
Systems

GC20·1753·0

OS/Virtual Storage 2
Features Supplement

This supplement discusses OS/Virtual Storage 2 (OS/VS2)
features and organization. Only concepts and functions
of OS/VS2 that are new to and significantly different
from those of OS MVT are presented in detail. Transition
from OS MVT to OS/VS2 is discussed also. Facilities an
nounced prior to the date of this supplement are included
in the discussions. Features that are not part of the first
release of OS/VS2 are identified.

This supplement is an optional section that is designed to
be inserted in its entirety in anyone of the following
base publications, each of which contains the conceptual
and System/370 hardware information required to under
stand the OS/VS2 discussion presented:

• A Guide to the IBM System/370 Model 145
(GC20-1734)

• A Guide to the IBM System/370 Model 158
(GC20-1754)

• A Guide to the IBM System/370 Model 168
(GC20-1755)

Readers who possess more than one of the above base
publications need add this module to only one of the
documents as the OS/VS2 information presented applies
to System/370 Models 145,158, and 168 unless other
wise indicated in the text.

The contents of this supplement are designed to acquaint
the OS MVT knowledgeable reader with the new facilities
and the advantages of OS/VS2.

PREFACE

This supplement is stocked in the IBM Distribution Center,
Mechanicsburg as a separate formrnumbered item and is not distributed as
part of any other publication. Subsequent updates to the supplement
must also be ordered separately. Those who are familiar with a
System/310 model and OS MVT. and who require information about OS/VS2,
should obtain this supplement and insert it as section 100 of one of the
appropriate base publications listed below.

Base publications for the OS/vs2 supplement are:

• A Guide to the IBM System/310 Model 145 {GC20-1734-2 or later
editions}

• A Guide to the IBM System/310 Model 158 (GC20-1154)

• A Guide to the IBM System/310 Model 168 (GC20-1755)

This supplement is self-contained. It begins with page 1 and
includes its own table of contents and index. The title of the
supplement is printed at the bottom of each page as a means of
identifying the optional supplement to which the page belongs.
Knowledge of information contained in other optional supplements that
can be added to the base publications listed above is not required in
order to understand the OS/vS2 features as they are presented. However,
comprehension of virtual storage concepts and dynamic address
translation hardware and terminology, as described in anyone of the
base publications, is assumed.

First Edition (August 1972)

This publication is intended for planning purposes only. It will be updated from time to time;
however, the reader should remember that the authoritative sources of system information are
the systems library pUblications for OS/VS2. These publications will fIrst reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch offIce serving your locality.

Address comments concerning this publication to: IBM Corporation, Technical Publications
Department, 1133 Westchester Avenue, White Plains, New York 10604.

© Copyright International Business Machines Corporation 1972

CONTENTS (Section 100)

1 Section 100: OS/Virtual Storage 2 Features • • • • •
100:05 Functions and Features Supported •••••••
100:10 Organization and Initialization of Storage ••

Virtual Storage Organization. • • • • • • • •
Real Storage Organization • • • • •

'. •• 1
6

• • • •• 6

External Page Storage Organization.
System Initialization •

100:15 Major Components •••
100:20 Job Management ••••••

Master Scheduler. • • • • •••
Reader Interpreters and Output Writers.
Job Scheduler • • • • • • • • •

• 13
14

• 16
20

• 22
• 23
• 23
• 24

Time Sharing option • • • • • • 26
100: 25 Task Management • • • '. • • • • 31

Interruption supervisor • • • 31
• !' • 32

• 36
Task Supervisor • • • •
Virtual Storage Supervisor.
Contents Supervisor • • • • 37
Timer Supervisor. • • • • •

100:30 Data Management •••••••
Input/Output supervisor. • • • •••
Virtual Storage Access Method. •

100:35 Page Management •••••••••

• 38
• 39
• 39
• 40
• 57

57
63

Real Storage Administration • •
External Page Storage Administration. •
Page Administration • • • • • • • • • • • 65

100:40 Recovery Management •••••••••
Recovery Management Support • • • •

100:45

100:50
100:55

OLTEP • • • • • • 6. • • • • • • • •

Problem Determination Facilities. •
Language Translators. Service Programs, and Emulators •

System Assembler ••••
Linkage Editor. • • • •
Utilities • • • • • • •
Integrated Emulators. •

OS MVT to OS/VS2 Transition • • • • •
summary of Advantages

Index (section 100) • • • • • •

FIGURES (Section 100)

100.10.1
100.10.2
100.20.1
100.20.2
100.25.1
100.30.1

100.30.2

Virtual storage organization in OS/VS2 • • • • • •
Real storage organization in OS/VS2. • • • • • • •
Division of external page storage when TSO is used • •
Virtual storage organization when TSO is used. • •
Task queue containing an automatic priority group. • •
Organization of a control area for a VSAM
key-sequenced data set • • .• • • • • • • • •
Structure of the index for a VSAM key-sequenced
data set • • • • • • • • • • • • . • • . • • •

• 66
• 66
• 67
• 67
• 69
• 69
• 70
• 70
• 71
• 71

74

• 78

7
14

• 29
• 30
• 33

43

• 46
100.35.1
100.35.2

Flow of the real storage allocation procedure.
Operation of the page replacement algorithm. •

• • • 60
• 64

OS/Virtual Storage 2 Features Supplement

TABLES (Section 100)

100.05.1
100.05.2
100.05.3

100.10.1
100.15.1
100.30.1

100.30.2

Standard features of OS/vS2. • • • • • • • • •
Optional features of OS/vS2. • • • • • • • • •
I/O devices. consoles. and terminals supported by

3
4

OS/VS2 • II
organization and capacity of paging devices in OS/VS2 •• 16
OS/VS2 control and processing program components • • • • 21
Types of access supported for VSAM data set
organizations. • • • • • • • • • • • • • • 48
Comparison table of VSAM and ISAM facilities for os. • • 53

Os/virtual storage 2 Features Supplement

SECTION 100: OS/vIRTUAL STORAGE l FEATURES

100:05 FUNCTIONS AND FEATURES SUPPORTED

OS/vS2 is a growth operating system for OS MVT, large OS MFT, and
OS/VS1 installations. OS/vS2 includes features equivalent to and
compatible with those of OS MVT and offers major new functions and
feature enhancements. The most significant new items of OS/VS2 are:

• Support of one virtual storage of 16,777,216 bytes using dynamic
address translation hardware

• Enhancements to job scheduling and new functions designed to enhance
system performance

• An additional access method called Virtual Storage Access Method
(VSAM) that is designed to provide more function and to be more
suitable to online and data base environments than ISAM

• Operational enhancements

• Additional system integrity, reliability, and data security features

VS2 supports one regionalized virtual storage of 16,777,216 bytes
with segments of 64K and pages of 4K. The organization of virtual
storage in VS2 is very similar to that of main storage in MVT. The
management of virtual, real~ and external page storage and the paging
activity of the system are handled entirely by the VS2 control program,
and are transparent to the proqrammer.

OS MVT is upward compatible with OS/VS2 to the extent that moving
from MVT to OS/VS2 resembles moving from one release of MVT to another
that contains significant new features. (See Section 100:50 for a
discussion of MVT to OS/VS2 transition.) OS/vS1 (except for the JES and
RES facilities) and MFT are upward compatible with OS/vS2 just as OS MFT
is upward compatible with OS MVT.

OS/VS2, classified as system control programming (SCP) and referred
to hereafter as VS2 as well as OS/vS2, supports system/370 Models 145,
158 and 168 operating in EC and translation modes. It also supports
purchased Models 155 and 165 with the optional Dynamic Address
Translation Facility installed, which are designated as Models 155 II
and 165 II, respectively. VS2 does not support System/370 models
operating in EC mode without dynamic address translation specified,
system/370 models operating in BC mode, or any System/360 models.

The following minimum system configuration and hardware features are
used by VS2:

• 512K of real storage. (This supports concurrent hatched job and TSO
operations or dedicated TSO. A minimum batched job system with one
reader and one writer operating concurrently with job processing can
operate in 384K.)

• Byte multiplexer channel with associated I/O devices, including one
reader, one punch, one printer, and one console

• One selector or block multiplexer channel with associated I/O
devices that includes three 3330-series or four 2314/2319 direct
access devices. At least one tape unit (nine-track) and one
additional 3330-series drive are required for system generation.

os/Virtual storage 2 Features Supplement 1

• Dynamic address translation and channel indirect data addressing

• Floating-point arithmetic

• store and fetch protection

• Time of day clock, CPU timer, and clock comparator

• Monitoring facility

• Program event recording

Tables 100.05.1 and 100.05.2 list the standard and optional features
of OS/VS2, and Table 100.05.3 lists the I/O devices and terminals
supported. Items that are not available in the first release of VS2 are
identified. Just as for an OS MVT operating system, the desired
installation-tailored OS/vS2 control program must be generated, at which
time user-selected optional features are included in the resulting
system. More features are standard in VS2 than in MVT. This can reduce
the number of options from which a choice must be made and, thereby,
reduce system generation preparation and execution time.

VS2 support is based on that provided in MVT as of Release 21.
However, the following MVT features are not available in .VS2:

2

• Rollout/Rollin (function not required in a virtual storage
environment)

• SVC and I/O transient areas (all Type 3 and 4 SVC's and ERP's are
resident in virtual storage)

• Automatic SYSIN Batch (ASB) reader, Direct SYSOUT (DSO) Writers, and
Output Limiting (OUTLIM) facility (the functions provided by these
facilities are available in HASP II)

• scatter loading (function provided automatically)

• Storage hierarchies (2361 Core storage cannot be attached to any
System/370 model)

• Multiprocessing (shared storage multiprocessing, as provided by a
Model 65 multiprocessing configuration, is not available for
System/370)

• TESTRAN

• QTAM (function provided by TeAM), Graphic Job Processor (GJP), and
Satellite Graphic Job ProcessQr (SGJP)

• RJE (function provided by HASP II)

• CRJE (function provided by TSO)

• SERO and SERl (replaced by MCH and CCH)

• IEBUPDAT utility (replaced by IEBUPDTE)

• IEHIOSUP (function no longer required because of the new location of
SVC routines in VS2)

• IMCJQDMP (replaced by IMCOSJQD)

Os/virtual storage 2 Features Supplement

Table 100.05.1. Standard features of OS/vS2 (automatically included
during system generation)

• One virtual storage of 16,111,216 bytes with 64K segments and 4K
pages*

• Demand paging for allocation of real storage*
• Execution of programs in paged mode and non paged (virtual equals

real) mode*
• Capability of starting up to 63 initiators*
• Automatic Priority Group (APG)*
• I/O load balancing*
• Fetch(*) and store protection
• Direct access volume serial number verification
• DEB validity checking
• Authorized Program Facility (APF)*
• Multitasking
• PCI fetch
• Advanced OVerlay Supervisor
• Timing facilities
• Extended svc routing
• Pageable SVC's and ERP's (in link pack area)
• Pageable modules from SYS1.LPALIB (in link pack area)
• Pageable BLDL table (in link pack area)
• Quickcells for faster allocation of certain virtual storage areas*
• Operator communication at IPL
• Multiple Console Support (MCS)
• Hardcopy log
• System log
• Missing interruption checker
• Checkpoint/restart and warm start
• Access methods: QSAM, BSAM, BDAM, BPAM
• System Management Facilities (SMF)
• Error Statistics by Volume (ESV)
• Recovery management: MCH, CCH, APR, DDR
• Tracing facility (inclusion of the capability of tracing I/O

interruptions requires specification of the TRACE parameter)
• Dynamic Support system (DSS)* - not available in first release of

VS2
• Online Test Executive Program (OLTEP)
• Emulator interface (SVC 88)
• System Assembler and Linkage Editor/Loader
• System utilities: IEHDASDR, IEHLIST, IEHMOVE, IEHPROGM, IEHINITT,

IEHATLAS, IFHSTATR
• Data set utilities: IEBCOPY, IEBGENER, IEBUPDTE, IEBEDIT, IEBPTPCH,

IEBTCRIN, IEBCOMPR, IEBISAM, IEBDG, Access Method services for VSAM*
(VSAM not available in first release of VS2)

• Service aids: AMPTFLE, AMBLIST, AMASPZAP, AMDSADMP, AMDPRDMP,
IMCOSJQD, IFCDIPOO, IFCEREPO, Generalized Trace Facility (GTF)

• Independent utilities: IBCDMPRS, IBCDASDI, ICAPRTBL (do not support
the 3066 Console for Models 168 and 165 II)

*Facility not available in MVT

OS/Virtual Storage 2 Features SUpplement 3

Table 100.05.2. Optional features of OS/VS2 (must be requested during
system generation or added afterward)

• Fixed BLDL table
• Fixed and/or modified modules from SYS1.LINKLIB w SYS1.SVCLIB w and

SYS1.LPALIB
• Track stacking
• Automatic Volume Recognition (AVR)
• Device Independent Display operator Console Support (DIDOCS)
• Expanded device status testing during IPL (DEVSTAT option)
• Time slicing
• Time Sharing Option (TSO)
• Access methods: ISAM, VSAM*, BTAMw TCAM**, GAM
• Error Volume Analysis (EVA)
• Shared Direct Access Storage Devices (DASD): 2314/2319 and 3330-

series
• Integrated emulators

1401/1440/1460 for Models 158*, 155 11*, and 145
1410/7010 for Models 158*, 155 11*, and 145
7070/7074 for Models 168*, 165 11*, 158*, and 155 11*
7080 for Models 168* and 165 11*
709/7090/7094/7094I1 for Models 168* and 165 11*
DOS Emulator for Models 158*. 155 11*, and 145

• Reduced error recovery for magnetic tape
• Reliability Data Extractor
• MSP/7 Host Program Preparation Facility II (HPPF 11)*

*Not available in the first release of VS2
**Modification Level II TCAM items are not supported in the first

release of VS2

Table 100.05.3. I/O devices. consoles, and terminals supported by
OS/VS2

Readers and Punches

2501 Card Reader, Models Bl and B2
2520 Card Read Punch, Models Bl, B2, B3
2540 Card Read Punch
3505 Card Reader, Models Bl and B2
3525 Card Punch, Models Pl, P2, P3

Printers

1

1403 Printer, Models N1, 2, 7
1443 Printer, Model Nl

I 3211 Printer

Direct Access Storage (All are supported for system residence w as paging
devices, for SYSIN and SYSOUT data sets, as well as for disk data sets.)

2314 Direct Access storage Facility, Models 1, A, and B, and 2844
Auxiliary Storage Control

2319 Disk Storage, A and B models
3330-Series Disk Storage
2305 Fixed Head Storage Facility. Models 1* and 2

OS/Virtual Storage 2 Features Supplement

Table 100.05.3. (continued)

Magnetic and Paper Tape

2401 Magnetic Tape units (and 2816 Tape switching)
2420 Magnetic Tape Units
3410/3411 Magnetic Tape units (7-track feature not supported)
3420 Magnetic Tape Units
2495 Tape Cartridge Reader
2671 Paper Tape Reader

Optical and Magnetic Character Readers

1287, 1288 Optical Character Readers
1419 Magnetic Character Reader (Dual Address Adapter and Extended

Capability feature required)

Display Units (locally attached)

2250 Display Unit (GAM, GSP, and TeAM support only)
2260 Display Station (GAM and GSP support only)
3210 Display Station (TCAM)*

Consoles

3210 and 3215 Console Printer-Keyboards
Display console for Model 158 (console not available for Model 155 11)*
3066 System Consoles for Models 168 and 165 11*
2150 Console with 1052 Model 7
2260 Display Station, Model 1 and 2250 Display Unit, Models 1 and 3
2140 Communication Terminal
3210 Display System
3213 Printer (for hard-copy output for Model 158 display console only)*
composite console (card reader and printer)

Transmission Control Units

2701, 2702, 2703 Transmission Control Units
2715 Transmission Control Unit (TCAM only)*
3105 Communications Controller (TeAM only)*
7770-3 Audio Response Unit (TCAM support only, including 2721 and 2730

support)

Terminals (start/stop)

1030 Data Collection System
1050, 1060 Data Communication Systems
2260, 2265 Display Stations
2721 Portable Audio Terminal
2740-1, 2 and 2741-1 communication Terminals
2760 Optical Image Unit
83B3 AT'T Terminal
WU115A Teletype
TWX-33/35** AT'T Teletype Terminal
System/7 Sensor-Based Information System (as a 2140 Terminal with

checking)

Terminals (Binary synchronous)

2770 Data Communication System
2180 Data Transmission Terminal
2790 Data Communication System*
2192-8, 11 General Banking Stations
3270 Information Display System (TSO/TCAM only) *
3670 Brokerage Communication Station (TeAM only) *

OS/Virtual Storage 2 Features SUpplement 5

Table 100.05.3. (continued)

3735 Programmable Buffered Terminal
3780 Data Communications Terminal
1130 System (as a processor station)
1800 System (as a processor station - BTAM only)
System/3 (as a processor station)
system/360 Models 20 and up (as a processor station)
System/370 models (as a processor station)

*Not supported in the first release of VS2
**Terminals which are equivalent to those explicitly supported may also

function satisfactorily. The customer is responsible for establishing
equivalency. IBM assumes no responsibility for the impact that any
changes to the IBM-supplied products on programs may have on such
terminals.

The following I/O devices, some of which are supported by MVT, are
not supported by VS2:

1017/1018 Paper Tape Reader/PUnch
1255 Magnetic Character Reader
1259 Magnetic Character Reader
1442 Reader Punch, Models Nl and N2
2245 Printer
2301 Drum Storage
2303 Drum Storage
2311 Disk Storage
2321 Data Cell Drive
2402, 2403, 2404 Magnetic Tape units
2415 Magnetic Tape Unit and Control
2596 Card Read Punch
3881 Mark Sense Reader

100:10 ORGANIZATION AND INITIALIZATION OF STORAGE

VIRTUAL STORAGE ORGANIZATION

The size of virtual storage in a VS2 environment is always 16,777,216
bytes. The organization of virtual storage is reflected in tables and
control blocks, similar to those used in MVT, that are established at
system initialization and maintained throughout system operation by the
control program. Virtual storage is organized, allocated, and freed in
Vs2 much like main storage is in MVT. However, in VS2, virtual storage
allocated to pageable programs does not require the allocation of real
storage or external page storage until the virtual storage is actually
referenced by an executing program.

Virtual storage in VS2, like main storage in MVT, is divided into two
main areas: a nondynamic area in lowest and highest addressed virtual
storage (corresponding to the fixed area in MVT) and a dynamic area
between the two nondynamic areas, as shown in Figure 100.10.1. The
nondynamic virtual storage area in lowest addressed virtual storage is
nonpageable. The virtual storage in this area is mapped on a virtual
equals real (V=R) basis with real storage. That is, each virtual
storage page has a page frame assigned such that virtual and real
storage addresses are equal. The nondynamic area in lowest addressed
virtual storage contains the resident (nonpageable) control program and
is a multiple of 4K in size.

6 OS/Virtual Storage 2 Features Supplement

o
en

" <:
~.

t;
rt
~
III
t-

en
rt
o
t;
III

I.Q
(t)

IV

I"Ij
(t)
III
rt
~
t;
(t)
en
en
c=
~
t
(t)

~
l::3
rt

..,J

___ --- VirtuaIStorage---__ __
16,384K

C
Nondynamk A'.a ~ Dynam;c A,.a Nondynamk A, ••

Non- Non-

NO~geable pageable ~able pageable Pageable

r \

I Pageable Link

Fixed Fixed V =R
Nucleus Link BLDL Dynamic Writer Reader

and Pack Table Area Region Region

optionally Area (if not

trace Routines pageable) 64K 64K 64K

table minimum minimum minimum

Optional Optional
Nonpageable
regions

Initiator Initiator Reader Writer
Region LSQA LSQA LSQA

64K 64K 64K 64K

minimum multiple

Master
MS Scheduler
LSQA

Region

64K 128K
minimum

Pack Area

• All type 3 and 4 SVC's
• All transient ERP's
• Reentrant LI N KLI B

modules

• BLDL Table if not
fixed

• LPA directory
• LPA modifications

SQA

64K
minimum

64K
multiple

Key 0 Key 0 Key 0 Keys 2 to 15 Key 0 Key 0 I Key 0 Key 0
1600K minimum

Key 0

)': 'V" ; 7~ ~ ~ /,1
V=R line on a Pageable Dynamic Area Virtual

Key 0 Key 0 Key 0 I Key 0 Key 0

Virtual
address
zero

Resident
Control Program.
Ends on a 4K
boundary

4K boundary (with regions on a 64K boundary) Address
• Reader regions 16,777,215

• Writer regions
• Initiator regions
• Pageable problem program regions of 64K

multiples with key 1

• LSQA for all regions including nonpageable regions

Figure 100.10.1 . Virtual storage organization in OS/VS2

Included in the resident control program are the generated nucleus,
and, optionally, a trace table, a fixed link pack area, and a fixed BLDL
table. The fixed link pack area (LPA) is an optional extension of the
standard pageable link pack area which is located in the high-order
portion of the nondynamic area. The fixed LPA can contain reentrant
load modules from SYS1.SVCLIB, SYS1.LINKLIB, and a new library called
SYS1.LPALIB. If a fixed LPA is present, it is searched before the
pageable LPA.

A fixed LPA can be defined to enhance system performance or to
satisfy time dependencies of modules. Similarly, a fixed instead of a
pageable BLDL table may improve system performance. In VS2, the BLDL
table is either a fixed part of the resident control program area or is
contained in the pageable LPA (one or the other).

The nondynamic area in highest addressed virtual storage contains a
system queue area (SQA), the pageable link pack area and its directory,
the master scheduler region, and master scheduler local system queue
area (LSQA). Optionally, it also contains a modified link pack area and
a pageable BLDL table. SQA is defined in highest addressed virtual
storage in the upper nondynamic area. SQA consists of one or more 64K
segments, as defined at system generation or specified during system
initialization. wnen a virtual storage page within SQA is obtained, the
control program ensures that a page frame is assigned to the virtual
storage page and that the page frame is fixed. SQA is used primarily
for control blocks and areas that are not job or job-step related:
however, space within SQA is allocated for functions associated with
problem programs when necessary.

The virtual storage allocated to SQA during IPL cannot be extended
during system operation. Hence, system operations are terminated when a
request is made for SQA space and no more virtual storage is available
in SQA. TWo page frames are held in reserve for allocation to SQA (and
LSQA, as discussed later) when no other page frames are available.
Whenever one of these reserve page frames is allocated, an attempt is
made to replace it when page frames become available. When these two
reserve page frames have been used and no page frames are available to
assign to an SQA virtual storage page, the system is placed in the
enabled wait state.

In a VS2 environment, SQA size can be overestimated without
performance loss in order to prevent a situation in which SQA is
depleted, since virtual storage allocated to SQA does not require the
allocation of real storage until it is actually used. The amount of
real storage allocated to SQA increases and decreases as required.

The pageable link pack area is created adjacent to SQA during system
initialization. It contains reentrant load modules that can be shared
by concurrently executing tasks and the BLDL table, if this table is not
made fixed in the lower nondynamic area. All load modules that are to
be placed in the pageable LPA are kept in a new library called
SYS1.LPALIB. This library contains all transient (Type 3 and 4) SVC
routines, all transient ERP·s, all but one of the standard access
methods (BPAM is in SYS1.SVCLIB). and certain other control program
routines. Any reentrant user-written load modules or additional
reentrant control program load modules that are to be placed in the
pageable link pack area must reside in SYS1.LPALIB also. This library
can be placed on a disk volume that is demountable. A minimum of
approxiately 25 segments (1600K) are allocated to the pageable link pack
area.

Each load module present in SYS1.LPALIB becomes part of the LPA. A
module contained in SYS1.LPALIB is placed in either the pageable or the
optional fixed portion of the LPA. Hence, all transient svc routines
that are not made part of the fixed control program are made resident in

OS/virtual Storage 2 Features Supplement

virtual storage and the transient SVC areas used in MVT are not
implemented in VS2. The lOS transient area is eliminated also because
all ERp·s are resident in the LPA in VS2.

Implementation of a link pack area that is pageable and that contains
the load modules described offers the following advantages:

• Contention for transient areas that can occur frequently in MVT is
eliminated without having to specifically reserve additional real
storage. Each SVC and ERP routine is allocated its own virtual
storage. When required, an SVC or an ERP module not currently
present in real storage is automatically paged into real storage
without waiting for a transient area to become available. Also
eliminated is CPU time for address constant relocation that the
program fetch routine performs when a module is loaded.

• The most frequently used LPA modules in any given time period will
tend to remain in real storage because page management is designed
to keep the most active pages resident. This eliminates the problem
of using the resident reentrant modules option of MVT efficiently
since the VS2 control program is designed to keep the most active
modules resident when required without the necessity of measurement
and preplanning activities on the part of the system designer. When
required, modules that are known to be very heavily used can still
be made fixed in real storage by using the fixed LPA option of VS2.

• Less control program time is required to load Type 3 and q SVC
routines into real storage in VS2 than into a transient area in MVT,
since transient SVC routines are paged in rather than fetched.
Further, routines in the pageable LPA that do not modify themselves
need not be paged out when they become inactive, and paging I/O
time, which is not required in MVT, is not incurred in vs2 for this
purpose.

• It becomes more practical to have more user-written code that can be
shared resident in the VS2 pageable link pack area than in the MVT
link pack area.

The pageable LPA also contains a pageable LPA directory that is
created during system initialization. The LPA directory is used to
determine where a module resides inLPA virtual storage. A specialized
routine is performed (hashing technique using module name) which
determines the location of a module name within the LPA directory. This
avoids a sequential search and reduces directory search time.

