
L

SY27-7243-1

,
OS/VS2 IPL and NIP

Systems Logic

VS2 Release 1.6

1

•

Second Edition (September, 1974)

This edit jon is d minor revi~ion of SY27-7243-0
incorporating TNL GN27-1406. These editions
are stj_ll current. •

This publication applies to release 1.6 of OS/VS2 and to all
subsequent releases unless otherwise indicated in new edi
tions or technical newsletters. Changes are continually made
to the specifications in this book; before using this book,
consult the most recent edition of the IBM System/360 and
Systcm/370 Bibliography, GA22-6822, and the current SRL News
letter for editions that are applicable and current.

Hequests for copies of rUM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A form for reader's comments appears at the back of this publication.
If the form has been removed, conunents may be addressed to IBM Corpora
tion, Programming Publications, Department 636, Neighborhood Road,
Kingston, New York 12401. All comments become the property of IBM.

~ Copyright International Business Machines Corporation 1972

,
 This publication describes the logic of

IPL (initial program loader) and NIP (nue

leus initialization program) for OS/VS2.

The information is intended for use ty per

sonnel responsible for program maintenance.
IPL loads the nucleus designated by the
user and prepares the system for initiali
zation. NIP initializes the nucleus and
the remainder of real storage in prepara
tion for system execution.

ORGANIZATION OF THIS BOOK

This publication contains six sections.

·Section 1. Introduction· provides an
overview of the functions performed by IPLI
NIP and contains background information on
linkage between modules and sutroutines.
The section also describes real storage
areas, data sets used ty IPL/NIP, format
ting page data sets, and the quickstart/
coldstart process.

"Section 2. Method of Operation"
describes in more detail the functions per
formed by the IPL/NIP modules. Method-of
operation diagrams show the input, process
ing, and output of modules and subroutines.

·Section 3. Program Organization"
describes the structure of the IPL/NIP
modules. It also contains flowcharts of
complex areas of code.

\

I
(

PREFACE

"Section 4. Directory" contains a dire
ctory of entry points, showing module
names, function, and diagram number.

"section 5. Data Areas" contains
descriptions of control blocks and data
areas used by IPL/NIP.

"Section 6. Diagnostic Aids" contains
messages and wait state codes issued ty the
IPL/NIP modules. It also contains a
register usage table and a module data
field cross-reference table.

PREREQUISITE READING

Readers of this publication should te
familiar with the following OS/VS
publications:

OS/VS2 Supervisor Logic, SY27-7244.
OS/VS Supervisor Services and Macro

Instructions, GC27-6979.

Supplementary Reading

Inforrration in the following putlica
tions may be helpful in understanding IPL
and NIP:

VS2 System Messages, GC28-1002.
OS/VS System codes, GC28-1003.
VS2 Operator's Reference, GC38-0210.
VS2 System Data Areas, SY28-0606.

iii

CONTENTS

SECTION 1: INTRODUCTION. • • • • • • • • • • 1

The Initial Program Loader • • • . • • • • • • • • • • •• 1

The Nucleus Initialization Program • • • • • • • • • • 1

Linkage to Service Subroutines • • • • • • •. 6

Page Data Set Formatting and the Quickstart/Coldstart Process • • 6
 f
Data Sets Used by IPL/NIP . • • . • • • . • • • • • 7
 •Real Storage Areas During NIP Execution • • • • • • • • • •• 7

Data Areas and Control Blocks Used by NIP . • • • 7

SECTION 2: METHOD OF OPERATION •••••• 9

Using Method-of-Operation Diagrams • • • • • • •• 9

The IPL Records and IEAIPLOO (Diagram 1.0) •••••• • • • • • 12

The Nucleus Initialization program • • • • • • • • 14

IEAVNIPO (Diagram 2.0) ••••• • • • • • • 14

IEAVNIPM (Diagram 3.0) 17

IEAVNP01 (Diagram 4.0)
 • 19

IEAVNP02 (Diagram 5.0) • • 19

IEAVNP03 (Diagram 6.0) • 20

IEAVNP04 (Diagram 7.0) • 22

IEAVNPA4 (Diagram 8.0) • 23

IEAVNP05 (Diag~am 9.0) • • 25

IEAVNPA5 (Diagram 10.0) • . • •• . 26

IEAVNP06 (Diagram 11.0) • • • • . 27

IEAVNP07 (Diagram 12.0) • • 28

IEAVNIPX • • • • • 28

SECTION 3: PROGRAM ORGANIZATION • .170

J
SECTION 4: DIRECTORY .174

SECTION 5: DATA AREAS • • • • • .176

IPLDATA • • • • • • • .176

NIPMOUNT Parameter List • .176

NIPOPEN Parameter List • • • • • • • .177

NIPWTO Message Header • • ~ .171

NIPWTOR Parameter List • • • • • • • • • .177

NIP Vector Table (NVT) .178

Page Device Information Table • • •••179

Page Device Tal:le ••••••• • • • • • • • .180

NIP PARMAREA . • • • • • • • • • •••••••180

Parameter Address Table (PARMTAB) .181

Parameter Table Entry • • • • • .182

Quickstart Record 1 (NIPQSR1) • .183

Quickstart Record 2 (NIPQSR2) • • •••••183

Quickstart Record 3 (NIPQSR3) • .183

Slot Queue • • . • • . • • • • · • • • • • • .184

NIP System Parameter Entry (SPE) • ••• 184

SECTION 6: DIAGNOSTIC AIDS .185 ••
Register Usage Table . • 189
. . · · .
GLOSSARY192 ,.· · .

INDEX · .196
. . · ·

iv

ILLUSTRATIOHS

Figure 1. Key to symtol~ in method-of-operation diagrams • • • •• 9
Figure 2. Loca tion of IPL records in real stcrage • • • • • • • 12
Figure 3. Contents of real storage before and after IPL relocation 13
Figure 4. Definition of real storage • • • • • • • • • • 15
Figure 5 • Organization of the initial system queue area •••• 16•
Figure 6. System segrrent and page tatles. • • • • • . • • 16
Figure 7. Real storage at completion of lEAVNlPO execution 17
Figure 8. Dynamic address translation • • • • • • • • 18
Figure 9. Creating system parameter area • • • • • 20
Figure 10. Building OPERTAB • • • • • • • • • • • • 21
Figure 11. Building PLIBTAB • • • • • • • 	 • • • • 21
Figure 12. Merging OPERTAB into PLIBTAB •••• • • • • • 21
Figure 13. Building the PARMAREA • • • • • • • • • • • • • • • • 21
Figure 14. Real storage after paging device initialization and ini
tial paging area definition • • • • • • •• •••••• • • • 23
Figure 15. Organization of IPL/NIP modules and subroutines ••• 170

Diagram 0.1: IPL/NIP processing •••••••••••• • • • • • 2
Diagram 0.2: NIP processing under control of IEAVNIPM • • •• 3
Diagram 1.0: IEAPILOO Initial Program load • • • • • 32
Diagram 2.0: IEAVNIPO Initial NIP Processing • • 36
Diagram 3.0: IEAVNIPM Control Routine •••• • • 42
Diagram 3.1: NIPLOAD Load specified modules • • 44
Diagram 3.2: NIPSVC and NIPSVCX Provide linkage to specified SVC
routine •• • • 46
Diagram 3.3: NIPUCBFN Find UCB for specified unit. • • • • • • • 48
Diagram 3.4: NIPTIME Determine absolute tirre or relative time since
IEAVNIPM was entered. • • • • • • . • • • • • • • • • • • • • • 50
Diagram 4.0: IEAVNP01 Initialize Systerr Consoles •••••• • 52
Diagram 4.1: NP1INIT and NP1TCOMM Estatlish operator comrrunications • 54
Diagram 5.0: IEAVNP02 Control Routine ••••••.••••••••• 56
Diagram 5.1: NIPMOUNT ~ount specified volume on specified device •• 58
Diagram 5.2: NIPOPEN Open specified data set •• • • • • • •• • 60
Diagram 6.0: IEAVNP03 Initialize page data sets ••••••••••• 61
Diagram 6.1: NP30PSP Check validity of operator parameters and
build OPERTAB . • 62
Diagram 6.2: NP3PBASE Al.locate and initialize PARMAREA • • • • 64
Diagram 6.3: NP3PMLIB Open SYS1.PARMLIE data set • • • • • 66
Diagram 6.4: NP3SYSP Build the PLIBTAB •••••• • 68
Diagram 6.5: NP4PTAB Move parameters into FARMAREA; set PARMTAE
address • . • • 70
Diagram 6.6: NP3LCAT Concatenate members with SYS1.LINKLIB • • •• 72
Diagram 7.0: IEAVNP04 Open and format page data sets •••• 74
Diagram 7.1: NP4PDSEL Initialize paging devices. • • • • • • • • 76
Diagram 8.0: IEAVNPA4 Contrcl Routine • • • • • • • • • • • • • 78• 	 Diagram 8.1: NPA4READ and NPA4WRIT Read and write quickstart records 80
Diagram 8.2: NPA4GBUF Obtain quickstart tuffer ••••••••••• 82
Diagram b • ..): NPA4FREE Free quickstart tuffer • • • • • • •• 84
Diagram 8.4: NPA4INTF and NPA4RSTB Initiate or restart processing •• 86
Diagram 8.5: NPA4BCCV Determine number of available pages • 88
Diagram 8.6: NPA4INTC Initialize PVT • • • • • • • • • 90
Diagram 8.7: NPA4LOAD Load specified module ••••••••••••• 92
Diagram 8.8: NPA4CCST Corrplete LPA coldstart process. • • • 94
Diagram 9.0: IEAVNP05 Initialize link pack area and BLDL table • 96
Diagram 9.1: NP5QSLPA Initialize table entries • • • • • • • 98
Diagram 9.2: NP5CSLPA Attach IEAVNPA5 ••••••••••••••••100
Diagram 9.3: NP5VTCB Load, attach, and delete IEAVNPA5 •••••.• 102
Diagram 9.4: NP5lPLIB Initialize SYS1.LPALIB • • • • • • .104
Diagram 9.5: NP5MLPA Load specified modules into LPA •••• 106

v

Diagram 9.6: NPSBLDLP Include modules in BLDL tatle ••• .108

Diagram 10.S: NPASLGRP Load groups of rrodules specified by LPA

Diagram 11.0: IEAVNP06 Initialize reliability and serviceability

Diagram 12.1: NP7HDCPY Define the console or system log data set to

Diagram 12.2: NP7PDCM Relate each graphic device to its

Diagram 12.S: NP7EPFP Test for the presence of the

Diagram 13.1: NPXAPG Define the task dispatcher's APG ••••• .lS0

Diagram 13.2: NPXTMSL Build the required numcer of TSCEs (time

slice control elements) in the SQA • • • • • • • • • • • • .lS2

Diagram 13.4: NPXMPA Define virtual address space dedicated to

master scheduler region • .lS6

Diagram 13.5: NPXMPA1 Establish limits on tackground and TSO use of

Diagram 13.7: NPXMLSQA Allocate the single-segment LSQA related to

Diagram 13.9: NPXMCSPO Define shared subpool 0 for master scheduler

Diagram 13.10: NPXRDAT Reset DAT tables and exit to master

Diagram 10.0: IEAVNPAS Control Routine •••••• • • .110

Diagram 10.1: NPASMLPA Load specified nodules into LPA .112

114
Diagram 10.2: NPA5BLDL Allocate storage for, and move, BLDL table ••
Diagram 10.3: NPASCLPA Coldstart process; tuild LPA •• • • • • .116
 ,

Diagram 10.4: NPASTERM Release BLDL save area ••••• • .118

packing list •• • • • • • • • • • • • • • • • • • • .120

features • .122

Diagram 11.1: NPSDSS Initialize DSS (dynamic support system) .124

Diagram 11.2: NP6DMP Initialize SYS1.DUMP • • • • • • • • • • • .126

Diagram 11.3: NP6RMS Initialize RMS (recovery management support) •• 130

Diagram 11.4: NP6TRA Initialize the trace function •••••••132

Diagram 12.0: IEAVNP07 Call routines sequentially. • •••••• 134

be used for message hardcopy • • • • • • • • • .136

LPA-resident DCM • • • • • • • • • • • • • • .138

Diagram 12.3: NP7LPAFN Find a module in the LPA •• .140

Diagram 12.4: NP7PAL Define page algorithm limit values •••••• • 142

extended-precision floating-point feature • • • • • • • • • • • .144

Diagram 13.0: IEAVNIPX organize NIP exit processing •• • •• 146

Diagram 13.3: NPXQCELL Define SQA and LSQA quickcell areas .154

auxiliary storage ••••••••••••••••••••••••••158

Diagram 13.6: NPXFJPQ Release control clocks for NIP-loaded modules .160

master sCheduler region •••••••••••••••••••••••162

Diagram 13.8: NPXPFTAQ Define available page frames •••••••••164

and communication task •••• • • •• • ••••••••••••166

scheduler Initialization routine • • • • • • • • • • .168

Chart AA. NIPMOUNT Processing ••••••••••••••••••• 171

•

vi

SECTION 1: INTRO~UCTION

•

IPL (initial program loader) and NIP
(nucleus initialization progran) initialize
the VS2 system by loading the supervisor
and preparing the system for execution.
Because the functions of IPL and NIP are
related, and because NIP execution inmedi
ately follows IPL execution, IPL and NIP
are treated in this publication as one
component.

Diagrams 0.1 and 0.2 show the lUain func
tions performed by IPL and NIP.

THE INITIAL PROGRAM LOADER

IPL is brought into real storage when
the operator presses the LOAD button. (See
·Section 2: Method of Operation" for a
description of how IEAIPLOO is loaded.)

IPL loads the resident nucleus that was
created during system generation (either a
nucleus designated by the user or one
assigned by the system). IPL then limits
real storage to the size specified by the
user (if defaulted, it is to the actual
size of real storage), and clears real
storage up to the effective size to O's.
IEAIPLOO initializes system tables and gen
eral registers for use during NIP
execution.

After IPL has been executed, control is
Fassed to the first NIP module, IEAVNIPO,
which was loaded ~s part of the resident
nucleus.

THE NUCLEUS INITIALIZATION PROGRAM

NIP initializes real storage, provides
access to the various system data sets, and
provides access to virtual storage by
initializing the appropriate paging tables.
Because NIP performs its functions sequen
tially, and because each function is per
formed primarily by one module (often with
assistance from a service module), NIP
execution is described on a module basis.

The modules IEAVNIPM and IEAVNP02 each
performs special sequential processing, but
those modules also contain subroutines that

perform common functions for one or more
other NIP modules. IEAVNPA4 and IEAVNPA5
function solely as service routines.

The NIP modules perform the following
functions:

• 	 Define the initial part of the NVT (NIP
vector table), define the SQA (system
queue area), define the nucleus buffer,
define NIP's dynamic area, Frovide
access to the SYS1.NUCLEUS data set,
and place the CPU in EC (extended con
trol) mode with translation enabled
(IEAVNIPO) •

• 	 Control the sequence of executicn for
NIP modules and handle requests for
execution of nonresident svc routines
(IEAVNIP~) •

• 	 Initialize system consoles (IEAVNP01).

• 	 Initialize the system device configura
tion, the SVC library (SYS1.SVCIIB),
and the system log data set (SYS1.
LOGREC) (IEAVNP02).

• 	 Process parameters s~ecified by the
system 	programmer and the operator
(IEAVNP03) •

• Initialize paging control blocks and
data areas for the paging supervisor
(IEAVNP04 and IEAVNPA4).

• 	 Define link fack area nodules for
quickstart or coldstart processing
(IEAVNP05 and IEAVNPAS).

• 	 Initialize the reliability and servi
ceatility (RAS) features (IEAVNP06).

• 	 Define the hardcopy console, pageatle
CCMs (display control modules), and the
paging algorithm limit values
(IEAVNP07) •

• 	 Cefine the nonpageable dynamic area,
quickcell tables, available storage,
the master scheduler's region, and the
dispatcher's APG (authorized priority
grouF) table and time-slice queues
(IEAVNIPX) •

Section 1: Introduction 1

IPL Unit

I'-- ..-/ 	 I IEAIPLOOJ
1 Load selected nuc leus.

Set to Zeros

Resident Nuc leus "-	 ~
SYSI.NUCLEUS

2 Define real storage above System Queue Area
nucleus. Initialize NVT.

Initialize system ~ Initial Paging Area
segment table and
assoc iated page
tables.

NIP's Dynamic Region

Nucleus BufferNVT

J

3 	Move NVT to dynamic area.
Sequentially load, branch to,
delete other NIP modules.
See Diagram 1.2.

Diagram 1.2 •
Parts I, 2,

and 3

4 	 Perform NIP exit processing.
Initialize for master scheduler.

Diagram 0.1: IPL/NIP processing

2

IEAVNPOI

, sQA
1 Initialize operator

consoles.

'.

IEAVNIPM

IEAVNPOI
UCMs

,----- I
r------------------------1 UCBs RaIc*v NucleusI I

C}------j 	 I
I

I?
L _____ ~

To IEAVNIPM
Diagram 1.1

IEAVNP02

SQA
2 	 Initialize non-console

devices and system
library •

-------------------------1
I 	 IEAVNIPM

I 	 IEAVNP02

UCBs(r--------t-
I
I

R.ldent
T--
To IEAVNIPM
Diagram 1.1

IEAVNP03

SQA
3 Interpret system

parameters specified
by operator and v ia
SYSP. Initialize
PARMLIB and LlNKLIB.

IEAVNIPM

IEAVNP03PARMAREA

•
To IEAVNIPM
Diagram 1.1

I
I

Diagram 0.2: NIP processing under control of IEAVNIPM

Section 1: Introduction

L
3

IEAVNP04

IEAVNPA4
SOA

4 	 Interpret SOA, CLPA, _____ _
CPOE, and PAGE -----.....+------------/
parameters .

•IEAVNIPM

Page Frame Table
IEAVNP04

Channe I Program
IEAVNPA4

Queue

Page Device Table
IEASYSxx

Page Device
records if cold
Write quick start

Information Table
and Cyl inder
Count Vector

start.

To IEAVNIPM

SYS1.PAGE
 Diagram 1.1

IEAVNP05

IEAVNPA5

IEAVNPA4

5 	Define pageoble link pack area
using cold start or quick start
process; load LPA modules, build
res id ent BL DL tab I e and a II ocate
SYS1.PAGE. Interpret MLPA,
FIX, BLDL, and BLDLF parameter.;.

I
To IEAVNIPM
Diagram 1.1

SYS1 .LPALIB I=================================~

SYS1.SVCLlB I=================================~

SYS1.LINKLIBI===================================~ 	 •

IEAVNP05

IEAVNPA4

IEAVNPA5

Diagram 0-2: NIP processing under control of IEAVNIPM (Part 2 of 3)

4

IEAVNP06

SQA6 	 Initialize system RAS
facilities.

Paging Spac.
t"

..... ,/
 IEAVNIPM

• IEAVNP06
../"- R.glon F_ Spac.

~SYS1.DSSVM
'- ")---	 .Nud..1u«

'---t Trace TabLt
'-

SYS1.DUMP IIIISw.nt NIoc:....
~ ,

I'-
SYS1.LlNKLIB (RMS Modules)~ ../

";

I
.....
"-

To IEAVNIPM
Diagram 1.1

IEAVNP07

7 	Defines hardcopy canso I e,
pageable DCMs, page algorithm
limit values, locates SVC OPEN
resident router and tests for IEAVNIPM
extended precision floating point
hardware • IEAVNP07

r-
I
I

I
I
I

I 	
I

-- ----------~

To IEAVNIPM
Diagram 1.1

•

Diagram 0-2: NIP processing under control of IEAVNIPM (Part 3 of 3)

Section 1: Introduction 5

http:IIIISw.nt

LINKAGE TO SERVICE SUBROUTINES

In addition to mainline processing, the
NIP modules IEAVNIPM, IEAVNP02, and IEAVN
PA4 contain subroutines that perform common
functions for other NIP modules. The IEAV
NIPM and IEAVNP02 subroutines are executed
in response to the NIP macro instruction
IEAPMNIP. When an IEAVNIPM subroutine is
requested, the macro expands to contain the
address of the required subroutine and a
BAL instruction to that address. When the
lEAPMNIP macro instruction specifies a sub
routine within IEAVNP02, the macro expan
sion contains a BAL to the NIPLOAD subrou
tine within IEAVNIPM to load IEAVNP02, a
BAL to the IEAVNP02 subroutine entry point,
and an SVC 9 (DELETE) instruction.

IEAVNPA4 is initially brought into
storage when the IEAPMNIP macro instruction
is issued by IEAVNP04 (the expansion con
tains the BAL to NIPLOAD to load IEAVNPA4
and a BAL to the entry point). Subsequent
entries from IEAVNP04, IEAVNPOS, and IEAVN
PAS are by a £ALR instruction which con
tains the entry address found in the NIP
vector table. The particular subroutine
required is indicated by bit settings in
the parameter list passed in register 1.
The last linkage from IEAVNPOS to an IEAVN
PA4 subroutine is also by the IEAPMNIP
macro. This expansion contains an SVC 9
(DELETE) instruction to logically remove
IEAVNPA4 from storage.

PAGE DATA SET FORMATTING AND THE
QUICKSTART/COLDSTART PROCESS

One of the required NIP fUnctions is to
initialize the page data sets. Each paging
device specified during system generation
or by the operator using the PAGE parameter
is considered a page data set and is
referred to as such in the following
discussion.

For each unformatted page data set, only
the "home address" and record 0 contents of
any track are known, and the remainder of
the track must be formatted into records of
specified size and characteristics. NIP
formats each page data set by executing a
channel program which writes the count,
key, and data for the specified number of
records. The channel program varies
depending on the type of device containing
the data set being formatted and the PAGE
parameter specifications.

For each data set that is formatted, NIP
maintains a record, called a quickstart
record, or NIPQSR1. Each NIPQSR1 record
contains the number of tracks forrr,atted,
the number of pages in the data set that
are available (a page is unavailable if the
track is defective or if it will be allo

cated to NIPQSR1), and a "bit map· that
indicates which pages are available. Each
NIPQSR1 record is written to record 1 of
the first track of the page data set.

The NIPQSR1 records serve an important
function when the operator must restart the
system by performing another IPL. During
NIP processing for the restart, NIP checks
the NIPQSR1 record for each page data set
to determine whether the data set must be
reformatted. NIP performs the I/O opera
tions required to reformat a page data set
only when:

• 	 The NIPQSR1 record cannot be read
(either the data set was not formatted
or the NIPQSR1 record is defective).

• 	 As part of the system restart, the
operator has entered new specifications
for the data set, and the data set is
too small to meet the requirements.

• 	 The operator has entered new specifica
tions for the data set, and a factor
other than size requires the data set
to be reformatted.

Because the pages for the LPA (link pack
area) remain static during execution, two
additional quickstart records are created
to provide additional information about the
LPA page data set. The additional records
are NIPQSR2 and NIPQSR3.

NIPQSR2 contains the virtual address of
the LPA directory, the highest virtual
address assigned to the LPA, and a bit map
of available pages in the data set.
NIPQSR3 contains a slot/group map of the
sequential LPA address space. There may be
one to three NIPQSR3 records for the LPA
page data set.

Quickstart and Coldstart Process: During
the first IPL for a system, NIP reads the
LPA modules from the SYS1.LPALIB data set
and writes (loads) them into the LPA page
data set. At the same time, NIP builds the
NIPQSR2 and NIPQSR3 records and writes them
to the data set.

Normally, the LPA modules are not
reloaded during a subsequent IPL. The only
time they are reloaded is when:

• 	 The NIPQSR1 record for the LPA page
data set cannot be read, forcing NIP to
reformat the data set and reload the
modules because it has no assurance
that the data set has previously been
formatted.

• 	 The operator specifies the CLPA para
meter, indicating that the contents of
the LPA are to be modified during the
restart.

J

•

•

6

• The 	PAGE parameter specifies that
another data set is to contain the LPA.

• 	 The SQA system parameter is so speci
fied that SQA infringes on the LPA vir
tual address space, and the operator
accepts this condition.

The initialization" process in which the• LPA modules must be loaded into the data
set is called the coldstart process.

The process of reinitializing the system
without reloading the LPA modules (that is,
by using the LPA page data set created dur
ing a previous initialization) is called
the quickstart process. This name refers
to the time saved by not having to reload
the LPA modules.

DATA SETS USED BY 	 IPL/NIP

Because all data used by IPL/NIP ori
ginates in or will reside in system data
sets, it is important to be familiar with
the following list of these data sets and
brief descriptions of their contents.

• 	 SYS1.NUCLEUS -- contains the resident
nucleus and all NIP
modules.

• 	 SYS1.LOGREC Used for recording I/O
and hardware errors.

• SYS1.LINKLIB 	-- Contains user and sys
tem programs.

• 	 SYS1.SVCLIB Contains the type 3 and
4 SVC routines used

-during 	NIP processing
and RMS routines.

• 	 SYS1.LPALIB Contains all of the
modules for the link
pack area.

• 	 SYS1.PAGE Contains the auxiliary
space for system
paging.

• 	 SYS1.DUMP Used for dumping the
contents of storage.

• • 	 SYS1.PARMLIB -- Contains the system
parameters referred to
with the SYSP parameter

• 	 from the operator con
sole and the LINKLIB
concatenation member,
LNKLSTOO, and the MLPA,
FIX, and BLDL module
name lists.

• 	 SYS1.DSSVM Contains the dynamic
support system virtual
storage.

REAL STORAGE AREAS DURING NIP EXECUTION

During NIP execution, real storage is
logically divided into several areas.
Because these areas are continually
referred to in the method-of-operation dia
grams and the text in Section 2, brief
descriptions of these areas and their con
tents are provided. The following are
descriptions of the real storage areas in
ascending order (from tne lowest address to
the highest):

• 	 Nucleus: This is the lowest area of
real storage and contains the modules,
system control blocks, and system data
areas that remain in real storage dur
ing execution. Because they remain in
real storage, no paging is required.
The nucleus is created during system
generation, and some of its control
blocks are initialized during IPI/NIP
execution.

• 	 Nucleus Buffer: This area occupies the
space immediately above the nucleus.
It contains additional control tlocks
and data areas created by NIP. The
nucleus buffer becomes a logical and
phYSical extension of the nucleus. Two
fields in the NIP vector table
(NVTNUCND and NVTBUFND) point to the
next area in the nucleus buffer into
which additional data can be placed,
and the upper limit of the nucleus
buffer, respectively.

• 	 NIP's Dynamic Area: This area is imme
diately above the nucleus buffer and
contains the NIP modules that are
required for execution of NIP. The
modules are loaded into the highest
availatle area within the dynamic area.

• 	 Initial Paging Area: This area is
immediately above NIP's dynamic area
and is used for paging functions during
NIP execution.

• 	 System Queue Area: This area is in the
highest real storage space. It con
tains the control blocks and queue ele
ments required for virtual storage
supervision and the segment and page
tables required for paging supervision.

DATA AREAS AND CONTROL BLOCKS USED BY NIP

The following data areas and control
blocks are used only during NIP execution.
They are either overlaid during systen,
execution (for example, the NVT and the
PARMAREA) or are not used (for example, the
quickstart records).

section 1: Introduction 7

NIP Vector Table (NVT)

The NVT contains pointers and flags that
are used only by NIP. Its relationship to
NIP execution is similar to that of the CVT
to system execution. The NVT base is
created by IEAVNIPO and is moved into and
further initialized by IEAVNIP~. It is
used by all NIP modules.

Quickstart Records

There are three types of qUickstart
records. The first type, NIPQSR1, is
created and written to a page data set when
the data set is formatted. The other two
types of records, NIPQSR2 and NIPQSR3, are

created and written only for page data sets
containing link pack area modules. The
contents and use of the quickstart records
are more fully described under ·page Data
Set Initialiization and the Quickstart/
coldstart process· in this section.

PARMAREA
•The PARMAREA is created by IEAVNP03 and

initialized with the system parameters spe
cified by the system programmer or by the
operator. It also contains a table of
addresses (PARMTAB) that point to the sys
tem parameters and a data area required for
reading the system parameters from the
SYS1.PA~LIB.

•

8

SECTION 2: METHOD OF OPERATION

This section uses text and diagrams to
describe the functions performed by IPLI
NIP. The method-of-operation diagrams are• the primary 	vehicle for describing the IPL/
NIP functions. Notice that the diagrams
emphasize the sequence of functions rather

• 	 than the detailed step-by-step logic found
in flowcharts. For information on how to
use the diagrams, please read the next sub
section, "Using Method-of-Operation
Diagrams."

The text in this section supplements the
diagrams. The text describes briefly the
functions performed by each module and the
major subroutines within each module.
Detailed descriptions of complex processing
are given in "Section 3: Prog rarr,
Organization. "

The initial program loader is the fourth
record on cylinder 0, track 0 of the system
residence volume. The nucleus initializa
tion program modules are members of the
SYS1.NUCLEUS data set. IPL loads the resi
dent nucleus and the first NIP module, IEA
VNIPO, which was previously link-edited
with the resident nucleus to form the
IEANUCOx member of the SYS1.NUCLEUS data
set. IEAVNIPO in turn causes the loading
of the NIP control module, IEAVNIPM, which
sequentially loads and deletes IEAVNP01,
IEAVNP02, IEAVNP03, IEAVNP04, IEAVNP05,
IEAVNP06, and IEAVNP07. A subroutine
within IEAVNIPM also causes the loading and
deletion of IEAVNP02 when subroutines
within it are required by other NIP
modules.

Other special loading and deletion
operations are:

• 	 IEAVNPA4 is loaded by IEAVNIPM for
IEAVNP04 and deleted by IEAVNP05.

• 	 IEAVNPA5 is loaded by IEAVNIPM for
IEAVNP05 and deleted by IEAVNP05.

• 	 IEAVNIPX is loaded by IEAVNIPM and is• self deleted.

The IPL and NIP modules are described in
this section in the order in which they are
normally executed.

USING METHOD-OF-OPERATION DIAGRAMS

Method-of-operation diagrams are pro
vided for all IPLINIP modules and most of
the subroutines within these modules.
These diagrams describe the fUnctions per

formed by the ~odules and show the input
and output associated with the fUnctions.

Where necessary, the ~rocessing steps in
a method-of-operation diagram are further
explained by "Notes on Processing." Each
note amplifies a functional statement in
the diagram and gives the label in the code
that performs the function. Each note is
related to the appropriate processing step
by the function number (the number adjacent
to the step in the diagram). Where no note
is given, it is presumed that the statement
in the diagram and the comments in the code
provide an adequate explanation of the
function. The reference labels included in
the "Notes on processing" ~rovide a means
of finding the point in the code at which
each function is performed.

To help the reader understand and use
these diagrams, this section contains a
sample diagram, an explanation of diagrarr
rring conventions (Figure 1), and text that
explains the sample diagram.

The sample diagram describes the fUnc
tions performed by module IEAVNzzz. The
first five characters in all NIP module
names are "IEAVN". The characters "zzz"
represent the unique suffix in each module
name.

The wide, shaded arrow indicates entry
to a module, exits from a module, or major
paths of execution within or between
rrodules. Entry to the module in the sample
diagram is from IEAVNxxx, Step y.
MEANING OF ARROWS USED IN METHOD-OF-OPERATION DIAGRAMS

Primary Entry/Exit Path -- Shows the path
followed to accomplish the principle function
of the body of code described by the diagram.

• Secondary Path -- Shows the path used by a
processing step to accomplish a subordinate
function.

Pointer -- Shows that a field in one data area
contains the oddress of another field or data
area.

-------+ 	 Data Reference -- Shows that the contents of

a data area are tested or read to determine

the course of subsequent processing.

Data Modification -- Indicates datac::=====> modification (change to any field or
register).

Figure 1. 	 Rey to symbols in method-of
operation diagrams

section 2: 	 Method of Operation 9

...
o 	 Diagram X.X: IEAVNzzz

Sample Diagram
From Diogram X~X,
Step Y

Input 	 Processing

CVT IEAVNzzz

= 1 Perform Function 1 processing"

2 Perfonn Function 2 processing" 	 t I Subroutine C r
NVT I

I 	

I=- -1
3 Perronn Funcl;on 3 process;ng. • [Sub"",';ne D

• 	 X.X

Not done Output4 Determine whether " " " .6
Register nn-.- I I ~;r~XX, Step Y 5 Perform Function 4 processing"

NVT

6 Set code.

•••••••••~I..a~~o~AIT

4., •
.l, 	

"
l,

r .. 	 r
(• •

Diagram x.x IEAVNzzz
r--------------------------------------~----------,
I Notes on Processing 	 I Label I
~---------------------------------------+----------~

1. 	 This note would explain in more IIEAVNzzz
detail the processing for function I
1. 	 I

2. 	 Control is passed to a subroutine ILabel2

that is not part of this module.

3. 	 Control is passed to a subroutine ILabel3

that is part of this module.

I
4. 	 This note would amplify the deci- ILabel4

sion made.

5. 	 Exit is to IEAVNyyy.

6. The system is put in a wait state ILabel5
IL_______________________________________ with the code x'OO'. __________J~

en
II
n
rt
o
!'

to.)

if
rt::r
&
~
o
'C
m
H

IlJ

rt
....
o
!'

....

Processing Steps 1 and 2 refer to fields
CVTaaaaa and NVTbbbbb. Data areas used
across the system are described fully in
VS2 Data Areas. Data areas pertinent only
to NIB are described in Section 5 of this
manual. Referring to a field usually
involves loading the contents of the field
into a register for testing or addressing.
A reference to a field does not include
modification of the field.

To perform fUnctions 2 and 3, the module
in the sample diagram requires the services
of other routines. Module C is another
module (it may be a NIP module) used to
ferform function 2. Linkage to another NIP
module is achieved by issuing an internal
NIP macro instruction, the expansion of
which causes (1) the NIPLOAD subroutine in
IEAVNIPM to be entered to load the modure,
(2) a BAL instruction to give control to
the module, (3) the required input parame
ters to be expanded inline, and (4) a sub
sequent SVC instruction to delete the
module. Function 3 requires the processing
of Subroutine D which is within this
module. Subroutines described in this
manner are entered by a BAL instruction and
normally return control to the next sequen
tial instruction. Where modules and sub
routines are described by method-of
operation diagrams in this manual, the
number of the diagram is given in the lower
right-hand corner.

In cases where secondary or sUFFortive
frocessing is required, the narrower shaded
arrows indicate the flow of processing.

The fifth processing step uses the con
tents of register nn. The contents of
other registers are not shown as inFut
because they are not used by this module.

The normal exit from this module is to
module IEAVNqqq. Where aFpropriate, the
number of the step in the diagrarr, to which
exit is made is shown.

The error processing that occurs in ent
ering a disabled wait state includes stor
ing a wait state code and branching to the
NIPSWAIT subroutine in IEAVNIPM, which
places the system in the disabled wait
state.

THE IPL RECORDS AND IEAIPLOO (DIAGRAM 1.0)

The initial program loader is the pro
gram that initializes real storage and
loads the specified control program nuc
leus. The nucleus is assembled during sys
tem generation and resides on the SYS1.
NUCLEUS data set. The nucleus contains
system control blocks, data areas, resident
control program modules, and the first
module of the nucleus initialization pro
gram that will be executed (IEAVNIPO).

-...,"...
r--.... ./

High address

,-- Record 4

IPL Text

.-/'-
Record 2

'-- ./r-
........ 	 Record 1 ./ *

---.

.. ----,
I Low address

Figure 2. 	 Location of IPL records in real
storage

IEAIPlOO gains control when the operator
presses the LOAD button. The operator pre
Fares for loading IEAIPLOO by mounting the
system residence volume on a direct access
device and setting the load unit address
switches to the unit address of that
device. Pressing the LOAD button causes a
system reset, turns on the LOAD light,
turns off the MANUAL light, and initiates a
read operation from the selected direct
access device.

When the read oFeration is started (see
Figure 2), the selected input device starts
transferring data. The first IPL record is
read into real storage locations 0 through
23. The doubleword read into locaticn 8
(through 15) is a CCW (channel corrmand
word) that causes the loading of the second
record into real storage at an address
higher than the size of the third IPI reco
rd, so that the second record will not be
overlaid. The Transfer-in-Channel command
at location 16 (in the first record) speci
fies the address of the second record. The
second record is a chain of CCWs that cause
the IPL control section (third record) to
be read into real storage beginning at
location o. ..

When the channel end is received (indi
cating that the last CCW in the second
record has been executed>, the unit address
of the device is stored in bits 21-31 of
the first word in storage. Bits 16-20 are
set to 0, and bits 0-15 remain unchanged.
The doubleword in storage location 0 is
loaded as a new PSW, and normal operation
Froceeds. The LOAD light then turns off.
IEAIPLOO does these things:

• 	 Clears general and floating-point

registers.

12

• 	 Clears real storage to the highest location greater than the size of real
addressable location (the highest storage, a program check occurs. Antici
addressable location may be specified pating this action, IEAIPLOO sets the
by the operator as a location lower ~rogram-check new PSW to the address of the
than the highest actual address in real next sequential instruction beyond the par
storage) • ticular loop processing. When this proces

sing is complete, the program-check new PSW
• 	 sets all storage keys to O. is set to the address of the IEAIPLOO sub•

routine that processes unexpected ~rograIf.
• 	 Relocates unexecuted coding and data checks. Unexpected program checks result

areas above the real storage area to be in a system wait state with a code of X'19'
occupied by the resident nucleus and teing placed in the address portion of the
loads the nucleus specified by the current PSW.
operator (IEANUCOx) or the system
assigned nucleus IEANUC01 (see Figure Operator Interface During IPL
3>'

IEAIPIOO provides two interfaces that
• 	 Transfers control to the first NIP allow the operator to liEit the size of

module, lEAVNIPO, which is loaded as real storage (specify that the full size of
part of the resident nucleus. real storage is not to be effective), and

to s~ecify a nucleus other than the system
Processing Expected Program Checks assigned nucleus, IEANUC01. To use these

interfaces, the operator sets an address
At certain points during execution, stop at location X'SO' before pressing the

IEAIPLOO expects program checks to occur. LOAD button. When this address stop is
These are caused when IEAIPLOO clears real reached (by the CPU processing the third
storage and sets the storage keys for 2K IPL record), the operator selects an
multiples of storage. IEAIPLOO uses loop alternate nucleus by storing in location
processing to perform these functions. Ix'os' the EBCDIC character to be a~~ended
When the instructions in the loop address a to IEANUCO. This suffix is used by

r-----------------------------------, 	 r-----------------------------------,
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

I 	 ~-----------------------------------~
I Relocation Factor Table I
~----------------------------------~
I Address Table I
~-----------------------------------~
I Size Table 	 I

)t---------;~~~~1~~i~~-;~bl~---------1
~-----------------------------------~
I Relocation Factor Table I r----~ ~-----------------------------------~

I Scatter Table It-----------~dd~~~~-;~tl~-----------1 j
~-----------------------------------~

~-----------------------------------~ I Relocated IEAIPLOO from I
I Size Table I I I Label IEADATDS I

~-----------------------------------~~-----------------------------------~
I Translation 'Table I 	 I IEAVNIPO I
~-----------------------------------~ 	 \~-----------------------------------~
I Scatter Table I 	 I I

I Nucleus I
IL___________________________________ IPL Text JI I IL___________________________________ JI
~-----------------------------------~

Real Storage before IPL Relocation 	 Real Storage after IPL Relocation and
Loading of Nucleus and IEAVNIPO

Figure 3. Contents of real storage before and after IPL relocation

Section 2: Method of Operation 13

IEAIPLOO to determine which nucleus is to
celoaded.

The real storage size is liroited by
storing one of the following hexadecimal
values in location X'09':

Value Effective Size
X'A7' 192K
X'AS' 384K
X'C6' 64K
X'C7' 12SK
X'CS' 256K
X'C9' 512K
X'DO' 76SK
X'D1' 1024K

If the operator limits real storage,
IEAIPLOO clears real storage only up to the
operator-selected limit. However, storage
keys for all 2K segments of real storage
are set, regardless of the artificial size
limit.

THE NUCLEUS INITIALIZATION PROGRAM

NIP receives control fram the Initial
Program Loader to initialize system tables
and control blocks, to make data sets and
devices available for system use, and to
bring into virtual storage those modules
specified to be resident. The modules that
compose NIP have the following residency
characteristics:

IEAVNIPO 	 Loaded by IEAIPLOO as part of the
nucleus: overlaid by subsequent
NIP execution.

lEAVNIPM 	 Loaded into the highest ~ortion
of NIP's dynamic area by IEAVNIPO
and deleted by IEAVNIPX; remains
in real storage during execution
of all NIP modules except
lEAVNIPO.

IEAVNP01 	 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.

IEAVNP02 	 Loaded and deleted by IEAVNIPM
for use by NIP modules; remains
in real storage only during its
execution.

IEAVNP03 	 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.

IEAVNP04 	 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.

IEAVNPA4 	 Loaded by IEAVNIPM for IEAVNP04
and deleted by IEAVNP05i remains
in NIP's dynamic area during
execution of IEAVNP04 and
IEAVNP05.

IEAVNP05 	 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.

IEAVNPA5 	 Loaded by IEAVNIPM for IEAVNP05
and deleted by IEAVNP05; remains
in NIP's dynamic area during
execution of IEAVNP05; is
executed under a TCB created as a
result of an ATTACH macro
instruction issued by IEAVNP05.

IEAVNP06 	 Loaded and deleted by IEAVNIPM:
remains in NIP's dynamic area
only during its execution.

IEAVNP07 	 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.

IEAVNIPX 	 Loaded by IEAVNIPM; remains in
NIP's dynamic area only during
its execution. Passes control to
the master scheduler's Initiali
zation routine (IEEVIPL).

