
t-J 

'< 
til 
N 

::0 
CD 

i 
~ 
~ 

~ 
'-" 

From VARY Console or External 

Input 
Interrupt Processing 
(lEAVVCTR) 

UCM entry 

Close pending l-.._ 
(UCMCF) I 

DCM 

Roll mode L 
(DCMDEU I 

DCM 

SYSG EN SACB length 
(DCMPLN) 

= 1 

Closing a Graphics Device as a Console 

Determine that the device is to be 
closed. 

13 If roll mode, resetthe timer. 

14 Free DCB and pageable DCM 

15 Reinitialize screen area control blocks. 

To perform other 
communications task 
operations 

Output 

Close device 
(CSACLOSE) 

UCM entry 

UCMECB = 0 

UCMDCB = 0 

Close pending = 0 
(UCMCF) 

UCMDEVC = 0 

Model DCM in LPA 

SACBs 



til a 
5' 
= ~ 

~ 
$t 

[ 
Q 
""» 

o 
'& 
it 
5' 
= 
~ 
~ 

Diagram 1-4. Closing a Console (part 4 of 4) 

Extended Description 

Closing a Graphics Console 

12 When DIDOCS determines that a close operation is 
pending, it sets the close bit (CSACLOSE) in the 

CXSA. 

13 If the console is in roll mode (field DCMDEL con­
tains the character "R"), DIDOCS resets the timer. 

14 DIDOCS frees the device's DCB. Then DIDOCS frees 
the pageable DCM (TCDM) and places a pointer to 

the model TDCM in the resident DCM. DIDOCS sets the 
device inactive by placing zeros into the following fields of 
the device's UCM entry: 

.110 completion ECB (UCMECBl. 
• DCB address (UCMDCBl. 
• Close-pending bit (UCMCFl. 
• Control flags (UCMDEVCl. 

15 DIDOCS reinitializes the length of the screen area 
control blocks to the SYSGEN-specified length; the 

SYSGEN-specified length is in field DCMPLN of the resi­
dent DCM. DIDOCS issues a FREEMAIN macro instruction 
to free any SACBs that it obtained using GETMAIN. 

Module Label 

IEECVET1 

IEECVETK 

IEECVETG 

IEECVFTG 



N 
N 
0\ 

~ 
~ 
N 
~ 
'< 
~ 
(D 

3 

~ 
r;' 
r-
~ 
.$ 
~ 
= 3 
(D 

N 

~ 
~ 
N 

~ 
if 
~ 
~ 

~ 

Diagram 1-5. WTO and WTOR Macro Instruction Processing Overview (SVC 35) (part 1 of 2) 

Macros: 
WTO 
WTOR 

m 

WTO (MLWTO) 

Syste m Progra m 

I Macros: 
WTO 
WTOR 
WTO(MLWTO) 

SVC First Level Interrupt 
Handler (lEAVESVC) 

IEAVVWTO (WTO and WTOR 
Service Routine) 

2 '] r. · SVC 35 

- Create WOE. 

- If WTOR, create ORE. Al! 

- Post communication task. 

Write Oueue Element (WOE) 

Operator Reply Element (ORE) 

Unit Control Module (UCM) 

UCMOECB 

Message Identification 



c;n 
~ 

a o· 
= 
~ 

~ 
(1) 

[ 
o .... 
o 
"0 
~ 
~ o· 
= 
N 
N 
....j 

Diagram 1-5. WTO and WTOR Macro Instruction Processing Overview (SVC 35) (Part 2 of 2) 

Extended Description Module 

This function is fOr Write-to-Operator (WTO) or Write-to-Operator 
with Reply (WTOR) requests. Issuing a WTO or WTOR results in 
a SVC 35 that builds the associated Write Queue Elements (WQEs) 
and Operator Reply Elements (OREs) to pass messages to the 
console operator. 



~ Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VV~TO) (part 1 of 20) 
00 

o 
CI) 

"< 
CI) 
N 
CI) 

'< 
~ 

3 
£" o· 
r-
~ 
~ 
-< o 
C 
3 
n> 
N 

< CI) 
N 

:::0 
n> 

i 
r6 
IN 

~ ....., 

From SVC First Level 
Interrupt Handler (IEAVESVC) Process 

Write Parameter List (WPL) , 
1 The following table shows the subroutines and by whom they are 

called for the WTO and WTOR Service Routine: 

Called Subroutines 
Caller 

SETLOCK FREELOCK VWTOGETB VWTOFORE 

Main Seg. X X 

GETBLKS X X 

VWTOGETB 

VWTOWAIT X X 

VWTOLREC 

VWTOWAIT VWTOLREC 

X 

X 

X 



"-l 
(D 

a o· 
= !:J 
::: 
~ 

[ 
i. 
o 

"t:S ; 
g. 
= 
~ 

N 
\C 

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 2 of 20) 

Extended Description 

Mainline Routine: IEAVVWTO 

Provides an interface with WTP, JES2 and MLWTO. It does 
the processing for a single line WTO (but not M LWTO). It 
also does the Write-To-Operator portion of a WTOR macro 
instruction. 

Subroutines: 

Main Segment (steps 1-20) 
Control handling and processing of the write parameter 
list (WPL) and checks for an error return from any sub­
ordinate segment. 

SETESTAE 
Sets the EST AE in place and initializes the audit trail. 

SETUPXSA 
Initializes the extended save area. This area is used for 
quick reference to various parts of the write parameter 
list. (The WPL is a variable length parameter list which 
makes it inconvenient to reference frequently.) 

VALIDCHK 
Checks the validity of the user's parameter list. 

DECLARES 
Defines variables and control blocks. 

VWTOGETB 
Allocates space for the WOE and ORE control blocks. 

GETID 
Obtains a reply identification and places it in the ORE 
control block. 

Module Extended Description 

VWTOFORE 
Frees the ORE control block when the associated WOE 
control block can not be obtained. 

BUILDORE 
Fills in the ORE control block. 

BUILDWOE 
Fills in the WOE control block. 

USEREXIT 

Sets up for the calling of the WTO user exit routine 
(lEECVCTE) and calls that routine. 

SETLOCK 
Gets the local and CMS locks and sets a functional 
recovery routine (FRR). 

FREELOCK 
Frees the FRR, CMS lock, and local lock. 

GETBLKS 
Obtains the control blocks for the write queue element 
(WOE) and operator reply elements (ORE). 

HASPEXIT (No Documentation) 
Message alteration exit to a subsystem. In Release 2, the 
only applicable subsystem is JES2. 

VWTOWAIT (step 15) 

Wait for either WOE or OR E control block to be freed. 

FREESTAE 
Frees the ESTAE routine. 

VWTOLREC 
Signals the communication task to initialize the system 
log by posting the unit control module (UCMAECB) 
event control block. 

VWTOCLNP 
Handles clean up when an error has occurred during 
processing. 

Module 



~ Diagram 1-6. WTO~and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 3 of 20) 
:s 
o 
tI) 

"< tI) 
~ 

tI) 

'< 
~ 
('0 

:3 

i 
r;' 
r­a: 
;; 
-< 
<: 
o 
C 
:3 
('0 

~ 

<: 
tI) 
~ 

;:0 
('0 

[ 
~ 
~ 

d 

Input 

Address of WP L 

Register 14 

Return Address 

Output 

Register 5 

2 Save registers in the .. ". . .... 
extended save area. ': :i~, 

[ 
Supervisor 
Request Block (S' .. 

XVWQEID 

XVPARMAD 

XVRET 

(SETESTAE Subroutine) 
EPARM 

PARMRGAD 

PARMID 
3 Establish EST AE recovery r/~. 

environment. PARMFTPT 

PARMRTAD 



{I.l 
('I> 

S4. o· 
= 
~ 

~ 
('I> 

~ 
~ 

o -. 
o 
'0 
~ 
~ o· 
= 
t:-' 
~ -

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 4 of 20) 

Extended Description 

2 Registers 0,1 and 14 are saved in XVWQEID, 
XVPARMAD and XVRET respectively in the 

extended save area (XV) of the supervisor request block 

(SVRB). Register 0 is used when the system adds 
additional multiple line WTO messages to a previous 
string of existing messages; it contains the message 
identification of the original message. Register 0 also 
contains the UCMID for any program specifying REGO 
and for privileged programs specifying QR EGO. 

3 If an error should occur, the EST AE macro instruction 
ensures that queues and data areas will be cleaned up. 

The ESTAE parameter list is as follows: 

PARMRGAD 
PARMID 

PARMFTPT 

PARMRTAD 

The address of the register save area. 
The four character module identifier 
(VWTO). 
A code that identifies the subroutine that 
is currently processing. Should an error 
occur, this c·ode indicates in which sub­

routine the error occurred and where the 
clean up needed. 
A retry address. It is periodically up­
dated to permit execution retry, and 
to clean up queues and data areas before 
returning to the caller. 

Module Label 

IEAVVWTO MAIN 

SETESTAE 



~ Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 5 of 20) 
IN 
N 

~ 
~ 
N 
C"I'.l 
'< 
~ 
(D 

i3 

S 
<e. 
n 

~ a 
'< 

t-
=­i3 
(D 

N 

'< 
Vl 
N 

~ 
S2. 
(D 
Dl 

~ 
~ 

~ 

Input Process 9 Output 

" 

(SETUPXSA Subroutine) 

Write Parameter list (WPL) 4 Setup Extended Save Area. ===:::~====:.t 
WPLRLN 

WPLLGH 

WPLMCSF 

Register 7 

J 
Address Space 
Control Block (ASCB) 

ASCBASID 

.hl I"w :i~; <~.; 

I ~;~t ~ 

: ,;,,',;','1'>', IlrT':""""· I 5 
:'!~ :::!:" 

~i;:;:; 

t;:~>: 

Determine if this WTO or 
WTOR macro instruction is 
privileged to override the 
normal maximum number of 
WOEs and OREs. 

[ , 

! 

.) 
t 

Supervisor Request Block (SVRB) , 

XVDFLAGS 

XVRETCOD 

XVMSGLGH 

'" ~ 

'l-' ..... 

XVD1PP or 

XVD1AUTH 

XVD1PRIV 

'" ,.u 

iiiiiiiiiiiiiiiliiiiiiiiiii~f T XV AS J t~l II t 
Unit Control Modu Ie (UCM): 

8" 

6 Obtain the time. 

UCMCTID TIME 
Macro 
Instruction 

(VALIOCHK Subroutine) UCMPXA I, 

Ii: ' > 7 Check pa'~~ete, ,'ist validity * 'T XVD2V ALD J 
and set validity bit. 

Write Parameter List (WPL) 

6 



en 
~ 

~ 
3' 
= 
~ 

a.:: 
~ 

[ 
o .... 
o 
'E 
~ 
15' 
= 
~ 
w w 

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 6 of 20) 

Extended Description 

4 Several fields are transferred from the user's write 
parameter list to the extended save area of the super­

visor request block. 

5 A TEST AUTH macro instruction is issued to determine 
if the user who issued the WTO or WTOR macro 

instruction is a problem program (not in protect key 0-7 or 
supervisor state). If the user is a problem program, a second 

TESTAUTH macro instruction is issued to determine if the 
user is authorized by the authorized program facility (APF). 
If the user is not authorized, then the request is marked 
unauthorized. A check then determines if the user is privi­
leged. The communication task or any task running under a 
system interrupt request block (SIRB) is privileged to 
exceed the normal system limit on the number of available 
WaEs and OREs. 

6 The time is obtained (by using the TIME macro instruc­
tion) and placed in the extended save area of the 

supervisor request block (SVRB). 

Module Label 

SETUPXSA 

SETUPXSA 

SETUPXSA 

Extended Description 

7 The user's write parameter list (WPL) is validity 
checked for: 

• Incompatible options; for example, a multiple line 
(MLWTO) message as part of a WTOR macro instruction. 

• Being entirely within the user's addressable storage space. 
This check is accomplished by issuing the MODESET 
macro instruction to change this routine's protect key to 
the user's protect key, and then referencing the beginning 
and ending of the user's write.parameter I ist. If either 
reference is outside the user's addressable storage spa,ce, 
an addressing error causes an abnormal termination. The 
abnormal termination is eventually processed by the 
functional recovery routine (FRR) which returns control 
to this routine. This routine then issues a second 
MODESET macro instruction to return this routine to its 
regular protect key. 

• Whether the WTOR is on a fullword boundary. 

Fa'ilure to pass any of these checks causes the message to be 
marked invalid; the user eventually receives a D23 ABEND 
from step 20. 

Module Label 

VALIDCHK 



t:J Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (Part 7 of 20) 
~ 
~ 

~ 
"< 
~ 
N 
~ 

~ 
~ 

£" t;. 

r0-c;: 

~ 
<: 
o = 9 
(II 

N 

'< 
~ 
N 

~ 
(II 

i 
r6 
~ 

:.... -

Write 
Parameter List (WPL) 

WPLROUT 

WPLDESC 
It I WPLMSGTYP I • WPLMCSF 

I 
I 
I Supervisor 
~ Request Block (SVRB) 

I XVWQEIDA I tI r 

I ". 7 

Unit Control Module (UCM) ~ 

I I 
UCMOWTOR 

r 

, Write I Parameter List (WP L) 
I I WPLMCSF L 

I I 

i Supervisor I _ Request Block (SVRB) 

• XVPARMAD r 
I r 

I r'-
1.4W'.~!': 

J'\.) 8 If not an internal message, 
;v establish parameter list and 

branch to user exit 
routine. 

:" 
.19 If WTO is a multiple line 

message, then branch to 
the MLWTO routine. 

, 
- ....... 

Supervisor 
Request Block (SVRB) 

II. 

v XVDESCD 

XVRCSAVE 

XVMSGTYP 

XVNEWR<.; . ,. 
XVNEWDC 

User Exit 
Routine 

II. 

--,. IEAVMWTO 



c;n 
(D 

~ 
5· 
== 
I',J 

s:: 
(D 

~ 
Q. 

o .... 
o 
~ 

S g. 
== 

I',J 

W 
til 

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 8 of 20) 

Extended Description 

8 If the write parameter list is valid, if the process is not 
attaching additional message lines to an existing multi­

ple line message (MLWTO), and if the message is not an 
internal message (authorized and any MSGFLAGS 2-8), 
then a copy of the message, routing codes, and descriptor 
codes are passed to a user exit routine. The exit routine may 
alter the routing and descriptor codes, flag the message for 
deletion, and examine the message text, but alterations to 
the message text are ignored. If a hardcopy log exists, 
deleted WTO messages are sent to the log. Deleted WTOR 
messages are always sent to the master console. The user 
exit routine branches to step 9. 

9 If the WTO is a multiple line message request, then 
this routine branches to the multiple line service 

module (lEAVMWTO) to process the WTO request. 

Module Label 

USER EXIT 

MAIN 



~ Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 9 of 20) 
w 
0'1 

o 
CIl 

'< 
CIl 
~ 

CIl 
'< 
~ 

~ 

i. 
(') 

t: 
g' 

~ 
<: o 
=-3 
~ 

~ 

'< 
CIl 
~ 

::0 
~ 

i 
~ 
w 
~ 

Input 

Supervisor 
Request Block (SVRB) 

XVMSGLGH 

XVDFLAGS 

Supervisor 
Request Block (SVRB) 

XVD2RC 

Write Parameter List (WPL) 

WPLROUT 

If the message length is zero, 
then: 

a. For a WTOR message, 
ABEND. ·1. 

b. For a WTO message: 

1) Set the message identifier 
to zero. 

2) Return to caller. 

11 If routing code 11, then: 

a. Place UCM Base address in 
Register 10. 

b. Branch to the Write to 
Programmer module. 

WTP 
(lGC0203E) 

Output 

Supervisor 
Request Block (SVRB) 

XVWQEID 

Register 10 

Unit Control Module (UCM) 



CIl 
~ a o· 
= 
~ 

a= 
~ 

[ 
o .... 
o 

't:I 

l 
cs' 
= 
~ w ...... 

Diagram 1-6, WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 10 of 20) 

Extended Description 

10 The message text field is tested for a length of zero. 
If it is zero and this is a WTOR message, the user 

receives a D23 ABEND. If it is zero and this is a WTO mes­
sage, the message identifier is set to zero (X'QQ') and control 
is returned to the user. The zero message identifier indicates 
to the user that the message was not sent to a console or 
hardcopy log. 

11 If routing code 11 was specified, a branch is made to 
the write to programmer module (lGCQ2Q3El. 

Module Label 

MAIN 

MAIN 



~ Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 11 of 20) 
~ 
00 

o 
(",fJ 

"< (",fJ 
~ 

(",fJ 

'< 
~ 
~ 

3 
r-
~ ;:;. 
r­
a: 
~ 
-< o 
=-3 
~ 

~ 

~ 
(",fJ 
~ 

:;0 
~ ;-

~ 
~ 

~ 

;'<:'\;!/' 

~;; 

~ 
E 
'f: 

:;;",<,;t;~ 

': 

i 

';,;;,';;,;' """I,';">'i\,;i :,;;;, ;'< "";"';"\: 

I "'; 
WPLMCSF I 

I 

I 
XVPARMAD 

J 

" ",' \.';";~ ""\;:",,.,:,)~;;;,'/*, 

Supervisor 
Request Block (SVRB) b' 

XVDFLAGS 

XVDOWWB 
, 
~ 

XVDONORE '! 

XVDONWOE 
; 

XVOREAD 
~' 

Unit Control 

ti Module (UCM) 

UCMRONR : 
UCMROLM ,~ 

;; 

UCMRPYI :; 

UCMRPYL ! 
! 
; 

f 
,;' " 

,'""", 

"') 12 (MLWTO Note) ., 

From 
Step 15 .. 

'" 

" 13 If WTOR processing, then: 
v 

(SETLOCK Subroutine) 

(GETBlKS Subroutine) 

a. Obtain ORE. 

(GETID Subroutine) 

b. Obtain reply identification. 

If an error occurred. 

If OR E or reply identification 
was not available, go to 

--.. 
,.. Step 20 

ttY 

BUILDOR 
Step 14 .. 

,.. 
Subroutine 
GETID Unit Control 

~ Module (UCM) 

I I r .. 
UCMRPYI ., 

D23 
ABEND .. 

'" 

.. 
,.. Step 15 



en 
~ 
() g. 
::I 
N 

s:: 
~ 
=-8-
o ... 
o 

"'C:j 
~ 

~ 

6' 
::I 

N 
~ 
~ 

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 12 of 20) 

Extended Description 

12 This branch does not exist in the code. In executing 
steps 13-19, for one reason or another, a multiple 

line WTO (MLWTO) does not meet the conditions necessary 
to execute these steps. 

13 If this process was initiated by a WTOR macro 
instruction, then SVC 35 attempts to get the 

ORE and reply identification before getting the WOE. 
To serialize using the Communication Task resources 
(WOE, COUNT, REPLY IDs, ORE COUNT, etc'), the 
LOCAL and CMS locks are obtained by issuing the 
SETLOCK macro. 

a. If the number of OREs in use (UCMRQNR) is less than 
the number of OREs generally permitted (UCMROLM), 
or if the WTOR user is privileged (as explained in step 5), 
the VWTOGETB subroutine is called to obtain the ORE. 

b. If an ORE was obtained, UCMRPYI and UCMRPYL are 
used to search the 100-bit identification map for the first 
available reply identification. When found, the identifica­
tion is placed in the ORE and the corresponding bit is 
turned on in the identification bit map. 

Any error causes a 023 user ABEND. 

If an ORE or reply identification was not available, control 
is passed to step 15. 

Module Label 

MAIN 

GETBLKS 

GETID 



N 
J:.. 
o 

o 
CI') 

"< 
CI') 
N 
CI') 
'<: 
~ 
('\) 

3 
S 

(JQ 
(;. 

t"'" 
0: 

~ 
<: 
o 
2' 
3 
('\) 

N 

'< 
CI') 
N 

::0 
('\) 

~ 
~ 
w 
~ 

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 13 of 20) 

Input 

Unit Control Module (UCM) 

UCMWONR 

[\1, 
t~ ~, 

UCMWOLM 

Supervisor 
Request Block (SVRB) 

XVDFLAGS 

XVWOEAD 

Supervisor 
Request Block (SVR B) 

XVDOWWB 

Address 
Space Control Block (ASCB) 

ASCBASID 
I 

I 

<:. 
"::::: 

Process 
y 

Output 

From ::,l 

Step 13 • t.~. 
.'~ f. 

--""...,. 

(GETBLKS Subroutine) 

14 Obtain a WOE. 

If an error occurred. 

" 
•. ;.·.:.: .. :.·:·.}.' •. ·.·I·.· Subro uti ne " ~ BUILDWQE 
.::.: Step 17 ... 

4. 

023 
ABEND 

,.. 

--,.. 

If a WOE was available, go to '.J. Step 16 ~ 
(VWTOWAIT Subroutine) 

15 An ORE, reply identification, 
or WOE was unavailable 
for this user. 

a. Free previously obtained ORE 
and reply identification ............ ~ 

b. Wait for the next freeing of a 
required ORE orWOE . ......... .. 

i\ -.. 

Unit Control Module (UCM) 
I 

UCMFLAGS 

UCMRPYL 

Supervisor 
Request Block (SVRB) 

XVDOWWB 

XVWWB 

WOE orORE 
Write Wait Block (WWB) 

WWBASCB 

WWBTCBAD 

WWBFWDPT 

WWBBCKPT 

When OR E "' WOE isl • Step 131\! ,", >l\ • ,Xh 'ie'" :,.: !,;,.,J 
available, go to .' 

023 
1 ABEND --.. 

If an error occurred. ,.. 

WWBFLAGS' 

WWBECB 

"'. :.~" ,,,,~:;,. 



C"J') 
~ 

~ o· 
= 
~ 

::: 
~ 

[ 
o 
~ 

o 

I 
~. 

= 
~ 
~ 

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 14 of 20) 

Extended Description Module Label 

14 To obtain a WQE the number of WQEs in use IEAVVWTO GETBLKS 
(UCMWQNR) must be less than the number of WQEs 

generally permitted (UCMWQLM), or the user of the WTO 
or WTOR macro instruction must be privileged (as explained 
in step 5), The VWTOGETB subroutine is called to obtain 
the WQE. 

Any error causes a D23 user ABEND. 

If the WQE was obtained, control passes to step 16. 

15 An ORE, a reply identification, or a WQE was not 
available for this WTO or WTOR macro instruction 

user. If this is a WTOR message and an ORE or reply identi­
fication was not available, subroutine VWTOFORE is called 
to free the previously obtained ORE. Subroutine 
VWTOWAIT is then called to create either a WQE or ORE 
write wait control block (WWB); this subroutine then waits 
for the WWBECB to be posted. 

Any error causes a D23 user ABEND. 

When the ORE or WQE is available, control is returned to 
step 13. 

VWTOWAIT 



~ Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 15 of 20) 
~ 
N 

o 
CI'.l 

"< 
CI'.l 
N 
CI'.l 
'< 
~ 
(D 

3 
r-
~ 
(;. 

r-
0: 
Dl 
~ 
<: 
o 
2' 
3 
(D 

N 

'< 
CI'.l 
N 

::0 
(D 

i 
r6 
1M 

~ 

Input 

Write Parameter List (WPL) 

WPLMCSF 

WPLRECB 

WPLRPTR 

Address 
Space Control Block (ASCB) 

ASCBASID 

Unit Control Module (UCM) 

UCMCMID 

Supervisor Request 
Block (SVRB) 

LL 
XVWQEAD 

Write Queue Element (WQE) 

I---

I--

I--
~ 

~ 

Register 4 

~ User's TCB 

I---
I--

-
to--
~ 

,,",' 

Process 
From 
Step 14 .. 

-" (BUILDORE Subroutine) 

'" ) 16 If WTOR, fill in the ORE 
and place it on the 
ORE queue. 

1 

i Suspend the ORE. 

'i 

l. 
L 

~ 
L ':g 
L 

,,' 

1 

Output 

Subroutine 
BUILDORF .. 

....,. Supervisor 
Request Block (SVRB) 

" 
,. ii 

XVOREAD 

Operator 
Reply Element (OR E) 

r ~ 

-, ~ 

~ 

I--
~ 

Urlit Control Module (UCM) 

i I UCMRPYQ I ; .. 
j; 

ri 
;;;~> ,,',' 



en 
~ 

a o· 
:= 
!':J 
a:: 
~ ;. 
o 
Q. 

o ..., 
o 
"0 
~ 

~ g. 
:= 

N 
~ 
w 

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) nEA VVWTO) (Part 16 of 20) 

Extended Description 

16 If the processing is for a WTOR macro instruction, 
the ORE is always filled in before the WOE. The 

OR E contains the TCB address of the WTOR user, the 
address of the WOE associated with this ORE, and the 
address space identification (ASIO) of the user's memory. 
The ORE is queued in the system ORE chain (UCMRPYO) 
and marked temporarily suspended (ORESUSPI. Suspend is 
removed after the subsystem exit routine has reviewed the 
message. 

Module Label 

IEAVVWTO BUILOORE 



~ Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 17 of 20) 
~ 

o en 
~ en 
N 
en 
'< 
~ 
~ 

3 

~ 
(;' 

r:: 
r:r 

~ 
-< a = 3 
~ 

N 

<: en 
N 

:::tJ 
~ 

i 
~ 
~ 

~ 

;, 
r, 
0 
h 

Write Parameter List (WPL) 
(BUI LDWQE Subroutine) 

..1'1.. 
WPLMCSF y 17 Fill in the WOE and 

place it on the 
WPLRECB WOE queue, 

WPLRPTR 

Suspend the WOE. 

Address 
Space Control Block (ASCB) 

[ ASCBASID r ! 
Unit Control Module (UCM) 

i 
UCMCMID L r 

Supervisor 
Request Block (SVRB) 

1 XVWOEAD 

Write Oueue Element (WOE) r 
I--
~ 

r--
I--
r-

Register 4 

k 
User's TCB 

I---
t---

t--
I-- I t--

Subroutine 
BUILDWOE 

lilt.. Supervisor 
P' Request Block (SVR B) 

XVWOEAD 
~ 

~ 
( W,;te Queue Element (WQE) ;> 

/' 

t--- , 

J t-- ~' 
t--.. 
t-- j 
I--

Unit Control Module (UCM) 
.. 

UCMWTOO £ 
v , 

UCMWOEND 
:, 

",':, M,'~:'/', ,,;. ,l 



tI} 
~ 

II o· 
= 
~ 

~ 
~ g 
~ 

o -. 
o 

"C 
Si 
~ o· 
= 
t,,) 

~ 
til 

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 18 of 20) 

Extended Description Module 

17 The WOE is filled in from the user's write parameter I EAVVWTO 
list (WPL) and the supervisor request block (SVRB). 

It is then placed on the system WOE chain, via UCMWTOO 
and UCMWOEND, and marked temporarily suspended 
(WOESUSP). Suspend prevents the message from being 
displayed at the console until after the subsystem exit 
routine has reviewed the message. 



~ Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 19 of 20) 
~ 

o 
(I'J 

~ Input 
~ ~i~~------------------------~ (I'J 

'< 
~ 
('D 

3 
r-
~ 
n' 
r­a: ... 
~ 

-< 
<: 
o 
C 
3 
('D 

N 

'< 
(I'J 
N 

:::0 
('D 

~ 
~ 
~ 

~ 

Supervisor 
Block (SVRB) 

XVWOEAD 

XVOREAD 

Supervisor 
ReQuest Block (SVRB) 

XVDFLAGS 

O~Tr."'n,...., 

XVWOEID 

Branch to subsystem exit. 

Remove suspend state 
from WOE and ORE . 

19 Post the communication task. -""l,~,ir------~ 

If no error exists: 

a. Set message identification _--,, ___ .... 
in register 1. hi 

b. Branch. 

Return to SVC First Level 
Interrupt Handler (I EAVESVC) 

Subsystem 
Options Block (SSOB) 

Write Oueue Element (WOE) 

WOEBUFE 

WOEOFHC 

Unit Control Module (UCM) 

I UCMSYSI 

Register 15 

Return Code 

Supervisor 
Request Block (SVRB) 

XVAO 

XVA4 

XVA8 

Unit Control Module (UCM) 

UCMOECB 

Register 1 

Message Identification 



CIl 
(D 

~ o· 
= N 

== (D 

[ 
o .... 
o 

"C ; 
g. 
= 
N 
J:,. 
-...I 

Diagram 1-6. WTO and WTOR Macro Instruction Processing (SVC 35) (lEA VVWTO) (part 20 of 20) 

Extended Description 

18 The WOE and ORE are passed to the job entry sub-
system exit routine along with the subsystem options 

block (SSOB) and its extension (SSOBWTI. The subsystem 
may alter the routing codes, descriptor codes and message 
text, or delete the message. A deleted message is sent to 
the hardcopy log. Upon return from the exit, the suspend 
states are removed from the WOE and ORE. 

19 Posting the communication task ECB (UCMOECB) 
indicates that the message is ready to be transmitted 

to a console and permits the communication task to be 
dispatched to transmit that message. 

20 If any error has been found in a parameter list or 
while processing, the user receives a D23 ABEND. 

Otherwise the workarea in subpool 231 is freed and this 
module branches back to the user with the message identifi­
cation in Register 1 . The EST AE environment is cancelled. 

Module 

IEAVVWTO 



~ Diagram 1-7. Write-to-Programmer Processing Overview (IGC0203E) (Part 1 of 2) 
.j;:o. 
00 

o 
CZl 

< CZl 
N 
CZl 

~ 
(p 

3 
S 

(JQ 
(;. 

C 
0-

~ 
'< 
-< o 
2" 
3 
(p 

N 

~ 
CZl 
N 

:;0 
(p 

[ 
~ 
w 
~ 

Input 

User or System 
Program 

WTO Macro 
Instruction with 
Routing Code 11 

Process 

• If the WTO macro instruction was issued 
by a TSO terminal user: 

a) If user wants messages sent to his 
terminal, then send message 
to terminal. 

b) If he does not want messages sent to 
his TSO terminal, then set the 
return code. 

• If the message was not sent to a TSO 
terminal, then send message to 
program's message data set. 

• Check message operation and return 
to user. 

• Prepare mainline program for a 
retry operation. 

Return to Recovery 
Termination Management 

TPUT 

PUT 

Return to 
User 

c:J 
Register 15 

D 



til 
(!I 

~ o· 
:I 

~ 

::: 
(!I 

[ 
o .... 
o 
'0 
~ 
'" g. 
:I 

N 
.l. 
\&J 

Diagram 1-7. Write-to-Programmer Processing Overview (IGC0203E) (part 2 of 2) 

Extended Description 

The write to programmer (WTP) message facility permits 
a message to be issued from a program and sent to the 
user of that program. For the program to send a WTP 
message to the user of that program, a WTO or WTOR 
macro instruction is issued with routing code 11. The 
WTP message is either placed in the system message 
data set defined by the user for this purpose or sent to 
the user's TSO terminal, provided the TSO user wants 
WTP messages sent to his terminal. 

The WTO or WTOR message is processed by the WTO 
and WTOR macro instruction processing routine 
(I EAVVWTO). Each time a message is flagged with 
routing code 11, the WTO routine branches to the 
write to programmer routine. After the message has 
been processed, control is returned to the WTO routine. 

Mainline Routine: IGC0203E - Write to Programmer 
Routine 

This routine receives control from the WTO and WTOR 
macro instruction processing routine (I EAVVWTO) for 
those WTO and WTOR macro instructions that were 
issued with ROUTCDE=11. This routine consists of a 
series of subroutines that collectively perform the write 
to programmer (WTP) message processing. 

Subroutines: 

BUILDMSG 
This subroutine prepares error message IE F 1 071. This 
message is issued when the WTP routine is unable to 
send the WTP message to an appropriate device or 
TSO terminal. This error message contains all of the 
full words contained in the text of the first 53 bytes 

of the WTP message. If there are no blanks in the 
first 53 bytes to delimit words, the first 53 bytes 
are included in the error message. 

Extended Description 

BUILDRPL 
This subroutine obtains the location of the request 
parameter list (RPL) from the user's job step control 
block (JSCB) and fills in the necessary RPL fields. 

CHECKJOB 
If this is the first WTP message f~r this job step, then 
this subroutine initializes the WTP area of the user's 
job step control block. Otherwise, this subroutine 
returns to the mainline code. 

CHECKMSG 
This subroutine breaks messages that are longer than 
126 bytes into mUltiple message lines of 126 bytes 
or less. An attempt is made to break the message 
lines between words. 

CKMCSFLG 
This subroutine determines whether the WTP message 
will be sent to the hardcopy log or queued to a 
console. 

CKROUTCD 
This subroutine is called when the WTP routine 
has failed to send the WTP message. If either the 
message has other routing codes or an operator con­
sole is receiving routing code 11 messages, the results 
of this subroutine cause the WTP routine to return 
to the WTO macro instruction processing routine 
where message processing continues. Otherwise, the 
results of this subroutine cause the WTO macro 
instruction processing routine to return to the WTO 
or WTOR macro instruction user with an indication 
that the message was not sent. 

CKRETURN 

This subroutine checks the return codes upon return 
from the subsystem exit. 

Extended Description 

GETESTAE 
This subroutine builds a parameter list for EST AE and 
then issues the ESTAE macro instruction. 

ISSUEDEQ 
This subroutine builds the dequeue parameter list and 
issues a conditional dequeue macrQ instruction. 

ISSUEENQ 
This subroutine checks the pointer to the request param­
eter list (RPL). If the pointer to the RPL exists, the 
enqueue parameter list is initialized and an unconditional 
enqueue macrb instruction is issued to serialize the writ­
ing of the WTP message to the user's system message data 
set for this job. If the RPL pointer is zero, error message 
I EF1 071 will be issued to the hardcopy log with a mes­
sage identification of '1'. 

ISSUEMSG 
Th is subrouti ne issues error message IE F 1 071 to the hard­
copy log using a WTO macro instruction. This error mes­
sage was prepared by the BUI LDMSG subroutine. 

ISSUTPUT 
When the WTP message is for an active TSO terminal user 
and that terminal user wants to receive his WTP messages 
at his terminal, this routine issues the TPUT macro 
instruction. 

LOADREGS 
This subroutine is entered only during STAE retry proc­
essing. It restores the necessary registers for the mainline 
WTP routine before it returns control to the WTO and 
WTOR macro instruction processing routine. 

STAEOOO 
This is the ST AE exit subroutine; it receives control only 
when an ABEND situation occurs. 



N 
Ut 
o 

o en 
~ 
en 
N 
en 
'< 
~ 
('II 

3 

~ 
(;. 

I:"" 
0: 

~ 
<: 
CI 

=-3 
('II 

N 

~ 
en 
N 

'" ('II 

i 
~ 
c...I 

~ 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (part 1 of 22) 

Registers 0-15 

Register 15 

NotO 

TCBJSCB 

User's Job 
Step Control Block (JSCB) 

• 

Process Output 

1 Save registers in the WTO register •• 1 w(i 
save area. 

2 Establish EST AE recovery 
environment. 

If ESTAE was 
unsuccessful: ____ I ... Step 26 

3 If pointer equals zero, go to ,J • Step 26 



(I:l 
~ 

l4. o· 
= N 

s:: 
~ 

~ 
Q. 

o ..., 
o 

'"C 

S 
6' 
= 
N 
~ 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (part 2 of 22) 

Extended Description 

1 All registers are saved in the save area of the WTO and 
WTOR macro instruction processing routine. The 

address of this save area was in register 13 when control was 
given to this routine. All of these registers are restored 
before control is returned to the WTO routine. 

2 The establ ishment of the ESTAE recovery environment 
ensures that if there is a WTP abnormal termination, 

the queues and data areas will be cleaned up, and an attempt 
will be made to restore the communication task to full 
operation. 

If the STAE exit routine is entered while a write-to­
programmer (WTP) message is being processed, the ST AE 

exit routine issues message IEF1071 to the hardcopy log. 
This message contains the first 53 bytes of the write-to­
programmer message. 

When control is returned to this routine from the EST AE 
and if register 15 has been set to zero, the EST AE was 
successful. 

3 The active job step control block (JSCBACT) contains 
a pointer to the user's job step control block (JSCB)' 

The user's job step control block is needed to obtain the 
pointer to the request parameter list (RPL). If the pointer 
to the user's JSCB is zero, the write-to-programmer facility 
cannot be performed. 

Module 

(GC0203E 



~ Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (part 3 of 22) 
VI 
N 

~ 
~ 
N 
CI:l 
'< 
~ 

3 
~ 
5· 
£: 
~ 

~ 
-< o 

= 3 
~ 

N 

'< 
CI:l 
N ,., 
~ 

i 
r6 
w 
~ 
'-' 

Register 7 

t 
( User's Address Space 

Control Block (ASCB) 

I ASCBTSB 

Address of TSO Protected 
Step Control Block 

I PSCBPTR:f. 0 

User 
Profile Table (UPT) 

I UPTWTP -1 

1 
;; 

~ :?J ~i I\. 4 If the user's TSB address is ') 
r -" zero, then the issuer is not using 

TSO. Go to 

If not zero, then send WTP 
message to user's terminal. 

(ISSUTPUT Subroutine) 

I ... 
) 5 If the TSO user wants WTP 

v messages at his terminal, then 
issue the TPUT macrO instruction. 

r 

If the TSO user does not want 
WTP messages, set return code. 

" 
, 
, 

:; 
':cj 

. 
-,. Step 7 

o/i 
Register 15 

I I 4 , 
,.,<,"'" 

; 

TPUT .. ; ,~; 

Register 0 

'i " , I I Message Length 
I i1 

~ 
r 1j 

Register 1 

I WPL Message Address I 
.-

i i 
1 

Register 15 
A r TPUT Return Code 1 .... 

J Register 15 , 

I I Return Code = 4 l 
;~1 , 

.' 



til 
(D 

~ o· 
= 
~ 

a:: 
(D 

So 
&. 
o .... 
o 
"0 
Sl 
~ g. 
= 
N 
~ 
tN 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (part 4 of 22) 

Extended Description 

4 When the recipient of the WTP message is an active 
TSO terminal user, the WTP message is sent to his 

terminal. If the recipient is not a TSO user, an attempt will 
be made to send the WTP message to the message data set 
defined for his job. 

5 Upon entry into the ISSUTPUT subroutine, a test 
determines if the TSO user wants WTP messages sent 

to his terminal. If he does, a pointer. to the message text in 
the user's write parameter list (WPL) is placed in register 1 
and the length of the WTP message is placed in register 0; 
this subroutine then issues the TPUT macro instruction, 
which will cause the WTP message to be transmitted to the 
user's terminal. When control is returned to this subroutine, 
it immediately returns to the mainline routine with the 
return code received from the TPUT operation. The return 
code is zero if the message was sent. 

If the TSO user does not want WTP messages sent to his 
terminal, a return code of 4 is placed in register 15 to indi­
cate that the WTP message was not sent and control is 
returned to the mainline routine. 

Module 



~ Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 5 of 22) 
VI 
~ 

~ 
"< (I) 
N 
rIl 
'< 
~ 
~ 

3 
r'" 

ci t;. 
r'" 
~ e 
'< 
-< o 
;: 
3 
~ 

N 

'< 
rIl 
N 

::;0 
~ 
(D 

~ 
~ 

~ 

Register 15 

Job Step 
Control Block (JSCB) 

JSCBWTSP 

JSCBSTEP 

6 If WTP message was sent to the 
TSO terminal then::1 I Step 26 

If not sent then: 

(CHECKJOB Subroutine) 

7 If this is the first WTP message 
for this job step, then: 

a. Set switches to zero. 

b. Set WTP message 
initialization indicator. 

8 Call ISSUEENQ subroutine. 

Output 

Job Step Control 
Block (JSCB) 

1 JSCBWTP rl 
T JSCBWTSP J 



til 
(1) 

a o· 
= N 

s:: 
!l 
[ 
o .... 
o 

'1:1 
(1) 

a o· 
= 
N 
~ 
<.II 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 6 of 22) 

Extended Description 

6 Upon return to the mainline routine, register 15 is 
checked to determine if the WTP message was sent to 

a TSO terminal user. If the message was sent, register 15 
contains a zero; any other value indicates that the WTP mes­
sage was not sent. If sent, the WTP message wi II not be sent 
to an I/O device; this routine branches to the area of this 
routine that returns control to the WTO and WTOR macro 
instruction processing routine. 

If the WTP message was not sent to a TSO terminal, the 
CHECKJOB subroutine is called. 

7 The CHECKJOB subroutine does a first pass initializa-
tion of the job step control block (JSCB) for the job 

step that is receiving the WTP message. To determine 
whether the JSCB has been initialized, the JSCB job step 
number (JSCBSTEP) is compared to the number of the last 
job step to receive a WTP message (JSCBWTSP). If they 
match, the JSCB has already been initialized. If they differ, 
the WTP flags (JSCBWTP) in the JSCB are set to zero and 
the job step number (JSCBSTEP) is copied into the field 
that indicates the last job step to have received a WTP mes­
sage (JSCBWTSP). Control is returned to the mainline 
routine. 

8 Upon return from the CHECKJOB subroutine, the 
mainline routine calls the ISSUEENQ subroutine. 

Module 



~ Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 7 of 22) 
Ul 
0'1 

o en -<: en 
N 
en 
'< 
~ 
~ 

3 

i 
(') 

t"" 

~ 
.$ 
<: o 

=-3 
~ 

N 

'< en 
N 

:::0 
~ 

i 
~ 
w 

~ 

ti 

~ 
Job Step 
Control Block (JSCB) ~ 
I I , 

JSCBSMLR I 
J 

Register 15 

I I 
Not 0 

, ", 

Write ~ Parameter List (WPU 

I I 
WPLTXT 

; 

Supervisor ~ Request Block (SVRB) 

I XVMSGLGH 
I 

~,. 

·.";:t~::; 

0,'0 .. :.":,,:"':" 

(lSSUEENQ Subroutine) 

" ) 9 Determine if there is a pointer to 
£ v 
~ 

the request parameter list. 

! 
! 

If there is not: 
: 

a) Set return code. 

b) Set ENQ failure indicator. 

d Go to Step 21. 

If there is: 

" ) 10 If the enqueue was 
{:, v unsuccessful, then: 

:~ 
(\ 

~1 11 Prepare to transmit WTP message: 

'f,' " a) CopyWTP 
t".' v 
~'i 

message pointer. 

l' [~,; ."-
b) ) CopyWTP 

:.::. v message length. 

!< 

t:\'~ .'.::: " ': ".' .... . 

It 
- '--

; -: .. ] ';; ,. 

~ 
;;. 
:t: r: 

}' 
, .. ' 

: " « 
Register 15 

",. I I 4 
';' " 

WTP Work Area 

" I I MSGID = '1' 
,~~ 

y 

" .. ... 
,. Step 21 

.. Enqueue Parameter List 
, ENQ .. "', 

§t I 
\ ~ , .... 

"'; 
i~, " : 
~; '. 

... 
ABEND ,. 
138 ',', 

. 

.' 

,:" 

". 

':; 
" Register 3 

, 

"- I I Pointer to Msg. Text v 

,,. Register 8 

" I I Length of Message " 

v 

, 

',' " 



til 
(D 

$4-o· 
= ~ 
::: 
(D 

[ 
o .... 
o 
~ 

~ 
~ o· 
= 
N 
c:n ....., 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 8 of 22) 

Extended Description 

9 The ISSUEENQ subroutine determines whether a 
pointer exists for a request parameter list (RPL). 

If the pointer to the RPL exists, this subroutine prepares a 
parameter list and issues the ENQ macro instruction. Upon 
return from the execution of the ENQ macro instruction, 
control is returned to the mainline routine; if the enqueue 
was successfully executed, register 15 was set to zero by 
the enqueue. If an abnormal termination occurs while the 
enqueue is executing, control will be given to the WTP 
STAE exit routine. 

If the pointer to the RPL does not exist, a 4 is placed into 
register 15, the character '1' is placed in the MSG I D field of 
the WTP work area to indicate that the enqueue was not 
issued. The '1' indicates the absence of the RPL pointer. 
Control is returned to the mainline routine. 

10 Upon return from the ISSUEENQ subroutine, the 
mainline routine determines if the enqueue was suc: 

cessful. If the enqueue was successful, register 15 contains a 
zero; if the enqueue was unsuccessful, the mainline routine 
issues a 138 abnormal termination. During the processing of 
that abnormal termination by recovery termination manage­
ment (RTM), RTM gives control to WTP STAE exit routine 
(STAEOOO) shown in step 34. 

11 In preparation for sending a WTP message to a user 
defined data set, register 3 is initialized with a pointer 

to the beginning of the WTP message's text and register 8 
with the length of the WTP message. 

Module 



~ Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 9 of 22) 
(JI 
00 

o 
~ 

"< 
~ 
N 
~ 

~ 

i 
r-
~ t;. 

r­
a: 
a 
'< 
<: 
o 
C 
3 
Q 

N 

'< 
~ 
N 

" ~ 

tf 
~ 
w 
~ 

Input 

Register 8 

o 

Register 8 

Not 0 

Register 8 

Message Length 

Register 3 

Pointer to Msg. Text 

12 Determine whether the entire 
WTP message has been sent. 

If sent, then: 

If not sent, then: 

(CHECKMSG Subroutine) 

13 Break WTP message into 
multiple message segments 
with a maximum length of 
126 characters. 

14 Call BUILDRPL subroutine. 

(BUI LDRPL Subroutine) 

Output 

.1 I Step 19 

15 Build the request parameter list. of 

Register 8 

Remaining Msg 
Length 

Register 2 

Length of Msg 
to be PUT 

Register 3 

Ptr. to Next Msg 
Segment 

Request 
Parameter List (RPU 

f-] 



til 
CD 
!l o· 
= t-J 

~ 
CD 

[ 
o .... 
o 
'"d 

CD 

~ o· 
= 
t-J 
&. 
~ 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 10 of 22) 

Extended Description 

12-18 These steps constitute a multiple step loop for 
preparing and then sending the WTP message to 

a user defined data set. 

If the WTP message is longer than 126 characters, the mes­
sage will be broken into message segments of 126 characters 
or less; an attempt is made to break the message text 
between words. As each segment is prepared, the PUT 
macro instruction is issued to send the WTP message to the 
message data set for this users job. If the PUT operation was 
successful, the operation returns to the top of the loop to 
prepare the next WTP message segment. 

If the WTP message is 126 characters or shorter, then only 
one pass is made through these steps except that the last 
step returns to the first to determine the end of this multi­
ple step operation. 

12 Upon the initial entry into this step, register 8 con-
tains a count of the number of characters in the WTP 

message. On each subsequent entry, register 8 contains a 
count of the number of characters yet to be sent to the user 
defined data set. Eventually, the count will be zero, thus 
indicating that the entire WTP message has been sent. Until 
the entire WTP message has been sent, this routine calls the 
CHECKMSG subroutine. When the entire WTP message has 
been sent, this routine branches to the area of the routine 

that returns control to the WTO and WTOR macro instruc­
tion processing routine. 

13 The CHECKMSG subroutine determines the WTP 
message segment that will be transmitted to the user 

defined data set. Any WTP message having more than 126 
characters is divided into segment of 126 characters or less. 
An attempt is made to end a message segment with a blank 
character; thus, a WTP message segment may be less than 
126 characters. Control is returned to the mainline routine. 

14 Upon return from the CHECKMSG subroutine, the 
mainline routine calls the BUI LDRPL subroutine. 

15 The BUILDRPL subroutine prepares the request 
parameter list (RPL) that is used by the PUT macro 

instruction to send the WTP message to this job's message 
data set. Control is returned to the mainline routine. 

Module 



~ Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 11 of 22) 
o 

o 
c:n 
~ 
c:n 
N 
CI:l 
'< a 
3 
oi 
ri" 
C 
a-
~ 
'< 
<: o 
C 
3 
~ 

N 

'< c:n 
N 

:::0 
~ 

i 
~ 
IN 

~ 

Input 

Register 15 

o 
Register 15 

Not 0 

From 
Step 12 

16 Issue PUT macro instruction to 
send first WTP message segment 
to user defined data set. 

17 Call the CKRETURN subroutine. 

(CKRETURN Subroutine) 

18 Determine whether PUT was 
successful. 

If successful, then: 

If unsuccessful, then: 

a. Set WTP message length to 
zero. 

b. Set PUT failure indication. 

c. Continue processing. 

19 Call the ISSUEDEQ 
subroutine. 

Output 

Register 8 

Message Length ~. 

WTP Work Area 

MSGID = '3' 



l:I'.l 
(1) 

~ o· 
:I 

~ 

~ 
(1) 

;. 
8-
o .... 
o 
"0 
~ 
~ o· 
:I 

~ 

b--

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (part 12 of 22) 

Extended Description 

16 Upon return from the BUILDRPL subroutine, the 
mainline routine issues the PUT macro instruction. 

This macro instruction moves one segment of the WTP mes­
sage to the message data set. If the PUT operation is success­
ful, a return code of zero has been placed in register 15. 

17 Upon return from the PUT operation, the mainline 
routine calls the CKRETURN subroutine. 

18 The CKRETURN subroutine determines whether the 
PUT operation was successful. If it was successful, 

then this subroutine branches back to the beginning of the 
loop control either to end the transmission or to send the 
next segment of the same WTP message. 

If the PUT operation was unsuccessful, transmission of 
additional WTP message segments is prevented by setting to 
zero the remaining number of characters to be transmitted 
in register 8; indicating that the PUT operation failed by 
placing the character '3' in the WTP work area (MSGID); 
and branching back to the beginning of the loop where the 
end of transmission will be recognized. 

19 After the entire WTP message has been sent to the 
user defined data set, the mainline routine calls the 

ISSUEDEQ subroutine. 

Module 



~ 

b. 
~ 

o 
tfJ 

"< 
tfJ 
~ 

tfJ 
'< 
~ 

~ 

~ 
(;' 

r-
~ 
~ 

-< 
<: 
o 
C 
3 
~ 

~ 

<: 
tfJ 
~ ,., 
~ 

g 
~ 
CoN 

~ 

Diagram 1-8, Write-to-Programmer Processing (IGC0203E) (part 13 of 22) 

Register 15 

o 

WPLTXT 

Supervisor 
Request Block (SVRB) 

XVMSGLGH 

Register 6 

Length of Message 

WTP Work Area 

MSGID 

Task I/O Table 

TIOCNJOB 

20 Release enqueued resources. 'I • 

•••• fil. ' .• '. ·21 Determine if PUT operation 
was successful or RPL exists. 

If successful, then go to: ---1:: .. 1 ••• Step 25 

If unsuccessful, then: 

(BUI LDMSG Subroutine) 

Obtain pointers to a 
maximum of 53 characters 
for a WTO error message. 

23 Call the ISSUEMSG subroutine. 

(lSSUEMSG Subroutine) 

Prepare and issue error message 
to system hardcopy log. 

WTO 

Output 

Register 6 

Length of Message 

WTO Message 

IEF1071 - J 



00 
(!) 

g. 
5' 
= 
~ 

~ 
~ 
5" 
~ 

o .... 
o 

"0 

S g. 
= 
I-.) 

0.-
c..J 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 14 of 22) 

Extended Description 

20 The ISSUEDEQ subroutine issues the DEQ macro 
instruction to release the resources obtained earlier 

when the ENQ macro instruction was issued. Control is 
returned to the mainline routine. 

21 The mainline routine determines if the PUT opera-
tion was successful by testing the contents of 

register 15. If register 15 is zero, the PUT operation was 
successful. 

If register 15 is not zero, the PUT operation was unsuccess­
ful; the SUI LDMSG subroutine is called. 

22 The SUI LDMSG subroutine locates the end of the 
first 53 character segment of the WTP message which 

was unsuccessfully sent. This 53 character segment will 
become part of error message IE F 1 071. An attempt is made 
to break this message segment at the blank character closest 
to the end of the 53 character segment to prevent a break in 
the middle of a word. Control is then returned to the main­
line routine. 

23 Upon return from the SUILDMSG subroutine, the 
mainline routine calls the ISSUEMSG subroutine. 

24 The ISSUEMSG subroutine prepares the write param­
eter list and issues the WTO macro instruction that 

will cause message IEF1071 to be written to the hardcopy 
log. Control is returned to the mainline routine. 

Module 



~ Diagram 1-8. Write-to-Program!Der Processing (IGC0203E) (Part 15 of 22) 
4:00 

o 
tI:l 

"< 
tI} 
~ 

tI} 

~ 

~ 
i. 
~ 

t""' 
0: ... 
Q) 

~ 
-< a 
= 
== ~ 
~ 

'< tI} 
N 

~ 
~ 

i 
r6 
tN 

~ 

Register 1 

See Explanation 

EST A E Para meter List 

Extended Save Area 

Unit Control Module (UCM) 

UCMVEA 

UCMVEZ 

UCMVEL 

WTPROUTE 

From 
Step 21 

25 Set register 1 to zero. 

From Steps 
2, 3, and 6 

26 If register 1 is zero, 
then go to: 

STAE Retry 
Entry Point 

(LOADR EGS Subroutine) 

27 Restore registers. 

(CKROUTCD Subroutine) 

28 Scan the console UCM E 
chain to determine whether 
any consoles receive WTP 
messages. 

·Register 1 

0 

Step 28 

6 WPL Pointer 

9 WTP Work Area Pointer 

UCM Pointer 

Extended Save Area Pointer 

Save Area Pointer 

Register 15 

o or 4 



c;n 
(D 

~ 
5· 
= 
~ 

r=:: 
(D 

[ 
o 
000) 

o 

I 
5· 
= 
~ 
CIo 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 16 of 22) 

Extended Description 

25 Upon return from the ISSUEMSG subroutine or 
upon entry from having a successful PUT operation, 

register 1 is set to zero to prevent error processing. 

26 If register 1 is zero, then bypass STAE retry 
processing. 

27 For STAE retry only. Restore registers 6,9,10,12, 
and 13 to the values held in these registers when the 

WTP routine was entered. Control is returned to, the main­
line routine. 

28 Determine if any of the system consoles are receiving 
routing code 11 messages. This determination is 

accomplished by scanning the unit control module entries 
(UCMEs) for the console. This subroutine locates a UCME 
for a console that is about to receive a routing code 11 
message. When a routing code 11 console has been found, 
register 15 is set to zero. When no consoles are receiving 
routing code 11 messages, register 15 is set to 4. Control is 
returned to the mainline routine. 

Module 



~ Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 17 of 22) 
Q\ 
Q\ 

~ 
"< CI) 
~ 
CI) 

'< 
~ 

8 
t-
~ c:;. 
t­c: 
~ 
<: 
o 
2' 
3 
~ 

N 

~ 
CI) ...., 
~ 
~ ;-
; 
w 
~ 

Register 15 

4 

Write 
Parameter List (WPL) 

WPLMCSFB 

WPLMCSFD 

WPLMCSFH 

Unit Control 
Module Entry (UCME) 
, 

RTCODE11 

Unit Control 
Module (UCM) 

UCMSYSG 

Register 13 

Process 

29 If register 15 is equal to 
4, then: 

(CKMSGFLG Subroutine) 

30 Determine if further 
WTO and WTOR processing 

Output 

is needed. --------------------~--·L-----------------~NV 

31 Eliminate the ESTAE 
environment.] • 

32 Restore the registers. iL 

33 Return to WTO and 
WTOR macro instruction 
processing routine. 

Supervisor' 
Request Block (SVRB) 
i 

XVDOUSER 

XVDOHDCY 

Registers 0-15 

W--] 



Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 18 of 22) 

C"/) 
(D 

~ o· 
= 
~ 

fi:: 

~ 
Q. 

o .... 
o 
'0 

~ o· 
= 

Extended Description 

29 Upon return from the CKROUTCD subroutine, if 
register 15 is equal to 4, then call the CKMSGFLG 

subroutine. 

30 The CKMCSFLG subroutine determines if the WTP 
message just processed is being sent to either a con­

sole or hardcopy log. If it is not, then th is subroutine sets a 
bit (XVDOUSER) that tells the WTO and WTOR macro 
instruction processing routine that processing is complete 
and that the routine can return to the user who issued the 

WTO macro instruction; the communication task is not 
posted. 

Initially, three bits in the user's write parameter list are tested. 
If anyone of the three is set, this subroutine returns to the 
mainline routine without turning on the XVDOUSER bit: 

WPLMCSFB 
WPLMCSFD 
WPLMCSFH 

Queue message to an active console. 
Message type field exists. 
Queue message unconditionally to the 

identified console. 

When none of these three bits are set, a further test is made 
to determine if the system has either an active graphic 
console (UCMSYSG) or an active hardcopy log 
(UCMCUCM). If one of these is active and the system is 
writing hardcopy WTP messages, the XVDOHDCY bit is 
set to request that this WTP message be sent to the hardcopy 

log, and control is returned to the mainline routine. 

Any other combination of these bits indicates that the WTP 
message was the on Iy WTO operation to be performed; 
therefore, the XVDOUSER bit is set. This bit tells the WTO 
and WTOR macro instruction processing routine that mes­
sage processing is complete, and therefore, it can return to 
the user who issued the WTO macro instruction without 
posting the communication task. Control is returned to the 
mainline routine. 

31 Upon return from the CKMCSFLG subroutine, the 
mainline routine issues the ESTAE macro instruction 

to eliminate the EST AE environment. 

32 All registers are restored to their original values from 
the WTO register save area. 

t;-> 33 Control is returned to the WTO and WTOR macro 
~ instruction processing routine. 

Module 



~ Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 19 of 22) 

00 

o 
CIl 

~ 
CIl 
N 
CIl 
'< 

CI> 

~ 
£" 
(;. 

t"'" c: 
~ 
'< 
-< o 
C 
3 
(!) 

N 

'< 
CIl 
N 

:;:a::l 
(!) 

~ 
~ 
UJ 

~ 

Input 
From Recovery 
Termination 
Management 

Register 0 ;;~1" 
1<' 12 i 

OR 

Register 0 

Register <1 

Register 1 
r---

Not 12 

ABEND Code = 138 

SDWAABCC 

Write -to-Programmer STAE Exit 
(STAEOOO Subroutine) 

34 Restore the registers from the 
ESTAE parameter list: 

• If there is no SDWA, register 2 
points to the ESTAE 
parameter list. 

• If there is a SDWA, the SDWA 
contains a pointer to the 
EST AE parameter list. 

If the ABEND was caused by 
ISSUEENQ, set MSG 10 = '2'. 

WTP Work Area - I 



r;n 
CI> 
~ cr 
= N 

::: 
~ =­o 
Q. 

o -.. 
o 

'"0 
~ 
~ 
S· 
= 
N 
0.-
\C 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 20 of 22) 

Extended Description 

34 After the EST AE environment has been estab-
I ished by the write-to-programmer routine, any 

abnormal termination results in co!)trol being given to 
the WTP STAE exit routine by recovery termination 
management (RTMl. 

Upon entry into this routine, the registers are restored 
from the WTP ESTAE parameter list. The means of 
finding the ESTAE parameter list depends on whether 
there is a ST AE diagnostic work area (SDWA). When 
register 0 is equal to 12, register 2 contains a pointer to 
the EST AE parameter list. When register 0 is not equal to 

12, tegister 1 contains a pointer to the STAE diagnostic 
work area (SDWAl. The SDWA contains a pointer to the 
WTP ESTAE parameter list that contains the registers. 

35 If the abnormal termination occurred when the 
ISSUEENQ subroutine was unable to enqueue the 

request parameter list (RPL) in step 9, the MSGID is set 
to '2'. Before entering this step, the MSGID was '4' and 
is left at that setting for all other WTP abnormal termina­
tions. The MSG I D is printed as part of the message issued 
by this routine. 

Module 



':'J Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 21 of 22) 
....... 
o 

o 
~ 

"< 
~ 
I-.J 

~ 
'< 
~ 
~ 

3 
t""' 
~ 
n' 
t""' s= ... 
I» 

-< 
<: o 
C 
3 
Q 

I-.J 

'< 
~ 
N 

:::0 
~ 
;-
I» 

~ 
~ 

~ 

Input 
~"", ",' ",,' r'Y~'<'"",",, 

~: 

;: 

0 
~ 

" STAE Diagnostic 
Work Area (SDWA) 

'; ~ SDWAPARM 
", 

;, WTP ESTAE 
Para meter List 

! 
REGWPL2 

REGDATA2 

REGBASE2 

REGXSA2 

I 
;$ Register 2 

,;+ 

'i: 

,0: 
~~. 
~, 
'" 

;' 

;0 

\ 
", 

I 
.. ', 
" 

", 
" 

,i' 

t' 
'; ;: , 

'~ 

:= 

$ 
j 

'," ','<A, t 

" 
Process t 

~;"""" 

> 36 Set up error message, 
:- IEF1701. 
", 
,:" 

;;l 37 Issue message. 
> 
::, 

~;~ 
;~ 
;,; 38 If the SDWA exists: 

" I\. Copy retry address. ) • v 

• Issue SETRP macro 

;, instruction. 

~~~ 39 If the SDWA does not exist: 

r~ '" 
) • Copy retry add ress. 

!:i: v 

:.\. 

!;,~ • Set return code. 
" 

40 Return to RTM. 

I~ 
I:: 
!fuA 

Output 
,% 

""' 

~ Register 1 

:' 

t STAE Diagnostic 

J t 

f Work Area 

'" I SDWARTYA J v 

SETRP Macro 
Instruction to.. 

~ 

Regisfer 0 

'" I I v 

Register 15 

'" I I ) 4 
v 

... 
Return ,. to Caller 



I;Il 
(!) 

~ o· 
= 
N 

s:: 
~ 
g-
o. 
o .... 
o 
"d 
(!) 

S g. 
= 
N 
~ .... 

Diagram 1-8. Write-to-Programmer Processing (IGC0203E) (Part 22 of 22) 

Extended Description 

36 This routine calls the BUI LDMSG routine to 
prepare message I EF1701. 

37 This routine calls the ISSUEMSG routine to send 
message IEF1701. This message records the error 

condition that caused the WTP abnormal termination. 

38 If there is a STAE diagnostic work area (SDWA), 
this routine copies the address to be used for 

retrying the WTP program from the WTP EST AE param­
eter list to the SDWA. The retry address is located by an 
offset within the code. This routine then issues the 
SETRP macro instruction which sets an indicator telling 
recovery termination management (RTM) to retry the 
WTP routine. The actual retry waits until this routine 
returns control to RTM. 

39 When there is no SDWA, this routine copies the 
WTP retry address into register 0 and places a 

return code of 4 in register 15. Register 2 contains the 
pointer to the WTP ESTAE parameter list. 

40 Return to caller. 

Module 



~ Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 1 of 24) 
N 

o 
t;I.l 

~ 
t;I.l 
N 
t;I.l 

~ 

~ 
t-
~ 
n' 
t­
o: 
; 
'<: 

-<: 
o = 3 
~ 

N 

~ 
t;I.l 
N 

~ 
~ 

~ 
~ 
w 

~ 

From 

Input Process 
I:I;;f;<,~:;:'?;,;;i:;,;;c,'\'/;:/;:,A;l!a;':iLi;~<:,~/';;~,\':;;}'; ,:i~,ii'"~:Y,\Y",:l rrf:~"-,t'~~;;!"";;,,,':1';t:~'>":":::-<':~~;'~-)"i~,;";~>,~,/t~£i"',:z"",,,"ll;,t""";,',;~,\Y~~S;'~;i>"",(i~,;:;~12;""';:"",\l:'!:l,t:""';;:~,,;,,""',:'l"!"j>""':'i;'";:": :,....u;"..,>-,:;~>;:-,1,~\;A ... :'~:;i:,..."<~"..,.::; ... >}"..'t,...,±:t"..:,~,,,,,,\,,,,,,,,,,,,,,,,,,,,,'''''t'''''''''''''''''''';~,'':1 

WPL 

./' 
/" 

,/' 
,/' 

,/' 
,/' 

./ 

Caller: 
R EFERLEN 

IEAVMWTO X 

GETMINOR 

LlNEHDLR 

WAITWOE 

/' 
/' 

,/' 

SETLCKS 

X 

X 

IEAVMWTO 
1 The following table shows the subroutines and by whom 

they are called for the multiple-line write-to-operator 
(MLWTO) service routine: 

Subrouti nes Called: 

WAITWOE GETWOE GETMINOR TEXTLINE ENDUP 

X X X X X 

X 

X 

"-..."-.. 

"-..."-.. 

"'''-... 
"-.."-.. 

........ 

FINDID LlNEHDLR FRELCKS 

X X X 

X 



CI'.l 
(p 

II 
~r 
= 
~ 

a: 
(p 

[ 
o .... 
o 
'0 
~ 
~ g. 
= 
~ ...... 
w 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (lEA VMWTO) (Part 2 of 24) 

Extended Description 

This function builds the Major Write Queue Element (Major 
WQE) and one or more Minor Write Queue Elements (Minor 
WQE) containing messages for the console operators. Addi­
tional data lines may be connected to an existing MLWTO 
for key zero or supervisor mode users. 

Mainline Routine: IEAVMWTO 

Provides multiple line WTO support by building control 
blocks containing the text lines destined to go to an opera­
tor console. It also permits key 0 or supervisor mode users 
to add text lines to an already existing MLWTO. 

Subroutines: 

REFER LEN 
The WTO macro instruction prepares the write parameter 
list (WPL). Since macro instructions execute in a privi­
leged state, the possibil ity exists that part of the WPL 
resides outside the WTO user's address space; REFERLEN 
checks for this error condition. 

SETLCKS 
1. Obtains the local and cross memory services (CMS) 

locks. 
2. Sets up the functional recovery routine (FRR). 

WAITWQE 
Waits for a WQE to be freed. 

Module Extended Description 

GETWQE 
Obtains a major WQE from the WQE cellpoll in subpool 
231 and attaches it to the regular WQE chain. 

GETMINOR 
Obtains a minor WQE from the WQE cellpool in subpool 
231 and attaches it to the minor WQE chain that is 
pointed to from a major WQE. 

TEXTLINE 
I ncreases a pointer to the next line in the write parameter 
list (WPL). 

ENDUP 
1. Decreases the counter containing the number of lines 

yet to be processed. 
2. If needed, sets line type to data end. 

FINDID 
Locates major WQE to which a minor WQE is to be 
attached. 

LlNEHDLR 
When the WTO macro instruction is issued by a problem 
program, this routine replaces possible control characters 
imbedded in the message text with blanks (X'40'). 

FRELCKS 
1. The set up for the functional recovery routine is freed. 
2. The local and cross memory services (CMS) locks are 

freed. 

Module 



t;-J Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (Part 3 of 24) 
-....I 
,J:o. 

o 
'" "< 
'" \'oj 

'" '< 
~ 
('D 

3 
t"" 
~ 
(5' 

t"" 

~ 
~ 

-< 
<: 
o 
C 
3 
~ 

\'oj 

'< 
'" \'oj 

:::t' 
('D 

[ 
~ 

(,H 

~ 

Input 

XV 
XVD1 
XVD1PP 

. 1 .. 

XVWOEID 
XVWOEIDA 

MLWTO ID 

XV 
XVD2 
XVD2CON 

0 ... 

WPL 

User's Parameter List 

XV 
XVX1 
XVX1STOP 

1 . .. . ... 

XV 
XVD2 
XVD2CON 

x ... 

XV 
XVWOEID 
XVWOEIDA 

MLWTOID 

From Steps 
9 and 12 

Process 

2 If the user is in problem program 
state, this routine sets the MLWTO 
connecting identification to 
zero. --------~~------------~Nl 

If this MLWTO is connecting 
additional lines to an existing 
MLWTO, this routine sets the 
connecting flag. -------~L...-----------J!x; 

3 Validity check user parameter list. 

If there is a parameter list error, 
contro I goes to Step 16. ' I I 

4 If a Major WOE is to be built: 

a. Get WOE space. 

b. Control then goes to Step 10. I 

Subroutine 
FINDID 5 If a Minor WOE is to be connected, 

this routine locates existing , 
MLWTO chain. 

XSAVAREA 
XVWOEIDA 

o------=-~~ 

XV 
XVD2 
XVD2CON 

I' 1 ....... 

XV 
XVCMAJOR 

Major WOE's Address 

UCM 
UCMWONR 

XV 
XVD3 
XVD38LDJ 

+1 

1 . .. . ... 



Vl 
~ 
(') g. 
::;) 

N 

::: 
~ :r 
o 
~ 

o ...., 
o 
'0 
~ 

~ g. 
::;) 

N 
.!.J 
VI 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (Part 4 of 24) 

Extended Description 

2 After establishing addressability and obtaining a work 

area from subpool 229, the 'Problem Program' flag 
(XVD1PP in XV) is tested to determine if the task is 

allowed to connect more lines. If set, connecting is not 

allowed and the connecting identification (XVWOEIDA in 

XV) is set to zero. 

If the 'Problem Program' flag (XVD1PP in XVD1) is not 

set, the connecting identification (XVWOEIDA in XV) is 

checked for zero. If not zero, the user is assumed to be 
connecting and the 'Connecting' flag (XVD2CON in 

XVD2) is set. For recovery protection, the EST AE macro 

instruction is issued. 

3 TSTM LWTO val idity checks the user's write parameter 
list (WPL) for: 

• Physical organization. 
• Physical location of fields. 

• Length of fields. 
• Compatibil ity of options. 

This subroutine also checks to be sure the write parameter 
list is in the user's address space (REFERLEN). 

If the parameter list has an error that will cause the 

MLWTO request to be ignored, the 'Stop' flag (XVX1STOP 

in XVX1) is tested. If it is set, control passes to the 

IEAMSTOP routine to exit with a return code. 

4 The 'Connecting' flag (XVD2CON in XVD2) is tested 

to determine if a Minor WOE is to be connected to an 

existing MLWTO chain. If not, subroutine GETWOE is in­

voked to obtain, via GETCELL from subpool 231, space for 
a MAJOR WOE. The count of in-use WOEs (UCMWQNR in 
UCM) is increased. The address returned from Subroutine 

GETWOE is stored (in XVCMAJOR). The 'Build Major' 

flag (XVD3BLDJ in XVD3) is set. Control passes to step 10 

(lEAMGETN). If a write wait block (WWB) was previously 

obtained, it is dequeued and freed. 

5 Subroutine FINDID is invoked to locate the MLWTO 

chain to which lines are to be added. (Identification of 

the MLWTO is in XVWOEIDA of the XV). 

Module 

IEAVMWTO 



t;J Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (Part 5 of 24) 
....... 
0\ 

o 
CI:l 

"< 
CI:l 
N 
CI) 

~ 

~ 
S 

OQ ;;. 
~ c; 

~ 
< o 
2" 
3 
~ 

N 

'< CI) 
N 

:::0 
~ 

i 
~ 
w 
~ 

Input 

XV 
XVX1 
XVX1NOID 

· 1 .. . .•. 

Major WOE 
WMJMMIN 

First Minor WOE 

XV 
XVCMINOR 

Last Minor Address 

XVD3 
XVD3BLD1 

· 1 .. . ... 

XVD3BLD2 

· . 1. . ... 

UCM 
UCMWONR 

In Use Count 

UCMWOLM 

Limit 

XV 
XVD1 
XVD1PRIV 

1 . .. . ... 

If MLWTO is not found, control I Step 14 
goes to Step 14. 

If a Minor WOE is not queued, 
control goes to Step 10. 

I I Step 10 

If Minor Line One is to be built, I Step 19 
control goes to Step 19. 

If line two is to be built, control I Step 20 
goes to Step 20. 

If a WO E is available or if the,] I Step 10 
caller is a privileged user, control 
goes to Step 10. 

Output 

Major WOE 
WMJMAECB 

( 0- - - - - - - - 0 I 



{;I) 
(l) 
(") 

6' 
= 
~ 

a: 
(l) 

[ 
o ..... 
o 
'g 
~ o· 
= 
t..J 
.!.J 
-....I 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (Part 6 of 24) 

Extended Description 

6 On return from Subroutine FINDID, the error flag 
(XVX1 NOID) is tested to determine if the MLWfO 

was found. If not, control passes to step 14. Then to step 
16 to exit. If the MLWTO is found, the Major WOE is 
tested to determine if a Minor WOE is queued to it. If not, 
control passes to step 10 to get a Minor WOE. 

7 Two message lines can be stored in one minor WOE. 
If there are Minor WOEs queued to the Major WOE, 

then it may be possible to use the last queued minor. If the 
'Build Line l' (XVD38LD1 in XVD3) and the 'Build Line 2' 

(XVD3BLD2) flags are on, control goes to step 19. If just 
the 'Build Line 2' flag (XVD3BLD2) is on, control passes 
to step 20. 

8 A test determines whether space exists for a minor 
WOE. If space is available, control passes to step 10. If 

the space is unavailable but the WTO was issued by a privi­
leged user (the communication task or any task running 
under an SIRB), a WOE may be obtained regardless of the 
limit; therefore, control passes to step 10. If space is un­
available and the WTO was issued by a nonprivileged user, 
the user waits for WOE space to become available; control 
continues to the next step. 

Module 

IEAVMWTO 



~ Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (Part 7 of 24) 
ex: 

~ 
< en 
N 
en 
~ 
;-
3 
r-
J6 
(;. 

r-
~ 
~ 

-< 
< c 
C 
3 
~ 

N 

'< en 
N 

:;0 
~ 
(;" 
~ 
~ 

I.H 

~ 

Input 

Major WOE 
WMJMAECB 

XV 
XVD3 
XVD3BLDJ ._------. 

1 . .. . ... 

XVD3BLD1 

. 1 .. . ... 

XVD3BLD2 

.. 1. . ... 

From Steps 
6 and 8 

Process 

WAIT 
9 Clears and Waits for posting a I 

major ECB. 

Return to step 5 after ECB 
posted. 

10 Obtains and queues a Minor 
WOE. 

__ •• I~Step5 

Subroutine 
GETWOE 

11 If a Major WOE needs building, 
control goes to Step 17.1 I Step 17 

If Minor WOE Line 1 needs 
building, control goes to Step 19. • Step 19 

If Minor WOE Line 2 needs 
building, control goes to Step 20. I • Step 20 

Output 

Major WOE 
WMJMMLW 
WMJMMLWH 

· .. , ... 1 

XV 
XVCMINOR 

New Minor WOE's 
Address 

XVD3 
XVD3BLD1 

· 1 .. . ... 

XVD3BLD2 

· . 1. . ... 

Minor WOE 
WMNMML1 
WMNMML1C 

· . 1. . ... 

WMNMML 1H 

· . .. . .. 1 



Vl 
(l> 
(") 

g-
:= 
N 

~ 
(l> 

;r 
8-
o -.. 
o 
"0 
~ 
~ 

S· 
:= 

N 
~ 
\0 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (Part 8 of 24) 

Extended Description 

9 The Major ECB is cleared (WMJMAECB). A WAIT macro 

instruction is issued. The Major ECB is posted when a 

WOE is available. Control passes to step 5 (IEA1 FIND). 

When a WOE is freed, the communication task checks for a 
WTO that is waiting for a WOE. If a WTO is waiting, the 

waiting ECB is posted. 

10 Subroutine GETWOE is invoked to obtain space for 
a Minor WOE. It queues the new Minor WOE to the 

Major WOE if none were previously queued to it. Otherwise, 

it is queued to the last Minor WOE. The address of the new 
minor is stored (XVCMINOR in XV). If the new Minor 

WOE is the only Minor WOE queued to the Major WOE, the 
'Dummy Minor' flag (WMJMMLWH in WMJMMLW) is set. 

The 'Build Line l' and 'Build Line 2' flags (XVD3BLD1 and 

XVD3BLD2 in XVD3), the 'Minor WOE' and 'GETMAINed' 
flag (WMNMLlC and WMNMML1H in WMNMML1) are 

set. 

11 A test of the 'Build Major' flag (XVD3B LDJ in 
XVD3) determines if a Major WOE needs building. 

If so, control passes to step 17. If the 'Build Line l' 

(XVD3BLD1 in XVD3) and the 'Build Line 2' 
(XVD3BLD2) flags are on, control passes to step ·19. If 

just the 'Build Line 2' flag (XVD3BLD2) is on, control 

passes to step 20. 

Module 

IEAVMWTO 



~ Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 9 of 24) 
00 
o 

o 
CI.l 

"< 
C"'-l 
N 
C"'-l 
'< 
~ 
Cl) 

3 

S 
o.s. 
n 

t: 
g-
el 
'< 
-<: 
o 
2" 
3 
Cl) 

N 

':2 
C"'-l 
N 

~ 
!E. 
m 
~ 
w 

~ 

XV 
XVD3 
XVD3BLD1 & XVD3BLD2 

i . 1 1. .... I 

12 Subsystem Exit branch to JES2. I 

Upon return, POST the WTO XMPOST 
ECB (UCMOECB). • 

If more lines need processing, 
control goes to Step 5. I Step 5 

If all lines have been processed, 
control goes to Step 16. I Step 16 

Register 1 

Subsystem 
Parameter List 

Register 1 
Major WOE 

Zero 

Register 1 
Minor WOE 

Minor WOE's Address 



C/.) 
~ 

~ 
5· 
= 
~ 

a:: 
sa. 
[ 
o -. 
o 
'g ... 
~ 
~. 

= 
N 
00 -

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 100(24) 

Extended Description 

12 A parameter list is built called the subsystem 
options block (550B). An extension of the 550B 

called the subsystem options block for WTO (550BWT) 
points to the WOE and describes the type of WOE - major 
or minor. IEAVMWTO then branches to the job entry sub­
system exit routine. 

If more lines are to be processed, control passes to step 
5. Otherwise, control passes to step 16. 

Module 



~ Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 11 of 24) 
00 
N 

o 
CI:l 

"< 
CI:l 
N 
CI:l 
'< 
ff4 
(1) 

3 
t"'" 
~ 
(;. 

t"'" 
0: 
e: 
'< 
<: o = 3 
(1) 

N 

~ 
CI:l 
N 

:::t' 
!!. 
~ 
~ 
~ 

~ 

Input 

XV 
XVD1 
XVD1PP 

XVXO 
XVXOFLJE 

. 1 .. 

. . .. 1 ... 

XV 
XVX2 

No. of Remaining 
Lines 

XVXO 
XVXOFEDE 

. . .. . 1 .. 

XVCMAJOR 

Major WOE 
WMJMMLW 
WMJMMLWA 

1 . .. . ... 

From Steps 
18,19 & 20 

From Steps 
6,10, 
19 & 20 

13 If a problem program and first 
line is an end line, control goes 
to Step 14. 

Otherwise, this routine sets to 
blanks all invalid characters in text. 

Updates pointers to next 
parameter list line of text. 

If all lines have been processed, 
control goes to Stel? 16. I Step 16 

14 Decreases the count of the 
number of lines remaining. 

If 'Force End' flag is not set, • Step 16 
control goes to Step 16. 

Otherwise, an MLWTO end is 
forced. 

Parameter List 
Save Area 

XV 
XVX2 

X'40' 

-1----J 
Major WOE 
WMJMMLW 
WMJMMLWH 

....... 1-- -] 

WMJMLTYP 
WMJM L TYC and 
WMJMLTYD 

.. 11 .... 1 



Vl 
(1l 

g. 
o· 
= 
N 

a:: 
(1l 

;. 
8-
o ..... 
o 
"0 
~ 
~ g. 
= 
N 
00 
IN 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 12 of 24) 

Extended Description 

13 If the problem program flag (XVD1PP in XVD1) is 
set and the first line is just an end line (XVXOF LJE 

set in XVXO), then control passes to step 14. Otherwise, the 
line text is scanned for invalid characters and if any are 
found they are set to blanks. If the problem program flag 
is not set, the routine does not set the new line control 
characters to blanks. Subroutine TEXTLINE is invoked 
to update the pointer to the next text I ine in the param­
eter list (WPL). Upon return, control passes to step 14. 

14 The number of lines still to do (XVX2) is decreased 
by one. If the 'Force End' flag (XVXOFEDE in 

XVXO) is nOt set, control passes to step 16. Otherwise, 
an end to the M LWTO is forced. The address of the Major 
WOE (XVCMAJOR) is obtained. If the 'Dummy Minor' 
flag (WMJMMLWH in WMJMMLW) is set, the Major WOE 
is flagged as a 'Data End' line (WMJML TYC and 
WMJML TYD in WMJML TYP are set). Otherwise, the 
address of the Minor WOE linked to the Major WOE is 
also flagged as a 'Data End' line. 

Module 



t-.J 
00 
~ 

o 
Vl 

~ 
Vl 
t-.J 
Vl 
'< 
~ 
(1) 

3 
t"'" 
o 

o,g. 
(") 

t"'" c: 
~ 
<: 
o 
2" 
3 
(1) 

t-.J 

~ 
Vl 
t-.J 

~ 
(1) 

i 
~ 
~ 

~ 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (Part 13 of 24) 

Zero? 

WMNMNX2 (Line 2) 

Zero? 

XV 
XVWOEIOA 

MLWTOIO 

Return Address 1 
XVRETCOO 

Return Code 

Output 

15 If Line 1 is not connected to Line 2, 
this routine marks Line 1 as a 
'Oata End'. Control goes to 
Step 12, -----L.-____ ......... r.{ 

If Line 2 is not connected to 
another Minor WOE, this routine 
marks Line 2 as a 'Oata End', -----"-------........ "4 
Control goes to Step 12. 

If neither of these two is the case, 
th is routine obtains the address 
of the next Minor WOE and 
repeats this step. 

16 Free work area. 

Gets MLWTO 10, return code, 
and return address and returns. 

Minor WOE 
WMNMLT1 
WMNMLTIC and 
WMNMLTIO 

.. 11 .: .. _u_~ 

WMNMLT2 
WMNMLT2C and 
WMNMLT20 

.. 1 1 .... -] 

Register 1 

MLWTO 10 or -I 
Zero 

Register 14 

Return Address 

Register 15 

R--;turn COde--~ 



til 
~ 

sa. o· 
= 
~ 

a:: 
~ 

[ 
S­
O 

"'C 

~ o· 
= 
~ 
VI 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 14 of 24) 

Extended Description 

15 The pointer to the second line is tested for zero. If 
zero, Line 1 of the minor is flagged as a 'Data End' 

line (WMNMLT1C and WMNMLT1 Din WMNML:T1). Con­
trol passes to step 12. If second line pointer is not zero, the 
pointer to the next minor (WMNMNX2) is tested for zero. 
If zero, Line 2 of the minor is flagged as a 'Data End' line 
(WMNMLT2C and WMNMLT2D in WMNML T2). Control 
passes to step 12. If not zero, the address of the next minor 
is obtained and this step is repeated. 

Module 

16 The previously obtained work area is freed (subpool I EAMSTOP 
229). Upon retur.n, register 15 is loaded with the 

return code (XVRETCOD) and register 14 with the return 
address (XVR ET). If there was a Major WOE (XVCMAJOR), 
register 1 is loaded with the MLWTO ID (XVWOEIDA). 
Otherwise, register 1 is set to zero. Control returns via 
register 14. 



~ Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 15 of 24) 
00 
0'1 

~ 
"< 
til 
N 
til 
'< 
~ 

~ 
t-

<2 
n' 
t­
c:;: ... 
~ 

.:! 
<: 
~ 
= 3 
~ 

N 

~ 
til 
N 

:::t' 
~ ;-
~ 

~ 
<.H 

~ 

Input 

WPL 
WPLMCSF 

MCS Flags 

Register 4 

TCB Address 

TCBTSFLG 
TCBTSTSK 

ASCB 
ASCBASID 

ASID 

UCM 
UCMWTOO 
UCMWOEND 

From 
Step 11 

Process 

17 Builds a Major WOE. 

a. Set flags. 

b. Stores TCB address. 

c. Move ASID to WOE. 

d. Place new WOE on WOE ___ -""' ___ ...J 

chain. 

Output 

Major WOE 
WMJMMLW 
WMJMMLWB 

.1 .. .... 1 
WMJMBUF 
WMJMBUFB and 
WMJMBUFD 

. 1 . 1 

WMJMTCB 

TCB Address 

WOE 
WMJMASID 

ASID 1 
UCM 
UCMWTOO 
UCMWOEND 

First WOE 

Last WOE 

WOE 
WMJMNXT r- Next WOE 



CZl 
(1) 
('") 

g. 
::I 
N 

~ 
(1) 

:; 
8-
o ..... 
o 

"Q 
~ 
~ o· 
::I 

~ 
00 
-..J 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 16 of 24) 

Extended Description 

17 To build the Major WQE: 

a. Flags are set: 

WMJMMLWB in WMJMMLW to indicate a Major WQE, 
WMJMBUFB and WMJMBUFD in WMJMBUF to indicate 
the WQE is in use and acquired by GETMAIN. 

b. The TCB address (register 4) is stored in the Major 
WQE (WMJMTCBl. 

c. The ASI 0 is moved from the ASCB to the WQE. 

d. The new major WQE is added to the WQE's chained 

from the UCM control block. 

Module 



~ Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (lEA VMWTO) (part 17 of 24) 
00 
00 

o 
en 
~ 
en 
N 
en 
'< 
~ 

S 
~ 
($. 

t:: 
~ 
~ 
B c 
3 
(D 

~ 

'< en 
N 

~ 
(D 

i 
r6 
("j.,I 

~ 

;; 
:1 

c 

;; 

Ie,' 
1' • 

1:1 

I" 

I', 

I,i 

r·: 
I 

I' 
t>: 
I'" 

I 

I';, 
t: 

1< 
F 

:";,;E;; ,::,;::} ': ,:(~ ", ' '", 

XV 
XVA8 

I TIME 

XV 
XVD2 
XVD2RDC 

r . 1 .. ........ 

WPL 
WPLDESC & WPLROUT 

I R&D Codes 

XV 
XVD2 
XVD2MSGT 

I .. 1 . ....... 

WPLMSGTY 

I Message Type 

Reg 0 

WPL 
WPLAREA 

I Area 10 

XV 
XVD3 
XVD3BLDJ 

I 1 ... ....... 

XV 
XVXO 
XVXOFLCL 

I 1 ... ........ 

It 
" 

[,' :,,' "'<}',i,": ""',;,: "",,<,'," 

" 

[a: 17 (Continued) 
, 

e. Moves MCS Flags. 

;; f< 
", ... 

f. Converts time to printable I 
I V characters and stores them. 

J,: 
[ 

: ... 
) g. If routing and descriptor codes 

I v exist, moves them to Major WOE. 
l 

; 

I 
I 

",' 
" 

... 
I , II v 

h. If message type exists, moves 
type to Major WOE. 

... 

I 
i. Moves console 10 to the Major 

v WOE. 

.... 
-y 

j. Moves area ID to the Major WOE. 

.... 
k. Checks text length and truncates 

, 
--y 

the text if length is greater than 
the limit. 

r 

6 

J WMJMMCS 

I I > MCS Flags 

WMJMTS 
" I I > TIME -" 

WMJMRTC & 
WMJMDEC 

~ I I R&D Codes 
~ 

WMJMUID 

~> I I 
WMJMMT 

~ I I Message Type 
~ 

WMJMAREA 
> I I • Area 10 

XV 
XVD3 
XVD3BLDJ 

I 0 ... ........ I 
WPL 
WPLLGH 

I Text Length 

I I Overrun 



CIl 
g 
g. 
= 
~ 

~ 
~ 

[ 
o .... 
o 
"0 

<D 
i3 g. 
= 
~ 

do 
\0 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (lEA VMWTO) (Part 18 of 24) 

Extended Description 

e. The MCS flags are moved from the write' parameter list 
to the Major WOE. 

f. The time XVA8 is converted to a printable form and 
stored (WMJMTS). 

g. If routing and descriptor codes exit (WVD2RDC), they 

are moved from the parameter I ist to the Major WOE. 

h. If message type exists (XVD2MSGT in XVD2):the mes­
sage type flags are moved to the major. 

i. If the console 10 was passed as input to SVC 35, that 
is, if WPLMCSFB or WPLMCSFH or both are on, register 
o contains the console 10. It is moved to the major 
(WMJMUID). 

j. If the area ID parameter (AREAID=in the WTO macro 
instruction) was specified, it is moved from the param­
eter list to the Major WOE. 

k. If the first line in the parameter list is a control line 
(XVXOFLCL set in XVXO), or if the 'Use Default Con­
trol Line' flag (XVXOUDCL in XVXO) is not set, the 
user's text length is compared to the limit for data, 
label or control lines. If the length exceeds the limit, 
the text is truncated. The text length is adjusted. If 
XVXOUDCL is set, the text length is set to equal that 
of the default control line. 

Module 



~ Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 19 of 24) 
I,C) 
o 

o 
(J:) 

'< 
(J:) 
N 
(J:) 

'< 
~ 
~ 

:3 
t"" 
~ 
n' 
t"" 
0: 
j;J 

-< 
<: 
o 
C 
:3 
~ 

N 

'< (J:) 
N 

~ 
~ 

;" 
~ 

~ 
tN 

~ 

. 

. , 

WPL 
WPLTEXT 

I 1 
TEXT 

UCM Prefix 
UCMCMID 

I Seq. No. 

WPL 
WPLDESC2 
WPLDESC1 

I 
~ 

1 ... ...... .. I 

Major WOE 
WMJMHCID 

I Seq. No. 

WPL 
WPLMCSF1 
WPLMCSFA 

I 1 ... ....... 

WPLROUT 

I Routing Codes 
1 

XV 
XVD1 
XVD1AUTH 

I ........ •. 1 . 
I 

XVXO 
XVXOUDCL 

I ..• 1 .... " .. L 
I 

'.' ; .... ..... .,.,' 

18 Builds a Major WOE (continued) 

... 
V> a. Moves message text to the Major WOE. 

b. Enters appropriate security message flagging. 

... 
V> c. Sh ifts text. 

.,. 
... 

d. Stores text length and WOE sequence v 
number. 

. 

~ 

.~ e. If descriptor code is 9, moves printable 
MLWTO ID after text in Major WOE. 

... 

II 
f. If routing codes are present, moves printable y 

routing codes to Major WOE. 

... 
) g. If the Major WOE is not built with a default 

I 
-v control line, control passes to Step 13. 

Otherwise, th is routine sets the 'Control 
Line' flag and sets a pointer to the beginning 
of the parameter list. 

" 
v Control passes to Step 12. 

6 

" 

t':, .. ;<·,'3 ,:or,>",;, ".;(' ·,:Cr,.';,:;:.:).'·"'" 

... I: Major WOE 
i; [. WMJMTXT 

.: .I' 

II~ 
@ 

·1 
OR + Message 
* .;' 

it. •• 

if:. 
1 2 

"'.~ 

WMJMTXT ;"r , 1..- Message 
1

0 
I I 

.'; 

) '." . 
.J 

.. 

...• 

WMJMTXTL .: 

1'> 
I I Length of Message . 

",: 
'. 

'. " WMJMHCID 
.' I'· I I "r MLWTOID 

. 

lk, i WMJMRR 

I I Routing Codes 

II. WMJMPAD1 
--r Step 13 1 I Blank 

WMJMLTYP 
WMJMLTYA 

• I I .. 1 ... """ .. 

... 
Step 12 Pointers 

" 

~WPL : 



CZI 
~ 

$l. 
~. 

= 
~ 

~ 

[ 
o ..... 
o 

'"0 
~ a. o· 
= 
N 
\Q -

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 20 of 24) 

Extended Description 

18 The building of the Major WOE continues: 

a. The message text is moved to the Major WOE. 

b. If this is an action message (descriptor code 1 or 2) and it 
is authorized (XVD1 AUTH set in SVD1), an asterisk 
(*) is inserted in the first position of the Major WOE 
text area. If not authorized, an at character (@) is 
inserted. If not an action message and not authorized, a 
plus (+) is inserted in the second position of the Major 
WOE text area. The text length is increased by two. 

c. The text is shifted one to the left, the character after the 
text is set to blank and the text length is increased. 

d. The updated text length is stored in the Major WOE 
(WMJMTXTL). The WOE sequence number is moved 
from the UCM Prefix (UCMCMtO) to the Major WOE 
(WMJMSEO and WMJMMSGN) and saved (XVWOEIDA). 
Then UCMCMID is increased by one. The MLWTO 10 is 
converted to printable characters, stored (WMJMHCID 
in the Major WOE) and the first character is set to a 
blank. 

e. If descriptor code 9 (WPLDESCI set in WPLDESC) is 
found, the MLWTO to (WMJMHCID) is affixed to the 
end of the text (WMJMTXT + WMJMTXTL). 

f. If routing codes are present (WPLMCSFA set in 
WPLMCSF1), the routing codes (in WPLROUT) are con­
verted to printable characters and moved to the Major 
WOE (WMJMRR). WMJMPAD1 and WMJMPAD2 are 
set to blanks. 

g. The 'Use Default Control Line' flag (XVXOUDCL in 
field XVXO of the XV) is tested to determine if the 
Major WOE was built with the default control line. If 
not, control passes to step 13. 

Otherwise, the 'Control Line' flag (WMJM L TY A in 
WMJMLTYP of the Major WOE) is set. Since the 
Major WOE contains the default control line, the text 
(WPLTXT) in the parameter list is used to build line 1 
of the Minor WOE and pointers are therefore adjusted . 
Control passes to step 12. 

Module 



~ Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 2i of 24) 
\0 
N 

o 
\I) 

~ 
\I) 
N 
\I) 

'< 
~ 

Process Output 

~ 
~ o.s. 
(') 

t­o: 
~ 
<: 
g. 
= 3 
(D 

N 

'< {Zl 
N 

:::0 
s:e. 
~ 
~ 
w 
~ 

Minor WOE Address 

Major WOE 
WMJMHCIO 

Hardcopy 10 

19 Builds Minor WOE Line 1. 

a. Obtains Minor WOE address. 

b. Locates, moves, and tests the line type. '" 

If there is an end line, control passes to I Step 14 
Step 14. 

c. Compares line length to limit. If it 
exceeds limit, truncates text. 

d. If authorized, moves text to text area + 1. ., 

e. If not authorizp.d, moves text to text "'\ 
area + 2. 

f. Moves hardcopy 10 to Minor WOE. iA 

g. Resets first line build flags. 

Control goes to Step 13. ••••••• Step 13 

MinorWOE 
WMNMLT2 

Line TYpe-.~ 

WMNMTXT2 

lIP I Text 

2 

WMNMLT2 

Line Type + 1 J 
WMNMTXT2 

lIP I I Text J 
2 3 

WMNMHCT2 

Line Type + 2 

WMNMHCT2 

Hardcopy 10 

WMNMML2 
WMNMML2H 

.. " ... 1 

XV 
XV03 
XV03BL02 

.0.. .... J 



til 
n> 
S4. o· 
= ~ 

::: 
a 
5 
c;:l. 

o -.. 
o 

"'0 

S g. 
= 
~ ..c 
IN 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (part 22 of 24) 

Extended Description 

19 To build Line 1 of a Minor WaE, the following is 
done: 

a. The address of the Minor WaE is obtained 
(XVCMINOR). 

b. Line type field is located, moved to Line One 
(WMNML T1) and tested for an end line. If an end line, 
control passes to step 14. 

c. If not an end line, the line length plus 4 is decreased by 
4 and compared to the label/data limit (system default 
is 70 characters). If ~ore than the limit, the text is 
truncated. The first position of the minor line 1 text 
area (WMNMTXT1) is set to a blank. 

d. If the authorization flag (XVD1AUTH in XVD1) is set, 
the text is moved from the parameter list into Minor 
WaE Line 1 starting at position 2, thus increasing the 
length of the text field by one. 

e. If the authorization flag is not set, the second position of 
Minor Line 1 text area (WMNMTXT + 1) is blanked. The 
second position of the text area is set to a blank and the 
text is moved in starting at the third position. The length 
of the text is increased by two and stored (WMNMTL 1 
in the Minor WaE). 

f. The hardcopy ID is moved to the Minor WaE (from 
WMJMHCID into WMNMHCT1). 

g. The 'Build Line l' flag (XVD3B LD1 in XVD3) is reset 
and the 'Second Line Available' flag (WMNMML2H in 
WMNMML2) is sat. Nevil line control characters are set 
to blank. Control passes to step 13. 

Module 



t;-J Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (Part 23 of 24) 
~ 
~ 

o 
rn 

"< en 
N 
rn 
'< 
~ 

Input Process Output 

~ :; 

£" 
;:). 

r-
0: 
i3 
-< 
<: 
o 
c 
:; 
~ 

N 

~ 
en 
N 

:::0. 
~ 
~ 
~ 
t..I 

~ 

XV 
XVCMINOR 

Minor WOE 
Address 

Major WOE 
WMJMHCIO 

Hardcopy 10 

From Steps 
7 & 11 

20 Builds Minor WOE Line 2. 

a. Oueue Line 2 to Line 1. 

b. Locates, moves, and tests the line type. 

If there is an end line, control passes to Step 14. I 

c. Compares line length to limit. If it 
exceeds limit, truncates text. ------......; ...... -----...... " 

d. If authorized, moves text to text area + 1. J 

e. If not authorized, moves text to text 
area + 2. 

f. Moves hardcopy 10 to Minor WOE. 

g. Resets second line build flags. 

Control goes to Step 13. 

Minor WOE 
WMNMNX1 

ejl 
WMNMUC2 

I Line 2 

WMNMLT2 

Line Type -, 

WMNMTXT2 

I I Text -] 

2 

WMNMLT2 

Line Type + 1 --I 
WMNMTXT2 

Text -, 

1 2 3 

WMNMLT2 

Line Type + 2 --I 
WMNMHCT2 

[ Hardcopy 10-, 
WMNMML2 
WMNMML2H 

. . .. . .. 1 -, 

XV 
XV03 
XV03BL02 

..0 ..... 



tI:l 
(I> 

l4. o· 
= 
~ 

a:: 
sa. 
[ 
o ..... 
o 

"C 
~ 
~ o· 
= 
~ 
~ 

Diagram 1-9. Multiple-Line WTO (MLWTO) Processing (SVC 35) (IEAVMWTO) (Part 24 of 24) 

Extended Description 

20 To build Line 2 of a Minor WOE: 

a. The address of the Minor WOE is obtained 
(XVCMINOR). The second line of the Minor WOE is 
queued to the first (WMNMNX1 contains the address 
of WMNMUC2). 

b. The line type field is located, moved to Minor WOE 
Line 2 (WMNMLT2); then test for an end (E) line. 
If an end line, the MLWTO is complete and control 
passes to step 14. 

c. The I ine length plus 4 and compared to the label/data 
line limit (system default is 70 characters). If greater 
than the limit, the text is truncated. The first position 
<;>f the minor line 2 text area (WMNMTXT2) is set to a 
blank. 

d. If the authorization flag is set, the text is moved to 
Minor Line 2 starting at position two. The length of the 
text is increased by one. 

e. If the authorization flag is not on, the second position 
of the text area is set to a blank and the text is moved in 
starting at the third position. The length of the text is 
increased by two and stored (WMNMTL2 in the Minor 
WOE). 

f. The hardcopy ID is moved to the Minor WOE (from 
WMJMHCID into WMNMHCT2). 

g. The 'Build Second Line' flag (XVD3BLD2 in XVD3) 
and the 'Second Line Available' flag (WMNMML2H in 
WMNMML2) are reset. Control passes to step 12. 

Module 

IEAVMWTO 



t;-J Diagram 1-10. WTO and WTOR Communication Task Processing Overview (IEAVMQWR and IEAVMWSV) (part 1 of 2) 
\0 
0'1 

o 
tI) 

"< tI) 
N 
tI) 

'< 
CIl 

~ 
~ 
(l). 

~ 
r::T' 

~ 
< o 

= :3 
(D 

N 

~ 
tI) 
N 

~ 
(D 

i 
1'6 
w 
~ 

From Dispatcher 
(lEAVEDSO) Process 

~~~~~~~~~ . ~~~~~~~~~~ 
Control Blocks 

Unit 

Write Queue 
Element 

Operator Reply 
Element 

Control Module (UCM) , 
UCMOECB 

Communication Task 

• Send message to console. 

