
Systems

GC27-6979-1
File No. 8370-40

OS/VS
Supervisor Services and
Macro Instructions

OS/VS1 Release 2
OS/VS2 Release 1

Second Edition (September, 1972)

This is a major revision of, and supersedes, GC27-6979-0 and
all associated SRL Newsletters.

This publication applies to release 2 of OS/VS1 and release 1
of OS/vS2 and to all subsequent releases unless otherwise
indicated in new editions or technical newsletters. Changes
are continually made to the specifications in this book;
before using this book, consult the most recent edition of
the IBM System/360 and System/370 Bibliography (GA22-6822)
and the current SRL Newsletter for editions that are applic
able and current.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A form for reader's comments appears at the back of this publication.
If the form has been removed, comments may be addressed to IBM Corpora
tion, Programming Publications, Department 636, Neighborhood Road,
Kingston, New York, 12401. All comments become the property of IBM.

©Copyright International Business Machines corporation 1972

Intended mainly for the programmer cod-
19 in assembler language, this book
~scribes how to use the services of the
lpervisor, the macro instructions used to
~quest these services, and the linkage
>nventions used by the control program to
~ovide these serv1ces.

This book is divided into two pacts.
lrt I, ·Supervisor Services·, provides
(planations and aids for using the facili
.es available through the supervisor by
~ans of the macro instructions described
1 Part II, "Macro Instructions".

Part I is divided into seven topics.
?ecific topics include:

Program Design: Well designed programs
use system resources efficiently. Know
ing the conventions and characteristics
of the supervisor will help you design
more efficient programs.

Subtask Creation and Control: Occasion
ally, you can have your program executed
faster and more efficiently by dividing
parts of it into subtasks that compete
with each other and with other tasks for
execution time.

Program Management: The supervisor can
be used to aid communication between
segments of a program. Save area,
addressability, and passage of control
from one segment of a program to another
are discussed.

Resource Control: Portions of some
tasks are dependent on the completion of
events in other tasks. This requires
planned task synchronization. Planning
is also required when more than one pro
gram will be using a serially reusable
resource.

Interruption, Termination, and Dumping
Services: The supervisor provides faci
lities for writing exit routines to
handle specific types of interruptions.
It is not likely, however, that you will
be able to write routines to handle all
types of abnormal conditions. The
supervisor therefore provides for ter
mination of your program when you requ
est it by issuing an ABEND macro
instruction, or when the control program
detects a condition that will degrade
the system or destroy data.

PREFACE

Virtual Sto~age Management: While vir
tual storage allows you to write large
programs without the need for complex
overlay structures, virtual storage must
be obtained for your job step. Virtual
storage is allocated by both explicit
and implicit requests.

Miscellaneous Services: In addition to
the services outlined above, facilities
are provided for timing events, extended
precision floating-point simulation,
operator communication with both the
system and application programs, and
tracing of data originating in applica
tion programs.

Section II contains the descriptions and
definitions of the supervisor macro
instructions available in the OS/VS
Assembler Language. It provides applica
tions programmers coding the assembler
lanaguge with the information necessary to
code the macro instructions. The standard
list, and execute forms of the macro
instructions are grouped, where applicabl~,
for ease of reference.

Use of this book requires a basic know
ledge of the operating system and of OS/VS
assembler language. Books that contain
information about these subjects are:

OS/VSl Planning and Use Guide, GC24-S090
OS/VS2 Planning and Use Guide, GC28-0600
OS/VS Assembler Language, GC33-40l0

When other IBM manuals are referred to
in the text, only partial titles are given.
The following is a list of the complete
titles and order numbers of all manuals
referred to in this book.

OS/VS
---checkpoint/Restart, GC26-3784

Data Management Macro Instructions,
GC26-3793
Data Management Services, GC26-3783
JCL Reference, GC28-6704
Linkage Editor and Loader, GC28-6451
Service Aids, GC28-0633

OS/vSl
Debugging Guide, GC28-6670

IBM System/370
Principles of Operation, GA22-7000

iii

CONTENTS

PART I: SUPERVISOR SERVICES • • •
Summary of Services • • • • • •
Characteristics of the System • •

CHAPTER 2: PROGRAM DESIGN •
Linkage Conventions • • •

Linkage Registers • •

·
·
· · ·

·

·
·
·
.0

·

·

· · · · · ·
· ·
· · · · · · · ·

Saving the Calling Program's Registers
Establishing a Base Register • • • •
Providing a Save Area • • • • • • • •
summary of Conventions to be Followed
Receiving Control • • • • •

When passing

Virtual storage Considerations
Paging • • • • •
Design Techniques • • •

CHAPTER 3: SUBTASK CREATION AND CONTROL •
Creating the Task • • • • •
Task Priority • • • • • • •

Priority of the Job Step Task •
Priority of Subtasks • • • •
Assigning and Changing Priority •

Time Slicing • • • •
VS1 Systems • • • • • • • •
VS2 Systems • • • • • • • •

Task and Subtask communications •

CHAPT ER 4: PROGRAM MANAGEMENT • •
Load Module Structure Types

Simple Structure
Dynamic Structure

Load Module Execution
passing Control in a Simple Structure

Passing Control Without Return
Preparing to Pass Control •
Passing Control • • • • • •

passing Control with Return.
Preparing to Pass Control •
passing Control • • • • • • • •
Analyzing the Return
How Control is Returned • •
Return to the Control Program

Passing Control in a Dynamic Structure

· ·
· ·

Bringing the Load Module Into Virtual Storage •
Location of the Load Module • • •
The Search for the Load Module
Using an Existing Copy •• • •
Using the LOAD Macro Instruction

Passing Control With Return • •
The LINK Macro Instruction
Using CALL or Branch and Link
How Control is Returned • • •

Passing Control Without Return

· ·
· · · ·

· ·

· · · ·
and

· ·

· · · · · ·
· ·
· ·

· ·
· . · · · · · ·

· · ·
·
·

·
· · ·

· 1

· 1

· 1

· 3
3

· 3
4
6

· 6

· 7

· 8

· 8
8

• 10
• 10

10
11

• 11
12
12

• 13
• • 13

• • • • • • 14

17
• 17
• 17
• 17
• 18

18
• 18

18
• 19
• 20
• 20

20
• 22

• • 23
• • • • • • 25

• • • • 25
• • 25

• 25
• 26

29
• 30
• 31

• • • • 31
• 33
· 34
• 35

35
• 35

passing Control Using a Branch Instruction
Using the XCTL Macro Instruction •••••

Additional Entry Points • • • • • • • • • • • •
Entry Point And Calling Sequence Identifiers as

• • 37
Debugging Aids • • • 37

ChAPTER 5: RESOURCE CONTROL •••••••••• • • 38

iv

;1

~I

Task Synchronization
Us.ing a Serially Reusal:;le Resource

Naming the Resource • •
Exclusive and Shared Requests •
Processing the Request
Using ENQ and DEQ • • • • • •

Duplicate Requests for a Resource
Releasing the Resource
Conditional and Unconditional Requests
Avoiding Interlock • • • • • • •

CHAPTER 6: INTERRUPTION, TERMINATION, AND DUMPING SERVICES
Program Interruption Processing •
Program Interruption Control Area

Program Interruption Element
Register Contents Upon Entry to User's Exit Routine ••

Handling Abnormal Conditions
Dumping Services •• • •

ABEND and SNAP Dumps ••••
Indicative Dump (VS1) •
SVC Dump • • • • • •

CHAPTER 7: VIRTUAL STORAGE MANAGEMENT • •
Explicit Requests for Virtual Storage • •

Specifying the Size of the Area •
Types of Explicit Requests
Relinquishing Virtual Storage • •
Subpool Handling (In VS1 Systems)
Subpool Handling (In VS2 Systems)

Implicit Requests for Virtual Storage •
Reenterable Load Modules • • • •
Reenterable Macro Instructions
Nonreenterable Load Modules •
Freeing of Virtual Storage

• • • • 38
• • • • 38

• • 39
• 40

• • • • 40
• • • 41

• • 41
41
42

• 43

45
• 45

45
• • • 46

• 46
• • 47

• • • • 50
• 50

• • 52
• 52

• 53
53

• • 53
54

• • • • • • 55
• 56

56
• • • • 59

• 59
• • 59

• 61
61

CHAPTER 8: MISCELLANEOUS SERVICES
Timing Services • • • • • • • • •

Date and Time of Day • • • •
Interval Timing • • • • • • • •

• • • • • • • • • • 63

Extended-Precision Floating-Point Simulation
Extended-Precision Division • • • • •
Division Process
Arithmetic Exceptions • • • • • • • • • • • •
Calling the Simulator • • •

• • • • 63
63

• 64
• • 65
• • 66

• • • • 66
• • 66

68
• 68 Designing the Exit Routine

communicating with the System Operator
Writing to the Programmer • • •
Writing to the Hard-CoPY Log • • • •

. 71

Writing to the System Log • • •
Message Deletion • • • • • • •
Generalized Trace Facility Interface

PART II: MACRO INSTRUCTIONS • • • • •

CHAPTER 9: INTRODUCTION TO SUPERVISOR ~ACRO INSTRUCTIONS
Macro Instruction Forms • • • •
Coding Aids • • • • • • • • • •
Writing the Macro Instructions
Continuation Lines •••• • •
Additional Macro instructions •

CHAPTER 10: Descriptions of the macro instructions
ABEND -- Abnormally Terminate a Task
ATTACH Create a New Task (VS1)
ATTACH -- Create a New Task (VS2) • •

• • 73
• • 73

• • • • 75
• • 75

75

77

77
77
78
78
79

• • 80

• • 81
82
84

• 87

v

ATTACH -- List Form • • • • • • • • • • • • • • • 91
ATTACH -- Execute Form • • -. • • • • • • • • • • 92
CALL Pass Control to a Control Section • 94
CALL List Form • • • • • • • • • • 96
CALL Execute Form • • • • • • • • 97
CHAP Change Dispatching priority • • • • • 98
DELETE -- Relinquish Control of a Load Module • • • 99
DEQ Release a Serially Reusable Resource. • • • • • .100
DEQ -- List Form • • • • • • • • • • • • • • 102
DEQ -- Execute Form. • • • • • • • • • • • • • .103
DETACH -- Delete a Subtask (VS1) • • • • .104
DETACH -- Delete a Subtask (VS2) • • • • • • • • .105
DOM Delete Operator Message (MCS with DIDOCS only) •••• 106
DXR Divide Extended Register • • • • • • • • • • • • •• .101
ENQ Request Control of a Serially Reusable Resource •• 108
ENQ List Form ••• 111
ENQ Execute Form • • • • • • • • • • • • • .112
FREEMAIN Release Allocated Virtual Storage. • .113
FREEMAIN -- List Form • • • • • • • • • • • • .115
FREEMAIN -- Execute Form • • • • • • • • • • • • • • • .116
GETMAIN Allocate Virtual Storage • • • • • .111
GETMAIN -- List Form • • • • • .120
GETMAIN -- Execute Form. • • • • • • .121
GTRACE Record Trace Data • • • • • • • .122
GTRACE -- List Form • • • • • .124
GTRACE -- Execute Form • • • • • • • • • ••• 125
IDENTIFY -- Add an Entry Point • • • • • .126
LINK Pass Control to a Program in Another Load Module •••• 127
LINK List Form • • • • • • • • • • • • • • .129
LINK Execute Form •• • • • • • • • • • • • • • .130
LOAD Bring a Load Module Into Virtual Storage • • • • • .132
PGRLSE -- Release Virtual Storage contents •• 133
PGRLSE -- List Form • • • • • • .134
PGRLSE -- Execute Form • • • • • • • • • • • • .135
POST -- Signal Event Completion. • • • • • • .136
RETURN -- Return Control • • • • • •• 131
SAVE -- Save Register Contents • • • • • .138
SEGWT -- Load Overlay Segment and wait •••• • •• 139
SNAP Dump Virtual Storage and Continue •••• • .140
SNAP List Form. • • • • • • • • • • • .143
SNAP Execute Form • • • • • • • • • • • • • • • ••• 144
SPIE Specify Program Interruption Exit • • • • • •• 145
SPIE List Form. • • • • • • • • • • • • • • • • • .148
SPIE Execute Form • • • • • • • • • • .149
STATUS -- Change Subtask Status (VS2 only) ••••• .150
STIMER -- Set Interval Timer • • • • • .151
TIME -- Provide Time and Date • • .154
TTIMER -- Test Interval Timer • • • • • .156
WAIT -- Wait for One or More Events. • .151
Event Control Block • • • • • • • • • • .158
WAITR -- Wait for One or More Events • • • • • ••• 160
WTL Write to Log • • • • • • • .161
WTL List Form • • • • • • • • • • • • • .162
WTL Execute Form • • • • • • • • • • • • • • .163
WTO Write to Operator (VSl Without Multiple Console support) .164
WTO Write to Operator VS2 (Without Multiple Console support) .165
WTO Write to Operator (VSl With Multiple Console Support) .168
WTO Write to Operator (VS2 With Multiple Console Support) •• 169
WTO List Form • .111
WTO Execute Form ••••••••••••••••••••••• 172
WTOR -- Write to Operator With Reply (Without Multiple Console
Support) •113
WTOR -- Write to Operator With Reply (With Multiple Console
Support) • • • • •
WTOR -- List Form •

vi

• .114
.116

WTOR
XCTL
XCTL
XCTL

Execute Form • • • • • • • • • • • • • • • • • .177
.178
.180
.181

Pass Control to a Program in Another Load Module
List Form • • • • • •
Execute Form • • • • • • • •

APPENDIX A: SUMMARY OF OPERANDS • .183

APPENDIX B: MACRO INSTRUCTIONS • • .189

APPENDIX C: MESSAGE ROUTING FOR MULTIPLE OPERATOR CONSOLES • .197
Routing Codes • • • • • • • • • • • • • • • • • ••••• 197
Descriptor Codes • • • • • • .198
Operands for Use by the System Programmer (VS1) • • • • • • .199

INDEX • • • • • • • • .203

vii

FIGURES

Figure 1. summary of characteristics and available options
Figure 2. Acquiring FARM field information
Figure 3. Format of the save area ••••••
Figure 4. SAVE macro instruction used to save (A) all registers
but 13 and (B) registers 5-10, 14 and 15
Figure 5. Chaining save areas in a nonreenterable program •
Figure 6. Chaining save areas in a reenterable program
Figure 7. Dispatching priorities of partitions
Figure 8. Levels of tasks in a job step •••••••
Figure 9. Characteristics of load modules • • • • •
Figure 10. passing control in a simple structure
Figure 11. passing control with-a parameter list.
Figure 12. Passing control with return • • • • •
Figure 13. passing control with CALL • • • • • • • • • •
Figure 14. Test for normal return • • • • • • •
Figure 15. Return code test using branching table
Figure 16. Establishing a return code • • • • •
Figure 17. Using the RETURN macro instruction
Figure 18. RETURN macro instruction with flag