IEAVNIPO (DIAGRAM 2.0)

The IEAVNIPO routine in NIP is link
edited with the nucleus modules to form the
nucleus member IEANUCOx (IEANUC01 if uns~e
cified) of the SYS1.NUCLEUS data set. IEA
VNIPO is entered only from the initial pro
gram loader (IEAIPLOO) and ~erforms the
initialization needed to load the first NIP
module into NIP's dynamic area. Execution
subsequent to IEAVNIPO causes the nucleus
area occupied by IEAVNIPO to be overlaid by
system data, and the area becomes a logical
and physical extension of the nucleus.

IEAVNIPO does the following things:

• 	 Initializes the NVT (NIP vector table)
and the CVT (communications vector
table) •

• 	 Defines the real storage areas above
the nucleus (see Figures 4 and 5).

• 	 Defines the initial copy of the PVT
(page vector table) and the PFT (~age
frame tatle).

• 	 Defines the initial copy of the system
trace table.

•

•

J

..

J

14

•

•
NIP's
Nonpageable
Region

Figure 4.

r------------------,
ISystem Queue Area I Variable
~------------------~
I 	 I
I Initial I

I Paging I

I Space I

I I

~------------------~
I I

I I

I Dynamic Area I

I for I SOK

I NIP Execution I

I I

I I

~------------------~
I 	 I
I Nucleus Buffer I
I 	 I
~------------------~
I I

I I

I Nucleus I

I I

IL__________________JI

Definition of real storage

• 	 Initializes the segment table and page
tables (see Figure 6).

• 	 Sets the initial values in the System/
370 clocks.

• 	 Places the CPU in extended control (EC)
mode with DAT enabled.

• 	 Defines a temporary nucleus buffer.

• 	 Defines NIP's nonpageable region.

• 	 Reserves initial system paging space.

• 	 Initializes SYS1.NUCLEUS control
blocks.

• 	 Passes control to IEAVNIPM (see Figure
7),

Paging Initialization

IEAVNIPO creates the system segment
table and the page tables in the high•
address portion of the system queue area of
real storage. The tables are used by the
dynamic address translation feature to con

• 	 vert virtual addresses to real addresses.
To better understand NIP's execution, it is
useful to summarize the function of these
tables in a virtual environment.

Virtual addressing allows programs to
refer to addresses that are greater than
the size of real storage up to a maximum
address of 16m-1. Virtual storage is
divided into 64K segments, which are in
turn divided into 4K blocks. Each 64K seg
ment is described by a 16-entry page table,
each entry describing a 4K block. Each 64K
segment is also associated with one of the
256 entries in the system segment table
which is pointed to by the CVTSEGD field.
The addressing scheme (see Figure S) mUlti
plies the first eight bits of a 24-bit vir
tual address by 4 and adds the result to
the address of the system segment table to
arrive at the segment table entry for that
virtual address. The next four bits in the
virtual address are multiplied by 2, and
the result is added to the 3-byte value in
the segment table entry to determine the
page table entry for the virtual address.
The page table entry contains the first 12
bits of the real storage address of the 4K
block that contains the data referred to by
the virtual address. The last 12 bits of
the virtual address are used as the displa
cement into the 4K block to arrive at the
real storage address of the data.

IEAVNIPO creates only the page tables
that describe virtual addresses correspond
ing to real storage addresses plus a single
SQA segment. The appropriate (segment
table entries) are initialized for the page
tables that are created. Unused segment
table entries are set to indicate that no
corresponding page tables have been created
for them.

Because the virtual addresses of the
nucleus are real addresses, the page tables
that describe the virtual area correspond
ing to the real storage area never change
and are marked as valid. The area above
NIP's region and below the SQA is reserved
for paging. The page tables for this area
are marked as invalid, because the real
storage area associated with these page
tables contains no valid data, and any
reference to this area must be invalid.
The page table created for the virtual
storage area corresponding to the real
storage SQA is also indicated as invalid,
because the virtual area logically asso
ciated with the SQA is in the high-address
portion of virtual storage. Note that
external page tables are not built, because
neither the nucleus nor the SQA has a copy
in virtual storage. External page tables
normally follow page tables and describe
page residency characteristics and location
on paging devices.

Section 2: Method of Operation 15

I 	 I
1<----------------- 16 bytes -------------------->1
I 	 I

Highest Real Storage Address
r---,
I DQE 	 I
~------------------------T------------------------~
I Dummy PGE I 	 I
~------------------------J 	 I
I Nonpageatle PQE 	 I
I 	 r------------------------~ •
I I I
~------------------------J I
I Pageable PQE 	 I
I 	 r------------------------~
I I Nonpageable FBQE I

Communication Task t------------------------+------------------------~
and Master Scheduler INonpageable FBQE (cont.)I pageable FBQE I
Task TCEs t------------------------+------------------------~r--------,

I TCBPQE 	 L ~-~:~=:~:=-~~~:-~:~~~:~--l--~~~~~:-~:~~~--------~L________ J
I 	 1
I Master Scheduler PQE 	 1
I 	 I
t---~
I Master Scheduler FBQE 	 I
t---~
~ ~ Reserved for

Initial Page See Figure 6
and Segment 'i..tles

I 	 I
Master +---~
Scheduler I Subpool 251 I:QE 1

Task TCB ~------------------------T------------------------~

r-;~~;~~-~~----:~~~~:-~~=-::~:----l---------~~~-~~~--------~L________J I 	 I
I Available System Queue Area 	 I
~ 	 I

Figure 5. Organization of the initial system queue area

r---,
I 	 I

Displacement CVT 	 I Control Blocks Initialized by Step (j) I
I -r I 	 1
.---------------~ t--~

+188 	 IReal Address of I I I
ISystem Segment 1---->1 System Segment Table I
ITable I I I
t---------------~ t--~

+184 	 IReal Address ofl I I
IUser Segment 1---->1 Space Reserved for 1
1Table I I User Segment Table I
t---------------~ t--~

+180 	 IVirtual Address I I Page TaCle 1 (SQA) I
lof System I t---~ ..
ISegment Tal:le I I Page Table 2 (locations 0-64K) 1

t---------------~ t--~
+17C 	 IVirtual Address I I page Tatle 3 (locations 65K-128K) I