Return to 
Dispatcher 
(lEAVEDSO) 

Output 

Operator Console 



til 
(D 

$4 
e' 
= 
~ 

::: 
[ 
S­
O 

"0 
(D a 
e' 
= 
~ 
.....a 

Diagram 1-10. WTO and WTOR Communication Task Processing Overview (IEAVMQWR and IEAVMWSV) (part 2 of 2) 

Extended Description 

The function of the WTO and WTOR communication task 
processing function is to accept the message associated with 
the WTO or WTOR macro instruction issued by the user of 
that macro instruction. In the process, this function pre­
pares and chains a control block containing that message for 
the consoles, and then calls the device support processor 
(SVC 72). 

Prior to the current entry into the communication task's 
common processing modules, an entry was made into this 
module, possibly to print the NIP messages. At some point 
in the previous entry, the wait service routine (I EA VMOWR) 
determined either that no further communication task proc­
essing was needed or that no further processing could be 
accomplished at that time. Following that determination, 
the wait service routine issued a WAIT macro instruction 
and returned control to the dispatcher (I EAODS). 

Following the WTO or WTOR macro instruction processing, 
the UCMOECB event control block was set and a newwrite 
queue element (WOE) had been placed on the WOE chain. 
Processing as a result of the UCMOECB actually begins 
when the dispatcher gives control to the wait service-rou­
tine in step 2. 

A diagram showing the relationship among the control 
blocks used by this function is shown in Figure 5-1. 

Module 

IEAVMOWR 



~ Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (part 1 of 16) 
100 co 

o 
CI:l 

~ 
~ 

CI:l 

~ 

i 
r-
~ 
(:5" 
r­
c: ... 
Q) 

-< 
<: 
~ 
3 
~ 

~ 

'< CI:l 
~ 

" ~ 

i 
~ 
~ 

~ 

Unit 
Control Module (UCM) 

UCMPF 

UCMSYSJ 

UCMOECB 

Process 

IEAVMQWR 
(Wait Service Routine) 

1 Wait for work to do. 

2 Determine the operation to be 
performed: 

a) If alternate CPU recovery, see the 
diagram, Alternate CPU Recovery 
(ACR) (lEAVTACR) in Recovery 
Termination Management. 

b) If external interrupt, see the 
diagram, External Interrupt 
Processing (I EA VVCRX). 

c) If attention interrupt, see the 
diagram, Attention Interrupt 
Processing (I EA VVCRA). . 

d) If I/O interrupt, see the diagram, 
I/O Complete Processing. 

:.J I WAIT Macro Instruction 

e) If console output pending, then 
branch to ...... Branch to I EAVMDSV, Step 25 

'0' r 

f) If hardcopy output pending, ;", ... 
then branch to Branch to I EAVMDSV, Step 25 

;" r 

g) If new message for output, then "" ... 
branch to Branch to lEA VMWSV, Step 3 

h) If WOEs are no longer needed, """..... 
then branch to Branch to IEAVMDSV, Step 25 

i) If operator messages are to be 
deleted via DOM, see the 
diagram, DOM Communications 
Task Processing. 

j) If NIP messages are to be written to 
hard copy, see the System 
Initialization Logic PLM for the 
diagram, NIP Commu'nications 
Task Initialization. 

{ y 

When no work exists ____ , .. , Step 1 



en 
(D 

~ o· 
= N 

~ 
(D .... 
::r 
8-
o ..... 
o 
"0 
~ 
~ 
~. 

= 
N 
~ 
IC 

Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (Part 2 of 16) 

Extended Description 

1 During some previous operation, the wait service roue 
tine issued the WAIT macro instruction after it had 

determined there was no further work the communication 
task could perform at that time. The communication task, 
therefore, is placed in a wait state. 

2 Determine the operation to be performed and branch 
to the module that can perform that operation. 

e) There are two conditions that turn on the console output 
pending bit: 

1. If a single message is sent to more than one console, 
this bit is set during initial queueing of that message to 
the consoles. This bit signifies that there may be mes­
sages queued for consoles which were not written to 
those consoles on the last pass through the communi­
cation task. 

2. If the console was busy during the first attempt to 
transmit the message to that console, this bit is set to 
permit the message to be sent to the console when it 
is not busy. 

f) When a message is queued and ready to be sent to a data 
set, this bit is set. This bit is not set when the hardcopy 
output is sent to a regular console device. 

g) When the UCMOECB is set, a WTO or WTOR macro 
instruction has just completed processing. A write queue 
element (WOE) containing the message to be sent to the 
console has been built and placed on the WOE chain. If 
the ECB was set by a WTOR macro instruction, an oper­
ator reply element (ORE) was also built and placed on 
the ORE chain. 

h) When the UCMSYSI is set, it is requesting cleanup of 
the WOE chain, eliminating WOEs that are no longer 
needed. 

Module 



~ Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (part 3 of 16) 
(; 
Q 

o 
CIl 

~ 
N 
CIl 
'< 
~ 
(I> 

3 
r-
~ 
(=). 

r­a: ... 
~. 

-< 
< 
9-
c 
3 
(I> 

N 

'< CIl 
N 

:;:tl 
~ 
~ 
~ 
w 

~ 

Input 

Unit Control 
Module (UCM) 

UCMWTOO 

t=J F I I 
UCMWOEND 

,» 

WOE 

Write Oueue 
Element (WOE) 

WOELKP 

Write Oueue Element (WOE) 

I 
'J 

From Steps 
2,15,16 
and 18 

From Steps 
5 and 22 

J\ 

v 

" v 

IEAVMWSV 
(Console Queueing Routine) 

3 Turn on console output 
pending bit. 

4 Loop Control: Step through 
the WOE chain. 

After the entire chain has 
been searched. 

5 If WOE processing 
suspended 

6 If WOE serviced. 

(5 

::'.;1 
1,41 

';;1 
i1) 

~f~1 _ Step 23 

i~' 

it;'"" 

t~ 

• Step 4 

itl 

.. Step 16 

Output 

Unit Control Module (UCM) 

I UCMPF 

Register 

To be Processed 



VJ 
CD g, 
o· 
= 
~ 

== ~ 
[ 
o .... 
o 
"0 
~ 
~ o· 
= 
~ -o -

Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (part 4 of 16) 

Extended Description 

3 The console output-pending bit in the unit control 
module is turned on. It may be used later to transfer 

control within the communication task. 

4 To find the write queue elements (WOEs) needing 

service, the entire chain of WOEs is searched one by 
one. 

5 A WOE with the processing-suspended bit on is not 
yet ready to be queued to a console. Since the WOE 

can't be queued, control is given to the loop control to find 
the next WOE. A WOE is suspended by the WTO and WTOR 
macro instruction processing routine while the message in 
that WOE is being examined by the subsystem exit routine. 

6 If the processing-suspended bit is off, the console 
queueing routine determines if the WOE has been 

serviced. If it has, the following possibilities exist: 

• The WOE has already been queued to a console . 

• The WOE is a major multiple line WOE (MLWTO) where 
at least the first line of the multiple line message has been 
sent to the console; however, an additional line may have 
been added to the multiple line message. If a line has been 
added, the major WOE bit WMJMMLWD has been turned 
on. If this bit is on, turn on the output-pending bit in the 
COE that was built for the major WOE. 

These two possibil ities must be tested before control can be 
given back to the loop control to find the next WOE on the 
WOE chain to be serviced. 

Module 

IEAVMWSV 



~ Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (part 5 of 16) 
o 
N 

o 
en 
~ Input Process 
N r-~----~~--------~~~~~-----------~~ 
en 
~ 

~ 
r 
(5. 

t:: 
g' 

~ 
< o 
E" 
3 
~ 

N 

'< en 
N 

:::t' 
(1) 

(S' 
III 

l'!l 
w 
~ 

UCMVEA 

UCMVEL 

Write Oueue Element (WOE) 

WOE being Serviced 

Write Oueue Element (WOE) 

WOEMSGF 

Unit Control Module (UCM) 

UCMMOPTR 

UCMMOEND 

(Servicing WOE) 

7 For this WOE, search all 
UCMEs and create a COE 
for each console's UCME that 
is to receive this message. 

8 If WOE message type flags 
do not exist or there is no 
TSO monitor queue, 
then go to 

9 Mark the WOE for TPUT 
output. 

Unit Control Module Entry (UCME) 

i UCMOUTO ' 

COEWOEA 

Write Oueue Element (WOE) 

WOE being Serviced 

Write Oueue Element (WOE) 

WOEBUFF 



CZl 
~ 

~ 
~. 

= N 

::: 
sa. 
[ 
S. 
o 

'"1:1 

i 
5' 
= 
~ -8 

Diagram 1-11. WTO and WTOR Communication Task Processing (lEA VMQWR and lEA VMWSV) (Part 6 of 16) 

Extended Description 

7 The routing codes assigned to each console are indi-
cated in each console's unit control module entry 

(UCMEl. These routing codes are compared against the 
routing codes in each write queue element (WOE). When 
there is a match, a console queue element (COE) is created 
and chained to the UCME for that console. The COE con­

tains a pointer to the WOE. If REGO or OREGO issued 
the message, the console 10 in the WOE is compared 
with the console 10 in each unit control module 
element (UCME). When there is a match, a COE is 
created for that console. 

When a console is being used for hardcopy output, a COE is 
created for that console, and the COE points to that WOE as 
if the console had the routing codes that agree with those in 
the WOE. 

Note: When a message contained in one WOE is sent to 
several consoles, a COE is built and chained to the COE 
chain from each console's UCME. All of the COEs point to 
the one WOE. 

The COE is a one word control block. The first byte con­
tains control bits - end of block, queued for hardcopy, 
pointer to next block, etc. The three remaining bytes con­
tain the address of the WOE. 

COEs are created as a group of six contiguous COEs The 
first five COEs point to WOEs, when a WOE is queued for 
this console. The sixth COE, instead of pointing to a WOE, 
points to the next group of six COEs. 

When a CaE is needed, this routine attempts to locate an 
empty WOE pointer field in an existing group of COEs. If a 
CaE is found, the control bits are set and the WOE address 
is placed in the pointer field. If a COE does not exist or the 
five WOE pointer fields in the COE group are filled, then a 
new group of six COEs is created and the WOE pointer of 
the sixth COE in the original COE group is set to point to 
the new CaE group. 

Module Extended Description 

8 Some WTO and WTOR macro instructions are issued 
with the optional MSGTYPE flags. These flags cause 

the message to be sent to TSO terminals and operator con­
soles in MONITOR mode, provided these terminals and 
consoles are monitoring that type of message. For the WOE 
to be queued for a TSO terminal, the flags must exist in the 
WOE. 

9 The WOE is marked for TPUT output. 

Module 



~ Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (part 7 of 16) 

~ 

o 
C"I'} 

~ In~ut, " '." .. ,," Process. I Output 
N f ";'.h, " ".c;, ;",';' r" .","'., "";;;' ,"';>.' "i~ .. ,---""-~"'--~-"'--------------' 
C"I'} 

'< 
~ 

3 
t""' 
~ 
(;' 

t""' 
0: ... 
Q) 

-< 
<: 
o 
2' 
3 
('p 

N 

'< C"I'} 
N 

:;tl 
('p 

i 
~ 
w 
~ 

Unit Control Module (UCM) 

UCMTPUTA 

WOEMSGD 

Register 3 

See Description 

10 If TPUTTER is inactive, then 
attach TPUTTER, ] 2 • 

11 Turn on the TPUTTER 
attach bit, 

12 If the WOE is unconditionally 
queued to an inactive console, 2 • 
attach lEA VMORO 
(OREGO). 

13 If WOE with message type 
flags has not been queued for 
any console, mark WOE as 
serviced. --__ -L. __ .J ~ 

Unit Control 
Module (UCM) 1 UCMTPECB 1 

T UCMTPUTA 1 

Register 1 

Pointer to WOE 

Pointer to UCME 

Poi nter to UCM 

Write 
Oueue Element (WOE) 

I WOEBUFI 

Unit Control 
Module (UCM) 

UCMSYSI 



(I.l 
(1) 

g. 
o· 
::I 

!';J 

~ 
(1) 

g 
c:.. 
o ..... 
o 

'"c::I 
~ 
III g. 
::I 

~ -o 
til 

Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (Part 8 of 16) 

Extended Description 

10 If the TPUTTER routine is inactive, attach it to send 
the message (contained in the WOE being processed) 

to the TSO terminals monitoring that type of message. 

11 The TPUTTER attach bit is turned on to prevent 
attaching the TPUTTER again before it has com· 

pleted its current operation. This bit is turned off by 
TPUTTER (J EA VMASV) when it is through sending the 
current messages. 

12 If the WOE is to be unconditionally queued to an 
inactive console, the OREGO routine is attached. 

OREGO prevents the possibility of the regularly allocated 
WOE and ORE space being filled with messages destined 
for an inactive console. (See OREGO -Unconditional Mes· 
sage to Inactive Console.) When control is returned, three 
possibilities exist: 

• The WOE has been requeued to the master console: 

- The COE pointing to this WOE when control was passed 
to the OREGO routine has been deleted. 

- A new COE on the master console's COE chain now 
points to this WOE. 

• The WOE is to be deleted. 

• The WOE remains queued to the inactive console. 

The first two conditions mark the WOE queued for hard­
copy before control is returned. 

13 There are a number of operati ng system messages 
that are issued specifically for TSO terminals that 

might be in MONITOR mode; however, the system may be 
without a TSO terminal or operator console in monitor 
mode, or a TSO terminal monitoring the type of message 
contained in this WOE. When this condition occurs, the 
WOE is marked as serviced. Later, the WOEs that have been 
serviced are deleted. 

Register 3 contains a count of the number of consoles 
(COEs) for which this WOE has been queued. 

Module 

IEAVMASV 

IEAVMWSV 

IEAVMORO 

IEAVMWSV 



~ Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (part 9 of 16) 

~ 

o 
t/') 

"< ('-l 
N 
('-l 

'< 
fI) 

;-
3 

S 
(JQ 

(i' 

C 
g-
el 
'< 

~ 
C 
3 
I'D 
~ 

<: 
t/') 
~ 

~ 
I'D 

i 
~ 
VJ 

~ 

Input 

Unit Control 
Module Entry (UCME) 

WMJMMLWB 

WMJMMLWD 

14 Mark WOE serviced. 

15 Service next WOE. I 2 I Step 3 

16 If a minor WOE has not been 
added to a major WOE. . I 7 

(MLWTO Minor WOE Processing) 

17 The output pending bit is 
turned on for every console that 
is to receive the message contained 

Output 

in the minor WOE. ------L-------N... 

Write 
Oueue Element (WOE) 

I WOEBUFC 

Unit Control 
Module Entry (UCME) 

I UCMPF 



CIl a 
5· 
= t-.) 

a:: 
(D 

[ 
o 
'"'> 
o 

'1:1 
(D 

i 
5· 
= 
~ -Q .... 

Diagram 1-11. WTO and WTOR Communication Task Processing (lEA VMQWR and lEA VMWSV) (part 10 of 16) 

Extended Description 

14 The processing to be performed by the console 
queueing routine for this WOE is complete. 

15 Service the next WOE. 

16 If the WOE being processed is a major WOE, then this 
WOE has been previously processed by the console 

queueing routine; therefore, service the next WOE. 

If the WOE chain altered flag (WMJMMLWO) is on, at least 
one line has been added to a minor WOE chained to a 
major multiple line WOE that has been previously serviced. 
The output-pending bit in the UCME for each console that 
receives this message is turned on. If either this WOE is not 
a major WOE or the WOE chain altered flag of a major WOE 
is off, then the next WOE on the WOE chain is serviced. 

17 The output-pending bit is turned on so that the mes­
sage contained in this WOE will be sent to a console. 

Module 



~ Diagram 1-11. WTO and WTOR Communication Task Processing (lEA VMQWR and lEA VMWSV) (Part 11 of 16) 
o 
00 

o en 
"< en 
tv 
en 
'< 
~ 
<!) 

3 
r-
~ r;. 
r-
0: ... 
~ 
-< o 
C 
3 
<!) 

tv 

~ 
en 
tv 

~ 
<!) 

i 
~ 
~ 

~ 

Input 

WOEMSGF 

Unit 
Control Module (UCM) , 

UCMMOPTR 

UCMMOEND 

" ::;1 

Unit 
Control Module (UCM) 

UCMPUTA 

I I 
II 

From 
Step 4 

Process 

r 

) 18 If WOE message type flags do 
not exist or there is no 
TSO monitor queue, then 
process next WOE. ____ I". Step 3 

19 Mark the WOE for TPUT 
output. 

, 20 If TPUTTER is inactive, then 
attach TPUTTER. 

21 Turn on the TPUTTER attach bit. 

Attach 
IEAVMASV 

22 Process the next WOE. ---_1-.. Step 4 

23 Turn on the output-in-process bit. 

24 Send one message to a console." , Branch to 
IEAVMDSV 
Step 25 

Output 

Write 
Oueue Element (WOE) 

WOEBUFF J 

Unit 
Control Module (UCM) 1 UCMTPECB 1 
T UCMTPUTA r 



Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (part 12 of 16) 

Extended Description 

18 Some WTO and WTOR macro instructions are issued 
with the optional MSGTYPE flags. These flags cause 

the message to be sent to TSO terminals and operator con­
soles in MONITOR mode, provided these terminals and con­
soles are monitoring that type of message. For the WOE to 
be queued for a TSO terminal, the flags must exist in the 
WOE. 

19 The WOE is marked for TPUT output. 

20 If the TPUTTER routine is inactive, attach it to send 
the message (contained in the WOE being processed) 

to the TSO terminals monitoring that type of message. 

21 The TPUTTER attach bit is turned on to prevent 
attaching the TPUTTER before it has completed its 

current operation .. This bit is turned off by TPUTTER 
(I EAVMASV) when it is through sending the current 
messages. 

22 Process the next WOE. 

23 The output-in-process bit is turned on for use by the 
wait service routine. This bit indicates that output 

processing has been started to at least one console but has 
not been started to all consoles. 

24 At this point, the WOE that was being processed has 
been queued to all of the consoles to which the mes­

sage contained in that WOE will be sent. This one message 
will be sent to one of the consoles to which it is queued. 

~ Control will be passed to the device service routine. Nor-
a. mally, when this routine is called, it attempts to send all of 
g the messages queued for all consoles. Only one message will 
~ be sent each time the console queueing routine is called. 

s:: 
sa. 
[ 
o -. 
o 
't:I 
~ e. o· 
= 
~ -o 
\0 

Module 



~ Diagram I-II. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (part 13 of 16) -o 

o 
til 

"< til 
N 
til 

~ 
('l) 

3 

f n· 
t""" 
0: 
~ 
'< 
<: 
o 
C 
3 
('l) 

N 

'< 
til 
N 

::0 
('l) 

i 
i'3 
Vol 

~ 

Input 

Unit Control Module (UCM) , 
UCMVEA 

UCMVEL 

UCMPF 

From Steps 
2E,2F, 
25 and 28 

Process 

IEAVMDSV (Device Service Routine) 

25 • If a console with output 
pending is found, call the 
device processor routine. 

f WOE · E I • I cleanup IS 

needed, branch to 

26 If no more consoles need output 
service, then branch to "J 2 

27 If control was received from the 
console queueing routine, then 
branch to .] 7 

28 Branch to service next console. " I Step 25 

Output 

Register 1 

k 
Parameter List 

Name of Device 
Processor 

UCME Address 

UCM Base Address 



en 
(!) 

~ 
S· 
= 
N 

~ 
(!) 

~ 
Q. 

o ..., 
o 
't:I 
(!) 

~ 
S· 
= 
~ --

Diagram 1-11. WTO and WTOR Communication Task Processing (IEAVMQWR and IEAVMWSV) (part 14 of 16) 

Extended Description 

25 A search is made for a console that has output pend-
ing. When found, SVC 72 is issued to pass control to 

the device controller routine which eventually passes con­
trol to a particular device support routine that sends the 
message to the console device. SVC 72 is called once for 
each message sent to each console, see Writing Messages to a 
Console diagram. 

26 After all of the consoles have been serviced that 
could be serviced, control branches to the queue 

cleanup and hardcopy control section of the device service 

routine. 

27 If control was received from the console queueing 
routine, the purpose of branching to the device ser­

vice routine was to display the message just queued to one 
console; therefore, having called SVC 72 once, the purpose 
of this function has been fulfilled. 

28 If neither of the previous two conditions exist, there 
may be other output messages pending for display at 

the console. The loop is, therefore, repeated until all mes­

sages that can be displayed have been displayed. 

Module 



~ Diagram I-II. WTO and WTOR Communication Task Processing (lEA VMQWR and lEA VMWSV) (Part 15 of 16) -N 

o 
til 

"< 
til 
N 
til 
'< 
~ 

~ 
t"'" 

~. 
t"'" 
0: 
; 
-< 
-< 
~ 
c: 
:3 
~ 

N 

'< 
til 
N 

~ 
~ 
;' 
~ 

~ 
~ 

~ 

Input 

Unit Control Module Entry (UCME) 
i I 

UCMOUTQ 

From Steps 
26 and 27 

From 
Step 32 

Process 

29 Consolidate CQE entries. 

30 If message is to be hardcopied, 

issue"' I 

31 Delete WQE when message has " ,2E 
been sent to all consoles. 

32 Return to caller. 

a. If called by the console 
queuing routine. ,0'1 • 

b. If called by the wait service 
routine. 

IEAVMWSV (Console Queueing 
Routine) 

33 Return to caller. 

Step 2 

Branch to 

IEAVMQWR 
Step 2 

Register 1 

Write to Log Buffer 

Unit Control Module (UCM) 

UCMWQEND 



r.n 
(1) 
(") 

S· 
::s 
tv 

::: 
(1) 

~ 
o ...., 
o 
"0 
~ 
~ 

S· 
::s 

t;-J -
~ 

Diagram 1-11. WTO and WTOR Communication Task Processing (lEA VMQWR and IEAVMWSV) (Part 16 of 16) 

Extended Description 

29 Having displayed at least one message, there is at 
least one console queue element (COE) that is no 

longer needed. The COE flags are checked to determine 

which ones are no longer needed. COEs, however, are 
created in groups of six. The first five COEs point to WOEs 

that are to be displayed by that console. The sixth COE 

points to the next group of COEs. COEs are not freed until 
the first five COEs in the group are no longer needed. At 

that time, the necessary pointers are changed and a 
FREEMAIN macro instruction is issued to relinquish the 
COE group. 

30 A test is made of the WOE chain to determine those 
messages that are to be hardcopied. Each time such 

a message is found, SVC 36 is issued. 

31 The WOE chain is searched for those WOEs that can 
be deleted. The appropriate pointers are changed and 

the WOE is deleted via a FREEMAIN macro instruction. 

32 Return to caller. The return is always to the routine 
that called the device service routine. 

33 If the device service routine was called by the con­
sole queueing routine, control is returned to the wait 

service routine via the console queueing routine. There is no 
further processing in the console queueing routine. 

Module 



~ --~ 
o 
C"n 

"< C"n 
N 
C"n 
'< 
~ 

3 
~ 
()' 

t:: 
~ 

~ 
~ 
2' 
3 
co 
N 

'< C"n 
N 

::IC 

i 
r6 
~ 

~ 

Diagram 1-12. Unconditional Message to Inactive Console - QREGO (IEAVMQRO) (part 1 of 6) 

ATTACH from lEA VMWSV Process 
~L~--------------------~--------' ~--______ --__ --______________ ~ 

Write 
Parameter List (WPL) 

Reply 

IEAVMORO (OREGO) 

1 If the WOE is not available: ,I I Return to 
Dispatcher 
(lEAVEDSO) 

2 Issue WTOR to master console. J • 

3 Wait for response. 

4 If the WOE is not available: Return to 
Dispatcher 
(IEAVEDSO) 

Check reply: 

'SEND' .J I Step 6 

'DELETE' -----IIIJ _. Step 7 

'OK' ____ -.11 .. _ Step9 

For others: 
WTOR 

Issue WTOR to master console. 

Go to: ] • Step 3 



c;,'} 
(1) 

~ o· 
= N 

s:: 
(1) 

[ 
a. 
o 
'"0 
~ 
~ o· 
= 
~ .... 
VI 

Diagram 1-12. Unconditional Message to Inactive Console - QREGO (IEAVMQRO) (part 20f6) 

Extended Description 

Control is passed to this routine only when all of the 
following conditions exist: 

• A WTO or WTOR macro instruction has been issued 
with a OREGO parameter. 

• When the WTO or WTOR macro instruction was issued, 
the console identified in register 0 exists but is inactive. 

This routine issues WTOR messages I EA962A and 
I EA963A to inform the master console operator that an 
unconditional message is being processed for an inactive 
console. The operator responses are: 

SEND Causes the unconditional message to be 
rerouted to the master console. 

DELETE Causes the unconditional message to be 
deleted from the system. If the unconditional 
message is a WTOR message, the user even­
tually receives a D23 ABEN D. 

OK Causes queueing of the unconditional message 
to continue. 

The SEND and DELETE responses also cause the uncon­
ditional message to be sent to the hardcopy log, when the 
hardcopy log is active. 

Module 

IEAVMORO 

Extended Description 

1 Upon entry and after each wait, this routine deter-
mines whether the WOE passed to it initially is still 

active. The WOE could have been removed by: 

• The inactive console being activated causing the message 
to be displayed at the specified console . 

• The issuing task could have been terminated whereby the 
task termination routine would eliminate the WOE. 

• A DOM macro instruction for a graphic terminal could 
have been issued to eliminate the WOE. 

2 WTOR message I EA962A is sent to the master 
console. 

3 Wait for the operator's response to the WTOR 
message. 

4 Following the wait, repeat the same determination 
that was made in step 1. 

5 Test the reply from the WTOR message for one of 
the three acceptable responses. If an unacceptable 

response was received, this routine sends WTOR message 
I EA963A to the master console. Go back to step 3 and 
wait for the operator's response. MessagelEA963A will 
be repeated until an acceptable response is received from 
the console operator. 

Module 

IEAVMORO 



~ Diagram 1-12. Unconditional Message to Inactive Console - QREGO (IEAVMQRO) (part 3 of6) -0'\ 

o en 
~ en 
~ 

en 
'< 
~ 
('p 

:3 
r-
~ o· 
r-
0: ... 
~ 

-< 
< o 
C 
:3 
('p 

"" 
~ 
en 
~ 

::0 
t'P 

~ 
~ 
~ 

~ 

Input 

Parameter List 

Pointer to UCM E 

Parameter List 

Pointer to UCM 

From 
Step 7 

Process 

SEND Reply 

6 Requeue unconditional message • 
to master console . 

SEND and DELETE Replies 

7 Delete unconditional messa"ge from ~ 
inactive console's queue. 

8 Flag unconditional message for 
hardcopy. ,..------,A 

Inactive Console's 
Unit Control 
Module Entry (UCME) 

J 
UCMTB 

UCMOUTO 

Console Queue 
Element (COE) 

CQEENTR 

CQEAVAIL 

Write Queue Element (WOE) 

WQEOFHC 

WQEBUFC 

Unit Control 
Module (UCM) 

UCMSYSJ 



c;n 
("!> 

$l o· 
= N 

3: 
("!> g 
Q. 

o ..... 
o 

'"Q 

~ 
~ o· 
= 
~ ---..J 

Diagram 1-12. Unconditional Message to Inactive Console - QREGO (lEAVMQRO) (part 4 of 6) 

Extended Description 

6 As a result of the SEND response from the master 
console operator, this routine branches to 

I EECMOCN. I EECMOCN builds a console queue element 
(COE) entry on the master console's COE chain for the 

unconditional message. 

7 As a result of either a SEN D or DELETE response 

from the master console operator, this routine 

removes the COE entry for the unconditional message 
from the inactive console's COE chain. 

8 As a result of the SEND or DELETE· response from 

the master console operator, the WOE for the un­
conditional message is flagged for the hardcopy log. 

Module 



~ Diagram 1-12. Unconditional Message to Inactive Console - QREGO (IEAVMQRO) (partS of6) -00 

o 
~ 

"< 
~ 
N 
~ 
'< 
~ 
(!) 

3 
t"'" 
ci ;:;. 
t"'" 
S' 
~ 

~ 
'< 
-< o 
C 
3 
(!) 

N 

'< 
~ 
N 

~ 
(!) 

CD 
0) 

~ 
~ 

~ 

From 
Step 5 

Process 

OK Reply 

9 No Processing. 

10 Free the parameter list. ". "I 

11 Return: 

Return to Dispatcher 
(lEAVEDSO) 



en 
~ 
(") 

g. 
== 
N 

~ 
~ 

S-o 
(:l. 

o ..... 
o 
"0 

~ 
a o· 
== 

~ -
\Ci 

Diagram 1-12. Unconditional Message to Inactive Console - QREGO (IEAVMQRO) (Part 6 of 6) 

Extended Description 

9 As a result of the a K response from the master con­
sole operator, no processing is done by this routine. 

10 Before returning to the dispatcher, the parameter 
list passed to this routine is freed. 

11 Return to the dispatcher. 

Module 

'--



::: 
~ o 

o en 
~ 
en 
~ 

en 
'< 
~ 

~ 
b 

!1,9. 
(") 

t"" g: 
~ 
'< 
-< o 
C 
:3 
('D 

~ 

'< en 
~ 

::::0 
~ 

i 
~ 
w 
~ 
'-' 

Diagram 1-13. Writing Single-line Messages to a 1052, 1443,2740, or 3284/3286 Console (part 1 of 2) 

From WTO and WTOR Communications Task 
Processing (I EA VMQWR and lEA VMWSV) 

Input 

Output pending 
(UCMPF) 

Output queue 
(UCMOUTQ) 

Determine that a message is ready for 
output. 

Find the message. 

Output 

3 1 O~~ or 3284/3286 - Set up for V1 J 
writing the message. , 

4 Initiate message writing: 

• 1052 printer-keyboard. 

• 3284/3286 printer. 

EXCP 

Perform write 
operation 

Perform write 
operation 

• 2740 communications terminal. 'II--------~ 

• 1443 printer. 

Perform write 
operation 

Perform write 
operation 

To perform other 
communications task operations 

Write CCWs 



tf.l 
~ 

!l o· 
:= 
~ 

::: 
~ 

[ 
o ..., 
o 

"0 
(II 

CJ g. 
:= 

~ 
~ 

Diagram 1-13. Writing Single-line Messages to a 1052, 1443,2740, or 3284/3286 Console (Part 2 of 2) 

Extended Description 

User programs and system routines issue a WTO or WTOR 
macro instruction to send messages to the operator's con­
soles. The following communications task device support 
processors (DSPs) write single-line messages to consoles: 

• For a 1052 printer-keyboard, 3210 console printer­
keyboard, 3215 console printer-keyboard, and 3213 con­
sole printer, the DSP is IEAV1052. 

• For a 1443 printer,. 1403 printer, and 3211 printer, the 
DSP is IEAV1443. 

• For a 2740 communications terminal, I EEC2740. 

• For a 3284/3286 printer, IEECVETW. 

1 The appropriate DSP checks the output-pending bit 
(UCMPF) to determine that a message is to be written 

to the console. 

2 The DSP searches the COEs for a pointer to a WOE 
that contains a message for processing. 

Module 

IEAV1052 

IEAV1443 

IEEC2740 

IEECVETW 

(See above) 

Label Extended Description 

3 For a 1052 or 3284/3286, the appropriate DSP obtains 
an lOB for the write operation and places the addresses 

of the write CCWs into the lOB. 

4 The DSPs initiate message writing: 

• For the 1052 printer-keyboard, the 1052 DSP issues an 
EXCP macro instruction to execute the write channel 
program. 

• For the 1443 printer, the 1443 DSP issues a WRITE 
macro instruction to pass control to BSAM, which writes 

the message. 

• For the 2740 communications terminal, the 2740 DSP 
issues a WR ITE macro instruction to pass control to 
BT AM, which writes the message. 

• For the 3284/3286 printer, the 3284/3286 DSP issues 
an EXCP macro instruction to execute the write channel 
program. 

Module Label 

IEAV1052 PMEXCP 

IEAV1443 PMEXCP 

IEEC2740 

IEECVETW 



~ -N 
N 

o 
CI} 

"< CI} 
N 
CI} 

'< 
~ 

3 
t-
~ 
(5' 

t­o: e 
'< 
<: o a­
S 
(!) 

N 

'< 
CI} 
N 

:::0 
(!) 

;-
11:1 
~ 
~ 

~ 

Diagram 1-14. Displaying Single-line Messages on Graphics Consoles (DIDOCS) (part 1 of 2) 

Input 

From WTO and WTOR Communications Task 
Processing (lEAVMQWR and IEAVMWSV) 

Output pending 
(UCMPF) 

Single-line output 
(UCMSD.5A) 

In-line output 
(UCMSD5B) 

Screen deletion options 
(DCMDEU 

Length of screen line 

Message 

Process Output 

1 Determine that a single-line message 
is to be displayed. 

2 Determine availability of screen space. 

If screen is full: 

Attempt an automatic delete. 

OR 

Attempt roll mode - See "Roll 
Mode Message Deletion Processing" 
diagram. 

OR 
Notify operator that a message is 
waiting. 

3 If message is too long for the screen, 
split the message. 

4 Move message to screen image buffer. 

5 Write the message on the screen. 

. .• •. VI 

To perform other communications 
task operations 

Console 
Device Buffer 



en 
(D 
n 

S· 
:: 
!':-' 

a:: 
(D 

~ 
o 
~ 

o -. 
o 
"e 
~ 
~ o· 
:: 

~ 
N 
~ 

Diagram 1-14. Displaying Single-line Messages on Graphics Consoles (DIDOCS) (Part 2 of 2) 

Extended Description 

User programs and system routines issue a WTO or WTOR 
macro instruction to send messages to the operator's con­
soles. DIDOCS displays single-line messages on a graphics 
console as follows: 

Module 

1 DIDOCS checks the output-pending bit (UCMPF) and IEEeVET, 
the in-I ine output bit (UCMSDS5B); if both bits are on 

and UCMSDS5A is off, DIDOCS has received control to dis-
play an in-line, single-line message. 

2 DIDOCS checks the DCMR2F LGS flags to determine 
whether sufficient screen space is available. If no space 

is available, D I DOCS attempts to clear the screen in accor­
dance with the screen deletion options (DCMDEL): 

IEECVET2 

• If automatic deletion is in effect, DI DOCS attempts to I EECVET9 
remove deletable (flagged) messages from the screen. If no 
deletable messages exist, DIDOCS sets the message-waiting 
bit (DCMMSGWT) to indicate that the MESSAGE WAIT-
ING message should be issued to the operator. 

• If roll mode is in effect, DIDOCS attempts to roll the 
screen, as described in diagram "Roll Mode Message Dele­
tion Processing (DIDOCS)." 

• If automatic deletion is not in effect, DI DOCS sets bit 
DCMMSGWT to issue MESSAGE WAITING to the opera­
tor. The operator must then use the CONTROL command 
or a light pen to delete messages. 

3 DIDOCS compares the message length with the length 
of the screen line. If the message is longer, DIDOCS 

sets bit DCMSPLlT, then splits the message. 

4 DIDOCS moves the message into the screen image 
buffer (SIB). 

IEECVETJ 

IEECVETD 

IEECVFT2 

IEECVFT2 

Label 

5 DIDOCS writes the SIB to the console device buffer 
using EXCP. 

IEECVETH/P/R/U 



t:J -~ 
~ 

o en 

~ 
~ 

en 
'< 
.." 
(; 
3 

~ 
(S. 

C 
~ 

~ 
< o 
C 
3 
(1) 

~ 

'< en 
~ 

" (1) 

if 
~ 
I.H 

~ 

Diagram 1-15. Writing Multiple-line Messages to a 1052, 144:3,2740, or 3284/3286 Console (part 1 of 4) 

i' 

" 

UCM Entry 

Output pending 
(UCMPF) 

t Output queue 
(UCMOUTO) 

From WTO and WTOR Communications 
Task Processing 
(I EA VMOWR and lEA VMWSV) .. P 

~-------
= 1 

f- -.. i - -- Determine that a message is to be 

COE queue 
written. 

'~ 

Entry 
= 1 

(COEENTR) foo -- - -- -.-
"-t WOE 2 Find the message. 

~ (COEWOE) 
y 

Major WOE ~~ 
= 1 

(COEMAJOR) 
....;.- --- - ~ 3 Determine that the message is a 

" 

multiple-line message. 

; 

. 1 
MaJor WOE I 

~ 4 1052 or 3284/3286 - Prepare to 
r write first line of message. 

5 Initiate message writing: 
,.,. 

.... :' ,'.:' • 1052 or 3284/3286. 
I' 

;>' "-
• 1443. 

I',": -v 

!' 
'; r-.. 

• 2740. 
1;: -v 

1\ 
:'.:'::'; ':i,;;,' .... :;,.;<.:: ,,: :,:;,: •. :., .;:., ,: 1 ,; .. ; ;v:·:::. .:,;,:.,;;':;;"::;'. 

~ '---

Outout 
,:" :, ',":,', ,C", 

.::, 
, 

1 
~; 
',: 
,~, 

I': 
;" 
;; 

i I> UCM entry 

I:; "t COE in process ~'k 
v (UCMWLAST) % 

rf 
'. "- MLWTO in process ~'i ) 

, 11i v (UCMTC) it, 
I:: 
"'" 

~' 

;;; it 

')1 lOB i 'J v 
, 

,It 

~ 
Write CCWs ., 

:~: 
.. 

EXCP i; .. i;"'\':i''" " " 
Perform write 

::. 
,. 

operation 
;., 

, 

BSAM .. 
'.; --,. Perform write 
, operation 

;.' .. 

BTAM 
" 

.. 
Perform write 

:,; ,. operation 

.;; 



r;n 
~ 
g 
o· 
= 
~ 

s:: 
a 
[ 
o ..... 
o 

"'0 
~ 
Ilo:I g. 
= 
~ -N 
Ul 

Diagram 1-15. Writing Multiple-line Messages to a 1052, 1443,2740, or 3284/3286 Console (Part 2 of 4) 

Extended Description 

User programs and system routines issue a WTO or WTOR 
macro instruction to send messages to the operator's con­
soles. The following communications task device support 
processors (DSPs) write multiple-line messages to consoles: 

• For a 1052 printer-keyboard, 3210 console printer­
keyboard, 3215 console printer-keyboard, and 3213 con­
sole printer, the DSP is IEAV1052. 

• For a 1443 printer, 1403 printer, and 3211 printer, the 
DSP is IEAV1443. 

• For a 2740 communications terminal, IEEC2740. 

• For a 3284/3286 printer, IEECVETW. 

Module 

IEAV1052 

IEAV1443 

IEEC2740 

IEECVETW 

1 The appropriate DSP checks the output-pending bit (See above) 
(UCMPF) to determine that a message is to be written. 

2 The DSP searches the CaE chain (pointed to by 
UCMOUTa) for a CaE pointing to a message (flag 

CaEENTR is onl. When the DSP finds such a CaE, it saves 
the address of the CaE in field UCMWLAST. Field 
CaEWaE points to the WOE that contains the message. 

Label Extended Description 

3 The DSP checks bit CaEMAJOR to determine whether 
the message is a multiple-line message (MLWTO)' If 

CaEMAJOR is on, the DSP sets bit UCMTC to indicate that 
a multiple-line message is being processed. The caE points 
to a major WOE; the major WOE contains the first line of 
the multiple-line message. 

4 For a 1052 or 3284/3286, the appropriate DSP obtains 
an lOB for the write operation and places the addresses 

of the write CCWs into the lOB. 

5 The DSPs initiate the writing of the first line of the 
message: 

• For a 1052 or 3284/3286, the appropriate DSP issues an 
EXCP macro instruction to execute the write channel 
program. 

• For a 1443 printer, the 1443 DSP issues a WRITE macro 
instruction to pass control to BSAM, which writes the 
message. 

• For a 2740 communications terminal, the 2740 DSP 
issues a WR ITE macro instruction to pass control to 
BT AM, which writes the message. 

Module 

IEAV1052 
or 

IEECVETW 

IEAV1443 

IEEC2740 

Label 



~ Diagram 1-15. Writing Multiple-line Messages to a 1052, 1443,2740, or 3284/3286 Console (part 3 of 4) 

~ 

~ 
~ 
N 
fJ'.l 

~ 
9 
t"'" 
~ 
()' 
t"'" 

~ 
~ 
<: 
o 
=-3 
~ 

~ 

'< 
v.l 
~ 

~ 
~ 

i 
~ 
IN 

~ 

UCM entry 

I/O complete ~----.., 
(UCMDEVE) I 

M LWTO in process I 
~- - - -'---(UCMTC) 

r Minor WOEs 

~ Set in step 3. 

t NextWOE 
COE (WMNMNX) ~-1-- -p End line 

~ I-- I- -r (WMNMLT1D) 

Major 1 
WOE 

= 1 .- _. 6 When I/O complete, either: -----

"-
> a) Write next line (as in steps 4 

v 
and 5). 

=0 OR - - - -- !-- b) Wait for next line. 

i~ OR 
= 1 

---- !-. c) Write last line (as in steps 
4 and 5). 

To perform other 
console operations 

UCM entry 

1 
I/O ECB = 0 
(UCMECB) 

'" UCMDEVE =0 --v 

Device not busy 
(UCMBF) 

'" MLWTO line pending 
I 

(UCMSDS5A) --v 

I 

/ 

'l 
MLWTO not in process I 

(UCMTC) 

I 

-') Dequeue output queue I 
entries (UCMTB) I --v 

t 
~ i 

Output pending 
(UCMPF) 

COE 

>1 
Entry no longer needed 
(COEAVAIL) 

No entry exists 
(COEENTR) 



\J'} 
(1) 

II 
cr 
:I 
N 

3: 
(1) 

g 
Q. 

o ...., 
o 
"0 
~ 
~ 

s· 
:I 

t;-' -N 
-.,J 

Diagram 1-15. Writing Multiple-line Messages to a 1052, 1443,2740, or 3284/3286 Console (part 4 of 4) 

Extended Description 

6 When the write operation that was initiated in step 5 is 
complete (bit UCMDEVE is on), the DSP clears the 

I/O ECB (UCMECB), the I/O-complete bit (UCMDEVE), 
and the device-busy bit (UCMBF). Then the DSP checks bit 
UCMTC (set in step 3) to determine that a multiple-line 
message is being processed. The DSP continues processing 
the multiple-line message as follows: 

a) If a minor WOE containing the next message line exists, 
the DSP initiates the writing of the next line as in steps 4 
and 5. 

b) If no minor WOE with the next message line exists, the 
DSP sets bit UCMSDS5A and waits for the next line to be 
available. 

c) If the WOE indicates that it contains the last message line 
(WMNMLT1D is on), the DSP initiates writing of the last 
line as in steps 4 and 5. The DSP also turns off the 
M LWTO-in-process bit (UCMTC), turns on bit UCMTB to 
indicate that the appropriate output queue entries must be 
dequeued, and turns on bit UCMPF to indicate that out· 
put is pending. Finally, the DSP marks the COE available 
(COEAV A I L) and indicates that no entry is associated 
with the COE (COEENTR). 

Module Label 



~ 
t-J 
00 

o 
CI.l 

~ 
t-J 
CI.l 
'< 
~ 

~ 
I:"" 
~ 
(;. 

I:"" 

~ 
e; 
'< 

~ 
=-3 
(t> 

t-J 

'< 
CI.l 
t-J 
:;= 
(t> 

i 
~ 
IN 

~ 

Diagram 1-16. Displaying Multiple-line Messages on a Graphics Console (DIDOCS) (part 1 of 2) 

From WTO and WTOR Communications 
Task Processing 
(I EA VMOWR and lEA VMWSV) Process 

pending (UCMSDS5A) I ./ 

UCMOUTO 

1 Determine that multiple-line message 
is to be displayed. 

2 Determine message type: 

In-line or out-of-line 
(UCMSDS5B) - ....... In-line Message 

- Move message into SIB. 

Mark message. 

Indicate that part of the 
message area must be written 
on the screen. 

Out-of-line Message 

If message area contains in-line 
messages, overlay with out_Of_l:=uone 
message from instruction line and 
entry area. 

If message area free of in-line 
messages, move out-of-line 
message from WOEs. 

3 Write the message on the screen. 

To perform other 

Output 

DCM 

Screen image buffer 

SCT 

Write partial area 
(DCMWRPAR) 

Console 
device buffer 

. communications task operations 



r.n 
<P 
() g. 
= N 

~ 
CD g 
Q. 

o -. 
o 

"0 
<P ... 
~ g. 
= 
~ -N 
\0 

Diagram 1-16. Displaying Multiple-line Messages on a Graphics Console (DIDOCS) (Part 2 of 2) 

Extended Description 

User programs and system routines use the WTO or WTOR 
macro instruction to send multiple-line messages (as well as 
single-line messages) to the operator's consoles. DI DOCS 
displays a multiple-line message on a graphics console as 
follows: 

1 DIDOCS checks bit UCMSDS5A to determine that a 
multiple-line message is to be displayed. 

Module 

IEECVET1 

2 DIDOCS checks bit UCMSDS5B to determine whether IEECVFT2 
the multiple-line messages is in-line or out-of-line . 

• If the message is in-line (UCMSDS5B is on), DIDOCS con- IEECVFTL 
tinues to move the lines of the message from the major 
and minor WOEs into the SIB until the screen is full. 
DIDOCS marks each message with the appropriate meso 
sage indicator. Finally, DIDOCS sets bit DCMWRPAR to 
indicate that part of the message area containing the new 
message must be written to the screen . 

• If the message is out-of-line (UCMSDS5B is offl, DIDOCS IEECVFTM 
searches the console queue for a major WOE with a valid 
target area ID (WMJMAREAI. If the area is occupied by IEECVFTO 
in-line messages, DIDOCS writes the out-of-line message, 
three lines at a time, from the instruction line and entry 
area of the screen image buffer to the area. If the area is I EECVFTO 
free of in-line messages, DIDOCS moves the out-of-line 

message lines from the major and minor WOEs to the area 
until the area is full. 

Label 

3 D I DOCS writes the message from the screen image 
buffer to the console device buffer. 

IEECVETH/P/R/U 



~ Diagram 1-17. I/O Complete Processing (part 1 of 8) .... 
~ c 

o 
ell 

~ 
N 
ell 
'< 
~ 
(D 

9 

£ ;. 
r­
;: 

~ 
<: 
~ 
9 
(D 

N 

'< 
ell 
N 

" (D 

i 
Y6 
~ 

~ 

Input 

~ 

Task Queue 

{ 
COMTASKTCB 

UCM 

UCMIECBA 

I/O ECB 
Pointer 

CliO ECB 

11 I 
UCM Entry 
UCMDEVC 
UCMDEVE 

.... 0 ... 

Register 1 

I Code 4 

.. 
I 

From lOS ~ 

~ 

From 
step 2 

~ 

~ 

I 
I 

I 

From 
step 3 

--'0.. 

r' 

Process Output 

IT 

I/O Supervisor 
An I/O ECB 

1\ I r 1 r I ',,> 1 The I/O Supervisor posts an I/O .. ... Complete ECB . 
To the 
Dispatcher 
(lEAVEDSO) .. 

Returns to the dispatcher. 
~ 

The 0 ispatcher 

2 Dispatches the Communication Task. • ~Step3 

The Communication Task 

UCM Entry 
lEA VMQWR (Wait Service Routine) UCMDEVC 

UCMDEVE 
1\ ~ 

I I ) 3 Scans for posted I/O ECBs. .- .. 1 ... ...... 
Ll .. • 

Calls Device Service Routine. Step 4 

r~' 
Register 1 

?~ ~ I I i;; Iii Code 4 
1\ 

... ;: !! 
,';:' :<~ 

t: 

IEAVMDSV 
(Device Service Routine) 

;1 
'.', JI.) 4 Calls Subroutine DEVSERVB. 
,d. ... 

~ Step 5 
;: ... ;!~, :,: 
::":"",d>';J ,".. •. ; ;/:,"( "/,,:Y:·:'. i'; :::'.,: i. ,:TY}¥ 



til 
(\) 

$l. o· 
= !'! 
~ 
2-
[ 
o -o 

"C 
~ a o· 
= 
~ -~ -

Diagram 1-17. I/O Complete Processing (part 2 of 8) 

Extended Description 

This procedure handles the completion of a requested 
input/output operation. 

I/O Supervisor 

1 The I/O Supervisor (lOS) will post the appropriate 
I/O Complete ECB. The Communications Task 

TCB is marked ready. 

Dispatcher 

2 The Dispatcher passes control to the Communica: 
tion Task when its TCB is the highest priority 

ready TCB on the queue. 

The Wait Service Routine 

3 The list of I/O ECB pointers (ElL) is used to check 
I/O ECB postings. If a posted I/O ECB is found, the 

'I/O Complete' flag (UCMDEVE in UCMDEVC of the 
UCM Entry) is set. Control passes to the Device Services 
Manager (lEAVMDSV) with a code of four in register 
one. Upon return, control passes to the beginning of the 
ECB check loop (WR EXT). 

Device Service Routine 

4 The code passed in register one by the Wait Service 
Routine (lEAVMQWR) is checked. Control passes to 

Subroutine DEVSERVB if the code is four. 

Module 

IEAVEDSO 

IEAVMQWR 

IEAVMDSV 



~ Diagram 1-17. I/O Complete Processing (part 3 of 8) 
w 
N 

o 
til 

~ 
N 
tI) 

'< 
"" i 
E 
(;. 

c 
~ 
.$ 
<: o 
C 
3 
n> 
N 

'< 
tI) 
N 

:;0 
n> 

if 
l'tl 
w 

~ 

Input 

UCM Entry 
UCMSTS 
UCMAF 

x ... 

UCMDEVC 
UCMDEVE 

.... x ... 

UCMLSTP 

UCMIECBA 

I/O ECB 

I 1 

Process 

If the device is inactive and the I/O 
complete ECB is posted, then: 

Output 

a. Zero the I/O ECB. I'(;; 

b. Return to the wait service routine. I 

6 If the device is active and the I/O 
complete ECB is posted, then call 
subroutine DEVSERV. 

7 Build a parameter list and call the 
device support processor. ------"'-------N.;;~' 

Device Support Processors 

8 Determines if an error occurred. 
If so, call Console Switch 
Routine (IEAVSWCH). 

9 Determines if a READ operation. 

If so, calls the Command Processor.] I 

I/O ECB 

10 - - - --- - ~--= --0] 

SVC 72 
Parameter List 

- J 



CI:l 
(D 
n g. 
::I 
tv 

s: 
(D g 
Q. 

o -, 
o 
'" (D 

~ g. 
::I 

~ 
~ 
~ 

Diagram 1-17. I/O Complete Processing (Part 4 of 8) 

Extended Description 

5 In Subroutine DEVSERVB, a check is made to 
determine if the device is active (UCMAF on in 

UCMSTS). If so, control passes to step 6. If not, a check 
is made for an I/O completion (UCMDEVE on in 
UCMDEVC). If so, the pointer to the EI L (Event 
Indicator List) is obtained (from UCMLSTP in the UCMl. 
The index in register 6 is used to point to the I/O Com­
plete ECB for the console (UCM I ECBA points to the list 
of ECBs). The ECB is then zeroed. Control returns to the 
wait service routine. 

6 If I/O has completed (UCMDEVE off in UCMDEVC), 
a branch is taken to Subroutine DEVSERV. Other­

wise, Control returns to I EAVMOWR at entry point 
WRABXLE. 

7 Subroutine DEVSERV constructs the SVC 72 
parameter list and a SVC 72 calls the appropriate 

non-resident support processor. 

For additional information on SVC 72, see either Writing 
Messages to a Console or Processing Commands From a 
Console diagrams. 

Module Extended Description Module 

8 The device support processor determines if the lEA VVCTR 
device is busy, if the I/O is complete and if the I/O 

operation was successful. If an error has occurred, branch to 
the Console Switch Routine (lEAVSWCH). See step 12. 

9 If a READ I/O operation is successful, the SVC 34 Note 1 
Command Processor is called to analyze the input 

message. 

10 When a WR ITE operation is successful, the 
associated COE is marked completed. (COEENTR 

set to off in COE FLAG.l A check is then made for other 
communication task work to be performed. If an attention 
is pending (UCMAF in UCMSTS), a read is issued. If an 
output message is available for this console, the next 
message is selected and sent to the console using either a 
WRITE or EXCP macro. 

Notes: 

1. The appropriate console device processor with input and 
output capabilities is given control (see "Console Device 
Support" in the introduction to this sectionl. 

2. The appropriate console device processor with input and 
output or output only capabilities is given control (see 
"Console Device Support" in the introduction to this 
sectionl. 

Note 2 



::: Diagram 1-17" I/O Complete Processing (part 5 of 8) 
w 
~ 

o 
C"I:l 

~ I nput Process 
N '" r--....,...-----....,... ....... """'"'....,...--....,.......,...---~ 
C"I:l 
'< 
~ 

3 
t"" 
~ 
n" 
t"" 
0: 

~ 
<: 
2-= 3 
nI 

N 

'< 
C"I:l 
N 

~ 
nI 

i 
r6 
w 

~ 

Return Address 

UCM Entry 
UCMATR 
UCMUF 

.. " 1 

UCMSTS 
UCMCF-

... 0 

UCMSTS 
UCMCF 

... 0 

Non-Graphic Alternate 

_I 
Hardcopy 

11 Return. 

lEA VSWCH (Console Switch 
Routine) 

12 Looks for the failing console's " 
active alternate. 

Indicates the master console is the 
alternate if no active alternate can 
be found. 

14 Calls a device support processor to 
issue OPEN which rings an alarm if 
no active device is found. 

Return. 

15 Issues a WTO macro instruction to 
issue a VARY MSTCONS request 
if failing master console has no 
alternate. 

Exits and Waits for VARY 
MSTCONS to be used. 

UCM Entry 
UCMDEVC 
UCMDEVCC 

.. 1. .... -] 

Alternate 

~! -1 
I Master J 

Alternate 

VARY MSTCONS 



en 
(1) 
n 

S· 
= 
~ 

~ 
(1) g 
~ 

o ..., 
o 

"0 
~ 
~ o· 
= 
::: 
w 
01 

Diagram 1-17. I/O Complete Processing (part 6 of 8) 

Extended Description 

11 Control returns to the wait service routine. 

Console Switch Routine 

12 Upon entry, determines if request is for failing 
console. A scan of the failing console's alternate 

chain is done for an active console (UCMUF on in 
UCMATR) which does not have a CLOSE pending 
(UCMCF off in UCMSTS). Each UCM Entry is marked 
'Device Tested' (UCMDEVCC 'in UCMDEVC) when not 
found to be acceptable as an alternate. This flag is reset 
in each UCM Entry by Subroutine CLEARDVC when 

the alternate has been selected. 

13 If the failing console has no eligible alternate in 
its chnin and it is not the master console, the 

master console is selected to replace the failing console. 

Module 

IEAVSWCH 

IEAVSWCH 

Extended Description 

14 If no active input/output device is found, another 
scan of the UCM Entries is made for an output-only 

display device which has I/O capability, which is active and 
does not have a CLOSE pending. If found, the SWFULCAP 
subroutine is called to switch the console to fLiIi I/O capa­
bility.lf no eligible alternate can be found, another scan 
is performed for a console with an alarm (e.g., a 1052 or 
2150 console). The routine branches to the appropriate 
device support processor to issue the OPEN macro instruc­
tion. On return an EXCP macro instruction is issued to ring 
the alarm. 

15 If the failing console is the master console, a scan of 
the UCM Entries is done for a console which is not 

output-only, which is not the master console, which is 
active and which does not have a CLOSE pending. If found, 
a message (IEE141A) is broadcasted requesting a 'VARY 
MSTCONS' command from an operator. 

Module 

IEAVSWCH 



~ Diagram 1-17. I/O Complete Processing (Part 7 of 8) 
w 
0'1 

o 
CI} 

~ 
N 
CI} 

.~ 

i 
s 

(JQ 
(=). 

t"'" a: 
~ 
~ a­
S 
(D 

N 

'< 
CI) 
N 

~ 
(D 

[ 
r6 
w 

~ 

Process 

16 Adds the failing console's attributes 
to the alternate console's attributes. 

17 Constructs WQE with console 

Output 

status message.',] • 

18 Queues the failing console's 
messages and unanswered reply 
requests to the alternate console's 
queue. 

19 Switches the hard copy function 
to a non-graphic alternate console 
if needed. 

20 Return. Wait Service Routine 
(IEAVMQWR) 

Non-G raph ic Alternate 

-Ha,~v -] 



Vl 
(!> 
(") 

S· 
= 
N 

3: 
(!> 

~ 
c .... 
o 

"0 
(!> 

iil g. 
= 
~ 
IN ..... 

Diagram 1-17. I/O Complete Processing (Part 8 of 8) 

Extended Description 

16 The authorization codes and routing codes of the 
failing console are added to those of its eligible 

alternate console. 

17 The WOE is constructed. 

18 If it is determined that the WTOR (a message and a 
requested reply) was queued to the failing console, 

the message is requeued to the alternate console's output 
queue. I n Subroutine M L 1, if the multiple-line message is 
being written, or the end of the message is not indicated, 
the message is purged. Otherwise, the message is queued 
to the new console's output queue. The new console's 
output queue is scanned for duplicate entries. If any are 
found, they are marked to prevent them from being written. 

Module Extended Description 

19 If the failing console was the hardcopy device 
(UCMDISPE on in UCMDISP), and the switch 

was not a result of a 'VARY MSTCONS' command or 
a system requested 'VARY', the hardcopy function is 
switched to the alternate console provided it is not a 
display console. Otherwise, another alternate is selected 
that can support the hardcopy function. A message 
(J E E 1421) is i~sued to inform the operator of the con­
sole that is performing the hardcopy function. When a 
hardcopy console is unavailable, a WTO macro is issued 
to send message I EA9641 to the master console and the 
hardcopy facility is suspended. 

20 The failing console is marked 'Close Pending' 
(UCMCF in UCMSTS) and not 'Busy' (UCMBF 

off in UCMSTS). 

The failing console's output queue pointer (UCMOUTO) 
and pointer to the last COE entry serviced (UCMWLAST) 
are zeroed. The console switch flags (UCMSYSK and 
UCMSYSM in UCMFLG2, UCMSYSD in UCMSFLGll are 
reset~A FREEMAIN macro instruction ;s issued to free 
the save area. A POST macro instruction is issued to post 
the WTO ECB (UCMOECB). Register 14 is restored from 
CSAXA and control passes via register 14 to the Console 
Switch Routine (I EAVSWCH). 

Module 

IEAVSWCH 



~ Diagram 1-18. DOM Macro Instruction Processing Overview (SVC 87) (IEAVXDOM) (part 1 of 2) 
1M 
00 

~ 
"< {I.l 
N 
{I.l 

'< 
~ 
(D 

9 

~ (;. 

t'"' 
0: 

~ 
<: 
~ 
c 
9 
(D 

N 

'< 
{I.l 
N 

~ 
(D 

;-
I\) 

~ 
1M 

~ 

In 
From the SVC First Level 
Interrupt Handler OEAVESVC) Process Output 

User and System Programs 

Macro Instruction 
DOM 

Register 0 

Control 

Register 1 

1 Message 
Identification 
or Pointer 

Parameter List 

---'11-60 
Message 
Identifications 

IEAVXDOM (DOM Service Routine) 

DOM Control Block (DOMC) 

• SVC 87 

- Create DOM control block. 

Unit Control Module (UCM) 

- Post the communication task. f' "\I UCMDECB 



CI:l 
('t> 

~ o· 
= N 

a:: 
('t> 

[ 
o .... 
o 

"0 
~ 
~ o· 
= 
::: 
IN 
100 

Diagram 1-18. DOM Macro Instruction Processing Overview (SVC 87) (IEAVXDOM) (Part 2 of 2) 

Extended Description 

To delete a message, that message must already reside in a 
write queue element (WOE). A message identification was 
assigned to each WOE when it was created by a WTO or 
WTOR macro instruction. This message identification was 
returned to the WTO or WTOR macro instruction user in 
register 1. 

The DOM macro instruction service routine builds the delete 
operator message control block (DOMC) to pass from one 
to sixty message identifications to the communication task 
for deletion. This routine then posts the communication 

task (UCMDECB), which removes the WOEs and their 
associated operator reply elements (OREs). 

Module 

IEAVXDOM 



~ -~ Q 

o 
~ 

"< 
~ 
~ 

~ 
'< 
~ 

9 
£" 
(So 

~ 
~ 
~ 
i 
(I) 

~ 

'< 
~ 
~ 

~ 

i 
~ 
w 
~ 
'-' 

Diagram 1-190 DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) (part 1 of 12) 

From the SVC First Level 
Interrupt Handler (lEAVESVC) 

IEAVXDOM 

1 The following table shows the 
subroutines called for the DOM 
macro instruction service routine: 

Called Subroutines are: 
SETLCKS 
FRELCKS 



CI} 
(II 
(") 

g. 
::s 
t-..I 

:: 
~ 
::s-
8-
o ..... 
o 

'"0 
~ 
Q:I 

g. 
::s 

~ -:: 

Diagram 1-19. DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) (Part 2 of 12) 

Extended Description Module 

Mainline Routine: IEAVXDOM 

1 This routine services the delete operator message (DaM) IEAVXDOM 
macro instruction and SVC 87. The one to sixty mes­

sage identifications passed to this routine are placed in a 
delete operator message control block (DOMC) and the 

communication task is posted. A copy of the identifications 
is given to the subsystem exit routine; no response is accepted 
from this exit. Control is then returned to the SVC first level 
interrupt handler. 

Extended Description 

Subroutines: 

SETLIST 
This subroutine validates the contents of register 0 and 
prepares the routine to process the list of message iden­
tification passed by the user of the DaM macro instruc­
tion. 

AUTHCHK 

Determines if the DaM user may delete messages that 
were issued by other jobsteps or outside the user's 
address space. 

SCAN IDS 
Checks the message identifications passed by the user and 

moves the valid message identifications into the dummy 
delete operator message control block (DUMDOMCB). 

GETDOMCB 
Computes the size requi red for the variable length delete 
operator message control block (DOMC) from the dum­
my delete operator message control block (DUMDOMCB) 
and obtains the space for the DOMC from subpool 231. 

FILLDOM 
Moves the information needed into the delete operator 
message control block (DOMC) and places this DOMC 
on the DOMe chain for processing by the communica­
tion task. 

SUBEXIT 

Passes the dummy delete operator message control block 
to the subsystem. In Release 2, the only subsystem is 
JES2. 

SETLCKS 
Obtains the local and CMS locks, and sets up the func­
tional recovery routine (FRR). The locks serialize the 
use of communication task resources. The FRR helps 
clean up the communication task should a processing 
error occur. 

FRELCKS 
Releases the functional recovery routine, and frees the 
CMS and local locks. 

Module 



~ Diagram 1-19. DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) (part 3 of 12) 
~ 
N 

~ 
"< c;n 
N 
c;n 
'< 
~ 
~ 

:3 

~ 
ri· 
t'"" 
6' 
lit 
-< 
-< 
S2. 
= :3 
~ 

N 

~ 
c;n 
N 

~ 
(jj 
11:1 
~ 
~ 

~ 

Register 1 

Message Identification or 
Parameter List Pointer 

Register 14 

Return Address 

DOM & DOMR Control 

2 Save registers in extended 
save area. 

(SETLIST Subroutine) 

3 Validity check contents of 
register O. 

If the contents are valid, 
point to first message 
identification. 

If the contents are not valid. "q "5.: 

.L 

Supervisor Requt:Sl OIOCK 

XSREGO 

XSREG1 

XSREG14 

Register 5 

SVRB) 

Supervisor Request Block (SVRB) 

XSPLPTR 

Parameter 
List 

Register 15 

Return Code = 4 

'/ 



en 
(D 
() 

S· 
:::s 
N 

:::: 
(D 

S-
o 
Q. 

S, 
o 

'"0 

~ 
~ 

S· 
:::s 

~ 
~ 
w 

Diagram 1-19. DOM Macro Iqstruction Processing (SVC 87) (IEAVXDOM) (Part 4 of 12) 

Extended Description 

2 Registers 0,1, and 14, are saved in the extended save 
area (XS) of the supervisor request block (SVRB). 

3 Checks the validity of the contents of register O. Only 
four values are acceptable: 

o Register 1 contains the message identification of 
one WTO message. (This DOM will attempt to 
delete one WOE.) 

4 Register 1 contains the message identification of 
one WTOR message. (This DOM will attempt to 
delete one WOE and one ORE.) 

12 Register 1 contains a pointer to a user supplied 
parameter list having several WTO and WTOR 
message identifications. (This DOM will attempt 
to delete each WOE and, when an ORE exists, 
delete the OREs associated with the messages 
contained in the WOEs.) 

Negative Register 1 contains a pointer to a user supplied 
Number parameter list having several WTO message 

identifications. (This DOM will attempt to delete 
each WOE but no OREs.) 

Any other value in register 0 causes the user to eventually 
receive a 157 ABEND with a return code of 4. When the 
contents of register 0 are valid, XSPLPTR is set to point to 
the first message identification. If the message identification 
is in register 0, XSPLPTR is set to point to XSREG1 and 
the high order bit in XSR EG 1 is turned on to indicate that 
this is the last message identification. If register 1 contains 
a pointer, XSPLPTR points to the user supplied parameter 
list. 

Module Label 

IEAVXDOM 

SETLIST 



t;-l Diagram 1-19.DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) (Part 5 of 12) -~ 
~ 

o 
(J':l 

~ 
(J':l 
N 
(J':l 

'< 
~ 
~ 

3 
r-' 

J6 
r)" 
C. 
g" 

~ 
< o 

=-3 
~ 

N 

'< 
(J':l 
N 

~ 
~ 

i 
~ 
w 

~ 

Unit 
Control Module (UCM) 

UCMCTID 

UCMPXA 

Output 

(AUTHCHK Subroutine) 

4 Determine if DOM user is I'\: 
authorized. 

(SCAN IDS Subroutine) 

5 Scan parameter list and build dummy f\. 

DOM control block. 

If incorrect message 
identification. 

Supervisor 
Request Block (SVR B) 

I XSAUTH 

Register 9 

Register 15 

Return Code ,,;m8~ 



en 
(l) 

14 o· 
::I 
N 

::: 
(l) 

[ 
o .... 
o 

"0 
~ 
~ 

S· 
::I 

t:-J -~ 
VI 

Diagram 1-19. DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) (Part 6 of 12) 

Extended Description 

4 In this instance, an authorized program is a program 
running in supervisor state, protect keys 0-7, or a 

problem program sanctioned by the authorized program 
facility (APF). 

The TEST AUTH macro instruction is issued the first time 
to determine if the DaM user is running in supervisor state 
or using keys 0-7; if so, the XSAUTH bit is turned on to 
indicate that the user is authorized. 

If the first TESTAUTH macro instruction indicated that 
the DaM user is a problem program, a second TESTAUTH 
macro instruction determines if the DaM user is authorized 
by the authorized program facility; if so, the XSAUTH bit 

is turned on to indicate that the user is authorized. 

If both TESTAUTH macro instructions fail to indicate an 
authorized DaM user, the XSAUTH bit is turned off. 

Module Label 

IEAVXDOM AUTHCHK 

Extended Description 

5 Each of the message identifications in the user param-
eter list is tested against the message identifications in 

each WOE on the chain of WOEs. During this test, the mes­
sage identifications from the parameter list that are not 
rejected are copied into the dummy DaM control block. 
The reasons for rejecting a message identification are: 

• The WOE with that message identification is suspended. 
A suspended WOE is not yet in the system. 

• The WOE with that message identification-is for a WTOR 
and the DaM user specified a WTO, not a WTOR. The 
user receives a 157 ABEND; the return code is ignored. 

• The DaM user is not authorized to issue a DaM macro 
instruction against the WOE with that message identifica­
tion. For example, the user is not authorized, or is a 
unauthorized problem program with a different address 
space identifier (AS I D) or different jobstep from the 
program that issued the WTO. The user receives a 157 
ABEND with return code 8. 

• The WOE with that message identification is for a WTOR 
and the ORE has already been replied to by REPLY 
processing. 

Note: When a message identification from the user-supplied 
parameter list fai Is to match any of the message identifica­
tions in the chain of WOEs, that message identification is 
copied into the dummy DaM control block. This message 
identification may exist for a message being displayed by 
a graphic console. 

Module Label 

SCANIDS 



~ Diagram 1-19. DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) (Part 7 of 12) 
~ 
0'1 

o 
~ 

"< 
~ 
N 
~ 
'< 
~ 

3 
r"'" 
Ii ;:;. 
r"'" c: 
~ 
-< 
~ 
:3 
(D 

N 

'< 
~ 
N 
:;:tI 

i 
r6 
w 
~ 

", 

J 

f" 

lijI 
t"'~ 

Register 5 

L I 
( Supervisor 

~, Request Block (SVRB) 

r XSIDPTR r 
I 

Supervisor 
Request Block (SVRB) 

I 
XSAUTH I 

I 

".'h .. ·" ,.,·/· ... ;;:<H ,"h '.:<.>. ... ,.'''.H'M''.' .... ':! 

Dummy DOM ,; 

Control Block (DUMDOMCB) 

~ 

I--
i':.,. 

I---

~ f...-
I-

~i 
'. '''C'', ")l':', ,,'ii;, ,I>; .';~;V? ':'" ','''; '/"Jf/Y 

;s 

(GETDOMCB Subroutine) 

' ..... ) 6 Obtain real DOM control block. 
;V 

! 
"'~ 

a. From size of dummy DOM 
control block, calculate 
size. 

b. Obtain DOM control 
block. 

c. Set XSCBSIZE equal to 
control block size. 

;i ..... 
7 Set authorization and DOM 

~i;'v reply status. 

;2 
K, 

;; (FILLDOM Subroutine) 

r~' 
:. 

'1 
: ... 8 Copy the contents. Ii 

·v ~. , 
2'. ~.~; 

.- ;f..· .;' ...... :<, ., .. ',', :. : .... " •. "":7"'/';;~ 

~ 

Register 1 

;, ./ I 
DOM 
Control Block (DOMC) 

I--

I--

~ 

I--
I--

+ 
GETMAIN 
Macro Supervisor 
Instruction Request Block (SVRB) 

I XSCBSIZE I 
..' .".,.,.,.;'';.'.'' 

Dummy DOM 
Control Block (DUMDOMCB) . I DDATHR I 

. ; ....... ,. 
.;.<: .•• ·".,i ••..• u. 

. 

'j 

.( 
DOM 
Control Block (DOMC) 

.1 , .. I-- . 
~. f---

1ft; f--

f...-

Wi I--

fi;? 
I> 
pi .i; "',: .... ';/ .. ;". 

"', /, .. .. /:;:.·;d:·.; 



Vl 
(!) 

" S· 
::: 
tv 

::: 
~ 
;:-
0.. 
o ..., 
o 
'0 
~ 
I» g. 
::: 

~ 
:; 
-....J 

Diagram 1-19. DOM Macro Instruction Processing (SVC 87) (lEA VXDOM) (Part 8 of 12) 

Extended Description 

6 Having built the dummy DOM control block 
(DUMDOMCB), this routine: 

a)Calculates the size needed for the real DOM control 
block (DOMC). 

b) Issues a GETMAIN macro instruction to obtain space 
for the DOMC from subpool 231. 

c) Fills the newly obtained DOMC with X'OO' . 

• Places the size of the DOMC in the supervisor request 
block (SVRB). 

Upon return from executing the GETMAIN macro 
instruction, register 1 points to the newly obtained 
DOMC. 

7 The bits in the dummy DOM control block 
(DUMDOMCB) representing whether the DOM 

user is authorized and whether this DOM is permitted to 
remove WTORs are set. 

8 The contents of the dummy DOM control block 
(DUMDOMCB) are copied into the DOM control 

block (DOMC)' 

Module label 

IEAVXDOM GETDOMCB 

FILLDOM 



~ Diagram 1-19. DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) (Part 9 of 12) 
~ 
00 

o 
(,I) 

:;::' 
(,I) 
N 
(,I) 

'< 
~ 
(1) 

3 

S 
OCI ;:;. 

C 
'=' 
~ 
'< 
<:: 
o 

=-3 
(1) 

N 

<: 
(,I) 
N 

~ 
(1) 

~ 
r6 
IN 

~ 

Input Process 

9 Place DaM control block on 
DaM control block chain. 

10 Post the communication task. 2 

Instruction 

(SUBEXIT Subroutine) 

11 Branch to subsystem exit. '." 2 

Output 

New DaM 
Control Block (DOMC) 

Old DOMC Oldest 

--1-t~ DOMC 
I I ,--, 
I I I I 

: I I I L __ .J I I 
L __ .J 

Unit Control Module (UCM) 

UCMDECB 

Subsystem 
Options Block (SSOB) 

[ . I 
Dummy DaM 
Control Block (DUMDOMCB) 

[ 



CI:l 
~ 
(".) 

S· 
= 
N 

:: 
~ go 
Q. 

o ..., 
o 
'" (':> ... 
~ 

S· 
= 
~ 
~ 

'" 

Diagram 1-19. DOM Macro Instruction Processing (SVC 87) (lEA VXDOM) (Part IO of 12) 

Extended Description 

9 The DaM control block (DOMC) built by this 
routine is placed at the top of the DOMC queue. 

The pointer from the unit control module (UCM) to the 

DOMC is in the prefix area of the UCM. 

10 With the DaM control block (DOMC) on the 
DOMC queue, the message identification in the 

DOMC are ready to be processed by the communication 

task. The communication task is posted to perform this 
service by turning on the UCMDECB event control block 
in the unit control module (UCM). 

11 A subsystem.options block (SSOB) is created and 
passed to the job e'ntry subsystem exit routine along 

with the dummy DaM control block (DUMDOMCB). No 

response is expected from the exit routine other than the 
return of control. 

Module Label 

IEAVXDOM 

SUBEXIT 



~ Diagram 1-19. DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) (Part 11 of 12) 
VI 
o 

o 
en 

"< en 
~ 

en 
~ 

~ 
r-
~ 
r)" 
r-
0: ... 
~ 

-< 
<: 
o = 3 
(!) 

N 

~ 
N 

~ 
(!) 

;' 
~ 

~ 
~ 

~ 

Input 

Supervisor 
Request Block (SVRB) 

XSERRCDE 

From Steps 
3,5 and 13 Process 

I==~~===~i:;:.:~. ~ 12 If error code is on, issue user 
L--_______ ----' ABEND 157. ] • ABEND 157 

Called As Needed 

Called As Needed 

Called As Needed 

If no error occurred, return 
control to the first level 
interrupt handler. ;,1 • Branch to SVC First Level 

Interrupt Handler (I EAVESVC) 

13 Recovery routine. ::'1 I Step 12 

(SETLCKS Subroutine) 

14 Obtains local and CMS locks. Return to SVC First Level 
I nterrupt Handler (I EA V ESVC) 

(FRELCKS Subroutine) 

--------111.11 •• 15 Frees local and CMS locks. Return to SVC First Level 
I nterrupt Handler (I EA V ESVC) 



C"J'} 
~ 
n 

S· 
::s 
N 

~ 
~ 
5' 
~ 

o ..... 
o 

"C 
~ ... 
I» 

S· 
::s 

~ 
(.Il -

Diagram 1-19. DOM Macro Instruction Processing (SVC 87) (IEAVXDOM) (Part 12 of 12) 

Extended Description 

12 In preparation for returning control, all work areas 
are freed using the FREEMAIN macro instruction. 

If an error occurred, the user receives a 157 ABEND. 

If no error occurred, return to the user via the SVC first 
level interrupt handler. 

13 Something caused an abnormal termination of this 
routine. The system eventually gives control to this 

step, which sets an error indicator and branches to end 
normal processing. The user will receive a 157 ABEND. 

14 The SETLCKS subroutine serializes the use of the 
unit control module (UCM)., the write queue 

elements (WOEs), and the operator reply elements (OREs). 
To serialize their use, this subroutine obtains the local 
and CMS locks, and sets the functional recovery routine 
(FRR) for recovery processing should an unexpected 
abnormal termination occur during the process. 

15 The FRELCKS subroutine frees the functional 
recovery routine (FRR), and releases the CMS and 

local locks obtained by the SETLCKS subroutine. 

Module Label 

IEAVXDOM 

SETLCKS 

FRELCKS 



:!: Diagram 1-20. DOM Communication Task Processing Overview (IEAVMDOM) (Part I of 2) 
VI 
N 

o 
c;n 

"< c;n 
N 
c;n 

~ 
~ 

3 

~ ;:;. 
t­o: 
~ 
'< 
<: 
o 
C 
3 
~ 

N 

'::2 
~ 
N 

:::0 
~ 
(i) 
~ 

III 
w 
~ 

From Dispatcher 
Input (lEAVEDSO) Process 
1:~~t:t~·kg~i¥~Lt,:\~>:¥;~fL;.:;7::ii;·:rY~.~:·~\~:<;;·;7·.::~!··~,,:·:~t~;·>i:t~fi.1;·'::; :0j':;'ft;tt~'~:~:1 _... E!~~~~~~~~~~~~~~~~0JI 

Unit Control Module (UCM) 

UCMDECB 

Control Block 

DaM Control 
Block (DOMC) 

Communication Task 

• Delete WOEs with the same message 
identification as those listed in the 
DOMC. 

Output 

• If deleting a WTOR -WOE, also ,-I 

delete the ORE. 

The following subroutines are called 
by the communication task's DaM 
processing routine (I EA VM DaM): 

POSTOECB 

BLJILDEND 

SETLCKS (in baM Macro Instruction 
Processing (SVC 87) (I EAVXDOM) 

FRELCKS (in DaM Macro Instruction 
Processing (SVC 87) (IEAVXDOM) 

Return to Dispatcher 
(IEAVEDSO) 

Write Oueue 
Element (WOE) 

Operator Reply 
Element (ORE) 



CIl 
(t> 
(") g. 
= 
~ 

::: 
:! 
[ 
o .... 
o 

"0 
~ 
e? o· 
= 
~ 
~ 
~ 

Diagram 1-20. DOM Communication Task Processing Overview (IEAVMDOM) (Part 2 of 2) 

Extended Description 

Prior to entry into this module, some system or user 
program issued a delete operator message (DOM) macro 
instruction. The DOM service routine, SVC 87 
(lEAVXDOM), prepared a DOM control block (DOMC) 
containing one to sixty message identifications of mes­
sages to be deleted from the system. It then posted the 
event control block UCMDECB for the communication 
task to actually delete these messages. 

The communication task searches the appropriate write 
queue element (WOE) and operator reply element (ORE) 
chains for the message identifications listed in the DOM 
control block (DOMC). Assuming the DOM macro instruc­
tion user has the proper authority and correctly indicated 
the deletion of WTO-WOEs and WTOR-WOEs, the appro­
priate WOEs and OR Es are deleted. 

Mainline Routine: IEAVMDOM - Communication Task 
DOM Processor 

This routine processes the delete operator message control 
block (DOMC)' For each message identification listed in 
the DOM control block, it scans the WOE chain. When a 
message is found with that identification, this routine also: 

• Insures that the message is terminated if it is a mUltiple 
line WTO message (MLWTO). 

• Frees the operator reply element (ORE) if the message 
is a WTOR message. 

• Marks the WOE for deletion. 

If there is an active graphic console in the system, SVC 72 
is issued to permit messages to be deleted from the graphic 
console's storage area. 

Subroutines: 

AVAILID (Step 12) 

Module 

IEAVMDOM 

When an operator reply element (ORE) is deleted, this subroutine places 
the reply identification for that OR E back into the reply identification 
bit map . 

OREREMV (Step 11 B) 
When an operator reply element (ORE) is deleted, this subroutine unchain~ 
and frees the.ORE. 

FREEBUF (Step 10) 
When an operator reply element (ORE) is deleted, this subroutine frees the 
temporary reply buffer pointed to by the ORE being deleted. 

Extended Description Module 

Subroutines (continued): 

GRAPHICS (Step 17) 
This subroutine searches the unit control module entries (UCMEs) for active 
graphic consoles. For each active graphic console found, this subroutine calls 
the device support processor (SVC 72). 

FREEDOMS (Step 19) 
After all of the message identifications in the DOM control block (DOMC) 
have been processed, this subroutine is called to unchain and free the DOM 
control block. 

POSTOECB 
When a TSO terminal is in MONITOR mode and has received a WTOR 
message, an operator reply element-write wait block (ORE-WWB) is built. 
This subroutine posts the UCMOECB event control block that will permit the 
OR E-WWB to be freed. 

BUI LDEND (Step 7) 
This subroutine builds the end-line message that is necessary to end a multiple 
line WTO (MLWTO) message. 

MSGPROC (Step 13) 
When WTOR messages are deleted from the system, operator responses to those 
messages are no longer needed. This subroutine prepares a message containing 
the message identifications of the deleted messages. The prepared message is 
then sent to the system operators informing them that these messages are no 
longer outstanding. 

GETWPL 
This subroutine obtains a write parameter list to issue a message. 

SETLCKS (Step 18) 
This subroutine obtains the local and CMS locks. 

FRELCKS (Step 16) 
This subroutine frees the CMS and local locks. 

SUBEXIT (Steps 5b-cl 
This routine builds the subsystem interface control blocks and passes the DOM 
control block to the subsystem. 

SETESTAE (Steps 5f-j) 
This routine creates the ESTAE recovery environment for-this module. 

SETFRRIN (Step 5k) 
This subroutine creates the functional recovery routine for this module. 

RELFRRIN 
This subroutine removes the last recovery environment created for this module. 

Also refer to the control block chaining diagram, Figure 5-1. 



t:-> -VI 
~ 

~ 
"< C"I) 

N 
C"I) 

'< 
;!4. 
~ 

3 
r-
~ r;. 
r-
~ 
~ 

~ 
<: o 
C 
3 
~ 

N 

'< 
C"I) 
tv 

::I':l 
r.: 

~ 
~ 

IN 

~ 

Diagram 1-21. DOM Communication Task Processing (lEA VMDOM) (Part 1 of 11) 

Input 

UCMDECB 

Unit 
Control Module (UCM) 

UCMDOME 

Process 

IEAVMQWR 
(Wait Service Routine) 

1 Wait for work to do. 

2 Determine operation to be 
performed: 

I. If delete operator message, 

WAIT 
Macro 
Instruction 

branch to '] I Step 3 

When there is no work to be 
done, branch to] • Step 1 

I EAVMDOM (DOM Processor) 

3 If the DOM control block pointer 
is zero: 

Output 

a. Set the DOM ECB to zero.'" "\:: 

b. Check for other work for the 
communication task. J I Step 2 

Unit 
Control Module (UCM) 

I UCMDECB 



r;n 
~ 

~ 
o· 
::I 
N 

~ 
~ 

g-
o.. 
o ..... 
o 
"'0 
~ 

~ 
o' 
::I 

~ -UI 
UI 

Diagram 1-21. DOM Communication Task Processing (lEA VMDOM) (Part 2 of 11) 

Extended Description 

1 During some previous operation, the wait service 
routine issued the WAIT macro instruction after it 

had determined there was no further work the communica-

tion task could perform at that time. 

2 Determine the operation to be performed and branch 

to the module that can perform that operation. 

I. For this particular set of method-of-operation diagrams, 

the DOM event control block (UCMDECB) was turned 

on by the DOM macro instruction processing routine. 

3 The pointer (UCMDOME) to the first control block 
on the DOM control block (DOMC) chain is tested 

for zero. If it is zero, there are no DOMCs to be processed; 

therefore, the event control block that started the DOM 
processing operation is turned off and control is returned 
to the wait service routine. 

Module 

IEAVMQWR 

IEAVMDOM 



~ Diagram 1-21. DOM Communication Task Processing (lEA VMDOM) (Part 3 of 11) 
VI 
0\ 

~ 
'< 
~ 
N 
~ 
'< 
~ 

3 
~ 
n' 
r-g: 
~ 
B c 
3 
(D 

N 

'< 
~ 
N 

:::0 
(D 

i 
~ 
IN 

,:; 

UCMDOME 

DOM Control 
Block (DOMC) 

DOMCID 

DOMCDBAJ 

DOMCDBL 

DOMCID 

x1xx xxxx 10 

DOMCSEXT 

Process 

4 Loop Control: Finds next DOM 
control block. 

If no 
more DOMCs to be processed. 

5 Loop Control: Finds a message 
identification within a DOMC. 

If no more message 
identifications in this DOMC. 

a Subsystem exit indicator set? 

if no: 

(Subsystem Subroutine) 

b Initialize the subsystem option 
block (SSOB). 

Output 

._1 ... Step 16 

j I Step 6 

C Initialize the subsystem DOM block /I. 
(SSDM). 

d Release the last FRR added to 
the stack. 

e Free the local and CMS locks. _.1 •. FRELCKS 

DOM 
Control Block (DOMC) 

I DOMCIO 

DOM 
Control Block (DOMC) 

I DOMCIDA 

SSOB 



~ 
(lj 
(') g. 
= 
~ 

ac 
(lj 

[ 
o .... 
o 

"'0 
~ 
~ 
6' 
= 
~ -VI 
-..J 

Diagram 1-21. DOM Communication Task Processing (IEAVMDOM) (part 4 of 11) 

Extended Description 

4 This control determines the next DOM control block 
(DOMC) to have its message identifications processed. 

When there are no more DOMCs to be processed, this rou­
tine branches to an area that cleans up the queues and 
returns control to the dispatcher. 

5 This control determines the next message identifica­
tion to be processed against the write-queue-element 

(WOE) chain. The WOEs contain the messages to be deleted. 

Sa If this DOM control block has not been examined by 
the subsystem, the "exit-to-be-taken" bit will be on in 

the DOM control block (I D portion). 

5b A subsystem option block is created indicating DOM 
function. 

5c A subsystem DOM block is created to contain a pointer 
to the DOM control block. 

5d A SETFRR macr.o, specifying the delete option, is 
issued to delete the last created FRR on the stack for 

this module. 

5e All locks currently held are released. (These locks were 
set by the SETLCKS routine (step 18). 

Module 

IEAVMDOM 



~ Diagram 1-21. DOM Communication Task Processing (IEAVMDOM) (Part 5 of 11) 
(Jl 
00 

o se 
<: 
C"Il 
N 
C"Il 
'< 
~ 

3 
r-
ei 
(;' 

r"' c: 
e 
'< 
<: 
o ;:-
3 
(\) 

N 

< C"Il 
N 

~ 
(\) 

i 
~ 
~ 

~ 

Input 

EPARM 

DOM 
Control Block (DOMC) 

DOMCIDA 

Write Oueue 
Elements (WOEs) 

WOESEON 

Process 

(SETESTAE Subroutine) 

5 
f Initialize ESTAE parameter list. 

9 Create EST AE environment. 

h Branch to subsystem. 

Free ESTAE environment. 

(SETLOCK Subroutine) 

Regain local and CMS locks. 

(SETFRRTN Subroutine) 

k Regain FRR environment. 

Find the WOE with the matching 
message identification to the one 
in the DOMC. 

If WOE is not found. 

If WOE is for a -multiple 
line message: 

a. Branch to MLWTO end 
message routine. 

Branch to continue processing. .J I 

EPARM 

o 

Write 
Oueue Element (WOE) 

I WOESEON 



~ 
~ o· 
:= 
!'! 

~ 
~ g 
Q. 

o ..... 
o 
1 
~ o· 
:= 

~ 
(J'o 

\C 

nOM Communication Task Processing (Part S.2 of 11) 

Extended Description 

5f and 59 An ESTAE recovery routine is created to 
protect this module while the subsystem 

is in control. 

Sh The created SSOB and SSDM are passed to the job 
entry subsystem exit routine, along with a pointer 

to the DOM control block. No response is expected from 
the exit routine other than the return of control. 

Si -Sk Upon return from subsystem the EST AE 
environment is freed and all locks and 

recovery exits are regained. 

6 The DOM control block message identification is then 

Module 

compared against the message identification in each of the 
WOEs on the WOE chain. If no match is found, then the 
next DOM control block (DOMC) message identification is 
processed. 

7 Having found a WOE-DOMC message identification 
match, this routine determines if the WOE is for a 

multiple line message (MLWTO). If it is, the BUILDEND 
routine is called to end the message. 



~ Diagram 1-21. DOM Communication Task Processing (IEAVMDOM) (Part 6 of II) 
0'1 o 

o 
CI'} 

"< CI'} 
t-.J 
CI'} 

'< 
~ 

;-
3 
r-
~ ;:;. 
r­a: ; 
'< 
<: c 
=-3 
~ 

~ 

~ 
CI'} 
t-.J 

:.0 
~ 
(6" 
~ 

~ 
IN 

~ 

Input 

Write Oueue Element (WOE) 

WOEORE 

Dom Control Block (DOMC) 
• 

Unit Control Module (UCM) 

UCMRPYO i 

Operator Reply Elements (OREs) 

ORELKP '-

OREID 

Write Oueue Element (WOE) 

WOERPYID 

Operator Reply Element (OR E) 

OREOPBUF 

Temporary Reply Buffer 

Process 

8 If this is not a WTOR -WOE 
and DOM with R EPL Y =Yes, 
branch to. ] I Step 14 

9 Using the WOE reply 

Output 

identification, find the ORE. oj I~' 

(FREEBUF Subroutine) 

10 If there is a temporary ORE reply 
buffer: 

a. Free temporary buffer. 

b. Set OR EOPBUF to zeros. 

Operator 
Reply Element (ORE) 

ORELKP J 

Operator 
Reply Element (ORE) 

OREOPBUF 



Diagram 1-21. DOM Communication Task Processing (lEA VMDOM) (Part 7 of 11) 

Extended Description 

8 When an operator queue element (ORE) exists and 
is associated with a write queue element (WO E), 

that WOE and ORE were created by a sin~le WTOR macro 

instruction. Before the WOE can be deleted, the ORE 
must be deleted. Two tests are made: 

• If this WOE has an associated ORE, the WOE bit WOEORE 
has been turned on . 