2
4
5

5
7
7

• • 13
• 15

• • 17
19

• 19
• • 21
• • 21

22
23

• 24
24
24

Figure 19. Search for module, EP or EPLOC operand with DCB=O or DCB
operand omitted • 27
Figure 20. Search for module, EP or EPLOC operands with DCB operand
specifying private library • • • • • • • • • • • • • •
Figure 21. Search for module using DE operand • • • • • • •
Figure 22. Use of the LINK macro instruction with the job or link
library -
Figure 23. Use of the LINK macro instruction with a private library
Figure 24. Use of the BLDL macro instruction • • • • • • • • • ••
Figure 25. The LINK macro instruction with a DE operand • • • • •
Figure 26. Misusing control program facilities cause unpredictable

· ·
·
· ·

28
30

32
32
33
33

results • • • • • • • • • • • • • • • • • • • 36
Figure 27. EVent control block. • • • • • • • 38
Figure 28. ENG macro instruction processing • • • • • • • • 40
Figure 29. Interlock condition • • • • • • • 43
Figure 30. Two requests for two resources • • • • • • •• 44
Figure 31. One request for two resources • • 44
Figure 32. Program interruption control area • • • • •• 45
Figure 33. Using the SPIE macro instruction • • • • • • 46
Figure 34. program interruption element • 47
Figure 35. Detecting an abnormal condition • 48
Figure 36. Sample DD statements for an ABEND dump •• 51
Figure 37. Using the GETMAIN macro instruction. • • • 55
Figure 38. ReleaSing virtual storage • • • • • • • • • • 55
Figure 39. Virtual-storage control • • • • • • • • • • •• 57
Figure 40. Using the list and the execute forms of the DEQ macro
instruction in a reenterable program • • • • • • • 61
Figure 41. Requesting the date and time • • • • • • • • 63
Figure 42. Interval timing • • • • • • • • • •• 65
Figure 43. Summary of program interruptions •••• • • • • 67
Figure 44. Calling the extended-precision floating-point simulator • 69
Figure 45. Return codes from the extended-precision floating-point
simulator • • • 70
Figure 46. Interruption codes returned by the simulator • • 71
Figure 47. Writing to the operator • • • • • • • • • • • •• 73
Figure 48. Writing to the operator with a reply • • 73
Figure 49. Using WTO and WTOR to write messages to the programmer • 74
Figure 50. Using the GTRACE macro instruction • • • • • • 76
Figure 51. continuation coding • • • • • • • • • • 80
Figure 52. DEQ macro instruction return codes •••••• 101

viii

(
I

~

Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
actions ••
Figure 60.
message • •
Figure 61.
Figure 62.
Figure 63.

Return code area used by CEQ
- ENQ return codes • • • • • •

Return code area used by ENQ • • • •
Program interruption control area (PICA)
Program interruption element (PIE)
Event control block • • • • • • • • • • • • •
Routing-descriptor code combinations and resulting

• .101
• .110

• • • .110
• .145

•••• 146
.158

• .165
Maximum 'text' field characters in a multiple-line WTO

Bit definition for MSGTYP=Y • • • • • • •
MCSFLAG parameters • • • • •
ROUTCDE, DESC, and MSGTYP combinations

• .166
• .200
• .201

• • .202

ix

page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

PART I: SUPERVISOR SERVICES

CHAPTER 1: INTRODUCTION TO SUPERVISOR SERVICES

SUMMARY OF SERVICES

The supervisor provides the resources that your programs need while
assuring that as many of these resources as possible are being used at a
given time. Well designed programs use system resources efficiently.
Knowing the conventions and characteristics of the VS supervisor will
help you design more efficient programs.

The services you can request from the supervisor can be classified as
follows:

Subtask Creation and Control: Occasionally, you can have your program
executed faster and more efficiently by dividing parts of it into sub
tasks that comfete with each other and with other tasks for execution
time.

Program Management: The supervisor can be used to aid communication
between segments of a program. Save areas, addressability, and passage
of control from one segment of a program to another are discussed.

Resource Control: Portions of some tasks are dependent on the comple
tion of events in other tasks. This requires planned task synchroniza
tion. Planning is also required when more than one program will be
using a serially reusable resource.

Interruption, Termination, and Dumping: The supervisor provides facili
ties for writing exit routines to handle specific types of interrup
tions. It is not likely, however, that you will be able to write rou
tines to handle all types of abnormal conditions. The supervisor there
fore provides for termination of your program when you request it by
issuing an ABEND macro instruction, or when the control program detects
a condition that will degrade the system or destroy data.

Virtual Storage Management: While virtual storage allows you to write
large programs without the need for corrplex overlay structures, virtual
storage must be obtained for your job step. Virtual storage is allo
cated by both explicit and implicit requests.

In addition to the services outlined above, the supervisor provides
the facilities for timing events, extended precision floating-point
simulation, operator communication with both the system and application
programs, and tracing of data originating in application programs.

CHARACTERISTICS OF THE SYSTEM

Figure 1 gives a brief description of the control program options
available for the operating systems that provide multiprogramming with
virtual storage (OS/vS1 and OS/VS2). This figure does not attempt to
cover all of the options available in the operating system; it only sum
marizes the options that affect the material covered in this book.

Chapter 1: Introduction to Supervisor Services 1

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

r---------------T--------------------------T---------------------------,
I IVS1 IVS2 I
~------------~--+--------------------------+---------------------------~
I Brief IPriority Scheduler, one IPriority Scheduler, one or I
I Description I (or, optionally, more thanlmore tasks per job step, 1 I
I lone) task per job step, 1 Ito 15+ jobs processed con- I
I Ito 15 jobs processed con- Icurrently I
I I currently I I
~---------------+--------------------------+---------------------------~
IMultiple Wait I Standard I Standard I
~---------------+--------------------------+---------------------------~
I Identify I Standard I Standard I
~---------------+--------------------------+---------------------------~
I System Log I Optional I Standard I
~---------------+--------------------------+---------------------------~
IInterval TiminglStandard I Standard I
~---------------+--------------------------+---------------------------~
I Multiple I Optional I Standard I
I Console I I I
I Support I I I
~---------------+--------------------------+---------------------------~
ITime Sharing INot Available I Optional I
~---------------+--------------------------+---------------------------~
ITime Slicing I Optional I Standard I
~---------------+--------------------------+---------------------------~ I I Dispatching IDynamic (optional) I Heuristic I L _______________ ~ __________________________ ~ ___________________________ J

Figure 1. Summary of characteristics and available options

2

CHAPTER 2: PROGRAM DESIGN

All programs, regardless of function or relative position in the
task, should be designed using certain conventions and with certain
characteristics of the control program in mind. This chapter describes
these conventions and characteristics and discusses the effects they may
have on the execution of your program.

LINKAGE CONVENTIONS

During the execution of a program, the services of another program
may be required. The program that requests the services of another pro
gram is known as a calling program, and the program that was requested
is known as the called program. For example, when the control program
passes control to program A, program A becomes a called program. If
program A in turn passes control to program B, program A becomes a cal
ling program, and program B becomes a called program. From the point of
view of the control program. however, program A remains a called program
until control is returned by program A. For more information on this
subject, see the discussion under the heading -Task Hierarchy.-

The following conventions are presented assuming one calling and one
called program. They apply. however. to all called and calling programs
operating in the system. If the conventions presented here are always
followed, execution of the called program will not be affected by the
method used to pass control or by the identity of the calling program.

Linkage Registers

Registers 0, 1. 13. 14, and 15 are known as the linkage registers;
they are used in fixed ways by the control program. It is good practice
to use these registers in the same way in your program, since they may
be modified by the control program or by your program when system macro
instructions are used. Registers 2-12 are not changed by the control
program.

Registers 0 and 1 are used to pass parameters to the control program
or to a called program. The expansions of some system macro instruc
tions result in instructions that load a value into register 0 or 1 or
both, or load the address of a parameter list into register 1. For oth
er macro instructions, the control program uses register 1 to pass spe
cified parameters to the program you call.

Register 13 contains the address of the save area provided by the
calling program.

Register 14 contains the return address of the calling program or an
address within the control program to which your program is to return
control when it has completed execution.

Register 15 contains the entry address when control is passed to your
program by the control program. The entry address of the called routine
should be in register 15 when you pass control to another program. The
expansion of some macro instructions results in instructions that load
into register 15 the address of a parameter list to be passed to the
control program. Register 15 is also used by the called program to
return a value (a return code) to the calling program.

The manner in which the control program passes the information in the
PARM field of your EXEC statement is a good example of how the control

Chapter 2: program Design 3

program uses a parameter register to pass information. When control is
passed to your program from the control program, register 1 contains the
address of a fullword on a fullword boundary in your area of virtual
storage (refer to Figure 2). The high-order bit (bit 0) of this word is
set to 1. This is a convention used by the control program to indicate
the last word in a variable-length parameter list; you must use the same
convention when making requests to the control program. The low-order
three bytes of the fullword contain the address of a two-byte length
field on a halfword boundary. The length field contains a binary count
of the number of bytes in the PARM field, which immediately follows the
length field. If the PARM field was omitted in the EXEC statement, the
count is set to zero. To prevent possible errors, the count should
always be used as a length attribute in acquiring the information in the
PARM field. If your program is not going to use this information imme
diately, you should load the address from register 1 into one of regis
ters 2-12 or store the address in a full word in your program.

Saving the calling Program's Registers

The first action a called program should take is to save the contents
of the calling program's registers. The contents of any register the
called program modifies and the contents of the linkage registers must
be saved. All registers should be saved to avoid errors when the called
program is modified.

The registers are saved in the lS-word save area provided by the cal
ling program and pointed to by register 13. The format of this area is
shown in Figure 3. As indicated by this figure, the contents of each
register must be saved in a specific location within the save area.

Registers can be saved either with a store-multiple (STM) instruction
or with the SAVE macro instruction. The store-multiple instruction

STM 14,12,12(13)

places the contents of all registers except 13 in the proper words of
the save area. Saving register 13 is discussed under the heading ·Pro
viding a Save Area."

4

Register
1

4 Bytes
~~ ______________ A~ __________ ~

Full-Word
Boundary

Length Field PARM Field 0
T~----~V-----~/\~------~yr-------

2 Bytes
Half-Word
Boundary

o to 100 Bytes

Figure 2. Acquiring PARM field information

r-----~---, I Word I contents I
~-----+---~ I 1 I Used by PL/I language program I
~------+---~ I 2 I Address of previous save area (stored by calling program) I
~------+---~ I 3 I Address of next save area (stored by current program) I
~------+---~ I 4 I Register 14 (Return address) I
~------+---~ I S I Register 15 (Entry address) I
~------+---~ I 6 I Register 0 I
~------+---~ I 1 I Register 1 I
~------+---~ I 8 I Register 2 I
~------+--------------------------------------~------------------------~ I 9 I Register 3 I
~------+---~ I 10 I Register 4 I
~------+---~ I 11 I Register 5 I
~------+---~ I 12 I Register 6 I
~------+---~
I 13 I Register 1 I
~------+---~ I 14 I Register 8 I
~------+---~ I 15 I Register 9 I
~------+---~ I 16 I Register 10 I
~------+---~
I 11 I Register 11 I
~------+---~ I 18 I Register 12 I L ______ ~ ___________ ~ ___ J

Figure 3. Format of the save area

r--, I (A) PROGNAME SAVE(14,12) I
I I
I (B) PROGNAME SAVE(S,10),T I L __ J

Figure 4. SAVE macro instruction used to save (A) all registers but 13
and (B) registersS-10, 14 and 15

The SAVE macro instruction generates instructions that store a desig
nated group of registers in the save area. The registers to be saved
are coded in the same order as in an STM instruction. Figure 4 illus
trates uses of the SAVE macro instruction. The T operand (in B) speci
fies that the contents of registers 14 and 15 are to be saved.

The SAVE macro instruction or the equivalent instructions should be
placed at the entry point to the program.

Chapter 2: Program Design 5

Establishing a Base Register

In system/370, addresses are resolved by adding a displacement to a
base address. You must, therefore, establish a base register using one
of the registers from 2-12 or register 15. If your program does not use
system macro instructions and does not pass control to another program,
a base register can be established using the entry address in register
15. otherwise, because both your program and the control program use
register 15 for other purposes, you must establish a base using one of
the registers 2-12. This should be done immediately after saving the
calling program's registers.

Providing a save Area

If any control section in your program passes control to another con
trol section, your program must provide its own save area. You must
also provide a save area when you use certain system functions, such as
GET or PUT. If you establish which registers are available to the
called program or control section, a save area is not necessary. Omit
ting the save area is not a good coding practice, however, since any
changes in your program might necessitate changing a called program.

Whether or not your program provides a save area, the address of the
calling program's save area, which you used, must be saved, because you
will need it to restore the registers before you return control to the
program that called you. If you are not providing a save area, you can
keep the address in register 13 or store it in a location in virtual
storage. If you are creating your own save area, the following proce
dure should be followed:

• store the address of the save area that you used (the address passed
to you in register 13) in the second word of the save area you
created.

• store the address of your save area (the address you will pass in
register 13) in the third word of the calling program's save area.

This procedure enables you to find the save area when you need it to
restore the registers, and it enables a trace from save area to save
area should one be necessary during a dump.

Figures 5 and 6 show two methods of obtaining a save area and of sav
ing all the registers, including the addresses of the two save areas.
In Figure 5 the registers are stored in the save area provided by the
calling program by using the STM instruction. Register 12 is then esta
blished as the base register. The address of the caller's save area is
then saved in the second wprd of the new save area, established by the
DC instruction. The address of the calling program's save area is
loaded into register 2. The address of the new save area is loaded into
register 13, and then stored in the third word of the caller's save
area.

In Figure 6, the SAVE macro instruction is used to store registers
(an STM instruction could have been used). The entry address is loaded
into register 12, which is established as the base register. An uncon
ditional GETMAIN macro instruction (discussed in detail under the head
ing ·Virtual Storage Management-) is issued requesting the control pro
gram to allocate 72 bytes of virtual storage from an area outside your
program, and to return the address of the area in register 1. The
address of the old and new save areas are stored in the assigned loca
tions, and the address of the new save area is loaded into register 13.

6

r--1
I PROGNAME STM 14,12,12(13) I
I LR 12,15 I
I USING PROGNAME,12 I
I ST 13,SAVEAREA+4 I
I LR 2,13 I
I LA 13,SAVEAREA I
I ST 13,8(2) I
I I
I SAVEAREA DC 18F(3) I L-___ J

Figure 5. chaining save areas in a nonreenterable program

r--1
I PROGNAME SAVE (14,12) I
I LR 12,15 I
I USING PROGNAME,12 I
I GETMAIN R,LV=12 I
I ST 13,4(1) I
I ST 1,8(13) I
I LR 13,1 I L __ J

Figure 6. Chaining save areas in a reenterable program

Summary of Conventions to be Followed When Passing and Receiving Control

The following is a list of conventions to be followed when passing
and receiving control. The actual methods of passing control are
described under the heading "Program Management."