lof User SegmentI t--~

~~~~~---------Jl :l----------------~:::~;~::I;:~:~::~----------------~ 
t----------------------------------------------------~
I Other Control Blocks Initialized by Step (f) I 
t---------------------------------------------------~
I Available System Queue Area 	 I 
~ 	 ~ 

Figure 6. System segment and page tables 


16 




Initial SQA 
(Pageable) 

NIP's 	Region
• Nonpageable 

size 

{r-;i~i;~;-;i~~d-~~;~~~-Q~~~~-~~~;---l} variatle 
t-----------------------------------i 
I 	 I
I Reserved for Initial paging Space I nK 
I 	 I
t-----------------------------------i
I IEAVNIPM I 
1 - - - - - - - - - - - - - - - - -I 
I 
I 

Dynamic Area for 
NIP Execution 

I 
I 

aOK 

I I
t-----------------------------------.'i
1- __ I~i:i~l_P~g: :r~m: :a~l: __ -iI' 
I Initial Trace Table I 
I I nK 
1- - - - - - - - - - - - - - - - - -I 
I Nucleus Buffer I 
t------ ----------------------------i 
I 	 I 
I 	 I 
I Nucleus I 
I IL___________________________________J 

IEAVNIPM (DIAGRAM 3.0) 

IEAVNIPM consists of mainline coding and 
several subroutines. The subroutines are 
entered from the mainline processing, from 
other NIP modules, or asynchronously as a 
result of unusual conditions that arise 
during NIP execution. The mainline coding 
loads, tranches to, and deletes the other 
NIP modules (except IEAVNIPX, which does 
not return control to IEAVNIPM). 

The subroutines within IEAVNIPM are 
requested by other modules via the IEAPMNIP 
rracro instruction. The expansion of this 
macro instruction includes a Branch and 
link (BALR) instruction to the required 
subroutine, the address of which is 
obtained from the NIP vector table. If the 
subroutine NIPlOAD is requested, the expan
sion of the macro instruction also includes 
a Branch and Link to the requested module 
loaded ty NIPLOAD and, for IEAVNP02 subrou
tine requests, a subsequent SVC 9 (DELETE) 
instruction. The macro expansion does not 
include an SVC 9 instruction for IEAVNPA4. 
This module is deleted after execution of 
the macro expansion. 

NIPLCAD subroutine (Diagram 3.1) 

The NIPLOAD subroutine is entered from 
various Rodules to load a specified NIP 
rrodule into real storage. It creates a 
BLDL list via the BLDL macro instruction 
and issues a LOAD macro instruction. If 
the module is not loaded successfully, IEA
VNIP~ places the system in a disabled wait 
state (X'32' or X'33'). 

NIPSVC and NIPSVCX Subroutines (Diagram 
3.2) 

The NIPSVCX and NIPSVC subroutines are 
entered as a result of an XCTL request or a 
request for a type-3 or type-4 SVC. All 
SVC table entries for type-3 and type-4 SVC 
routines are set to the address of NIPSVC; 
the entry for XCTL is set to the address of 
NIPSVCX. Because the link pack area (which 
will eventually contain the required 
rrodules) has not been initialized, the 
NIPSVC and NIPSVCX subroutines must load 
the module into real storage. control is 
then passed to the XCTL module or to the 
SVC routine, and execution continues 
normally. 

NIPSENSE subroutine 

The NIPSENSE subroutine is entered fol
lowing an I/O error to write an interpre
tive error message to the master console. 
Information concerning the command code of 
the failing CCW, csw statu.s bytes, volume 

o 
1 

4 
5 

6 
7 
8-11 
12 
13 
15 
24 
40-63 

are 

Word
-0

o 
o 
o 
o 

oL 
o 

1 

nK = (real storage size - (nucleus size + SQA size + 80K» / 2 

Figure 7. 	 Real storage at corrpletion of 
IEAVNIPO execution 

EC Mode Initialization 

IEAVNIPO places the CPU in EC (extended 
control) mode by loading the PSW described 
below. This also allows all interruptions 
from the I/O subsystem. Previously, the 
system was disabled for all interruptions, 
including machine checks. 

Bit Value 	Description
-0

initialized by IEAVNIPO: 

Monitor mask -- disabled 
o 	 Program event recording mask 

disabled 
o 24-bit addressing specified 
1 Dynamic address translation 

enabled 
1 I/O mask -- enabled 
1 External mask -- enabled 
o Supervisor protection key 
1 EC mode 
1 Machine-check mask enabled 
o 	 Supervisor state 
o 	 Segment protection disabled 

Address of next sequential 
instruction 

Those fields not described are set to O. 

" The 	following multiple control registers 

Bits
-1

8-9 
10 
11-12 
20 
21 
24 
0-7 
8-25 

Description 
SSM 	 interruptions 
Page size 
Page entry size 
Segment size 
Clock comparator 
CPU 	 timer 
Location X'80' timer 
Segment table length 
Segment table origin address 

Section 2: Method of Operation 17 



Segment"Table r- Page Tables Real Storage . 

Address of a Page 


(Page) 


I
Address of a Page (Page) 

Address of a Page Table 

Address of a Page Table 
(Page) 

Address of a Page -, 
Address of a Page (Page) 

~ . 

H CVTSEGD 

~ 
Add to origin of 

Segment Table segment table 

SGTE 

r-- Address of Page Table 

~ 
Add to origin of 
page table ~ 

.. Page Table 

PGTE 


c- Page Add ress 


Figure 8. Dynamic address translation 

serial number (if direct access storage 
device), EBCDIC unit address, and (if a 
unit check) sense bytes are extracted and 
placed in the error message, which is then 
sent to the operator via the NlPWTO subrou
tine (within lEAVNlPM). 

NlPUCBFN Subroutine (Diagram 3.3) 

The NlPUCBFN sub~outine is entered to 
find a UCB related to a specific device. 
After converting the input, if necessary, 
to the hexadecimal unit address, NlPUCBFN 
issues, an 10SGEN macro instruction to link 
to the 105 UCB Lookup routine. 105 per
forms the necessary processing and returns 
the address of the associated UCB, if it 
was found. 

~ . 
Virtual Address (24 bits) 

I B bits 14. bits: 12 bits I 

1 Multiply l I 
I by 4 r 

1 Multiply l 
I by2 I 

..I Add to page L 

~t address 
 I 

Real Storage 

}4K 

. 

NlPTlME Subroutine (Diagram 3.q) 

The NlPTlME subroutine is entered to 
provide either the time of day in decimal 
or the binary value representing the time 
elapsed since lEAVNlPM was entered for this 
initialization process. <II 

NlPWTQ and NIPWTOR Subroutines 

T~e NlPWTO and NlPWTOR SUbroutines are 
entered to build and execute a Channel pro
gram to simulate WTO and WTOR macro 
instructions. lEAVNIPM has a temporary 
reply buffer into which the-operator's
reply to a WTOR is read. The requesting 
routine may specify that control is not to 
be returned until the reply is received. 
In this case, NlPWTOR passes control to 
NlPWTOR2 to await the reply. 

18 



NIPWTOR2 Subroutine 

The NIPWTOR2 subroutine is entered to 
reove an operator's reply into the reply 
buffer specified by the calling routine. 
NIPWTOR2 returns control to the requesting 
routine or, if entered from NIPWTOR, 
returns control to the routine that 
requested the WTOR function •.. 
NIPABEND Subroutine 

The NIPABEND subroutine is entered asyn
chronously to process conditions that would 
normally cause abnormal termination of a 
task. Upon initial entry from IEAVNIPO, 
IEAVNIPM replaces the SVC 13 address placed 
in the SVC table during system generation 
with the address of the NIPABEND subrou
tine. For the first entry to process an 
abnormal condition, NIPABEND issues a mes
sage to the operator via NIPWTO indicating 
the type of error and l::ranches to NIPSWAIT 
to place the system in a disabled wait 
state. For a recursive entry, the previous 
ABEND code is saved and the system is 
placed in a disabled wait state (X'40'). A 
recursive entry might be caused by a fai 
lure in NIPWTO. 

NIPSQEND Subroutine 

The NIPSQEND subroutine is entered from 
GETMAIN when an additional real page for 
the SQA is requested before the paging sub
system is initialized. The system is 
placed in a disabled wait state (X'36'). 

NIPSWAIT Subroutine 

The NIPSWAIT subroutine is entered 
whenever an error condition prevents suc
cessful initialization of the system. NIP
SWAIT uses NIPWTO to notify the operator of 
the system wait state code and places the 
system in a disabled wait state. 

IEAVNP01 (DIAGRAM 4.0) 

IEAVNP01 receives control from IEAVNIPM 
to initialize system consoles and to allow 
the operator to specify system parameters 
required for NIP execution. 

Initializing System Consoles 

IEAVNP01 uses several loops to determine 
• 	 the availability of and to initialize the 

system consoles. The first console 
examined is always the master console spe
cified in the UCM prefix during system 
generation. The NP1TESTC subroutine is 
entered to build a ccw chain for the type 
of console being tested. An EXCP instruc
tion is issued, and the result of the I/O 
indicates whether the console is available. 
If the console is available, it is initia

lized as described below. After the con
sole is initialized, or if the console is 
not available, the other consoles in the 
rraster alternate queue are examined and 
initialized in a similar manner. 

When the end of the master alternate 
queue is reached, IEAVNP01 searches, tests, 
and initializes all UCM entries beginning 
with that pointed to by UCMVEA. IEAVNP01 
then determines whether a master console 
has been found and initialized. If not, 
the system is placed in a disabled wait 
state (X'07'). 

The NP1INIT subroutine (see Diagram 4.1) 
initializes available consoles by (1) indi
cating that the console is active and (2), 
if the active master console is not the one 
specified during system generation, by 
copying the authorization and routing codes 
from the old master console to the new 
active master console and adjusting the UCM 
prefix/base. 

Initiating 0Ferator communication 

Immediately after the active master con
sole is initialized (and before the altern
ate consoles are initialized), the NP1INIT 
subroutine establishes communications with 
the operator by issuing message IE;A101A 
SPECIFY SYSTEM PARAMETERS via the NIPWTOR 
subroutine in IEAVNIPM. The receipt of the 
reply is determined by the NP1TCO~M sul::rou
tine, which is entered from the NP1TESTC 
subroutine before consoles are tested for 
availal::ility. If a reply has been 
received, it is moved by NIPWTOR2 into the 
reply buffer area, a 2K area previously 
cbtained from subpool 255 of the SQA. If 
additional parameters are to be entered, 
the rressage IEAl16A CONTINUE SYSTEM PARAME
TERS is issued, and the reply to this is 
processed as above. 

Before returning control to IEAVNIPM, 
IEAVNP01 ensures that no reply is outstand
ing to a message issued from this module. 

IEAVNP02 (DIAGRAM 5.0) 

This module is initially entered from 
IEAVNIPM to initialize the devices in the 
system configuration that have not been 
initialized by IEAVNP01. It also provides 
system access to the SYS1.LOGREC, SYS1. 
SVCLIB, and SYS1.LINKLIB data sets. The 
subroutine NIPOPEN (entry point IEAVNPB2) 
is used l::y mainline coding and by other NIP 
modules to open specified data sets. The 
subroutine NIPMOUNT (entry point IEAVNPA2) 
is used only by other NIP modules to requ
est the operator to mount specified volumes 
on specified devices. 

Section 	2: Method of Operation 19 



Mainline Coding 

IEAVNP02 initializes the unit test DEB 
and its associated control blocks, which 
are defined within IEAVNP02. These are 
used for all I/O testing of devices. Using 
the UCB address table, each device repre
sented by a UCB that was not exarr-ined by 
IEAVNP01 is tested for availability. For a 
DASD (direct access storage device), a 
channel program to read the volume label is 
created by the subroutine NP2RRCD3 and 
executed by the subroutine Nf2EXCPU. For 
non-DASD, NP2EXCPU executes an I/O NOP CCW. 
Cevices that are not ready are so marked in 
their UCBS. 

After testing the system device confi
guration, SYS1.LOGREC and SYS1.SVCLIB are 
opened using the subroutine NIPOPEN. 
lEAVNP02 builds the DEBs needed for the 
open processing. IEAVNP02 also constructs 
the DEB associated with the SYS1.LINKLIB 
data set. 

NIPMOUNT Subroutine (Diagram 5.1) 

This subroutine is entered to request 
the operator to mount a specified volume on 
a device. The device may be specified by 
type or by unit. NIPMOUNT ensures that the 
correct volume is mounted on the device. 
Messages notify the console operator of the 
required action and indicate, where appro
priate, incorrect and remedial action. A 
flowchart of this subroutine is included in 
Section 3. 

NIPOPEN Subroutine (Diagram 5.2) 

This subroutine optionally builds the 
basic DEB and adds DEB extents for the spe
cified data set to be opened. 

lEAVNP03 (DIAGRAM 6.0) 

This module is entered by IEAVNIPM to 
initialize the system parameter table 
according to the specifications given in 
response to the message SPECIFY SYSTEM 
PARAMETERS. Two sets of specifications are 
possible; operator entered, and system pro
grammer entered (via SYS1.PARMLIB). Figure 
9 describes system parameter area creation. 
The IEAVNP03 subroutines: 

• 	 Analyze the parameters specified via 
the SYSP parameter and merge them with 
the parameters specified by the opera
tor in response to SPECIFY SYSTEM 
PARAMETERS. 

• 	 Open SYS1.LINKLIB and concatenate mem
bers specified in the LNKLSTOO member 
of SYS1.PARMLIB with the SYS1.LINKLIB 
data set. 

Secondcry 
PARMAREA 

.. 
BTAB OPE 

PLlBTAB 

PARMAREA 

PARMTAB 

System 
Pcrcmeters 

Figure 9. Creating system parameter area 

NP30PSP Subroutine (Diagram 6.1) 

This subroutine uses the NP3SCAN subrou
tine to scan the parameters entered by the 
operator in response to SPECIFY SYSTEM 
PARA~ETERS. The subroutine moves the 
addresses of the valid parameters into an 
area within IEAVNP03 called OPERTAB. If a 
pararoeter is invalid, the operator is 
allo~ed to respecify or cancel it. Figure 
10 illustrates building the OPERTAB. 

NP3PBASE Subroutine (Diagram 6.2) • 
This subroutine allocates a 2K area 

(PAR~AREA) within NIP's dynamic area for 
later use by lEAVNP03. This area eventual
ly contains the valid system parameters. 
The lower-address part of PARMAREA is 
initialized to contain pointers to the next 
PARMAREA (considered secondary and tem
porary), to contain the next available area 
within PARMAREA, and to contain the lOB, 
DCB, and DEB for the SYS1.PARMLIB. The 
remainder of the PARMAREA is initialized by 
the NP3PTAB subroutine described below. 

20 



L 
NP3PMLIB Subroutine (Diagram 6.3) Data In Resu It of Process i ng 

C PERTI\B
This subroutine finds and opens the Entries in 

SYS1.PARMLIB data set. OPERTAB pa;nt 
to parameters 

spec;f;ed by 
the operator. 

NP3SYSP Subroutine (Diagram 6.4) 

This subroutine allocates a secondary 2K 

buffer (chained to the primary buffer, PAR

MAREA) and reads into it the parameters 

defined by the SYSP parameter. These para

meters are located in the IEASYSxx members
• of the SYS1.PARMLIB. The first member pro

cessed is always IEASYSOO, which contains Figure 10. Building OPERTAB 

the values used for defaulted parameters. 


Data In Result of Processing 

The NP3SCAN subroutine scans the parame

ters in the secondary cuffer and moves the 
 PLlBTAB
addresses of the valid parameters into the Entr;es in PLlBT AB 
area within IEAVNP03 called PLIBTAB. When point to 

IEASYSOO paramete rs reada parameter is specified more than once, 
into secondoI)'IEASYSxxthe last specification is effective. The 
PARMAREAs fromIEASYSxxentries in both OPERTAB and PLIBTAB contain 
IEASY SOO and 

one address for each parameter (except APG, IEASYSxx (via
PAL, and PAGE). Each entry reflects the SYSP parameter). 
last valid specification processed for that 

parameter. Figure 11 illustrates building 

the PLIBTAB. 


NP3PLMRG Subroutine 

This subroutine merges the Farameters Figure 11. Building PLIBTAB 
pointed to by the addresses in the OPERTAB 
and the PLIBTAB. When both tables contain OlJtc In Result of Processing 

entries for the same parameter, the OPERTAB oP'leA~ PLlBTAB~ 

entry replaces the PLIBTAB entry unless 
~ 

I Entries in 

OPI=NO is indicated in the PLIBTAB for that " PLlBTAB po;nl 
I to parametersoperand. PAGE, PAL, and APG parameters are 
I spedf;ed bynot merged. The addresses of the valid 

IEASYSxx or 
current system parameters are placed in I by the 
PLIBTAB, overlaying the address of overrid I operator. 
den parameters where necessary. Figure 12 I 
illustrates the merging of specifications 
into PLIBTAB. I 

NP3PTAB Subroutine (Diagram 6.5) I 

This subroutine first removes all secon
dary PARMAREAs from the queue originating 
with the initial PARMAREA so that addition Figure 12. ~erging OPERTAB into PLIBTAB 
al space required is pointed to by the ini

Data In Result of Processingtial PARMAREA, instead of the last-acquired 

secondary PARMAREA. The area within the 
 PLIBTAB Secondary
PARMAREA above the header (initialized by PA.RMREA PARMARE,o. 
NP3PBASE above) has two parts: (1) the Spedfied 

parame te rs are " PARf1TAB which will contain the addresses of 
moved intothe parameters, and (2) the area into which 
PARMAREA andthe parameters will be moved. 
pointers in• 
PARMT AB point to

NP3PTAB begins moving the sp~cifications these parameter
for each parameter into the high-address entries. 

portion of the PARMAREA while updating the 
PARMTABcorresponding addresses of the parameters 


in PARMTAB. In moving the parameters into 

Header

the PARMAREA, NP3PTAB strips out superf
luous information, such as the keyword 
operands. Figure 13 illustrates building 
the final PARMAREA. Figure 13. Building the PARMAREA 

Section 2: Method of Operation 21 



NP3LKLIB Subroutine 

This subroutine opens the SYS1.LINKLIB 
data set for later system use. 

NP3LCAT Subroutine (Diagram 6.6) 

This subroutine concatenates the data 
set members whose names are specified in 
the LNKLSTOO member of SYS1.PARMLIB data 
set with the SYS1.LINKLIB data set. A LOC
ATE macro instruction is issued for each 
member name found, and the resulting volume 
identification is passed to the NIPMOUNT 
subroutine in IEAVNP02. The NIPOPEN sub
routine in IEAVNP02 opens the data set and 
concatenates it with the previously defined 
portion of the SYS1.LINKLIB. The number of 
concatenations is limited to 15. 

IEAVNP04 (DIAGRAM 7.0) 

This module is entered only from IEAV
NIPM to process the PAGE, CLPA, CPQE, and 
SQA parameters and to initialize the con
trol blocks used by the paging supervision 
routines. IEAVNP04 perforrr.s the following 
fUnctions: 

• 	 Interprets the PAGE parameters entered 
either in SYS1.PARMLIB or by the opera
tor in response to the message SPECIFY 
SYSTEM PARAMETERS. 

• 	 Ensures that the paging devices are 
online and available for system use. 

• 	 Ensures that the SYS1.PAGE data sets 
are available. 

• 	 Expands the definition of the SQA. 

• 	 Creates the page device table, page 
device information table, page frame 
table, quickstart records, and the 
channel program queue. 

processing PAGE Parameters 

IEAVNP04 uses the system parameter table 
(PARMTAB) to locate the PAGE parameters 
included during system generation. A 16
entry matrix is created as a record of the 
parameters. IEAVNP04 then processes the 
PAGE parameters specified by the operator 
in response to SPECIFY SYSTE~ PARAMETERS. 
Any value specified by the operator will 
override any corresponding specification 
already in the matrix. After optionally 
displaying the PAGE parameter values speci
fied, or if no PAGE parameters have been 
specified, the operator is allowed to 
change or add any PAGE specifications. 

Initializing for Quickstart Records 

Because formatting of page data set 
records requires I/O overhead (a history of 
a successfully formatted page data set is 
kept within the data set), IEAVNP04 allo
cates an 8K buffer in the high-address por
tion of NIP's region. This buffer is used .. 
to build, write, and read records (called 
guickstart records) that describe the con
tent and extent of each page data set. A 
guickstart record is built when a page data 
set is initially formatted. IEAVNP04 
attempts to read a quickstart record for 
each previously allocated page data set. 
If the read is successful, the data set is 
not reformatted. If the read is not suc
cessful, the data set requires reformat
ting, and a new quickstart record is 
created. 

NP4PGSEL Subroutine <Diagram 7.1) 

This subroutine scans the 16-entry 
rr.atrix of PAGE parameters to determine spe
cifications for the paging devices. Each 
specified device is tested for availabili 
ty, and the operator is allowed to respeci
fy any device that is unacceptable or to 
cancel the definition. 

For each online and ready device, the 
NP4IFDT subroutine is entered to create the 
PDIT (page device information table) and 
the PDTE (page device table entry) for the 
device. Both entries are created in the 
upper end of the nucleus buffer. 

Upon completion of processing for this 
device, the PDIT is moved to its permanent 
position in the low area of the nucleus 
buffer. However, the PDTE is not rroved 
until all matrix entries have been pro
cessed, because the final size of the PDIT 
is nct known until that time. The NIPOPEN 
subroutine in IEAVNP02 is entered to open 
the data set represented by the entry in 
the matrix. The NP4RQSRl subroutine is 
entered to read the first quickstart record 
for the data set. If this data set repre
sents the quickstart LPA data set, and the 
CLPA parameter is not specified in PARMTAB, 
IEAVNP04 sets the NVTFLQS field to indicate 
that the page data set can be defined by 
the quickstart process. If this read is • 
not successful, page forrratting is 
required. 

If formatting is not required, the PDIT 
is moved from the temporary area to its 
permanent position in the low area of the 
nucleus buffer, and additional device
dependent information is added. If format
ting is required, the NPA4INTF subroutine 
in IEAVNPA4 is entered to start formatting, 
and the ECB for the request (in the PDIT) 
is added to a list of ECBs that are tested 
prior to moving the PDTEs. 

22 



When all matrix entries have been pro
cessed, the list of ECBs is checked to 
determine whether all formatting has been 
completed. As formatting for each data set 
is completed, a quickstart record (NIPQSR1) 
is built and written for the data set, and 
its PDrT is moved to its permanent posi
tion. When all PDITs have been Ir.oved, the 
PDTEs in the temporary position in the 
upper end of the nucleus buffer are 
scanned, and each valid PDTE is moved to 
its permanent position in the low end of .. the nucleus buffer above the PDITs • 

Figure 14 shows real storage after pag
ing device initialization and initial pag
ing area definition. 

NP4BCPQ Subroutine 

This subroutine defines the paging 
supervision channel program queue at the 
high end of the nucleus. The size of the 
CPQ (channel program queue) depends on the 
number of paging devices in the system con
figuration. Ten CPQ elements are defined 
for the first paging device~ 15 CPQES are 
defined if there is more than one device. 
In addition to the base number of CPQEs 
defined, the operator may specify an addi
tional number via the CPQE parameter. This 
number is added to the base number. 

High Address 
r-----------------------------,
I SQA 	 I 
~----------------------------~ I Initial paging Area I 
~-----------------------------~ I lEAVNIPM I 
~----------------------------~ 
I IEAVNP04 I 
~-----------------------------~ I IEAVNPA4 I 
~-----------------------------~ I Quickstart I/O Buffer I 
~-----------------------------~ 
I 	 I 
~-----------------------------~ 
I 	 I 
~-----------------------------~ 
I 	 I 

• ~-----------------------------~ I PFT Control Block I 
~-----------------------------~ I PDT, CPQ Control Blocks I 

• ~-----------------------------~ IPDIT. ARM, 	 CCV Control Blocks I 
~-----------------------------~ 
I 	 I 
I Nucleus 	 I 
I 	 ILow AddressL_____________________________J 

Figure 14. 	 Real storage after paging 
device initialization and ini
tial paging area definition 

NP4APFT and 	NP4BPFT Sutroutines 

Space for the page frame table is allo
cated ty NP4APFT in the low end of the nuc
leus buffer above the area occupied ty the 
PDT. The page frame table is built by 
NP4BPFT. 

NP4RQSR2 Subroutine 

The LPA quickstart process is initiated 
if the NVTFLQS flag has been set by the 
NP4RQSR1 subroutine. The first and second 
LPA quickstartrecords are read into the 
quickstart buffer ty NPA4READ in IEAVNPA4. 
The second quickstart record is required by 
NP4BSQA. 

NP4BSQA Subroutine 

This subroutine processes the operator
specified request to increase the size of 
the SQA. The value specified by the SQA 
parameter is added to the basic size of the 
SQA to determine the new SQA size. If the 
operator specification would cause the SQA 
to extend into the quickstart LPA virtual 
storage, thus causing a coldstart of the 
LPA, the operator is requested to either 
approve the coldstart process or to cancel 
the current SQA definition. 

NP4IPVT Subroutine 

This sutroutine initializes the page 
vector table to make the paging supervision 
control tlocks available for system use. 
After using the MODESET instruction to dis
able interruptions, CVTPAGEl is set to the 
address of the DCB in the first PDIT (page 
device information table) created by 
NP4PDSEL. The PVTPDT, PVTNPDTE, and 
PVTCHPGQ fields are initialized. The 
PVTPSQA field is restored to its original 
(upon entry 	to IEAVNIPM) contents. 

IEAVNPA4 (DIAGRAM 8.0) 

IEAVNPA4 is brought into real storage ty 
IEAVNIPM and entered from the Page Initia
lization routine in IEAVNP04. It is subse
quently entered from lEAVNP04, IEAVNP05, 
and IEAVNPA5. lEAVNPA4 is deleted by 
lEAVNP05 upon completion of its execution. 
IEAVNPA4 contains subroutines that: 

• 	 Read and write quickstart records from 
and to the SYS1.PAGE data sets (NPA4
READ, NPA4WRIT). 

• 	 Allocate space in NIP's dynamic area 
for the quickstart I/O buffer 
(NPA4GBUF) • 

• 	 Initiate formatting of SYS1.PAGE data 
sets (NPA4INTF). 

Section 2: 	 Method of Operation 23 



• 	 Restart formatting of SYS1.PAGE data 
sets where a previous I/O error has 
occurred (NPA4RSTF). 

• 	 Initialize the paging tables for 
initiating the coldstart procedure for 
the link pack area (NPA4INTC). 

• 	 Determine whether a specified load 
module will fit in the link pack area 
SYS1.PAGE data set (NPA4LOAD). 

• 	 Complete the coldstart process 

(NPA4CCST). 


• 	 Build cylinder count vectors for the 
SYS1.PAGE data sets and calculate the 
available pages (NPA4BCCV). 

• 	 Release the space allocated for the 
quickstart I/O buffer (NPA4FREE). 

Each of these fUnctions is performed by 
a subroutine within IEAVNPA4. The fourth 
and fifth bytes of the parameter list 
passed to IEAVNPA4 contain bit settings 
indicating which function is requested. 

NPA4READ/NPA4WRIT Subroutines (Diagram 8.1) 

These subroutines read and write the 
guickstart records to and from the SYS1. 
PAGE data set. Because each quickstart 
record points to the next higher record 
(that is, record 1 points to record 2 
which, in turn, points to record 3), a 
request for quickstart record 2 or quick
start record 3 requires that the record 
pointing to it (quickstart record 1 and 
guickstart record 2, respectively) already 
be in the appropriate quickstart record 
buffer. 

NPA4READ and NPA4WRIT rely on common 
coding to perform the requested I/O. They 
use a predefined lOB for scheduling I/O 
requests, but rely on the DCB and its asso
ciated DEB, which are defined via the input 
DCB parameter. 

If an I/O error occurs during the execu
tion of the channel program, the NIPSENSE 
subroutine in IEAVNIPM is entered to write 
an interpretive error message. 

NPA4GBUF SUbroutine (Diagram 8.2) 

This subroutine obtains an 8K area from 
subpool 252 of NIP's nonpageable region. 
Subsequent NIP execution requires that this 
area remain fixed in real storage. This 
area is used by NPA4READ and NPA4WRIT as 
buffers into which quickstart records are 
read. Quickstart records 1 and 3 are read 
into the lower end of the area (buffer 1): 
quickstart record 2 is read into the upper 
end (buffer 2). 

NPA4FREE Subroutine (Diagram 8.3) 

This subroutine releases the quickstart 
record tuffer area obtained by NPA4GEUF and 
resets the pointers to the buffer area and 
to IEAVNPA4 (in the NVT) to o. 

NPA4INTF/NPA4RSTF Subroutines (Diagram 8.4) 

These subroutines initiate formatting, 
or restart formatting where previous for
natting was terminated because of I/O 
error, of a SYS1.PAGE data set. 

There is one channel prograrr. built for 
each paging device supported by VS2. The 
appropriate build table is determined ty 
using the device type indicator (PCTCT) in 
the page device table as a displacement to 
the addresses of the build tables within 
IEAVNPA4. The build table contains several 
entries, each of which is used to build a 
CCW for the channel program executed to 
format the page data set. 

The first two bytes in each build table 
indicate the number of CCWs required to 
format one cylinder of the device and ind
icate the number of count fields required 
by the channel program. Each of the two
tyte entries that follow this header infor
nation has the following format: 

Bit
-0

Description 
1 - This CCW is for the last 

record on the track. 
1 1 = This is the last entry in 

the build table. 
2-15 Length of the record to be for

matted by this CCW. 

There is one entry in the channel pro
gram build table for each data set record 
in one group for the device. 

NPA4ECCV Subroutine (Diagram 8.5) 

This subroutine scans the auxiliary bit 
map field in a paging device table entry 
and totals the number of available pages. 

NPA41NTC Subroutine (Diagram 8.6) 

This subroutine is entered from IEAVNPA5 
to initiate the coldstart process for the 
link pack area. Pertinent areas in the 
page vector table that may be modified are 
saved within this module (it remains resi 
dent during NIP execution). 

NPA4LOAD Subroutine (Diagram 8.7) 

This subroutine determines the number of 
pages of virtual storage required for the 
specified module and whether there are 
enough pages available in the LPA page data 
set to contain the module. 

J 


... 

24 



NPA4CCST Subroutine (Diagram 8.8) 

This subroutine reinitializes page vec
tor table fields to their original contents 
upon entry to the NPA4INTC subroutine. All 
pages currently in use by LPA modules are 
forced out of real storage, and the quick
start records are updated.

• 
IEAVNPOS (DIAGRAM 9.0) 

This module is also entered from IEAV
NIPM. It defines the pageable link pack 
area either completely via the coldstart 
process, or uses a previously initialized 
LPA via the quickstart process. Quickstart 
records are written to the LPA SYS1.PAGE 
data set during a coldstart. Pageable LPA 
modifications, fixed LPA modifications, and 
the system BLDL table are optionaily pro
cessed. IEAVNPOS is also responsible for 
freeing the quickstart buffers obtained by 
IEAVNPA4 and for deleting IEAVNPA4. 

NPSQSLPA Subroutine (Diagram 9.1) 

This subroutine uses data in the quick
start records to define the LPA page tables 
and external page tatles. If this subrou
tine cannot be executed successfully, the 
coldstart process must be entered. 

NPSCSLPA Subroutine (Diagram 9.2) 

This subroutine attaches the ~odule IEA
VNPAS, which contains subroutines to per
form requested coldstart functions. The 
interaction between IEAVNPOS and IEAVNPAS 
is maintained by waiting and posting indi
cations of segment processing completion 
(ECBS). NPSCSIPA uses internal subroutines 
and subroutines within IEAVNP05 to open the 
SYS1.LPALIB, initiate the coldstart pro
cess, and process modifications to the 
fixed link pack area and the system BLDL 
table. 

NPSVTCB 	 Subroutine (Diagram 9.3) 

This subroutine is entered to establish 
and to terminate the relationship between 
IEAVNP05 and IEAVNPA5. The subroutine NIP
LOAD in IEAVNIPM is used to bring IEAVNPA5 
into NIP's nonpageable region. After the 
module is loaded, an ATTACH macro instruc
tiOn is issued to create IEAVNPA5 as a .job

.. 	 steptask. Subsequent entries to IEAVNPA5 
are made via the NP5POST subroutine, which 
posts the ECB specified by IEAVNPA5 and 
issues a WAIT macro instruction specifying 
an ECB for IEAVNP05. Control returns when 
the ECB for IEAVNP05 is posted by IEAVNPA5. 

When entered to terminate the relation
ship, NP5POST reenters IEAVNPA5, which 
releases the previously allocated BLDL save 
area. Upon return, NP5POST issues an SVC 9 

instruction to delete IEAVNPA5., releases 
storage and control blocks allocated to 
IEAVNPAS, and causes the attached TCB to be 
removed from the task queue and the suttask 
queue for the job step. 

NPSLPLIB Sutroutine (Diagram 9.4) 

This subroutine is entered to o~en the 
SYS1.LPALIB data set so that modules can be 
loaded from it into the link pack area. 
NP5LFLIB issues a LOCATE macro instruction 
to determine whether SYS1.LPALIB is defined 
in the system catalog. If the correct 
entry is found, the NIPMOUNT subroutine in 
IEAVNP02 is used to ensure that the voluIre 
is mounted and online. Upon return, the 
NIPOPEN subroutine in IEAVNP02 is used to 
open the data set. This request is condi
tional so that any error encountered during 
the operi processing will not cause a system 
wait. Failure to open SYS1.LPALIB is indi
cated to the operator via a warning mes
sage, and to the calling routine via a 
return code of 4. Successful opening of 
the SYS1.LPALIB is indicated by setting 
NVTCSLIB to the address of the LPALIB DCB. 

NPSMLPA 	 Subroutine (Diagram 9.S) 

This subroutine is invoked uncondition
ally for both quickstart and coldstart pro
cessing to load LPA modules into the page
able LPA whenever the MLPA parameter in the 
PARMTAB has a nonzero entry. The MLPA 
pararr.eter gives the names of the SYS1. 
PARMLIB members (IEALPAxx) that contain the 
names of the modules to be added. The 
NPSVTCB subroutine is entered to attach the 
pageable task IEAVNPAS, which performs pro
cessing common to both quickstart and 
coldstart. The subroutine NPSMLPRM is used 
to load the specified modules one at a 
time. The C£Es for the loaded modules are 
removed. from the pageable TCB and placed on 
the active LPA queue by the NPSQLPAQ 
sutroutine. 

NP5BLDLP subroutine (Diagram 9.6) 

This sutroutine is invoked uncondition
ally whenever the BLDL parameter in the 
PARMTAB has a nonzero value. The BLOL 
parameter gives the name of the SYS1. 
PAR~LIB member that contains the names of 
the modules to be included in the BLOL 
table. The valid Irodule names in the para
Ir,eter string are used to create a BLOL 
table in the nucleus buffer. NP5BLDLP 
issues a BLDl macro instruction when the 
table has been completed. The pageable 
task (IEAVNPA5) is activated, if not alrea
dy active, via the subroutine NP5VTCB and 
entered to move the BLDL table to the area 
below the pageable LPA. NP5BLDLP places 
the address of the pageable BLDL table in 
the nucleus-resident BLDL SVC routine 
CIGC018) • 

Section 	2: Method of Operation 25 



NP5BLMQ Subroutine 

This subroutine builds a load module 
queue for IEAVNPA5 based on the LPA packing 
list member of SYS1.PARMLIB. 

IEAVNPA5 (DIAGRAM 10.0) 

This module is executed as a subtask of 
IEAVNP05 and performs its fUnctions as a 
~ageable task. Interaction between 
IEAVNP05 and IEAVNPA5 is governed by the 
use of WAIT and POST macro instructions 
s,pecifying ECBS related to the modules. 
That is, when lEAVNP05 requests a function 
of IEAVNPA5, the pageatle ECB for IEAVNPA5 
is posted, and IEAVNP05 issues a WAIT macro 
instruction specifying the nonpageable ECB. 
When the requested fUnction has been com
~leted, IEAVNPA5 posts the nonpageable ECB 
for IEAVNP05 and issues a WA·IT macro 
instruction specifying the pageable ECB. 
IEAVNPA5 is activated (attached) only if 
initialization is required for coldstart 
processing, if the MLPA option was 
selected, or if the BLDL option was 
selected. 

Upon initial entry, a conditional GET
MAIN macro instruction specifying 16 mill
ion bytes is issued to allocate all of vir
tual storage in the pageable region to lEA
VNPA5. This allows IEAVNPA5 to control 
allocation within the pageable region by 
issuing subsequent FREEMAIN macro instruc
tions for specific storage locations. A 
second GETMAIN macro instruction allocates 
64 bytes from subpool 255 of the SQA for 
BLDL entries initialized by IEAVNPA5. A 
skeleton BLDL header, which defines the 
single BLDL entry as 60 bytes, is moved 
into this area. After initial processing, 
control is returned to IEAVNP05 by posting 
the nonpageable ECB. 

NPA5MLPA Subroutine (Diagram 10.1) 

This subroutine loads specified modules 
into the pageable LPA. The BLDL entry 
pointed to by NVTVRBLD is moved to the BLDL 
entry in the SQA, which was allocated by 
the NPA5INIT subroutine within IEAVNPA5. 
The NPA5ADDR subroutine is used to deter
mine the address at which the specified 
module will be loaded. The nonpageable ECB 
is posted so that IEAVNP05 can continue 
execution. Upon return of control from 
lEAVNP05, NPA5MLPA uses NPA5LOAD to load 
the module into the LPA. 

NPA5BLDL Subroutine (Diagram 10.2) 

This subroutine allocates storage in the 
pageable area for the system BLDL table and 
moves the BLDL table (rom its temporary
location in nonpageable storage. The NPA
5ADDR subroutine determines the address to 

26 

which the BLDL table should be moved and 
rroves the table to the newly allocated 
storage. The fields CVTSHRVM and NVTBIDL 
are reset to the address of the BLCL table. 

NPA5CLPA Subroutine (Diagram 10.3) 

This subroutine is entered to perform a 
coldstart process for the LPA. The NPA- • 
4INTC sutroutine in IEAVNPA4 is invoked to 
ititialize PVT fields that will be used 
during the coldstart process. 

NPA5CLPA calls the IEAVNPA5 subroutines; 
NPA5CLIN, NPA51GRP, NPA5LIND, NPA5ALIS, and 
NPA5EDIR to build the LPA. NPA5CLPA then 
calls the IEAVNPA4 subroutine NPA4CCST to 
complete the coldstart process. 

NPA5TERM Subroutine (Diagram 10.4) 

This subroutine releases the real 
storage allocated during the initial execu
tion of IEAVNPA5. The pageable region is 
not released, since this would release the 
~ages assigned to the pageable LPA and/or 
BLDl table. The pageable region space is 
released by IEAVNP05 when the subtask (IEA
VNPA5) is removed from the system. 

NPA5CLIN Subroutine 

This subroutine constructs the ELDL 
information table and determines the hash 
value. The ELDL information table (INFOCA
TA) contains flag tits and information 
ext~acted from the LPALIB directory. It is 
used to reconstruct a BLDL entry when load
ing a module. 

NPA5LIND Subroutine 

This subroutine loads independent 
modules (those not loaded by NPA5LGRP). 
When it can, which is most cases, NPA5LIND 
tries to load the independent modules into 
pages which are not completely full. NPA5
LIND keeps track of these spaces with a 
"wasted spaceR table and a two-page area 
allocated above the BLDL information table. 
The wasted space table has the size of the 
space and a pointer to a 3-word entry in 
the two-page area. The 3-word entry con ...
tains: the size of the space, the address 
of the space in the LPA, and a pointer to 
the next ,largest space entry. 

NPA5ALIS Subroutine 

This subroutine constructs LPDEs for all 
module aliases. 

NPA5BDIR Subroutine 

This subroutine builds a permanent link 
pack area directory. 



NPA5LGRP Subroutine <Diagram 10.5) 

This subroutine loads a group of modules 
specified by the LPA packing list. 

IEAVNP06 (DIAGRAM 11.0)• 
IEAVNP06 contains the initialization 

routines for the RAS (reliability and ser
viceability) features of VS2 and processes 
the DUMP and TRACE system pararreters. 

IEAVNP06 contains a control routine that 
branches sequentially to four separate pro
cessing routines. The control routine con
tains sequential calls to the four proces
sor routines. Each of the four processors 
initializes a separate RAS feature. 

The four RAS functions initialized by 
IEAVNP06 are: 

1. 	 DSS <Dynamic Support Systao) (for 
planning purposes only) 

2. 	 SVCDUMP (SYS1.DUMP data set is opened) 

3. 	 RMS (Recovery Management Support), 
consisting of CCH (Channel-Check 
Handler) and MCH (Machine-Check 
Handler) 

4. 	 TRACE (system trace table is defined 
and initialized) 

NP6DSS Subroutine (Diagram 11.1) 

NP6DSS locates and prepares the DSS task 
for initialization. It locates and open~ 
the SYS1.DSSVM data set and uses the rou
tine IEAQCDSR and IEAVVMSR to obtain the 
address of the LPA-resident DSS initializa
tion routine, IQAINIOO. NP6DSS places the 
address of IQAINIOO in the PSW in the PRB 
pointed to by the DSS TCB. At completion 
of DSS initialization, NP6DSS returns con
trol to the IEAVNP06 control routine. 

NP6DMP Subroutine (Diagram 11.2) 

NP6DMP analyzes the DUMP system paramet
er, and locates and opens the SYS1.DUMP 
data set for use by the SVCDUMP routine •• 	 NP6DMP determines whether the SYS1.DUMP 
data set is to go on a tape or a direct 
access device. NP6DMP opens the data set 
and returns control to the IEAVNP06 control 
routine. 

NP6RMS SUbroutine <Diagram 11.3) 

NP6RMS issues the RMS macro instruction 
IGFVNIP, which initializes the MCH and CCH. 
At completion of RMS initialization, NP6RMS 
returns control to the IEAVNP06 control 