• If the WOEOR E bit is on, the user who issued the DaM 
macro instruction must have included the REPLY=YES 
parameter in that macro instruction. If incl uded, the 
bit DOMCWR is on. 

If both conditions are met, the ORE will be deleted; pro­
ceed to the next step. 

If either or both conditions are not met, the WOE will be 
deleted; bypass the ORE deletion steps. 

9 To locate the operator queue element (ORE) associ-
ated with the WTOR created write queue element 

(WOE), start with the pointer (UCMRPYO) in the unit con­
trol module (UCM) and search through the ORE chain for 
the first ORE having the same reply identification as the 
WOE (OREID versus WOERPYID). A match indicates 
which ORE is to be deleted. 

10 Before the ORE can be deleted, a possibility exists 
that the console operator may have started to enter 

a reply, in which case a temporary buffer has been assigned 
to the ORE. When the pointer field (OREOPBUF) in the 
ORE is not zero, then a temporary buffer exists. When it 

CI.l exists, the buffer is freed and the OR E pointer field a (OREOPBUF) is set to zero. 
o· 
= N 

a:: 
~ 

;. 
o 
Q. 

o -. 
o 
"0 
~ 
Co:! 

g. 
= 
~ 
0\ -

Module 



~ Diagram 1-21. DOM Communication Task Processing (lEA VMDOM) (Part 8 of 11) 
0\ 
N 

~ 
"< 
tI} 
N 
tI} 

'< 
~ 
CD 
3 
t"" 
ri n· 
r-' 
0: 
~ 

-< 
< o 

=-3 
CD 
N 

'< 
tI) 
N 

~ 
CD 
(;" 
e; 
CD 
IN 

~ 

Operator 
Reply Element (OR E) 

ORELKP 
?¥ 
:~ 

I' 

Unit 
Control Module (UCM) 

I UCMRONR 
;: 

,," 
" "" 

Write Oueue 
Elements (WOEs) 

WOERPYID 1 

:: ;~ 
:, 

~\ ", 
:> 

;0 "'. 
:'1:" 't.l: p ",'"q,' ,."" :';' ... L\""'''; ;,,' 'v,, "''.''. \., "'.' ;,:. 

,,',;i' '),; :'\ 

::,i ; 

i ':', 
'; 

" ,; Write Oueue 
" , Element (WOE) 

; 

',: WOEDOM 
. ,' 

.... 

WOEPURGE 

f 
.'., ",' .,:.,,,' """"": ., "': .. , , 

J 
zi (OREREMV Subroutine) 
,; 
:,; 

11 Free the OR E: 
% 

t;: ... 

a. Dechain and free the 0 R E. 
!~ v 
kf b. Decrease the ORE count. 

c. Mark the WOE as having no 
ORE. 

;:; ... 
d. If ORE count is less than 

;~~ II maximum number, permit task 
:l~ waiting for ORE to have 

this ORE. 

(AVAILID Subroutine) 

" .. 
12 y Make the OR E reply 

" 
identification available. 

' .. ' 

" 
(MSGPROC Subroutine) 

i:. 

13 Build operator message. 

From Steps 
7 and 8 .. 

14 Mark the WOE as having -,. 
o. been processed . 
'> 

II 

15 Branch to process next message 
identification. 

',,". 

y: ::" .. m. '" "."'.""',,, "'1 
, 

Unit 
:/ Control Module (UCM) 
i\ 

I I UCMRQNR 
'''1:, 

,;C Write Queue 

III Element (WOE) 

I I ;i 
Joi WOEORE 

\ 
c;, POST Macro z; 
\ Instruction .. Unit 

;) Control Module (UCM) 
,:,: lI" .. 

I I ~: UCMOECBH 
,~~.: 1"': 

;; 
~j '1":1< 

<, :, Unit 
" Control Module (UCM) :; ... 'j' 

v; I UCMRPYI I ; 

\~"':,'r':'"'' ,.·.·'u, ;,."," : ,", 7( '~\'~:f",\~5;;" '":',, . "",,", 

:;, 
;; Operator Message 

.. ~;,~ 
I I )~ IEE4001 

... ~~, WTO Macro 
.... Instruction .. ,."., ",', ,'"'' "","" ;.'.' .". ,,''',', 

b: 
q,,' 

,. Write Oueue 
I'~' Elements (WOEs) : , 

~I": I I > WOEXA='10000100' 
I";>.i 

~ 
;::y,:i; '\.:i.' ::;,> <; >::;,::\: ,: ',~":,:. ;,,':,:':"'~'> (:, .. :~'. ", ",." !\::"':0,~"i; .. Step 5 

:".' ,.. 
":' 

" 



CI:l 
~ 
("l 

S· 
::s 
!':J 
s:: 
~ 
::r 
8-
o .... 
o 
~ 
~ .. 
~ 

S· 
::s 

~ -0"1 
W 

Diagram 1-21. DOM Communication Task Processing (IEAVMDOM) (Part 9 of 11) 

Extended Description 

11 The operator reply element (OR E) associated with 

the write queue element (WOE) is unchained and 

freed. As a result of this action, this routine also decreases 

the ORE count, marks the WOE as having no ORE, and if 

the ORE count is below the normal system number of per­

missible OREs, the POST macro instruction is issued to an 

event control block that will eventually allow another user 

who is waiting for an ORE to obtain it. 

12 The ORE's reply identification is returned to the 
reply identification bH map. This particular reply 

identification can now be reassigned to another ORE. 

13 When an ORE is deleted, an operator message is 
prepared to inform the console operator that he no 

longer needs to respond to the message being deleted. 

14 The WOE is marked as DOM processing complete 
to prevent further OR E processing against this 

WOE. 

15 Branch to process the next message identification. 

Module 



~ Diagram 1-21. DOM Communication Task Processing (lEA VMDOM) (Part 10 of 11) 
0\ 
~ 

o 
til 

~ 
N 
til 
'< 
(II 

~ 
oi 
(:S' 

C': 
0-

~ 
<: 
o 
2' 
3 
(I) 

N 

'< til 
N 

~ 
(I) 

i 
~ 
~ 

~ 

~S:" 

~'i 
~> 

/ 
':; 

> 
\': 

:i' 
:; 

'~ 
, 

,~' 

;; 

r~:'; 
I'·' 

i,:,' 
L: 
I.' 

:: 

): 

;( 
.: 

i 

«,t' ':i',::::"':::,',:':' ,:.... "::' 

; 
From 
Step 4 

Unit , 

Control Module (UCM) ,: 
J UCMVEA < 

( Un;, '" 

Control Module Entry (UCME) :': .. ,: 

UCMDISPC 
s; 

UCMUF 
(~ 
,C 

J'; 
'; 

',,:;:;: ,s,;\'~,; 
,,', 

,,', ,/""':':: 
,: 

DOM 
Control Block (DOMC) 

DOMCPROC 
f 

DOMCLNKA 

DOMCDBAJ 

DOMCDBL 

11 

f~ ~;~:: ',',,:,,', ,'".,y':', :.' <,:. , .. ':,',::, 

!'\ (FRELCKS Subroutine) :;:; 
( .. : 

.. L 
:\ 

16 Free all local and CMS locks. /;, 
-, ~;:" 

:: 

k ; 

L (GRAPHICS Subroutine) ';:: 
~:~:~: '/ 

1::: 

I;~ '" ) 17 For each active graphic console: 

~: ... ','; 

~ >;, 

,",1 :i: 
a. Prepare parameter list. 

;, 
" SVC 72 ... 

b. Call device support processor. 
!:"; r' 

':<:' 
;: 

(SETLCKS Subroutine) ;:; 

:t Subroutine 
': SETLCKS ... 

18 Obtain the local and CMS locks. 
c:: r' 

(FREEDOMS Subroutine) ~ FREEMAIN 

"- ;~, Macro 
T v) 19 Free all processed DOM Instruction ... 
: control blocks. 

:; r' 

;; 
; 

;: ; 

~ 20 Set the DOM ECB to zero. 

~,~ 
: 

21 Branch to the wait service routine .• ~ Step 2 

[:X" ,:<: 
'" :i', ":;;"'" 

~;;, 

:' 

:. 

.,: ~ 
:I:. ; 
" Register 1 i 

::y 
<, ~ 
i; Parameter List 

" :i 
) UCMXSA 

~ v 

UCMDEVD 

UCMNAME 

UCMDOME 

UCMVEA 

UCMVEZ 

UCMVEL 

':."". 

Unit Control Module (UCM) 
" I I UCMDECB .. 

,",: 



CJ'.) 
~ 
(') g, 
= N 

s:: 
~ 
::r o 
~ 

o -.. 
o 

"C 
~ 
~ o· 
= 
~ -0'1 
(I, 

Diagram 1-21. DOM Communication Task Processing (lEA VMDOM) (Part 11 of 11) 

Extended Description 

16 The current functional recovery routine (FRR) on 
the stack for this routine is released, and the local 

and CMS locks are freed. 

17 The unit control module entry (UCME) control 
blocks are tested for active graphic consoles. For 

each active graphic console, SVC 72 is issued. SVC 72 
receives a parameter list pointed to by register 1. For 
SVC 72, see DOM Device Support Processing diagram. 

18 The local and CMS locks are obtained, and a func­
tional recovery routine (FRR) for this routine is 

placed back on the stack. 

19 A FREEMAIN macro instruction is issued to release 
all of the DOM control blocks (DOMC) that have 

been processed. 

20 The DOM event control block (UCMDECB) is set to 
zero. 

21 Control is returned to the wait service routine. 

Module 



t;-J -0\ 
0\ 

o 
c;n 

< c;n 
N 
c;n 
'< 
~ 
~ 

3 
t""' 
~ ;;. 
t""' 
0: ... 
~ 

-< 
< o 
C 
3 
~ 

N 

'< c;n 
N 

~ 
~ ;-
~ 

~ 
IN 

~ 

Diagram 1-22. DOM Device Support Processing (DIDOeS) (Part I of 2) 

From DOM Communications 
Task Processing (lEAVMDOM) 

DOM request 
(UCMDEVD) 

UCMDOME 

DOM control table 

~ 1 Determine that DOM request exists. 

2 Locate messages to be deleted. 

3 Rewrite the screen. 

communications 
task operations 

Output 



c:/) 
~ 

P­
o' 
:I 
N 

s:: 
~ 

8-
c-
o -.. 
o 
"e 
~ ... 
~ g. 
:I 

";-I -0\ 
....... 

Diagram 1-22. DOM Device Support Processing (DIDOeS) (Part 2 of 2) 

Extended Description 

User programs and system routines issue a DOM macro 
instruction to remove messages from a graphics console 
screen. DIDOCS processes DOM requests as follows: 

1 DIDOCS checks bit UCMDEVD for an indication that 
DOM was issued. 

Module 

IEECVET1 

2 01 DOCS locates the DOM element table through field I EECVET7 
UCMDOME. The DOM element table contains the pro­

tect keys or IDs of messages to be deleted. The DOM con­
trol table in the DCM contains the protect keys or IDs of 
messages that are displayed on the screen. 0 I DOCS com­
pares the DOM elements with the DOM control table 
entries; if 01 DOCS finds a match, it marks the message (in 
the SIB) with a vertical bar and marks the message's SCT 
entry to indicate that the message is deletable. 

Label 

300M rewrites the screen from the screen image buffer. I EECVETH/P/R/U 
The messages with vertical bars will not appear on the 

screen. 



~ 
:; 
00 

o 
CI} 

"< 
~ 
N 
CI} 

'< 
~ 

3 
S 

o.s. 
~ 

C go 
~ 
< o 

~ 
('D 

N 

'< 
CI) 
N 

:::0 
g. 
('D 
Q:I 

rtl 
w 
~ 

Diagram 1-23. External Interrupt Processing (Automatic Console Switch) (lEA VVCRX) (part 1 of 6) 

CVTPTR 

From External First Level 
Interrupt Handler (lEAVEEXT) Process 

IEAVVCRX (External Interrupt 
Processor) 

Output 

UCM Prefix 

CVTCUCB 1 Increments the external interrupt iA' UCMXCT 

UCMPR FX Address 

UCMXECB 

UCMXCT 

Register 4 

UCMPRFX Address 

UCMXCT 

CXSA 

CSANAME 
From 
step 3 

~I ~ 
Parm. List 

IGC0007B 

count. 

2 Determines if the external interrupt 
count went from 0 to 1. 

If it did, this routine posts the 
External I nterrupt Event Control 
Block. To External 

FLiH 
(IEAVEEXT) 

Returns to the External First Level I 
Interrupt Handler. 

IEAVMQWR(Wait Service 
Routine) 

3 Tests for external request. If there 
is one, decrease the external 
interrupt count by one. 

If there isn't one, set the external u 
interrupt count to zero. ---r-----J 

Calls the Console Switching Routine 
via SVC 72. 

IEAVVCTR (Communication 
Task Router) 
4 Determines that console switching 

is the requested service and branches 
to the console switching routine 
(IEAVSWCH). 

Step 4 

Step 5 

UCM 

UCMXECB 

111~ 

UCM Prefix 

UCMXCT-~ 

CXSA 
CSANAME 

IGC0407B 



Vl 

a o· 
= 
~ 

~ 
<D 

[ 
o .... 
o 
'0 
~ a o· 
= 
~ -0\ 
'4:1 

Diagram 1-23. External Interrupt Processing (Automatic Console Switch) (IEAVVCRX) (Part 2 of 6) 

Extended Description 

Pressing the interrupt key on the operator console control 
panel switches the functions of the master console to an 
alternate console. The console switch routine performs that 
function. 

1 The count of external interrupts (field UCMXCT, in 
the UCMPRFX) is incremented by one using compare 

and swap. 

2 If no previous external interrupt was still queued 
(updated count equal 1), a branch (BALR 14,15) is 

taken to the POST routine. Control returns to the External 
Interrupt Handler via a branch on register 2. 

Module 

IEAVVCRX 

3 The External Request Count (UCMXCT) is checked for I EAVMQWR 
zero. If not zero, the count is decreased by one using 

compare and swap. The Console Switching Routine 
(IEAVSWCH) is invoked via SVC 72. A code of 4 is passed 
indicating an external interrupt. If the count is ~ro, the 
External Event Control Block (UCMXECB) is zeroed and 
other event control blocks are processed. 

4 The address of the Extended Save Area is obtained. 
The parameter list is stored in the Extended Save Area 

and the first two words are compared to the entry point 
names of the various device support processors. Upon find­
ing a match, a branch is taken to the corresponding routine. 
For IEAVSWCH, the entry point address is contained in 
UCMSWCH of the UCM. If no match is found, an XCTL 
macro instruction is issued for the indicated processor. 



~ Diagram 1-23. External Interrupt Processing (Automatic Console Switch) (IEAVVCRX) (Part 3 of 6) 
...... 
o 

o 
CI.l 

"< 
CI.l 
N 
CI.l 
'< en 

i 
r-' 
~ 
n' 
r-' a: 
~ 
< o 
=­:I 
~ 

N 

'< 
CI.l 
N 

:=tI 
~ 
;-
Ql 

Input 

CSACOOE 
OSEXTI 

. . .. . 1 .. 

UCM Entry (AL T) 

UCMATR 
UCMUF 

. . . 1 

UCMSTS 
UCMCF 

Process 

IEAVSWCH (Console Switching 
Routine) 

Establishes that the switch is for 
an external interrupt for the master 
console. 

6 Determines if the master console is 
a composite console. 

If so, this routine gets the input 
and output pointers . 

Output 

UCM Entry (AL T) 

OCM 

UCMOISP 
UCMOISP1 
UCMO,ISPF&G 

---------, 

.. ... 10. 

OCMR3FLG 
OCMSTWT 

r6 
t..I 

... 0 Find an alternate for the "laster d .p' ............ 
~ UCMOISP 

UCMOISP1 
UCMOISPF 

..... X .. 

UCMOISPG 

.. X. 

UCMATCO (Auth 1,2,3) I • '\,. 
UCMATCO 
UCMOISPA 

console. 

8 Was alternate found? 

No 
__________ 1 ... Step 10 

If yes, switch messages, functions, 
and pointers from old to new master 
console. 

UCM Entry (ALT) 

UCMAUTHA 
UCMRTCD 
UCMOISPA 

UCM Prefix (AL T) 

UCMMCENT 

UCM Entry (Old) --I UCMSTS 
(UCMCF) 



CI:l 
(l) 
(") 

S· 
::: 
t-.J 

~ 
(l) 

;; 
c c-
o -, 

o 
'1:1 
~ 
~ g-
::: 

:::: 
-....J -

Diagram 1-23. External Interrupt Processing (Automatic Console Switch) (lEA VVCRX) (Part 4 of 6) 

Extended Description Module 

5 The type of console switching is established (CSAEXTI IEAVSWCH 

on in CSACODE). A check determines if there are 

active consoles (UCMSYSE on in UCMSFLG1). 

6 Determines if the failing console is a composite. If so, 
mark output-half as tested (UCMDEVCC on in 

UCMDEVC). Since the master is being switched, UCMSYSD 

is set on in UCMSFLG1. Mark the failing console as tested. 

7 Search failing console's alternate chain for an active 
console (UCMUF on in UCMATE) without a CLOSE 

pending (UCMCF off in UCMSTS). If one is found and if 

fully capable of handling both input and output but is 

marked for output only, the collsole is switched to full 

capability (UCMDISPF on and UCMDISPG off in 

UCMDISPI. Load address of resident DCM from UCMXB 

and turn off DCMSTWT in DCMR3FLG. 

8 Tests whether the search for an alternate master con­

sole was successful. 

If unsuccessful but there are other active consoles, this 
routine issues a message to all active consoles requesting the 

operator to enter a VARY MSTCONS command from any 
of those active consoles. (The master console is no longer an 
active console.) 

If unsuccessful and the master console had been the only 

active console, the system eventually hangs waiting for the 

console operator to restore the master console to the active. 

He does this by pressing the external interrupt key a second 

time. For those consoles having the alarm bell special fea­

ture, this routine rings the alarm bell three times. 

If the search was successful, this routine adds the authority 

and routing codes of the old master console to the found 

alternate master console. The messages are requeued from 
the old to the alternate master console. 

IEAVSWCH 

IEAVSWCH 



~ Diagram 1-23. External Interrupt Processing (Automatic Console Switch) {lEA VVCRX) (Part 5 of 6) 
...... 
t,j 

o 
~ 

~ 
t,j 

~ 
'< 
~ 

3 

i 
(") 

~ 
~ 

~ 
-< o 

=­:3 
~ 

t,j 

'< 
tf.l 
t,j 

:::0 
~ 

i 
~ 
t.U 

~ 

Input 

UCM 

UCMMODE 

UCM Entry 
(MASTER) 

CXSA 

Return Address 

From 
Step 8 

,. 

9 If old master console was 
hardcopy console, switch hardcopy 
function to another hardcopy 
console. 

Ready routine to accept a 
'VARY MSTCONS' command. 

11 Iss~e WTO macro instruction to :] I 
wrtte out message. 

..-__ ---".a.. ______ ...&''''"'' ..J"\.12 Restores register 14 and returns 

to caller. 

To External First 
Level Interrupt 
Handler (lEAVEEXT) 

Output 

UCM 

UCME Entry (AL Tl 
UCMDISPB -- J 

UCME Prefix (ALT) 

UCMHCUCM (HC p;':-) J 

UCMMODE 
UCMAMFA 

... , 1 ... 

UCM Entry (MASTER) 

UCMATR 
UCMUF 

... 0 .... ~] 

UCM Prefix 

UCMSFLG1 
UCMSYSD 

... 0 .... 

Request Message 

,-------1/,----
IEE141A 



Vl 
~ 
n 
6-
::I 
N 

3: 
~ 

S-
o c-
o ...., 
o 

'"0 
~ .. 
II) g. 
::s 

~ 
....... 
IN 

Diagram 1-23. External Interrupt Processing (Automatic Console Switch) (lEA VVCRX) (Part 6 of 6) 

Extended Description 

9 If the old master console was also the hardcopy con­
sole, this routine switches the hardcopy function to a 

suitable console. If another hardcopy console is unavailable, 
message I EA9641 is issued and hardcopy is suspended. 

10 Indicate that a 'VARY MSTCONS' command will be 
accepted from any console (UCMAMFA set in 

UCMMODE). Mark master 'Not Active' (UCMUF off in 
UCMATR) and 'Failing Console is Master' (UCMSYSD off 
in UCMSFLG1). 

11 Issue a·WTO macro instruction to broadcast the mes­
sage IEE141A. 

12 Restore register 14 from CSAXA and return to 
caller via a branch register 14. 

Module 



~ 
-...I 
~ 

o 
en 
"< -en 
~ 

en 
'< 
~ 
(I) 

3 

E 
(s. 

t"'" 
c:r 
~ 
-< o 

= 3 
(I) 

~ 

~ 
{I} 
~ 

:::0 
(I) 

(S' 
cg 

r6 
~ 

~ 

Diagram 1~24. Attention Interrupt Processing (Command Request) (IEAVVCRA) (Part 1 of 8) 

Input 

16(10) 

UCB Address 

10SB 
10SFLA 
10SERR 

UCM Entry 

From POST Status 

Routine of lOS Process 

I I 

I II l 

IEAVVCRA (Console 
Attention Processor) 

1 Obtain cross memory services (CMS) 
global lock. 

2 Find the matching UCM Entry Unit 
Control Block (UCME UCB) for 
the Input/Output System Unit 
Control Block (lOSB UCBI. 

If none found, free CMS lock and 
return. 

3 If device is a card reader, determines 
if ERP in control. 

If it is, free CMS lock and return. 

4 Determines if device is active and 
can support ATTENTION 
Interruptions. 

If it cannot, the next UCM Entry is 
selected and control goes to Step 1. 

5 Sets the ATTENTION Pending 
flag, posts the Communications 
Task ATTENTION ECB,andfree 
the CMS lock. 

Output 

;·1 
,. 

Ic' 
UCM Entry 
UCMSTS 
UCMAF 

1 ... 

UCM 
UCMAECB 

T~ Of""'lC'T \. 



r;n 
(!> 

~ 
c· 
= 
IV 

s: 
;. 
o 
c-
o .., 
o 
"0 
(!> 

g 
o· 
= 
~ --.J 
(J1 

Diagram 1-24. Attention Interrupt Processing (Command Request) (IEAVVCRA) (Part 2 of 8) 

Extended Description 

This procedure handles input from operator consoles sig­

naled by the ATTENTION int~rruption. 

1 Obtain the CMS global lock. 

2 The UCB address from the 10SB is compared to the 
UCB address in the UCM Entry (UCMUCB). If they 

are not equal, the next UCM Entry is selected and the 

same comparison is repeated. If, however, the UCM Entry 

is the last, the CMS lock is freed, the registers are restored 

and control returns to lOS. 

3 If this is not the last UCM entry, a test determines if 

the ERP is in control (lOSERR set in 10SF LA of the 

10SB) and if the device is a card reader (UCMNAME+3 and 

UCMNAME+4 in the UCME are X'FO' and X'F4' respec­

tively). If both tests are valid, the CMS lock is freed, the 

registers are restored, and control returns to lOS. 

4 If the device is inactive, a CLOSE is pending for the 
device (UCMCF set in UCMSTS), or the device does 

not support ATTENTION interruptions, the next UCM 

Entry is selected and control returns to step 1. 

5 If the device is active (UCMUF on in UCMATR) and 
the device supports ATTENTION interruptions 

(UCMIF on in UCMATR), the 'Attention Pending' flag is 

set (UCMAF in UCMSTS). A branch to the POST processor 

is taken to post the ATTENTION ECB (UCMAECB). Upon 

return, the CMS lock is freed, the registers are restored and 
control returns to lOS. 

Module 

IEAVVCRA 



~ Diagram 1-24. Attention Interrupt Processing (Command Request) (lEA VVCRA) (Part 3 of 8) 
....... 
0\ 

o 
c:n 
"< c:n 
N 
c:n 
'< 
~ 
('l) 

3 
I:"'" o 

(JQ ;. 
I:"'" c: 
~ 
-< o 
C 
3 
('l) 

N 

'< en 
N 

~ 
('l) 

~ 
rIl 
w 
~ 

Input 

UCM 
UCMAECB 

UCM Entry 
UCMSTS 
UCMAF 

X ... 

UCMATR 
UCMUF 

.. , X 

UCM Entry 
UCMSTS 
UCMAF 

0 ... 

UCM 
UCMAECB 

I 1 

'I 

;"d 

,,' 

, 

, 

... . 

',' 

, 

.... . 

Process 

6 The Communications Task is 
dispatched. 

IEAVMQWR (Wait Service 
Routine) 

7 Determines if ATTENTION ECB was 
posted and if so, determines if the 
WTL posted the ECB. 

If it is posted, turn off flag and go to 
the Device Services Manager 
(IEAVMDSV). 

8 Determines if an attention was 
posted by WTO to switch the 

From hardcopy console. 
Step 10 .. 9 Scans the console UCM Entries 

r for an ATTENTION pending. 

" 
v If the console is active, the Device 

Services Manager (IEAVMDSV) is 
called with a code of 4. 

10 Resets 'Attention Pending' flag for 
an inactive console. 
Selects next UCM Entry. 

v 
Go to Step 9. 

:> 11 Set the ATTENTION ECB to zero 
when last UCM Entry is processed 

Output 

Register 1 

~ Code 8 

To Device 
Service 
Queue 
(lEAVMDSV) 

r Register 1 

Code 4 

To Device 

UCM Entry 
UCMSTS 
UCMAF 

0 ... 

:tStep9 ! 
UCM 
UCMAECB 

I 0-------01 



~ 
~ 
n g. 
::: 
N 

~ 

~ 
~ 
o -. 
o 
"0 
~ 
~ 

S· 
::: 

t;J 

-...J 
-...J 

Diagram 1-24. Attention Interrupt Processing (Command Request) (lEA VVCRA) (Part 4 of 8) 

Extended Description 

The Dispatcher 

6 The Dispatcher passes control to the Communications 

Task when its TCB (Task Control Block) is the high­
est priority ready TCB on the queue. 

Communications Task Wait Service Routine 

7 The ATTENTION ECB is checked (UCMAECB in 

UCM) and, if posted, a test determines if Write-To-
Log (WTL) posted the ECB (UCMSYSO on in UCMSF LG2). 

If so, a code of eight is loaded into register one to indicate 

that cleanup is needed. 

8 If the attention ECB was posted with an X'23' code, 

SVC 72 is called to switch the hardcopy SYSLOG to a 

console. 

9 The console UCM Entries are scanned for ATTEN-
TION interruptions pending (UCMAF on in UCMSTS). 

If one is found and it is an active console (UCMUF on in 
UCMATR), register one is loaded with a code of four to 
indicate processing to be done by subroutine DEVSERVB 
of the Device Services routine (I EA VM DSV) wh ich is 
called. 

10 If a UCM Entry is flagged for ATTENTION inter-
ruptions pending but the indicated device is not 

active, the ATTENTION interruptions pending flag 

(UCMAF in UCMSTS) is reset and the scan continues 
with the next UCM Entry. 

11 If the ATTENTION ECB (UCMAECB) is posted but 
no UCM Entry is found with an ATTENTION inter­

ruption pending, then all pending attention interruptions 

have been serviced and the ATTENTION ECB is set to zero. 
Processing continues for other types of ECBs. 

Module 

IEAODS 

IEAVMQWR 



t;-J -...... 00 

~ 
"< c;n 
N 
c;n 
'< 
~ 

3 
r-
~ 
()' 
t"'" 

~ 
~ 
<: 
g., 

9 
~ 

N 

'< c;n 
N 

~ 
i 
r6 
w 
~ 

Diagram 1-24. Attention Interrupt Processing (Command Request) (lEA VVCRA) (part 5 of 8) 

Input 

Register 1 

Code 4 

UCM Entry 
UCMATR 
UCMUF 

... X 

UCMSTS 
UCMAF 

x ... 

UCM Entry 
UCMDEVC 
UCMDEVB 

UCMSTS 
UCMBF 

From The Wait 

I:EAVMDSV" 
(Device Service Routine) 

Checks register one for input code 
and calls subroutine DEVSERVB. 

DEVSERVB Subroutine 

13 Checks for an active device. 
If not, resets 'Attention 
Pending' flag. 

Returns to the caller. 

14 Determines if the device support 
processing is a 2740 and if a 
prepare is in process. 

Service 
Routine 
(lEAVMOWR) 

Output 

If so, go to Step 16. ___ .1_. Step 16 

15 Determi nes if the console is busy. 

If so, turns off 'Attention Pending' "\ 
flag (if device is a card reader) 

and returns·to caller. To Caller Wait Service 
Routine (lEAVMOWR) 

UCM Entry, 
UCMSTS 
UCMAF 

o ....... ~ 

UCM Entry 
UCMSTS 
UCMAF 

0 ....... J 



en 
(1) 
(") 

g. 
::s 
N 

::: 
(1) 

g 
Q. 

C ..., 
o 

"0 

~ e :::. 
:; 

~ 
-..I 
..0 

Diagram 1-24. Attention Interrupt Processing (Command Request) (lEA VVCRA) (Part 6 of 8) 

Extended Description Module 

12 The input code in register one is checked. Subroutine I EAVMDSV 

DEVSERVB is called, if the code is a four, to process 
the ATTENTION interruption. 

13 A check is made to determine if the device is active 

(UCMUF on in UCMATR). If not, the 'Attention 

Pending' flag (UCMAF in UCMSTS) is reset and further 

checking is for I/O Completion. 

Then control returns'to the caller. 

14 If the console is active, the console is a 2740 type 
(UCB3COMM on in UCBTPYT3) and a prepare 

command was issued (UCMDEVB on in UCMDEVC), then 

Subroutine DEVSERV is called to call the 2740 Device 
Support Processor. 

15 If the active console is not a 2740, a test is made for 
an 'Attention Pending' (UCMAF on in UCMSTS) on 

a console that is not busy (UCMBF off in UCMSTS). If so, 

Subroutine DEVSERV is called to call the appropriate 
device support processor. Otherwise, a check is made for a 

card reader. If not, checking continues for I/O Completion. 

If the device is a card reader, the 'Attention Pending' flag 

is reset. Control returns to the Wait Service Routine 
(EP=WRABXLE) . 



~ Diagram 1-24. Attention Interrupt Processing (Command Request) (lEA VVCRA) (Part 7 of 8) 
00 o 

o 
en 
"< en 
t.,j 

en 
~ 
E" 
:3 

~ 
<fS. 
(') 

t-

~ 
~ 
<: 
o 
C 
:3 
~ 

t.,j 

'< en 
t-J 

:::c 
(tI 

;-
~ 

~ 
~ 

~ 

Input 

UCM Entry 
UCMSTS 
UCMAF 

1 ... 

UCM Entry 
UCMSTS 
UCMAF 

1 ... 

Process 

DEVSERV Subroutine 

16 Construct parameter list. 

Issues an SVC 72 for the device 
support processor. I 

lEA VVeTR (SVe 72) 

17 Determines if the caller is authorized. 
:es, branches to t.he routine named I .- . - . -. I 
In the parameter list. 

No, returns to caller. 

A Device Support Processor -
sve 72 (1052, 1443,2540,2740, 
or DIDOeS) 

18 Confirms that an ATTENTION 
is pending. 

19 Obtains a readbuffer. 

20 Sets up the lOB for a read. 

, .. 1 r .. • /21 Starts READ operation. 

I---~'"'-----===='" 22 Returns. 

Output 

I SVC 72 Param;~~~~ 

Read Buffer J 

Read Buffer Input 



c..~ 
(!) 

~ o· 
= 
~ 

== (!) .... g 
~ 

o ..... 
o 
"0 
~ 
~ o· 
= 
~ 
00 -

Diagram 1-24. Attention Interrupt Processing (Command Request) (lEA WCRA) (Part 8 of 8) 

Extended Description 

16 Subroutine DEVSERV prepares the parameter list 

and SVC 72 is issued. For SVC 72, see Processing 
Commands from a Console diagrams. 

17 Determines if the caller is in supervisor state (key OJ. 
If so, the location of the routine supporting the con· 

sole device type is located in the name list and a branch is 
made to that routine. If not found, an XCTL macro instruc· 
tion is issued to the module named in the parameter list. 

If the caller is not in supervisor state (key 0), return to 
caller. 

18 The device support processor confirms the ATTEN· 
TION interruption pending. 

19 A GETMAIN macro instruction is issued to obtain 
a read buffer. 

20 The lOB is set up for the READ operation. 

21 An EXCP or READ macro instruction starts the 
READ operation. 

22 Control then returns to the Device Services Manager 
(lEAVMDSV). 

Module 

IEACVET1, 
IEAV1052, 
IEAV1443, 
IEAV2540, 
IEEC2740, 

or 
IEECVETW 



~ 
00 
N 

o 
~ 

"< 
~ 
N 
~ 
'< 

~ 
t"" 
~ 
(:i' 

t"" 
5= 
iJ 

-< 
....::: 
o 

=-3 
(1) 

N 

'< 
~ 
N 

~ 
(1) 

~ 
rtl 
w 
~ 

Diagram 1-25. Processing Commands From a 1052,2540, or 2740 Console (Part 1 of 2) 

Input 
From Attention Interrupt Processing 
(Command Request) (I EA VVCRA) 

UCM entry 

Attention pending 
(UCMAF) 

UCM entry 

I/O Complete 
(UCMDEVE) 

= 1 

1 Determine that the operator is 
waiting to enter command. 

Output 

UCM entry 

UCMAF = 0 

2 1052 ONLY - Set up for reading >I j 
the command. I I 

3 Obtain a read buffer. ________ y--____ ..., 

4 Indicate that the device will be 
doing I/O. 

5 Initiate the read operation: 

a) 1052 printer-keyboard. II 

b) 2540 card reader punch. II 

EXCP 

Perform read 
operation 

BSAM 

Perform read 
operation 

BTAM 

c) 2740 communications terminal. R I Perform read ~ 

6 When the I/O is complete, pass II 
command to system command 
processing. 

To perform other communications 
task operations (lEAVMQWR) 

Device busy 
(UCMBF) 

Read buffer 

Read 
CCWs 



r./'J 
('l> 

~ 
c· 
= 
t-.J 

3:: 
; 
C 
0-
C -.. 
o 
"0 
(;) 

~. 
:; 

~ 
oc 
w 

Diagram 1-25. Processing Commands From a 1052,2540, or 2740 Console (Part 2 of 2) 

Extended Description 

Three console devices that enable the operator to communi­
cate with the system are the printer-keyboard, the card 

reader, and the 2740 communications terminCilI. The opera­

tor uses these devices to enter commands into the system. 

The communications task device support processors (DSPs) 

are: 

a) For the 1052 printer-keyboard, 3210 console printer­

keyboard, and 3215 console printer-keyboard, the DSP is 

Module 

IEAV1052. IEAV105? 

b) For the 2540 card reader punch, 2501 card reader, 2520 

card reader punch, and 3505 card reader, the DSP is 
IEAV2540. 

cl For the 2740, I EEC2740. 

These DSPs process operator-entered commands as follows: 

1 If the attention-pending bit (UCMAF) in the console's 

UCM entry is on, the operator is waiting to enter a 

command. The DSP turns off the attention-pending bit. 

2 If the console is a 1052 printer-keyboard, the 1052 
DSP obtains an lOB for the read operation and places 

the address of the read CCWs into the lOB. 

IEAV2540 

IEEC2740 

label Extended Description 

3 The DSPs obtain storage for the input buffer and blank 
it. For the 1 052 printer~keyboard console, the 1052 

DSP initializes the read CCWs with the buffer address and 

buffer length. 

4 The DSPs set the device-busy bit (UCMBF) in the con­

sole's UCM entry to indicate that an I/O operation is 

taking place on the device. 

5 The DSPs initiate the read operation: 

a) For a 1052 printer-keyboard, the 1052 DSP issues an 
EXCP macro instruction to execute the channel program 

that reads the command into the buffer. 

b)For a 2540 card reader punch, the 2540 DSP issues a 
READ macro instruction to pass control to BSAM; 

BSAM reads the command into the read buffer. 

Module label 

IEAV1052 PMEXCP 

IEAV2540 PMEXCP 

cl For a 2740 communications terminal, the 2740 DSP issues I EEC2740 PREPC 
a READ macro instruction to pass control to BTAM; 

BTAM reads the command into the read buffer. 

6 When the read operation that was initiated in step 5 
is complete (bit UCMDEVE is on), the DSP passes the 

command to the system command processing routine 
(SVC 34). 



::: 
00 
~ 

o 
CI) 

"< CI) 
N 
~ 
'< 
~ 

~ 
~ 

~ n· 
~ a: 
2 
'< 
<: 
o 

=-3 
CD 
N 

<: 
CI) 
N 

:::0 
CD 

~ 
~ 
w 
~ 

Diagram 1-26. Processing Typed Commands From a Graphics Console (DIDOCS) (IEECVETl) (part 1 of 2) 

From Attention Interrupt Processing 
(Command Request) (IEAVVCRA) 

From step 2 of "Light-Pen 
Command Processing" and 
from step 6 of "PFK 
Command Processing" 

o ut 

M 

Determine that the operator entered a ~ Read manual 
command. input 

3 Write the command to the screen. 

4 Schedule the command for processing. v1 

(DCMIORM1) 

Channel program 
(DCMCHPGM) 

Screen image buffer 

Command parameter 
list 
(DCMINPUT) 

SVC 34 interface flags 
(DCMSVC34) 

t DIDOCS 
command­
processing module 
(DCMMCSFL) 

Input to step 5 

5 Process the CONTROL command. 

To the appropriate diagram (see step 5) 



~ 
(") g. 
= 
~ 

3: 
~ 

[ 
o -. 
o 

"c::I 
~ 
Qa 

g. 
= 
t:-' -00 
VI 

Diagram 1-26. Processing Typed Commands From a Graphics Console (DIDOCS) (IEECVET1) (part 2 of 2) 

Extended Description 

Most display consoles include a device that enables the 

operator to communicate with the system. One such 
device is a typewriter keyboard. DIDOCS processes com­
mands from a typewriter-keyboard console as follows: 

1 If the attention-pending bit (UCMAF) in the UCM 
entry for the console is on, the operator has entered a 

command. DIDOCS sets the read-manual-input bit 
(DCMIORM1) in the console's DCM; this bit notifies the 
device's I/O routines to read the typed command. 

2 DIDOCS builds a channel program in field 
DCMCHPGM of the DCM and issues an EXCP to cause 

a read operation. The read operation reads the command 
from the console device buffer into the DCM screen image 
buffer (SIB). 

3 After the command is in the SIB, DIDOCS checks the 
command syntax. If a syntax error exists, DIDOCS 

issues a message to the operator. If the command syntax is 
correct and the command is not a CONTROL 1 command, 
01 DOCS issues a WTO macro instruction specifying that the 
command is to be the message text. The communications 
task WTO routine (SVC 35) writes the command to the 

screen. 

1DIDOCS does not write CONTROL commands to the 

screen. 

Module Label 

IEECVET1 

IEECVET4 

IEECVETH/P/R/U 

IEECVET4 

Extended Description 

4 DIDOCS builds a command parameter list in field 
DCM INPUT, then passes the command to the system 

command processing routine (SVC 34). The command proc­
essing routine schedules the command for processing; for 
CONTROL commands requiring further DIDOCS process­
ing, the command p'rocessing routine passes in field 
DCMMCSFL the address of the DIDOCS module that per­
forms the processing. 

5 The following list indicates which CONTROL com-
mands require more DIDOCS processing and which 

diagram describes the processing: 

eK 

eKE 

e K E,SEG 

e K E,nn 

e K E,F 

e K N,PFK 

eKS 

e K E,PFK 

e K D,PFK 

e K E,D 

e K D,H 

e K D,F 

e K D,U 

See "Operator-Requested Message Deletion" 

See "PFK Definition or Redefinition." 

See "Changing Message Deletion Speci­
fications. " 

t See "Erasing or Displaying the PFK Dis­

\ play Line." 

See "Erasing Status Displays." 

See "Holding Status Displays." 

See "Framing Status Displays." 

See "Updating Status Displays." 

Module Label 



~ Diagram 1-27. Processing Light-Pen and PFK Commands From a Graphics Console (DIDOCS) (IEECVETF) (part 1 of 2) 
00 
0\ 

o 
CI.l 

"< CI.l 
t-.) 

~ 

~ 
('I) 

:3 
r 
~ 
rr 
r 
c: e 
'< 
<: 
o = :3 
('I) 

t-.) 

'< 
~ 
~ 

::0 
('I) 

~ 
'" ('I) 

I.H 

~ 

Input 

DCM 

PFK attention 
{DCMPFKAT) 

DCMADPFK 

PF K workarea 

Key 

From Attention Interrupt 
Processing (I EA VVCRA) 

From 
Attention 

number I Flags I Definition 

Process 

Light- Pen - Entered Command Processing 

1 Determine that a light pen attention 
occurred. 

2 Obtain command. 

PFK-Entered Command Processing 

-+ 3 Determine that a PF K attention 
occurred. 

4 Determine the key numbers. 

To step 3 of 
Processing Typed 
Commands From 
Graphics Console 
(DIDOCS) 
(lEECVET1) 

Output 

DCM 

Screen image buffer 
entry ,area 

DCM 

Key number 
(DCMPFKNM) 

List key number 
(DCMPFKKN) 

5 Obtain the command. ,/1 
Screen image buffer 
entry area 

6 According to command mode: 

• Nonconversational - simulate 
opeiator entry. 

..
Tostep30t 
Processing Typed 
Commands From OR 

• Conversational - write the 
command on the" screen, 

To Wait for operator 
to enter command 

Graphics Console 
(DIDOCS) 
(lEECVET1) 

Command was entered 
{DCMCOM1) 

Write entry area 
(DCMWRENT) 



V1 
~ 

$?. 
0' 
::I 
N 

::: 
~ 
g-
o. 
c ..., 
o 
"e 
~ ... 
~ 
0' 
::I 

~ -00 
-....J 

Diagram 1-27. Processing Light-Pen and PFK Commands From a Graphics Console (DIDOCS) (IEECVETF) (Part 2 of 2) 

Extended Description 

Light-Pen E'-itered Command Processing 

Most display consoles include a device that enables the 
operator to communicate with the system. One such device 
is a light pen_ DIDOCS processes commands that the oper­

ator enters using a light pen, as follows: 

1 D I DOCS determines by the location of the light pen 
detection whether the light pen was positioned over a 

displayed PFK number or a screen indicator (*E, *U, *H, 

*D, C, K, or *F). If the location of the light pen detection 

is a displayed PFK number, DIDOCS processes the attention 

as if it were a PFK~ntered command; processing continues 

at step 4 of "PFK-Entered Command Processing." 

2 If the light pen was positioned over a screen indicator, 
DIDOCS places the text of the command in the entry 

area of the screen image buffer. Processing of the command 
continues beginning at step 3 of "Processing Typed Com­
mands From a Graphics Console (DI DOCS)." 

Module Label 

IEECVETF 

IEECVETF 

Extended Description 

PFK-Entered Command Processing 

Another device that enables the operator to communicate 
with the system is a program function key (PFKI. DI DOCS 

processes commands that the operator enters using a PFK, 

as follows: 

3 DI DOCS determines that a command was entered using 

a PFK in one of two ways-

- Either a light-pen attention occurred and the light pen 

was positioned over a displayed P F K (see step 1 above) 

- Or flag DCMPF KA T is on indicating that the operator 

pushed a program function key. 

4 DIDOCS placps in field DCMPFKNM the key number 

of the PFK that caused the attention. For lists of 

keys, DI DOCS places the key's number in the list in field 

DCMPFKKN. 

5 DIDOCS compares the key being processed with 

allocated keys in the PFK workarea (pointed to by 

field DCMADPFKI. If the key is valid, DIDOCS moves the 

first command associated with the key into the entry area 

of the screen image buffer. If the key is invalid, DIDOCS 

issues a message to the operator. 

6 DIDOCS checks flags in the key's PFK workarea entry 

to determine the command mode -

• If command mode is nonconversational, DI DOCS indi­

cates that a command must be processed by setting bit 

DCMCOM 1. Then DI DOCS processes !he command as 

described beginning at step 3 of "Processing Typed Com­
mands From a Graphics Console (DIDOCS)." 

• If command mode is conversational, DIDOCS writes the 
entry area to the console device buffer; command proc­
essing continues after the operator enters the command. 

Module Label 

IEECVETF 

IEECVFTA 

IEECVFTA 

IEECVFTA 

IEECVFTA 

IEECVETl 

IE ECVETH/P IR/U 
IEECVETl 



::: Diagram 1-28. Operator Requested Message Deletion (DIDOCS) (IEECVET8) (Part 1 of 2) 
00 
00 

~ 
< CIl 
N 
en 
'< 
~ 
~ 

3 

f n· 
C 
cr 

~ 
~ 
= 3 
~ 

N 

'< en 
N 

:;0 
~ 

i 
~ 
~ 

~ 

From step 5 of Processing 
Typed Commands From 
Graphic Console (DIDOCS) 
(lEECVET1) 

1 Check command syntax. 

2 According to mode: 

Output 

DCM "I 
~=o_ 

- ~. Nonconversational - Delete the 
I 
I L =1 

messages. Screen image buffer 

OR 

- ~ • Conversational 
Ma.rk and numbe.r messages. : ~ Screen image buffer 
Write command In entry area. _ _. entry area 
Issue DEL ET ION f-------------I 
REQUESTED message. ,/ 

3 Rewrite the screen. 

To perform other communications 
task operations 

Deletion request 
(DCMDLREQ) 

Console device 
buffer 



VJ 
~ 

~ ::::. 
:; 
tv 

::: 
~ 
C 
Q.. 

o ...., 
o 
"0 
!4 
~. 
:; 

~ 
ex: 
-.0 

Diagram 1-28. Operator Requested Message Deletion (DIDOCS) (IEECYET8) (Part 2 of 2) 

Extended Description 

The operator uses the following CONTROL commands to 
delete messages from the graphics console screen: 

• K - specifies that a segment of messages should be deleted. 

• K E - specifies that a segment of messages should be 
deleted. 

• K E,SEG - specifies that a segment of messages should 
be deleted. 

• K E,nn - specifies that a single message (nn) or a range 
of messages (nn,nn) should be deleted. 

• K E,F - specifies that flagged messages should be 
deleted. 

DlDOCS deletes the messages as follows: 

1 DIDOCS checks the command syntax. If a syntax 
error exists, 01 DOCS issues an error message. 

Module 

IEECVET8 

IEECVET8 

IEECVET8 

IEECVET6 

IEECVET6 

IEECVET6/8 

Label Extended Description 

2,3 01 DOCS checks bit DCMOPTVR to determine the 
message deletion mode -

• If DCMOPTVR is zero, message deletion mode is non­
conversational. 01 DOCS removes the messages from the 
message area of the screen image buffer. Then, 01 DOCS 
writes the screen image from the SI B into the console 
device buffer. 

• If DCMOPTVR is one, message deletion mode is con­
versational. D I DOCS marks deletable messages with a 
vertical bar, numbers the messages, and places the com­
mand in the entry area of the screen image buffer. Then 
o I DOCS sets bit DCMD LR EQ to indicate that the 
DELETION REQUESTED message must be issued to the 
operator. When the operator enters the next command, 
DIDOCS processes the command in the entry area, then 
rewrites the screen image from the SI B into the console 
device buffer. 

Module Label 

IEECVET9 

IEECVETH/P/R/U 

IEECVET6/8 
IEECVETD 

IEECVET9 
I EECVETH/P/R/U 



~ -\0 
o 

o 
(I) 

"< (I) 
N 
(I) 
'< 

<:II 
;-
3 

~ ;:;. 
r"' 
0= 

~ 
<: 
o 

= 3 
(t> 

N 

'< 
Cf.l 
N 

~ 
(t> 

~ 
II) 

~ 
<...I 

~ 

Diagram 1-29. PFK Definition or Redefinition (DIDOCS) (IEECVFTB) (Part 1 of 2) 

Input 

DCM 

Screen image 
buffer entry 
area 

From step 5 of Processing 
Typed Commands From 
a Graphics Console (DIDOeS) 
(lEECVETl ) 

Process 

1 Check command syntax. 

2 Store the new PFK definition. 

3 Write the new PFK definition into 
SYS1.DCMLlB. 

To perform other 
communications 
task operations 

Output 

DCM 

New PFK definition 
(DCMCOM3) 

DCMPFKAD 

Key number 

SYS1.DCMLlB 



V) 
~ 

~ 
c· 
::I 
t-..) 

::: 
~ go 
Q. 

C -. 
C 
"0 
(;l ... 
e! 
c· 
::I 

~ 
-.c 

Diagram 1-29. PFK Definition or Redefinition (DIDOCS) (IEECVFTB) (Part 2 of 2) 

Extended Description 

The operator defines or redefines a program function key 
using the K N,PFK= command. DIDOCS processes the 
definition or redefinition, as follows: 

1 01 DOCS checks the syntax of the command, which 
is in the SIB entry area. If a syntax error exists, 

o I DOCS issues a message to the operator. 

2 If the syntax of the command is valid, 01 DOCS moves 
the new definition from the SI B to the PFK workarea 

(pointed to by DCMPFKAD). DIDOCS sets bit DCMCOM3 

to indicate that a new PFK definition has been entered by 
the operator. 

3 01 DOCS constructs a channel program and issues an 
EXCP macro instruction to write the new PFK defi­

nition in member IEEPFKEY of SYS1.DCMLlB. 

Module label 

IEECVFTB 

IEECVFTB 

IEECVFT1 



~ Diagram 1-30. Changing Message Deletion Specifications (DIDOCS) (IEECVETA) (part 1 of 2) 
\C 
~ 

o 
r.n 
"< r.n 
~ 

rn 

~ 
~ 

3 

~ 
<e. 
~ 

t: 
~ 

~ 
< 
~ 
§ 
~ 

N 

'< rn 
N 

::c 
S2. 
~ 
~ 
eN 

~ 

Input 

From step 5 of Processing 
Typed Commands From a 
Graphics Console (DIDOCS) 
(lEECVET1) 

Screen image buffer 
entry area 

1 Check command syntax. 

2 Store new message deletion 
specifications. 

3 . Change timer if: 

a) Roll mode specification changed. 

OR 

b) Time interval changed. 

4 Write the screen. 

To perform other 
communications 
task operations 

Output 

DCM 

Message deletion mode 
(DCMDELl 

Conversational mode 
(DCMCON) 

Segment size 
(DCMSEG) 

Messages to be removed 
in roll mode (DCMRNUM) 

Time interval 
(DCMRTME) 

Write message to screen 
(DCMWRMSG) 

Console 
device buffer 



en 
~ 
n 

S· 
:;:s 
t-J 

::: 
~ 

S-
o c-
o -.. 
o 
'Q 

~ 
~ o· 
::I 

t;-J -\CI 
W 

Diagram 1-30. Changing Message Deletion Specifications (DIDOCS) (IEECVETA) (Part 2 of 2) 

Extended Description 

The operator establishes message deletion specifications 
using the K S command. DIDOCS processes the message 
deletion specifications as follows: 

1 DIDOCS checks the syntax of the command, which is 
in the SI B entry area. If a syntax error exists, 01 DOCS 

issues a message to the operator. 

Note: If the operator entered the K S,REF command, 
DIDOCS moves the current definitions from DCMDEL, 
DCMCON, DCMSEG, DCMRNUM, and DCMRTME into the 
entry area, then writes the entry area. The operator then 
changes the specifications as required and enters the com­
mand. 

Module 

IEECVETA 

IEECVETA 

Label Extended Description 

2 If the syntax is valid, 01 DOCS stores the message 
deletion specifications in the following DCM fields -

• DCMDEL indicates whether deletion mode is roll mode 
or automatic deletion mode. 

• DCMCON indicates whether conversational mode is in 
effect. 

• DCMSEG indicates the number of messages in a segment. 

• DCMRNUM indicates the number of message lines to be 
removed if roll mode is in effect. 

• DCMRTME indicates the time interval for messages to be 
removed from the screen if roll mode is in effect. 

01 DOCS sets bit DCMWRMSG to indicate that the screen 
must be rewritten. 

3 If roll mode specifications have changed or if the time 
interval for roll mode has changed, 0 I DOCS must 

reset the timer (using an STIMER macro instruction). 

4 DIDOCS rewrites the screen in order to blank the 
warning line (remove the MODE=R message) and to 

blank the entry area. 

Module Label 

IEECVETA 

IEECVETK 

IEECVETH/P/R/U 



~ Diagram 1-31. Erasing or Displaying the PFK Display Line (DIDOCS) (IEECVETB) (Part 1 of 2) 

'f 
o 
CI} 

"< CI} 
N 
CI} 

'< 
~ 

8 
t'" 

t§. 
~ 

t'" ;: 
e 
'< 
-< o 
2'" 
:3 
('II 

N 

'< 
CI) 
N 

~ 
i 
rIl 
w 
!...i 
'-' 

From step 5 of Processing 
Typed Commands From a 
Graphics Console (DIDOCS) 
(lEECVET1) 

Screen image buffer 
entry area 

Screen image buffer 
PFK display line 

1 Verify that requested condition does 
not currently exist. 

2 Depending on command: 

• ERASE-Blank PFK display line. --..,.--r-----, 

':1 OR "" 

• DISPLAY-Move PFK numbers __ ...."..,....-__ ---J 

into PF K display ti me. "" 

Output 

3 Write the screen. ./1 

To perform other 
commun ications 
task operations 

DCM 

Erase or write PFK line 
(DCMWRPFK) 

Screen image buffer 
PFK display line 



rJj 
(l) 

~ o· 
::I 
IV 

~ 
(l) 

[ 
o .... 
o 

"d 
(l) ... 
~ 

S· 
::I 

~ 
\0 
til 

Diagram 1-31. Erasing or Displaying the PFK Display Line (DIDOCS) (IEECVETB) (Part 2 of 2) 

Extended Description 

The PFK displav line contains a display of PFK numbers 
that the operator uses when he/she enters commands with 
a light pen. The operator requests the erasing of the PFK 
display line by issuing the K E,PFK command. The operator 
requests the displaying of the PFK display line by issuing 
the K D,PFK command. DIDOCS processes these commands 
as follows: 

1 Before processing the command, DIDOCS determines 
whether the requested condition already exists; for 

example, the operator entered K D,PFK and the PFK line 
is already displayed. If the condition already exists, 
01 DOCS issues a message to the operator. If the condition 
does not already exist, 01 DOCS sets bit DCMWRPF K to 

reflect the requested erase or display. 

2 • K E,PFK - If an erase was requested, DIDOCS 
places blanks in the SIB PFK display line . 

• K D,PFK - If a display was requested, DIDOCS writes 
the PFK numbers in the SIB PFK display line. 

3 Finally, DIDOCS writes the updated SIB to the 
screen. 

Module Label 

IEECVFTB 

IEECVETH/P/R/U 

IEECVETH/P/R/U 

IEECVETH/P/R/U 



~ -~ 
o 
tf.l 

~ 
~ 

tf.l 
'< 
~ 

~ 

~ 
() 

t: 
~ 
~ 
~ 
a­
S 
(0 

~ 

'< 
tf.l 
~ 

~ 
(0 

i 
~ 
CH 

!..J --

Diagram 1-32. Erasing/Holding/Framing/Updating Status Displays (DIDOCS) (IEECVFTP) (Part 1 of 2) 

Input 

From step 5 of Processing Typed 
Commands From a Graphics Console 
(DIDOCS) (IEECVET1) Process 

1 Determine which display area the command 
affects. 

2 Perform the requested operation: 

• Erase Status Display 

Free WOEs. 

Blank control bytes in SCT. 

DCM 

Secondary SCT 
control bytes 

Write warning line 
(DCMWRWRN) 

Write partial area 

WOEs Set up to rewrite the affected area.: --"'" •. --')' (DCMWRPAR) 

DCM 

• Hold Status Display 

- Indicate HOLD is in effect. 

- Set up to rewrite the screen. i/ 

• Frame Status Display 

- Update frame number. 

Move in new frame lines. " 

Set up to rewrite the screen. a/I 

• Update Status Display 

Indicate updating is in effect. " v 

Set up to rewrite the screen. 

3 Write the screen. 

To perform other communications 
task operations 

*F *U 
(SIB control line) 



tJ'.l 
(') 

~ 
o· 
::I 
N 

::: 
(') 

~ 
C 
Q. 

o ...., 
o 
"0 
~ 
Ql 

S· 
::I 

~ 
~ 
-...I 

Diagram 1-32. Erasing/Holding/Framing/Updating Status Displays (DIDOCS) (IEECVFTP) (part 2 of 2) 

Extended Description 

A status display is a formatted, multiple-line display of in­
formation about some part of the system; the status display 
appears at the operator's console in response to a DISPLAY 
or TRACK command. The operator controls status displays 
with the following CONTROL command options: 

• K E,D - specifies erasing of a status display. 

• K D,H - specifies holding of the dynamically updated 
status display. 

• K D,F - specifies moving the status display forward to 
the next frame; this operation is hereafter called 
"framing." 

• K D,U - specifies the resumption of updating of a for­
merly held dynamic status display. 

DIDOCS processes these commands as follows: 

1 A display area is a block of screen lines that contains a 
status display. Before DI DOCS performs the requested 

operation on a status display, it determines wh ich display 
area the command affects. D I DOCS compares the area I D 
(KAID) in the command parameter list (KPARAM) with 
the area ID (DCMAID) in the DCM. 

Module Label 

IEECVFTP 

Extended Description Module 

2 From KPARAM fields KOPN and KFLGS, DIDOCS IEECVFTP 
determines which status display operation was re-

quested, then performs the operation: 

• Erasing the status display - DIDOCS frees the major and IEECVFTP 
minor WOEs and blanks the control bytes in the second-
ary screen control table (SCT). Finally, DI DOCS sets the 
write-warning-Iine bit (DCMWRWRN) and the write-
partial-area bit (DCMWRPAR to indicate that the affected 
portion of the entry area must be written to the screen. 

• Holding the status display - DI DOCS indicates that the I EECVFTN 
status display is being held by setting *F and *U in the 
SIB control line. Finally, DIDOCS indicates that the 
screen must be written by setting bit DCMWINFD. 

• Framing the status display - DIDOCS adds one to the IEECVFTN 
frame number in the SACB and moves a new control line 
that contains the new frame number into the SI B. Finally, 
DIDOCS places the new frame lines into the SIB and sets 
bit DCMWINFD to indicate that the screen must be 
rewritten. 

• Updating the status display - DIDOCS indicates that IEECVFTN 
update mode is in effect by placing *H and *PM into the 
SIB control line. Then DIDOCS sets bit DCMWINFD to 
indicate that the screen must be rewritten. 

Label 

3 DIDOCS writes the screen image from the screen 
image buffer into the console device buffer. 

IEECVETH/P/R/U 



~ Diagram 1-33. Roll Mode Message Deletion Processing (DIDOeS) (Part 1 of 2) 
\0 
oc 

~ 
"< 
~ 
N 
~ 
'< 
~ 

3 
r"" 

<i f). 

r"" 

~ 
~ 

~ 
<= o 
C 
:3 
(!) 

N 

'< 
~ 
N 

:::0 
~ 

i 
~ 
\,o.j 

~ 

Input 

UCM entry 

From a timer expiration 
or from step 2 of diagram 
"Displaying Single-line 
Messages on Graphics 
Consoles (DIDOCS)" 

Post code from timer 
(UCMECB) 

Message queue 
(UCMOUTQ) 

Screen full (DCMRXSFU 

End of screen (DCMSECDD)I-I ___ ..L.-----, 

(DCMSECCU 

Number of lines to roll 
(DCMRNUM) 

1 Determine that the time interval has elapsed. 

DCM 

2 Determine which consoles are ready to roll. uII Ready to roll 
(DCMRXROLU 

Reset the timer. 

4 Determine number of lines to roll. _______ ..,.., __ -. 

Determine number of lines still to be 
written to the screen. 

7 Insert new messages. 

To perform other 
communications task operations 

Work area 
(DCMDSAV) 

Screen image buffer 



c;n 
~ 
(") 

5-
= 
N 

~ 
;.;. 
o 
Q. 

S­
O 
"0 
~ 
~ 
c· 
= 
~ 
-.0 
-.0 

Diagram 1-33. Roll Mode Message Deletion Processing (DIDOeS) (Part 2 of 2) 

Extended Description 

When roll mode is in effect and a specified time interval 
elapses, DIDOCS deletes an operator-specified number of 
messages if the screen is full. 

1 01 DOCS determines that Jhe time interval has elapsed 
by checking that the elapsed-timer bit (DCMTIMER) is 

on and that the post code in UCMECB is the timer post 
code. 

2 DIDOCS examines each active console's screen-full 
bit (DCMRXSFU to determine whether the console 

screen is full. If so, DIDOCS sets the ready-to-roll bit 
(DCMRXRLU in the console's DCM. 

3 DIDOCS issues the STIMER macro instruction to 
reset the system interval timer. 

4 DIDOCS subtracts the number of lines used for 
status displays (DCMSECDD) from the specified roll 

number (DCMRNUM) to determine the number of lines to 
be rolled. 

Module Label 

IEECVET1 

IEECVETK 

IEECVETK 

IEECVETJ 

Extended Description Module 

5 DIDOCS searches the output queue for message lines IEECVETJ 
that are waiting to be output. DIDOCS counts the num-

ber of waiting lines. 

6 DIDOCS compares the number of lines to be rolled 
(from step 4) with the number of waiting message lines 

(step 5). If the number of waiting lines is greater than the 
number of lines to be rolled, DIDOCS rolls the number of 
lines to be rolled and displays the number of message lines 
still waiting. If the number of waiting lines is less than the 
number to be rolled, DI DOCS rolls just enough lines from 
the screen to display the waiting message lines. 

IEECVETJ 

7 To replace deleted messages, DIDOCS moves lines from IEECVETJ 
the bottom line of the message area or from the mes-

sage queue. 

Label 

8 0 I DOCS rewrites the screen. I EECVETH/P/R/U 



~ 

N 
8 
o 
CZl 

"< CZl 
~ 

CZl 
'< 
~ 
(\) 

3 

~ 
(") 

t: 
<::r 

~ 
~ 
~ 
(\) 

~ 

'< 
CZl 
~ 

~ 
(\) 

i 
~ 
~ 

d 

Diagram 1-34. Communication Task Functional Recovery Routine or ESTAE Controller Overview (IEAVMFRR) (part 1 of 2) 

From Recovery 
Termination Management Process 

IEAVMFRR 
(FRR or ESTAE Controller) 

• For some communication task 
abnormal terminations, clean up 
the terminating module. 

• Determine whether to retry the _ "-
process or continue the abnormal 
termination. 

Register 15 

o = Continue with 
termination. 

4 = Retry. 



(I) 
(D 
n 

S· 
= 
t-.J 

::: 
~ 
S 
Q. 

o .... 
o 
1 
III 

S· 
= 
t-J 
.:.., 
8 

Diagram 1-34. Communication Task Functional Recovery Routine or ESTAE Controller Overview (lEA VMFRR) (Part 2 of 2) 

Extended Description 

This routine is the common error recovery module for 
restoring the communication task after an abnormal termi­
nation. It receives control from the recovery-termination 
management (RTM) routine for both FRR and ESTAE 
recoveries. The FR R/EST AE controller examines the error 
environment to determine whether RTM can attempt a retry 
of the communication task or continue with the termination 
process. When a. clean up procedure has been supplied for 
the failing module, the FRR/ESTAE controller includes a 
branch to that procedure. 

Note: 

FRR Entries: The CMS and local locks are still in effect. 

ESTAE Entries: The CMS and local locks were freed by 
RTM before control was given to the FRR/ESTAE 
controller. 

Module 

IEAVMFRR 



N 
N o 
N 

o en 
"< en 
N 
en 
'< 
~ 
~ 

3 

E 
(;. 

t"'" s: ... 
~ 
< o 
2' 
3 
~ 

N 

'< en 
N 

:;:0 
('!> 

i 
~ 
~ 

~ 

Diagram 1-35. Communication Task Functional Recovery Routine or ESTAE Controller (IEAVMFRR) (part 1 of 10) 

From 
Recovery Termination 
Management 

From 
Step 1 

1 If entry is from the EST AE 
environment, then bypass 
FRR processing. I I 

(FRR Entries Only) 

2 Obtain current TCB. 

3 Obtain a work area. 

4 Establish a recovery 
environment. 

5 Bypass ESTAE processing. .. J I 

(ESTAE Entries Only) 

6 Obtain a work area. 

Register 4 

TCB Address 



\of) 
~ 
(") g. 
= N 

~ 
~ 

~ 
t:l. 
o .... 
o 
'e 
~ s 
5' = 
N 
N 
o 
IN 

Diagram 1-35. Communication Task Functional Recovery Routine or ESTAE Controller (lEA VMFRR) (Part 2 of 10) 

Extended Description 

1 Upon entry into the FRR/ESTAE controller, the 
controller tests register 0 to determine whether the 

entry was caused from an FRR Or EST AE. If register 0 is 
greater than 16, then the entry was caused by an FRR; if 
equal to or less than 16, then the entry was caused by an 
ESTAE. 

2 When the entry into the FRR/EST AE controller was 
from an FRR, the address of the current task control 

block (TCB) is obtained and placed in register 4: the branch 
to the GETMAIN executed next uses this TCB address. To 
obtain the current TCB address, the PSATOLD field in the 
prefix save area is tested. When this field is zero, the cur­
rent TCB address is obtained from the SRBMDTCB field of 
the logical configuration communication area (LCCAl. 
When the PSATOLD is not zero, the PSATOLD field is the 
address of the current TCB. 

3 Using the previously obtained current TCB address 
this routine does a branch to GETMAIN. The 

GETMAIN routine obtains a work area. The branch entry 
into GETMAIN is necessary because the local and CMS 
locks were being held when the communication task 
encountered the error condition that caused the abnormal 
termination. RTM does not release the local and CMS locks 
for an FRR retry before giving control to the FRR/ESTAE 
controller. 

Module 

IEAVMFRR 

Extended Description 

4 The SETFRR macro instruction is issued to establish 
a recovery environment for the FRR/EST AE con­

troller. This step is necessary because the local and CMS 
locks are still in effect. If this routine should happen to 
abnormally terminate while processing the current error 
recovery, a record is made of the environment and RTM 
continues with the termination. 

5 FRR processing has been initialized bypass the ini­
tialization of ESTAE processing. 

6 A GETMAIN macro instruction is issued to obtain a 
work area. The GETMAIN macro instruction may be 

issued for ESTAE processing because RTM freed the local 
and CMS locks that may have been held before control was 
given to the FRR/ESTAE controller. 

Module 



t;-J Diagram 1-35. Communication Task Functional Recovery Routine or ESTAE Controller (IEAVMFRR) (part 3 of 10) 
N 

~ 

o 
tf.l 

"< 
tf.l 
tv 
tf.l 
'< 
~ 

3 
~ 
5· 
t: 
~ 
~ 
'< 
< o = 3 
~ 

tv 

'< 
tf.l 
tv 
:;0 
!Eo 
~ 
1tg 
w 
~ 

j
l,W..v"'-$J@-;$'$$'$k'.'Ar~;~;"""$/,J;,-4Wg$g#",a_ " " ',f$ 

1I 
Register 0 I . r-=-----:-:::------,I--_-Jl1.. ______ .Ci.i.....Jt\., 7 If th . SDWA t th Nt User Parameter List (FTPT) 12 ere IS no , se e no !I 
....... ________ --J1 v SDWA indicator. 1'1 I PARMSDWA I 
Register 1 SDWA • 

I 
ISDWAPARM ; 

__ -------------J I 
Ii 

User Parameter I 
't List (FTPT) • 

I = 1 - ,~ -

b r2 

User Parameter List (FTPT) 
PARMFRID I -" 8 Ifthisisasecondentryforthe 

v same error condition: User Parameter List (FTPT) 

a. Set the repeat indicator. .. I PARMCWT I 
... 

b. Branch around the next step. Step 10 
User Parameter List (FTPT) r User Parameter List (FTPT) 

PARMRECU "> 9 If this is the second ESTAE I PARMCWT I 
Y entry for the same error condition, 1'. . 

set the repeat indicator. 

I 



Diagram 1-35. Communication Task Functional Recovery Routine or ESTAE Controller (IEAVMFRR) (part 4 of 10) 

Extended Description 

7 If register 0 is not equal to 12, a STAE diagnostic 
work area (SDWA) was not passed to the FRR/ESTAE 

control by RTM. The PARMSDWA bit in the user parameter 
list (FTPT) is set accordingly. 

8-9 Steps 8 and 9 determine if this entry is for repeat 
processing of a previous error condition. It is pos­

sible to process an EST AE entry without having previously 
processed an FRR entry. The three levels of entry are: 

8a An FRR entry. Although the FRR entry is not 
processed by these steps, previous FRR entry proc­

essing could have been done for this same error condition. 
The return code from this processing could have told RTM 
either to retry the process that failed or to continue ter­
mination processing. 

8b First ESTAE entry. Step 8 determines if this cur-
rent error condition was previously processed by an 

FRR entry that resulted in an attempted retry. If this is 
the second entry into the controller for the same error 
condition, the PARMCWT bit in the user parameter list 
(FTPT) is set to indicate that this is repeat processing. 
The return code could tell RTM either to retry the failing 
process or continue with termination processing. 

9 Second ESTAE entry. Step 9 determines if this cur-
rent error is the result of a retry from previously 

processing an ESTAE entry. Eventually, the controller 
tells the RTM to continue termination processing; no 
more retries. If this is the second ESTAE entry into the 

~ controller for the same error condition, the PARMCWT 
a bit in the user parameter list (FTPT) is set to indicate 
g' repeat processing. 

~ 

== a 
6' 
Q. 

o .... 
o 
"0 
~ 
et o· 
= 
~ 
~ 

Module 



~ Diagram 1-35. Communication Task Functional Recovery Routine or ESTAE Controller (lEA VMFRR) (part 5 of 10) 

~ 

o 
("J') 

'< ("J') 
N 
("J') 

'< 
=-9 
roc 
Ii 
5' 
roc a: 
~ 
<: 
o 
C 
:3 
(D 

N 

'< 
("J') 
N 

" (D 

f 
r6 
~ 

~ 

Input 

Reg 1 

User Parameter 
List (FTPT) 

PARMCWT I 
-.J 

ST AE Diagnostic 
Work Area (SDWA) 

L 
SDWARKEY I 

I 

User Parameter 
List (FTPT) 

PARMFRID 

PARMSDWA 

ST AE Diagnostic 
Work Area (SDWA) 

SDWACMPC L 
_J 

User Parameter List (FTPT) 

PARMSYAD 

User Parameter 
List (FTPT) 

PARMCLAD 

~ 
From Steps 
5 and 8 ..... 

.. 

i 

~ 
h'f 

I From Steps 

~ 
10, 11 and 12,. 

r 

Process ~ 
(FRR and ESTAE Processing) 

~ 
"s 

10 If the repeat processing 
indicator is on, bypass 

J-. .. 
further recovery checking. Step 14 

~ y 
.. 

~ 
~: 
~J-. 

11 If the system operator 
.. 

Step 14 
y 

pressed the restart key, bypass ! P' 

further processing. 

-) 12 If interrupt code is '1 FC' 
y 

through '6FC': 

a. Turn on the restore 
registers bit. 

... 
b. Bypass further recovery Step 14 

checking. 
.. 

Branch to 
the system 

" 13 If a system clean up routine clean up 
f, Y exists for the failing routine, routine ... 

use it. .. 
Branch to 
the module 

J-. 

14 If a module clean up routine clean up 
Y 

exists for the failing routine, routine 
use it. -" 

.. 

Output 

User Parameter 
List (FTPT) 

1\ 
PARMWARG J )I 

y 



c:n 
('1) 
("l g. 
::;, 
N 

::: 
('1) 

~ 
8; 
C ...., 
o 
"0 

~ 
I» g. 
::;, 

N 
~ 
o 
-..J 

Diagram 1-35. Communication Task Functional Recovery Routine or EST AE Controller (lEA VMFRR) (part 6 of 10) 

Extended Description 

10 If the current error condition has previously been 
processed by the FRR/ESTAE controller, bypass 

further error checking. 

11 The console operator may have attempted to restart 
a previously failing system by pressing the console 

restart button. The operator restart condition is indicated 
in the SDWARKEY field of the STAE diagnostic work area 
(SOW A). If the operator has attempted to restart the system 
and the FRR/ESTAE controller is processing an abnormal 
termination as a result of that operator restart, then bypass 
further error checking. Th is step is bypassed when the 
SOWA does not exist as determined by the PARMSOWA bit 
in the user parameter list (FTPT). 

12 The registers will be restored from the STAE diag­
nostic work area (SOWA) and further recovery proc­

essing is bypassed if all of the following conditions are met: 

• The SOWA exists. 

• The abnormal termination code represented by 
SOWACMPC is any code between '1 FC' and '6FC'. 

• The controller was entered for ESTAE processing. 

Module Extended Description 

13-14 To allow an operation to be retried, data areas 
related to the failing operation may need td be 

restored - cleaned up. Some time prior to the failure, the 
fail ing module issued a macro instruction to set either the 
functional recovery routine (FRR) or the ESTAE environ­
ment. Both macro instructions permit system and module 

clean up routines to be designated. When these routines 
are designated, the FRR/ESTAE controller branches to 
them. When each routine finishes its process, it returns to 
the FRR/ESTAE controller. 

System Clean Up: Mainline routines often use supportive 
system functions, such as SVCs and macro instructions that 
execute outside the mainline routine. When using these 
system functions, certain data areas or registers may have 
been set by the mainline function or the system function. 

The system clean up routine restores those areas of the 
mainline routine related to system functions. 

Module Clean Up: The module clean up routine restores 
data areas and registers, not related to system functions, 

that will permit the failing operation to be retried. 

13 If the controller has the address of a system clean up 
module in the PARMSYAO field of the user param­

eter list (FTPT), the controller branches to that clean up 
routine. Following clean up, control is returned to the 

controller. 

14 If the controller is given the address of the module 
clean up module in the PARMCLAO field of the 

user parameter list (FTPT), the controller branches to that 

clean up routine. Following the clean up, control is returned 
to the controller. 

Module 



~ Diagram 1-35. Communication Task Functional Recovery Routine or ESTAE Controller (lEA VMFRR) (part 7 of 10) 
N 

~ 

o 
III 

"< III 
N 
III 
'< 
~ 
~ 

3 

i 
r-
~ 
~ 
<: 
o 

= 3 
~ 

N 

<: 
III 
N 

~ 
~ 

i 
r6 
IN 

~ 

From Steps 
User 10,11 and 12.,. 
Parameter List (FTPT) 

r 
I 

PARMSDWA I 

User 
Parameter List (FTPT) 

-
-
- i' 

-

User 
Parameter List (FTPT) 

I 
PARMID I 

-.J 

Module Work Area 

IEAVMFRR I 
I 

.t 

15 If there is no SDWA, bypass 
'" ... 

SDWA processing. Step 22 y r 

'" 16 Copy the user parameter list 
If into the SDWA. 

I\. 
17 Copy failing module identification 

y 
into SDWA. 

") 18 Copy FRR/ESTAE controller 
elf identification into SDWA. 

SETRP 
Macro 
Instruction ... 

19 Record the error environment. ,.. 

i! 

" ---~ 

'\>.". ''''", ,~", .. ".", .. ,' 

ST AE Diagnostic 
Work Area (SDWA) 

" SDWAVRA 
y 

SDWAVRAL 

SDWAHEX 

STAE DiagnostiC 

" Work Area (SDWA) 

y 1 IEAV---- 1 
T T '" IEAVMFRR 

If 



til 
~ 

II e· 
= 
~ 

::: 
~ 

[ 
o .... 
o 
"0 
~ a e· 
= 
~ 

N 
~ 

Diagram 1-35. Communication Task Functional Recovery Routine or ESTAE Controller (lEA VMFRR) (part 8 of 10) 

Extended Description 

15 If the STAE diagnostic work area (SDWA) is not 
available, bypass further processing that involves the 

SDWA. 

16 The user parameter list (FTPT) is copied to the vari­
able area of the STAE diagnostic work area (SDWA) 

for future recording on SYS1.LOGREC. 

17 The identification of the failing module is copied 
into the STAE diagnostic work area (SDWA). 

18 The identification of the FRR/ESTAE controller is 
copied into the ST AE diagnostic work area (SDWA). 

19 To record the error environment on SYS1.LOGREC, 
the SETRP macro instruction is issued. Shortly after 

control has been returned to recovery termination manage­
ment, the environment will be asynchronously recorded. 

Module 



~ Diagram 1-35. Communication Task Functional Recovery Routine or ESTAE Controller (IEAVMFRR) (Part 9 of to) 

o 
o 
("I'.l 

"< ("I'.l 
~ 
("I'.l 

'i 
9 
i 
n' 
r"' 

~ 
~ 
< 
~ 
a 
~ 

~ 

'< 
("I'.l 
~ 

~ 
~ 

if 
~ 
w 
~ 

User 
Parameter List (FTPT) 

PARMWARG 

PARMCWT 

PARMRTAD 

User 
Parameter List (FTPT) 

PARMWARG 

ST AE Diagnostic 
Work Area 

SDWANXTL 

Register 4 

TCB Address 

'" '> 20 v 

I- ~) 21 
y 

l=!- From Steps 
15 and 20 Ioc 22 .. 

~ 

r -v 

23 

• 

If the supplied retry address ,SETRP 

can be used: Macro 
Instruction 

a. Specify retry, 
.. 
r 

b. Bypass other retry steps. 

~ 
Step 22 

If an interrupt abnormal 
termination code was found, 
specify a retry. --SETRP Macro 

Instruction 

Free the work area: Branch to 
FREEMAIN 

a. If this is an FRR entry, 
branch to FREEMAIN. 

(I EAVGMOO) .. 

" 
FREEMAIN 

b. If this isan ESTAE entry, Macro 
issue the FREEMAIN Instruction .. 
macro instruction. 

" 
Return to RTM. 

- ~f 

Register 15 

0 = Continue with .. termination. 

1 4 = Retry. 



en 
(\) 

~ 
S· 
= 
N 

a::: 
sa. 
S-
o. 
o .... 
o 
"0 
(\) ... 
~ g. 
= 
~ 
N -

Diagram 1-35. Communication Task Functional Recovery Routine or ESTAE Controller (IEAVMFRR) (part 10 of 10) 

Extended Description 

20 The SETRP macro instruction is issued to specify a 
retry operation if all of the following conditions 

exist: 

• The restore registers bit (PARMWARG) is not set. 

• The user parameter list (FTPT) has a retry address 
(PARMRTAO) for retrying the failing routine. 

• The continue-with-termination bit (PARMCWT) in the 
user parameter list (FTPT) is not set. 

21 If the PARMWARG bit in the user parameter list 
(FTPT) is set, the SETRP macro instruction is issued 

to specify a retry operation of the failing routine. The retry 
address is taken from the SDWANXTL field of the ST AE 
diagnostic work area. 

22 The work area obtained for the FRR/ESTAE con­
troller is freed. 

23· The controller returns control to RTM with a return 
code in register 15: 

o RTM is instructed to continue termination processing. 
4 RTM is instructed to attempt a retry of the failing 

module. 

Module 



~ Diagram 1-36. Communication Task Recovery (STAR) Routine (IEAVSTAA) (part 1 of 12) 
~ -~ 
~ 
< 
til 
~ 

til 
'< 
~ 

a 
E 
n' 
c. 
~ 
~ 
~ 
~ 
(D 

~ 

~ 
~ 

~ 

i 
gJ 
~ 

~ -

Input 

UCM2 
UCM2SFlG 
UCM2SENT 

Register 0 

Function Code 

Register 1 

SDWA Address 

Reg Save Area 

Reg Save Area 
Address 

Register 0-14 

:;?,:;'~=~?q ;;t"~?t1r"'N)~~~""}lii";"'::Ml\I 

,... 
-v 

::1 I 0~ ».@ 

IEAVSTAA 

1 Indicate if this is the first entry to 
the STAR routine. 

2 Determines if a register save area 
was allocated. 

If not, issues a G ETMA IN macro 
instruction for a save area. 

Output 

" v 

GETMAIN 
(lEAVGMOO) 

UCM2 
UCM2SFlG 
UCM2SENT 

.1.. ... .-) 

UCM2 
UCM2SFlG 
UCM2SDWA 

I 1 ... ··~-··I 
UCM2STA 
UCM2STAA 

I SDWA Addr~;;--I 

SDWA 

Reg Save Area 

Saved Regs 

Subpool229 
Work Area 

Saved Regs --, 



rn 
(1) 

g. 
5· 
= ~ 
:c: 
a =-8. 
o 
~ 

o 
1 
=­o· 
= 
~ 

N -1M 

Diagram 1-36. Communication Task Recovery (STAR) Routine (lEA VSTAA) (part 2 of 12) 

Extended Description 

This routine is part of load module I EAVCTSK. I~ is 
entered enabled by recovery-termination management 
(RTM) for all abnormal terminations caused by the 
Communications Task. 

1 The STAR bit (UCM2SENT) is used during dump 
reading to determine whether the STAR routine 

has been entered. If this is the first entry into the STAR 
routine, the STAR bit is set. 

2 Determines if a work area was provided by RTM 
(Register 0 is not 12 and register 1 contains the 

address of the work area). If no work area ;s provided, 
a GETMAIN macro instruction is issued to obtain 64 
bytes from Subpool 229; then the registers are saved. 
Otherwise, if the work area was provided, the address 
of the ST AE diagnostic work area (SDWA) is saved 
(UCM2ST AA in the UCM2) and bit UCM2SDWA is 
set. Then the registers are saved. 

Module 

IEAVSTAA 



:t: Diagram 1-36. Communication Task Recovery (STAR) Routine (IEAVSTAA) (part 3 of 12) -~ 
~ 
~ 
N 
fI) 

'< 
~ 
I'D 
9 

i 
~. 

r'" 

J 
~ 
2" 
9 
I'D 
N 

'< fI) 
N 

~ 

t 
1Il 
IN 
~ -

Register 1 

I A23 ABEND or check 
SWDA 

SWDA 
SWDACMPC 

I A23ABEND 

UCM2 
UCM2SFLG 
UCM2DTAK 

I .. 0 ..... 

Register 15 

I Return Code 

') 3 If the recovery is the result of an 

I I 
v A23ABEND: 

a. Obtain local and CMS locks. 

b. Post the WTOR ECB. 

,it 
;w 
.i® 

c. Post the DOM ECB. 

d. Release local and CMS locks. 

e. Branch to exit. 

4 Issues an SDUMP macro instruction. 

.... 
) 

v 

L 

SETLOCK ... 

--, 

POST ... UCM 
UCMOECB -,. 

I I . WTO ECB , 
POST ... UCM 

-,. UCMDECB 

I DOM ECB I 
SETLOCK 

... .. 
... 
~ Step 19 

SDUMP 
UCM2 ... 

-,. UCM2SFLG 
UCM2DTAK 

I .. 1 . .. ...... I 



CJ') 
~ 

~ c· 
= ~ 

a:: 
~ 

[ 
o ... 
o 

"0 
~ ... 
~ 
S· 
= 
tv 
N 
U; 

Diagram 1-36. Communication Task Recovery (STAR) Routine (lEA VSTAA) (part 4 of 12) 

Extended Description 

3 There are several points in the. communication 
task modules - or modules supplied by the com­

munication task to other system functions - where those 
modules may attempt a cross-memory post of the com­
munication task. When the attempt fails, an A23 ABEND 
results. This A23 ABEND may not be an error, only a 
legitimate attempt to post the communication task. The 
ST AR routine, therefore, posts the communication task 
for the user who received the A23 ABEND. The user 
is not terminated. The A23 ABEND will only be 
issued if a general communications task recovery 
module (lEAVMEST) was issued as the error exit 
address for the XMPOST macro. 

The A23 ABEND from the communication task means 
that either the WTO and WTOR event control block 
(ECB) or the DOM event control block (ECB) were 
being posted. To satisfy that request, the WTO and WTOR 
event control block (ECB) and DOM event control block 
(ECB) are both posted. Posting these control blocks will 
permit control to be given to the communication task's 
wait service routine to process whatever work that needs 
to be performed. 

To test for the A23 ABEND: If register 0 is not equal 
to 12, register 1 contains the address of the STAE diag­
nostic work area (SDWA); the A23 ABEND code is in 
the SDWACMPC field of that control block. When 
register 0 is equal to 12, then the A23 ABEND code is 

in register 1. 

4 The following SDUMP macro instruction is issued 
to start a dump: 

SDUMP SDAT A=(SOA,N UC,LSOA,LPA,SWA,CSA), 
MF=(E,CTBUF) 

"CTBUF" contains the header label printed.on the dump. 

Module 



~ 
N -0\ 

o 
C"Il 

~ 
N 
C"Il 
'< 
fQ. 

9 

i 
~ 
~ 
-< 

t 
(D 

N 

~ 
N 

i 
! 
~ :... -

Diagram 1-36. Communication Task Recovery (STAR) Routine (IEAVSTAA) (part 5 of 12) 

~ ... __ a''''\I", ~ 

Each UCM Entry 

See Note. 

UCMATR 
UCMUF 

. . . 1 

UCMLF r- .... 1 ... 

UCMAT04 

. . .. . 1 .. 

Master Console 
UCM Entry 
UCMSTS 
UCMTA 

Process 9 
5 Obtain local and CMS locks. "I SETLOCK ~, -

> :' > 6 Close and mark as inactive all 
console UCM entries. Empty 
system output queue. 

lW 

Output 

.... 

.., 

III 

.., 
N 

101 

II " 7 Confines system communications to _ ,...-----..,AI 
1 . . . the master console. %I~ 

I UCMATR I 
UCMUF I • 1 ill ... . 
I UCM Prefix 

See Note. 

CVT 
CVTEXIT 

I SVC Exit Addr 

I 
L 
r 

J I 

\1 '. 11* 

r"~, ", 
~\¥ 

8 Removes exit to the user exit routine 
(lEAVVCTE). 

c) 

• I~ • .' I %l! 

I 
I 

" I t'1J 
•• t t I I I I 

1R\1,' 

I 

" 

" 
51 

'1 

Eadl UCM Entry 

See Note. 

UCMATR 
UCMUF 

... 0 .... 

UCMLF 

0 ... 

UCMAT04 

..... 0 .. =:1 

Master Console 
UCM Entry 
UCMSTS 
UCMTA 

UCMATR 
UCMUF 

1 ... ] 

... 1 .... ~ 

I UCM Prefix 
See Note. 

UCM Prefix 
UCMWTOX 



til 
~ 

~ o· 
= 
~ 

a:: 
~ 

[ 
o .... 
o 

"'CI 

~ 
~. 

= 
t:-» 
~ 
..... 

Diagram 1-36. Communication Task Recovery (STAR) Routine (lEA VST AA) (part 6 of 12) 

Extended Description 

5 The local and CMS locks are obtained to serialize the 
use of the communication task's resources. All locks 

that may have previously been held were freed by recovery­
termination management (RTM) before control was given 
to the STAR routine. 

6 The consoles are closed and made inactive, and the 
output queues are emptied by setting to zero the 

following fields in each UCM Entry: 

UCMDCB, UCMSTS, UCMOUTQ, UCMWLAST, 
UCMMLAST, UCMMSG, UCMDEVC AND UCMSDS5. 
Flags UCMUF, UCMLF and UCMAT04 in UCMATR. 

7 The UCM Entry for the master console is located. 
Flags UCMTA and UCMUF in UCMATR are set; 

this makes the master console the only console that the 
operator can use upon a retry attempt. The following fields 
in the UCM Prefix are set to zero: 

UCMSYSD, UCMDOME, UCMFLGS2, UCMXCT, 
UCMSDS1,UCMSYSB,UCMSYSC 

Field UCMCMID is set to one. 

8 The use of the user-supplied exit routine (I EAVVCTE) 
is prevented by storing the SVC exit address as the 

address of the exit routine. 

Module 



:t: Diagram 1-36, Communication Task Recovery (STAR) Routine (IEAVSTAA) (part 7 of 12) -oc 

~ 
"< 
~ 
~ 

~ 

l a 
oi 
(s' 

f 
<: o 

~ 
(D 

~ 

'< 
~ 
~ 

" (D 

if 
~ 
w 
~ 

UCM 
UCMRPYQ 

~RECh.in I 

r 1 

ORE 
OREOPBUF t or zero r 
Reply Buffer 

r Operator's response 1 

ORE 
ORELKP 

r 
Pointer to I 

I 

next ORE I 
ORETCB 

I Task that 1 
issued WTOR I 

.~)fA"$'~?_" __ ~.ff&t'~e%j:i __ '''''#. 

;~ 

~ 
9 Discards all system output messages. 

From Steps 
12a and 12c .. 

--,. (Prepare to Delete OREs) 

" v> 10 If there are no OREs to be 
purged, then go to. 

" 
II' 11 If a reply has been at least partially 

processed, then free the reply 
buffer. 

.. 12 Scan for another ORE belonging 

I v to this task. 

I 
I 

a. If another OR E is found, go to. 

b. If another OR E is ngt 
found, terminate the task that 
issued the WTOR macro 
instruction that created the ORE. 

" c. To process the next OR E, go to 
"'H'"':~ 

UCM 
UCMWTOQ 

-" I 0--------0 I 

... 
Step 13 

~ 

FREEMAIN .. 

~ 

--... Step 10 
7 

CALLRTM .. 

r' 

... Step 10 
r' 



en 
(I) 

a 
5' 
= ~ 
a:: 
sa. 
[ 
o .... 
o 

"0 

i 
s' 
= 
N 
N -IC 

Diagram 1-36, Communication Task Recovery (STAR) Routine (IEAVSTAA) (part 8 of 12) 

Extended Description 

9 The WOE chain pointer (UCMWTOO in the UCM) is 
set to zero causing all system output messages to be 

discarded. The storage they occupied is not available for 
reallocation. 

Prepare to delete Operator Reply Elements (OREs). 

10-12 Steps 10 through 12 free space obtained for 
WTOR replies and terminate all tasks that are 

waiting for replies to a WTOR message issued from those 
tasks. Regardless of the number of replies anyone task 
may be waiting for, that task is terminated with a single 
B23 ABEND. 

10 The ORE chain is checked to determine if any out­
standing OR Es exist, that is, if all requested replies 

had been received. If none are found, control goes to 
step 13. 

11 If an operator has made a partial response to a 
WTOR message, stage I of the reply command proc­

essor has obtained a buffer space for that reply and placed a 
pointer to that reply buffer space in the ORE (OREOPBUF). 
Until the space has been obtained, the pointer is zero. If 
the reply buffer space exists for this ORE, the space is freed. 

12 For each task that is expecting a reply to a WTOR 
message, this step gives one, and only one, B23 

ABEND regardless of the number of replies each task is 
expecting. By stepping down the ORE chain one ORE at a 
time, step 10 has selected an ORE for processing. In this 
step, the selected ORE's task identification (ORETCB) is 
compared against the task identifications for the remaining 
OREs on the ORE chain. When a" match is found, the task 
that issued the WTOR macro instruction is not terminated. 
When a match is not found, the task is terminated. 

In both cases, this routine branches back to process the 
next ORE on the ORE chain. 

Module 



:t! Diagram 1-36. Communication Task Recovery (STAR) Routine (IEAVSTAA) (part 9 of 12) 

~ 

~ 
~ 
t.J 
til 
'< 
fQ. 

~ 
S' 
't9. n 

i 
~ 

f 
C'D 
t.J 

'< 
til 
t.J 

'" i-
ff! 
w 
~ -

" 

UCM 
See note. 

UCM 
UCMWECBH 

UCMOECBH 

WWB 
~ WWBFLAGS 
, 

: WWBASCE 
; 

WWBECB 

WWBFWDPT 

;,;'-

From 
Step 10 .. 

r-

..I\. 

.? 13 Removes OR E references. 
; 

; 

J-...> 14 Post tasks that are waiting for L 
I ... WOE or OR E space. 

• L 

J 

--
15 All 1/0 ECBs are set to zero. 

I 

L 
I 

-.I 

,- .1 
16 Release the CMS and local locks. 

I 
L -

.< ::'.: ". ·ii .::'.-:.:. . ..•..• ". 

'i 

.. 

I 
UCM 

I .. See note. 

WWB 
WWBECB 

II I I 
POST .. VVWBPOSTD 

r- I I 

':x 

UCME 
UCMRECBA 

Jo I 0--------0 I v 

».,' .....• ::·,,·;:':':-"i/::XC;:·.': ".;;". i,""":'!'; 

SETLOCK 
III. 

r 



til 
~ 

a 
5' 
= 
~ 

a:: 
~ 

[ 
o 
'"" o 
." 

i 
5' 
= 
~ 

~ 
~ -

Diagram 1-36, Communication Task Recovery (STAR) Routine (IEAVSTAA) (part 10 of 12) 

Extended Description 

13 The following fields are set to zero: 

UCMRPYQ (ORE queue) 
UCMRPYI (Reply 10 assignment pattern) 
UCMRQNR (ORE current counter) 
UCMWQNR (WQE current counter) 
UCMWQENO (Last WQE pointer) 
UCMMOOE (All subfields) 

14 The write queue element-write wait blocks 
(WQE-WWBs) and operator queue element-write 

wait blocks (ORE-WWBs) are scanned for tasks that are 
waiting for WQE and ORE space. When such a task is 
found, the WWB post bit (WWBPOSTO) is turned on and 
the waiting task (WWBECB) is posted. 

15 The I/O event control blocks (ECBs) are set to 
zero. 

16 The previously obtained CMS and local locks are 
released. 

Module 



~ Diagram 1·36. Communication Task Recovery (STAR) Routine (lEA VSTAA) (part 11 of 12) 

~ 

o 
Ie 
~ 
~ 

C'Il 
'< 
~ 

~ 

i 
n' 

j 
i 
(D 

~ 

'< 
C'Il 
~ 

~ 

f 
w 
!.J -

I'\~ "" -~--"'~-""" 
~ 

I • Register 0 

I I I 12 I .1 
I I I Register 1 I 
I I 1 ~ I I Completion Code I i¥'. 
I ~ I I I Register 0 il' I I' I I Not 12 I • 
I SDWA I I I SDWACMPC . 

I I 1, I Completion C_ r I 
I I ~M2 I I ~M~F~ I I UCM2DTAK I 
I I X r I .. ..... I I 
l~ I iiM!.. " - ,~II '" ""'~ ~ I Subpool229 • I Reg Save Area I I r ¥ I I , ,~ From 
bl!& ',," _"':'=='_'*'''*''' ".' Step 3 .. 

.. 

r',-\'~Ii1h"k~,,\,\\~'iV.%:' 

t 
I I .... ) 17 Build STAR message and issues 
~,," a WTO macro instruction to I 
I display message. 