By a Called Program upon Receiving Control:

• Save the contents of registers 0-12, 14, and 15 in the save area
provided by the calling program.

• Establish a base register.

• Request the control program to allocate storage for a save area if
you did not already allocate it by using a DC instruction.

• Store the save area addresses in the assigned locations.

By a Calling Program before Passing Control (Return Required):

• Place the address of your save area in register 13.

• Place the address at which you wish to regain control (the return
address) in register 14.

• Place the entry address of the program you are calling in register
15.

• Place the address of the parameter list (if there is one) in regist
er 1. (passing parameters is discussed under "Program Management.")

By a Calling Program before Passing Control (No Return Required):

• Restore registers 2-12 and 14.

• Place the address of the save area provided by the program that
called you in register 13.

Chapter 2: Program Design 1

• Place the entry address of the program you are calling in register
15.

• Place the addresses of parameter lists in registers 1 and O.

By a Called Program before Returning Control:

• Restore registers 0-12 and 14.

• Place the address of the save area provided by the program you are
returning control to in register 13.

• Place a return code in the low-order byte of register 15 if one is
required. Otherwise, place the entry address of your program in
register 15.

VIRTUAL STORAGE CONSIDERATIONS

In a system with virtual storage you can distinguish between the
address space used by a program (the program length) and the allocated
real storage used for program execution. Real storage is allocated by
the control program to meet realtime requirements. To use virtual
storage effectively, you should consider the short-term demands on real
storage and the time spent in allocating real storage (paging).

Paging

Virtual storage is sequentially addressed, beginning with location
zero, and is mapped into real storage as it is referred to. The size of ~
virtual storage is limited only by the addressing capability of the sys- ~
tem, and the amount of auxiliary storage. Virtual storage is divided
into a maximum of 256 segments. In VS1, each segment is further divided
into 32 pages, each containing 2,048 bytes (2K) of addressable space.
In VS2, each segment is divided into 16 pages, each containing 4,096
bytes (4K) of addressable space. The user and system are limited to a
virtual storage capacity that is somewhat less than the 16 million bytes
addressable with the 24-bit addressing method used by System/310. The
limits are determined by the installation on the basis of such factors
as real storage capacity, secondary storage capacity, and control pro-
gram storage requirements. The control program controls both real and
virtual storage. A page is the smallest unit of real storage that can
be allocated. The process by which pages are transferred between real
and external page storage is called paging.

An allocated virtual-storage page is always in one of three states:
its content is on external page storage, its content is mapped into real
storage, or it has no content and exists as address space only. Each
time a page that is not in real storage is referred to, it must be paged
into real storage.

The control program coordinates paging with the execution of other
tasks. As paging time increases, system efficiency decreases. Since
paging time is attributable in part to the way in which a task uses vir
tual storage, the programmer should consider paging when he designs a
program.

Design Techniques

A task's paging rate is a principal factor in determining how effi
ciently the task is executed. The following techniques for designing a
program will help minimize paging and thus help ensure more efficient
operation.

8

• Code in page sections. It is useful to think of virtual storage as
a "one-page overlay"; that is, only one page of virtual storage can
be referred to without causing paging to occur.

• Keep seldom used subroutines, such as initialization and termination
subroutines, separate from those which are used frequently. You can
release whole pages of virtual storage associated with subroutines
that are used only once. See "Relinquishing virtual Storage" for
details.

• Put frequently used subroutines in one page, preferably the page
containing the most frequent callers. Similarly, group infrequently
used or error routines together.

• Arrange data areas in a single page where possible. Avoid multiple
page lists and tables.

• Release pages for buffers as soon as they are all used.

• Keep frequently used programs or loops within programs in one page
wherever possible.

• Keep dynamically changeable code in one page if possible. If a page
has been changed it must be paged out before the real storage it
occupies can be reused. otherwise, the contents of the page can be
overlaid.

• Arrange routines so that you avoid crossing page boundaries.

Chapter 2: Program Design 9

CHAPTER 3: SUBTASK CREATION AND CONTROL

One task is created by the control program as a result of initiating
execution of the job step (the job step task). You can create addition
al tasks in your program. If you do not, however, the job step task is
the only task in a job being executed. The benefits of a multiprogram
ming environment are still available even with only one task in the job
step; work is still being performed for other jobs when your task is
waiting for an event, such as an input operation, to occur.

The advantage in creating additional tasks within the job step is
that more tasks are competing for control than the task in the job you
are concerned with. When a wait condition occurs in one of your tasks,
it is not necessarily a task from some other job that gets control; it
may be one of your tasks, a portion of your job.

The general rule is that parallel execution of a job step (that is,
more than one task in a job step) should be chosen only when a signifi
cant amount of overlap between two or more tasks can be achieved. The
amount of time taken by the control program in establishing and control
ling additional tasks, and your increased effort to coordinate the tasks
and provide for communications between them must be taken into account.

CREATING THE TASK

A new task is created by issuing an ATTACH macro instruction. The
task that is active when the ATTACH macro instruction is issued is the
originating task; the newly created task is the subtask of the originat
ing task. The subtask competes for control in the same manner as any
other task in the system, on the basis of priority and the current abi
lity to use the central processing unit. The address of the task con
trol block for the subtask is returned in register 1.

If the ATTACH macro instruction is executed successfully, control is
returned to the user with a hexadecimal code of '00' in register 15.

The entry point in the load module to be given control when the sub
task becomes active is specified as it is in a LINK macro instruction,
that is, through the use of the EP, EPLOC, DE, and DCB operands. The
use of these operands is discussed in "Program Management." Parameters
can be passed to the subtask using the PARAM and VL operands, also
described under "The LINK Macro Instruction." The only additional
operands are those dealing with the priority of the subtask and the
operands that provide for communication between tasks.

CAUTION: All modules contained in the libraries for a job step should
be uniquely named. If duplicate module names are contained in these
libraries, the results are unpredictable.

TASK PRIORITY

Tasks compete for control on the basis of priority. When a task is
created, it is assigned a priority, which can be revised upward or down
ward. It is also assigned a limit to its priority, a value equal to the
highest priority the task can be assigned; this value is called the
task's limit priority. The task's actual priority, the basis on which
it competes for control, is called the task's dispatching priority.

10

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

A job step task can change its own dispatching priority but not its
own limit priority. It can change both the dispatching and limit
priorities of its subtasks, but cannot set the limit priority of a sub
task higher than its own limit priority.

Priority of the Job Step Task

The limit priority of the job step task cannot be changed; it is
always equal to the task's initial dispatching priority. You can speci
fy initial dispatching priority through the DPRTY parameter of the EXEC
statement.

The initial dispatching priority of the job step task is determined
by the job priority. You either specify job priority through the PRTY
parameter of the JOB statement or omit this parameter and allow the job
priority to be determined by default. Job priority is used in selecting
jobs for execution and in assigning input/output devices.

To specify job priority, code the parameter: PRTY=value

where value is the job priority, an integer froID 0 to 13. If you do not
specify dispatching priority for a job step, it is computed from the job
priority as follows:

Dispatching priority = (value x 16) + 11

Whether you specify dispatching priority or not, you cannot be abso
lutely certain of what a job step's initial dispatching priority will
be. To achieve best results from the operating system, the operations
staff may override specified job and dispatching priorities. Your pro
gram, therefore, cannot simply assume that the job step task will have a
particular initial dispatching priority. To determine this priority,
your program must issue the EXTRACT macro instruction, as described in
the VS1 Planning and Use Guide and VS2 Supervisor Services and Macro
Instructions for the System Programmer.

To summarize, the initial dispatching priority of the job step task
can be established three ways:

• Indirectly through the PRTY parameter of the JOB statement

• By default when the PRTY parameter is omitted

• By the operations staff, overriding your own specifications

Which ever way it is established, the initial dispatching priority is
always the limit priority for the job step task.

The job step task can lower its dispatching priority by use of the
CHAP macro instruction. It can later use this macro instruction to
revise its dispatching priority either upward or downward. It can never
raise its dispatching priority above its initial dispatching (limit)
priority.

Priority of Subtasks

When a subtask is created, the limit and dispatching priorities of
the subtask are the same as the current limit and dispatching priorities
of the originating task except when the suttask priorities are modified
by the LPMOD and DPMOD operands of the ATTACH macro instruction. The
LPMOD operand specifies the number to be subtracted from the current
limit priority of the originating task. The result of the subtraction
is assigned as the limit priority of the subtask. If the result is zero
or negative, zero is assigned as the limit priority. The DPMOD operand
specifies the number to be added to the current dispatching priority of

Chapter 3: Suttask Creation and Control 11

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

the originating task. The result of the addition is assigned as the
dispatching priority of the subtask, unless the number is greater than
the limit priority. In that case, the limit priority is used as the
dispatching priority.

Assigning and changing Priority

Tasks with a large number of input/output o~erations should be
assigned a higher priority than tasks with little input/output, because
the tasks with much input/output will be in a wait condition for a
greater amount of time. The lower priority tasks will be executed when
the higher priority tasks are in a wait condition. As the input/output
operations are completed, the higher priority tasks get control, so that
more I/O can be started.

If one or more subtasks must be completed before the originating task
can execute beyond a certain point, the suttasks that must be completed
should be assigned a priority that will prevent a long wait in the ori
ginating task.

Since tasks from other job steps are co~peting for CPU time, the
priority initially established for the subtasks may be too high or too
low to properly execute the job step. To correct this, the priorities
of these subtasks can be changed by using the CHAP macro instruction.
The EXTRACT macro instruction can be used to determine the priority of
the current task and its subtasks. Note that each change of 16 in limit
or dispatching priority is equivalent to a change of one in job
priority.

The CHAP macro instruction changes the dispatching priority of the
active task or one of its subtasks. By adding a positive or negative
value, the dispatching priority of the active task or a subtask is
changed. The dispatching priority of the active task can be made less
than the dispatching priority of another task waiting for control. If
this occurs, the waiting task would be given control after execution of
the CHAP macro instruction.

The CHAP macro instruction can also be used to increase the limit
priority of any of the active task's subtasks. The active task cannot
change its own limit priority. The dispatching priority of a subtask
can be raised above its own limit priority, but not above the limit of
the originating task. When the dispatching priority of a subtask is
raised above its own limit priority, the subtask's limit priority is
automatically raised to equal its new dispatching priority.

DYNAMIC DISPATCHING (VS1)

Dynamic dispatching is an optional feature of the operating system
which provides for the alteration of the dispatching priorities of
selected tasks as they are being executed.

A dynamic dispatching algorithm calculates dispatching priorities so
tasks can use system resources more efficiently. The algorithm not only
alters the handling of each task as the task's characteristics change,
but the algorithm also evaluates itself and alters itself, based on its
effectiveness in handling the tasks under its control.

This algorithm distinguishes between I/O-bound tasks and CPU-bound
tasks; I/O-bound tasks receive the higher priority. Initially, all
tasks are designated I/O-bound; any new tasks entering the dynamically
dispatched group are also designated I/O-bound. As each task is dis
patched, its activity is monitored for a predetermined time interval.
At the end of this time interval each task is designated I/O-bound or
CPU-bound.

12

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

Dynamic disfatching assumes that the task most likely to be I/O-bound
the next time it is dispatched is the task that was I/O-bound the last
time it was dispatched.

Each time a task in the dynamically disfatched group relinquishes
control of the CPU, its relative position within the task queue may
change as shown in Figure 6A.

r--,
I Original Reason for Loss New Task Action Taken I
ITask Status of CPU Control status I
~--~
11/0 Voluntary Unchanged Search down I/O-queue for I
1 Surrender next task to dispatch I
~--~
11/0 Time Interval CPU Move task to head of CPU I
1 Ended subgroup and search down 1/0-1
1 queue from old location of I
I task I
~--~
11/0 Preemption for Unchanged Dispatch preempting task I
I Another Task I
~--~---------------------------~
ICPU Voluntary I/O Move task to bottom of I/O I
I Surrender subgroup and search down I
1 and no CPU-queue from old location 1
I Interval of task I
I EXFiration I
~--~
I CPU Time Interval Unchanged Move task to bottom of CPU 1
I Ended subgroup and search down CPU-I
1 queue from old location of I
I task I
~---~------------------------~
1 CPU Preemption for Unchanged Move task to bottom of CPU I
I Another Task subgroup and dispatch pre- 1
1 empting task 1
~--~
ICPU Voluntary Unchanged Move task to bottom of CPU I
1 Surrender subgroup and search down I
1 ahd Interval CPU-queue from old location I
I Expiration of task 1 L __ J

Figure 6A. Status change as a result of loss of CPU control

I/O-bound tasks that remain I/O-bound tend to migrate higher in the
queue as other I/O-bound tasks change status and join the CPU-bound task
queue. A task that changes from I/O-beund to CPU-bound receives the
highest dispatching priority within the CPU-bound group. In contrast, a
CPU-bound task that switches to the I/O-bound group has the lowest
priority within the I/O-bound group. This mechanism aids in making a
finer distinction between tasks with relatively constant I/O activity
and those tasks characterized by many status changes.

The cyclic movement of the CPU-bound tasks ensures that they will all
share in any available CPU time. Therefore, these tasks have increased
chances to change their status; potential I/O tasks are not locked in at
the bottom of the CPU-bound queue.

Note: CPU-bound tasks that voluntarily surrender control of the CPU are
examined between wait states. If the task's time interval expires, a
bit is posted in the task's TCB to indicate the expiration. When the
task issues a WAIT, this bit in the TCE is checked. If the time interv
al has expired, the bit is reset, and the status of the task remains
CPU-bound.

Chapter 3: Subtask Creation and Control 12.1

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

If the time interval has not expired since the previous WAIT, the
status of the task is changed to I/O-bound.

The user must specify the desired ratio of CPU-bound tasks to 1/0-
bound tasks. The algorithm checks this ratio, and when there are too
many CPU-bound tasks in the system, the time interval is lengthened. If
there are too many I/O-bound tasks in the system, the time interval is
decreased.

Dynamic dispatching is a SYSGEN option. The CTRLPROG macro will have
parameters for specifying the following information to the control
program.

• First and last partitions in the dynamic dispatching group (parti
tions must be contiguous). There is no default value for this
parameter.

• Desired ratio of CPU-bound tasks to I/O-bound tasks. This value is
specified in hundredths (for example, a ratio of 5 to 1 is specified
as 500; a ratio of 1 to 2 is specified as 50). The range is 1 to
infinity. The default value is 2 CPU-bound tasks to 1 I/O-bound
task.

• The low limit for the time interval. The default is 20
milliseconds.

• The initial delta by which the time interval will be modified. The
default value is 5 milliseconds.

• The length of the statistics interval. The default is 10 seconds.