routine. 

NP6EXCF 	 Subroutine 

NP6EXCP is a generalized I/O routine 
used by NP6DMP to read record 1 and write 
end-of-file in record 1 of the SYS1.DUMP 
data set. NP6EXCP initializes the lOB, 
clears the ECB, and issues an EXCP instruc
tion. A WAIT macro instruction is used to 
wait for the 1/0 to complete. When I/O is 
complete, NP6EXCP returns control to 
NP6DMP. 

NP6TRA Subroutine (Diagram 11.4) 

NP6TRA analyzes the TRACE system para
rreter and defines and initializes the sys
tem trace table. The nucleus initializa
tion program defines two trace tables, a 
temporary trace table defined by IEAVNIPO 
and the permanent system trace table 
defined by IEAVNP06. The permanent system 
trace table is defined in the last storage 
allocated in the nucleus buffer by NIP. 
This takes adVantage of space that would 
otherwise be wasted when the resident nuc
leus is rounded up to a 4K boundary. The 
entries in the temporary trace table are 
moved into the perrranent trace table during 
trace table initialization. Both the tem
porary and perrranent trace tables are con
structed Similarly and consist of a vari 
able number of 32-byte entries. The number 
cf entries in the temporary table is speci
fied during system generation, while the 
permanent table size may be specified eith
er during system generation or during nuc
leus initialization. Each entry contains 
information about an event (most often an 
interruption) and is recorded by the system 
at the time the event occurs. 

Three fullword pointers, which occupy 
the 12 bytes preceding the first entry, 
define the dimensions of the trace table. 
The first pointer, which is located through 
fixed storage location X'54' (FLCTRACE) and 
a secondary CVT pointer (SCVTRACE), points 
to the current or most recently recorded 
entry. The second pointer points to the 
first (lowest storage address) entry in the 
table, and the third pointer points to the 
highest entry in the table. 

Entries are made in ascending order in 
the trace table, beginning with the lowest 
address. When the highest entry area in 
the table is filled, the next entry is made 
in the lowest address space, overlaying a 
previous entry. 

NP6MCVE 	 Subroutine 

This is a comrron routine used to move 
variable-length areas of storage in incre
ments of 256 bytes or less. 

Section 	2: Method of Operation 27 

L 



IEAVNP07 (DIAGRAM 12.0) 

lEAVNP07 is entered from IEAVNIPM pri 
rr,arily to process the HARDCPY and PAL sys
tem parameters. IEAVNP07: 

1. 	 Defines the unit that is to be used as 
the hardcopy log for console messages 
and/or displays. 

2. 	 Defines the location of LPA-resident 
DCMs (display control modules) that 
are used by the graphic console sup
port processors to buffer display 
images for individual consoles (graph
ic consoles only). 

3. 	 Defines the limit and threshold values 
for the paging supervisor algorithms. 

4. 	 Locates the SVC OPEN Router in the 

LPA. 


5. 	 Tests tor the presence of the 
extended-precision floating-point fea
ture (except divide). 

NP7HDCPY Subroutine (Diagram 12.1) 

NP7HDCPY analyzes the HARDCPY parameter 
and identifies the console or system log 
data set to be used for the hardcopy log. 

NP7HDCPY alerts the operator if the HAR
DCPY parameter was specified incorrectly, 
if the hardcopy console is not available 
(console was offline during IEAVNPOl con
sole initialization), or if the specified 
device address does not represent a unit 
that was defined during system generation 
as a console with hardcopy capabilities. 
If the NP7HDCPY routine prompts the opera
tor to specify HARDCPY, the operator is 
permitted to continue the pararreter speci
fication to a second line. 

NP7PDCM Subroutine (Diagram 12.2) 

NP7PDCM identifies the pageable DCM 
(display control module) addresses for dis
play consoles (2250, 2260, 3270, 3155, and 
3060). The DCM addresses are defined in 
the nucleus for later use by the communica
tions task. When the last UCM entry has 
been examined, NP7PDCM returns control to 
the IEAVNP07 control routine. 

NP7LPAFN (Diagram 12.3) 

This subroutine is called by NP7PDCM and 
NP70TEST to search the LPA for a specified 
module. Preference is given to a rr,odule 
found in the fixed LPA or the LPA update 
area (sometimes called LPlI modifications). 

NP7PAL Subroutine (Diagram 12.4) 

NP7FAI analyzes the PAL (paging 
algorithm limit) system parameters speci
fied via the SYSP paraIl'eter or l:y the 
cperator and establishes paging supervision 
limits and threshold values. NP7PAL, 
optionally, displays the PAL subparameter 
values that result froIT the analYSis and 
allows the operator to respecify the PAL 
parameter. 

NP70TEST Subroutine 

NP70TEST determines whether the SVC OPEN 
Router (IGFOI9RA) is in the link pack area. 
If found in the LPA, its entry address is 
stored at CVTD~SR. If not found in the 
LPA, the operator is notified, and the sys
tem is put in a disabled wait state 
(X'3E'). 

NP7EPFP Subroutine (Diagram 12.5) 

This subroutine tests for the presence 
of the extended-precision floating-point 
feature (except divide) in the hardware. 
The divide capability is not normally pre
sent in System/370 CPUs and the Model 145 
may lack the other floating-point features. 
~hus, it is necessary to place in the CVT 
an indication of the extended-precision 
floating-point capabilities of the CPU. 

IEAVNIPX 

IEAVNIPX is the last module to receive 
control during VS2 initialization. It: 

• 	 Cefines the upper limit of the area 
which may be assigned to nonpageable 
jobs (NPXREAL). 

• 	 Defines the task dispatcher's APG 
(automatic priority group) (NPXAPG). 

• 	 Defines the task dispatcher's time
sliced prioity groups (NPXTMSL). 

• 	 Cefines quickcell areas (NPXQCELL). 

• 	 Cefines the master scheduler region 
(NPXMPA) • 

• 	 Establishes limits on use of auxiliary 
storage by TSO and background tasks 
(NPXMPA1) . 

• 	 Releases NIP buffer space in the SQA 
(NPXFBUF). 

• 	 Releases control blocks for NIP-loaded 
modules (NPXFJPQ). 

• 	 Defines available address space 

(NFXFAREA). 


• 

J 


28 



• 	 Defines the master shceduler's LSQA 
(NPXMLSQA). 

• 	 Defines available page frames 
(NPXPFTAQ) • 

• 	 Defines shared subpool 0 for the master 
scheduler and communications task 
(NPXMCSPO). 

• 	 Releases NIP's trap on ABEND 
(NPXRTRAP) • 

• 
• 	 Resets the dynamic address translation 

tables and exits to the master schedul
er initialization program (NPXRDAT). 

IEAVNIPX processes the APG, TMSL, MPA, 
REAL, SQACEL, LSQACEL, TSOAUX, and AUXLIST 
system parameters. 

IEAVNIPX Control Routine (Diagrarr 13.0) 

The Control Routine organizes NIP exit 
processing by sequentially invoking the 
various exit subroutines. 

NPXREAL Subroutine 

NPXREAL interprets the REAL system para
meter, defines the nonpageable dynamic 
area, and ensures that the number of non
pageable pages being defined does net con
flict with the previously defined NFX= sub
parameter of the PAL= parameter. 

NPXREAL locates, via PARMTAB, the REAL 
parameter input and ensures that the value 
is not too large. NPXREAL determines the 
new upper boundary of the nonpageable area 
and stores it at CVTREAL. NPXREAL also 
stores the index of the PFTE that corres
pon~s to the page containing the high non
pageable address in the PVT at PVTVEQR. 

If the REAL parameter is incorrect, 
NPXREAL informs the operator by calling 
NIPWTOR to send a message. The operator 
may respecify or cancel. If he respecifies 
it, it is processed as above; if he cancels 
it, NPXREAL attempts to use a system
assigned value, as described below. 

If the REAL parameter is not specified, 
the nonpageable dynamic area is set to 64K • • If this area cannot be contained below the 
minimum system paging/SQA space, the NIPS
WAIT routine (in IEAVNIPM) is entered to 

« place the system in a disabled wait state 
(X'3a'). A message is first issued indi
cating that storage is not available for 
the nonpageable area. 

NPXAPG Subroutine (Diagram 13.1) 

NPXAPG interprets the APG system para
meter and defines or cancels the task dis
patcher's automatiC priority group. 

NPXTMSL Subroutine (Diagram 13.2) 

NPXTMSL interprets the TMSL system para
meter and defines or cancels the task dis
patcher's time-sliced priority groups. 

NPXQCELL Subroutine (Diagram 13.3) 

NFXQCELL interprets the SQACEL and LSQA
CEL system parameters and defines the quic
kcell areas for SQA or LSQA, or both. 

NPXMPA Subroutine (Diagram 13.4) 

NPXMPA interprets the MPA system para
rreter, which allows address space, in 64K 
segments to be added to the master schedul
er region (128K bytes by default) and 
defines the virtual address space dedicated 
to the master scheduler region. 

NPXMPAl Subroutine (Diagram 13.5) 

NPXMPAl is called by NPXMPA to interpret 
the TSOAUX and AUXLIST system parameters 
and to establish limits on background and 
TSO use of auxiliary storage. 

NPXFBUF Subroutine 

NPXFBUF releases the storage occupied by 
the NIPSPE queue in SQA. NPXFBUF calls 
FREEMAIN to free each NIPSPE on the NIPSPE 
queue except the one in the NVT. 

NPXFBUF invokes the IEAVNIPM subroutine 
NIPWTOR2 to release any dynamically 
acquired SQA reply buffers. NIP buffers in 
NIP's region space are released when the 
dynamic area is redefined by the NPX~PA and 
NPXFAREA routines. 

NPXFJPQ Subroutine (Diagram 13.6) 

NPXFJPQ purges programs loaded by NIP 
that still remain on NIP's TCB job pack 
queue. The purge is logical only, since 
the CDEs and LLEs representing these pro
grams are dequeued and the storage the CDEs 
and LLES, occupy is released while the 
storage the programs occupy is not released 
until available storage is redefined by the 
NPXFAREA routine. 

NPXFAREA Subroutine 

NPXFAREA defines the pageable and non
pageable address space that is available 
for later region and LSQA allocation. 

NPXFA~EA redefines the nonpageable PQE 
and FBQE to include the address space iden
tified by NPXREAL beginning at the top of 
the nucleus. NPXFAREA updates the pageable 
PQE and FBQE to reflect address space 
beginning at the end of the nonpageable 
dynamic area and extending to the low 

Section 2: Method of Operation 29 



address of the master scheduler region 
identified by NPXMPA. 

NPXMLSQA Subroutine (Diagram 13.7) 

NPXMLSQA allocates the single-segment 
LSQA related to the master scheduler 
region. This is done by means of a special 
interface to virtual storage supervision 
that is used only by NIP. The special 
interface is needed because NIP defines the 
LSQA without a TCE. This action prevents 
wasting space for a duplicate and unused 
TCB. 

NPXPFTAQ Subroutine (Diagram 13.8) 

NPXPFTAQ scans the paging supervisor's 
PFT (page frame table) and adds NIP's non
pageable area to the available PFT queue. 
NPXPFTAQ moves to the available queue all 
page frames that are assigned to a nonpage
able region. 

NPXMCSPO Subroutine (Diagram 13.9) 

NPXMCSPO defines the master scheduler 
subpool 0 as shared with the communications 
task. This allows the communications task, 
~hich is defined without a region, to 
acquire storage in the master scheduler 
region. 

NPXRTRAP Subroutine 

NPXRTRAP restores the SVC table entry 
for ABEND (SVC 13) to its original contents 
upon entry to NIP. 

NPXRDAT Subroutine (Diagram 13.10) 

NPXRDAT sets up the input parameters for 
the master scheduler Initialization program 
IEEVIPL, resets the dynamic address trans
lation tables, and terminates supervisor 
initialization by issuing a LINK macro 
instruction to IEEVIPL. 

J 


• 

• 

• 

30 



• 


r 

t 
I 
I 

\ 
~ 


• 



IV 
\,oJ 

Input 

Location X'OB' 

[ Nu~'e~me--sVffiXJ4-

Location X'09' 

Real storage size 
indicator 

location X'02' 

Add reS$ of I Pl 
device for 
SYS1. NUCl EUS 

From location X'QQ' PSW 

Processing 

IEAIPlOO 

Build nucleus member name (lEANI)COX). 

.-- 2 Determine effective (operator-specified) 
__ ...I size of real storage. 

3 Clear reol storage up tc effective size. 

4 	 Set storage keys for all 2K-multiple 
blocks to O. 

5 	 Create (SECT size table I address table, 
and relocation factor table. 

6 	 Relocate unexecuted IEAIPlOO code above 
nucleus location and clear nucleus location 

from X'80'. 

7 	 Read in nucleus and relocate nucleus 
address constants. 

8 	 Load parameter registers and branch to 
location X'16C'. 

Diagram 1.0: IEAPllOO 
Initial Program load 

Output 

[=========:====~=~ Device address of IPLv1 volume 

[========~~===~::::::::~ Address of translationv"1 table 

r==!==:>I Add,e" of IPLDATA 

I 

~ Addres.s of nucleus 
.---.---v1 CSECT size table 

IEAVNIPO 
Diagram 2.0, Step 1 ~ Effective size of real 

~~ 

~ Addres.s of end of 
~ resident nucleus 

~ Address of nucleus 
.---.---v1 CSECT odd,e" loble 

I ~	Number of nucleus 
CSECT, 

,. l, 
-- ....----...,__ a... 	 ____ >-- .~~ '-' • • 	 '-' 



-- - -

_______________________________________ 

~---' ..r • r 	 r 

Diagram 1.0: IEAIPLOO
r---------------------------------------T----------l r---------------------------------------T----------l
I Notes on Processing \ Label \ \ Notes on Processing 	 \ Label I 
~---------------------------------------t----------~ .---------------------------------------+----------~ 

1. 	 The EBCDIC character at location \IEASTAR1 4. A Set Storage Key instruction is IIEAMXLOC 
X'OS' is a suffix appended to used in a loop to set the storage 
"IEANUCO- to form the nucleus keys for all 2K-multiple blocks to 
member name. The system assigned O. 
character "1- may be replaced by 
the operator by setting an address 5. The halfword at location X'02' is IIEAPCKEY 
stop at location X'80' before pre- used to determine the location of 
ssing the LOAD button. When the the device that contains the nuc
address stop is reached, the leus data set (SYS1.NUCLEUS). 
o~erator overlays the -1" with the 
desired EBCDIC character. 6. The coding in IEAIPLOO beginning IIEAADDRS 

at label IEADATDS is relocated 
2. 	 The contents of location X'09' are above the area to be occupied cy 

used to determine the effective the nucleus. Control is passed to 
size of real storage. Using the the relocated coding which sets to 
address stop procedure described o the area from which it was 
in Step 1, the operator mayspeci relocated. 
fy that effective real storage 
size is to be less than the real 7. The text records of IEANUCOx are IIEARD1 
storage size. One of the follow read into the low end of real 
ing hexadecimal values must be storage (see Figure 3). 
inserted in location X'09': 

S. Location X'16C' contains an LPSW IIEAOUTCD 
X'A7' - 192K, X'AS' - 34SK, instruction that s~ecifies the PSW 
X'C6' - 64K, X'C7' - 12SK, at location X'170'. This PSW spe-
X'CS' - 256K, X'C9' - 512K, cifies the entry point in IEAV
X'DO' - 76SK, X'D1' 1024K L_______________________________________ the first NIP ~\ __________J-	 NIPO, module. \ 

I 
I 3. The real storage area acove IEAZRLP3en 

(I) 	 IEAIPLOO is set to 0 by a Move n I
IL Character instruction in a loop. L __________rt.... 

o 
::s 
IV 

:I: 
(I)

g: 
o 
Ilo 

o 
HI 

o 
'0 
(I) 
11 
£II 
rt .... 
o::s 

w. 
w 



w Diagram 1.0: IEAPILOO (Cont'd) 	 z 
rt 

~ r---------------------------------------T----------, r---------------------------------------T----------, 
o 
(1)I Notes 	on Processing ILabel I I Notes on processing ILabel I en 

.---------------------------------------+----------~ ~---------------------------------------+----------~ 
Error conditions that can occur during X'06' The CSw stored after a TIO I ERRCSW '" 
execution of IEAIPLOO result in a operation indicates that a I (CSWTST) 
disabled system wait state with the program check, channel data I 
appropriate wait state code displayed 	 check, channel control check, I 
in the lights on the CPU control panel 	 channel chaining check, or I 
and stored in the address portion of 	 interface control check I 
a current 	PSW. The wait state codes occurred. I 
are: I 


X'OC' The active nucleus member I ERRSCTR 

X'Ol' First Test I/O instruction IEAERR1 IEANUCOx is not edited in I (IEANONPM) 


indicates that I/O is not (IEAIOTST) scatter format and cannot be 
 I 
operational. 	 loaded by IEAIPLOO. I 

I
I X'02' 	 An I/O instruction could not ERRSI02 X' OE' The SYS1.NUCLEUS data set or ERRNUC 

be started; a start I/O (IEASTRIO) the active nucleus member (IEACOMPR) 
instruction resulted in a CSW I IEANUCOx was not found on the (SENSE) 
being stored for reasons other I IPL volume on the device spe
than unit busy (CU tusy or CU I cified by the address in tytes 
end). X'02' and X'03'. The nucleus 

cannot be 	loaded by IEAIPIOO. 
X'03' 	 An I/O operation could not be ERRSI03 


started; the CSW was not (IEASTRIO) I X'17' A unit check occurred follow- I ERRSNS 

stored. ing a successfully started 1/01 (SENSE) 


operation (either a Sense I/O 
X'04' 	 The CSW was not stored follow-I ERRTIO or an attempt to read the home 


ing an SIO/TIO sequence; chan-I (IEATSTIO) address and record 0 of a 

nel was not busy. track that previously caused a 


track condition check). 
X'OS' 	 A unit check occurred follow ERRUCK 


ing a successfully started I/O (SENSE) X, 18' Available space for nucleus IEAERR8 

operation. The unit check was (SNSPRCO> RLD records has been exceeded; (IEABIDRL) 

not caused by a track (ECFMERFX) there is insufficient space to 

condition check, a file mask load IEANUCOx. 

violation/end of track, or an 

end of cylinder. The first I X'19' An unexpected program check 

four bytes of sense data are I occurred. IEAIPLOO has not 

end of cylinder. The first I (ECFMERFX) finished loading the resident 

four bytes of sense data are I nucleus. Either IEAIPLOO is 

saved at location X"Sq"; the I in error or the storage in 

address of the failing CCW I l _______________________________________~__________ 
which it resides is failing. 
string is saved at location I 

~Il _______________________________________X, 4C' • 	 I __________ 

\., 	 l,'-' .. • 	 .. 



• 

.. 

• 




W Diagram 2.0 (1 of 3): IEAVNIPO 
0\ Initial NIP Processing 

From Diagram 1.0, 
Step 8 

Input 
....... 


IEAVNIPO.,.
Register 7 

IAddress of end of nuc reus I+- - -- 1 Ensure that IEAVNIPM was found in Not found NVT
System WAIT 

SYS1.NUCLEUS by IEAIPLOO. 
X'32' 

Register 6 
NVTTRACEIEffective real storage size f4-- --- 2 Initialize NIP vector toble and 

communications vector table. 

NVT 
NVTNUCND 

NVTMSTCB ---I 
CVT 

;, 
Real Storage Location X' 1O' 

CVTEORMIAddress of CVT ~ t,' "/'; . 
Less then CVTNUCB 

3 Ensure that 16 pages are available for 16 pages 
System WAITnucleus buffer end initiol paging space. f,H:. ."•.ti"i;;··~
X'38' 

CVTNUCLS 

,.;),:,i".: ''':" 
NVT 

I';·' ::,;J.;;,i,r 
NVTIPGNO 

~'i:":,/;;:,.;:~4 Define real storage areas above the 
nucleus (see Figure 4). NVTVVPGl 

r~y/I~' .;,~~S;~ 

CVT 

i I.;... '·:.'.·.~i~ 
CVTNUCB 

";;'~·;<~K.;;" 
Register 10 

CVTREALIAddress of IPL device J4-- - -- 5 Initialize UCB of IPL device. IOSGEN 
'~.: ..·::;,r~ 

F;nd IPL UC8 

UC8 not foundI . System WAIT 
X'31' 

--- 6 Initialize SYS1.NUCLEUS DCB. IECPRLTV 

CCHH to TTR 
conversion 

(Continued at Step 7) 

Address of IPLDATA 

IPLDATA 

" 
 _ A"::":c.• '-' • '-'
-""""'" -~ ~.,..-.... 



~- =-:::; 	 -0 \!!!!II' 

• • 	 ..r' r 	 r 

Diagram 2.0: IEAVNIPO 	 r---------------------------------------T----------,r---------------------------------------T----------, I Notes on Processing 	 ILabel j 
I Notes on processing 	 ILabel I ~---------------------------------------+----------~ 

9. 	 The temporary page frame table is~---------------------------------------t----------~ 
1. 	 IEAVNIPO exists immediately above IIEAVNIPO built at the top of the nucleus 

the nucleus if IEAVNIPM was found buffer and contains PFTES (page 
in the SYS1.NUCLEUS data set. frame table entries) for each page 

in the initial SQA. These PFTEs 
The highest four pages in real are initialized with the virtual 
storage are allocated to the sys block numbersi the first and last 
tem queue area. An SOK portion of block numbers are placed in the 
the area between the nucleus and page vector table in the nucleus. 
the SQA is allocated to NIP as a The apparent PFT address is set to 
dynamic execution area. The area the real storage address where the 
not allocated to NIP or SQA is first PFTE would exist if there 
divided equally between the nuc were PFTEs for real storage page 
leus buffer as subpool 251 in frames. 
NIP'S region (adjacent to the nuc
leus) and the initial paging space 10. The number of trace table entries 
(adjacent to the SQA). is zero if the TRACE option was 

not 	selected during system 
5. NPOUCBLK 	 generation. 

6. 	 IPLDATA is described in Section 5. 11. The trace table is defined at the 
high end of the nucleus buffer 

7. 	 The four pages allocated to the NPOSQINT (beneath the page frame table). 
SQA in Step 4 are initialized as 
Shown in Figure 5. Until the t12. The system segment table and pag~ INPOATINT 
pageable storage space is defined tables for all of real storage arelNPOSTELPI 
(by IEAVNP04), all requests for I defined in the upper area of the INPOVRUN 

I ISQA must be satisfied form the 	 SQA (see Figure 6). No external 
CJ) minimum four pages. A trap rou	 page table entries are built 
(1) I 	 I 

tine and a system wait state are because no areas represented by 
rt defined in IEAVNIPM to terminate the system segment table are 
o I 	 I 
..... I 	 I 
o 	 initialization if the SQA is paged. Space is reserved between 
ij I 

I 	
I 
Iexhausted. the system segment table and the 

N first (SQA) ,page table for theI 	 I
I S. The entry in the SVC table for SVCI user segment table which will be 

I 13 is replaced with the address ofl defined during IEAVNIPX execution.
if I the ABEND trap routine within lEA-I All page table entries for real; I VNIPO (label NPOABEND). This rou-I storage between NIP's region and 

o a. 	 I tine processes unexpected ABEND I the SQA are flagged as invalid, 
conditions and causes a system I and corresponding segment tableo I 

HI I 	 wait state (X'30'). I I entries are flagged asL______________________________________-L__________~ 

o 	 L_______________________________________page-table-not-defined. ~__________ 
"d 
(1) 

H 
PI 
rt ..... 
o 
t:I 

w...., 



• • • 

w 	 Diagram 2.0 (2 of 3): IEAVNIPO 
CD 

Initial NIP Processing 

Input 	 Processing 

Register 6 

Effective real storage Initialize the system queue area.--,- 7
size 

I 
I 
I 
I 

I 


__J 

8 	 Modify SVC toble to intercept abnormal 
termination conditions. 

CVT 

- T - - - 9 ,";,.,;~~. ,,- ,~,. """ •••4
vector table. 

I 

NVT I r - 10 Determine whether trace option was Not se lected 


I I selected. • 12 


J i 1" In;tial;ze trace table.-,-" I 
Table exceeds 
nucleus buffer System WAIT 

---~ 	 X'38' 
I ___ ..J 

-	 - - - -- 12 Define initial system segment table and 
SCVT page tables (see Figure 3.3), 

~RPTR'~ 
13 	 Replace system-generated program-check Real storage location X'68' 

PSW with X'34' wait stote PSW . I ~ ;~.iiJ 

(Continued at Step 14) 

~ 	 l, • l, 




• • • r • r 	 r 

Diagram 	2.0: IEAVNIPO (Cont'd)
r---------------------------------------T----------, r---------------------------------------T----------,
I Notes OIl Processing ILabel I I Notes 	on Processing ILatel I 
~---------------------------------------+----------~ .---------------------------------------+----------~
13. 	 This causes a system wait state I I X'32' IEAVNIPM was not found in the INPOERR32 

(X'34') when a System/370 instruc-I I SYS1.NUCLEUS data set. Bits 
tion or an instruction that I I 36-47 of the current (wait 
requires the dynamic address tran-I I state) PSW contain X'7D4' (the 
slation feature is executed on a I I last 12 bits of the EBeCIC 
system that does not include this I I narre "IEAVNIPM"). 
featUre. I I 

I X' 33' An I/O error occurred during NPOERR33 
Error Processing I BIDL processinq. Bits 36-47 

of the current (wait state) 
Abnormal error conditions result in a PSW contain X'7D4' (the last 
disabled system wait state with one of 12 bits of the EBCDIC name 
the following codes being stored in "IEAVNIPM"). I 
the address field of the current PSW I 
(bits 56-63): X'34' 	 An instruction that requires I 

the dynamic address transla I 
X'30' 	 An unexpected ABEND request tion feature has been executed I 

has occurred. The system com on a CPU that does not include I 
pletion code is found in bits this feature. I 
36-47 of the current (wait 
state) PSW. X'3S' There is insufficient real 

storage for VS/2 to be initia-
L.________ 	 NPOERR3.~~~ed by NIP. 	 IX'31' The IPL volume resides on a INPOERR31 ________ ________________~I__________JI 

unit for which no UCB was 
. found.l _______________________________________~__________ 

en 
(1) 
n 
rt".... 
o 
::s 
N 

~ 

~ 
0
n 
c. 
o 
HI 

o 
'l'1 
~ 
1'1 
III 
rt" .... 
o 
::l 

W 
\Q 



o 
~ Diagram 2.0 (3 of 3): IEAVNIPO 

Initial NIP Processing 

Processing 	 Output 

CVT 

[," 
14 	Store model number. CVTMDL 

~." 
15 	Format control registers 0 and 1. 

16 	Set CPU timer and clock comparator to 
prevent timer interruptions. 

17 	 Load PSW to enter EC (extended control) 
mode. 

,<eol storage location X'68'18 	 Restore system-generated program-check 
new PSW. ~.. 

19 Load IEAVNIPM. 	 - BLDL 

Reod PDS 
~ 

I 
LOAD 

...... 
Register 1 

::>I Address of SYS1.NUCLEUS 20 Initiol ize registers. 	 I 
" DCB 

.. 	 Register 2
IEAVNIPM 
Diagram 3,0 f Step 1 I Address of NVT I 

4w'-' • • ~ 	 .. • 



r' • • r .' - r 

Diagram 2.0: lEAVNIPO (Cont'd)
r---------------------------------------T----------,
I Notes on Processing ILatel I 
~---------------------------------------+----------~
I 17. INPOELPSW IL_______________________________________~__________J 

en 
(1) 
o 
r!..... 
o 
::I 

IV 

if 
r!:r 
o 
0. 

o 
HI 

o 
'0 
(1) 
11 
DI 
r!..... 
o 
::I 

+: .... 



• • 

Diagram 3.0: IEAVNIPM 
N 
~ 

Control Routine 

From Diagram 2.0, 
Step 20 

Input Processing 	 Output 

IEAVNIPM 

Move contents of initial NIP vector table NVT 
from IEAVN IPO to IEAVNIPM and save 
TOO clock value. 

2 	 Move contents of SYS I ,NUCLEUS DEB 
extent from IEAVNIPO to IEAVNIPM. 

CVT 

-r--- 3 Initialize SVC toble to intercept XCTL, 
ABEND, and type-3 and type-4 SVC

I 	 requests and initialize PVT intercept 
get -SQA-poge requesn.I 

I r 4 Sequentially load, branch to, and, upon 
NIPLOADlreturn from, delete the following NIP 

modules:
I I 	 IEAVNPOI 

I 	 IEAVNP02 

I I 	

• III 	 3.11
IEAVNP03_J I IEAVNP04 

I 	 IEAVNP05 DELETE 
IEAVNP06I 	 IEAVNP07 

~~ I, ...•.. '.. II 

~----~ 5 Load and branch to IEAVNIPX. 

..................~IEAVNIPX

• 	 Diagram 13.0, Step 1 

l" .. 	 l" # 
l, 



• 	 .. ..r' • r 	 r 

Diagram 3.0: I EAVNIPM 
r---------------------------------------T----------,
I Notes on processing 	 I Label I 
~---------------------------------------+----------~

1. 	 The initial NIP vector table in IIEAVNIPM 
IEAVNIPO is moved to correspondingl 
fields in IEAVNIPM, thus relocat- I 
ing the NVT. I 

I 
3. 	 The addresses of the Intercept I 

routine for ABEND (NIPABEND), XCTL 
(NIPSVCX), type-3 and type-4 SVC 
routines (NIPSVC), and the Get
SQA-Page routine (NIPSQEND) are 
placed in the appropriate loca
tions in the SVC table and the 
page vector table (NIPSQEND). 
Entry to NIPSQEND is from virtual 
storage management; other entries 
are from the SVC Second-Level 
Interruption Handler. NIPSQEND 
causes a system wait state 
(X'36'). NIPABEND causes a systeml 
wait state (X'40'). NIPSVCX and I 
NIPSVC are described by Diagram I 
3.3. 	 I 

I 
4. 	 IEAVNIPM uses a series of suffixeslNPMNEXT 

and an index to these suffixes in I 
the NVT that are appended to the I 
base name "IEAVNp· to determine I 
which NIP module is to get control 

til 	 next. Each module is loaded by NPMLOADm 
() 
rT 

the subroutine NIPLOAD, branched 
1-'. to, and deleted. The last value, 
o 	 07, is followed by X'FF', which::l 

I indicates that the last NIP 
1'0 	

I module, IEAVNIPX, is to be 
entered. This module is loaded 
and 	branched to similarly; but, 

I 
~ 	 I 
rT 	 I because control does not return,:::r IEAVNIPX is not deleted byo 	 I 

L IEAVNIPM. J 
o 
0-	 I _______________________________________~__________ 

HI 

o 
'0 
ro 
11 
01 
rT 
1-'. 
o 
l:l 

(.oJ "" 



• • • 

~ 
~ 

From Diagram 3.0, 
Step 4 

Input 

NVT 

, E:j- I 

Register 1 I 
_..JI-Add~~--:f mod~le name re-

Diagram 3.1: NIPLOAD 

Load Specified Module 


NIPlOAD 

1 Create BLDL list. 

Output 

I BlDl ""0' • 4 

2 Set attributes. 

3 load specified module. 

••••••••••••••••11~ Return to caller 

4 

.................11~ 
NIPSWAIT• X'32' 0< X'33' 

" 
 l, l, 



--• • r 

CIl 
CD 
o 
rt".... 
o 
::s 
~ 

:;: 
CD 
rt" 
::T 
o 
P. 

o 
HI 

o 
I"(j 

CD 
11 
OJ 
rt".... 
o
::s 

~ 
VI 

~ •r 	 r 

Diagram 3.1 NIPLOAD
r---------------------------------------T----------,
I Notes on processing 	 ILabel I 
~---------------------------------------+----------~

4. 	 If the module was not found by I NPMLXIT 
BLDL, the NIPWTO subroutine is I 
entered to issue the message IEA3-1 
011 module NOT FOUND IN dsn. If I 
an I/O error occurred during BLDL I 
processing, NIPWTO issues the mes-I 
sage IEA300I I/O ERROR DURING BLDLI 
FOR module IN dsn. In both cases, I 
the NIPSWAIT subroutine is entered I 
to place the system in a disabled I 

_______________________________________ wait state (X'32' or X'33'). iI__________ 



• • • • 

NIPSVC ond NIPSVCX 

~ Diagram 3.2: NIPSVC and NIPSVCX 
0\ Provide Linkage to Specified SVC Routine 

From SVC SLiH 
for XCTL or type-3 
or type-4 SVC 
request.

Input 

XCTL Input 

Register 15 
Obtain address of requested module

Address of entry I (NIPSVCX) or build module name 
point name 

(NIPSVC) . 
I 
I 2 Determine whether module was previously Not loaded 

Type-3 or type-4 loaded. • 4I
SVC request input 

I 3 Delete previously loaded module. DELETE
Location X'8A' 

~ 
SVC number 

4 load requested module. LOAD 

5 Branch to XCTl or requested SVC routine. 

XCTL or 
SVC routine 

~ l, l, 




• • • r r • r 

Diagram 3.2 NIPSVC & NIPSVCX (IEAVNIPM)
r---------------------------------------T----------,
I Notes on Processing ILabel I 
.---------------------------------------+----------~
I 2. The name of a module loaded for a INPMCDSRH I 
I previous ,XCTL request is retained I I 
I by IEAVNIPM until a subsequent I I 
I XCTL is issued. I I 
I I I 
I 4. INPMCDSR2 I 
I I I 
I _______________________________________ 5. INPMSVCEX I~L __________J 

en 
/1) 

~ ..... 
o::s 
tv 

:i: 

~ g
o. 
o 
HI 

o 
'0 
/1) 

I» 
c1" ..... 
o::s 

~..., 

11 



~ Diagram 3.3: NIPUCBFN 
co Find UCB for Specified Unit 

From NIP processors 

Input -I .... 
NIPUCBFN 


Register 1 

I

EBCDIC unit nome or 1 Initializ.e input register with hexadecimal
hexadecimal address 

unit address. 	 NIPEBCDX 

Convert to hex 
(To IOSGEN) 

Register 6Q 	 I:>I Unit address 

2 Find UeB. 	 IOSGEN 

Regis'e, 15 (f<om IOSGEN) 

Register 1 I Return code f4- 3 	 Detennine whether uee was found and 
set output register. Add,ess of UCB if I 

Regi.,., 7 (f<om IOSGEN) 
:= Dis if not foundI Address of UCB 14-	 ... "' found 

To caller 

I r 

L • l, 	 • ~ tI 



• • • r r • r 

Diagram 3.3: NIPUCBFN (IEAVNIPM)
r---------------------------------------T----------,
I Notes on Processing ,Label I 
t---------------------------------------+----------~
,1. If register 1 is negative, thE ,NIPUCBFN, 
, register contains the EBCDIC unit , , 
, name and requires conversion by, I 
, NIPEBCDX to the hexadecimal unit , , 
I address. 'I
I , , 
, 2. ,NPMUCBLK ,, , , 
, 3. ,NPMHVUCB ,L _______________________________________~__________J 

rn 
II) 

~ .... 
o::s 

'" 
3: 
II) 
rt 
::r o 
0

o 
HI 

o 
to 
II) 
11 
III 
rt.... 
o::s 

.a:: 
ID 



VI 
o 

From NIFANTO 
and NIP 
processors 

Input 

Register 1 

re;~od~}f-

NVT r-- 
I __J 

---, 
IL __ _ 

Diagram 3.4: NIPTIME 
Determine Absolute Time or Relative 
Time Since IEAVNIPM was Entered 

NIPTIME 

Determine function requested (Step 2 or 3). 

2 	 Response timing from teleprocessing console 
(TOO clock inoperative and binary request). 

Not operative
3 Determine current value of TOO clock. • 6 

4 	 Binary request: compute time relative to 
first entry to IEAVNIPM. 

5 	 Decimal request: compute time elapsed 
sin.ce start of day. 

6 	 Indicate clock inoperative; notify operator 
of error. 

NVT 

NVTFlNCK 

I ,calle, 

~ 	 L, • ~ 
-- • 	 • 



.. 	 c:r' • r 	 • r 

Diagram 3.4: NIPTlME (IEAVNIPM)
r---------------------------------------T----------,
I Notes on Processing 	 ILabel I 
~---------------------------------------+----------~ 
I 1. A request code X'04' indicates a I I 
I binary request for time relative I I 
I to first entry to IEAVNIPM. I I 
I However, if the TOO clock has beenl I 
I previously indicated as inopera- I I 
I tive, this is a request from NIPW-I I 

TO to time teleprocessing responsel I 
in writing messages prior to a I I 
system wait state. The entry I I 
number is (n+1)/10000. I I 

I 
3. 	 A Store Clock instruction is 


issued to determine the value of 

the TOO clock. 


5. 	 A decimal request is indicated by INIPTOP 

X'OO' in register 1. 


6. 	 NIPTIME uses the NIPWTO subroutinelNIPTDEC 
to issue the message IEA302I TOO I 
CLOCK INOPERATIVE and passes con- I 
trol to NIPSWAIT to place the sys-I 
tern in a disabled wait state I 
(X' 35' ) • I__________JL_______________________________________~ I 

CIl 
(1) 

:+ .... 
o
::s 
I\J.. 

:J: 
(1) 
rt 
g
o. 
o 
HI 

,g 
(1) 
1'1 

rt.... 
g 

~ 

III 

VI 



VI Diagram 4.0: IEAVNP01 
Initialize System Consoles

...., 

From Diagram 3.0, 

Step 4 
Input Output 

(To N IPUCBFN) 
IEAVNPOI 

Register 1
Register 3 


EBCDIC unit addressAddress of CVT =t. --,----- 1 Find UCB for console. 

CVT 	 I 

UCM 

---1(cVl:ij- I 

UCMUCB 


NVT I 

I ,-  2 Determine console 


---I I 'I NPlTESTC
ovai lobi Iity •r::iit}-
I I 
 • '---J

UCM 	 I I 

'; __J I I Con,ole offline 


UCMMCSPT 
 II1II 	 • 1 

UCMMCENT I 

UCMUCB I 

UCMVEA 
 I 3 Initialize active cansole.. " NPliNIT 4.11 


" I 

UCB (I,om NPlTESTC) I

~ei{(tIt'litt;, ___ -.1 

SRTE"AI 

UCM 

UCMALTEN j4- - 4 	 Determine whether all UCM entries 
hove been examinedj get All not examinedUCMVEL 
nex t entry j f not. 

5 	 Dete,..ine whelhe, mast., Found • 
console has been found. IEAVNIPM 


Diagram 3.0, 

Step 5 


Not found 

NIPSWAIT 
X'07' 

~ ... .. L 	 ",. .. ~ 



• • 	 • ..r r 	 r 

Diagram 4.0: IEAVNP01
r---------------------------------------T----------l
I Notes on Processing 	 I·Label I 
~---------------------------------------+----------~

1. 	 The initialization of consoles is INPIALT 
performed in a loop, always begin-I 
ning with the master console spe- I 
cified at system generation, then I 
the alternates to the master con- I 
sole, and finally the other con- I 
soles represented in the UCM not I 
yet tested, beginning with UCMVEA.I 

I 
2. 	 The sUbroutine NPITESTC executes alNPITESTC 

channel program to the specified I 
console and indicates the results I 
in SRTESTAT. I 

I 
3. 	 The subroutine NP1INIT flags the INPlINIT 

console as active. If the master I 
console has not been initialized, I 
the routing and authorization I 
codes and the UCM master pointers I 
are set, and initial operator com-I 
munications are established (see I 
Diagram 4.1). I 

I 
5. 	 If more than one console is onlinelNPlCMNT 

or if the single console is graph-I 
ic, HARDCPY is required (referred I 
to by IEAVNP07). IL_______________________________________ __________J~ 

en 

:+ 
m 

.... 
o 
tl 

~ 

X 
m 
rt 
::r o 
0. 

o 
HI 

o 
't:l 
m 
11 
III 
rt.... 
o 
!:' 

VI 
W 



U1 Diagram 4.1: NP11NIT and NPlTCOMM 
-'=' Establish Operator Communications 

From Diagram 4.0, 
Step 3 Processing 	 Output 

•NPlINIT and NPITCOMM UCB I 

I ,- I 
1 Initialize console UCB. 	 ')l UCBSTAT 

I 

I IInitialized IEAVNPOl2 	 Determine whether master console has ... 

already been initialized. 
 Diagram 4.0 I 

... Step -4 
UCM 

3 Initialize master console. I 

UCMATR 

UCMRTCD 
4 	 Obtain message reply buffer; build GETMAIN I UCMAUTHand issue messoge IEA101A. 	 • I .. UCMDISP 

11 . 
NIJ',NTOR 1 .. 	 I NVT 

...-	 1 
NVTMBUF 

NVTMBENDI 	 .. IEAVNPOlRee 
Diagram 4.0,NP 	

IStep -4 
Not posted5 	 Determine whether WTOR ECB has been 


posted. NPlTESTC
• 	 .. 
6 	 Move reply into memlQe buffer. NIJ',NTOR2 I 

-	 I I 
No more parameters7 	 Determine whether more parameters are to .. 

be entered by operator. 	 NPITESTC .. 
Issue message lEA 116A. 	 NIJ',NTOR8 .. 	 I I 

.. 
NPlTESTC 

~ 	 4 •~ 	 III• 	 '-' 



__________ 

I 

• 	 • .r' • r 	 r 

Diagram 4.1: NP1INIT' NP1TCOMM (IEAVNP01) 
r--------------------------------------~----------l
I Notes on processing 	 I Label 
~---------------------------------------+----------~ 

Establishing communications with INP1INIT 
the console operator is a two-part I 
process in which the operator is I 
requested to specify system para- I 
meters (NP1INIT) and the reply is I 
moved into a message tuffer for I 
later processing by IEAVNP03. I 

I 
1. 	 Both halves of a composite consolelNP1ACT 


are initialized before proceeding I 

with Step 2. I 


I 
3. 	 If the active master console is I 


not the console specified during I 

system generation, the routing andl 

authorization codes are moved to I 

the UCM for the new active master I 

console, and the UCM prefix is I 

updated. I 


I 
4. 	 A 2K reply buffer is obtained frorrlNP1TCOMM 

sUbfool 255 of the SQA. I 
This buffer is deleted by IEECMWTLINP1COMM 
after NIP execution. 

7. 	 Additional parameters are indi
cated by the characters 'CONT' 
followed by a quotation mark at 

C/) the end of the parameter string. 

n 
(1) A quotation mark following anyth
rI" ing but 'CONT' indicates the end.... 

of the parameter string.o 
~ 

..., 8. 	 The reply to this message is pro
cessed in the same way as the 
reply to IEA101A.L_______________________________________~ 

I NP1SCAN 

J
ifs: 
& 
o 
HI 

o 
"0 
(1) 
H 
11/
rI" .... 
o::s 

U'I 
U'I 



VI 
C\ 	 Diagram 5.0: IEAVNP02 

Control Routine 

From Diogcom 3.0, np!r~o~c~e::S~S~i~n~gL________________l OutputStep 4 ~ 

- IEAVNP02 
DEB 

~--- -r 1 Initialize the unit test DEB in 
Input I IEAVNP02. 

DEBAPPADI 
DEBENDCC

UCB address table I I 2 Test availability of devices. 
DEBENDHHI 
DEBEXSCL"i 
DEBSTRCCI 
DEBSTRHHCVT I 
DEBUCBADI 

CVTlLK2 ...J 
CVTSYSAD 3 	 Define SYS1.LOGREC DEB base in nucleus 

ond open SYS1.LOGREC doto ,ot.
CVTDCBA -
CVTSVDCB ---...., 

I 	 ~ CVTLlNK .., L_ Define SYS1.SVClIB DEB base in nucleus 
and open SYS1.SVClIB data set.I 

4 	
NIPOPEN I 

NVT 
5.2

I
j---- 5 	 Define temporary SYS1.LlNKLIB DEB in 

nucleus. NP2BDEBIE¥-
I 
I 	 ~ 

~ I 
I 

NVT 

6 	 lndieoto SYSl,SVCLlB ond SYS1.LOGREC 
data sets available for system use. .}NVTFLSLB 

..••••••••, •• IEAVNIPM• 	 3 Diagram 3.0, 
Step 4 

NIPOPEN I 
5.2 

l, .. • ~ 	 .. l" 




• • 	 .. •r « 	 r 
r-------------------------------------------------------------------1 Diagram 5.0: IEAVNP02I Direct Access Device Class r---------------------------------------T----------,

Unit Check Unit I/O I Notes on Process ing 	 I Label I
Unit SIO/TIO (Intervention Check Error Normal I/O 

~ cc=3 Reguired) (Other) (Other) status ~---------------------------------------+----------~ 


1. IEAVNP02 contains the DEB used fori IEAVNP02. I 
2301 Offline Offline Offline1 Offline1 Cnline/Ready testing devices. It is defined tol I 
2305 Offline Offline Offline1 Offline1 Online/Ready reflect a maximum data set size of, I2314 Offline Not Ready. Offline1 Offline1 Cnline/Ready 
2319 Offline Not Ready. Offline1 Offline1 Online/Ready X'7FFF' tracks extending from CCHHI I 
3330 Offline Not Ready. Offline1 Offline1 Cnline/Ready o to X' FFFFFFFF. ' I I 

(Other) Offline Not Ready Offline1 Offline1 Cnline/Ready 

.Offline status is set if the DEVSTAT o~tion was selected 2. Each UCB in the UCB address table NP2SEARC 
during system generation. that has not been examined by NP2NDASD 

IEAVNPOl is tested to determine
1An interpretive error message identifies the device status. 

the status of the associated 
Maqnetic Tape Device Class device. For direct access 

devices, the subroutine NP2RRCD3
Unit Check Unit Check builds a channel program to readSIO/TIO (Intervention (Intervention 

Unit Type cc=3 Required) Required) Other the volume label. For nondirect 
With Status "A" With Status "A" access devices, a NOP CCW is spe

and "B" off and/or "B" on cified. The subroutine NP2EXCPU 
2400 executes the channel program. The 
3400 subroutine NP2TERR is entered fol
2420 Offline Offline NotReady Cnline/Ready I lowing all non-DASD I/O oFerations(Other) Offline Offline NotReady Cnline/Ready I 

and from NP2RRCD3 for failing DASDI 
Unit Record, communications, and Graphics Device Classes 	 I I/C. For a failing I/O operation,

I the UCB is set to indicate that
SIO/TIO 	 I 

I Unit Type cc=3 Other I the device is offline. A UCB for 
Il All Off line Online/Ready I a DASD is set to indicate that the___________________________________________________________________J 

device is not ready. This pro
cessing occurs in a loop for each 
untested ECB in the UCB address I 
tatle. Device availability test 	 I