~ 

• I 
I 
~ , 

;1 
I ' .,~ 

0 

I '; 
I ~\ 

I wi 
II 
R~~ 

I; 
ii 

.. 
18 ) Free the register save area if 

I Y acquired by this routine. 
I 

19 Resolve entry point address for 
the Wait Service Routine 
(IEAVMOWR) to initiate 
a retry. 

$ 

4 

20 Return to RTM via a BR 14. 

1 t .' 

Tn ~TI'ut 

, 0'fbw" 

" I I WPL 
I ... 

SVC 35 ... 

• .. 

~ I i 

I ., ; 
I ¥F € t4! 

81 It 

I i' 
[ 

,10 

FREEMAIN 
a. 

I 
r' 

Register 0 

I 1 IEAVMOWR .. 
Entry Point 

~ 

LOAD ... 
r " Register 4 

1\ I I -.. 

" 

~. 

~ 



rI'.l 
('I) 

~ 
5' 
= 
~ 

~ 
a 
go 
c­
o .... 
o 

"1:1 
~ 
Ql 

S' 
= 
N 
N 
N 
\,oj 

Diagram 1-36. Communication Task Recovery (STAR) Routine (IEAVSTAA) (Part 12 of 12) 

Extended Description 

17 The abnormal termination completion code pro-
vided by RTM is moved into the message text. This 

completion code is found in one of two places: If register 0 
equals 12, register 1 contains the completion code. If reg­
ister 0 does not equal 12, the SDWA (SDWACMPC) con­
tains the completion code. 

A check is made (UCM2DTAK) to determine if a successful 
dump was taken. If not, the message text indicates 'NO 
DUMP TAKEN'. After the message is built, a WTO macro 
instruction is issued. 

18 Upon return from the WTO, the register save area, 
if obtained by this routine, is freed via a FREE­

MAIN macro instruction. 

19 A LOAD macro instruction is issued to resolve the 
entry point address of the wait service routine 

(IEAVMQWR). 

20 A return code of 4 is placed in register 4 and a 
branch is issued to return to RTM. 

Module 



2-224 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



Command processing consists of command 
scheduling and commat:Id execution. Command 
scheduling involves providing for a command task's 
execution and sychronizing it with other events in 
the system. Command execution is the performance 
of the function specified in the command itself. 
(For a list and explanation of the commands, refer 
to Operators' Library for JES2 or JES3.) 

Commands (including subsystem commands) 
entered into the operating system are initially 
handled by the sve 34 common processing 
routines. These routines: create an EST AE 
environment to permit recovery from failures 
caused either by program checks, machine checks, 
or by abnormal end situations, and determine if 
sve 34 processing is to manipulate control block 
chains, process a command, or schedule a 
command for execution by non-Sve 34 processors 
(such as subsystem processors or other attached 
processors). The use of the system macro 
instructions MGeR and QEDIT results in sve 34 
routines receiving control to process eseBs 
(command scheduling control blocks) and/or eIBs 
(command input buffers). 

A command may be issued from any of the 
following sources: 

• From a graphics console via DIDoes routines. 
• From a hardcopy (paper) console via 

communications task routines. 
• From a TSO terminal that is in operator mode 

and that uses sve 100, or from a TSO 
terminal that uses the terminal input/output 
coordinator (TIOC) routines. 

• From a "system key" component (that is, 
commands issued internally such as from 
checkpoint/ restart routines). 

• From an input stream reader via the converter 
subcomponent. 

General Considerations 
There are two main groups of command processing 
modules: the common processing modules that 
perform the same functions for all commands, and 
the individual command processors (which may 
consist of more than one module) that handle one 
or a group of commands. 

The common processing modules: 
• Establish the EST AE environment. 
• Handle message processing. 
• Translate commands. 

Command Processing 

• Check command authority. 
• Route commands to proper processors. 
• Interface with subsystems for command 

iden tification. 
• Create control blocks. 
• Manipulate control block queues. 
• Perform recovery functions in case of failure. 

For many commands, these modules store the 
command in CSCBS. 

The individual command processors (modules) 
handle individual commands based on the 
command verbs with specific keywords. In some 
cases, the processors perform checking and routing 
for commands with multiple keywords and 
operands. In the case of checking and routing, an 
individual processor may pass control to other 
modules that perform the actual final processing 
based on specific operands, or, in some cases, may 
perform the final processing itself. 

Command Execution 
Command processing routines perform a specified 
function either as a new task established by the 
master scheduler or as a part of an existing system 
task. Common initialization routines establish the 
environment necessary for processing either type of 
(command) task. . 

The first task of the command scheduling 
common routines is to establish the address of an 
error-recovery routine. The routines then translate 
an input command to upper case characters and, in 
most cases, write it to a hardcopy device. If the 
command is a subsystem (for example, JEs2) 
command, the sve 34 routines return control to 
the caller (of SVC 34) and the subsystem performs 
the command processing. Otherwise, valid (proper 
verb code, syntax, authority, etc.) commands are 
routed to an appropriate processing module. If an 
error occurs during the pre-routing processing, an 
error message is written, SVC 34 processing stops, 
and control returns to the caller. 

In the case of task-creating commands, the 
appropriate processor receives control only after 
further preliminary steps have been taken. For all 
commands in this category, control passes to the 
eSCB-creation module (IEE0803D). This module 
builds a command scheduling control block to 
contain the command and stores an encoded 
version of the command (verb and operands) in the 
block. If the command is either a START, MOUNT, 

• 

Section 2: Method of Operation 2-22~ 



or LOGON command, a new memory (or address 
space) is required. In that case, a memory-request 
processor communicates with the system resources 
management (SRM) routines and establishes the 
environment for the new memory. The request 
processor creates an address space control block 
(ASCB) and establishes an address space 
identification (ASID) for the new -memory. Module 
IEE0803D sets on an assignment-pending indicator 
in the CSCB, places the newly-created CSCB on the 
CSCB chain, and uses the cross-memory form of the 
POST macro instruction to notify the master 
scheduler wait routine, which is the initial 
responder to all task-creating commands. 

When the master scheduler wait routine 
(IEEvW AIT) receives control in response to a POST 
macro instruction, it searches the CSCB chain for a 
CSCB in pending (or availability) status. When it 
finds a pending CSCB, other than one for a START, 
MOUNT or LOGON command, it removes the CSCB 
from the chain and attaches the appropriate 
command processor in the master scheduler's 
region. In the case of a START or MOUNT 
command, the master scheduler attaches the 
memory-create function rather than the command 
processor. For a LOGON command, the master 
scheduler attaches the terminal input/output 
coordinator (TIOC) processor, which in turn gives 
control to the memory-create function. The 
memory-create routine(s) give control to the region 
control task (RCT) routines, which pass control to 
the started task control (STC) routines to initiate 
the processing associated with a START, LOGON, or 
MOUNT command. After all pending CSCBs have 
been processed, the master scheduler waits (via a 
WAIT macro instruction) until it is again posted for 
an event control block (ECB). 

Each attached (task-creating) command 
processor uses the system macro instruction MGCR 
to free its corresponding CSCB storage area. The 
processor operates in supervisor state with a system 
key of zero and operates under a job step task 
control block (TCB). The processor lacks a save 
area because its task ceases to exist when current 
use of the processor is finished. 

Reconfiguration Commands 
There are several commands in the MVS operating 
system that assist in the reconfiguration of the 
operating system. These commands permit 
operations personnel to have the capability of 
adding components (or elements) to a running 
system, of removing failing components, and of· 

2.226 OS/VS2 System LogIc Library Volume 2 (VS2 Release 3.7) 

taking a CPU, channels, devices, and areas of main 
(real) storage offline for maintenance. System 
recbnfiguration involves a physical or logical 
change in the type or quantity of components 
available to the operating system. 

Physical reconfiguration is the actual connection 
of components to or the disconnection of 
components from the system. An operator may 
perform physical reconfiguration on an operating 
system by using the QUIESCE command before the 
reconfiguration occurs. This command suspends 
system activity until the operator signals via a 
system restart interrupt that the system may 
continue. 

Logical reconfiguration, which programming 
accomplishes, involves changing system tables to 
notify the control program of any physical changes. 
Logical reconfiguration may be performed without 
performing physical reconfiguration, but it· should 
always be performed whenever a physical 
reconfiguration occurs. An operator (or 
programmer) may perform logical reconfiguration 
either when a system is loaded (at IPL time) or by 
using a form of the VARY command to change the 
status of CPUs, channels, devices, and main storage. 

Command Processing Modifications 
Changes to command processing routines from VS2 
Release 1 include the following: 

• Module-to-module linkage is accomplished by 
using branch instructions instead of the XCTL 
macro instruction mechanism. 

• The extended save area (XSA) and the 
command buffer interface used throughout 
are obtained by the same GETMAIN macro 
instruction and are contiguous in storage. 

• All SVC 34 processor modules reside within 
one load module, IGCOOO3D. 

• In addition to the existing-task command and 
task-creating commands of previous releases, 
the task-creating commands contain the' 
TART, MOUNT, and LOGON commands in a 
subset known as memory-creating commands. 

• Enqueue-Dequeue logic is used to add 
elements to, and delete elements from, the 
CSCB chain. 

• For time-sharing (TSO) oriented commands, 
the address space identification block (ASID 
replaces the time-sharing identification block 
(TJID). 

• The system log has been designed to 
eliminate the log data sets SYS1.SYSVLOGX 
and SYS1.SYSVLOGY. 



• The DISPLAY (A, TS or JOBS) command 
processor scans the CSCB chain instead of the 
TCB chain. 

• Resources protection routines use a "lock" 
mechanism to replace the disabling feature of 
the Set System Mask mechanism. 

• Jobqueue commands (such as HOLD Q) are 
removed. 

• Reconfiguration commands (such as VARY 
(CPU, or STOR, or PATH, or CHAN) exist. 

• Command processors use VS2 supervisor error 
recovery techniques-see the 
Recovery /Termination Management section 
of this publication. 

• A TRACK command requires changes to the 
MSGRT and CONTROL commands. 

• The SET and RESET commands have operands 
that require an interface with the system 
resources manager (SRM). 

• A command, CHNGDUMP, permits parameter 
changes to the DUMP command and to 
ABEND dumps. 

• The VARY CONSOLE (ONLINE, OFFLINE) and 
UNLOAD cOIll1llands now are task-creating 
commands (that is, they are processed by 
processors attached by the master scheduler's 
routine IEEVW AIT). 

• A command, TRACE, permits maintenance of 
the NIP trace table after system initialization. 

Changes to command processing routines from VS2 
Release 2 include the following support for: 

• The 3850 Mass Storage System (MSS) has 
been added. It consists of the library with its 
associated read/write units, DASD staging 
devices, and controllers. 

• Varying a range of devices online or offline is 
now supported by means of the VARY 
command. 

• The MSGRT and parts of the control 
commands may be issued under tasks other 
than the communications task (i.e., by JES3). 
These instances are protected via the CMS 
and local locks. 

Section 2: Method of Operation 2-227 



~ 

N 
~ 

~ 
"< 
C'I.) 
~ 

C'I.) 

'< 

f 
i 
(') 

t""" 
;: 

~ 
~ 
[ 
(I) 

~ -< 
C'I.) 
~ 
Q 
~ 

00 o 
~ 

Command to Which Diagram Relates 

The first seven diagrams apply either in part 'Or in whole to many 
of the commands listed in the rest of this summary. 

START, LOGON, and MOUNT Commands 

CANCEL - The CANCEL command causes the cancellation 
of an executing task by posting the CANCEL ECB in the CSCB. 
This causes recovery termination management routines to terminate 
the task. 

CHNGDUMP - The CHNGDUMP command causes a change in system 
. dump parameters. 

CONTROL - The CONTROL command establishes and changes the 
functions of a graphics console, mainly in the areas of screen definition 
and control. 

DISPLAY - The DISPLAY command causes a graphic display of the 
current status qf various system functions. 

DUMP - The DUMP command interfaces with the SVC DUMP macro 
instruction to provide a storage dump of specified options. 

Figure 2-5. Command Processing Method-of-Operation Diagram Summary (Part 1 of 4) 

Diagram Title 

2-1 SVC 34 Common Processing Initialization (Overview) 

2-2 Creating STAE Environment for SVC 34 Command Processing (lEE0003D) 

2-3 SVC 34 STAE Routine (lEESl03D) 

24 SVC 34 General Message Assembly Routine (lEE0503D) 
2-5 Manipulation of Command Control Blocks (QEDIT) (lEE0303D) 

2-6 Command Translation and Routing (IEE5403D) 

2-7 Creating CSCB for Task-Creating Commands (IEE0803D) 

2-8 Master Scheduler Wait (IEEVW AIT) 

2-9 Master Scheduler Wait Recovery and Retry (IEEVW AIT) 

2-10 Obtaining a New Virtual Memory (IEE0803D) 

2·11 Cancelling Background (Batch) and Foreground (TSO) Jobs (IEE3703D) 

2-12 System-Initiated Cancelling of a TSO User (IKJL4TOO) 

2-13 Changing Dump Parameters (IEEMB815) 

2-14 CONTROL Command Processing (IEE6703D) 

2-15 DISPLAY and TRACK Command Preprocessing (IEE3503D) 

2-16 Displaying and Tracking System Status (lEECB800) 
2-17 Displaying Console Status (IEEXEDNA) 

2-18 Displaying CONTROL Command Operands (lEE00110) 

2-19 Displaying a Matrix of System Status (IEEMPDM) 

2-20 Displaying Operator-Action Requests (IEE2903D) 

2-21 Display of Program-Function-Key Defmitions (lEE40110) 
2-22 Displaying Unit Status (lEE20110) 

2-22A Displaying Parameters of Domains (IEEDISPD) 

2-23 Dumping Virtual Storage (lEECB866) 

< 
C'I.) 
~ 

o 
~ 

00 
o 
-...I 



C"I) 
(D 

~ 
0' 
= N 

~ 
(D 

[ 
o ..., 
o 

"t:S 

~ g, 
= 
N 
t!.J 
N 
\0 

Command to Which Diagram Relates 

HALT - The HALT command closes the system log, empties the 
SMF buffers, and stops teleprocessing operations. 

HOLD - The HOLD command permits the interception of messages 
going to a TP station. 

LOG - The LOG command writes text entries into the system log. 

LOGON - The LOGON command, which is an internally-issued 
command, causes the creation of a new memory space for a TSQ-user. 
See the section, Started Task ControL 

MODE - The MODE command controls recovery management 
activity and displays information about the current state of 
recovery management facilities. 

MODIFY - The MODIFY command sends parameters (in a 
command input buffer) to an executing task to modify that task. 

MONITOR - The MONITOR command causes a display of the 
status of the system to reflect changing events. 

MOUNT - The MOUNT command allocates a device to several job 
steps that require a given volume, and it eliminates the need for inter­
venting mounts and demounts of the volume. See the section, 
Started Task Control. 

MSGRT - The MSGRT command routes certain status display 
options to a given console or screen area. 

PAGEADD - The PAGEADD command adds page or swap data sets 
to the system. 

QUIESCE - The QUI£SCE command, which is generally used in 
conjunction with a V AR Y command and in a MP environment, 
stops a system before the controls at a configuration's control 
panel are modified. 

RELEASE - The RELEASE command releases previously-held 
messages to a TP station. 

Figure 2-5. Command Processing Method-of-operation Diagram Summary (Part 2 of 4) 

Diagram Title 

2-24 HALT, SWITCH, and TRACE Command Initialization (lEEI403D) 

2-25 HALT and SWITCH Command Processing (IEE7011 0) 

2-55 Holding and Releasing Teleprocessing Messages (IEDI303D) 

2-26 Processing LOG and WRITELOG Commands (IEEI603D) 

2-27 SWAP (IGF2503D) and MODE (lGF2603D) Command Processing 

2-28 STOP/MODIFY Command Processing (lEE0703D) 

2-29 Starting (I£E71030) and Stopping (IEE5503D) Monitoring Functions 

2-30 Routing Messages to Consoles (lEE6303D) 

25-31 Page Expansion (ILRPGEXP) 

2-31 Quiescing a System (lEEMP503) 

2-55 Holding and Releasing Teleprocessing Messages (lEDI303D) 

~ 
N 

S 
00 s 



N 
~ 
toW 
Q 

£ 
"< 
tI'.l 
N 
tI'.l 
'< 
~ 

~ 

i. 
(') 

t­o: 
! 
<: o 

~ 
(D 

N 

'< 
tI'.l 
N 

o 
toW 
00 
Q 

~ 

Command to Which Diagram Relates 

REPLY - The REPLY command provides a facility to answer WTOR 
messages from the system and from problem programs. 

RESET - The RESET command dynamically changes the performance 
group of a job currently executing. 

SEND - The SEND command provides for message communication 
between operators and logged-on time-sharing (terminal) users. 

SET - The SET command (1) establishes the local date and time of day 
and (2) permits the respecification of parameters needed by the system 
resources manager for controlling job scheduling. 

SETDMN - -The SETDMN command pennits the respecification of 
parameters used by the system resources manager (SRM) to control 
the multiprogramming level in a domain. 

START - The START command causes the starting of a procedure that 
resides in SYS1.PROCLIB. 
See the section, Started Task Control. 

STOP - The STOP command halts the execution of a task by posting 
an ECB. 

STOPMN - The STOPMN command stops the processing being performed 
by a previously-issued MONITOR command. 

STOPTR - The STOPTR command stops the processing being performed 
by a previously-issued TRACK command. 

SWAP - The SWAP command activates or deactivates dynamic device 
reconfiguration (DDR) for purposes of a volume exchange on device(s). 

SWITCH - The SWITCH command permits a manual switching of SMF 
data sets for recording purposes. 

TRACE - The TRACE command causes the master scheduler to either 
terminate or continue system tracking after initialization of the primary 
job entry subsystem occurs. 

TRACK - The TRACK command permits a periodic display of job 
information on a display console. 

Figure 2-5. Command Processing Method-of-Operation Diagram Summary (Part 3 of 4) 

Diagram Title 

2-32 Replying to Information Requests (lEA VVRP1) 

. 2-33 RESET Command Processing (lEEMB810) 

2-34 Sending/Saving/Listing Messages (lEEVSEND) 

2-35 Setting Local Time (IEE0603D) 

2-36 Changing IPS Values (IEEMB81l) 

2-60 SETDMN Command Processing (lEE8603D) 

2-28 STOP/MODIFY Command Processing (lEE0703D) 

2-29 Starting (IEE7103D) and Stopping (lEE5503D) Monitoring Functions 

2-37 Stopping Periodic Track (Status) Displays (lEE5503D) 

2-27 SWAP and MODE Command Processing (IEE0403D) 

2-24 HALT, SWITCH, and TRACE Command Initialization (lEE1403D) 

2-25 HALT and SWITCH Command Processing (lEE7011O) 

·2-24 HALT, SWITCH, and TRACE Command Initialization (lEE1403D) 

2-15 DISPLAY and TRACK Command Processing (IEE3503D) 

2-16 Displaying and Tracking System Status (lEECB800) 

<: 
tI'.l 
N 
o 
toW 
00 
S 



Vl 
(1) 
(":) g. 
= 
~ 

~ 
~ 
go 
Q. 

Sa 
o 
'e 
~ 

Command to Which Diagram Relates 

UNLOAD - The UNLOAD command logically removes (demounts) a 
volume that was previously mounted as a result of a MOUNT command. 

VARY - The VARY command controls data handling resources (such as 
I/O units, consoles, CPUs, channels, paths, and storage) as well as the 
status of, and access to, these components for the system. 

WRITELOG - The WRITELOG command activates or deactivates 
the system log and switches the log data sets. 

Commands entered into the system via SVC 34 routines but which are 
processed by components other than the master scheduler. 

Additional routines described in this section because of their major use 
by a command processor. 

Miscellaneous Routine 

~. Figure 2-5. Command Processing Method-of-Operation Diagram Summary (Part 4 of 4) 
o = 
~ 

~ 
~ 

Diagram Title 

2-38 Unloading I/O Devices (IEEMB813) 

2-39 Routing of V AR Y Commands (lEE32030) 

240 Changing Console Status, Message Routes, and Command 
Authorization (IEE36030) 

241 VARY CN Processing (IEECB900) 

242 VARY CN Processing (lEECB90l) 

243 Varying Devices (Consoles or I/O Units) Online and Offline (lEE4203D) 

245 VARY HARDCPY Command Processing (lEE47030) 

246 Master Console Switching (lEE43030) 

247 Varying a CPU or Channel Offline or Online (Overview) (IEEVCPU) 

248 Varying a CPU Online (lEEVCPU) 

249 Varying a CPU Offline (IEEVCPU) 

2-50 Varying a Channel Online (IEEVCPU) 

2-51 Varying a Channel Offline (IEEVCPU) 

2-52 Varying the Path to a Device (IEEVPTH) 

2-53 Varying a Range of Device Addresses (IEECB904) 

244 Varying the Status of Real Storage (IEEMPVST) 

2-26 Processing LOG and WRITELOG Commands (lEEI6030) 

2-54 Teleprocessing (TP) Commands (IE013030) 

2-55 Holding and Releasing Teleprocessing Messages (lEE0803D) 

2-56 Processing Commands with the "NET" Operand (ISTCFF3D) 

2-57 Stopping and Restarting (via an Interrupt) the System (lEESTPRS) 

2-58 Device Information Subroutine (IEEVDEV) 

2-59 Deleting a Virtual Memory (IEAVEMDL) 



~ Diagram 2-1. SVC 34 Common Processing/Initialization - Overview (lGCOO03D) (part 1 of 2) 
N 
~ 
N 

o 
til 

"< til 
N 
til 
'< 
~ 

~ 

£ 
~. 

t'! 
~ 

~ 
~ 
[ 
(I) 

N 

<: 
til 
N 

~ 
!Eo 
~ 
Y6 
~ 

d 

Input 

RS o 

R1 

D--a 
R2 

SVC 34 
Issuer 

1 Create EST AE environment. 
(See the diagram Creating ESTAE 
Environment for SVC 34 Command 
Processing) . 

Output 

RO 

Exit Routine 
Linkage 

CIB Chain iB Chain ~e ~r C~ 2 Manipulate control block chains. a/E¥Z 
(See the diagram Manipulation-
of Command Control Blocks). 

3 Translate command. Initialize XSA. Hil .n1{~ 
(See the diagram Command 
Translation and Routing). 

4 Route command to appropriate 
processor. 

(See reference at step 3). 

Depends on the command.-

R2 

Pointers 

Go to appropriate processor as indicated 
on the figure Command Processing Program 
Organization Overview. 

XSA 

~ASIDfor L.J TSO Caller 

c::J 



In 
~ 
o g. 
::I 
~ 

=:: 
~ 

[ 
o ..... 
o 

"'0 
~ 
11:1 g. 
::I 

~ 

~ 
<..J 
<..J 

Diagram 2-1. SVC 34 Common Processing/Initialization - Overview (IGC0003D) (part 2 of 2) 

Extended Description 

1 

2 

3 

4 

This processing prepares the system for handling of a 
command by the appropriate processor. 

This environment protects the command scheduler 
(SVC 34) from an abnormal end (ABEND), 

Check system authority. 
Set up CSCB and CI B chains. 
Handle ABTERM requests. 

Translate syntax. Initial ize XSA. For the multiple-
console support option, check hardcopy log requests. 

First, check the validity of the command authority. 
Then, route the command to the appropriate 

processor. 

If the authority is invalid, control goes to the error routine, 
IEE0503D. 

Module Label 

IEEOOO3D 
IEE5103D 

IEE0303D TABLE 
XCHAIN 
XEOT 

IEE5403D 

IEE0403D 



t-.,) 

N 
CoN 
~ 

o 
f:Il 

~ 
t-.,) 

f:Il 
'< 
~ a 
t"'" 
~ 
ts· 
r'" 
& 

~ 
~ = 3 
~ 

t-.,) 

'< 
f:Il 
t-.,) 

'" ~ i 
~ 
CoN 

~ 

Diagram 2-2. Creating STAE Environment for SVC 34 Command Processing (IEE0003D) (part 1 of 2) 

RS 

0-- --ISVRB 
XSA 

R1 

Command Buffer 

RO 

• [Issuer's 10 

R1 

D 

R2 XSA 

D--fc;r Input 
Command 
Buffer 

SVC 34 
Issuer 

Froma 
Command 

Output 

1 Save registers. ,./II{ Register 
Contents 

2 Set up parameter list and ,/ 
issue ESTAE. 

3 Set up dummy XSA, and an 
input buffer if needed (R1 >*0.). 

4 Move command to new buffer. __ ....".",....-_____ ... 

5 Place command verb in EST AE 
parameter list. 

6 Clean up work areas. 

SVC 34 issuer or a 
command processor. 

IE E03030 

ESTAE 

R6 at 
~AE 

Exit Routine 

XSA 



en 
(I> 

~ o· 
= 
N 

~ 
(I> g 
Q. 

o .... 
o 
"0 
(I> 

i3 g. 
= 
N 
N 
~ 
VI 

Diagram 2-2. Creating STAE Environment for SVC 34 Command Processing (IEEOO03D) (Part 2 of 2) 

Extended Description 

1 

This ST AE environment handles ABEND situations 

occurring in command processing routing. 

Save registers 0,1,5,11,14,15. The XSA is contig· 
uous to the SVRB. Register 0 indicates if the issuer of 

SVC 34 is one of the following: 

• An input stream command. 

• A console (the ID is given). 

• A TSO terminal (the 10 is given). 

• The operating system. 

2 The parameter I ist contains a one·word address of the 
retry routine and a one-word field containing both the 

number of the subpool from which the parameter list stor­

age was obtained and the size of the parameter list. This 
information is used when the work areas are freed. 

3 If R1 <0, a buffer is not needed. Routine IEE0303D 
receives control to handle control block manipulations. 

A GETMAIN macro instruction is issued for the XSA. 

4 The buffer is at the end of the XSA. 

5 This action makes verb available for later insertion into 
message if an ABEND occurs. Control now passes to 

the block chain handler to set up for the action defined by 

the command. 

6 On return from the proper command processor (other 
than one attached via IEEVWAIT), storage is freed for 

the dummy XSA and the parameter list. 

Module Label 

IEE0003D 

XDISCAN 

IEE0003D COMMEXIT 



N 
~ 
~ 
0'\ 

o 
C"/) 

"< C"/) 
N 
C"/) 

'< 
~ 
~ 

3 
t-
<i 
n' 
t­
o: 
~ 
-< 
~ 

~ 
~ 

N 

'< C"/) 
N 

~ 
S2. 
~ 
r6 
~ 

~ 

Diagram 2-3. SVC 34 STAE Routine (IEESI03D) (part I of2) 

ABEND/STAE Interface 
Routine (lEEMB812) of 
System Recovery Management Process' 

£WJ~~EmEm~~~Em~~~~~~~. b ~l(':~f/'r",,:;~y~"'o:":<;?":;Jt~;;t:~i':;:!\""!'i:~":"':;:L~:(::~;',:~""'/!"~'y,~';:;~',;:;~>~:!"'":"<~,~<;,""<"""T'l'O',~">~,, "-'!""!" .... ,"""\;...,.,,'I 

R1 SDWA 

e.::LJ 

BASEA CSCBs 

Global Data 
Area 
(This is in SQA) 

Subpool 
Queue 
Element 

Descriptor 
Queue 
Element 

1 Initialize for retry procedures. 

2 Dump storage if required. 'J • '\..1' 

3 Inform operator or terminal user" "\J'; 

of the failure and possible 
existence of a dump. 

4 Scan control block chains 
for errors. 

5 Inform operator of control block 
error. 

Caller 

~ 

Truncated chains, 
if address errors exist. 



t;I} 
(1) 
n 

S· 
::I 
N 

:: 
(1) 

~ 
8-
o .... 
o 
"0 
~ 
~ 

S· 
::I 

N 
N 
c..J 
....J 

Diagram 2-3. SVC 34 STAE Routine (IEESI03D) (part 2 of 2) 

Extended Description 

This process provides a storage dump and message for 
ABEND situations. For each command it receives, the 

ESTAE recovery routine (IEE0003D) makes the name of 
this STAE routine available for system recovery manage­
ment routines. 

1 This step permits successive entries without getting in 
a loop. If RO is other than 12, then R1 points to the 

system diagnostic work area (SDWA). * 

SDWA 

t Parameter list 

ABEND code 

PSW at ABEND time 

Last problem program 
PSW before ABEND 

Registers contents at ABEND 

Name of ABENDed local module 

t Module that is ABENDed 

*If RO=12, then R1 contains the ABEND code and R2 
points to the parameter list. 

Module Label 

IEE5103D STAE0020 

Extended Description 

2 A dump {using the SDUMP macro instruction 
(SVC 51)) is taken for a system failure, for a program 

check, or if "RESTART" key is depressed. 

3 The routine uses a WTO or a TPUT macro instruction. 
The message includes the ABEND code and an indica­

tion of the success of the dump. 

4 Each CSCB and its associated CI Bs are scanned for 
boundary and region requirements within the SQA. If 

an error is found, the rest of the chain is truncated. 

5 The operator receives a message indicating that the 
control block chain{s) are truncated. 

Module Label 

STAE0050 

STAE0218 

STAE0120 

STAE01S0 



:t: Diagram 2-4. SVC 34 General Message Assembly Routine (IEEOS03D) (part 1 of 2) 
IoU 
00 

~ 
"< CI) 
N 
CI) 

'< 
~ 

3 
£" 
(5' 

r­c: 
~ 
~ 
= 3 
(\) 

N 

'< CI) 
N 

'=' (\) 

i 
Y6 
IoU 

~ 

Command 
Processor Routine 
Requiring Message 

1 Obtain buffer storage and 
insert preformatted text for 

• Message code r message code number. 

• Variable text for 
message 

• Console 10 or ASIO 
2 Insert variable text in the message. 

3 Send the message to the 
appropriate console or terminal. 

4 Exit. 

Caller 

RO r Console or . 
Terminal 10 

• Message Length 
R3 (for TSO) 

I ASIO 

ForTSO 
R1 

1--__ :r..... t Message 



\I) 
(t> 

~ o· 
= 
N 

~ 
~ 

[ 
o .... 
o 

"t:I 
(t> 

~ g. 
= 
N 
N 
Vol 
\0 

Diagram 2-4. SVC 34 General Message Assembly Routine (IEEOS03D) (Part 2 of 2) 

Extended Description 

The command processor'message routine informs the 
operator or terminal user of processing success and of 

errors occurring during command processing. 

1 The message code number in the XSA (of the SVRB) 
must be valid. Buffer storage comes from either the 

LSOA (first choice) or the SOA. The inserted text is part of 

the WTO parameter list. 

2 The type of user determines what this entry will be: 

for example - it may be a command verb or a job­
name, etc. 

3 For console messages, the routine uses the WTO macro 

instruction. For terminal messages, the routine uses the 
TPUT macro instruction. (If an outstanding TPUT require­

ment prevents this message output, one retry is attempted.) 

4 The storage buffer work area (used for the WTO 

parameter list) is freed prior to returning to the calling 

routine. 

Module Label 

IEE0503D IGG2103D 

GOTCORE 

IEE0503D CONSOLE 

TPUTMSG 

FREECORE 



~ 
~ 
o 

o 
tjf.) 

"< tjf.) 
N 
tjf.) 

'< 
~ 

3 
t'"" 
~ 
C:)" 
t'"" 
0: 

~ 
<: 
~ 
3 
CD 

N 

'< 
tjf.) 
N 

~ 
CD 
~ 
w 
~ 

Diagram 2-5. Manipulation of Command Control Blocks (QEDIT) (IEE0303D) (part 1 of 2) 

Input 

R6 

D 
R5 . C II' t Command 

~
a er s Suffer 

RS 

. System Protect 
Key 

CSCS 

I: I I ABTERM D XSA Parameters 

&~t:~B;) I 
XAP -" 7 (Return Module) 

Completion Code 

If: ~ For 4a, 4d 
R1 <0 
RO+ 0 
(For 4b) 

CIS Origin 

CIS Count----

If: 
R1 > 0 

L-_~ ... ~I Command 

ESTAE 
Creation Routine 
(IEE0003D) 

Process 

Verify caller's authorization. 
Error 

Error: 
_________ .I •• ~ Routine 

2 Determine process to be performed. 
Go to step 3,4,5, or 6 depending 
on the process. 

3 CSCS chain processing. 

Possible actions are: 

(lEE0503D) 

a) Add CSCS to chain. __ /I 

b) Delete CSCS from chain. ____ -,-__ --. 

cl Free storage for CSCS. 

ESTAE 
Creation 

Output 

Modified CSCS Chain. 

4 CIS chain processing 

Possible actions are: 
Routine I Modified CIS Chain 
(lEE0003D) 

a) Add CIS to chain. ______ -.,.---. 

b) Delete CIS from chain. 

c) Modify CIS count. 
I 1 

d) Free entire CIS chain. 
I I 

CSCS 

~ Updated CIS U Count Field 

CALLRTM Macro for 
Recovery Termination Manager 

5 Terminate the task. 01'1 R1 > 0 

6 Command Processing. 

Command Translator 
(IEE5403D) 



en 
~ 

II o· 
= t-J 

=:: 
~ 

[ 
o .... 
o 
-= ~ 
II) g. 
= 
~ 

N 
t 

Diagram 2-5. Manipulation of Command Control Blocks (QED IT) (IEE0303D) (part 2 of 2) 

Extended Description 

By modifying counts and chaining control blocks, this 
routine manipulates (1) CIBs for the OED IT macro 

instruction and (2) CSCBs for system processing. 

1 Only system-key programs can issue commands and 
manipulate CSCBs. Commands may also be issued by 

using the OEDIT or MGCR macro instruction. 

2 The following relationships exist between the input 
register contents and the subsequent processing 

action that occurs. 

RO R 1 Key Processing Action* 
o Neg. System CSCB Processing. * * 

Pos. Neg. System CIB Processing. (To add a CIB) 

Module Label 

IEE0303D TABLE 

IEE0303D 

Notes 
R 1 = 2'5 complement of 
CSCB block address. 

R 1 = 2's complement of 
CI B block address. 

Pos. Neg. Any CIB Processing. (To delete a CIB.) RO = Address of origin of 
~IB block. 

Pos. 0 System Free the CIB chain.** RO = Address of origin of 
CIB block. 

Neg. Neg. Any Set the CIB count in the CSCB 
to zero. 

Neg. Neg. Any Place positive R 1 value in CI B 
count field of CSCB. 

R1 = CIB count (2's) 
complement. 

o 

o 

RO = 2's complement of 
block's address 

Pos. System ABTERM processing. The routine The CHABT bit must be 
uses the CALLRTM macro instruc- on. 
tion, and it branches to the recovery 
termination manager. 

Pos. System A command is to be processed. 

Pos. Routine returns control to the 
caller . 

For a system task issuing 
an SVC 34 instruction. 

A problem program is not 
allowed to issue an internal 
command. 

o Routine returns control to the caller. This is an error condition. 

* A system protect key> 8 indicates a problem program action. Otherwise, a system 
program action is indicated. 

* *Th is processing is allowedonly if the system key < 8. Problem programs cannot set 
flags in protected storage. 

Extended Description 

3 This processing occurs when RO is zero and R 1 is 
negative. Flags in the CSCB status byte determine 

which of the actions occurs. CSCBs are added at the end 

of a chain. Enqueue (ENO) logic is used by the routine to 
serialize the resource. For task termination (that is, if the 
ABTERM bit CHABT in the CSCB is equal to 1), the 
ABTERM parameters are passed to the-recovery termination 
manager via the CALLRTM macro instruction. 

4 This processing includes modification of the CIB count 
for the particular CSCB. In this case, R 1 contains the 

two's complement'of the CIB count. 

If a CIB is on the chain, it is removed and its storage space 
is freed. CIBs are added at the end of a chain. 

5 SVC 34 requires translation and routine processing 
services for the individual commands. 

Module Label 

IEE0303D XCHAIN 

XEOT 

XSETCNT 

XCIBCHN 



~ 
N 
~ 
N 

o 
c:t.l 

"< c:t.l 
N 
c:t.l 
'< 
~ 

3 

i 
r-' 

~ 
.$ 
< o 
C 
3 
('D 

N 

'< 
c:t.l 
N 

::0 
('D 

i 
~ 
C.N 

~ 

Diagram 2-6. Command Translation (IEES403D) and Routing (IEE0403D) Routines (part 1 of 2) 

Input 

R1 Command Buffer 

~·I I 
RO 

Command 
Source 

Block Chain 
Handler 
(IEE0303D) 

(C'~M pointer ---, 

II Authority for Reading ,I 

ASIO (for TSO) 

UCM ? rPl SYSTEM LOG = Hardcopy 
~ IPL - specified 

UCMSYSB 

R11 

(Verb Table) 

Output 

I nvalid character 
indicator 

1 Translate command characters. n. F' !~. ---- -

2 Determine command source. ,,~ ./ 
XAA 

3 Write the command to the system 
log hardcopy if hardcopy was 
specified at IPL. 

4 Determine if command is a 
subsystem command. 

• If so, return. 

IssueWTO 

Subsystem A· 
Processor V­
(lEFJJDBS) 

Command Exit 
(lEE0003D) 

[For TSO: 
ASID] 

b 

5 Check character validity. Message Log 

Command L--J 
_ Ex~ 

6 Identify command verb. ____ -oil, ..... '--.... (lEE0003D) 

7 Dete,mine authodty fa' command. JJ Valid/Invalid ~ 
• Verb 

a) For VARY command, 

• Authority 
Indication 

To appropriate command processor. (See the command 
processing program organization figure,) 



en 
(!) 
(") g. 
= 
~ 

a:: 
(!) 

g 
~ 

o -. 
o 

"0 
~ 
~ o· 
= 
N 
N 
.j::. 
t..I 

Diagram 2-6. Command Translation (IEES403D) and Routing (IEE0403D) Routines (part 2 of 2) 

Extended Description 

These routines scan and translate commands, set up 
control blocks, determine authority for a command, 

and pass the command to the appropriate processing 
routine. 

1 This routine changes lower case letters to upper case. It 
uses an internal translate table to do this. 

There is an exception to this: Characters within single 
quotes remain unchanged. 

2 [For invalid characters, IEE0503D issues a message.) 
Either an input stream, TSO terminal, or console 

command. 

3 For all commands except REPLY and CONTROl. 
This step is bypassed in the case of REPLY and 

CONTROL commands. 

4 Master subsystem processor returns the indication of 
the command form (that is, subsystem or otherwisel. 

5 See step one. 

6 The routine issues this message when it encounters 
an invalid verb. The verb table contains a list of all 

acceptable command verbs. 

7 Authority required only for externally-issued 
command . 

• Invalid authority, issue message. 

Module Label 

IEE5403D TRANSO 

IEE5403D CHKMCS 
(JEE0503Dl 

IEE5403D HCFLG 

IEFSSREQ 

IEE0403D GETMSG-

IEE0403D STPTR 

IEE0403D XAUTH 

IEE0503D 



~ Diagram 2-70 Creating CSCB for Task Creating Commands (IEE0803D) (part 1 of 2) 
~ 
~ 

~ 
"< c;n 
N 
c;n 
'< 
~ 

~ 
t'"' 
~ 
;:SO 

t'"' 
0: 

~ 
<: 
o 
C 
9 
(I) 

N 

'< c;n 
N 

~ 
(S" 
~ 

~ 
("j..j 

~ 

A Task-Creating 
Command Module or 

Input Command Router (I EE0403D) * Process 
':;}h,.>\>;\';;-', »,';'" ','>, ')'/";>:' "<';,;,';',:';1 - r-, ~,~~-....... ..--..,.,...,-----------

TSO ASID 

Interface to Memory Create Routine 

Subsystem Interface 

R1 

SSOB 

Command 
Fail 
Extension 

1 Build and initialize CSCB. -----~------"""'I 

Error, if storage unavailable; 
go to step 5. 

.. 
,I P' 

Error 
Routine 
(JEE05030) 

2 Get new address space for memory _ ....... ~ _____ ---. 

creating commands. Error if non •. • ......• ·.1. 

ava;lable; go to step 5. -:_ 

3 Place new CSCB on the CSCB chain.--i."-j------...J 

4 Post the master scheduler _____ ."..,... _______ --' 
wait routine. 

If error, inform job entry 
subsystems and go to 
error routine. 

Caller 

*For LOGON command, the caller of SVC 34 Terminal 
Input/Output Control (TIOC). 

Error 
Routine 
(lEE0503D) 

Output 

Address Space 

f f 

Subsystem Interface 



tf.) 
(t) 

sa. 
5' 
= 
~ 

== (t) 

[ 
o ..... 
o 

"C 
~ a. 
5' 
= 
~ 
~ 

t; 

Diagram 2·'. Creating CSCB for Task Creating Commands (IEE0803D) (part 2 of 2) 

Extended Description 

For task-creating commands, this routine constructs a 
CSCB. If a memory creating situation exists, memory 

request routines perform initialization. 

Module Label 

1 Storage for the CSCB comes from subpool 245 (that IEE0803D CSCB 
is, the SOA). The CSCB will contain the command verb 

code, the size of the CSCB, the I D of the issuing console, 
the screen area ID for the receiving console, and the ASI D 
for the address space. 

2 START, MOUNT, and LOGON commands are the 
memory-creating commands and they require the 

ASCB. 

3 ENO-DEO protection of the CSCB chain is used 
while chaining takes place. A SYSEVENT macro 

instruction causes the SRM to make the current memory 
non-swappable until the dequeue is complete. 

4 After the routine sets the assignment-pending bit (for 
the particular CSCB) in the CSCB itself, it uses a 

cross-memory POST macro instruction to post the master 
scheduler wait routine for further action. 

5 If either a CSCB or an address space was 
unavailable for a START command that was not 

issued under the comm task, the routine passes an 
SSOB to all active subsystems. The SSOB contains the 
address of the command buffer and a return code that 
indicates the type of failure. If the return code from 
the subsystem is nonzero, this routine's error message 
is suppressed and control returns to the caller. (In this 
case, the subsystem issues its own error message.) 
Otherwise, control goes to I EE0503D to issue message 
IEE3281 ("xxxx COMMAND ABORTED"). For failing 
LOGON and MOUNT commands, this message is always 
issued. For all three commands (START, LOGON, and 
MOUNT) the return code is set to 08 to indicate 
command failure . 

IEAVEMRO 

IEE0803D ENOCSCB 

IEEOB03D POST0019 

IEE0803D EXIT3A 



~ Diagram 2-8. Master Scheduler Wait (IEEVWAIT) (part 1 of 2) 
.j::o. 
0'\ 

o 
{I} 

"< {I} 
N 
{I} 

'< 
~ 

9 
5 
~. 

c 
~ 

~ 
<: o = 3 
(II 

N -<: 
{I} 
N 

:;1:1 
(II 

(i" 
Q:I 

~ 
W 

~ 

From master 
Input scheduler initialization 
, 

CVT 

MSRDA 

BACHN 

BASUBECB 

BATRACE 
(Set by 
operator 
TRACE 
command) 

Process 

Master Scheduler Wait 

1 . Prevent STC and TSO LOGON from processing 
requests other than requests for starting a job 
entry subsystem. 

2 Wait for notification to perform one of the 
following two processes -

3a A command is ready to be processed: 

• Scan the CSCB chain for pending cc. 

• Attach the corresponding command 
processors. 

COR.) 

Job entry subsystem is now initialized: 

• Allow STC and LOGON to request job 
entry subsystem services. 

• Terminate system trace, if specified. 

• Initialize the system log. 

never-ending task 
no normal exit 

(interpreter 
counter) 



tI:! 
("1) 

a o· 
= t-.) 

s:: 
("1) g 
~ 

S­
O 

'"e 
("1) 

2-o· 
= 
t-.) 

~ 
~ 
:--J 

Diagram 2-8. Master Scheduler Wait (IEEVWAIT) (Part 2 of 2) 

Extended Description Module Label 

When the master scheduler (IEEVWAIT) receives control IEEVWAIT 
at system initialization tirre, it first processes the START 
command for the job entry subsystem and any other pending 
commands. (The automatic commands contained in 
SYS1.PARMLIB are pending at this time.) After the job 
entry subsystem has initialized itself, IEEVWAIT terminates 
system trace, if specified, and attaches the system log task. 
After system initialization time, I EEVWAITs only function 
is to scan the CSCB (command scheduling control block) 
chain when posted to do so and to process any pending com-
mands by attaching the proper command processor. The 
initialization function of IEEVWAIT is more fully described 
in OS/VS2 System Initialization Logic, SY28-0623. The 
recovery function of I EEVWAIT is described in the next 
diagram, "Master Scheduler Wait Recovery." 

1 At initialization time, IEEVWAIT enqueues on the STC IEEVWAIT WAITOOOO 
and TSO internal readers: 

• STC internal reader - major name SYSIEFSD, minor name 
STCQUE . 

• LOGON internal reader - major name SYSIEFSD, minor 
name TSOQUE. 

It holds these resources until the job entry subsystem (JES2, 
for example) has initialized itself. While the job entry sub­
system is initializing itself, any START/LOGON/MOUNT 
commands can be processed up to the point where STC 
needs the job entry subsystem to write JCL to the spool 
data set. At this point STC enqueues on one of the internal 
readers. Thus, STC cannot request subsystem services until 
the job entry subsystem is initialized and I EEVWAIT has 
dequeued from the internal readers. 

2 Master scheduler wait issues a wait on two ECBs. 
Depending on which ECB is posted, either Step 3a 

or Step 3b of this diagram is performed. 

IEEVWAIT WAITING 

Extended Description Module Label 

3a If the wait ECB is posted, master scheduler wait scans IEEVWAIT WAIT0030 
the CSCB chain until it finds one with th~ pending bit 

on. It then attaches the processor corresponding to the 
command verb in the pending CSCB. Master wait repeats the 
scan until no pending CSCBs are left on the chain. Then 
master wait returns to Step 2 processing to wait for further 
notification. 

3b If the subsystem ECB is posted, the job entry sub-
system has completed its initialization. Master 

scheduler wait releases the serialization resources it 
obtained in Step 1, so that STC and TSO LOGON can 
request subsystem services. IEEVWAIT terminates system 
tracing by replacing the trace-active instruction in the CVT 
with a dummy instruction, setting to zero all the PSA 
pointers to the trace table, and deleting the trace table 
itself. Also, the system log task can now be attached for 
initialization processing. Refer to the topic "System Log" 
in this publication . 

IEEVWAIT WAIT0060 



t-.J 
N 
~ 
00 

~ 
"< 
~ 
t-.J 
CIl 
'< 
~ 

3 
t"'"' 

d5 
n' 
t"'"' g: 
~ 
<: o 

=­S 
~ 

N 

~ 
CIl 
t-.J 

:x:l 
~ 
;-
~ 

116 
w 

~ 

Diagram 2-9. Master Scheduler Wait Recovery and Retry (IEEVWAIT) (part 1 of 2) 

MSRDA 

BACHN 

From ABEND pro­
cessing or from 
failure detection 

INDCATORI ~ 

PARMAREA 

~=X'80' 
~---

SDWA 
---I 

BTRACE t- = 1_ 

CSCB chain 

Master Scheduler Wait 
Recovery and Retry 

1 For a recursive ABEND or a 
faulure during retry proces­
sing, inform operator and 
issue a wait state. 

2 Issue SVC dump (except for 
percolation entry or machine 
check). 

3 Inform operator of failure 
status and dump status. 

4 For failure detection only 
(not ABEND): 

If fai lure occurred during 
termination of system trace, 
retry one time. 

Otherwise, issue a wait state. 

5 For ABEND processing only: 
• Check CSCB chain for 

errors. 
• Turncate chain where 

an error is found. 
• Inform operator that 

command processing 
is limited. 

• Retry normal CSCB 
scem. 

To a wait 
state 

scheduler wait 

To a wait 
state 

Return to master 
scheduler wait 

Outout 

msg IEE482E 

dump 
data 
set 

or ~ msg IEE479W I 
console 

msg IEE4BOI 

msg IEE5131 



ell a s· 
= N 

at 
(D 

[ 
o .... 
o 
'E 
~ 
~. 

= 
~ 
N 
~ 
\Q 

Diagram 2-9. Master Scheduler Wait Recovery and Retry (IEEVW AIT) (part 2 of 2) 

Extended Description 

The recovery portion of master scheduler wait either puts 
the system into a wait state after issuing a dump and opera­
tor messages, or attempts a retry of master scheduler wait 
after correcting the CSCB chain. 

1 If repeated attempts at executing this recovery code 
result in ABENDs or if the retry of the CSCB scan 

fails, message I EE482E is issued to inform the operator and 
the system is put into a wait state. 

2 If another recovery routine has passed control to the 
master wait's recovery code (an event called percola­

tion), a dump is not necessary. 

3 The operator messages indicate whether an ABEND or 
a failure occurred and whether or not an SVC dump 

was successfully taken. 

Module Label 

IEEVWAIT STAEOOOO 

IEEVWAIT STAEOOOO 

IEEVWAIT STAEOOOO 

IEEVWAIT STAE0070 

Extended Description 

4 A failure during the termination of system trace 
results in a retry of the initialization code in 

IEEVWAIT that executes following the initialization of 
the primary job entry subsystem. If the retry attempt 
abnormally terminates" message I EE4801 is sent to the 
operator requesting him to re-IPL. The retry is attempted 
only once. 

5 Master wait recovery checks the CSC8' chain for 
errors and truncates the chain where one of the 

following errors is found: 

• A CSCB is not located in the SQA (subpool 245). 

• A CSCB is not on a doubleword boundary. 

Next, the normal CSCB scan is retried. If this scan does not 
cause another ABEND, the master scheduler is considered 
to be restarted. Message IEE5131 informs the operator that 

command processing is limited (that is, some commands 
may have been deleted from the CSCB chain during retry). 

Module Label 

IEEVWAIT 

IEEVWAIT STAE0140 



~ Diagram 2-100 Obtaining a New Virtual Memory (part 1 of 4) 
VI 
o 

o 
r.I.l 

"< r.I.l 
t-J 
r.I.l 
'< 
(Il 

~ 
r-' 
~ 
n° 
r-' a: 
~ 
~ 
= 3 
~ 

t-J 

'< 
r.I.l 
t-J 

::c:l 
~ 

i 
~ 
~ 

~ 

CVT ASVT 

~ 
ASVTFRST 
{Next available 
entry in ASVTJ 

CVTASVT 

R1 CSCB 

~E1.CHASID 

D----r--, 

• Storage for SRB. 

• Parameter list for initialization. 

~ 

Block Chain Handler (I EE0803D) 
for START, LOGON, or 
MOUNT Commands (JEE0403D) 

Process Output 

1 Create CSCB. Au 

" p,' " 

From IEEVWAIT 
(START or MOUNT) 

From IEDAY3 I:S 
(LOGON)', 

2 Build control blocks and assign 
an address space. ------......... --'\ 

3 Notify SRM of desired memory. 

4 Post the master scheduler. 

5 Build segment and page tables. ---,.,......--,Ai'i,) 

~~0%;?;~t:~~~~§~~4;0~~~::~:,:t;~;:z~}:"1~:~:::~1 

6 Enqueue the ASCB. oAKS 

7 Initialize and schedule SRB for 
memory initialization. 

8 Free the SRB storage. 



." 
(D 

~ o· 
= 
tv 

~ 
a 
g 
~ 

g, 
o 
't:I ; 
s· = 
tv 
N 
VI -

Diagram 2-10. Obtaining a New Virtual Memory (part 2 of 4) 

Extended Description 

This routine obtains and initializes a new memory in 
response to a START, LOGON, or MOUNT command. 

Module Label 

1 The CSCB is placed on the CSCB chain. IEE0803D 

2 The global dispatcher lock is used to serialize the 
ASVT alterations. Page fixing services prevents page 

faults while holding the lock. The format of the LSPL 
(local service priOrity list) appears below: 

tFirst non-quiesceable SRB 

tLast non-quiesceable SRB 

tFirst system SRB 

tLast system SRB 

4 

4 

4 

4 

3 The routine uses the SYSEVENT MEMCREAT macro 
instruction (SVC 95) to inform SRM that a new memo 

ory is being created. Control goes to module IRARMINT. 

4 Transfer from caller's memory to master scheduler's 
memory . 

IEAVEMRO* 
MROFIXP 

IEAVEMRO 

IEE0803D 

Extended Description Module 

5 Give control to Virtual Storage Memory (VSM) routine IEAVEMCR* 
(I EAVGCAS) to create an address space. Assign 

LSOA storage for ASXB. 

6 Use ASCBCHAP subroutine to enqueue the ASCB 
on the ready queue. 

IEAVEMER 

7 The SRB for memory initialization is scheduled for the IEAVEMCR 
Service Priority List (SPL) of the ASCB. It will operate 

in the new memory without locks. The SRB's storage area 
comes from SOA via a GETMAIN macro instruction. 

8 The routine uses a FREEMAIN macro instruction for 
deleting the SRB. 

*Error routine for IEAVEMRO is at MROFRR and 
MROESTAE. Error routine for IEAVEMCR is at 
MCRESTAE. 

IEAVEMCR 

Label 



~ Diagram 2-10, Obtaining a New Virtual Memory (part 3 of 4) 
VI 
N 

~ 
~ 
N 
\I'.l 
'< 
~ 

Process Output 

CD 
3 
t-
ci 
(5' 

t­o: ... 
ei 
'< 
< o 
C 
3 
CD 
N 

'< 
\I'.l 
N 

~ 
CD 
~ 
~ 

~ 
w 

~ 

ASCB Master 

B-iJ 

9 Initialize the ASXB, TCB (for the 11'1 
region control task), and 
work areas, 

10 Inform SRM that new memory 
may be swapped if needed. 

11 Post the memory creation function. 11'1 

Dispatcher for 
Region Control 
Task (JEAV0003D) 

ASXB 

Master 
JSCB 

WSAVT* 

ASCB's TCB 
Ready Queue 

D 

SVRB 

* Supervisor Save Area Vector Table 



rI'l 
~ 

~ o· 
= 
~ 

a:: 
~ 

~ 
c:Io 
o .... 
o 
"0 
~ a o· 
= 
N 
N 
VI 
~ 

Diagram 2-10. Obtaining a New Virtual Memory (part 4 of 4) 

Extended Description 

9 Place a dispatchable TCB/SVRB on the ASCB's ready 
queue.* The work area is obtained from LSQA. 

10 Issue SYSEVENT OKSWAP macro instruction to 
allow the initialized address space to be swapped. At 

the time the SYSEVENT MEMCREAT is issued (step 3), 
the new memory is uninitialized and is marked unswap­
pable to prevent the SRM from scheduling SRBs to the new 
memory. 

11 A cross-memory post to the memory create routine 
indicates that a memory is ready. (Control goes to 

module IEAOPT01 to do the posting. 

Note: If the memory creation processing fails, the routine 
IEAVEMCR uses either a WTO macro instruction to inform 
the operator that the START, MOUNT, or LOGON com­
mand failed, or a TPUT macro instruction to inform a ter­
minal user that a LOGON request failed. Then the memory 
create routine posts the memory termination controller to 
clean up the partially-created memory and exits to the 

caller. 

*Until this new memory is initialized, a lock to serialize 
the use of resources is unnecessary since another task 
is unable to execute in the memory. 

Module 

IEAVEMIN 

IEAVEMIN 

IEAVEMIN 

Label 



~ Diagram 2-11. Cancelling (C) Background (Batch) and Foreground (TSO) Jobs (IEE3703D) (part 1 of 2) 
<II 
~ 

o 
C"-l 

~ 
N 
c:Il 
'< 
~ 

3 
r"" 

<i 
(is' 

t"'" 
cr 
~ 
~ 
C 
3 
~ 

N 

'< 
c:Il 
N 

" ~ 

if 
~ 
~ 

~ 

Input 

CVT R2 

Console I D, or 
ASID for TSO 

Command 
Router 
(I E E0403D) Process 

1 Check operands and syntax of 
command. 

Error: 

Match input command job name with 
those on the CSCB chain. 

Error: 

3 Obtain the ASCB-for the current 
memory. 

4 Cancel the specified job. " 

5 Release control of resources. 

6 Put out message. 

R2 



c;n 
g 
S· 
::s 
~ 

s:: 
~ g 
Co 
o .... 
o 
"0 
('I) 

~ o· 
::s 

N 
N 
Vo 
Vo 

Diagram 2-11. Cancelling (C) Background (Batch) and Foreground (TSO) Jobs (IEE3703D) (part 2 of 2) 

Extended Description 

This process is used to terminate background and 
foreground jobs that are currently executing. 

1 The job name or a device identifier must be supplied 
by the calling routine. 

Module Label 

IEE3703D IEE3703D 

2 A SYSEVENT macro instruction directs the system IEE3703D CMSCAN 
resources manager (SRM) to make the current memory 

unswappable. The CSCB chain search requires ENQ-DEQ 
protection during its process of determining the existence 
of a job. 

3 If there is no match, the task is not active and a message 

is issued. 

4 Set cross-memory services locks and local locks. For 
TSO jobs, the system-initiated cancel routine receives 

control. Module IKJEFLF schedules the SRB routine 
IKJL4TOO to handle operator or line-disconnect cancella-

POST 

IKJEFLF 

tions. For background jobs, this routine cross-memory posts IEE3703D DOPOST 
the initiator ECB for the job specified in the command. For 
all jobs, a SYSEVENT macro instruction directs the System 
Resources Manager (SRM) to swap-in the address space being 
canceled. 

5 The CSCB resource is released and memory swapping 
is again permitted. 

6 Issue message indicating that the CANCEL command 
function was accepted by the system. 

IEE3703D CMBRCH 

IEE0503D 



~ Diagram 2-12. System-Initiated Cancelling (C) of TSO Users (lKJEFLF and IKJL4TOO) (Part 1 of 4) 
<.Jl 
0"1 

o en 

< en 
N 
C"I:l 
'< 
~ 
('D 

3 
t"'" 
~ 
(=i' 

t"'" 
g: 
Q) 

-< 
<: 
o 
C 
3 
('D 

N 

'< en 
N 

'" ('D 

(;" 
~ 
('D 

w 
~ 

Input 

RO 0----- POST Code 

R1 CSCB 

~ 

Logon Prompter TCB 

CANCEL Command 
Handler 
(lEE3703D . , . for SVC 34) 

or 
Terminal 1/0 
Coordinator (for 
Line Disconnect) 

IL ~;~,~;~" ~Hi 
Outplit 

1 Check for active job to cancel. 

2 Obtain and initialize an SRB for "\I 
the cancel function. 

3 Sched ule the SR B. "caller 

4 Initialize an FRR. ,A 

5 Set locks to protect the SR B 
processing. 

6 Check the validity of the CSCB, 
and validate the TCB structure 
in the LWA, 



til 
~ a o· 
= 
~ 

::: 
~ 

[ 
o ..., 
o 

"'C:I 
~ 
~ o· 
= 
~ 
N 
VI 
-...I 

Diagram 2-12. System-Initiated Cancelling (C) of TSO Users (IKJEFLF and IKJL4TOO) (part 2 of 4) 

Extended Description 

This process provides for an orderly cancellation of a 
TSO user. It includes the scheduling of an SRB routine 

to synchronize events between the TIOC (terminal I/O 
coordinator) routines and the logon scheduler. 

1 The routine verifies that the job's CSCB is active and 
is for a time-sharing user. 

2 Storage for the SRB is obtained from subpool 239. 
A t the same time, the routine also gets storage for a 

work area. This work storage contains information to be 
used by the SRB (supervisor request block) processing 
routine, I KJL4TOO. 

3 This step places the SRB on a queue for use by the 
SRB dispatching routine. It is done by using a 

SCHEDULE macro instruction. 

Note: The routine that calls the SRB scheduling routine 
must be in PSW key zero in the supervisor state. 

4 A functional recovery routine (FRR) and an RMTR 
(recovery management termination routine) protects 

the SR B function and gets control if the SR B routine fails. 

5 Local and CMS locks are used to protect the 
processing. 

6 Ensure that the ASCBCSCB pointer field is not zero. 
A non-zero TCB address (in the LWA) for the logon 

scheduler must exist. 

Module Label 

IKJEFLF 

IKJL4TOO ENTRYSRB 

GETLOCK 



~ Diagram 2-12. System-Initiated Cancelling (C) of TSO Users (IKJEFLF and IKJL4TOO) (Part 3 of 4) 
v-
ee 

o 
t;fl 

"< t;fl 
N 
t;fl 

~ 

~ 
E 
fir 
~ a: 
~ 
-< o 
C 
3 
~ 

t-J 

'< 
t;fl 
N 

::tl 
~ 

i 
~ 
tN 

~ 

LWA 

~ • TCB for Logon 
~IPrompter 

Process Output 

7 Set the logon scheduler j 

(if present)'and all its subtasks 
to the non dispatchable state. 

8 Remove user from an 
input-wait (OWAIT) condition. 

9 Post the CC)ncel ECB. ''J!,?'~ 

Check for the presence of the 
logon prompter. 

11 Reset the TCB flags that were set 
in step 7. (That is, make the 
scheduler and its subtasks 
again dispatchable.l 
The logon prompter subtasks 
are not reset. 

" "'II;;/: 12 Cleanup. ' 

SRB Exit Routine of the Supervisor 
(lEAVEDSO, entry point IEAPDSRT) 

CVT TCB 

EtM 
TCBIWAIT TCBOWAIT 

TSB (Terminal Status Block) 

~cahcel Flag 

CSCB 

~ _____ cancel ECB L=:J (CHECB) 

TCB 

~IWAITand U-- OWAIT Flags 

Locks Released. 
SRB Storage Released. 



en 
C1l 
n 

S· 
:= 
N 

a:: 
C1l 

[ 
o ...., 
o 

'"0 
C1l 

i3 
S· 
:= 

N 
N 
VI 
\C) 

Diagram 2-12. System-Initiated Cancelling (C) ofTSO Users (IKJEFLF and IKJL4TOO) (Part4of4) 

Extended Description 

7 Turn on non-dispatchability flags to preclude terminal 
I/O activity. This will permit the scheduler to respond 

properly to the posting of the cancel ECB. A branch entry 

to the STATUS function (see SVC 79) is used since the SRB 
routine is uninterruptable via an SVC. 

8 If the ASCBCSCB field is zero and if either there is no 

LWA or the TCB pointer in the LWA is zero, the OTIP 

subroutine (see SVC 101) receives control via a branch 
entry. This subroutine prevents the endless 'wait' of a task 

that has done a TPUT to the user terminal being cancelled; 

(that is, it removes the task from the "O-wait" condition). 

9 By having the post function occur under local lock 
conditions, the posting will not cause the logon 

scheduler to abend before the OTIP and/or STATUS func­
tions receive control. 

10 The nondispatchability flags are set to zero (off). (See 

step 7.) The logon prompter must be a subtask of the 

logon scheduler. The STATUS function receives control via 

a branch entry to perform this. 

11 This action removes the logon prompter from input/ 

output wait status. 

12 The SRB is released. Locks are removed, and the 

FRR environment is deleted. 

Module Label 

IKJL4TOO 

OTIPRTN 

RESTREGS 



N 
N 
0\ o 

o 
CI} 

~ 
CI} 
N 
CI} 

'< 
~ 
(!> 

3 
r-
~ 
(;. 

r-
g; 
~ 
'< 

-<: 
o 
C 
3 
(!> 

N 

<: 
~ 
N 

~ 
(!> 

(S" 
~ 

"" (!> 

~ 

~ 

. Diagram 2-13. Changing Dump (CD) Parameters (IEEMB815) (Part 1 of 2) 

Input 

o-e
R2 

XSA XAL 

(Operand in 
Command 
Buffer! 

CVT 

~ CVTRTCT 

U-"'(~RTCT) 

Command 
Router 

(lEE0403D) Process 

1 Obtain storage for work area. ;; ,; 

2 Validate command keywords and .i .. "(-

options via a 'translate and test' 
scan on delimiters; branch to 
delimiter subroutines. 

Error: I I Step 5 

3 Put command option information in v 
work area. 

4 Place work area information in RTM'4 ,; 
control table (RTCTl. 

5 Issue message and exit. "'" ~+; 

(lEE0003D) 

CHDPSAO and 
CHDPSUO 
(SDATA and 
PDATA Option 
Override 
I nd i cators) 

TRANTBL 
(Translate 
Table) 

RTCTSDO 
(SVC DUMP 

CHDPSDO 
(SDUMP 
Option 
Override 
I nd icators) 

RTCTSUO 
(SYSUDUMP 
Overrides) 

L-J 



CI} 
(1) 
(") g. 
= 
N 

a:: 
(1) 

[ 
o .... 
o 

"C 
~ 
~ o· 
= 
~ 
N 
0'1 -

Diagram 2-13. Changing Dump (CD) Parameters (IEEMB8IS) (part 2 of 2) 

Extended Description 

This routine provides either a temporary override of 
dump options that may exist in a system (via 

SYS1.PARMLIB or requested on either the ABTERM, 
CALLRTM or SETRP macro instructions) or a deletion of 
specified override parameters. 

1 Storage comes from subpool 253 (LSQAI. 

2 If syntax error is encountered, the operand scan 
terminates and the module puts out an appropriate 

message. 

3 This information is requested by the command issuer. 

4 The fields of the RTCT are used by ABDUMP proc­
essor (lGC0001 C) and the SVC DUMP processor 

(lEECB866). 

5 Message indicates that the command has been 
accepted. 

Module Label 

IEEMB815 CHDINIT 

IEE2103D CHDCNTRL 

IEEMB815 CHDCDSS 

IEE2103D 



~ Diagram 2-14. CONTROL (K) Command Processing (IEE6703D) K Command (Part 1 of 10) 
00-
N 

o 
en 
"< tf.l 
N 
tf.l 
'< 
~ 
~ 

3 
r-
~ ;:;. 
r-
g= 
~ 

-< 
< o 
C 
3 
(:I 

N 

'< 
tf.l 
N 

~ 
~ 
Q 
~ 

~ 
IN 

~ 

Input 

XAN 
(Verb Code) 

XASCID 
(Console ID) 

XASDID 
(Area ID) 

XAL( • Operand in Buffed 
XAU (Console ID) 

XAA (Input Indicator) 

XSA 

~
XAN 

XAL 

XAS 

Command Router 
IEE0403D 

Output 

1 Save registers for JES2. 0/L:1 

2 Set local and CMS locks. 

,,! ,"" 3 If requester is J ES2, go to '31 
4 Determine if command is not 

executing under COMT ASK.,,, "119 
If not, indicate in XSA. ' 

d i, /' 5 Check the "L" operand, and remove 
from buffer. 

6 If routing parameter is missing, ~'" 

obtain default values. =rJ~ 
t& 

7 Check 1m and, ;fiound val;date the 1 
console ID and target di'splay area. _--=a.--_--J

1 

8 Determine console authority, activity, 
and status conditions. 

9 Check validity of JES2's screen 
area request. 

10 Check validity of first operand in 
buffer. 

R2 

XASSDS3 

XSA 

~XASAVSTD 

XAS 
(Target Console 
ID and Area ID) 

(Command was not issued 
under comm. task, thus 
JES3 command) 

R15 

D- Return Code 



en 
(1) 

:4. 
o· 
:= 
N 

:: 
a go 
Q. 

C -, 

o 
~ 

~ 
~ 
O· 
:= 

N 

N 
0-
Vol 

Diagram 2-14. CONTROL (K) Command Processing (lEE6703D) K Command (Part 2 of 10) 

Extended Description 

This routine processes the various operands of the 

CONTROL command. It also checks the sO,urce 
input validity and the validity of the target console 

selected. 

1 This entry point (I EE7603D) and input is for JES2 

processing only. The entry point for non-J ES2 

commands is I EE7503D. 

2 Serializes the UCMEs and SACS. 

3 For JES2 commands, the validity of the request 

requires checking. 

4 If a command is not executing under COMTASK, 

set XASSDS3 bit on. (e.g., K commands issued 

on a JES3 associated console.) 

5 If the operand is invalid, default values are placed 
in the XSA (field XASI. (The "L" operand is 

invalid on CONTROL commands other than those listed 
in steps 11 and 13.) 

6 Default values may come from the routing control 
table (RCT) or the issuing console. For further 

details concerning steps 5-7, see steps 4-6 of the diagram, 

Stopping Periodic Track (Status) Displays. 

7 The XAA field must indicate (by a value of zero) 

other than a time-sharing terminal input. 

8 A target CRT (cathode ray tube) console must be 

active and have a defined screen area control block 
(SACS). 

9 Determine if console is valid and active and has an 
area available to receive status displays. 

10 Except for the command K C,D, all the K command 
targets must be graphics consoles. 

Module Label 

IEE7503D IEE7603D 

IEE7503D IEE7503D 

LOCKSET 

LFOUND 

NOL 

VALIDITY 

JES2CODE 

IEE6703D GRAPHICS 



~ Diagram 2-14. CONTROL (K) Command Processing (IEE6703D) K Command (Part 3 of 10) 
0'\ 
~ 

o 
CI} 

< CI'} 

N 
CI'} 

'< 
~ 
('t) 

3 
r-
~ r;. 
r­a: e 
'< 
-< o 
2" 
3 
('t) 

N 

'< 
CI} 
N 

:A' 
('t) 

;" 
Il:> 

rtl 
~ 

~ 

Input 

XSA 

~XAL 

XSA 

§}XAL 

Process 

11 Determine operand and branch 
accordingly; 

For K C,D Go to step 15. 
For K V Go to step 18. 
For K T Go to step 23. 
For K A Go to step 28. 
For K A,.f'.f' Go to step 31. 
For K A,NONE Go to step 35. 

12 Check validity of the operands 
O,H; O;U; O,F. 

13 For K 0, U, post the TRACK 
command processor. (See note 
in extended description.) 

14 Release serial ization locks. 

15 Post the 01 DOCS routines. ~ 
(See note in extended 
description.) •• 11111~ Command 

Router 
(lEE00030) 

Output 

SACB 

ff OCMATECB 

UCM 

~UCMECB 
ROCM U 
8-KPARM 

I . I Routed Co~mand 
.... __ ..... Parameter List 



til 
("D 

~ o· 
= 
~ 

s:: 
("D 

[ 
o 
""> 
o 

'"CI 
~ 
~ o· 
= 
N 
~ 
0\ 
U\ 

Diagram 2-14. CONTROL (K) Command Processing (IEE6703D) K Command (part 4 of 10) 

Extended Description 

11 Depending on the command, the branch instructions 
occur at the labels shown. 

KC,D 
KV 
K T; K A; K A, NONE 
K A, QQ, QQ 

(These commands are explained in the Display 
Consoles Manual.) 

All K commands that are routablewith the L=CCA 
operand are valid on a JES3-associated console, 
except K V,USE. 

12 Each valid operand must have the correct syntax. 

13 See step 10 of the diagram, Stopping Periodic 
Track (Status) Displays. 

14 Local and CMS locks are released. 

15 See step 12 of the diagram, Stopping Periedic Track 
(Status) Displays. The parameter list KPARM is a 

communication list between DI DOCS routines and the 
CONTROL command processor. 

Note: (for steps 12 and 14): If the command 
is not executing under COMTASK, the post will 
be a cross-memory post. 

Module 

IEE6703D 

Label 

D7803D 
D7703D 
D6903D 
D6803D 

SETFLG 
SETFLGHD 
MODSET • 

I EE6703D POSTRACK 

LOCKSOFF 

POST 



N 
t..J 
0'\ 
0'\ 

o 
CIl 

< CIl 
N 
CIl 

~ 
(I) 

3 
r­
o 

OQ 
(5-

t: 
0-

~ 
<: 
o = 3 
(I) 

N 

'< 
CIl 
t-J 

:;Q 
~ 

ff 
~ 
~ 

~ 

Diagram 2-14_ CONTROL (K) Command Processing (IEE7803D) K Command (part 5 of 10) 

Input 

UCME 

XSA 

~--eXASCID U-- (Console ID) 

(Console Queue Element) 

I 
CQE (Write Queue Element) 

I 
WQE 

WNJMMSGN 
(Multi-line ID) 

XSA ErXAL 
UCME 
~UCMDISP 

~UCMSDS5 

Process Output 

K C,D 

16 Check validity of the console ID 
for the MLWTO and MLWTO ID. 

17 Simulate the end of the M LWTO 
action, and issue the DOM macro 
instruction to inform the 
subsystem. 

18 Release serialization locks. _1_' Command 
~ Router 

K V 

19 Check validity of the USE = xx 
operand. 

20 Check target variability. 

(J EE0403D) 

21 Indicate that target console can .A 
have desired status. 

22 Release serialization locks. 

23 Post the D IDOCS routines. -,/I 

Router 
(JEE0403D) 

UCM 

UCMSTS CQEFLAG 

UCME 

~UCMDISP 

~UCMSDS5 

UCM 

~UCMECB 



V"l 
(D 
(l ge 
::I 
t,j 

a: 
~ 
::r 
o 
Q. 

o -o 
"'=' 
~ 
~ g. 
::I 

t,j 

N 
0-
-.J 

Diagram 2-14. CONTROL (K) Command Processing (lEE7803D) K Command (Part 0 of 10) 

Extended Description 

KC,D 

16 This is the 10 operand on the K C,D,ID command. 

This K command is the only one valid for a target 
paper-output console. 

17 Routine reduces the use count of the WOE chain. 

18 Local and CMS locks are released. 

KV 

19 Operands must be 

K V,USE=xxi:) 

20 The ability to vary the target console as specified 
must exist. 

21 Possibilities are for console to have full capability 

(FC), message status (MS) capability, or status dis­

play (SO) capability. 

22 Local and CMS locks are released. 

23 DIDOCS routines handle the remaining processing 
for the operand "V". 

Module Label 

IEE7803D KCORTN 

SETSUBO 

IEE7803D ENDSRCH 

IEE7703D VALID 

LOCKSOFF 

SETPOST 



~ 

~ 
00 

~ -<: 
C'Il 
~ 

C'Il 
'< 
~ a 
t"" 
«i ;:;. 
t"" a: 
~ 
<: 
S?. 
c 
3 
t1) 

~ 

'< 
C'Il 
~ 

:::c:I 
t1) 

;-
II: 

~ 
~ 

~ 

Diagram 2-14. CONTROL (K) Command Processing (IEE6903D) K Command (Part 7 of 10) 

XSA §rXAL K T 

24 Check validity of operand. 

DCM 

25 Determine console's track 

SACB availability. 

wt 26 Notify operator of current time 
interval. 

I 27 Change time interval if requested. 
Notify operator. 

28 Release serialization locks. 

XSA 

§rXAL KA 

29 Check validity of operands. 

30 Check SACB and DCMfor 

'i current areas. 

31 Notify operator of current areas. 

DCMASACB 
(Area -defining Field) 

;%.::J!;rft~l' h ~~ 'Oil 

:fk 

m 

II 
SACB 

Command ~A~r:=J 
Router 
(lEE0403D) 

II SACB 
Information 

Console 



CI} 
(l) 

a o· 
= 
!':> 
~ 
a 
=-8-
o ...., 
o 

"0 
~ 
a o· 
= 
N 

~ 
1,0 

Diagram 2-14. CONTROL (K) Command Processing (IEE6903D) K Command (part 8 of 10) 

Extended Description 

KT 

24 The routine checks for the correct operand syntax 
for the K A command. 

25 A TR command must be active on the console for 
the K T command to be valid. 

26 This applies to the K T or K T,REF command. The 

ro.utine uses the WTO macro instruction. 

27 Use the specification in the command K T,UTME. 
Routine uses the WTO macro instruction. 

28 Local and CMS locks are released. 

KA 

29 The commands K A and K A,REF are equivalent. 
These commands are valid only if the target console 

is a graphics device. 

30 These are areas defined for the target CRT either via 
the command K A, QQ, QQ or at SYSGEN time for the 

SYSGEN SACS. The first SACS is contained in the DCM. 

31 Routine uses a WTO to notify the operator. 

Module Label 

IEE6903D 

IEE6903D KTREFRTN 

KUTMERTN 

FREELOCK 

IEE6903D 

MOVEINKA 

KREFRTN 



N 

N ...... 
o 

o 
~ 

"< 
~ 
N 
~ 
'< 
~ 
r,) 

3 
r-
~ r;. 
r-g: 
~ 
-<: 
o 
C 
3 
'r,) 

N 

'< 
~ 
N 

~ 
(t 

[ 
~ 

~ 

~ 

Diagram 2-14. CONTROL (K) Command Processing (IEE6903D) K Command (Part 9 of 10) 

Input 

OCM 

~DCMADSDS 

XSA EtXAL 

If operand is A.ff, check the 
validity of the .1,1 value. 

Sui~d and initialize the SACS ,".'Cl a/l'x. 
cham. 

34 Notify operator of new areas. . d t/t;. 

35 Free the serialization locks. 

K A, NONE 

Check validity of operands. 

37 Free the storage for SACSs. 

38 Set OCM flag to indicate that ./ 
areas are undefined. 

39 Free the serialization locks. 

Router 
(lEE04030) 

First SACS 

c1 
Console 

OCM 

ffDCMADSDS 



1Jj 
(1) 

~ o· 
::::s 
N 

::: 
;, 
C 
Q. 

C .., 
o 
"0 

(1) ... 
~ g. 
::::s 

N 
N 
;:: 

Diagram 2-14. CONTROL (K) Command Processing (IEE6903D) K Command (Part 10 of 10) 

Extended Description 

K A, QQ, QQ 

32 The operand must be greater than or equal to 4 and 
less than the screen size (total number of lines 

available) . 

33 There is 1 SACB per screen area as defined by the QQ 

operand. If DCMADSDS is 0, there currently exist no 

SACBs. 

34 Routine uses the WTO macro instruction. 

35 Local and CMS locks are released. 

K A,NONE 

36 This is the first procedure of the K A, NONE 
Command processing. 

37 Screen areas must be inactive in order to free the 

SACBs. The routine uses a FREEMAIN macro 
instruction. 

38 Screen areas are defined in the SACBs. 

39 Local and CMS locks are released. 

Module Label 

IEE6803D LLLOOP 

ENDLL 

IEE6803D 

IEE6903D 

KNONERTN 

FREESACB 

FREELOCK 



t;-> Diagram 2-15. DISPLAY (D) and TRACK (TR) Command Preprocessing (IEE3503D and IEE7503D) (Part 1 of 8) 
N 
-..J 
N 

o en 
"<: 
v.: 
N 
v.: 
'< 
~ 
('D 

3 
t"" 
~ 
(;. 

t"" 
0: ... 
~ 
<: 
o 

= 3 
('D 

N 

'< cn 
N 

~ 
('D 

[ 
~ 
w 

~ 

Input 

R2 

XAL 

{ t Command Operand) 

XSA 

Er 

Command Router 
(I EE0403D) 

XAN 
(Command 
Verb)'"·) ow' "-

XAA 
(ASID 
Indicator) 

XAS 

1 Check first operand for a valid 
value. 

Process according to operand: 

• T (TIME) 

Error 

2 Issue TIME macro instruction. 

Error 

a) Issue message to console or 
time sharing terminal. 

• TP(TCAM)or NET (VTAM) 

3 Give control to appropriate 
processi ng routi ne. 

• PFK (Program Function Keys) 

Set routing information field to 
zero. 

Step 19 

Step 19 

SVC 34 
(IEE0003D) 

TCAM 0 isplay 
(lED1303D or 
ISTCFF3D) 

Output 

Message 

~.ME= 
~ 

R2 

~-
~XAS 



c:I) 
(D 

a 
e' 
= 
~ 

~ 
(D 

[ 
o 
~ 

o 
"I:S 
Q a 
e' 
= 
~ 

~ 
'-I 
~ 

Diagram 2-15. DISPLAY (D) and TRACK (TR) Command Preprocessing (IEE3503D and IEE7503D) (Part 2 of 8) 

Extended Description 

This routine performs the preliminary checking and 

initialization needed by the routines that actually put 
out the requested display information. 

1 If processing a TRACK command, go to step 6 after 
this step. 

2 Either a TPUT (for a terminal! or a WTO (for a console) 
macro instruction puts out a time message. 

3 Either module I ED1303D (for a TCAM display) or 
module ISTCFF3D (VTAM command processor for 

D NET) receives control to continue the processing. 

4 The routine changes the verb code (XAN) and gives 
control to the CSCB creation routine IEE0803D. 

Module Label 

IEE3503D DISPLAY 
TRACK 

DDTIME 

DDTP 
DDNET 

DDPFK 



~ Diagram 2-15. DISPLAY (D) and TRACK (TR) Command Preprocessing (IEE3503D and IEE7503D) (Part 3 of 8) 
-...J 
~ 

o 
tI) 

~ 
~ 

tI) 

'< 
~ 
~ 

3 

E c;" 
r­
;: 
i 
'< 

~ 
C 
3 
~ 

~ 

~ 
tI) 
t-J 

~ 
~ 
(;" 
0) 

~ 
t..I 

~ 

Input 

XSA 

XSA 

Er XAN 

XAL 

(.Operand Buffer) 

XASCIO 
(Control 10) 

L-~I~_ XASOID 
(Area 10) 

Process 

5 Change verb code field. 

~-, JOBS-, TS-

6 Set option field. 

Other Operands (lEE7503D) 

7 Change verb code field. 

9 Set serialization locks. 

10 If command requester is JES2, 
go to step 18. 

Determine routing (code) 
information. 

CSCB Creation 
Routine 
(IEE0803D) 

.... 
.... LIST Processor 

(lEE75030) 

Output 

XSA 

F
XAN 

XAX (Option Indicator) 

(See Step 5 output) 

XSA 

~ XASAVSTD 

XSA 

Er
XAS 
(Routing 
Information) 



CI) 
(l) 
(') g. 
::I 
N 

::: 
~ 
15 
Q. 

o -.. 
o 
"0 
(l) 

;2 g. 
::I 

N 
N 
-...J 
VI 

Diagram 2-15. DISPLAY (D) and TRACK (TR) Command Preprocessing (lEE3503D and IEE7503D) (Part 4 of 8) 

Extended Description 

5 Far each operand, the routine a5signs a unique value 
to the field. 

6 The option field bits indicate the requested operands 

for the appropriate command. 

7 The verb code, XAN, is set to indicate the appropriate 
command operand. 

8 This step and input applies only to JES2 command 

requests. 

9 The_CMS and local locks serialize the use of the 
UCMEs. 

10 Non-JES2 command processing is bypassed. 

11 The routine checks for a L=cca operand. If this 

operand is non-existent (that is, not coded), the 

routine checks for a routing control table (RCT) set up by 
a previous MSGRT command. If an RCT does not exist, the 
display information is sent to the console issuing the com­

mand. I nternally issued commands are routed to the 

master console. 

Module Label 

IEE3503D 

DACTIVE 

IEE7503D IEE7603D 

LOCKSET 

NOTINTEN 

NOCOMP 



':-' Diagram 2-15. DISPLAY (D) and TRACK (TR) Command Preprocessing (IEE3503D and IEE7503D) (part 5 of 8) 
t-.J 
-...J 

'" 
o 
~ 

~ 
~ 
t-.J 
en 
'< 
~ 
tI> 
3 
t""' 
ci ;:;. 
t""' s: ... 
~ 
'< 
-< o 

= 3 
tI> 

t-.J --< 
~ 
t-.J 

::0 
tI> 
(5" 
~ 

~ 
\.>.j 

~ 

Input 

UCM 

~ 
UCME 

UCMMCENT in 
Field UCMPRFX 

XSA 

UCMAUTH 
(Routing 
Authority) 

UCMID 

~
XAS 

SACB XAL 

1&t =rJiJi' 

~!~ 

Process 

12 Check the validity of the 
routing information 

13 Check for a valid LIST operand. 
I ndicate its presence. 

CSCB Creation 
Routine 
(JEE0803D) 

o ut 

XSA B-XAX 



(Il 
CD 
~ o· 
= N 

~ 
CD 
go 
8-
o .... 
o 

"C 
~ 
I\) g. 
= 
N 
~ 
....... 
....... 

Diagram 2-15. DISPLAY (D) and TRACK (TR) Command Preprocessing (IEE3503D and IEE7503D) (part 6 of 8) 

Extended Description 

12 For example, the "cc" value in the L=cca operand 
of the command must be equal to or less than 99 in 

order to be valid. 

System commands cannot be routed to a JES3 console 
wit,h the L=CCA operand (UCMDISPK bit is on). 

13 This information will be used by the CSCB creation 
routines. 

The check is made only for the operands TS, A, and JOBS. 
The "L" operand is removed from the buffer (pointed to 
by field XAL) after it.is checked. 

Note: The TRACK command is invalid on a JES3 console. 
(UCMDISPK bit is on.! 

Module Label 

IEE7503D VALIDITY 

DACTIVE 



~ Diagram 2-15. DISPLAY (D) and TRACK (TR) Command Preprocessing (IEE3503D and IEE7503D) (Part 7 of 8) 
~ . 
00 

o 
tn 

~ 
N 
tn 
'< 
~ 

3 
E 
n' 
t"'" a: 
~ 
'< 
< o 
C 
3 
(D 

N 

<: 
tn 
N 

" (D 

~ 
~ 
1.-.1 

~ 

For D ISPLA Y commands, 
locate a target area for the 
display. 

For a TRACK command, 
locate a target area and process 
accordingly. 

Error Error 
Processor' 
(IEE5603D) 

16 For a D R command, give :' Caller or 
control to the REQUESTS ..•.. ..... CSCB Create 
command processor. ::. (I EE0803D) 
For a D3850 command, DR Processor 
give control to MSS ~.:~:. (I EE2903D) 

command processor. ;" D3850 

17 For all other DISPLAY ~' .. ;' .. ~.::.' .. ' (IEE9403D) 
commands, create a CSCB. CSCB Create 

:~ (I E E0803D ) 
lh 

18 Check JES2 screen area request 
validity. 

19 Error exit to SVC 34 error 
routine. 

.~1i , Caller 

'lrl • 
Message Routine 
(I EE0503D) 

XAS 
(Area Identified 

XSA XAX 

EY T,.JReqUest 
Indicators 

7 
SACB DCMATRCK 

~ DCMAUTME 19j---- (Time Interval) 

R2 

C=YD 

XAE 
(Error Code) 

Return 
Code 



Vl 
(1) 

0-
c· 
::I 
N 

3: 
Z g 
~ 

o -. 
o 
"0 
(1) 
0-; 
~ 

S· 
::I 

N 
N 
-....I 
\0 

Diagram 2-15. DISPLAY (D) and TRACK (TR) Command Preprocessing (IEE3503D and IEE7503D) (Part 8 of 8) 

Extended Description 

14 An existing dynamic (TRACK command) display 

will not be overlaid. If the routine is unable to find 
an area for a non-status display console, it de faults the 

message to an inline display. 

15 If there is a target area (as found by searching the 

SACB chain), the routine updates the track entry 

and returns control to the caller. 

If a target area is missing,or undefined, the command being 

processed is the first one for the given console. The CSCB 

creation routine (I EE0803D) then receives control to build 

a CSCB so the master scheduler wait routine (lEEVWAIT) 

can attach the processor for this console. 

16 The routine changes the verb code, XAN, and 

relinquishes control. 

17 For all other commands (that is, 0 M; 0 U; 0 C,K; 
o CONSOLES; and 0 A), the routine makes a deter­

mination and, if necessary, an assignment of, a display area 

before giving control to the CSCB creation module. 

18 The routine determines the availability of a valid, 

active console with a free area that can receive status 

displays. For return codes from this step, see the Diagram, 

Stopping Periodic Track (Status) Displays. 

19 For invalid commands or parameters, the error 

routine receives control. 

Module Label 

IEE7503D DISPLAY 

TRACK 

008030 

JES2CODE 



N 
N 
OC 
o 

~ 
"< 
~ 
N 
~ 
'< 
~ 

~ 
t-

J5 n· 
t-

~ 
~ 

-< 
< o 
C 
3 
~ 

N 

:;;: 
~ 
N 

~ 
~ ;:s-
~ 

l'S 
1.0.1 

2 

Diagram 2-16. Displaying (D A) and Tracking (TR A) System Status (IEECB800) (Part 1 of 6) 

Input 

R1 

DCMATECB 

CSCB* 

CHCECB 

Master Scheduler Wait 
Routine (I EEVWAIT) 

* Unchained - See description for step 3. 

1 Create an ESTAE environment. 

For DISPLAY 
commands, go to step 10. 1] • 
For TRACK commands, continue. 

2 Issue another ESTAE for the 
TRACK command processing. 

3 Get local and CMS locks. 

Determine if the TRACK command 
processor's ECB has been posted 
(signifying track termination) 
by a console-closing function. 

Jal Yes: 
Release local and CMS locks.<i J 

No 

Determine if TRACK processor has 
been posted by a STOPTR command. 

ta) Yes: 
Turn off track flags in the 
SACB. Release all locks. iii I 

No 

Step 10 

Step 16 

Step 16 



en 
('1) 
n 

S· 
::I 
N 

~ 
~ 
S 
Q. 

S­
O 
'0 
('1) 

i o· 
::I 

N 
tv 
00 -

Diagram 2-16. Displaying (D A) and Tracking (TR A) System Status (IEECB800) (part 2 of 6) 

Extended Description 

This routine provides for a display of system status 
information about active tasks and jobs and time 

sharing terminals. TRACK command requests appear on a 
graphics (screen) device. DISPLAY command requests may 
appear on either a graphics or a paper-output console 

device. 

1 This environment protects the routine against ABEND 

situations. 

2 This second EST AE handles the cleanup of the inter­
face between the TRACK command and DIDOCS 

routines. 

Note: The TRACK command is invalid from an input 
stream and from any time-sharing terminal. It is valid only 
for CRT devices in status-display mode or in full-capability 
mode. 

3 This permits serialization of the SACB and the ECB 
in the TRACK command's CSCB, which module 

IEEVWAIT has removed from the CSCB chain. 

4 Console errors and a VARY OFFLINE command 
applied to a target console may cause this. 

5 If the track processor is posted, the track functions for 
the target (specified) console will stop. 

a. This informs 01 DOCS routines that the console screen 

should be cleared. 

Module Label 

IEECB860 

IEECB800 AWAKE 

ECBPOST 



~ Diagram 2-16. Displaying (D A) and Tracking (TR A) System Status (IEECB800) (Part 3 of 6) 
oc 
N 

o 
c;n 

"< c;n 
N 
c;n 

~ 
C1I 

3 
r­
o 

00 ;. 
r­
c= 
~ 
<: o 
C 
3 
C1I 

N 

'< c;n 
N 

:;tl 
C1I 

i 
~ 
c.... 

~ 

Input 

(Track Options) 

(Time Intervall 

SACB 

BOCMAHOLO 

Process 

6 Put current track options and 
time interval in CSCB. 

7 Determine if display is currently 
being held. 

b) Yes 

8 Release serialization locks. Set 
time interval. Wait on the 
STIMER ECB and the TRACK 
ECB. 

9 Release serialization locks and 
set the time interval as in step 
eight. 

10 Get storage for message buffers. 

Output 

] I Step 9 

CSCB 
~CHPEND 

~CHTRSTST 



CI'.l 
~ 
n 
So 
= 
N 

~ 
~ g 
c­
o -. 
o 
"0 
~ 
I» 

So 
= 
~ 
N 
00 
W 

Diagram 2-160 Displaying (D A) and Tracking (TR A) System Status (IEECB800) (Part 4of6) 

Extended Description 

6 Track options are changed by TRACK or STOPTR 
commands. Time intervals are changed by a "CON­

TROL T,UTME=" Command. 

7 A "CONTROL D,H" command would cause the dis­
play to be held. A "CONTROL D,U" command 

causes the display to be updated. 

8 The routine uses the STIMER macro instruction for 
the interval listed in step six. 

9 The routine again uses the STIMER macro instruction. 

10 This storage will contain the blocks of 10 lines to be 
used for the M LWTO. 

Module Label 

IEECB800 

HOLDMODE 

DISPLAY 



~ Diagram 2-16. Displaying (D A) and Tracking (TR A) System Status (IEECB800) (Part 5 of6) 
00 
~ 

~ 
"< 
til 
N 
til 
'< 
~ 
('I> 

:3 

i n· 
r­a: 
;3 
-< 
< 
9-
c 
3 
('I> 

N 

'< 
til 
N 

::c 
('I> 

Q 
~ 

~ 
~ 

~ 

~ 

CSCB 

~CHTRSTAT 
,~~ 

CSCB Chain 

~CHTRKID 

CSCB Fields. 

• CHKEY (TSID or Step Name) 

• CHCLS (Job Name) 

• CHRGNAD (Region Address) 

• CHRGNSZ (Region Size) 

~ 11 Put time value in message. 

~ 
~ 12 Scan CSCB chain and put 

"active tasks" count in message(s). 

~;: 

~ 
'" ) 13 Determine the function to be 

j~ 
y 

displayed and list the number of 

~1 
active jobs, initiators, and/or TS 

'" users in the system. 
y 

t] " 
y) 14 For LIST operand, obtain job 

names, step names, and region 
addresses for jobs and tasks, and 
user ID for TS users. 

15 Issue messages and dequeue off 
the CSCB chain. 

For DISPLAY command. 
,~-

16 For TRACK command, issue a 
WAIT on the STIMER ECB and 
the TRACK processor ECB. 

17 Release the CSCB storage. 

, 

Message 

" I I Task Counts 
0'& 

y 

?" 

Message Header 
J\. I I y 

Message 

'" D y 

Message R1 

'" D e.meter List 

y 

... 
Step 17 

r 

.CSCB 

t Message 
Buffer 

'0/' 



en 
~ a 
ci" = 
!>oJ 

~ 
~ 

8: 
e. 
o 

"0 
~ 

DJ 
S· 
= 
N 
N 
00 
til 

Diagram 2-16. Displaying (D A) and Tracking (TR A) System Status (IEECB800) (Part 6 of6) 

Extended Description Module Label 

11 A TIME macro instruction provides the time stamp. IEECB800 

12 Routine enqueues on the CSCB chain before 
scanning. 

13 The numbers of active tasks for each type are placed 

in the appropriate subheader sections of the display 
areas. 

14 The region address (and size) fields apply to V=R 
jobs. 

15 Uses a MLWTO or a TPUT macro instruction to put IEECB801 ECBWAIT 
out the message, 10 lines at a time. 

16 The routine uses the MGCR macro instruction to 
free the CSCB and then returns control to the 

caller. 