The master scheduler region is established in virtual storage below
the page able LPA. It is a minimum of 128K and pageable. Adjacent to
this region is the master scheduler LSQA. which is 6qK. In VS2, control
blocks, queues, etc., related to a job or a job step are kept in a local
system queue area instead of within the region associated with the task.
In MVT, LSQA is used only for TSO regions. In VS2, the master scheduler
region, each reader region, each writer region, and each .initiator
started has an LSQA associated with it. LSQA is obtained for an
initiator when it is started and released when the initiator is stopped.
LSQA also contains the program fetch work area and the CLOSE routines
work area that are part of a problem program region in MVT. In VS2, the
page tables and external page tables associated with a region are kept
in the LSQA for the region.

LSQA is allocated from highest addressed available virtual storage
within the pageable dynamic area. An LSQA must be a multiple of 6qK in
size. Space within LSQA is obtained on a virtual storage page basis.
Whenever a virtual storage page within LSQA is allocated, a page frame
is allocated to it and fixed. If a task requires virtual space in LSQA
and none is available, or if no real storage is available for allocation

OS/Virtual Storage 2 Features Supplement 9

to an LSQA virtual storage page. the requesting task is abnormally
terminated. If there are two page frames reserved for allocation to
SQA. one of them can be allocated to LSQA when no other page frames are
available. LSQA will not be allocated the last reserved page frame.
Control block space required for the task termination procedure is
obtained from SQA. The allocated SQA and LSQA pages for a region are
dumped when the SNAP macro includes a request to dump the nucleus.

The advantage of using separate LSQA for each initiator is that the
possibility of using all available SQA is significantly reduced. since
the control blocks for each individual region are isolated from one
another. If a problem program region runs out of LSQA, only that job
need be terminated and system operation continues. In addition, the
allocation of real storage for control blocks is more efficient in VS2
than in MVT because. in VS2. only the SQA and LSQA pages actually
allocated have real storage assigned. In MVT, when SQA is expanded to
meet a large control block space requirement, the expanded SQA area
remains allocated even though this larger amount of space may not be
required at a later time.

The dynamic area of virtual storage consists of a nonpageable (V=R)
area and a pageable area which are divided by the V=R line. The
location of the V=K line is established during system initialization.
The address of the V=R line in virtual storage must be a multiple of 4R
and can be equal to or less than the address of the end of real storage
minus 64K. A minimum V=R dynamic area of 64K is required (to enable
OLTEP. a standard facility of VS2, to be executed). A larger V=R
dynamic area can be specified at system generation and this size can be
overridden during IPL.

The V=R dynamic area is used for the execution of nonpageable job
steps. A request for a nonpageable region is made using the new ADDRSPC
parameter in the JOB or EXEC job control statement. respectively. When
ADDRSPC=REAL is specified, the REGION parameter indicates the amount of
virtual and real storage that is to be allocated to the job step. The
virtual and the real storage addresses in a nonpageable region are the
same. A job can contain both pageable (ADDRSPC=VIRT) and nonpageable
job steps. The default for the ADDRSPC parameter is VIRT.

A nonpageable region is allocated on a 4R boundary. It must be a
multiple of 4K and a minimum of 12K in size, plus track stacking
requirements, if any. The initiator adds the track stacking requirement
to the REGION request. REGION requests for nonpageable regions are
rounded to the next 4R boundary when necessary. The maximum size of a
nonpageable region is determined by the size of the user-defined V=R
dynamic area.

When a nonpageable job step is initiated, enough contiguous virtual
and real storage must be available within the V=R dynamic area at that
time to satisfy the REGION parameter request. If there is not enough
contiguous real storage available because long-term fixed pages are
allocated in the V=R dynamic area, scheduling of the nonpageable job
step is terminated. Otherwise. the nonpageable job step waits for the
required resources to become available. More than one nonpageable job
step can be active concurrently (up to a maximum of 14 if storage
protect keys 2 to 15 are available), subject to the availability of the
contiguous virtual and real storage areas required within the V=R
dynamic area.

Jobs that contain one or more nonpageable job steps are initiated
using a pageable region in the pageable dynamic area. That is. the
initiator uses a pageable region for a work area even though the
nonpageable job steps it schedules operate in a nonpageable region in
the V=R dynamic area. Nonpageable job steps are terminated using the
nonpageable region the job step used for execution.

10 OS/Virtual Storage 2 Features Supplement

Nonpageable job steps operate with translation mode specified. This
is done because they reference virtual storage addresses, such as those
in the pageable LPA, contained outside their nonpageable region. page
tables are established for a nonpageable region such that the real
storage address that results from any translation of an address in the
program in the nonpageable region is equal to the virtual storage
address. Channel program translation is not performed on CCW's
contained within a nonpageable region. Checkpoint/restart routines
ensure that a nonpageable job step is restarted in the same area within
the V=R dynamic area that was used for the checkpoints.

Whenever a LOAD macro is issued by a nonpageable job step, the
control program causes the specified routine to be loaded into real
storage (if it is not already present), and the module is long-term
fixed because a nonpageable job step cannot encounter a page fault. The
module remains fixed until a DELETE macro is issued. Since access
methods are loaded using a LOAD macro, any access methods used by a
nonpageable job step will be long-term fixed during execution of the
nonpageable job step and will reduce the amount of real storage
available for paging. In addition, when a nonpageable job step issues a
LOAD macro, the control program checks to see whether fixing the
specified module will cause the limit for fixed real storage to be
exceeded. If it will, the nonpageable job step is placed in the wait
state until such time as the spe~ified module can be fixed without
exceeding the fixed real storage limit.

OLTEP is the only VS2 SCP component that is not part of the resident
(fixed) control program and that must operate in nonpaged mode. In
addition, in VS2, a program must operate in nonpaged mode if it:

• Contains a channel program that is modified while the channel
program is active

• Is highly time-dependent (involves time-dependent I/O operations,
for example)

• Must have all of its pages in real storage when it is executing, for
performance reasons, for example

• Must use the chained scheduling facility of BSAM or QSAM

• Uses the EXCP macro and executes user-written I/O appendages that
can encounter a disabled page fault (Section 100:25 discusses
disabled page faults.)

Existing user-written programs that are operating in MVT and that
must operate in nonpaged mode need not be modified to enable them to run
in nonpaged mode in VS2. Section 100:50 discusses the job control
statement changes that may be required.

The pageable dynamic area consists of all the virtual storage between
the V=R line and the nondynamic area in highest addressed virtual
storage. The pageable dynamic area begins on a 64K boundary.
Therefore, if the V=R line is not on a 64K boundary, there is unassigned
virtual storage between the V=R line and the beginning of the pageable
dynamic area. Reader interpreter regions, initiator regions, output
writer regions, pageable problem program regions, and LSQA required for
these regions are allocated from the pageable dynamiC area. Reader,
initiator, and writer regions are a minimum of 64R bytes in size. They
are allocated from lowest addressed available virtual storage in the
pageable dynamic area. Each reader and each writer is assigned its own
LSQA of 64K, which is allocated from highest addressed available virtual
storage in the pageable dynamic area.

OS/Virtual storage 2 Features Supplement 11

Regions for pageable job steps are allocated from the lowest
addressed available virtual storage in the pageable dynamic area that is
large enough to satisfy the region space request. If a request for a
region larger than the entire pageable dynamic area is received, the job
is canceled and the operator is notified. A pageable region is
allocated contiguous virtual storage and must be a multiple of 64K in
size. It is allocated on a 64K virtual storage boundary. Storage
requests on job control statements for page able regions are rounded up
to the next 64K multiple when necessary, which can permit existing job
control statements to be used. A pageable region uses the LSQA assigned
to the initiator that schedules job steps in the region.

Pageable job steps (as well as nonpageable job steps) are initiated
by an initiator operating in a pageable region in the lowest addressed
available virtual storage in the pageable dynamic area. pageable job
steps operate with instruction address translation performed by DAT
hardware and channel program translation performed by the control
program.

In VS2, up to 63 initiators can be started. The MVT limit of 15 can
be extended because of the new method of storage protection implemented
in VS2. Protection is accomplished using store and fetch protection
hardware and two segment tables instead of one, as follows.

storage protect keys are associated with virtual storage areas in
VS2. When a 4K page frame is allocated to a virtual storage page, its
two storage protect keys (one for each 2K block of real storage in the
page frame) are set equal to the protect key value associated with that
virtual storage page. In VS2, a zero storage protect key value is
assigned to all control program areas (resident control program, SQA,
LPA, master scheduler region, time sharing control region, reader
regions, initiator regions, writer regions, and LSQA). Normally, all
pageable background regions have the same protect key value,
specifically protect key value 1. All TSO foreground regions, which
must be pageable, are assigned protect key value 1 also. Each
nonpageable region is assigned a unique protect key value within the
range of 2 to 15. A unique key value should be assigned to a TCAM
region to ensure system integrity and security. (This is a user
responsibility.)

If a nonzero protect key is not available for allocation to a job
when the initiator attempts to obtain a key, the job is placed in the
hold queue and a message is issued to the operator. (If any step within
a job is to operate in nonpageable mode, a nonzero protect key is
obtained when the job is initiated for assignment to the nonpageable job
steps.) If a task requiring a unique protect key is initiated with a
START command and no key is available, the START is rejected. The fetch
protect bits in the storage protect keys associated with each type of
region are also turned on for all assigned nonzero key areas within the
region.

The program properties table can be used to cause assignment of a
unique storage protect key to the job steps of a job that is to operate
in a pageable region. The names of programs that are to be assigned
unique keys must be defined in the program properties table and
identified as requiring a unique protect key. The first step of a job
must specify one of these names in order to have a unique protect key
assigned to the job. This facility can be used to ensure that a unique
key is assigned to a TeAM message control program region. A TCAM
program name is defined in the program properties table (IEDQTCAM).
This name must be the program name assigned to the first step of any job
that initiates a TeAM message control program in order to acquire a
unique key for the TCAM region. The TCAM job step need not be the first
step of the job.

12 OS/Virtual Storage 2 Features Supplement

There is a system segment table and a user segment table. Both
segment tables define the same 16 million byte virtual storage and both
address the same set of page tables. The system segment table has the
invalid bit off in all segment entries that define an allocated virtual
storage segment. Invalid bits are on for all unallocated virtual
storage segments. When a task with a protect key value of zero or a
nonpageable job step task is dispatched, the segment table origin
control register points to the system segment table. Therefore, a task
with a zero protect key has read/write access to all allocated virtual
storage. A nonpageable job step task can modify only those areas that
are assigned its unique four-bit protect key, namely, areas within its
own region, and can access only its region and all key zero areas.

The segment table origin control register points to the user segment
table whenever a pageable job step task is dispatched. The user segment
table has the invalid bit off only for virtual storage segments
allocated to the pageable region of the task being dispatched and to the
segments allocated to shared control program routines (nucleus, SQA,
LSQA, LPA, and the time sharing control region, if TSO is active). The
segment table entries for other pageable and nonpageable regions are all
marked invalid. Thus, a pageable job step task has read/write access
only to its own region (a segment translation exception occurs if
another region is addressed) and read-only access to shared control
program areas. Storage protection within a region is the same as in
MVT. The protection scheme implemented in VS2 provides both fetch and
store protection among all regions. MVT does not support fetch
protection.

The organization of space within a region is basically the same in
VS2 and MVT. However, subpools are allocated in 4K multiples in VS2,
instead of in 2K multiples as in MVT. This increase may have no effect
on the region size required by existing MVT programs, since work areas
within the region have been restructured and LSQA contains certain areas
that are contained in the region in MVT. When a virtual storage page is
allocated within a region, the lower order bit in the page table entry
for the page is turned on to indicate this fact.

REAL STORAGE ORGANIZATION

Real storage is also divided into a nondynamic and a dynamic area, as
shown in Figure 100.10.2. The nondynamic area in lowest addressed real
storage is allocated to the lower nondynamic area of virtual storage on
a V=R basis. It contains the nonpaged resident control program
(nucleus, fixed LPA, fixed BLDL table, and trace table). With a few
exceptions, resident control program routines operate with translation
mode specified even though they are not paged. This approach is taken
because the resident control program accesses virtual storage addresses,
such as SQA, at various times during its execution and address errors
would occur at these times if translation were not operative.

Page frames in the dynamic real storage area are allocated to both
pageable and fixed virtual storage pages. An attempt is made to
allocate page frames that are located above the address of the V=R line
to LSQA, SQA, and other long-term fixed pages. This is done to maintain
the capability of executing nonpageable job steps. However, if real
storage above the address of the V=R line is not available, an available
page frame contained within real storage below the address of the V=R
line is allocated to a fixed page. Real storage in the dynamic area is
shared by all routines contained in the pageable dynamic area and the
upper nondynamic area of virtual storage.

A minimum number of page frames must always be available for paging,
and, therefore, cannot be long- or short-term fixed at any given time.
The minimum number of page frames that must be available for paging can

os/virtual storage 2 Features Supplement 13

be specified by the operator during IPL using the NFX parameter. This
value cannot be specified during system generation. The NFX parameter
can specify a minimum value of eight. The default NFX value. which is
used if the operator does not supply the NFX parameter. is 25 percent of
the number of page frames between the end of the fixed resident control
program in lower real storage and the end of real storage. (There must
always be a minimum of 128K of real storage between the resident control
program and the end of real storage.) If a fix request is made and the
control program determines that honoring the request would cause the
fixed real storage limit to be exceeded. the request is not satisfied.

Nondynamic Area
Fixed

Real Storage

Dynamic Area
Nonfixed and Fixed

Must be a minimum of 128K

r~---------------J'~------------__ ~ r~--------------------J',------------------~~

Fixed Allocated I
Trace Link Fixed to nonpaged I Page frames

Nucleus Table Pack BLDL regions I can be allocated
Area Table and anything i

MS SUA I I for anything
LSQA

optional Routines if not else,if I except a non paged
pageable necessary I region

optional I
I

\, ",- I

Fixed control program mapped 1 : 1 '" 4K boundary
~ V=R line on 4K boundary

with virtual storage

Figure 100.10.2. Real storage organization in OS/VS2

The implementation of virtual storage in VS2 eliminates the kind of
real storage fragmentation problems encountered in an MVT environment,
since it is virtual rather than real storage that is divided into
regions. (Real storage fragmentation in VS2 can be caused by the
location of long- and short-term fixed pages, which can delay or prevent
execution of nonpageable programs.) Fragmentation of virtual storage
that may occur in VS2 will not delay system operations until the amount
of virtual storage used begins approaching 16 million bytes. In
addition. virtual storage that is unused because of fragmentation or
that has not been allocated does not cause external page storage to be
used inefficiently. since unallocated virtual storage does not have
external page storage assigned to it.

As a result of the organization of virtual and real storage in VS2,
it should be possible in some environments to start more initiators and
to maintain a higher level of multiprogramming (assuming other required
hardware resources are available) in a VS2 environment than in a
comparable MVT environment.

EXTERNAL PAGE STORAGE ORGANIZATION

External page storage is used to contain the pageable portion of the
contents of virtual storage. Each virtual storage page actually used
can be written on external page storage during processing. except for
the virtual storage pages allocated to the nucleus, SQA, LSQA for non
TSO regions, and the V=R dynamic area. While the control program
assumes a virtual storage 16 million bytes in size, the amount of
virtual storage that can actually be used is determined by the amount of
external page storage provided. TSO swap data sets are part of external
page storage instead of being separate data sets.

14 OS/Virtual Storage 2 Features Supplement

The direct access devices supported as paging devices are 2314/2319,
3330-series. and 2305 Models 1 and 2 (all the direct access devices
supported by OS/VS2). paging devices are specified at system generation
and/or during IPL. ~he direct access storage allocated as external page
storage is called the page file (SYS1.PAGE data sets). The page file
can consist of up to 16 page data sets, each of which must be a single
extent only and totally contained on one direct access volume.

The page file can be contained on any mixture of the direct access
device types supported as paging devices. Direct access devices that
contain a page data set need not be dedicated to paging. However, for
performance reasons, active data sets should not be placed on page file
volumes. Page file volumes must be permanently resident. The lOS
priority queuing option must be specified for direct access devices that
contain page data sets to ensure that paging I/O requests receive the
highest priority on their associated channels.

During system operation. the control program monitors the amount of
external page storage available and takes steps to prevent it from
becoming depleted. Prior to initiating a non-TSO pageable region, the
control program determines whether there is enough external page storage
available to contain the entire contents of the requested region size
(one slot available for each virtual storage page in the region). The
operator is informed if not enough external page storage is available.
The operator can cancel the job or allow the initiator to wait and
attempt to obtain the required external page storage later. A TSO user
is not, logged on unless external page storage equal to a user-specified
percentage of the TSO region size is available. A message is issued to
indicate that the TSO user has been rejected.

An option of dividing paging devices into those that are primary
devices and those that are secondary is provided. When this approach is
taken, space on the primary paging devices is used for all paging
operations until the amount of space remaining on these primary devices
falls below a threshold amount. At this time, a migration procedure is
entered to make more space available on the primary devices by moving
pages from primary paging devices to secondary paging devices.

A region migration selection routine is contained in the task
dispatcher. The function of this routine is to identify the pageable
region with the lowest dispatching priority so that this region can be
migrated. Page management performs the migration procedure which, for a
non-TSO (batch) region. consists of moving all the pages of the selected
region that are currently contained on a primary paging device to a
secondary device. Once a batch region has been migrated. all paging
operations for the region are performed using a secondary paging device
until the region terminates.

If a TSO region is selected for migration, the currently executing
user is migrated until all the pages on primary paging devices belonging
to the user are moved to a secondary device or until a swap-out occurs
for the user. Thus, the process of migrating a TSO user can last only
as long as one time slice. That portion of the TSO user's region that
has been migrated remains on secondary external page storage until the
user logs off. Future swap-outs for that TSO user are performed using
primary or secondary devices. as indicated in the swap request. If the
page device configuration includes a mixture of direct access device
types. and if the slower speed paging devices are designated as
secondary, use of the migration procedure ensures that the faster paging
devices are allocated to the higher priority tasks.

slot records contained in the page file are 4K bytes in size, and
page file tracks are formatted using the track overflow feature.
Alternate tracks that have been assigned to defective tracks within page
file extents are not used. The space within a page data set on a paging

OS/Virtual Storage 2 Features SUpplement 15

device is divided into a number of groups. There is a given number of
tracks within a group. depending on the direct access device type.
There is also a given number of slots within each group based on device
type. The address of any slot is composed of a paging device number, a
group number (within the page data set). and a slot number (within the
group).

Regardless of the direct access device type used, page data set
tracks are formatted with a dummy record written after each 4K slot.
The dummy records are added to increase paging performance by allowing
time for electronic head switching while accessing multiple slots
conta~ned within the same cylinder using a command-Chained channel
program. The organization and capacity of the devices supported for
paging in VS2 are shown in Table 100.10.1.

Table 100.10.1. Organization and capacity of paging devices in OS/VS2

Device 2305-1 2305-2 3330 2314/2319

Tracks per group 1 4 1 5

Slots per group 3 13 3 8

Groups per cylinder 8 2 19 4

Capacity per cylinder
in bytes 93.304 106.496 233,412 131.012

Maximum capacity per
device in bytes 4.694.016 10.110.368 94,016.928 26.181,632
(VTOC on tracks 1
and 2 of cylinder 0)

Maximum number of
pages per device 1.146 2.483 22,968 6,329

Maximum number of
groups per device 382 191 1.656 199

SYSTEM INITIALIZATION

System Parameter Specification

During the IPL of a VS2 operating system, more system parameters can
be specified or varied than during an MVT IPL. In addition, a new
method by which the operator can supply system parameters during IPL is
implemented that reduces the amount of data an operator must enter to
alter system parameters.

The following specifications can be supplied during a VS2 IPL in
addition to those that can be supplied during an MVT IPL:

16

• Number of segments in SQA in addition to the one required segment
(overrides SQA size specified at system generation)

• Quickcell area definitions for LSQA and/or SQA (overrides
specifications indicated at system generation)

• Number of master scheduler region segments above the m1n1mum of two
(in the majority of systems. the two required segments are
sufficient)

OS/Virtual Storage 2 Features Supplement

• Amount of virtual storage to be added to the m1n1mum V=R dynamic
area of 64K. (If NIP determines that the system does not have
enough real storage to support the amount of V=R space indicated at
system generation or at IPL. the operator is asked to respecify the
V=R dynamic area amount.)

• BLDL table location. in nonpageable or pageable virtual storage

• Division of LPA contents. which modules are in the pageable LPA,
which are in the fixed LPA. if any. and which are in the modified
LPA, if any

• Page file (external page storage) parameters that override those
specified during system qeneration (primary and secondary device
designations. page file size. percent of page file space to be
reserved for TSO use only. 'and whether formatting is required)

• Number of channel programs to be available for paging I/O operations
in addition to the number specified at system generation. A minimum
of ten is required for one page data set and a minimum of 15 for two
or more page data sets. When TSO is present in the system, 80
channel programs in addition to the minimum are made available.

• Number of entries in the trace table. If zero is indicated, the
tracing facility is canceled. A nonzero value overrides the value
specified at system generation.

• Automatic priority group parameters for the dynamic dispatching
function. (OVerrides parameters stated at system generation.)

• Two parameters for the time sharing option (TSOAUX and AUXLIST)

• Minimum number of page frames that cannot be fixed at any time
(cannot be specified during system generation)

• Certain values used by the page replacement algorithm (cannot be
specified during system generation)

• Certain threshold values used by the system to determine when task
deactivation should occur (cannot be specified during system
generation)

Instead of specifying a tape that is to be used as SYS1.DUMP during
processing. the operator can designate a tape for this purpose during
system initialization.

In VS2, system parameters defined during system generation that can
be altered during IPL are contained in a new member of SYS1.PARMLIB
called IEASYSOO. SYS1.PARMLIB can contain multiple lEASYSXX members
that define different combinations of system parameters. just as this
library can contain multiple members that define different BLDL table
lists.

In response to the ·SPECIFY SYSTEM PARAMETERS· message. the operator
can indicate that the system generation parameters are to be used, by
pressing the END key. as for MVT. Parameters contained in IEASYSOO
(those specified at system generation plus any subsequent modifications)
are then used for this IPL. Alternatively, the operator can enter
system parameters and/or the new SYSP parameter to specify one or more
IEASYSXX members. The system parameters found in the IEASYSXX members
indicated are merged with those in the default system parameter list
member (IEASYSOO) in ascending priority sequence so that parameters in
each lEASYSXX member indicated can be overridden by parameters in
successive lEASYSXX members specified by the operator.

as/Virtual Storage 2 Features supplement 11

Another new parameter that can be included in the system parameter
list member (IEASYSXX) is OPI=YES/NO, which indicates whether or not the
operator can override an individual system parameter during IPL. Any
system parameter can be modified by the operator unless OPI=NO has been
specified for it. The OPI parameter is effective during the merge of
system parameters.

For example, assume the operator enters SYSP=(01,02), BLDL=02 during
IPL and the system parameter members have the following:

IEASYSOO:
IEASYS01:
IEASYS02:

BLDL=OO, SQA=2, TRACE=50, TMSL (10,20,OPI=NO)
MLPA={OO,Ol), BLDL=Ol
MLPA=02, TRACE=10, TMSL (5#20)

The effective system parameters are:

SQA=2, MLPA=02, BLDL=02, TRACE=10, TMSL=(10,20)

This new approach also allows the operator to press the END key and
have the system use an altered standard parameter list since the
IEASYSOO member can be modified after system generation. In MVT, the
system parameter used when the operator does not enter a different
parameter is the system generation defined parameter. Redefinition of
standard parameters for an MVT system requires another system
generation.

The format of the VS2 SYS1.PARMLIB parameter lists is different from
the format used in MVT. The new format affords better direct access
space utilization within parameter records and allows more flexibility
in parameter definition. In cases in which a parameter list applies to
both MVT and VS2 (such as the BLDL table list), both parameter list
formats are accepted by VS2 initialization routines. However, the VS2
format for the lists that are common to VS2 and MVT is not valid input
to MVT initialization routines.

Initialization of Storage

At the completion of IPL processing. EC and translation modes are
operative. During IPL. virtual. real, and external page storage are
initialized as follows.

Control blocks and tables similar to those used in MVT are built to
define a 16 million byte virtual storage with areas as shown in Figure
100.10.1. Control program modules that are to be made resident in
virtual storage (the LPA) are allocated virtual storage, fetched into
real storage from the appropriate load module libraries, and paged out.
The paging device that is to contain the pageable LPA modules can be
user-specified. Modules that are part of the modified LPA can be placed
on any paging device. The LPA directory is paged out as well. This is
the only time the control program forces the page-out of a load module
while it is being fetched. When a program is loaded at any other time,
it is paged out Wider the same page replacement algorithm rules that
govern page-outs of executing programs. (See the discussion of program
fetch in section 100:25.) The segment tables are initialized to reflect
the virtual storage allocated, and page tables are constructed as
required for allocated virtual storage segments.

Load modules that are to be made resident in the pageable LPA are
fetched from SYS1.LPALIB in the order in which they appear in the
directory for this library (ascending alphabetic sequence by name).
Load modules smaller than 4K are packaged together within a virtual page
when possible. Modules larger than 4K in size and those that have been
link-edited using the page alignment option will begin on a page

18 OS/Virtual Storage 2 Features Supplement

boundary. A pageable LPA directory is built to contain the beginning
virtual storage address of each load module.

During IPL, real storage is loaded with the fixed portion of the
control program. Load modules from SYS1.SVCLIB, SYS1.LINKLIB, and
SYS1.LPALIB that are to be made fixed are packed in real storage without
respect to page boundaries since ,they will not be paged.

The external page storage configuration is established during IPL and
formatted with slot records, if necessary. Once external page storage
has been formatted, it need not be reformatted unless a new unformatted
volume is used or unless the amount of space allocated to a previously
formatted volume is extended. The operator can specifically request
formatting. At the completion of system initialization, external page
storage contains the contents of the pageable link pack area and its
directory.