CIl 
(1) ing is described in the adjoining I 
C'l tatle. 
rt 	 I .... 	 Io 	 3. IEAVNP02 passes the address of the NP2DDEFS I::s 

system residence UCB (CVTSYSAD) IIV 
and the address of the SYS1.LOGREC I 
DCE (CVTDCBA) to NIPOPEN. I 

if I 
4. The address of the SYS1.SVCLIE DCB I~ (CVTSVDCB) is passed to NIPOPEN.o 	 I 

0. 	 I 
o 	 5. The address of the SYS1.LINKLIB 
HI 	 I 

DCB (CVTLINK) is passed to I o 	 _______________________________________ NIPOPEN. ~__________J"0 	 I 
(1) 
I; 
III 
rt.... 
o::s 

CJI 
..,J 



• • 

VI Diagram 5.1: NIPMOUNT 
Q) Mount Specified Volume on Specified Device 

From NIP
Input 	 ProcessingprocesSOI'l 

NIPMOUNT 


Address of parameter 

list T-
 Determine whether OCB address or VOlSER ueB address 

was passed in parameter list. .5I 
2 Determine whether volume is already

I ~ ",_n.'., I ____ .J mounted.Data se';':"me r tI= -1- .J 
-,VOlSER 0' UCB 

I 	
,~ N"'=-Iaddress I 

Device type I 
Flags 

I 
I 	 ~IA.'reiadiyimouinted•••••I~I~ ReturnI 	 I • to collerI 
L 3 	 Request operator to specify unit address 

on which volume is to be mounted. 

4 Find UCD for operotor~pecified device. 	 NIPUCBFN 

IEAVNfpM 
subroutine 

3.3 

5 	 Request operator to mount volume on 
specified device. NIIWTO 

IEAVNIPM 
subroutine 

6 	 Test device availability. ~ N"~ro 1 

Not ,eady • 5----_I._~:~~e, 

l" l" 	 l.,
11 



• .. •r r ~ r 
Diagram 5.1: IEAVNPA2 (IEAVNP02)
r---------------------------------------T----------, r---------------------------------------T----------,
I Notes on Processing ILabel I I Notes on processing ILabel I 
~---------------------------------------+----------~ ~---------------------------------------+----------~
I 1. I IEAVNPA2 I 4. If the unit is invalid, the opera-INPA2UNAC 
I I tor is requested to respecify the 
I 2. The NP2VSCAN usbroutine compares INPA2VOL unit address. If a UCB was found INPA2MNT 
I the volume serial passed with eachl for the specified volume but an 
I entry in the UCE address table. ~ unacceptable device type is found 
I If a duplicate volume serial spe- I cy NP2VSCAN in Step 2, and the 
I cification is found, NP2VSCAN I volume is permanently resident, 
I returns the address of the duplic-I and the request cannot be can-
I ate UCE address table entry. If I celed, the system is put in a dis-
I no device type is specified in thel abled wait state by NIPSWAIT in 
I parameter list or if the UCB found IEAVNIPM (X'39'). If the volume 
I by NP2VSCAN is for the specified is not permanently resident, the 
I device type, the volume is consi- UCB found ty NP2VSCAN is marked 
I dered mounted. unavailable by NP2TERR, the UCE 
I found cy NIPUCEFN is marked online 
I 3. The operator may be allowed, if so NPA2SPEC and not ready, and the operator is 
I specified by the parameter list, requested to mount the volume on 
I to cancel the mount request. If NPA2EOB the operator-specified device. 
I the request is canceled, 
I NIPMOUNT sets register 1 to 0 and NPA2INV 6. The sucroutine NP2RRCD3 builds a 
I returns control to the caller. If channel program to read the volume I 
I an invalid reply is received, the latel. If the channel program I 
I operator is requested to respecify executed by NP2EXCPU fails but thel 
IL_______________________________________ the unit address. ~__________ record was found, the NIPSENSE I 

subroutine in lEAVNIPM is entered I 
to write an interpretive error I 
message. I 

en I 
I'D A flowchart of this subroutine is I 
n included in Section 3. IL_______________________________________ ~__________Jrt.... 
o::s 

..tv 

:J: 
I'D g 
Q. 

~ 
o 

"C 
I'D 
11 
QI
rt .... 
o::s 

U1 

'" 



a
o 	 Diagram 5.2: NIPOPEN 

Open Specified Data Set 
From NIP Processors 

Input Output 

NIPOPEN 
Register 1 ---i Address of paromete r 

list --T- 1 Optionally construct 	 ::1 
I 	 IIDEB bose. NP2BDEB 

I 
...... Parameter list __J 

Octo set name 

DeB address 

UCB address 	 2 Add DEB extentCs) to _I NP2BXTNT ~=======;===~L_~• Flags 

..................~Returnto 
caller 

l, • 
{ 	 .. l"


~ 



- - -

• .. 	 • ..r r 	 r 

Diagram 6.0: IEAVNP03 
Initialize Page Data Sets 

From Diagram 3.0, 
Step 4 

Processing 	 OutputI .. 
IEAVNP03 ... 
1 	 Analyze and create table from system 

parameters specified by operator. 
NP30PSP 1 

• -I 6.1 	 OPERTAB 

C 	 :>I. I 
Allocate and define initial PARMAREA.2 	 N P3PBASE 1 

• -I 6.2 

Open the SYS1.PARMLlB dato set,3 	 NP3PMLIB 1 

• -I 6.3 

4 Analyze and create table from system 
parameters specified in IEASYSXX 
member of PARMLIB. 

NP3SYSP 1 

• -I 6.4 	 PLIBTAB 
~ 

:>I ] 
5 	 Merge OPERTAB and PLlBTAB into 

PLlBTAB. NP3PLMRl• -I 
Initialize PARMTAB in PARMAREA.6 	 NP3PTAB 1 

C/) 
6.5 	 PARMAREA(1) 	

-I 
o 	 )I
r; 	

• J
"", 	 7 Open SYSI.LlNKLIB. [ NP3LKLIRo
::s 	 • -tv 	 1 

8 Define SYS1.LlNKL1B concatenations. NP3LCAT 1 

if 	 •rt 	 '1 6.6 
::r .. IEAVNIPM

8. Diagram 3.0, 
Step 4---1g, 

o 
Itj 
(1) 
H 
OJ 
rt.... 
o::s 

0'1 
I-' 



a Diagram 6.1: NP30PSP 
Check Validity of Operator Parameters '" 
and Build OPERTAB 

From Diagram 6.0, •
Input Step 1 Processmg, 	 i _ , 

NP30PSP I•. I" . Default IEASVSOO I A DetermlOe Input parameter 1St specified • E VNP03 
by operator. Diagram 6.0 I 

Step 2 

Invalid
--i-  -2 Scan operator input for valid parameters. aI NIP\.yTOR Output

IEAVNIPMI 
SubroutineITRANSTAB 

--; 3 	 Move addresses of val id parameters into 
OPERTAB. 

I.' ../.~ I 

I 
I

SVMBSTRT I 	 ......I,.IIII~IEAVNP03 
__J 	 • 2 Diag,am 6.0, 

Step 2[····~·::···;;;.·i,(l+ 
4 	 Add new SPE to chain for new operator 

reply. • 2 

~ 	 l,.. .. 	 • • ~ 



•r' • " r 	 • r 

Diagram 6.1: NP30PSP (IEAVNP03)
r---------------------------------------T----------,
I Notes on Processing 	 ILabel I 
~---------------------------------------+----------i

1. 	 If the first operator-specified I NP30PSP 
parameter is "U" or "U,L" the sys-I 
tem parameter list IEASYSOO is I 
selected as the source for all I 
parameter input. I 

I 
2. 	 IEAVNP03 uses two tables within I NP3SCAN 

IEAVNP03 to verify the parameters. I 
TRANSTAB contains an index value I 
for each character which may I 
validly begin a parameter specifi-I 
cation. This index value is used I 
as a displacement into SYMBSTRT. I 
SYMBSTRT contains all of the validl 
parameters that may be specified I 
by the operator. Each parameter I 
entry is in character format and I 
is followed by a hexadecimal con- I 
stant indicating the number of I 
valid characters (including the I 
equal sign where necessary) in thel 
parameter. The value from TRANS- I 
TAB indicates the position within I 
SYMBSTRT where the comparison of I 
the operator-specified parameter I 
with valid parameters begins. 

Cfl 	 The operator is notified of I NP3SCINV 
ro 
(') errors, and is allowed to respec
rT ify invalid parameters. I NP30PRES ..... 
o
::s 3. 	 The TRhNSTAB index value is used I NP3ENTER 
N 	 as the displacement into OPERTAB 

at which the address of the para
meter is stored.

if
g: 	 4. An eight-byte SPE is added to the INP3GETMN 

chain of SPEs that contain& 
operator-specified parameters.

o 
HI 	 The address of the operator reply 
o (to respecify or cancel) is moved 
"C I into the new SPE. __________~L_______________________________________ro 	 ~ 

H 
01 
rT.... 
g 
0\ 
(.AI 



0- Diagram 6.2: NP3PBASE 
~ Allocate and Initialize PARMAREA 

From Dia~Jrap., 6.0, 

Output 
1 Allocat. 2K buffer for PARMAREA. _\ GETMAIN 

Step 2 

NP3PBASE 

PARMAREA 

2 Initialize BlDl header, lOB, DCB, j ~ ) 

and DEB ;n PARMAREA. 

IEAVNP03 
Diagram 6.0, 
Step 3 

~ # 
l, • * . l,

• 



.'" ., •r r • r 

Diagram 6.2: NP3PBASE (IEAVNP03) 
r-----------------------~---------------T----------,
I Notes on processing ILabel I 
~---------------------------------------+----------i
I 1. The PARMAREA will contain the I NP3PBASE I 
I operator-specified parameters I I 
I pointed to by OPERTAB and the I I 
I parameters specified via SYSP and I I 
I point.ed to by PLIBTAB. These I I 
I parameters will be merged by I I 
IL NP3PLMRG. I __________ I_______________________________________~ J 

CIl 
!1) 
o 
rt.... 
o 
tj 

..N 

:J: 
!1) 
rt::r 
o 
0. 

o 
HI 

o 
"d 
!1) 
H 
III 
rt.... 
o 
tj 

(II 

\J1 

http:point.ed


0\ Diagram 6.3: NP3PMLIB 
0\ Open SYS1.PARMLIB Data Set 

From Diagram 6.0, 
Step 3 Processing 

NP3PMlIB 

1 	 Find the SYS1.PARMLIB data ,et. LOCATE· I 

I 	 1 
Not found • 4 

2 	 Ensure that volume is mounted I and 
set UCB address. 

.. 
NIPMOUNT I Output 

I 5.11 
NVT 

~ 	 :;>J NVTSPUCB I 

Open SYS1.PARMLIB data set. 	 NIPOPEN3 	 I 

5.21 
Input 

...... IEAVNP03 
Diagram 6.0, 

". 	 Step 4 CVT 
NVT 

-4 Use IPl volume as default, and set 	 11, 1'7>""Eliij--·-- UC B address. 	 .)I NVTSPUCB I 
I 

• 3 

~" 	 ~ .. .. ~ 

~ • 



,...• !"'l 
0 
A< 

~ 
.t; 
ril 
H 

III 
H 
H 
::E 
A< 
!"'l 
A< 
Z 

!"'l 

\0 

e 
til 
~ 
t)'\ 
til

OM 
Q 

• 

,--..,...---., 
I I I
I I , 
I I III rz.. I 
, I H ril I 
I I H Q, 
I.-II::E :2:1 
1Q)10, 0,1 
I ..Q l!"'l !"'l 1 
I til I A< A< I 

I H I Z Z I

1--+----4 

..t)'\ 
OM 
en 
en 
Q) 
t) 
0 
~ 
A< 

t:: 
0 

en 
Q) 

.jJ .0 
Z ~ ::1" 

L.._-'-___ .j 

section 2: Methcd cf Operation 67 



(Xl 	 Diagram 6.4: NP3SYSP '" 
Build the PLlBTAB 

from Diagram 6.0, 
Step 4 Processing 

Allocote 2K area for parameter input. 

2 	 Read PDS (partitioned data set) for 
IEASYSXX. • I NIPPMPDS 

• 
3 	 Read text record of I EASYSXX • • I NIPPMTXT

• I --~ 
4 	 Move characters in text into secondary 

PARMAREA. 

Output
5 	 Scan parameters and move addresses of 

valid parameters into PLlBTAB. NP3SCAN 

6 	 Set OPI indicators for all parameters 
entered in this list. 

No 	 • 27 	 All parameter lists processed? 

Yes 

IEAVNP03 

.................... Diagram 6.0, 

• 	 Step 5 

PLlBTAB 

\., 
t 

l, 	 • • l,
'" 



A • 	 .. •r 	 (" (' 


Diagram 6.4: NP3SYSP (IEAVNP03)
r---------------------------------------T----------,
I Notes On processing 	 ILabel I 
~---------------------------------------+----------~ 

1. 	 The secondary PARMAREA is used as 
a buffer to contain all of the 
input parameters from IEASYSxx 
members of SYS1.PARMLIB. 

2. 	 lEASYSOO is always read first. 
ste~s 2 through 6 are executed in 
a loop for the specified input 
strings. 

3. 	 The text of the input string is 
read into an aO-byte buffer by a 

INP3SYSP 
I 
I 
I 
I 
INP3MOVNM 
I 
I 
I 
I 
I NP3SYTXT 
I 

channel program within the initiall 
PARMAREA. 

4. 	 The text is moved, one character 
at a time, into the secondary 
buffer. An additional secondary 
buffer is obtained if the present 
buffer becomes filled. 

5. 	 The subroutine NP3SCAN moves the 
addresses of the valid parameters 
into the PLIBTAB within IEAVNP03. 
If duplicate specifications are 

I 
I 
INP3MOVST 
I 
I 
I 
I 
I 
I NP3SYSFT 
I 
I 
I 

encountered, the PLIBTAB entry fori 
the duplicate parameter contains I 
the address of the last-examined I en 

(1) 	 s~ecification for that entry. I Il _______________________________________~__________ J n 
IT.... 
o 
:3 

IV.. 
~ 
IT 
p-
O 
0.. 

o 
HI 

o 
"0 
(1) 
1'1 
III 
IT .... 
o 
:3 

ID '" 



-.J 	 Diagram 6.5: NP4PTAB 
o Move Parameters into PARMAREA; 

Set PARMTAB Address 
From Diagram 6.0, 

Step 6 Processing 


NP4PTAB Output
Input 	 Remove secondary PARMAREAs from queue 

originating with initio I PARtv'lAREA. 

PLI BTAB ,-- 2 	 Move parameters pointed to by PLlBTAB 
addresses to initial PARMAREA, setting 
PARMTAB addresses for each.t:;~*-Ml'''' - r--i 

ISecondary PARMAREA 

'~II NVTI _. _ .. _"":',~'1:1:l:i<,~- __ .J 

3 Set add,"" of PARMTAB. 

4 Release all secondary PARMAREAs. 

IEAVNP03 
Diagram 6.0 I 
Step 7 

~ .., 	 \, • • l,ft 



At • ..
(
r' • r 

Diagram 6.5: NP3PTAB (IEAVNP03)
r---------------------------------------T----------,II Notes on processing ILabel 
~---------------------------------------+----------iI 1. The secondary PARMAREAs ar~ I NP3PTAB 
I removed so that the initial PAR
I MAREA can be expanded as neces-
I sary. The PARMAREAs are chained 
I so that any additional PARMAREAs 
I obtained are queued to the last 
I PARMAREA obtained. Removing the 
I secondary PARMAREAs leaves the 
I initial PARMAREA as the la~t;one 
I obtained. 
I
I 2. I NP3NULL 
I
I 3. I NP3TINT 
I 

INP3PAFMIL_______________________________________ 4. ~__________J 

en 
In 
o 
rt.... 
o 
ts 

..IV 

3: 
Ing: 
& 
o 
HI 

o 
~ 
1'1 
III 
rt.... 
o 
ts 

-.J .... 



o,J 
IV 

Diagram 6.6: NP3LCAT 
Concatenate Members with SYS1.LlNKLlB 

From Diagram 6.0, 
Step 8 Processing 

NP3LCAT 

1 	 Read partitioned data set for lNKLSTOO 
;n SYS1.PARMLIB. NIPPMPDS; -I I 

Not found 

2 	 Obtain 2K buffer for member names. GETMAIN
•8 	

I 

I3 	 Read lNKlSTOO member and move names 
from input buffer to work arec.. NIPPNTXT 

• -I I 
4 	 Find volume for each name and move 

VOL I D to work area. LOCATE I 
I l 

5 	 Ensure that the volume is mounted. NIPMOUNT 1 

l 5.116 	 Concatenate the data set with the 
previously defined portion of the 
SYS1.WjKLlB. NIPOPEN l 

5.21 

7 	 Release work area. FREEMAIN l 

l .. IEAVNP03 
Diagram 6.0,--.. Step B 

8 	 Inform operator that the lNKlST function 
is inoperative. NIP'NTO l 

l 

-
l 

I 

~ , 	 • •It 	

, L 



r .. - r 	 « r10. 

Diagram 6.6: NP3LCAT (IEAVNP03) 
r--------------------------------------~----------,
I Notes on Processing 	 I Label I 
~---------------------------------------+----------~

2. 	 The 2K buffer is assumed to be INP3LCAT 
large enough to contain all of the 
member names found in LNKISTOO. 
If it is too small, the member 
name list is truncated following 
the last name entered in the 2K 
buffer. 

3. 	 The first byte of the name in the ISCANRCD 
work area is a flag byte, the 
next 44 bytes are the name of the INP3LCNAM 
member, padded to the right with 
blanks if necessary, and the last 
6 bytes contain the VOL ID. 

4. 	 Steps 4 through 6 are executed in INP3LCLOC 
a loop for each member name placed I 
in the work area, or until 15 mem-I 
bers are successfully I 
concatenated. I 

I 
6. 	 I NP3LCVOL 

I 
1. 	 INP3LCEND 

I 
8. 	 I NP3LCMFL JL-______________________________________~__________ 

en 
tn o 
rt.... 
o 
ij 

N 

ifs: 
8. 
~ 
o 
~ 
11 
III 
rt.... 
o 
ij 

-..J 
tIoI 



.... 
~ 	

Diagram 7.0: IEAVNP04 
Open and Format Page Data Sets 

Input 	 ~;: ~iagram 3.0, Processing Output
iii 

IEAVNP04 
NVT r-- 1 Build page parameter matrix from 

PARNtLIB and operator entries.-.-----1 
I 

I ,...- 2 Optionally display parameters. 


Parameter table I I 

_.____J I 

I 
I 
I 3 Allocate quickstart bufFer"o 
I ____ J 

4 	 Build page device table; format page 
data sets; build and write NIPQSRl 
records for these data sets. t' NP4PDSEL

• - --7] 
5 Build channel program queue. t [ NP4BCPQ 

• L-[_--' 
6 Allocate and build page r,ame table.. NP4APFTtl 

I. •i N~on 
7 Read NIPQSR2. --~t~Lt-IP£RQSR2 

• 1 -~ 

8 Re-initiolize. SQA. 	 • , NP4BSQA, 

• 1 --] 

9 Initialize PVT. 	 t , NP41PVT 

• ,--I---J 
IEAVNIPM 

.................III~Diagrom 3.0,
I 	 Step 4 

l, , l, 	 .. , l,i.. 



_______________________________________ _________ 

• • 	 ,. ..r ( 	 r 

Diagram 7.0: IEAVNP04
r---------------------------------------T----------, r---------------------------------------T----------,
I Notes on Processing I Label I I Notes on Processing 	 ILabel I 
~---------------------------------------+----------~ .---------------------------------------+----------~ 

1. 	 All entries from the IEASYSxx list I IEAVNP04 5. The channel program queue is builtlNP4BCFC I 
of SYS1.PARMLIB are scanned I in the high end of the nucleus I I 
first. operator-specified entrieslNP4PSCAN tuffer and contains ten or more I I 

skeleton channel programs. The I I 
number of channel programs I I 
(entries) is determined as f01- I I 
lows: 1 paging device = 10 CPQEs;1 
more than one paging device = 15 I 
CPCES; plus the number of I 
operator-specified CPQEs. I 

I 
6. 	 The area for the page frame table INP4APFT 


is allocated above the channel 

program queue. 


7. 	 If the NVTFLQS flag has been set INP4RQSR2 
by NP4PDSEL, the quickstart tuffer 
is refreshed with NIPQSRl and 
NIPQSR2 for the LPA page data set. 
NIPQSR2 is required by NP4BSQA 
(step 8). 

8. 	 NP4BSQA processes the SQA paramet-INP4BSCA 

er. If the redefined SQA size 

would overlap the high LPA 

address, and a quickstart is in 

process, the operator is given the 

choice of canceling the SQA speci

fication or terminating the quick-

start process (in which case the 


L NVTFLQS flag is set to 0). ~ _J 

are 	entered next, overlaying I 
(if 	permissible) previou~ duplic
ate 	entries. If nO entries are I 
found in either list, the operator 
is requested to enter PAGE parame
ters via NIPWTOR. If a format 
error is encountered, the PAGE 
parameters are truncated with the 
last valid parameter specifica
tion, and the operator is 
requested to respecify the 
remainder of the 	PAGE parameters 
or accept the truncated PAGE 
definition. 

2. 	 If any parameters are displayed, 
the operator is allowed to respe
cify any of the PAGE parameters. 

3. 	 The quickstart buffer is used for 
reading and writing the quickstart 
records (NIPQSRl, NIPQSR2, and I 
NIPQSR3). A NIPQSRl will be I 
created for each data set for- I 
matted by NP4PDSEL (Step 4). I 

en 
(1) 	 I 
o 4. 	 NP4PDSEL formats only the page
rt 
1-'. 	 data sets that have not been for I 

matted during a previous entry to::I 
o 	 I 

NIP, or that have been Itv 
L_______________________________________respecified. 	 ~I 

INP4PINV 

INP4PDOPT 

INP4PDEV 

I NP4PDSEL 

__________J 

if 
s:
8. 
o 
HI 

o 
"0 
(1) 
H 
III 
rt 
I-'
o 
::I 

...J 
VI 



o,J 
0\ 	 Diagram 7.1: NP4PDSEL 

Initialize Paging Devices 

Fr-om Diagram 7.0, 
S'ep 4Input Processing 


L ..... 

NP4PDSEL,..

Page parameter matrix 

---- 1 Buiid temporary paging device table(to :jiq en.,), and page device infonna.iO:! 

table at top of nucleus buffer .. NP41PDT 


I 
NIPOPEN2 	 Open page data set for device. I 

J 5.21 
3 	 Read NIPGlSRl to determine whether the 

page data set is formatted. NPMREAD I 
I 

s.ll 

Formatted 

• 	 5 
4 	 Initialize formottirg and odd formatting Output 

EC8 '0 WAIT Ii, •• NPMINTF I 

I 	 NVTs.4b7 

5 II NIPOSRl i, for a lonnat.ed lPA page 
doto set, set quickstort flog. ;>f NVTfLQS 

6 	 Move temporary POll to permanent 
PDIT in low nucleu. buffer. NP48PDIT:I 

I 
7 	 When all matrix entries are processed, 

wait for lcat EeB in list to indicate 
that Formatting is completed .. WAIT I 

I 
8 	 Build and write NIPGlSRl for each doto 

set just formatted. NPA4WRIT I 
s.d 

9 	 Move .empora,), PDn '0 penna":l 
POll in low nucleus buffer. NP48PDIT 

I 
10 	Move all active PDT entries to permanent ... 

PDT in low nuc leus buffer .. IEAVNP04 
Diagram 7.0, Step 5 

~. 	 \., ... \.,.. 	 •~ 

I 

http:lonnat.ed
http:infonna.iO


# ...r • • ( 	 r 
Diagram 7.1: NP4PDSEL (IEAVNP04)
r---------------------------------------T----------,
I Notes on processing 	 ILabel I
.---------------------------------------+----------i

The 	first six steps are executed INP4PDSEL 
in a loop, processing each page 
data set specified in the PAGE 
parameter matrix created by 
IEAVNP04 (Step 1). 

1. 	 NP4PDSEL verifies the parameter I NP4PDTI 
specifications; the operator is 
allowed to respecify invalid 
devices. The PDIT and PDTE for 
the data set are created at the 
upper end of the nucleus because 
the permanent PDIT will contain 
only active entries, and the numb
er of these will not be known 
until all data sets have been 
processed. 

2. 	 If the data set cannot be found bylNP4POPEN 
NIPOPEN, the NP4ALLOC subroutine 
attempts to allocate the page data 
set. If the data set cannot be 
allocated, the operator is 
requested to respecify the para
meter or cancel the specification. 

3. 	 An NIPQSR1 record exists for each INP4RQSR1 
data set that has been formatteden 

/I) 	 during a previous entry to 
n 	 IPL/NIP.rt .... 
::so 4. INP4BPBAL 
~ I 

5. 	 The NVTFLQS flag is set if INP4RQSR1 
coldstart processing was not spe- I 

f cified (CLPA parameter) or if the I 
rt "F- parameter was not specified inl::r 
o the PAGE parameter. I 
0. 	 I 
o 	 8. INP4BBQS1HI 

Io 	 10. INP4PDEND__________Jttl 	 L_______________________________________~ 
/I) 
11 
I» 
rt .... 
o::s 

...a 

...a 



~ Diagram 8.0: IEAVNPA4 
CD Control Routine 

From IEAVNI'04 

and IEAVNI'05 Processing 


IEAVNPA4 


Input Disable interruptions. 


....-- 2 Determine reason for entry and processAddress of parameter 
list --I accordingly. 


I 

A. Read/write quickstart record.I 

Caller 

I ,.. D CollerI 
I 

Address of DCB I 
_..JRequest indicator B. Allocate qu ickstart buffer. 

Return code 

C. 	Release quickstart buffer. 

Caller 

D. 	 Initiate or restart formatting. 

I--------j..... Coller 

E. 	 Build cylinder count vector. 

Caller 

F. 	 Initiate coldstort process. 

Coller 

G. 	load module fit. 

Caller 

H. 	Complete colds tart process. 

Caller 

I. Invalid request. ••••••••••••• NIPSWAIT
X'3F' 

~
~ ;4 .. 	 • *' l, 



• 




00 

-,-- 

o 

From Diogram 8.0 IInput Step 2 
,--------------------, __ 

NVT 

1- NVTQSBUF 1+ """'1- 
I 

CVT Ir-I 

I I 
CVTXAPG 1+ -1- -1 I 

I I 
I I 

_I __ .J 	 I 
___ .J ,... 

I 

CVTPCNVT i-'----..J 
I 
I 

Diagram 8.1: NPA4READ and NPA4WRIT 
Read and Write Quickstart Records 

P . 
rocessmg 	 Output 

1 

NPA4READ and NPA4WRIT 	 lOB 

Initialize I/O control blocks within IEAVNPA4.' 	 ~ ~ IOBDeSPT 

No record 


-2 Determine which quickstart record is to specified 


be read or written. 
 • 9 
3 	 Initialize to appropriate I/O buffer 


(buffer 1 :::: lower 4K for record 2; 

buffer 2 :: upper 4 K for records 1 and 3. 


Convert TTR to CCHHR and build channel program 	 , IECPCNVTI 

5 	 Execute channel program. 

6 Wait for I/O to complete. 

Parameter list 

7 Operation successful: set return code. 

• •••••••II.'~IEAVNPA4D;agram 8.0, 
Step 3. 

8 Operation not successful: issue interperpretive 
I/O error message. 

Parameter list 

9 Set error return code. 

IEAVN PM 

, ••••••••••~ Diagram 8.0, 
• 	 Step 3 

~ ~ .. , L 	 • L 



I 

• • 	 .. •r' r 	 r' 

Diagram S.l: NPA4READ/NPA4WRIT (IEAVNPA4)
r---------------------------------------T----------l
I Notes on processing 	 ILabel 
r---------------------------------------t----------i 

1. 

1. 	 The lower buffer (buffer 1) is 
pointed to by NVTQSBUF and the 
u~per buffer (buffer 2) is equal 
to buffer 1 plus 4096. NIPQSR2 
is read into and written from 
buffer 1; NIPQSR1 and NIPQSR1 are 
read into and written from tuffer 
2. because NIPQSR1 contains the 
TTR of NIPQSR2 and NIPQSR2 con
tains the TTR of NIPQSR3, a read 
or write request for NIPQSR2 or 
NIPQSR3 requires 'that the record 
(NIPQSR1 or NIPQSR2, res~ectively) 
that contains the TTR be in the 
other buffer. 

4. 

7. 

S. 

9. 	 Error return codes are: 

X'OO' No error 
X'04' Insufficient space

en X'OS' I/O errorIII 

n X'OC' Insufficient DASD
L______,.________________________________rt .... 
o::s 
f\J 

3: 
III 
rt 
g
o. 
o 
HI 

o 
'0 
ro 
11 
QI 
rt.... 
o::s 

CD .... 

I NPA4RDWR 

I NPA4QSR1 

I NPA4QSR2 

I NPA4QSR1 

NPA4QSIO 

NPA4EXIT 

I NPA4FAIL 
I
I 
I
I 
I 
I 
I __________ J~ 



00 Diagram 8.2: NPA4GBUF 
tv Obtain Quickstart Buffer 

From Diagram 8.0, Processing
St~p 2 Output 

NPA4GBUF.
1 Obtain 8192 bytes from subpool 252. GETMAIN I 

"""- I I 
NVT~ I Not a"ocat~ 
I NVTPAGIO I 

NVTQSBUF I .
2 Enable for interruptions. MODESET I 

I I 
Parameter list 

3 Set return code. :::G!. .. IEAVNPA4 
Diagram 8.0, 

P" Step 3 

4 Issue IEA216! message. NIFWTO I 
I IEAVNIPM 

Isubroutine 

-'" NIPSWAIT 
X'38' r 

~. 
# ~'-' • • • 



r 


CI) 

ID 
n 
rt" .... 
o::s 
N 

if 
g. 
& 
o 
HI 

o 
'I:J 
ID 

~ .... 
o::s 

CI) 

W 

.,. .,.tr ..( r" 
Diagram 8.2: NPA4GBUF CIEAVNPA4) 
r--------------------------------------~----------~
INotes on processing I Label I 
~---------------------------------------+----------~
I 1. INPA4GBUF I 

I I I

I 2. INPA4PXIT I 

I I I

I 3. I NPA4NXIT I 

I I I 

I 4. ~__________JIL _______________________________________ INPA4NCOR 

11 



CD 	 Diagram 8.3: NPA4FREE 
~ 

Free Quickstarl Buffer 

From Diagram 8.0, 
Step 2 Processing 

NPMFREE 

1 Free quickstort buffer. 

Output 

Parameter list 

2 Set return code. 

3 Enable for interruptions • 

........~.~IEAVNPA4
• • 	 Diagram 8.0, 
Step 3 

~ to. 
l, 	 .. ~ * 



r .. r
• 

en 
(b 
o 
rI" .... 
o::s 

'" 
if 
t 
& 
o 
HI 

o 
It:J 
ID 
H 
I\J 
rI" 

o 
~. 

::s 

co 
U'I 

.. ., 
r' 

Diagram 8.3: NPA4FREE 
r---------------------------------------T----------~
I Notes on processing I Label I 
~---------------------------------------+----------~ 
I 1. INPA4FREE I 
I I I 
I 2. I NPA4NXIT I 
I I I 
I 3. I NPA4PXIT IL_______________________________________L _________-J 



• 

__ _ 

• 

00 

From Diagram 8.0, 

Diagram 8.4: NPA41NTF and NPA4RSTD 
0\ 

Initiate or Restart Processing 

Step 2 
Input 

Parameter list 

1 Find paging device table entry for ,-_____-, 

--I .spedHed DeB. :J NPA4F PDT 

I 
IL 

2 Determine type of 

request" Restart • 4 
PDT 

~ ;~TDT . 1+ - 3 Build channel program.r/'~JIIIIfilI ---r--
I Output

Channel program Ibuild table 4 Execute channe I program. I I EXCPI __ .....J 

Parameter list 

5 Set retum code. 

IEAVNPM 
Diagram 8.0, 
Step 3 

l, 
t. 

l,. 
• l, 



.. ..• "r ( 	 r 

Diagram 8.4: NPA4INTF/NPA4RSTF (IEAVNPA4)
r---------------------------------------T----------,
I Notes on processing 	 ILabel I
r---------------------------------------+----------i

This subroutine formats page data I 
sets for which IEAVNP04 did not I 
find a NIPQSR1 record or for whichl 
reformatting is necessary. I 

I 
1. 	 INPA4INTF 

I 
3. 	 The channel program build table isl 

within lEAVNPA4 and contains I 
device-dependent information con I 
cerning the format of the CCW I 
string required to write the I 
count, key and data to the paging I 
devices. I 

I 
4. 	 The channel program formats one INPA4EXCP 

cylinder of the paging device. I 
I 

5. 	 The return code X'04' indicates INPA4AXIT 
that the channel program was too I 
long to fit in the nucleus buffer. INPA4NXIT 
A return code X'OO' indicates that I 
the I/O operation was initiated I 
successfully. IL______________________________________-L__________J 

en 
~ 
rI'.... 
o::s 
to.).. 
ifs: 
& 
o 
HI 

o 
ItS 
to 
11 
III 
rI' .... 
g 
CD 
~ 



From Diagram 8.0, 

__til NPMBCCV 

00 Diagram 8.5: NPA4BCCV 
00 Determine Number of Available Pages 

Step 2 Processing 

Input r-  Find paging device table entry 
associated with specified DCB.I ~ NPMFPDT I Output


Parameter list I 

I 


-; 
I 2 Count number of available pages in 


PDT r each cylinder.
I 
 I
I 
 I
..J 

I 3 Set retum code.
--, 
I 


I ..........~.t~ 
IEAVNPM• Diagram 8.0,

I Step 3 


I 
__ -I 
ABM 

,
~ .. ~
"", " ~ 



r ~ • r • (" 

Diagram 8.5: NPA4BCCV (IEAVNPA4)
r---------------------------------------T----------,
I Notes on processing ILabel I
r---------------------------------------+----------i
I 2. IEAVNPA4 uses loops to examine I NPA4BCOl I 
I slots and page groups within the I I 
I cylinder to determine from the I I 
I auxiliary bit map the number of I I 
I available pages. I I 
I I I
I INPA4MXIT IL-______________________________________L __________ J 

en 
CD o 
rt .... g 
N 

if 
~ 
& 
o 
HI 

o 
"0 
CD 
H 
III 
rt.... 
g 
CD 

'" 



IQ 	 Diagram 8.6: NPA41NTCo Initialize PVT 

From Diagram 8.0, Processing
Step 2 	 Output 

NPA41NTC 

IEAVNPA<IInput 	 ....- -r 1 Save PVT fields that may be modified 
I during coldstart process. 
I 


CVT I 

I 


--I 

I 

I PVT 


I I 2 Initialize PVT • 

--' 


I • IEAVNPM 
Diagram 8 aO, 
Slep 3 


~ , l, 	
" • l:,

~ 



r '. " r' • r' 
Diagram 8.6: NPA4INTC (IEAVNPA4) 

Ir---------------------------------------T----------,
Notes on processing ILabel I 

~---------------------------------------+----------~
I 1. The field PVTNPDTE is set to one INPA4INTC I 
I to force all page-outs to go to I I 
I the paged set for the link pack I I 
I area. The PVTFLAG1 field is set I I 
I to prevent migration during the I I 
IL_______________________________________coldstart process. ~I __________JI 

C/) 

CD 
o 
rt 
~. 

o 
l:I 

IV 

if g. 
& 
o 
HI 

o 
'0 

CD 
11 
III 
rt 
~. 

o 
l:I 

.... '" 



1.0 
!IV 	 Diagram 8.7: NPA4l0AD 

load Specified Module 
From Diagram 8.0, 
Step 2

Input 	 Processing 
CVT 	 ".I~I NPMlOAD 

CVTPVT ---,.---- Calculate number of pages needed
CVTSHRYM I fOI" this module. 

I 
NVT 	 Ir ___J~ECSlPG 
PVT 

'. 

PVTAPC 2 Calculate number of pages not yet 
PVTSQACT paged out. 

PVT 

PVTPDT ---r--  3 	 Determine whether there are Insufficient 
enough available pages to space. 5 

PDT 	 I hold module. 

I __ ---1 
PYTPDTAPC 

4 Calculate new law threshold. I 	 PVTlTH ]>I 

5 Set return code. 

"1I1I1I1I1I1I1I"1I~~IEAYNPA4 
Diagram 8.0, 
Step 3 

"l . •..~ -.. 	 ~ .. .. 



~ r r • • r' 
Diagram 8.7: NPA4LOAD (IEAVNPA4)
r---------------------------------------T----------,
I Notes on Processing I Label I 
~---------------------------------------+----------~
I 1. !NPA4LOAD I 
I I I 
I 3. \ NPA4LM01 I 
I I I 
I 5. A return code of X'OC' indicates I NPA4AXIT I 
I insufficient space for the I I 
I module. I NPA4NXIT IL_______________________________________ __________J~ 

C1l 
(\) 
o 
rt.... 
o 
::I 

IV 

~ 
rt
::r 
o 
0. 

o 
HI 

o 
ro 
(\) 

H 
III 
rt.... 
o 
::I 

\D 
W 



\0 Diagram 8.8: NPA4CCST 

"" Complete LPA Coldstart Process 
From Diagram 8.0, 
Step 2 Processing 

NPA4CCST 

Input 1 Enable interruptions. 

Output 
CVT 

--r-&- 2 Initialize page vector table and force 
poge-out of all modules in link pock area. 

I 
I

PVT I 
I 

--I~- 3 	 Re-initialize PVTi build and write 
N1PQSR3 records for lPA. 

~ N'~"I 
4 Build auxiliary bit mop for NIPOSR2 and 

write NIPC:>SR2. ~ NPA4WRIT I 
Parameter list 

5 Set return code. 

IEAVNPA4 

•••••••••••••	Diagram 8.0, 
Step 3 

\, ... • '-	 • ~ " 



~ • 	 .. /It'r r 	 r 

Diagram 8.8: NPA4CCST (IEAVNPA4)
r---------------------------------------T----------,
I Notes on Processing 	 I Label I 
~---------------------------------------+----------~
I 2. 	 The paging low threshold is set tolNPA4CCOl 

the number of page frames I 
available. I 

I 
The 	paging supervisor is entered I 
by refering to a page that is not I 
in real storage. Discovering that I 
the low threshold has been reached 
(forced in Step 2>, the paging 
supervisor initiates page 
replacement. 

3. 	 The PVT fields are restored to NPA4CC02 
their original condition upon 
entry to the Initiate coldstart NPA4CC03 
subroutine (NPA4INTC). I 

I 
5. 	 A return code of X'08' indicates NPA4CCRS I 

I/O error while reading or writing I 
of a quickstart record by the NPA- N"PA4FSLT I 
4READ or NPA4WRIT subroutine. A I 
return code of X'OC' indicates I 
that no slot was found by the sub- I 

Il routine NPA4FSLT. I __________ I_______________________________________~ J 

CIl 
(I) 
o 
rT.... 
o 
!:I 

..t.) 

ifg: 
8. 
o 
HI 

o 
to 
(I) 
H 
III 
rT.... 
o::s 

\Q 
VI 



\D Diagram 9.0: IEAVNP05 
a- Initialize link Pack Area and BLDL Table 

From Diagram 3.0, 

Step 4 


Input Processing 

NVT IEAVNP05 =
NIPOSR2 

- I- -. 
NIPOSR3 

_-.J-.- I 

r

Parameter list I 
--t---.-

I 

I 
IL __ 

NlPOSR2-. 

1 Determine whether a quickstart has been 
requested. -. NP5CSlPA 

Call this subroutine 
if colds tort 

9.2~5 
2 DeHne p,eviously built lPA. ----  ....IE~N~P5~Q~S~l~PA~51 

• . 9.1. 

NP5FIX 
t

6 Define pageoble system BlDL table. 

9 Initialize type-3 and type-4 SVC table 
entries. ___".~[~SVC~ 

• 
10 Release the quickstart I/O buffer and 

delete IEAVNPA4. NPA4 FREE 

8.3 

.....................~IEAVNIPM• Diagram 3.0, Step 4 

\., \v • ~... L 



.. • 	 ..r 	 r' r' 

Diagram 9.0: lEAVNP05 
r---------------------------------------T----------~ 
, Notes on processing 	 'Label , 
~--------------------------------------+----------~ 

1. 	 The NVTFLQS flag was set by ,IEAVNP05 
lEAVNP04 (label NP4RQSR1) if the I 
LPA page data was previously for- , 
matted and the CLPA parameter was I 
not specified. NP5CSLPA tuilds I 
the LPA page data set. I 

I 
2. 	 NIPQSR2 contains the start and end I NP5QSTRT 

virtual addresses of the LPA. I 
NIPQSR3 contains the slot and I 
group numbers for the records I 
within the LPA page data set. I 

I 
10. 	 lEAVNP05 uses the lEAPMNIP macro INP5RLBUF 

instruction to gain access to the I 
NPA4FREE subroutine in IEAVNPA4. I 
Upon return. lEAVNP05 issues an I 
SVC 9 (DELETE) instruction to I 

L remove IEAVNPA4. 	 J_______________________________________LI __________ 

C/) 

CD o 
rt.... 
o::s 
~ 

ifg: 
& 
o 
111 

o 
ttl 
CD 
11 
III 
rt.... 
o::s 

\C) 

-J 



ID 
co 	 Diagram 9.1: NPSQSLPA 

Initialize Table Entries 
From Diagram 9.0,


Input Step 2 Processing 

i 

~I 

• - i 
Quickstart record 2 NPSOSLPA 

Obtain and clear space for lPA 
page tobles. 

2 	 Using the slot and group numbers from 
quickstart record 3, initial ize the page 
table and external page toble entries. NPA4READ 

8.1 

I, NP5LPAPT 

CYT . [-
~------' 

14 I---T-- 3 Initialize page device table entries 

and system segment table entries.
I 


I 

PYT I 

I 
.........~IEAVNP05 


PVTPDT r- _L- - - J 	 • D;ag,om 9.0, 
Step 3 

4.., 	 .. 4 ~4w ~ • 



.., 	 ..r • ( 	 • r 
Diagram 9.1: NP5QSLPA (IEAVNPOS) 
r--------------------------------------~----------l 
I Notes on Processing 	 I Label I 
~---------------------------------------+----------~

1. 	 space is obtained for page tables INPSQSLPA 
and external page tables with a I 
GETMAIN macro instruction s~ecify-INPSPGTE 
ing subpool 255 of the SQA. All 
page table entries from the begin
ning of the page table up to the 
entry for the first page for the 
LPA are set invalid. 

2. 	 The quickstart 3 records are read INP5RDQSR 
and processed in a loop. Each 
record is processed by the subrou
tine NP5LPAPT. 

If the quickstart process cannot 
continue because an error occurred 
while reading a quickstart record 
3 (in Ste~ 2), execution resumes 
at Step 4 (9.0) for coldstart. 

3. 	 Auxiliary page records that con- I NP5LPDTE 
tain LPA pages are indicated as 
unavailable. The virtual I NPSLPAST 
addresses of LPA page tables are 
converted to real addresses and 
the segment table entries are set 

_______________________________________ i to indicate maximum size. __________ 

en 
o ~ 
r1".... 
o::s 

'".. 
ifs: 
8. 
o 
HI 

o 
"0 
~ 
11 

~ .... 
g 

'" '" 



~ 
o 
o 

From Diagram 9 0 
Input Step 4 • , Processing 
• 	 i _ r-I----.....::.. 

NP5CSLPA 


Activate pageable task (lEAVNPA5). 


2 	 Open SYSI.LPALIB (LPA module ,ayrce 
library). 

3 	 Indicate pogeable task to initiate coldstort. 

4 	 Optionally initialize Fixed LPA and 
fixed system BlOl table. 

5 	 Wait until pageable task processing 
is complete. 

Diagram 9.2: NP5CSLPA 
Attach IEAVNPA5 

I I NPSVfCB 

• I 9.31 

I I NP5LPLIB 

• 1 9AI 

II NPSPOST 

• 1 -] 

• [ NP5FIX 

• 1- - J 

WAIT 

IEAVNPOS 

1••••••••••••••I1~ Diagrun 9.0, 
Step S 

• 	 , l,'-' "'" 	 ~ 



r .. • r 	 • r 

Diagram 9.2: NPSCSLPA (IEAVNPOS) 
r--------------------------------------~----------,
I Notes on Processing 	 I Label I 
~---------------------------------------+----------~

1. 	 Because module lEAVNPA5 performs I NPSCSLPA 
certain coldstart functions (and 
other functions common to 
coldstart and quickstart), 
lEAVNP05 attaches IEAVNPAS as a 
subtask. The interaction between 
IEAVNP05 and IEAVNPAS is governed 
by event control blocks, one for 
each module. When IEAVNPOS needs 
processing by IEAVNPA5, it posts 
the pageable ECB (for lEAVNPAS) 
and issues a WAIT macro instruc
tion specifying its own ECB (non
pageable). When the required pro-I 
cessing is complete, IEAVNPAS I 
posts the nonpageable ECB and I 
issues a WAIT macro instruction I 
specifying its pageable ECB. I 

I 
The initial interface with lEAVN- I 
PAS is provided by the subroutine I 
NP5VTCBi subsequent interfaces arel 
provided by the subroutine I 
NPS POST , 	 I 

I 
2. 	 The SYS1.LPALIB is the source of INP5LPLIB 

the modules to be loaded into the I 
en link pack area. IL_______________________________________L __________ J
ID o 
rt.... 
o
::s 
IV 

:J: 
ID 

~ 
o 
0

o 
HI 

o 
Itj 
ID 
11 

~ .... 
o
::s 

r---------------------------------------r----------,
I Notes on Processing 	 ILabel I 
.---------------------------------------t----------i

3. 	 see Diagram 10.3 for a description 

of the coldstart processing. 

IEAVNP05 is executed asynchronous

ly from lEAVNPA5 until Step 5; 

IEAVNPA5 performs part of the 

coldstart process and indicates 

that IEAVNP05 can continue its 

processing asynchronously. Howev

er, IEAVNPA5 must complete its 

coldstart processing before sub

routine NPSCSLPA returns control 

to mainline coding. 


NPSPOST calls NPSBLMQ which 
returns control to NP5POST which 
calls NP5BLMQ again. This loop 
continues until NP5BLMQ indicates 
the 	end of the list to NP5POST. 

4. 	 The NP5FIX subroutine and its sut-INP5FIX 

routine NP5MLPRM loads the speci- I 

fied modules into subpool 251 in I 

the nonpageable region. Both sub-I 

routine functions are optional 
(user requested). 

The NPSBLDLF subroutine and its 
subroutine NPSBLPRM create the 
fixed BLDL table in the nucleus 

I 
I 
I 
INP5BLDLF 
I 
I 

buffer. 	 IL_______________________________________L __________J 

t-> 
o 
t-> 



6 

I 

Diagram 9.3: NP5VTCB 
'" Load, Attach, and Delete IEAVNPA5 

From Diagram 9.0, Processing
Step 1 

• 	 NP5VTCB 
Deactivate 
pageabl e tosk 

1 Determine type of request. .6 
2 	 Bring I EAVNPA5 into the nonpogeable 

region. NIPLOAD 

, 	 1 3. ;1 

3 	 Attach I EAVN PA5 as a .ubtask. ATTACH 1 
Input 

14 	 Initialize the pogeable region for 
IEAVNPA5. NP5VREGN 

NVT 	
l,• 	 I 

-5 Wait for IEAVNPA5 to complete its[NvrncB?-.--	
Iinitial process iog. 	 WAIT 

I 1 .. 
NPSCSLPA ,. 
 Diagram 9.2, Step 2 


6 Indicate pageoble task termination. NP5POSTl,
• 	 I 

7 	 Remove IEAVNPA5. DELETE I 

18 	 Release pageable subpool 253 storage 
and any control blocks for the pogeoble 
region. 	 FREEMAIN l 

NPSVREGNI 	
1 

-,• 	 I
9 	 Remove pogeoble reB from priority and 

subtosk queues. IEADOTeB I 

I 	
I I 

IEAQERA 

l 
I 

r 

-
, 

..• 

~ ~. ~ 	 & ~ L 



r 


en 
CD 
n 
rt .... o::s 

"" 
!J: 
CD 

S"
O 
0. 

o 
HI 

o 
Itj 

CD 

H 

~ .... 
g 
.... 
o 
w 

~ • r • (' 

Diagram 9.3: NPSVTCB (IEAVNPOS)
r---------------------------------------T----------,
I Notes on processing I Label I 
~---------------------------------------+----------~
I 2. For a description of the interface I , 
I provided by NPSVTCB between I ,
I lEAVNPOS and IEAVNPAS, see 9.2, I I 
, Notes on Processing, Step 1. Once' , 
, IEAVNPAS is activated, subsequent I I 
, requests to activate IEAVNPAS are , I 
, ignored. 'I 
, I I 
, 6. ,NPSVTDET IL_______________________________________L __________ J 



~ 	 Diagram 9.4: NP5lPLIB 
o 	 Initialize SYS1.lPALIBoj:: 

From Diagram 9.0, 

Step 2 Processing 

NP5lPLIB 

1 	 Ensure that SYS 1. LPALIB is defined in 
the system catalog. LOCATE 

""'"

2 Ensure that the volume is mounted. NIPMOUNT 

IEAVNP02 
~ subroutine 

5.1 

Output
3 	 Open SYS1.LPALIB. NIPOPEN -

IEAVNP02 
~ 

subroutine 5.2 NVT 

NVTCSlIB)I I I 

.. . IEAVNP05 
Diagrmn 9.0, 
Step 3 

4w 	 4. ,f'O • 	 '-' 



... r '" r 

w1 
m 
~ 
foI· 
o
::s 
I\.) 

!i: 

~ 
:;,' 
o 
a. 
o 
I-h 

o 
'0 
CD 
1'1 

rt 
foI· o::s 

I-" 
o 
c..n 

" .. r 
Diagram 9.4: NP5LPLIB (IEAVNPOS)
r---------------------------------------T----------,
I Notes on Processing ILabel I 
~---------------------------------------+----------~ 
I 1. INP5LPLOC I 
I I I
I 4. The DCB address for SVC1.LPALIB isl I 
I put in NVTCSLIB. I Il _______________________________________~__________J 

III 



Diagram 9.5: NP5MLPA 
I-' 
o Load Specified Modules into LPA 
a.. 

Step 5 ProcessingFrom Diagram 9.0, 

•••~INP5MlPA 

Input r--
I 

1 AcHvat. pageabl. task (lEAVNPA5). ~ NP5VTCB 9.31 
I 

NVT 

NVTVRECB 
;, 

I 
I 
I 

_-l 
2 Analyze PARMLIB list and load specified 

modules into lPA. ~ NP5MLPRM 1 

NVTVVTCB --.., 
I 
I 
I 
I 
L_ 3 Place modules on lPA queue. ~ NP5QLPAQ 

I 

• ••••••••••••• IEAVNP05Diagram 9.0, 
Step 6 

,~ .. l., l,
... • • 



'II ". .'r r , r 
Diagram 9.S NPSMLPA (IEAVNPOS)
r---------------------------------------T----------,
I Notes on processing ILabel I 
~---------------------------------------+----------i
I 1. If IEAVNPAS has previously been I NPSMLPA I 
I activated, this request is I I 
I ignored. I Il _______________________________________L__________ J 

en 
/I) 
o 
rt 

o 
~. 

t:S 

'" 
:J: 
/I) 

g-
O 
0. 

o 
HI 

o 
to 
ID 
Ii 

~ 
o 
~. 

t:S 

.... 
o 
~ 



I-" 
o 
(Xl 	 hom D;og,om 9.0, Diagram 9.6: NP5BLDLP 

Step 6 Processing Include Modules in BLDL Table 

i 

••~I NP5BlDLP Output
Input Sccn parameter I ist for val id entry • 

2 Assign temporary Qreo to BlDl table.NVT r- 
I 	 I3 Construct system BLDl toble.

--' 	 ~ NP5PLlST~7¥if-
NVT ~ N"",N~ 1 -, 

4 	 Issue BlDl macro instruction. 

I 
I 
IL __ 

I 

5 Act;vate pogeoble task (IEAVNPA5). ~ NP5VTCB 9.31 

6 	 Indicate pageable task to define BlDL 
table. ~ NP5~ST I 

I 

I I IEAVNP05 

••••••••	o;ag""" 9.0, 
Step 7 

l, 	 l,~ ... • 	 • 



.. 



~ Diagram 10.0: IEAVNPA5 
o 
~ Control Routine 

Processing 
From D ram'l.V 

L ...... 
IEAvNPA5----,.. 