17 Routine uses the system macro instruction, MGCR. IEECB800 NOTIMER 



N 
N 
00 
0'1 

o 
c;n 

< en 
N 
en 
'< 
~ 
~ 

3 
r-
~ <;. -;: 
~ 
'< 

2 = 3 
~ 

N 

'< en 
N 

:::0 
~ 
;-
I:» 

r:l 
IJoI 

~ 

Diagram 2-17. Displaying Console (D C) Status (IEEXEDNA) (Part I of 2) 

UCM 

UCMH~ 
(' Har~~o~~ ~ 
T Device) UCMHRDRT 

(Hardcopy Routing 
Codes) 

Master Scheduler 
Wait Routine 
(lEEVWAIT) Process 

1 Setup STAE environment. 

2 Get console and area ID for issuing 
console. 

3 Get a work area. 

4 Use locks to disable the system. 

5 Get console configuration and 
status information. 

6 Release locks to enable the system. 

7 Indicate console configuration and 
status information. 

SVC EXIT 
(SVC 3) 

Output 

Hardcopy Display 

D or CJ 



CI.l 
(1) 
(") 

S· = 
N 

:: 
(1) 

[ 
o .... 
o 

"0 
~ 
a o· 
= 
N 
~ 
00 
-..J 

Diagram 2-17. Displaying Console (D C) Status (IEEXEDNA) (Part 2 of 2) 

Extended Description 

This procedure displays information about console 

configurations. It builds a display for graphic screen 

or hardcopy output. 

1 Load and branch to module I EECB860 to set up this 
routine for handling ABEND situations. 

2 After this step, the routine releases the CSCB via the 

use of the MGCR macro instruction. 

3 This area will contain the message to the operator and 

module work space. 

4 The use of the SETLOCK macro instruction to obtain 

local and CMS locks prevents changes from being made 

to the UCM Es and UCBs by another user. 

5 This routine uses information in UCME, DCM, and 
UCB. These blocks contain information about device 

displays and console characteristics. 

6 The routine uses a SET LOCK macro instruction to 
release the locks. 

7 The routine builds and issues a M LWTO macro instruc­
tion(s) to write information to console. 

Module Label 

IEEXEDNA 

SETLOCK 

GETDATA 

FREELOCK 

MSGSET 



~ Diagram 2-18. Displaying CONTROL Command Operands (D C, K) (IEEI0II0) (Part 1 of 2) 
00 
00 

o 
CJ'.) 

"< CJ'.) 
N 
CJ'.) 

'< 
la. 

3 
t""' 
~ ;:;. 
t­
o: ... 
~ 

-< 
~ 
o 
2" 
3 
(D 

N 

~ 
CJ'.) 
N 

~ 
(D 

;-
~ 

~ 
Vol 

~ 

Input 

R1 

~
SCB 

R15 

CHBUF 
(Command 
Bufferl 

Attached by I EEVWAIT, then 
IEEPALTR issues 
SVC 110 
(JEEPALTR) 

Process 

1 R15=0. 
Route control to correct 
command processor. 

If R 15 i- O. 

(See Extended 
Description) 

Caller 

Output 

R1 

D 

D 2 Display the command operands ./1;/ 
and explanations. [H3°'8 

R1 

CHARlO 
(Area 10 for 
Display) 

o--.r=-, 
~DiSPlay 

Parameters 

* This routine receives control from a command 
processor or when an SVC 110 is issued. 

(Display Module Indicated in 
Extended Description) 



til 
(Ij 

~ 
5' 
= ~ 
~ 
~ 

[ 
So 
o 

1 
5' 
= 
~ 

~ 
\0 

Diagram 2-18. Displaying CONTROL Command Operands (D C, K) (IEEI0II0) (Part 2 of 2) 

Extended Description 

This routine builds and displays selected CONTROL 

command operands. 

1 Determine information to be displayed. Depending 
on the command being processed, IE E0011 0 gives 

control according to the following: 

Command 
D C,K 
DU 
D PFK 

Module Receiving Control 
IGC10110 
IGC20110 
IGC40110 

If R15 =F 0, IEE0110 first uses the MGCR macro instruction 
to free the CSCB before returning control to the caller. 

2 Issue WTO macro instruction to write out desired 
information. First module indicated writes lines 1-12. 

Second module indicated writes lines 13-26. Third module 
indicated writes lines 27-end of display. (The L=cca oper­
ands were previously stored in the XSA by module 
IEE7503D.) 

Module Label 

IEE00110 DISPCNTL 

IEE10110 
IEE11110 
IEE12110 



~ 
~ 
\.Q o 

~ 
"< tI'.! 
~ 

tI'.! 
'< 
~ 

3 
r-
~ 
(So 

r-
~ 
~ 

-< 
<: 
o 
2" 
3 
~ 

~ 

'< 
tI'.! 
~ 

~ 
~ 

[ 
~ 
w 

~ 

Diagram 2-190 Displaying a Matrix (D M) of System Status (IEEMPDM) (Part 1 of 2) 

Master Scheduler 
Input (lEEVWAIT) Process Output 
t:,;;::;;;:;': " ~'~::<': ""::~";"' ;:,,:,' ':::;t~~:':,H;ttt - ... ~~~~~~m':~~~~~~~~~ 

R10 Work Area 
1 Establish an EST AE environment , ./ 

~~I I 
CHBUF 
(Command Text) 

~
1 CSCB 

Area 

~GLBBUF 

CHUCMP 
(Console 10) 

UCB 

and set up a work area. 

2 Serialize with the reconfiguration 
commands. 

3 Analyze the command text. 

Error ~1;1 • Step 5 

4 Display requested information. 

Step 6 

5 Issue error message. 

6 Release resources. 

System (via SVC EXIT (SVC 3)) 

/ / 

~::BBUF 
Receiving 
Console 

O Requesting 
Console 



en 
(l> 
n g. 
::s 
~ 

~ 
(l> 

g. 
o 
Q. 

o ..... 
o 
'e 
~ 
~ g. 
::s 

~ 

N 
:::: 

Diagram 2-19. Displaying a Matrix (D M) of System Status (IEEMPDM) (Part 2 of 2) 

Extended Description 

This routine produces a display of system status to the 

operator's console. It displays information such as the 

status of CPUs, channel (s), paths, and real storage. 

1 The ESTAE routine (ESTAERTN) handles abnormal 

end situations. 

The work area contains a function mask that has flags for 

each requested component to be displayed. 

2 By serializing the r~configuration commands (through 
use of the ENQ macro instruction for the SYSZVARY, 

CPU resource), other reconfiguration commands are pre­

vented from executing while the current command is in 
control. 

3 The individual operands (for the requested functions) 

in the command are analyzed, and the appropriate 
flags are set in the global flag area (GLBBUF) of the work 

area. 

4 For each requested option, the routine uses a multi-

line WTO macro instruction to display to the operator 

on the receiving console the status for the option. 

The display is presented serially in the order: CPU, Channel, 

Devices. High Storage Address, and status of Real Storage 

offline or scheduled to go offline. Only the information 
requested is displayed. 

The routine writes a multi-line display to the receiving 

console. 

Module 

IEEMPDM 

Label 

PARSE 

WTORTN 

Extended Description 

The first line of the display is a control line. Then appear the 
data lines for the requested items. An end line completes the 

display. The following items require the inputs indicated: 

• CPU and Channel: From the common system data (CSD), 
an indication of the multiprocessing state and which 
CPUs are 'alive' (active). From the physical configuration 

communication area (PCCA) for a given CPU, the channel 

information in the channel availability table (CAT). Also 

from the PCCA, the CPU model and serial numbers. 

• Devices: Channel and device information from the CAT 
and the UCB, respectively. 

In displaying device data, the routine uses the IOSGEN 

macro instruction twice: once with the UCBLOOK 

operand to obtain the UCB address, and once with the 

MAP operand to obtain path (to a device) information. 

• High Storage Address: The high potential address from 

the CVT. 

• Storage: The page frame table entries (PFTEs) contain 
storage status information. The real storage reconfigura­

tion (RSR) routine of the real storage management 

(RSM) component processes the entries in the PFTE and 

returns the information to module I EEMPDM. A search 

of the PFTEs is also made to determine any reconfigurable 

storage units defined to the system. 

5 A WTO macro instruction is used to produce a single 

line message output to the requesting console. 

6 The routine frees the work area, uses a DEQ macro 

instruction to release the resource SYSZVARY, CPU, 
and releases the console from the multi-line environment. 

Module Label 

CPUCHAN 

DEVICE 

STORAGE 

IEEMPDM WTORTN 



:::: Diagram 2-20. Displaying Operator-Action Requests (D R) (IEE2903D) (Part 1 of 2) 

'" N 

o 
C"I) 

"< C"I) 
N 
C"I) 

'< 
~ 
~ 

:3 
r-
ei iiO 
r­a: 
; 
-< 
<: 
c 
C 
:3 
CD 
N 

~ 
C"I) 
N 

" ~ 

i 
~ 
~ 

~ 

Input 

R2 G XSA :'B'"XAL 
(A Command 
T Operand) 

WOETXT 

WOESUSP (WOE 
Suppression 
Indicator) 

CVT UCB 
UCBDMCT 

UCBSTAT 

UCBALOC 

UCBTBYT3 

UCBNRY 

UCB 

~UCBFLC 

Display Router 
OEE3503D) 

1 Check command syntax. 

Error. 

2 Set serialization locks. 

3 Locate all outstanding OREs; 
check for LIST operand; 
build 'reply' message in output 
buffer. 

4 Locate all devices waiting to be 
made ready. List them in 
message buffer. 

5 list UCBs that Indicate that a 
required operator intervention 
message has been issued. 

6 Notify command issuer of all 
outstanding request conditions. 

[I I Step 7 

SVC 34 
Router 
(IEE0003D) 

Output 

Message 
Buffer G Message 10 and text 

Message 
Buffer 

.~ Un;,stobe made ready 

Message 
Buffer 

§ Inte,yention List 

Console Message Screen Message 

D~O 
7 Error exit is to write a message. ,_,I V'IiI 

Message Module 
(lEE0503D) 

D 



en 
('D 

II 
c$" 
= 
~ 

a:: 
('D 

[ 
a. 
o 
'0 
~ 
~ 
5' 
= 
~ 
N 
\0 
(N 

Diagram 2-20. Displaying Operator-Action Requests (0 R) (IEE2903D) (part 2 of 2) 

Extended Description 

This routine builds a console display of information 
related to unanswered WTOR messages, outstanding 

mount requests, and pending operator-intervention requests. 

1 Routine checks the format of the LIST operand. 

2 The routine uses local and CMS locks to serialize the 
use of operator reply elements (OREs) and write 

queue elements (WOEs). 

3 If any of the following conditions are met, an OR E is 
considered as not outstanding: 

• The ORE has been marked as deleted (a delete operator 
message (DaM) has been issued). 

• The ORE has been partially processed (a temporary 
buffer exists). 

• The ORE has been marked as suspended. 

If LIST is specified, up to 65 text characters are inserted in 
the message buffer for each outstanding ORE. If the text 
is greater than 65 characters and the sixty-sixth character 
is non-blank, the text will be truncated after the last 
complete word before the sixty-sixth character. 

4 Each tape or direct access UCB that has a mount mes-
sage pending and is currently allocated is considered to 

be not ready. Tape devices must a.lso be marked as not 
ready. The routine moves the unit numbers for these UCBs 
to the message area. 

5 The routine lists the UCBs by means of their unit 
numbers. 

6 This is done by using multi~line WTOs or TPUTs (for 
TSO user). The routine also releases the serialization 

locks. 

Module Label 

IEE2903D SETLOCK 

SETLOCAL 

RPIDSRCH 

RDUTSRCH 

IEE2903D IRTEST 

MLWTOSEG 



'" N 
\C) 
~ 

~ 
~ 
N 
tfj 

'< 
~ 

9 
i t=;0 

~ 
Sf 
~ 
-< o 
=-3 
(D 

N 

'< tfj 
N 

~ 
(D 

i 
~ 
1M 

~ 

Diagram l-2lo Display of Program-Function-Key Definitions (D PFK) (IEE40 II 0) (Part 1 of 2) 

Buffer 

R2 

CHCNID 
(Console 10) 

~·CEPFKEY 

This CSECT contains three information 
areas for each of up to 12 PFK records 
that may have been specified for the 
console at SYSG EN time. These areas 
are: 

• Key number 

• Informational Flags 

• Text Definition to be written. 

Master Scheduler 
SVC I/O Routine 
(JEE00110) 

~~ 

1 Route control to the PFK processor. 

2 Format and display the current 
definitions for the program 
function keys. 

3 Write internal text. 

Master Scheduler 
SVC I/O Routine 
(lEE00110) 

Output 

G 



en 
(!) 
r: g-
::s 
N 

::: 
a 
S 
Q. 

o .... 
o 
"0 
~ 
Ilo' g. 
::s 

N 
N 
\.(j 
VI 

Diagram 2-21. Display of Program-function-Key Definitions (D PFK) (IEE40110) (Part 2 of 2) 

Extended Description 

This routine satisfies a request to display pre-defined 

program-function-key (PF K) information. 

1 This processing occurs after the SVC34 load module 

has posted the master scheduler. The scheduler 

attaches a SVC 110 routine, which gives control to the 
PFK processor. 

2 Move the definii:ions into the WTO parameter list. 

3 Issue the WTO macro instruction to write the internal 

text to the console indicated in the CSCB. 

Module 

IGC0003D 

IEEVWAIT 

IEEPALTR 

IEE00110 

Label 

IEE40110 START 

IEE40110 SUBROUT 



t-J 
~ 
\0 
0'1 

@ 
"< til 
t-J 
til 
'< 

~ 
r-
~ 
ri" 
t­
o: 
j;3 
~ 
-< c 
=-3 
~ 

t-J 

'< til 
t-J 

:;0 
~ 

is" 
~ 

~ 
w 

~ 

Diagram 2-22. Displaying Unit Status (D U) (IEE20110) (Part 1 of 2) 

SVC 110 

Input 
Router 
(IEE00110) Process Output 

CSCB 

~ ~CHBUF 
~ (Command Verb) 

~ 
DEVNAMT 

D 
CHUCMP 
(10 of Command­
issuing Console) 

CHCNID 
(I D of Console that 
Receives the Display) 

CHARID 
(Screen Area I D for 
Receiving Console) 

1 Locate the starting UCB. 

2 Create list of valid UCB addresses. /1" 

3 Build the Display lines. Load the 
device name table to obtain its 
address. 

4 Issue a WTO for message text. lA' 

5 Free work area and delete the 
DEVNAMT. 

6 Issue error messages as needed. 

SVC 110 Router 
(IEE00110) 

Workarea 

CY UCB Addresses 
and 

Message Text 

Unit Status 
Information Display 

Do'O 



fI.) 
(D 

~ 
~. 

:I 
N 

s:: 

i 
~ 
o 

I 
~. 

:I 

~ 
\D ...., 

Diagram 2-22. Displaying Unit Status (D U) (IEE20110) (part 2 of 2) 

Extended Description 

This routine satisfies a request for a tabular display 
of unit status information. 

1 The routine uses a GETMAIN for a work area. It saves 
the "to" and "from" console IDs. It verifies syntax and 

determines initial UCB. 

2 Find UCBs that satisfy the command. Order the UCBs 
by device address. Indicate the end of the display. 

3 The device name table (OEVNAMT) is established at 
SYSGEN time. It resides in the link pack area library 

(LPALlB) and is loaded into the work area. One half of the 
text line uses data from the UCBs. 

Module Label 

IEE20110 IEE20110 

IEE23110 VALIOCAK 

IEE21110 

COMPSET 
OSU 

4 Issue SVC 35 for the title, the label lines, and the text. IEE23110 WTORTN 

5 The routine uses a DELETE macro instruction for the 
device name table and a FREEMAIN macro instruction 

for both the OEVNAMT and the work area storage. 

6 The routine writes any necessary error messages. IEE22110 



t-.) 

~ 
\C 
....... 
b 

~ 
"< tf.l 
t-.) 

tf.l 
'< 
~ 
:3 

b 
~. 
t"'" a: 
~ 
<: e. c: 
:3 
~ 

t-.) 

< tf.l 
t-.) 

b 
~ 

00 
~ -

Diagram 2·22A. Displaying Parameters of Domains (IEEDISPD) (Part 1 of 4) 

Master Scheduler Wait 

Input Routine (lEEVWAIT) Process .. i%! •• ~4V'k'BII 

1 Establish EST AE environment. 

.... CSCB - if unsuccessful 
R1 proceed to step 13. -I Area ID (CHARID) 

2 Get console and area J D for the 
.... 

target console. 
Console ID (CHCNID) 

3 GETMAIN storage for a workarea. 

4 Enter SRM to obtain a copy of the 
domain table. 

CSCB 

DMN operand ") 5 Scan for 'DMN' operand. If not (CHBUF) 
Y found, proceed to step 7. 

6 Display domain. table and 
proceed to step 13. 

") 7 Scan for 'DMN=value' operand. 
I' 

R15 

I Return code from scan J .. =v 8 Evaluate return code and function IEEBUFSC ... issue message. 
... 

~,~w.A%~'ft%~%.A •• ~qj.:'~~i.i1 ~~.~~ .... rt-, 

'" 
I' 

.. 
IEE0503D ...,.. 

Output 

Display of Domain Table 

CJ 

'" r Error J ./I Message 

<: 
tf.l 
t-.) 

b 
~ 

00 
o 
....... 



~ 

~ g. 
N 

ac 
(1) s-o 
Co 
o -.. 
o 
"0 a g. 
N 
~ 
\0 
;-.I -

Diagram 2-22A. Displaying Parameters of Domains (IEEDISPD) (part 2 of 4) 

Extended Description 

This process displays the Domain Descriptor Table (DMDTI. 

1 This ESTAE environment handles ABEND 
situations. If the EST AE is not established, 

storage for the CSCB is released before returning 
control. 

2 Save console and area information to use in 
MLWTO. 

3 This area (obtained by GETMAIN) will contain 
the MLWTO parameter list and data obtained via 

Sysevent number 40 processing. Storage is from 
subpool 253. 

4 Enter SRM via SYSEVENT 40. SRM module 
IRARMEVT will return a copy of the domain 

table and the count of the number of entries. 

5 The character string 'DMN' is searched for in the 
buffer. 

6 This routine issues a multiple-line WTO macro 
instruction to write the domain information to 

the console. 

Module Label 

IEECB860 

IEEDISPD FREECSCB 

GETSTOR 

DMNSCAN 

MSGSET 

Extended Description 

7 This routine uses the IEEBUFSC macro instruction 
to find the DMN keyword and its value. 

Input to IEEBUFSC: 

R1 

RO 

(points to the beginning of the buffer) 

(points to the last byte of the buffer +1) 

R15 I r ~ 
;;oJ 

Length Keyword + Keyword 
(1 byte) (3 bytes) 

Output from IEEBUFSC: 

R1 (length of keyword value) 

R14 (points to the first byte of keyword value) 

R15 Return code 
o success 
4 OMN value invalid 
8 DMN keyword not found 

8 If register 15 contents are non-zero, IEE0503D is 
loaded and given control to issue the error 

message: 'IEE7081 DMN KEYWORD VALUE INVALID'. 

Otherwise, Step 8 executes next. 

Module 

IEE0503D 

Label 

<: 
~ 
N 
Q 
CoN 

00 
Q ..... 



~ I Diagram 2-22A. Displaying Parameters of Domains (IEEDISPD) (Part 3 of 4) 
~ 
1.0 

" N 

o 
I:Il 

"< I:Il 
~ 

~ 
~ 

S­
:I 

S 
~. 
r" 
c: 
~ 
~ 
= ~ 
~ 

~ 
~ 

<=> w 
00 
o .:;; 

CSCB 

DMN operand 
(CHBUF) 

CSCB 

DMN operand 
(CHBUF) 

..) 9 Validate domain value. .. 

• If invalid. 

• Otherwise proceed to step 10. 

... 
)·10 Check for extra operands in the 

.. buffer. 

• If found. 

• Otherwise proceed to step 11. 

11 Display specified domain. 

12 Free work area and CSCB. 

13 Return using register 14. 

(lEEVWAIT) 

.. 
IEE0503D 

y 

.. Step 12 

.... 

-~ 

IEE0503D .. 
.oIL Step 12 

.. 

.. J Error I 
"·1 Message 

I Error 1 
v~ Message 

Display of Domain .. 
.. 0 

< 
I:Il 
~ 

o w 
.00 
Q 

" 



~ g 
g 
N 

a:: 
$ 

[ 
o 
~ 

o 

J. 
N 
N 
\C .... 
W 

Diagram 2-22A. Displaying Parameters of Domains (IEEDISPD) (Part 4 of 4) 

Extended Description 

9 If the domain value is not in the range of 1-128, 
its length exceeds three, or the domain is not 

defined in the domain table, error message 'IEE7081 
DMN KEYWORD VALUE INVALID' is issued. 

10 Search the buffer for extraneous operands. 
If any are found, issue the errOr message, 

'IEE5351 DISPLAY INVALID PARAMETER'. 

11 A MLWTO (multiple-line WTO) is issued to 
write the specified entry. 

12 The work area (subpool 253) and CSCB are freed. 

13 IEEDISPD returns using the contents of register 
14 initially passed at entry by IEEVWAIT. 

Module Label 

IEEDISPD VALDMN 

IEE0503D 

IEEDISPD 

IEE0503D 

IEESISPD MSGSET 

FREESTOR 
FREECSCB 

<: 
~ 
N 
Q 
c..I 
00 
o 
-...I 



:::! 
~ 

i 
~ 
~ 

fI'J 
'< 
SIl 
~ 
S' 

C!9. n 
t:: 
2" 
~ 

i 
(D 

~ 

< fI'J 
~ 

o 
t..I 
00 
Q ...... -

Diagram 2-23. Dumping (DUMP) Virtual Storage (IEECB866) (part 1 of 2) 

Master Scheduler Wait 
Routine OEEVWAIT) 

'.,' .'Y~.'. 1Iffi. 1Iffi' • iII~ 

R1 DUMP 

~ 
UCM CSCB EJ UCMID .-EJ 

CHUCMP 

[ l 
Operator Reply 

Virtual Storage r---..., 
I + Amount is L --.J determined by 
--- the parameter 

list 

Y\." I!'W', , ,~ @; ~ • Wiiii 

1Iffi~~ '1Iffi~1h"'%;&.' ~.".y,.,,;\.'W '~I!Y'~ 

1 Create EST AE environment. 

2 Check Console's Command 
authority. 

Invalid authorization. 

3 Get header text and data to be 
dumped. 

4 Dump the requested information. 

5 Check return codes and return. 

a) If code = O. 

b) For non-zero code, put 
out message. 

SDUMP 
Parameter 

Error Routine List 
(IEE0503D) 

[I] 

0 
SYS1.DUMPnn 
(nn = 00-09) 

System via BR14 

J 
Master Console 



Diagram 2-23_ Dumping (DUMP) Virtual Storage (IEECB866) (Part 2 of 2) 

Extended Description 

The DUMP command causes a dump of virtual storage 

to a preallocated data set. The dump routine runs in 

the master scheduler region. 

1 This environment protects the dump processing in 
case of abnormal end. An ESTAE exit will dump 

the master memory, using SDATA options, to the dump 

data set. 

2 Only the master console is authorized to issue the 

console DUMP command. 

3 Header text data is specified in the operand of the 

DUMP command. The header text contains a maxi­
mum of 100 characters. Dump operand data is specified in 
the REPLY command, which the operator inserts in re­

sponse to a WTOR command issued by the dump routine. 
The parameter I ist has the format shown below: 

Flag 0 I Flag 1 I Dump Data 1 I Dump Data 2 

Reserved 

I tStorage list I 

tHeader record 

Reserved 

0 I User's ASID to be dumped 

J 

Module Label 

IEECB860 GETESTAE 

I EECB866 CMDCHECK 

IEECB866 SETUP 

DMPREPLY 

The flag and dump data field contents are as follows (blank indicates 'reserved'): 

VJ 
~ 
() g. 
::s 
tv 

3: e. c 
c-
o -, 

Bit 

0 
1 

2 
3 
4 

5 
6 
7 

Flag 0 

Storage list is specified 
Header record is specified 

ASID is specified 

9 • Flag 1 = X'80' 

Dump Data 1 

(SDUSDAT1) 

Dump the PSA 

Dump the nucleus 

Dump the SOA 

Dump the LSOA 
Dump the private region 

Dump the active LPA 
Dump the trace table/GTF buffers 

~ • The storage list contains the beginning and ending 
~ s· addresses of the areas to be dumped. 
::s 

tv 
N 
\C) 
\C) 

Dump Data 2 

(SDUSDAT2) 

Dump the CSA 

Dump the SWA 

Extended Description 

4 Routine I EECB866 issues SVC 51 (via the SDUMP 

macro instruction) to have information put on a pre­
allocated data set, SYS1.DUMPnn (nn = 00-09). 

5 The CSCB for the command is freed before returning 
to the caller. 

a. 
b. The message module issues a message to the master con­

sole for error conditions due to operand syntax or lack 

of command keywords. 

Module Label 

IEECB866 ISUSDUMP 

IEECB866 CMDCHECK 

IEE0503D NODUMP 



~ w g 
o en 

~ 
~ 

en 
'< 
~ 

3 
t-
~ 
~. 

t­
o: 
~ 
<: 
~ 
a 
(I) 

N 

<: en 
~ 

~ 
(I) 

i 
~ 
w 

~ 

Diagram 2-24. HALT (Z), SWITCH (I), and TRACE (TRACE) Command Initialization (IEE1403D) (part 1 of 2) 

Input 

Console ID 

Verb Code 
(XAV) 

+ Command 
Operand 
(XAL) 

SVC 34 
(lEE0403D) Process 

1 Determine entry 
command verb type. 

.M.e.s.sa~.ge •• '(I;l .. ~t ~~~sa~! 
. module 

2 If command is TRACE, validate 
the command operand. If valid, 
process accordingly and branch 
to message module. 

3 If command relates to TCAM, 
take appropriate exit. 

4 If command relates to VTAM, 
take appropriate exit. 

5 If command relates to MSS, 
take appropriate exit. 

Validate command operand. 

Error 

(I EE0503D) 

__ IEE0503D 

7 Create CSCB.:1 '. 111 .... __ ---' 

8 Post the master scheduler. ECB, ' 0/It-------1 
is located in BA LAD field of Ii, 
Master Scheduler resident data 
area (MSRDA). 



en 
~ 
I":) g. 
= 
~ 

3: 
~ 

[ 
o -. 
o 

"'0 
~ 
~ 

S· 
= 
t-.I 
W 
:: 

Diagram 2-24. HALT (Z), SWITCH (I), and TRACE (TRACE) Command Initialization (IEE1403D) (part 2 of 2) 

Extended Description 

The HALT command initiates a shutting down of a 
VT AM or TCAM system, or the 3850 MSS, or it 

prepares for closing down the entire operating system. 
The command also causes the closing of the system log 
and, as part of shutting down the TP access method, it 
halts the transmission of terminal-oriented messages. 

1 A HALT, SW.ITCH, or TRACE command causes 
entry to this routine. 

Module Label 

IEE1403D IEE1403D 

2 If command is TRACE ON, so indicate in the MSRDA. IEE1403D TRACE 
(Flag BATRACE is set on in the BASPBYTE fieldJ 

If command is TRACE OFF, so indicate in MSRDA. (Set 
BATRACE flag off.) If command is TRACE STATUS, or 
no operand is provided, set code for appropriate message 
and branch to I EE0503D. TRACE processing will be 
completed by IEEVWAIT, according to how BATRACE was set. 

3 For TCAM, terminate the SVC 34 processing; exit 
to TCAM processor via module IED1303D. 

4 For VT AM, terminate the SVC 34 processing. Exit 
to VTAM processor via module ISTCFF3D. 

5 For MSS, validate the presence of "S," with MSS 
operands, and exit to I EE9403D to post MSS. 

6 For SWITCH, SMF is the only valid operand. If 
syntax is invalid, issue message I EE3051. 

7 Creating a CSCB will avoid the processing of the 
command by the communications task. (See the 

diagram, Creating CSCB for Task-Creating CommandsJ 

8 The master scheduler will attach the HALT/SWITCH/ 
TRACE command processor to perform the 

appropriate closing function. 

IED1303D 

ISTCFF3D 

IEE9403D 

IEE1403D 

IEE0803D 

IEEVWAIT 



~ Diagram 2-25. HALT (Z EOD) and SWITCH (I SMF) Command Processing (IEE70110) (part 1 of 4) 
o 
~ 

~ 
"< {;I.l 
~ 
{;I.l 

'< 

~ 
E tr 
r: 
~ 

~ 
<: 
o 
[ 
~ 

~ 

'< 
{;I.l 
~ 

:::tI 
~ 

i 
~ 
w 
~ 

Input --

v~· 

I 

R1 

~ CHVCD 

SMCA 

~SMCAMAN 
SMCADSSW 

SMCADSTR 

UCB Chain 

Q] 

Master Scheduler 
Wait Routine 
(tEEVWAIT) 
(via ATTACH) 

Process 
;1 ~- lj 

1 Set up a sub-normal . size XSA. __ 

I 
-y 

2 Set up STAE . 
~ 

environment -'-
---"\ - -v 

I ..; 

- -? 3 Determine comm d an verb 

HALT - . .. 
..,. Step 4 

SWITCH -
.. 

....,. Step 5 

4 Update SYS1.LOGR EC d .J ata set. = -l' 

I -V 

J I~ r 5 Determine SM F do. 
HALT 

avai lability. a set 

.. 

If it is unavailable: -
SWITCH 

....,.. Step 8 

.. 
..,.. Step 9 

j I 
- ~ 6 Issue SVC 78 for each de . :i vlce._ 

.....J-

:J -v 

y 7 For SWITCH' . I skip log processing. -
.. 

..,. Step 10 

-
I .,,". J 

Output 
-

=, 
R2 o------TI 

"""""" =, 

XSA 

§3-- XAE 
(ST AE Success Code) 

-
SYS1.LOGR EC 

U 
b",@ . 

SMF Data Set 

~ 
;j 

Record 19 LJ 
:;'~"M~ -



~ 
~ 

S4. o· 
= 
~ 

3: 
~ g 
Q.. 

o .... 
o 
"0 
~ 
~ o· 
= 
N 
~ o 
~ 

Diagram 2-25. HALT (Z EO D) and SWITCH (I SMF) Command Processing (IEE70II0) (Part 2 of 4) 

Extended Description 

This routine performs two functions: 

• It preserves the status of system log data sets and 
moves data from internal storage to the SYS1.LOGREC 
data set . 

• It switches the recording of SMF data from one data set 
to another. 

1 This XSA is only 88 bytes long. 

2 ST AE handles abnormal end situations. 

3 A HALT command must have the EOD operand. A 
SWITCH command must have the SMF operand. 

4 The routine uses SVC 76 to do the update. 

S For the SMF active state, the routine uses SVC 83 to 
inform SMF routines of the current processing. 

6 The routine uses the LSPACE macro instruction 
(SVC 78) to generate SMF record 19 and place it on 

the SMF data set. This is done for each online direct-access 
device (or UCB). 

7 If the command is 'SWITCH: the log is not posted. 

Module Label 

IEE70110 

IEECB860 

IEE70110 



~ Diagram 2-25. HALT (Z EOD) and SWITCH (I SMF) Command Processing (IEE70110) (Part 3 of 4) 
~ 

o 
~ 

"< 
~ 
N 
~ 
'< 

CI> 

~ 
t-
~ 
(5' 

t­o: .... 
~ 

-< 
< o 
C 
3 
('D 

N 

'< 
~ 
N 

~ 
!t 
('D 
~ 

~ 
w 
~ 

Input 

BASEA 

~BALOG 

XSA 

D 

XSA 

~
XAE 

(Message Code) 

XAF 
(Verb Code) 

XAH (Message Length) 

Process 

8 Set up to terminate the system 
log if it is supported and 
termination processing is yet 
to begin. 

Output 

R1 

9 Initialize dummy XSA. i.i V[lif 

10 Delete the created CSCB for 
this task. 

11 Based on message code either issue 
message first and/or return 
control to caller. 

SVC EXIT 
(SVC 3) 

LCA 

~POSTCLOZ 

XAE 

~ 



til 
(D 

sa. o· 
= !'! 
s: 
(D 

[ 
o -. 
o 
~ 

~ 
~ o· 
= 
~ 
~ 

~ 

Diagram 2-25. HALT (Z EOD) and SWITCH (I SMF) Command Processing (IEE70110) (part 4 of 4) 

Extended Description 

8 The routine posts the 'log close' ECB to permit the 
occurrence of log termination. The post is for module 

IEEMB803. 

9 The routine sets the XSA fields that relate to the 
command to be processed. 

10 The CSCB was created by module IEE0803D. The 
routine uses the MGCR macro instruction (SVC 34) 

to delete the CSCB. 

11 If message code indicates a successful SMF switch, 
the message module is bypassed, and return is 

directly to the caller. A test also indicates whether a ST AE­
failure occurred. The message module issues the WTO macro 
instruction to put out the message that indicates the success 
or failure of the processing. 

Module Label 

IEE70110 

IEE90110 



~ Diagram 2-26. Processing LOG (L) and WRITELOG (W) Commands (IEE1603D) (part 1 of 4) 

~ 

o 
til 

"< til 
N 
til 
'< 
~ 

3 
£ 
(;. 

r-
~ 
~ 
<: 
o 
C 
3 
~ 

N 

< 
til 
N 

" ~ 

if 
rtl 
~ 

~ 

R10 BASEA 

~BALOG 
R2 

XAN 

( + Command Buffer) 

UCM 
~UCMSYSG 

UCB Chain 

g 
BASEA LCA 

Command Router 
(lEE0403D) 

IJ
'; 

. 

:':.*"ili~" .•. : .. ,.',""~", i.8. 
If; 

!,~ 

I~STCLOZ 

1 Determine if the system has 
support for log task. 

No Support. 

2 If" LOG" command, go to step 8. 

3 For "WR ITE LOG" command, 
determine the operand and process 
accordingly. 

CLOSE 

CLASS or Null 

START 

4 Process to determine the hardcopy 
status for log . 

If hardcopy device is unavailable, 
the WTO command is rejected. 

5 Post the log termi nation ECB if 
indicated. 

Output 

::] I Step 9 

[] I Step 4 

:"] I Step 6 

11 I Step 9 

"ProCeSSing 
LOG and 
WRITELOG 
Commands 
(lEE1603D) 

Router 

BASEA 

~MSGLCLOZ 

(I E E0403D )IiM)4P10'Mi1;rMt~iil00&i.}~il;tfil$K;*~t%}bfki&m&¥4;4Yt:;$.W%.¥~~4HZ~i*'_' 



t"Il 
~ 

a o· 
= 1'-01 

a:: 
~ 

[ 
o .... 
o 

"0 
Si 
CI) g. 
= 
1'-01 
~ 
o 
-...J 

Diagram 2-26. Processing LOG (L) and WRITELOG (W) Commands (IEE1603D) (part 2 of 4) 

Extended Description 

This routine processes the LOG and WR ITELOG 
Commands and either puts out a message or posts an 

ECB. 

1 If the BA LOG value is not 0, the system supports the 
log task. 

2 If the XAN value = X'lC', the command is "LOG." 

3 A request has been made either to close the system 
log, to make the system log a part of an output class, 

or to schedule the writing of the system log. 

4 If the log is a hardcopy device, the system rejects all 
WRITELOG CLOSE commands until the hardcopy 

function is assigned (varied) to another device. 

5 This step is indicated if the log is already in the proc­
ess of terminating. 

Module Label 

IEE1603D 



~ Diagram 2-26. Processing LOG (L) and WRITELOG (W) Commands (IEE1603D) (part 3 of 4) 

~ 

o 
c;f} 

"< 
c;f} 
N 
c;f} 

'< 
~ 

3 
r-
ei ;:s. 
r­a: 
Q! 

-< 
<: 
o 

=-3 
~ 

N 

'< 
c;f} 
N 

~ 
~ 

i 
~ 
IoN 

~ -

Input 

LCA 
~POSTWLOG 

19--- POSTCLOZ 

Process 

6 Indicate output class type. 

Error. 

7 Issue appropriate message (WTO) 
for WR IT E LOG commands 
currently being processed and 
post the log data set switch ECB. 

8 Setup message buffer, move in 
message text, and issue WT L 
macro instruction. 

9 Reactivate the log recording 
function. 

Error Processing 

10 Branct} to message module. 

Message 
Module 
IE E0503D 

Processing 
LOG and 

........... WRITELOG 
~Commands 

(lEE1603D) 

Caller 

Caller 

Message Module 
OEE0503D) 

LCA 

~LCCLASS 

Message 

D 
BASEA 

ffMSLGWLOG 

Message 

D 
BASEA 

~ 
MSLGSTRT 

u 
Activated Log 

Data Set 



til 
(II 

$a. 
~. 

:s 
~ 

ac 
~ 

8: 
~ 
o 

1 
~. 

:s 

~ 
w 
$ 

Diagram 2-26. Processing LOG (L) and WRITE LOG (W) Commands (IEE1603D) (part 4 of 4) 

Extended Description Module 

6 Valid output classes are those from A-Z or 0-9. This is IEE1603D 
the output class to be used when printing the contents 

of the system log. If the output class designation is omitted I 
a default class of I A' is assumed. 

7 The routine posts the ECB for the switching of the 
log data set. 

8 Use the WTL macro instruction to write a message 
to the system log. 

9 The WRITELOG START command initiates support 
of the system log. The routine posts the appropriate 

ECB. 

10 Message codes are set during various stages of the 
processing. 

IEE0503D 

Label 



2~310 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



CI) 
~ 

~ o· 
= N 

~ 
~ 

[ 
o .... 
o 
'e 
~ 
~ o· 
= 
N 

W --

Diagram 2-27. SWAP (G) (IGF2S03D) and MODE (MODE) (IGF2603D) Command Processing 

Command 
Translator 
(IEE5403D) 

IEE0403D 

o 

1 Command Verb. 

a) SWAP. 

b) MODE. 

For further logic details, see the 
publication, OS/VS2 Release 2 
MVS/RMS Program Logic Manual, 
SY27-7250. 

IGF2503D 0 

IGF2603D 0 



N 

~ 
N 

&3 
"< tI.l 
N 
tI.l 
'< 
~ 

9 
t"" 
~ 
(i. 

t"" 
c: 
D1 
-< 
~ = :3 
(D 

N 

'< 
tI.l 
N 

?; 
;-
II) 

~ 
CoN 

~ 

Diagram 2-28. STOP (P) and MODIFY (F) Command Processing (IEE0703D) (part 1 of 2) 

Input 

MSRDA .----

I nput Command 
From Console 

CSCB 

~CHCIBCTR 

~
R2 XSA XAV 

(Command 
Verb) 

Command 
Router 
(IEE0403D) 

Check command syntax. 

Error: 

2 Enqueue on the CSCB chain and 
search it for a match with the 
command name. 

3 Build CIB and chain it to CSCB. 

4 For MODIFY, check the 
count of CIBs allowed. 
Chain CIB to CSCB. 

5 Update UCMI in field CHUCMP. 

Message 
Module 
IEE0503D 

-.[1 •• IEE0503D 

Output 

CSCB I ;r CIB Cha;n 

CHUCMP 0 

CSCB 

CHUCMP~ (UCM 
Indicator) 

6 Post the STOP/MODIFY ECB ,/KJ ECB 
in the CSCB. 

7 Dequeue off the CSCB chain 
and return. 

Command Router 
(JEE0403D) 



rIl 
(II 

$4-
5· 
= 
~ 

a:: 
[ 
o 
~ 

o 
"0 
~ a 
5· 
= 
~ 
w -w 

Diagram 2-28. STOP (P) and MODIFY (F) Command Processing (IEE0703D) (part 2 of 2) 

Extended Description 

This processing either stops the operation of, or 
changes the characteristics of, system components 

such as readers and writers, and performs the same 
services for appropriately-loaded problem programs. 

1 Operands beyond the job name or job identifier 
are prohibited on the STOP command, but are 

required on the MODI FY command. 

2 If no match with the job name or job identifier is 
found, error message results. 

3 For MODIFY, move parameters to CIB. 

4 If more CIBs are allowed, add them to the chain. 
If the CIB chain contains the maximum allowable 

number of C I Bs, the processor rejects the command and 
leaves the UCMI unchanged. For STOP, the CIB is chained 
unconditionally. 

5 The UCM indicator of the console issuing the com­
mand overlays the UCM indicator, in the CSCB, of 

the console that issued the START command. 

6 A cross-memory posting occurs here. Each command 
has its own posting code. 

7 The dequeueing occurs after all CSCBs on the CSCB 
chain have been examined and processed, if necessary. 

Module Label 

IEE0703D IEE0703D 

CMST1 

CMCIBLD 
CM002 

XTEST3 

CM003 

SETECB 

CMDEQ 



~ Diagram 2-29. Starting (IEE7103D) and Stopping (IEE5503D) Monitoring Functions (part 1 of 4) -~ 
o 
c:n 
'< c:n 
N 
c:n 
'< 
~ 

a 
t""" 
~ n· 
~ 
~ 
~ 
~ 
5' 
3 
(1) 

N 

'< 
CIl 
N 

~ 
(1) 

i 
~ 
~ 

~ 

Input 

R2 

CVT 

R2 

BASEA* 

UCMMNTR 

(.IEAVMNTR) 

* Master Scheduler Resident Data Area 

Command 
Router 
(IEE0403D) Process Output 

1 Check presence of, and validity of, ,AJ( 

operands. Three choices exist: 

Error: 
message 
module 
(lEE0503D) 

2 a) For MONITOR JOBNAMES or 

MONITOR SESS with the TIME ' .••• ( ... : ... ·.2,.' •. ; ..•..••. ·.: ..•• 1 I operand (in BASEA), set an 1<;$ 

indicator. ~ 
b) For STOPMN (Stop Monitor) _ 

JOBNAMES or STOPMN SESS 
without the TIME option (given 
in BASEA), turn off an indicator. 

c) For MON ITOR or STOPMN A:Ii 
commands with either the 
SPACE or the DSNAME 
keyword, set indicator. 

3 Build monitor parameter list ,Ae~ 
(MPU. 

4 For a console request, set.fields to 
indicate request type and update 
count (of monitor functions) fields. tAtl} 

For invalid console ID .... -------.,..,-r------.,/ 

Error Module 
(lEE0503D) 

XSA 

Er 

XAE 
(Error Code) 

BASEA 

ErMSBTN (Flags) 

BASEA 

~BAMDNITR (Flags) 

UCMEs 

~ReqUest 
~ Type 

MPLPROC 
(Processing Flags) 

MPLTYPE 
(Monitor Types) 

MPLID 
(Source 10; Terminal 
or Console) 

BASEA 

IRl Count L!:::!J Fields 

ABEND Code 077 



Diagram 2-29. Starting (IEE7103D) and Stopping (IEE5503D) Monitoring Functions (part 2 of 4) 

~ 

Extended Description 

This processing handles requests to start or stop event­
driven displays of direct access space, data set names 

and job names, and so on. The processing uses a communi­
cations task routine, IEAVMNTR, to adjust fields in 
response to MON ITOR and STOP MON ITOR commands 
with the operands SESS, STATUS, or JOBNAMES. 

1 If the input stream contains the command, the 
console ID = O. 

2 The time field in BASEA is cleared with the follow­
ing operands: 

JOBNAMES, SESS, STATUS, SPACE, or 
DSNAME, as follows: 

Input Time 
Stream Sharing 

or (Operator 
Console Mode) 

JOBNAMES(,T) valid valid 

STATUS valid valid 

SESS(,T) valid valid 

SPACE valid invalid 

Subsystem 
Console 
(JES3) 

invalid 

invalid 

invalid 

valid 

DSNAME valid invalid ~i~ 
- - - ------_.-

The MONITOR and STOP MONITOR operands and their 
validity by source. 

a 3 This parameter list address is at field XAR in the 
o' XSA. 
= 
~ 

ac 
:l 
[ 
o ..... 
o 

"0 
~ 
~ 
o' = 
~ w -VI 

4 The request type bits indicate the stopping or 
starting of a monitor request. Count fields indicate 

function (STATUS, JOBNAMES, or SESS). The count 
indicates the total number of consoles (and terminals) 
that are monitoring a given function (one count field per 
functionL 

Note: CMS and local lock enable a serial use of the UCME. 

Module Label 

IEE7103D 
(For Monitor} 

IEE5503D 
(For Stop 
Monitor) 

IEAVMNTR 



!!! Diagram 2-29. Starting (IEE7103D) and Stopping (IEESS03D) Monitoring Functions (part 3 of 4) 
C; 

~ 
~ 
N 
~ 

~ 
~ 

i 
t)' 
r­a: 
~ 
< 

f 
<II 
N 

'< 
ell 
N 

::0 
<II 
(D ., 
~ 
1M 

~ 

Input 

CVT ASVT ASCB 

I~ 
CVTASVT ASVTASCB ASCBTSB 

(Not 0 = 
TSO) 

Process 

5 For a request from a terminal, 
create and/or update the monitor 
queue element (MOE). 
Update BASEA count fields. 

a) For an error during creation of 
MOE, set return code. 

b) If stopping monitor action and 
all MOEs are off the chain, 
post the termination ECB for 
the entry point I EAVTPUT in 
module IEAVMASV . 

6 Free storage and return. 

IEE00030 

Output 

~
OE MOEIO 

(Terminal 10) 

Request Type 

R15 

Q---. Return Code 



til 

a o· 
= 
~ 

a:: 
~ go 
Q. 

a. 
o 
~ 
(D a o· 
= 
~ 

~ -..... 

Diagram 2-29. Starting (IEE7103D) and Stopping (IEESS03D) Monitoring Functions (part 4 of 4) 

Extended Description 

5 For terminal requests, monitor queue elements 
(MOEs) are chained together. An MOE is removed 

from the chain if all request type bits are off. The MOEs 
reside in the Common Service Area (CSA). TSO use of 
SPACE and DSNAME operands is invalid. (That is, module 
I EAVMNTR does not handle these two operands.) 

Note: CMS and local locks enable a serial use of the MOE. 

6 Storage was used for initial saving of register 
contents. 

Module Label 

IEEVMNTR 

IEAVMNTR 



N 
~ 
;; 

o 
til 

"< til 
N 
til 
'< 
~ 

9 
i (S. 

r-
~ 
~ 
<: o 

= 3 
('D 

N 

'< 
til 
~ 

:=0 
('D 

i 
~ 
w 

~ 

Diagram 2-30. Routing Messages (MR) to Consoles (IEE6303D) (part 1 of 2) 

Input 

lu;r;:CT" 
_I 

* Routing Control Table 

R2 

XSA 

~consolelD 

/ 
Command 
Buffer 

J 
RCT Chain o 

Command 
Router 
(IEE0403D) Process 

1 Check command syntax. 

MSGRT 

• If error. 11 a Command 
., Handler 

(JEE6403D) 

'~ :9':> 2 Determine if RCT or 
appropriate RCT entries are 
present. 

~ 

=> 

a) Get new RCT if needed. 

b) Free any RTCs that are found. 

3 Update entry for command 
operands 
a) Process initial display. 

or 
b) Process display continuation. 

4 Scan RCTs and build appropriate 
display. 
a) Process initial display or 

b) Process display continuation. 
5 Write the command. 

6 Release locks and exit. 

MSGRT and CONTROL Command 
Message Modu Ie (I E E5603D) 

---" 
y 

.... 

Output 

R2 XSA 

G B-XASCID 
(Routing 
Informat;on 

UCME 

BRCT 
f RCT 

y ~'''~''''~'''''~~ 

J.. 

DorQ 
--y 

Paper or Graphic Output 



til 
(I> 

~ 
3· 
::s 
~ 
;c 
a 
& 
o 
""" o 

"0 
Q 
~ 
3· 
::s 

N 

~ 
\C) 

Diagram 2-30. Routing Messages (MR) to Consoles (IEE6303D) (part 2 of 2) 

Extended Description 

Message routing commands direct the output of 
status-display commands to the indicated display 

area on a console. 

1 If the command has the REF operand or if there 
is a default due to the lack of an operand, go to 

step 4. If it does not have a REF operand, the routine 
establishes default routing for DISPLAY, TRACK, 
STOPTR, and CONTROL commands. 

2a The routing control table (RCT) has a prescribed 
number of entries. If the table is full, the routine 

uses the GETMAIN macro instruction to get storage for 
a new RCT and chains the new RCT to last RCT. 

Note: Local and cross·memory-services (CMS) locks are 
held during this process. 

2b For the operand NONE, the storage for any 
existing RCTs is released. 

3 There is one a-byte RCT-entry per command 
operand. An RCT entry contains the command 

parameters and the console and display area IDs. 

Note: The UCME pointing to the RCT chain is the 
UCME for the console that issues the command. 

Module Label 

IEE6303D IEE6303D 

TABLECK 

IEE6303D NONERTN 

VERBCOD 

Extended Description Module Label 

4 The display is the MSGRT command that would IEE6403D IEE6403D 
generate the routing requests defined by the RCT 

entries. If the command is not executing under the 
Communications Task (j.e., the command is issued by 
JES3), then the RCT scan to build the message is done 
while holding the CMS and local locks. 

a. Test next operand to see if it will fit in the output IEE6403D BUFCHK 
buffer. If it will not, set up continuation processing 
and place the CONT operand in the message. 

b. If ~he CONT operand is being processed from TSTCONT 
command input and the output buffer is full, purge 
the buffer and re-initialize with RCT entries not yet 
displayed. 

5 For a CRT (display) console, the message is IEE6403D 
inserted in the instruction line in the display 

control module (DCM). For hardcopy output, use the 
WTO macro instruction. If the command is not executing 
under the Communications Task (i.e., the command is 
issued by JES3), the WTO macro instruction is always used. 



N 
W 
~ 

o 
Ie 
~ 
N 
fI) 

'< 
~ a 
~ 

«i ;:;. 
~ 

! 
.5 
< o 
2" 
= (D 

N 

'< fI) 
N 

" f 
~ 
~ 

:.... -

Diagram 2-31. Quiescing (QUIESCE) a System (IEEMPS03) (part 1 of 4) 

Master Scheduler wait routine 

Input (via ATTACH) (lEEVWAIT) Process 

R1 .. 
..lo.. CSCB V CHUCMP 

I\.. c:::=:::Y (Console 10) ) 1 Determine JD of the receiving console. 
y 

!;=] 
!cHINC 

I\.. 
(Authority) 2 Determine if command-issuing authority 

y 
is valid. 

If error, 

Loc. X'10' 

1 \1 to.) 3 Perform initialization. 
~CVT v 

If error, 

I~~~ 4 Fix the work area and problem 
program pages in storage. 

CVTCSD 

CSDCPUAL 
If error, 

5 Establish protection for restart 

CVT 
...., processing resources . 

c:::3' 
___ CVTRSTWD 

P 
J I\.. 

~ ) 6 Obtain resource for stop/restart v 

'rI-
processing. 

LCCA PSA If error, 

l=tJ 
~ 

L=tJ 
\ \ 9.···" f?'," .,,!~ ,'. , .,,-,., 

~ 

LCCACPU PSALCCAV " 

Output 

.. 
'" Step 8 

Work Area 

I\.. I I v ... (Used by IEESTPRS) 
" Step 8 

... 
" Step 9 

CVT 

~> I or ~ CVTRSTWD 

I 
y I) 1\ ; 

... 
r Step 8 

CPUID OS -



C"J'.) 
~ 

II o· 
= ~ 
~ 
~ 

[ 
o .... 
o 

"C:I 
~ 

~ o· 
= 
~ 
~ 
~ -

Diagram 2-31. Quiescing (QUIESCE) a System (IEEMPS03) (Part 2 of 4) 

Extended Description 

This routine suspends system activity by placing 
the active CPUs in a manual or wait state. If 

accurate job step timing is to be maintained across a 
stopped state, the quiescing function must be used. 

1 This is the console that will receive 
operator messages. For the master console and 

reader sources, the master console receives the mes­
sages. Messages from invalid console sources are sent to 
the requesting (or issuing) console. 

2 This command may be issued only from the master 
console or from a reader with the same authorization 

as the master console. 

3 The routine establishes a recovery routine (an 
ESTAE exit for abnormal end situations), it 

serializes the reconfiguration commands by using the 
ENQ macro instruction on the resource, SYSZV ARY, 
CPU to serialize command processing in a multi­
processing environment, and it gets storage for a work 
area in the local system queue area. 

4 The routine uses the PGFIX macro instruction to 

make both its own code and the dynamic data area 
unpageable. This prevents page faults while the CPU is 
disabled. 

Module Label 

IEEMPS03 

SETUP 

PAGEFIX 

Extended Description 

5 The routine uses the SETFRR macro instruction 
to build FRR protection for the resources that 

are obtained by the compare and swap routine. 

6 The routine first builds a resource word in its 
own storage area. This word contains both the 

CPU I D (of the CPU on which the command is being 
processed) and the EBCDIC value 'QS' (to indicate that 
QUI ESCE command processing is in progress). Then 
the routine enters a loop in which it checks the restart 
word CVTRSTWD for a null value. A null value indi­
cates the availability of the restart resource. Through­
out the compare and swap loop, the routine uses the 
WINDOW macro instruction to enable the system for 
malfunction alerts (MFAs) and emergency signals 
(EMSs) that will be pending if the other CPU (in a 
tightly-coupled MP system) fails. If MFAs or EMSs 
are pending, then the routine will invoke the alternate 
CPU recovery (ACR) routines. 

When the stop/restart resource is available, 
(CVTRSTWD has the value zero), module IEEMPS03 
inserts its resource word value into the field CVTRSTWD 
to serialize the use of the restart resource. This permits 
a safe changing of the restart new PSW. 

Module Label 

SWAPWORD 



~ Diagram 2·31. Quiescing (QUIESCE) a System (IEEMPS03) (part 3 of 4) 
~ 
~ 

o 
f'-) 

"< f'-) 
~ 

~ 

i 
i 
n' 
t:: 
~ 
~ 
~ 
C 
51 
(D 

~ 

'< 
f'-) 
~ 

~ 
if 
Wl 
1M 

:... -

I I I I I 
I--I 
I I 

CVT 7 CalilEESTPRS to stop the system so 

I ~c~JRS 
a restart interruption may bring the 
system back into operation, 

,.""; .. 
Work Area 

D 
8 Free resources, and issue appropriate 

message. 

~ '" ~'~ ~'&ll~' ~.~ 

:m 
9 Process abend conditions 

occurring during processing, 

~.wIl¥l4.tri.urt11ffiliWII?ifi'%lk~~¥ __ ;'·· 

k* 

Message 

svc { mR~D I 0 I EXIT 
(SVC3) LCCARSTR 

I 0 I Step 8 

., 



CI.l a o· 
= 
~ 

a:: 
~ 

[ 
o -. 
o 
'e 
~ 
~ 
0' 
= 
~ 
IN 
N 
IN 

Diagram 2-31, Quiescing (QUIESCE) a System (IEEMPS03) (part 4 of 4) 

Extended Description 

7 The stop and restart routine (I EESTPRS) is 
used by the QUI ESCE command processor to stop 

all operating CPUs. See the diagram, Stopping and 
Restarting the System. 

Depressing the REST ART button causes the CPUs to 
restart. 

8 This processing includes resetting the resource word 
in the CVT, resetting the dispatcher lock, freeing 

page~fixed storage and work areas, dequeueing the 
SYSZVARY, CPU resource, and issuing messages via the 
WTO macro instruction. 

9 For ABEND conditions occurring while the module 
holds the CVTRSTWD or LCCARSTR resource, a 

functional recovery routine frees the resource. For all 
ABEND conditions, an ESTAE routine records the diag­
nostic work area (if one is available), dumps dynamic 
storage, and gives control to the CLEANUP subroutine. 

Module Label 

IEEMPS03 STPRSTRT 

CLEANUP 

FRRRTN 

ESTAERTN 



~ 
W 
N 
~ 

o 
CI.l 

~ 
N 
CI.l 
'< 

~ 
t""' 
~ 
~. 

t""' a: 
~ 
-< o 

~ 
(D 

N 

< CI.l 
N 

::t' 
(D 

;-

~ 
w 
~ 
'-' 

Diagram 2-32. Replying (R) to Information Requests (lEA VVRPl) (part 1 of 6) 

Input 

R2 

CVT 

XAL 

(4 Reply Buffed 

XAU 
(Authorization) 

OREWOE 

OREJD 

L-~ __ .OREXC 

(Deletion 
Indicatod 

WOEROUTI 

XAL 

Command 
Router (JEE0403D) 

1 Set serialization locks and 
functional recovery routine (FRR). 

2 Validate the reply JD and scan for 
an ID match with OR Es on the 
ORE chain. 

Error:] I 
3 Determine the r~ply authorization. 

Check syntax of reply text. 

Error: 

Step 9a 

Step 9a 

4 Set up temporary buffer for" "Jt::; 
reply text. 

5 Check security of the response. 7j ",,'L0:t 

ORE 

BroREOPBUF 

(+ Temporary 
Buffer) 

/ \ 
/ \ 

Buffer 



\J'l 
~ 

sa. o· 
= 
~ 

a:: 
~ g 
Q. 
o .... 
o 

't:I 

S 
5-
= 
N 
W 
N 
til 

Diagram 2-32. Replying (R) to Information Req nests (lEA VVRPl) (part 2 of 6) 

Extended Description 

This routine places the text of a message response 
into a user's buffer and provides a console message 

to indicate reply acceptance. 

1 Local and CMS locks serialize the use of the ORE 
and WQE. 

2 If the reply 10 is valid (that is, a one or two digit 
decimal number) the ORE chain is searched for a 

matching ID. An ORE is not scanned if it is either marked 
for deletion, marked 'suspended', partially processed, or 
lacks an associated WQE. 

3 Input stream authority is indicated by XAU=O. 
Console authority requires input from either the 

master console or a console with a matching 10, or a 
console (whose I D is given in register 0) that is queued 
conditionally, or a uniquely specified console, or a con­
sole that has either route code matching or message type 
matching. For a non-null reply, the reply text must have 
proper quotation mark syntax and a length compatible 
with the WTOR user's buffer. 

4 A buffer is needed for moving the reply to the user's 
buffer, which is in the user's memory. The buffer is 

obtained from the common storage area. 

5 When the associated WQE indicates that an operator's 
reply is a security response (routing code=9), the 

routine overlays the text portion of the operator's reply 
with the word "suppressed." 

Module Label 

IEAVVRP1 SETLOCK 

VALIDATE 
SCANID 

AUTHOR 

SYNTAXCK 

GETBUF 

SECURITY 



t-.> 
~ 
t-.> 
0'\ 

£ 
~ 
t-.> 
!:'-l 
'< 
~ 

~ 

~ 
ri· 
t"'" 

~ 
~ 
~ 
~ 
~ 

t-.> 

'< 
!:'-l 
t-.J 

~ 
~ 

i 
~ 
~ 

~ 

Diagram 2-32. Replying (R) to Information Requests (lEA VVRPl) (part 3 of 6) 

Input Process Output 

UCM 

~ 
UCMSYSGC 

UCMSDS1A 

UCMSDS1B 

SRBPTCB 

(+ TCB) 

SRBPASID 
(ASID) 

SRBPARM 

OREKEYO 

OREXC 

OREWOE ( • WOE) 

IEAVVRP2 

6 For hardcopy output, move buffer 
text to hardcopy buffer. 

7 Schedule asynchronous movement' "'%il 
reply processing routine to 
user's memory. 

8 Release the serialization locks. 

9 Send 'reply accepted' message. <1!! ~. 

1 
10 

Write error message. ./m 

Set serialization locks. 

Scan OR E chain for valid match 
of reply IDs in OR E chain to 
input reply 10. 

12 Check validity of user's buffer. >11 "\.~ 

Error: 

13 Move reply text from temporary 
buffer to user's buffer and post 
the user's ECB. 

Post the reply ECB to have reply 
10 processed. 

RO 

Reply 10 WOE Sequence 
Number 

Console Message 

c:1 
Error Message 

[;:'J 
ABEND Code E23 

ECB 

D User's Buffer 

B 



CI'.l 
~ 

~ 
o· 
= N 

::: 
~ 

~ 
8-
o .... 
o 
'0 
~ 
~ o· 
= 
N 
~ 
N 
....,J 

Diagram 2-32. Replying (R) to Information Requests (lEA VVRPl) (part 4 of 6) 

Extended Description 

6 A WTO macro instruction indicating "Hardcopy only" 
writes the message to the hardcopy device. 

7 The SCHEDULE macro instruction provides for 
further processing to occur in the user's memory. 

The service request block (SRB) acts as a cross-memory 
interface. 

8 These are the local and CMS locks. 

9 This message goes to all consoles that received the 
original WTOR message. 

The operator receives the error message. 

10 The local and CMS locks serial ize the use of the 
ORE and WOE. 

11 The reply 10, received from IEAVVRP1, is com­
pared with ORE IDs. If a match is found with a 

valid ORE (see step 2), the WOE sequence numbers are 
compared. 

12 If the user is not in key 0, the routine checks the 
beginning and ending addresses of the user's buffer, 

and checks the ECB for a valid value. 

13 The reply text is placed in the user's buffer for 
output and the module posts the user's ECB. 

14 The reply 10 (field UCMRPYI) is set to indicate 
the reply is available. The associated ORE is removed 

from the ORE chain. The reply ECB is posted with a cross­

memory POST macro instruction. 

Module Label 

IEAVVRP1 HARDCOPY 

SCHED 

IEAVVRP1 RELEASE 

ACCEPTED 

I EAVVRP2 SCAN ID 

VALCHK 

MOVEPST 

AVALID 
OREREMN 

POSTOECB 



~ Diagram 2-32. Replying (R) to Information Requests (lEA VVRP2) (part 5 of 6) 

~ 

o 
~ 

'< 
~ 
t-.J 
~ 
'< 
~ 

~ 
t"" 
~ 
n' 
t"" 
c;: 

~ 
<: 
~ 
= 3 
Q 

t-.J 

'< 
~ 
t-.J 

~ 
Q 

;" 
~ 

r6 
C.H 

~ 

Input 

WOE 

I WQEBUFC I 

UCM 

I UCMOECB I 

I UCMDECB I 

Process 

WTO gone to at least one 
console? 

if yes; --t"I"j---" 
go to step 18. • Step 18 

Get copy of WOE. 

Post COMT ASK to issue 
WTO to hardcopy only. 

Step 18 [I. • 18 Create DOM control block 
for this module. 

19 Indicate subsystem exit 
to be taken. 

Post DOM processing 
module (I EAVMDOM). 

21 Free the temporary buffer. 
release the SRB storage. 
and return control. 
Release the serialization 
locks. 

XMPOST 

Dispatcher 
(lEAVEDSO) 

WOE 



CI:l 
~ 

~ 
o· 
::I 

~ 

::: 
~ 

g 
Q. 

o -. 
o 
'0 
~ 

; 
g. 
::I 

N 
W 
N 
-.0 

Diagram 2-32. Replying (R) to Information Requests (lEA VVRP2) (Part 6 of 6) 

Extended Description 

15 Because a reply can be accepted before the message 
has gone to any console, this condition (the WTO 

having gone to at least one console) must be tested before 
the message is deleted from the system. 

16 If the message has not gone to at least one console, a 
copy of the associated WOE is made and a flag is set 

to route the message to hardcopy only. 

17 The COMTASK will be posted to write the message 
to hardcopy on Iy. This is to insure that there is a 

copy of the message issued. 

18 To interface with DIDOCS to delete answered 
WTORs from the graphic screen, a DaM control 

block is built containing the message 10. 

19 A flag in the DOM control block (DOMCSEXT) is set 

Module Label 

IEAVVRP2 POSTOECB 
GETCELL 
GETEXT 

to indicate the subsystem exit is not taken for this DOMC. 

20 The DOM ECB is posted to process this DOM control 
block. 

21 The routine releases the resources used in the processing. FREEBUF 
CLEANUP 



N 
W 
1.1.) 

o 

o en 
"< en 
N 
en 
'< 
~ 

8 
£ 
(;. 

t:: 
0' 

~ 
< o 

= 3 
CD 
N 

< en 
N 

" CD 

i 
r6 
1.1.) 

~ 

Diagram 2-33. RESET (E) Command Processing (IEEMB810) (part 1 of 2) 

Master Scheduler Wait 
Routine (lEEVWAIT) 
via ATTACH Process 

r-~~~~~~~~~~~~~~~~~~~~'" ~ rL~,T,----TT--TT~~~TT~~~~~~~~TT~~~ 

1 Create STAE environment. 

a) If unsuccessful. 
System Control 
Via Dispatcher 
(lEAVEDSO) 

Output 

"R ESET" CSCB 

Enqueue on CSCB chain and find vl:J~ I I 

R1 CSCB 

~ ~(CHBUFI 
"RESET" 
Buffer 

R15 _-r-=-=-1- Keyword length 
I I Keyword address 

R1 

I~ I 
Second Byte 

the job's CSCB. 

3 Scan and verify keyword parameters. 

Error: 

I 
I Error I 

......... Routine 

....... (IEE0503Dl! 

I nterface with system resource 
manager (SRMI. 

Message 
I "] I Module 

'* (lEE0503D) 

To System Control 
via Dispatcher 
(lEAVEDSO) 

R2 XSA * 

R1 

XAU 

XAV 

XAE 

Qf .AReturn Code 

( Byte Two 

*Contents of three fields used by 
IEEMB810 

1. I D of console issuing command. 

2. "RESET". 

3. I D of applicable message. 



til 
(D 
() g. 
= 
~ 

~ 
(D g 
0-
o .... 
o 

'"0 
~ 
~ o· 
= 
~ 
tN 
tN .... 

Diagram 2-33. RESET (E) Command Processing (IEEMB810) (part 2 of 2) 

Extended Description 

This routine changes the performance group speci­
fication for an executing job and passes the infor­

mation to the system resource manager (SRM). The 
change is in effect only for the duration of the current 
job step. 

1 This environment handles ABEND situations. 

Module Label 

IEECB860 

a. The CSCB for the command is released before return IEEMB810 ISSUSTAE 
to the SVC 34 issuer. 

2 If the CSCB is absent from chain, the routine issues an 
error message. 

3 The RESET command buffer contains job ID and 
keyword parameters. 

The routine uses the IEEBUFSC macro instruction to do 
the scan. 

Invalid parameters result in an error.~ 

4 The SYSEVENT macro instruction with the 
RESETPG and ASID options provides the interface 

to pass information to the SRM to change the perfor­
mance group values. 

5 Return codes other than 4 and 8 indicate performance 
value change is accepted by the SRM. 

Note: Module IEEMB810 constructs a simulated XSA for 
use by the message module, IEE0503D. 

IEE0503D 

IEEMB810 SCANNAME 

GETBUFSC 

IEE0503D 

IEEMB810 SYSEVENT 

IEEMB810 CHECKRC2 



~ 

~ 
w 
~ 

~ 
"< f"'-l 
~ 

f"'-l 
'< 
=-
~ 

i 
(:;. 

t"" a: 
~ 
-< 
-< o 

= 3 
(II 

~ --< 
f"'-l 
~ 

~ 
(II 

i 
~ 
w 
:.... -

Diagram 2-34. Sending/Saving/Listing (SE) Messages (IEEVSEND) (part 1 of 3) 

Input 

R1* 

Master Scheduler Wait 
Routine (via Attach) 
(lEEVWAITl Process Output 

~
SCB 1 Determine the functions to be /l$'!l: 

Command 
Buffer 

* For subsequent Processing, 

R1 r-J ~. t Parameter List for all 
~. modules except 

IEEVSND4. 

For IEEVSND4 
R1 j ~T Common Area built by 
~ IEEVSEND as 

communications area. 

CVT BASEA 

~tCSCB 'U U - Queue 

performed and process 
accord ingly. 

• Issue TPUT macro instruction 
for terminal messages; 

or 

• Issue WTO macro instruction 
for console operator messages. 

Error: 

2 Release the CSCB. 

SVC EXIT (SVC 3) 

IEEVSND4 

Data Set 

Hardcopy 
Message 



CI.l 
(!) 
n g. 
= N 

s:: 
(!) 

[ 
o ..., 
o 
~ 
(!) ... 
~ g. 
= 
N 
W 
w 
w 

Diagram 2-34. Sending/Saving/Listing (SE) Messages (IEEYSEND) (part 2 of 3) 

Extended Description 

This routine provides communication (messages) 
between an operator and the console by using the 

SYS1.BRODCAST data set. Prior to the SEND command 
processor receiving control, preliminary checking and proc­
essing has been performed by modules I KJ803D and 
IEE0803D. (The latter module has built the CSCB for this 
task processor.) 

1 The command operand field contains necessary func­
tion requests. The operand syntax is checked. The 

processor operates in one of the following modes as 
indicated by the keyword shown on the command: 

LIST 
TEXT 
MESSAGE NUMBER (MSGNO) 

Based on the processor mode operand and subsequent 
descriptive operands, processing occurs in the manner, 
and by the module(s), indicated after the description 
for step 2. (See Part 3.) 

For error conditions, retrieve the appropriate error message 
text. Send message either to console operator via WTO 
macro instruction or to terminal user (in operator mode) 
via TPUT macro instruction; then return to caller. 

2 Control returns to the call ing routi ne. 

Module Label 

IEEVSEND IEEVSEND 

IKJEES20 

IEEVSND4 



2·334 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



CI) 
('D 

~ So 
= 
~ 

~ 
('D 

[ 
o 
~ 

o 
"CI 
~ 
~ So 
= 
~ 

~ 
~ 
til 

Diagram 2-340 Sending/Saving/Listing (SE) Messages (IEEVSEND) (part 3 of 3) 

Processing description referred to in step 1 : 

Mode Operand(s) 

TEXT ALL 
NOW 

LOGON 

SAVE 

USER 

NOW 

LOGON 

SAVE 

BRDCST 

CN 

TEXT OPERATOR 

LIST (none) 

Action 

Uses high priority TPUT macro instruction to 
send message to all logged-on users. 

Uses low priority TPUT to send messages to all 
logged-on users. Then save the message in the 
'notice' section of the broadcast data set. 

Saves the message in the 'notice' section of the 
broadcast data set. 

Uses high priority TPUT macro instruction to 
send message to all specified users who are 
logged on. 

Uses low priority TPUT macro instruction to 
send message to all specified users who are 
logged on and can receive messages. Other­
wise, saves the message in the 'mail' section 
of the broadcast data set for each specified 
user who did not receive the message. 

Saves the message in the mail section of the 
broadcast·data set for each specified user. 

Uses the WTO SVC (3S) to send the message 
to all active consoles. 

Uses the WTO SVC to send the message to the 
specified console. 

Uses the WTO SVC to send the message to the 
indicated functional area. 

Retrieve all messages from the notices section 
of the broadcast data set and send them either 
to the console operator via a WTO macro 
instruction, or to the terminal user (in oper­
ator mode) via a TPUT macro instruction. 

Module 

IEEVSND6 

IEEVSND6 
IEEVSND8 
IEEVSNDS 

IEEVSND8 
IEEVSNDS 

IEEVSND6 

IEEVSND6 

IEEVSND2 
IEEVSNDS 

IEEVSND2 
IEEVSNDS 

IEEVSND6 

IEEVSND6 

IEEVSND6 

IEEVSND2 
IEEVSNDS 

Mode 

MSGNO 

MSGNO 

MSGNO 

Operand(s) Action Module 

ALL 

NOW Retrieves the specified message from the broad- IEEVSND3 
cast data set. Then proceed as for TEXT ALL/ IEEVSNDS 
NOW. IEEVSND6 

ALL 

LOGON Retrieves the specified message from the broad- IEEVSND3 
cast data set. Then uses a low priority TPUT IEEVSNDS 
macro instruction to send the message to all IEEVSND6 
logged on users. 

SAVE This is a meaningless command since the mes-
sage denoted by 'MSGNO' already exists in the 
'notices' section of the broadcast data set. 
Therefore, no action is taken. 

USER 

NOW Retrieves the message from the broadcast data IEEVSND3 
set and continues processing as for TEXT IEEVSNDS 
USER/NOW. IEEVSND6 

LOGON Retrieves the specified message from the broad- IEEVSND3 
cast data set and then continues processing as IEEVSNDS 
for TEXT USER/LOGON. IEEVSND6 

IEEVSND2 
IEEVSNDS 

SAVE Retrieves the specified message from the broad- IEEVSND3 
cast data set and proceeds as for TEXT USER/ IEEVSNDS 
SAVE. IEEVSND2 ~ 

IEEVSNDS 

BRDCST Retrieve the specified message. Use WTO SVC IEEVSND3 
to send the message to all active consoles. IEEVSNDS 

IEEVSND6 

CN Retrieve the specified message. Use the WTO IEEVSND3 
SVC to send the message to the specified IEEVSNDS 
console. IEEVSND6 

OPERATOR Retrieve the specified message. Use the IEEVSND3 
WTO SVC to send the message to the indicated IEEVSNDS 
functional area. IEEVSND6 

LIST Retrieve the specified message. Send it to IEEVSND3 
either the console operator via a WTO macro IEEVSNDS 
instruction or to the terminal user in operator 
mode via a TPUT macro instruction. 

DELETE Delete the specified message from the IEEVSND8 
'notices' section of the broadcast data set. IEEVSNDS 



N 
~ 
w 
0'1 

&5 
"< (I} 
N 
(I} 

'< 
~ 

3 
r-
~ 
n' 
r­
a: s 
-< 
-<: 
o 
C 
3 
CD 

N 

~ 
(I} 
N 

~ 
CD 
(;" 
~ 

~ 
w. 

~ 

Diagram 2-35. Setting (T) Local Time (IEE0603D) (part 1 of 4) 

Input 

R2 

XAR 

(! Command 
T Buffer) 

XAL 

(! Keyword 
T Parameter List) 

R10 BASEA 0, 

XSA 

r5XAE 

Command 
Router 
(lEE0403D) Output 

1 Set up error recovery (EST AE) exit. 

2 Check operand and parameter m. v'Lifij 

validity and syntax. 

Error: Step 4a 

3 Process operands according to .... v1ifl1 
parameters specified. @{j ,~* 

4 Check for incompatible or invalid 00/.1 Vliij 
parameters. 

al If error, w.rite error message. Command 
Router 
(lEE0403D) 

5 For CLOCK or RESET parameters, .,.1 /1if4! 
get current TOO clock value. 

Error: Set Command 
Processor 
(lEE0603D) 

R2 

BASEA 

~ Completion Code 

Message 

XAS 
(Time) 

L--J 
XSA 

~XAP o (TOO Value) 

Message 

L-J 



til 
~ 

~ 
5' 
:I 

~ 

a:: 

i 
o .... 
o 

"C 

i 
5' 
:I 

~ 
IoN 
IoN 
-.oJ 

Diagram 2-35. Setting (T) Local Time (IEE0603D) (Part 2 of 4) 

Extended Description 

This routine satisfies requests to change the local 
date and time of day after the initial IPL setting. 

1 For unexpected failures (for example, program 
checks)' This subroutine gets control, sets the 

completion code, and return to the supervisor's 
recovery termination management routines. 

2 The parameters are checked against the values in a 
k~yword table. 

3 The appropriate operand values are "packed" into 
a save area. 

4 For example, specifications of the RESET and 
DATE parameters, or specification of the GMT 

parameters. 

5 The routine uses a STCK (store clock) instruction 
on the CPU that is currently executing. If this 

procedure is unsuccessful, the routine issues a TIME 
macro instruction to obtain the current value of the 
TOO clock setting from another CPU. If this processing 
fails, the operator receives notice that his request cannot 
be satisfied - that is, the system lacks a good TOO 
clock. 

Module Label 

IEE0603D 

SNEWKY 

IEE0603D SCLOCK 

IEE6503D 
IEE6603D 

SDATE 



l-.J 
~ 
~ 
OCI 

o en 

~ 
l-.J 

~ 
~ 

3 
£" 
(;. 

r-
~ 
.5 
<: 
o 
C 
3 
~ 

l-.J -<: en 
l-.J ,., 
~ 

i 
~ 
~ 

~ 

Diagram 2-35. Setting (T) Local Time (IEE0603D) (part 3 of 4) 

Input 

TPCTZORG 

TPCHDCCO 

§rXAP 
o 

19 
~BASEA 

I 

~CVTTPC 

XSA 

TOEs 

~TOEVAL 
~ (TOO Valuel 

1 

§rXAR 

;;','~, 

~i 
rl~ 
~;~ 

Process 
y 

1
8 

::i::=< 

<:~ 

;:Y 
6 For RESET, get new time zone 

constant. 

O
t? 

~~ ... '~. I I:',·,~ I " :'; .• ",", 

?J ,,\:j 

(lEE0003D) 

Output 



en 
~ 

ll. 
5· 
= 
~ 

== (I) 

[ 
o -. 
o 
"0 
~ 
~ 
5· 
= 
N 
~ 
w 
1.0 

Diagram 2-35. Setting (T) Local Time (IEE0603D) (part 4 of 4) 

Extended Description 

6 This I PL-generated constant is needed to reset the 
local time. The value was saved in field TPCTZORG 

at IPL time. 

7 The routine uses the TOO value previously obtained 
(see step 5) and the time zone constant (from field 

TPCTZORG - see step 6) for this process. 

8 The routine uses the stored TOO clock value and the 
operator-entered clock value. 

9 The time zone constant is stored in the CVT. 

10 The TQE queue search ends when a dummy TQE 
(that is, the last one on the chain) is found. The 

elements are updated with a previously calculated correction 
factor. The correction factor equals the difference between 
the old and new TOO values. If the only operand is DATE, 
the factor=O. 

11 If other than RESET, the routine uses the correction 
factor (see step 10) to update the midnight time 

element. It also moves the date (if specified) to the CVT. 

12 If the IPS operand is found, control goes to module 
IEE0803D. If it is not found, return control to 

IEE0003D, via a branch on register 14. 

Module 

IEE6503D 

IEE0603D 

Label 



~ 
~ 
~ 
Q 

~ 
~ 
N 
I:I.l 
'< 
~ 

9 
t"" 
oi 
()' 
t"" 

~ 
~ 
-< o 
C 
= ~ 

N 

< I:I.l 
N 

l:IO 
~ 
(D' 
Q:I 

~ 
I.H 

~ 

Diagram 2-36. Changing IPS Values (T IPS) (IEEMB811) (part 1 of 2) 

R1 CSCB 
"'-1 1 

1 Keyword 

r ~ 1 R15 
Length -, 

I +---"1 CHBUF 
(IPS Parameters) 

Return Code from Scan 

I I 
~O Continue 

4,8 Error 

61 Buffer in CSCB 

CY"'IC I 
- IPS Value 

~SYS1.PARMLIB 

[3/ ASID SYSEVENT Code 

R1 
Address of WMST 

R15 Return Code from SRM 

I 

Master Scheduler Wait 
Routine (via ATTACH) 
(JEEVWAIT) P .. 1 Establish STAE environment. 

a) If unsuccessful. 

'\ 2 Find and scan IPS keyword. 
y 

'" ) 3 Determine parameter validity. 
v 

a) Invalid parameters. 

'" ") 4 Verify existence of SYS1.PARMLIB 
Y member containing IPS data and 

open SYS1.PARMLIB. 

t 

.... ) 5 Get PARMLIB member and 
Y initialize control blocks. 

Error: 

"'") 6 Change the IPS values. 
y 

o 
' W&?~bAlf""pJf~$""" ~ 

R1 CSCB 

System ~ 
YCHBUF 

... Control via 
" Dispatcher 

(JEAVEDSO) R15 
.... I I PS Parameters 
y 

Invalid- D tI. condition 
-y Message ... 

--, Step 7 

R1 

"', ~ 
Y 

R1 

~WMST (Workload .... 

I Manager 
Y I Specff iC8ti on 

Table) 
... 

Step 7 
--" '~ 

R1 

.... .D (See Input) 

y 

JA, 

" '. 

R1 Parameter 
I .... .... ) 7 Evaluate return code, and issue ~~I D Interface Module 

Y message. 

.t.system cont~ 
Message No. 

0= Continue IPS Value 
Non 0 = Error 

via Dispatcher ", ,. 

(lEAVEDSO) 

~';AWIJ 

I 

~ 



I:I.l 
(D 

sa. 
(5' 

= ~ 

ac: a 
& 
sa. 
o 

'tS 

! 
(5' 

= 
~ 
~ 
~ .... 

Diagram 2-36. Changing IPS Values (T IPS) (IEEM8811) (part 2 of 2) 

Extended Description 

This process changes the system installation perform­
ance specifications (IPS) under which a system is 

operating. 

1 This environment handles ABEND situations. 

a. Storage for the appropriate CSCB is released before 
returning control. 

2 The IEEBUFSC macro instruction searches the buffer 
(CHBUF) for the IPS keyword and associated 

parameters. 

3a The error message is issued by' either of two modules, 
based on message information in the one-word param­

eter list. For module IEE0503D, module IEEMB814 con­
structs a simulated XSA to contain the message information. 
Module IEEMB814 gives control to module IEE0503D for 
messages based on a scan of the IPS keyword of the SET 
command. 

Module Label 

IEECB860 

IEEMB811 ISSUSTAE 

IEEMB811 SCANNAME 

IEEMB814 
IEE0503D 

4 The PARMLIB member defines the System Resource IEEMB812 
Manager (SRM) interface to set up for the IPS 

modifications. 

Extended Description 

5 The SRM performs a syntax scan on the IPS list 
in SYS1.PARMLIB and builds the new WMST. 

6 The system resources manager receives control 
via the SYSEVENT NEWIPS macro instruction. 

SRM invokes the set-to new-IPS subroutine via 
IRARMEVT. This routine places each user into a 
valid performance group in the new IPS. It then 
indicates these changes to the workload manager. 
Finally it posts the SET IPS keyword processor 
and updates the pointers to the new IPS in the SRM 
control table (RMCTWMST). The address of the 
old WMST is returned to permit freeing its area. 

7 Control actually returns from SRM via 
IEEMB812. Module IEEMB814 either writes 

a message based on the return code from module 
IEEMB812 Or gives control to module IEE0503D 
for the message based on a scan of the I PS keyword 
of the SET command. 

*This module is described in the MF/1 section of 
this book. 

**This module is described in the System Resource 
Manager section of this book. 

"**This module is described in OS/VS2 System 
Initialization Logic. 

Module 

IRARMIPS*** 
IRBMFANL* 

IRARMEVT 

IRARMINT 
IRARMEVT** 

IRARMSET 
IRARMWLM 

IEEMB811 
IEEMB814 

Label 

IGC095 
(viaSVC 95) 

IRARME32 
IRARMIPS 

IRARMWMN 

<: 
I:I.l 
~ 
Q 
~ 

00 
CKRETURN 

0 
~ 



~ Diagram 2-37. Stopping Periodic Track (Status) (PT) Displays (IEE7S03D) (part 1 of 4) 
~ 
N 

~ 
N 
rIl 
'< 

~ 
i n· 

~ 
~ 
t­
[ 
ell 
N 

~ 
N 
Q 
CN 

00 
Q 
-.J -

Input 

R2 

R2 XSA 

XASCID 
(Console 10) 

XAU 
(Console 10) 

XAA 
(Input Indicator) 

XAN 
(Verb Code) 

(. Operand in Buffer) 

~ 
UCMES~RCT 

From Step 2-4 
XSA 

XAN 

XAL 

XAS 

XAX 

Command 
Router 
(IEE0403D) Process 

1 Save registers for JES2. 

2 Set local and CMS locks. 

"3 If command requester I • Go to 
is JES2. Step 7 

4 Check for and, if found, validate the 
console 10 and target display area. 

5 If routing parameter is missing, 
obtain default values. ..=JJ 

6 Determine console authority, 
activity, and status conditions. -n 
Go to step 8. ~ 

Output 

R2 

~ 
~XASAVSTD 

R2 

~ 
R2 

~ 

XAXSACB 

<. SACS) 

XAS 
(Target Console 
10 and Area 10) 

R15 

Return Code ..--D 

7 Validate the screen area request 
for JES2. 

JES2 (HASPCOME) 

8 Validate the command operands. 



en 
~ n 
S· 
= N 

a: 
~ :; 
8-
o .... 
o 

"0 
~ 

'"' a o· 
= 
N 

W 
~ 
(,o.j 

Diagram 2-37. Stopping Periodic Track (Status) (PT) Displays (IEE7503D) (part 2 of 4) 

Extended Description 

This routine halts or reduces the display of information 
being produced as a result of a previous TRACK 

command. 

1 This step and input (to step 3) applies to JES2-issued 
command requests only. 

2 The locks serialize the use of the SACB and the 
UCME. 

3 For JES2 command requests, console validation proc­

essing is bypassed. 

4 The XAA field in the XSA must contain X'OO' indicat­
ing a non-TSO terminal input. (A TSO terminal request 

for this processing is invalid.) The target display area is the 
screen area that has been receiving the information. 

5 Use as default values either those values in the routing 
control table (RCT) built to satisfy a previous 

MSGRT command for TRACK command processing or the 
routing parameter ("L") information applying to the re­
questing console. 

Module Label 

IEE7503D IEE7603D 

IEE7503D 

Extended Description 

6 An example of console parameters follows: 

• A target CRT console must be active. 

• A source/receiving console must have routing authority. 

• A target CRT console must have a requested screen area 
that is defined by a screen area control block (SACB) and 
that contains an active track display. 

7 Determine the availability of a valid, active console 
with a free area that can receive status displays. 

Return codes passed to JES2: 

code 
o 

4 
8' 

12 
16 

8 

meaning 
Valid routing request (that is, the display may be 
written). 

Area contains a status display. 
Area contains a track (dynamic) display. 
Console is invalid. 
Area is invalid. 

Check that the TS, A, or JOBS operand is correctly 
specified. 

Module Label 

IEE7503D JES2CODE 

IEE5503D IEE0503D 



~ Diagram 2-37. Stopping Periodic Track (Status) (PT) Displays (IEE7S03D) (part 3 of 4) 
~ 
~ 

Sl Output . x-"'1II!IIi~ -< Process f§'fi&£;;;QWa:~U,'Blj{tMGtlift6itCL'~'" 'B_ """:== 
CIl , .)iiw;;"/1kl1.UYi-",,KJrN, *''*'''', , '''''' , 
~ 

CIl 

~ 
~ 
t"'" 

~. 
f') 

t"'" 
& 

~ 
< 
f 
(1) 

~ 

'< 
CIl 
~ 

::ICl 
(1) 

i 
~ 
~ 

~ -

9 Turn off all existing option 
indicators in SACB. 

'n release locks .... " SVC 34 
If options ",mal , . ~ H EEOOO3D) 

Otherwise, go to step 10. 

10 Post the TRACK command 9" "filli. 
processor. 

11 Release locks. 

12 Post D IDOCS routines. ~'<d "10l, 

(IEE0003D) 

SACS CSCB 

I ~ I L3f-CHCECB 

DCMATECS 

UCM 

~UCMECB 



til 
(D 

~ 
~. 

= 
~ 

::: 
sa. 
g: 
S­
O 
"0 ; 
g. 
= 
N 
~ 
~ 
VI 

Diagram 2-37. Stopping Periodic Track (Status) (PT) Displays (IEE7S03D) (part 4 of 4) 

Extended Description 

9 The routine releases the locks that module I EE7503D 
had previously set. 

10 The TRACK processor provides clean-up functions 
prior to returning to the caller when the task 

terminates. 

11 The routine releases the local and eMS locks. 

12 The DIDOCS routines clear the CRT screen area. 

Module Label 

I EE5503D TRACKOFF 

IEE6703D 
IEECB800 



~ 
~ 
~ 
0'1 

o 
C"I'.l 

'< 
C"I'.l 
N 
C"I'.l 
'< 
~ 

3 
E 
(;' 

!: 
~ 

~ 
~ 
C 
9 
(D 

N 

'< 
C"I'.l 
N 

~ 
(D 

(;' 
11:1 
~ 
~ 

~ 

Diagram 2-38. Unloading (U) I/O Devices (IEEMB813) (part 1 of 2) 

Master Scheduler Wait 
Routine (via ATTACH) 

Input 
(lEEVWAIT) Process 

D-fi Verb Code 

Unit Address 

CVTn:tlJ 
UCME 

1 Create STAE environment. 

Error: 

2 Protect UCB. 

3 Validate the unit specified for 
unloading. 

Error: 

.....
...... SVCEXIT 
.... (SVC 3) 

Message 
Module 
(lEE05030) 

Output 

R1 

Parameter List 

F unction Code 

o 
4 UCB 

Volume Serial No. 

4 Unload specified unit. i~ o 

5 Clean up and return. 

SVC EXIT 
(SVC 3) 

R13 0----.. Save Area 

I 
Resources are freed. 
(For example, the CSCB) 



CIl a o· 
:= 
~ 

r== 
~ 

[ 
o .... 
o 

"'0 
~ 
~ 
e' := 

~ 
t.U 
~ 
-...l 

Diagram 2-38. Unloading (U) I/O Devices (IEEMB813) (part 2 of 2) 

Extended Description 

This routine prepares a unit (device) for physical de­
mounting (if desired) by logically unloading the unit. 

The routine operates in the master scheduler's region. 

1 To process for ABEND situations. If the ST AE 
environment cannot be created, further "unload" 

processing ends. 

2 The ENO/DEO feature provides protection against use 
of the UCB by either another UNLOAD command, 

allocation routines, or by VARY command routines. 

3 For a unit to be unloaded immediately, the following 
must be in effect: 

• The unit address must have 3 characters. 

• The Unit must have a UCB. 

• The Unit must be either a tape or a direct access unit. 

• The unit must be other than a system-resident or 
permanently-resident device. 

• The unit must currently be on line. 

• The unit must be ready or available for unloading. 

• The unit must currently be unallocated. 

If all (of #3) except the last item is true, a UCB indicator 
is set to defer the unloading until allocation/termination 
routines get control. 

Module label 

IEEMB813 ISSUESTE 
(IEECB860) 

IEEMB813 IEEMB813 

4 The unit is logically removed, and if it is a tape, IEFAB49C 
it is unloaded. 

5 The MGCR macro instruction is used to free the CSCB. IEEMB813 



~ 
IN 

t 

~ 
"< ("I) 
N 
("I) 

'< 
~ 

~ 
r-
ei r;o 
r­c;: 
;: 
-< 
<: 
So c 
:3 
(D 

N 

'< ("I) 
N 

::0 
(D 

if 
r.l 
IN 
~ -

Diagram 2-390 Routing of VARY (V) Commands (IEE3203D) (part 1 of 2) 

Input 
Command Router 
(I E E0403D) Process 

+ Command 
Operand.,d •..... vi 

Verb Code 

UCMID 

1 Determine command 
keyword. 

Error 

2 Pass control to appropriate 
module, determined by 
keyword. 

Message 
Module 
IEE0503D 

See Extended Description 
for exit module. 

Output 

Verb 
Code 

XSA 

Ef XAN 

XSA + Command 
Operand 

XAE 

Error Code 
(If Appropriate) 



til 
(D 

~ o· 
= 
~ 

a:: 
(D 

[ 
o .... 
o 
'C 
(D 

i o· 
= 
N 
c:w 
~ 
IoC 

Diagram 2-39. Routing of VARY (V) Commands (IEE3203D) (part 2 of 2) 

Extend8d Description 

This routine determines the correct module to handle 
an input VARY command. 

1 Compare the command keyword with table of 
acceptable values. First determine if the command 

contains a primary keyword. If none, check for secondary 
keyword. 

NET 
PATH OFFLINE 

Primary CONSOLE 
Keyword 

I CPU 
STOR 

f ONLINE 

Secondary HARDCPY 
CH Keyword MSTCONS 
CN ONTP/OFFTP 

ONLINE,S 
OFFLINE,S 

2 Keyword options are tested in I EE3203D. Error 
conditions are tested and error messages issued, if 

necessary, as follows: 

Error 

delimiter error 
term length error (embedded blank) 
undefinable keyword 
parameter missing 
parameter conflict (incompatible 

keywords) 
command length exceeds maximum 

(excessive length of total operands) 

If NET, processing control goes to: 

Message ID 

IEE3071 
IEE3081 
IEE3091 
IEE3111 
IEE3121 

IEE9081 

If ONTP or OFFTP, processing control goes to TCAM. 
If HARDCOPY, processing control goes to: 
If MSTCONS, processing control goes to: 
If ONLINE,S or OFFLINE,S, processing control goes to: 
Otherwise, processing control goes to: 

(A CSCB must be created, and the appropriate routine 
will be attached by the master scheduler wait routine.) 

Module Label 

I EE3203D PRIMKEY 

ISTCFF3D 
IED1303D 
IEE4703D 
IEE4303D 
IEE9403D 
IEE0803D 

IEE4703D 
IEE4303D 



N 
~ 
<II 
o 

o 
t"I'.l 

"< til 
N 
til 
'< 
rIO 

~ 
~ n· 
r-' 

~ 
~ 
<: 
sa. = a 
~ 

N 

~ 
N 

:::r: 
~ 

i 
~ 
IJ,I 

~ 

Diagram 240. Changing (V) Console Status, Routing Codes, and Command Authorization (IEE3603D) (part 1 of 6) 

Input 

Master Scheduler Wait 
Routine (via ATTACH) 

(lEEVWAIT) Process Output 

R1 SDWA R1 CSCB CHBUF 

~CHUCMP 
1 Create a STAE environment. vlST ~rLi~ 

R13 

UCB [§j- UCBNAME 

XAR 
(Command 
Buffer) 

XAV 
(Command 
Verb) 

XAU 
(Console 10) 

2 Establish and initialize a 
dummy XSA. 

3 If this is a VARY command 
for a range of de,(ice addresses, 
go to module IEECB904. 

4 Validate command syntax. 

5 For ONLINE or CONSOLE 
operands, prevent assignment of 
devices with unavailable paths to 
the 1/0 supervisor. 

Error: 

Check command syntax and 
validate authority of issuing 
console. 

Error: 

R 13 Save Area 

0-- .@i] .. + CSCB 

Buffer ~Com~~ 

R1 

.. UCB for 
T Path Search 

F Unction Code 
(F irst Byte) 



c;I,) 
('D 

g. 
e' 
= 
~ 

ac 
('D 

[ 
o 
000) 

o 
"0 
~ 
a 
e' 
= 
~ 

~ 
VI -

Diagram 2-40. Changing (V) Console Status, Routing Codes, and Command Authorization (IEE3603D) (Part 2 of 6) 

Extended Description 

use. 

This procedure makes a device unavailable for use as a 
console and either available or unavailable for system 

1 For ABEND protection purposes. 

Module Label 

IEECB860 

2 The online/offline/console processors will use this XSA IEE3603D XSAINIT 
for reference. 

3 If this is a VARY command for a range of 
device addresses, branch to module 

I EECB904 to establish the necessary work areas 
and return here for normal VARY processing. 

4 Enqueue/dequeue environment provides protection IEE3603D IEE36020 
against contention for UCBs. When checking the device 

operands, the enqueuing function gives protection against 
allocation, OL TEP, and another VARY command. 

5 Use path checking subroutine IEEVDEV to look for 
access paths to the device. 

IEE3603D IEE361AO 

6 A unit specified as 'input only' is invalid. Authority IEE3303D CONTINUE 
(which must be either 2 or 3) depends on the keyword 

specified. The master console or the hard copy log function 
must be assigned to another console before a request to 
vary the console having it offline or online is issued. 