IPL Without creation of ~ Paqeable Link Pack Area

In an MVT environment, an IPL can be performed with or without
formatting the job queue, and the time required to initialize the system
is reduced if job queue formatting is not performed. In a VS2
environment, an IPL can be performed with or without formatting the job
queue and with or without creating the pageable link pack area in
external page storage.

When previously formatted external page storage with an existing LPA
is available, IPL's can be performed without the necessity of re
creating the pageable LPA in external page storage during each IPL.
However, the fixed LPA, the modified pageable LPA, and the BLDL table
(whether fixed or pageable) are re-created during every IPL. An IPL is
performed without LPA creation whenever a previously created LPA is
found in external page storage, unless the operator specifically
requests creation of the LPA. A record describing the pageable LPA is
created and placed in external page storage whenever the LPA is created
in external page storage during an IPL. This record is used during
IPL's when LPA creation is not performed.

Temporary modifications to the contents of the pageable LPA can be
made during an IPL that uses an existing LPA in external page storage.
Modules can be added or replaced but not deleted. The BLDL table can be
altered also. These modifications are effective only for the duration
of one IPL, and, hence, must be made during each IPL. (SQA size cannot
be modified during an IPL which uses an existing LPA.) LPA
modifications are specified in a SYS1.PARMLIB list. SYS1.SVCLIB,
SYS1.LINKLIB, SYS1.LPALIB, and user libraries concatenated to
SYS1.LINKLIB can supply new moduies. LPA modification (MLPA parameter
at NIP time) during an IPL using an existing LPA is useful for making
effective APAR corrections, SUPERZAP changes, and other modifications,
such as the addition of untested user modules, without having to re
create the pageable LPA by refetching all the required modules.

Device Availability Testing

In VS2, device availability testing during IPL has been improved and
a new DEVSTAT option replaces the non-Type I Smart-NIP option of MVT.
In an MVT system without Smart-NIP, only direct access device
availability is tested during IPL. When Smart-NIP is present in MVT,
all system-generation-specified device types are tested, and direct
access devices without an available path or in unit check status are
marked offline. In a VS2 system without the DEVSTAT option, all device
types are tested during IPL and more precise tape testing is performed
than for an MVT system with Smart-NIP. Unexpected and unusual I/O error

OS/Virtual Storage 2 Features Supplement 19

conditions encountered during availability testing of direct access
devices results in the printing of an interpretive I/O error message and
the device is placed in offline status. System operation continues in
this case, whereas in MVT, such an error results in a system wait state.
An online but unlabeled disk volume or an online nondirect access device
with a unit address designated for a direct access device type at system
generation can cause such errors during availability testing.

The DEVSTAT option essentially provides the same capability for
direct access devices as the Smart-Nip option. When it is included,
direct access devices with removable volumes and pluggable addresses
(2314/2319/3330) are set to offline status when a not-operational or a
unit-check-intervention-required condition is detected. Without the
DEVSTAT option, offline status is set for a not-operational condition
and not-ready status is set for a unit-check-intervention-required
condition. .

Missing Interruption Checker

Another facility that is initialized during the IPL procedure is a
routine that checks for missing channel and I/O device end
interruptions. The missing interruption checker routine, which is
standard in VS2, is available only as a program temporary fix (PTF) in
MVT. The same functions are provided by this routine in MVT and VS2.
This checking feature is designed to lessen the impact on system
operation of missing I/O interruptions that result from a hardware
malfunction. When the control program expects an I/O interruption that
fails to occur, a task, or in some cases the system, enters the wait
state. A missing channel or device end interruption can cause a job to
be canceled because the allowable wait time for the job is exceeded.

The CPU and channel independent missing interruption checker routine
operates as a subtask of the master scheduler during system operation.
As soon as the master scheduler initialization procedure is complete,
the checking module is attached in the master scheduler region. The
module performs a polling function on all active nonteleprocessing I/O
devices to ensure that device and channel end signals are received
within a reasonable amount of time. That is, the missing interruption
checker is invoked if an I/O interruption is not received for a
nonteleprocessing device within a time interval that is established when
the I/O operation is initiated. The IBM-supplied time interval of three
minutes can be changed by the user if this interval is not acceptable.
The operator is informed of a missing interruption condition. The
condition may be correctable by operator action or it may indicate a
hardware malfunction that could require maintenance procedures.

100:15 MAJOR COMPONENTS

The major control and processing program components of OS/VS2 are
shown in Table 100.15.1. Except for the integrated emulator programs,
components identified as SCP are distributed as part of VS2. Integrated
emulators are distributed separately. Type I programs and program
products are not distributed as part of VS2 and must be obtained
individually as desired.

The division of control program routines in VS2 and MVT is similar.
Both have job, task, data, and recovery management functions. However,
VS2 also has a page management function that is responsible for managing
both real and external page storage. Virtual storage is allocated and
maintained by the virtual storage supervisor of task management.

20 OS/Virtual Storage 2 Features Supplement

Table 100.15.1. OS/VS2 control and processing program components

OS/VS2

CONTROL PROGRAM COMPONENTS (SCP)

Job Management

• Master scheduler
• Reader interpreters and output

writers
• Job queue management
• Job scheduler

Initiator
Allocation
Terminator

• System Management Facilities (SMF)
• Time sharing option

Data Management

• Input/Output supervisor
• Access methods

QSAM, BSAM, QISAM, BISAM, BDAM
BPAM, BTAM, TCAM, GAM, VSAM

• Catalog management
• Direct Access Device

Space Management (DADSM)
• OPEN/CLOSE/EOV

Task Management

• Interruption supervisor
• Task supervisor
• Virtual storage supervisor
• Contents supervisor
• Overlay supervisor
• Time supervisor

page Management

• Real storage administration
• External page storage administration
• Page administration

Recovery Management

• Machine Check Handler (MCH)
• Channel Check Handler (CCH)
• Alternate Path Retry (APR)
• Dynamic Device Reconfiguration (DDR)
• Online Test Executive Program (OLTEP)*
• Problem determination facilities

PROBLEM PROGRAMS - SCP and PP

Language Translators

• system Assembler (SCP)
• Assembler H (PP)
• Full ANS COBOL V3, V4, and

Libraries (PP)
• PL/I Optimizing Compiler (Pp)
• PL/I Checkout Compiler (PP)
• PL/I Resident and Transient

Libraries (Pp)
• FORTRAN IV G (PP)
• FORTRAN IV H Extended (PP)
• FORTRAN IV Libraries-

Models 1 and 2 (PP)
• Code and Go FORTRAN (PP)
• ITF PL/I (PP)*
• ITF BASIC (PP)*
• system/7 FORTRAN IV

System/370 Host Compiler
and Library (Pp)

• TSO Programs (PP)
COBOL Interactive Debug
FORTRAN Interactive Debug
Assembler Prompter
COBOL Prompter
FORTRAN Prompter
Data Utilities
ITF BASIC
ITF PL/I

* Must operate in nonpaged mode

Service Programs

• Linkage Editor (SCP)
• Loader (SCP)
• Utilities

System and data set utilities (SCP)
Data set utilities with ASCII (PP)

• Basic Unformatted Read System (PP)
• Sort/Merge 5734-SM1 (PP)

Integrated Emulators

• DOS Emulator (SCP)
• 1401/1440/1460 (SCP)
• 1410/7010 (SCP)
• 7070/7014 (SCP)
• 1080 (SCP)
• 709/7090/7094/709411 (SCP)

General

• Application-oriented program
products (some operate in paged
mode and some operate in nonpaged
mode).

os/virtual storage 2 Features Supplement 21

Table 100.15.1. (continued)

PROBLEM PROGRAMS - TYPE 1 AND USER-WRITTEN

Language Translators

• COBOL F (360S-CB-524)
• COBOL F Library (360S-LM-5251
• COBOL F to ANS COBOL LCP

(360C-CV-713)
• ANS COBOL Version 2 (360S-CB-S4S)
• ANS COBOL Version 2 Library

(360S-LM-546)
• FORTRAN G (360S-FO-520)
• FORTRAN H (360S-FO-500)
• FORTRAN Library (360-LM-S011
• FORTRAN Syntax Checker

(360-FO-550)
• PL/I F (360S-NL-511)
• PL/I F Library (360S-LM-5121
• PL/I syntax Checker (360-PL-552)

Service Programs

• Sort/Merge (360S-SM-023)

General

• User-written programs compiled
using the Type I language
translators listed

• User-written programs compiled
using program product language
translators

The new features of VS2 and the most significant functional
differences between VS2 and MVT components are presented in the
discussions that follow. VS2 uses the same system libraries and data
sets as are used in MVT. VS2 also uses two new required libraries and
one new required data set: SYS1.LPALIB (already discussed)r SYS1.DSSVM
which is described in section 100:40 r and SYS1.PAGE (page file data
set). In addition r in VS2 r SYS1.SVCLIB contains only BPAM r transient
MCH and CCH modules r TeAM I/O appendage routines, and SVC routines
required by NIP. Other modules present in SYS1.SVCLIB in MVT (such as
SVC and I/O error routines) and many modules that in MVT are in
SYS1.LINKLIB (access methods r etc.) are contained in SYS1.LPALIB in VS2.

VS2 supports all the primary operator console devices required for
Models 145 r 158, 155 IIr 168, and 165 II. The DIDoeS option is required
to support 3270 (display) mode operations on the Model 158 display
console and to support the display console contained in the 3066
standalone console unit for Models 168 and 165 II. The 3213 Printer is
supported only as a hard-copy output device for the Model 158 display
console. It is not supported for input operations. FUnctionallYr the
same console support is provided by MCS and DIDOCS in VS2 and MVT.

100:20 JOB MANAGEMENT

VS2 and MVT job management functions are logically the same and r
externally, the VS2 job management interface with the operator is
compatible with that of MVT. The internal organization of job
management in VS2 and MVT differs somewhat r however. VS2 job management
has been modified to operate in a paging environment, and it is designed
to offer improvements in performance r reduced real storage requirements r
greater reliabilitYr and new functions. Some of the significant new
items of VS2 job management are:

22

• Support of up to 63 initiators

• A new algorithm for allocating I/O devcies that is designed to
reduce I/O contention within the system (I/O load balancing) and
improve performance

• Improved system recovery after error conditions in scheduler tasks
(STAE/STAI/STAR processing)

as/Virtual Storage 2 Features Supplement

MASTER SCHEDULER

The master scheduler in VS2 is reentrant and pageable. Therefore, it
resides in the pageable link pack area. The master scheduler region,
which is a minimum of 128K, and master scheduler LSQA of 64K are used
for the execution of subtasks of the master scheduler. In VS2, all
command processing tasks except START and MOUNT are attached as subtasks
of the master scheduler and operate in the master scheduler region.
This reduces the serialization of command processing that can occur in
MVT. SMF, the missing interruption checker routine, and system log
tasks also operate in the master scheduler region as job step subtasks
of the master scheduler. More than two segments can be allocated to the
master scheduler region to handle an environment in which concurrent
execution of many operator commands will occur frequently.

Functionally, the master scheduler in VS2 and MVT are the same. All
MVT operator commands and parameters and their formats are accepted in
VS2 except those associated with MVT features that are not supported in
VS2. No new commands have been added to VS2. The function of the
following commands has been modified:

• CANCEL - A job waiting for a data set, virtual storage, or external
page storage can be canceled.

• DISPLAY ACTIVE and MONITOR ACTIVE - For an active job step, the
following is given: virtual rather than real storage utilization,
the number of LSQA pages allocated, and an indication of whether the
job step is operating in paged or nonpaged mode. The number of
tasks that a DISPLAY ACTIVE command can handle is increased to 255.

• DUMP - The contents of virtual instead of real storage are dumped,
and the ALL parameter is not supported.

• MODE - A simplified format is used that is applicable to all
System/370 models.

• SET - A new parameter, GMT, is added to indicate that the time of
day specified in the CLOCK parameter is Greenwich Mean Time.

• START - This command can specify up to 15 job classes when an
initiator is started and LSQA allocation can be specified.

Extended environmental recovery is included in subcomponents of the
master scheduler to provide increased availability of these critical
routines. The master scheduler task, command processing taskS, SMF, and
the system log task use the facilities of STAE (Specify Task Abnormal
Exit), STAI (System Task ABEND Intercept), and STAR (System Task ABEND
Recovery) to effect recovery. More STAE exits are used in VS2 than in
MVT in an attempt to reduce abnormal terminations of master scheduler
components. The SYS1.DUMP data set is used by STAE exit routines to
record diagnostic data pertaining to an error. Recovery in VS2 is also
improved by the fact that SMF and the system log task operate as job
step subtasks of the master scheduler. The impact of a failure in one
of these tasks is confined to the task itself.

READER INTERPRETERS AND OUTPUT WRITERS

The reader interpreter routine and the output writer routine in VS2
are reentrant and pageable. They operate in the pageable link pack
area. Each reader and each writer started has LSQA and a pageable
region associated with it. The reader/writer region is used for work
areas and buffers.

as/Virtual Storage 2 Features Supplement 23

Functionally, the reader interpreter and the output writer in VS2 are
the same as their MVT counterparts. Automatic SYSIN batch readers,
direct SYSOUT writers, and the output limiting facility are not
supported. The fact that VS2 readers and writers are reentrant and
pageable offers the advantage of improved real storage utilization
without operator intervention. Real storage is automatically used only
by active readers and writers.

The VS2 interpreter routine is pageable and reentrant and it operates
in the pageable link pack area. It accepts all job control statements
supported in MVT. New parameters have been added to the job control
language for VSAM (see Section 100:30). The only other new job control
parameter in VS2 is the ADDRSPC parameter, previously discussed.
Processing of the REGION parameter is modified because of the
elimination of hierarchy support. The region size allocated when
hierarchy parameters are encountered is the sum of that requested for
hierarchy 0 and 1, rounded to the next 64K mUltiple for pageable job
steps, or to the next 4K multiple for nonpageable job steps.

The ROLL parameter is ignored. The region space requested by
programs that use the rollout/rollin facility to obtain more region
space during execution in M~~ may have to be increased when these
programs execute in a VS2 environment.

JOB SCHEDULER

The components of the job scheduler (initiator, allocation,
terminator) are modified to operate in a paging environment and to
provide functions not available in MVT. The total real storage
requirement for these routines is reduced because they now are reentrant
(except for allocation) and they operate in the pageable LPA. The job
queue (SYS1.SYSJOBQE) in VS2 is identical in contents and format to the
MVT job queue except that the ASB and the RJE queues are omitted.

Initiator

The VS2 initiator is reentrant and pageable. It operates in the
pageable link pack area to perform its scheduling function and uses a
pageable region for a work area to schedule both pageable and
nonpageable jobsteps. Each initiator has LSQA allocated to it that is
used by the problem programs it initiates. A VS2 initiator is
functionally the same as an MVT initiator except that, in VS2, an
initiator can have up to 15 job classes assigned to it instead of eight.

The operator has more opportunity in VS2, than in MVT, to cancel a
job (either page able or nonpageable) while it is being scheduled because
required resources are unavailable. Specifically, in VS2, the operator
can cancel a pageable job after receiving a message indicating that the
job is waiting either for data sets, or region space (virtual storage)
or external page storage. (A check is made to determine whether enough
external page storage is available to contain the entire contents of the
region size requested.) A nonpageable job step can be canceled if it is
waiting for data sets or for enough page frames for initiation. In
addition, if one or more data sets required by a job are found to be
permanently unavailable, the job is canceled automatically by the
system.

Allocation

The allocation routine operates as a subroutine of the initiator to
allocate I/O devices to job steps. as in MVT. The VS2 allocation

OS/Virtual Storage 2 Features Supplement

routine is pageable and serially reusable. It operates in the pageable
link pack area.

The channel load balancing algorithm for nonspecific device requests
currently used by the MVT allocation routine is replaced in VS2 by a new
I/O load balancing algorithm that is designed to minimize contention
among I/O devices on the same channel. In MVT r the load on a direct
access device is assumed to be directly proportional to the number of
data sets allocated to the device. However r because data sets have
different activity levels, experience has shown that a count of the
number of data sets present does not accurately indicate the load on the
device.

In VS2, a new algorithm for determining the activity on a tape or a
direct access device is used. The new I/O load balancing algorithm is
called by the allocation routine to allocate devices for new tape and
disk data sets that do not have specific volume serial numbers indicated
in their OD statements (nonspecific device requests). The SEP parameter
on 00 statements is not effective for new nonspecific tape and disk
device requests since the load balancing algorithm is designed to
balance the load across the entire configuration. (The algorithm used
for allocating a device to an old data set without a specific device
request that has not been premounted is the same as that used in MVT.)

The utilization of a tape or a direct access device is determined in
VS2 by counting the number of I/O requests (EXCP macros and PCI
interruptions) for the device in a given interval. The time interval
varies by System/370 model. An exit is taken during I/o.supervisor
processing in order to accumulate these counts. When I/O devices must
be selected for new nonspecific device requests r current I/O device and
channel utilization is calculated, taking into account the potential
load that will be added by the allocation of specifically requested tape
and disk devices for the job step. Channel utilization is determined by
taking into account EXCP rate, number of allocated data sets, and
average EXCP rate per data set for the channel. Device utilization is
based on the amount of channel time used and the number of standalone
seeks issued. The device determined to be the best candidate for
allocation to a given data set is then selected. If the volume mounted
on a selected direct access device does not have enough available tracks
to satisfy the space request, the next best candidate is selected. The
new I/O load balanCing algorithm is also invoked when a nonspecific
device request is made by a TSO user.

In order to make most effective use of the new algorithm, the
following should be done:

• Public devices should be distributed evenly across channels.

• Public devices should be distributed evenly across control units on
the same channel.

• DO statements should be sequenced in the expected order of data set
activity (most active before less active).

• Nonspecific volume requests should be made whenever possible.

Terminator

The terminator is pageable and reentrant. It operates in the
pageable link pack area. The terminator uses a pageable region as a
work area to terminate pageable steps and a nonpageable region to
terminate nonpageable job steps. No other functions different from
those of MVT are supported by VS2 terminators (except those related to
supporting a paqing environment).

OS/Virtual Storage 2 Features Supplement 25

System Management Facilities (SMF)

SMF is a standard feature of VS2. SMF provides all the same
functions it does in MVT, and it is expanded to include one new exit and
new accounting data provided by page management. The new exit is taken
each time an SMF logical record is ready to be written.

SMF records can be written only on direct access volumes in VS2.
They cannot be written on tape, as in MVT. The SMF record types and
formats produced by SMF routines in VS2 are compatible with those
produced in MVT for the most part. However, additional accounting
information is supplied in VS2, certain fields have a different meaning,
and minor changes to existing fields have been made. For example, in
the step termination record the storage-requested and storage-used
fields reflect the virtual storage used. If the job step was executed
in nonpaged mode, these fields also reflect the real storage used. SMF
records that are modified in VS2 are the system measurement record (Type
1), the step termination record (Type 4), the end of day record (Type
12), and the TSO log off record (Type 34).

The page supervisor provides the following new data to SMF:

• Number of page-ins per job step (including user and system page-ins)
and for the entire system (reclaimed pages are not included in this
count)

• Number of page-outs per job step (including user and system page
outs) and for the entire system

• Number of reclaimed pages for the entire system

• Number of swaps (swap-ins and swap-outs) that occurred for all TSO
job steps

• Total number of pages swapped in for each TSO job step and for all
TSO job steps due to time-slice-begins

• Total number of pages swapped out for each TSO job step and for all
TSO job steps due to time-slice-ends

• Total number of page migrations from a primary paging device to a
secondary paging device for the entire system

• Total number of pages involved in migration from a primary to a
secondary paging device per job step and for the entire system

TIME SHARING OPTION

General Description

The time sharing option (TSO) of VS2 provides the same facilities as
are offered by TSO in an MVT environment. TSO in VS2 also offers a few
functional enhancements. Hence, TSO operations that are currently
performed using MVT can be performed using VS2 with little or no
conversion effort. (TSO system parameters may require modification.)
The most significant advantage that TSO can offer in a VS2 environment
is increased performance potential using the same amount of real storage
used in an MVT environment. Performance gains may be realized through
better utilization of real storage, as is provided in a paging
environment, and through enhancements in the way region swapping is
handled.

26 OS/Virtual Storage 2 Features Supplement

Dedicated TSO operations (no background regions) or concurrent
operation of background and foreground (TSO) regions is supported in a
minimum of 512K of real storage. One new feature of TSO in VS2 is
support of up to 42 foreground regions, instead of a maximum of 14 as in
MVT. A foreground region can be a minimum of 64K in size.

The restrictions on foreground regions are the same in VS2 and MVT.
In VS2, the maximum virtual storage size of a foreground region is 896K.
Foreground and background regions share the one 16 million byte virtual
storage supported in VS2. In addition, in VS2, a nonpageable job step
cannot be executed in a foreground region. Just as is true for
background regions in VS2, each foreground region has a separate LSQA
associated with it. However, LSQA for a TSO region can be a maximum of
64K in size. LSQA is not part of a foreground region, as it is in MVT.
All foreground regions are assigned protect key 1.

In VS2, multiple users can share a foreground region and its LSQA
concurrently, on a time-shared basis, just as in MVT. Prior to the
initiation of a time slice for a user, a swap-in is performed (the
contents of the user's program are brought into real storage from direct
access storage). When the time slice has expired or a long wait
condition is encountered, a swap-out occurs (the active contents of the
foreground region and LSQA are written out to direct access storage).
Another user assigned to the region is then swapped in and given
control. In VS2, however, swapping is performed using paging devices,
instead of a separate set of swapping devices, and a user's program is
paged during its time slice. That is, foreground regions are paged as
well as time-shared. After a swap-in occurs, real storage is assigned
to the TSO user's program on a demand paged basis.

Allocation of External Page Storage

The use of external page storage for both paging and swapping
operations is designed to provide more efficient use of auxiliary direct
access storage than use of separate direct access storage for paging and
swapping. The allocation scheme used in VS2 permits TSO users to have
less external page storage reserved for their regions than is required
for background regions because it is assumed that most TSO users will
not always require the entire amount of virtual space allocated to the
foreground region they use for program execution.

New parameters (TSOAUX, TSOMAX, and BACKUP) have been added to the
START TSO and MODIFY TSO commands that enable the operator to indicate
how external page storage is to be shared by foreground and background
regions. A certain amount of external page storage is required to back
up (contain the contents of) the pageable dynamic area of virtual
storage (that area between the V=R line and the master scheduler LSQA,
as shown later in Figure 100.20.2).

The TSOAUX parameter, which also can be specified at system
generation or system initialization, can be used to indicate what
percentage of the amount of external page storage required to back up
the pageable dynamic area is to be reserved for TSO use only. In
effect, this parameter also defines the maximum amount of the external
page storage that is available to back up the pageable dynamic area that
background regions can use and, thus, limits background region use of
virtual storage in the pageable dynamic area. There must be at least
500 slots available for background pageable regions. If the TSOAUX
percentage specified would make fewer than 500 available, the percentage
is reduced. If fewer than 500 slots are contained in the defined
external page storage, the TSOAUX parameter is ignored and the operator
is notified.

OS/virtual Storage 2 Features Supplement 27

The TSOMAX parameter can be used to specify the maximum percentage of
the pageable dynamic area external page storage requirement that TSO
regions can use, which also indicates the minimum percentage of external
page storage (and, therefore, pageable dynamic area) available for
background regions. Any external page storage provided in the page file
in excess of the amount required to back up the pageable dynamic area is
automatically reserved for TSO use only. The external page storage
reserved for TSO is used only for TSO foreground regions. External page
storage required to back up the TCAM and the time sharing control
regions is taken from that available to background regions. When the
TSOMAX percentage is allocated to foreground regions, no more LOGON's
are accepted until a LOGOFF is received and processed. The TSOAUX and
TSOMAX parameters guarantee that a minimum amount of external page
storage is exclusively available for background region use and another
minimum amount is exclusively available for TSO region use. If these
parameters are not user-specified. TSOAUX defaults to zero and TSOMAX
defaults to 100 percent.

The effect of these parameters is shown in Figure 100.20.1. The
total amount of external page storage available to be shared by TSO and
background regions is the total amount of external page storage in the
page file less the requirement for the nondynamic area in highest
addressed virtual storage. The amount of external page storage required
for this nondynamic area is 2(pageable LPA size + LPA directory size)+
master scheduler region size + pageable BLDL size + modified LPA size.
The pageable LPA and its directory are backed up by external page
storage equal to twice their size because they can contain routines that
are reentrant but that modify themselves (are not refreshable).
Modified pages are not written in the external page storage that
contains the pageable LPA because this would necessitate re-creation of
the pageable LPA at the next IPL.

The new BACKUP parameter specifies the percentage of the foreground
region size for which slots must be available at each LOGON. Whenever a
TSO user attempts to log on to a foreground region, external page
storage is inspected to determine whether enough slots are available to
contain the BACKUP parameter percentage of the foreground region size.
If the required percentage of slots is not available, the TSO user is
not logged on. (Background regions are always backed up 100 percent.)
If the BACKUP parameter specifies less than 100 percent, it does not
mean that TSO users cannot use more than this percentage of their region
size. However, the total number of pages actually used by all active
TSO regions at any time cannot exceed the total number of slots reserved
for allocation to foreground regions.