Any tasks that are created by an ATTACH issued by a task in a dynamic
dispatching partition are also part of the dynamic dispatch group. The
LPMOD and DPMOD parameters are ignored for these subtasks. A task can
not issue a CHAP macro instruction to move itself into or out of a
dynamic dispatching partition; the CHAP instruction results in a NOP.

Time slicing and dynamic dispatching may not exist within the same
partition, but they may coexist within the system.

TIME SLICING

Time slicing is a feature of the operating system which enables tasks
that are members of a time-slicing group to share control of the CPU.
When a member of the time-slicing group has teen active for a certain
length of time, it is interrupted, and control is given to another memb
er of the group. In this way, all member tasks are given equal slices
of CPU time; no task can use the CPU to the exclusion of all others.

Any task or subtask is a member of a time-slicing group if its dis
patching priority is within the range of the dispatching priorities
assigned to partitions designated for time slicing. A task or subtask
can use the CHAP macro instruction to become a member of the time
slicing group if its limit priority is equal to or greater than the low
est dispatching priority of the time-slicing group. Also, an originat
ing task can use the ATTACH or CHAP macro instruction to designate a
subtask as a member of the time-slicing group if the limit priority of
the originating task is equal to or greater than the lowest dispatching
priority of the time-slicing group.

12.2

r------------------r---------------------T--------------------,
I Partition NUThber I Highest Dispatching 1 Lowest Dispatching 1
~------------------+---------------------+--------------------~ o 251 241

1 240 230
2 229 219
3 218 208
4 207 197
5 196 186
6 185 175
7 174 164
8 163 153
9 152 142

10 141 131
11 130 120
12 119 109
13 108 98
14 97 87
15 86 76
16 75 65
17 64 54
18 53 43
19 42 32
20 31 21
21 20 10
22 9 1

23-n 0 0
~------------------~---------------------~--------------------~
IReduce the dispatching priorities by one for each of the fol-I
Ilowing functions included in system: system log, system I
Imanagement facility, I/O recovery management support. I L ___ J

Figure 7. Dispatching priorities of partitions

VS1 Systems

Each partition has a range of eleven dispatching priorities assigned
to it. The range of dispatching priorities for a time-slicing group is
from the highest dispatching priority of the highest priority partition
within the group to the lowest dispatching priority for the lowest
priority partition within the group (see Figure 7). For example, if
partitions 6 through 8 were assigned to the time-slicing group, any task
or subtask whose dispatching priority fell within the range 185-153
would be a member of the time-slicing group. If the system log and sys
tem management facility functions were included in the system, the range
of time-slicing dispatching priorities would be 183-151.

VS2 Systems

At system generation, your installation designates certain job
priorities for time slicing. Your tasks are members of the time-slicing
group if their dispatching priorities correspond to these job priori
ties. For example, if job priorities 8 and 9 are designated, tasks are
members of the time-slicing group when their dispatching priorities can
be computed as follows:

For job priority 8,
Dispatching Priority = (8 x 16) + 11 = 139

For job priority 9,
Dispatching priority (9 x 16) + 11 155

Chapter 3: subtask Creation and Control 13

In this example, tasks with priorities 139 and 155 are members of the
time-slicing group. Note that time slicing applies only to ready tasks
with the highest priority; a task with priority 155 would not be inter
rupted to give control to a task with priority 139.

Time slicing is important chiefly in real-time applications, but it
affects the use of the ATTACH and CHAP macro instructions by all tasks
in the system. These macro instructions determine task priorities, and
therefore determine membership in the time-slicing group. In using
these macro instructions, you must consider carefully the priorities for
which time slicing is performed at your installation. Using the ATTACH
and the CHAP macro instructions can affect dispatching priorities, as
discussed above.

Consider again the example in which time slicing is performed for job
priorities 8 and 9. If a job-step task has an initial dispatching
priority of 139, it is initially a member of the time-slicing group. If
it lowers its priority, it is no longer a member of the group; if it
attaches a subtask, the subtask is a member only if it is assigned a
dispatching priority of 139 (the limit priority of the job-step task).

If another job-step task is assigned an initial dispatching priority
greater than 155, it is not initially a member of the time-slicing
group. However, it can create lower priority subtasks that are members
of the time-slicing group, and can itself become a member by lowering
its own dispatching priority to 155 or 139. Note that careless use of
the ATTACH and CHAP macro instructions could result in a task's becoming
a member of the time-slicing group when time slicing is ,not actually
intended.

TASK AND SUBTASK COMMUNICATIONS

The task management information in this section is required only for
establishing communications among tasks in the same job step. The rela
tionship of tasks in a job step is shown in Figure 8. The horizontal
lines in Figure 8 separate originating tasks and subtasks; they have no
bearing on task priority. Tasks A, Al, A2, A2a, B, Bl, and Bla are all
subtasks of the job-step task; tasks Al, A2, and A2a are subtasks of
task A. Tasks A2a and Bla are the lowest level tasks in the job step.
Although task Bl is at the same level as tasks A1 and A2, it is not con
sidered a subtask of task A.

Task A is the originating task for both tasks A1 and A2, and task A2
is the originating task for task A2a. A hierarchy of tasks exists
within the job step. Therefore the job step task, task A, and task A2
are predecessors of task A2a, while task B has no direct relationship to
task A2a.

All of the tasks in the job step compete independently for CPU time;
if no constraints are provided, the tasks are performed and are ter
minated asynchronously. However, since each task is performing a por
tion of the same job step, some communication and constraints between
tasks are required, such as notification of the completion of subtasks.
If termination of a predecessor task is attempted before all of the sub
tasks are complete, those subtasks and the predecessor task are abnorm
ally terminated.

Two operands, the ECB and ETXR operands, are provided in the ATTACH
macro instruction to assist in communication between a subtask and the
originating task. These operands are used to indicate the normal or
abnormal termination of a subtask to the originating task. If the ECB
or ETXR operand, or both, are coded in the ATTACH macro instruction, the
task control block of the subtask is not removed from the system when
the subtask is terminated. The originating task must remove the task

14

/

/
/

/

~
~

I

Job
Step
Task

//\
/ \

/ \
/ \

/ ,
/ \

/ \
/ '\

/ \

CD m
\ I /

/
/ '\ I

\
\

\

~
L:J

I
I
I

~
~

I
I
I

GJ
I
I
I

~
~

Figure 8. Levels of tasks in a job step

control block from the system after termination of the subtask. This is
accomplished by issuing a DETACH macro instruction. The task control
blocks for all subtasks must be removed before the originating task can
terminate normally.

The ETXR operand specifies the address of an end-of-task exit routine
in the originating task, which is to be given control when the subtask
being created is terminated. The end-of-task routine is given control
asynchronously after the subtask has terminated and must therefore be in
virtual storage when it is required. After the control program ter
minates the subtask, the end-of-task routine specified 'is scheduled to
be executed. It competes for CPU time using the priority of the ori
ginating task and can be given control even though the originating task
is in the wait condition. When the end-of-task routine returns control
to the control program, the originating task remains in the wait condi
tion if the event control block has not been posted. Although the
DETACH macro instruction does not have to be issued in the end-of-task
routine, this is a good place for it.

The ECB operand specifies the address of an event control block (dis
cussed under -Task Synchronization-), which is posted by the control

Chapter 3: Subtask Creation and Control 15

program when the subtask is terminated. After posting occurs, the event
control block contains the completion code specified for the subtask.

If neither the ECB nor the ETXR operand is specified in the ATTACH
macro instruction, the task control block for the subtask is removed
from the system when the subtask is terminated. It's originating task
does not have to issue a DETACH macro instruction. A reference to the
task control block in a CHAP or a DETACH macro instruction in this case
is risky as is task termination; since the originating task is not noti
fied of subtask termination, you may refer to a task control block which
has been removed from the system, which would cause the active task to
be abnormally terminated.

16

CHAPTER 4: PROGRAM MANAGEMENT

This chapter discusses facilities that aid you in designing your pro
grams. Included are descriptions of load module structures, facilities
for passing control between programs and the use of associated macro
instructions.

LOAD MODULE STRUCTURE TYPES

Each load module used during a job step can be designed in one of
three load module structures: simple, planned overlay, or dynamic. A
simple structure does not pass control to any other load modules during
its execution, and is brought into virtual storage all at one time. A
planned overlay structure may, if necessary, pass control to· other load
modules during its execution, and it is not brought into virtual storage
all at one time. Instead, segments of the load module reuse the same
area of virtual storage. A dynamic structure is brought into virtual
storage all at one time, and passes control to other load modules during
its execution. Each of the load modules to which control is passed can
be one of the three structure types. Characteristics of the load module
structure types are summarized in Figure 9.

Since the large capacity of virtual storage all but eliminates the
need for complex overlay structures, planned overlays will not be dis
cussed further.

Simple structure

A simple structure consists of a single load module produced by the
linkage editor. The single load module contains all of the instructions
required and is paged into real storage by the control program as it is
executed. The simple structure can be the most efficient of the two
structure types because the instructions it uses to pass control do not
require control-program assistance. However, any program should be
carefully designed to make most efficient use of paging.

Dynamic Structure

A dynamic structure requires more than one load module during execu
tion. Each load module required can operate as either a simple struc
ture or another dynamic structure. The advantages of a dynamic struc
ture over a simple structure increase as the program becomes more com
plex, particularly when the logical path of the program depends on the
data being processed. The load modules required in a dynamic structure
are paged into real storage when required, and can be deleted from vir
tual storage when their use is completed.

r---------------~------------------------T-------------------------,
I I I Passes Control to Other I
I Structure Type I Loaded All at One Time I Load Modules I

~----------------+------------------------+-------------------------~
I Simple I Yes I No I

~----------------+------------------------+-------------------------~ I Planned Overlay I No I Optional I
~----------------+-------------------~----+-------------------------~
I Dynamic I Yes I Yes I L-_______________ ~ ________________________ 4_ ________________________ J

Figure 9. Characteristics of load modules

Chapter 4: Program Management 17

LOAD MODULE EXECUTION

Depending on the configuration of the operating system and the macro
instructions used to pass control, execution of the load modules is
serial or in parallel. Execution is serial in the VS operating system
unless an ATTACH macro instruction is used to create a new task. The
new task competes for CPU time independently with all other tasks in the
system. The load module named in the ATTACH macro instruction is
executed in parallel with the load module containing the ATTACH macro
instruction. The execution of the load modules is serial within each
task.

The following paragraphs discuss passing control for serial execution
of a load module. Creation and management of new tasks is discussed
under the headings "Task Creation and Control."

PASSING CONTROL IN A SIMPLE STRUCTURE

There are certain procedures to follow when passing control to an
entry point in the same load module. The established conventions to use
when passing control are also discussed. These procedures and conven
tions are the framework for all program interfaces. Knowledge of the
information about addressing contained in the VS Assembler Language pub
lication is required.

PASSING CONTROL WITHOUT RETURN

Some control sections pass control to another control section of the
load module and do not receive control back. An example of this type of
control section is a housekeeping routine at the beginning of a program
which establishes values, initializes switches, and acquires buffers for
the other control sections in the program. The following procedures
should be used when passing control without return.

Preparing to Pass Control

Because control will not be returned to this control section, you
must restore the contents of register 14. Register 14 originally con
tained the address of the location in the calling program (for example,
the control program) to which control is to be passed when your program
is finished. Since the current control section does not make the return
to the calling program, the return address must be passed to the control
section that makes the return. In addition, the contents of registers
2-12 must be unchanged when your program eventually returns control, so
these registers must also be restored.

If control were being passed to the next entry point from the control
program, register 15 would contain the entry address. You should use
register 15 in the same way, so that the called routine remains indepen
dent of which program passed control to it.

Register 1 should be used to pass parameters. A parameter list
should be established, and the address of the list placed in register 1.
The parameter list should consist of consecutive fullwords starting on a
fullword boundary, each fullword containing an address to be passed to
the called control section in the three low-order bytes of the word.
The high-order bit of the last word should be set to 1 to indicate that
it is the last word of the list. The system convention is that the list
contain addresses only. You may, of course, deviate from this conven
tion; however, when you deviate from any system convention, you restrict
the use of your programs to those programmers who are aware of your spe
cial conventions.

18

Since you have reloaded all the necessary registers, the save area
that you used is now available, and can be reused by the called control
section. You pass the address of the save area in register 13 just as
it was passed to you. By passing the address of the old save area, you
save the 72 bytes of virtual storage for a second, and unnecessary, save
area.

passing Control

The common way to pass control between one control section and an
entry point in the same load module is to load register 15 with a V-type
address constant for the name of the external entry point, and then to
branch to the address in register 15. The external entry point must
have been identified using an ENTRY instruction in the called control
section if the entry point is not the same as the control section's
name.

An example of loading registers and passing control is shown in
Figure 10. In this example, no new save area is used, so register 13
still contains the address of the old save area. It is also assumed for
this example that the control section will pass the same parameters it
received to the next entry point. First, register 14 is reloaded with
the return address. Next, register 15 is loaded with the address of the
external entry point NEXT, using the V-type address constant at the
location NEXTADDR. Registers 0-12 are reloaded, and control is passed
by a branch instruction using register 15. The control section to which
control is passed contains an ENTRY instruction identifying the entry
point NEXT.

An example of passing a parameter list is shown in Figure 11. Early
in the routine the contents of register 1 (that is, the address of the

r--,
I I
I L 14,12(13) CSECT I
I L 15, NEXTADDR ENTRY NEXT I
I LM 0,12,20(13) I
I BR 15---------->NEXT SAVE (14,12) I
I I
I NEXTADDR DC V (NEXT) I L __ J

Figure 10. passing control in a simple structure

r--,

EARLY

PARMLIST
DC BAD DRS

PARMADDR
NEXTADDR

USING *,12
ST l,PARMADDR

L
L
L
LA
OI
LM
BR

DS
DC
DC
DC
DC

13,4(13)
14,12(13)
15,NEXTADDR
1,PARMLIST
PARMADDR,X'80'
2,12,28(13)
15

OA
A(INDCB)
A (OUTDCB)
A(O)
V (NEXT)

Establish addressability
Save parameter address

Reload address of old save area
Load return address
Load address of next entry point
Load address of parameter list
Turn on last parameter indicator
Reload remaining registers
Pass control

Figure 11. Passing control with a parameter list

Chapter 4: Program Management 19

fullword containing the PARM field address) were stored at the fullword
PARMADDR. Register 13 is loaded with the address of the old save area,
which had been saved in word 2 of the new save area. The contents of
register 14 are restored, and register 15 is loaded with the entry
address.

The address of the list of parameters is loaded into register 1.
These parameters include the addresses of two data control blocks (DCBs)
and the original register 1 contents. The high-order bit in the last
address parameter (PARMADDR) is set to 1 using an OR-immediate instruc
tion. The contents of registers 2-12 are restored. (Since one of these
registers was the base register, restoring the registers earlier would
have made the parameter list unaddressable.) A branch instruction using
register 15 passes control to entry point NEXT.