~ Diagram 2-40. Changing (V) Console Status, Routing Codes, and Command Authorization (IEE3603D) (part 30(6) 
CIt 
N 

i 
~ 
N 
~ 
'< 
~ 

~ 
r-
ei 
(l;' 

r­a: 
8 
< eo c 
:3 
(I) 

N -< 
~ 
N 

~ 
(;" 
D' 

~ 
W 

~ 

Input 

Console 10 
of Issuer 

R13 

SMCAMAN 

SMCAOPT1 

XAR (Buffer Size) 

XAL (~ List Position) 
(Command 
Parameters) 

XA V (Command Verb) 

R2 ~XAL 
~ XAU XAR 

Process 

6 Check for active SMF. 

• If active (that is, all indicated 
SMCA bits are on), write record 
for valid, non-online device. 
Otherwise, bypass SMF writing. 

Output 

R2 XSA (XOPCODE) 

D-'§Y Specified 
Keyword 
Indicator 

SMF Data 
_ _ Via Set 
~ ,SVC83------

7 Determine control logic on basis --_.r----, 
of keywords. (See 8 or 9.1 Uti 

8 For changing console attributes: 

a) Validate console authority and 
keyword values. 

b) Go to step 9. 

9 For status modifications: 

R1 
~ ~ Logic Switches and 
~ Issuer Authority 

R2 XSA 

~KeYWOrd . U Indicator 

R13 Save Area 

~~CSCB 
~17thWord 

a) Check for unit validity and ".. "\.l:io/ 

transition status. 

b) Validate issuing console's 
authority. 

R2 .. XSA Unit Type 

~SWitChes 
Unit Processing 
Indicator 

L"" ___ h''lWt,s''''''''''''''''CiY,,"' ~~~r~3DI wlt:~Ji::::~£1:~~~£1:lt:~lt:lt:~~tdl.tdl.~li~ Error: 

(If the command was to vary 
a range of device addresses, 
return linkage is to I EECB904.) 



til 
(I> 

sa. o· 
= N 

== (I> g 
Q. 

o -. 
o 
'g 
; 
g. 
= 
~ 
~ 
VI 
~ 

Diagram 240. Changing (V) Console Status, Routing Codes, and Command Authorization (IEE3603D) (Part 4 of 6) 

Extended Description 

6 If job accounting is requested, an SMF Type 9 record 
indicating changing devices can be written to the 

SYS1.MANx data set. (The routine uses SVC 83 for this 
step.) Unit specifications must refer to devices with proper 
availability and capabilities. (This availability includes not 
being tested by OL TEP.) 

Module Label 

IEE3303D SMFRTN 
IEE2303D IEE2303D 

7 For secondary status change (ONLINE or OFFLINE) IEE3303D NOSMF 
or assigning a console (CONSOLE), control goes to the 

UCME scanlrouter routine, IEE4203D. 

For changing console attributes (AUTH=, ROUT=, etc), 
control goes to the keyword scanner for the VARY com­
mand,routine (lEE4403D) and then to IEE4203D. 

8 Only devices specified as consoles at system generation IEE4403D KEYSCAN 
time may be varied by the CONSOLE command. 

9 Specified units must be available for use as requested: IEE4203D UCOMP2 

a) A device that is specified as an alternate console must 
be different from the primary console. 

b) The, command authorization for a V CONSOLE command 
must be 3. 

If a VARY command is being processed for a 
range of device addresses when an error message 
is issued, go to I EECB904 to process more ranges. 
If no more ranges are to be processed, clean up 
the work area and exit from IEECB904. 



t:-J Diagram 2-40. Changing (V) Console Status, Routing Codes, and Command Authorization (IEE3603D) (part 5 of 6) 
IN 
U\ 
~ 

~ 
~ 
N 
tI.) 

'< 
~ 

8 
i. 
n 

t:: 
~ 
~ 
'< 

~ 
~ 
~ 

N 

'< 
c;,.) 
N 

::0 
~ 

if 
r6 
~ 

~ 

Input 

GfJ 
R 13 Save Area 

~ 
CSCB u 

D---fjAr~ 

~ (XAP) 
Console ID for 
Multi-line WTO 

1 
roo--

r--

Process • Output 

.... 
y 

.... 
v 

10 Process the console operand. 
Make checks on: 

• Console activity. 

• Har,dcopy requirements. _ ~ 

• Console graph ic status. v 

• Status of device allocation. 

.... 
) 

y 

'" 11 Write header message. 
--y 

.... 

UCB 

~ Statu. Indicator 

R1 r-1 • Message Buffer 

- I I 
Message 

L---J 
12 Complete the information part __ ."",. __ -, 

of the console message. It 1---'1~~'¥~1JJI~iil~ ••• ~~%2¥~.~.~~ •• .a 
(See Extended Description) 

Exit 

SVC34 
(JEEOO03D) 

.J\. 

v 

--" r-v 

...... 
v 

R11 

G-- ~ UCME for Hardcopy List 

R2 

tCSCB 

R12 Message Area 

~ 



CI.l 
(D 

~ 
5' 
= N 

~ 
(D 

[ 
o .... 
o 
'e 
~ a 
5' 
= 
~ 
~ 
til 
<II 

Diagram 240. Changing (V) Console Status, Routing Codes, and Command Aufhorization (IEE3603D) (part 6 of 6) 

Extended Description 

10 System local locks provide protection against the 
communications task. 

The processing at this step involves the following considera­
tions: 

• Determining if the device to be varied to the console state 
is already a console. 

• A hard copy device is required if the system has two or 
more.consoles. 

• With two graphic devices available, one unit will act as a 
console. 

• If a device is unallocated, a bit is set in the UCB and 
processing continues. 

11 Issue M LWTO macro instruction for header portion 
of message. 

12 The first module named actually fills in the message 
buffer and the second module issues the M LWTO to 

the operator for the balance of the message. 

*The output register contents shown for this step refer to the 
output from IEE4803D when it gives control to IEE7303D. 

Module label 

IEE4903D CSETLOCK 

IEE4903D CHEADER 

IEE4803D* CPROC 
IEE7303D GRPXH+ 



N 
~ 
til 
0\ 

~ 
"< fof.) 
N 
fof.) 

'< 
~ 

3 
r'" 
Ii 
(5' 

r­
eT ... 
I» 

~ 
<: 
~ 
3 
(I> 

N 

<: 
fof.) 
N ,., 
(I> 

(;" 
I» 
r!l 
~ 

~ 

Diagram 2-41. VARY Console (V CN) Processing (IEECB900) (part 1 of 2) 

Input 

R1 

-.. CSC_ 

CHVCD - verb code 

CHUCMP - issuing 
console's ID 

CHBUF-
operand field 

From Master Scheduler Wait 
Routine (lEEVWAIT) 

via ATTACH Process 

1 Create ESTAE environment. 

2 Set I:-IP interface with message 
module (I EE05030). 

3 Check command syntax. 

If error: 

4 Initialize field with AUTH= 
values. 

5 Call processor module 
(I EECB901). 

6 If necessary, 
issue appropriate messages. 

7 Release resources. 

Step 6 

console, or 
-update authority 

of console 

WTO 
(See table in 
extended description.) 

Return to SVC EXIT (SVC 3) 



en 
~ 

l4. 
5· 
= 
~ 

~ 
~ 

[ 
o .... 
o 
'0 
~ 

0; 
g. 
= 
N 
W 
VI ...... 

Diagram 241. VARY Console (V CN) Processing (IEECB900) (part 2 of 2) 

Extended Description 

This processing changes the console authority for consoles 
other than the master console. The command is processed 
by the VARY Router, and the module is attached in the 
Master Scheduler region. The module checks that the 
command is syntactically correct, and verifies that the 
console is eligible to change console authority values. 

1 Creates an ESTAE environment via module I EECB8S0. 
If the return code in register 15 is not zero, goes to 

cleanup at step 7, terminating the command. 

2 Loads message module IEE0503D to obtain its entry 
point address which is saved for later use in issuing 

messages (step S). 

3 Verifies that the command has balanced parentheses 
on CN parameter, correct length for console lO(s) , and 

decimal numeric value for console lO(s). Ensures that the 
AUTH= keyword is specified and that the value of the 
keyword is any of these: ALL, CONS, INFO, 10, and SYS. 
(These values, with the exception of ALL and INFO, may 
be specified in a parenthesized listJ Checks that the 
issuing console is the master console. 

4 Initializes a bit mask corresponding to the AUTH= 
keyword values. This mask will be used by I EECB901 

in updating unit control module entries (UCMEs). 

5 Passes control to processor module I EECB901, via 
BALR, to process the consoles specified on the 

command. 

Module 

IEECB900 

Label 

STAERTN 

CNCHECK 
DELlMRTN 

AUTHRTN 

Extended Description 

6 The appropriate message is issued, via IE E0503D, if 
a message code is specified in the MSGCODE field. 

The table summarizes the possible error conditions and 
their corresponding message codes and IDs. 

Module 

Error Condition Message Code Message ID 

Not 'CN(' X'OA' IEE3101 
Unpaired parentheses X'07' IEE3071 
Not master issuer X'29' IEE3451 
Invalid operands X'3E' IEE5351 
Invalid 'AUTH' values X'3D' IEE7081 
Invalid 'CN' values X'OS' IEE30S1 
Null/missing parameters X'08' IEE3111 
Invalid unit X'OD' IEE3131 

Command completion X'03' IEE7121 
message 

7 Deletes the message module (I EE0503D) and frees the 
command scheduling control block (CSCB), via the 

MGCR macro. 

Label 

MSGRTN 



I',J 

w 
VI 
00 

~ 
"< C"I} 
I',J 

CIl 
'< 
~ 
§ 

oi 
li· 
t: 
~ 

~ 
~ 
C 
3 
~ 
I',J 

'< 
CIl 
I',J 

~ 
~ 

i 
Y6 
~ 

~ 

Diagram 2-42. VARY Console (V eN) Processing (IEECB901) (part 1 of 2) 

Input 

R1 

1\ • 
, PAR 

~ Console 10<S) 

~ CSCB 

~ Message Module 
IEE05030 

~ Message 
Work Area 

Authority Value 
to Update 

From 
IEECB900 

1 Do housekeeping. 

-....".,r--------"I'!!i%!lTS-a/ 2 If a specific console authority is to 
be updated. 

a) Verify that it is a valid console. 

b) It it is valid, update authority 
field (UCMAUTHA): 

c) If it is not valid, issue appropriate II I 
error message. ~M WTO 

Return to 
VARY CN Processing 
(lEECB900) 

(See table in 
step 6 of 
previous 
extended 
description.) 

Output 

UCM 

I UCMA~HA I 



~ 
~ 
~. 

= t-J 

~ 
(D 

[ 
o .... 
o 

"'0 
~ 
~ o· 
= 
t-J 
~ 
VI 
I,Q 

Diagram 242. VARY Console (V CN) Processing (IEECB901) (part 2 of 2) 

Extended Description 

1 Sets loop control to process all console I Ds which 
were passed from I EECB900. 

2 The address of the console I D list in the command 
buffer (CSCB) is passed from I EECB900. Processes 

all console I Ds sequentially in the following manner: 

a) Indexes to the unit control module entry (UCME) for 
a particular console I D, and verifies that the target 
console has a UCM E, and that the target console is 
not the master console. 

b) Updates the UCMAUTHA field of the UCME with 
the authority mask which was passed from I EECB9OO. 

c) Issues error message via IEE0503D if failure occurs 
in any validity check in either module (I EECB900 or 
I EECB901). See message code table in step 6 of 
previous hipo. 

Module Label 

IEECB901 

DEUMSCN 

CONSCAN 

MSGSETUP 



~ Diagram 243. Varying Devices (Console or I/O Units) Online and Offline (IEE4203D) (part 1 of 4) 
0\ 
o 

~ 
~ 
{;I} 
N 
{;I} 

'< 
~ 

3 
t""' 
~ 
(=i' 

t""' a: .... 
~ 

-< 
<: 
o 
C 
3 
('D 

N 

'< 
{;I} 
N 
~ 
('D 

i 
~ 
IN 

~ 

Input 

CVT UCM UCB 

UCME 

R2 

~ Command Verb 

Command Buffer 

'-----'- Command 
Parameter 

0--. Unit Description 

R13 Save Area CSCB 

Dl§t:"S217 
CVT SLOT UCB 

0- ~o- ·0 

D~D 

Save Area - CSCB 
~ 

IEEVWAIT 

1 See steps 1 -6 of diagram, 
Changing Console Status, Message 
Routes, and Command Authorization. 

2 Validate unit capabilities and 
command - issuer authority. 

Error: 

3 Perform processing on basis of 
keywords. (See step 4 or 5). 

Caller. 
(If the 
command was 
to vary a 
range of 
device 
addresses, 
return linkage 
is to IE ECB904. 

Output 

D-fJ 
Error Message 

D 

4 To vary non-console units online" /I%~~ Updated 
UCB or offline: 

a) Update the UCB. 

b) Clean up storage and work 
areas except if the 
command was to vary a 
range of device addresses. 
In that case, go to I EECB904 
instead of "return to caller". 

SVC EXIT 
(SVC 3) 

D 
D 

Message 

R13 



CI.l 
(1) 
(") g. 
= N 

~ 
(1) g 
~ 

o .... 
o 

"0 
(1) 

OJ g. 
= 
N 
~ 
0'\ -

Diagram 2-43. Varying Devices (Console or I/O Units) Online and Offline (IEE4203D) (part 2 of 4) 

Extended Description 

This processing changes the status of secondary con­
soles or 1/0 devices. 

1 These steps describe the processi ng that occurs after 
the VARY command pre-processor module has been 

attached by the master scheduler wait routine and before 
module IEE4203D gets control. 

Module Label 

2 General Considerations regarding unit validity, unit IEE4203D UCOMP2 

capability, and the authority of the command issuer. 

• Units (including consoles) must have I/O capabilities to 
perform as requested. 

• Issuer's authority, if varying a console device, must be 3 
or, if varying I/O units (units without a UCME) must be 2. 

• Devices specified for varying must be in a steady (unchang­
ing) state. 

3 • If a command specifies multiple units that are all 
designated as "console" units at system generation 

time, complete the processing shown in step 5. 

(Note: These units will contain both a UCME and a UCB.l 

• If a command specifies only multiple I/O units (those 
having only UCBs), complete the processing shown in 
step 4. 

• If a command specifies multiple units, some of which are 
designated as "console" units and some of which are I/O 
units, complete the processing by handling first the con­
sole units and then the I/O units. 

IEE4603D 

IEE3103D VMLTUNT 

IEE4603D OSTART 
IEE3103D VMLTUNT 

Extended Description 

a) To vary a device online: 

• Leave on-line units as they are. 

• Change off-line units to the online state. 

• Issue appropriate message, except if the command was 
to vary a range of device addresses. 

To vary a device offline: 

• Leave offline units as they are, and issue appropriate 
message. 

• Place online, unallocated units in the offline state, and 
issue appropriate message, except if the command was 
to vary a range of device addresses. 

• Designate online, allocated units as ready to be placed 
offline. (When these units become unallocated, termina­
tion routines complete the process of varying the units 
offline.! 

b) For both situations (4a and 4b), the final 
processing involves releasing the XSA and save 
area, and dequeuing the UCB chain. If a VARY 
command is being processed for a range of 
device addresses, return linkage is to module 
IE ECB904 for further processing andlor 
releasing the XSA and dequeuing the UCB chain. 

Module Label 

IEE3103D VONUN 

IEE3103D VOFFLN 

IEE3103D NORM EXIT 



~ Diagram 2-43. Varying Devices (Console or I/O Units) Online and Offline (IEE4203D) (part 3 of 4) 
~ 
~ 
N 

o en 
"< en 
N 
en 
'< 
~ 

~ 
5 
(5. 

r-
~ 
et 
'< 
<: 
o 

= 3 
~ 

N 

'< en 
N 

~ 
~ 

i 
~ 
~ 

~ 

Input 

To vary designated "console" 
units either offline or online: 

a) "console" units only; 
Process. 

If liD units as well as "console" 
units are specified, 

- Process console units 

b) Clean up storage. 

Caller 

Output 

Updated 
UCB 

~UCBWGT 

R2 XSA o--n 
Updated "Console" 
UCB 

~UCBWGT 



CZl 
~ 

~ o· 
= !':I 
s:: 
~ 

[ 
o 
'"'I) 

o 
"0 
~ 
~ o· 
= 
~ 

c:u 
0\ 
c..J 

Diagram 243. Varying Devices (Console or I/O Units) Online and Offline (IEE4203D) (part 4 of 4) 

Extended Description 

Sa To vary units online 

• For units in an inactive console state, see function 
step 4a for online processing. 

• For units currently working as active consoles, the routine 
designates them as pending to be changed from console 
to online status. In this situation, the communications 
task will complete the processing. 

To vary units offline 

• For units in an inactive console state, see function 
step 4b for offline processing. 

• For units currently working as active consoles, the routine 
designates them as pending to be changed from console to 
offline status. In this situation, the communications task 
will complete the processing. 

5b The subroutine I EAVMNTR clears UCB bits 
representing the commands: 

MONITOR JOBNAMES, MONITOR STATUS, and MONI­
TOR SESSION. This will prevent any monitoring messages 
from going to a device being varied from a console to a non­
console status. The messages would be lost to the system in 
this case. 

Module Label 

IEE4603D OONLINE 

IEE4603D OFFLN 

OCONT+ 



N 
c:u 
'" "'" 
o 
~ 

~ 
CI} 
N 
CI} 

'< 
~ 

3 
t"'" 
~ 
(:)' 

t"'" 
0: ... 
~ 

-< 
<: o 
2" 
S 
~ 

N 

'< 
CI} 
N 

~ 
~ 

~ 
~ 
(.o.j 

~ 

Diagram 244, Varying a Range of Device Addresses (IEECB904) (part 1 of 2) 

VARY Processing 
Module (I EE3603D) 

1 Determine if this is the first 
entry to I EECB904, 

If not, go to step 4 . 

1 ·.:c .. · .•... ;.,.1. f.· .. '.·.; .•. · ... ;.. 2 Check command syntax.'cl· lti l"-~ ~ , )(Al i CSCB:i:1 ; ..... .." I T 
" If ;n error, ;ssue message and I ~, 

go to step 5. ~ T CSCB 

3 Expand address range as single 
unit addresses in ascending 
order in the buffer. VARY 

Processing 
Module 

4 Determine if more address r,~ (I EE3603D) 
expansion is needed in 
current range set. 

If so, go back to step 3 to 
expand the addresses. 

If not, issue DISPLAY UNITS 
command to indicate 
acceptance of the addresses in 
the specified range. 

5 Determine if address expansion 
is needed in other address 
ranges. 

If so, go back to step 2. 

6 Release resources. 

V ARY Processing 
Module (IEE3603D) 



t:I.l 

a o· 
= 
~ 

a:: 
sa. g 
Q. 

o ..... 
o 
~ 

~ o· 
= 
N 
~ 
0'1 
CIl 

Diagram 244. Varying a Range of Device Addresses (IEECB904) (part 2 of 2) 

Extended Description 

This processing is implemented through the use of 
IE ECB904 as a driver to generate the VARY command. 
(e.g. V 100-102, ONLINE is changed to V (100,101,102), 
ONLINE.) If all specified units are valid, IEECB904 
issues a unit status message (I EE45011. 

1 When a command to vary a range of device addresses 
is entered for the first time, I EECB904 will establish 

the necessary work areas by issuing a G ETMAI N for 
subpool 230 and updating the XAL pointer. The XAL 
contains the address of the storage which mainline VARY 
uses as the command buffer. 

2 An invalid command results in an error message. 
If there are no more ranges to be processed, a 

message is issued and control is returned to the caller. 

3 Control is passed to I EE3603D for VARY processing 
as single units. 

4 When the highest address of the current range set 
has been processed, control is returned to I EECB904, 

and the units whose addresses are in the specified range 
are displayed. 

5 The end of the command has been reached when 
there are no more ranges to be expanded into 

specific addresses. 

6 When exit is to be made, dequeue resources, free 
work areas, and issue the MGCR macro to free the 

CSCB. 

Module Label 

IEECB904 GETSAVE 

IEECB904 WRITEOUT 

I EE3603D I EE36ENT 

IEECB904 DISPLAY 

IEECB904 

IEECB904 TERMEXIT 



~ Diagram 2-45. V ARY HARDCOPY (Vx, HARDCOPY) Command Processing (IEE4703D) (part 1 of 2) 
0'1 
0'1 

o 
1:1) 

"< 1:1) 
N 
1:1) 

'< 
~ 

3 
i 
(') 

t: 
a" a 
'< 

~ 
=­:3 
(1) 

N 

'< 
1:1) 
N 

~ 
(1) 

if 
rtl 
c...J 
~ -

Input 

R2 

(UCMVEA) 
UCM Indicator 

----... Verb 10 

~Command 

XAL Parameters 

R2 
r--1 .,XSA 

Keyword Scan 
(lEE3203D) 

nit Address R12 t U . 0--- (If 0, unit is SYSLOG) 

R2 o XSA 

R1 -0 
UCM D ~ 

0--.. Message Area 

I 

Output 

1 Check authority of console issuing 
the command. 

Error: 

2 Determine processing path based on 
command operands: 

• Hard copy function to be 
removed from existing or 
indicated unit. 

Message Module 
fEE0503D 
(via IEE5703D) 

a) Check for hardcopy _ VII 
requirement. 

b) Remove hardcopy device. 

• Hardcopy configuration 
(excluding removal) is to be 
changed. 

c) Verify routing codes and 
command classification 
assigned to the specified 
hardcopy log device. 

d) Determine any hardcopy g., ,/'tR 
log status change. 

3 Construct and issue information v'IB 
message for hardcopy device 
just var ied . 

Message Module 
(IEE0503D) 

R2 

~
SA 

XRTCODE 
(Routing 
Code) 

R2 

R1 

XSA -(XAE) 

(XAV) 

Result of 
Processing 
Indicator 

Hardcopy Device 
Name 

~ Message Area 

~I -----II 

D 



til a e· 
= 
~ 

ac 

i 
o 
~ 

o 
"0 
~ a 
e' 
= 
t:-» 
w 
0\ ...., 

Diagram 245. VARY HARDCOPY (Vx, HARDCOPY) Command Processing (IEE4703D) (part 2 of 2) 

Extended Description 

This processing either assigns a unit as a hardcopy log 
device or changes message routing to the hardcopy 

log. The process will also discontinue the hardcopy log if 
requested (that is, remove hardcopy log from the system). 

1 Only the system or the master console may issue this 
command. 

Module Label 

IEE4703D HERR1 

2 Either the hardcopy function will be removed from the IEE4703D HKEYFND 
system or the hardcopy configuration will be changed. 

If SYSLOG is specified, it must be supported. If no unit is 
specified at SYSGEN time, a hardcopy unit must exist. 

A device specified for modification must not be in a state of 
change from or to console status. 

The system requires a hardcopy device if it has either 

a) more than one active console, or 
b) one or more active graphic consoles. 

Extended Description 

Remove Hardcopy 

2a The following considerations are examined: 

• Does the system require a hardcopy device? 

• Does the specified unit represent the current hardcopy 
device? 

• In the absence of a specified unit, does the system cur­
rently have a hardcopy device? 

L-ocal and CMS locks are used to protect the UCM and 
UCB. 

2b Set an indicator in XSA to show result of the 
processing. 

Change Hardcopy 

Module Label 

IEE5703D BRANCH 

IEE5703D INVNUM 

2c Requested modifications apply to the current IEE7203D HSCAN 
hardcopy log device in lieu of other specified devices. 

2d Consider for a new console or for the existing hard­
copy log. 

3 Local and CMS locks protect the U~M against another 
VARY command request. Use the WTO macro instruc­

tion to write the message. 

IEE7203D HSCAN+ 

IEE4103D HSETLK 
CISSUE1 



I-.J 
~ 
0'1 
00 

o 
til 

~ 
I-.J 
til 
'< 
~ 

3 
r-
~ r;o 
r­a: .. 
~ 

~ 
< o 

=-3 
(D 

I-.J -< 
til 
I-.J 

~ 
(D 

(D 
~ 

~ 
w 

~ 

Diagram 2460 Master Console (Vx, MSTCON) Switching (IEE4303D) (part 1 of 2) 

Input 

R2 

UCMEs 

XSA 

~ 
R1 

Keyword Scan 
(I EE3203D) Process Output 

1 Verify that new console has master ,/mil 
console capability and is active. 

Error: 

2 Verify authority of console to issue 
command. 

Error: 

Message 

.. 
" Routine 

"'"' IE E0503D 

Message 

"~Eo~~~~3D 

3 Switch consoles. SA. ./lts! 

Keyword Scan 
(JEE3203D) 

R2 

~ 

[ J 
New Master Console 



00 
(1) 

s:a. 
6· 
= 
~ 

s::: 
~ 
5 
~ 

o .... 
o 

"0 

S g. 
= 
t;-J 
W 
0\ 
\0 

Diagram 246. Master Console (Vx, MSTCON) Switching (IEE4303D) (part 2 of 2) 

Extended Description 

This process prepares another device to be the master 
console. 

1 The selected console must have I/O capability. 
Composite (console) units (established at SYSGEN 

time) must be active console devices. If console activity 
status is changing or pending a change, the command is 
rejected. 

2 The current (existing) master console can issue this 
command. If the master console is inoperative because 

of hardware problems, its al.~ernate or any console or the 
converter/interpreter can issue the command. 

The routine reserves the UCM and UCB resources by means 
of the locking interface for local and CMS locks. This pro­
tects the fields being tested against changes by the com­
munication task and/or another VARY command. 

3 Issue SVC 72. 

Module Label 

IEE4303D MPROCESS 

IEE4303D 

MACTIVE 



N 
~ 
-.J 
o 

o 
~ 

~ 
N 
C".f.l 
'< 
~ 

~ 

~ 
(':> 

t"" 

~ 
~ 
<: 
o 
=-3 
~ 

N 

'< 
C".f.l 
N 

:::0 
~ 

if 
~ 
w 
:...... 
'-' 

Diagram 2-47. Varying a CPU (V CPU) or Channel (V CH) Offline or Online (Overview) (IEEVCPU) (part lof 2) 

Master Scheduler Wait Routine 
(via ATTACH) (JEEVWAIT) 

Work Area 

~ 
(Command Type) 

Varying a CPU Online (JEEVCPU) 
Varying a CPU Offline (J EEVCPU) 
Varying a Channel Online (JEEVCPU) 
Varying a Channel Offline (JEEVCPU) 

Varying a CPU Online (JEEVCPU) 
Varying a CPU Offline (JEEVCPU) 
Varying a Channel Online (JEEVCPU) 
Varying a Channel Offline (J EEVCPU) 

Output 

1 Check command authority. 

Error if I • Step 6 Work Area 

2 Build work area. ,11 1 "k' '" 

3 Check command syntax. <,,' Mill .; 

Error flags 
Error -------.II<U~~. Step 6 

4 Branch according to the following 
commands: 

VARY CPU ONLINE' See Diagram, "Varying a 
CPU Online" (JEEVCPU) 

VARY CPU OFFLINE. See Diagram, "Varying a 
CPU Offline" (JEEVCPU) 

VARY CHANNEL ONLINE. See Diagram, "Varying a 
CPU 0 nline" (J EEVCPU) 

VARY CHANNEL OFFLINE .••• ". See Diagram, "Varying a 
CPU Offline" (I EEVCPU) 

5 Write SM F records. 

6 Issue appropriate messages ____ _ 
to operator. 

SMF Record(s) Types Units 
~ --

9, 11 Devices 

22 CPU and 
Channels 

~ 



~ 
~ 
(5' 

= 
~ 

r:c 
~ 

[ 
o .... 
o 

"0 
~ 
~ 
(5' 

= 
t:-> 
w 
....,J -

Diagram 2-47. Varying a CPU (V CPU) or Channel (V CH) Offline or Online (Overview) (IEEVCPU) (part 2 of 2) 

Extended Description 

o This routine enables an operator to logically add or 
remove a CPU and/or a channel from the operating 

system. However, under certain conditions (for example, 
last path situations), an offline command may be rejected. 

1 Input for this command authority can be internally­

issued commands, readers with the same authorization 
as the master console, or the master console itself. 

2 This work area will contai!", error flags, storage area 
pointers, and other information that may be needed 

by cleanup functions. 

3 The command text is scanned to determine the com­
ponent (unit) to be varied and the operational state in 

which it is to be placed. In addition, the following checks 
are made: 

For V CPU, test for uniprocessor. 
For V CH, test if the specified CPU is currently online. 

4 Processing to be performed depends on the variation to 
be accomplished. 

5 SMF record type(s) 9, 11, and/or 22 are written to 
indicate the devices, CPU, and/or channel that has 

(have) been varied_ The routine uses the recorder block 
information for this. 

6 The routine issues a WTO macro instruction to 
indicate the success (or failure) status of the 

processing. 

Module Label 

IEEVCPU IEEVCPU 

IEEVCPU 

SYNTXCHK 

IEECLEAN WTORTN 



N 
W 
-..J 
N 

o 
C'Il 

"< 
C'Il 
N 
C'Il 
'< 
~ 

5; 

~ c:r 
t"" 

J 
<: 
Q 
c 
= ~ 

N -<: 
C'Il 
N 

~ 
~ 

i 
~ 
~ 

~ 

Diagram 2-48. Varying a CPU (V CPU) Online (IEEVCPU) (part I of 2) 

Input 

From Diagram "Varying a CPU or 
Channel Offline or Online" (I EEVCPU) 

R6 Work Area 

~ CPU Address 

CSD 

lOX 

Parameter List 

~ UCB 

Function 1 
Code 

CSDCPUJS 

CSDCPUAL 

Reserved 

CSD = Common System Data Area 

4 

1 Determine if CPU is now online. 

If it is: •••••••••••• 11. 
If not: 

2 Free any existing storage related to 
previous CPUs. 

Step 8 

OutDut 

CVT 

r: 
I 
I ' C J &,4'>'"-----

3 ~~~~ew CPU-related sto",ge areas from g iii:> I 
4 Determine if new CPU available. 

No: 

5 Initialize for new CPU. 

6 Start new CPU. 

7 If CRH is active, deactivate. 

8 Notify 3850 of M.P. operation 
if present. 

9 Bring online all attached channels 
and devices. 

10 Go to diagram, Varying a CPU or Channel 
Online or Offline. (JEEVCPU), step 6. 

Step 8 

Dispatcher 
(lEAVEDSO) 

I I i I I I 
L _____ -1 

PSA 
CCA 

"CCA" 

PCCA 

I~CAT 

UCB(s) 

Q For Units Brought 
Online 

Prefixed Save Area 
Configuration Communication 
Area - consists of LCCA and 
PCCA. 

LCCA = 
PCCA = 

Logical CCA 
Physical CCA 

To Diagram, Varying a 
CPU or Channel Online or 
Offline (I EEVCPU), step 5. 



Diagram 248. Varying a CPU (V CPU) Online (IEEVCPU) (part 2 of 2) 

(I) a o· 
= 
~ 

s:: 
~ g 
~ 

o -. 
o 

"0 
~ 

; 
g. 
= 
~ 

Extended Description 

This routine makes a specified CPU available to the 

system. All operational channels attached to the CPU 
are also brought online (made available) with the CPU. 

1 If the CPU is already online, issue an appropriate meso 
sage (via the 'cleanup' function). The two CSD masks 

are checked to determine if the CPU is already online for 
both the job scheduler and the supervisor. (Previous CPU 
affinity conditions may have left a CPU offline for only the 
job scheduler') 

2 The routine releases storage areas related to previously 
online CPUs. 

3 The routine gets storage areas from subpool 245 of the 
system queue area (SQA). Other system components 

(for example, GTF, RTM, and RMS) provide routines to 
get and initialize other CPU-related work areas. All storage 
requests are chained out of the work area. 

4 The routine uses the signal processor reset (SIGP 
RESET) instruction to verify that the target CPU 

(the one scheduled to come online) exists, and if so, to set 
the CPU's prefix register. If there is no available CPU, the 
routine issues an appropriate message (via the 'cleanup' 
function). 

5 The routine sets the parameters for the target CPU 
in the 0-4K (absolute) area of storage. The new (or 

arriving) CPU uses the 0-4K area for its PSA. The routine 
then sets the restart new PSW so that it points to the 
('wakeup') routine for initializing the CPU. The wakeup 
routine will give control to the dispatcher. 

6 The processor routine uses a SIGP RESTART instruc-
tion to activate the wakeup routine for processing on 

the target CPU. The main processor routine OEEVCPU) 
goes through a flag-checking loop waiting for the wakeup 
routine to indicate that the target CPU has come online. 

. After the target CPU is online, the wakeup routine com­
pletes its own initialization in the following manner: It 

• Puts the new PSA address in a prefix register. 

• Loads control registers 0 and 1. 

~ • Turns on the dynamic address translation (OAT) function. 
(.H 

Module Label 

IEEVCPU IEEVCPU 

PREPARE 

IEEVCPU PREPARE 

IEEVWKUP IEEVWKUP 

IEEVWKUP 

Extended Description 

• Calls the RMS component to initialize control registers 
14 and 15. 

• Stores channel information in the CAT (channel avail­
ability table). 

• Calls timer and 'clock' routines to set the timer functions. 
(The TOO clock is synchronized with the controlling 
CPU.) 

7 Call lOS (at IECVCRHD) to deactivate the Channel 
Reconfiguration Hardware if it is active. 

8 Issue Initialize, and Associate orders to 3850, if 
present, to prepare for M.P. operation. 

9 The routine opens new paths to the devices associated 
with this CPU. 

lOS checks for operational paths to a device before a device 
is made online with a,CPU. 

The routine checks all 'hierarchical"ffline' devices 
(devices forced offline by virtue of being attached to an 
offline channel) for presence of a currrent operational path. 

The routine also builds recorder (control) blocks and 
marks these blocks "online" for the devices that are brought 
online. The 8-byte internal recorder blocks contain infor­
mation used when writing the SMF records. 

If a recorder block already exists for a UC8, an additional 
recorder block is not built. All recorder blocks are chained 
together. 

10 Routine issues appropriate message. 

Module Label 

I EAVRTOD lEA VRSSC 

IEEVCPU CKCOMPLT 

DEVPREP 

DEVCHK 

IEEVDEV 



~ Diagram 249. Varying a CPU (V CPU) Offline (IEEVCPU) (part 1 of 2) 
-...I 
~ 

o 
fI'J 

"< CJ'j 
N 
fI'J 
'< 
~ 

9 
r-

«§. 
(") 

t:: 
~ 

~ 
~ 
C 
3 
~ 

N 

'< 
fI'J 
N 

::-= 
~ 

i 
~ 
IoN 

~ 

Input 

From Diagram Varying a 
CPU or Channel Online or 
Offline (I EEVCPU) Process .---, CSD 1 Determine if CPU now offline. 

~CSDCPUJS ) 

[ If yes, 
CSDCPUAL 

-2 Determine if job affinity for this CPU 

ASCB ) exists. 
y 

II ~ CPU-affinity Field 
If yes, 

..... > 3 Determine if "last path" considerations 
UCB 

D 
-y must prevent command execution. 

If yes, 

4 Switch console to a remaining CPU. 

If last CPU, 

5 Route timer interrupts to another 

R1 
CPU. 

~ 
If only clock left, 

.... 

CAT .1 ;> 6 Inhibit 1/0 on specified CPU. 

7 Mark all device UCBs as offline. 
~ 

LCCA I 
LCCAVCPU .-+OE:J I ... ) 8 Mark CPU offline and free storage. 

:y 

9 Inform 3850 of U.P. operation. 

, , 

10 Go to diagram, Varying a CPU or 
Channel Online or Offline (lEEVCPU), 
step 6. 

Output 

... 
Step 9 

", 

.. 
---" 

Step 9 

a. 
Step 9 

--", 

.. 
-,.. Step 9 

R15 
i .. I I Return Code ) 
:v 

... 
Step 9 ,.. 

UCB(s) . I ~UCBSTAT 
'} i ~ For units taken 

I' offline 

To Diagram Varying a CPU or Channel 
Online or Offline (lEEVCPU), step 5. 

,.,.. 



rIl a 
~. 

::s 
~ 

ac 
(D 

[ 
o 
'"" o 
'8 a. 
~. 

::s 

~ 
~ ...., 
<.1\ 

Diagram 2-49. Varying a CPU (V CPU) Offline (IEEVCPU) (part 2 of 2) 

Extended Description 

This routine makes a specified CPU unavailable to the 
system. Before taking a CPU offline, the routine first 

checks reserved and last path (to a device) considerations and 
CPU-affinity considerations. The routine also takes offline 
all devices and channels associated with the specified CPU. 

Module Label 

1 The flags CSDCPUJS (for job scheduled and I EEVCPU CPUSRCH 
CSDCPUAL (for supervisor) indicate degrees of off­

line status for a CPU. A CPU may be offline to the scheduler 
(no further affinity scheduling allowed) but online to the 
supervisor (actively running a program). The supervisor flag 
is tested here. 

In addition, this routine also tests for other online CPUs 
in the system. 

2 An active job requiring the indicated CPU will inhibit 
the execution of this request. A WTOR macro instruc­

tion notifies the operator of this situation, and waits for a 
response. The routine tests a 'CPU-available' flag against a 
'CPU-affinity' field in each active ASCB._ 

3 The routine checks for any online or allocated device 
that may be dependent on the specified CPU for an 

access path. A device marked as online and unallocated, 
coupled with the UNCOND operand on the command will 
override an attempt to reject this command because of a 
lack of available paths, through other CPUs, to the device. 

All devices are checked for last path considerations. The IEEVDEV 
command is rejected if either 

• a path is the last path to an allocated device or 

• a path is the last path to an online unallocated device 
without the UNCOND parameter specified. 

Recorder (control) blocks are built for all devices going 
offline with the CPU. (See the diagram Varying a CPU 
Online, step 7.) 

4 At least one console with input and output capability 
must remain or the command will be rejected. 

5 If the departing CPU has the only operative clock in IEEVCPU 
the system, the command is rejected by the system. To 

make this determination, IEEVCPU links to the module 
IEAVRTOD. The latter module contains, at entry point 
IEAVRNOT, a subroutine that determines if varying the 

AFFINSRC 

DEVCHECK 

Extended Description 

CPU offline will remove the last usable TOD clock, clock 
comparator, or CPU timer from the system. If so, the 
VARY command is cancelled. At entry point IEAVRCAN 
in the same module, there is a subroutine that restores the 
clocks to the system if the command is subsequently can­
celled for other reasons. 

6 Flags in the CAT of the PCCA are set to indicate to 
lOS that associated channels are offline, and that I/O 

is not to be started on the channel. 

If I/O activity is present on the departing CPU, the operator 
gets a chance to cancel the command after 3 minutes have 
elapsed. The routine waits until all I/O activity ceases. 

7 The routine uses the recorder blocks to supply the 
information. The actual offline indicator in the 

UCBSTAT field is the bit UCBONLI. 

8 This action occurs only when there is no activity 
dependent on the specified CPU. The main line of the 

processor routine sets a flag in the LCCA. It then switches 
tasks and the dispatcher gets control on the target CPU (the 
one scheduled to go offline). The dispatcher checks the flag 
and when the flag is set, the dispatcher gives control to the 
'quiet' code entry point in the module IEEVWKUP. This 
code then marks the CPU as offline. The following actions 
occur: 

• Call an RMS routine to reset control registers 14 and 15. 
• Clear the prefix register. 
• Set the indicator CSDCPUAL to indicate the offline CPU. 
• Issue a SIGP STOP instruction to place the CPU in a 

manual (stopped) state. 

The mainline routine then frees the prefixed storage area 
(PSA) and other related areas for the CPU taken offline. 
(The PSA is released only when it is not being referenced by 
another CPU') Recovery termination management (RTM) 
and recovery management support (RMS) components (and 
any other components) will free any of their areas related 
to the now-offline CPU. 

9 Issue Disassociate and Purge orders to 3850 to allow 
U.P. operation. 

1 0 Issue message to operator. 

*This module resides in the nucleus. 

Module Label 

10aUIT 

UCBMARK 

I EEVWKUP I EEVaUIT 

IEEVWKUP 
I EEVSTOP* I EEVSTOP 



~ Diagram 2-50. Varying a Channel (V CO) Online (IEEVCPU) (part 1 of 2) 

'" 0'\ 

o 
(Il -<: 
(Il 
N 
(Il 

'< 
~ 
(D 

3 

£ 
(S. 

r­
a: 
~ 
<: 
S2. 
= 3 
(D 

N 

'< 
(Il 
N 

" (D 

i 
~ 
w 

~ 

From Diagram Varying a CPU or 
Channel Offline or Online OEEVCPU) 

lOX 

Pointer to 
IECVCRHA 

1 Determine if channel is already online. 

If yes, I • 

2 If CPU is offline, obtain PCCA and 
LCCA, if required, and BALR to 105 
to activate Channel Reconfiguration 
Hardware. 

3 Store the specified channel 10. 

4 Determine which devices to come 
online with the channel. 

5 Go to diagram Varying a CPU or 
Channel Offline or Online 
(IEEVCPU), step 6. 

Step 4 

To Diagram 
Varying a CPU 
or Channel 
Offline or 
Online 
(lEEVCPU), 
step 5. 

Output 

PCCA 
(CAT) 

@f 
UCB(s) 

~ 
For units brought 
online 



!;I.) 
(D 

$a. 
~. 

= ~ 

tIC 
~ 

8: 
Sa 
o 

I 
~. 

= 
~ 

~ .... 
....... 

Diagram 2-50. Varying a Channel (V CH) Online (IEE;tVCPU) (part 2 of 2) 

Extended Description 

This routine makes a specified, operational channel 
available to the specified cpu. 

1 This routine tests the operational status of the incom­
ing channel. The CPU connected to the arriving chan­

nel must make the test. 

2 If no LCCAs and PCCAs exists for specified CPU, 
obtain new LCCAs and PC CAs and activate 

Channel Reconfiguration Hardware (CRH). (Branch 
to lOS at entry point I ECVCRHA to activate CRH-l 

3 The routine stores this 10 in the PCCA (CAT). 

4 The routine will test devices attached to the arriving 
channel to see if they have operational paths. (See 

the diagram Varying a CPU Online, step 7.) 

All devices that have operational paths and that are offline 
because of hierarchy considerations will be marked online. 
The routine then creates recorder (control) blocks for any 
devices to be brought online with the channel. 

All UCBs represented by the recorder blocks are then 
marked as having the associated devices online. 

Module Label 

IEEVCPU IEEVCl-i 

OEVPREP 

UCBMARK 



~ Diagram 2-51. Varying a Channel (V CH) Offline (IEEVCPU) (part 1 of 2) 
-..I 
00 

From Diagram Varying a CPU 
o or Channel Online or 
~ 1" ...... + Offline (lEEVCPU) 
I:I.l 
N 
I:I.l 
'< 
~ 

~ 

~ 
(=S. 

Co er 

~ 
~ 
C 
:3 
(D 

N 

<: 
I:I.l 
N 

:=c 
(D 

ti) 
~ 

r6 
~ 

~ 

R6 

D- ~ Work Area 

I I 

lOX 

lOXCRHD If 
r 

Pointer to 
IECVCRHD 

... 
... 
y) 1 Determine if channel is offline now. 

If yes, 

2 Determine if there exist any devices 
currently dependent on this channel 
for access. 

3 Determine which devices are to go 
offline with the channel. 

4 Switch consoles from the departing 
channel. 

5 Indicate devices are offline. 

II\. ') 6 Deactivate CRH (Channel 
· v Reconfiguration Hardware) if 

required. 

7 Go to diagram "Varying a CPU or 
Channel Online or Offline", 
step 6. 

","X.d" 

.. 
P' Step 6 

r 

UCB(s) For units taken 

~ 
offline 

.. i 
")~ 

: 
.... SMF I II I Records 

11 22 
... ToDiagram Devices Channels Varying a CPU or 

Channel Online or "-
Offline "ir' 
(lEEVCPU), .~ 
StepS 

; 
~ 
t 



Cf.) 
I'D 
g. 
~. 

= N 

s:: 
~ 

[ 
o .... 
o 
1 
~ o· 
= 
N 
~ 
-..J 
\0 

Diagram 2-51. Varying a Channel (V CO) Offline (IEEVCPU) (part 2 of 2) 

Extended Description 

Dependent on last path conditions and on master con­
sole considerations, this routine makes a specified 

channel unavailable to a specified CPU. 

1 A message will be issued, if this channel is already 
offline. 

2 A 'last path' device can be placed offline only if it is 
unallocated and if UNCOND was specified on the com­

mand. That is, unless specifically indicated to be made off­
line, a device must have an alternate path other than the 
one through the channel being placed offline. 

Searching for last paths involves the 105 macro instruction, 
10SGEN, which indicates all online paths to a particular 
device. 

3 The command is rejected if the routine is unable to 
switch the active consoles to another channel. 

4 The routine sets indicators in the PCCA (CAT) to 
inhibit new 1/0 to the offline channel. If 1/0 activity 

on the channel is still going on, the operator has a chance to 
ask for more time for the 1/0 to cease before the command 
is rejected due to the 1/0 activity. 

5 SMF record types 11 and 22 are issued for the devices 
and channel made offline. 

6 If VARY was for an offline CPU, determines if any 
channel that belongs to the offline CPU is still 

online. If no such channel remains online, branches to 
105 (at IECVCRHD) to deactivate Channel 
Reconfiguration Hardware (CRH). 

7 The routine issues an appropriate message to the 
operator. 

Module 

IEEVCPU 

Label 

IEEVCH 

DEVPREP 

IGC0407B 

UCBMARK 
CATMARK 
10aUIT 

CKCOMPLT 



~ 

~ 
00 
o 

o 
CIl 

~ 
~ 

CIl 
'< 
~ 
('I) 

3 
r-
~ 
n' 
r­a: 
~ 
-< o 
C 
3 
('I) 

~ 

'< 
tI.l 
~ 

~ 
!l. 
('I) 
I» 

~ 
I.H 

~ 

Diagram 2-52. Varying the Path (V PATH) to a Device (IEEVPTH) (part 10f4) 

Master Scheduler Wait Routine 
(via ATTACH) OEEVWAIT) P 

.. rocess Input 

R1 
CHBUF 

0 (Command Text) 1 Initialize the routine. 

, CSCB / 
0/ '" ~ CHUCMP ) 2 Determine authorization of command 

~ 
(Console ID) ~ ~ issuer. ~I WTO 

II 
D-

,...-CHINC . 
~ 

Step 9 (Authorization) If error, ,.. 

" CVT UCM ) 3 Check command syntax, and get data regarding 

D-~ 
v devices, CPU address, and vary status. I 

r---' - WTO 

II 
UCME/ 

.. 
If error, Step 9 

r 

R6 

0..--. Device Address "" 4 Get access to UCB for device path. y 

UCB 

I 
.... 5 Determine if last path to the device can 

~ y be varied. :; WTO 

II 
II. 

If error, Step 9 
y 

6 Validate authorization of command issuer. .. 
If error, Step 9 

r 

J 

Output 

R10 -'" Work Area - D 
I 

~ Authority ...... 

'" 0 ) 

Ii : Message 

J 
~ ~ } 

~ y [ 

I 
I Message _ 

.... I )I 
yL 

R7 
.... , UCB Address 
)I 

y 

Message 

.... r--- l .l 
" 



c;n a 
(s. 

= ~ 
== ~ 

[ 
S­
o 

"0 

S 
g. 
= 
~ 
tN 
00 -

Diagram 2-52 . Varying the Path (V PATH) to a Device (IEEVPTH) (part 2 of 4) 

Extended Description 

This routine causes a path (a logical connection to a 
device) to be either brought online for use by the 

system, or removed from the system. 

1 The routine issues the EST AE macro instruction to set 
up the recovery (or ESTAE) exit. In addition, the 

routine establishes a work area. 

2 Determine the authority of .the issuing console. The 
issuer may be restricted to only varying the path to 

I/O devices and not to consoles or he may have global 
authority to vary any path. 

3 The command text contains the information needed 
here. 

4 The routine issues an ENQ macro instruction on the 
system resource SYSIEFSD,Q4. This serializes the 

UCBs for use by this routine. 

For the path to be varied, the address of the UCB th'at con­
tains path status information comes from the use of the 
UCBLOOK function (operand) of the 10SGEN macro 
instruction. 

5 The routine examines the UCB. The last path to an 
allocated device may not be placed offline. 

6 The routine compares the device type (console or 1/0 
device) to the issuer's authorization. 

Module Label 

IEEVPTH IEEVPTH 

CMDAUTH 

SYNTXCHK 

UCBCKOUT 



.~ Diagram 2-52. Varying the Path (V PATH) to a Device (IEEVPTH) (part 3 of 4) 
00 
N 

o 
I"I'.l 

< I"I'.l 
N 
I"I'.l 
'< 
~ 

!3 
t"'" 
~ 
n' 
t"'" 

~ 
~ 
~ 
~ 
~ 

N 

'< 
I"I'.l 
N 

~ 
~ 
i 
~ 
~ 

~ -

Input 

Device 
Address 
(EBCDIC) 

Parameter List 
(within the work area) 
Device Address (Hex) 

CPU Address 

Offline/On line 
Indicator 

Return Code 

o 

Process Output 

7 Vary the path as requested. ,~" P "\I 

WTO Message 

If error, :,1 I Step 9 

SMF Record Type II 

8 Vary status of associated device. Hi a/I 

9 Issue message and release resources. Of "!if~ 

Exit to System 
(via SVC 3) 

Operator Message 



Vl 
('D 

~ 
~. 

= 
~ 

3: 
('D 

g 
Q. 

o .... 
o 
~ 

Q 
~ 
~. 

= 
N 
~ 
00 
~ 

Diagram 2-52. Varying the Path (V PATH) to a Device (IEEVPTH) (part 4 of 4) 

Extended Description 

7 The VARY function (operand) of the IOSGEN macro 
instruction is used to alter the path status bits (in the 

UCB) thus changing the path. A return code of 0 indicates 
success. 

8 The processing at this point depends on the type 
(offline or online) of request and the return code from 

the VARY function. For the request indicated below, the 
following conditions and responses are as shown: 

Vary online: 

• If the associated device is offline for hierarchy reasons, 
and 

• If an operational path to the device exists, then the 
device is varied online. 

VARY offline: 

• If the associated device is online, and 

• If the last path is to be varied offline, then the device 
is varied offline. 

If the device (above) is varied as indicated, the routine 
writes an SMF record. 

9 The routine uses a WTO macro instruction to inform 
the operator of the results of the processing. 

Module Label 

IEEVPTH VARYOFF 

IEEVPTH 

SMF 

CLEANUP 



t-J 
~ 
00 
~ 

o 
C"/} 

"< C"/} 
I-.) 

C"/} 

'< :a. 
~ 

3 
r-
ti 
n' 
r-
0: 
lOt 
Ito) 

-< 
<: 
o 

=-3 
~ 

I-.) 

'< 
C"/} 
I-.) 

" ~ 
(S" 
Ito) 

r6 
~ 

~ 

" 
Diagram 2-53. Varying the Status of Real Storage (V STOR) (IEEMPVST) (part 1 of 2) 

Master Scheduler Wait Routine 

Input (via ATTACH) (lEEVWAIT) Process Output 

R1 

CVT 

Page 
Vector 
Table 

CHUCMP 
(Console 10) 

CHBUF 
(Input Text Buffer) 

PFT 

PFTE(s) 

Page Frame Table 

1 Set up an EST AE environment and 
get a work area. '~{J " " 

2 Verify command authority. L a/ 

WTO 
3 Analyze command text. 

If error, I I (I. Step 5 

4 Process the request. 

5 Write SMF record and/or inform 
operator of results (error message 
or data). 

6 Release resources. 

Dispatcher 
OEAVEDSO) 

Function Flags 

c:J Message 

PFT 

~PFTE 
'--__ ..... 1 Type 22 Record 

~ Opera,,,, 
~ ... ____ ~MeSSage 



til 
(D 

~ 
~. 

= 
~ 

:::: 
~ 

[ 
o 
~ 

o 
'g 
£ 
~. 

= 
t;.J 
w 
~ 

Diagram 2-53. Varying the Status of Real Storage (V STOR) (IEEMPVST) (part 2 of 2) 

Extended Description 

This routine changes the status of a specified area of 
real storage to either an online or an offline condition. 

1 This environment traps any ABEND situations that the 
routine encounters. For a storage error, the EST AE 

routine records the status and schedules a retry for the next 
storage page. The ESTAE routine frees all resources when an 
unrecoverable internal error occurs. 

2 The command issuer must be either the master con­
sole, an internal (system) issuer, or a reader with the 

same authority as the master console. 

3 The routine scans the command text to validate the 

text, and it stores the specified address range and 
function in the work area. 

4 If the storage is being varied online, the routine verifies 
the current status of the storage areas by checking the 

page status bytes that are returned by a real storage recon­
figuration (RSR) routine. This procedure locates storage 
that is already online or that has associated storage errors. 
If any of the requested storage has errors, the routine 
prompts the operator (via a WTOR macro instruction) to 
decide which error-free storage area(s), or if no storage, is 
to come online. A real storage reconfiguration routine is 
given control to change the storage status. 

Module Label 

IEEMPVST 

SYNCHK 

SYNCHK 

VSTORON 

VBLCKON 

Extended Description 

If the storage is being varied offline, the routine determines 
if the storage is already offline. The routine places offline 
any storage not already offline. 

Module Label 

VSTOROFF 

RSR routines are used to accomplish the change in storage IEEMPVST VSTOROFF 
status. 

If there is activity within the storage range, the routine waits 
for the storage to become inactive before placing it offline. 
A force-page-offline subroutine attempts to expedite this FORCEOFF 
process. Each 4K page of storage placed offline is set to IEEVALST IEEVALST 
zero. 

While zeroing the" storage area, the reconfiguration com- PROCOFF 
mands are serialized through the use of the ENQ macro 
instruction for the SYSZVARY,VALIDATE resource. 

5 The routine writes one or more type 22 SMF records 
to indicate the areas of storage that are placed offline 

or online. 

6 The routine dequeues off (removes its hold on) the 
command resource, frees the work area, and releases 

the CSCB. 

IEEMPVST SMFRCRD 



2-386 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



en 
(l) 

a 
o· 
::I 
tv 

~ 
(l) 

~ 
8-
o ..... 
o 
"0 
~ 
~ o· 
::I 

N 

~ 
00 
....... 

Diagram 2-54. Teleprocessing (TP) Commands 

Command 
Translator 
(IEE5403D) 

1 Command Verb * 

If Verb is: Give Control to: 

D. _( IEE3503D DISPLAY 

IED1303D 

Do 
~,-IEE1403D HALT 

IED1303D 

Do 
_(IEE0803D HOLD 

IED1303D 

Do 
_,IEE0803D RELEASE 

IED1303D 

Do 
Command Operand is "TP". 

*For further details, see the diagrams HALT (Z), 
SWITCH (I), and TRACE (TRACE) Command 
Initialization; Holding and Releasing 
Teleprocessing; and see the publication, 
OS/VS2 TeAM Program Logic Manual, SY30-2040. 



~ 

c:w 
00 
00 

o 
CIl 

"< 
CIl 
~ 

CIl 
'< 
~ 
~ 

3 
r-' 

J6 
(;. 

r-' 
a: ... 
~ 

-< 
<: 
o 
C 
3 
~ 

~ 

'< 
CIl 
N 

" ~ ;-
~ 

lfil 
~ 

~ 

Diagram 2-55. Holding (H) and Releasing (A) Teleprocessing Messages (IEE0803D) (part 1 of 2) 

Command Router 
(lEE0403D) 

1 Check that HOLD or RELEASE 

command has proper o~~~~~~. ~~I a ~~~: 
J 

(IEE0503D) 

Output 

CIS 
R2 D 

2 Give control to TCAM routines. '~ 

TCAM 
(lED1303D) 

Same Fields as on Input 



til a 
5· 
= N 

~ 
~ 

& 
g, 
o 
~ 
(D a 
5· 
= 
t-.J 
c:u 
00 
I,Q 

Diagram 2-55. Holding (H) and Releasing (A) Teleprocessing Messages (IEE0803D) (part 2 of 2) 

Extended Description 

This routine determines if a valid TP command 
exists. If so, the master scheduler gives control to a 

TCAM routine to continue processing. 

1 The only valid operand for a HOLD or RELEASE 
command is "TP=." 

2 Control passes to a TCAM routine to continue 
processing the command. 

Module Label 

IEE0803D 

IED1303D 



2-390 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



CIl 
g 
g. 
= 
~ 

ac: 
I'D 

[ 
o 
~ 

o 
"0 
~ 
~ 
~. 

= 
~ w 
\I:) -

Diagram 2-56. Processing Commands With the "NET" Operand 

Command 
Translator 
(JEE5403D) 

1 Command Verb*. 

If Verb is: 

HALT
6 

Control Goes to: 

,. IEE1403D 

<'ISTCFF3D 

DISPLAy
6 

---,. IEE3503D 

'-.ISTCFF3D 

Command Operand is "NET." 

For further details. see OS/VS2 VTAM Logic, SY28-0621. 



t.J 
~ 
\Q 
t.J 

o 
til -<: 
til 
t.J 
til 
'< 
~ 
(1) 

3 
t"" 
~ 
n' 
t"" e: e 
'< 
<: 
g, 
c 
3 
(1) 

t.J 

'< 
til 
t.J 

:::0 
(1) 

Q 
0) 

~ 
\,oJ 

~ 

Diagram 2-57. Stopping and Restarting (QUIESCE) (via an Interrupt) the System (IEESTPRS) (part 1 of 4) 

Input 

Rl 

Save Area 

RO 

~ Wait State Code 

(CCC is the code representing 
a QUIESCE command.) 

* The calling routine must: 

• Be in Supervisor State. 
• Be Disabled except for Machine 

Checks. 
• Have Storage Protection Key O. 
• Be Using OAT. 
• Be Holding the Restart Resource. 

(See Diagram "Quiescing a System.") 

Caller of 
IEESTPRS 

1 Determine caller of the routine. 

2 Setup recovery routine. 

3 Inform system resources manager of the 
intent to quiesce the system. 

o 

4 Set up a work area·
d

• b, r/ 

5 Store the TOO clock. bil i¥&LI 

ut 

WSAVT 



!:'-l 
(l> 
(') g. 
:= 
N 

~ 
~ =-8-
o -. 
o 
"0 
(l> 

S g. 
:= 

N 
~ 
\&) 
w 

Diagram 2-57. Stopping and Restarting (QUIESCE) (via an Interrupt) the System (IEESTPRS) (part 2 of 4) 

Extended Description 

This routine places CPUs in a stopped state and, on a 
restart signal from an operator, causes them to resume 

operation at the point of program interruption. 

1 When this routine is entered from the quiesce routine 
(I EEMPS03) , register one contains the address of a 

save area that contains 208 bytes for each active CPU. 
(For any other entry, register one has a zero value, and 
the processing is different in some respects from that 
described for this figure.) 

This routine uses the save area to store the status of the 
CPUs before they are placed in a stopped mode. 

2 An FRR is established to handle unexpected errors. 
I n case of an error, the F R R wi II attempt to restore 

the system to the state in which it was operating prior to 
the call to the stop/restart routine. This restoration includes 
an attempt to restart all CPUs that may have been stopped 
by this routine prior to the occurrence of the error. The 
recovery routine returns control to the caller. 

Module Label 

IEESTPRS IEESTPRS 

Extended Description 

3 The routine uses the SYSEVENT, SYSQSCST macro 
instruction for this purpose. 

4 The work save area vector table (WSAVT) pOin.ts to 
the global save area (GSA) and to the CPU-related 

save areas that contain the work areas for this routine. 

Note: The GSA is a set of work areas for resident routines. 
It resides in the nucleus and is mapped by the IHAWSAVT 
macro instruction. 

5 For each active address space, the routine stores the 
time at which the CPU(s) entered the stopped state. 

When a CPU is eventually restarted, the system 'down' 
time is subtracted from the job's execution time. Thus, 
job step timing (JST) is preserved across the stopped state. 
(See also, step 8.) 

Module Label 

IEESTPRS 



~ Diagram 2-57. Stopping and Restarting (QUIESCE) (via an Interrupt) the System (IEESTPRS) (part 3 of 4) 
~ 

"'" 
G5 

~ 
N 
t;f} 

'< 
~ 

8" 
3 
r-

c£ 
(;" 

r-
~ 
e; 
'< 
<: o 
C 
3 
~ 

N 

'< 
t;f} 
N 

:::0 
~ 

i 
~ 
~ 

~ 

Input 

CSD BCSDMP 
CSD 

B CSDCPUAL 

~ Wait State Code 

R 1 .. Save Area 

~ L--.o1 -------' 
If for Quiesce 

6 Determine the system configuration. 

Place each CPU in the system in either ., "'-
the wait or manual state. 

MP system. 

UP system. 

a. For an MP system, stop non- ./ 
master CPUs and store status of each. 

Store the status and stop the master ___ ~.,.--__ --' 
CPU. ~.d 

_.~.] •• Step 8 

b. Stop the operating CPU and store 
system status. ~ . ~i • 0 v 

Restart stopped CPUs by hitting restart Lv. b" a/ 
button. 

Save Area 

r;:::::;-v CPU ID L..::::::J for Processor 

PSW 

IWWaitBit 

R 1 ~ Save Area 

~ Ii--..--____ 
(If for Quiesce Processing) 

ASCB LCCA 

~~ 
ASCBEWST LCCADTOD 

Caller 



c:n 
~ 

a o· 
= 
N 

s:: 
~ g 
~ 

o 
~ 

o 
"0 
~ 
~ o· 
= 
N 
W 
I.() 
VI 

Diagram 2-57. Stopping and Restarting (QUIESCE) (via an Interrupt) the System (IEESTPRS) (part 4 of 4) 

Extended Description Module Label 

6 For a uni-processor (UP) system, the routine bypasses I EESTPRS 
much processing that is used for a multiprocessing 

(MP) system. The common system data field CSDMP con­
tains the indicator flag that specifies the processor config­
uration. For an MP system, the routine stores the identifica­
tion of the CPU which is executing this routine 
(lEESTPRS). 

7 For an MP system, all CPUs but the master CPU (the 
CPU on which this routine is being executed) are 

brought to a stop. Then the master CPU stops itself. 

For a UP system, the CPU places itself in the wait state. 

7a For each CPU, as determined by the CPU-alive mask, 
CSDCPUAL, the routine uses the inter-processor 

communicator (lPC) to issue the signal processor instruc­
tion SIGP SSS to halt the CPU and store the CPU status. 
The following are among the status items stored: 

• Timer and clock comparator data. 

• General, floating, and control registers. 

• Interrupt PSWs. 

• Current PSW for the given CPU. 

The routine also uses the SIGP SENSE instruction to 
determine if a CPU has stopped. 

Normally, all CPUs other than the master CPU stop in the 
manual state. The routine then constructs a restart new 
PSW with the 'wait' bit on (1) and uses the IPC to issue a 
SIGP RESTART instruction. This procedure places the 
target CPU in the wait state with the wait state code 
passed by the caller. 

Subroutine STOPSTOR then changes the target CPU's 
restart new PSW to point to the restart first level interrup­
tion handler routine in module IEESTPRS. 

After the non-master CPUs have been stopped, this routine 
proceeds to stop the master CPU. It sets the resume PSW 
(located in the prefix storage area (PSA)) to point to the 
cleanup routine of module IEESTPRS. It places the general 

CPUSCAN 
(STOPSTOR) 
LASTCPU 

IEESTPRS CPUSCAN 

STOPSTOR 

LASTCPU 

Extended Description Module Label 

registers and the other status information given previously IE ESTPRS LASTCPU 
(for the master CPU) in this step into the save area 
(addressed by register one). It then sets the restart new 
PSWs (that is, the new program check, the new SVC, and 
the new machine check PSWs) to point to the first level 
interruption handler code in module IEESTPRS. This causes 
machine check, program check, and SVC interruptions to 
be disregarded until the system has been restarted. The 
routine then uses the IPC to issue the SIGP STOP instruc-
tion for the master CPU to place itself (that is, the master 
CPU) in the manual stopped state. 

7b For a UP system, the processing is similar to that 
for the master CPU, as discussed in step 7a. The 

difference is that instead of issuing a SIGP STOP instruc­
tion, the routine loads a disabled wait state PSW and places 
the CPU in a wait state. 

A single CPU operating with the MP feature enters a stopped 
manual state without the wait state code being set in the 
PSW. 

8 When an operator desires to restart the system after a 
quiesced state, he hits the Restart button on anyone 

of the CPUs. That CPU becomes the master CPU and exe­
cutes the first level interruption handler routine of module 
IEESTPRS (since the restart PSW points to that routine). 
The master CPU then adjusts the job-step timing for all 
address spaces and issues a SIGP RESTART instruction to 

LASTCPU 

RESTFLIH 

each of the other CPUs indicated in the CPU-restart mask. IEESTPRS RESTFLIH 
Each of the CPUs uses a portion of this (RESTFLlH) code 
to restore its own status conditions from its 208-byte save 
area. The master CPU then issues a SYSEVENT SYQSCCMP 
macro instruction to the system resources manager to 
indicate that the CPUs have restarted. 

Each CPU then reloads its resume PSW to continue program 
processing at the point where it was when the stop function 
was implemented. 

The master CPU first executes a small routine to verify that CLEANUP 
all CPUs have successfully been brought on line (alive). It 
also informs dynamic system support (DSS) routines that 
the CPUs are alive. It then proceeds to load its resume PSW 
and begin program execution from the stop point. 



N 
W 
\.0 
0'1 

o en 
~ 
en 
N 
Cf.l 
'< 
~ 
ct> 
3 
t"'" 
~ ;. 
t"'" a: .... 
~ 

-< 
<:: 
o 
;:-
3 
ct> 
N 

'< en 
N 

::0 
ct> 
(ji 
~ 

~ 
w 
~ 

Diagram 2-58. Device Information Subroutine (V PATH, * CH, V CPU) (IEEVDEV) (Part lof4) 

Input 

CPU Address 

Function Code: 

00 - Test Operational Path Status 

01 - Test CPU Dependency 

02 - Test Channel Dependency 

03 - CPU Utilization 

04 - Channel Utilization 

PATHMAP 

See Extended 
Description 

Process Output 

1 Save caller's protect key and enter i/ 
protect key zero. 

2 Check specified device's validity. 

3 Build a map of available paths to the i/ 
specified device. 

4 Process according to function code. 

R2 
---] 

Caller's protect key. 

Available Paths to 



c:n 
('I) 
n g. 
= N 

~ 
~ g 
~ 

o 
'"I) 

o 
"0 
~ 
~ o· 
= 
N 
W 
~ 
'-I 

Diagram 2-58. Device Information Subroutine (V PATH, * CH, V CPU) (IEEVDEV) (part 2 of 4) 

Extended Description 

This routine obtains information regarding the con­
dition of available paths to a device and provides that 

information to the caller of the routine. 

1 This routine may be entered from one of the following 
callers: 

• Vary CPU or Vary Channel: to check function codes 
00,01,02,03, and 04. 

• Vary Path: to check function code 00. 

• Allocation Recovery: to check function code 00. 

• Dynamic Device Reconfiguration: to check function 
code 00. 

• Volume Attribute Processing: to check function code 00. 

• MP VARY Command Pre·Processor (path availability 
checker): to check function code 00. 

The caller's protect key is saved and the device subroutine 
enters a key of zero so it can manipulate UCB hierarchy or 
operational reason indicators. 

2 The routine determines if the UCB (device) ID is valid. 
The first word of the parameter list contains the UCB 

address. 

3 The routine uses the 10SGEN MAP macro function to 
obtain a table of available paths to the specified device. 

The routine passes a work area location to contain the path 
map. 

Module Label 

IEEVDEV 

Extended Description 

4 Depending on the function code (FC) specified as an 
input parameter, processing and results occur as indi­

cated below. 

• FC = 00: Device should be offline. The routine determines 
if the specified device is already online. If so, the routine 
will return a code of 20. Otherwise, the routine deter­
mines if a system function (such as OLTEP) is using the 
device. If so, the routine will return a code of 16. Other­
wise, the routine determines if a logical path to the device 
exists. If a path is unavailable, the routine returns a code 
of 4. In this case, the UCB hierarchy bit (UCBVHRSN) 

has been set to 1. 

Other return codes from this module are: 0, if an opera­
tional path to the device is available; 8, if working storage 
is unavailable - in this case, no path checks are made; 12, 
a logical path to the device exists, but an operational 
(physical) path is unavailable. In this case, the UCB 
operator bit (UCBVORSN) has been set to 1. 

• On the basis of this determination, the routine issues a 
return code of either 0, if available paths other than the 
specified unit exist, or 4, if the CPU or channel repre­

sents the last available path. 

Note: IEEVDEV links to module IECVIOPM only if 
function code 00 is in effect and if the path map table 
indicates that device paths are available. IECVIOPM's 
return code indicates the operational or non-operational 
status of the path(s). 

FC = 01 or 02: Device may be offline or online. The 
routine determines if the CPU address and, in the case of 
FC = 02, the channel address are valid. (An invalid 
address results in an abend situation.) Then the routine 
determines if the specified CPU (for FC = 01) or if the 
specified channel on the specified CPU (for FC = 02) 
represents the last available path to the device. 

• FC = 03 or 04: Device may be offline or online. The 
routine determines either if the CPU (for FC = 03) is used 
in any path to that device or if the channel (tor FC = 04) 
is used in any path to that device. 

Module 

IEEVDEV 

IECVIOPM 
(See Note) 

IECVIOPM 

Label 

IEEVDEV CHNLEVEL 

CPULEVEL 



~ Diagram 2-58. Device Information Subroutine (V PATH, * CH, V CPU) (IEEVDEV) (part 3 of 4) 
1.0 
00 

o 
til 

"< Cf} 
N 
Cf} 

'< 
~ 
(p 

3 
t"" 

~ 
(i). 

t"" 
0= 
~ 
'< 
< o 

= 3 
(p 

N -< 
til 
N 

"., 
(p 

i 
r6 
I.H 

~ 

Input 

R15 

Return Code from 
IECVIOPM. 
Code 0 or 20 Indicates Existence of 
Path. 

Process Output 

6 Set return code for caller. EM a/ 

7 Reset caller's protect key. 

Caller (see extended description, step 1) 

R15 

Return Code 



til 
~ 
(") g. 
::I 

~ 

3: 
~ 
::r 
8-
o 
000) 

o 
"0 
~ 
~ g. 
::I 

~ 

~ 

'" '" 

Diagram 2-58. Device Information Subroutine (V PATH, * CH, V CPU) (IEEVDEV) (part 4 of4) 

Extended Description 

6 The status code returned from the IECVIOPM sub· 
routine is converted to a return code from the device 

subroutine and returned to the calling routine. 

7 The calling routine's protect key is restored. 

Additional Considerations for This Diagram: 

1. All system components that bring a device online should 
use the IEEVDEV subroutine with function code 00 to 
ensure that the device has an operational path. 

2. If a device is offline due to operator reasons (bit 
UCBVORSN = 1), the IEEVDEV subroutine caller should 
have the authority to bring the device back online -
and the caller should set the UCBVORSN bit equal to 
o when this is done. 

3. The operational path status test routine IECVIOPM 
receives control via a LINK macro instruction and 
requires a UCB address as input. 

4. In addition to building a map (table) of available paths 
for a specified device, the IOSGEN MAP macro function 
interrogates the online/offline status of each CPU and 
channel that comprises the path and indicates this status 
in the path status field of the map. 

Module Label 

IEEVDEV 



~ Diagram 2-59. Deleting a Virtual Memory (IEAVEMDL) (part 1 of 2) 
o 
o 

o 
tn 

"< tn 
N 
tn 
'< 
~ 

8 
t""" 
~ 
n' 
l"'" a: 
~ 
<: 
~ 
3 
~ 

N 

'< 
tn 
N 

:::tI 
~ 
(;) 
~ 

~ 
~ 

~ 

Input 

R1 

ASID 

TCB 

RO 

ASID 

Recovery IT ermi nation 
Routine 

Output 

1 Dequeue the associated ASCB. 

2 Inform SRM of memory deletion. 

3 Make Ihe memory's ASID available "". '(&0 
and release appropriate entries 
in the SQA. 

Caller 

R1 
O-------Return Code 

OUCB, OUXB. and OUSB are 
released.* 

SQA 

~ASCB 

l..m----LSPL 

ASID Indicator '- D 
(High order bit} U 

OUCB = Resources Manager user control 
block 

OUSB = Resources Manager user 
swappable block 

OUXB = Resources Manager user 
extension block 



1:1) 
(D 

54 o· 
= N 

~ 

[ 
o 
~ 

o 
"C 

S 
g. 
= 
N 
J:,. 
o -

Diagram 2-59. Deleting a Virtual Memory (IEAVEMDL) (part 2 of 2) 

Extended Description 

This process makes available the ASID of the given 
virtual memory that is being deleted. If another routine 

is asynchronously referencing the ASCB queue, that routine 
must complete before the given memory's ASCB is freed. 

Module 

1 This routine uses the ASCBCHAP macro instruction to IEAVEMDL 
dequeue the ASCB from the ASCB ready queue. 

2 The routine uses the SYSEVENT MEMDEL macro IRARMINT 
instruction (via SVC 95) to inform the SRM. This 

allows the SRM to release the resources that the memory 
used. If the SRM is unable to allow the occurrence of mem­
ory deletion, module IEAVEMDL waits until SRM posts the 
ECB for the associated ASCB to indicate that deletion may 
occur. 

3 The ASID release occurs within the environment of a 
page fix, a global lock, and a functional recovery 

routine. This permits serialized alterations to the ASVT. The 
release is indicated by setting the memory's ASVT entry for 
the ASID. The ASCB and SPL resources are then released 
from SQA. 

IEAVEMDL 

Label 

Note: This processing occurs in the master scheduler's 
memory and under an EST AE environment. 

IEAVEMDL MDLESTAE 



~ I Diagram 2-60. SETDMN Command Processing (IEE8603D) (Part 1 of 4) 

~ ~mm~dRoow 

o 
tf.l 

"< 
tf.l 
~ 

tf.l 
'< 
fIl 

;-
:3 
b 

<19. 
(') 

t"'" 
0: 

~ 
-< 
~ 
:3 
(D 

~ 

'< 
tf.l 
~ 

~ 
<...l 
00 o 
~ 

Inout 

R2 

R2 

XSA 

t Command 
Operand (XAL) 

Command 
Verb (XAV) 

t Command 
Operand (XAL) 

t Command 
~uffer (XAR) 

length 
of next text 
field +4 

(I EE04030) 
p 

o Check for operands in the 
command buffer. 

• If none exist . 

• Otherwise, continue with 
the next step. 

1 G ETMA I N storage for a workarea. 

2 Check for the presence and the 
validity of the domain parameter. 

3 Save the domain parameter value 
in the EVTAREA. 

4 Search for undefined keywords. 

5 Search for defined keywords. If 
none are left, go to step 9. 

6 Validate the keyword value. 

o 
iP£j !ii] _ w_ ... ~" ~.F."'%~ 

EVTAREA 

domain min max wait 
flags number value value byte 

A ~ 7 Jg" :r.$ii_4I?z p /i@~"~"' 1M". 

EVTAREA 

domain 
number 

<: 
tf.l 
~ 

~ 
<...l 
00 
o 
" 



til 
(Ij 

~ 
g' 
~ 

a:: 
(Ij 

;. 
8-
o .... 
o 

"d 
~ 
~ g 
~ 

J:. 
Q 

~ -

Diagram 2-60. SETDMN Command Processing (IEE8603D) (Part 2 of 4) 

Extended Description 

This routine changes values in the Domain Descriptor 
table (DMDT). 

o If the XAL field is zero, no operands exist. If 
there are no operands, issue error message 

'IEE3111 SETDMN PARAMETER MISSING'. 

1 Storage for EVT AR EA comes from subpool 
245 (SQA). This area is passed as a parameter 

to the sysevent processor. 

2 The XAL field contains zeros if no operands are 
present. Error conditions are: 

a) No operands: issue msg: 'IEE3111 SETDMN 
PARAMETER MISSING'. 

b) Domain number not in range 1-128: issue message 
'IEE5351 SETDMN INVALID PARAMETER'. 

3 The domain number is translated to binary 
and stored in the EVT AREA. 

4 The buffer is searched for keywords other than 
'MIN', 'MAX', and 'WT'. If any are found, 

issue error message 'IEE3091 SETDMN UNIDENTIFIABLE 
KEYWORD'. 

5 The scan macro IEEBUFSC is used to locate 
keywords. Input to IEEBUFSC is: 

RO (points to the last byte of the buffer +1) 

R 1 (points to the beginning of the buffer) 

R151 r ,~ 
7 '\ 
Length Keyword (1 byte) t Keyword (3 bytes) 

keywords are: 'MIN', 'MAX', and 'WT'. 

Module 

IEE8603D 
IEE0503D 

Label 

IE E8603D G ETSTO R 

VALDMN 

IEE0503D 

IEE0503D 

IEE8603D TRANSLAT 
VALDMN 

BADKEYW 

IEE0503D 

IEE8603D SCANKEYW 

Extended Description 

OUTPUT from IEEBUFSC is: 

R 1 (length of the keyword value) 

R14 (pointer to the first byte of the keyword value) 

R 15 retu rn codes: 
o keyword and value found 
4 keyword value is invalid 
8 keyword not found in buffer 

For RC 4 issue message 'IEE7081 KEYWD KEYWORD, 
VALUE INVALID'. 

For RC 8, the next keyword is search for (step 5). 

6 The keyword value is checked against the proper 
range. 

MIN (0-255) 

MAX (0-255) 

WT (1-255) 

If the keyword value is not in the valid range, issue 
message 'IEE7081 KEYWD KEYWORD, VALUE 
INVALID'. 

Module Label 

IEE0503D 

IEE8603D VALKEYWV 

IEE0503D 

-< 
til 
t-.J 

o 
\.0.1 
00 
Q 
-....I 



~ I Diagram 2-60. SETDMN Command Processing (IEE8603D) (Part 3 of 4) 
"'" :: 
N 

o 
CIl 

"< 
CIl 
N 
CIl 
'< 
.." 
;-
3 
r­o 
cti. 
(') 

r­
a: 
~ 
<: 
o 
c: 
3 
(I) 

N 

'< 
CIl 
N o 
W 

00 
o 
~ 

Input 

XSA 

Command Buffer (XAR) 

Command Buffer 

II 

EVTAREA 

domain 
number 

'--v-----' 

flags 

\ 

text 

min 
value 

\ 
\ 

\ 
\ 

\ 

max wait 
value byte 

on if WT is specified 

on if MAX is specified 

on if MIN is specified 

R151 Return Code I from IRARMEVT 

Process 

7 Save the keyword values and set 
the EVT AR EA flag. 

8 Search for duplicate keywords. 

·If a duplicate is found. 

If a duplicate is not found 
proceed at step 5. 

9 Check for the presence of at _"'" 
least one keyword and check that £:1 I ( 
the MIN value does not exceed the 
MAX value. 

Output 

EVTAREA 

10 Change domain descriptor table lrl II In I-\n IVI I:: V I 

values. 

,.--__ ....,..-./ 11 Evaluate the return code. 

12 Free the EVTAREA storage. 

13 Issue the processing complete 
message. 

Return Using 
Register 14 

Command ___ 

Router 
(lEE0403D) 

flags min 
value 

Command 
Processing 
Message 
Assembly 

max wait 
value byte 

<: 
CIl 
N o 
W 

00 
o ....., 



tI} 
('D 
n g. 
::s 
~ 

::::: 
('D 

s-
o 
c::a. 
o 
""0) 

o 
~ 
;3 

g' 
~ 

J:,. 
c -~ 

Diagram 2-60. SETDMN Command Processing (IEE8603D) (part 4 of 4) 

Extended Description 

7 SETDMN translates the value to binary and saves 
it in EVT AR EA. Also, the appropriate flag 

signalling the presence of this keyword is set. 

8 SETDMN issues a IEEBUFSC macro to look for 
duplicates. 

R1 (pointer to the byte after the domain value) 

If RC is 0 or 4, issue error message 'IEE3121 
SETDMN PARAMETERS CONFLICT'. 

If RC is 8, Step 5 executes next. 

9 If the MIN value exceeds the MAX value, issue 
error message 'IEE3121 SETDMN 

PARAMETERS CONFLICT'. 

If no keywords were specified, issue error message 
'IEE3101 SETDMN KEYWORD MISSING'. 

10 A branch entry to IRARMEVT is made via 
sysevent number 37 to set values in the domain 

descriptor table. 

11 The return code is evaluated. For return code 4: 
'IEE7971 DMN NNN NOT DEFINED IN 

DOMAIN TABLE' is the error message. 

For return code 8: 'IEE7981 MIN VALUE EXCEEDS 
MAX VALUE IN DOMAIN TABLE' is the error 
message. 

Module Label 

IEE8603D VALKEYWV 

DUPKEYW 

IEE0503D 

IEE0503D 

IRARMEVT 

IEE0503D 

IEE0503D 

Extended Description 

12 Storage is freed from SOA for EVT AR EA. 

13 Issue message 'IEE7121 SETDMN PROCESSING 
COMPLETE'. 

Note: a) Input to IEE0503D 

XAV 
XAE 
XAU 
XAA 

command name or keyword name 
message index 
UCMI forWTO 
AS I D for TPUT 

b) SETDMN command processing returns using the 
contents of register 14 passed on entry by 
IEE0403D. 

c) IEE0503D is invoked to produce a message to 
the issuer of the SETDMN command. 
IEE0503D always returns to the step that 
called it, then I EE8603D returns to its caller. 

Error Processing: 

Unexpected errors occurring during SETDMN command 
processing are handled by the caller's EST AE. 

Module Label 

IEE0503D 

<: 
tI} 
~ 

Q 
w 
Oc c 
....... 



2-402 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 



The Region Control Task (ReT) is the highest 
priority task in an address space and is swapped 
with the user's tasks. The ReT functions are: 

• To prepare an address space to be swapped 
out. 

• To prepare an address space for execution 
after it has been swapped in. 

• To ensure proper scheduling of a user 
attention exit. 

When a new user starts a job, ReT'S 
Initialization routine receives control from Address 
Space Create to perform initialization functions like 
attaching the dump task and the Started Task 
Control task. 

When the System Resources Manager determines 
that an address space should be swapped out, it 
posts the ReT Quiesce routine. The Quiesce routine 
sets all quiescable SRBs and tasks under the ReT 
nondispatchable, purges all I/O requests, and calls 
the RSM Swap-Out routine to initiate the swap-out. 
It also performs address space activity checking, to 
determine whether there is any work to be 
processed in the address space, and notifies the 
System Resources Manager of the result. 

When an address space is swapped in, Quiesce 
receives control, sets an indicator requesting 
Restore processing and passes control to ReT 
Common Processing. ReT Common processing 
passes control to the Restore routine. The Restore 
routine prepares the address space so that it can 

Region Control Task 

execute again by rescheduling purged I/O, resetting 
all tasks under the ReT dispatchable, and notifying 
the System Resources Manager if the address space 
is in long-wait condition, having no work to be 
processed. Restore also handles Quiesce backout, 
restoration of an address space after Quiesce has 
failed. 

When a user requests an attention exit, ReT 
routines ensure that it is properly scheduled and 
executed. 

When the Initiator, MOUNT Processor, or TSO 
session has ended, the ReT Termination routine 
gets control from ReT Common Processing. The 
Termination routine performs housekeeping 
functions and returns control to allow the address 
space to be freed. 

Functional recovery routines are incorporated 
with the following routines: 

• Quiesce 
• Restore 
• STAX 
• Attention Exit Scheduler 
• Attention Exit Prolog and Epilog 
• Attention Exit Purge 

ESTAE processing is performed by code residing 
in the ReT Initialization/Termination module which 
routes control to individual modules for specific 
error processing. 

• 

Section 2: Method of Operation 2-403 



2-404 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



("Il 

a 
5' 
= 
~ 

a:: 
~ 
Q. 

e. 
o 
'0 
~ 
~ 
5' 
= 
~ 
~ 

I 
L:::.. 

Quiesce 
(lEAVAR02) 

~ 
RCT 
Initiationl 
Termination 
(lEAVAROO) 

~ 
RCT 
Common 
Processing 
(lEAVAR01) 

~ 

Restore 
(lEAVAR03) 

Figure 2-6. Region Control Task Visual Contents 

r----

13-10 

RCT 
ESTAE 
Processing 
(IEAVAROO) 

1 

Region 
Control Task 
Overview 
(no diagram) 

J 

l!:.. 
Attention 
Exit 
Scheduler 
(IEAVAR04) 

~ 
~ 

STAX 
Service 
Routine 
(lEAVAXOO) 

E 
Attention 
Exit 
Prolog 
(IEAVAROS) 

Attention 
Exit 

~ 

Epilog 
(lEAVAR06) 

1 
Attention 
Exit 

I 3-9 

Purge 
UEAVAR07) 



t-J 
J:. o 
0'> 

o 
tZl 

"< 
tZl 
t-J 
tZl 

~ 

~ 
t""' 
~ 
(5. 

t""' g: 
~ 
B 
=-3 
~ 

t-J 

'< 
tZl 
t-J 

~ 
~ 

i 
l'3 
w 
~ 

Diagram 3-1. ReT Initialization/Termination Routine (IEAV AROO) (part 1 of 2) 

RCTDTCBS 

From Address Space Creation 
(lEAVEMIN) see extended description 

Process 

1 Establish recovery 
environment. 

Attach Started Task 
Control task. 

4 Pass control to R CT 
Common Processing. 

5 Detach STC task and 
dump task. 

cancel recovery 
environ rnent. 

7 Pass control to Address 
Space Termination. 

tBASXBj ..... - -

ASXBFTCB 

rASXBRCTD~ 
RCTD 

RCTDTCBD ~---.. 

RCTDTCBS 
SCB TCB (RCT) 

-. 
TCBNSTAE I RCTDRCTR 

"--RCTDLMAC 

RCTDTECB 
TCBLTC 

~ 

1~ 
TCB (Dump) 

~ TCBNTC 

- '-- -



en 
(!) 

:l o· 
= 
N 

ai: 
(!) 

g 
c;.. 
o ...., 
o 

'"0 
~ 
~ 

5-
= 
N 
J:. 
o ...,. 

Diagram 3-1. ReT Initialization/Termination Routine (IEAVAROO) (part 2 of 2) 

Extended Description 

The RCT Initialization/Termination routine (I EAVAROO) 

prepares an address space for use when called by Address 
Space Creation. Memory Initialization (lEAVEMIN) 
initializes the first TCB and SVRB to enter program 
manager to route control to lEA V AROO. When the 
address space is terminating, this function releases any 
attached tasks before allowing the Address Space 
Termination function to take control. 

Module Label 

1 RCT Initialization first issues an ESTAE macro instruc- IEAVAROO IEAVAROO 
tion to set up a recovery environment. If the ESTAE 

sets a non-zero return code to indicate failure, RCT Initial­
ization causes an error message to be issued to the operator 
and to the terminal user, if one exists. 

2 RCT Initialization sets status flags in the RCT Data Area IEAVEATO 
(RCTD) and then attaches the dump task. During the 

attaching process, RCT Initialization requests that an ECB 
be posted at termination of the dump task and puts the 
dump, task TCB address in the RCTD. If an error occurs, 
indicated by a non-zero return code, RCT Initialization 
causes an error message to be issued and then issues 
ABEND (code 078) to invoke R/TM. 

Extended Description 

3 RCT I nitialization attaches the STC (Started Task 
Control) task, requesting an ECB to be posted at STC 

termination, and then puts the STC task's TCB address in 
the RCTD. If an error occurs, indicated by a non-zero return 
code, RCT I nitialization causes an error message to be issued 
before issuing an ABEND (code 078) to invoke RTM. 

4 When all ATTACH processing is complete, RCT 
Initialization passes control to RCT Common 

Processing. 

5 When RCT Common Processing returns control at 
termination, RCT Termination frees resources associ­

ated with the STC task and with the dump task. 

6 RCT Termination issues an EST AE macro instruction 
to cancel the recovery environment. 

7 RCT Termination passes control to Address Space 
Termination for further termination processing. 

(Refer to the figure in Recovery Termination Management, 
The Process of Normal Task Termination, for more 
detailed information on the termination process.) 

Error Processing: If an error occurs while RCT 
Initialization/Termination is in contrOl, RTM 
passes control to RCT's ESTAE (lEAVAROO). 

The ESTAE routine determines if: 

• RCT has had the error. 
• Percolation did not occur. 
• The previous ST A exit had the error. 

If any of these conditions exist, a SVC DUMP of 
LSQA is taken. Then the EST AE indicates for 
RTM to continue with termination. 

Module Label 

IEAVEATO 

IEAVEEDO 

IEAVAROO IEAVAERO 



~ Diagram 3-2. RCT Common Processing Routine (lEA V ARO 1) (part 1 of 2) 
o oc 

~ -< 
\I) 
N 
\I) 
'< 
~ 
I'D 
3 
r-
ei 
()' 

r­
;: 

~ 
< o 
=-3 
I'D 
N 

~ 
\I) 
N 

'" I'D 
(S" 

= r6 
~ 

~ 

Input 

ASCB 

ASCBECB 

ASCBFOU 

ASCBFRS 

ASCBASXB 

" 
ASCBTSB 

TSB 

TSBATTNC 

From RCT Initialization/ 
Termination (lEAVAROO) 

Process 

CVT 

From Ouiesce 
(IEAVAR02), 
Restore 
(lEAVAR03), 
or 
Attention 
Exit 
(lEAVAR04) 

RCTDTECB -.. 
RCTDRCTR 

1 Pass control to RCT Ouiesce .,. RCT Quiesee 
routine. if (I EAV AR02) 

2 Pass control to requested 
functions: 

• Restore. RCT Restore 
(lEAVAR03) 

RCT Initialization/ 
• Termination. Termination 

(lEAVAROO) 

RCT Attention 

• Attention Exit. Exit Scheduler 
(lEAVAR04) 

3 When control returns from 
Ouiesce, Restore, or 
Attention Exit, repeat 
steps 1 and 2 until 
termination is requested, 
then return. 

RCT Initialization/Termination 
(lEAVAROO) 

Output 

ASCB 

ASCBECB 

ASCBASXB 

ASXB 

ASXBRCTD 

tRCTD 

RCTDECB 

RCTDISAV 

RCTDRCTR 

RCTDRTRY 



til 
(1) 
t"l g. 
= N 

iii:: 
(1) g 
~ 

o .... 
o 

"0 
~ 
~ e· 
= 
~ 
~ o 
\0 

Diagram 3.,2. RCT Common Processing Routine (lEA V ARO 1) (part 2 of 2) 

Extended Description 

The RCT Common Processing Routine (lEAVAR01) routes 
control within the RCT modules to wait for a functional 
request in the Quiesce module who passes control to the 
other requested functions: Termination, Restore, or 
Attention Scheduling. 

1 RCT Common Processing initializes an ECB list 
consisting of a termination ECB and a work ECB. 

Then it sets a status flag in the RCTD and passes control 
to the Quiesce module that will enter the wait state until 
one of the ECBs is posted. 

2 Control is returned to RCT Common Processing after 
one of the ECBs is posted in Quiesce. If SRM posts 

the work ECB, Quiesce will handle this request prior to 
returning to Common Processing. Otherwise, if Task 
Termination posts the termination ECB for termination 
processing, or if Terminal 1/0 Control posts the work ECB 
for Attention Scheduler processing, control is immediately 
returned. 

RCT Common Processing checks for a Restore request in 
the ASCB (ASCBFRS). If one exists, it sets a status flag 
in the RCTD and routes control to the Restore function to 
satisfy the request. 

Module Label 

IEAVAR01 IEAVAR01 

Extended Description 

Next, RCT Common Processing checks the termination 
ECB; if it is posted, RCT Common Processing sets a 
status flag in the RCTD and passes control to RCT 
Initialization/Termination. RCT Common Processing 
checks for a TSB (Terminal Status Block). If none exists, 
RCT Common Processing re-invokes Quiesce to enter a 
wait state. If one exists, RCT Common Processing checks 
for attention requests (TSBATTNC). If none exist, RCT 
Common Processing re-invokes Quiesce to enter the wait 
state; otherwise, RCT Common Processing sets a status 
flag in the RCTD and passes control to the RCT Attention 
Scheduler. 

3 When Quiesce, Restore, or Attention Scheduler proc-
essing returns control to RCT Common Processing 

with no other requests to honor, it invokes Quiesce to wait 
until an ECB is posted. If termination has been requested, 
RCT Common Processing passes control for termination 
and wi II not be re-entered. 

Module Label 



N 
.i:. -o 

o 
CI:l 

"< 
CI:l 
N 
CI:l 
'< 
~ 
ct> 
3 

£" ;:;. 

c 
~ e; 
'< 
<: o 
C 
3 
ct> 
N 

'< 
CI:l 
N 

:::0 
ct> 

i 
~ 
(,H 

~ 

Diagram 3-3. Quiesce Routine (IEAVAR02) (part 1 of 3) 

ASXB 

RCT Common 
Processing (I EA V AR01) 

ASCBECB l/ 
n\"lu 

ASCBASXE ASXBRCTD I---'" RCTDOG L 1 

ASCBWAIT RCTDPRG 

ASCBS2S ASXBSPSA 
RCTDSV16 

( 
ASCBSPL ~~RCTDPRGR 

ASCBTSB 1\ ASXBFTCB RCTDWORK 

ASCBQECB RCTDTECB 

RCTDECB 

{TSB - RCTTCB WSAL 

TCBRBP 

~ 
1 

TSBATTNC 
WSALCWSAl 

ir TCBTCB 1 
TCBGRS ~ RB 

SPL 

1 ~ TCB RBOPSW 

TCBRBP 

f"\RB CVT TCBNDSP 

( 
CVTPVTP TCBFLGS4 

CVTWAIT TCBFLGS5 RBWCF 

~-- TCBTCB 

PVT RB 

TCB / PVTSOUT TCBRBP RBWCF 

TCBNDSP 

TCBFLGS4 

TCBFLGS5 

TCBTCB 
PSA - PCCA 

I PSAPCCAV I - -1S2iJ 
Via POST 
macro 
from 
Swap-in 
(lEAVSWIN) 

Output 

1 Wait for ECB to be 
posted. 

2 Handle requested 
function: 
• Termination, go 

to step 15. 
• Quiesce, continue 

with step 3. 
• Attention Exit, go 

to step 15. 