The new AUXLIST parameter can also be specified via START TSO and
MODIFY TSO commands. This parameter indicates what information
concerning the use and availability of external page storage is to be
listed. The AUXLIST parameter can also be specified during IPL.

swapping Procedure

In VS2, swapping is performed somewhat differently than it is in MVT
in order to make better use of real storage and to save swapping I/O
time. Swapping is also referred to as block paging in VS2. Swapping
I/O operations are scheduled and initiated by the page supervisor in
response to swapping requests made by the TSO supervisor using the new
BLKPAGE macro. There is no code in the VS2 TSO supervisor that handles
the actual swapping operation. In MVT, most of a TSO user's region is
swapped in dnd out during each time slice. In VS2, all or a portion of
the working set for a region is swapped out. The working set is
determined by the addressing pattern of the program as indicated by the
reference and change bits at the time the region is to be swapped out.

28 OS/Virtual Storage 2 Features Supplement

Total external page storage (EPS) in page file less requirement for nondynamic area in highest virtual storage

I- -

EPS required for pageable dynamic area
.1

Maximum EPS .. -,
available to back-
ground regions 1 ,
Minimum EPS .. -

,
available to back- 1
ground regions

1 (500 slots or more)

1

EPS reserved I. -I
for TSO use I I

1 I
Amount of EPS 1 I-
always available 1
toTSO

1

I
Maximum EPS I- I
available to TSO

I I

TSOMAX.-.'
I
~TSOAUX

percentage percentage

Figure 100.20.1. Division of external page storage when TSO is used

SWAP is another new system parameter that optionally can be used to
request parallel swapping. In VS2, parallel swapping of a foreground
region can be done using two, three, or four paging devices. In MVT,
only two devices are supported for parallel swapping operations. The
paging devices indicated in the SWAP parameter are not dedicated to
parallel swapping and are used for normal paging operations as well. If
a paging device that is used for parallel swapping becomes full, a
paging device is selected using the normal algorithm for page device
selection. If the SWAP parameter is not specified or if the NOSWAP
parameter is issued to override a previously specified SWAP parameter,
swapping is done serially on one device at a time. If a swap-out is to
be performed and not enough slots are available to contain the user's
working set, the user is logged off and the operator is informed that
the page data sets are full.

Whenever a swap-in is to be performed, the paging supervisor
sChedules LSQA pages to be read into real storage first. If the working
set consists of more than 16 pages, the TSO user need not wait for the
swapping in of the total working set and is given control to begin
executing after the first 16 pages are read into real storage. If the
working set consists of fewer than 17 pages, it is completely swapped in
before the TSO user gains control to begin executing.

In VS2, region quiescing functions performed before a swap-out occurs
include unfixing pages that are currently long- or short-term fixed and
modifying the page tables as required. Similarly, during a restore
operation after a swap-in, pages must be refixed and page tables must be
updated. A TSO user cannot assume that long-term fixed pages will
always have the same page frames allocated since the fixed page frames
allocated can change from one time slice to the next.

Os/virtual storage 2 Features Supplement 29

TSO Supervisqr

Control of time sharing operations in VS2 is provided by the TSO
supervisor, as in MVT. The TSO supervisor operates in the time-sharing
control (TSC) region with a protect key of zero. The TSC region
operates in paged mode but contains a certain number of long-term fixed
pages. The TSC region and all foreground regions operate with dynamic
address translation operative.

The ~SC region in VS2 has its own LSQA which also contains the TSO
LPA directory of modules in the pageable TSO LPA. The TSO LPA is
included in the TSC region. Frequently used TSO commands or service
routines can be made resident in the TSO LPA or the system LPA. The new
LPAR parameter can be specified via a START TSO command to indicate the
modules that must be contained in the TSO LPA. If the modules indicated
are not found in the TSO LPA or SYS1.LINKLIB, the START command is
rejected. The LPAF parameter can also be specified via a START TSO
CUHUlIctUU LliaL spE:cifie.::> thE LrAR parameter. It indicates the mo1ules
that are to be fixed in the TSO LPA for as long as TSO is active.

The functions performed by the TSO supervisor are the same in VS2 and
MVT except that, in VS2, the swapping function is handled by page
management and operations related to a paging environment must be
performed. The same IBM-supplied time sharing driver is supplied for
both operating systems; however, changes have been made to the TSEVENT
Driver Entry Code. Figure 100.20.2 shows the layout of virtual storage
in VS2 when TSO is used.

Virtual Storage

Nonpageable
Nondynamic Dynamic Nondynamic

Area Area Pageable Dynamic Area Area

~~rr-------------------------~---------------------~\,r-------~~-------~\

.------.--~l~~--;------r----.---~.----r~~l~---.----~----r----r----~---,-----r~l~l-. __ ~

[

I ~::;' I ~,"":m" R"d" We'''' TCAM TSC ;~:~~:""d TSC TCAM We'''' R,od" MS MS I ~;d: I SQA I
Program J' Area Region Region Region Region LSOA LSOA LSOA LSOA LSOA Region BLDL

Foreground Table
Regions

and

LSOA

---- ---it t/ II l
Low V=R ,----------------------___ ~-------------------------I
Storage line

TSOAUX and TSOMAX percentages
apply to external page storage
requirement for this virtual
storage area

Figure 100.20.2. Virtual storage organization when TSO is used

system Parameter Keywords

The operator keywords for TSO system parameters are the same in VS2
and MVT except for the following:

30

• New keywords have been added to the START command - TSOAUX, TSOMAX,
BACKUP, AUXLIST, LPAR, LPAF, DUMP (replaces DUMP=DUMP), and NODUMP
(replaces DUMP=NODUMP).

• New keywords have been added to the MODIFY command - TSOAUX, TSOMAX,
AUXLIST, and BACKUP.

• Certain parameters have been changed. REGSIZE can specify a maximum
of 896K and the LSQA parameter is deleted. REGNMAX can specify a

OS/Virtual Storage 2 Features Supplement

High

Storage

maximum of 42. The LPA. DUMP. And NODUMP parameters can be
specified on START commands as well as in SYS1.PARMLIB. LIST is no
longer a positional parameter •

• Certain parameters are deleted - MAP. FORM. DUMP=DUMP. and
DUMP=NODUMP.

All TSO operator keywords in VS2 also have a unique abbreviation.
which never contains more than six characters. These abbreviations are
not supported in MVT.

Performance in VS2

Performance gains over what is achieved using TSO in an MVT
environment can sometimes be obtained in the same amount of real storage
in a VS2 environment because more foreground regions can operate
concurrently. For example. sayan MVT configuration supports a single
TSO region with some number of users. Using VS2 in the same
configuration. two TSO regions may be able to operate concurrently with
half the number of users assigned to each. Better response time might
be realized because certain operations of the two TSO regions can be
overlapped and fewer users must be swapped in and out per region.
~lternatively. some percentage of additional users might be supported in
the two TSO regions in VS2 and the response time achieved in MVT could
be maintained.

These gains can result primarily from better real storage utilization
in a VS2 environment because of demand paging. In MVT, the total amount
of real storage dedicated to a TSO region is usually not used 100
percent of the time because of the various sizes of the programs that
are executed in the TSO region.

The implementation of virtual storage in VS2 may enable TSO to be
added to a VS2 system configuration for a lower real storage cost than
to an MVT installation. This cost is even less if TCAM is already in
use. TSO can be installed to complement the advantages of virtual
storage in that it may be of benefit to programmer productivity when it
is used for online program development.

100:25 TASK MANAGEMENT

The VS2 task management routines offer new functions and are designed
to operate in a paging environment. interface with other modified
control program routines. and support EC instead of BC mode of system
operation (different PSW format. interruption codes in permanently
assigned locations above 121. for example). No significant new
functions are provided by the overlay supervisor, checkpoint/restart
routines. step restart routines. or warm start routines. (Checkpoint
records are always 2K in size in VS2.) Other supervisor routines have
been altered to provide new functions, such as a new method of
dispatching tasks assigned to the automatic priority group, fetch
protection. and support of the CPU timer and the clock comparator. The
following identifies the significant functional differences between VS2
and MVT task management routines.

INTERRUPTION SUPERVISOR

Interruption handling is essentially the same in VS2 and MVT:
however, additional interruptions are recognized in VS2. Specifically,
segment and page translation exception, translation specification
exception. monitor call, program event recording, SET SYSTEM MASK (SSM)
instruction, clock comparator. and CPU timer interruptions are handled.

os/virtual storage 2 Features Supplement 31

The CPU is disabled for interruptions from the interval timer at
location 80.

The SPIE facility is expanded to allow problem programs to gain
control after certain types of translation errors cause an interruption.
If a segment translation exception occurs during the execution of a
problem program task because the segment entry referenced has its
invalid bit on, logically, a storage protection violation has occurred.
Similarly, if a page translation interruption occurs because of an error
(entry outside the page table is referenced, for example), a protection
violation has occurred. The program interruption handler changes the
interruption code to that for a protection error in these cases. A
store or fetch protection exception can also occur because of a mismatch
between the protect key in the current PSW and that in the storage block
a task attempts to access. These protection violation error conditions
can be handled by a user-written protection error handling routine
indicated via the SPIE macro.

When a page fault occurs (invalid bit is on in the page table entry
for the referenced virtual storage page), normally, the page supervisor
gains control to allocate real storage. However, an authorized program
(as determined by the authorized program facility) can indicate in the
SPIE macro that its SPIE exit routine is to be entered after a page
fault. The authorized program will receive control after both enabled
and disabled page faults, and the supervisor lock (described under "Task
supervisor") is not turned on. Therefore, this facility should be used
carefully. The data presented to a user-written SPIE routine has the
same format in VS2 as in MVT so that SPIE routines that operate in BC
mode will operate in EC mode without modification. (Note that the BC
mode interface for STAE and STAI exit routines is also preserved and is
extended to include status information unique to EC mode.)

MONITOR CALL instructions are contained in various portions of the
control program in order to alert the control program to the occurrence
of certain events. For example, lOS uses the monitoring facility to
collect statistics about paging operations that are presented to SMF and
to monitor the I/O events requested via the generalized trace facility
(GTF). When appropriate, GTF is given control after a monitor call
interruption occurs. When program event recording (PER) is enabled, the
dynamic support system (DSS) is entered after a PER interruption. (GTF
and DSS are discussed in Section 100:40.)

The interruption supervisor also recognizes an SSM special operation
exception that occurs when an SSM instruction is executed. The mask
used in this instruction is assumed to be in BC mode format. Control is
given to a routine that analyzes the masking requests indicated and puts
the system in the requested state. The new supervisor lock (described
below) is tested, if necessary. A new MODESET macro is implemented in
VS2 that is designed to be used in place of the SSM instruction.
MODESET can be used to request setting of the system mask, alteration of
a storage protect key, and the setting of problem program or supervisor
state in the PSW. This macro can be issued only by a problem program
that is authorized via the authorized program facility. User-written
programs that operate in supervisor state or with protect key zero can
issue MODESET as well.

TASK SUPERVISOR

Automatic Priority Group

The most significant new feature of the task supervisor is a new
method of dispatching tasks that are designated as part of an automatic
priority group. This new dispatching methoQ is sometimes called dynamic

32 as/Virtual Storage 2 Features Supplement

dispatching or heuristic dispatching, a facility that is not provided in
MVT. The VS2 task dispatcher is designed to dispatch a user-designated
group of tasks on the basis of their operational characteristics
relative to one another, either more CPU-oriented or more I/O-oriented.
The CPU and I/O characteristics of this group of tasks are constantly
monitored during their execution and changes are dynamically taken into
account in the dispatching process. Paging I/O is not considered to be
part of the I/O requirement of a task. The dynamic dispatcher is
designed to improve system performance in a mUltiprogramming environment
by more readily adapting task dispatching to the changing CPU and I/O
usage requirements of a group of programs.

Tasks to be dispatched on the basis of the dynamic dispatching
algorithm become a part of the automatic priority group (APG). At
system generation or system initialization, a single job priority level
(0 to 13) can be specified to identify the APG. The priority level
selected for the APG cannot be the same as any priority level assigned
to a time-sliced group. Tasks that are not part of the APG are
dispatched as in MVT. on a priority basis using their system or user
assigned dispatching priority.

For dispatching purposes, the APG tasks are treated as a logical
subse-t of all the existing (system and user) tasks in the system. As
shown in Figure 100.25.1, tasks are logically connected in high to low
dispatching priority sequence, with APG tasks logically divided into an
I/O-oriented subgroup and a CPU-oriented subgroup. The I/O subgroup is
positioned within the APG to have higher priority than the CPU subgroup.
When the dispatcher is ready to give CPU control to a task. the task
queue shown in Figure 100.25.1 is searched from left to right.

Highest priority Automatic Priority Group Lowest priority

--------~'------- ~-----------'~,------------- ~ I \ I \ r ,

TCB

\.. -------V'-------/ "----v---'
I/O Subgroup CPU SUbgroup

Figure 100.25.1. Task queue containing an automatic priority group

The characteristic of each task in the APG is determined by
constantly monitoring its use of CPU time. Each time an APG task is
dispatched, a time interval is established for the task. The same
interval is used for each task. If the entire interval is used (task
processing continues until the interval elapses), the task is assumed to
be more CPU-oriented and is associated with the CPU subgroup. Tasks are
positioned in the CPU subgroup such that they are dispatched in a cyclic
manner. This is done to ensure that available CPU time is distributed
evenly among them.

If a task does not use its entire interval, it is assumed to be more
I/O-oriented and is associated with the I/O subgroup. I/O-oriented
tasks are positioned within their subgroup according to the amount of
the time interval they used. The smaller the portion of the interval
used, the higher a task is placed within the I/O subgroup.

The time interval used by the dispatcher is user-specified at system
generation or during IPL. However, the dynamic dispatcher is designed
to be self-adjusting to ensure that it is accurately differentiating
between CPU- and I/O-oriented tasks. Additional parameters supplied to
APG are used periodically to measure the effectiveness of the time

os/virtual Storage 2 Features Supplement 33

interval being used and to adjust it within specified upper and lower
limits.

The dynamic task dispatching capability in VS2 enables job priority
assignments to be more truly related to priority than to system
performance. In MVT, job priority is frequently assigned based on CPU
and I/O usage to maximize resource utilization and increase system
performance. In VS2, jobs that must have a high dispatching priority
because a certain response or fast turnaround is required can be
assigned a priority higher than that used for APG jobs. Jobs without
any special priority requirements can be assigned the APG priority. The
dispatcher will attempt to balance CPU usage among these jobs such that
CPU and channel resources are efficiently used. Jobs that actually have
a low completion priority can be assigned a job priority lower than that
of APG jobs.

The task dispatcher has also been modified to handle the following
.new funcL:ion~ which dl:e discussed, as appropriale, in various
subsections of this supplement:

• Support of a new protection scheme which includes fetch protection
as well as store protection

• Selection of a task for deactivation to prevent system thrashing and
selection of a task for reactivation

• selection of a task for migration from a primary to a secondary
paging device

• Support of a new supervisor lock in conjunction with handling
disabled page faults

In addition, the task dispatcher is modified to use the time of day
clock instead of the interval timer to determine system wait time.

Authorized Program Facility

The authorized program facility (APF) is a new system integrity
feature that is standard in VS2. It is designed to prevent unauthorized
programs from performing functions that are designated as restricted.

Programs that are to be authorized via APF must reside in a secure
library, that is, SYS1.LPALIB, SYS1.LINKLIB, or SYS1.SVCLIB, and are
identified at link-edit time via a new EXEC statement PARM field
parameter or a linkage editor control statement. The linkage editor
places the authorization code (0 or 1) in the directory entry for the
program (load module). Code 0 means the program is not authorized to
perform a restricted function. Code 1 designates the program as
authorized to perform all restricted functions. Critical system
functions that are to have access to them restricted are identified with
function code 1, designating them as requiring authorization.

When a job step is initiated, the authorization code of the program
fetched from a secure library is placed in the job step control block
(JSCB), if a code is present. The JSCB of a program fetched from a
non secure library indicates the program is not authorized. The TESTAUTH
SVC routine is provided to test the JSCB for APF authorization.
Whenever any tasks of a job step attempt to use a function marked
restricted, the system tests the authorization of the requesting
program. If a problem program is not properly authorized, or is
authorized but was not contained in SYS1.LPALIB, SYS1.LINKLIB, or
SYS1.SVCLIB, the problem program is abnormally terminated.

34 as/Virtual Storage 2 Features Supplempnt

A user-written routine can be restricted to access only by APF
authorized routines in one of two ways. The restricted routine can
include a procedure to test for APF authorization in the JFCB using the
TESTAUTH macro~ or the routine can be assigned the authorized attribute
of 1 during link-editing and placed in a secure librarYr which includes
libraries concatenated to SYS1.LINKLIB. Note that a task that is
assigned protect key zero or that operates in supervisor state is also
authorized to access restricted functions.

User-written programs that use the following macros and programs must
be authorized via APF: CVOL, DASDRr MODESET r PGFREE r PGFIX r and PGLOAD
macros and IEHDASDR r IEHATLAS, IEHPROGM r and AMASPZAP programs.

supervisor Lock

A supervisor lock is implemented in the task supervisor to ensure
proper system operation when a disabled page fault occurs. In VS2 r a
page fault can occur during the execution of a routine that has disabled
the CPU for interruptions (I/O and/or external). This is called a
disabled page fault. A routine normally operates with the CPU disabled
because it is not reentrant and, therefore r should not be reentered
before its completion, or because it modifies or references a serially
reusable resource. The processing of a page fault (which requires I/O
interruptions to be enabled to allow the page-in completion I/O
interruption to be presented) can cause code that operates with the CPU
disabled to be reentered r with improper processing the result.

To prevent this situation, a supervisor lock is implemented in VS2
that can be set on (locked) or off (unlocked). Supervisor code is
included to set and test the lock as required. When a disabled page
fault occurs in an executing task, the supervisor lock is turned on and
identified as belonging to the task that caused the disabled page fault.
As long as the supervisor lock is on, no code that operates with the CPU
disabled for interruptions can be executed except that which is related
to paging or basic dispatching operations. However r CPU control is
given to another ready task that is to operate with the CPU enabled.
The lock remains on until the disabled page fault is resolved and only
tasks that execute with the CPU enabled and paging tasks can execute
until the lock is turned off. Code is included within the control
program to recognize an attempt made by a task to disable the CPU for
interruptions by executing an SSM instruction or a MODESET macro and to
place such a task in the wait state when the supervisor lock is on.

Certain resident control program routines (IOS r page supervisor, task
dispatching routines r for example) are structured to avoid disabled page
faults in VS2. Most Type 1 SVC routines that potentially could cause a
disabled page fault have been converted to Type 2 SVC routines. Type 2
SVC routines have been modified to address all the pages they require
before they begin processing with the CPU in a disabled state. This
causes any nonresident pages to be loaded before processing begins. In
VS2 r all Type 1 SVC routines get control with the CPU disabled for
interruptions r and Type 2, 3, and 4 SVC routines are given control with
the CPU enabled or disabled, depending on the indication in the SVC
table. <In MVT, all Type 1 and 2 SVC's are entered with the CPU
disabled.} User-written Type 1 and Type 2 SVC's that are to be added to
a VS2 control program should also avoid disabled page faults.

The lock approach implemented in VS2 has the advantage of allowing
routines to encounter disabled page faults when required r in order to
avoid fixing a large number of pages. The approach used also avoids
delaying total system operation while a disabled page fault condition is
handled.

OS/Virtual Storage 2 Features Supplement 35

DEB validity Checking

A more comprehensive method of ensuring that a task cannot access a
data set associated with another task is provided in VS2 via
implementation of a new DEB (data extent block) validity checking
scheme. A new DEBCHK macro and a new SVC routine are provided to
support DEB validity checking. The DEBCHK macro is designed to be used
by control program routines that modify a DEB or that use or modify a
control block that is located via accessing the DEB.

Routines that currently perform DEB validity checking in MVT are
modified to use the DEBCHK macro that causes validity checking.
Routines that modify the DEB but do not check its validity are also
modified to include such checking. If a user task inadvertently or
deliberately passes an invalid DEB to IOS r either indirectly via an
access method or directly via EXCP r the task will be abnormally
terminated.

VIRTUAL STORAGE SUPERVISOR

The virtual storaae supervisor is responsible for allocating and
deallocating virtual~stor~ge in response-to user (GET~~IN and FREEMAIN)
requests for storage and system requests for storage other than for LSQA
and SQA. Except for V=R requests. real storage is not assigned to
allocated virtual storage until the virtual storage is referenced during
processing. If a task exhausts the virtual storage available in its
region r it is abnormally terminated. The virtual storage supervisor is
functionally equivalent to the main storage supervisor in MVT except for
the following modifications:

36

• Use of LSQA to store region-related control information

• Allocation of 4K instead of 2K areas to subpools in a region

• An interface with the page table create and destroy routine that is
part of page management. When a virtual storage area (region r LSQA r

etc.) is allocated, this routine is called by the virtual storage
supervisor to create and initialize the required page tables and
external page tables, and to modify the two segment tables as
required. When a virtual storage area is freed, this routine
destroys the associated page tables and external page tables and
invalidates the appropriate entries in the segment tables.

• Expansion of the GETMAIN macro to request allocation of virtual
storage on a page boundary. Also r when a request for storage
contains hierarchy parameters. the storage allocated is the sum of
that requested in hierarchy 0 and hierarchy 1r rounded up as
appropriate. GETMAIN requests in VS2 are satisfied on a best-fit
rather than a first-fit basis. as in MVT. This is done to pack
allocated virtual storage within the fewest number of virtual
storage pages.

• Implementation of a new quickcell facility for handling certain
allocation requests for virtual storage in SQA and LSQA. This
facility is deSigned to reduce the amount of time required to
service a GETMAIN request for a relatively small amount of space (8
to 256 bytes) in SQA and LSQA that will be allocated for a short
duration. Since these types of requests are grouped together r
storage fragmentation within LSQA and SQA is reduced also.

A quickcell area no larger than 4096 bytes is established in SQA and
in each LSQA whenever these areas are created. An individual
quickcell can be a multiple of 8 bytes in size up to a maximum of
256 bytes. A maximum of eight quickcells can be specified for a

OS/Virtual Storage 2 Features Supplement

given quickcell length. The number of quickcells to be allocated
for each size and the size of the total quickcell area in SQA and
LSQA are specified during system generation, and these values can be
overridden during IPL. The quickcell area is allocated real storage
when it is created, and this real storage remains allocated for as
long as the SQA or the LSQA exists.

Allocation requests for space in the quickcell area are made via a
special branch. Requests for space of 8 to 256 bytes (in subpool
245 in SQA and in subpools 235 and 255 in LSQA) are satisfied from
the quickcell area. If a request cannot be satisfied, normal
GETMAIN logic is used.

CONTENTS SUPERVISOR

Contents supervision in VS2 is functionally equivalent to that
provided in MVT except for the following. Scatter loading and hierarchy
support, facilities that are not required in VS2, are not supported.
Attributes associated with these functions are ignored. In addition,
contents supervision has been modified as appropriate to support APF and
the use of a new LPA directory search technique, and to check for LOAD
macro requests issued by nonpageable job steps, all of which have been
discussed previously.

Program Fetch

In VS2, load modules have a zero starting address and are stored in
partitioned data sets in the same format that is used in MVT. Hence,
when a load module is fetched in VS2, it must be relocated to the
beginning address of the virtual storage area to which it is assigned,
and virtual storage address constants must be modified, just as in MVT.

The PCI fetch routine used in MVT is modified for operation in a VS2
environment. Support of storage hierarchies and scatter loading is
removed and the fetch routine is altered to operate in a paging
environment. One new function PCI fetch provides is the loading of load
module control sections on page boundaries (see Linkage Editor
discussion in Section 100:45).

PCI fetch uses the new EXCPVR macro (discussed in Section 100:30)
instead of EXCP. In VS2, PCI fetch requests the allocation and fixing
of up to five page frames for the execution of each read operation (SIO)
when the size of the load module is greater than 16K. Text records are
read into these page frames. During execution of the CCW chain, PCI
chaining is suppressed if it is determined that execution of the next
CCW list with a text CCW will cause the fixed real storage area
associated with the I/O operation to be exceeded. The channel program
then terminates and the page frames actually used during the read
operation are unfixed. PCI fetch performs address constant relocation
during read operations (adds the relocation factor to virtual storage
address constants contained in text records), just as in MVT.

When a program is loaded by PCI fetch, its pages are not
automatically written on external page storage as part of the program
loading procedure. Page-outs of one or more pages of a program that is
being loaded (or that is loaded) occur for the first time when the real
storage any recently loaded pages occupy is required for allocation to
other pages, and the page supervisor considers these pages to be
eligible as per its page replacement algorithm. The change and
reference bits for each page frame that contains program text are on as
a result of the I/O operation that read in the text. Hence, before the
page frames allocated to a program that is being loaded (or that was
recently loaded) can be reassigned, a page-out will be performed. The

OS/Virtual Storage 2 Features Supplement 37

fact that the change bit is turned on by the fetch operation is what
causes the first and only page-out of pages that do not modify
themselves (refreshable pages).

Note that. in OS. there is a distinction between a refreshable module
and a reentrant module. A refreshable module is one that is never
modified and such a module can be used by concurrently executing tasks.
A reentrant module is one that can be used by concurrently executing
tasks but that may modify itself during execution. A module can modify
itself and still be concurrently sharable if the module prevents task
switching during the time it is in a changed state (disables the CPU for
I/O and external interruptions. makes a change, changes altered data to
its original value, and reenables the CPU for I/O and external
interruptions). Refreshable modules will be paged out only once, since
their change bits will never be turned on during execution of the
module. Pages of reentrant modules that are changed during their
execution will have their change bit turned on. These pages will be
paged out if they become inactive and their page frames are needed and
taken for reassignment to other pages.

TIMER SUPERVISOR

The timer supervisor in VS2 uses the time of day clock and the new
CPU timer and clock comparator to provide timing facilities. The
interval timer at location 80, which is supported by MVT, is not used.
Timing facilities identical to those provided in MVT are supported in
VS2. However. in VS2, the STIMER macro has been expanded to allow an
interval of time to be specified in terms of microseconds (the
resolution of the CPU timer), the TTIMER macro is expanded to request
the amount of time remaining in an interval in terms of microseconds,
Greenwich Mean Time is used in the time of day clock. and the internal
logic of the timer handling routines has been altered to give better
performance.