PASSING CONTROL WITH RETURN

The control program passed control to your program, and your program
will return control when it is through processing. Similarly, control
sections within your program will pass control to other control sec
tions, and expect to receive control back. An example of this type of
control section is a monitoring routine; the monitor determines the ord
er of execution of other control sections based on the type of input
data. The following procedures should be used when passing control with
return.

Preparing to Pass Control

Registers 15 and 1 are used in the same manner they are used to pass
control without return. Register 15 contains the entry address in the
new control section and register 1 is used to pass a parameter list.

Register 14 must contain the address of the location to which control
is to be returned when the called control section completes execution.
The address can be the instruction following the instruction which
causes control to pass, or it can be another location within the current
control section designed to handle all returns. Registers 2-12 are not
involved in the passing of control; the called control section should
not depend on the contents of these registers in any way.

You should provide a new save area for use by the called control sec
tion as previously described, and the address of that save area should
be passed in register 13. Note that the same save area can be reused
after control is returned by the called control section. One new save
area is ordinarily all you will require regardless of the number of con
trol sections called.

Passing Control

Two standard methods are used for passing control to another control
section and providing for return of control. One is an extension of the
method used to pass control without a return, and requires a V-type
address constant and a branch or a branch and link instruction. The
other method uses the CALL macro instruction to provide a parameter list
and establish the entry and return addresses. Using either method, the
entry point must be identified by an ENTRY instruction in the called
control section if the entry name is not the same as the control section
name. Figures 12 and 13 illustrate the two methods of passing control;
in each example, it is assumed that register 13 already contains the
address of a new save area.

20

r--,
L 15,NEXTADDR Entry address in register 15
CNOP 0,4
BAL 1, GOOUT Parameter list address in register 1

PARMLIST DS OA start of parameter list
DCBADDRS DC A(INDCB) Input dcb address

DC A (OUTDCB) Output dcb address
ANSWERAD DC B'10000000' Last parameter bit on

DC AL3 (AREA) Answer area address
NEXTADDR DC V(NEXT) Address of entry point
GOOUT BALR 14,15 Pass control; register 14 contains

return address
RETURNPT
AREA DC 12F'0' Answer area from NEXT L ___ _

Figure 12. passing control with return

r--,
I CALL NEXT, (INDCB,OUTDCB,AREA),VL I
I RETURNPT I
I AREA DC 12F' 0 ' I L __ J

Figure 13. Passing control with CALL

Use of an inline parameter list and an answer area is also illus
trated in Figure 12. The address of the external entry point is loaded
into register 15 in the usual manner. A branch and link instruction is
then used to branch around the parameter list and to load register 1
with the address of the parameter list. An inline parameter list such
as the one shown in Figure 12 is convenient when you are debugging
because the parameters involved are located in the listing (or the dump)
at the point they are used, instead of at the end of the listing or
dump. Note that the first byte of the last address parameter (ANSWERAD)
is coded with the high-order bit set to 1 to indicate the end of the
list. The area pointed to by the address in the ANSWERAD parameter is
an area to be used by the called control section to pass parameters back
to the calling control section. This is a possible method to use when a
called control section must pass parameters back to the calling control
section. Parameters are passed back in this manner so that no addition
al registers are involved. The area used in this example is twelve
words; the size of the area for any specific application depends on the
requirements of the two control sections involved.

The CALL macro instruction in Figure 13 provides the same functions
as the instructions in Figure 12. When the CALL macro instruction is
expanded, the operands cause the following results:

NEXT
A v-type address constant is created for NEXT, and the address is
loaded into register 15.

(INDCB,OUTDCB,AREA)

VL

A-type address constants are created for the three parameters coded
within parentheses, and the address of the first A-type address
constant is placed in register 1.

The high-order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. The
address of the instruction following the CALL macro instruction is
loaded into register 14 before control is passed.

Chapter 4: Program Management 21

In addition to the results described above, the V-type address con
stant generated by the CALL macro instruction causes the load module
with the entry point NEXT to be automatically edited into the same load
module as the control section containing the CALL macro instruction.
Refer to the Linkage Editor and Loader publication, if you are
interested in finding out more about this service.

The parameter list constructed from the CALL macro instruction in
Figure 13, contains only A-type address constants. A variation on this
type of parameter list results from the following coding:

CALL NEXT,(INDCB,(6),(7»,VL

In the above CALL macro instruction, two of the parameters to be passed
are coded as registers rather than symbolic addresses. The expansion of
this macro instruction again results in a three-word parameter list; in
this example, however, the expansion also contains instructions that
store the contents of registers 6 and 7 in the second and third words,
respectively, of the parameter list. The high-order bit in the third
word is set to 1 after register 7 is stored. You can specify as many
address parameters as you need, and you can use symbolic addresses or
register contents as you see fit.

Analyzing the Return

When control is returned from the control program after processing a
system macro instruction, the contents of registers 2-13 are unchanged.
When control is returned to your control section from the called control
section, registers 2-14 contain the same information they contained when
control was passed, as long as system conventions are followed. ~he
called control section has no obligation to restore registers 0 and 1.
so the contents of these registers mayor may not have been changed.

When control is returned, register 15 can contain a return code indi
cating the results of the processing done by the called control section.
If used, the return code should be a multiple of 4, so a branching table
can be used easily, and a return code of 0 should be used to indicate a
normal return. The control program frequently uses this method to ind
icate the results of the requests you make using system macro instruc
tions; an example of the type of return codes the control program pro
vides is shown in the description of the IDENTIFY macro instruction.

The meaning of each of the codes to be returned must be agreed upon
in advance. In some cases, either a -good- or -bad- indication (zero or
nonzero) will be sufficient for you to decide your next action. If this
is true, the coding in Figure 14 could be used to analyze the results.
Many times, however, the results and the alternatives are more compli
cated, and a branching table, such as shown in Figure 15, could be used

- to pass control to the proper routine.

Note: Explicit tests are required to ensure that the return code value
does not exceed the branch.table size. Never assume that no expansion
of return codes will occur.

r--,
I RETURNPT LTR 15,15 Test return code for zero I
I BNZ ERRORTN Branch if not zero to error routine I
I I L ________________________________ ~ _____________________________________ J

Figure 14. Test for normal return

22

r--, I RETURNPT B RETTAB(15) Branch to table using return code I
I RETTAB B NORMAL Branch to normal routine I
I B COND1 Branch to routine for condition 1 I
I B COND2 Branch to routine for condition 2 I
I B GIVEUP Branch to routine to handle impossible I
I situations I
I I L __ J

Figure 15. Return code test using branching table

How Control is Returned

In the discussion of the return under "Analyzing the Return" it was
indicated that the control section returning control must restore the
contents of registers 2-14. Because these are the same registers
reloaded when control is passed without a return, refer to the discus
sion under "passing Control Without Return" for detailed information and
examples. The contents of registers 0 and 1 do not have to be restored.

Register 15 can contain a return code when control is returned. As
indicated previously, a return code should be a multiple of four with a
return code of zero indicating a normal return. The return codes other
than zero that you use can have any meaning, as long as the control sec
tion receiving the return codes is aware of that meaning.

The return address is the address originally passed in register 14;
control should always be returned to that address. You can either use a
branch instruction such as BR 14, or you can use the RETURN macro
instruction. An example of each method of returning control is dis
cussed in the following paragraphs.

Figure 16 is a portion of a control section used to analyze input
data cards and to check for an out-of-tolerance condition. Each time an
out-of-tolerance condition is found, in addition to some corrective
action, one is added to the value at the address STATUSBY. After the
last data card is analyzed, this control section returns to the calling
control section, which bases its next action on the number of out-of
tolerance conditions encountered. The coding shown in Figure 16 loads
register 13 with the address of the save area this control section used
and register 14 with the return address. The contents of register 15
are set to zero, and the value at the address STATUS BY (the number of
errors) is placed in the low-order eight bits of the register. The con
tents of register 15 are shifted to the left two places to make the
value a multiple of four. Registers 2-12 are reloaded, and control is
returned to the address in register 14.

The RETURN macro instruction is provided to save coding time. The
expansion of the RETURN macro instruction provides instructions that
restore a designated range of registers, load return code in register
15, and branch to the address in register 14. In addition, the RETURN
macro instruction can be used to flag the save area used by the return
ing control section; this flag, a byte containing all ones, is placed in
the high-order byte of word four of the save area after the registers
have been restored. The flag indicates that the control section that
used the save area has returned to the calling control section. You
will find that the flag is useful when tracing the flow of your program
in a dump. For a complete record of program flow, a separate save area
must be provided by each control section each time control is passed.

Chapter 4: Program Management 23

r--,
I I
1 L 13,4(13) Load address of previous save area I
1 L 14,12(13) Load return address 1
I SR 15,15 set register 15 to zero 1
1 IC 15,STATUSBY Load number of errors I
I SLA 15,2 set return code to multiple of 4 1
1 LM 2,12,28(13) Reload registers 2-12 I
1 BR 14 Return I
I 1
I STATUSBY DC X'OO' I L __ J

Figure 16. Establishing a return code

r--,
I 1
1 L 13,4(13) Restore save area address 1
1 L 14,12(13) Return address in register 14 I
1 SR 15,15 Zero register 15 1
I IC 15,STATUSBY Load number of errors 1
1 SLA 15,2 Set return code to multiple of 41
1 RETURN (2,12),RC=(15) Reload registers and return 1
1 1
1 STATUSBY DC X'OO' 1 L __ J

Figure 17. Using the RETURN macro instruction

r--,
I 1
1 L 13,4(13) 1
I RETURN (14,12),T,RC=8 1 L __ J

Figure 18. RETURN macro instruction with flag

The contents of register 13 must be restored before the RETURN macro
instruction is issued. The registers to be reloaded should be coded in
the same order as they would have been designated had a load-multiple
(LM) instruction been coded. You can load register 15 with the return
code before you write the RETURN macro instruction, you can specify the
return code in the RETURN macro instruction, or you can reload register
15 from the save area.

The coding shown in Figure 17 provides the same result as the coding
shown in Figure 16. Registers 13 and 14 are reloaded, and the return
code is loaded in register 15. The RETURN macro instruction reloads
registers 2-12 and passes control to the address in register 14. The
save area used is not flagged. The RC=(15) operand indicates that
register 15 already contains the return code, and the contents of
register 15 are not to be altered.

Figure 18 illustrates another use of the RETURN macro instruction.
The correct save area address is again established, and then the RETURN
macro instruction is issued. In this example, registers 14 and 0-12 are
reloaded, a return code of 8 is placed in register 15, the save area is
flagged, and control is returned. Specifying a return code overrides
the request to restore register 15 even though register 15 is within the
designated range of registers.

24

Return to the Control Program

The discussion in the preceding paragraphs has covered passing con
trol within one load module, and has been based on the assumption that
the load module was brought into virtual storage because of the program
name specified in the EXEC statement. The control program established
only one task to be performed for the job step. When the logical end of
the program is reached, control passes to the return address passed (in
register 14) to the first control section in the program. When the con
trol program receives control at this point, it terminates the task it
created for the job step, compares the return code in register 15 with
any COND values specified on the JOB and EXEC statements, and determines
whether or not subsequent job steps, if any are present, should be
executed.

PASSING CONTROL IN A DYNAMIC STRUCTURE

The discussion of passing control in a simple structure provides the
background for the discussion of passing control in a dynamic structure.
Within each load module, control should be passed as in a simple struc
ture. If you can determine which control sections will make up a load
module before you code the control sections, you·should pass control
within the load module without involving the control program. The macro
instructions discussed in this section provide increased linkage capabi
lity, but they require control program assistance and possibly increased
execution time.

BRINGING THE LOAD MODULE INTO VIRTUAL STORAGE

The load module containing the entry name you specified on the EXEC
statement is automatically brought into virtual storage by the control
program. Any other load modules you require during your job step are
brought into virtual storage by the control program when requested;
these requests are made by using the LOAD, LINK, ATTACH, and XCTL macro
instructions. The following paragraphs discuss the proper use of these
macro instructions.

Location of the Load Module

Initially, each load module that you can obtain dynamically is
located in a library (partitioned data set). This library is the link
library, the job or step library, task library, or a private library.

• The link library is always present and is available to all job steps
of all."jobs. The control program provides the data control block
for the library and logically connects the library to your program,
making the members of the library available to your program.

• The job and step libraries are explicitly established by including
//JOBLIB and //STEPLIB DO statements in the input stream. The
//JOBLIB DD statement is placed immediately after the JOB statement,
while the //STEPLIB DO statement is placed among the 00 statements
for a particular job step. The job library is available to all
steps of your job, except those that have step libraries. A step
library is available to a single job step; if there is a job
library, the step library replaces the job library for the step.
For either the job library or the step library, the control program
provides the data control block and issues the OPEN macro instruc
tion to logically connect the library to your program.

• In VS2 systems, unique task libraries may be established by using
the TASKLIB operand of the ATTACH macro instruction. The issuer of
the ATTACH macro instruction is responsible for providing the DD

Chapter 4: program Management 25

statement and opening the data set or sets. If the TASKLIB operand
is omitted, the task library of the attaching task is propagated to
the attached task. In the following example, task A's job library
is LIB1. Task A attaches task B, specifying TASKLIB=LIB2 in the
ATTACH macro instruction. Task B'S task library is therefore LIB2.
When task B attaches task C, LIB2 is searched for task C before LIBl
or the link library. Because task B did not specify a unique task
library for task C, its own task library (LIB2) is propagated to
task C and is the first library searched when task C requests that a
module be brought into virtual storage.

Task A
Task B

ATTACH EP=B,TASKLIB=LIB2
ATTACH EP=C

• A private library is defined by including a DD statement in the
input stream and is available only to the job step in which it is
defined. You must provide the data control block and issue the OPEN
macro instruction for each data set. You may use more than one
private library by including more than one DD statement and asso
ciated data control block.

A library can be a single partitioned data set, or a collection of
such data sets. When it is a collection, you define each data set by a
separate DD statement, but you assign a name only to the statement that
defines the first data set. Thus, a job library consisting of three
partitioned data sets would be defined as follows:

//JOBLIB DD DSNAME=PDS1, •••
// DD DSNAME=PDS2, •••
// DD DSNAME=PDS3, •••

The three data sets (PDS1. PDS2, PDS3) are processed as one. and are
said to be concatenated. Concatenation and the use of partitioned data
sets is discussed in more detail in the Data Management Services
publication.

Some of the load modules from the link library may already be in vir
tual storage in an area called the resident reenterable module area.
(VS1), or the link pack area (VS2). The contents of these areas are
determined during the nucleus initialization process and will vary
depending on the requirements of your installation. In an operating
system with VS2, the link pack area contains frequently used, reenter
able load modules from the LPA library. along with data management load
modules; these load modules can be used by any job step in any job. If
TSO is in the system and is started. it extends the link pack area. The
resident reenterable module area can contain user-written modules and
the loader, discussed in the Linkage Editor and Loader publication, and
all reenterable graphics subroutine package (GSP) modules.