3 Set up recovery 
environment. 

4 Stop RCT subtasks. 

5 Check for ready tasks 
for the address space. 

6 Notify SRM that 
Quiesce has started. 

Dispatcher 
(lEAVEDSO) 

7 Purge user I/O activity. --.-__ ~ 

8 Stop the dispatching 
of SRBs. 

9 Check for address 
space activity. 

10 Notify SRM that 
Quiesce is complete. 

11 If swap-out is possible, 
call RSM to initiate 
swap-out. If not, go 
to step 13. 

12 Wait for ECB to be 
posted, indicating 
restore processi ng. 
Then go to step 14. 

13 If no swap is to take 
place, restart SRB 
dispatching. 

14 Prepare for Restore 
processing. 

15 Return. 

DISPATCHER 
(lEAVEDSO) 

RCT Common 
Processing 
(IEAVAR01) 

ASCB ASXB -ASCBECB 
ASXBRCTD 

l\ 
ASCBTMNO ~ 
ASCBTMLW ~ ASXBFTCB 
ASCBOUT __ 

ASCBWAIT ~ RCTD 

ASCBUBET RCTDPIRL 

I ASCBASXB RCTDRCTR ... PIRL 

, TCB RCT RCTDQUIS W 
RCTDENQ 

RCTDPRGR 

RCTDPSUB 

RCTDSUBN 
TCBTCB RCTDOLL1 

RCTDSLFL 

RCTDRC 
TCB Subtask RCTDRLL1 

RCTDSY12 

RCTDSV16 
TCBNDTS 

RCTDPRGF 
TCBPNDSP 

RCTDSRBN 
TCBSRBND 

RCTDPSRB 
TCBTCB 

RCTDOLL2 

RCTDOGL 1 

TCB Subtask RCTDDLCK 

RCTDSSUB 

RCTDDEQ 
TCBNDTS RCTDRGL1 
TCBPNDSP RCTDSY13 
TCBSRBND RCTDSWOT 

RCTDSWPF 

RCTDQWAI 

RCTDRLL2 

RCTDSSRB 

RCTDECB 



en 
t!) 
(") 

S· 
= 
N 

3: 
t!) g 
Q. 

o -. 
o 
"0 
t!) 

;.t 
S· 
= 
N 
~ -

Diagram 3-3. Quiesce Routine (IEAVAR02) (part 2 of 3) 

The Quiesce routine (J EAVAR02) waits for functional 
requests. If posted by SRM, it prepares an address space 
for swap-out by stopping address space activity and 
checking for long wait requests. Either when swap-in is 
ready for Restore processing or when posted for a 
Termination or Attention Exit request, Quiesce routes 
control back to RCT Common Processing for further 
action. 

Extended Description 

1 Quiesce issues a WAIT macro instruction, passing an 
ECB list consisting of a termination ECB and a work 

ECB. If neither of the ECBs has been preposted, Quiesce 
enters the wait state. 

2 Quiesce is entered when one of the ECBs is posted. 
Task Termination posts the termination ECB when 

the STC task terminates. The SRM or Terminal I/O 
control posts the work ECB when it requires Quiesce or 
Attention Scheduler processing. 

First, Quiesce sets the work ECB to zero. Then it checks 
the termination ECB; if it is posted, Quiesce returns 
control to Common Processing. Next, Quiesce checks for 
a Quiesce request in the ASCB (ASCBFQU); if requested, 
processing continues in the Quiesce module. Otherwise, 
the request was for Attention Exit processing, and control 
is returned to Common Processing to satisfy the request. 

3 Quiesce sets recovery flags in the RCTD and enqueues 
on the Purge Resource (SYSZEC16) before perform­

ing any quiescing. 

4 Quiesce invokes STATUS which halts RCT subtask 
processing by setting nondispatchability flags in the 

subtask TCBs. 

5 Quiesce gets the local lock; if an error occurs, Quiesce 
issues an ABEND to route control to R/TM for error 

recording and action determination. If no error occurs, 
Quiesce sets up the FRR and checks to see if the address 
space is in a long wait situation. If so, Quiesce sets the 
high-order bit of register 1. Then Quiesce cancels the FRR 
and releases the local lock; if the release fails, QUI ESCE 
issues an ABEND to route control to R/TM to get the 
error recorded and the appropriate action taken. 

Module 

IEAVAR02 

Label 

IEAVAR02 

IEAVAR02 IEAVAR02 

Extended Description 

6 Quiesce issues SYSEVENT 12 to notify SRM that 
Quiesce has started and to indicate whether the address 

space is in long wait. Quiesce checks the return code from 
SRM; if it is non-zero, Quiesce restarts the RCT subtasks, 
dequeues the Purge Resource, resets the ASCB Quiesce flag 

and returns to RCT Common Processing. 

7 If processing is to continue, Quiesce purges all I/O 
activity in the system by use of SVC 16. If the purge 

operation fails, Quiesce issues an ABEND to route control 
to R/TM for error recording and action determination. 

8 If the purge is successful, Quiesce issues CALLDISP 
to enter the Dispatcher and invoke the STATUS rou­

tine to stop SRB processing. 

9 Quiesce gets the dispatcher lock, checking the return 
code from SETLOCK for a non·zero (error) value. If 

an error is detected, Quiesce issues an ABEND to route 
control to R/TM to record the error and to take the appro­
priate action. Then Quiesce performs the following tests to 
determine whether the address space is in a long-wait condi­
tion, without work to be performed: 

• Checks for quiescable SRBs; if found, address space is 
not in long wait. 

• Checks to see if any I/O had been purged; if I/O was 
purged, the address space is not in long wait. 

• Checks for asynchronous exits (IQEs or RQEs) that are 
queued but have not been processed; if any are found, 
the address space is not in long wait. 

• Checks the TSB for any attention requests; if any exist, 
the address space is not in long wait. 

• Checks the TCB priority queue for ready tasks. 

Quiesce then releases the dispatcher lock and checks the 
return code from SETLOCK. If the return code is non-zero 
(error), Quiesce issues an ABEND to route control to R/TM 
to record the error and to take the appropriate action. 

10 Quiesce issues SYSEVENT 13 to indicate to SRM 
that Quiesce has completed and whether the address 

space is in long wait. 

Module Label 



~ Diagram 3-3. Quiesce Routine (IEAVAR02) (Part 3 of 3) 
t.J 

o en 

~ 
t.J 
en 
'< 
~ 
(:> 

:I 
r-
~ n· 
r-
s= 
~ 

-< 
<: 
o 
C 
:I 
(') 

t.J 

Extended Description 

11 Quiesce checks the output from SRM to determine 
whether the address space is still in long wait and 

whether it should be swapped out. If swap·out is possible, 
Quiesce performs wait limit support; if the address space is 
not in long wait and if the TOD clock is usable, Quiesce 
deletes the FRR and then invokes Swap·Out to initiate the 
actual swapping. If the swap is unsuccessful, Quiesce issues 
an ABEND to rout~ control to R/TM to get the error 
recorded and to get the appropriate action taken. 

12 If successful, Quiesce sets up the FRR, and issues a 
WAIT, waiting for Swap·in to post an ECB to call for 

Restore processing. 

13 If SRM determined that no swap should occur, 

'< Quiesce cancels the FRR, releases the local lock, and 
~ invokes STATUS to restart SRB processing. If the SETLOCK 
:xl return code is non-zero, Quiesce issues an ABEND to route 
~ control to R/TM to get the error recorded and the appropri-
~ 

~ ate action taken. 
(N 

~ 14' When the restoreECB is posted, RCT will reset the 
recovery footprint to indicate that SRB's are no 

longer stopped, zero the restore ECB, and set a flag in the 
ASCB (ASCBFRS) to indicate that restore is being 
requested. Then it will branch to the common processing 
routine. 

Error Processing 

When an error in Quiesce locked code occurs, R/TM passes 
control to the FRR for Quiesce. The FRR checks for the 
type and location of the error. If the error was in Quiesce's 
address space, the FRR records information in the SDWA. 
If the error occurred after Swap-Out was called, the FRR 
issues CALLRTM to terminate the address space. Otherwise, 
it issues SETRP to record the error, free any locks held, 

and returns control to R/TM which wi II percolate control 
via SYNCH to the Quiesce EST AE routine for further error 
processing. If errOr was not in Quiesce's address space, the 
FRR issues SETRP to route control to R/TM to continue 
with termination without recording. 

Module Label 

IEAVAR02 IEAVAFR2 



Section 2: Method of Operation 2-413 



~ Diagram 3-4. Restore Routine (lEA V AR03) (Part 1 of 2) 

~ 

o 
CI'} 

~ 
CI'} 
~ 

CI'} 

~ 
(:) 

3 

b 
OQ 
r;' 
t"" 
0: 
; 
'< 
-< o 
C 
3 
(:) 

N 

'< 
CI'} 
~ 

:;c 
(:) 

i 
~ 
~ 

~ 

f: 

i, 

t'" 

:" 

" 
l" 
1': 

t· 
I:' 

II 

" 
.. ,;:, 

ASCB 
RCTD 

ASCBASXB 

I'\. ASXB f ASCBS2S RCTDRS17 

ASCBWAIT ASXBRCTD RCTDRSLW 

ASCBEWST RCTDRSBO 
ASCBUBET ASXBFTCB RCTDPIRL 

( ASCBTSB 
PIRL 

~ TSB 
RCTTCB 

I TCBRB 

I\RB 
TSBATTNC 

~ I TCBTCB 

I ~-
~ TCB Subtask 

TCBRBP r---.... RB 

TCBFLGS4 

TCBFLGS5 
RBWCF 

TCBTCB 

TCB Subtask RB 

TCBRBP V--
RBWCF 

TCBFLGS4 

TCBFLGS5 
CVT 

~ 

SCVT 

CVTABEND ~ 
SCVTSTAT 

PSA PCCA 

PSAPCCA V PCCANUTD 

',~"'. "'0'::/ i,':::>":, :""0..",.,;,,,: ::,,' , 

From RCT Common 
Processing 
(lEAVAR01) 

Process 
,,' ";:;;<":.",;("\';'<"';:"" ":', --.11 ' 

i~ 
' , 
' ;:;c 1 Restore user I/O 

'I' .. activity. 

I.· ,,': 

; ': 
C:, 

[~ 
2 Restart RCT sUbtasks. ::: 

:~ if 
l:': 

'; 
~,~:~ I 

Output 

;; 
C''''','''''''' 

H ::; 
ASCB 

:~; ~; 
ASCBASXB :: ;:,' 

" 
~t; 

,~ 

~ 
ASCBWAIT 

ASCBTMLW :? 

!~ 
ASCBTMNO 

:~: ASCBFRS 

;;~ 
-l) 3 If a Quiesce has failed, 
v 

ri, 
y 

notify SRM and .,.ReT ~ RCTD :} 

return. Common f 
,( 

:l Processing :; RCTDRCTR ! (lEAVAR01) t y; f; 4 Check for an address :: RCTDREST I; ;; I: space in long wait. RCTDRS17 
G: I~~ ;; 

RCTDRIOC c" 

~:: ;~ RCTDOBLK 
,~ ;: :: RCTDSTAT 5 Perform wait limit ~ RCTDSTAC support. 

RCTDSUBN 
j 

RCTDRLWB 

l~ !~: 1 
RCTDLWC 

6 Notify SRM that Restore : ~ 
\ 

RCTDRSLW ;~ 
is complete. ~\ ~t RCTDRLLK 

: ,;: RCTDWTLB 

~ ! RCTDWTLC 
7 Return. :? RCTDSY19 

~i l~ RCTDOPTC 

I RCTDRSBO 

RCTDSY18 RCT Common 
Processing RCTDRC 

t~ (lEAVAR01) 
RCTDFAIL 

1\ 
1 ASXB 

ASXBFTCB 

- ASXBRCTD 

RCT TCB 

~ 
TCB Subtask 

TCBNDTS 

TCBPNDSP 

TCBTCB 

TCB Subtask 

TCBNDTS 

TCBPNDSP 



en 
('1) 
~ g. 
::I 

!'7 
s:: 
('1) 

[ 
o ...., 
o 
't:I 

('1) .... 
~ o· 
::I 

~ 
.J:o. -VI 

Diagram 3-4. Restore Routine (IEAVAR03) (part 2 of 2) 

Extended Description 

The Restore routine (I EAV AR03) is called by Swap·in to 
prepare an address space for operation after it has been 
swapped in. Restore is also called to recover from a Quiesce 
operation that has failed. 

1 Restore sets recovery flags in the RCTD and then, if 
I/O was purged during quiescing issues SVC 17 to 

restore the I/O activity. 

2 Restore gets the local lock; in case of a non-zero return 
code, Restore issues an ABEND to route control to 

R/TM to get the error recorded and the appropriate action 
taken. After establishing the FRR, Restore issues STATUS 
to restart the RCT's subtasks. 

3 If Restore has been entered to recover from a 
Quiesce that failed, Restore cancels the FRR and 

releases the local lock, checking the return code from 
SETLOCK and issuing an ABEND for a failure so that con­

trol is routed to R/TM to record the error and take appro­
priate action. Then it issues a SYSEVENT 18 to notify 
SRM that Quiesce has failed. Then it resets the indicators 
in the ASCB and returns control to RCT Common 
Processing. 

Module Label 

IEAVAR03 IEAVAR03 

Extended Description 

4 Restore checks to see if the address space is in long-
wait status; it then deletes the FRR and releases the 

local lock, checking the return code from SETLOCK and 
issuing an ABEND for a failure so tnat control is routed to 
R/TM to record the error and take the appropriate action. 

5 If the address space is in long-wait status during the 
Restore process - or if the CPU clock is bad, Restore 

bypasses wait limit support. Otherwise, Restore performs 
wait limit support by noting when the address space entered 
the wait state. 

6 Restore issues SYSEVENT 19 to notify SRM that the 
Restore process has completed and whether the 

address space is in long wait. 

7 Restore resets the ASCB indicators and returns con­
rol to RCT Common Processing. 

Error Processing 

If an error occurs in Restore's locked code, R/TM passes 
control to the Restore FRR. The FRR checks the cause and 
location of the error and determines whether retry is pos­
sible. If the error was in Restore's address space, the FRR 
records error information in the SDWA and, if necessary, 
requests a dump. Then the FRR issues SETRP to free the 
local lock, record the error information, and return control 
to RITM, requesting termination so that control is perco­
lated to the Restore ESTAE routine. If the error was not 
in Restore's address space, the FRR issues SETRP to route 
control to R/TM to continue with termination without 
recording. 

Module Label 

IEAVAR03 IEAVAFR3 



~ Diagram 3-5. Attention Exit Scheduler Routine (IEAVAR04) (part 1 of 2) 

0'1 

o 
en 
"< en 
N· 
~ 

~ 
tt 
3 
I""" 
o 

!JQ 

ii' 
I""" 

~ 
~ 
<: o 
2" 
3 
(1) 

N 

'< 
~ 
N 

::t' 
(1) 

~ 
~ 
w 
~ 

Input 

ASCB ASXB 

.?' 
ASCBASXB ASXBRCTD 

f ASCBTSB ASXBFTCB 

~ TSB 
, TCB Queue 

TSBSTAX TCB 
TSBATTNC 

TCBRBP 
V 

RB Queue ,; TCBLTC 
I TCBNTC 

RB TCBOTC 

RBFTSVRB TCBATTN 

RBFACTV TCBPNDSP 

TCBSCNDY 
RBEP 

tCBTIOT 
RBTCBNXT 

TCB 

I RBLINK 

eRB 

I 
CVT 

SCVT 

CVTABEND- I 
CVTOEFOO I SCVTSTAT 

h 

From RCT Common 
Processing 
(JEAVAR01) 

Process -- . ',,,.,.'<'/'., ·x·,.." 

RCTD 

/' 1 Cancel previously 
scheduled attentions. 

RCTDTAXE

0
, 

( 2 Determine the 
~ TAXE Queue attention level 

requested. 
TAXE ., 

TAXESCND Ii 3 Stop subtasks for .the 
TCB having the 

TAXEFREQ 
attention exit 

TAXETCB scheduled. 
TAXELNK ..... 

I 

Output 
c" 

" ASCB ASXB TCB Queue 

/' > I /' TCB 
lASCBASXB ASXBFTCB 

ASCBTSB ASXBRCTD TCBTIOTG 

ASXBIQE TCBIWAIT 

TCBOWAIT 

TSB TCBPNDSP 

TSBSTAX 
RCTD 

TCB 
TSBATTNC D RCTDTAXE 

./ 

~Ce .... 
h 

I~Eoueue 
v v ~ TAXE IQE 

~ TAXE 4 Schedule the attention 

~ I exit (I EA V AR04). TAXEIQE 
- I- - ____ IQE 

----J TAXESCMD 

TAXERESM 
5 Check for TG ET or l ;, 

TPUT SVRBs. TAXEFREQ 

FRR 
CTAXELNK 

Work Area FRR 

D 
6 Return. TAXE 

Work Area 

D RCT -" 
Common ~ 
Processing >: ... <;·L·;;.,,····· '.':.,;. 

(lEAVAR01) 

, 

'~ 

; 

, 
; 

'; 

~. 
-.' 

.'... 

:. 

.,.'. 
>; 
<; 

" 

.~. 
,j 

:i 
" 

'; 

) 

; 

~ 

% 

uf~ 



Cf} 
(I) 
n 

S· 
= N 

~ 
(I) 

g 
Q.. 

o .... 
o 

"0 
(I) .. 
~ g. 
= 

N 
,i.. 

" 

Diagram 3-5. Attention Exit Scheduler Routine (lEA V AR04) (part 2 of 2) 

Extended Description 

The Attention Exit Scheduler (I EAVAR04) schedules the 
processing of user attention exits. 

1 The Scheduler routine gets the local lock and sets up 
the FRR. If the SETLOCK macro fails, Scheduler 

issues an ABEND to route control to R/TM to have the 
error recorded and the appropriate action taken. Otherwise, 
Scheduler finds any TAX Es scheduled but not executing and 
cancels them by setting a flag (TAXERESM) in the TAXE. 

2 Scheduler finds the available TAXE as indicated by 
the requested attention level recorded in the TSB 

(TSBATTNC). The user attention count and the STAX count 
in the TSB are decreased by one for every TAXE marked 
unavailable during the search. 

3 Scheduler invokes Status to stop all subtasks under 
the TCB that are having the attention exit scheduled. 

4 Scheduler performs the scheduling of the attention 
exit by calling the Stage 2 Exit Effector. 

Module Label 

IEAVAR04 IEAVAR04 

Extended Description 

5 When control returns from the Stage 2 Exit Effector, 
Scheduler checks for any TGET/TPUT SVRBs. If it 

finds any, Scheduler invokes Status to reset that TCB dis­
patchable. 

6 Scheduler cancels the FRR and releases the local lock. 
If the release fails, Scheduler issues an ABEND to 

route control to R/TM to have the error recorded and the 
appropriate action taken. If no error occurs, Scheduler 
returns control to RCT Common Processing. 

Error Processing 

Module Label 

When an error occurs in Scheduler's locked code, R/TM IEAVAR04 IEAVAFR4 
passes control to the Scheduler FRR. The FRR determines 
whether the error is in Scheduler's address space; if not, 
the FRR returns control to R/TM to continue with termina­
tion. If the error was in Scheduler's address space, the FRR 
determines the type of error, indicates a dump or retry if 
necessary, tries to reset resources, requests that TPUT 
issue an error message, frees the local lock and records 
information in the SDWA. Then the FRR returns control 
to R/TM to record and to continue with termination. This 
percolation causes Scheduler's EST AE routine to get 
control. 



~ Diagram 3-6. STAX Service Routine (IEAV AXOO) (part 1 of 2) 

00 

o 
tn 

"< 
~ 
N 
tn 
'< 
~ 

~ 
t"" 

J6 
(s. 

t"" 
;: 
E 
'< 
< o 
2" 
3 
~ 

N 

'< 
tn 
N 

:::0 
~ 

~ 
~ 
w 

~ 

ASCB 
I 

;' ASCBASXB 

ASCBTSB 

I -

ASXBRCTO 

ASXBFTCB 

TSB 

V TSBSTAX 

RCTO· 

SVRB -
RBLINK 

PRB 

RBOPSW J 
RBTIRB 

RBSIRB 

I 

STAX 
Parm List _ ~ 

TAXE Queue 
STXEXIT _ 

STXISIZ TAXE 

STXOSIZ 

STXOBUF 

STXIBUF TAXELNK 
STXOPTS _ 

TAXE 
STXUSER _ 

STXRPLNQ 

STXOFRYS 
-- -_ .. ---
STXOFRNO 

From SVC Interrupt 
Handler (lEAVESVC) 

Process 

1 Check for inva lid 
parameters. 

2 Set defer status, 
if requested. 

3 Process cancel option, 
if requested. 

4 Set up and enqueue 
TAXE. 

5 Return. 

To SVC EXIT 
Routine 
(lEAVEEXP) 

o ut 

ASCB ASXB RCTO 

~h 

TSBSTAX 

RB Queue 

TCB 

I 
TCBRBP 

I~ TCBLTC 

TCB 

FRR 
Work Area 

Tracking 
Fields 

FRRRBPTR 

NEWTAXE 

NEXTAXE 

TAXEPREV 

FONOTAXE 

STAX 
Parm List 

RBATTN 

Ic:=B~:K 
1 

TAXE Queue 

TAXE 

TAXEIRB 

TAXENIQE 

TIQELNK 

TIQEPARM 

TIQEIRB 

TAXETCB 

TAXELNK 

TAXEEXIT 

TAXESTAT 

TAXEPARM 

TAXETAIE 

TAXEIBUF 

~XEUSER 
TAXE 



en 
(1) 
(") 

g-
:= 
IV 

~ 

~ o 
c::-
o -, 
o 
"0 
(1) 

; 
g. 
:= 

IV 
~ 
\C 

Diagram 3-6. ST AX Service Routine (lEA V AXOO) (part 2 of 2) 

Extended Description 

The ST AX Service routine (I EA VAXOO) processes requests 
for user attention exits made with the STAX macro instruc­
tion. On entry to this routine, the local lock is held. 

Module Label 

1 After setting up the FRR, STAX verifies the param- IEAVAXOO IGC0009F 
eters passed by the user. If a param~ter is invalid, 

STAX cancels the FRR and issues an ABEND. 

2 If the defer option is requested, ST AX indicates the 
option by setting the RBATTN flag. 

3 If the cancel option is requested, STAX finds the 
TAXE for the caller's TCB and determines whether it 

is active. If the TAXE is not active, STAX updates the 
STAX count, dequeues the TAXE, and calls FREEMAIN 
to free the virtual storage for the TAXE and Problem Pro­
gram Save Area. Then STAX cancels the FRR and passes 
control to EXit. If the T AXE is active, STAX marks the 
TAXE for freeing by Exit, cancels the FRR, and passes 
control to Exit. 

Extended Description 

4 If the cancel option is not chosen, STAX either 
creates a new TAXE, calling the Stage 1 Exit 

Effector, or replaces the values in the old TAXE with 
values from the STAX Parameter List. 

Then STAX initializes the TAXE fields, using the STAX 
Parameter List values as a source. Finally STAX enqueues 
the TAXE, enqueuing it at the lowest possible attention 
level on the TAX E queue but higher than any of the 
TAXES for subtasks under that TCB. 

5 After increasing by one the STAX count in the TSB 

(if no higher level TAXE is active), STAX cancels the 

Module Label 

FRR and passes control to the SVC EXIT routine (IEAVEEXP). 

Error Recovery 

If an error occurs in STAX's locked code, R/TM passes 
control to the FRR. The FRR resets the status bits to their 
settings before the request (for defer status, bits are set 
according to the request), resets the T AXE queue, updates 
the"ST AX count in the TSB, records error information, 
and passes control back to R/TM to continue with termina­
tion processing. If the error did not occur in this address 
space, the FRR returns control to R/TM to continue termi­
nation without error recording. 

IEAVAXOO STXFRR 



~ Diagram 3-7. Attention Exit Prolog Routine (lEA V AROS) (part 1 of 2) 
N 
o 

From Dispatcher 
o (lEAVEDSO) 
c;n 

~ 
c;n 
N 
c;n 

~ 

~ 
r-
~ n· 
r-g: 
~ 

-< 
<: 
o 
C 
:3 
ItI 
N 

'< c;n 
N 

~ 
ItI 
(5' 
~ 

\ttl 
w 

~ 

ASXB 

ASXBRCTD / 
ASXBFTCB I 

TCB I 
/ TCBRBP 

RB Queue 

RB -... 

/,;' 
RBLNK ."" 
RB 

RBOPSW 

RBGRSAV 

ST AX Pa'm Ust V 
STXDBUF 

STXIBUF 

STXISIZ 

STXOSIZ 

RCTD 

RCTDTAXE 

FRR Work Are 

I I 

It TAXE Queue 

TAXE -
TAXEIRB 

" TAXEEXIT 

TAXETCB 

TAXERESM 

TAXESCHD 

TAXEPARM 

( TAXELNK 

TAXE 

I 1 

Processing 

If cancel has been specified, 
return without passing 
control to attention exit. 

Issue terminal message 
and accept reply, if 
requested. 

2 Obtain and initialize 
TAlE. 

3 Branch to user 
attention exit. 

FRR ASXB RCTD -' .... ..., •• , ~I ........ 

ASXBRCTD V Tracking 

ASXBFTCB 
RCTDTAXE r\ 

Indicators 

) 
TCB 

TCBRBP 

I 

, RB Queue TAXE Queue 

RB 1- ______ 

TAXE 

TAXEIRB 

-- ~~ 

TAXESCHD 
RBLINK --I .. - TAXETCB 

\ 
RB r TAXEPARM 

[ V TAXETAIE 

V 
TAXELNK 

TAXE 

STAX 
Parm List , TAlE 

STXDBUF TAIEMSGL 

STXIBUF TAIEIGET 

STXOSIZ TAIEIAD 

STXISIZ TAIERSAV 



en 
(!) 
(") g. 
= 
~ 

a:: 
a g 
Q. 

o .... 
o 

"C 

S g. 
= 
~ 
,j:oo, 
N -

Diagram 3-7. Attention Exit Prolog Routine (lEA V AROS) (part 2 of 2) 

Extended Description 

The Attention Exit Prolog (lEAVAR05) and Epilog 
(lEAVAR06) routines handle Terminal Attention Interrupt 
Element (TAl E) creation and housekeeping for the user 
attention exit routine. On entry to the Epilog routine, the 
local lock is held. 

1 Prolog issues a MODESET to take itself out of key 0 
state and then, if specified, issues a TPUT and a 

TGET to issue a message to the terminal and accept the 
reply. After the TPUT/TGET processing, Prolog issues a 
second MODESET to reenter key 0 state. 

2 Prolog gets the local lock and sets up the FRR. Then 
it calls GETMAIN to get space for the TAlE from 

user storage (subpool 250). If the GETMAIN fails, Prolog 
cancels the FRR, releases the local lock, issues a TPUT with 
an error message for the terminal, and returns control to 
Exit. If the GETMAIN is sucessful, Prolog initializes fields 
in the TAlE. 

3 If cancel has not been specified, Prolog cancels the 
FRR, releases the local lock, and issues MODESET so 

that the user's attention exit receives control in the proper 

key and state. Then Prolog branches to the user's attention 
exit. 

Module Label 

IEAVAR05 IEAVAR05 



~ Diagram 3-8. Attention Epilog Routine (IEAVAR06) (part 1 of 2) 
~ 
~ 

~ 
~ 
t;I} 
~ 

t;I} 

'< 
~ 
~ 

3 

£ 
n' 
~ 
;: 

~ 
<: 
o 
C 
3 
~ 

~ 

~ 
t;I} 
~ 

:;:0 
~ 

i 
r6 
<...I 

~ 

From SVC 

I nput EXIT (I EAVEOR) 
Process 

ASCB ASXB FRR Attention Exit Epilog 
Processing 

ASCBASXB 

ASCBTSB 

\ TSB 

TCBRBP 

TSBSTA~D RCTDTAXE 

RB Queue TAXE Queue 

RB 

RBFACTV 

RBFOYN 

RBUNK 

RB 

TAXE 

TAXE 

CVT 
i 

TAlE 

CVTABENO~ 

SCVT 
\------. 

1 
SCVTSTAT 

4 Free TAlE and dequeue 
R B, if req uested. 

5 Restart subtasks. 

6 Mark TAXEs available. 

7 Return. 

ToSVC 
EXIT 
(lEAVEOR) 

Output 

ASCB 
ASXB 

FRR 
Work Area 

IASXBRCTD o 
RCTO 

RCTOTAXE 

TSBSTAX 

TAXE Queue 

TAXE 

I I 

TAXEFREQ 

TAXERESM 

TAXESCHO 

TAXETAIE 

crJ 



VJ 
(D 

a 
~. 

= ~ 
::: 
a g 
Q. 

o -.. 
o 
"0 
~ 
~ o· 
= 
~ 
J:,. 
~ 
w 

Diagram 3-8. Attention Epilog Routine (lEA V AR06) (part 2 of 2) 

Extended Description 

4 Epilog gets control from Exit after the user's attention 
exit has completed. Epilog first sets up the FRR and 

resets flags in the TAXE to indicate that the TAXE is no 
longer scheduled. Then Epilog checks for a TAl E and, if 
one exists, uses FREEMAIN to free it. Epilog checks to see 
if the RB is to be freed. If it is (RBFDYN set to one), 
Epilog dequeues the TAXE. 

5 Epilog invokes Status to restart the subtasks of the 
TCB that has the completing attention exit. 

6 Epilog searches the TAXE queue for the next lower 
attention level scheduled. If an active TAXE is found, 

indicated by the RBFACTV or TAXESCHD flag set to one, 
Epilog marks the TAXEs between the exiting TAXE and 
the active TAXE as available by resetting the TAXEFREQ 
flag to zero. Then Epilog increases the STAX count in the 
TSB by the number of TAXEs marked available. 

7 Epilog cancels the FRR and passes control to the 
Exit routine. 

Module Label 

IEAVAR06 IEAVAR06 

Extended Description 

Error Processing 

When an error occurs in Prolog- or Epilog-locked code, R/TM 
passes control to the Prolog or Epilog FRR. 

Module Label 

The Prolog FRR checks to see if the error occurred in the IEAVAR05 IEAVAFR5 
address space in which Prolog was running. If so, the FRR 
records in the SDWA and returns to R/TM requesting IEAVAR05 IEAVART5 
recording and retry. R/TM then reenters Prolog to cancel 
the FRR, release the local lock, and issue an error mes-
sage via TPUT. If the error is not in the same address space, 
the FRR returns contrc.1 to R/TM to continue with termina-
tion. The Epilog FRR checks to see whether the error IEAVAR06 IEAVAFR6 
occurred in Epilog's address space. If it did, the FRR 
dequeues the TAXE, cleans up the TAXE queue, updates 
the STAX count in the TSB, and, if necessary, restarts 
subtasks under the TCB with the completing attention 
exit. Then the FRR passes control to R/TM to record the 
error and to continue with termination. If the error was 
not in this address space, the FRR issues SETRP to control 
return to R/TM to continue with termination without 
recording. 



~ 
J;. 
N 
~ 

~ 
"< c;n 
N 
c;n 
'< 
~ 
~ 

:3 

~ 
ri' 
t"" 
0: ... 
1» 

-< 
<: 
o 
C 
:3 
~ 

N 

'< c;n 
~ 

:::0 
~ 
;-
1» 

~ 
c..J 

~ 

Diagram 3-9. Attention Exit Purge Routine (lEA V AR07) (part 1 of 2) 

From Task Purge 

Input Processing (lEAVTSKT) 

f~r;,;;;',(::::;~:<~~\iii:~'<:<~\\;'\~\"';~,\;;~;ii~kii'~*A;*~~?~'siia;~.?J%,<:a'i':;:~ii;}1;?0S;;I~!~:ct;~;~~1 1I,~Prro~c';:ie\iss;rQl~~rammmmm;a'i;a'iOO~~~ Output 
~f6WX~;j 
":;:; ASCB 
H r--ASXB 

~ASCBTSB 

, 
I TSBSTAX 

XE Queue 

TAXETAIE 

TAXETCB 

TAlE TAXESCHD 
TAXELNK 

TAXE 

FRR 
Work Area 

D 

'" 

1 

1 Find TAXEs associated with 
terminating TCB and determine 
whether they are active. 

2 Dequeue inactive TAXEs and 
clean up TAXE queue, 

3 Return. 

Task Purge 
Processing 
(IEAVTSKT) 

t:::, 

10 1;: Lr i*~ ,,0 

---y 
t>, ';TSB 

TSBSTAX I 
FRR 
Work Area 

D 

...I ASXBRCTD 

TAXETAIE 

TAXETCB 

TAXELNK 

Ii 



r./J 
~ 

!?. o· 
!:::l 
N 

3: 
~ 
g-
o. 
o ...., 
o 

'1:l 
~ e 
o· 
!:::l 

N 

~ 
N 
VI 

Diagram 3-9. Attention Exit Purge Routine (lEA V AR07) (part 2 of 2) 

Extended Description 

Attention Exit Purge routine (I EAV AR07) is called by 
Task Purge Processing (I EAVTSKTl to eliminate any 
TAXEs belonging to the TCB being terminated. 

1 Purge gets the local lock and sets up the FRR. Then 
it finds TAXEs associated with the terminating task 

by checking the TAXETCB fields. Purge checks the 
RBFACTV flag in the TAXE to determine if the TAXE 
is active; if it is, Purge sets the RBFDYN flag to ensure 
that Exit will free the RB. 

2 Purge dequeues the TAXE by moving the TAXELNK 
field value of the terminating TAXEs to the TAXELNK 

field of the previous TAXE on the queue. Then Purge marks 
any TAXEs on the TAXE queue between the highest active 
attention level (the lowest element on the queue) and the 
end of the queue available and increases the STAX count 
in the TSB by the number of availableT AXEs. 

3 Purge cancels the FRR, releases the local lock, and 
returns control to Task Purge Processing (I EAVTSKT). 

Error Processing 

Module Label 

IEAVAR07 IEAVAR07 

If an error occurs in Purge's locked code, R/TM passes con- IEAVAR07 IEAVARF7 
trol to the Purge FRR. The FRR checks to see if the error 
is in Purge's address space. If it is, the FRR clears the TAXE 
queue and the ST AX and attention level counts in the TSB. 
Then the FRR records in the SDWA and passes control to 
R/TM, via the SETRP macro instruction, to record the 
error and to continue with termination. If the error is not 
in Purge's address space, the FRR returns control to R/TM 
to continue with termination. 



~ Diagram 3-10. ReT ESTAE Processing (IEAV AROO) (Part 1 of 2) 
N 
0\ 

o 
I.r.J 

"< I.r.J 
N 

I.r.J 

~ 
ct> 
:3 
r 
~ 
n' 
r 
0: 

~ 
-< o 
2" 
:3 
(? 

N 

'< 
I.r.J 
N 

:;x:l 
ct> 
~ 
~ 

~ 
w 

~ 

Input 

PSA 

From Recover Task 
Processing (I EAVT AS1) 

PSAAOLD 
~ ASCB 

ASCBTSB 
Wo' -

ASCBASXB 

ASCBRCTF 

_ ASXB 

,~ASXBSIRB 
RCTDSRBN ASXBRCTD " 

RCTDSUBN 
ASXBFTCB 

RCTDPRGR L---------i 

RCTDRCTR SIRB 

RCTDRC 

RCTDRCTF 
RBFACTV 

RCTDMDID 

RCTDRTRY 

Save Area SDWA 

D SDWAABTM 

SDWANRBE 

SDWAPERC 

SDWASTAF 

v-- ---

1 If SIRB error, request address space 
termination. 

2 Restart SRBs stopped by Quiesce. 

3 Record error information in SDWA. 

4 Check for abnormal termination for RCT. 
If abnormal termination, go to step 7. 

5 Diagnose error and determine whether 
to retry. 

6 If retry, check for recursion. 

7 If recursion or abnormal termination, 
dump LSQA. 

8 Clean up resources. 

9 Return. 

To Recover Task 
Processi ng (I EA VT AS 1 ) 

Output 

For Continuing Termination 

SDWA 

SDWAVRAL 

SDWAVRA 

For Retry 

SDWA 

SDWASRSV 

SDWAVRAL 

SDWAVRA 

RCTD 

RCTDRTRY 



en 
(t> 
r: g. 
:= 
~ 

::: 
~ 

[ 
c -. 
o 
~ 
~ g. 
:= 

~ 

~ 
~ 
-....I 

Diagram 3-10. ReT ESTAE Processing (lEA V AROO) (Part 2 of 2) 

Extended Description 

RCT ESTAE Processing is performed in all RCT modules 

when an error occurs in unlocked RCT code. 

1 If the local SIRS is active, RCT ESTAE issues 
CALLRTM for address space termination and then 

returns to R/TM to continue with termination. 

2 If the local SIRS is not active, RCT ESTAE invokes 

Status to start all "quiescable" SR Ss that were stopped 
during Ouiesce processing. 

3 If an SDWA exists, RCT EST AE moves error informa· 

tion from the RCTD and ASCS to the SDWA. Other· 

wise, RCT ESTAE ensures that all subtasks are dispatchable 

and that RCT is not enqueued on the Purge Resource. Then 

it returns to R/TM to continue with termination. 

4 If RCT is being abnormally terminated, go to step 7. 

Module 

IEAVAROO 

Label Extended Description 

5 If RCT is not being abnormally terminated, RCT 
ESTAE calls a diagnostic subroutine for the function 

in error. The diagnostic subroutine checks the type of 

error, determines whether or not to retry the failing routine, 

and cleans up resources. It may also dump LSOA storage or 

issue an error message for terminal users. 

6 I f the diagnostic subrouti ne indicates retry, RCT 
ESTAE checks for a possible recursion, a second entry 

into the EST AE from the same routine. I f no recursion is 
indicated, RCT ESTAE returns control to R/TM for record-

ing and retry. 

7 If recursion or abnormal termination of RCT has 
occurred, RCT ESTAE issues an SDUMP macro 

instruction to dump LSOA storage to the SYS1.DUMP 

data set. 

8 RCT EST AE performs the same resource cleanup 

functions as those described in step 3. 

9 RCT ESTAE issues a SETRP macro instruction to 
pass control to R/TM for recording and to continue 

with termination. 

Module Label 



2-428 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



The started task control (STC) routines oversee the 
processing of START, MOUNT, and LOGON 

commands. Started task control uses the 
initiator/terminator as a subroutine to complete 
command processing; the initiator actually takes the 
command task through execution and termination. 

These are the major functions of STC: 

• To obtain the region in which STC will run. 
• To determine which of the three commands 

has been specified. 
• To build the internal JCL text for the 

command task. 
• To build the control blocks required for 

initiator processing. 
• To free those control blocks after the 

initiator / terminator has terminated the 
command task. 

STC gets a region for both itself and the initiator 
subroutine. 

STC next determines what command has been 
specified and invokes the appropriate STC for the 
LOGON routine to check the command and its 

Started Task Control 

parameters for correct syntax. Started task control 
uses the command and its parameters to build 
internal JCL text for the task. This is done to 
enable the initiator to process the task as though it 
were any job identified by JOB, EXECUTE, and DD 

statements. The STC builds the control blocks 
required to invoke the initiator, the IEL, the SSIB, 

and the SSOB. STC writes the newly created JCL 

text into an appropriate subsystem data set. It also 
creates a SW A structure for the task that includes 
some skeletal scheduler control blocks: JSCB, JCT, 

SCT, and ACT. It then ends preparations by 
initializing the initiator entrance list (IEL) and 
invoking the initiator. 

Once the initiator/terminator has completed 
processing, control returns to the STC routines. STC 

simply deletes the SW A structure it previously 
created and frees the CSCB that identified the 
command. At that point, started task control is 
finished so it returns to its caller, RCT . 

• 

Section 2: Method of Operation 2-429 



~ 
~ 
~ o 

~ 
~ 
N 
fJ'} 

'< 
~ 

9 
i. 
f') 

r-
~ 
~ 
'< 
< o 
C 
:3 
n> 
N 

'< fJ'} 
N 

:;.:I 
n> 

i 
~ 
~ 

~ 

Diagram 4-1. Started Task Control Processing (part 1 of 8) 

From region control task 
.nput (lEAVAROO) via ATTACH P rocess Output 

~~~~~~~ 
Register 1 Started Task Control Processing 

eO<RCTI 1 ~stablish an EST AE environment 
for STC processing. 

Register 1 

~(fO'STCI 
~ -.j .~ " • : ~ ::> 2 Get a ,eg;on f", STC pmcess;ng. III I ,-vm CSCB t4j I 1,\: 

~ 

~ 

Register 1 

~"'STCI 

~ 

::!> 3 Determine whether the command 
to be processed is START, 
MOUN-r:, or LOGON.and invoke r.P1 l?i Register 1 
approprrate processor. ,.0:1 f?; I 

"+0----.... 

Parameter list 

iiI ~~1 Subpool no. and ~ 4 Build the start descriptor table 48 ;~ length of pclrameter 
(SOT) . ,,,a 1;;7 list 

rAseB 
4 SOT 

::> 5 Check the command pa,amere" 1.1.... 1 I Ir.F.~j Reserved 
for correct syntax. !~'\¥J 

ri: ft~ 

• 
v------



til 
(D 
n g. 
= 
~ 

s= 
(D 

g 
~ 

o -. 
o 
't:I 
~ 
~ o· 
= 
~ 
~ 
IN -

Diagram 4-1. Started Task Control Processing (part 2 of 8) 

Extended Description 

The Started Task Control (STC) routines oversee the 
processing of START, MOUNT, and LOGON 

commands. 

Module 

1 The first STC module that receives control is IE EPRWI2 
IEEPRWI2. This routine establishes an ESTAE environ-

ment for STC by creating an ESTAE parameter list and load- I EESB665 
ing module IEESB665, the STC recovery exit routine. 

The ESTAE environment ensures that the recoveryltermi-
nation rnanagernent(R/TM) routines will receive control in 
the event of an STC error. R/TM will, in turn, invoke 
IEESB665, which will then attempt to recover. 

If R/TM provides an SDWA (system diagnostic work area) 
containing the necessary data, IEESB665 will 
schedule a retry by terminating the current STC processing 
and issuing a SETRP macro instruction. 

If no SDWA exists, I EESB665 will simply continue 
ABEND processing. 

!n either case, the recovery routine will record the error in 
the SYS1.LOGREC data set and then return to R/TM. 

2 Once the ESTAE environment is complete, I EEPRWI2 IEEPRWI2 
issues a G ETMAI N macro instruction to obtain its own 

region from subpool 247. 

Label Extended Description 

3 IEEPRWI2 checks an indicator in the CSCB to deter-
mine which command, START, MOUNT, or LOGON, 

is to be processed. 

If the command is START, IEEPRWI2 issues an XCTL 
macro instruction to IEEVSTAR. 

For a MOUNT command, the XCTL macro instruction 
invokes IEEVMNT1, and for a LOGON, IKJEF LA. 

Both IEEVSTAR and IEEVMNT1 are part of STC; 
IKJEFLA is part of LOGON processing. 

4 Both routines, IEEVSTAR and IEEVNMT1 begin proc­
essing by creating a start descriptor table (SOT) and 

initializing it with blanks and zeroes. 

5 IEEVSTAR and IEEVMNT1 check the commands 
and associated parameters for correct syntax. When 

either routine finds an error, it places the command name 
in an extended save area and invokes module IEE05030 
to write a message using that name. 

IEEVSTAR and IEEVMNT1 continue error processing by 
freeing the SOT and issuing an XCTL macro instruction to 
the last routine of STC, IEEPRTN2. This module cleans 
up the data areas and ends the task that was begun for a 
START or MOUNT command. 

Module 

IEEVSTAR 

IEEVMNTl 
IKJEFLA 

IEEVSTAR 
and 
IEEVMNT1 

Label 



t-.J 
J:. 
~ 
t-.J 

o 
{I} 

'< 
{I} 
t-.J 
{I} 

'< 
~ 
I'D 
3 
t'"' 
~ 
(i' 

t'"' s: ... 
~ 
< o 
C 
3 
I'D 
t-.J 

'< 
{I} 
t-.J 

~ 
I'D 

i 
~ 
~ 

~ 

Diagram 4-1. Started Task Control Processing (Part 3 of 8) 

Input 

Register 1 

~met., ~_r~;:r 

v. ASCB 

/:4SDT 

~ 
.....L _ CSCB 

v---------
~ 

5( Process Output 
(iY;-iJf;:i!fi 

? CSCB SOT 

S ~ ;;,~ 

",rZf 
• Iii 

6 Build JCL for the command and A .A' 
put it into the SOT .;: 

CIB 

'" .~ 7 Build a command input ........ 
buffer (CIBI. 

CSCB 

" ti/. ~ • til 
": :' > 8 Update appropriate control bloCks.~: Jlot 

SOT 

~ ~,< 

'" If; 
t:; 9 Build the job scheduling tables: '. m v1" 

,;·,,1 
Job scheduling entrance list (JSEU. 

Jos scheduling options list (JSOU. 

Job scheduling exit list (JSXU. 

+ JSXL 

JSXL JSOL 

8 ~ 



en 
ct> 
l4. cr = 
~ 

s::: 
ct> g 
t:l. 
o ...., 
o 

"'0 
~ 
a o· 
= 
~ 
~ 
w 
w 

Diagram 4-1. Started Task Control Processing (part 4 of 8) 

Extended Description 

6 Every time a MOUNT command is specified, JCL that 
identifies the device to be mounted is supplied by the 

user. When a START command is specified, the JCL must 

be created for it. 

IEEVSTAR uses the START command parameter to build 
internal JCL statements. 

The procedure name that was specified with the START 
command becomes the JCL jobname. The name is placed 
in the CSCB and a pointer to it in the ASCB. 

When an ID was included on the START command, it 
becomes the stepname for an EXEC card. It too is saved in 
the CSCB. If no I D was specified, the step name used is 

"STARTING". 

If a unit parameter and volume serial number were entered 
with START, they are used for a DD statement. 

As each JCL statement is generated, it is moved into the 
SDT. 

7 Both IEEVSTAR and IEEVMNT1 create a command 
input buffer using storage from subpool 245. 

Module 

IEEVSTAR 

IEEVSTAR 
and 
IEEVMNT1 

Label Extended Description Module 

8 IEEVMNT1 stores JCL related information, which was IEEVMNT1 
provided with the MOUNT command, in the SDT. 

IEEVMNT1 and IEEVSTAR both update the CSCB with 
information related to the command parameters. Then, 
before passing control to IEEVJCL, they build a parameter 
list for it. 

9 IEEVJCL is the JCL build routine. For each newly 
created JCL statement, IEEVJCL gets an 88-byte area 

of storage space called a JCLS. It moves each statement 
into a JCLS (job control language string) and chains each 

JCLS to another. 

After the JCLS chain is done, IEEVJCL issues a GETMAIN 
macro instruction for space for the JSX L. It places these 
pointers in the JSEL: 

• A pointer to the JSXL. 
• A pointer to the JCLS chain. 
• A pointer to the CSCB. 
• A pointer to the ASCB. 

IEEVJCL issues another GETMAIN macro instruction, this 
time for the JSOL, which is initialized with the command's 
jobname, EXEC name, and procedure name. 

IEEVJCL completes processing by freeing the SDT and 
invoking the job scheduling subroutine, I EESB605. 

IEEVMNT1 
and 
IEEVSTAR 

IEEVJCL 

Label 



~ Diagram 4-1. Started Task Control Processing (part 5 of 8) 
IN 
.j:o. 

o 
t:I'} 

"< t:I'} 
N 
t:I'} 

'< 
~ 
(D 

3 
t"'" 
o 

()Q 

;;' 
C 
~ 
e; 
'< 
<: 
o 

= 3 
(D 

N 

'< 
CI:l 
N 

:;0 
(D 

;-
~ 

~ 
IN 

~ 

.... 

.... 

:. 

. " . 

Register 1 

.'1.. 

~JSEL 

v--- - -
JSWA 

~ JSEL 

+ JSOL 

4 JSEL 

::~ ~~ 

• CSCB 

+ ASCB 

Register 1 

II I 
~ Parameter List 

I + SSOB I 
L- ~ 

I 

" 
y 10 

'" i1 
y 

J\. 

y 12 

"- 13 y 

I\. 

y 14 

.. ." .... .' .<.' .... : .. '{ 
JSWA 

~ 
.:: 

1\.' <:; Build the job scheduling 
workarea (JSWA). 

y X 
" 

'. 
>: 

JSWA ESTAE 
.. Parameter Area 

' . 

./ 
Create an ·ESTAE environment 

I\. 

y 

.' for the job scheduling subroutine, 
~~ ., 

. 

SSOB 

"-Build the subsystem options 
block (SSOB). 

y 

(- ~ 
-" ~ Build the subsystem 

identification block (SSIB). 
y SSIB 

+--. 
--

L...----------- ..... 

" Determine whether a subsystem From job entry subsystem: 
is being started, 

y 

Register 15 

R etu rn code: 

6 
subsystem 
starting? 



til 
~ 
I'": 

S· 
= N 

3:: 
~ 

;. 
&. 
o .... 
o 
"0 
~ ... 
II) 

S· 
= 
N 
~ 
\.oj 
VI 

Diagram 4-1. Started Task Control Processing (Part 6 of 8) 

Extended Description 

10 IEESB605 creates the environment needed for 
initiator processing. It begins by obtaining storage 

space for its own work area, called the job scheduling 

work area (JSWA). 

Module 

IEESB605 

11 IEESB605 creates its own ESTAE environment. It I EESB605 
builds an ESTAE parameter list and issues the ESTAE 

macro instruction, then loads IEESB670, its own recovery 
exit routine. Then, if an error occurs in IEESB605, the RITM 
routines will receive control and after preliminary process-
ing, pass control on to IEESB670. 

If R/TM provides an SDWA containing the necessary data, IEESB670 

IEESB670 will schedule a retry of IEESB605 that terminates 
current STC processing by issuing a SETRP macro 
instruction. 

If no SDWA exists, IEESB670 will continue ABEND 
processing. 

In either case, the recovery routine wi II record the error in 
the SYS1.LOGREC data set and return to R/TM. 

Label Extended Description Module 

12 IEESB605 builds an SSOB to represent the command IEESB605 
as a job. It places, in the JSWA, an SSGB pointer and 

an indicator that the SSGB exists. 

13 IEESB605 also builds an SSIB for the command and 
places pointers to it in the current JSCB and the 

SSGB. 

14 IEESB605 determines whether a subsystem is being 
started by issuing the IEFSSREQ macro instruction 

to invoke the master subsystem. When the master subsystem 
returns control, I EESB605 checks the return code in 
register 15. 

If STC is starting a subsystem, IEESB605 places a pointer 
to the JCLS chain in the SSIB. This will allow the master 

subsystem access to the JC LS. 

Label 



N 
~ 
tH 
0\ 

o 
en 
"< 
tI'.l 
N 
en 
'< 
~ 
(1) 

3 
r-
~ 
(;. 

r-
~ 
~ 

-< 
-< o 
C 
3 
Q 

N 

'< en 
N 

" (1) 

i 
~ 
IN 

~ 

Diagram 4-1. Started Task Control Processing (part 7 of 8) 

4 JCLS 

~ CSCB 

+ SSOB 

Register 1 

I I 
~ Parameter list 

Option Flags 

+ Jobname 

+ Stepname 

+ Address of T lOT 

+ Address of JSCB 

JSWA 

~JSEL 
ttSOL~ 

Register 1 

L 
, ASCB CSCB 

( 
~ ~ ~ -- -

15 Write JCL text into appropriate 
system data set. 

Or 

16 Create an STC SWA structure. 

JCT 

JCT SWA address 

JCT id 

jobname 

17 Build the initiator entrance SCT SWA address 
list (lEU. 

SCT id 

18 Invoke the initiator subroutine. 

TCB hE=J 19 After initiator processing, 

lGLJ delete the STC SWA structure. 
• JSCB 

20 If necessary, delete the CSCB. 
Register 1 tEL 

I 1 ~ 
task ( 



en 
('!) 

~ c)" 
::s 
N 

::: 
~ 
::r g, 
o .... 
o 
't:I 
~ 
~ 
S· 
::s 

N 
~ 
c..J 
-..J 

Diagram 4-1. Started Task Control Processing (part 8 of 8) 

Extended Description 

15 When STC is not starting a subsystem, IEESB605 
calls IEFJSWT, STC's internal JCL write routine. 

IEFJSWT first initializes a request parameter list (RPL) and 
an access control block (ACB), the control blocks associated 
with the system data set into which the JCLS will be 
written. 

IEFJSWT checks an indicator in the CSCB to determine 
which command is in progress. For a LOGON, the system 
data set used in TSOINRDR; for the other commands, it 
is STCINRDR. For every command, IEFJSWT opens the 
appropriate data set and writes each JCLS record into it. 
When the writing is done, IEFJSWT returns to IEESB605. 

16 IEESB605 clears all the existing JCLS pointers and 
then calls the STC SWA initialization routine, 

IEESB601. This initialization routine builds a skeletal SWA 
structure in preparation for initiator processing. The SWA 
structure includes these control blocks: 

• JSCB. 
• QMPA (queue manager parameter areal. 

• JCT. 
• ACT 

.SCT. 
• ACT. 
• TIOT. 

Module 

IEFJSWT 

IEESB605 
IEESB601 

Label Extended Description 

17 Once the SWA structure is complete, IEESB601 
returns control to IEESB605, which initializes an 

initiator entrance list (IEL) with the following information: 

• Options from the JSO L. 
• A pointer to the JSEL. 
• A pointer to the initiator option list. 
• A pointer to the initiator exit list. 

18 IEESB605 clears pointers to the JSOL, which is no 
longer needed, and then issues a LINK macro instruc-

Module 

IEESB605 

tion invoking an initiator subroutine, IEFSD060. From that IEFSD060 

routine, initiator processing proceeds normally until the 
command task has been executed and is in termination. 

At that point, I EESB605 again receives control. (During 
initiator processing of a MOUNT command, the initiator 
ATTACH routine, IEFSD263, attaches IEEVMNT2, the 
MOUNT command processor. I EEVMNT2 returns control 
to IEFSD263.) 

19 IEESB605 performs STC clean-up functions by free-
ing the IEL, the JSWA, and the SSIB and SSOB. It 

invokes IEESB601 once again, this time to delete the SWA 
structure it previously created. When control returns to 
IEESB605, it issues an XCTL macro instruction to 
IEEPRTN2 . 

20 The STC free region routine, IEEPRTN2, does not 
free storage space but simply checks for the existence 

of CSCB in the ASCB and frees it if it still exists. 
IEEPRTN2 returns to region control task. 

IEESB605 

IEEPRTN2 

Label 



2·438 OS/VS2 System Logic Library "volume 2 (VS2 Release 3.7) 



Started Task Control (STC), passes control to 
LOGON Initialization, IKJEFLA. Here, the various 
control blocks required for LOGON and the 
terminal session are initialized, the EST AE recovery 
routine, IKJEFLS, is established, Master Scheduler 
JCL, MSTRJCL, is searched to ensure that SYSLBC, 
System Braodcast Dataset, and SYSUADS, System 
User Attribute Dataset, are available to LOGON 
and the subsequent terminal ession, and then 
LOGON Scheduler, IKJEFLB, is called. 

IKJEFLB receives control from IKJEFLA during a 
LOGON, and receives control from the Job 
Scheduling Subroutine, JSS, during a re-LOGON and 
a LOGOFF. IKJEFLB invokes the LOGON Prompting 
Monitor, IKJEFLC, and then waits for notification 
to either continue with the LOGON by passing 
control to JSS, or in the case of a LOGOFF, IKJEFLB 
will terminate and pass control back to STC. 

IKJEFLC passes control to the LOGOFF 
processor, IKJEFLL, in the case of a LOGOFF or a 
re-LOGON. Then IKJEFLC passes control to LOGON 
Verification, IKJEFLE, who parses the command to 
obtain the LOGON data and verify this data against 

LOGON Scheduling 

the UADS, User Attribute Dataset. In the case of a 
LOGOFF, IKJEFLC, notifies IKJEFLB that LOGON 
should terminate and then IKJEFLC terminates. For 
a LOGON or are-LOGON, IKJEFLC notifies IKJEFLB 
that it should pass control to JSS and then IKJEFLC 
passes control to IKJEFLH, the routine that invokes 
LlSTBC, List Broadcast Dataset. 

IKJEFLB passes control to JSS for the LOGON or 
the re-LOGON, and JSS eventually passes control to 
the Pre-TMP Exit, IKJEFLJ. IKJEFLJ notifies 
IKJEFLH that once LlSTBC has completed, IKJEFLH 
and then IKJEFLC should terminate. After IKJEFLJ 
terminates, the TMP is invoked for the users 
terminal session. 

When a LOGON command, referred to as 
re-LOGON, or a LOGOFF command is entered, the 
TMP terminates. JSS then passes control to the 
Post-TMP Exit, IKJEFLK, for some housekeeping. 
After JSS has completed its work it passes control 
to IKJEFLB who inturn invokes IKJEFLC to handle 
the LOGOFF or the re-LOGON. 

• 

Section 2: Method of Operation 2-439 



2-440 OS/VS2 System Logic Library (Volume 2 (VS2 Release 3.7) 



C".f.) 
('D 

l4. o· 
= N 

s:: 
a 
::r 
8-
o ..... 
o 

"0 
('D 

0; g. 
= 
N 
J:. 
~ 

LOGON 
(no diagram) 

\ 

LOGON ~ 
Monitor 
Recovery 
(lKJEFLGB) 

ABEND 

7 

J 
~ 

LOGOFF 
Processing 
(lKJEFLL) 

r 
ill 

LOGON 
Initialization 
(IKJEFLA) 

LOGON ~ 
Monitor 
(IKJEFLC) and 
(lKJEFLH) 

Figure 2-7. LOGON Scheduling Visual Contents 

ill 
LOGON 
Scheduling 
(lKJEFLB) 

~ 
Pre-TMP 
Exit 
(JKJEFLJ) 

LOGON/ lli 
LOGOFF 
Verification 
(JKJEFLE and 
IKJEFLEA) 

LOGON ffi 
Pre-Prompt 
Exit Interface 
(lKJEFU) 

l 

LOGON ~ 
Initialization 
and Scheduling 
Recovery 
(lKJEFLS) 

1 
15-10 

Post-TMP 
Exit 
(JKJEFLK) 



N 

t 
N 

~ 
'< 
CIl 
N 
CIl 
'< 
~ 
(1) 

3 
g' 

(JQ 

n· 
c: 
0-

~ 
< o 
C 
3 
(1) 

N 

~ 
CIl 
N 

~ 
(ii 
Q) 

r6 
(H 

~ 

Diagram 5-1. LOGON Initialization (IKJEFLA) (part 1 of 2) 

From STC for initial 

LOGON (I~RWI2) Process 

LOGON Initialization 

1 Check that required data 
sets are defined: 

• SYS1.UADS 
• SYS1.BRODCAST 

Missing 

2 Set up ESTAE. 
EST A E error messages: 
• IKJ564521 for terminal. 
• I KJ6081 for operator. 

3 Obtain and initialize control 
blocks for LOGON .. 

To LOGON 
Scheduling 
(lKJEFLB) 

Output 

LOGON ·terminated messages 

IKJ564521 

IKJ6091 

IKJ6041 

UPT 

>fil re-LOGO N ~ser pro 
+ buffer mforma 

LWA 4 UPT 
~------I 

• LWA UPT length 

c'LWA 

4 ASCB I~ ~J~S_X_L __________ ~ 
4 PSCB ... ~JSEL I JSXL lengt~ 
• JSEL _~ .ASCB return ~ode-O 
" ECT rc ext. - 0 
1" ,CSCB. LWA 

LWAILGN=1 JSXL I ~=A='I=K=JE=F=L=J='~ 
BLDL list ~a.n:'es of . A'IKJEFL. K' 

Initiator eXit , , 

t TCB for routines A IKJEFLB 
IKJEFLA A'IKJLM1' 

ENO/DEO RLGB (re-LOGON buffer) 
parameter lists I I I I length 0 252 bytes 



CI.l 
(II 

p. 
o· 
= ~ 
a:: 
(II 

;. 
o 
Q. 

o -. 
o 
~ ... cg 

g. 
= 
N 
~ 
~ 
w 

Diagram 5-1. LOGON Initialization (IKJEFLA) (Part 2 of 2) 

Extended Description Module 

LOGON initialization receives control from started task con· I KJEF LA 
trol (STC) to process an initial LOGON command from a 
terminal. The initialization functions are bypassed for a 
LOGOFF or reLOGON. 

1 Two TSO data sets-SYS1.UADS and 
SYS1.BRODCAST -must have been defined by 

master scheduler's JCL (MSTRJCL member of 
SYS1.LlNKLIB). LOGON initialization checks for these 

data sets by searching the master scheduler's TlOT for the 
DO names SYSUADS and SYSLBC. If either of the names is 
missing, error messages are issued and LOGON is 
terminated. 

IKJEFLA 

2 IKJEFLS is used as the ESTAE routine to protect IKJEFLA 
and IKJEFLB. 

3 LOGON initialization creates the control blocks that 
contain LOGON information needed by the various 

LOGON routines. (In the "Data Areas" section of this 
publication, is an overview chart showing the chaining and 
function of the LOGON control blocks. See Figure 5·5.) 
LOGON initialization turns on the initial-LOGON bit 
(LW~ILGN) to indicate that this is the first LOGON com· 
mand to be processed for the current address space. 

IKJEFLA 

Label 



t-J 
J;. 
~ 
~ 

~ 
"< fIl 
t-J 
fIl 
'< 
~ 
(D 

3 
r-
~ 
(:)" 

t"" 

~ 
~ 

-< 
<: 
o 

=-3 
(D 

t-J 

~ 
fIl 
t-J 

" (D 

(S" 
~ 

~ 
~ 

~ 

Diagram 5-2. LOGON Scheduling (IKJEFLB) (part 1 of 2) 

Input 

JSEL JSXL 

~ 

~I ATTACH ECB 

LWA 

~ 

LWA 

IKJEFLGB 

ESTAI 
exit 

LOGON monitor ECB 
(LWAPECB) 

From LOGON Initialization (IKJEFLA) for initial LOGON or 
from initiator for LOGOFF orre-LOGON (IEF9D161). 

ATTACH 
parameter 
list 

LOGON Scheduling 

1 If not initial LOGON, then 
detach IKJEFLC if it is still 
executing. 

2 Issue ATTACH for LOGON 
monitor. See Diagram 
"LOGON Monitor." 

3 Issue WAIT for 
notification to perform 
one of two functions: 

• Schedule terminal 
session . 

• Terminate for LOGOFF. 

Output 



Vl 
(1) 
(':) 

g. 
= N 

~ 
(1) 

g 
Q. 

o -.. 
o 

"t:I 
(1) 
""t = g. 
= 
N 
~ 
~ 
VI 

Diagram 5-2. LOGON Scheduling (IKJEFLB) (Part 2 of 2) 

Extended Description 

LOGON scheduling receives control from LOGON initializa· 
tion or from the initiator at the end of the terminal session 
(for LOGOFF or re·LOGON). The new terminal session that 
is scheduled following a re-LOGON operates in the same 
address space as the initial terminal session. 

LOGON scheduling invokes the job scheduling subroutine. 
This subroutine interprets the JCL card images that define 
the terminal session and attaches the terminal monitor pro­
gram (TMP), which processes commands from the terminal. 
The TMP remains active until it intercepts a LOGOF F or a 
re-LOGON command from the terminal. At that time, the 
TMP terminates and the initiator passes control back to 
LOGON scheduling to process the command. 

1 Upon receiving control from STC for a LOGOFF or 
re-LOGON, LOGON scheduling ensures that the 

LOGON monitor has already terminated. If the monitor 
is yet active, LOGON scheduling notifies the monitor 
(I LWASECB-post code 20) to terminate. Once the 
monitor has terminated (LWAPECB-post code 24), 
LOGON scheduling detaches it and sets the attach ECB 
(LWAAECB) to zero. LOGON scheduling then performs 
the attach of the LOGON monitor (Step 2) as usual. 

If the LOGON monitor posts LWAPECB with an invalid 
post code (other than 16 and 24). LOGON scheduling 
terminates as follows: 

• Detaches the LOGON monitor. 

• Cancels the EST AE environment. 

• Places the address of the ASCB in register 1. 

• Returns to STC (I EEPRTN) for CSCB clean-up. 

But, if the LOGON monitor has caused an ABEND and 
recovery is to be attempted (LWABEND=l), LOGON 
scheduling does not terminate; it reissues the ATTACH 
of the LOGON monitor (returns to Step 2). 

Module 

IKJEFLB 

IKJEFLB 

Label 

WAITUST 

BEXIT 

LCRESTRT 

Extended Description 

2 LOGON scheduling handles the initial LOGON, a 
LOGOFF, or a re-LOGON. First, it issues an ATTACH 

macro instruction to invoke the LOGON monitor (see Dia­

gram "LOGON Monitor")' The monitor routine executes 
until it requires a function that LOGON scheduling 
performs. At that time, the monitor notifies LOGON 
scheduling via the LOGON monitor ECB (LWAPECB). 

3 When notified by the LOGON monitor, LOGON 
scheduling performs one of two functions; the 

function performed is determined by the post code located 
in the monitor's ECB: (LWAPECB). 

post 
code 

function performed by 
LOGON scheduling 

Module 

IKJEFLB 

IKJEFLB 

16 Schedules a terminal session as follows: IKJEFLB 

24 

• Notifies the LOGON monitor (LWASECB-post 
code 16) to invoke the LOGON information 
routine IKJEFLH. 

• Creates the job scheduling option list (JSOL) 
and chains it to the JSEL. The JSOL contains 
option flags that affect the scheduling of this 
terminal session. 

• Moves the JCL card image chain (created by 
either the LOGON monitor or the preprompt 
exit) from subpool 1 to subpool 253. 

• Invokes the initiator routine IEESB605 to 
schedule the terminal session. 

Terminates LOGON scheduling as follows (per­
formed following a LOGOFF command): 

• Notifies the LOGON monitor to terminate 
(LWASECB-post code 24). 

• Issues a DETACH macro instruction for the 
LOGON monitor. 

• Cancels the ESTAE environment protecting 
LOGON scheduling. 

• Transfers control to STC routine I EEPRTN 
for CSCB clean-up. 

IKJEFLB 

Label 

WAITLIST 

ENDJOB 



N .;.. 
~ 
0\ 

o 
en 
"< 
Vl 
N 
en 
'< ;a. 
(l) 

3 
t'"" 
~ 
(i' 
t'"" 
0= 

~ 
<: o 
;:-
3 
(l) 

N 

'< 
Vl 
N 

~ 
(l) 

;-
~ 

~ 
w 
~ 

Diagram 5-3. LOGON Initialization and Scheduling Recovery Routine (IKJEFLS) (part I of 2) 

From ABEND Processing for either 

LWA 

procname 
CHCLS 

user-id 
LWARNM 

LWAPTID 

SDWA 

program check 
SDWAPCHK 

PSW restart 
SDWARKEY 

LOGON Initialization (lKJEFLA) or 
LOGON Scheduling (lKJEFLB) 

From ABEND 
Processing for 
RETRY 
(lKJEFLS1 ) 

Process 

LOGON Initialization and Scheduling 
Routine 

1 Issue appropriate messages. 

2 Dequeue from the user-id and 
detach LOGON MONITOR. 

3 Schedule dump, if necessary. 

4 If step not entered before. 
request retry. 

5 Return to ABEND processing 
without retry. 

6 Cancel EST AE routine, 
IKJEFLS. 

7 Transfer control to Started Task 
Control. 

Return to 
ABEND 
Processing 

Started Task Control 
(lEEPRTN) 

SDWA 

SDWARCDE=4 

SDWARTYA= 
Address of IKJEFLS1 



tiJ 
(1) 

S4. 
5' 
= N 

~ 

~ 
&. 
So 
o 
"0 
(1) 

3. 
5~ 

= 
N 
~ 
~ ..... 

Diagram 5-3. LOGON Initialization and Scheduling Recovery Routine (IKJEFLS) (part 2 of 2) 

Extended Description 

LOGON Initialization creates an EST AE environment 
that handlesabends that can occur during initialization 
and scheduling. 

1 Message I KJ6011 is sent to the operator and message 
IKJ564521 is sent to the terminal. 

2 Dequeue from the user-id and detach the LOGON 
MaN ITOR. (The LWAPTID is the LOGON monitor 

TCB pointer.) 

3 Obtain a dump for a program check or PSW restart. 

4 If not a recursive abend, then indicate "RETRY" in 
the SDWA with the retry routine, IKJEFLS. 

5 Return to ABEND processing (lKJEFLS1) to 
possibly schedule a retry (see step 4). 

6 Cancel the ESTAE environment. 

7 Transfer control to started task control, IEEPRTN, 
by using XCTL. 

Module Label 

IKJEFLA 

IKJEFLS 

IKJEFLS1 



~ Diagram 5-4. LOGON Monitor (IKJEFLC) (part 1 of 4) 
.a:o. 
~ 

o 
til 

"< 
til 
~ 

til 
'< 
~ 

3 
r:-
ei 
(;. 

r:-
~ 
~ 

-< 
<: 
o 
C 
3 
I'D 
~ 

< 
til 
~ 

" I'D 
(5" 
~ 

[Iil 
w 

~ 

Input 

CVT 

From LOGON 
Scheduling (tKJEFLB) 

... process 

LOGON Monitor 
CVTTCBQ 

It ~~~ent :~ ~:::> 1 Dete.rmine th~ LOGON 
"" mOnitor's environment. 

LWA 

LWAILGN=O 

~ 
- - -Jj,ttt - --, 

;:.'.'''. I . ___ ,)~, _L __ 
~----1 

LWABEND=O I. 2 For LOGOFF or re·LOGON, 
perform LOGOFF processing. 
See LOGOF F Processing 
(tKJEFLL). 

3 Obtain a new command 

Output 

R1 

h 
~T 

'" 
~ 

environment 
control 
table 

TCB for 
monitor 

storage 
protect key 
=8(TCBPXF) 

lbG;:;J def;ned as 
~ input source 

=! : £-
updated I SYS1.UADS 
user entry 

t::: ~ 

scheduling control block for ASID (CHASID) 
LOGON. 

job flags 

address step/modify 
ECB (CHECB) 

LO GO N verb code 
(CHVCD) 



CI.l 
("!) 

<" g. 
= 
N 

~ 
("!) g 
Q. 

o .... 
o 
'0 
("!) ... a 
5· 
= 
N 
~ 
~ 
\Q 

Diagram 54. LOGON Monitor (IKJEFLC) (part 2 of 4) 

Extended Description Module 

The LOGON monitor controls the processing that verifies IKJEFLC 
the LOGON or LOGOFF command, and the processing that 
issues informational and prompting messages to the termi-
nal. It notifies LOGON scheduling to schedule a terminal 
session or, in the case of a LOGOFF, to terminate the 
LOGON scheduling task. Some of the informational mes-
sages (that is, mail, notices, and LOGON-proceeding mes-
sages) are issued in parallel with the scheduling of the 
terminal session. All LOGON monitor messages are issued 
by the message handler IKJEFLGM. 

1 The LOGON monitor creates the environment control 
table (ECT), which contains information about I/O 

service routines the monitor will use. Also, the monitor sets 
its own storage protection key to 8. This allows the storage 
obtained by the monitor to be referenced by programs not 
executing in privileged state (for example, LlSTBC and the 
pre-prompt exit). Finally, the monitor issues a STACK 
macro instruction to define the terminal as the first source 
of input for time-sharing commands. 

IKJEFLC 

Label 

INITWKAR 

STACK 

Extended Description Module 

2 LOGOFF processing updates the terminal user's entry IKJEFLL 
in SYS1.UADS and analyzes the return codes from the 

job scheduling subroutine and from the terminal session. 
LOGOFF processing is not performed for an initial LOGON 
(LWAILGN=1) or for recovery processing (LWABEND=1). 
For more detail, refer to Diagram "LOGOFF Processing." 

3 The LOGON monitor builds a new CSCB that contains IKJEFLC 
the verb code for the LOGON command. This new 

CSCB replaces the one built for address space creation proc­
essing (START/LOGON/MOUNT) or, if this LOGON is a 
re-LOGON, replaces the CSCB previo'usly created by the 
LOGON monitor. (It is important that LOGON establish 
a full size CSCB for all logons and re-Iogons before passing 
it to the initiator. The initiator, assuming the full size 
CSCB is passed, frees the second portion and uses on Iy 
the first portion of the CSCB.) 

4 The LOGON monitor issues a STAX macro instruction IKJEFLC 
to establish a routine (lKJEFLG) that receives control 

when the terminal user causes an attention interruption by 
pressing the terminal's attention key. After causing the 
interruption, the terminal user may enter a question mark 
(?) to request second-level messages or may enter a new 
LOGON command to replace the one currently being 
processed. 

Label 

CSCBINIT 

TERMINAL 



N 
~ 
VI 
o 

£ 
"< 
I'-l 
N 
~ 

~ 
('1) 

3 

~ 
n' 
c 
~ 

~ 
-< o 
C 
3 
('1) 

N 

~ 
~ 
N 

;:0 
('1) 

(S" 
Ilo) 

~ 
w 

~ 

Diagram 5-4. LOGON Monitor (IKJEFLC) (Part 3 of 4) 

Input 
I ;:.::;i.;;:d.\~:,til 

LWA 

command 

re-LOGON buffer containing 
LOGOFF or LOGON command 

LWA LWA 

attention 
interrupt flag 
LWATNBT = 1 

4 

5 

6a 

Establish the attention 
interrupt exit. 

Verify command. ~ See Diagram 
"LOGON/LOGOFF 
Verification." 

Output 

I; 

I 

I LWA 

J\. 

... IKJEFLG 

attention 
exit 

i 
I 

i
\· J reset attention-

Return to Step 5 to process- . ". . .... ' .•..• ,. occurred _f. lag newly -entered command if '. ." (LWATNBT=O) 
attention interrupt occurred.. :. 

< termination flag 
------'------------'---- (LWAD ISC = 1 ) 

~ 
~ 

termination 
flag 
LWADISC = 1 . I requested. Notify LOGON 

" OR I scheduling. 

-v 

JSEL 

~t -'I ~> 6b Cancel Wm;nal se,,;on,;1 

= 1 _-1 
cancel flag - -_ 0 - - - -
(CHDISC) - ~ - -- - -1'--' "'t 

LWA.:, I 

I t.·.:.·.··.: -i -It ~. ~ 6c Schedule terminal session, if 
:. -.J I requested. 

LOGON monitor 
ECB (LWAPECB) 

-~ 
v • Notify LOGON scheduling. 

.. 
r:~, 
I' 

I 
t· • LlSTBC-

(JCLS chain 
deleted) 

I 
I 

LOGON scheduling ~.".'+-' posted I .. ECB (LWASECB) - - -I~ 
------------~~~L_ ________ ~~~ 

~----------~ 
• Issue LOGON information. 

--v 

.. I mail and notices. 
_--I. _____ -"-_,'\j • LOGO N-

--v I proceedlllg 
messages. ~ 

LOGON-proceeding message 
interval (LPOMWAT) 

To system (the task 
terminates and the mother 
task (lKJEFLB) schedules 
the foreground job) 

-



(JJ 
~ 
(") 

g. 
== 
~ 

::: 
(l> 

g 
c­
o ... 
o 
~ 
~ 

Dl g. 
== 
~ 

~ 
VI 

Diagram 54. LOGON Monitor (IKJEFLC) (part 4 of 4) 

Extended Description 

5 The LOGON monitor invokes LOGON/LOGOFF veri 
fication (lKJEFLE) to scan and parse the LOGON or 

LOGOFF command. For a LOGOFF or a re-LOGON, the 
command text is found in the re-LOGON buffer; otherwise, 
the command is obtained from the terminal. LOGON veri­
fication checks the user's authorization and LOGON param-

. eters against the user information in SYS1.UADS (user 
attribute data set) and prompts the user to replace invalid 
or missing information. See Diagram "LOGON/LOGOFF 
Verification." 

6a If the user presses the terminal's attention key during 
LOGON processing, he may re-enter the LOGON 

command. In this case, the LOGON monitor re-invokes 
LOGON verification to analyze the newly-entered com­
mand. The attention interrupt flag is reset to zero to 
indicate that the interrupt has been completely 
processed. 

6b If the system operator cancels the terminal user, if 
the user has entered a LOGOFF command, or if the 

user tlas failed to enter a valid LOGON command, the 
LOGON monitor ends the terminal session as follows: 

• Issues an error messages (I KJ564531) to the 
terminal for an operator cancel. 

• Issues a null STAX macro instruction to cancel the 
LOGON attention exit. 

• Frees the environment control table (ECT)' 

• Notifies LOGON scheduling to terminate (LWAPECB­
post code 24). 

• Waits for notification from LOGON schedul ing to termi­
nate (LWASECB-post code 24). 

• Returns to the operating system via SVC 3. 

Module 

IKJEFLE 
IKJEFLEA 

IKJEFLC 

IKJEFLC 

IKJEFLGM 

IKJEFLC 

6c • After LOGON verification has processed a valid IKJEFLC 
LOGON command, the LOGON monitor notifies 

LOGON scheduling to schedule the terminal session 
(LWAPECB-post code 16). LOGON scheduling invokes 
the job scheduling subroutine of the initiator which 
attaches the terminal monitor program (TMP)' 

.When LOGON scheduling is ready to invoke the job sched­
uling subroutine, it notifies the LOGON monitor to con­
tinue its operation. (LWASECB-post code 16). At that 

Label 

GOTOLE 

GOTOLE 

Extended Description 

time, the LOGON monitor calls the LOGON information 
routine, allowing it to execute in parallel with the sched­
uling of the terminal session. The information routine 
attaches the LlSTBC processor to issue mail and notices 
to the terminal user. Then the routine sets the timer to 
expire at the interval specified in the module IKJEFLPO . 
The LOGON-proceeding message is issued repeatedly to 
the terminal at this timed interval until the initiator is 
ready to attach the TMP. At that time, the pre-TMP exit 
(lKJEFLJ) notifies the information routine (LWASECB­
post code 20) that the LOGON scheduling process is com­
plete. The routine then cancels the timer and notifies the 
pre-TMP exit that LlSTBC processing is completed 
(LWAPECB-post code 20). 

Finally, the LOGON monitor terminates as follows: 
-Issues a null ST AX macro instruction to cancel the 

LOGON attention exit. (Pressing the terminal attention 
key no longer has any effect on LOGON processing.) 

-Del etes the environment control table (ECT). 
-Returns to the operating system via SVC 3. 

Error Processing 

LOGON schedul ing establ ishes the LOGON monitor's 
ESTAI environment via a parameter on the ATTACH macro 
instruction. Since the LlSTBC command processor is 
attached by the LOGON monitor task, it too is protected 
by the EST AI environment. If the LOGON monitor task or 

Module Label 

IKJEFLH 

IKJEFLC CLEANUP 

IKJEFLB 

the LlSTBC task terminates abnormally, the ESTAI routine IKJEFLGB 
IKJEFLGB receives control. See Diagram "LOGON Monitor 

Recovery. 

The LOGON monitor issues the STACK macro instruction 
to initialize the terminal as the source of input for com­
mands. If this process encounters any errors, the LOGON 
monitor invokes the message handler to issue appropriate 
error messages to the termi nal (I KJ564541) or to the 
operator (lKJ60SI). Also, the monitor turns on the 
LOGON-termination bit (LWADISC). 

The LOGON monitor issues the MGCR macro instruction 
to chain a new CSCB. If this routine passes back a non­
zero return code, the monitor issues error messages 
(I KJ564541) to the terminal via the message handler. If 
the cancel bit is on (CHDISC field of the CSCB), a session­
cancelled message (I KJ564531) is issued by the message 
handler. In any case, the monitor ends the terminal 
session as in Step 6b of this diagram. 

IKJEFLC 

IKJEFLGM 

IKJEFLC 

IKJEFLGM 



~ 
J:,. 
til 
~ 

o 
~ 

"< 
Vl 
~ 

~ 
'< 

~ 
r-

<i 
(5' 

r­
t;: 

~ 
<: c 
2' 
3 
(I> 

~ 

~ 
~ 
~ 

:::r= 
(I> 

~ 
~ 

~ 
~ 

~ 

Diagram 5-5. LOGOFF Processing (IKJEFLL) (part 1 of 2) 

From LOGON 
Monitor OKJEFLC),· 
Step 2 Processi ng 

~~~~~~~~~~~~ II \~~~~~~~~~~ 

LWA 

-r---------
I 

-J 
I 

J 

job scheduling subroutine 
(initiator) return code 
(JSXL RCOO) 

part of initiator 
encountering error 
(JSXL RCXT) 

LOGOF F Processing 

1 Update the user attribute data set 
as follows: 

• Update system attributes. 

• Update user attributes. 

• Update UPT image. 

• Update accounting information. 

2 Issue 0 EQ fron; user identification, 
if necessary. 

3 For initiator error, issue error 
messages. 

4 Analyze completion code from last 

5 

step of terminal session. 

Invalidate LOGOFF/re-LOGON 
command if there was a system error. 

Issue LOGOFF terminal message 

Return to LOGON Monitor 
OKJEFLC), Step 2 

I It 

Output 

SYS1.UAOS 

user member 

second-level 
messages 
describing 

2nd level message 

last step 
completion 
code 

~ ~'" I f"lr-f"l1\1 I.. .. ~~~_ I "LOGON 



CI'l 
~ 
g. 
o· 
= 
~ 

~ 
a g-
o. 
o ..... 
o 
"0 
~ 

Ii1 
5' 
= 
N 
J:. 
Ul 
tN 

Diagram 5-5. LOGOFF Processing (IKJEFLL) (part 2 of 2) 

Extended Description Module 

LOGOFF processing updates the terminal user's entry in IKJEFLL 
SYS1.UADS and analyzes the return codes from the job 
scheduling subroutine (initiator) and from the last step of 
the terminal session. LOGOFF processing is performed for 
a LOGOFF command and for a re-LOGON. It is not per-
formed for an initial LOGON (LWAILGN=1) or for recovery 
processing (LWABEND=1). 

1 Using the PROFILE command, the terminal user is IKJEFLL 
able to change the attributes associated with his user 

identification. These attributes are supplied by a member of 
SYS1.UADS. LOGOFF processing must update this member 
at the end of the terminal session to reflect the changes 
made by the user. If the installation has supplied all of the 
LOGON information normally supplied by SYS1.UADS 
(LWANOPR=1 and LWANUAD=1), it is not necessary to 
update the user's member of SYS1.UADS. 

If any of the three bits LWAATR1, LWAATR2, and 
LWABUPT are off, the corresponding information (system 
attributes, user attributes, and the user profile, respectively) 
was not supplied by the installation. The information not 
supplied by the installation (and, therefore, subject to 
changes made via the PROFI LE command) is updated by 
LOGOFF processing. 

If LWAACCTfO, the user's accounting information in 
SYS1.UADS is also updated. Accounting information con· 
sists of the following items: the length of the terminal ses­
sion, the amount of CPU time used, and the number of 
service units used. 

2 LOGOFF processing must release the user identifica-
tion resource that was obtained during LOGON veri­

fication. LOGOFF issues the DEQ macro instruction. If 
the three bits LWANOPR, LWANUAD, and LWANONQ 
are turned off, an ENQ was never issued on the user 
identification. In this case, a DEQ is not necessary. 

IKJEFLL 

Label 

UPDTUADS 

DEQUSER 

Extended Description 

3 If the job scheduling subroutine encountered an error 
(LWARTCD;:O), LOGOFF processing examines the 

field JSXLRCXT to determine what part of job scheduling 
failed. Next, it examines the fields JSXLRCOD and 
LWARCDE to determine the nature of the error. Finally, 
LOGOFF informs the message handler OKJEFLGM) to 
build the appropriate second-level message (lKJ564571 to 
terminal). 

Module 

IKJEFLL 

4 LOGOFF analyzes the return code from the last step IKJEFLL 
of the terminal session (LWARTCD) and builds an 

appropriate second-level message (I KJ564701 to termi nal) 
via the message handler. If the code is a system return 
code, the re-LOGON buffer is considered to be unusable 
and is filled with blanks. In this case, LOGON/LOGOFF 
verification must prompt the user for a LOGON or LOGOFF 
command. (See Diagram "LOGON/LOGOFF Verification.") 

The exception is a system return code that was generated 
by attention exit processing (indicated by LWATNBT=1). 
The attention exit posts the cancel ECB in the CSCB with 
a system code of 622, so that the job scheduling subroutine 
terminates in the same way as for an operator cancel. In this 
case, there is no reason why the re-LOGON buffer would be 
unusable; therefore, the contents of the buffer are retained. 

5 LOGOFF calls the LOGON time and date processor 
(lKJEFLPA) to set up the date and time-of-day 

buffers for the logged-off message. Then LOGOFF invokes 
the message handler to issue the logged-off message to the 
terminal OKJ564701). 

Error Processing 

If, at any time, LOGOFF processing encounters an I/O 
error, an OPEN error, or a service routine error, it issues an 
error message OKJ564541) to the terminal via the message 
handler and turns on the LOGON-termination bit. 

IKJEFLL 

IKJEFLL 

Label 

LGMSETUP 



~ Diagram 5-6. LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (part 1 of 4) 
VI 
~ 

o 
c;n 

"< CI} 
N 
c;n 
'< 
~ 

~ 

~ 
n 

t: 
~ 

~ 
< o 
2" 
:3 
('D 

N 

~ 
CI} 
N 

:::0 
('D 

(S" 
~ 

~ 
!.N 

~ 

Input 
From LOGON Monitor 
(lKJEFLC), Step 5 Process Output 

t LWA 

pre-prompt 
exit flag 
(LWABLR) 

~ 

.. 
:I 0 I- __ ...J 

{ 

LWANUAD = 1 ....".]~-I 
LWANOPR = 1 '.: - - - -

( 

\11' , 

(Means installation has 
supplied user data) 

LWA 

PSCB 

; 

OR 

re-LOGON buffer 
containing LOGOFF or 
re-LOGON command 

t---"'""--

LOGON/LOGOFF 
Verification 

~ 1 Invoke pre-prompt exit. 
See LOGON Pre-prompt 
Exit I nterface (I KJE F LI). 

2 Prepare for re-LOGON. 

~ 3 LOGON verification not 
necessary: skip to Step 8. 

~ 
4 Obtain command: 

• neither LOGON or 
LOGOFF - prompt 
termi nal user to re-enter 
command. 

• LOGOFF - indicate 
termination; bypass 

(for pre-prompt exit) 

LOGON 

for LOGON F.. + LOGON parm. buffers 
or msta lIatl on 

,.....-------........__ ... /1 values for + command input buffer 
LOGON 
parameters 

for LOGOFF 
LWA 

L--______ ----../I termination flag (LWADISC = 1) 

_----'''''"-_______ ~ _ __l." initial-LOGON' flag (LWAILGN = 0) 

re:.e nte red 
command 

] ! ~ ! !'~ 
LWA 

verification. 0 j1 return to 
• LOGON - continue "'.'. LOGON 

verification. Monitor 

termination flag 
(LWADISC = 1) 

(lKJEFLC), 

6 
Step 5 



I:Il 
(D 

$4-o· 
= N 

r:c 
!. 

&: 
~ 
o 
~ 
i o· 
= 
N 
J:. 
til 
til 

Diagram 5-6. LOGON/LOGOFF Verification (HOEFLE andIKJEFLES) (part 2 of 4) 

Extended Description 

LOGON/LOGOFF verification scans the LOGON or 
LOGOFF command and checks the LOGON parameters 
against the information in the user's member of the 
SYS1.UADS data set. As the verification process is checking 
LOGON parameters, it records valid LOGON information in 
various control blocks. (See Figure 5-5.) An optional installa­
tion exit (pre-prompt exit IKJEFLD) can replace any part 
or all of the verification processing. If the LOGON is valid, 
JCL card images (JOB and EXEC) that define the terminal 
session are built. 

1 If the VCON for the installation exit (IKJEFLD) is 
non zero (indicating an installation exit is present 

and link-edited into the LOGON load module), the 
interface routine IKJEFLI is invoked to initialize a 
parameter list for the exit. (See Diagram "LOGON 
Pre-prompt Exit Interface.") The interface does not 
pass control to the pre-prompt exit (IKJEFLD) if the 
command is a LOGOFF. 

2 The initial-LOGON flag is turned off following the 
first GETLINE macro instruction issued by 

LOGON/LOGOFF verification. Any subsequent LOGON 
command entered by the terminal user for the current 
address space is considered to be are-LOGON. 

Module Label 

IKJEFLE 

IKJEFLE GOTOIER 

IKJEFLE 

Extended Description 

3 LOGON/LOGOFF verification returns to the LOGON 
monitor if the termination flag is on (LWADISC) or if 

the cancel flag is on (CHDISC). If the pre-prompt exit has 
supplied all the LOGON information and indicates that no 
verification is necessary, the normal verification is bypassed. 

Module 

IKJEFLE 

4 After the command scan service routine (IKJSCAN) IKJEFLEA 
scans the command for LOGON or LOGOFF, the veri-

fication process continues as follows: 

• If neither command was found, the terminal user is 
prompted to enter LOGON or LOGOFF and the scan is 
repeated. 

• If the command was a LOGOFF, the verification process 
returns control to the caller, the LOGON monitor. For a 
LOGOFF HOLD (TSBHLDL=H, terminal input/output 
control nIOC) keeps a line open to the terminal. 

If at any time a terminal line is accidentally disconnected, 
TIOC retains, for a time specified in IKJPRMOO of 
SYS1.PARMLlB, the control blocks and the address 
space used for the current terminal session. If the terminal 
user then enters a LOGON RECONNECT command with 
the same user identification as the retained address space, 
TIOC reinstates the user in that address space. 

• If the command was a LOGON, the verification process 
continues (see Step 5). 

Label 

LOGONOFF 



N 
J:. 
VI 
0'\ 

o 
CI'.l 

"< 
CI'.l 
t-J 
CI'.l 
'< 
~ 
(l> 

3 
t""" 
~ 
(;. 

t""" 
0: 
tJ 
-< 
<:: 
o 
C 
3 
(l> 

t-J 

'< 
CI'.l 
N 

~ 
(l> 

~ 
~ 

~ 
~ 

~ 

Diagram 5-6. LOGON/LOGOFF Verification (HOEFLE and IKJEFLES) (part 3 of 4) 

Input 

user member 

LWA 

LWA 

I 

LWAJJCL = 0 ~- - -

5 Parse LOGON command for 
parameters. 

Check user authorization; issue 
ENQ on user identification. 

Validate LOGON information 
supplied by user and record it 
in system control blocks. 

~ 8 Build JCLS chain to define the 
terminal session. 

Return to LOGON 
Monitor (lKJEFLC). 

Step 5 

parameter values 

LWA ASCB TSB 

JSCB UPT PSCB 

D r=r-£J 
----.. ~ ~ 

See Figure 2-8. 

II"" '\J LOGON-in­
L------rh::::;Wn,· /J process message 



CI:l 
~ 
(':> g. 
::s 
N 

s:: 
~ 

g 
Q.. 

o -, 

o 
"C 
~ 
r:.:> g. 
::s 

N 
;. 
VI 
-.I 

Diagram 5-6. LOGON/LOGOFF Verification (HOEFLE and IKJEFLES) (part 4 of 4) 

Extended Description 

5 The verification process invokes the parse service rou-
tine (IKJPARSE) to check the syntax of the LOGON 

command. If the command contains the RECONNECT 
parameter, TIOC determines whether the user identification 
is already assigned to an address space (one that TIOC 
retained following a disconnected line). If the user identifi­
cation has an address space assigned to it, LOGON verifica­
tion terminates; TIOC reinstates the user in the retained 
address space. If the user identification has no address space 
assigned to it, the LOGON RECONNECT is rejected. 

Module 

IKJEFLE 

6 LOGON verification opens the SYS1.UADS data set IKJEFLE 
(user attribute data set) and copies into real storage the 

member associated with the user identification on the 
LOGON command and then ensures that the user identifica-
tion is authorized. The user identification and its length are 
stored in the PSCB (protected step control block). Then 
LOGON issues an ENQ on the user identification resource. 
If the resource has already been obtained, LOGON verifica-
tion reinvokes the pre-prompt exit if it exists. The 
installation can choose to authorize the user or to cancel 
the LOGON process. 

Label 

OPEN 

Extended Description 

7 LOGON verification compares the LOGON parameter 
values with the user information in SYS1.UADS to 

check for the validity of the LOGON parameters. If param­
eters are invalid or missing, LOGON verification prompts 
the user for correct parameters. The user's reply is re-parsed 
and verified. Verification checks the user's password, 

account number, procedure name, region size, a·nd perfor­
mance group. The system resources manager checks that the 
performance group is defined to the system and that the 
group can be used at this time. The job entry subsystem 
verifies that the destination choice (DEST parameter) 

defines a valid device for SYSOUT data sets. See Figure 2-8 
for a list of the data areas that LOGON initializes with user 
information. 

8 If LWAJJCL=I, the pre-prompt exit has supplied the 

JCL card images that define the terminal session. 
Otherwise, LOGON processing constructs the JCL card 
images as follows: 

//userid JOB 'account #',REGION=region size 
//procname EXEC procname,PERFORM=performance 

group 

where the userid (user identification), account #, region 
size, and performance group are obtained from the LOGON 
parameters, from the user's member of SYS1.UADS, or 
from the pre-prompt exit. 

Error Processing 

If the LOGON is an initial LOGON (LWAILGN=I), and the 
address of the terminal input line is zero, LOGON verifica­
tion obtains a line from the terminal (issues a GETLINE for 
the terminal). LOGON verification is part of the LOGON 
monitor task and, therefore, is protected by the monitor's 
ESTAI environment in case of an ABEND. 

Module Label 

IKJEFLE 

IKJEFLEA BUILDJCL 

IKJEFLE 

IKJEFLGB 



2-458 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



til 
~ 
() g. 
= t>J 

~ 
~ 

[ 
o .... 
o 

"0 
~ 

The following data areas contain TSO user information supplied by the SYS1.UADS 
data set, by the installation, or by the LOGON parameters: 

Data Area Name Field Name Contents 

ASCB ASCBJBNS Address of user identification. 

CSCB CHCLS Procedure name for this LOGON. 
CHKEY User identification. 

ECT ECT Flags that control L ISTBC processing. 

EXEC card image Procedure name for this LOGON. 
Performance group number. 

JOB card image Account number. 
Region size. 

JSEL JSEL Address of JCL card images. 

JSOL JSOLDEST Default destination for SYSOUT data sets. 

LWA LWACTLS Control switches set by the installation exit. 
LWADEST2 Default destination for SYSOUT data sets. 
LWAACCT Offset of accounting information in SYS1.UADS. 
LWATCPU Total CPU time used. 
LWATSRU Total service units used. 
LWATCON Total time connected to the system. 
LWARTCD Completion code for the last step of the terminal session. 