In VS2, the time in the time of day clock is Greenwich Mean Time
(GMT) instead of local time. During system generation, the time zone
differential. east or west of GMT, can be specified so that the system
communicates with the operator using local time instead of GMT. The
time zone differential can be modified after system generation by
changing the appropriate member of SYS1.PARMLIB. When the operator
enters the time of day, absence of the new GMT subparameter for the
CLOCK parameter indicates that the time specified is local. This causes
the control program to convert the local time to GMT, using the time
zone differential, prior to placing the time in the time of day clock.

Reductions in the amount of code required to handle timing queues are
made possible by the common doubleword format of the clock comparator,
the CPU timer. and the time of day clock. The higher resolution of the
new hardware clocks (one microsecond) and the modified timer routines
are designed to provide timing facilities of greater accuracy.

38 OS/Virtual Storage 2 Features Supplement

100:30 DATA MANAGEMENT

Data management Gomponents are altered where necessary to operate in
a paging environment and to interface with the modified VS2 input/output
supervisor (lOS). The significant functional differences between data
management in VS2 and MVT exist in lOS. OPEN, CLOSE, EOV, and DADSM
routines for VS2 and MVT are functionally equivalent. All the access
methods provided in MVT are supported in VS2, except QTAM. All the same
functions these access methods provide in MVT are also supported in VS2.
Programs that use these access methods can be executed in VS2 in either
paged or nonpaged mode with one exception. A program that is to use the
chained scheduling facility of QSAM or BSAM must execute in nonpaged
mode. If a job step with chained scheduling specified is initiated to
execute in paged mode, regular scheduling is automatically substituted.
VS2 also provides a new access method called VSAM.

All the VS2 access methods except TCAM and VSAM interface with lOS
via the EXCP macro and, therefore, use the channel program translation
and page fixing facilities of lOS. TCAM can operate in a pageable
region but requires certain of its message control program elements
(such as control blocks and the buffer pool) to be long-term fixed in
real storage during the entire time TCAM is in operation. TCAM
interfaces with lOS via the EXCPVR macro and performs its own channel
program translation. TCAM does not require long-term fixing of any
portion of the message processing programs that it services. A system
with a minimum of 512K of real storage is required for TCAM operations.

For performance reasons, certain access methods have been modified to
reduce the total amount of code they contain that operates with the CPU
disabled for interruptions or to prevent page faults in any such code.
ISAM requires an additional 2K of virtual storage because of the
inclusion of new required I/O appendages.

The access methods do not support a parameter that can be used to
cause buffers to be aligned on page boundaries when buffers are
allocated by the access method. If an Assembler Language programmer
wishes to have buffers aligned on a page boundary or have buffers packed
within pages so they do not cross page boundaries, buffers must be
defined and aligned by the programmer.

INPUT/OUTPUT SUPERVISOR

In VS2, lOS has the following additional functions:

• Translation of the virtual storage addresses contained in CCW lists.
The ccw translation routine performs this function prior to the
issuing of the SIO instruction for each I/O operation requested by a
pageable routine via the EXCP macro. A new CCW list with translated
addresses is built in SQA. This new list is used for the actual I/O
operation. The only restriction on the size of the CCW list
translated is the availability of SQA.

• Construction of indirect data address lists (IQAL), when necessary.
If the buffer specified in a CCW crosses a virtual storage page
boundary or if the buffer is larger than 4K, the appropriate IDAL's
consisting of indirect data address words (IDAW's) are constructed
in SQA also. (lOS does not determine whether buffers that cross
virtual page boundaries have actually been allocated contiguous page
frames.)

• Short-term fixing of the pages associated with an I/O operation to
prevent the occurrence of page faults during I/O operations. Each
time an I/O request (EXCP) is received, lOS ensures that pages it
will reference to service the I/O request are short-term fixed for

OS/Virtual Storage 2 Features Supplement 39

the duration of the I/O operation. This includes pages that contain
control blocks (lOB, DeB, DEB, ECB/DECB, and AVT), I/O appendages,
and buffers.

• Translation of the real storage address in the channel status word
to a virtual storage address at the completion of the I/O operation.
In addition, pages that were short-term fixed prior to the I/O
operation are unfixed.

The same five I/O appendage interfaces that are provided in MVT are
supported in VS2 and one new appendage interface is defined. There also
are new returns from the SIO and the PCI appendages. The new page fix
appendage is actually part of the SIO appendage, and it is entered using
a new entry point into this appendage. The page fix appendage is
provided to enable an EXCP user to request short-term fixing of up to
seven different virtual storage areas that will be referenced during the
EXCP request but that are not automatically fixed by lOS. A user
written EXCP program with user-written I/O appendages that can incur
page faults can use this new appendage to short-term fix the areas
referenced by the I/O appendage. The new PGFX parameter for the EXCP
DCB is provided to indicate that the page fix appendage is to be used.

In addition to the EXCP macro. VS2 lOS supports a new macro, EXCPVR,
that can be used to request an I/O operation. This macro can be issued
only by the page supervisor and by routines that have the required
authorization. A routine is authorized to issue EXCPVR if it has a zero
protect key, operates in supervisor state, or has APF authorization.
When lOS receives an EXCPVR macro, it does not perform channel program
translation, page fixing, or validity checking. It is assumed that,
where necessary, these functions have been performed by the requester
prior to issuing the EXCPVR macro.

When the EXCPVR macro is used instead of EXCP, the time required for
lOS to initiate an I/O operation is reduced. The EXCPVR macro should be
used carefully, however, because the I/O supervisor does not perform any
of the storage protection functions it provides when the EXCP macro is
issued (checking to determine .whether all the control blocks, buffers,
etc., associated with the I/O request belong to the requesting task).
Hence, a task that uses EXCPVR could inadvertently store information
outside its region and impair the integrity of the system.

VIRTUAL STORAGE ACCESS METHOD

General Description

Virtual storage Access Method (VSAM) is a new component of os data
management that is supported in VSl and VS2. VSAM provides a data set
organization and access method for direct access devices that is
different from existing OS data set organizations and access methods for
direct access devices (SAM, ISAM, DAM, PAM). VSAM supports 2314/2319,
3330-series, and 2305 (Models 1 and 2) devices and uses rotational
position sensing when the feature is present.

VSAM for VS1 and VS2 uses System/370 instructions and is designed to
operate efficiently in a paging environment. VSAM uses the EXCPVR macro
for I/O requests. Hence, like VS1 and VS2, VSAM can operate only on
system/370 models with dynamic address translation hardware and cannot
run on System/360 models. TSO users can use VSAM and perform functions
similar to those performed using ISAM.

A subset of OS/VS VSAM is supported by DOS/VS. The VSAM Assembler
Language macros used in OS/VS1, OS/VS2, and DOS/VS are compatible,
except for OPEN and CLOSE. In addition, a VSAM file contained on a DOS

40 as/virtual storage 2 Features supplement

volume can be processed by OS (VSl or VS2) programs. Similarly, a VSAM
data set contained on an OS volume can be processed by DOS/VS programs
as long as facilities are not used that DOS/VS VSAM does not support.
This compatibility enables VSAM data sets or files to be processed by
both OS/VS and DOS/VS, and aids in the transition from DOS/VS to OS/VSl
or as/VS2.

VSAM supports both sequential and direct processing and is designed
to supersede ISAM, although the two access methods can coexist in the
same operating system. VSAM supports functions equivalent to those of
ISAM and offers new features. VSAM also can provide better performance
than ISAM, particularly when the number or level of additions in the
data set is high. The new structure and features of VSAM make it more
suited to data base and online environments than ISAM.

VSAM support consists of the following:

• Access method routines with which the user interfaces to process
logical records in VSAM data sets. These routines are reentrant.

• VSAM catalog/DADSM routines that manage direct access volumes and
space used by VSAM data sets and catalogs. VSAM data sets are
cataloged in the new required VSAM catalog.

• The access method services multifunction service program that
provides required VSAM services, such as data set creation,
reorganization, and printing, and VSAM catalog maintenance

• ISAM interface routine that enables the transition from ISAM to VSAM
to be made with little or no modification of ISAM programs. This
routine is reentrant.

Data Set organizations

VSAM supports two different data set organizations, key-sequenced
organization and entry-sequenced organization, both of which allow
sequential and direct processing, record addition without data set
rewrite, and record deletion. Key-sequenced organization is logically
comparable to ISAM organization in that logical records, either fixed or
variable in length, are placed in the data set in ascending collating
sequence by a key field value. Records added after the data set is
created are inserted in sequence and existing logical records are moved
when necessary. In VSAM organization, as in ISAM, each logical record
in a key-sequenced data set must have an embedded, fixed-length key
located in the same position within each logical record. A key
sequenced data set also has an index containing key values. The entire
index is used to process records directly and a portion is used to
process records sequentially.

An entry-sequenced VSAM data set, which has no ISAM counterpart,
contains records sequenced in the order in which they were submitted for
inclusion in the data set. Records added to an existing entry-sequenced
data set are placed at the end of the data set after the last record.
Therefore, records are sequenced by their time of arrival rather than by
any field in the logical record. In addition, there is no index for an
entry-sequenced data set.

Key-Sequenced Data Set Organization

The physical structure of a key-sequenced VSAM data set is very
different from that of an ISAM data set. The index and the logical
records in key-sequenced organization are two distinct data sets with
separate data set names, although a portion of the index may be placed
within the logical record data set area to improve performance. A key-

as/virtual storage 2 Features Supplement 41

sequenced data set does not have a separate additions (overflow) area,
as can be defined for an ISAM data set. and additions to a key-sequenced
data set are always blocked.

Like an ISAM data set. a key-sequenced VSAM data set can be multi
extent and multivolume. Secondary space allocation can be specified
when the key-sequenced data set is defined so that the data set can be
extended when logical records are added. if necessary. (This facility
is not supported in ISAM.) All extents of logical records must reside
on direct access volumes of the same type. and a data set can consist of
a maximum of 255 extents. The index data set, however, can be placed on
a device type that is different from that of the logical record data
set. Unlike ISAM data set volumes. all volumes of a key-sequenced data
set that contain logical records need not always be mounted at OPEN
time. VSAM data sets can be placed on disk volumes that contain data
sets with other organizations.

Each extent of a key-sequenced data set that contains logical records
is divided into a number of control areas. Each control area contains a
number of control intervals that are on contiguous direct access tracks.
A control interval is composed of one or more fixed length physical disk
records. Unlike physical records in an ISAM data set. the physical
records in a key-sequenced data set can be 512, 1024, 2048. or 4096
bytes in size only. and they are written without a key (count and data
disk record format). The access method chooses the physical record size
based on the user-specified buffer size and the device characteristics.
When buffer size is large enough. the physical record size chosen is
that which makes best use of the track capacity of the direct access
device used. A control interval can be a maximum of 65,536 (64K) bytes
in size.

A control interval contains logical records in ascending key
sequence, free space, and system control information about the logical
records and free space, in that sequence. Logical records must have
unique keys. A logical record and its control information (record
definition field), although not contiguous within a control interval,
are called a stored record. A logical record can span physical records
within a control interval, but it cannot span control intervals. A
complete control interval is the unit of data transfer between the VSAM
data set and real storage. Hence. command-chained reads/writes are used
when a control interval contains more than one physical disk record.

Figure 100.30.1 shows an example of a control area that consists of
three control intervals. There are three physical records in each
control interval. The number of control intervals in a control area is
determined by the access method and is optimized based on direct access
device and index characteristics. The maximum size of a control area on
disk is one cylinder. and a control area contains an integral number of
control intervals. The size of a control interval can be specified by
the user and is used as long as it is within the limits defined by VSAM:
otherwise, a user-specified control interval size is ignored.

A key-sequenced data set is divided into control areas and control
intervals in order to distribute free space throughout the data set for
the addition of logical records. When a key~sequenced data set is
defined, the user can specify the percentage of unused control intervals
that is to be left in each control area, and the percentage of free
space to be left at the end of each control interval. For example, if
30 percent free control intervals in control areas and 20 percent free
space in control intervals are specified, 70 percent of the total number
of control intervals in each control area will be used for data when the
data set is created. Each of the control intervals actually used for
data will be 80 percent filled at load time. The unused space in
control intervals and the unused control intervals in each control area
are available for making additions.

42 as/Virtual Storage 2 Features Supplement

Control Area N

(~-----------c-on-tr-o-I --------------------------c~~ro-I-------------------------c-on-t-ro-I---------~\

Interval 1 Interval 2 Interval 3

r~-----------~----------~\ {~-----------~~----------~, r~-----------~· \

[][]tB[][][]OOtB
Physical 1
record
withing
control
area

Figure 100.30.1.

LR = Logical record
FS = Free space

6

SC = System control information

Organization of a control area for a VSAM key
sequenced data set

The use of control intervals also reduces the amount of record
processing that must be done to add a record and to retrieve an addition
compared to what can be required in ISAM, since there are no overflow
chains in VSAM organization. When a record must be added to a control
interval, records are shifted to the right within the control interval
to make room for the new record (if the record does not belong at the
end of the control interval). As long as there is enough free space in
the control interval, no other control interval is involved in the
addition process.

If a control interval does not contain enough space to add another
logical record, control interval splitting occurs. Some of the logical
records and their control information are taken from the full control
interval and moved to an empty control interval at the end of the same
control area, if a control interval is available. The logical record is
added to the appropriate control interval in key sequence.

When control interval splitting occurs, the physical sequence of
control intervals within a control area no longer represents the correct
sequence of logical records within the control area. Therefore, the
index must be updated to reflect this condition. The only times the
lowest level index must be updated are when control interval splitting
occurs and when a record is added to the end of the data set. Hence,
less index maintenance is required for a key-sequenced VSAM data set
than for an ISAM data set.

If there is no free control interval within a control area when one
is required, control area splitting occurs if there is free space at the
end of the extent or if secondary allocation was specified at the time
the data set was defined. A new control area is established and the
contents of approximately half of the control intervals in the full
control area are moved to the new control area. The new logical record
is inserted in the appropriate control area in key sequence. The time
required to sequentially retrieve records is only slightly affected by
control area splitting. since the amount of space allocated to the data
set is affected by control area splitting, the number of split control
areas in a key-sequenced data set should be a factor that is considered
when determining whether or not to reorganize the data set.

Logical records can be physically deleted from a key-sequenced data
set (using the ERASE marco) and the length of a logical record can be
increased or decreased. When space becomes available as a result of
deleting or shortening a record, records within the control interval are
shifted toward the beginning of the control interval to reclaim the free

as/virtual storage 2 Features Supplement 43

space and make it available for additions. The way in which free space
can be distributed throughout a key-sequenced data set, support of space
reclamation, and implementation of control interval and control area
splitting are all factors that can minimize or possibly eliminate, in
some cases, the need to reorganize a key-sequenced data set. This makes
VSAM organization more suited than ISAM to an online environment.

Index Data set for Key-sequenced organization

Like the index for an ISAM data set, the index for a key-sequenced
VSAM data set contains key values and pointers. It is built when the
key-sequenced data set is initially loaded. Unlike an ISAM index, a
VSAM index also contains information regarding available space in the
key-sequenced data set index.

The index for a key-sequenced VSAM data set also has a totally
different structure from that used for an ISAM index. A VSAM index data
set consists of two or more levels of index records structured as a
balanced tree, and the highest index level contains only one index
record (physical disk record). The one exception to this organization
is discussed later. Index records are fixed length and of system
determined size. Each index record contains a number of index entries
and a pointer to the next index record at the same index level. (The
last index record in a level does not have such a pointer.)

The lowest level of the index is called the sequence set. All levels
above the lowest are collectively referred to as the index set. The
sequence set index level points to all the control intervals in the key
sequenced data set and contains the high compressed key value in each
control interval. Since the sequence set index does not contain an
entry for each logical record in the VSAM data set, it is a nondense
index level.

Each index record in the sequence set contains a number of index
entries that is equal to the number of control intervals in a control
area. Hence, there is one sequence set index record per control area in
the data set. An index entry in a sequence set index record consists of
a key value, control information, and a pointer to the control interval
that contains that key. The key in the index entry is the highest
compressed key in the control interval.

When the logical record data set has few enough control intervals
that one index record can contain all the required index entries, there
is only one level of index and it consists of one sequence set index
record.

When a key-sequenced data set is processed sequentially, the sequence
set index level is used to indicate the order in which control intervals
are to be accessed. To improve performance during sequential
processing, the sequence set index level can be separated from the rest
of the index data set (index set levels) and stored with the logical
records. When this option is chosen, the index records for a control
area are placed on the first track(s} of the control area so that both
index and logical records can be accessed without moving the disk arm
(similar to the location of the track index within the prime area in
ISAM).

When the sequence set index level is stored within the logical record
area, sequence set records are also replicated. That is, each sequence
set index record is allocated one track at the beginning of the control
area. The index record is duplicated on the track as many times as it
will fit. This technique significantly minimizes the rotational delay
involved in arriving at the beginning of an index record. If there is
only one control area in a cylinder, sequence set index records will be
replicated beginning with track O. If there are two control areas in a

44 OS/Virtual Storage 2 Features Supplement

cylinder, initial tracks of the first area contain replicated index
records for the first area, while initial tracks of the second area
contain replicated index records for the second area.

Index set index records, like sequence set index records, contain
blocked index entries. The index entries in each level of the index set
point to index records of the next lower index level. An index entry
within the index set contains a pointer to an index record, the highest
key in that index record, and control information. Index set index
levels can also be replicated. When this option is chosen, one track is
required for each index record in the entire index set. An index record
is duplicated on its assigned track as many times as it will fit. The
index set mayor may not be replicated when the index set and the
sequence set are physically separated (sequence set stored with logical
records). However, when the index set and the sequence set are stored
together, both are replicated or neither is replicated.

The entire index (index and sequence sets) is used to process a key
sequenced data set directly by user-specified key value. Each index
level is inspected beginning with the highest level. One index block in
each level must be inspected to obtain a pointer to the next lower
level. An advantage of this structure over that of ISAM index structure
is the fact that the time to locate any record directly is based on the
number of levels in the index and on the location of the index records
to be inspected (on the direct access device or in real storage).
Therefore, the same time is required to locate an addition as an
original record. In ISAM, additional rotation time is required to
locate an addition that is not the first addition in the chain in the
cylinder overflow area of a prime cylinder.

The index of a key-sequenced data set is designed to require as
little direct access space as possible. In addition to being nondense,
the index entries contain front and rear compressed keys. Compression
is done to eliminate redundant characters in adjacent keys and thereby
reduce the amount of key data that must be stored.

Since physical index records are written without a key, index entries
are blocked within index records, and keys are compressed, an index
record must be present in real storage in order for the user-supplied
key value to be compared with the key values contained in an index
record. As much of the index set as possible, up the entire index set,
can be resident in virtual storage if enough buffer storage is specified
by the user. Note that the access method does not preload index record
buffer(s) with as many index records as will fit. Index records are
allocated space in a buffer and loaded when required.

The index records that are resident in virtual storage are pageablei
however, heavy referencing of an index record can tend to cause the page
containing the index record to remain in real storage. (Index records
cannot be fixed in real storage.) If an index entry that is not
resident in virtual storage is required, and there is not enough room in
the buffer area provided to add the index record, the access method
deletes an existing index record to make room. In general, an index
record is selected that has been in the buffer the longest time and that
belongs to the lowest level index represented in the buffer.

The index entries in an index record are not inspected sequentially.
Entries are divided into sections (zones) for the purpose of searching.
This reduces the time required to locate the desired entry. The
structure of an index for a VSAM data set is shown in Figure 100.30.2.

as/Virtual Storage 2 Features Supplement 45

Index
Data
Set

Key- [
Sequenced
Data Set

Index

Set

Sequence level

{

Lowest

Set ,ndex

'--------'

\~------~'r-------~/
Control Area 1

\~------~,,---------)
Control Area 2

\~--------~-------~)
Control Area N

Figure 100.30.2. Structure of the index for a VSAM key-sequenced
data set

Key-sequenced Data Set Processing

The records in a key-sequenced data set can be processed sequentially
or directly by key, using the index, or by relative byte address, not
using the index. In the latter case, the volume containing the index
need not be mounted unless it also contains logical records that are to
be processed.

The data in a VSAM data set is considered to be mapped into a byte
space which can be over 4 billion bytes in size. The relative byte
address (RBA) of a logical record or an index entry is the byte
displacement of the logical record or index entry relative to the
beginning of the data set. The RBA of a record or index entry,
therefore, is independent of the physical characteristics of the direct
access device type on which the logical record or index entry resides,
the number of extents in the data set, the size of a control interval,
etc. All pointers to data that are contained in the index and in
control intervals are in terms of relative byte address instead of the
record address (CCHHR) that is used in ISAM pointer fields.

In order to locate a desired index or logical record, the access
method calculates the disk address of the physical record using the RBA
of the record. Hence, a key-sequenced data set is device independent.
It can be moved from one direct access device type to another and its
index data set need not be re-created. The RBA of a logical record in
an existing key-sequenced data set can change only when a record is
inserted or deleted, or if the size of a record is altered. A user=
written routine should be included to record changes in RBA's when RBA
is used for update. This routine is entered from VSAM when appropriate.
Hence, programs that process a key-sequenced data set by RBA need not be
modified if direct access device type is changed. Processing a VSAM
data set by RBA is called addressed accessing. When addressed
sequential retrieval is used, records are retrieved in ascending RBA
sequence. Thus, logical records will not be presented in key sequence
if there have been any control interval or control area splits.

Entry-sequenced Organization and Processing

An entry-sequenced data set is physically structured just like a key
sequenced data set except that (1) a control area always contains a

46 OS/Virtual Storage 2 Features Supplement

minimum of two control intervals, (2) no index is provided, and (3) free
space cannot be left within control areas or intervals when the data set
is defined. Records can be retrieved directly by RBA or sequentially.
Additions are placed in any available space left at the end of the
entry-sequenced data set. This free area is also used if the size of an
existing record is to be changed. The existing record must be marked
deleted by the user (with an installation-defined deletion
identification). and the lengthened or shortened record must be written
at the end of the data set. Space made available by marking a record
deleted (because its size is changed or it is no longer required) is not
reclaimed. and the ERASE macro is not effective for entry-sequenced data
sets. However, the space occupied by a deleted record can be reused by
storing a new record of the same size in the space. The deleted record
must be retrieved first.

The only time a change is made in the RBA of a logical record in an
entry-sequenced data set is when the size of the logical record is
changed. other records are not affected since the extended record is
moved to the end of the data set. Hence, a program can maintain a table
of RBA values for the logical records in an entry-sequenced data set
that is used for direct record retrieval. The table must be updated
only when records are added to the data set and when a record size is
increased or decreased. An entry-sequenced data set can also be moved
from one direct access device type to another and programs need not be
modified because the RBA's of the logical records do not change.

An entry-sequenced data set can also be used like a BDAM data set.
Instead of using a table of RBA and control field values, a randomizing
routine can be used to associate the control field of a logical record
with an RBA. The entry-sequenced data set must be preformatted with
dummy records before the logical records are actually placed in the data
set.

Processing Summary

Table 100.30.1 summarizes the types of access supported for key
sequenced and entry-sequenced data sets. All requests are made via GET
and PUT macroS. VSAM supports processing capabilities that are not
provided by ISAM as follows:

• A group of adBitions that are in ascending sequence can be mass
inserted in a key-sequenced data set using sequential instead of
direct processing. Mass insertion should be used when the records
to be added will be placed between two existing logical records or
at the end of the data set after the last record. The access method
takes advantage of the knowledge that the additions are in sequence
by not writing a control interval (and its sequence index record. if
control interval splitting occurs) until the control interval has
been packed with all the additions that will fit. This
significantly reduces the time required to make the additions and
update the index. In addition, the index need not be searched to
determine where each new logical record is to be placed.

• Records can be retrieved directly from a key-sequenced data set
using a skip sequential technique. When a relatively small number
of transactions that are in sequence are to be processed. skip
sequential processing can be used to directly retrieve the records
by key. Since the keys presented are in sequence, the access method
uses only the sequence set index level to locate the desired
records. Skip sequential processing can be used to avoid retrieving
the entire data set sequentially to process a relatively small
percentage of the total number of records. or to avoid using direct
retrieval of the desired records. which causes the entire index to
be searched for each record.

OS/Virtual Storage 2 Features Supplement 47

• Both sequential and direct processing can be performed on a key
sequenced or an entry-sequenced data set using one OPEN and one
access control block (ACB). The ACB is the equivalent of a DCB for
VSAM. Closing and reopening of the data, as is required for an ISAM
data set, is not necessary.

• Records can be retrieved directly from a key-sequenced data set by
RBA, generic key, or key greater than supplied key, as well as by
equal key. ISAM permits positioning by record 10, by generic key,
or by key greater than supplied key but the record must be retrieved
in sequential mode via a separate operation.

Table 100.30.1. The types of access supported for VSAM data set
organizations. An entry indicates whether the function
is supported using sequential or direct processing,
whether or not a key or RBA is required, and whether
or not keys or RBA's must be presented in sequence.