With the exception of those load modules contained in this area,
copies of all of the reenterable load modules you request are brought
into your area of virtual storage and are available to any task in your
job step. The portion of your area containing the copies of the load
modules is called the job pack area.

The Search for the Load Module

In response to your request for a copy of a load module, the control
program searches the job pack area, the resident access module (RAM)
list (VS1), the task's load list, the link pacK area (VS2>, and the
resident reenterable module area (VS1). If a copy of the load module is
found in one of the pack areas, the control program determines whether
that copy can be used (see ·Using an Existing Copy·). If an existing
copy can be used, the search stops. If it can not be used. the search

26

continues until the module is located in a library. The load module is
then brought into the job pack area or the load list area.

The order in which the libraries and pack areas are searched depends
on whether the system is VS1 or VS2 and on the operands used in the
macro instruction requesting the load module. The operands that define
the order of the search are EP, EPLOC, DE, and DCB. The EP, EPLOC, and
DE operands are used to specify the name of the entry point in the load
module; you code one of the three every time you use a LINK, LOAD, XCTL,
or ATTACH macro instruction. The DCB operand is used to indicate the
address of the data control block for the library containing the load
module, and is optional. omitting the DCB operand or using the DCB
operand with an address of zero specifies the data control block for the
link library or the job or step library.

The following paragraphs discuss the order of the search when the
entry name used is a member name.

The EP and EPLOC operands require the least effort on your part; you
provide only the entry name, and the control program searches for a load
module having that entry name. Figure 19 shows the order of the search
when EP or EPLOC is coded, and the DCB operand is omitted or DCB=O is
coded.

When used without the DCB operand, the EP and EPLOC operands provide
the easiest method of requesting a load module from the link, job, or
step library. In a system with VS2, the task libraries are searched
before the job or step library, beginning with the task library of the
task that issued the request and continuing through the task libraries
of all its antecedent tasks. The job or step library is then searched,
followed by the link library. In VS1, the data sets that make up these
libraries are searched in the order of their DD statements.

A job, step, or link library or a data set in one of these libraries
can be used to hold one version of a load module, while another can be
used to hold another version with the same entry name. If one version
is in the link library, you can ensure that the other will be found
first by including it in the job or step library. However, if both ver
sions are in the job or step library, you must define the data set that
contains the version you want to use before that which contains the oth
er version. For example, if the wanted version is in PDS1 and the

r---------------------------------~-----------------------------------,
I VS1 I VS2 I
~----------------------------------+-----------------------------------~
IThe job pack area (user storage) IThe job pack area of the region is I
lis searched. Isearched for an available copy I
~----------------------------------+-----------------------------------~
IThe step library or the job IThe requesting task's task I
Ilibrary (if any) is searched. If Ilibrary and all the unique task I
lboth libraries are specified, the Ilibraries of its antecedent tasks I
I job library is not searched. lare searched. I
~----------------------------------+-----------------------------------~
IThe link pack area or the residentlThe step library is searched; if I
Ireenterable load module area is Ithere is no step library, the job I
Isearched (optional). Ilibrary (if any) is searched. I

~----------------------------------+-----------------------------------~
IThe link library is searched. IThe link pack area is searched. I
I ~-----------------------------------~
I IThe link library is searched. I L __________________________________ ~ ___________________________________ J

Figure 19. Search for module, EP or EPLOC operand with DCB=O or DCB
operand omitted

Chapter 4: Program Management 27

unwanted version is in PDS2, a step library consisting of these data
sets should be defined as follows:

//STEPLIB DD DSNAME=PDS1, •••
// DD DSNA~~=PDS2, •••

If, however, the first version in the job or step library has been pre
viously loaded and the version in the link library or the second version
in the job library is desired, the DCB operand must be coded in the
macro instruction.

This is not the case for task libraries. Extreme coution should be
used when specifying module names in unique task libraries, because
duplicate names may lead to the wrong module being given to the task
requesting that the module be brought into virtual storage. Once a
module has been loaded, the module name is known to all tasks in the
region and a copy of that module is given to all tasks requesting that
that module name be loaded, regardless of the requester's task library.

If you know that the load module you are requesting is a member of
one of the private libraries, you can still use the EP or EPLOC operand,
this time in conjunction with the DCB operand. You specify the address
of the data control block for the private library in the DCB operand.
The order of the search for~EP or EPLOC with the DCB operand is shown in
Figure 20.

Searching a job or step library slows the retrieval of load modules
from the link library; to speed this retrieval, you should limit the (
size of the job and step libraries. You can best do this by eliminating ~
the job library altogether and providing step libraries where required.
You can limit each step library to the data sets required by a single
step; some steps (such as compilation) do not require a step library and
therefore do not require searching and retrieving modules from the link
library. For maximum efficiency, you should define a job--library only
when a step library would be required-for every step, and every step
library would be the same.

The DE operand requires more work than the EP and EPLOC operands, but
it can reduce the amount of time spent searching for a load module.
Before you can use this operand, you must use the BLDL macro instruction
to obtain the directory entry for the module. The directory entry is
part of the library that contains the module.

r----------------------------------T-----------------------------------,
I VS1 I VS2 I
~----------------------------------+--------. ----~----------------------~
IThe partition is searched. IThe job pack area of the region I
I I is searched for an available I
I I copy. I
~----------------------------------+-----------------------------------~
IThe resident reenterable load IThe specified 1ibrary is I
Imodule area is searched I searched. I
I (optional) • I I
~----------------------------------+---------~-------------------------~
IThe specified library is IThe link pack area is searched. I
I searched. ~-----------------------------------~
I IThe link library is searched. I L __________________________________ ~ ___________________________________ J

28

Figure 20. Search for module, EP or EPLOC operands with DCB operand
specifying private library

To save time, the BLDL macro instruction used must obtain directory
entries for more than one entry name. You specify the names of the load
modules and the address of the data control block for the library when
using the BLDL macro instruction; the control program places a copy of
the directory entry for each entry name requested in a designated loca
tion in virtual storage. If you specify the link library and the job or
step library, the directory information indicates from which library the
directory entry was taken. The directory entry always indicates the
relative track and block location of the load module in the library. If
the load module is not located on the library you indicate, a return
code is given. You can then issue another BLDL macro instruction speci
fying a different library.

To use the DE operand, you provide the address of the directory entry
and code or omit the DCB operand to indicate the same library specified
in the BLDL macro instruction. The order of the search when the DE
operand is used is shown in Figure 21 for the link, job, step, and priv
ate libraries.

The preceding discussion of the search is based on the premise that
the entry name you specified is the member name. In an operating system
with VS1, the same search results from specifying an alias rather than a
member name. When you are using VS2, the control program checks for an
alias entry point name when the load module is found in a library. If
the name is an alias, the control program obtains the corresponding
member name from the library directory, and then searches the link pack
and job pack areas using the member name to determine if a usable copy
of the load module exists in virtual storage. If a usable copy does not
exist in a pack area, a new copy is brought into the job pack area.
otherwise, the existing copy is used, conserving virtual storage and
eliminating the loading time.

As the discussion of the search indicates, you should choose the
operands for the macro instruction that provide the shortest search
time. The search of a library actually involves a search of the direc
tory, followed by copying the directory entry into virtual storage, fol
lowed by loading the load module into virtual storage. If you know the
location of the load module, you should use the operands that eliminate
as many of these unnecessary searches as possible, as indicated in
Figures 19, 20, and 21. Examples of the use of these figures are shown
in the following discussion of passing control.

USing an Existing Copy

The control program uses a copy of the load module already in the job
pack area if the copy can be used. Whether the copy can be used or not
depends on the reusability and current status of the load module; that
is, the load module attributes, as designated using linkage editor con
trol statements, and whether the load module has already been used or is
in use. The status information is available to the control program only
when you specify the load module entry name on an EXEC statement, or
when you use ATTACH, LINK, or XCTL macro instructions to transfer oon
trol to the load module. The control program protects you from obtain
ing an unusable copy of a load module if you always "formally· request a
copy using these macro instructions (or the EXEC statement); if you pass
control in any other manner (for instance, a branch or a CALL macro
instruction), the control program, because it is not informed, cannot
protect you.

Operating System with VS1: The LOAD macro instruction permits all tasks
in a partition to share the same copy of a reenterable module requested
by a previous LOAD macro instruction. If the reenterable module is lat
er requested by a LINK, XCTL, or ATTACH macro instruction and a previous
request is still active, the existing copy of the module is used.

Chapter 4: Program Management 29

r----------------------------------T-----------------------------------,
I VSl I VS2 I
~----------------------------------~-----------------------------------~ I Directory Entry Indicates Link Library and DCB=O or DCB Operand I
I Omitted I
~----------------------------------T-----------------------------------~ I The partition is searched. I The job pack area for the region I
I I is searched for an available copy. I
~--------------------------~------+-----------------------------------~ I The resident reenterable load I The link pack area is searched. I
I module area is searched I I
I (optional). I I
.----------------------------------+-----------------------------------~ I The module is obtained from the I The module is obtained from the I
I link library. I link library. I
.----------------------------------~-----------------------------------~ I Directory Entry Indicates Job, Step, or Task Library and DCB=O or I
I DCB Operand omitted I
.---------------------------------~-----------------------------------~ I The job pack area for the parti- I The job pack area for the region I
I tion is searched for an avail- I is searched for an available copy. I
I able copy. I I
~----------------------------------+-----------------------------------~ I The module is obtained from the I The module is obtained from the I
I step library; if there is no I step library; if there is no step I
I step library, the module is I library, the module is obtained I
I obtained from the job library. I from the job library. I
~----------------------------------~-----------------------------------~ I DCB Operand Indicates Private Library I
.---------------------------------~-----------------------------------~ I The job pack area for the parti- I The job pack area for the region I
I tion is searched for an avail- I is searched for an available copy. I
I able copy. I I
~----------------------------------+-----------------------------------~ I The module is obtained from the I The module is obtained from the I
I specified private library. I specified private library. I L __________________________________ ~ ___________________________________ J

Figure 21. Search for module using DE operand

Operating System with VS2: All reenterable modules (modules designated
as reenterable using the linkage editor) from any library are completely
reusable; only one copy is ever placed in the link pack area or brought
into your job pack area, and you get immediate control of the load
module. If the module is serially reusable, only one copy is ever
placed in the job pack area; this copy is always used for a LOAD macro
instruction. If the copy is in use, however, and the request is made
using a LINK, ATTACH, or XCTL macro instruction, the task requiring the
load module is placed in a wait condition until the copy is available.
A LINK macro instrucion should not be issued for a serially reusable
load module currently in use for the same task; the task will be abnorm
ally terminated. (This could occur if an exit routine issued a LINK
macro instruction for a load module in use by the main program.)

If the load module is not reusable, a LOAD macro instruction will
always bring in a new copy of the load module; an existing copy is used
only if a LINK, ATTACH, or XCTL macro instruction is issued and the copy
has not been used previously. Remember, the control program can deter
mine if a load module has been used or is in use only if all of your
requests are made using LINK, ATTACH, or XCTL macro instructions.

Using the LOAD Macro Instruction

The LOAD macro instruction is used to ensure that a copy of the spe
cified load module is in virtual storage in your partition/region or job

30

pack area if it was not preloaded into the resident reenterable module
area, the resident access method area, or the link pack area. When a
LOAD macro instruction is issued, the control program searches for the
load module as discussed previously and brings a copy of the load module
into the partition/region if required. When the control program returns
control, register 0 contains the virtual storage address of the entry
point specified for the requested load module, and register 1 contains
the length of the loaded module and the authorization code in the high
byte. Normally, the LOAD macro instruction is used only for a reenter
able or serially reusable load module, since the load module is retained
even though it is not in use.

The control program also establishes a "responsibility" count for the
copy, and adds one to the count each time the requirements of a LOAD
macro instruction are satisfied by the same copy. As long as the
responsibility count is not zero, the copy is retained in virtual
storage.

The responsibility count for the copy is lowered by one when a DELETE
macro instruction is issued during the task which was active when the
LOAD macro instruction was issued. When a task is terminated, the count
is lowered by the number of LOAD macro instructions issued for the copy
when the task was active minus the number of deletions. When the
responsibility count for a copy in a job pack area reaches zero, the
virtual storage area containing the copy is made available: the copy is
never reused after the responsibility count established by LOAD macro
instructions reaches zero.

PASSING CONTROL WITH RETURN

The LINK macro instruction is used to pass control between load
modules and to provide for return of control. You can also pass control
using branch or branch and link instructions or the CALL macro instruc
tion; however, when you pass control in this manner you must protect
against multiple uses of nonreusable or serially reusable modules. The
following paragraphs discuss the requirements for passing control with
return in each case.

The LINK Macro Instruction

When you use the LINK macro instruction, as far as the logic of your
program is concerned, you are passing control to another load module.
Remember, however, that you are requesting the control program to assist
you in passing control. You are actually passing control to the control
program, using an SVC instruction, and requesting the control program to
find a copy of the load module and pass control to the entry point you
designate. There is some similarity between passing control using a
LINK macro instruction and passing control u$ing a CALL macro instruc
tion in a simple structure. These similarities are discussed first.

The convention regarding registers 2-12 still applies: the control
program does not change the contents of these registers, and the called
load module should restore them before control is returned. You must
provide the address in register 13 of a save area for use by the called
load module: the control program does not use this save area. You can
pass address parameters in a parameter list to the load module using
register 1; the LINK macro instruction provides the same facility for
constructing this list as the CALL macro instruction. Register 0 is
used by the control program and the contents will be modified.

There is also some difference between passing control using a LINK
macro instruction and passing control using a CALL macro instruction.
When you pass control in a simple structure, register 15 contains the
entry address and register 14 contains the return address. When the

Chapter 4: program Management 31

called load module gets control, that is still what registers 14 and 15
contain, but when you use the LINK macro instruction, it is the control
program that establishes these addresses. When you code the LINK macro
instruction, you provide the entry name and possibly some library infor
mation using the EP, EPLOC, or DE, and DCB operands. But you have to
get this entry name and library information to the control program. The
expansion of the LINK macro instruction does this by creating a control
program parameter list (the ~nformation required by the control program)
and placing the address of this parameter list in register 15. After
the control program finds the entry name, it places the address in
register 15.

The return address in your control section is always the instruction
following the LINK; that is not, however, the address that the called
load module receives in register 14. The control program saves the
address of the location in your program in its own save area, and places
in register 14 the address of a routine within the control program that
will receive control. Because control was passed using the control pro
gram, return must also be made using the control program.

The control program establishes a responsibility count for a load
module when control is passed using the LINK macro instruction. This is
a separate responsibility count from the count established for LOAD
macro instructions, but it is used in the same manner. The count is
increased by one when a LINK macro instruction is issued and decreased
by one when return is made to the control program or when the called
load module issues an XCTL macro instruction.