\llocate real storage.Input 1 GETMAiNI Output
I I BLDL 

2 Initiol ize save area for BlDl entry. ['l.;•...i2i!!if'.~ 
BLDLSAVE 

,-- 3 Post nonpageable ECB to indicate phase BLDLLL 
complete. NPA5POSTI BLDLFF 

I ~ II 
NVT 4 Wait for IEAVNP05 to request moreI 1- .. 

I work. WAIT I 
INVTVRECB ...J 

NVTMSTCB 

I 

I 
I 

I5 Determine type of request and processI r 
accordingly.

I I ... NPA5MLPANVT I I A. Add modules to qu ckstart lPA. Diagram 10.1 
I I 

8. Allocate pageable storage for 
NVTVVECB _.....J I NPA5BLDL 

system BLDL table. 
Diagram 10.2I 

I NPASCLPA
ECB C. LPA coldstart processing.I Diagram 10.3 

I __ J ... 
NPA5TERMD. Terrninate pageable task. 

UlCNT Diagram 10.4::r-
~ 

I 
.. NIPSWAIT 

X'3F' 
E. Invalid request. 

L,. ,~ .. • ~ 



.. .. 	 .. "r ( 	 r" 

Diagram 10.0: lEAVNPA5
r---------------------------------------T----------,

II Notes on processing 	 ILabel 
r---------------------------------------+----------~
I 1. All of the region is allocated INPA5INIT 
I from subpool 252. Sixty-four I 
I bytes are allocated from subpool I 
I 255 for the BLDL save area. I 
I 	 I
I 3. The nonpageable ECB is posted to INPA5SYNC 
I indicate completion of the initia-I 
I lization process in IEAVNPA5. The 
I POSTCD field is set by the subrou-
I tine that performed the 
I processing. 

4. 	 The pageable ECB is specified in 

the WAIT macro instruction. 

IEAVNP05 posts this ECB when addi

tional work is required. 


5. 	 The type of request is indicated 

by a bit pattern in the pageable 

ECB. steps 1 through 4 are 

executed only on the first entry 

to lEAVNPA5. Subsequent entries 

are to Step 5.
L_______________________________________~__________ 

en 
(1) 
o 
rt.... 
o 
::I 
I\) 

ifs: 
& 
o 
HI 

o 
Itj 
(1) 

PI 
rt.... 
g 
~ 
~ 
~ 

11 



IV 

...... 

...... F'om D;ogcom 10.0, Diagram 10.1: NPA5MLPA 
Step 5 Processing Load Specified Modules Into LPA 

I 

••1I7~1 NPA5MLPA 

Input r- 1 Dete~;ne lood odd,ess fo, module. 
I 

;::::=! iIW~ I 
I 

NVT 
I 

I I ~""""",1~.4__ .JINVTVR~L:ir 
I 

-

2 Indkote nonpageoble task to conHnue. ~ iIW~ 

3 load module into link pock area. 

Output~~I 
Non~leEC8 

4 Set return code. 

IEAVN P05 

• •••••••••••Dlagram 9.0,Step 3 

I ~~
~ '" ~ 



• • r • r r r' 
Diagram 10.1: NPASMLPA (IEAVNPAS) 
r--------------------------------------~----------,
I Notes on Processing I Lacel I 
~---------------------------------------+----------~I 1. NPASMLPA is entered from the INPASMLPA I 
I NPSMLPRM subroutine in IEAVNPOS. I I 
I I I 
I 4. Return is via the WAIT/POST INPASMSER I 
I interface. I I 
I INPASMXIT Il _______________________________________~__________ J 

en 
to 
n 
r1'.... 
o 
::I 

'" 
~ s: 
8. 
o 
HI 

o 
't:! 
to 
11 
III 
r1',... 
o::s 

~ 
~ 
IN 



~ 
~ Diagram 10.2: NPA5BLDL 
~ Allocate Storage for, 

and Move, BLDL Table 
From Diagram 10.0, 

Step 5 Processing 


1 	 Determine size of BLDL table. 

2 	 Determine location to be occupied by the 
BLDL table. ~ NPA5ADDR I 

.4 OutputInput 
Storage unavailable 

NVT 

t~~T~tDL·r-+ - - + 3- - Move BLDL table to pageoble o<eo. 

Non-pageable EeB 

4 Set return code. *1 

IEAVNP05 
Diagram 9.0, 
Step 6 

••17~1 NPA5BLDL 

CVT 

i ~.~ • • ~ 	 • 



• • r • ,. 

~ r 
Diagram 10.2: NPASBLD1 (IEAVNPAS)
r---------------------------------------T----------,
I Notes on processing ILabel I 
~---------------------------------------+----------i
I 1. NPA5BLDL is entered from the INPASBLDL I 
I NPSBLDLP suhorutine in IEAVNP05. I I 
I I I
I 4. The return code X'04' indicates INPA5BSER I 
I storage was unavailable. x'OC' I I 
I indicates end of normal INPASBXIT I 
I processing. I __________ IL_______________________________________~ J 

en 
II) 
o 
rt.... 
o 
~ 

t.J 

f 
S"
O 
Q, 

o 
HI 

o 
"CI 
II) 
t; 
PI 
rt.... 
o 
~ 

~ 
~ 
VI 



~ 
~ 
f3\ 

From Diogram 10.0, 
Step 5 

---.. 
poInput 

NVT 

INVTCSUB ~- -,-
I 
I 

I 


J 

Diagram 10.3: NPA5ClPA 
Coldstart Process; Build lPA 

Processing 

NPA5CLPA 
Output

1 	 Indicate colds tart is being initiated. NPA4INTC I 
~ I lOBs.61 

10BDCBPB I
2 	 Initialize lOB for LPALIB. 

10BCC I 
3 	 Construct BLOl information table and 


determine hash value. NPA5CLlN 


~ I 
4 	 ~ood modules specified by LPA packing 


list. NPA5LGRP 


10.5 ~ 
Load independent modules. 	 NPA5L1ND5 

~ 
6 	 Construct lPDEs for all module aliases. NPASALIS 

~ 
Build permanent link pack area directory. NPA5BDIR7 

~ 
8 	 Complete LPA coldstOli process. NPA4CCST I 

I..oIL s.sl 
... 	 IEAVNP05 

Diagram 9.0,.. Step 5 

, 	 l,~ • • 



'r 


en 
(1) 
o 
cT.... 
o 
::1 

tIJ 

:J: 
(1) 

G
O 
Q. 

~ 
o 

'T'l 
(1) 
11 
III 
cT.... 
o 
::1 

~ 
~ 
..,J 

~• • ...r r 
Diagram 10.3: NPASCLPA (IEAVNPAS)
r---------------------------------------T----------l
I Notes on Processing I Label I 
~---------------------------------------t----------1
I 1. NPASCLPA is entered at the requestlNPASCLPA I 
I of the NPSCSLPA sUbroutine in I I 
I lEAVNPOS. I I 
I I I
I 2. The lOB is within IEAVNPAS and is I I 
I used for the I/O operations that I I 
I read the SYS1.LPALIB directory I I 
LI _______________________________________ records. I __________JI~ 



From Diagram 10.0, 

.... .... Diagram 10.4: NPA5TERM 
co Release BLDL Save Area 

Step 5 Processing 

NPA5TERM 

Input r- Release allocated BLDl entry I save area. FREEMAIN, Output, 
,I 

__ J 
[BLDLSAV ~- 2 Set Return code. 

NP5VTCB 
Diagram 9.3, 
Step 7 

4w .. L. , , l,
• 



• • 10r t r· r 
Diagram 10.4: NPASTERM (IEAVNPAS)
r---------------------------------------T----------,
I Notes on Processing I Label I 
~---------------------------------------+----------1
I 1. The V=V space allocated by Step 1 INPA5TERM I 
I in lEAVNPA5-0 will be released by I I 
I lEAVNP05. I I 
I I I 
I 2. NPA5TERM relinquishes control by I I 
I setting the return code to I I 
I lEAVNP05 as X'OC' and by posting I I 
LI _______________________________________ the V=R ECB. ~I __________ JI 

en 
CD 
n 

o 
~. " 
::I 

to.,) 
II 

! 
o 
Q. 

o 
HI 

o 
'0 

CD 
Ii 
III 

~. " o 
~ 

...... 
ID 



IV 
.... 	 Diagram 10.5: NPA5lGRP 
o 	 load Groups of Modules Specified 

by lPA Packing list 

From Diagram 10.3, 
Step 4 Processing 

NPA5LGRP 

Request list of modules to be loaded. NPA5POSTII 
Requests 
IEAVNP05 
Build a list. 

Finished 
2 Determine whether list is finished. R 5 

3 	 Load spec;fied modules. • _I NPA5GLOD 

4 	 Loop bock to Step 1. 

5 	 Indicate IEAVNP05 can continue 
execution. NPA5POST• I 

• 
•1I1I1I1I1I1I1I1I1I1I1I1I1I1I~NPA5CLPADiagram 10.3, 

Step 5 

, 	 ~,f ~ • " 	 l" 



~ .. • r~r 
, r 

Diagram 10.5: NPA5LGRP (IEAVNPA5)
r---------------------------------------T----------, 
I Notes on processing I Label I 

~---------------------------------------+----------~ 
I 1. NPA5LGRP issues a Wait while I I 
I awaiting return from NPA5POST. I I 

I I I 
I 2. Determined by return code issued I I 
I by NPA5POST. I IL_______________________________________ __________J~ 

CIl 
CD 
C'l 
rt 

o 
~. 

::s 
I\) 

3: 
CDg: 
o 
0. 

(") 
HI 

o 
'l1 

CD 
H 
III 
rt 
~. 

(') 
::s 

I-" 
I\) 

I-" 



~ I Diagram 11.0: IEAVNP06 
I'V Initialize Reliability and 

Serviceability Features 

hom Dl09,om 3.0, po~ro~c~e:S~S~in~!Lg_______________lS'ep 4 :.:. 

IEAVNP06 

Initialize DSS (dynamic support system). ~ NP6DSS 11.11 

2 Inl'lollz. SYSI.DUMP. :I NP6DUMP 1.2 1 
I 

3 Initialize RMS (recovery management ~ NP6RMS • 
II 31

support). 

4 Initialize trace function. ~ N"'~,,,l 
..IIIIIIIIIIIIIIIIIIIIII....~IEAVNIPM• 	 Diagram 3.0 I 

Step 4 

, 	 l,~ 	 .. ~ •• 



• 


• 

-




----

I 

I-' I Diagram 11.1: NP6DSS 
tv Initialize DSS (Dynamic Support System)
~ 

From Diagram 11,0, 


Input Step I Processing 

..... 


NP6DSS...,.. 

--- 1 Find and mount SYS1.DSSVM t r-CVTDSSV 
data set. LOCATE I 

I I
I Output

NIPMOUNf 

I 
5.11 IQADSV 

SYS 1. DSSVM 
>I DSVPDS',C 

2 Qpen SYS 1. DSSVMDEB :}-- ---	 I 
data set. NIPOPEN I 

SYS 1. NUCLEUS 
IQADSV5.~ 

DEB ..-r-- II I 

DSVPDSST 

3 	 Find DSS initialization 

module (lQAINIOO)'~ NP6LPAfN DSVPDSEN 

I 	 DSVNVCDR 

.>l Register 1 =- address of 

I IQAINIOO 

DSS PRB 

Register 1 r.-- ---- 4 Put odd,." of IQAINIOO I '1 
in DSS PRB. >I XRBPSW 

IQADSV 
I AF ~--.---- . ---	 ..DSVDSTCB 


IEAVNP06 

Diagram 11.0, 

Step 2 


'-., 	 f t ~~ 	 ..• 



.

r a # r • • r 
IDiagram 11.1: NP6DSS (IEAVNP06)
r---------------------------------------T----------,
I Notes on Processing ILabel I 
~---------------------------------------+----------i
I 1. If the data set is not found, the INP6DSERl I 
I beginning and ending CCHH fields I I 
I in the DSS vector table (IQADSV) I I 
I are set to all F's. NP6DSS calls I I 
I NIPWTO to write the messages LOC- I I 
I ATE FAILED FOR SYS1.DSSVM and DSS I I 
I INOPERATIVE to the operator. I I 
I CVTDSSV is the CVT pointer used tol I 
I locate the DSS vector table. I I 
I I I 
I 2. If NP6DSS cannot open the data I NP6DSER2 I 
I set, the beginning and ending CCHHI I 
I fields in the DSS vector table I I 
I (IQADSV) are set to all F's. 
I NP6DSS calls NIPWTO to write the 
I message DSS INOPERATIVE to the 
I o{,erator. 
I 
I 3. NP6LPAFN calls IEAQCDSR to search 
I the LPA active queue for IQAINIOO. 
I If IQAINIOO is not found, it then 
I calls IEAVVMSR to search the LPA 
I directory for IQAINIOO. If 
I IQAINIOO is found, NP6LPAFN sets 
I register 1 to the address of 
I IQAINIOO from the CDE or LPDE. 

If the module is not found, NP6DSS NP6DSER3 
CIl 
(!) calls NIPWTO to write the message 
g. IQAINIOO NOT FOUND IN LPA to the 
..,. operator. NP6DSS puts the address 
o of the DSS Mask out routine::l 

(IQAPFXRT) in the restart new PSW. 
IV 

q. Register 1 contains the address ofl 
3: IQAINIOO. DSVDSTCB is a {,ointer I 
(!) 
('1' to the DSS TeE. I_______________________________________4 _________ _ 

b' 

o 
0.. 

o 
H\ 

o 
'0 
(!) 
~ 
III 
('1'..,. 
o 
::l 

f-Io 
IV 
Ln 



• • • 

Diagram 11.2 (1 of 2): NP6DMP 
I-' 
tv Initialize SYS1.DUMP 
Cl'I From Diagram 11.0, 

Step 2 

Input 

@
NP6DUMP 

If direct 

1 Determine SYS 1. DUMP device type access 

(tape or direct access), •5 

2 	 If tape, find UCB for unit specified. NIPUCBFN 

3.3 

3 	 Ensure that a non-labeled, non-file
protected scratch tope is mounted and 
ready. N IPtl"OUNT 

5. I 

4 	 Open SYS1.DUf},P on tape. NIPOPEN 

5.2 

IEAVNP06 
Diagram 11 0,.. 	 S'eo 4 

5 	 If direct access, find SYS1.DUMP 
doto set. LOCATl 

--..
6 	 Mount SYS 1 • DUt~'1P data set. NIPMOUNT 

5.1 

--..
Open SYS 1. DUMP data set. 	 NIPOPll~7 

5.2 

(Continued at Step 8) 

" 
 l, 	 ~f 



•r a # r 	 • r 
Diagram 11.2: NP6DMP (IEAVNP06)
r---------------------------------------T----------,
I Notes on Processing 	 ILabel I 
~---------------------------------------+----------i 

1. 	 NP6DMP locates and verifies the 
DUMP parameter. 

If the parameter 	is not specified 
or is not valid, 	NP6DMP checks 
whether there is 	enough space in 
the 	nucleus buffer for a DCB for 
SYS1.DUMP. If there is enough 

INP6DMP 
I 
I 
INP6DMP2 
I 
I 
I 
I 

space, the operator is prompted tol 

specify the DUMP parameter or can
cel the specification. If he can
cels, SYS1.DUMP is disabled by 

setting the pointer to the DCB 

(CVTDAR) to 0 and NVTNUCND to its 

value on entry to NP6DMP. Control 

goes to Diagram 11.1, Step 4. 


If there is not enough space for INP6DUMP2 

the DCB, the operator is notified, 

and SYS1.DUMP is disabled as 

above. 


If DUMP=NO is specified, SYS1.DUMPINP6DMPl 

is disabled as above. If DUMP=NO 

is not specified, NP6DMP checks 

whether there is enough space for 

the SYS1.DUMP DCB. If there is 


en 
/I) 	 not, the operator is notified, and 

SYS1.DUMP is disabled as above.~ 
~. 

o 	 NP6DMP also checks the validity oflNP6INVLD::s 
the unit address parameter. If itl 

IV is invalid, NP6DMP notifies the I 
operator via NIPWTOR and prompts I 

s: L_______________________________________ him to respecify the parameter. ~I 
~ g
o. 
o .... 
~ 
~ 
III 
t1" 
~. 

o::s 

I-> 
IV 
..J 

__________ J 

r---------------------------------------T----------,
I Notes on processing 	 ILacel I 
~---------------------------------------+----------i 

2. 	 On return of control from 
NIPUCBFN, the UCE is checked to 
ensure that the device specified 
is a 2400-cOK-patible tape drive 
and is online. 

3. 	 If the device is not 2400
compatible and online, or if NIP
MOUNT was unable to have the 
required tape mounted, the opera
tor is notified that this device 
is unacceptable and is prompted to 
respecify or cancel the parameter. 

4. 	 If the OPEN operation is unsuc
cessful, SYS1.DUMP is disabled as 
in Step 1. 

5. 	 If the data set is not found, the 
operator is notified with the LOC
ATE FAILED message and is prompted 
to respecify the BUMP parameter. 

6. 	 If the volume containing the data 
set cannot be mounted, the opera
tor is prompted to respecify the 

L___________ DUMP parameter.~___________________________ 

INP6DMPTA 
I 
I 
I 
I 
I 
NP6UNACC 

INP6NODMP 

INP610CNG 

INP6RESPE 

~__________J 



I-' Diagram 11.2 (2 of 2): NP6DMP 
00 Initialize SYS1.DUMP 
IV 

Processing 

8 	 Read fj"t record of data ,.t. :l NP6EXCP 

I 
9 	 Determine status of dump data set 

(contains dump or empty). 

10 If size of data set is adequate IEAVNP06 
Diagram 11.0," Step 4 

11 If size is inadequate, scratch this 
SYS1.DUMPdato set, SCRATCH l 

I l 
12 	 A!locate new SYS1.DUMP of proper 

size. ALLOCATE I 

I 
13 Open new SYS 1 • DUMP data 

set. 	 NIPOPEN l 
r 5.21 

14 	Write an EOF as the first 
record. NP6EXCP 

~ I 
.. 

IEAVNP06 

r • Diagram 11.0, 
Step 4 

\, 	 , t
• • L 	 L 



• 4 	 - •r 	 r • r 
Diagram 11.2: NP6DMP (IEAVNP06) (Cont'd)
r---------------------------------------T----------,
I Notes on Processing 	 I Label I 

~---------------------------------------+----------~
I 7. If OPEN processing fails because I NP60PNNG 
I the data set is not found, an 
I attempt is made to allocate and 
I o~en a new data set. If OPEN pro-
I cessing fails because of insuffi-
I cient storage, SYS1.DUMP is dis-
I abled as in Step 1. If OPEN pro-
I cessing fails for any other 

reason, the operator is prompted 
to respecify the parameter. 

8. 	 If there is an I/O error, NP6DMP I NP6IOEOF 
informs the operator and prompts 
him to respecify or cancel the 
DUMP parameter. 

9. 	 If the data set contains a dump, INP6LOCAT 
the operator is prompted with the 
message SYS1.DUMP CONTAINS DATA. 

If the data set is empty and the INP6EMTY 
size is not specified or is adequ
ate, control returns to Step 4. 

10. 	If the size specified in the para-INP6SMAL 
meter is greater than the size of 
the data set, the operator is 

en notified with the message SYS1. 
/1) DUMP TOO SMALL and prompted to 
(') respecify or cancel the parameter.rt L_______________________________________~__________J .... 
o 
::l 

'" 
s:: 
~ g
o. 
o 
HI 

o 
"0 

CD 
1'1 

rt.... 
o 
::l 

I-" 

\D '" 

r---------------------------------------T----------,
I Notes on Processing 	 I Lacel I 

~---------------------------------------+----------~

11. 	The operator is notified with the INP6EMTY I 

message SYS1.DUMP SCRATCHED or I I 

UNABLE TO SCRATCH SYS1.DUMP and I NP6NOSCR I 

prompted to respecify the DU~P I I 

{:arameter. I I 


I I 

12. 	If allocation fails, the o{:erator NP6FAIL I 


is notified and prompted to respe I 

cify the DUMP parameter. I 


I 

13. 	If OPEN processing fails because NP60PNBD I 


of insufficient space, SYS1.DUMP I 

is disabled as in Step 1. If it I 

fails for any other reason, the I 

operator is prompted to respecify I 

the DUMP parameter. I 


I 

14. 	If there is an I/O error, NIPSENSEINP6BADIC I 


is called, and the operator is I 

prompted to respecify the DUMP I


I {:arameter. 	 I__________JI
L_______________________________________i 


III 



Step 3 

".I~INP6RMS 

.... 	 Diagram 11.3: NP6RMS
(.oJ 

o 	 Initialize RMS (Recovery Management Support) 
From Diagram 11.0, 

Processing 

1 	 Issue RMS initialization macro 

(IGFVNIP). • IGFVNIP 

2 	 IGFVNIP call, IGFVCCIN to handle 

(CH initialization. 'IGFVCCIN 

•3 
MCH initialization • 

•••••••••••••~I~ ~i:~Z:o;'l.O, 
Step 4 

~
~ 	 f ~ 
• • 	

, 



• • r <# r r." 

Diagram 11.3: NP6RMS (IEAVNP06)
r---------------------------------------T----------l
I Notes on processing ILabel I 
~---------------------------------------+--------~-~
I 2. Using BLDL, IGFVNIP loads, calls, INP6RMS I 
I and dele~es IGFVCCIN. If an errorl I 
I occurs, a message is written to I I 
I the operator via NIPWTOR. I I 
I I I 
I 3. Using BLDL, IGFVNIP loads, calls, INP6RMS I 
I and deletes IGFVMCFO. If an error I I 
I occurs, a message is written to I I 
IL____ the operator via NIPWTOR._______________________________ I~____________ I__J 

en 
/I) 

~ .... 
o::s 
IV.. 

3: 
~ 
::r o 
Q, 

o 
11\ 

.g 
(!) 
11 
~ 
rt 

b::s 
~ 
I.Iol 
~ 



j-> Diagram 11.4: NP6TRA
IJJ 
I-..> Initialize the Trace Function 

From Diagram 11.0, 
Step 4 

Input Output 

Define trace table i(l lower portion of 
nucleus buffer. 

2 Move temporary trace table to permanent
PARMTAB __...~rNP6MOVE-,trace table. 

TRACE parameter pointer • I 
3 Enable trace function. MODESET 

•.................II~ IEAVNIPM
Diagram 3.0, 
Step 4 

,

~ , • • , ~ 



-• 	 .. •r 4 r 	 r 
Diagram 11.4: NP6TRA (IEAVNP06)
r---------------------------------------T----------,
I Notes on processing 	 ILabel I 
~---------------------------------------+----------~ 

1. 	 If the TRACE parameter is not spe-INP6NOTRA I 
cified or is equal to 0, the trace I I 
function is disabled by putting a I I 
BR 11 in the CVT field CV~TRACE I I 
and putting O's in FLCTRACE and I 
SCVTRPTR. I 

I 
If the parameter is invalid, the I NP6INVAL 
operator is prompted with the mes
sage INVALID TRACE PARAMETER and 
given the option to respecify or 
cancel the parameter. If he can
cels, NVTNUCND is rounded to a 4K 
boundary and CVTNUCB is set equal 
to NVTNUCND. The trace function 
is then disabled as above. 

If space is not available in the INP6NOSPA 
nucleus buffer, NVTNUCND is set 
equal to CVTNUCB, and the trace 
function is disabled as above. 
The 	operator is notified with the 
message INSUFFICIENT SPACE, and 
control is returned to the caller. 

If there is not enough space in INP6SMALL 
the 	nucleus buffer, the last entry 

en 	 pointer is set to CVTNUCB-32, and 
til 	 NVTNUCND is set to CVTNUCB. The 
~ 	 operator is notified that the.... 

trace table size has beeng 
decreased. 

II.) 

2. 	 If the two tables are equal in NP6COPY 

~ 	
size or the PTT (permanent trace 

table) is larger, the TTT (tem~ porary trace table) is moved tog

o. 	 the PTT beginning with the lowest 
address in each table (first entrylo 

t-h pointer). Any remaining area is I 
set to 0' s. I.g I 

~ 	 If the PTT is smaller than the INP6COPY 
rT TTT, as much of the TTT (starting I .... with the most recent entry) as Ig will fit is moved to the PTT. I_______________________________________~ 

.... 
w 
w 

__________ JI 

III 



Step 4 

IEAVNP07 

Define hardcopy console. 

.... 	 Diagram 12.0: IEAVNP07 w 
~ 	 Call Routines Sequentially 

From Diagram 3.0, 

--t~1 NP7HDCpymi 

• [ 12.11 

2 	 Define pageoble DCIoAs (diS~pl;aY~"~~~~~:::::j 
contwl modules). _ NP7PDCM'I I 

• I 12.2. 
3 Define page algorithm limit 

values. _1IIIj'~I~N~P7~PAL==11 

• ~ 12.4. 

4 Locate SVC OPEN Router 
routine in the lPA. • tl N P70T EST 

5 	 Test for extended-precision 

floating-point feature. ___.t~=~N~P~7~EP~F~P=~1 

• 12.5 

••••••••••I.t~ ~:r~~~O. 
Step 5 

~. • 	 ~ • l,t 
~ 



«< .. .'" (r r 

Diagram 12.0: lEAVNP07
r---------------------------------------T----------,
I Notes on Processing ILabel I 

~---------------------------------------+----------~ 
I 2 and 4. NP7PDCM and NP70TEST call I I 
I NP7LPAFN to search the LPA. I I 
I See Diagram 12.3 for a I I 
I description of NP7LPAFN. I IL_______________________________________~__________J 

en 
II) 

~ .... 
g 
~.. 

3: 
~ 
so. 
o 
HI 

,g 
~ 
rt.... 
g 
1-& 
\.AI 

III 

VI 



I-' 
W 
0\ 

Input 

From Diagram 12.0, 
Step 1 

NP7HDCPY 

1 	 Locate UCB for specified hardcopy 
device and initialize UCB and UCM. 

2 	 Put routing codes and command 
options in UCM. 

Diagram 12.1: NP7HDCPY 
Define the Console or System Log Data Set 
to be Used for Message Hardcopy 

NIPUCBFNII Output 

3.3 

UCM 

IEAVNP07 
Diagram 12.0, 
Step 2 

,
~. 	 t .. ~ 
JJ • 



.. ..•r 	 ~ r' 

Diagram 12.1: NP1HOCPY (IEAVNP01)

r---------------------------------------T----------,
I1 Notes on Processing 	 ILabel 

r---------------------------------------+----------~
1. 	 NP1HDCPY locates and verifies the I NP1HOCPY' 

HAROCPY parameter input. I 
I 

IEAVNP01 determined whether a I NP1HCINV 
hardcopy console was required. I 

I 
If SYSLOG is specified, NP7HDCPY I NP1HCSLG 
identifies the system log as the I 
hardcopy device. I 

I 
If HARDCPY is not specified and itlNP1HCREQ 
is required, or if the specifica- I 
tion is in error, or if the con- I 
sole is unavailable, NIPWTOR is I 
called to prompt the operator to I 
respecify the parameter. I 

I 
If HARDCPY is not specified and islNP1HCXIT 
not required, control goes to Dia-I 
gram 12.0, Step 2. I _J_______________________________________~_________ 

en 
to 
n 
t+ 

g ~ 

IIJ.. 

if g. 
8. 
o 
HI 

o 
"0 
to 
~ 
t+.... 
o 
t:3 

... 

w 
~ 



CXI 

.... Diagram 12.2: NP7PDCM 
tAl Relate Each Graphic Device 

to its LPA-resident DCM 

From Diagram 12.0, 

Step 2 
Input 

NP7PDCM
UCM CVT 

Find OeM associoted with UCM for 
graphic console. NP7LPAFN 

Put DCM's entry
point address in 
RPARM 

Output 

RPARM 2 Place entry-point address of OeM 
DCMIEnt;-~ ~d-res5J+- in resident OeM ossociated with 

the UCM entry • 

Entry-point address UCM 
IEAVNP07 
Diagram 12.0, 
Step 3 ~ 

Il, ,. L l,

" 



,
r 	 r " • r 

Diagram 12.2: NP7PDCM (IEAVNP07)
r---------------------------------------T----------,

II Notes on Processing 	 ILabel 
.---------------------------------------+----------~ 

1. 	 NP7PDCM examines UCM entries in INP7PDLST 
the nucleus-resident UCM and con- I 
structs the name of the associated I 
DCM for each graphic console by I 
adding the EBCDIC unit name from I 
the UCB to the DCM. I 

I 
If NP7LPAFN cannot find the DCM inlNP7PDNFN 
the LPA, it sets the active con
sole flag in the UCB to 0 and 
writes an error message to the 
operator, using NIPWTOR, identify
ing the missing DCM name and the 
unit address of the associated 
console. NP7PDCM returns control 
to Diagram 12.0, Step 3. 

If the DCM is not found for the 

master console (a graphic con

sole), NIPSWAIT is called to put 

the system in a wait state (code 


L_______________________________________X'3B'). 	 i __________J 

CJl 

Ib 

() 
rt.... 
o
::s 
tv 

~ 
Ib 
rt 
p-
O 
C. 

o 
HI 

o 
"d 
Ib 
H 

rt.... 
o 
i:l 

I-' 
W 
\D 

III 



I-' 
~ 
o 

Diagram 12.3: NP7lPAFN 
Find a Module in the lPA 

Input 
From Diagram 12.2 or 
NP70TEST 

I .. Processing 

RPARM 

I EBCD1C-~odul~--~-.--_ 
CVT 

CVTQCDSR=oddre~ -1 -
IEAQCDSR 

.. 
1---
I 
I 
I 

NP7LPAFN 

1 Search active lPA queue. IEAQCDSR 

Contents 
supervision 
routine 

CVTlPDSR""Oddress of }4-
IEAVVMSR 

-- 2 Search active lPA directory. IEAVVMSR 

Contents 

Output 

su pe rv is ion 
routine 

3 Indicote whether module was 
found. 

-'" 

RPARM 

':.I =Entry-point address 

I 
if found 

=O's if not found I 
To caller 

& 
l., • '-' • • L 



IV 

•r , r 


CIl 
CD 
C'l 
("I"
tJo 
o 
::l 

::;c 
CD 
g:
O 
0. 

o 
HI 

o 
'Ii 
CD 
H 
Q) 
("I" 
tJo 
a 
::l 

.... 

.&: .... 

e• r 
Diagram 12.3: NP7LPAFN (IEAVNP07)
r---------------------------------------T----------,

II Notes on Processing I Label 
~---------------------------------------+----------~
I 
I 

1. If the module is found, 
goes to Step 3. 

control I 
I 

I, 
I 

I
I 
I 

2. 
I 

The IEAQCDSR Search routine is I NP7LPAFN 
called before the IEAVVMSR routine I 

I
I 
I 

I 
I 

to give preference to a module 
found in the fixed LPA or the LPA 

I 
I 

I 
I 

Il ____ update________area.________________ I~____________________ I_ J 



I-" 
~ Diagram 12.4: NP7PAL 
t-J Define Page Algorithm Limit Values 

From Diagram 12.0, 

Step 3


Input Processing Output 

NP7PAL 

~acate and analyze PAL pam7tec )r::mTAB~ 
rnput. _, . 2:,,,,* 

Paging2 Set paging paromete~.b r-- PYT 

NP7PATAB parameters 

•••••I.tl~ ~i:,~:;2.0, 
Step 4

, ~~ •~ • 



r .. 	 r • .. r 

Diagram 12.4: NP1PAL (IEAVNP01)
r---------------------------------------T----------, r---------------------------------------T----------,
J Notes on Processing ILabel I I Notes on processing 	 ILabel I 
.---------------------------------------+----------~ ~---------------------------------------+--------~-~
I 1. NP1PAL uses the system parameter I NP1PALA 2. Paging supervisor fields to be I NP1PTELD I 
I table, PARMTAB, to locate the PAL I set, together with their limit/ I I 
1 parameter input. The first input I assumed values are: I I 

source that is analyzed is the onel I 
from the IEASYSxx list of SYS1. I PVTTEASE =(CVTEORM - CVTNUCB)/4096 
PARMLIB. When the specifications I PVTLTH (LTH=) = 1 - 99: 
from this source have been ana- I assumed value = 5 
lyzed and put in a table, NP1PAL I PVTREPCT (REPCT=) = 1 - 99: 
analyzes the operator-supplied PALl assumed value = 3 
input. The subparameters are I PVTEFXTF (NFX=) = 8 - 9999: 
merged with duplicate specifica- I assumed value = .25 PVTTEASE 
tion of a subparameter, resulting I PVTSFXTF = 1.25 PVTEFXTF 
in a parameter override: the last-I PVTLFXTF = 1.5 PVTEFXTF 
supplied definition (in the normal I PVTLFXL = (PVTTBASE - PVTLFXTF): 
case, the operator overriding an I maximum = 255 
IEASYSxx definition) for such a I PVTSFXL = (PVTTBASE - PVTSFXTF); 
value will be the only effective I maximum = 255 
specification. NP1PAL optionally I PVTEFXL = (PVTTBASE - PVTBFXTF): 
displays the PAL subparameter I maximum = 255 
values that result from its analy-I PVTLRLIM (LRC=) = 0 - 9999: 
sis and allows the operator to I assumed value = 5 
respecify the PAL parameter. I PVTHRLIM (HRC=) = 0 - 9999: 

assumed value = 20 
NP1PAL verifies that the PAL para-I PVTLALIM (LRD=) = 0 - 9999: 
meter input is in the correct for-I assumed value = 9999 
mat by examining each of the sub- I PVTHALIM (HRD=) = 0 - 9999: 
parameter definitions in an EECDIC assumed value = 0 

C/J matrix. If an error is encoun	 PVTIMEAD (MTIM=) = 1 - 9; 

I 

(1) 
o tered, analysis of the PAL input 	 assumed value = 1 I 
rI".... I from the operator or PARMLIB is I 
:s 
o I terminated: any subparameters that Assumed values are assembled into I

I are correctly and completely the respective NVT fields. The I
IV I defined up to the point of the assumed value for NFX= is expre- I

I error are accepted. In the case ssed as a fractional value, in I 
:i: I of an error, the operator is hundredths, to be multiplied times I 
rI" L PVTTEASE. 

::T I message written by the IEAVNIPM 

~ 


(1) 	 I informed via the INVALID PAL PARM I_______________________________________ I__________J 

o 
0. 	 I NIPWTOR routine. The message

i identifies the input source aso 
HI 	 J being either the PARMLIB or the 
o 	 I operator, and the operator is per
't1 
(1) I mitted either to respecify the I 
H I remainder of the PAL parameter or I
III 
rI" 	 I to cancel his option and thereby I .... I accept the truncated PAL defini- Io
:s 	 I tion, together with any system- I 

IL assigned values. I_________________________________________________~ J .... 
~ 

W 



..... 
~ 
~ 

From Diagram 12.0, 
Step 5 

NP7EPFP 

Enter problem state. 

2 	 Issue SPIE specifying that interruptions 
from 0-15 are to be handled by the exit 
routine NP7SPIEX. 

3 	 Execute an lRER instruction to determine 
EPFP feature capability. 

4 	 Set switch in CVT indicating that all 
EPFP features except divide are present. 

5 	 Cancel SPIE environment. 

6 	 Return system to supervisor state. 

Diagram 12.5: NP7EPFP 
Test for the Presence of the 
Extended-precision Floating-point Feature 

Out 

CVT 

CVTOPTA (byte 
CVTXPFP)=l 

...•••••••1II.1EAVNIPM• 5 Diogmm 3.0, 
Step 5 

\, 	 ~. .. 4 ~ .. 



l .. ..r " r 	 r 
Diagram 12.5: NP1EPFP (IEAVNP07)
r---------------------------------------T----------, r---------------------------------------T----------,

Rates on processing ILabel I I Notes on Processing 	 ILabel I 
---------+----------~ ~---------------------------------------+----------i 

1. 	 NP7EPFP must enter problem-program I 4. The divide-only switch (bit I NP7FPYES 
state, since a program check can CVTXPFP in byte CVTOPTA) is set to 
not be tolerated in supervisor 1. 
state. 

5. 	 This restores the ~rogram mask to INP7FPNO 
3. 	 If no program interruption occurs, I NP7EPFP its original value. 


EPFP hardware is present. 

6. Since the PIE is not automaticallylNP7FPNO 

If a program interruption occurs, freed, TCBPIE is set to 0 to avoid 
the SPIE Exit routine, NP7SPIEX, leaving a useless and possibly 
receives control via the control misleading pointer in the master 
program. The register contents scheduler TCB. Actual freeing of 
upon receiving control are: the PIE is done at the time the 

final master schedUler region is 
Register 0 Unpredictable established.L_______________--______________________i __________ j 
Register 1 Address of PIE 

Register 2-13 Same as at time of 


program check 

Register 14 Return address 


(to control program 

Register 15 Address of NP7SPIEXI 


I 
The registers 0, 1, 2, 14, and 15 I 

have been saved in the PIE and I 

will be restored from that loca- I 

tion when the SPIE Exit routine isl 

completed. Registers 3-13 will I 


CD reflect any alterations made by I 
III 
n NP1SPIEX. I 
rt .... I 
o 	 The PSW in the PIE (PIEPSW) is I::s examined to determine what type ofl 
t.l 	 interruption occurred. The resume I 

address in PIEPSW is then set I 
3: accordingly (note that this is a I 
III Be (basic control) mode PSW). Forirt::r 	 an interruption code other than I 
o 	 X·01· (operation), the extended- IPo 

precision floating-point feature Io 
HI 	 is assumed to exist and PIEPSW is I 
o 	 set to Step 4. otherwise, the I 

10 feature is assumed to be absent IIII 
1'1 L----___________________________________ and PIEPSW is set to Step 5. ~I __________J 
III 
rt .... 
o 
::s 

j-> 
~ 
VI 



~ 	 Diagram 13.0 (1 of 2): IEAVNIPX .t= 
C\ 	 Organize NIP Exit Processing 

From Diagram 3.0, 
Step 5 

IEAVNIPX 

Define nonpogeable area. • I NPXREAL 

• 
2 	 Define task dispatcher's automatic: priority 

9COUP. 	 _ ...~ I~N~PXA~PG~I 

• I 13.1. 

3 	 Define the task dispatcher's time~1iced 
priority groups. 

--.....~I NPXTMSL I 

• 13.21 

4 	 Define quickcell areas. NPXQCELL 

13.3 

5 Define mcster scheduler region. --IIj.~1 NPXMPA=l 

• lJ 
__IIj.~1 NPXFBUF6 Release NIP buffer space in SQA. 

• 
7 	 Release CDEs and llEs for NIP-loaded 

modules. __...t~INPXFJPQ 

• 13] 
(Continued at Step 8) 

~ , L 	 , , L" 



l 
Itr • r .' r 

Diagram 13.0: IEAVNIPX 
r---------------------------------------T----------,
I Notes on Processing ILabel I 
~--------------------------------------+----------~
I 1. There is no diagram for NPXREAL. I I 
I I I 
I 5. NPXMPA calls NPXMPA1 to limit I I 
I background and TSO use of auxi- I I 
I liary storage (see Diagram 13.5). I I 
I I I 
IL_______________________________________ 6. There is no diagram for NPXBUF. I __________ JI~ 

en 
(I) 
(l 
rt 
1-'
o 
::l 

N 

~ 
I1l 
rt
::r 
o 
p., 

o 
I-h 

o 
'l1 
I1l 
t-< 
OJ 
rt 
1-'
o 
::l 

.... 

.(: 

...,j 



.... Diagram 13.0(2 of 2): IEAVNIPX 
~ Organize NIP Exit Processing
Q) 

Processing 

8 	 Define free address space. 

9 	 Define master schedulerts LSQA. 

10 	Define available page frames. 

11 	 Define shared subpool 0 for master 
scheduler and communication task. 

12 Reset NIP ABEND trop. 

13 	Reset dynamic address translation 
tab les and exi t to master scheduler 
initialization program. 

---...~r NPXFAREAI 

• 
NPXMLSQA 

13.7 

NPXPFTAQ 

13.8 

-_IIIII4.~INPxMCSPOJ 

• :J 
___....~I NPXRTRAP 

• 
NPXRDAT 

13.10 

...............11~ IEEVIPL
• 	 moster scheduler 

l, 
" ~ 	 • l, 




cr • r r 
Diagram 13.0: IEAVNIPX (Cont'd)
r---------------------------------------T----------,
I Notes on processing ILabel I 
~---------------------------------------+----------~
I 8. There is no diagram for NPXFAREA. I I 
I I I
I 12. There is no diagram for NPXRTRAP. I IL_______________________________________4 __________ J 

en 
ro 
() 

rt..... 
o 
::l 

N 

:5: ro 
rt::r 
o 
0.. 

o 
HI 

o 
'l"l 
ro 
i1 

rt ..... 
o 
::l 

~ 
~ 

'-'> 

III 



I-' 
U1 
o 

Input 
, 

PARMTAB 

[~-=<;r-

From Diogram 13.0 • 
Step 2 Processmg 

_ r,-----=
NPXAPG 

- - - - - -1-1 	 Enter valid elements in a dummy APG 
control element in IEAVNIPX. 

2 	 Replace PARMLIB parometera with those 
respecified by operator • 

.. 3 	 Move dummy APGCE into nucleus when 
all elements in the APG porameter have 
been analyzed. 

Diagram 13.1: NPXAPG 
Define the Task Dispatcher·s APG 

Output 

IEAVNIPX 

APGCE 

NUCLEUS 

~ 

CVT 

~ 


• •••••••••••••••• IEAVNIPXDiagram 13.0, 
Step 3 

• • L, 	 l,~ 	 II .. 



, C'r , 
" f 	 r 

Diagram 13.1: NPXAPG (IEAVNIPX)
r---------------------------------------T----------,
I Notes on processing 	 I Label I 
~---------------------------------------+----------i 

1. 	 NPXAPG locates and examines the INPXAPRTY I 
APG 	 parameter. I I 

I 
NPXAPNXT I 

If the APG parameter is not I 
defined or is invalid, NPXAPG does I 
not modify the IPL values of I 
CVTAPG and the nucleus-resident I 
APGCE. 	 I 

I 
2. 	 If there is an error in the NPXAPIOP I 

definition of the parameter, I 
NPXAPG issues the INVALID APG PARM 
message to the master console via 
the 	NIPWTOR routine (in IEAVNIPM) 
and 	allows the operator to respe
cify or cancel APG. If the opera
tor 	cancels APG, NPXAPG examines 
the 	next input source or exits (if 
the 	operator's input was in 
error). 

3. 	 NPXAPG sets the APG active flag I NPXAPEND 
(CVTAPG) to 1. 
NPXAPG moves the dummy APGCE afterj 
the scheduling priority (S.P.) isl 
converted to a dispatching priori-I 
ty (D.P.) by the formula: ICJl 

/I) 	 In 
IT 	 APG D.P. = 251 - «15 - S.P.) x I .... 
o 	 _______________________________________~IIL 16). __________J 
!j 

I>J 

3: 
/I) 

s:
O a. 

a, 
o 
"0 
/I) 
11 
I» 
IT.... 
o 
!j 

.... 
VI .... 



IV 

~ 
U1 Diagram 13.2: NPXTMSL 

Build the Required Number of TSCEs 
(Time Slice Control Elements) in the SQA 

From Diagram 13.0, 
Step 3 Processing 	 Output 

NPXTMSL 

Input 	 r---- Move each valid time-slice group into 

I the rSCE build mea in IEAVNIPX. 

I 
PARMTAB I11M•.• _ 

_oJ r  2 Acquire a TSCE area and move TSCEs to 
SQA area. 	 GETMAINbit r-

I 

I 
hom subpool 255 

IEAVNIPX 
I 

ofSQA Subpool 255 I 
I ___J 

IEAVNIPX 
Diagram 13 .0, CVT
Step 4 

!1C= 

l, 	 4 •( L 



I 

4:r' r 

Diagram 13.2: NPXTMSL (IEAVNIPX)
r---------------------------------------T----------,
I Notes on Processing ILabel I 
.---------------------------------------+----------~

1. NPXTMSL builds the required numberlNPXTMSL 
of TSCEs (time slice control ele- I 
ments) in the SQA and defines the I 
time-slice intervals in units of I 
16 microseconds. I 

I 
If the TMSL parameter is invalid, INPXTMRTY 
NPXTMSL terminates its scan at I 
that point and allows the operatorl 
to cancel or respecify the TMSL I 
definition. If he cancels it, I 
NPXTMSL returns to the caller. Ifl 
he respecifies, he need not respe-I 
cify the time-slice groups defined 
previous to that in error since 
NPXTMSL retains the previous 
definitions in the IEAVNIPX TSCE 
build area and reuses this area 
for further TMSL definitions. 

I 
NPXTMSL moves each into the build NPXTMLPN I 

" r 

r---------------------------------------T----------,
I Notes on processing ILabel 
~---------------------------------------+----------~
I 2. NPXTMSl requests an area equal in INPXTMEND I 
I size to the packed TSCEs in the I I 
I IEAVNIPX build area. I I 
I I I 
I NPXTMSL sets a flag in the last I I 
I TSCE to identify to the dispatcher I I 
I the end of the chain. NPXTMSL I I 
I also places the low address of thel I 
I SQA-resident TSCE chain in the CVTI I 
IL_______________________________________at CVTTSCE. ~I__________JI 

area relative to its priority - 
priority 0 in the first slot, 
priority 1 in the second, etc. 

The priority value placed in the 
TSCE is the dispatching priority 
(D.P.). This is derived from theCfJ I 

(1) scheduling priority (s.P.), 0-13,o I 
rt by the formula: I.... 
o I
::s Time-Slicing D.P. 251 - «15 - I 
IV S.P.) x 16) I 

I 
When the last valid time-slice I:J: 

(1) group has been defined, the TSCEs I 
~ are packed together in the build I 
o area to eliminate zero-value time-I
Q. 

slice TSCEs. IL_______________________________________~ 

~ 
o 

"0 
(1) 

1'1 

III 

rt
.... 
o
::s 
,... 
V1 

IN 


I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

__________ JI 



.. 


.. 


• 



c 	 .. •r ~ 	 r 

Diagram 13.3: NPXQCELL (IEAVNIPX)
r---------------------------------------T----------,
I Notes on Processing 	 I Label I 
~---------------------------------------+----------~ 

1. 	 If the quickcell definition is toolNPXQCNXT I 
big for the work area, NPXQCELL I I 
terminates the scan at the point I I 
of error and allows the operator I I 
to cancel or respecify the SQACEL I I 
or LSQACEL. I I 

I 
If the operator cancels SQACEL, I 
NPXQCELL sets up to process LSQA I 
CEL. If he cancels LSQACEL, it I 
returns to the caller. I 

I 
If the operator respecifies the 
parameter, he need not respecify 
quickcell definitions previous to 
the one in error since previous 
definitions are retained and the 
area is reused for further quick
cell definitions. 

When the last valid quickcell has INPXQCEND 
been defined, the definitions are 
packed together in the work area 
to eliminate zero-value quick-
cells. Any respecification of a 
given quickcell size results in 
the last such specification being

In effective. NPXQCELL calculates 
the total required area for quick~~ .... 	 cells while packing the work area • 

o The 	first unused halfword after I:J 	
the packed data is set to o. I 
NPXQCELL also calculates the size I 
of the QCDBLK (quickcell descrip- I 

3: tion block). QCDBLK contains the I 
~ requirements for each quickcell. I 
=r 	 Io 
0- 2. 	 NPXQCELL requests an area big INPQCLND 
o enough to contain both the QCDBLK I 
H'I and the quickcells. I 
o I"0 4. NPXQCELL requests an area equal inlNPQCLNDID 
H size to the packed data work area IIII 

....rT (including the extra halfword of I 
_______________________________________~ Io IL o· s) • I __________ J 

==' 

I-' 
U'I 
U'I 



~ 
1.)1 Diagram 13.4: NPXMPA 
0\ Define Virtual Address Space Dedicated 

to Master Scheduler Region 
Flam Diagram 13.0, 

Stt,p ;) Processing Output 


NPXMPA 
IEAVNIPXInput 	 ,--- Determine needed size of mosterr--- 1 

sdleduler region and ensure that enougfl
I virtual space is available for this region. ~ASIZE 

f'ARMTAB I 	
~ 

.- I MPADDR ~tart of 
MPA parameter -I mastpT scht~Juler 

I region 

I 1--
CVT I ---- 

r- 2 Initialize mostel scheduler region POE and POEI-~ I 
CVTSHRVM ~- -l FBQE to reflect the calculated si7e and 

I I starting address. -I
I I 	 '1 

NVT 	 I I FBOE
I 	

I II 

INVTVVPG 1 ~ -

-.J I 
 Define pog(' ta6le~ and external rage tables 
I 3 

for segments allocated to moster scheduler 
SQAI region. IEAPTCll 

Master schedu leT TeB 	 ... I L--1	
I 

" Paqe tables 

I 
Master scheduler POE 4 Process TSOAUX and AUXLIST parameters. NPXMPAI 	 External pogt' t(~~.... 	 I 

I 
I Establish limits on 

IEAVNIPX background and TSOI use of auxiliary storage
I 	 +- 13.5

MPASIZE I 

_.....J
~ Disable system for all interruptions. 	 MODlSET5 	 IMPADDR 

I I 
.. IEAVNIPX 

Diagram 13.0, 
Step 6 

{ 	 l,~ f 	 • 



r ~ r 	 « r 
Diagram 13.4: NPXMPA (IEAVNIPX)
r---------------------------------------T----------, r---------------------------------------T----------,
I Notes on Processing I Label I I Notes on Processing 	 ILatel I 
~---------------------------------------+----------~ .---------------------------------------t----------i
I 1. NPXMPA locates the pointer to the INPXNOMPA I 2. If there are multiple FBQEs INPX~PDEF 

I MPA parameter. If the pointer hasl I defined for this PQE, the more I 
I a value of 0, MPA has not been I I recently created FBQES (at the I 
I specified, and the master schedul-I i front of the FBQE queue) are I 
I er region is defined as two seg- I I dequeued, and the SQA space for I 
I ments (or 128K bytes) of virtual I I those FBQES is released by FREE- I 
I storage. I I MAIN (sucpool 255). The last FBQEI 
I I I on the queue, created by IEAVNIPO,I 
I If MPA has been specified, NPXMPA INPXMPDEF I is retained rather than one of thel 
I ensures that enough virtual space I I later-created FBQEs in an attempt I 

is available for the master sche- I ! to decrease SQA fragmentation. I 
duler region. NPXMPA calculates I I i 
the low region address cy sub- I I 5. Since the remainder of NIP execu !DISABLE 
tracting the region size from the I I tion occurs outside of any region I 
low address of the "shared virtual I I boundaries, IEAVNIPX llrotects its I 
area" (CVTSHRVM), which contains I I existence ty not reenahl ing<c.he I 
the SQA and the pageable LPA. It I I system dnd not issuing ncn-tYfe-1 I 