---,~----

Key-Sequenced Data Sets

Entry-Sequenced
Data Sets

Types of Keyed Keyed Addressed Addressed
Access Sequential Direct Sequential Direct

Retrieval only X X X X
No key presented Keys not in No RBA presented RBA's

sequence not in
sequence

Skip sequential X
retrieval, update Keys in
and addition sequence

Retrieve and X X X X
update, No key presented Keys not in No RBA presented RBA's
including sequence not in
changing record sequence
size

Add
Mass X
insertion Keys in sequence

Direct X X
insertion Keys not in No RBA

sequence presented

Delete X X (User must flag X
Keys in sequence Keys not in records» RBA's

48

sequence not in
sequence

• several parts of a key-sequenced or an entry-sequenced data set can
be processed concurrently by a program or its subtasks using the
same ACB. This facility is called multiple-request processing.
Several requests for the same data set can be grouped and issued as
one request with a single macro. sequential-processing requests and
direct-processing requests can be mixed within the same multiple
request group. A multiple-request can specify synchronous or
asynchronous processing. If synchronous processing is indicated,
one request in the group is processed at a time and control is
returned to the user (next instruction after the request) after the
access method has processed all requests in the group. If

as/Virtual storage 2 Features Supplement

I

asynchronous processing is specified, control is returned to the
user as soon as the multiple-request is accepted. Requests in the
group are processed one at a time and the programmer must check for
the completion of each individual request. Several asynchronous
multiple-request processing requests can be active concurrently for
the same data set. The access method processes each multiple
request independently and asynchronously from all other outstanding
multiple-requests. Concurrently executing requests from different
multiple-requests can access the same logical record simultaneously
unless exclusive control has been specified. Within a region,
exclusive control for update and insert requests is supported.

VSAM Catalogs

Unlike ISAM data sets, all VSAM data sets (index as well as those
with logical records) must be cataloged in a VSAM catalog, which is
formatted as a key-sequenced VSAM data set. Information required to
process a VSAM data set, such as its location and characteristics, is
contained in the VSAM catalog.

There must be one VSAM system catalog for a VS2 operating system and,
optionally, one or more user VSAM catalogs can be defined,. Each catalog
is an individual data set. The VSAM system catalog data set is
cataloged in the VS2 data set catalog (SYSCTLG) and each user VSAM
catalog has an entry in the VSAM system catalog. Each VSAM data set is
cataloged in the VSAM system catalog or a user catalog, but not both.
All VSAM data sets on the same volume must be cataloged in the same VSAM
catalog.

User VSAM catalogs can be used to reduce the size of the VSAM system
catalog (to reduce catalog processing time), minimize the effect of a
damaged catalog, and enable a VSAM data set to be portable from one
system to another without having to use the access method services
program to process VSAM catalogs.

The following information is recorded in the catalog entry for a VSAM
data set:

• Device type and volume serial numbers of volumes containing the data
set

• Location of the extents of the data set

• Attributes of the data set, such as control interval size, number of
control intervals, etc.

• Statistics such as the number of insertions, the number of
deletions, and the amount of remaining free space

• Password protection information

• An indication of the connection of a key-sequenced data set and its
index

• Information that indicates whether a key-sequenced data set or its
index data set has been processed individually (without reference to
the other)

A VSAM catalog also contains information regarding the available
space on volumes that contain VSAM data sets. Therefore, a volume
containing a VSAM data set need not be mounted in order to determine
whether or not it contains available space. VSAM catalog/DADSM routines
instead of os catalog and DADSM routines are used to process the catalog
and to allocate space in VSAM catalog and data set volumes. Generation

OS/Virtual Storage 2 Features Supplement 49

data groups of VSAM data sets cannot be defined in a VSAM catalog. In
addition w temporary and concatenated VSAM data sets are not supported.

Access Method Services Program

The access method services general purpose w multifunction service
program is provided to support functions required to create and maintain
VSAM data sets. Facilities to convert ISAM and SAM data sets to VSAM
organization are also included in this program. The access method
services program is invoked via a calling sequence and the functions
desired are requested via a set of access method services commands. In
VS2w the calling sequence and commands can be placed in the input stream
or issued within a processing program.

The access method services program is used to:

• Define and allocate direct access space for all VSAM data sets and
all VSAM catalogs. The DEFINE function must be use~ to describe a
VSAM data set or catalog before any data is placed in the data set
or the catalog. A key range can be specified for each volume in a
key-sequenced data set.

• Create w reorganize w and back up VSAM data sets. Input to the copy
function can be an ISAMw SAM, or VSAM data set. The output can be a
VSAM or SAM data set. When the input and the output organizations
are different w conversion occurs. The COpy function w therefore w can
be used to convert an ISAM data set to VSAM format w initially create
a VSAM data set from sequenced records w merge new logical records
into an existing VSAM data setw and reorganize a VSAM data set.

• Maintain VSAM catalogs (alter, deletew or list catalog entries).
Certain characteristics of a VSAM data set can be modified by
altering the catalog entry for the data set.

• Print all or some logical records of a SAM, ISAM w or VSAM data set.
Three formats are supported: each byte printed as a single
character, each byte printed as two hexadecimal digits w and a
combination of the previous two (side by side).

• Perform processing required to make a VSAM data set portable from
one System/370 to another if a user VSAM catalog is not available.
This involves extracting required information about the VSAM data
set from the VSAM system catalog of one operating system and
inserting this data in a VSAM catalog of another operating system.

• Verify the accessibility of an existing VSAM data set. This
function involves checking for a valid end-of-file indication and
reestablishing the EOF record when necessary.

Since VSAM data sets must be cataloged and the access method services
program must be used to define and allocate space for VSAM data sets, a
minimum number of job control parameters for DD statements are used by
VSAM. Three new DD statement parameters are defined for VSAM: JOBCAT
and STEPCAT for specifying VSAM catalogs w and AMP for overriding
parameters specified in the processing program.

Password Protection

An expanded password protection facility is supported for VSAM.
Optionallyw passwords can be defined for logical record data sets, index
data sets, and VSAM catalogs. Passwords are kept in VSAM catalog
entries. The operator must supply the correct password in order for a

OS/Virtual SLorage 2 Features Supplement

data set to be opened. Up to seven retries can be made, as specified by
the user.

Multiple levels of protection are provided:

• Master access, which allows access to a data set, its index, and its
catalog entry. Any operation (read, add, update, delete) can be
performed.

• Control interval access, which allows the user to access entire
control intervals instead of logical records. This facility is not
provided for general use and should be reserved for system
programmers.

• Update access, which allows logical records to be retrieved,
updated, deleted, or added. Limited modification of the catalog
entries of the data set is permitted, but an entry cannot be
deleted.

• Read access, which allows access to a data set for read operations
only. Read access to the catalog entries of the data set is
permitted also. No writing is allowed.

Authorization to process a VSAM data set can be supplemented by a
user-written security authorization routine. If supplied, such a
routine is entered during OPEN processing after password verification
has been performed, unless the master-access password was specified. A
user-security authorization record can also be added to the catalog
entry for the data set. The record can supply data to the user-written
security authorization routine during its processing.

ISAM Interface Routine

The ISAM interface routine is provided as an aid in converting from
ISAM organization to VSAM organization. It enables existing programs
that process ISAM data sets to be used to process key-sequenced VSAM
data sets without modification of ISAM macros. The VSAM data sets can
be newly created or those that have been converted from ISAM format to
VSAM key-sequenced format. The ISAM interface routine permits VSAM key
sequenced data sets to be processed by both ISAM programs and VSAM
programs. This allows existing ISAM application programs to be used and
additional applications that take advantage of new VSAM facilities to
process the same VSAM data sets.

The ISAM interface routine operates in conjunction with VSAM access
method routines. The interface routine intercepts ISAM requests and
converts them to equivalent VSAM requests. Hence, only functions of
ISAM that are equivalent to those of VSAM are supported by the ISAM
interface routine. There are a few ISAM facilities that the ISAM
interface routine does not support. These are discussed in OS/VS
Virtual Storage Access Method Planning Guide, GC26-3799. Similarly, if
VSAM facilities that are not supported by ISAM are to be used, an
existing ISAM program must be modified to define a VSAM data set and to
use VSAM macros. Assembler Language macros for ISAM and VSAM are not
compatible.

When the ISAM interface routine is used by an ISAM program, existing
job control for the ISAM data set must be modified as appropriate. The
ISAM interface routine and the access method services program simplify
the amount of effort required to replace ISAM data set organization with
VSAM organization within an installation.

as/Virtual Storage 2 Features Supplement 51

Summary

Highlights of VSAM when it is compared with ISAM are as follows.

VSAM provides new features:

• TWo data organizations are supported, one with records in key
sequence and one with records in time of arrival sequence.

• Data sets are device-type independent.

• Direct access space utilization is maximized by device type by using
spanned blocked records for logical records within a control
interval.

• Additions and index entries are blocked, which also reduces disk
space requirements.

• Secondary space allocation is supported so that an existing data set
can be extended.

• Free space for additions can be allocated at more frequent intervals
throughout the allocated extents at the time the data set is
created.

• Free space reclamation capabilities are considerably expanded, which
can eliminate or significantly increase the time between data set
reorganizations.

• Password protection. has been extended to provide more levels of
protection, and user-written security protection routines are
supported.

• Disk volumes containing VSAM data sets are portable between DOS/VS
and OS/VS when VSAM features supported by both DOS and OS are used.

VSAM provides performance enhancements:

• Mass insertion processing reduces the time required to insert a
group of new sequenced records between two existing logical records
or at the end of the data set.

• Skip sequential processing reduces the time required to sequentially
process a low volume of transactions.

• Total index size is reduced by compressing keys and blocking index
entries. This minimizes index search time.

• OVerflow chains are eliminated, which reduces the time required to
make an addition.

• The same time is required to retrieve an added record as an original
record.

• Index set and sequence set index records can be replicated to
significantly reduce rotational delay when accessing index records
on disk.

• Index set records, up to a maximum of all index set records, can be
resident in virtual storage.

Table 100.30.2 compares the features of VSAM and ISAM as supported in
OS/VSl and OS/VS2.

52 as/Virtual Storage 2 Features Supplement

o
en

" <:
foI·
I;
rt
s=
III
en
rt
o
I;
III

I.Q
('t)

I'V

~
('t)
III
rt c:
I;
('t)
en
en
s= :g .
(!)

~
::s
rt

VI
W

Table 100.30.2. Comparison table of VSAM and ISAM facilities for os

Characteristic VSAM - OS

1. Supporting OS environments

2. Direct access devices
supported
a. RPS supported
b. Track overflow supported

3. Types of organization
a. Key-sequenced

b. Entry-sequenced

q. Multiple extents and volumes
for a data set
a. Secondary space allocation

indicated at creation

b. Volumes of the same device
type required

c. All volumes must be online
at OPEN regardless of the
type of processing

d. Free space available
within the logical record
area

e. Data set is device
independent

5. Key-sequenced organization
data set characteristics
a. Fixed and variable length

logical records

VS1 and VS2

231Q/2319, 3330-series, 2305-1,
and 2305-2
Yes
No

Yes
Records are maintained in ascending
sequence by key. An index is provided.
The logical records and the index are
two separate data sets. The key
sequenced data set contains logical
records, distributed free space for
additions (as an option), and,
optionally, the sequence set index
level.
Yes
Records are sequenced by the order in
which they are placed in the data set.
Records are added to the end of an
existing data set. No index is provided •

Yes

Yes

Yes for logical record extents. The
index set can be on a device type that
is different from that which contains
the key-sequenced logical records.

No

Yes (for key-sequenced data sets)
within control intervals and control
areas. Free space is distributed within
the tracks of a cylinder.

Yes
RBA pointers are used in the control
interval and in the index

Yes
Spanned blocked record format is used
within a control interval. Original
records and addit:ions are blocked.

ISAM - OS

PCP, MFT, MVT, VS1 and VS2

Same as VSAM plus 2301, 2302, 2303,
2311, and 2321
Yes
No

Yes
Records are maintained in ascending
sequence by key. An index is provided
that is part of the ISAM data set. The
prime area contains logical records, the
track index, and optionally overflow
tracks in each cylinder for additions.
A separate additions area can exist also.
The cylinder and master index levels are
a separate extent.
Not supported

Yes

NO
The space originally specified cannot be
extended
Yes for all the volumes containing prime
and separate overflow area extents. Index
levels can be on a device type that is
different from that which contains prime
and overflow areas.
Yes

Yes, optionally, at the end of each prime
cylinder. Free space on tracks within
the prime cylinders can be created only by
including deleted records when the data
set is created.
No
Record address ID (CCHHR) is used in
index pointers

Yes
Fixed or variable, blocked or unblocked
record formats are used for prime records.
Records in an overflow area are always
unblocked.

U'1
J;:

o en

" <:
1--"
11
("t
s::
OJ
t-

en
rT
o
11
OJ

I.Q
I'D

!\J

~
I'D
OJ
iT
s::
11
I'D
en

en
s::
"0
"0
t-'
I'D
:3
I'D
::1
rt

Table 100.30.2. Comparison table of VSAM and ISAM facilities for OS (continued)

Characteristic

b. Key field is written on
disk

c. Key field must be embedded
within each logical record

d. Key must be fixed length
e. Logical recoJ:'ds with

duplicate keys permitted
f. Physical record sizes

supported

6. Index structure
a. Number of lev'els

b. Nondense ind€!x
c. Key field written

d. Index records: are blocked
e. Index record size

f. Keys are compressed

g. Index record replicated
on track to reduce
rotational d€!lay

h. Sequence set index level
adjacent to logical records

i. Index resident in virtual
storage

j. Mul tiple indE~xes for the
same key-sequenced data set

1. Types of processing supported
for key-sequencE~ data sets
a. Sequen.tial rE~rieval and

update· without presenting
key

b. Skip sequential retrieval
and update (by keys
specified in sequence)

VSAM - OS

No
Records are written in count. and data
format.
Yes

Yes
No

512, 1024, 2048, and 4096 bytes only

TWo to N based on the number of index
entries required and their size. Index
is a balanced tree with one index record
in the highest level index.
Yes
No
Index records are written in count
and data disk record format.
Yes
Fixed length and determined by system

Yes
Both front and rear compression is
performed to eliminate redundant
characters.
Yes, as an option.

Optional
If chosen, sequence set index records
are replicated at the beginning of
each control interval area.
Standard
As many index records as will fit in
the user-specified buffer can be
resident, up to a maximum of all index
set records.
No

Yes
Each logical record is presented in key
sequence. The sequence set index level
is used.
Yes
Only the sequence set index level is
used.

ISAM •. OS

Yes
Records are written in count, key, and
data 1:ormat.
Yes, ~~xcept for unblocked fixed length
records
Yes
No

Block size specified by the user up to a
maximum of the track size.

Track and cylinder index levels are
requilred. Up to three master index
level!J are optional.

Yes
Yes
Index records are written in count, key,
and delta disk record format.
No
Data field is always 10 bytes. Key field
is key size.
No
Full key is always written

No

Standard
Track index is always on the first trackCs) of
prime cylinders

Optional
Only 1t.he highest level can be made resident.
Resid4:!nce of part of an index is not supported.

No

Yes
Each logical record is presented in key sequence.
The track index is used.

No

o
en
~
~
re
en
rt
o
~

I.Q
to
to..)

~
to
III

~
t;
to
en
en
j::I

:g
....

~
rt

U1
U1

iTable 100.30.2. Comparison table of VSAM and ISAM facilities for OS (continued)

Characteristic

c. sequential retrieval and
update by record address

d. sequential updating by
sequenced keys without
retrieving records

e. Direct retrieval and
update by generic key,
equal key, or key-greater
than the specified key

f. Direct retrieval and
update by record address

g. Additions by direct
processing

h. Additions by mass insertion
using sequential processing
and key sequenced additions

i. Concurrent sequential and
direct processing of the
same data set with a single
OPEN

j. Deletions physically
removed

k. Logical records can
be lengthened
or shortened

1. Multiple-request processing
is supported within a
single program or a program
and its subtasks.

m. Write check after a write
n. Locate and move mode

processing
o. OPEN validation of end-of

data indication

8. Checkpoint/restart facilities

9. Password protection

VSAM - os

Yes, via presenting RBA's in sequence

No

Yes

Yes, via RBA

Yes

Yes

Yes

Yes
Records are shifted and free space
is reclaimed.

Yes, and space is reclaimed for a
shortened record.

Yes, with one ACB.

Optional
Locate mode for read-only operations and
move mode supported
Yes
Abnormal termination never occurs
during OPEN processing.

Yes, same as for ISAM

Yes
Levels supported for the user are:
• Master access - allows access to the

data set, its index data set, and
its catalog entry for all operations

ISAM - OS

Positioning via a SETL macro using record ID
(CCHHR) is supported. Record must be
retrieved sequentially after positioning.
Yes

Yes for equal key. Generic key and key
greater than specified key can be used in a
SETL macro for positioning. The record must
be retrieved separately using sequential mode.
Yes, via record ID (CCHHR)

Yes

No

NO
The data set must be closed and reopened to
change modes. Alternately two DCB's,
one for sequential and one for direct
processing, can be used.
Limited
Records are flagged when deleted.
Deletions are physically removed only if
they are forced off a prime track or when a
full track of variable length records is
reorganized for an addition. A record that
is marked deleted can be replaced with a
record of the exact same size.
Yes

Yes, using multiple DCB's.

Optional
Yes

Yes
Abnormal termination can occur during OPEN
processing.

Yes

Yes
TWo levels of protection are provided. If the
current password is presented, the data
set can be opened for read only or for read
and write processing.

\.J1
a'l

o
en

" <:
fool·

~
c:
III
~

en
cT
o
t;
III

I.Q
I'D

I'-.,)

t'IJ
I'D
III
cT
c:
t;
I'D
(J)

en
c:

't3
't3
~
I'D
E3
I'D
:::I
r1'

Table 100.30.2. COllllparison table of VSAM and ISAM facilities for OS (continued)

Characteristic

a. User written authorization
routines supported

10. Data set sharinq'
a. Within a region
b. Acros!; regions (DISP=SHR)
c. Across systens

11. Data set catal~ging

12. Languages supporting VSAM

13. VSAM data set direct input
to sort/merge

14. Utility program functions

VSAM - os

• Control interval access allows
read/write of entire control interval
instead of individual logical records.

• Update access - allows access to the
data set and its index for retrieval,
updating, deletions, and additions.
Limited modification of the catalog
entries for the data set is permitted
but an entry cannot be deleted.

• Read access - allows retrieval of
data records only (no writing of
any kind).

Yes

Yes, with exclusive control support
Yes, without exclusive control support
Yes, exclusive control can be achieved
using the RESERVE macro

Required
The VSAM system catalog or a
VSAM user catalog must be used.

Assembler
COBOL (via ISAM

interface routine only)
PL/I (via ISAM interface

routine only)

No

Access method services program can
perform the following:
• Define direct access space for a

VSAM data set
• List, alter, or delete an existing

VSAM catalog entry
• Create new and reorganize existing

VSAM data sets
• Copy a VSAM, ISAM, or SAM disk

data set to a new SAM data set or into
an existing VSAM data set

• List some or all of the records in a
VSAM, ISAM, or SAM data set

• Perform functions required to make a
VSAM data set portable from one system
to another

• Verify and reestablish, if necessary,
the end-of-file marker in one VSAM
~~ta set

~-2!l

No

Yes, with exclusive control support
Yes, with exclusive control support
Same as VSAM

Optional
The OS data set catalog is used. There is
no special catalog for ISAM data sets.

Assembler
COBOL
PL/I
RPG

No

IEBISAM utility can perform the following:
• Copy an ISAM data set from one disk

volume to another, dropping deletions and
merging additions into the prime area

• Unload an ISAM data set onto a tape or
a disk volume, dropping deletions and
creating a backup sequential data set
suitable for input to the load operation
to re-create the ISAM data set

• Load, a previously unloaded ISAM data
set from tape or disk onto a disk
volume merging additions into the
prime area

• Retr'ieve and print the records of an
ISA~I data set, except deletions, or
create a sequentially organized data
set from active records

100:35 PAGE MANAGEMENT

Page management consists of a set of routines that manage real
storage and external page storage. Page management implements demand
paging and provides the program support required by dynamic address
translation hardware for implementation of a virtual storage
environment. The following routines are part of the page supervisor and
are contained in the resident nucleus:

• Interface control
• Real storage administration
• External page storage administration
• Page administration

The interface control routine is primarily responsible for receiving
requests for page management services and for controlling the flow of
requests to the other page supervisor routines, which actually perform
the required services.

REAL STORAGE ADMINISTRATION

The routines that are part of real storage administration perform all
real storage allocation and deallocation. Requests for services
associated with real storage can be implicit, such as after a page fault
occurs, or explicit, such as those requested via new page supervisor
macros.

The following services can be requested via page management macros:

• Make one or more virtual storage pages addressable and mark them
fixed (PGFIX macro). Available pages frames are allocated to the
virtual storage pages and, if necessary, page-in operations are
scheduled to cause the contents of the virtual storage pages to be
loaded. Pages are marked short- or long-term fixed as indicated in
the PGFIX macro. A release parameter can be specified to indicate
that a page-in is not required, such as when page frames are
allocated for buffer space. A suspend parameter can be used to
indicate that the request can be queued if no real storage is
currently available. Pages marked fixed cannot be paged out until a
PGFREE macro is issued. When the PGFIX request is for a single
virtual page, it can also indicate that the real address of the page
frame assigned is to be made available to the requester~

• Make one or more virtual storage pages addressable (PGLOAD Macro).
The service performed is like that for PGFIX except that the page
frames allocated are not fixed. The PGLOAD macro provides a page
ahead function.

• Mark the page frames allocated to the virtual storage pages
indicated unfixed (PGFREE macro). The release parameter can be
specified to indicate that the contents of the unfixed pages are no
longer needed so that a page-out is avoided.

• Deallocate the page frames and the slots allocated to the virtual
storage pages indicated (PGRLSE macro). The page frames are made
available for allocation without a page-out. The virtual storage
pages specified are marked invalid in the appropriate page table
entries. This macro is issued to free up the real storage and
external page storage associated with a virtual storage page when
its contents are no longer required. (PGRLSE does not cause the
virtual storage to be deallocated.) For example, during job step
termination, PGRLSE is issued to release the page frames and slots
associated with a pageable problem program region.

as/virtual Storage 2 Features Supplement 57

Page management services are implemented primarily for use by control
program routines; however. system programmers can use them. if
necessary. The PGRLSE macro is the only page management macro that can
be issued by an unauthorized problem program. The other macros can be
issued by a problem program if authorized via APF. User-written
routines that operate in supervisor state or with a protect key of zero
can also use all the page management services macros.

The real storage allocation routine processes requests for the
allocation of page frames to satisfy page faults and explicit requests
via macros. The allocation technique implemented attempts to (1)
minimize paging requirements asssociated with the real storage
allocation process itself. (2) minimize task wait time associated with
real storage allocation. and (3) keep real storage assigned to the
active pages in the system to reduce paging activity for executing
tasks.

The status of all real storage in the system is reflected in the page
frame table (PFT). which contains one 16-byte entry for each 4K page
frame in the system. The page frame table entries (PTFE's) are
connected by pointers to form six page frame status queues. The PFTE's
are initialized at IPL and thereafter always reflect the current status
of each page frame. The page frame table is contained in the nucleus.

A PFTE contains identification of the task to which it belongs. the
number of the virtual storage page to which it is assigned. flags to
indicate its status (short- or long-term fixed. being paged in or out.
allocated to a nonpageable region, for example). and queue pointers to
indicate the page frame status queue of which it is a part.

The following page frame status queues are maintained:

• Available queue that indicates the page frames that are available
for allocation when page faults and page load/fix requests occur.
When page frames are released, such as at end of job step. they are
placed in this queue. Allocated page frames that become inactive
can be placed on this queue. An available page frame count (APe) is
maintained that always reflects the number of page frames in this
queue. The available queue has a low threshold value and a
replenish count which are used in determining when to replenish the
available queue and by how much. respectively.

• Hold queue that indicates the page frames most recently allocated.
These page frames are not immediate candidates for reallocation. As
soon as a page frame is allocated, it is placed in the hold queue to
enable it to be used by the task to which it is allocated before it
is put on an active queue and, thereby, made available for
reassignment.

• Four active queues that contain all the PFTE's that are not in the
available queue or the hold queue. These queues reflect the
currently allocated page frames. As page frames in these queues
become inactive, they are subject to being placed on the available
queue, as per the page replacement algorithm.

Real storage is allocated from the available queue which contains
unassigned page frames. Frequently referenced page frames are normally
not taken from one task to be allocated to another; however, this can
occur if a situation arises in which there are no unassigned or inactive
page frames available for allocation to a task.

Tasks execute on a priority basis and, therefore, requests for page
frames are received and allocated on a priority basis. However, except
for a swap-in operation for a Tsa user, page management does not ever
attempt to ensure that a given number of page frames are allocated to

58 as/Virtual Storage 2 Features supplement

each task (page frames are assigned to the currently most active pages
without regard for the task to which they belong). Unauthorized
pageable problem programs do not have any control over when or how many
page frames are allocated to their pages.

At regular intervals, the page supervisor inspects the paging
activity of the system. If it is deemed to be too high, a deactivation
procedure is entered to make real storage available. This is done to
prevent the occurrence of thrashing.

Real storage Allocation

The following is done to service a real storage allocation request
(refer to Figure 100.35.1). Prior to allocating a page frame, page
reclamation is attempted. If the contents of the referenced virtual
storage page are still in real storage, a page-in operation can be
avoided. Page reclamation is possible (1) if the page frame last
assigned to the virtual storage page has not yet been reassigned (is in
the available queue), (2) when the page frame containing the desired
page is still waiting to be paged-out, and (3) when a page frame is in
the process of receiving the desired page in response to another
request.

If reclamation is not possible. the real storage allocation routine
attempts to allocate a page frame from the available queue. If a page
frame can be allocated from this queue, its PFTE is removed and the
available page frame count is decremented. If a page-in is required, a
request is placed in the appropriate page-in device queue, and the task
requiring the page remains in the wait state. Otherwise, the PFTE is
placed at the end of the hold queue and the allocated page frame is
initialized to zero (for data security protection). The appropriate
page table entry is updated to reflect the allocation of real storage.
The same procedure is used to service a request for more than one page
frame.