Figures 22 and 23 show the coding of a LINK macro instruction used to
pass control to an entry point in a load module. In Figure 22, the load
module is from the link, job, or step library; in Figure 23, the module
is from a private library. Except for the method used to pass control,
this example is similar to Figures 12 and 13. A problem program para
meter list containing the addresses INDCB, OUTDCB, and AREA is passed to
the called load module; the return point is the instruction following
the LINK macro instruction. A V-type address constant is not generated,
because the load module containing the entry point NEXT is not to be
edited into the calling load module. Note that the EP operand is cho
sen, since the search begins with the job pack area and the appropriate
library as shown in Figure 19.

Figures 24 and 25 show the use of the BLDL and LINK macro instruc
tions to pass control. Assuming that control is to be passed to an
entry point in a load module from the link library, a BLDL macro
instruction is issued to bring the directory entry for the member into
virtual storage. (Remember, however, that time is saved only if more
than one directory entry is requested in a BLDL macro instruction. Only
one is requested here for simplicity.)

r--, I LINK EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=l I
I RETURNPT I
I AREA DC 12F' 0 • I L-___ J

Figure 22. Use of the LINK macro instruction with the job or link
library

r--, I OPEN (PVTLIB) I
I I
I LINK EP=NEXT,DCB=PVTLIB,PARAM=(INDCB,OUTDCB,AREA),VL=l I
I I
I PVTLIB DCB DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R) I l __ J

Figure 23. Use of the LINK macro instruction with a private library

32

r--,
I BLDL O,LISTADDR I
I I
I DS OH List description field: I
I LISTADDR DC HI 01' Number of list entries I
I DC HI S8 1 Length of each entry I
I NAMEADDR DC CL8 I NEXT I Member name I
I DS 2SH Area required for directory information I L-___ J

Figure 24. Use of the BLDL macro instruction

r--, I LINK DE=NAMEADDR,DCB=O,P~(INDCB,OUTDCB,AREA),VL=1 I L __ J

Figure 25. The LINK macro instruction with a DE operand

The first operand of the BLDL macro instruction is a zero, which
indicates that the directory entry is on the link or job library. The
second operand is the address in virtual storage of the list description
field for the directory entry. The first two bytes at LISTADDR indicate
the number of directory entries in the list; the second two bytes indic
ate the length of each entry. If the entry is to be used in a LINK,
LOAD, ATTACH, or XCTL macro instruction, the entry must be 58 bytes in
length. A character constant is established to contain the directory
information to be placed there by the control program as a result of the
BLDL macro instruction. The LINK macro instruction in Figure 25 can now
be written. Note that the DE operand refers to the name field, not the
list description field, of the directory entry.

Using CALL or Branch and Link

You can save time by passing control to a load module without using
the control program. passing control without using the control program
is performed as follows. Issue a LOAD macro instruction to obtain a
copy of the load module, preceded by a BLDL macro instruction if you can
shorten the search time by using it. The control program returns the
address of the entry point to register 0 and the length in register 1.
Load this address into register 15. The linkage requirements are the
same when passing control between load modules as when passing control
between control sections in the same load module: register 13 must con
tain a save area address, register 14 Rust contain the return address,
and register 1 is used to pass parameters in a parameter list. A branch
instruction, a branch and link instruction, or a CALL macro instruction
can be used to pass control, using register 15. The return will be made
directly to your program.

Note: When control is passed to a load module without using the control
program, you must check the load module attributes and current status of
the copy yourself, and you must check the status in all succeeding uses
of that load module during the job step, even when the control program
is used to pass control.

The reason you have to keep track of the usability of the load module
has been discussed previously: you are not allowing the control program
to determine whether you can use a particular copy of the load module.
The following paragraphs discuss your responsibilities when using load
modules with various attributes. You must always know what the reusabi
lity attribute of the load module is. If you do not know, you should
not attempt to pass control yourself.

If the load module is reenterable, one copy of the load module is all
that is ever required for a job step. You do not have to determine the
status of the copy; it can always be used. The best way to pass control

Chapter 4: Program Management 33

is to use a CALL macro instruction ora branch or branch and link
instruction.

If the load module is serially reusable, one use of the copy must be
completed before the next use begins. If your job step consists of only
one task, preventing simultaneous use of the same copy involves making
sure that the logic of your program does not require a second use of the
same load module before completion of the first use. An exit routine
must not require the use of a serially reusable load module also
required in the main program.

Preventing simultaneous use of the same copy when you have more than
one task in the job step requires more effort on your part. You must
still be sure that the logic of the program for each task does not
require a second use of the same load module before completion of the
first use. You must also be sure that no more than one task requires
the use of the same copy of the load module at one time; the ENQ macro
instruction can be used for this purpose. Properly used, the ENQ macro
instruction prevents the use of a serially reusable resource, in thi-s
case a load module, by more than one task at a time. Refer to "Resource
Control" for a complete discussion of the ENQ macro instruction. A con
ditional ENQ macro instruction can also be used to check for simul
taneous use of a serially reusable resource within one task.

If the load module is nonreusable, each copy can only be used once;
you must be sure that you use a new copy each time you require the load
module. You can ensure that you always get a new copy by using a LINK
macro instruction or by doing as follows:

1. Issue a LOAD macro instruction before you pass control.

2. Pass control using a branch or a branch and link instruction or a
CALL macro instruction only.

3. Issue a DELETE macro instruction as soon as you are through with
the copy.

How Control is Returned

The return of control between load modules is the same as return of
control between two control sections in the same load module. The pro
gram in the load module returning control is responsible for restoring
registers 2-14, possibly loading a return code in register 15, and pas
sing control using the address in register 14. The program in the load
module to which control is returned can expect registers 2-13 to be
unchanged, register 14 to contain the return address, and optionally,
the register 15 to contain a return code. Control can be returned using
a branch instruction or the RETURN macro instruction. If control was
passed without using the control program, control returns directly to
the calling program. However, if control was originally passed using
the control program, control returns first to the control program, then
to the calling program.

The action taken by the control program is as follows. When control
was passed using a LINK or ATTACH macro instruction, the responsibility
count was increased by one for the copy of the load module to which con
trol was passed to ensure that the copy would be in virtual storage as
long as it was required. The return of control indicates to the control
program that this use of the copy is completed, and so the responsibili
ty count is decreased by one. The virtual storage area containing the
copy is made available when the responsibility count reaches zero.

34

PASSING CONTROL WITHOUT RETURN

The XCTL macro instruction is used to pass control between load
modules when no return of control is required. You can also pass con
trol using a branch instruction; however, when you pass control in this
manner, you must protect against multiple uses of nonreusable or serial
ly reusable modules. The following paragraphs discuss the requirements
for passing control without return in each case.

Passing Control Using a Branch Instruction

The same requirements and procedures for protecting against reuse of
a nonreusable copy of a load module apply when passing control without
return as were stated under -passing Control With Return.- The proce
dures for passing control are as follows.

A LOAD macro instruction should be issued to obtain a copy of the
load module. The entry address returned in register 0 is loaded into
register 15. The linkage requirements are the same when passing control
between load modules as when passing control between control sections in
the same load module; register 13 must be reloaded with the old save
area address, then registers 14 and 2-12 restored from that old save
area. Register 1 is used to pass parameters in a parameter list. A
branch instruction is issued to pass control to the address in register
15.

Note: Mixing branch instructions and XCTL macro instructions is hazar
dous. The next topic explains why.

Using the XCTL Macro Instruction

The XCTL macro instruction, in addition to being used to pass con
trol, is used to indicate to the control program that this use of the
load module containing the XCTL macro instruction is completed. Because
control is not to be returned, the address of the old save area must be
reloaded into register 13. The return address must be loaded into
register 14 from the old save area, as must the contents of registers
2-12. The XCTL macro instruction can be written to request the loading
of registers 2-12, or you can do it yourself. If you restore all regis
ters yourself, do not use the EP parameter. This creates an inline
parameter list that can only be addressed using your base register, and
your base register is no longer valid. If EP is used, you must have
XCTL restore the base register for you.

When using the XCTL macro instruction, you pass parameters in a para
meter list, with the address of the list in register 1. In this case,
however, the parameter list (or the parameter data) must be established
in a portion of virtual storage outside the current load module contain
ing the XCTL macro instruction. This is because the copy of the current
load module may be deleted before the called load module can use the
parameters, as explained in more detail belo~.

The XCTL macro instruction is similar to the LINK macro instruction
in the method used to pass control: control is passed by way of the
control program using a control program parameter list. ~he control
program loads a copy of the load module, if necessary, loads the entry
address in register 15, saves the address passed in register 14, and
passes co~trol to the address in register 15. The control program adds
one to the responsibility count for the copy of the load module to which
control is to be passed and subtracts one from the responsibility count
for the current load module. The current load module in this case is
the load module last given control using the control program in the per
formance of the active task. If you have been passing control between
load modules without using the control program, chances are the respon
sibility count will be lowered for the wrong load module copy. And

Chapter 4: Program Management 35

remember, when the responsibility count of a copy reaches zero, that
copy may be deleted, causing unpredictable results if you try to return
control to it.

Figure 26 shows how this could happen. Control is given to load
module A, which passes control to load module B (step 1) using a LOAD
macro instruction and a branch and link instruction. Register 14 at
this time contains the address of the instruction following the branch
and link. Load module B then is executed, independently of how control
was passed, and issues an XCTL macro instruction when it is finished
(step 2) to pass control to load module C. The control program, knowing
only of load module A, lowers the responsibility count of A by one,
resulting in its deletion. Load module C is executed and returns to the
address which used to follow the branch and link instruction. Step 3 of
Figure 26 indicates the result.

Two methods are available for ensuring that the proper responsibility
count is lowered. One way is to always use the control program to pass
control with or without return. The other method is to use only LOAD
and DELETE macro instructions to determine whether or not a copy of a
load module should remain in virtual storage.

36

Control Program

r
A

1
LOAD B
BALR B

Control
Program A

---+

I ,

r----+ B

Control
Program

I
BALR r--

B j C

XCTL C

B I
I ,
,
t

XCTL C r-

Control ,-- -Program l
I I
I C ,

1
I
I To routine which
I last issued a LINK I

RETURN '-- macro instruction.

Step 1

Step 2

Step 3

Figure 26. Misusing. control program facilities causes unpredictable
results

ADDITIONAL ENTRY POINTS

Through the use of linkage editor facilities you can specify as many
as 17 different names (a member name and 16 aliases) and associated
entry points within a load module. It is only through the use of the
member name or the aliases that a copy of the load module can be brought
into virtual storage. Once a copy has been brought into virtual
storage, however, additional entry points can be provided for the load
module, subject to this restriction. The load module copy to which the
entry point is to be added must be one of the following:

• A copy which satisfied the requirements of a LOAD macro instruction
issued during the same task

• The copy of the load module most recently given control through the
control program in performance of the same task

The entry point is added through the use of the IDENTIFY macro
instruction. An IDENTIFY macro instruction can be issued by any program
in the job step except by asynchronous exit routines established using
other supervisor macro instructions. In VS1, an IDENTIFY macro instruc
tion cannot be issued when the load module is given control at an entry
point that was added by an IDENTIFY macro instruction.

When you use the IDENTIFY macro instruction, you specify the name to
be used to identify the entry point, and the virtual storage address of
the entry point in the copy of the load module. The address must be
within a copy of a load module that meets the requirements listed above;
if it is not, the entry point will not be added, and you will be given a
return code of OC (hexadecimal). The name can be any valid symbol of up
to eight characters, and does not have to correspond to a name or symbol
within the load module. The name must not be the same as any other name
used to identify any load module available to the control program; dupl
icate names cause errors. The control program checks the names of all
load modules in the link pack area, the job pack area, and the
partition/region of the job step when you issue an IDENTIFY macro
instruction, and provides a return code of 08 if a duplicate is found.
You are responsible for not duplicating a member name or an alias in any
of the libraries.

In VS1, the added entry point can be used only in an ATTACH macro
instruction. The added entry point is available for as long as the copy
is retained in virtual storage. Proper task synchronization is required
when using an added entry point in the performance of a task which has
not directly requested the associated copy of the load module; the load
module may otherwise be deleted before the use is complete. The added
entry point is treated as an entry point to a reenterable load module by
the control program, regardless of the actual module attributes of the
load module. You must guard against reuse of nonreusable coding-

ENTRY POINT AND CALLING SEQUENCE IDENTIFIERS AS DEBUGGING AIDS

An entry point identifier is a character string of up to 70 charac
ters which can be specified in a SAVE macro instruction. The character
string is created as part of the SAVE macro instruction expansion. The
dump program uses the calling sequence identifier and the entry point
identifier as shown in the VSl Debugging Guide.

A calling sequence identifier is a 16-bit binary number which can be
specified in a CALL or a LINK macro instruction. When coded in a CALL
or a LINK macro instruction, the calling sequence identifier is located
in the two low-order bytes of the fullword at the return address_ The
high-order two bytes of the fullword form a NOP instruction.

Chapter 4: Program Management 37

CHAPTER 5: RESOURCE CONTROL

TASK SYNCHRONIZATION

Some planning on your part is required to determine what portions of
one task are dependent on the completions of portions of all other
tasks. The POST macro instruction is used to signal completion of an
event; the WAIT macro instruction is used to indicate that a task cannot
proceed until one or more events have occurred. An event control block
is used with the WAIT and POST macro instructions; it is a fullword on a
fullword boundary, as shown in Figure 27.

An event control block is also used when the ECB operand is coded in
an ATTACH macro instruction. In this case the control program issues
the POST macro instruction for the event (subtask termination). Either
the 24-bit (bits 8 to 31) return code in register 15 (if the task com
pleted normally> or the completion code specified in the ABEND macro
instruction (if the task was abnormally terminated) is placed in the
event control block as shown in Figure 27. The originating task can
issue a WAIT macro instruction specifying the event control block; the
task will not regain control until after the event has taken place and
the event control block is posted (except if an asynchronous event
occurs, for example, timer expiration).

When an event control block is originally created, bits 0 (wait bit)
and 1 (post bit) must be set to zero. An event control block can be
reused; if it is reused, bits 0 and 1 must be set to zero before either
the WAIT or POST macro instruction can be used. If, however, the bits
are set to zero before the ECB has been posted, any task waiting for
that ECB to be posted will remain in the wait state. When a WAIT macro
instruction is issued, bit 0 of the associated event control block is
set to 1. When a POST macro instruction is issued, bit 1 of the asso
ciated event control block is set to 1 and bit 0 is set to O.

A WAIT macro instruction can specify more than one event by specify
ing more than one event control block. (Only one WAIT macro instruction
can refer to an event control block at one time, however.) If more than
one event control block is specified in a WAIT macro instruction, the
WAIT macro instruction can also specify that all or only some of the
events must occur before the task is taken out of the wait condition.
When a sufficient number of events have taken place (event control
blocks have been posted) to satisfy the number of events indicated in
the WAIT macro instruction, the task is taken out of the wait condition.