determines whether this address I I SVCs, which might reenable the 
overlaps the high NIP page I I system. The exception is in the 
(NVTVVPG1). If these address I I case of a system wait state. If 
spaces overlap, the master sche- I ! normal NIP execution continues, 
duler region cannot be defined as I I the system is riot reenabled until 
specified. If there are less than I control is passed to the master 
128K bytes, the operator is infor- I I scheduler via the LINK SVC. _L_____________________________________ 

,"._.__ ._______ Jmed that storage is Imavailable, I 
and NPXMPA branches to the NIPS- I 
WAIT routine (in IEAVNIPM) to I 
place the system in a disabled I 

III wait state (X'38'). If there are I 
~ at least 128K bytes, the operator I 

en 

1-'. is informed that 	address space has Io 
~ been exceeded, and is given the 	 I 
N 	 o~portunity to redefine or cancel I 

MPA. If he cancels, the I 
master scheduler region is definedlNPXMPINV I::<:: 

<D I 	 as 128K bytes by default. I IL_______________________________________ __________Jcr 

5 	
~ 

0. 

o 
H\ 

o 
'U 

~ 
~ 
M
I-'. 
o 
tj 

t-' 
(Jl 

-.J 

http:ing<c.he


I-' 
U'1 
00 

Diagram 13.5: NPXMPA1 
Establish Limits on Background and 
TSO use of Auxiliary Storage 

Input 
From Diagram 13,4, 

Step 4 Processing Output 
PVT 

'--

PVTTOTAX 

PVTSUCM 

GOVRFLB 

CVT 

r ,~ 

I+-f CVTPVTP 1 
j;;) 

--, 
SQA 

I ;J 
SQABOUND i+ -; - - ..., 

" Secondary CVT 

~CVTMSSQ r --L  - J 

• NPXMPA 1 

1 Adjust space values to reflect 
auxiliary storage backup of pageo61e 
system oreas. c=:::== 

PVT -
PVTTOTAX 

PVTSUCM 

IEAVNIPX 
PVT 

[MPADDR1!-_I_-_...J 
2 Compute size of dynamic 

area. 
":>i PVTDYNA 

CVT 
- ~ 

1 CVTREAL ~_L __ ..J ! 

PARMTAB

I TSOAUX 

rN_V.;...T__--,-_~

H NVTPTAB ~ T - - --, 

PVT 

1-,~TS~~s;}- -1 - - ~ 

3 

4 

Determine PVTSUCM value (PVTSUCM 
total uncommitted auxiliary If 500 or less. 
space). 

Ve,ify the specification. =t=::J 
IEAVNIPM 

NIFWTO 

Operator notified that 
TSOAUX parameter is 
ignored 

PVT 

PVTTOTAX 

PVTDYNA 

5 Determine auxiliary space reserved for 
TSO use and set the upper boundary for 
botch allocation. -

PVT 

--PV1M~XB J 
c=:: __ 

PARMTAB 

't"~c".:"":. 
TSOAUX 

AUXLlST 

PVT 

PVTTOTAX . .' 

PVTMAXB 

"" , .. 
£ 

<; ~" 

_.___ .....J 

----, 

___ ..J 

6 Write auxiliary storage limits 
to operator. 

IEAVNIPM 

NfPWTU 

Write total available 
auxiliary storage, 
background avoilable 
storage, TSO available 
storage, current 
TSOAUX value, and 
TSO reserved pages 

PVTDYNA 

... 

.. NPXMPA 
Diagram 13.4, 
Step 5 

l, • l, • l,• 



cr - r 	 - r 

Diagram 13.5: NPXMPA1 (IEAVNIPX) 
r--------------------------------------~----------, r---------------------------------------T----------,
I Notes on Processing 	 ILabel I I Notes on processing ILabel I
.---------------------------------------+----------i ~---------------------------------------+----------i

1. 	 PVTTOTAX and PVTSUCM must be I NPXMPA1 I The value specified must be 0-99. 
decreased using the formula: I I If improper, the TSOAUX entry is 

I I set to 0, and the operator is 
PVTTOTAX = PVTSUCM = PVTTOTAX - I I notified of the invalid specifica
(Beginning address of SQA - Begin-I I tion. The operator may enter EOB, 
ning address of Master Scheduler I I canceling the parameter, or he may 
Region) /4096 I I respecify the parameter. If he 

I cancels it, PVTMAXB is set to the 
Also must subtract pages between I lesser of PVTDYNA or PVTTOTAX. 
the beginning address of the LPA I control goes to Diagram 13.5, Step 
directory and the beginning 5.I 
address of the SQA. I 

I 5. This is necessary, since the cod
2. 	 computed in 4K pages; should be a I ing may be entered from mUltiple 

multiple of 64K. It is decreased paths, and TSOAUX may be present 
by 16 pages (64K) to reflect the due to operator specification, 
master LSQA. PVTDYNA represents PARMLIB specification, respecifi 
the maximum address space avail  cation of an invalid value, or 
able for region allocation. respecification following AUXLIST. 

AUXLIST always uses PARMTAB to 
3. 	 If PVTSUCM is not greater than 500 extract the current TSOAUX value. 

pages, no auxiliary storage is 
available for TSO ,use. The opera PVTTOTAX and PVTDYNA are compared, 
tor is notified that the TSOAUX and the smaller is multiplied by 
parameter has been ignored due to TSOAUX to find TSO reserved space. 
auxiliary storage restraints. The Th€ space reservation for TSO must 
TSOAUX pointer in PARMTAB is set include at least 500 pages for 

en to 0 to show that the parameter is 	 potential batch use. If 'not, the
/1) 

inoperative (processing for AUX	 operator is notified, and PVTMAXB ~ .... LIST will need to refer to this is set to 500 pages • 
:;, 
o value). 

NPXMPA1 tries to locate the AUX
I'V The maximum value for batch allo LIST parameter. If the parameter 

cation (PVTMAXB) is set to PVTT~ is 0, its control is returned to 
~ TAX or PVTDYNA (whichever is the caller. 
~ smaller), and control goes to Dia
::r o gram 13.5, Step 5. The operator can accept the auxi
0. 	 liary storage limits as displayed 
o A null pointer for TSOAUX in PARM	 (EOB), or he may respecify TSOAUX. 
HI TAB causes the upper boundary for I 	 When PVTTOTAX is equal to or less 
o background allocation (PVTMAXB) tol than 500 pages, an operator
'0 
(1) be set to the smaller of PVTDYNA I response is bypassed. (A respeci
t1 or PVTTOTAX. Control goes to Dia-I fication of TSOAUX automatically
~ 
rt gram 13.5, Step 5. 	 IL_______________________________________~__________ implies an AUXLIST). If TSOAUX is.... 

respecified, and the operatoro 
:;, response is in error and canceled; 

the auxiliary storage limits are .... 
VI left as previously computed and 
ID I displayed. __________JL--_____________________________________~ 



I-' 	 Diagram 13.6: NPXFJPQ
0\ 
o 	 Release Control Blocks for 

NIP-loaded Modules 
From Diagram 13.0, 
Step 7Input 

NPXFJPQ 	

Output 

NVT 

Dequeue LLEs (load list e lernents) from NVTMSTCB 
the master schedu ler TCB. 

Moster scheduler TeB 

TCBLLE 

Moster scheduler TCB 
I 

2 Dequeue (DEs (contents directory elements)it~ ...... r- --I 
from the moster scheduler TCB. 

I 
I 

Contents directory element I 
i i I 

I
--1 

I 	 ........I~IEAVNIPX
• Diagram 13.0,I 
Step 8 I 

Extent list I 
I __JIs;ze oflf,t C~}-_ 

l,. • L 	 L 



t 
(..r' r 	 r 


Diagram 13.6: NPXFJPQ (IEAVNIPX)
r---------------------------------------T----------l 
I Notes on Processing 	 ILabel I 
~---------------------------------------+----------~
I 1. Each LLE is dequeued starting at I NPXFJLLE 
I the TCBLLE queue origin in the I 
1 master scheduler TCB. Before the 1 

storage containing each LLE is I 
released, the TCBLLE pointer is I 
updated with the chain ~ointer to I 
the next LLE. The processing is I 
com~leted when all LLEs on the I 
queue have been released, and the I 
TCBLLE pointer has a value of O. I 

I 
2. 	 Before dequeueing each COE, I NPXFJCDE 

NPXFJPQ determines whether an I 
extent list is associated with thel 
COE by testing the extent-list- I 
created flag in the CDE. If an I 
extent list exists, its size is I 
extracted from the extent list, I 
and the storage containing the I 
extent list is released. The rou-I 
tine updates the TCBJPQ pointer I 
with the chain pointer to the nextl 
COE and releases storage contain- I 
ing the dequeued COE. This pro- I 
cess continues until TCBJPQ has a I 
value of O. I 

I 
3. 	 Storage occupied by released pro- INPXFJXIT 

CIl 
(I) 	

grams is not released until avail-I 
g. able storage is redefined by the I 
.... NPXFAREA routine. I_______________________________________~__________J 
o 
!:l 

N 

~ 

~ 
::r o 
a. 
o 
Hl 

o 
'0 
(l) 
11 
~ 
rt.... 
o 
!:l 

..... 
C1\ ..... 



t-> Diagram 13.7: NPXMlSQA 
0\ Allocate the Single-segment lSQA 
'" Related to Master Scheduler Region 

hom D;ogcam 13.0, pp~r~o~c:e=s~s~i~n~g:!...____________lStep 9 :.. 

•••I~I NPXMLSQA
Input 

r--r 1 Allocate a single SLQA segment. 	 GETLSQA 

I 
CVT 	 I 


I 

_-.J If cannot be done I ~ IEAVNIPM 

NIPSWAIT Output 

I
PI ace system in 

2 Propagate the TCB values for the newly disabled wait state 
created LSQA and the TCB pointer to (X'lWl 

I SWAH (system work area header) 

TCBL;UA --~ from the most., scheduler's TCB to the 	 : 
communication task's TCB. 	 II 

TCBLSOAP I 
I 	 .......~.I~ 
IEAVNIPX• 	 D;agrom 13.0,
I Step 10 


SWAH 

TCBSWA=pointer to 

I 

I 

I 

I 


C······· ...~~J:>I TCBLSQA 
,..>'c- ~'"',,;',,=", 

TCBSWA 

Communication task reB 
I 

_.__ ....J 

l, 
<I .. l, 	 • , l, 



r .. r 	 ., r ~ 

Diagram 13.7: NPXMLSQA (IEAVNIPX)
r---------------------------------------T----------l
I Notes on processing 	 ILabel I 
~---------------------------------------+----------~ 

1. 	 The CVT NIP- in-process f lag INPXMLSQA 
(CVTNIP) is set, indi.cating to thel 
GETLSQA routine that the special I 
NIP interface for creating an LSQA 
without a TCB is in effect. 
NPXMLSQA invokes the GETLSQA rou
tine via an SVC request. 

Before the wait state, NIPWTO NPXSW38 
sends a message stating that 
storage was unavailable for 
initialization of MPA. 

2. 	 The master scheduler's TCB will I NPXMLSQA 
have been initialized by GETMAIN 
with the LSQA definition parame
ters. The NPXMLSQA routine propa
gates the values to permit region 
sharing.l _______________________________________~__________J 

en 
to 

:+ ..... 
o 
::l 

I\.) 

:J: 

~ 
::r o 
0. 

o 
HI 

o 
'0 
to 
11 
III 
rt..... 
o 
::l 

~ 
C\ 
\,Al 



t-' Diagram 13.8: NPXPFTAQ
'" Define Available Page Frames~ 

hom D,agcom 13.0, i=P~r~o~c~e:s~s~i~n~g~______________Step 10 :. 	 Output 

NPXPFTAQ 

Input r--- Place PFTEs (page frame table entries) 

I previously assigned as V R pages on the 
available PFTE queue.

PFT I 

I 

I


_-I 2 	 Add page frames. at low end of available 
queue if available queue contains any PFTEs. 

IEAVNIPX 

• ......~D;agCOm 13.0, 
Step II 


~ • 
l, 	 l,

ff to 



_______________________________________ __________ 

r ., r 	
.. 

r" t' 

Diagram 13.8: NPXPFTAQ (IEAVNIPX)
r---------------------------------------T----------l
I Notes on Processing 	 ILabel I 
~---------------------------------------+----------i 

1. 	 NPXPFTAQ locates the PFT and I NPXPFTAQ 
examines all entries in reverse ! 
order (beginning with the last). I 

I 
NPXPFTAQ initializes these PFTEs !NPXPFCUR 
with PFTE indexes for the pre I 
viously found available PFTE I 
(PFTBQPTR) and the next such PFTE I 
to be found (PFTFQPTR). I 

I 
2. 	 NPXPFTAQ sets the PFTE index of I NPXQPFTE 

the first available PFTE I 
(PVTAVFST) to the index of the I 
first PFTE placed on the available I 
queue, if this queue is empty, andl 
sets the backward queue pointer I 
( PFTBQPTR) to o. I 

I 
NPXPFTAQ sets the PFTE index of !NPXPFCUR 
the last available PFTE (PVTAVLOW)! 
to the index of the last PFTE I 
placed on the available queue and I 
sets the forward queue pointer ! 
(PFTFQPTR) to o. I 

I 
NPXPFTAQ sets the PFTE fields not !NPXQPFTE 
initialized by the NPXPFTAQ rou- I 

Ul tine to an initial value of 0 and I 
(!) 

increases the available page framel ~ ... 	 count (PVTAPC> by the numcer of I 
o 	 PFTEs added to the available I
::1 

L queue. 	 I!J 
tv 	

~ 

:3: 
(1) 
rt 
::r 
o 
0.. 

o 
11'1 

o 
'd 
(1) 
11 
III 
rt... 
o 
::1 

,-' 
0\ 
VI 



.... 
0- Diagram 13.9: NPXMCSPO 
0- Define Shared Subpool 0 for Master 

Scheduler and Communication Task 

From Diagram 13.0, 


Step 11 Processing Output 

Subpool 2~'SNPXMCSPO 
~--------

Allocate storage in subpool 255 of SQA 
for two SPOEs (subpool queue elements). 

NVTMSTCB··SPOE 

NVTCMTCB 
DQEPTR

Input 

SPOE queue 

2 Add SPOEs to the SPQE queue. --=======.!======*=="-I SPOEPTR= address in 
L 	 vl TCBMSS 

TCBIfAVNIPX 
c.~ 

........~D;a;j'Om 13.0, 

• 	 Step 12 TCBMSS, address of 

SPQE being queued 

I;;;; 

~ • l., 	 • ~ 




Itr t 4 r r 
Diagram 13.9: NPXMCSPO (IEAVNIPX)
r---------------------------------------T----------,
I Notes on Processing ILabel I 
~---------------------------------------+----------~ 

1. The first SPQE area is defined forlNPXMCSPO 
an owned-SPQE for subpool 0 and isl 
added at the head of the SPQE I 
queue for the master scheduler TCBI 

I 
I 
i 
I 

(NVTMSTCB). The second SPQE area I 
is defined for a shared SPQE for I 
subfool 0 and is added at the headl 

I 
i 
I 

of the SPQE queue for the communi-I I 
cation task TCB (NVTCMTCB). This 
SPQE points to the owning, or 
master scheduler, SPQE (DQEPTR). 

I 
I 
I 

I 
I 
I 

2. If the TCBMSS 
is flagged as 

I 
field is 0, the SPQEINPXMCSPO 
the last SPQE on thel 

I 
I 
I 

SPQE queue. I Il _______________________________________ __________~ ~ 

en 
(!) 

~ ..... 
o 
!:l 

IV.. 

~ 
(!) 
rt 
0o 
C. 

o 
HI 

o 
'tl 
(!) 
t'I 
III 
rt ..... 
o 
!:l 

~ 
0'1 
..,J 



..... 

'" 0) 

Diagram 13.10: NPXRDAT 
Reset OAT Tables and Exit to Master 
Scheduler Initialization Routine 

From Diagram 13.0, 
Step 13

Input Processmg 	 Output 
NVT 	

1
••III~I NPXRDAT 

NVTSPUCBo Initialize register 4 witll Gddr('ss of UCB 
PAR.V,LIB UCB 1+ >I Register 4=--NVTSPUCB"'Me" ., .,' .,' "" .MoM' ., .'''0 •• ,. ~ 

CVT 

CVTREAL r- ---,---- 2 Reset seg~e.nt table and po.ge.table entries I Segment table entires 
not contamlng addresses within the range r-o="--"--'--'--'-=---,I required for the NPXRDAT routine. ::>tCVTNUCB 

r--	 I Q 	 '-----'---~ PagE' table entries
I 

NVT 	 I >l 
3 	 Invalidate the page table entries for the 

pages containing the storage required for~VTVVPG 1 r-- ---' 	 I 
the NPXRDAT routine. 

CVT 

~~Zi~ 
Move the system segment toble from its ----1-4 	 CVTCVTSEGC real storage location to the real storage

Bl'C."" location of ~he user segment table. 
CVTSEGD J CVTSEGCo CVTSEGD 

~ 

5 	 Set up registers needed for IEAVMOOE and 

the LINK SVC to enoble the DAT featuce, : Reg;,tec 7oaddce" of>\ 
and LINK to lEEVIPL. 	 IEAMODBR 

Register 8-MODESn 
Register 7=address of code 
IEAMODBR - - - -+ 6 Enable OAT (dynamic address translation). I IEAMODBR 

Register lOo=address 
of LINK SVC 

Register 8=MODESET Reg ister 15:--'-add ress 
code of LINK list7 	 Pass control to the master scheduler ---..Register 10=oddress 	 lEEVIPLInitialization routine (lEEVIPL).

of LINK SVC routine 


R~gister 15=address 

of LINK list 


<v • \, 	 \, 
c 	 • 

http:seg~e.nt


...." 

r II 	 ..r 	 r 
Diagram 13.10: NPXRDAT (IEAVNIPX) 
r--------------------------------------~----------, r---------------------------------------T----------,
I Notes on 	Processing ILabel I I Notes on processing ILabel I 

~---------------------------------------+----------~ t---------------------------------------+----------~
I 1. This is the single parameter I NPXRDAT I 3. This process operates with the DATIDATOFF I 

I passed to the IEEVIPL program. 

I 

I 2. The OAT tables were created by 
I IEAVNIPO for all real storage 
I addresses. 
I 

I The pages between the top of the 
I nucleus (CVTNUCB) and the end of 
I NIP's nonpageable region 
I (NVTVVPG1) are invalidated. Page 
I 
 table entries that are below the 

nonpageable line and are on theI 

I available PFTE queue are set to 
I page-unassigned and not GET~AINed 
I status (PGTPAM,PFTPVM). page 

table entries that are above theI 

I nonpageable line and were pre

I viously assigned for NIP's use are 

I set to the same status: however, 

I the page table itself will be 

I released for any complete segreent 

I of available storage above the 

I nonpageable line. Whenever an 

I entire page table is released, thel 

I corresponding segment table entry I 

I is set to a page-table-unassigned I 


en 
(1) 	 I status (SGTPAM). With those pages I 

o I required for NPXRDAT, the asso- ,
rt 	

I
~. 	 ciated page tables may not be I 

o
::s I released during this process, and I 


I both the segment table entries andl

'" I the page table entries rerrain I 


I valid and assigned. I
l _______________________________________~ 
:J: 
(1) 

~ 
o 
0. 

o 
HI 

o 
Itj 
(1) 
t'I 

W 

rt.... 
o 
::l 

.... 
0'1 
'J) 

I feature disabled. Only real 
I addresses are used for the 

NPXRDAT 	 I rereainder of NPXRDAT storage
I references including segment and 
I page table invalidation. NPXRDAT 
I locates the PTEs (~age table 
I entries) via the rea1 address of 
I the system seguent table (CVTSEGD) 

ty simulating the address transla
tion process to isolate the 
affected PTEs. The PTEs are set 
to a page-unassigned-by-GETMAIN 
status. If this process results 
in an entire segment invalid con
dition, the associated segment 
tatle entry is set to a page
table-unassigned status. 

4. 	 NPXRDA'I pUrges the pre
invalidation values in the trans
lation look-aside cuffer by issu
ing the PTLB instruction. The 
tuffer is used by the hardware to 
optimize the DAT process. 

7. 	 IEAVMOCE exits to the LINK SVC in 
the CVT, which causes NIP to pass 
control to the master scheduler's 
IEEVIPL routine. The normal LINK 
SVC processing ensures that the 
IEEVIPL routine receives control 
in key-O supervisor state.l _______________________________________ 

__________ J 

I I 

I I 

I I 


I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 


NPXRDXRS 	 I 

I 

I 

I 

I 

I 

I 


ICVTLNKSC I 

I I 

I I 

I I 

I I 

I I 

~I__________JI 




SECTION 3: PROGRAM ORGANIZATION 


This section shows wodules and subrou tine of IEAVNP02. These flowcharts are 
tines that compose IPL/NIP. It also con included to help explain the levels of sub
tains flowcharts for the NIPMOUNT subrou- routines used in NIPMOUNT. 

Initial Program Loader •r---------------------------------------------------------------------------------------,
L_______________________________________________________________________________________JIIEAIPLOO I 

Nucleus Initialization Program 
r---------------------------------------------------------------------------------------,
IIEAVNIPO \ 
~--------T------------------------------------------------------------------------------~
IIEAVNIPM\NIPABEND NIPSQEND NIPLOAD NIPSWAIT NIPSENSE NIPUCBFN NIPTIME NIPWTO \ 
I \NIPWTOR NIPWTOR2 NPMHDCPY NPMEXCPC NIPSVC NIPSVCX I 
~--------+------------------------------------------------------------------------------~
IIEAVNPOliNP1INIT NP1TESTC NP1TCOMM \ 
~--------+------------------------------------------------------------------------------~
\ IEAVNP02 \IEAVNPA2 IEAVNPB2 \ 
~--------+------------------------------------------------------------------------------~
IIEAVNP031NP30PSP NP3PBASE NP3PMLIB NP3SYSP NP3FLMRG NP3PTAE NP3LKLIB NP3LCAT \ 
~--------t~-----------------------------------------------------------------------------~ 
IIEAVNP041NP4PSCAN NP4PDEV NP4PDSEL NP4IPDT NP4RQSRl NP4ALLOC NP4BPDIT NP4TLPA I 
I INP4BCPQ NP4BPFT NP4APFT NP4RQBR2 NP4BSQA NP4IPVT I 
~--------+------------------------------------------------------------------------------~
IIEAVNPA41NPA4GBUF NPA4FREE NPA4READ NPA4WRIT NPA4INTF NPA4RSTF NPA4BCCV NPA4INTCI 
I INPA4LOAD NPA4CCST \ 
~--------t------------------------------------------------------------------------------~
IIEAVNP051NP5QSLPA NP5CSLPA NP5LPAPT NP5LPLIB NP5POST NP5VTCB NP5FIX NP5BLDLFI 
I INP5MLPA NP5BLDLP NP5LPDIR NP5SVC I 
~--------+------------------------------------------------------------------------------~
IIEAVNPA51NPA5INIT NPA5CLPA NPA5MLPA NPA5BLCL NPA5TERM NPA5ADDR NPA5POST NPA5LOAD\ 
I INPA5DIR NPA5SDIR NPA5ALPD NPA5LGRP NPA5CLIN NPA5LIND NPA5ALIS NPA5BDIRI 
~--------t------------------------------------------------------------------------------~ 
I lEAVNP06 I NP6DSS NP6RMS NP6DMP NP6EXCP NP6TRA NP6MOVE I 
~--------+------------------------------------------------------------------------------~IIEAVNP07\NP7HDCPY NP7PDCM NP7PAL NP70TEST NP7EFFP NP7LPAFN I 
r--------t------------------------------------------------------------------------------~ 
I lEAVNIPXI NPXAPG NPXTMSL NPXQCELL NPXMPA NPXMPAl NPXBUF NPXFJPQ NPXFAREAI 
LI________~INPXMLSQA______________________________________________________________________________NPXMCSPO NPXRTRAP NPXRDAT JNPXPFTAQ I 

Figure 15. Organization of IPL/NIP modules and sucroutines 

170 



Chart M. NIPMOUNT Processing (Page 1 of 3) 

.. 


• 

• 
... 

ISAVNP02 

0;~:u:J 

~;;';"';";';";";'----1 ~f~um~ 
+-----------------------------~ 

section 3: program Organization 171 



Chart AA. NIPMOUNT processing (Page 2 of 3) 

IEA\..'~p02 

0:~RRCDQ 

) 

-


• 


172 



Chart AA. NIPMOUNT Processing (Page 3 of 3) 

Section 3: Program organization 173 




SECTION 4: DIRECTORY 

This section contains a directory of IPL/NIP mcdules. arranged by entry-point name. 

r-----------T----------------------------------------------T--------T-----------T-------,
IEntry Point I FUnction of Routine 	 I Module IDiagram No. I Licrary I 

~-----------+----------------------------------------------+--------+-----------+-------~ 

IEAIPLOO IUnused entry point. 	 IEAIPLOOI 1.0 Nuc 
I 	 I 


IEAANIPO IUnused entry point 	 IEAVNIPOI 2.0 Nuc 
I 	 I 


IEAVNIPM INormal entry to control routines 	 IEAVNIPM 3.0 Nuc 
I 


IEAVNIPX IFinishes nucleus initialization 	 I.EAVNIPX 13.0 Nuc 
I 


IEAVNIPO IBegins nucleus initialization 	 IEAVNIPO 2.0 Nuc 
I 


IEAVNPA2 IMounting a specific DASD or tape 	 IEAVNP02 5.1 Nuc 
I 


IEAVNPA4 11/0 requests to SYS1.PAGE data sets IEAVNPA4 8.0 Nuc 
I 


IEAVNPA5 IDefines LPA modules for quickstart 	 IEAVNPA5 10.0 Nuc 
I 


IEAVNPB2 10pens a specific data set 	 IEAVNP02 5.2 Nuc 
I 


IEAVNP01 IInitializes systerr consoles 	 IEAVNP01 4.0 Nuc 
I 	 I 


IEAVNP02 ISystem library initialization 	 IIEAVNP02 5.0 Nuc 
I 	 I 


IEAVNP03 Analyzes system parameters 	 IIEAVNP03 6.0 NuC 
I 


IEAVNP04 	 Initializes paging control blocks IIEAVNP04 7.0 Nuc 

IEAVNP05 	 Initializes shared storage IEAVNP05 9.0 Nuc 

IEAVNP06 	 Initializes reliability and serviceability IEAVNP06 11.0 Nuc 
features 

IEAVNP07 	 Processes HARDCPY and PAL parameters IEAVNP07 12.0 Nuc 

NIPABEND 	 From SVC SLIH for ABEND IEAVNIPM 3.0 Nuc 

NIPLOAD 	 Loads NIP processor modules IEAVNIPM 3.1 Nuc 

NIPSENSE 	 Interprets sense data after I/O failure IEAVNIPM 3.0 Nuc 

NIPSQEND 	 Abnormal entry from GETMAIN IEAVNIPM 3.0 Nuc 
I 


NIPSVC 	 ILoads requested type 3 or 4 SVC routine into IEAVNIPM 3.2 Nuc 
Ireal storage 
I 	 I 


NIPSWAIT 	 IStores system completion code. places system IIEAVNIPMI 3.0 Nuc 

lin disacled wait state I I 

I I I 


NIPTIME 	 IDetermines correct time from TOO clock I IEAVNIPM I 3.4 Nuc 
I 	 I I 


NIPUCBFN ILocates UCB associated with device 	 IIEAVNIPMI 3.3 Nuc 
I 	 I I 


.. 


tit 

• 

NIPWTO IWrites messages to operator 	 IIEAVNIPMI 3.0 NucIL___________~______________________________________________~________ L ___________~_______J 

174 



r-----------T------------------------4----------------------T--------T-----------T-------,
IEntry Point I FUnction of Routine 	 I Module IDiagram No. I library I 
r-----------+----------------------------------------------+--------+-----------+-------~

NIPWTOR 	 Writes messages to operator and receives IEAVNIPMI 3.0 I Nuc I 
reply I I I 

I I I 
NIPWTOR2 Moves operator reply to specified buffer IEAVNIPM 3.0 	 I Nuc I 

I I 
NPA4FCEA 	 Channel end appendage for formatting SYS1. IEAVNPA4 8.0 I Nuc I 

PAGE data sets I I 
I I 

NPA4FXCA Abnormal end appendage for formatting SYS1. IEAVNPM 8.0 I Nuc I 
PAGE da ta sets I I 

I I 
NPA4NOAP Dummy I/O appendage used as SIO, PCI, and end IEAVNPA4 8.0 I Nuc I 

of extent appendage I I 
I I 

START 	 Begin initial program load IEAIPLOO 1.0 I Nuc I
~ 	 ~ ~ ~___________ ______________________________________________ ________ ___________ _______J 

Section 4: Directory 175 



SECTION 5: DATA AREAS 


This section contains information about, and descriptions of, the following Data 
Areas: 

IPLDATA 

NIPMOUNT Parameter List 

NIPOPEN Parameter List 
 .. 
NIPWTO Message Header 

NVT (NIP Vector Table) 

PDIT (page Device Information Table) 

Page Device Table 

NIP PARMAREA 

PARMTAB (Parameter Address Table) 

Parameter Table Entry 

Quickstart Record 1 (NIPQSR1) 

Quickstart Record 2 (NIPQSR2) 

Quickstart Record 3 (NIPQSR3) 

Slot Queue 

SPE (NIP System Parameter Entry) 


IPLDATA 

Pointed to by: Register 3 on entry to IEAVNIPO 

Size: 20 bytes 

Initialized by: IEAIPLOO 


Bytes and 
Displacement Bit Pattern Field Name Description

0(0) 6 IPL unit volume serial 
6(6} 5 IPL unit VTOC CCHHR 

l1(B) 1 Nucleus member ID 

12(C) 4 SYS1.NUCLEUS data set start CCHH 


16(10} 4 SYS1.NUCLEUS data set end CCHH 


NIPl'lOUNT PARAMETER LIST 

Pointed to by: Register 1 (RPARM) 
Size: 21 bytes 
Initialized by: Module calling NIPMOUNT (IEAVNPA2) 

Bytes and 
Displacement Bit Pattern Field Name Description

0(0) 12 NMNTDS The left-justified data set name in EBCDIC 
0(0) 4 NMNTDSA When NMNTFLI flag is set, the address of a 44-byte 

data set name 
12(C) 6 NMNTVS The volume serial (EBCDIC) of the direct access • 

device 
18 (12) 2 NMNTDT The device type of the volume to be mounted or 0 

if any device type is acceptable
20 (14) 1 NMNTFL NIPMOUNT flags: 

.1 .. NMNTFLI The parameter list contains the address of a 44
byte data set name 

.. 1. NMNTFLC Operator may cancel the mount request via an EOB 
reply 

... 1 NMNTFLB UCB address given 

176 



• 

P 

.. 


NIPOPEN PARAMETER LIST 

Pointed to by: Register 1 (RPARM) 
Size: 24 bytes 
Initialized by: Module calling NIPOPEN 

Bytes and 
1isElacement Bit Pattern Field Name Descrirtion 

0(0) 12 NOPNDS The left-justified data set name in EBCDIC, or 
0(0) 4 NOPNDSA Address of a 44-byte data set name if NOPNFLI flag 

is set 
12(C) 4 NOPNDCB Address of the related DCB 

16(10) 4 NOPNUCB Address of the UCB for the device on which the 
volume is to be mounted 

20 (14) 1 NOPNFL NIPOPEN flags: 
•• 1. NOPNFLM Data set not found message is to be suppressed 

(valid only for conditional requests) 
••• 1 NOPNFLI The parameter list contains a 44-byte data set 

name 
1 ..• NOPNFLNB Construct entire DEB (DCB must point to build 

area or DEB will be built at end of nucleus) 
.1 •• NOPNFLB DEB to be added to end of nucleus 
•. 1. NOPNFLC Conditional request; if NIPOPEN fails, register 1 

(RPARM) will be set to two's complement 
•.• 1 NOPnFLSX Data set description to be limited to first 

extent 
21 (15) 1 NOPNRC NIPOPEN return code: 

0000 0000 Successful 
0000 0100 Data set not found 
0000 1000 I/O error 

NIPWTO MESSAGE HEADER 

Pointed to by: Register 1 (RPARM) or, if NIPWTCR request, by NIPWTOR parameter list 
Size: 4 bytes 
Initialized by: Module calling NIPWTO 

Bytes and 
Displacement Bit Pattern Field Name Description 

0(0) 2 NWTOLNG Message length including header 
2(2) 1 NWTOFL Message flag: 

1 ..• NWTOFLNH Message is not to be hardcopied 
3 (3) 1 Reserved 
4(4) Variable NWTOMSG Message text 

NIPWTOR PARAMETER LIST 

Pointed to by: Register 1 (RPARM) 
Size: 12 bytes 
Initialized by: Module calling NIPWTOR 

Bytes and 
Displacement Bit Pattern Field Name Description

0(0) 4 NWTORRPA Address of the area to contain the reply
4(4) 4 NWTORECB Address of the reply ECB 
8(8) 2 NWTORRDL The length in bytes of the reply area 

10(A) 1 NWTORFL NIPWTOR flags: 
1 .•. NWTORFLA NIPWTOR is not to wait for reply completion 

(asynchronous request) 
1 ... NWTORFLB NIPWTOR2 is to provide an SQA reply buffer 

l1(B) 1 Reserved 

Section 5: Data Areas 177 



NIP VECTOR TABLE (NVT) 

Pointed to by: Register 2 (RNVT) 
Size: 310 bytes (approx.) 
Initialized by: IEAVNIPO 

Displacement 
0(0) 

8(8) 

9 (9) 

10(A) 

l1<B) 

12 (C) 
16 (10) 

20(14) 
24 (18) 
28 (lC) 

32(20) 
36(24) 
40(28) 
44(2C) 
48 (30) 

52 (34) 
64(40) 
65 (41) 
66(42) 
68(44) 
72(48) 

76(4C) 
92(5C) 
96(60) 

100(64) 
104(68) 
120 (78) 
122 (7 A) 
123(7B) 

124 (7C) 
128 (SO) 

132 (84) 
134(86) 
136(SS) 
140(SC) 
144(90) 
148(94) 
152(98) 
156(9C) 
160 (AD) 
164(A4) 
168(A8) 
172 (AC) 
180(B4) 
184(B8) 
200 (CS) 

Bytes and 
Bit Pattern 

8 

1 

1 

1 
.1 •• 
•• 1. 

1 
1 ... 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

12 
1 
1 
2 
4 
4 

16 

4 

4 

4 


16 

2 

1 

1 

1 .•. 
.1 .• 

1 ... 
.1 •. 
.• 1. 

4 
8 

2 

2 

4 

4 

4 

4 

4 

4 

4 

4 

4 

8 

4 


16 

4 


Field Name 
NVTNPSUF 

NVTNPSFX 

NVTPXIT 

NVTNPATR 
NVTNPREN 
NVTNPREU 
NVTFLLB 
NVTFLSLB 
NVTMSTCB 
NVTCMTCB 
NVTAPGCE 
NVTVBLDL 
NVTIGCER 
NVTPTCD 
NVTWMDI 
NVTMSLNK 
NVTPQCI 
NVTDSSNG 

NVTSQANO 
NVTNRANO 
NVTIPGNO 
NVTABSAV 
NVTPQSAV 

NVTNUCND 
NVTNBFND 
NVTWPG1 

NVTTRACE 
NVTFLSG 
NVTFLCN 
NVTFLAC 
NVTFLIOC 
NVTFLNHC 
NVTFLNCK 
NVTFLRAC 

NVTWTPSW 

NVTIDPSW 
NVTFLWS1 
NVTLOAD 
NVTSENSE 
NVTSWAIT 
NVTTIME 
NVTUCBFN 
NVTWTO 
NVTWTOR 
NVTWTOR2 
NVTPAGIO 
NVTNIPM 
NVTNMELD 

NVTDCEIC 

Description 
List of suffixes to be appended to the base IEAVNP 
to form the name of the NIP modules to be used 
next 
Index to be used in determining which suffix in 
NVTNPSUF is to be appended next 
Suffix to be appended to form the name of the exit 
module IEAVNIPX 
Attributes of executing module: 
Reenterable 
Reusable 

Library status indicator: 
SVCLIE and LOGREC defined 

Address of master scheduler TCB 
Address of corrmunications task TCB 
Address of APG table 
Address of BLDL table 
Address of SVC error routine 
Address of Create/Destroy Page Table routine 
Address of LPA hash value 
Address of link parameter List 
Address of Quickcell Initialization routine 
Address of DSS Mask-Out routine 
Reserved 
Number of initial SQA pages 
Number ef available NIP pages 
Number of initial buffer pages 
Save area fer original SVC 13 entry in SVC table 
Save area for original get-SQA-page entry in page 
vector table 
Reserved 
Address of next available byte in nucleus buffer 
Address of end of nucleus buffer 
Address of first pageatle page 
Reserved 
Number of trace table entries 
Reserved 
Message handling indicators: 
Active master console 
composite master console 
Hardcopy discontinued 
TOD clock inoperative 
WTOR reply outstanding 

Reserved 
System wait state PSW NIP modifies the following 4 
bytes of the PSW 
PSW ID (NIP module identifier) 
System wait state code 
Address of NIPICAD in IEAVNIPM 
Address of NIPSENSE in IEAVNIPM 
Address of NIPSWAIT in IEAVNIPM 
Address of NIPTIME in IEAVNIPM 
Address of NIPUCBFN in IEAVNIPM 
Address of NIPWTO in IEAVNIPM 
Address of NIPWTOR in IEAVNIPM 
Address of NIPWTOR2 in IEAVNIPM 
Address of IEAVNPA4 
Save area for IEAVNIP~: base register 
NIPM BLDL entry 
Reserved 
Address of input console DCB 

,. 

• 

178 



204(CC) 
208 (DO) 
212(D4) 
216 (D8) 
220 (DC) 
224(EO) 
228 (E4) 
232 (E8) 
234 (EA) 

235(EB) 
• 236 (EC) 


240(FO) 

244(F4) 

248(F8) 

252(FC) 

254(FE) 


256(100) 

260 (104) 

264(108) 

268(10C) 

272(110) 

276 (114) 

280 (118) 

284(l1C) 

288 (120) 

304(130) 


PAGE DEVICE 

Displacement 
0(0) 

40(28) 

41(29) 

42(2A) 

• 	 44(2C) 

45(2D) 
• 

48 (30) 
52(34) 

100(64) 
104(68) 
105(69) 

108(6C) 

109(6D) 

4 NVTDCBOC 
4 NVTDCBSN 
4 NVTMBUF 
4 NVTMBEND 
4 NVTSPE 
4 
4 NVTTOD 
2 NVTABCDl 
1 NVTABWS1 

1 
4 NVTIPDT 
4 NVTPAREA 
4 NVTPTAB 
4 NVTQSBUF 
2 
2 NVTSPUCB 
4 NVTVVTCB 
4 NVTWECB 
4 NVTVRECB 
4 NVTVRBLD 
4 NVTBLDL 
4 NVTCSLIB 
4 NVTCSLNM 
4 NVTCSIOB 

16 
1 NVTFLPO 

1 ... NVTFLLST 
1 ... NVTFLQS 

INFORMATION 	 TABLE 

Bytes and 
Bit Pattern Field Name 

40 PDITIOB 
1 PDITFLG1 

1 ... PDITSSDV 
.1 .. PDITMHDV 
.. 1. PDITXCP 
••• 1 PDITPON 

1 ... PDITOAPF 
.1 .. PDITMIOB 
.. 1. PDITNOPS 

1 PDITINDX 

2 PDITIOBP 

1 PDITCPCT 

3 PDITLACP 

4 PDITECB 
48 PDITDEB 

4 PDITDCB 
1 PDITSCNT 
3 PDIT1SQA 

1 PDITSQCT 

3 PDITHSQA 

Address of output console DCB 
Address of SYS1.NUCLEUS DCB 
Address of next available byte in message buffer 
Address of end of NIP message buffer 
Address of first SPE in queue 
Reserved 
Save area for TOD clock readings 
Save area for first ABEND code processed 
Save area for wait state code u~on entry to NIPA
BEND in IEAVNIPM 
Reserved 
Address of initial page device table 
Address of first PARMAREA obtained (by IEAVNP03) 
Address of PARMTAB 
Address of quickstart buffer 
Reserved 
Address of SYS1.PARMLIB UCB 
Address of IEAVNPA5 TCB (pageable TCB) 
Address of ECB for IEAVNPA5 
Addcess of ECB for IEAVNP05 
Address of LPA BLDL entry 
Address of BLDL table build area 
Address of SYS1.LPALIB DCB 
Address of current LPA naroe 
Address of lOB for failing coldstart I/O requests 
Reserved 
Parameter option indicators: 

Display PARMLIB lists 
LPA may be quickstarted 

Description 
lOB for this device 
Flags: 
This is a set sector device 
Moveable head device 
Device needs to be restarted via EXCP 
Slot queues are being searched for a primary slot 
Channel program appended 
Multiple-exposure device 
No primary or secondary slot found on slot queue 

Displacement used to determine base lOB for this 
device; base lOB = address of lOB for this expo
sure.- (4 X PDITINDX) 
Displacement to find lOB for next exposure (cur
rent lOB + PDITIOBP) 
Number of channel programs chained to this lOB 
after a PCI had been set 
Address of the last channel program on chain for 
lOB 
ECB for this device 
DEB for this device 
DCB for this device 
Number of slot queues for this device 
Address of slot queue for first slot for this 
device 
Number of channel programs on slot queue contain
ing the most channel programs 
Address of slot queue containing the most channel 
programs 

Section 5: Data Areas 179 



PAGE DEVICE TABLE 

Displacement 
0(0 ) 
1(1) 

2 (2) 
4(4) 
6 (6) 

8(8) 
9 (9) 

10(A) 

l1<B) 
16(10) 
18 (12) 
20(14) 
21 (15) 
24(18) 
25(19) 
28(lC) 
29 (1D) 

NIP PARMAREA 

Di s pIa	cement 
0(0) 
4(4) 

8(8) 
12 (C) 

20 (14) 
23(17) 
26 (1A) 

32(20) 
64(40) 
69(45) 
72 (4C) 

112(70) 
116 (74) 
120 (78) 

168(A8) 
248(F8) 

480(lEO) 

Bytes and 
Bit Pattern Field Name 

1 
1 
2 
2 
2 
1 
1 
1 

1 ... 
.1 .. 
. . 1. 

5 
2 
2 
1 
3 
1 
3 
1 
3 

Pointed to by: 
Size: 
Initialized by: 

PDTNO 
PDTLSN 
PDTAPC 
.PDTLGN 
PDTSEL 
PDTALI 
PDTTG 
PDTFLl 
PDTDEVTl 
PDTDEVT2 
PDTLAST 
PDTBA 
PDTRl 
PDTGC 
PDTSG 
PDTCCVA 
PDTR2 
PDTEMA 
PDTDT 
PDTIOB 

NVTPAREA 
Variable 
IEAVNP03 

Bytes 	and 
Bit Pattern Field Name 

4 NIPPAQ 
4 NIPPABYT 

Description 
Device number used to index into the PDT 
Last assigned slot number 
Number of available pages on this device 
Last assigned group number 
Slot entry length 
Alternate slot increment 
Number of tracks per group 
Flags: 

Primary device 

Fixed-head device 

Last PI::TE 


Beginning CCHHR of paging data set on this device 
Reserved 
Number of groups per cylinder 
Number of slots per group 
Address of cylinder count vector 
Reserved 
Address of tit map for this device 
Device type field from DCB 
Address of lOB for this device 

Description 
Address of next 4K block in parameter area 
Address of next available byte in PARMTAB 

••••••••••••••••PARMLIB BLDL Entry•••••••••••••••• 
4 NIPPABDH 
8 NIPPANAM 
3 NIPPATTR 
3 
6 

......·....····.1/0

32 NIPPATXT 

5 NIPPASID 
3 

40 NIPPAIOB 
4 NIPPAIOB 
4 NIPPAECB 

48 NIPPADEB 
80 NIPPARCD 

232 NIPPAPTB 
1568 NIPPABUF 

BLDL header 

PARMLIB memter name 

Member TTR entry 

Reserved for BLDL entry 

Reserved 


Data Area•••••••••••••••• 
CCWs for reading text record 
Search ID for next text record 
Reserved 
PARMLIB lOB 
PARMLIB DCB 
PARMLIB ECB 
PARMLIB DEB 
Read area for PARMLIB records 
Parameter address table 
Initial PARMAREA buffer 

180 



PARAMETER ADDRESS TABLE (PARMTAB) 

Pointed to by: Within PARMAREA 
Size: 232 bytes 
Initialized by: IEAVNP03 

Bytes and 
Displacement Bit Pattern Field Name 

248 (F8) 8 PTABSTRT 
256 (100) 4 APGP 

260(104) 2• 
262 (106) 2 

0000 0000 

264(108) 4 APGO 

268(10C) 2 
270(10E) 2 
272(110) 4 AUXLIST 
276 (114) 2 
278(116) 2 
280(118) 4 BLDL 
284(11C) 2 
286 (l1E) 2 
288(120) 4 BLDLF 
292(124) 2 
294(126) 2 
296(128) 4 CLPA 
300(12C) 2 
302(12E) 2 
304(130) 4 CONT 
308(134) 4 
312(138) 4 CPQE 

316 (13C) 2 
318 (13E) 2 
320(140) 4 DUMP 
324 (144) 2 
326(146) 2 
328(148) 4 FIX 
332 (14C) 2 
334(14E) 2 
336(150) 4 HARDCPY 
340(154) 2 
342(156) 2 
344(158) 4 
348 (15C) 2 
350(15E) 2 
352(160) 4 LSQACEL 
356(164) 2 
358(166) 2 
360(168) 4 MLPA 
364(16C) 2• 	 366 (16E) 2 
368(170) 4 MPA 
372(174) 2 
374(176) 2 
376(178) 4 OPI 
380(17C) 2 
382(17E) 2 
384(180) 4 PAGEP 

388(184) 2 
390(186) 2 
392(188) 4 PAGEO 
396 (l8C) 2 
398(18E) 2 

Description 
Dummy entry 
Address of 	automatic priority group parameters 
specified via SYSP (PLIBTAB) 
APGP flags 
Source identification: 
Operator (CPERTAB) 
IEASYSxx via SYSP 

Address of 	automatic priority group parameters 
specified cy operator 
APGO flags 
Source ID 
Not applicable 
AUXLIST flags 
Source ID 
Address of PARMLIB member for BLDL 
BIDI flags 
Source ID 
Fixed BIDI list 
BLDLF flags 
Source ID 
Address of create link pack area parameter string 
CLPA flags 
Source ID 
Line continuation 
Reserved 
Address of channel progran queue extension 
parameters 
CPQE flags 
Source ID 
Address of tape for SYS1.DUMP 
DUMP flags 
Source ID 
Address of list of routines in fixed LPA 
FIX flags 
Source ID 
Address of hardcopy log parameters 
HARDCPY flags 
Source ID 
Reserved 

LSQA quickcell parameters 
LSQACEL flags 
Source ID 
Address of list of routines in LPA extension 
MLPA flags 
Source ID 
Master sCheduler region virtual space 
MPA flags 
Source ID 
Operator intervention 
OPI flags 
Source ID 
Address of page data set parameters from IEASYSxx 
via SYSP (PlIBTAB) 
PAGEP flags 
Source ID 
Address of page data set param'eters from OPERTAB 
PAGEO flags 
Source 10 

Section 5: Data Areas 181 



400 (l90) 4 PALP Address of Faging algorithm limits from 1EASYSxx 
via SYSP (PL1BTAB) 


404 (l94) 2 PALP flags 

406 (196) 2 Source 1D 

408(l98) 4 PALO Address of Faging algorithm limits from oFerator 


(OPERTAE) 

412(19C) 2 PALO flags 

414 (l9E) 2 Source 1D 

416 (lAO) 4 REAL Nonpageable address limit 

420 (lA4) 2 REAL flags 

422(lA6) 2 Source 1D 

424 (lA8) 4 SQA Address of SQA virtual space 

428 (lAC) 2 SQA flags 

430 (lAE) 2 Source 1D 

432 (lBO) 4 SQACEL SQA quickcell 

436(lB4) 2 SQACEL flags 

438(lB6) 2 Source 1D 

440(lB8) 4 SYSP Address of list of 1EASYSxx member names 

444(lBC) 2 SYSP flags 

446(lBE) 2 Source 1D 

448(lCO) 4 TMSL Address of time-slice group parameters 

452(lC4) 2 TMSL flags 

454(lC6) 2 Source 1D 

456(lC8) 4 TRACE Address of trace table entry parameters 

460 (lCC) 2 TRACE flags 

462(lCE) 2 Source 1D 

464 (lDO) 4 TSOAUX TSOAUX Farameter list 

468 (lD4) 2 TSOAUX flags 

470 (lD6) 2 Source 1D 

472(lD8) 4 PTABEND Dummy entry for end 


PARAMETER TABLE ENTRY J 
Each Parameter Table Entry is eight bytes long and has the following format: 

Bytes and 
Displacement Bit Pattern Field Name Description 

0(0) 4 NIPPTADR Address of parameter specifications 
4(4) 1 NIPPTOPF Entry flags: 

1 •.. NIPPTOPI OPI option 

.1 .. NIPPTLST List option 


5 (5) 1 NIPPTATF Attribute flags: 

1 ... NIPPTMRG Merge 


6(6) 2 N1PPTS1D Source 1D: 

X'OOOO' Operator 

C' xx' PL1B member suffix 


182 



QUICKSTART RECORD 1 (NIPQSR1) 

Pointed to by: None 
Size: 4096 bytes 
Initialized l::y: IEAVNP04 

Bytes and 
Displacement Bit Pattern Field Name Description 

0(0) 8 NIPQSR1N "PAG1" EBCDIC record identifier 
8 (8) 1 NIPQSRiF Device identification indicators: 

1 ... Primary page device 
.1 .. page device with LPA quickstart records NIPQSR2• and NIPQSR3 

9(9) 1 Reserved 
10 (A) 2 NIPQSR1T Number of formatted tracks 
12 (C) 2 NIPQSR1A Number of available pages (APC) 
14 (E) 2 NIPQSRlL Number of halfwords in bit map beginning at 

NIPQSR1~ 

16(10) 4 ReServed 
20(14) 3 NIPQSR1P TTR of NIPQSR2 
23(17) 1 Reserved 
24 (18) Variable NIPQSR1M Bit map of page availability 

0 NIPQSR1A Page record available 
1 NIPQSR1U Page record unavailable due to I/O error on ini 

tial page write 

QUICKSTART RECORD 2 (NIPQSR2) 

Pointed to by: NIPQSR1P 

Size: 4096 bytes 

Initialized by: IEAVNP04 


Bytes and 
Displacement Bit Pattern Field Name Description 

0(0) 8 NIPQSR2N "PAG2" EBCDIC record identifier 
8(8) 4 NIPQSR2L Virtual address assigned to the start of the LPA 

directory 
12(C) 4 NIPQSR2H Highest virtual address assigned to the LPA 

16(10) 4 NIPSWR2D Hash value for LPA directory 
20 (14) 3 NIPQSR2P TTR of first NIPQSR3 record 
23(17) 1 Reserved 
24(18) Variable NIPQSR2M Bit map of pages 

0 NIPQSR2A Page record available 
1 NIPQSR2U Page record unavailable (assigned to quickstart 

LPA) 

QUICKSTART RECORD 3 (NIPQSR3) 

Pointed to by: NIPQSR2P or NIPQSR3P 
Size: 4096 bytes (There will be 1 to 3 NIPQSR3 Records depending on the size 

of the LPA to be described.) 
Initialized by: IEAVNP04 

.. 	 Bytes and 
Displacement Bit Pattern Field Name Description 


0(0) 8 NIPQSR3N "PAG3" EBCDIC record identifier 

8(8) 1 NIPQSR3D EBCDIC last record identifier: 


o Not last record 
X Last NIPQSR3 record 

9(9) 3 NIPQSR3P TTR of next NIPQSR3 record (if any) 
12(C) 	 Variable NIPQSR3M Slot/Group map of the sequential LPA address 

space; each entry is three bytes long; the first 
entry is for the lowest address LPA page 

Section 5: Data Areas 183 



SLOT QUEUE 


Bytes and 
DisElacement Bit Pattern Field Name DescriEtion 

OCO} 
H1} 

1 
3 

SQCHPGNO 
SQSEQSQA 

Number of channel programs for this queue 
Address of the slot queue for the next sequential 
slot on device 

4C4} 1 SQSECNO For a slot sector device, sector number for this 
slot 

S(S} 3 SQSECSQA Address of the slot queue for the next secondary 