If the page frame allocation request indicates long-term fixing (for
SQA or LSQA, for example), a page frame in real storage located above
the V=R line address is selected if possible. If a request is received
to long-term fix a page that is already present in real storage and the
page resides in the V=R area, it is moved outside the V=R area, if
possible. If no page frame outside the V=R area is available, any
available page frame within the V=R area is allocated.

The V=R real storage allocation routine is entered after it has been
determined that the V=R dynamic area of virtual storage contains a
virtual storage area large enough to satisfy the region size request.
The V=R allocation routine attempts to locate a contiguous real storage
region that is large enough to satisfy the request. If SQA, LSQA, or
any other long-term fixed pages have fragmented real storage such that
no contiguous real storage area without such pages exists in the V=R
area that is large enough to satisfy the request, the V=R allocation
request is terminated since potentially a large enough area might not
become available until a re-IPL is performed. The operator is notified.
If a large enough real storage area can be found that contains only
short-term fixed pages, nonfixed assigned pages, and unassigned pages,
the V=R request waits until the required assigned page frames become
available.

as/Virtual Storage 2 Features Supplement 59

Page
translation
exceptio!"'

Explicit real
storage request
vIa a macro

./
Interface
control

1
Rea! Storage
Reclamation
Routine

1

Real storage
Allocation
Routine

Page
Replacement
Algorithm

Replenish
available queue
with PFTE's
from 0, ° queue;
move other

I
PFTE's to I
appropriate
queues

I_~ __ ---1

Allocate
reclaimed
page frame

/\!!ocate page
frame and
schedule page-in
if necessary

Replenishment
completed

Request
satisfied

Search 0, 1
queue; schedule
0,1 PFTE's
for page-outs;
(nOve 1, i
PFTE's to 1, 1
queue.

Replenishment
completed

Put 1, ° queue
entries in 0, °
queue; put 1, 1
entries in 0, 1,

of new 1, ° ~~:r:~~I:t ~Un~e II

o
Figure 100.35.1. Flow of the real storage allocation procedure

60 as/Virtual Storage 2 Features Supplement

If the available queue does not contain enough page frames to service
the request, or if the available page frame count (APC) reaches or falls
below the low threshold value for the available queue as a result of
page frame allocatio~ the real storage allocation routine gives control
to the real storage replacement routine. The low threshold is used to
indicate the point at which the available queue should be replenished
with infrequently referenced page frames from the active queues. The
real storage replacement routine schedules the replenishment function.

The aim of the real storage replacement routine is to keep enough
page frames in the available queue to enable page frames to be allocated
without the potential necessity of a page-out operation for each page
fault (which avoids keeping the requesting task in the wait state during
the required I/O operation). This routine causes page frames to be
placed in the available queue until the replenish count reaches zero.
The page replacement algorithm selects the page frames that are to be
placed in the available queue.

page Replacement Algorithm

The function of the page replacement algorithm is to replenish the
available queue by enqueuing on it infrequently referenced real storage
page frames taken from the active queues. Page-out operations are
scheduled when required (a change bit for the page frame is on). The
technique used to determine which page frames are taken from the active
queues is designed to ensure that the most frequently referenced
(active) and most recently assigned pages remain in real storage. Page
frames that have been unreferenced for the longest period of time are
considered to be the least active. Unreferenced page frames that have
not been changed are selected before those that have been changed, since
these page frames can be made available without a page-out operation.

The page replacement algorithm uses one hold queue and four active
queues of allocated page frames. Each active queue represents a
possible configuration of reference and change bit settings as follows
(reference and change settings for a given PFTE are indicated as 0,0;
1,0; 0,1; or 1,1):

Reference
Bit

o

o

1

1

Change
Bit

o

1

o

1

Active Queue Contents

Page frames that were unreferenced
and unchanged since the last
inspection by the replacement
algorithm. Only 0,0; 1,0; or 1,1
PFTE's can be in this queue.

Page frames that were unreferenced
since the last inspection by the
replacement algorithm but that were
changed at some previous time. Only
0,1 and 1,1 PFTE's can be in this queue.

Page frames that were referenced
since the last inspection by the
replacement algorithm but that were
not changed. PFTE's with q 0,0; 1,0;
or 1,1 setting can be in this queue.

Page frames that were referenced and
changed since the last inspection by
the replacement algorithm. Only 0,1
or 1,1 PFTE's can be in this queue.

OS/Virtual storage 2 Features Supplement 61

A replenish count, as well as a low threshold value and an APe, is
associated with the available queue. The low threshold value and the
replenish count can be supplied by the operator during IPL. They cannot
be specified during system generation. system-supplied defaults are
used if the operator does not provide these values. The page
replacement algorithm is entered whenever the APe falls below the low
threshold value for the available queue. The page relacement algorithm
attempts to take the number of page frames specified by the replenish
count from the unreferenced, unchanged (0,0) queue, and place them in
the available queue. As the 0,0 active queue is inspected, page frames
whose reference and change recording bits have changed since the last
inspection are moved to their appropriate queues. After a PFTE is moved
from one active queue to another, the reference bit for the page frame
associated with the PFTE is set to zero. The change bit for a PFTE is
set to zero only when the entry is placed in the available queue after a
page-out operation and at the completion of a page-in. The reference
bit also is set to zero after a page-in.

The following defines the activity of the page replacement algorithm
during an inspection sequence.

• A working replenish count is set equal to the replenish count value.
The 0,0 active queue is searched serially from top to bottom.
PFTE's with a 0,0 reference and change bit setting are placed in the
available queue, the working replenish counter is decremented, and
the APC count is incremented. PFTE's with reference and change
settings other than 0,0 are moved to the appropriate active queue.
Their reference bit is set to zero and they are placed at the end of
the queue they are assigned. Hence, active queues are maintained in
FIFO sequence to preserve a record of comparative length of time in
the queue among PFTE's in the same active queue. (The hold queue is
maintained in FIFO sequence also.) The 0,0 active queue is searched
until enough 0,0 PFTE's are found to raise the APe to the high
threshold value of the available queue.

• If enough 0,0 PFTE's can be placed in the available queue from the
0,0 active queue to reduce the working replenish count to zero, page
replacement processing terminates. If enough 0,0 PFTE's are not
found in the 0,0 active queue, the 0,1 active queue is inspected
next from top to bottom. PFTE's with a 0,1 reference and change bit
setting are selected and scheduled for a page-out operation. PFTE's
with a 1,1 setting are moved to the 1,1 active queue and their
reference bits are turned off. The working replenish count is
reduced when a 0,1 PFTE is selected. However, 0,1 PFTE's that are
selected do not cause the APC to be incremented, since the pages
these PFTE's represent can be reclaimed before the page-out occurs.
Once a page-out is completed, the associated PFTE is placed in the
available queue and the APe is incremented.

• since the 0,0 and 0,1 queues have been depleted by the previous two
searches, they must be replenished. All the PFTE's on the 1,0
active queue are moved to the 0,0 queue, and the entire contents of
the i,i queue are moved to the O,i queue. All the PFTE's in the
hold queue are moved to the 1,0 queue. The reference bits of PFTE's
are not reset to zero when the queues are switched. The 0,0 queue
is then searched as before for 0,0 entries, and entries with other
settings are moved to the appropriate queues.

Figure 100.35.2 illustrates the operation of the page replacement
algorithm. The page replacement algorithm used in VS2 is sensitive to
the paging rate of the system. The higher the paging rate, the more
frequently the algorithm will be entered to reexamine the status of the
PFTE queues and reclassify them accordingly. The page replacement
algorithm also selects unreferenced, unchanged pages before
unreferenced, changed pages when replenishing the available queue.

62 OS/Virtual Storage 2 Features Supplement

Therefore, inactive refreshable pages will be made available for
allocation before inactive nonrefreshable pages.

The page supervisor monitors the paging activity of the system. When
it becomes too high, as determined by user- or system-specified values,
task deactivation occurs to prevent a system thrashing condition. (The
page supervisor does not monitor the paging activity of individual
programs, only of the entire system.)

Task Deactivation and Reactivation

Paging activity for the entire system is measured by accumulating
statistics regarding reclaimed pages, page-in operations, and TSO region
swap-in operations. Periodically. these counts are inspected to
determine whether they exceed high threshold values established at
system initialization. The interval of time between inspections can be
specified by the operator during IPL as can a high and a low threshold
value for reclaimed pages and a high and a low threshold value for page
in and swap-in operations. (These five values cannot be specified
during system generation.) system defaults are used if the operator
does not supply these values.

When established high threshold values are exceeded, the task
dispatcher is given control to select a task for deactivation. The
lowest priority pageable task is selected and marked nondispatchable.
Nonpageable and TSO tasks are not considered for deactivation. The
reference bits for each of the page frames currently allocated to the
deactivated task are set to zero. which makes these page frames
available and most likely to be selected next time the page replacement
algorithm inspects the PFTE queues.

When any task is in deactivation status at the time paging activity
counts are inspected and found to be below their high threshold values,
a check is made to see if the same counts are also below a low threshold
value. When they are, the task dispatcher is entered to select a
deactivated task for reactivation, since this condition indicates that
paging activity is sufficiently reduced to permit task reactivation.

EXTERNAL PAGE STORAGE ADMINISTRATION

External page storage administation manages the allocation of slots in
external page storage to virtual storage pages. This routine maintains
external page tables that indicate whether or not a virtual storage page
has a slot assigned and, if so, the location of the slot. When a page
in operation is required, these tables are inspected to determine the
address of the assigned slot.

There is one external page table associated with and adjacent to the
page table for each allocated segment of virtual storage that is
pageable and for segments allocated to TSO LSQA's. These tables are
contained in SQA or the appropriate LSQA. There are 16 entries, eight
bytes in size, in each external page table (one for each virtual storage
page in the segment the associated page table describes). In addition
to indicating the location of an assigned slot, an external page table
entry contains the storage protect key associated with its corresponding
virtual storage page.

Bit maps, one per paging device, are used to indicate whether a slot
in defined external page storage is assigned or available. When a slot
must be allocated for a page-out operation, these maps are inspected
during the selection of a slot. Bit maps are contained in the nucleus.

OS/Virtual Storage 2 Features Supplement 63

Status of Queues Before Replenishment
Active Queues

Low threshold=2
Replenish Count=5
Working replenish=5

,-----------------------~~,------------------------~
, Unreferenced Unreferenced Referenced Referenced '\

Available

1001 18

APC=l

Working replenish=2

Available

00 18

00 15

00 4

00 6

APC=4

Working replenish=2

Available

00 18

00 15

00 4

00 6

APC=4

Working replenish=2

Available

00 18

00 15

00 4

00 6

APC=4

Working replenish=O

Available

I: 1 :: I
Et±j
tllij

APC=6

Unchanged Changed Unchanged Changed

0,0 01 1,0 11

10 3

10 7

00 15

00 4

11 9

00 6

10 11

11

11

11

11

11

1

0

8

13

19

~
~

---- Reference and change recording bits

Status After Searching 0,0 Active Queue
0,0 0,1 1,0

11 1 10 5

11 0 11 2

11 8 00 3

11 13 00 7

11 19 00 11

Status After Searching 0,1 Active Queue

0,0 0,1 1,0

00

10 5

11 2

00 3

00 7

00 11

(From 1,0
queue)

0,0

1001 11

10 5

11 2

00 3

00 7

00 11

Status After Switching Queues

01

01 10

11 17

11 14

01 9

01 1

01 0

01 8

11 13

01 19

(From 1,1
queue)

1,0

[1O]12l
~
(From Hold
queue)

Status After Searching 0,0 Active Queue

0,1 1,0

~
~

11 14

01 9

11 1

01 0

01 8

11 13

01 19

10 12

11 16

00 5

01 10

11 17

11 14

1,1

01 10

11 17

11 14

01 9

11

01 10

11 17

11 14

01 9

01 1

01 0

01 8

01 13

01 19

1,1

1,1

Hold

~
~

Hold

r"iOT12l
~

Hold

~
~

Hold

Hold

Figure 100.35.2. Operation of the page replacement algorithm

64 as/Virtual Storage 2 Features Supplement

When a slot must be assigned. the external page storage algorithm
attempts to select a device that will balance the usage of paging
devices. When primary and secondary paging devices are defined. slot
assignment is balanced among primary paging devices and secondary
devices are not selected until the threshold value for available primary
external page storage is reached. Within a selected paqing device, the
algorithm attempts to select a slot that will minimize seek time if the
device has a movable arm. or rotational delay if the device is of the
fixed-head type.

A virtual storage page does not have a slot permanently assigned to
it. except for those allocated to the pageable link pack area and its
directory. Slot assignment is performed for a page every time a page
out operation is required for the page. A slot is selected that will
m1n1m1ze paging I/O time. Hence, each time a page is written out, a new
slot may be assigned and. if so, the slot previously assigned is freed.

PAGE ADMINISTRATION

Routines in page administration are primarily responsible for
initiating I/O operations (page-ins and page-outs) on paging devices and
for performing the required processing when those I/O operations
terminate. Page administration performs th~ following:

• Page I/O initiation. Channel programs for all paging operations are
built according to a slot sorting algorithm (discussed below) that
is designed to optimize paging operations. The EXCPVR macro is
issued to initiate paging I/O requests and a special interface to
lOS is used.

• Completion processing for paging operations. For example, when a
page-in is completed. the reference and change bits for the affected
page frame are reset, the PFTE for the page frame is placed in the
hold queue, the appropriate page table entry is validated, and the
task that was awaiting completion of the page-in operation is placed
in the ready state. When a page-out completes, the PFTE for the
affected page frame may be reclaimed. allocated to a nonpageable
region. allocated as a reserved page frame for SQA and LSQA, or
placed in the available queue.

• Determination of the location (virtual storage address) of the page
table entry and the external page table entry for a virtual storage
address when they are required (such as after a page fault occurs)

• Creation and destruction of page tables when these functions are
requested by virtual storage management (discussed in section 100:25)

• Release of page frames and slots currently assigned to an area of
virtual storage. (PGRLSE processing is part of page administration.)

• Swapping of TSO region contents in and out of external page storage
(described under wTime Sharing Optionw in Section 100:20)

The slot sorting algorithm initiates channel programs for paging
operations. The number of channel programs available for exclusive use
in paging operations is indicated during system generation and can be
altered at IPL. These channel programs are part of the fixed control
program. When a paging operation is required, the slot sorting
algorithm places the required device-dependent information into an
available channel program based on the address of the slot assigned by
the external page storage algorithm. The channel programs built for
paging operations contain real addresses. When a channel program has
been completed, it is placed into the appropriate slot queue. A slot
queue is a queue of channel programs that are to perform operations on

Os/Virtual storage 2 Features Supplement 65

slots within the same paging device that have the same slot number (but
not group number). There are multiple slot queues per paging device.

Channel programs are placed in a slot queue for a fixed-head paging
device in task priority sequence, with read requests having priority
over write requests when task priorities are equal. For a paging device
with a movable arm, channel programs are placed in a slot queue in low
to high cylinder address sequence. The channel programs for the same
cylinder are then arranged in task priority sequence, as they are for
fixed-head paging devices. Rotational position sensing is used, when
present, for the paging device.

Channel program initiation begins after a channel program has been
constructed for all existing paging requests or after all the channel
programs available for allocation to paging operations have been used.
Channel programs are then chained together for each inactive paging
device. The chain is constructed such that paging I/O time will be
minimized. The PCI flag is used so that an I/O interruption occurs at
the completion of every fourth I/O operation (read or write) in the
chain. The chains constructed for the inactive paging devices are then
initiated via the EXCPVR macro. A channel program chain is constructed
for each active paging device and is chained to the currently
operational channel program chain for the device. By Chaining
additional channel programs to operational channel programs, page
administration keeps paging devices active as much as possible.

Page-out write operations are not verified for performance reasons.
When a permanent write error occurs during a page-out, the slot involved
is marked assigned so that it will not be reassigned. Another available
slot is selected and the page is written in the new slot. The operator
is informed that an error occurred on a paging device. When a permanent
read error occurs during a page-in operation, the task associated with
the page is abnormally terminated, the slot is marked assigned to
prevent further allocation of the slot, and the operator is informed of
the error.

100:40 RECOVERY MANAGEMENT

RECOVERY MANAGEMENT SUPPORT

The routines included in recovery management support are machine
check handler (MCH), channel check handler (CCH), alternate path retry
(APR), and dynamic device reconfiguration (OOR). All are standard in
VS2. (APR is included automatically only when an alternate path to a
device is specified.) The facilities provided by these routines are
functionally equivalent to those supported by OS MFT and MVT RMS
routines for System/370 models, with a few exceptions, as follows.

MCH routines are structured such that a VS2 control program generated
for one System/370 model can be executed on other System/310 models
supported by VS2. When MeR recognizes that it is operating on a model
other than the one for Which it was generated, error conditions that
require processing by model-dependent routines are handled by model
independent routines.

Extensions to recovery processing after a real storage error occurs
have been made as well. When an uncorrectable real storage failure
occurs after the IPL procedure has been completed, MCH attempts to
isolate the page frame involved so that it will not be allocated by real
storage management, and an attempt to recover the contents of the
damaged page frame is made. If the page was unchanged prior to the
uncorrectable storage error, it is assigned another page frame and paged
in again. If the page was changed and it belongs to a user task, the

66 OS/Virtual storage 2 Features supplement

task is abnormally terminated. If the page is changed and it belongs to
the system or a system task, recovery procedures are invoked.

The resident portion of MCR is contained in the control program
nucleus. The transient modules of MCR are contained in SYS1.SVCLIB. A
central CCR routine is also part of the nucleus. The five channel
dependent CCR routines (for 2860, 2870, 2880, Model 158/155 II, and
Model 145 channels) are contained in SYS1.LINKLIB. During IPL, the
required channel-dependent module or modules, as determined by the STORE
CHANNEL ID instruction, are made resident in the nucleus.

APR and DDR processing is equivalent in function in VS2 and MVT,
except that OOR does not support the swapping of a system residence or a
page data set volume in a VS2 environment.

OLTEP

OLTEP is a standard feature of VS2, and it supports the same
functions as OS MVT OLTEP. When controlling the execution of OLT's,
OLTEP must operate in a nonpageable region in VS2. A minimum of 36K is
required for the nonpageable region when 4K OLT's are executed. OLTEP
can execute in a pageable region, however, when it is controlling
execution of the Logout Analysis Program for a Model lS8, 155 II, 168,
or 165 II. A pageable region of 192K minimum is required to execute a
logout analysis program under OLTEP.

PROBLEM DETERMINATION FACILITIES

service Aids

The service aids in VS2 are designed to help diagnose a control or
problem program failure by gathering information about the cause of the
failure, formatting and printing the information in a readily usable
form, and aiding in the development and application of an immediate fix
for a given problem.

The following service aids are provided, all of which can operate in a
pageable region under VS2 control, except IMCOSJQD:

• AMAPTFLE is used to apply PTF·s to a system. This aid also produces
the job control required to apply the fix. Independent component
releases of VS2 are supported (not supported in MVT).

• AMBLIST replaces the lMAPTFLS and IMDMDMAP service aids in MVT and
produces formatted listings that can be used for system
serviceability and diagnostic purposes. It can print the following:

Formatted load module listings
Formatted object module listings
Load module map and cross-reference listings
Map and cross-reference listings of the system nucleus
Listings of the data stored in the CSECT identification

records of load modules
Load module map and cross-reference listings showing
relocated addresses

Load module summary data including entry point addresses, module
attributes, and the contents of the module's system status index

Program modifications to a load module library

• AMASPZAP provides the capability of inspecting and modifying any
load module in a partitioned data set (PDS) or any specific data
record on a direct access device. It also can be used to dump an

os/virtual Storage 2 Features supplement 67

68

entire data set. a specific member in a partitioned data set. or any
portion of a data set on a direct access device. Use of this
service aid is restricted via APF.

• IMCOSJQD can be used to print the contents of SYS1.SYSJOBQE. This
standalone program replaces the IMCJQDMP program provided in MVT.

• AMDSADMP is a macro instruction that enables a user to generate a
standalone. high-speed or lo~speed real storage dump program. The
high-speed version writes the contents of the control registers.
real storage (including the seven-bit protect key). and. optionally.
the page file to tape in large blocks (to be printed by AMDPRDMP).
The low-speed version prints the contents of the control registers
and real storage or writes them to tape in unblocked printable
format so it can be printed by IEBGENER or AMDPRDMP. The store
status function must be performed by the operator prior to loading a
standalone dump program.

• AMDPRDMP formats and prints a dump tape produced by a high-speed or
low-speed version of AMDSADMP and the trace data gathered by the
generalized trace function of GTF. It also can be used to print
selected pages from the page file. The VS2 AMDPRDMP service aid
formats dumps created using the VS2 AMDSADMP dump routine only. It
will not format a dump created using a VS1 dump routine.

• IFCDIPOO initializes. reinitializes. and reallocates the SYS1.LOGREC
data set. as in MVT.

• IFCEREPO formats and prints records contained in SYS1.LOGREC and
creates a history tape. if desired. as in MVT.

• Generalized Trace Facility

The general functions of GTF. as implemented in VS2. are the same as
those for GTF operating under OS MFT or MVT. When executing in VS2.
GTF uses the hardware monitoring facility and supports tracing of
page fault interruptions.

The generalized trace function of GTF must be initiated as a system
task via a START command. A virtual storage region of 64K minimum
is required. Parameters (events to be traced. definition of trace
output data set. etc.) can be supplied to GTF via the START command
or a SYS1.PARMLIB member. During its execution in VS2. the trace
function requires a certain minimum of fixed real storage when trace
data is contained in real storage and a larger minimum of fixed real
storage when the data is written in a trace data set. If additional
trace buffers are defined. more real storage is fixed.

The trace EDIT function of GTF is a part of the AMDPRDMP service aid
and is invoked as a problem program via job control. A minimum 128K
pageable region is required for its execution. The trace EDIT
function of VS2 will format only the trace data produced in a VS2
environment. It will not format data traced using GTF in VS1, MFT,
or MVT environments. However. MVT programs that use the GTRACE
macro can be executed under VS2 control without modification. If
user-written EDIT exit routines are being used in MVT. they may
require modification for operation in a VS2 environment because of
differences in the format of trace data for system events.

While GTF and the current MVT resident trace facility coexist in a
VS2 control program, only one can be active at a time. GTF disables
the trace facility whenever it activates its own tracing function
and reenables the trace facility whenever GTF tracing is suspended.

OS/Virtual Storage 2 Features Supplement

The storage dump facilities available in MVT are also provided in
VS2. Real storage and/or the contents of selected areas of virtual
storage can be dumped in VS2.

Dynamic Support System (DSS)

The dynamic support system is a general purpose debugging tool that
is designed to help locate and temporarily repair a failure in most
components of the VS2 control program. DSS uses program event recording
hardware in its interface with the operational VS2 operating system.
DSS is designed to be used by authorized personnel, such as an IBM FE
Programming Systems representative.

The DSS user interfaces with DSS only via a required primary console
device type (3210, 3215, Model 158 display console, 3066) and
communicates requests using a DSS language that consists of several
commands. Secondary input can be entered via card readers and tape
units. The SYS1.DSSVM data set is used to contain such things as DSS
language processing routines. the paging data set for DSS, space for the
DSS internal dump, and a nucleus swap area.

The DSS user can:

• Display any portion of real storage or virtual storage and any
register or system control block during system operation under DSS.
Any of the preceding can be altered also, except DSS, IPL, and NIP
code.

• Monitor hardware events recognized by the PER feature and certain
program events that are detected using the monitoring feature

• Stop the operation of the system at a given point, perform
maintenance procedures. and then continue system operation

• Save data (register or real storage contents, etc.) accessed during
DSS activation on sequential devices for later use

Unauthorized use of DSS must be prevented by installation procedures.
The primary protection that DSS offers is the fact that only the primary
system console can be used for DSS operations.

100:45 LANGUAGE TRANSLATORS. SERVICE PROGRAMS, AND EMULATORS

SYSTEM ASSEMBLER

The System Assembler is a standard component of VS2 (and VS1). It is
the only language translator that is a standard component of VS2.
Program product and Type I language translators that are to be used with
VS2 must be obtained and added to the VS2 system after the V52 control
program desired has been generated. The System Assembler offers the
same functions as Assembler F and many enhancements. including improved
diagnostics and extended language capabilities. The System Assembler is
compatible with OS Assemblers E and F, with a few minor exceptions (see
OS/VS System Assembler Language, GC33-4010). Except for its support of
certain new System/370 instructions, the System Assembler is a
compatible subset of Assembler H.

The System Assembler supports all the new standard and optional
System/370 instructions. It is the only OS Assembler that supports the
following system/370 instructions:

os/virtual Storage 2 Features Supplement 69

LOAD REAL ADDRESS
PURGE TLB
RESET REFERENCE BIT
SET CLOCK COMPARATOR
SET CPU TIMER

STORE CLOCK COMPARATOR
STORE CPU TIMER
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK

The System Assembler is packaged to cause fewer page faults in a
paging environment than does Assembler F, and its modules are reentrant.
Therefore, the System Assembler can be placed in the pageable LPA and
shared by concurrently executing tasks. The System Assembler can
operate in a pageable region of 64K: however, for more efficient
operation, a region 128K or larger in size is required.

LINKAGE EDITOR

The VS2 Linkage Editor program is a standard component of vs2 (and
VS1). It also can operate under OS MFT and MVT. A pageable region a
minimum of 64K in size is required for its operation: however, a 192K
region is recommended for better performance.

The VS2 Linkage Editor supports the same facilities as OS Linkage
Editor F. In addition, it is designed to operate in a paging
environment, to support the authorized program facility (as previously
described), and to provide two new features that can be used to reduce
the paging and real storage requirements of programs.