PSCB PSCBUSER User identification. 
PSCBUSRL Length of user identification. 
PSCBATR1 System attributes: switches that control use of OPERATOR, ACCOUNT, and SUBM IT 

commands, that indicate volume and mount authorization, and that define the attention 
key as the I ine-delete key. 

PSCBATR2 User attributes - reserved for installation use. 
PSCBGPNM Generic unit name. 
PSCBRSZ Region size. 

TSB TSBPSWD Password. 

UPT UPTSWS Environmental switches. 
UPTNPRM No-prompting switch. 
UPTMID Switch that controls printing of message identifiers. 
UPTNCOM Switch that controls SEND command authorization. 
UPTPAUS Switch that indicates whether to pause for a"?". 
UPTALD Switch that defines the attention key as the I ine-delete key. 
UPTMODE Switch that controls printing of mode messages. 
UPTWTP Switch that allows the user to receive WTP messages. 
UPTCDEL Character-delete character. 
UPTLDEL Line-delete character. 
UPTPREFX Data set name prefix. 
UPTPREFL Length of data set name prefix. 

~ g. 
= Figure 2-8. Data Areas Containing LOGON User Information 

t>J 

~ 
\Q 



t-J 

~ o 

o 
tI.l 

"< tI.l 
t-J 
tI.l 
'< 
~ 

3 
ci 
r;' 
t"'" 
c;: 

~ 
< g, 
= 3 
(!) 

t-J 

'< 
tI.l 
t-J 

::0 
(!) 

;-
~ 
r..> 
(!) 

W 

~ 

Diagram 5-7. LOGON Pre-prompt Exit Interface (IKJEFLI) (part 1 of 2) 

From LOGON/LOGOFF 
Verification (lKJEFLE), 
Step 1 Processi ng 

Ef:~~~~~~~~~~~~~~~~~~ " b rl~~J~~~:~~~~~j~f~~~5tm~7~~~~~~;~~*t~~~~~~~!~~~~~~~~r":~~,~~··~"~~~~~~~"~~~t~~~~~~~E~~~'~"~~~ 

+ parameters 

~ parameters for 
IKJEFLGM 

LOGON Pre-prompt Exit Interface 

For LOGOFF, bypass the 
pre-prompt exit. 

Invoke the pre-prompt 
exit. 

3 Check information provided by 
the pre-prompt exit. 

Copy information into LOGON 
control blocks. 

4 Issue ENQ on user identification 
resource, if necessary. 

Return 

IKJEFLD 

i nsta Ilatio n­
written LOGON 

Return to LOGON/LOGOFF 
Verification (lKJEFLE), 
Step 1 

Output 

parameter 
descriptors , 

UPT PSCB 

[Jf] 



til 
(tl 

~ o· 
::I 
N 

s:: 
(tl g 
~ 

e, 
o 

't:I 

S 
S· 
::I 

N 
.l:. 
0'1 -

Diagram 5-7. LOGON Pre-prompt Exit Interface (IK1EFLI) (part 2 of 2) 

Extended Description 

The LOGON pre-prompt exit interface invokes the LOGON 
pre-prompt exit which is a routine written by the installa­
tion. The pre-prompt exit can provide LOGON information 
on behalf of the terminal user, verify the user's LOGON 
command, and collect accounting information. Any user 
information provided by the pre-prompt exit overrides the 
information stored in the user's member of the SYS1.UADS 
data set. In fact, an installation can, if it wishes, replace all 
of the normal LOGON verification processing. For direc­
tions on writing the exit routine, refer to the topic "Writing 
a LOGON Pre-prompt Exit" in the publication OS/VS2 
System Programming Library: TSO, GC28-0629. 

1 The pre-prompt exit interface uses the command scan 
service routine (I KJSCAN) to determine if the com­

mand is a LOGON or LOGOFF. If it is a LOGOFF, the 
interface does not invoke the pre-prompt exit. Instead, it 
returns to its caller. 

2 The interface builds and passes to the pre-prompt exit 
a parameter list that defines those parameters the pre­

prompt exit needs to verify the LOGON command and to 
provide LOGON information. Most of the addresses in the 
parameter list point to two-word descriptors. The first word 
of the descriptor contains the address of the actual param­
eter. The second word contains both the maximum length 
for the parameter and the actual length. 

Module Label 

IKJEFLI 

IKJEFLI 

Ll0100 

Extended Description 

3 After invoking the pre-prompt exit, the interface rou­
tine checks the parameter list for validity: 

• Ensures the parameter list is unchanged. 

• Ensures the parameter descriptors are unchanged, except 
for the field containing the actual length of the parameter. 

• Checks that the actual length of each parameter does not 
exceed the maximum length for the parameter. 

If errors are discovered, the interface invokes the message 
handler (IKJEFLGM) to issue error messages and terminates 
the terminal session (LWADISC=1). If no errors are found, 
the interface copies into the appropriate control blocks all 
user information provided by the pre-prompt exit. See Fig­
ure 2-8. A control field in the LOGON work area 
(LWACTLS) contains bits that indicate what informa-
tion the installation has provided. 

4 If the pre-prompt exit has specified in the LOGON 
work area that the terminal user is not to be prompted 

(LWANOPR=1), that all LOGON information has been veri­
fied (LWANUAD=1), and that an ENQ is to be issued 
(LWANONQ=O), then the interface issues an ENQ on the 

user identification resource. If the resource is already in use, 
the pre-prompt exit is re-invoked to determine a course of 
action. The installation may choose to allow more than one 
user with the same user identification to be logged-on simul­
taneously (LWANONQ=1). In this case, the interface does 
not issue an ENQ on the user identification resource. Or, 
the installation may, instead, choose to terminate the ses­
sion (LWADISC=1). 

Error Processing 

If either the LOGON pre-prompt exit interface (lKJEFLI) 
or the pre-prompt exit (lKJEFLD) cause an ABEND, the 
LOGON monitor's ESTAI routine IKJEFLGB is invoked by 
ABEND processing. In certain cases, the ESTAI routine 
schedules a re-attach of the LOGON monitor task. See Dia­
gram "LOGON Monitor Recovery." 

Module Label 

IKJEFLI 

LI800 

IKJEFLI 

IKJEFLGB 



~ Diagram 5-8. LOGON Monitor Recovery (IKJEFLGB) (part 1 of 2) 
0'1 
N 

~ 
"< CI:J 
N 
C".f.l 
'< 
;a. 
(t) 

3 
t"'" 
~ 
n' 
t"'" g: 
~ 
<: 
o 
2" 
3 
(t) 

N 

~ 
CI:J 
N 

:;:0 
(t) 

(S' 
~ 

r6 
1...1 

~ 

Input 

t 

flag indicating that 
LOGON verification 
caused ABEND 
(LWAPHASE=O) 

LOGON termination 
flag (LWADISC) 

recovery counter 
(LWALPCNT) 

type-of-ABEND flags 
(LWAPSW, LWAPCK, 
LWAMCK) 

LWA 

flag indicating that 
LOGON information 
routine caused ABEND 
(LWAPHASE = 1) 

LlSTBC flag 
(LWALTCB) 

From ABEND 
processi ng for the 
LOGON monitor 

address of UADS DCB I 'I t" '" 

(LWAPDCB) 

LOGON Monitor Recovery 

Schedule dump, if necessary. 

For user ABEND, bypass 
recovery. 

For LOGON/LOGOFF verification 
error, determ ine if recovery is 
possible; issue appropriate 
messages. 

For errOr during LOGON 
information routine, issue 
appropriate messages. 

5 Prepare for return to ABEND 
processing: 

• Close SYS1.UADS data set. 

• Cancel attention exit. 

• Delete uneeded storage areas. 

Output 

)... VI dump indicator 

processing 

Return to 
ABEND processing 

LWA 

ABEND 
indicator 
(LWABEND) 

internal work area 

recovery 
indicator 



til 
(1) 

a o· 
= 
~ 

== (1) 

~ 
Q. 

o ... 
o 
'e 
~ 
I» g. 
= 
t:-J ... 
0'1 
~ 

Diagram 5-8. LOGON Monitor Recovery (IKJEFLGB) (part 2 of 2) 

Extended Description Module 

The LOGON monitor recovery routine receives control from IKJEFLGB 
ABEND processing following the abnormal termination of 
the LOGON monitor task. LOGON monitor recovery is an 
ESTAI routine that was specified on the ATTACH macro 
instruction when the LOGON monitor was attached by the 
LOGON scheduling task. If possible, a retry of the LOGON 
monitor is attempted by informing the LOGON scheduling 

task to re-attach the LOGON monitor (LWABEND = '1' B). 

1 A dump is scheduled if the abnormal termination was IKJEFLGB 
the result of a program check or a PSW restart (an 

external interrupt from the operator). 

2 If the ABEND code represents a user completion code, IKJEFLGB 
then recovery of the LOGON monitor task is not 

attempted. LOGON monitor recovery issues no error mes­
sages and passes control back to ABEND processing to con· 
tinue the abnormal termination. 

Label 

3 If the LOGON monitor abnormally terminated during 
LOGON/LOGOFF verification, recovery of the 

LOGON monitor task is scheduled (LWABEND=l). 

IKJEFLGB PHASEl 

Recovery is not attempted in the following cases: 

• The system or the operator has canceled the terminal 
session (CHDISC=l). 

• The terminal session is scheduled for termination 
(LWADISC=l ). 

• Four recoveries have already been attempted 
(LWALPCNT=4). 

• The current ABEND is the same type as the previous one 
(determined by checking bit settings in the LOGON work 
area: fields LWAPSW, LWAPCK, and LWAMCHK). 

LOGON monitor recovery builds and issues appropriate 
messages to the terminal and to the system operator. One 
set (lKJ56451I for the terminal and IKJ6031 for the 
operator) is issued if the LOGON pre-prompt exit terminated 
abnormally (LWAINX1=1). Another set (lKJ564521 for the 
terminal and I KJ6011 for the operator) is issued if 
LOGON/LOGOFF verification itself terminated abnormally 
(LWAINX1=O). 

MSGINIT 

Extended Description Module 

4 If the ABEND occurred after the user's LOGON infor- IKJEFLGB 
mation has been processed and the terminal session has 

been scheduled (that is, LWAPHASE=l), recovery may not 

Label 

be necessary. If LWAPHASE=l, the ABEND occurred either PHASE2 
during LlSTBC command processing or during the issuing of 
the LOGON-proceeding,messages (issued by LOGON mod-
ule IKJEFLH). If LlSTBC caused the ABEND 
(LWAL TCB=l), LOGON monitor recovery issues an error 
message to the terminal (lKJ564061) and the LISTBC task 
terminates. In this case, the scheduling of the terminal 
session proceeds normally. If the LOGON module IKJEFLH 
caused the ABEND, LOGON monitor recovery does not 
schedule a re-attach of the monitor (LWABEND=O) but does 
issue error messages to the terminal (I KJ56452) and to the 
operator (I KJ601 ). 

5 LOGON monitor recovery performs exit processing IKJEFLGB 
as follows: 

• Closes the SYSl .UADS data set using the DCB address 
in the LOGON work area. If this address is zero, recovery 
does not issue the CLOSE macro instruction. Recovery 
also issues a DEQ on the SYS1.UADS directory resource. 

• Issues a null STAX macro instruction to cancel the 
attention exit. Pressing the terminal attention key no 
longer has any effect on LOGON processing. 

• Frees the storage allocated to subpools 0, 1, and 78. 

CLOSUADS 

FREECORE 



N 

~ 
~ 

o 
\I'.l 

"< 
\I'.l 
N 
\I'.l 
'< 
~ 
(p 

3 
~ 
~ ;:;. 
t"'" g: 
~ 

-< 
<: 
o 
2'" 
3 
(p 

N 

':2 
\I'.l 
N 

:::0 
(p 

;" 
~ 

~ 
w 
~ 

Diagram 5-9. Pre-TMP Exit (IKJEFU) (part 1 of 2) 

Input 

From the initiator (lEFSD263) 
before it attaches the terminal 
monitor program (TMP) 

,'.1 
Process 

Pre -TMP Exit 

1 Pre-FR EEPART processing: 

• If the LOGON monitor is 
active, notify"it to terminate. 

• Detach LOGON monitor 
(JKJEF J-C). 

2 Post-FREEPART processing: 
• Initialize and chain PSCB. 

• Move UPT and the re-LOGON 
buffer to allow access by 
command processors. 
Move the PSCB. 

Return to 
initiator 
(lEFSD263) 

JSCB 

user's region 
size 
(PSCBRSZ) 

curren t ti me 
(PSCBLTIM) 

o --------, 
I 
I 
I 
I '----------' 

SP 252 
r - --, 
I I 

: '-1 -PS-C-S"", : 

I I L ___ ..J 



en 
(1) 

~ o· 
= 
N 

::: 
(1) 

;. 
C 
Q. 

C .... 
o 
'0 
!:; 
~ 

g-
= 
N 

~ 
0'1 
VI 

Diagram 5-9. Pre-TMP Exit (IKJEFLJ) (part 2 of 2) 

Extended Description 

The initiator (I EFSD263) invokes the pre-TMP exit before 
attaching the terminal monitor program (TMP); it invokes 
the post-TMP exit after the TMP terminates. The pre-TMP 
exit prepares for the terminal session to begin by notifying 
the LOGON monitor task to terminate. The pre-TMP exit 
has two parts; an entry point name is assigned to each part. 
The first part is invoked before the initiator issues the 
FREEPART macro instruction (pre-FREEPART process­
ing). The second part is invoked following the FREEPART 
(post-FREEPART processing). 

1 This step represents pre-FREEPART processing. It is 
performed before the initiator issues the FREEPART 

macro instruction. Since the LOGON monitor task may still 
be active, the data areas it uses must not be deleted (by 
FREEPART) until the task is notified to terminate. 

• Pre-FREEPART processing notifies the LOGON monitor 
task to terminate (LWASECB-post code 20). When the 
monitor task terminates, it notifies pre-FREEPART proc­
es~ing to continue (LWAPECB-post code 20). See 
LOGON Monitor (tKJEFLC), Step 6c . 

• The System Initiated Cancel (SIC) is notified that 
the TMP was executing when the line dropped or 
the user canceled. SIC will then notify the Post­
TMP exit to free other users who are waiting on 
this memory. For example, SEND W/WAIT 
option sent to a canceled memory can cause the 
sender to wait forever unless the Post-TMP exit 
frees the sender. 

Module Label 

IKJEFLJ 

IKJEFLJ IKJLM1 

Extended Description 

2 This step represents post-FREEPART processing. It is 
performed after the initiator issues the FREEPART 

macro instruction. Post-FREEPART processing now can 
move the UPT and the re-LOGON buffer to subpool 0 
{which is deleted by the FREEPARTl. 

• Post-FREEPART processing invokes the SWA manager to 
obtain the user's region size from the step control block 
(SCB). The region size is stored in the protected step con­
trol block {PSCBl. If the SCT indicates that the terminal 
session is a job with more than one step; post-FREEPART 
processing passes a non-zero return code back to the initi­
ator, which then terminates the job. The current time of 
day is also stored in the PSCB for later use in computing 
the length of the terminal session. 

• The UPT and the re-LOGON buffer are moved to sub­
pool 0 {a non-protected subpoo\} so that the command 
processors may alter them during the terminal session. 
The PSCB is moved to subpool 252; the command proc­
essors cannot alter data areas in subpool 252. 

Module label 

IKJEFLJ IKJLJ1 



~ 

J;.. 
0\ 
0\ 

0 
~ 

""< 
~ 
~ 

~ 
'< 
~ 
~ 

3 
t"'" 
~ 
(;. 

t"'" 

~ 
~ 
<: 
0 c 
3 
~ 

~ 

<: 
~ 
~ 

~ 
~ 

i 
it6 
~ 

\ ~ 

Diagram 5-10. Post-TMP Exit (IKJEFLK) (part 1 of 2) 

From the initiator (I EFSD263) 
Input after TMP terminates Process 

LWA 

LCT 

ASCB 

last-step 
completion 
code 
(LCTPARM4) 

CPU time used for 
this session 

LOGON time of day 
(PSCBLTIM) 

Post-TMP Exit 

1 Move UPT and re-LOGON 
buffer to protect them from being 
deleted. Move PSCB. 

Save the completion code for last 
step of the terminal session. 

3 Update the terminal user's 
accounting information. 

the initiator 
(lEFSD263) 

Output 

- ---, 
I 

--1 ' [PSCB , 

total CPU time 
(LWATCPU) 

total service units 
(LWATSRU) 

total user connect time 
(LWATCON) 

I 



en 
(1) 

!l o· 
= 
~. 

;s:: 
(1) 

g 
c­
o ..... 
o 

"'0 
~ 
Ql 

S· 
= 
~ 

.i.. 
0\ 
-....I 

Diagram 5-10. Post-TMP Exit (IKJEFLK) (part 2 of 2) 

Extended Description 

The initiator OEFSD263) invokes the post-TMP exit after 
the TMP terminates. The post-TMP exit saves the comple­
tion code from the last step of the terminal session and 
updates the user's accounting information in the LOGON 
work area. Then, the initiator performs termination process· 
ing and passes control back to the LOGON scheduling task. 

1 The post-TMP exit moves the UPT and the re-LOGON 
buffer from subpool 0 to subpool 230 to prevent job 

scheduling from deleting them during job termination. The 
PSCB is also moved to subpool 230. 

Module 

IKJEFLK 

2 The post-TMP exit saves the completion code from the IKJEFLK 
last step of the terminal session, obtaining it from the 

linkage control table (LCT). The completion code is later 
analyzed by LOGOFF processing to determine if the terminal 
session terminated abnormally. See Diagram "LOGOFF 
Processing.' , 

3 The post-TMP exit updates the accounting information 
in the LOGON work area to account for the system 

resources used during the terminal session that is now 
terminating. 

Error Processing 

If either the pre-TMP exit or the post-TMP exit causes an 
ABEND, LOGON scheduling's ESTAE routine IKJEFLS 
is invoked by ABEND processing. The function of this 
ESTAE routine is described under "Error Processing" in the 
diagram "LOGON Initialization and Scheduling." 

IKJEFLK 

IKJEFLJ,K 

Label 

IKJLK1 

IKJLK1 



2-468 OS/VS2 System Logic Library Volume 2 (VS2 Release 3.7) 



ABDUMP initialization (See OS/VS2 System- Initialization 
Logic) 

ABEND 
in communication task 2-143 
in RCT 2-426 
in started task control 2-431 

access control block (see ACB) 
access method, pseudo (see pseudo access method) 
account tables (see ACT) 
accounting information, updating for terminal user 2-466 
action requests, operator, displaying 2-292 
address space (see also memory) 

activity, checking for 2-410 
creation 

processing 2-250 
swap-out preparation 2-410 

affinity (see CPU affinity) 
allocate from groups picked by algorithm (see IEFAB478 

object module) 
allocate function control (see IEFDB410 object module) 
allocation queue manager (see IEFAB4FA object module) 
allocation queue manager request block (see AQMRB) 
allocation work area (see ALCW A) 
APF (see authorized program facility) 
ASCB (address space control block) 

in attention exit prolog and epilog 2-422 
in attention exit purge 2-424 
in attention exit scheduler 2-418 
in cancelling TSO, system-initiated cancel 2-256 
in deleting a virtual memory 2-400 
in DOM macro instruction processing 2-144 
in LOGON 

monitor 2-448 
post-TMP exit 2-466 
pre-prompt exit 2-460 
scheduling 2-444 
verification 2-456 

in obtaining a new virtual memory 2-250 
in quiesce processing 2-410 
in RCT common processing 2-408 
in RCT ESTATE processing 2-426 
in RCT initialization/termination 2-406 
in restore processing 2-414 
in started task control 2-430 
in starting MONITOR functions 2-316 
in ST AX service routine 2-416 
in stopping and restarting the system via interrupt 

2-392 
in stopping MONITOR functions 2-316 
in SVC 87 processing 2-144 
in varying a CPU offline 2-374 
in WTO and WTOR macro instruction processing 2-32 
in WTP (write-to-programmer) processing 2-52 

ASM (see auxiliary storage manager) 
ASVT (address space vector table) 

in obtaining a new virtual memory 2-250 
in starting monitoring procedures 2-316 
in stopping monitoring procedures 2-316 

ASXB (address space extension block) 
in attention exit prolog and epilog 2-420 
in attention exit purge 2-424 
in attention exit scheduler 2-418 
in cancelling TSO, system initiated 2-256 
in LOGON initialization 2-442 
in quiesce processing 2-410 
in RCT common processing 2-408 
in RCT EST AE processing 2-426 
in RCT initialization/termination 2-406 
in restore processing 2-414 . 
in STAX service routine 2-416 

asynchronous exits (see exit asynchronous) 
ATT ACH macro instruction 

in LOGON scheduling 2-444 
attention exit 

cancelling 2-418 

deleting 2-464 
during LOGOFF 2-452 
during LOGON 2-448 
eliminating at task termination 2-424 
level determination 2-418 
prolog/ epilog 2-420 
purge 2-424 
scheduling 2-418 

in region control task common processing 
attention interrupt processing (see also SVC 72) 
attention pending bit 2-182 
attributes, system 2-452 
attributes, user (see V APS) 
authority, for commands 2-242 
automatic deletion 2-122 

Index 

automatic priority group (see APG) 
auxiliary storage manager I/O request area (see AlA 
available queue element (see AQE) 

BASEA (see MSRDA) 
batch jobs, cancelling 2-254 
broadcast data set (see SYS1.BRODCAST) 
BSAM 

closing a console 2-22 
command processing routine (SVC 34) 2-182 
processing commands from a non-graphic console 

2-182 
writing messages to a non-graphic console 

multiple line 2-124 
single line 2-120 

building console displays 2-292 

CANCEL command 
processing 

functbn 2-254 
CANCEL ECB 2-258 
cancelling jobs 

background (batch) 2-254 
foreground (TSO) 2-254 

cancelling a TSO user, system initiated 2-256 
changing dump parameters 2-260 
changing IPS values 2-340 
channel 

varying offline 2-378, 2-370 
varying online 2-376, 2-370 • 

channel availability table (see CAT) I 
channel reconfiguration hardware interface to lOS 

from VARY CPU online 2-372 
from VARY channel online 2-376 
from VARY channel offline 2-378 

CHNGDUMP command 
function 2-260 

CIB (command input buffer) 
in command processing overview 2-232 
in command routing 2-242 
in command translation 2-242 
in creating CSCB 2-244 
in MODIFY command processing 2-312 
in STOP command processing 2-312 
in SVC 34 

initialization 2-232 
ST AE routine 2-236 

in task creation commands 2-244 
clock, TOO (see TOD clock) 
coefficients, resource (see resource factor coefficient) 
command, light-pen 2-186 
command, PFK 2-186 
command, reconfiguration (see reconfiguration commands) 
command, typed 2-184 
command authority 

checking 2-242 
varying 2-350 

command identification 2-242 

Index 1·1 



command mode 2-186 
command processing 

by master scheduler IEEVW AIT 2-246 
ESTAE creation/exit routine 2-280, 2-298, 2-330, 

2-340. 2-346, 2-350 
from a 1052, 2540, or 2740 console 2-182 
RESET 2-330 

command processing routine (SVC 34) 2-232 
command routing 2-242 
command scan 2-454 
command scheduler router 

function 2-242, 2-232 
command syntax 

verification of 2-184 
command translation 2-242 
commands 

CONTROL 
DIDOCS processing 2-184, 2-188 
processing 2-262 

DISPLAY 2-280 
DISPLAY DMN 2-228,2-297.0 (VS2.0J.807) 
DISPLAY NET 2-391 
DISPLAY TP 2-387 

display preprocessing 2-272 
displaying system status 2-280 

HALT 
initialization 2-300 
processing 2-302 

HALT NET 2-391 
HALT TP 2-387 
HOLD 2-387 
HOLD TP 2-387 
K 2-184 
LOGON 2-439 
MODE 2-311 
RESET 2-330 
routing 2-242 
RELEASE 2-388 
RELEASE TP 2-387 
SETDMN 2-230,2-401.0 (VS2.0J.807) 
STOP/MODIFY processing 2-312 
SWAP 2-311 
SWITCH 

inttialization 2-300 
processing 2-302 

TRACK 2-280 
. preprocessing 2-272 

translating 2-242 
VARY 2-370-2-385 

communications task 
attention interrupt processing 2-174 
closing a console 2-22 
console attention 2-4 

overview 2-4 
processing 2-174 

console command processing 2-182 
light-pen and PFK inplit 2-186 
typed input from a graphic device 2-184 

console device support 2-5 
console queueing routine 2-26 
console switch routine 2-170, 2-134 
device service routine, use of 2-178, 2-130, 2-110 
displaying mUltiple-line messages 2-128 
displaying single-line messages 2-122 
displays, DIDOCS 2-196 
DaM device support processing (DIDOCS) 2-166 
DOM macro instruction overview 2-138 
DOM macro instruction processing 2-140 
DaM processing 2-154 
DOM processing overview 2-152 
EST AE routine 2-202, 2-2(X) 
external interrupt processing 2-168, 2-4 
FRR 

function 2-202 
functional overview 2-3, 2-12 
functional recovery 2-202, 2-200 
I/O complete processing 2-130, 2-4 
major functions 2-3 
message deletion (DIDOCS) 

changing specifications 2-192 

1-2 OS/VS2 System Logic Library Volume 2 (VS2.0J.807) 

operator requested 2-188 
roll mode 2-198 

multiple-line WTO (ML WTO) processing 2-72 
opening a console 2-18 
operator interrupt key processor 2-168 
overview of functions 2-3, 2-12 
PFK definition or redefinition 2-190 
PFK display line 2-194 
posting 2-140 
recovery (STAR) routine 2-212 
REPL Y = YES function 2-3 
single-line WTO and WTOR service routine 2-28 
STAR routine 2-212 
supporting function 2-4 
SVC 34 initialization and processing 2-232 
SVC 35 processing 2-26 
SVC 72 processing 2-164, 2-6 
SVC 87 processing 2-140 
unconditional message to operator 2-114, 2-5 
wait service routine 2-97-2-99 
writing multiple-line messages 2-124 
writing single-line messages 2-120 
WTO and WTOR 

macro instruction 2-28 
overview 2-3, 2-96 
processing 2-98, 2-110 

WTP (write-ta-programmer) 
overview 2-48 
processing 2-50 

comparator, clock (see clock comparator) 
completion code, saving by post-TMP exit 2-466 
composite consoles 

switching by IEE4303D 2-368-2-369 
console 

closing 2-22 
CONTROL command processing 2-262 
device support 2-5 
display 

building replies for operator requests 2-292-2-293 
matrix of system status 2-290-2-291 
varying 2-350-2-351 

dump routine 2-298 
graphics console, processing types commands from 

2-184 
message routing 2-318 
opening 2-18 
status, console, displaying 2-286-2-287 
switching 

overview 2-4 
processing by IEE4303D 2-368-2-369 

varying online and offline 2-360 
console commands, reading 

light-pen input 2-186-2-187 
typed input 2-184-2-185 

console device buffer 
in displaying single line messages on a graphic console 

2-122 
console operand processor 

function 2-354 
continuing system trace 2-300-2-301 
control, common allocation (see common allocation 

control) 
control blocks (see data areas) 
CONTROL C,D and V command handlers 

function 2-266 
CONTROL command 

DIDOeS processing to delete messages 2-184,2-189 
displaying operands 2-288-2-289 
operator-requested message deletion (in DIDOCS) 

2-188-2-189 
processing 2-262-2-271 
syntax checker routine 2-186, 2-192 

conversational command mode 
in processing light-pen and PFK commands 

2-186-2-187 
corequisite publications iv (preface) 
CPU 

varying a CPU offline 2-374-2-375 
varying a CPU online 2-372-2-373 

CPU manual state in quiescing the system 2-323 



CPU varying 
offline 2-374-2-375 
online 2-372-2-373 
overview 2-370 

CQE (console queue element) 
building 2-102-2-103 
consolidating 2-112 
deleting 2-113 
in control command processing 2-266 
in QREGO 2-116 
in unconditional message to inactive console processing 

2-116 
in writing messages to a non-graphic console 

multiple line 2-124 
single line 2-120 

in WTO and WTO R communications task processing 
2-102-2-103 

CQE queue 
writing messages to a non-graphic console 

multiple line 2-124 
single line 2-120 

creating a new address space 2-250 
cross-memory posting of master scheduler 

in CSCB creation for task-creating commands 
2-244-2-245 

CSCB (command scheduling control block) 
creation 2-244-2-245 
in cancelling background and foreground jobs 

2-254-2-255 
in cancelling TSO, system initiated 2-256-2-257 
in changing console status, routing codes; and command 

authorization 2-350 
in changing IPS values 2-340 
in creating task commands 2-244 
in displaying control command operands 2-288 
in displaying a matrix of system status 2-290 
in displaying parameters of domains 2-297.0 

(VS2.03.807) 
in displaying program function key definition 2-294 
in displaying and tracking system status 2-280 
in displaying unit status· 2-296 
in HALT and SWITCH command 

initialization 2-300 
processing 2-302 

in listing messages 2-332 
in LOGON 

LOGON monitor 2-448, 2-450 
LOGON monitor recovery 2-462 
LOGON/LOGOFF verification 2-456 
pre-prompt exit interface 2-460 

in master scheduler wait ~-246 
in master scheduk wait recovery and retry 2-248 
in modify command processing 2-312 
in obtaining new virtual memories 2-250 
in quiescing a system 2-320 
in RESET command processing 2-330 
in saving and sending messages 2-332 
in started task control 2-433 
in stop command processing 2-312 
in stopping periodic track (status) displays 2-344 
in SVC 34 ST AE routine 2-236 
in switch and HALT command 

initialization 2-300 
processing 2-302 

in tracking and displaying system status 2-280 
in unloading I/O devices 2-346 
in varying a CPU or channel offline or online 2-370 
in varying devices offline and online 2-360 
in varying the path to a device 2-380 
in varying the status of real storage 2-384 
replacement during LOGON 2-448 

CSCB and ASCB creation routine 
function 2-244, 2-250, 2-300, 2-348, 2-388 

CSCB chain processing 2-244 
CSCB scan 

normal 
in master scheduler wait 2-246 

retry 
in master scheduler wait recovery and retry 2-248 

CSD (common system data area) 

in displaying a matrix of system status 2-290 
in quiescing a system 2-320 
in stopping and restarting the system via interrupt 

2-394 
in varying a CPU offline 2-374 
in varying a CPU online 2-372 

CVT (communication vector table) 
in attention exit prolog and epilog 2-422 
in attention exit scheduler 2-418 
in attention interrupt processing 2-174 
in cancelling TSO, system initiated 2-258 
in changing command authorization 2-350 
in changing console status, routine codes, and command 

authorization 2-352 
in console switching 2-368 
in delete operator message processing 2-154 
in deleting a virtual memory 2-400 
in displaying the console status 2-286 
in displaying information requests 2-324 
in displaying a matrix of system status 2-290 
in displaying operator action requests 2-292 
in displaying unit status 2-296 
in DOM macro instruction 2-144,2-148 
in external interrupt processing 2-168 
in interrupt processing 2-174, 2-168 
in LOGON 

initialization 2-442 
LOGON/LOGOFF verification 2-456 
monitor 2-448 
pre-prompt exit interface 2-460 

in master scheduler wait 2-246 
in master scheduler wait recovery and retry 2-248 
in obtaining a new virtual memory 2-250 
in quiesce routine processing 2-410 
in quiescing a system 2-320 
in RCT common processing routine 2-408 
in RESET command processing 2-330 
in restore routine processing 2-414 
in setting local time 2-338 
in starting and stopping monitoring functions 2-314 
in STAX service routine 2-416 
in stopping and restarting the system via interrupt 

2-392 
in SVC 34 ST AE routine 2-236 
in SVC 87 processing 2-144, 2-148 
in unloading I/O devices 2-346 
in V AR Y HARDCPY processing 2-366 
in varying a CPU online 2-372 
in varying devices offline and online 2-360 
in varying the status of real storage 2-384 

CXSA (comm task SVRB extended save area) 
in external interrupt processing 2-168 
in processing typed commands from a graphic console 

(DIDOCS) 2-184 

DCM (display control module) 
in CONTROL command processing 2-262 
in displaying console status 2-286 
in displaying single line messages on a graphic console 

2-122 
in DOM device support processing (DIDOCS) 2-166 
in processing light-pen and PFK commands on a graphic 

console 2-186 
in processing typed commands from a graphic console 

2-184 
DEFER option, in STAX service routine 2-416 
deleting messages 

DIDOCs processing 2-166 
operator messages 2-154 

deleting a virtual memory 2-400 
DEQ macro instruction (see ENQ/DEQ/RESERVE 

routine) 
device addresses, varying a range of 2-364 
device allocation/unallocation (see allocation/unallocation) 
d~vice "hierarchical-offline" status, checking 2-373 
device information subroutine 

function 2-396 
device path 

varying 2-380 

Index 1·3 



device support processor for 1052, 1443, 2540, 2740, or 
DIDOCS 

in attention interrupt processing 2-180 
in DaM processing 2-164 
in I/O complete processing 2-132 

devices, generic (see generic allocation control) 
devices, I/O, varying online and offline 2-360 
devices waiting to be made ready 2-292 
DEVNAMT (device name table), deleting 

in displaying unit status 2-296 
DIDOCS (device independent display operator console 

support) 
cleanup module 

function 2-24 
command analyzer 

function 2-184 
DaM processing 2-166 
interface to CONTROL command 2-262 
light-pen and cursor detect analyzer 2-186 
message module 

function 2-188, 2-122 
message output module, inline 2-122 
message processor, inline multiple-line 

function 2-128 
message processor, single-line 

function 2-128, 2-122 
open/close module 2-18, 2-22 
PFK definition processor 

function 2-190, 2-194 
PFK-entered command processor 

function 2-186 
roll mode processor 2-198, 2-122 
status display processor 

function 2-128, 2-190, 2-196 
timer interceptor 2-198, 2-192 
use in displaying single line messages on a graphic 

console 2-122 
use in processing light-pen and PFK command 2-186 
use in processing typed commands from a graphic 

console 2-184 
2740 console device support processor 

function 2-120, 2-122, 2-118, 2-124, 2-182 
direct access data set (see DADSM) 
DISPLAY C,K processor 

function 2-288 
DISPLA Y command processing 2-272, 2-280 
DISPLAY matrix command processor 

function 2-290 
DISPLAY NET command, modules invoked 2-391 
display of program function key defintions 

function 2-288, 2-294 
DISPLAY DMN command processing 2-297.0 

(VS2.03.807) 
DISPLAY R command processing 2-292 
DISPLAY TP command processing 2-387 
DISPLA Y /TRACK router 

function 2-272, 2-274 
display track, stopping 2-342 
displaying console status 2-286 
displaying control command operands 2-288 
displaying operator action requests 

function 2-292 
displaying parameters of domains 2-228,2-297.0 

(VS2.03.807) 
displaying single line messages on a graphic console 2-122 
displaying system status 2-280 

CPU model and serial numbers, obtaining 2-291 
reconfigurable storage units defined to the system, 

finding 2-291 
displaying unit status 2-296 
DaM (delete operator message) 

communications task processing 2-154 
communications task processing overview 2-3, 2-152 
macro instruction 

overview 2-138 
processing 2-140 

setting up EST AE routine for protection during JES 
execution 2-158 

DaM (delete operator message) control table 
use in DaM device support processing 2-166 

1-4 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

DaM (delete operator message) ID entries 
DaM device support processing 2-166 
DaM (delete operator message) element table 

use in DaM device support processing 2-166 
DaM (delete operator message) macro instruction 

overview 2-138 
service routine processing 2-140 
subsystem exit routine, use of 2-148 
UCMDECB, posting the 2-148 

DaM (delete operator message) parameter list 
in DaM macro instruction (SVC 87) 2-143 

DOMC (delete operator message control block) 
in delete operator message processing 2-154, 2-152 
in DaM macro instruction 2-141, 2-138-2-139 

DQE (descriptor queue element) 
in SVC 34 ST AE routine 2-236 

DSAB (data set association block) 
in LOGON initialization 2-442 

DSS 
system restart procedure with 2-395 

DUMDOMCB 
in DaM macro instruction (SVC 87) processing 2-144 

DUMP command processing 2-298 
dump for SVC 34 ST AE 2-236 
dump data set 

use in dumping virtual storage 2-298 
dumping virtual storage 2-298 
dump parameters, changing via CHNGDUMP command 

2-260 
dump task 

attaching by region control task 2-406 
detaching by region control task 2-406 

DWWIN 
dynamic support system (see DSS) 

ECB (event control block) 
in LOGON scheduling 2-444 
in master scheduler wait 2-247 
region control task processing routine 2-409 

ECCDB 
ECT 

in LOGON monitor 2-449 
in LOGON pre-prompt exit interface 2-460 
in LOGON verification 2-459 

end of task (see EaT) 
ENQ macro instruction (see ENQ/DEQ/RESERVE 

routine) 
EPAL (external parameter area locate mode, see EPA) 
EPAM (external parameter area move mode, see EPA) 
EPARM 

in SVC 35 (WTO and WTOR) 2-30 
error processing (see also error recovery EST AE processing) 

in LOGOFF 2-452-2-453 
in LOGON monitor 2-451 
in master scheduler wait recovery and retry 

(IEEVW AIT) 2-248 
error recording 

RCT 2-426 
error recovery (see also error processing, EST AE 

processing) 
attention exit 

prolog/epilog 2-423 
purge 2-425 

LOGON monitor 2-462 
LOGON pre-prompt exit interface 2-461 
quiesce 2-413 
RCT EST AE processing 2-426 
restore 2-415 

error recursion (see recursion processing of errors) 
ESTAE 

for communication task 2-202, 2-200 
in started task control 2-430 
RCT 2-426 

exclusive control (see XCTL routine) 
EXCP macro instruction 

use in processing typed commands from a graphic 
console 2-185 

use in displaying single line message on a graphic 
console 2-123 



EXEC statement 
in started task control processing 2-433 

exit, attention (see attention exit) 
exit handling (see EXIT routine) 
exit, LOGON 

post-TMP 2-466 
pre-prompt 2-460 
pre-TMP 2-464 

external interrupt processing 2-168, 4-98 
external parameter area (see EPA) 
external parameter area locate mode (see EPA) 
external parameter area move mode (see EPA) 

faults (see page faults) 
fetch (see program fetch) 
foreground jobs, cancelling 2-254-2-255 
frame (see page frame) 
FRR (see functional recovery routine) 
FRR W A (RCT FRR work area) 

in attention exit prolog and epilog 2-420 
in attention exit purge 2-424 
in attention exit scheduler 2-418 
in ST AX service routine 2-416 

full analysis (see system resources manager) 
functional recovery routine (see also termination conditions) 

for communications task 2-202 

generation data group (see GDG) 
GETLINE macro instruction, issued by LOGON/LOGOFF 

verification 2-455 
graphics console 

commands processing 
light pen and PFK commands 2-186 
typed commands 2-184 

deleting messages from 2-1 66 
displaying single line messages 2-122 

GSA (global save area) 
in stopping and restarting the system via interrupt 

2-392 

HALT command 
initialization 2-300 
processing 2-302 

HALT EOD and switch-SMF processor 
function 2-302 

HALT NET command 2-391 
HALT TP command 2-387 
hardcopy informational message module 

function 2-366 
hardcopy system log 

saving 2-307 
HIPO (see Method-of-Operation section) 
HOLD parameter of LOGOFF command 2-455 
HOLD TP command 2-388 
housekeeping (see JFCB housekeeping) 

ID, message 
use in DOM device support processing 2-167 

identification of commands in command processing 
(IEE5403D) 2-242 

IEACVETI object module 
function 2-181 

lEA V AROO object module 
function 2-427, 2-407 

lEA VAROI object module 
function 2-409 

IEAV AR02 object module 
function 2-413 

lEA V AR03 object module 
function 2-415 

lEA V AR04 object module 
function 2-419 

lEA V AR05 object module 
function 2-421, 2-423 

lEA V AR06 object module 
function 2-423 

lEA V AR07 object module 
function 2-425 

lEA V AXOO object module 
function 2-417 

IEAVEMCR object module 
function 2-250 

IEAVEMDL object module 
function 2-400 

lEA VEMRQ object module 
function 2-251, 2-245 

lEA VMDOM object module 
function 2-154 

lEA VMDSV object module 
function 2-1 10, 2-178, 2-130 

lEA VMFRR object module 
function 2-202 

lEA VMNTR object module 
function 2-314 

lEA VMQRO object module 
function 2-114 

lEA VMQWR object module 
function 2-97-2-99 
use of 2-168, 2-130, 2-154, 2-176 

lEA VMWSV object module 
function 2-26 

lEA VMWTO object module 
function 2-72 
use of 2-34 

lEA VPFfE object module 
lEA VST AA object module 

function 2-212 
lEA VSWCH object module 

function 2-170, 2-134 
lEA VVCRA object module 

function 2-174 
lEA VVCRX object module 

function 2-168 
lEA VVCTR object module 

function 2-168,2-22, 2-130, 2-174 
lEA VVWTO object module 

function 2-28 
lEA VXDOM object module 

function 2-140 
IEAVI052 object module 

function 2-22, 2-18, 2-120, 2-124, 2-182, 2-174 
IEAVI443 object module 

function 2-124, 2-120, 2-18, 2-22 
lEA V2540 object module 

function 2-18, 2-22, 2-182 
IEA1FIND object module 

function 2-81 
IED1303D object module 

function 2-300, 2-348, 2-388 
IEECB800 object module 

function 2-280 
IEECB801 object module 

function 2-284-2-285 
IEECB860 object module 

function 2-280, 2-298, 2-330, 2-340, 2-346, 2-350 
IEECB866 object module 

function 2-298 
IEECB900 object module 

function 2-356-2-357 
IEECB901 object module 

function 2-358-2-359 
IEECB904 object module 

function 2-364 
IEECLEAN object module 

function 2-370-2-371 
IEECVET A object module 

function 2-186, 2-192 
IEECVETD object module 

function 2-188, 2-122 
IEECVETF object module 

function 2-186 
IEECVETG object module 

function 2-18, 2-22 
IEECVETH object module 

function 2-122, 2-166, 2-128, 2-184, 2-188, 2-184, 2-192, 
2-194, 2-198, 2-196 

Index 1-5 



IEECVETJ object module 
function 2-198, 2-122 

IEECVETK object module 
function 2-198, 2-192 

IEECVETP object module 
function 2-192, 2-194, 2-198, 2-196, 2-188, 2-184, 2-122, 

2-128, 2-166 
IEECVETR object module 

function 2-166, 2-122, 2-22, 2-184, 2-188, 2-198, 2-196, 
2-194,2-192 

IEECVETU object module 
function 2-192, 2-194, 2-188, 2-196, 2-198, 2-184, 2-122, 

2-128, 2-166 
IEECVETW object module 

function 2-124, 2-120, 2-22, 2-18, 2-174 
IEECVETI object module 

function 2-22, 2-122. 2-166, 2-128, 2-184, 2-198, 2-186 
IEECVET2 object module 

function 2-122 
IEECVET4 object module 

function 2-184 
IEECVET6 object module 

function 2-188 
IEECVET7 object module 

function 2-166 
IEECVET8 object module 

. function 2-188 
IEECVET9 object module 

function 2-188, 2-122 
IEECVFT A object module 

function 2-186 
IEECVFTB object module 

function 2-190, 2-194 
IEECVFTG object module 

function 2-24 
IEECVFTL object module 

function 2-128 
IEECVFTM object module 

function 2-128 
IEECVFTN object module 

function 2-196 
IEECVFTO object module 

function 2-128 
IEECVFTP object module 

function 2-196 
IEECVFTQ object module 

function 2-128 
IEECVFTI object module 

function 2-190 
IEECVFT2 object module 

function 2-128, 2-122 
IEEC2740 object module 

function 2-120, 2-20, 2-22, 2-18, 2-124, 2-182 
IEEOISPO object module (VS2.03.807) 

function 2-297.0 (VS2.03.807) 
IEEJB840 object module 

function 2-48 
IEEMB810 object module 

function 2-330 
IEEMB811 object module 

function 2-340 
IEEMB812 object module 

function 2-340 
IEEMB813 object module 

function 2-346 
IEEMB814 object module 

function 2-340 
IEEMB815 object module 

function 2-260 
IEEMB860 object module 

function 2-135 
IEEMPOM object module 

function 2-290 
IEEMPS03 object module 

function 2-320 
IEEMPVST object module 

function 2-384 
[EEMSER (see MSROA) 
[EEPAL TR object module 

function 2-294-2-295 

J-6 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

IEEPRTN2 object module 
function 2-436 . 

IEEPRWI2 object module 
function 2-430 

IEESB601 object module 
function 2-436 

IEESB605 object module 
function 2-434, 2-436 

IEESB665 object module 
function 2-430 

IEESB670 object module 
function 2-434 

IEESTPRS object module 
function 2-392 

IEEV ALST object module 
function 2-384 

IEEVCPU object module 
function 2-370, 2-372, 2-374, 2-376, 2-378 

IEEVOEV object module 
function 2-396 

IEEVIOPM object module 
function 2-396 

IEEVJCL object module 
function 2-432 

IEEVMNTI object module 
function 2-430, 2-432 

IEEVPTH object module 
function 2-380 

IEEVSENO object module 
function 2-332 

IEEVSN02 object module 
function 2-335 

IEEVSN03 object module 
function 2-335 

IEEVSND4 object module 
function 2-332 

IEEVSN05 object module 
function 2-335 

IEEVSN06 object module 
function . 2-335 

IEEVSN08 object module 
function 2-335 

IEEVST AR object module 
function 2-432, 2-431 

IEEVSTOP object module 
function 2-374 

IEEVVRPI object module 
function 2-324-2-327 

IEEVVRP2 object module 
function 2-326-2-327 

IEEVW AIT object module 
function 2-246, 2-294, 2-300 

IEEVWKUP object module 
function 2-372, 2-374 

IEEXEONA object module 
function 2-286 

IEEOOO30 object module 
function 2-234, 2-232 

IEEOOIIO object module 
function 2-288, 2-294 

IEE03030 object module 
function 2-240, 2-232 

IEE04030 object module 
function 2-242, 2-232 

IEE05030 object module 
function 2-238, 2-298, 2-330, 2-340 

IEE06030 object module 
function 2-336 

IEE07030 object module 
function 2-312 

IEE08030 object module 
function 2-244, 2-250, 2-300, 2-348, 2-388 

IEEIOIIO object module 
function 2-288 

lEE 11110 object module 
function 2-288 

IEE14030 object module 
function 2-300 

lEE 16030 object module 
function 2-306 



IEE20110 object module 
function 2-296 

IEE21110 object module 
function 2-296 

IEE22110 object module 
function 2-296 

IEE2303D object module 
function 2-352 

IEE23110 object module 
function 2-296 

IEE2903D object module 
function 2-292 

IEE3203D object module 
function 2-348 

IEE3303D object module 
function 2-350, 2-352 

IEE3503D object module 
function 2-272, 2-274 

IEE3603D object module 
function 2-350 

IEE3703D object module 
function 2-254 

IEE4OtlO object module 
function 2-294 

IEE4103D object module 
function 2-366 

IEE4203D object module 
function 2-352, 2-360 

IEE4303D object module 
function 2-368, 2-348 

IEE4403D object module 
function 2-352 

IEE4603D object module 
function 2-360 

IEE4703D object module 
function 2-366, 2-348 

IEE4803D object module 
function 2-354 

IEE4903D object module 
function 2-354 

IEE5103D object module 
function 2-236 

IEE5403D object module 
function 2-242, 2-232 

IEE5503D object module 
function 2-314, 2-344 

IEE5703D object module 
function 2-366 

IEE6303D object module 
function 2-318 

IEE6403D object module 
function 2-318 

IEE6503D object module 
function 2-336 

IEE6603D object module 
function 2-336 

IEE6703D object module 
function 2-262, 2-344 

IEE6803D object module 
function 2-270 

IEE6903D object module 
function 2-268, 2-270 

IEE70110 object module 
function 2-302 

IEE7103D object module 
function 2-314 

IEE7203D object module 
function 2-366 

IEE7303D object module 
function 2-354 

IEE7503D object module 
function 2-262, 2-342, 2-274 

IEE7703D object module 
function 2-266 

IEE7803D object module 
function 2-266 

IEE8603D object module (VS1.03.807) 
function 2-401.0 (VS1.03.807) 

IEE90110 object module 
function 2-304 

IEE9403D object module 
,function 2-300-2-301 

IEFAB49C object 'module 
function 2-346, 3-340, 3-358, 3-304, 3-368, 3-410 

IEFJSWT object module 
function 2-436-2-437 

IEL (initiator entrance list) 
in LOGON pre-TMP exit 2-464 

IGCOOOIF 
function 2-410-2-413 

IGCOOOIG 
function 2-414-2-415 

IGCOOO3D object module 
function 2-294-2-295 

IGCOOO9C object module 
function 2-420-2-421 

IGC0203E object module 
function 2-50, 2-36 

IGF2503D object module 
function 2-311 

IGF2603D object module 
function 2-311 

IKJEES20 object module 
function 2-332-2-333 

IKJEFLA object module 
function 2-442 

IKJEFLB object module 
function 2-444 

IKJEFLC object module 
function 2-448 

IKJEFLE object module 
function 2-454, 2-450, 2-456 

IKJEFLEA object module 
function 2-450, 2-454, 2-456 

IKJEFLF object module 
function 2-256, 2-254 

IKJEFLGB object module 
function 2-462, 2-450, 2-456, 2-461 

IKJEFLGM object module 
function 2-450-2-451 

IKJEFLH object module 
function 2-450-2-451 

IKJEFLI object module 
function 2-460 

IKJEFU object module 
function 2-464, 2-466 

IKJEFLK object module 
function 2-466 

IKJEFLL object module 
function 2-452, 2-448 

IKJEFLS object module 
function 2-447 

IKJL4TOO object module 
function 2-256, 2-258 

IKJL4TOI object module 
function 2-257 

IKJL4T02 object module 
function 2-257 

IKJP ARSE 2-454 
IKJSCAN 2-454, 2-458 
information request replies 2-324 
information subroutine, device 2-396 
initialization 

primary job entry subsystem 
in master scheduler wait 2-246-2-247 

system log 
in master scheduler wait 2-246-2-247 

initiator subroutine, invoking 2-436-2-437 
initiator/LOGON interface 2-464 
inline output bit, checking by DIDOCS 2-123 
input stream (see converter) 
input options for MF /1 (see options, MF /1) 
installation performance specifications (see IPS values) 
in-stream procedures (see JCL statements) 
instructions (see also macro instructions) 
integrity (see data set integrity processing) 
interrrupt, external 2-168, 4-98 
interrupt, to stop system 2-392 
I/O completion 

processing in comm task 2-130 

Index 1-7 



I/O devices 
unloading 2-346 
varying online and offline 2-360 

10SB 
in attention interrupt processing 2-174 

10SGEN macro instruction 
use for displaying system status 2-291 

IPS scanner message module 
function 2-340 

IPS values 
changing in master scheduler (SET IPS) 2-340 
keyword scanner 

function 2-340 
IQE (interrupt queue element) 

in attention exit scheduler 2-418 
ISTCFF3D object module 

function 2-348 

JCL, building in LOGON verification 2-457 
JCL text, building in STC 2-432 
JCLS (JCL set) 

building in started task control 2-433 
JCT (job control table) 

in started task control 2-430 
JES3 

valid K commands that are routable with L=CCA 
operand 2-265 

JES3 console 
system commands routing exclusion 2-277 
TRACK command invalid 2-277 

job control language (see JCL) 
job entry subsystem (JES) 

LOGON use 2-454 
processing 2-430 

job control language build routine 
function 2-432 

jobname for started tasks, processing 2-433 
job scheduling subroutine and recovery exit 

function 2-434, 2-436 
job step allocation (see step allocation) 
journal (see job journal) 
JSCB (job step control block) 

in LOGON 
initialization 2-442 
pre-prompt exit interface 2-458 

in obtaining a new virtual memory 2-250 
in started task control 2-430 
in WTP (write to programmer) processing 2-50 
in WTP (write to programmer) requests 2-48 

JSEL (job scheduling entrance list) 
in LOGOFF 2-452 
in LOGON 

initialization 2-442 
monitor 2-448 
monitor recovery 2-454 
pre-prompt exit interface 2-458 
pre-TMP exit 2-464 
scheduling 2-444 
verification 2-454 

in started task control 2-430 
JSOL (job scheduling options list) 

in LOGON scheduling 2-444 
in started task control 2-430 

JSW A (job scheduliing work area) 
in started task control 2-430 

JSXL (job scheduling exit list) 
in LOGOFF 2-452 
in LOGON 

initialization 2-442 
pre-TMP exit 2-464 

in started task control 2-430 

K command 
DIDOCS processing 2-184 
K A and K T command handler 

function 2-268, 2-270 

1-8 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

LCA (log control area) 
in HALT command processing 2-302 
in processing log and WRITELOG commands 2-306 
in switch command processing 2-302 

LCCA (logical communications configuration area) 
in quiescing a system 2-320 
in varying a CPU offline 2-374 
in varying a CPU online 2-372 

LCT (linkage control table) 
in LOGON post-TMP exit 2-466 
in LOGON pre-TMP exit 2-464 

level of attention exit, determining 2-418-2-419 
light pen command processing 2-186 
link pack area (see LP A) 
LISTBC use during LOGON 2-451 
listing messages 2-332 
local time 

setting local time 2-336 
lock manager (see SETLOCK) 
LOG and WRITELOG command processor 

function 2-306 
LOG command processing 2-306,2-308 
log data set (see system log) 
log hardcopy (see hardcopy of system log) 
log, system (see system log) 
logical reconfiguration (see reconfiguration commands) 
LOGOFF (see also LOGON) 

cleanup 2-452 
LOGON/LOGOFF verification 2-454 
processing 2-452 
release of serial resources 2-452 

LOGON (see also LOGOFF) 
attention exit preparation 2-449 
attention exit scheduling 2-418 
attention key, effect of 2-449 
error processing 2-451 
ESTAI exit 

processing 2-462 
information routine 

function 2-450-2-451 
initialization 

function 2-442 
installation exit interface 

function 2-460 
LISTBC use 2-451 
LOGON/LOGOFF verification 2-454 
mail 2-451 
message handler and text 

function 2-450-2-451 
monitor 2-448 
monitor recovery 2-462 
notices 2-451 
post-TMP exit 

function 2-466 
pre-prompt exit interface 

function 2-460 
pre-TMP exit 

function 2-464, 2-466 
processing a new LOGON command 2-450 
prompter recovery exit 

function 2-462, 2-450, 2-456, 2-461 
prompting monitor 

function 2-448 
reconnect parameter, rejection of 2-457 
release of user id resources 2-453 
scheduling 

processing 
function 2-444 

recovery and retry routine 
function 2-447 

STACK use 2-449 
ST AX use 2-449 
user information, from SYS1.UADS or LOGON 

parameters, where stored 2-459 
utility routines, loading 2-444-2-445 
verification of command 

function 2-454, 2-450, 2-456 
LOGON command (see also start/logon/mount overview) 

CSCB creation (lEE0803D) 2-244 
in started task control 2-430-2-431 



LOGON, TSO serialization 
in master scheduler wait 2-246-2-247 
user id resources 

issuing ENQ and DEQ for 2-444-2-445 
release of 2-453 

LSPL (local service priority list) 
in obtaining a new virtual memory 2-250 

L W A (logon work area) 
cancelling TSO, system initiated 2-256 
in LOGOFF processing 2-452 
in LOGON 

initialization 2-442 
monitor 2-448 
monitor recovery 2-462 
post-TMP exit 2-466 
pre-prompt exit interface 2-458 
pre-TMP exit 2-464 
scheduling 2-444 
verification 2-454 

mail in LOGON 2-451 
major name 

in LOGON scheduler (SYStIKJUA) 2-445 
manual state, placing CPU in 2-321 
master console 

changing console status 2-350 
external interrupt processor (lEAVVCRX) 2-168 
functional overview 2-4 
switching 2-368 

master JCL 
master scheduler 

posting 
in CSCB creation 2-244 
in task creation commands 2-244 

region intialization 
function 2-135 

SVC 110 router 
function 2-288, 2-294 

wait recovery and retry (lEEVWAIT) 2-248 
wait routine 

function 2-246, 2-294, 2-300 
master subsystem 

in started task control 2-430 
master wait 2':'246 
MGCR macro instruction, issuance by LOGON monitor to 

chain a new CSCB 2-451 
memory (see also address space, cross memory, virtual 

memory) 
deletion 2-400 

message deletion (DIDOCS) 
DOM processing 2-166 

message handling for SVC 34 (lEE0503D) 2-238 
message id 

use in DOM device support processor (DIDOCS) 
2-166 

message module (DIDOCS) 2-188, 2-122 
message protect key 

use in DOM device support processor (DIDOCS) 
2-166 

message routing 
changing 2-350 
to consoles 2-318 

message waiting bit, setting in DIDOCS 2-122 
messages 

deleting (in DIDOCS) 2-166 
during LOGOFF 2-452-2-453 
during LOGON (mail and notices) 2-451 
listing 2-332 
sending and saving 2-332 
unconditional to inactive console 2-114 

MLWTO (multiple line write to operator) 
deleting from graphic console 2-166 
functional overview 2-3 
processing 2-72 

MODE command processing 
function 2-311 

MODIFY command processing 
function 2-312 

MONITOR command 

function 2-314 
operand validity according to source of command 

2-315 
MOUNT (see also start/logon/mount overview) 

processing in started task control 2-430-2-431 
MOUNT command syntax check routine 

function 2-430, 2-432 
mounting a volume (see volume mount & verify) 
MP (see multi-processor system) 
MP vary command preprocessor 

function 2-350 
MSGRT command handlers 

function 2-318 
MSRDA or BASEA (master scheduler resident data area) 

in HALT and SWITCH command processing 2-304 
in listing messages 2-332 
in master scheduler wait 2-246 
in master scheduler wait recovery and retry 2-249 
in MODIFY command processing 2-312 
in processing LOG and WRITELOG commands 2-306 
in RESET command processing 2-330 
in saving messages 2-332 
in sending messages 2-332 
in setting local time 2-336 
in starting monitoring procedures 2-314 
in STOP command processing 2-312 
in stopping monitoring procedures 2-314 
in SVC 34 ST AE routine 2-236 
in SWITCH command processing 2-304 

MSS 
allowing multiprocessor operation in V AR Y CPU online 

2-372-2-373 
allowing uniprocessor operation in VARY CPU offline 

2-374-2-375 
preprocessor 

function 2-300-2-301 
MSS commands 

posting MSS from HALT command 2-301 
multi-processor system 

starting via interrupt 2.-393 
stopping via interrupt 2-393 

multi-unit generic (see MUG) 

NET (VT AM) command processing 2-391 
NEWIPS, SYSEVENT code (32) (VS2.03.807) 

in changing IPS values 2-341 (VS2.03.807) 
new address space (see address space) 
non-conversational mode in PFR-entered command 

processing 2-186 
notices from LOGON monitor 2-448 

offline console status, causing 2-353 
online console status, causing 2-353 
OPEN/CLOSE module (DIDOCS) 2-18,2-22 
operands, of CONTROL command, displaying 2-288 
operating system, stopping 2-300, 2-394 
Operation (see Method of Operation Section) 
operator action requests, displaying 2-292 
operator commands 

processing typed commands from a graphics console 
2-184 

operator console (see console) 
operator message deletion (DOM) 2-152, 2-154, 2-138, 

2-140, 2-166 
operator SEND command main control 

function 2-332 
ORE (operator reply element, see also WWB) 

in communications task recovery (STAR) 2-218 
in delete operator message (DOM) processing 2-139 
in displaying information requests 2-324 
in displaying operator-action requests 2-292 
in SVC 35 processing 2-42, 2-46 
in WTO and WTOR macro instruction processing 

2-42,2-46 
Organization (see Program Organization Section) 
OUCB (system resources manager use control block) 

in deleting a virtual memory 2-400 
OUSB (system resources manager user swapable block) 

Index 1-9 



in deleting a virtual memory 2-400 
output pending bit (UCMPF) 2-122 
OUXB (system resources manager user extension block) 

in deleting a virtual memory 2-400 

page free request (see PGFREE) 
page load (see PGLOAD) 
parse (see HOP .<\.RSE) 
parse/scan inte. 'ace 

function 2-450, 2-454, 2-456 
path, device (see device path) 
PCCA (physical communications configuration area) 

in displaying a matrix of real storage 2-290 
in quiesce processing 2-410 
in restore processing 2-414 
in varying a channel online 2-376 
in varying a CPU offline 2-374 
in varying a CPU online 2-372 

performance group reset module 
function 2-330 

periodic track display 
stopping 2-342 

PFK (see program function key) 
PFr (page fix table) 

displaying definition of 2-294 
in varying the status of real storage 2-384 

PFrE (page fix table entry) 
in displaying a matrix of system status 2-290 

PIRL (purged I/O restore list) 
in quiesce processing 2-410 
in restore processing 2-414 

PKF commands, processing from a graphic console 
2-186-2-187 

pool (see quick cell) 
posting communications task 2-148 
post-TMP exit, LOGON 2-466 
PRB (program request block) 

in RCT initialization/termination 2-406 
in restore processing 2-410 
in STAX service routine 2-416 

pre-prompt exit interface, LOGON 2-460 
pre-TMP exit, LOGON 2-464 
processing system log 2-306 
processors, command (see command processing) 
program function key (PFK) 

displaying definition of 2-295 
programmer, writing to (see WTP) 
prolog 

attention exit 2-421 
prompting exit (see pre-prompt exit, LOGON) 
protect key, message 

use in DOM device support processing 2-167 
PSA (prefixed save area) 

in quiesce processing 2-410 
in RCT EST AE processing 2-426 
in RCT initialization/termination 2-406 
in restore processing 2-414 
in varying a CPU online 2-372 

PSCB (protected step control block) 
in LOGOFF 2-452 
in LOGON 

in post-TMP exit 2-466 
in pre-prompt exit interface 2-460 
in pre-TMP exit 2-464 
initialization 2-442 
monitor 2-450 
validation 2-454 

in WTP (write to programmer) processing 2-52 
purge, attention exit 2-424 
PURGE SVC routine 

function 2-410-2-413 
putting commands on system log 2-242 
PVT (page vector table) 

in quiesce processing 2-410 

QDB (queue descriptor block) 
in LOGON initialization 2-442 

QEDIT processor 

1-10 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

function 2-240, 2-232 
QREGO unconditional message to operator 2-114 
QTIP subroutine 2-259 
qUiesce processing 

in quiesce routine 2-410 
system 2-320 

QUIESCE command processing 
function 2-320 

RACF security accessor control blocks (VS2.03.813) 
creating 2-456 (VS2.03.813) 
deleting 2-446,2-452,2-462 (VS2.03.813) 

RACINIT macro (VS2.03.813) 
creating security related control blocks 2-456 

(VS2.03.813) 
deleting security related control blocks 

2-446,2-452,2-462 (VS2.03.813) 
range of device addresses, varying 2-364 
RB (request block) (see also VM & V request block) 

in attention exit scheduler 2-418 
in quiesce processing 2-410 

RCT (routing control table) (see also region control task) 
in display command preprocessing 2-274-2-275 
in routing messages to consoles 2-318 
in track command preprocessing 2-274-2-275 

RCTD (region control task data area) 
in attention exit prolog and epilog 2-420 
in attention exit purge 2-424 
in attention exit scheduler 2-418 
in quiesce processing 2-410 
in RCT common processing 2-408 
in RCT EST AE processing 2-426 
in RCT initialization/termination 2-406 
in restore processing 2-414 
in ST AX service routine 2-416 

RDCM (resident display control module) 
in CONTROL command processing 2-264 
in DISPLAY command preprocessing 2-278 
in displaying program function key definitions 2-294 
in displaying system status 2··282 
in TRACK command preprocessing 2-278 
in tracking system status 2-282 

read channel program 
use in processing typed commands from a graphic 

console 2-184-2-185 
read operation 

use in processing typed commands from a graphic 
console 2-184 

real frame (see page frame) 
real storage 

varying status of 2-384 
RECONNECT parameter 2-455, 2-457 
recording, error (see error recording) 
recording, log 2-308 
recovery, error (see error recovery EST AI) 
recovery, FRR (see functional recovery routine) 
recovery/termination (R/TM) 4-319 

processing for started task control 2-435 
recursion processing of errors 

in RCT 2-426-2-427 
reducing information displays 2-343 
region control task 

common processing 2-408 
error recovery 2-426 
EST AE processing 2-426 
initialization 2-406 
invocation 2-408 
purge 2-410 
quiesce 2-410 
quiesce back out (restore) 2-414 
restarting subtasks 2-414 
SRM notification 2-410 
termination 2-406 

RELEASE command, checking 2-388 
RELEASE TP command, checking 2-388 
REPL Y command 

processing 2-324 
requests 

operator action 2-292 



operator console 2-4 
operator information 2-324 

requests, allocation 
requests, region (see region requests) 
RESET command 

interface to SRM 2-331 
processing 2-330 

resetting time (in IEE0603D) 2-338 
resource word, building in IEEMPS03 2-321 
resources manager (see system resources manager) 
restart (see also checkpoint/restart, DSS) 

SRBs in RCT EST AE processing 2-426 
subtasks 

in attention prolog/epilog 2-422 
system 

via interruption 2-392, 4-116 
restart word, building 2-320 
restarting (see restart) 
restore SVC routine processing (see also region control 

task) 
function 2-414-2-415 

RLGB (re-Iogon buffer) 
in LOGOFF 2-452 
in LOGON 

initialization 2-442 
monitor 2-448 
post-TMP exit 2-466 
pre-TMP exit 2-464 

roll mode message deletion processing (DIDOCS) 2-198, 
2-122 

routing and list operand processor 
function 2-262, 2-342 

routing codes, changing 2-350 
routing commands 2-242 
routing 

messages to consoles 2-318 
RPL (request parameter list) 

in WTP (write-to-programmer) processing 2-50 
in WTP (write-to-programmer) requests 2-48 

RSM (see real storage manager) 
RTCT (recovery termination table) 

in changing dump parameters 2-260 
R/TM (see recovery termination) 

SACB (screen area control block) 
in control command processing 2-262 
in displaying system status' 2-280 
in stopping periodic track (status) displays 2-342 
in tracking system status . 2-280 

saving messages 2-332 
SCB (ST AE control block) 

in RCT initialization/termination 2-406 
scheduler (see job scheduler) 
scheduler, attention exit 2-418 
screen message deletion (DIDOCS) 2-198 
screen image buffer (see SIB) 
SCT (step control table) 

in DaM device support processing 2-166 
in started task control 2-430 

SCT entry 
use in DOM device support processing 2-166 

SCVT (secondary communications vector table) 
in attention exit prolog and epilog 2-420 
in attention exit scheduler 2-418 
in cancelling TSO, system initiated 2-256 
in LOGON initialization 2-442 
in restore processing 2-414 

SDT (start descriptor table) 
in started task control 2-430 

SDUMP macro, issuance by DUMP command (IEECB866) 
2-298-2-299 

SDW A (system diagnostic work area) 
in communications task (FRR) recovery 2-202 
in communications task (STAR) recovery 2-212 
in LOGON monitor recovery 2-462 
in master scheduler wait 2-246 
in master scheduler wait recovery and retry 2-248 
in quiesce processing 2-410 
in RCT EST AE processing 2-426 

in restore processing 2-414 
in SVC 34 ST AE routine 2-236 
in WTP (write-to-programmer) requests 2-48 

second level interrupt handler (see SLIH) 
segment table building, in lEA VEMCR 2-250 
SEND command 

processing 
function 2-332-2-333, 2-335 

serialization 
in master scheduler wait 2-246-2-247 

SET command 
immediate routine 

function 2-336 
SET IPS 

function 2-340, 3-18, 3-71 
SET local time 2-336 
SET TOD clock routine 

function 2-336 
setting local time 2-336 
SIB (screen image buffer) 

use in displaying single line messages on a graphic 
console 2-122 

use in DaM device support processing 2-166 
use in processing typed commands from graphic console 

2-184 
signal processor (see SIGP instruction) 
single line message (see WTO) 
SIRB (system interrupt control block) 

errors, reaction to in RCT EST AE processing 2-426 
SLOT (scheduler look-up table) 

in varying devices offline and online 2-360 
SMCA (system management control area) 

in display command preprocessing 2-272 
in HALT command processing 2-302 
in switch command processing 2-302 
in track command preprocesing 2-272 

SMF (System Measurement Facility) 
records, writing 

in varying a channel offline 2-379 
in varying path to a device 2-383 
in varying real storage status 2-384 

V ARY record handler 
function 2-352 

space, address (see address space) 
SPL (service priority list) 

in deleting a virtual memory 2-400 
in quiesce processing 2-410 

SPQE (subpool queue element) 
in SVC 34 ST AE routine 2-236 

SRB (service request block) (see also dispatcher) 
in cancelling TSO,. system initiated 2-256 
in displaying information requests 2-324 
in RCT EST AE processing 2-426 

ssm (subsystem identification block) 
in started task control 2-430 

SSOB (subsystem options block) 
in command translation 2-242 
in command routing 2-242 
in multiple line WTO processing 2-72 
in started task control 2-430 
in SVC 35 processing 2-28 
in WTO and WTOR macro instruction processing 2-28 

stack, FRR ( see FRR stack) 
ST ACK macro use 2-449 
ST AE (set task asynchronous exit) 

creating ST AE for SVC 34 command processing 2-234 
dump conditions for SVC 34 ST AE 2-236 

ST AE environment for SVC 34, creating 2-234 
ST AR (system task abend recovery) 

for communications task 2-212 
START command (see also START/LOGON/MOUNT 

overview) 
in started task control 2-430 
issued by a JES2/JES3 subsystem when CSCB or an 

address space is unavailable 2-245 
START command syntax check routine 

function 2-432, 2-431 
started task control (see also STC serialization) 2-430 
starting a subsystem, checking for 2-435 
starting or stopping the system via interrupt 2-392 

Index 1-11 



starting monitoring procedures 2-314 
START/LOGON/MOUNT overview 

obtaining a new virtual memory 2-250 
statement (see JCL statement) 
status, console (see console status) 
status display, periodic, stopping 2-342 
status, system 

displaying matrix of 2-290 
ST AX (ST AX parameter list) 

in attention exit prolog and epilog 2-420 
in ST AX service routine 2-416 

ST AX service routine 
processing 2-416 
use during LOGON 2-449 

STC (started task control) 
attaching by region control task 2-406 
detach by region control task 2-406 
function 2-430, 2-433, 2-436 
write JCL routine 

function 2-436-2-437 
STEPL (ST AE exit parameter list) 

in creating ST AE enivironment for command processing 
2-234 

STOP command 
processing 

function 2-312 
STOP/MODIFY command processing 2-312 
STOP MONITOR command 

operand validity according to source of the command 
2-315 

processing 2-314, 2-344 
stop/restart subroutine 

function 2-392 
stop track processor 

function 2-314, 2-344 
stopping monitoring procedures 2-314 
stopping operating system 

in HALT and SWITCH command processing 2-300 
via interrupt 2-392 

stopping periodic track displays 2-342 
stopping TCAM 2-300-2-301 
STOPTR and CONTROL command processor 

function 2-262, 2-344 
STOPTR command processing 2-342 
storage management (see real storage manager, virtual 

storage management, system resources manager) 
storage, virtual, dumping (DUMP command) 2-298 
stream, input (see converter) 
subsystem exit routine 

in DOM (delete openitor message) processing 2-148 
subsytem name, determination of 638 
subtasks, restarting 

in attention prolog/epilog 2-422 
sub tasks , stopping in attention exit scheduling 2-418 
SVC interruptions (see supervisor interruptions handler) 
SVC 34 

command translation routine 
function 2-242, 2-232 

common processing/initialization 2-232 
control block chain manipulator 

function 2-240, 2-232 
EST AE environment creation routine 

function 2-234, 2-232 
EST AE exit routine 

function 2-236 
message assembly routine 2-238 
message handling 2-238 
ST AE environment for 2-236 
use in processing typed commands from a graphic 

console 2-185 
SVC 35 

in displaying unit status 2-297 
in ML WTO processing 2-72 
in WTO and WTOR macro instruction processing 2-28 
use in processing typed commands from a graphic 

console 2-185 
SVC 51 

in dumping virtual stroage (DUMP command) 2-298 
SVC 72 

attention interrupt processing 2-180 

1-12 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

console switching 2-369 
DaM communications task overview 2-153 
DOM communication task processing 2-165 
external interrupt processing 2-168 
I/O complete processing 2-133 

SVC 87 
DaM communication task processing 2-153 
DaM macro instruction overview 2-138 
DaM macro instruction processing 2-141 

SVC 95 
memory deletion 2-401 

SVC 101 2-259 
SVC 109 (see extended SVC routing) 
SVC 110 interface routine 

function 2-294-2-295 
SVC 116 (see extended SVC routing) 
SVC 122 (see extended SVC routing) 
SVCIH (see supervisor-interruption handler) 
SVRB (supervisor request block) 

in DaM macro instruction 2-140 
in multiple line WTO processing 2-72 
in ST AX service routine 2-416 
in SVC 35 processing 2-28 
in SVC 78 processing 2-140 
in WTO and WTOR macro instruction processing 2-28 
in WTP processing 2-50 

SW A (scheduler work area) 
control blocks built by STC 2-437 
STC SWA initialization 2-437 

SW A and TIOT initialization for private catalogs 
function 2-436 

SWAP command processing 
function 2-311 

SWITCH command 
initialization 2-300 
processing 2-302 
syntax checker 

function 2-300 
SWITCH/HALT message module 

function 2-304 
switching consoles (in IEE4303D) 2-368-2-369 

in external interrupt processing 2-168 
SYSEVENT setdmn issued (VS2.03.807) 

in SETDMN command processing 2-401.2 
(VS2.03.807) 

System Activities Measurement Facility (see MF/l) 
system commands 

routing exclusion on a JES3 console 2-277 
system initiated cancellation of a TSO user 

schedule routine 
function 2-256, 2-254 

SRB FRR FREEMAIN routine 
function 2-257 

SRB routine 
function 2-256, 2-258 

system log 
changing console status 2-350 
commands LOG and WRITELOG 2-306 

translation and routing. 2-242 
data sets, processing of 2-306 
hardcopy 2-306 

system log data set (see system log) 
system log initialization 

in master scheduler wait 2-246 
System Measurement Facility (see SMF) 
system parameter library (see SYS 1. P ARMLIB) 
system,quiescing 2-320 
system reconfiguration (see reconfiguration commands) 
system resources manager (SRM) (VS2.03.807) 

displaying parameters of domains 2-228,2-297.0 
(VS2.03.807) 

SETDMN command processing 2-230,2-401.0 
(VS2.03.807) 

system resources manager (SRM) (see also workload 
manager) 3-3 

interface 
with LOGON 2-457 
with region control task for quiesce and restore 

2-410, 2-414 



IPS values changing (set IPS command processing) 
2-340 

LOGON interface 2-457 
region control task interface 2-410, 2-414 

system restart 
via interrupt 2-394 

system status, displaying matrix of 2-290 
system, stopping (see stopping) 
system trace (see trace, system) 
system trace termination (see trace termination) 
SYSZEC 16, use of 2-413 
SYSZVARY (CPU resource) issuing ENQ for 2-291 
SYSl.BRODCAST 

in LOGON, checking that data set has been defined 
2-442 

in sending/saving/listing messages 2-332-2-335 
SYSl.IKJUA (major name of user identification resource 

for ENQ in LOGON scheduler) 2-445 
SYS1.PARMLIB 

IPS values, changing via SET IPS command 2-340 

T AlE (terminal attention interrupt element) 
in attention exit prolog and epilog 2-420 
in attention exit purge 2-424 

task 
commands, creating 2-244 
termination 

attention exit purge routine 2-424 
TAXE (terminal attention exit element) 

checking activity of and dequeueing 2-424 
in attention exit prolog and epilog 2-420 
in attention exit purge 2-424 
in attention exit scheduler 2-418 
in ST AX service routine 2-416 

TCAM, stopping (HALT command) 2-300 
TCB (task control block) 

in attention exit prolog and epilog 2-420 
in attention exit scheduler 2-418 
in cancelling TSO, system initiated 2-256 
in communications task functional recovery 2-202 
in deleting a virtual memory 2-400 
in I/O complete processing 2-130 
in LOGON 

initialization 2-442 
monitor 2-448 
pre-prompt exit interface 2-458 
verification 2-454 

in multiple line WTO processing 2-72 
in obtaining a new virtual memory 2-250 
in quiesce processing 2-410 
in RCT initialization/termination 2-406 
in restore processing 2-414 
in started task control 2-430 
in STAX service routine 2-416 
in SVC 35 processing 2-28 
in WTO and WTOR macro instruction processing 2-28 
in WTP (write-to-programmer) processing 2-72 
in WTP (write-to-programmer) requests 2-48 

TCW A (TOD clock work area) 
in setting local time 2-336 

teleprocessing 
commands 

modules given control 2-387 
terminal control address space (TCAS) (VS2.03.813) 

interface with IEE0803D 2-244 (VS2.03.813) 
interface with IKJEFLE and IKJL4TOO 2-256 

(VS2.03.813) 
terminal, inactive, message routine 

function 2-114 
terminal input output coordinator (TIOC) 

use of during LOGON 2-455, 6-1553 
terminalI/O, checking for in attention exit 2-418 
terminal session (see also LOGON) completion code, saving 

2-466 
termination, system trace 

in master scheduler wait 2-246 
termination, task 

in purging attention exits 2-424 
termination, trace 

in master scheduler wait 2-246 
terminator (see initiator/terminator) 
text, internal (see converter, internal text) 
time 

zone constant, getting in setting local time 2-338 
timer interval 

changing in DIDOCS message deletion 2-192 
timer second level interrupt handler (see timer SLIH) 
TIOC (terminal input output coordinator) 

use by LOGON 2-455, 6-1553 
TIOCRPT (TIOC reference pointer table) 

in cancelling TSO, system initiated 2-256 
TIOT (task input/output table) 

in LOGON initialization 2-442 
in obtaining a new virtual memory 2-250 
in started task control 2-430 
in WTP (write-to-programmer) processing 2-50 

TIOT manager control routine 
TPCA (see TPC) 
TPUT issuing routine for DISPLAY or TRACK 

2-284-2-285 
TPUT /TGET service routine 

function 2-420-2-421 
TRACE command initialization 2-300 
TRACE command processing 2-300 
trace, system (see also trace termination) 

continuing 2-300-2-301 
terminating 2-300-2-301 

trace termination 
in master scheduler wait 2-246-2-247 
processing 2-300-2-301 

TRACK command processing 2-272, 2-280 
exclusion on a JES3 console 2-277 

TRACK command, stopping 2-342 
track options 2-282-2-283 
tracking system status (see also displaying system status) 

2-280 
translation, command 2-242 
TSB (terminal status block) 

in attention exit prolog and epilog 2-420 
in attention exit purge 2-424 
in attention exit scheduler 2-418 
in cancelling TSO, system initiated 2-256 
in LOGON/LOGOFF verification 2-454 
in LOGON pre-prompt exit interface 2-458 
in RCT common processing 2-408 
in restore processing 2-414 
in ST AX service routine 2-416 

TSO jobs, cancelling 2-254 
TSO LOGON (see LOGON) 
TSO, user system initiated cancellation 2-256-2-257 
typewriter-keyboard console 

command processing 2-184 

UADS (user attribute data set) 
LOGOFF use 2-452· 
LOGON use 

initialization 2-442 
verification 2-455 

UCB (unit control block) 
in changing command authorization 2-350 
in changing console status 2-350 
in changing message routing 2-350 
in device information subroutine 2-396 
in displaying a matrix of real storage 2-290 
in displaying operator action requests 2-292 
in displaying the console station 2-286 
in displaying unit status 2-296 
in processing log and WRITELOG commands 2-306 
in unloading I/O devices 2-346 
in varying a channel offline 2-378 
in varying a channel online 2-376 
in varying a CPU offline 2-374 
in varying a CPU online 2-372 
in varying devices offline and online 2-360 

UCM (unit control module) 
in attention interrupt processing 2-174 
in changing command authorization 2-350 
in changing console status 2-350 

Index 1-13 



in changing message routing 2-350 
in closing a console 2-22 
in communications task recovery (STAR) 2-212 
in console switching 2-368 
in control command processing 2-262 
in delete operator message processing 2-154, 2-152 
in displaying information requests 2-324 
in displaying multiple line messages 

graphics console 2-128 
in displaying operator action requests 2-292 
in displaying the console station 2-286 
in DOM device support processing 2-166 
in DOM macro instruction 2-140, 2-138 
in external interrupt processing 2-168 
in interrupt processing 2-174, 2-168 
in I/O complete processing 2-130 
in multiple line WTO processing 2-72 
in QREGO 2-114 
in processing log and WRITELOG commands 2-306 
in routing messages to consoles 2-318 
in starting monitoring procedures 2-314 
in stopping monitoring procedures 2-314 
in stopping periodic track (status) displays 2-342 
in SVC 35 processing 2-28 
in SVC 78 processing 2-140, 2-138 
in unconditional message to inactive console processing 

2-114 
in unloading I/O devices 2-346 
in vary HARDCPY processing 2-366 
in varying devices offline and online 2-360 
in varying the path to a device 2-380 
in WTO and WTORcommunications task processing 

2-98,2-96 
in WTO and WTOR macro instruction processing 2-28 
in WTP (write-to-programmer) processing 2-50 
in WTP (write-to-programmer) requests 2-48 

UCMDECB post 2-148 
UCME (unit control module entry) 

in attention interrupt processing 2-174 
in communications task recovery (STAR) 2-212 
in console switching 2-368 
in delete operator message processing 2-154 
in display command preprocessing 2-272 
in external interrupt processing 2-168 
in interrupt processing 2-174, 2-168 
in I/O complete processing 2-130 
in opening a console 2-18 
in processing typed commands from a graphic console 

2-184 
in QREGO 2-114 
in track command preprocessing 2-272 
in unconditional message to inactive console processing 

2-114 
in WTO and WTOR communications task processing 

2-98 
in WTP processing 2-50 

UCME scanner for VARY command 
function 2-352, 2-360 

unit affinity (see allocating affinity requests) 
unit, allocating request to (see allocating requests to units) 
unit parameter in started task control 2-433 
unit status, displaying 

function 2-296 
UNLOAD comand syntax scanner 

function 2-346 
unload interface routine 

function 2-346, 3-340, 3-358, 3-304, 3-368, 3-410 
unloading I/O devices 2-346 
UPT (user profile table) 

in LOGOFF 2-452 
in LOGON 

initialization 2-442 
post-TMP exit 2-466 
pre-prompt exit interface 2-458 
pre-TMP exit 2-464 
verification 2-454 

in WTP (write-to-programmer) processing 2-50 
user, swapping (see swap-in, swap-out) 

1-14 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

validate page routine 
function 2-384 

values, IPS (see IPS values) 
VARY command processing 

CPU/channel processor 
function 2-372, 2-370, 2-374, 2-376, 2-378 

CPU offline 2-374 
CPU online 2-372 
CPU stop routine 

function 2-374 
CPU wakeup and quiet routines 

function 2-372, 2-374 
HARDCPY operand processor 

function 2-366, 2-348 
HARDCPY processor 

function 2-366 
keyword scan routine 

function 2-348 
keyword scanner 

function 2-352 
master console command processor 

function 2-368, 2-348 
ONLINE/OFFLINE/CONSOLE syntax scan routine 

function 2-350, 2-352 
ONLINE/OFFLINE for devices 

function 2-360 
path command processor 

function 2-380 
routing of 2-348 
storage command 

function 2-384 
UCME scanner 

function 2-352, 2-360 
varying 

channel offline 2-378-2-379 
channel online 2-376-2-377 
channel or CPU, overview 2-370-2-371 
CPU offline 2-374-2-375 

informing MSS subsystem of U.P. operation 
2-374-2-375 

CPU online 2-372-2-373 
informing MSS subsystem of M.P. operation 

2-372-2-373 
command authorization 2-350 
console status 2-350 
devices online and offline 2-360 
message routing 2-350 
path to a device 2-380 
status of real storage 2-384 

vertical bar 
. use in DOM device support processing 2-167 

virtual memory (see also memory, 
START/LOGON/MOUNT overview) 

deleting 2-400 
obtaining a new 2-250 

virtual storage, dumping (DUMP command) 2-298 
·volume serial number (see VOLSER) 
volume, specific allocation (see specific volume allocation 

control) 
volume unload control (see IEFAB494 object module) 
volunit table 
VSM (see virtual storage management) 
VT AM commands (see NET commands) 

recognizing and exiting to VT AM processor 2-301 
VTlOC (VS2.03.813) 

initialization 2-442,2-444 (VS2.03.813) 
logoff 2-444 (VS2.03.813) 
lo~on 2-454 (VS2.03.813) 

WMCT (workload manager control table) 
in changing IPS values 2-340 

WMPGV (performance group vector table) 
in changing IPS values 2-340 

WMST (workload manager specification table) 
in changing IPS values 2-340 . 

WPL 
in communications task recovery (STAR) 2-212 
in multiple line WTO processing 2-72 
in SVC 35 processing 2-28, 2-26 



in unconditional message to inactive console processing 
2-114 

in WTO and WTOR macro instruction processing 
2-28, 2-26 

in WTP (write-to-programmer) processing 2-50 
in WTP (write-to-programmer) requests 2-48 

WQE (write queue element, see also WWB) 
in communications task recovery (STAR) 2-212 
in control command processing 2-262 
in delete operator message processing 2-154, 2-152 
in displaying information requests 2-324 
in displaying operator action requests 2-292 
in displaying single line messages on a graphic console 

2-122 
in DO M macro instruction 2-140 
in multiple line WTO processing 2-72 
in QREGO 2-114 
in SVC 35 processing 2-28, 2-26 
in SVC 78 processing 2-140 
in unconditional message to inactive console processing 

2-114 
in WTO and WTOR communications task processing 

2-98, 2-96 
in WTO and WTOR macro instruction processing 

2-28,2-26 
WRITELOG command 

processing 2-306, 2-308 
write-to-Iog 

WTO and WTOR communications task 2-.1 12 
write-to-programmer (see WTP) 
WSAL 

in quiesce processing 2-410 
WTO (write-to-operator) (see also MLWTO) 

comm task processing 2-98, 2-110 
deleting from graphic console 2-166 
display to a graphic console 2-122 
issuing routine for DISPLAY or TRACK 2-284-2-285 
overview 2-26 

WTO (write-to-operator) macro instruction 
overview 2-26 
processing 2-28 
use in processing typed commands from a graphic 

console 2-185 
WTOR (write-to-operator with reply) 

comm task processing 2-98, 2-110 
overview 2-48, 2-26 
processing 2-28 

WTP (write-to-programmer) 
processing 2-50 
processing overview 2-48 

WWB (write wait block, see also ORE WQE) 
in communications task recovery (STAR) 2-212 
in multiple line WTO processing 2-72 
in SVC 35 processing 2-28 
in WTO and WTOR macro instruction processing 2-28 

XSA (extended save area) 
in cancelling background jobs 2-254 
in cancelling foreground jobs 2-254 
in changing command authorization 2-350 
in changing console status 2-350 
in changing dump parameters 2-260 
in changing message routing 2-350 
in command processing initialization 2-232 
in command processing ST AE environment 2-234 
in command routing 2-242 
in command translation 2-242 
in console switching 2-368 
in control command processing 2-262 
in CSCB creating 2-244 
in display command preprocessing 2-272 
in displaying control command operands 2-288 
in displaying information requests 2-324 
in displaying program function key definition 2-294 
in halt command 

initialization 2-300 
processing 2-302 

in holding teleprocessing 2-388 
in processing LOG and WRITELOG commands 2-306 

VS2.03.807 

in releasing teleprocessing 2-388 
in routing of vary commands 2-348 
in routing message to consoles 2-318 
in SETDMN command processing 2-401.0 

(VS2.03.807) 
in setting local time 2-336 
in ST AE environment creation 2-234 
in starting monitoring procedures 2-314 
in stopping monitoring procedures 2-314 
in stopping periodic track (status) displays 2-342 
in SVC 34 

general message assembly 2-238 
overview 2-232 

in switch command 
initialization 2-300 
processing 2-302 

in task creating command 2-340 
in track command preprocessing 2-272 
in vary HARDCPY processing 2-366 
in varying devices offline and online 2-360 
relation to SVRB 2-234 

zone constant, time 
use in setting local time 2-338 

1052 printer keyboard 
device support processor 2-22, 2-18, 2-120, 2-124, 

2-182, 2-174 
in closing a console 2-22 
in processing commands from a 1052, 2540, or 2740 

console 2-182 
in writing mulitple line messages to 1052, 1443, 2740, or 

3284/3286 consoles 2-124 
in writing single line messages to 1052, 1443, 2740, or 

3283/3286 consoles 2-120 
opening as a console 2-18 

1403 printer 
in closing a console 2-22 
in opening a console 2-18 
in writing multiple line messages to 1052, 1443, 2740, or 

3284/3286 consoles 2-124 
in writing single line messages to 1052, 1443, 2740, or 

3283/3286 consoles 2-120 
1443 device support processor 2-124, 2-120, 2-18, 2-22 
1443 printer 

in closing a console 2-22 
in opening a corisole 2-18 
in writing multiple line messages to 1052, 1443, 2740, or 

3284/3286 consoles 2-124 
in writing single line messages to 1052, 1443, 2740, or 

3283/3286 consoles 2-120 . 
2540 device support processor 2-18, 2-22, 2-182 
2250 device I/O module (DIDOeS) 2-166, 2-122, 2-184, 

2-128, 2-198, 2-196, 2-194, 2-192 
2260 device I/O module (DIDOCS) 2-166, 2-122, 2-22, 

2-184,2-188, 2-198, 2-196, 2-194, 2-192 
2250 display unit 

in closing a console 2-22 
in opening a console 2-18 

2260 display station 
in closing a console 2-22 

2501 card reader 
in closing a console 2-22 
in opening a console 2-18 
in processing commands from a 1052, 2540, or 2740 

console 2-182 
2520 card reader punch 

in closing a console 2-22 
in opening a console 2-18 
in processing commands from a 1052, 2540, or 2740 

console 2-182 
2540 card reader punch 

in closing a console 2-22 
in opening a console 2-18 
in processing commands from a 1052, 2540, or 2740 

console 2-182 
2740 communications terminal 

in closing a console 2-22 

Index I-IS 



in opening a console 2-18 
in processing commands from a 1052, 2540, or 2740 

console 2-182 
in writing mulitple line messages to 1052, 1443, 2740, or 

3284/3286 consoles 2-124 
3066 System Console 

in closing a console 2-22 
in opening a console 2-18 

3210 Console Printer-Keyboard 
in closing a console 2-22 
in opening a console 2-18 
in processing commands from a 1052, 2540, or 2740 

console 2-182 
in writing single line messages to 1052, 1443, 2740, or 

3283/3286 consoles 2-120 
3211 printer 

in closing a console 2-22 
in opening a console 2-18 
in writing multiple line messages to 1052, 1443, 2740, or 

3284/3286 consoles 2-124 
in writing single line messages to 1052, 1443, 2740, or 

3283/3286 consoles 2-120 
3213 Console Printer 

in closing a console 2-22 
in opening a console 2-18 
in writing single line message to 1052, 1443, 2740, or 

3283/3286 consoles 2-120 
in writing multiple line messages to 1052, 1443, 2740, or 

3284/3286 consoles 2-124 
3215 Console Printer-Keyboard 

in closing a console 2-22 
in opening a console 2-18 
in processing commands from a 1052, 2540, or 2740 

console 2-182 
in writing multiple line messages to 1052, 1443, 2740, or 

3284/3286 consoles 2-124 

1-16 OS/VS2 System Logic Library Volume 2 (VS2.03.807) 

in writing single line messages to 1052, 1443, 2740, or 
3283/3286 consoles 2-120 

3277 device and model 158 system console I/O module 
(DIDOCS) 2-192, 2-1'94, 2-188, 2-196, 2-198, 2-184, 
2-122, 2-128, 2-166 

3277 display station 
in closing a console 2-22 
in opening a console 2-18 

3284 printer 
in closing a, console 2-22 
in opening a console 2-18 
in writing multiple line messages to 1052, 1443, 2740, or 

3284/3286 consoles 2-124 
in writing single line message to 1052, 1443, 2740, 

3283/3286 consoles 2-120 
3284/3286 console device support processor 2-124, 2-120, 

2-22,2-18,2-174 
3286 printer 

in closing a console 2-22 
in opening a console 2-18 
in writing multiple line messages to 1052, 1443, 2740, or 

3284/3286 consoles 2-124 
in writing single line messages to 1052, 1443, 2740, or 

3283/3286 consoles 2-120 
3505 card reader 

in closing a console 2-22 
in opening a console 2-18 
in processing commands from a 1052, 2540, or 2740 

console 2-182 
3525 card punch 

in closing a console 2-22 
in opening a console 2-18 





SY28-0762-0 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternational) 

c 
~ 
< 
C/, 

" C/, 
-< 
VI 
r-+ 
ctl 

3 
r o 
to 
n 
[ 
o 
~ 
Q) 
~ 

-< 
< 
Q 
c: 
3 
ctl 

I\. 

U 
c.. .... 
c 
c:. 
~ 

u 
-< 
I\.: ex 
C: 
...... 
0: 
I\.: 
C: 



n 
S. 
g 
.." 
o 
c: 
l> 
0" 
::I 

OQ 

r-:;. 
ID 

OS/VS2 
System Logic Library 
Volume 2 
SY28-0762-0 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

What is your occupation? 

Number oflatest Technical Newsletter (if any) concerning this publication: 

Please indicate your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

READER'S 
COMMENT 
FORM 



SY28-0762-0 

Your comments, please ... 

This manual is part of a library that serves as a reference source for system analysts, 
programmers, and operators of }BM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

(') 

S. 
Q 
." o 
0:: 
l> 
0" 
::J 

O'Q 

j'" 

5· 
(1) 

I 
Fold . Fold 

- - ----- - - - ---- - -----~ 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

First Class 
Permit 81 

I 
I 
I 

Poughkeepsie I 
New York 

I 
I 
I 
I 
I 
I 
I 
I 
I 

-----------------------~ 
Fold 

lrrnoo 
® 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternational) 

Fold I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

c 
!! 
< u 
'" ~ 
en 
.-t 
Cl) 

3 
r o 
cc 
n 
c 
~ 
OJ .., 
'< 
< 
Q 
c 
3 
CIl 

" (j 
c.. ... 
c 
~ 
~ 

CJ 
-< 
"­ex 
C .... 
a 
'" C 