slot on device 

8(8} 1 
xxxx SQHHOEL HH Delta 

xxxx SQRECNO Record number ~ithin a track for this slot 
9 C9} 3 SQ1CHPGA Address of first channel program on slot queue 

12CC) 1 SQINDX Index used to calculate the address of this slot 

13CO) 3 SQLCHPGA 
queue 
Address of last channel program on slot queue 

NIP SYSTEM PARAMETER ENTRY (SPE) 

Pointed to by: NVTSPE field in NVT or NIPSPEQ 
Size: 8 bytes 
Initialized ty: Operator reply processing routines in IEAVNP01 and IEAVNP03 

Bytes and 
OisElacement Bit Pattern Field Name DescriEtion 

OCO} 4 NIPSPEQ Address of the next NIPSPE on the queue (0 in last 
SPE) 

4C4} 4 NIPSPEA 	 Address of the operator's reply (the reply prefix, 
REPLY 00 or ROO, is not included in the reply 
text; end of reply test is indicated by a quota
tion mark character) 

... 


184 



• 

.. 

SECTION 6: DIAGNOSTIC AIDS 


This section contains a listing of the messages and wait state codes, a register usage 
table, and a module/control block cross~reference table. 

Wait State Code 

Code Issued by Description 

X' 01' IEAIPLOO I/O not o~erational. 


X' 02' IEAIPLOO I/O could not be started. 

X'03' IEAIPLOO I/O could not be started. 

X'04' lEAIPLOO CSW not stored. 

X'OS' IEAIPLOO Unit check. 

X'06' lEAIPLOO program, channel data, channel control, channel chaining, or 


interface control check. 
X'07' IEAVNPOl No active master console found. 
X'OA' I EAVNP0 3 Catalog entry for the SYS1.I.INKI.IE coulc not be found or suc

cessfully retrieved. 

X'OC' IEAIPLOO IEANUCOX not ~dited in scatter format. 

X' OE' IEAIPLOO SYS1.NUCLEUS or IEANUCOX not found. 

X'17' IEAIPLOC Unit check. 

X'18' IEAIPLOO Insufficient space to load IEANUCOX. 

X'19' IEAIPLOO unexpected program check. 

X'21' IEAVNIPM I/O error to system console. 

X'30' IEAVNIPO Unexpected ABEND. 

X'31' IEAVNIPO IPL device has no UCE. 

X, 32' IEAVNIPO IEAVNIPM not found. 


IEAVNIPM A required NIP module is not found in SYS1.NUCLEUS. 

X'33' IEAVNIPO} I/O error during BI.DL. 


IEAVNIPM 

X'34' IEAVNIPO DAT feature required but not included. 

X'35' IEAVNIPM Time-of-day clock is inoperative. 

X'36' IEAVNIPM Attempted SQA expansion prior to initialization of ~aging 


subsystem.
X, 37' IEAVNP02 	 DSCB for SYS1.LOGREC, SYS1.SVCLIB, SYS1.PARMLIB, or SYS1. 

LINKLIB could not be read tecause the data set does not exist; 
or an I/O error occurred. 

X'38' IEAVNIPO}
IEAVNP03 
IEAVNP04 Insufficient real storage for initialization. 
IEAVNPA4 

X'39' IEAVNP02 	 A required DASD volume cannot be successfully mounted. 
X'3A' IEAVNPOS 	 coldstart process failed: CPEN failed for SYS1.LPALIE, I/O 

error, LPALIB empty, DASD pages unavailable, or storage 
unavailable. 

X' 3F' lEAVNIPM SysteJr error (indicated by tits 36-48 in wait state PSW). 

IEAVNPA5 Invalid request code specified via POST. 


X'40' IEAVNIPM Unexpected ABEND. 


Section 6: Diagnostic Aids 185 

L 

http:SYS1.I.INKI.IE


r----------T----------------------------------------------------------------------------,I I Issuing Module, IEAVxxxx I 
I ~------T------T------T------T------T------T------~-----T------r------T------~,Message IDI NIPM I NPOl I NP02 I NP03 I NP04 I NPA4 I NP05 , NPA5 , NP06 I NP07 , NIPX I 
~---------+------+-~----+------+------+------+------+------+------+------+------+------i
I lEA101A I I X I , I I I I I I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA1071 I I I I X I I I X I I I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------i
I IEA1081 I I I I I I I X I I I , , 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I lEA109 I I I I I I I I X I I I I I • 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA116A I I X I I X I I I I I I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA118 I I I I I I I I I I I I X I 
~---------+------+------+------+------+------+------+------+------+------+------+------~
I lEA120A I I I X I I I I I I I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA1521 I I I I I I I I I I X I I 
~---------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA1531 I I I I I I I I I I X I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA1541 I X I I I I I I I I I I I 
~--------_+------+------+------+------+------+------+------+------+------+------+------i
I IEA2051 I I I I I X I I I I X I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA2061 I I I I I X I I I I X I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------i
I lEA2071 I I I I I X I I I I I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA208 I I I I I X I I I I I X I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------i
I lEA2091 I I I I I X I I I I X I I , 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA210l I I , I I X I I I I X I , I 
~----------+------+------+------+------+------+------+------+------+------+------+------i
I lEA2111 I I 'X, , I , , , I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA212A I I 'X, I , I , I I , I 
~--------_+------+------+------+------+------+------+------+------+------+------+------i
I lEA2161 I I I I X I I X I I I I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA300 I I X, I I X I I I X I I I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------i
I lEA301I I X I I I X I I I X I I I I I 
~---------+------+------+------+------+------+------+------+------+------+------+------~
I IEA3021 I X I I I I I I I I I I I 
~---------+------+------+------+------+------+------+------+------+------+------+------~
I lEA3031 I X I I I I I I I I I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I lEA304W I X I I I I I I I I I I I 
~---------+------+------+------+------+------+------+------+------+------+------+------~
I lEA305A I X I I I I I I I I I II 
~----------+------+------+------+------+------+------+------+------+------+------+------~ • 
I IEA3061 I X I I I I I I I I I I I 
~---------+------+------+------+------+------+------+------+------+------+------+------~
I lEA3101 I I I X I I X I I I I I I I 
~---------+------+------+------+------+------+------+------+------+------+------+------~
I IEA311I I I I X I I I I I I I I I 
~---------+------+------+------+------+------+------+------+------+------+------+------i
I lEA3121 I , I X I I I I I I I I I 
~----------+------+------+------+------+------+------+------+------+------+------+------~
I lEA313 I I I I X I I I I I I I I I 
~---------+------+------+------+------+------+------+------+------+------+------+------~ 

~ ~ ~ ~ ~ ~ ~ ~_~ ~ ~ ~LI__________ lEA3141 I______ I______ I______ X I______ I______ I______ I____ I______ I______ I______ I______JI 

186 



• 

• 

" 

• 

Ir----------T----------------------------------------------------------------------------,I Issuing Module, IEAVxxxx I 

I ~------T------T------T------T------T------T------T------T------T------T------~ 

IMessage IDI NIPM I NP01 I NP02 I NP03 I NP04 I NPA4 I NP05 I NPA5 I NP06 I NP07 I NIPX I 

~----------+------+------+------+------+------+------+------+------+------+------+------~
I lEA315A I I I X I I I I I I I I I 

~----------+------+------t------+------+------+------+------+------+------+------+------~
I IEA316A I I I X I I I I I I I I I 

~---------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA317A I I I X I I I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA3181 I I I X I I I I I I I I I 

~---------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA319I I I I X I I I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA320A I I I I X I I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA321I I I I I X I I I I I I I I 

r----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA322A I I I I X I X' I I X I I X I X I X I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA323l I I I I X I I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA3241 I I I I X I I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA325l I I I I X I I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA3261 I I I I X I I I X I I X I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA327I I I I I X I I I I I I I I 

r----------+------+------+------+------+------+------+------+-----_+------+------+------~
I IEA328 I I I I I X I I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~
I lEA330A I I I I I X I I I I I X I X I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA331A I I I I I X I I I I I I X I 

~----------+------+------+------+------+------+------+------+------+------+------+------~
I lEA332A I I I I I X I I I I X I X I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA333A I I I I I X I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA334A I I I I I X I I I I I I I 

r----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA335A I I I I I X I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA336A I I I I I X I I I I I I I 

r----------+------t------t------t------+------+------+------+------+------+------+------~ 
I lEA337I I I I I I X I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA338A I I I I I X I I I I I X I X I 

~----------+------+------+------+------+------+------+------+------+------+------+------i
I lEA340l I I I I I X I I X I I X I I X I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA3421 I I I I I X I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~
I IEA343A I I I I I X I I I I I I I 

r---------_+------+------+------+------+------+------+------+-----_+------+------+------~
I IEA3441 I I I I I X I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~
I lEA3451 I I I I I X I I I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA3501 I I I I I I I X I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I lEA351I I I I I I I I X I I I I I 

~----------+------+------+------+------+------+------+------+------+------+------+------i 
I lEA3521 I I I I I I I X I I I I I
L__________ ______~______~______ ______ ______ ______ ______ ______~______ ______ ______J~ ~ ~ ~ ~ ~ ~ ~ 

Section 6: Diagnostic Aids 187 


L 



r----------T----------------------------------------------------------------------------,
I I Issuing ~odule, IEAVxxxx I 


I ~------T------T------T------T------T------T------T-----~------T------T------~ 

IMessage IDI NIPM I NPOl I NP02 I NP03 I NP04 I NPA4 I NP05 I NPA5 I NP06 I NP07 I NIPX I 

~----------+------+------+------+------+------+------+------t------t------t------t------~ 
I IEA3531 I I I I I I I X I I I I I 

~----------+------+------t------+------t------+------t------+------t------+------+------~ 
I lEA3541 I I I I I I I X I I I I I 

~----------+------+------+------+------+------+------+------t------+------+------+------~ 
I IEA355A I I I I I I I X I I X I X I I 

~----------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA3561 I I I I I I I I X I I I I 

t----------+------+------+------+------+------+------+------+------+------+------+------~ 
I IEA357 I I I I I I I I X I I I I I 

~----------+------+------+------+------t------+------+------+------+------+------+------~ 
I IEA3601 I I I I I I I I I X I I I 

~----------+------+------+------+------+------+------t------+------+------+------t------~ 
I IEA361I I I I I I I I I I X I I I 

r----------+------t------t------t------+------+------+------+------t------+------+------~ 
I IEA3621 I I I I I I I I I X I I I 

t----------+------t------+------+------t------+------+------+------t------+------t------~ 
I IEA3631 I I I I I I I X I I X I X I I 

~----------t------+------t------+------+------+------t------t------+------+------t------~ 
I IEA3701 I I I I I I I I I I X I I 

~----------t------+------t------t------+------+------+------+------+------t------+------~ 
I IEA371I I I I I I I I I I I X I I 

r----------+------t------+------t------t------+------+------t------t------+------t------~ 
I IEA3801 I I I I I I I I I I I X I 

t----------t------t------t------t------t------t------+------+------t------+------t------~ 
I IEA3811 I I I I I I I I I I I X I 

~----------+------t------t------+------t------t------+------+------t------t------+------~ 
I IEA3821 I I I I I I I I I I I X I 

r----------t------t------+------t------t------+------+------t------+------+------t------~ 
I IEA3831 I I I I I I I I I I I X I 

~----------+------+------t------+------+------+------+------+------t------+------+------~ 
I IEA3841 I I I I I I I I I I I X I 

r----------t------+------t------t------+------t------t------+------t------+------t------~ 
I IEA3851 I I , I' I I I I I I I X I 

~---------_+------t------t------+------+------+------t------t------t------t------t------~ 
LI IEA3861 ______ I______ ______ I______ ______ I______ ______ I_____ I______ I______ X
__________ I I I I I______ JI
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

• 

'I 

• 

188 



L 

• 

• 

• 


, 

REGISTER USAGE TABLE 

This table lists the entry points for each module, the narr,e of the routine to which 
each module normally exits, and the register ccntents upon entry and exit. Beginning 
with the exit from IEAVNIPO, the following registers are part of standard linkage conven
tions and have the same contents upon entry to each module. The contents of these regis
ters are noted in the table only where significant. The contents of other omitted regis
ters are irrelevant • 

1 (RPARM) Address of parameter list 
2 (RNVT) Address of NIP vector table 
3 (RCVT) Address of CVT 

14 (REXIT) Address of next entry ~oint to receive control 
15 (RENTRY) Address of entry point within this module. 

Entry Exit Registers Contents 
IEAIPLOO 0-15 Irrelevant 
(not used) 

to X'16C' 1 Address of the IEANUCOx translation table 
3 Address of the nucleus data set/volume data 

area 
4 Address of the nucleus CSECT size table 

(SIZTABLE) 
6 Size of real storage 
7 Address of the end of the resident nucleus 
8 Address of the nucleus CSECT address tatle 

(ADRTABLE) 
9 Number of nucleus CSECTs (SIZTABLE entries + 

ADRTABLE entries) 
10 Device address of the IPL volume 

IEAVNIPO 3 Address of the IPLDATA parameter area 
6 Real storage size 
7 Address of the end of the resident nucleus 
10 Device address of the IPL volume 

IEAVNIPM 1 (RPARM) Address of the SYS1.NUCLEUS DCB 
2 (RNVT) Address of the NVT 
3 (RCVT) Address of the CVT 
15 (RENTRY) Address of IEAVNIPM entry 

IEAVNIPM 1 (RPARM) Address of the SYS1.NUCLEUS DeB 

IEAVNIPX 15 (RENTRY) Address of IEAVNIPX entry 

NIPLOAD 1 (RPARM) Address of the 8-character module name to be 
loaded from SYS1.NUCLEUS 

Caller 1 (RPARM) Address of entry point of loaded module 
via REXIT 

NIPSENSE 1 (RPARM) Address of the IOE for the failing I/O 
Caller operation 
via REXIT 

NIPSQEND 
No exit; 
disabled wait 

NIPSWAIT No exit; 
disabled wait 

Section 6: Diagnostic Aids 189 

L 



Entry 
NIPSVC 
(NIPSVCX) 

NIPTIME 

NIPUCBFN 

NIPWTO 

NIPWTOR 

NIPWTOR2 

lEAVNP01 

IEAVNP02 

lEAVNPA2 

lEAVNPB2 

IEAVNP03 

lEAVNP04 

IEAVNPA4 

Type-3, 
Type- 4, or 
XCTL routine 

Caller 
via REXIT 

Caller 
via REXIT 

Caller 
via REXIT 

NIPWTOR2 
Caller 
via REXIT 

Caller of 
NIPWTOR or 
NIPWTOR2 

IEAVNIPM 

IEAVNIPM 

Caller 
via REXIT 

Caller 

IEAVNIPM 

IEAVNIPM 

Caller 
via REXIT 

Registers 
0, 1, 13, 15 
4 
5 
14 
15 
0, 1, 4, 5, 
13, 14, 15 

1 (RPARM) 

1 (RPARM) 

1 (RPARM) 
1 (RPARM) 

1 (RPARM) 
1 

1 (RPARM) 
15 (RENTRY) 
1 

1 (RPARM) 

14 (REXIT) 

1 (RPARM) 

Standard 
Standard 

Standard 
Standard 

1 (RPARM) 
1 

1 (RPARM) 

1 

Standard 
Standard 

Standard 
Standard 

1 (RPARM) 

1 

Contents 
SVC parameter registers 
Address of TCB 
Address of RB 
Address of SVC 3 instruction 
XCTI entry - address of parameter list 
Unchanged 

Request indication: 
X'OO' - TeD clock value 
X'04' - relative time since lEAVNIPM first 

entered 
Current value of TOD clock or relative time 

EBCDIC unit name or device address 
Address of UCB if found or 0 if not found 

Address of message to be written to console 
Unchanged 

Address of WTOR parameter list 
Address of NIPWTOR2 entry 
Unchanged 

Positive - address of NIPWTOR parameter list 
Negative (two's complement) address of SQA

buffered reply to be released 
Return address of caller of NIPWTOR if wait 

specified or address of caller of NIPWTOR2 

Address of the operator's reply (irrelevant 
if called to release SQA reply buffer) 

Unchanged 

Unchanged 

Address of the NIPMOUNT parameter list 
Address of the UCB for the mounted volume, 

or 0 if request canceled 

Address of the parameter list of the data 
set to te opened 

Unchanged if open is successful, or two's 
complement of address if open failed 

Unchanged 

Unchanged 

Address of parameter list indicating func
tion to be performed 

Read requests - address of quickstart record 
Other successful requests - unchanged 
Unsuccessful request - two's complement of 

address 

• 


190 



Entry Exit Registers Contents 

L' lEAVNP05 Standard 
IEAVNIPM Standard Unchanged 

IEAVNPA5 1 (RPARM) Address of parameter list containing RCVT 
and RNVT values 

IEAVNP05 Standard Unchanged 

IEAVNP06 Standard 

IEAVNIPM Standard 


lEAVNP07 Standard• IEAVNIPM Standard 

IEAVNIPX Standard 

IEEVIPL 4 Address of SYS1.PARMLIB UCB 


Module/Control Block Cross Refernce 

The following table is a module/control block cross-reference table. The letter M 
means the,module modifies the control block (the module may also refer to the control 
block). The letter R means the module refers to the control block (the module does not 
modify the control block). 

r---------------T-----T-----T-----T-----T-----T-----T-----T-----T-----T-----T-----T-----'
IControl Block INIPO INIPM INP01 INP02 INP03 INP04 INPA4 INP05 INPA5 INP06 INP07 INIPX I 
r---------------+-----+-----+-----+-----+-----+-----+-----t-----+-----t-----+-----t-----~ 
ICVT I M I R I R I R I RIM I RIM I M I M I M I M I
r---------------+-----t-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----1 
IDEB I M I M I M I M I I I M I I I R I I I 
r---------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----~ 
INVT I M I M I M I M I M I M I M I M I M I M I M I R I 
r---------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----~ 
IPVT I M I M I I I I M I M I M I I I M I M I 
r---------------+-----+-----t-----+-----t-----+-----+-----+-----t-----+-----t-----t-----~ 
ISCVT I M I R I I I I R I I R I I M I I R I 
r---------------+-----+-----+-----t-----t-----+-----+-----t-----+-----+-----t-----+-----~ 
IMaster I I I I I I I I I I I I I 
IScheduler I I I I I I I I I I I I I 
ITCB I M I I I I I I I M I I I I M I 
r---------------+-----t-----t-----t-----t·,----+-----+-----t-----t-----t-----+-----t-----~
ICommunications I I I I I I I I I I I I I 
ITask TCB I _____ I_____ I_____ I_____ I_____ _____ I _____~_____ I I_____ R _____ I M IL_______________ I I _____~ I _____J~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

section 6: Diagnostic Aids 191 



GLOSSARY 

active paqe: A page in real storage that 
can be addressed. 

active page queue: A queue of pages in 
real storage that are currently assigned to 
tasks. Pages on this queue are eligible 
for placement on the available page queue. 

address translation: The process of chang
ing the address of an item of data or an 
instruction from its virtual address to its 
real storage address. See also dynamic 
address translation. 

automatic priority group: In VS2, a group 
of tasks at a single priority level that 
are dispatched according to a special 
algorithm that attempts to provide o~timum 
use of CPU and I/O resources by these 
tasks. See also dynamic dispatching. 

available page frame count: In VS2, a 
count of page frames that are ready for 
reassignment. 

available page queue: A queue of the pages 
whose real storage is currently available 
for allocation to any task. See also 
active page queue, hold page queue. 

basic control (BC) mode: A mode in which 
the features of a System/360 computing sys
tem and additional System/370 features, 
such as new machine instructions, are 
operational on a system/370 computing sys
tem. See also extended control (EC) mode. 

OAT: Dynamic address translation. 

demand paging: Transfer of a page from 
external page storage to real storage at 
the time it is needed for execution. 

device number: In VS2, a ~rt of an 
external page address that refers to a par
ticular paging device; together with a 
group number and a slot number, it identi
fies the location of a page in external 
page storage. 

disabled page fault: A page fault that 
occurs when I/O and external interruptions 
are disallowed by the CPU. 

dynamic address translation (DAT): (1) The 
change of a virtual storage address to a 
real storage address during execution of an 
instruction. See also address translation. 
(2) A hardware feature that performs the 
translation. 

dYnamic area: The portion of virtual 
storage that is divided into regions or 
~artitions that are assigned to job steps 
and system tasks. See also pageable dynam
ic area, nonpageable dynamic area. Con
trast with nondynamic area. 

dynamic dispatching: In VS2, a facility 
that assigns priorities to tasks within an 
automatic priority grou~ to provide optimum 
use of CPU and I/O resources. 

EC mode: Extended control mode. 

enabled tage fault: A page fault that 
occurs when I/O and external interruptions 
are allowed by the CPU. 

extended control (EC) mode: A mode in 
which all the features of a System/370 com
puting system, including dynamic address 
translation, are operational. See also 
basic control (BC) mode. 

external page address: An address that 
identifies the location of a page in a page 
data set. In VS2, the address consists of 
a relative device number, a relative group 
number, and a relative slot number. 

external page storage: The portion of 
auxiliary storage that is used to contain 
~ages. 

external page storage management: A set of 
routines in the paging supervisor that con
trol external page storage. 

external paqe table (XPT): In VS2, an 
extension of a page table that identifies 
the location on external page storag.e of 
each page in that page table. 

fixed: In OS/VS, not capable of being 
paged out. 

fixed BLDL table: A BLDL table that the 
user has specified to be fixed in the lower 
~ortion of real storage. 

fixed link pack area: In VS2, an extension 
of the link pack area that occupies fixed 
pages in the lower portion of real storage. 

fixed page: A page in real storage that is 
not to be paged out. 

grout number: In VS2, a part of an extern
al page address that refers to a slot 
group; together with a device numbe~ and a 
slot numter, it identifies the location of 
a page in external page storage. 

• 


192 



invalid page: A page that cannot be 
directly addressed by the dynamic address 
translation feature of the central process
ing unit. 

link pack area (LPA): In VS2, an area of 
virtual storage containing selected reent

• 	 erable and serially reusable routines that 
are loaded at IPL time and can be used con
currently by all tasks in the system.

• 
link pack area directory: In VS2, a direc
tory that contains an entry for each entry 
point in link pack area modules. 

link pack area library: In VS2, a parti 
tioned data set that contains the rr,odules 
specified to be in the link pack area. 

link pack area queue: In VS2, a queue that 
contains a contents directory entry for 
each link pack area module currently in 
use, for each module in the link pack up
date area, and for each module in the fixed 
link pack area. 

link pack update area: In VS2, an area in 
virtual storage containing modules that are 
additions to or replacements for link pack 
area modules for the current IPL. 

local system queue area (LSQA): In VS2, 
one or more segments associated with each 
virtual storage region that contains job
related system control blocks. 

LPA: Link pack area. 

LSQA: Local system queue area. 

memory: See real storage, virtual storage. 

nondynamic area: The area of virtual 
storage occupied by the resident portion of 
the control program (the nucleus and the 
link pack area). Contrast with dynamic 
area. 

nonpageable dynamic area: An area of vir 
tual storage whose virtual addresses are 
identical to real addresses; it is used for 
programs or parts of programs that are not 
to be paged during execution. Synonymous• with V=R dynamic area. 

nonpageable region: In VS2, a subdivision 
of the nonpageable dynamic area that is 
allocated to a job step or systerr, task that 
is not to be paged during execution. In a 
nonpageable region, each virtual address is 
identical to its real address. Synonymous 
with V=R region. 

~: 	A compatible extension of the 
Systeml360 Operating System that supports 
relocation hardware and the extended con
trol facilities of system/370. 

~: (1) A fixed-length block of instruc
tions, data, or both, that can be trans
ferred tetween real storage and external 
page storage. (2) To transfer instruc
tions, data, or both between real storage 
and external page storage. 

Faqeable dynamic area: An area of virtual 
storage 	~hose addresses are not identical 
to real 	addresses; it is used for programs 
that can be paged during execution . 
Synonymous with V=V dynamic area. 

pageable region: In VS2, a subdivision of 
the pageable dynamic area that is allocated 
to a job step or system task that can be 
paged during execution. Synonymous with 
V=V region. 

page control block (PCB): A control block 
that indicates the status of a paging 
request. 

Fage data set: A data set in external page 
storage, in which pages are stored. 

Fage fault: A program interruption that 
occurs when a page that is marked "not in 
real storage" is referred to by an active 
page. Synonymous with page translation 
exception. 

page fixing: Marking a page as nonpageatle 
so that it remains in real storage. 

Faqe frame: A block of real storage that 
can contain a page. Synonymous with frame. 
See also storage block. 

page frame table: In VS2, a table that 
contains an entry for each frame. Each 
frame table entry describes how the frame 
i.s being used. 

page migration: In VS2, the transfer of 
pages frcm a primary paging device to a 
secondary paging device to make more space 
available on the primary paging device. 

Fage-in: The process of transferring a 
page from external page storage to real 
storage • 

Fage number: The part of a virtual storage 
address needed to refer to a page. See 
also frame number. 

Fage-out: The process of transferring a 
page from real storage to external page 
storage. 

Fage reclamation: The process of making 
addressable the contents of a page in real 
storage that has been marked invalid. Page 
reclamation can occur after a page fault or 
after a request to fix or load a page. 

Glossary 193 



page table (PGT): A table that indicates 
whether a page is in real storage and 
correlates virtual addresses with real 
storage addresses. 

page translation exception: A program 
interruption that occurs when a virtual 
address cannot be translated by the hard
ware because the invalid bit in the page 
table entry for that address is set. 
Synonymous with page fault, program inter
ruption code 17. 

page wait: A condition in which the active 
request block for a task is placed in a 
wait state while a requested page is 
located in real storage or is trought into 
real storage. 

Faging: The process of transferring pages 
between real storage and external page 
storage. 

paging device: A direct access storage 
device on which pages (and possibly other 
data) are stored. 

Faging supervisor: A part of the supervi
sor that allocates and releases real 
storage spac~ (page frames) for pages, and 
initiates page-in and page-out operations. 

PFT: Page frame table. 

PGT: Page table. 

primary paging device: In VS2, an auxi
liary storage device that is used in pre
ference to secondary paging devices for 
paging operations. portions of a primary 
paging device can be used for purposes 
other than paging operations. 

guick cell: In VS2, a reserved space in 
the system queue area or a local system 
queue area that can be used to reduce the 
time required to allocate space for a con
trol block. 

guickstart pages: Pages in a single page 
data set that contain the link pack area 
modules and link pack area directory that 
are to be made available to the system dur
ing a quickstart. 

guickstart records: One or more records, 
located at the beginning of a formatted 
page data set, that contain information 
that makes it possible to use the data set 
over successive IPLs. The quickstart rec
ords identify all usable pages in the data 
set and, for a page data set containing 
quickstart pages, identify the location of 
those pages in the data set. 

real address: The address of a location in 
real storage. 

real storage: The storage of a System/370 
computing system from which the central 
processing unit can directly obtain 
instructions and data, and to which it can 
directly return results. 

reference tit: A bit associated with a 
page in real storage; the reference bit is • 
turned "ON" by hardware whenever the asso
ciated page in real storage is referred to 
(read or stored into). In VS2, there is a 
reference bit in each of two storage keys 
associated with each page frame. 

relocate hardware: See dynamic address 
translation. 

secondary paging device: In VS2, an auxi
liary storage device that is not used for 
paging operations until the available space 
on primary paging devices falls below a 
specified minimum. portions of a secondary 
paging device can be used for purpcses 
other than paging operations. 

segment: A continuous 64K area of virtual 
storage, which is allocated to a job or 
system task. 

segment table (SGT): A table used in 
dynamic address translation to control user 
access to virtual storage segments. Each 
entry indicates the length, location, and 
availability of a corresponding page table. 

segment table entry (STE): An entry in the 
segment table that indicates the length, 
location, and availability of a correspond
ing page table. 

slot: In VS2, a continuous area on a pag
ing device in which a page can be stored. 

slot group: In VS2, a set of slots on one 
or mere tracks within a cylinder on a pag
ing device. 

slot number: In VS2, a part of an external 
page address that refers to a slot; togeth
er with a device number and a grout number, 
it identifies the location of a page in 
external page storage. 

SQA: System queue area. 

swapping: In VS2 with TSO, a paging tech
nique that writes the active pages of a job 
to external page storage and reads pages of 
another job from external page storage into 
real storage. 

svstem queue area (SQA): An area of virtu
al storage reserved for system-related con
trol blocks. 

194 



~ .. 

• 

• 

.. 

thrashing: A condition in which the system 
can do little useful work tecause of exces
sive paging. 

virtual address: An address that refers to 
virtual storage and must, therefore, be 
translated into a real storage address when 
it is used • 

virtual eguals real (V=R) storage: An area 
of virtual storage that has the same range 
of addresses as real storage and is used 
for a program or part of a program that 
cannot be paged during execution. 

V=R dynamic -area: Same as nonpageable 
dynamic area. 

V=R partition: Same as nonpageable 
/?artition. 

V=R region: Same as nonpageable region. 

virtual storage: Addressable space that 
appears to the user as real storage, from 
which instructions and data are mapped into 
real storage locations. The size of virtu
al storage is limited by the addressing 
scheme of the computing system and by the 
amount of auxiliary storage available, 
rather than by the actual number of real 
storage locations. 

virtual storage region: In VS2, a subdivi
sion of the dynamic area that is allocated 
(in segment-size blocks) to a job step or a 
system task. 

V=V dynamic area: Same as pageable dynamic 
area. 

V=V region: Same as pageable region. 

XPT: External page table. 

XPTE: External page table entry • 

Glossary 195 



APG parameter 29 

Arrows used in diagrams 9 

AUXLIST parameter 29 


Bringing IPL into real storage 1 


CCH 27 

Clearing real storage: IPL 1 

CLPA parameter processing 22 

Coldstart/Quickstart process 6 

Common functions for NIP modules 6 

Control blocks used by NIP 7 

Control block/module cross referenGe 

table 191 


CPQE parameter processing 22 

CVT initialization 14 


Data area relocation by IEAIPLOO 13 

Data areas used by NIP 7 

Data sets used by IPL/NIP 7 

DAT feature 15 

DAT feature (EC mode) initiation 15 

Device availability testing: IEAVNP02 20 

Liagramming conventions explained 9 

Directory, by entry point name 174 

DSS 27 

DUMP system parameter 27 

Dynamic Address Translation feature 15 

Dynamic Address Translation (figure) 18 

Dynamic area, NIP's 7 


EC mode initialization 15,17 

Entry point name directory 174 


Formatting page data sets 6 


HARDCPY system parameter 28 


IEAIPLOO, description 12 

IEAIPLOO, diagram 32 

IEAVNIPM, description 17 

IEAVNIPM, diagram 42 

IEAVNIPX, description 28 

IEAVNIPX, diagram 146 

IEAVNIPO, description 14 

IEAVNIPO, diagram 36 

IEAVNPA4, description 23 

IEAVNPA4, diagram 78 

IEAVNPA5, description 26 

IEAVNPA5. diagram 110 

lEAVNP01, description 19 

IEAVNP01, diagram 52 

lEAVNP02, description 19 

IEAVNP02, diagram 56 


IEAVNP03, description 20 

IEAVNP03. diagram 61 

IEAVNP04, description 22 

IEAVNP04, diagram 74 

IEAVNP05, description 25 

IEAVNP05, diagram 96 

IEAVNP06, description 27 

IEAVNP06, diagram 122 

IEAVNP07, description 28 

IEAVNP07, diagram 134 

IEAP~NIP, NIP macro instruction 6 

Initialize page data sets 6 

Initializing for Quickstart records 22 

Initial paging area 7 

Initial Program Loader, location 9 

Initial system queue area definition 16 

Introduction to IPL/NIP processing 1 

IPIDATA 176 

IPL/NIP processing (high level diagram) 2 


linkage to service subroutines 6 

Link Pack area in quickstart/coldstart 6 

lOAD button 12,1 

loading of NIP modules 9 

LOAD light 12 

load unit address switches 12 

location of IPL records in real storage 13 

IPA in quickstart/coldstart 6 

LPA page data set information 6 

ISQACEL parameter 29 


~ain functions of IPL and NIP 1 

MANUAL light 12 

~axirrum virtual address 15 

MCH 27 

~essages 186 

Methcd of operation diagrams, 


introduction 9 

Module/control block cross reference 

table 191 


MPA parameter 29 

~ultiple control registers initialized by 


IEAVNIPO 17 


NIPABEND, description 19 

NIPLOAD, description 17 

NIPLCAD, diagram 44 

NIP macro instruction, IEAPMNIP 
 6 

NIP module functions 1 

NIP module loading 9 

NIPMOUNT, description 20 

NIPMCUNT, diagram 58 

NIPMOUNT, flowchart 171 

NIPMOUNT parameter list 176 

NIPOPEN, description 20 

NIPOPEN, diagram 60 

NIP PARMAREA 180 

NIPQSR1, quickstart record 6,183 

NIPQSR2, quickstart record 6,183 


• 
, 


• 


196 



II 

~. 

, 


• 


NIPQSR3, quickstart record 6,183 

NIPSENSE, description 17 

NIPSQEND, description 19 

NIPSVC and NIPSVCX, description 17 

NIPSVC and NIPSVCX, diagram 46 

NIPTIME, description 18 

NIPTIME, diagram 50 

NIPUCBFN, description 18 

NIPUCBFN, diagram 48 

NIP vector table (NVT) 8,178 

NIPSWAIT, description 19 

NIPWTO message header 177 

NIPWTO and NIPWTOR, description 18 

NIPWTOR2, description 19 

NPA4BCCV, description 24 

NPA4BCCV, diagram 88 

NPA4BDIR, description 26 

NPA4CCST, description 25 

NPA4CCST, diagram 94 

NPA4FREE, description 24 

NPA4FREE, diagram 84 

NPA4GBUF, des cription 24 

NPA4GBUF, diagram 82 

NPA4INTC, description 24 

NPA4INTC, diagram 90 

NPA4INTF, description 24 

NPA4INTF, diagram 86 

NPA4LOAD, des cription 24 

NPA4LOAD, diagram 92 

NPA4READ, description 24 

NPA4READ, diagram 80 

NPA4RSTB, description 24 

NPA4RSTB, diagram 86 

NPA4WRIT, description 24 

NPA4WRIT, diagram 80 

NPA5ALIS, description 26 

NPA5BLDL, description 26 

NPA5BLDL, diagram 114 

NPA5CLIN, description 26 

NPA5CLPA, description 26 

NPA5CLPA, diagram 116 

NPA5LGRP, des cription 27 

NPA5LGRP, diagram 120 

NPA5LIND, description 26 

NPA5MLPA, description 26 

NPA5l!lLPA, diagram 112 

NPA5TERM, description 26 

NPA5TERM, diagram 118 

NPXAPG, description 29 

NPXAPG, diagram 150 

NPXFAREA, description 29 

NPXFBUF, description 29 

NPXFJPQ, description 29 

NPXFJPQ, diagram 160 

NPXMCSPO, description 30 

NPXMCSPO, diagram 166 

NPXMLSQA, description 30 

NPXMLSQA, diagram 162 

NPXMPA, description 29 

NPXMPA, diagram 156 

NPXMPA1, description 29 

NPXMPA1, diagram 158 

NPXQCELL, description 29 

NPXQCELL, diagram 154 

NPXPFTAQ, description 30 

NPXPFTAQ, diagram 164 

NPXRDAT, description 30 

NPXRDAT, diagram 168 


NPXREAL, description 29 

NPXRTRAP, description 30 

NPXTMSL, description 29 

NPXT~SL, diagram 152 

NP1INIT and NP1TCOMM, diagram 54 

NP1TCOMM and NP1INIT, diagram 54 

NP3LCAT, description 22 

NP3LCAT, diagram 72 

NP3LRLIB, description 22 

NP30PSP, description 20 

NP30PSP, diagram 62 

NP3PBASE, description 20 

NP3PBASE, diagram 64 

NP3PMLIB, description 21 

NP3PLMRG, description 21 

NP3PTAB, description 21 

NP3PTAB, diagram 70 

NP3SYSP, description 21 

NP3SYSP, diagram 68 

NP4APFT and NP4BPFT, description 23 

NP4BCPQ, des cr iption 23 

NP4BSQA, description 23 

NP4IPVT, description 23 

NP4PDSEL, description 22 

NP4PDSEL, diagram 76 

NP4RQSR2, description 23 

NP5BLDLP, description 25 

NP5BLDLP, diagram 108 

NP5CSLPA, description 25 

NP5CSLPA, diagram 100 

NP5lFLIB, description 25 

NP5LPLIB, diagram 104 

NP5MLPA, description 25 

NP5MIPA, diagram 106 

NP5QSLPA, description 25 

NP5QSLPA, diagram 98 

NP5VTCB, description 25 

NP5VTCB, diagram 102 

NP6DMP, description 27 

NP6DMP, diagram 126 

NP6DSS, description 27 

NP6DSS, diagram 124 

NP6EXCP, description 27 

NP6MOVE, description 27 

NP6RMS, description 27 

NP6RMS, diagram 130 

NP6TRA, description 27 

NP6TRA, diagram 132 

NP7EFFP, description 28 

NP7EPFF, diagram 144 

NP7HI:CPY, description 28 

NP7HDCPY, diagram 136 

NP7LPAFN, description 28 

NP7LFAFN, diagram 140 

NP70TEST, description 28 

NP7PAL, description 28 

NP7PAL, diagram 142 

NP7PDCM, description 28 

NP7PI:CM, diagram 138 

Nucleus 7 

Nucleus tuffer 7 

Nucleus Initialization Program modules 14 

Nucleus loading by IEAIPLOO 13 

Nucleus specification by operator 13 

NVT initialization 14 

NVT (NIP vector table) 8 


Index 197 




1 

Operator communication initiation 19 

Operator interface during IPL 13 

Operator limitation of real storage 

size 13 


·Operator specification of nucleus 13 

OPERTAB building 21 

OPERTAB into PLIBTAB merging 21 


page data set formatting 6 

Page device information table 179 

Page device table 180 

PAGE parameter processing 22 

page table initialization 15 

paging device 6 

Paging initialization 15 

paging supervision control block 

initialization 22 


Paging table initialization 1 

PAL system parameter 28 

Parameter table entry 182 

Parameter address table 181 

PARMAREA 8 

PARMAREA building 21 

PFT definition 14 

PLIBTAB building 21 

Processing expected program checks 13 

Program checks, processing expected 13 

PVT definition 14 


Quickstart/coldstart process 6 

Quickstart Record, NIPQSR1 6 

Quickstart records 8 


RAS initialization 27 

REAL parameter 29 

Real storage after page device 

initialization 23 


Real storage areas during NIP processing 7 

Real storage at completion of IEAVNIPO 17 

Real storage before and after IPL 

relocation 13 


Real storage, clearing by IEAIPLOO 13 

Real storage definition 15 

Real storage initialization 1 

Real storage size 1 

Real storage size, limitation by 

operator 13 


Real storage, storage keys 14 

Reformatting page data sets for restart 6 

Registers, clearing by IEAIPLOO 12 

Re-IPL, quickstart records in 6 


Reliability and serviceability 

initialization 27 


Residency characteristics of NIP 

modules 14 


Resident nucleus, creation and loading 
RMS 27 


Sample diagram 10 

Segment table initialization 15 

Service subroutines, linkage to 6 

Slot/group map of LPA address space 6 

Slot queue 184 

SQACEL parameter 29 

SQA parameter processing 22 

Storage keys, real storage 14 

storage keys, setting by IEAIPLOO 13 

Subroutines in method of operation diagrams 12 

SVCDUMP 27 

System console initialization 19 

System data set access 1 

System parameter area creation 21 

System parameter entry 184 

System parameter table initialization 20 

System queue area 7 

System restart, quickstart/coldstart 6 

System segment and page tables 16 

System trace table definition 14 

SYS1.DSSVM 7 

SYS1.DUMP 7 

SYS1.LINKLIB 7 

SYS1.LOGREC 7 

SYS1.LPALIB 6,7 

SYS1.NUCI.EUS 7 

SYS1.PAGE 7 

SYS1.PARl-'LIB 7 

SYSl. SVCLIB 7 


TMSL parameter 29 

TRACE system parameter 27 

TSOAUX parameter 29 


Using method of operation diagrams 9 


Virtual addressing 15 

Virtual storage access 1 

Virtual storage segment and block size 15 


Wait state codes 185 


198 



• 
f 

" 

f, 
,• 



SY27-7243-0 

o 
en 
~ 
<: 
en 

t, 

International Business Machines Corporallon 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10804 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

i 