The new features provided for use in minimizing paging activity and
real storage usage are CSECT reordering and CSECT alignment on a page
boundary. Linkage editor control statements can be included to indicate
the order in which control sections (CSECTS) and common areas appear in
a program (load module). By the reordering of control sections,
existing OS MVT programs can be restructured (without a rewrite) for
more efficient operation in a paging environment, if necessary. Linkage
editor control statements can also be included that specify which
control sections and common areas of a load module are to be aligned on
a page boundary in virtual storage.

The VS2 Linkage Editor accepts as input all load modules produced by
OS Linkage Editors E and F and the object modules that are produced by
alIOS language translators. Existing job control statements and
Linkage Editor E and F control statements are accepted without
modification except for the SIZE option and certain linkage editor
program names. VS2 does not recognize IEWL440, IEWL880, or IEWL128 as
linkage editor program names on EXEC statements. Only IEWL and LINKEDIT
can be used in VS2 as linkage editor program names.

UTILITIES

The same utilities that are provided in MVT are available in VS2.
The IEBCOPY system utility is enhanced to allow a partitioned data set
to be unloaded to a removable volume (tape or disk) and later reloaded
to the same or a different type disk volume. This utility is to be used
during a system generation to place distribution libraries supplied with
the starter system on direct access volumes. The VS2 starter system,
therefore, is independent of the direct access devices that will be used
during a system generation.

The IEHDASDR utility is modified to place a user-written IPL program
on track zero of an IPL volume, after the required IPL records and
volume label(s). This function can be used to place an AMDSADMP dump
program on disk so that it need not be IPLed from cards or tape. The
disk volumes used to contain any user-written IPL program must have a
track size that is large enough to contain the entire IPL program and

70 OS/Virtual Storage 2 Features Supplement

the IPL records. (The IPL program must be totally contained on track
zero.)

INTEGRATED EMULATORS

The functions supported by the integrated emulator programs that
operate under VS2 are identical to the functions supported by these
emulators when they operate under MVT. These functions are discussed in
appropriate system library publications and in Section 40 of the
following System/370 guides:

• A Guide to the IBM System/370 Model 145

• A Guide to the IBM System/370 Model 155, GC20-1729

• A Guide to the IBM System/370 Model 165, GC20-1730

All the integrated emulator programs for VS2 are pageable. The DOS
emulator can emulate DOS Version 3 or 4 but does not emulate DOS/VS.
The emulator interface, SVC 88, is standard in VS2: however, the desired
emulator programs must be ordered separately, as for MVT. Emulator
programs generated to operate on a Model 145, 155, or 165 under OS MVT
control will operate on a Model 145, 158/155 II, 168/165 II,
respectively, under VS2 control. Emulator regeneration is not required.

100:50 OS MVT TO OS/VS2 TRANSITION

VS2 is designed to be upward compatible with MVT, as of Release 21,
and, therefore, migration from MVT to VS2 should involve minimal
conversion effort. Some additional education of installation personnel
is required. For the most part, this involves their becoming
knowledgeable about the additional facilities and new environment
offered by VS2. System programmers must become acquainted with new
interfaces to VS2 (SMF exits, for example). Operators must learn how to
respond to new system messages, such as those related to paging devices,
and must become familiar with changes to the IPL procedure. Application
programmers should learn how to use some program structuring techniques
that are designed to minimize page faults. System designers must learn
about the factors that affect system performance in a VS2 environment so
that the system can be designed and operated in a manner that will
achieve the results desired.

Once the VS2 environment to be supported has been determined, a
system generation must be performed. A VS2 system control program is
generated via a two-stage procedure, in function, much like that
required to generate an MVT control program. The system generation
macros used to describe the desired control program are identical for
MVT and VS2 for like functions. Some of the macros and parameters used
in MVT are not required in VS2 while new macros are provided to describe
additional or different functions of VS2 (paging devices, automatic
priority group, etc.). As in MVT, a complete, nucleus-only, or 1/0-
device-only generation can be performed. AlIos program products and
Type I and Type II components that are to be used with the generated VS2
SCP must be added to the VS2 operating system after its generation.
Processor generations for Type I language translators cannot be
performed using a VS2 system and must be done using OS MFT or MVT.

The VS2 starter system operates on any System/370 model with 384K or
more of real storage that has the dynamic address translation feature,
one nine-track tape unit, one SYSOUT device, and four 2314/2319 or 3330-
series direct access storage devices. The VS2 starter system can be
used to generate a VS2 control program only and is required only for the
first generation. Thereafter, an existing VS2 control program can be

OS/Virtual Storage 2 FeatUres Supplement 71

used. The generated VS2 system can operate on any System/370 Model 145,
155 II. 158, 165 II, or 168 that has the hardware features and I/O
devices required by the control program. The SECMODS parameter should
be specified in the CENPROCS macro at system generation to cause
inclusion in the operating system of the model-dependent EREP for the
secondary models on which the VS2 control program is to be run, if any.

A new feature of the VS2 generation process is the installation
verification procedure (IVP) which is designed to be performed after the
VS2 control program is generated. The IVP involves executing an IBM
supplied job stream (maintained in the SYS1.SAMPLIB data set) using the
generated VS2 system. The function of the IVP is to exercise the
generated SCP system components to the degree that general operation of
the operating system and support of the system hardware configuration
specified are assured.

Existing user-written programs that operate under MVT on a System/370
model must be modified for correct operation under VS2 if they do any of
the following. Otherwise, user-written existing executable programs
(load modules) can be used without change.

• Reference permanently assigned locations in lower real storage whose
contents vary depending on whether BC or EC mode is specified

• Issue the LPSW instruction or directly reference fields in old or
new PSW locations whose function or location is affected by which
mode, BC or EC, is specified (such as the system mask field and the
interruption code field). The MODESET macro should be used to
selectively enable or disable the system for interruptions.

• Use the trace EDIT exit of GTF, if fields are accessed whose
location varies between MVT and VS2

• Depend on a nonstandard interface to the MVT control program. These
programs may require modification, based on the specific dependency.

• Use QTAM to support teleprocessing operations. These programs must
be altered to use TCAM since QTAM is not supported in VS2. Minimal
effort is required for this modification. (See OS TCAM Programmer's
Guide and Reference Manual, GC30-202Q, for a discussion of running
QTAM application programs under TCAM.)

• Modify an active channel program with data being read (channel
program contains self-modifying CCW's) or by executing instructions,
if the program is to be run in a pageable region. Program
modification is not required if such programs operate in a
nonpageable region. This situation can apply only to user-written
programs that use the EXCP macro instead of an access method. Such
programs do not operate correctly because the modification affects
the virtual channel program rather than the translated channel
program that is actually controlling the I/O operation. (See OS/VS
Data Management for System Programmers, GC28-0631, for a discussion
of how to modify an EXCP program that contains dI~arnically modified
channel programs so it can operate in paged mode.)

• Use the EXCP macro and contain user-written I/O appendages that can
incur disabled page faults, if these programs are to be run in paged
mode. Modification is not required to operate such programs in
nonpaged mode. These programs operate in paged mode if they are
altered to use the page fix appendage in order to fix the required
pages.

OS/Virtual Storage 2 Features Supplement

In addition. the following must be done if applicable to the existing
MVT installation:

• Programs that issue the SET STORAGE REY (SSR) or the INSERT STORAGE
REY (ISR) instruction should be inspected to determine whether
implementation of a seven-bit key instead of a five-bit key affects
the processing being performed. If the INSERT STORAGE REY
instruction is used. it should be used with the understanding that
it causes the reference and change bits in the storage protect key
to be set also. Alteration of these bits. particularly the change
bit. can impair system integrity. Note also that these instructions
use real. and not virtual. storage addresses.

• PL/I F programs assembled using an OS MVT release prior to 20 and
that use the teleprocessing facilities of this language translator
must be reassembled and link-edited.

• TCAM message control programs and message processing programs must
be reassembled and relink-edited in order to include the coding
required for them to operate in a virtual storage environment.
Modification of the source statements is not required.

• User-written SMF exit routines should be inspected to determine
whether they are affected by SMF record changes.

• TSO system parameters must be modified as required to adhere to
changes indicated in Section 100:20.

The job control statements for existing user-written programs do not
require alteration except as follows.

• The ADDRSPC=REAL parameter must be added to the appropriate JOB or
EXEC statements for programs that must operate in nonpaged mode if
the IBM-supplied reader procedure is used. The REGION parameter for
nonpaged job steps may have to be changed to request more space
because of differences in subpool allocation within a region in VS2
and MVT. In addition. the default region size for a nonpaged job
step in VS2 is 12R (plus track stacking) which is larger than the
MVT region size default.

• The REGION parameter for job steps that use the rollout feature may
have to be changed to specify a larger amount of space since rollout
is not supported.

• EXEC statements that specify IEWL440. IEWL880. or IEWL128 as the
linkage editor program name must be modified to specify IEWL or
LINREDIT. Alternatively. the three MVT linkage editor program names
can be specified as aliases of IEWL or LINREDIT to avoid job control
changes.

If I/O device type changes are made and/or if unsupported device
types, such as those listed in Section 100:05. are currently being used
in an MVT environment. program and/or job control changes may be
required to specify the supported I/O device that is used in a VS2
environment. Existing data sets can be used without alteration.
assuming that device type or access method changes are not made. If
VSAM is to be used instead of ISAM. the affected data sets must be
converted from ISAM format to VSAM format. as discussed in section
100:30. and appropriate changes to existing ISAM job control statements
must be made.

If desired, the structure of existing user-written MVT programs can
be modified to minimize the occurrence of page faults and use of real
storage (as discussed in Section 15:15 or 30:15 of the base publication
of which this supplement is a part). Such modification may improve

as/Virtual Storage 2 Features Supplement 73

system performance but is not required to enable existing programs (load
modules) to operate correctly in a VS2 environment.

A version of HASP II that interfaces with VS2 will be made available
after the first release of VS2. Although HASP II is not an sep, it has
Class A programming service. The version of HASP II that operates in an
MVT environment cannot be used with a VS2 control program. As part of
the transition process, MVT users with HASP II installed must perform a
HASP II generation using the new VS2 version. Concurrent operation of
batched jobs, TSO regions, and HASP II requires a system with a minimum
of 768K. If the 7094 emulator is used in a VS2 environment and column
binary cards are placed in the input stream, HASP II must be used as the
as reader interpreter does not support column binary reading of card
SYSIN data sets.

VS2 can also be used in the main processor(s) of an ASP
multiprocessing configuration and in a processor operating in local
mode. However, VS2 cannot operate in the support processor. The ASP
program operates in nonpaged mode under VS2 control. A system under VS2
control and a system under MVT or MFT control can share direct access
devices using shared DASD support.

For transition from a System/360 MV'!" environment to a System/310 VS2
environment, the considerations discussed in Section 60 of one of the
following publications apply in addition to the preceding discussion:

A Guide to the IBM System/370 Model 145

A Guide to the IBM System/310 Model 155

A Guide to the IBM System/310 Model 165

100:55 SUMMARY OF ADVANTAGES

As a growth system for as MVT users, OS/VS2 offers many new
facilities. Some are changes in the internal structure and organization
of the operating system control program to make its operation more
efficient. Some new facilities improve operational aspects by
simplifying the job of the operator and by reducing causes of total
system termination. others provide functions not available to MVT
users. VS2 can be more responsive to a dynamically changing daily
workload than MVT, and it supports an environment in which design
changes can be made more easily to accommodate maintenance changes and
the addition of new function or applications.

While OS/VS2 supports many new features, including functions
exclusive to System/370 (not provided in System/360), such as EC mode
and dynamic address translation, it remains upward compatible with MVT
because existing standard interfaces have been preserved. Required
control program modifications to handle new features are transparent to
the user so that operators and programmers interface with VS2 using
basically the same corr~ands, job control statements, data sets, and
programs they use in an MVT environment.

The single most important new feature of VS2 is its support of a
virtual storage environment. The general advantages that can result
from using a virtual storage operating system are discussed in the
System/310 guide base publication of which this supplement is a part
(either in section 15:05 or Section 30:05). In addition to these, VS2
offers other specific advantages over MVT, several of which also result
from the implementation of virtual storage. The following summarizes
these advantages.

74 as/Virtual Storage 2 Features Supplement

Improved Job Scheduling

• Up to 63 initiators can be started, if enough resources are present,
instead of a maximum of 15.

• Up to 42 foreground (TSO) regions can be started, instead of a
maximum of 14.

• An initiator can have up to 15 job classes assigned instead of a
maximum of eight,.

• The operator can cancel a job during its initiation if it is waiting
for data sets, region space, or external page storage to become
available. The system automatically cancels a job that requires
data sets that are permanently allocated to another job.

operational Enhancements

• The operator is relieved of most real storage management functions
(such as starting long runninq jobs at certain times to avoid
fragmenting real storage).

• High-priority jobs can be handled more easily. The operator can
start an initiator that is to be used to initiate only high-priority
jobs. Since real storage fraqmentation is significantly reduced in
VS2, there is more chance that the high-priority job can be
initiated in a VS2 than in an MVT environment.

• system parameters can be modified at IPL by the operator more easily
because of the addition of a new type of system parameter member to
SYS1.PARMLIB. Default system parameters can be modified by changing
the default SYS1.PARMLIB member and do not require a system
generation.

• The VS2 starter system is independent of the direct access device
types to be used during a system generation.

Improved System Integrity and Availability

• Fetch protection as well as store protection is provided for all
regions.

• The new authorized program facility is supported to prevent
unauthorized use of routines identified as having restricted access.

• validity checking of data extent blocks (DEB's) is significantly
expanded to prevent one job step from accessing data sets belonging
to another job step (unless the data sets are to be shared).

• Total system terminations that result from the lack of available
real storage for control blocks are minimized through enhanced SQA
management and via the implementation of LSQA for all regions rather
than TSO regions only.

• A module that checks for missing channel end and I/O device end
interruptions during system operation is standard to prevent system
waits, indefinite job step waits, and job step cancellations because
of an uncompleted I/O operation.

• Additional error recovery procedures have been included in master
scheduler tasks that are designed to prevent abnormal termination of
these tasks when certain errors occur.

as/Virtual Storage 2 Features Supplement 75

Improved Utilization of Real storage

• Inefficient use of real storaqe caused by unused storage within the
region size specified and/or residence of inactive pages of a
program is eliminated. Unused virtual storage within a pageable
region (either background or foreground) does not have real storage
assigned. and real storage allocated to inactive pages of a program
is released and allocated to active pages when necessary.

• Real storaqe fragmentation that occurs in MVT as regions of
differing sizes are allocated and deallocated is eliminated because
real storage is allocated on a demand basis, 4K at a time.

• Readers and writers are totally pageable so that during any time
interval. they use only the amount of real storage required to
handle the current activity. The operator need not perform any
function to make real storaqe assigned to inactive readers or
writers available for allocation to other programs.

• The amount of real storage used for routines in the link pack area
automatically increases and decreases based on the activity of these
routines. The most active modules at any given time will tend to
remain resident in real storage without the necessity of preplanning
on the part of system designers.

• The amount of real storage allocated to system control blocks (LSQA
and SQA) dynamically expands and contracts as required.

• Dynamic real storage management is provided for all programs that
operate in paged mode in a VS2 environment. regardless of the
language in which they are written. Dynamic serial program
structure implemented via use of LINK. LOAD, and XCTL macros. and
dynamic storage allocation supported via GETMAIN and FREEMAIN
macros. all of which are supported by the Assembler Language in MVT,
are not supported by all high-level languages.

Performance Enhancements

76

• Improved utilization of real storage. as discussed previously, may
enable a VS2 control program to operate in the same real storage
configuration as an MVT control program and support (1) a higher
level of multiprogramming. if more initiators can be kept active,
(2) more TSO users. or (3) better response for TSO regions with the
same number of TSO users.

• A new I/O load balancinq algorithm is implemented to allocate I/O
devices such that I/O activity is more evenly distributed on
available channels and contention among devices is reduced.

• A new task dispatching algorithm is provided that can increase
system throughput by allocatinq CPU time to selected jobs (those in
the APG) on the basis of their changing operational characteristics
(more CPU-bound or more I/O-bound) rather than according to user
assigned priorities.

• The required link pack area is greatly expanded, and it includes
most of the more frequently used control program routines. All
transient SVC routines reside in the link pack area. SVC and I/O
transient areas are not implemented to eliminate contention for
these areas. Serialization of system processing that results from
such contention in MVT is avoided. Less control program time is
required to page-in transient SVc routines in VS2 than to fetch them
in MVT.

OS/Virtual Storage 2 Features Supplement

• serialization of command processing is minimized by executing
command processing routines concurrently as subtasks of the master
scheduler.

• The time required to process storage allocation (GETMAIN) requests
for certain space in LSQA and SQA is reduced via implementation of
quickcells in these areas.

• The time required to process timing queues during a task switch is
reduced through implementation of new algorithms that support the
CPU timer and clock comparator instead of the interval timer at
location 80.

• Since real storage management is provided by VS2, problem
programmers need not use LOAD. LINK, XCTL, GETMAIN, and FREEMAIN
macros in new applications to efficiently manage real storage for
their pageable regions, and can avoid the control program execution
time required to service these requests.

New Features

• VSAM, a new access method designed to provide better performance and
more function than ISAM, is provided.

• Expanded online system debugging capability is provided by the
dynamic support system.

The new facilities of OS/VS2 make it a desirable growth operating
system for MVT users. However, many of the new features of VS2 make it
more suited to an online environment than is MVT. Specifically:

• Reduction of real storage restraints made possible by the
implementation of virtual storage can be an advantage when
designing, coding, and testing online applications that are
typically larger and more complex than most batched jobs.

• New functions may be added to existing online applications more
easily because the design of a program can be straightforward and
not involve the use of a complex dynamic or planned overlay
structure.

• Dynamic storage management is provided automatically by the system
and real storage can be more efficiently used. Storage management
no longer need be the major effort in online application design, as
it often is in MVT.

• More freedom in program design and better utilization of real
storage may enable lower cost entry into online applications
processing.

• VSAM is designed to be more suitable for an online or a data base
environment than ISAM.

• A system operating with VS2 should be less susceptible to the total
termination of operations because of certain improvements made in
the VS2 control program. System integrity and protection
enhancements have also been made.

• A system with a large online application need not be backed up with
a system having the identical amount of real storage. A smaller
amount can be used, assuming it provides acceptable performance.

OS/virtual Storage 2 FeatUres Supplement 77

INDEX (Section 100) ---

access method services program 50
access methods

BDAM 3
BISAM 4, 39
BPAM 3, 22
BSAM 3, 39
BTAM 4
GAM 4
QISAM 4, 39
QSAM 3, 39
QTAM 39
TCAM 4, 22, 39
VSAM 4, 40

active queues 58, 61
ADDRSPC parameter 10
advantages summary 74
allocation routine 24
alternate path retry (APR) 66, 67
ASB reader 2
ASP 74
authorized program 32, 34
authorized program facility (APF) 34
automatic priority group 32
automatic volume recognition (AVR)
available page frame count 58, 59, 61
available queue 58, 59, 61, 62

BDAM 3
BISAM 4, 39
BLDL table 8
BPAM 3, 22
BSAM 3, 39
BTAM 4

chained scheduling 39
channel check handler (CCH) 66, 67
channel program translation 11, 39
checkpoint restart 31
clock comparator 2, 38
CLOSE routine 39
configuration, system

for system generation 71
minimum 1

contents supervisor 31
control and processing program components 20
conversational remote job entry 2
CPU's supported in VS2 1
CPU timer 2

DADSM 39
data management 39-56

access methods 39
CLOSE routine 39
DADSM routine 39
EOV routine 39
OPEN routine 39
VSAM 40

DEB validity checking 36
device availability testing 19

78 oS/virtual Storage 2 Features supplement

DEVSTAT option 19
DIDOes 22
direct SYSOUT writers 2
disabled page faults 35
dynamic address translation 2, 11, 18
dynamic area

in real storage 13
in virtual storage 6, 10

dynamic device reconfiguration 66, 67
dynamic dispatching 33
dynamic support system 69

emulators 71
EOV routine 39
EXCP macro 39
EXCPVR macro 37, 39~ 40
external page storage

direct access devices supported 15
initialization 19
organization 14
page capacity by device type 16

external page storage administration 63

features
optional 4
standard 3
unsupported 2

fetch protection 12-13

GAM
general functions 1
generalized trace facility (GTF) 32, 68

HASP II 2, 7q
hierarchy support 2, 36
hold queue 58, 62

indirect data address list (IDAL) 39
indirect data address word (IDAW) 39
initialization of storage

external page 19
real 19
virtual 18

initiator 24
input/output supervisor (lOS) 39
installation verification procedure (IVP) 72
interpreter 24
interruption supervisor 31
interval timer 38
I/O appendages 40
I/O devices

supported 4
unsupported 6

I/O load balancing 25
I/O transient area 2
IPL (see system initialization)

job control 24
job management

allocation routine 24
ASB reader 2
CRJE 2
direct SYSOUT writers 2
initiator 24
interpreter 24

OS/Virtual Storage 2 Features Supplement '79

master scheduler 23
output writers 23-24
reader interpreters 23-24
terminator 25

job queue management 24
job scheduler 24-25

language translators 21. 22
libraries 22
linkage editor 70
link pack area

creation of 18
directory 9
fixed 8
modified 18. 19
pageable 8

local system queue area 9. 36

machine check handler (MCR) 66. 67
master scheduler 9
minimum system configuration 1
missing interruption checker 20
MODESET macro 32
MONITOR CALL instruction 32
multiprocessing 2. 74

nondynamic area
in rea1 storage 13
in virtual storage 6

nonpageab1e area 10
nonpageable problem program regions 10-11

OLTEP 67
OPEN routine 39
operator commands 23
operator communication at IPL 16-18
optional features 4
OUTLIM facility 2
overlay supervisor 31

page administration 65
page data set 15
page fault. disabled 35
page file 15
page fix I/O append~ge 40
page fixing 39
page frame table 58
page I/O initiation 65
page management 57

accounting data provided 26
external page storage administration 63
macros 57
page administration 65
queues 58
real storage administration 57

page migration 15
page reclamation 59
page replacement algorithm 61
page supervisor 57
page tables 13
pageable dynamic area 11
pageable problem program regions 12
paging devices 15, 16

80 OS/Virtual Storage 2 Features Supplement

problem determination facilities
OSS 69
service aids 67

problem program regions
program event recording
program fetch 37
program properties table

10, 12
2, 32

QISAM 4, 39
QSAM 3, 39
QTAM 39
quickcell facility 36

real storage

12

administration routines 51
allocation procedure 59
initialization 19
minimum fixed requirements 13-14
minmum system requirements 1
organization 13
reclamation 59

real storage administration 57
recovery management 66

APR 66, 67
CCH 66, 67
OOR 66, 67
MCH 66, 61
OLTEP 67

REGION parameter 10, 24
remote job entry 2
resident control program 6, 8, 13
rollout/rollin 2

scatter loading 2, 37
segment tables 13
serv1ce aids 67
SET SYSTEM MASK interruption 32
shared DASO support 74
short-term fixing 39
slots 15
Smart-NIP routine 19
sort/merge 22
SPIE facility 32
standard features 3
storage hierarchies 2, 36
storage protection 2, 12
supervisor lock 35
SVC routines 8, 35
SVC transient area 2, 8
System Assembler 69
system components 20
system data sets 22
system generation 71
system initialization

device availability testing 19
initialization of storage 18
missing interruption checker 20
system parameter specification 16
without creating pageable link pack area 19

system log 3
system management facilities (SMF) 23, 26
system parameter specification 16
system queue area (SQA) 8, 10, 36
System/370 models supported 1
SYS1.0SSVM 22

as/Virtual Storage 2 Features Supplement 81

SYS1.LPALIB 8, 18, 19
SYS1.PAGE 15, 22
SYS1.PARMLIB 17, 19
SYS1.SYSJOBQE 24

task deactivation 63
task management 31-38

contents supervisor 31
interruption supervisor 31
overlay supervisor 31
task supervisor 32
timer supervisor 38
virtual storage supervisor 36

task reactivation 63
task supervisor 32
TCAM 4, 22, 39
terminals supported 5
terminator 25
TESTAUTH macro and SVC routine 34, 35
TESTRAN 2
time of day clock 2, 38
time sharing option 26-31

allocation of external page storage 21
BACKUP parameter 28
foreground region description 21
migration of TSO regions 15
parallel swapping 29
performance 31
storage protection 12
supervisor 30
swapping procedure 28
system parameter changes 30
TSO region 27
TSOAUX parameter 27
TSOMAX parameter 28

time slicing 4, 33
timer supervisor 38
tracing facility 3, 68
track stacking 10
transient areas 2, 8
transition from MVT to VS2 71
TSO (see time sharing option)
Type I language translators for VS2 22

utilities 10

virtual storage
initialization 18
organization 6
size supported 6
supervisor 36

VSAM 40-56

R2

access method services program 50
advantages 52
catalogs 49
comparison with IS~l 53-56
compatibility with DOS/VS VSAM 41
control area 42
control interval 42
devices supported 40
entry-sequenced organization 46
general description 40
index data set structure 44
ISAM interface routine 51
key-sequenced organization 41

os/virtual Storage 2 Features Supplement

password protection 50
processing summary 47
types of access supported 48

V=R dynamic area 10, 59
V=R line 10, 11. 13
V=R mode

description 10-11
programs that must run in 11

as/virtual Storage 2 Features Supplement 83

GC20-1753-O

International Bualness Machines Corporation
Data Processing Division
1133 Weatchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

o
en
<
~.

c:
~
en
Q
III
IC
CD

I\l

."
CD

~
~
III
en
c:
'tl
'tl
CD
3
CD

~