USING A SERIALLY REUSABLE RESOURCE

When one or more users of a serially reusable resource modify the
resource, simultaneous use must be prevented. Consider a data area in
virtual storage that is being used by programs associated with several
tasks of a job step. Some of the users are only reading records in the
data area; since they are not changing the records, their use of the

o 2 31

I w I p I completion code I
Figure 27. Event control block

38

I

data area can be simultaneous. other users of the data area, however,
are reading, updating, and replacing records in the data area. Each of
these users must acquire, update, and replace records one at a time, not
simultaneously. In addition, none of the users that are only reading
the records wish to use a record that another user is updating until
after the record has been replaced. This illustrates why special care
must be taken with serially reusable resources.

For all of the uses of the serially reusable resource made during the
performance of a single task, you must prevent incorrect use of the
resource yourself. You must make sure that the logic of your program
does not require the second use of the resource before completion of the
first use. Be especially careful when using a serially reusable
resource in an exit routine; since exit routines are given control asyn
chronously from the standpoint of your program logic, the exit routine
could obtain a resource already in use by the main program. For the
uses of the serially reusable resource by more than one task, the ENQ
macro instruction is provided to ensure that the resource is used seri
ally. The ENQ macro instruction cannot be used to prevent simultaneous
use of the resource within a single task. It can only be used to test
for simUltaneous use within one task.

The ENQ macro instruction requests the control program to assign con
trol of a resource to the active task. The control program determines
the status of the resource, and either grants the request by returning
control to the active task or delays assignment of control by placing
the active task in the wait condition. When the status of the resource
changes so that control can be given to a waiting task, the task is
taken out of the wait condition and placed in the ready condition. The
use of the ENQ macro instruction is discussed in the following
paragraphs.

NAMING THE RESOURCE

You represent the resource in the ENQ macro instruction by two names
known as the gname and the rname. These names mayor may not have any
relation to the actual name of the resource. The control program does
not associate the name with the actual resource; it merely processes
requests having the same qname and marne on a first-in, first-out basis.
It is up to you to associate the names with the actual resource. It is
up to all users of the resource to use qname and rname to represent the
same resource. The control program treats requests having different
qname and rname combinations as requests for different resources.
Because the actual resource is not identified by the control program, it
is possible to use the resource without issuing an ENQ macro instruction
requesting it. If this happens, the control program cannot provide any
protection.

If the resource is used only in the performance of tasks in your job
step, you can assign the qname and rname combination. You should, in
this case, code the STEP operand in the ENQ macro instructions that
request the resource, indicating that the resource is used only in that
job step. The control program adds the job step identifier to the rname
so that duplicate qname and rname combinations are not used unintention
ally in different job steps. If the resource is available to any job
step in the system, the qname and rname combination must be agreed upon
by all users. The SYSTEM operand should be coded in each ENQ macro
instruction requesting one of these resources.

When selecting a qname for the resource, do not use SYS as the first
three characters; qnames used by the control program start with SYS, and
you might accidentally duplicate one of these.

Chapter 5: Resource Control 39

EXCLUSIVE AND SHARED REQUESTS

You can request exclusive or shared control of the resources for a
task by coding either E or S in the ENQ macro instruction. If this use
of the resource will result in modification of the resource, you must
request exclusive control. If you are requesting use of a serially
reusable load module and passing control yourself, you must request
exclusive control, since that program modifies itself during execution.
If you are updating a record in a data area, you must request exclusive
control. If you are only reading a record, and you will not change the
record, you can request shared control.

In order to protect any user of a serially reusable resource, all
users must request exclusive or shared control on this basis: When a
task is given control of a resource in response to an exclusive request,
no other task will be given simultaneous control of the resource. When
a task is given control of a resource in response to a shared request,
control will be given to other tasks simultaneously only in response to
other requests for shared control, never in response to requests for
exclusive control. A request for shared control will protect against
modification of the resource by another task only if the above rules are
followed.

PROCESSING THE REQUEST

The control program constructs a list for each qname and rnaroe combi
nation it receives in an ENQ macro instruction, and enters a request in
the list for the task which is active when the ENQ macro instruction is
issued. The request is entered in an existing list when the control
program receives a request specifying a qname and rname combination for
which a list exists; if no list exists for that qname and rname combina
tion, a new list is built. The requests are placed on the list in the
order they are received by the control program; the priority of the task (
has no effect in this case. Control of the resource is allocated to a \
task according to two factors:

• The position on the list of the task's request •

• The exclusive control or shared control requirements of the request
which caused the entry to be added to the list.

Figure 28 shows the status of a list built for a very popular qnaroe
and rname combination. The S or E next to the entry indicates that the
request was for shared or exclusive control. The task represented by
the first entry on the list is always given control of the resource, so
the task represented by ENTRY1 (Figure 28, Step 1) is assigned the
resource. The request which established ENTRY2 was for exclusive con
trol, so the corresponding task is placed in the wait condition, along
with the tasks represented by all the other entries in the list.

ENTRYl (5)

ENTRY2 (E) ENTRY2 (E)

ENTRY3 (5) ENTRY3 (5) ENTRY3 (5)

ENTRY4 (5) ENTRY 4 (5) ENTRY4 (5)

ENTRY5 (E) E NTRY5 (E) ENTRY5 (E)

ENTRY6 (5) ENTRY6 (5) ENTRY6 (5)
5tep 1 Step 2 Step 3

Figure 28. ENG macro instruction processing

40

Eventually, control of the resource is released for the task repre
sented by ENTRY1, and the entry is removed from the list. As shown in
Figure 28, Step 2, ENTRY2 is now first on the list, and the correspond
ing task is assigned control of the resource. Because the request which
established ENTRY2 was for exclusive control, the tasks represented by
all the other entries in the list are kept in the wait condition.

Figure 28, Step 3, shows the status of the list after control of the
resource is released for the task represented by ENTRY2. Because ENTRY3
is now at the top of the list, the task represented by ENTRY3 is given
control of the resource. ENTRY3 indicates that the resource can be
shared, and, because ENTRY4 also indicates that the resource can be
shared, ENTRY4 is also given control of the resource. In this case, the
task represented by ENTRY5 will not be given control of the resource
until control has been released for both the tasks represented by ENTRY3
and ENTRY4.

The following general rules are used by the control program:

• A task represented by the first entry in the list is always given
control of the resource.

• If the request is for exclusive control, the task is not given con
trolof the resource until its request is the first entry in the
list.

• If the request is for shared control, the task is given control
either when its request is first in the list or when all the entries
before it in the list also indicate a shared request.

• If the request is for several resources, the task is given control
when all of the entries for an exclusive request are first in the
list and all of the entries for a shared request are either first in
the list or are preceded only by entries for other shared requests.

USING ENQ AND DEQ

Proper use of the ENQ and DEQ macro instructions is required to avoid
duplicate requests, to avoid tying up the resource, and to avoid inter
locking the system. Guides to using them properly are given in the fol
lowing paragraphs.

Duplicate Requests for a Resource

A duplicate request occurs when an ENQ macro instruction is issued to
request a resource and a task has already been assigned control of that
resource. If the second request results in a second entry on the list,
the control program recognizes the contradiction and refuses to place
the task in the ready condition (for the first request) and in the wait
condition (for the second request) simultaneously. The second request
results in abnormal termination of the task. You must design your pro
gram to ensure that a second request for a resource is never issued
until control of the resource is released for the first use. Again, be
especially careful when using an ENQ macro instruction in an exit
routine.

Releasing the Resource

The DEQ macro instruction is used to release a serially reusable
resource assigned to a task through the use of an ENQ macro instruction.
The task must be in control of the resource. A resource cannot be

Chapter 5: Resource Control 41

released if the task does not have control. As you have seen, it is
possible for many tasks to be placed in the wait condition while one
task is assigned control of the resource. This may reduce the amount of
work being done by the system. Issue a DEQ macro instruction as soon as
possible to release the resource, so that other tasks can be performed.
If a task returns control to the control program without releasing a
resource, the resource is released automatically.

Conditional and Unconditional Requests

The normal use of the ENQ and DEQ macro instruction is to make uncon
ditional requests, and these are the only requests that have been consi
dered to this point. As you have seen, abnormal termination of the task
occurs when two ENQ macro instructions are issued for the same resource
in performance of the same task, without an intervening DEQ macro
instruction. Abnormal termination also occurs if a DEQ macro instruc
tion is issued in a task that has not been assigned control of the
resource. Both of these abnormal termination conditions can be avoided
either by careful program design or through the use of the RET operand
in the ENQ and DEQ macro instructions. The RET operand (RET=TEST, RET=
USE, RET=CHNG, and RET=HAVE for ENQ; RET=HAVE for DEQ) indicates a con
ditional request for or release of a resource.

RET=TEST is used to test the status of the list for the corresponding
qname and rname combination. An entry is never made in the list when
RET=TEST is coded. Instead, a return code is provided indicating the
status of the list at the time the request was made. A return code of 8
means the task is queued and has control of the resource. A return code
of 12 means the resource is permanently unavailable. A return code of
20 means the task is queued but does not have control of the resource.
A return code of 4 indicates the task would have been placed in the wait
?Ond?ition ihf the rkequelst

d
hhad be ben un<?ondit:ionad~. A return

l
cfodthe of 0 \\

1n 1cates t etas wou ave een g1ven 1mme 1ate contro 0 e
resource if the request had been unconditional. RET=TEST is most useful
for determining if the task has already been assigned control of the
resource. It is less useful for determining the status of the list and
to take action based on that status. In the interval between the time
the control program checks the status and the time your program checks
the return code and issues another ENQ macro instruction, another task
could have been made active, and the status of the list could have been
changed.

RET=USE indicates to the control program that the active task is to
be assigned control of the resource only if the resource is immediately
available. A return code of 0 indicates that the request was put on the
list and the task was assigned control of the resource. A return code
of 4 indicates that the task would have been placed in the wait condi
tion if the request had been unconditional. A return code of 8 means
the task is queued and has control of the resource. A return code of 12
means the resource is permanently unavailable. A return code of 20
means the task is queued but does not have control of the resource. The
request is not put on the list if any return code other than 0 is given.
RET=USE can be best used when there is other processing that can be done
without using the resource. You do not want to wait for the resource if
there is other work that you can do.

RET=CHNG indicates to the control program that the caller wishes to
have exclusive control of a resource which he has already requested. A
return code of 0 indicates that the resource was available and was
assigned to the exclusive control of the caller. Either the caller had
already requested exclusive control, or the requested change from shared
to exclusive control was honored. A return code of 4 indicates that the

42

requested change in attribute cannot be honored, because the caller is
currently sharing the resource with another user. A return code of 8
indicates that the user was not queued to receive control of the
resource when he requested the attribute change. A return code of 12
means the resource is permanently unavailable. Although this is an
error condition, control is returned to the user.

RET=HAVE is used in both the ENQ and DEQ macro instructions. An ENQ
macro instruction is treated as a normal request for control unless a
request from the same task already exists. A return code of 8 means the
task is queued and has control of the resource. A return code of 12
means the resource is permanently unavailatle. A return code of 20
means the task is queued but does not have control of the resource. A
return code of 0 indicates that the task was assigned control of the
resource. A DEQ macro instruction is processed as a normal request to
release a resource unless the task does not have control of the
resource. A return code of 0 indicates that the resource has been
released. A return coe of 8 indicates that the task did not have an
entry for the resource (although the task may be in the wait condition
because of a request for the resource). RET=HAVE can be used to good
advantage in an exit routine to avoid abnormal termination.

Avoiding Interlock

An interlock condition arises when two tasks are waiting for each
others completion, yet neither task can gain access to the resource
necessary for its completion. An example of an interlock is shown in
Figure 29. Task A has exclusive access to resource M, and higher
priority task B has exclusive access to resource N. Task B is placed in
a wait condition when it requests exclusive access to resource M because
M is accessible only by task A. The interlock becomes complete when
task A requests exclusive access to resource N, because N is accessible
only by Task B. The same interlock would have occurred if task B issued
a single request for multiple resources M and N prior to task A's second
request. The interlock would not have occurred if both tasks had issued
single requests for multiple resources. other tasks requiring either of
the resources are also in a wait condition because of the interlock,
although in this case they did not contribute to the conditions that
caused the interlock.

The above example involving two tasks and two resources is a simple
example of an interlock. The example could be expanded to cover many
tasks and many resources. It is imperative that interlocks be avoided.
The following procedures indicate some ways of preventing interlocks.

• Do not request resources that are not immediately required. If you
can use the serially reusable resources one at a time, you should
request them one at a time and release one before requesting the
next.

r----------------------------------T-----------------------------------,
I Task A I Task B I
~----------------------------------+-----------------------------------~
I ENQ (M,A,E,8,SYSTEM) I I
~----------------------------------+-----------------------------------~
I I ENQ (N,B,E,8,SYSTEM) I
~-------.---------------------------+-----------------------------------~
I I ENQ (M,A,E,8,SYSTEM) I
~----------------------------------+-----------------------------------~
I ENQ (N,B,E, 8, SYSTEM) I I L __________________________________ ~ ___________________________________ J

Figure 29. Interlock condition

Chapter 5: Resource Control 43

r--, I ENQ (NAME1ADD,NAME2ADD,E,8,SYSTE~) I
I ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM) I L __ J

Figure 30. Two requests for two resources

r--,
I ENQ (N~E1ADD,NAME2ADD,E,8,SYSTEM,NAME3ADD,NAME4ADD,E,10,SYSTEM) I L __ J

Figure 31. One request for two resources

• Share resources as much as possible. If. the requests in the lists
shown in Figure 29 had been for shared resources, there would have
been no interlock. This does not mean you should share a resource
that you will modify. It does mean that you should analyze your
requirements for the resources carefully, and not request exclusive
control when shared control would suffice.

• The ENQ macro instruction can be written to request control of more
than one resource at a time. Th~ requesting program is placed in a
wait state until all of the requested resources are available.
Those resources not being used by any other program immediately
become exclusively available to the waiting program and are unavail
able to any other programs that may request them. For example,
instead of coding the two ENQ macro instructions shown in Figure 30,
the one ENQ macro instruction shown in Figure 31 could be coded. If
all requests were made in this manner, the interlock shown in Figure
29 would be avoided. All of the requests from one task would be ~
processed before any of the requests from the second task. The DEQ ~
macro instruction should be written in the same manner to release
the entire set of resources at once.

• If the use of one resource always depends on the use of a second
resouce, then the pair of resources can be defined as one resource
in the ENQ and DEQ macro instructions. This procedure can be' used
for any number of resources that are always used in combination.
There would be no protection of the resources if they are also
requested independently, however. The request would always have to
be for the set of resources.

• If there are many users of a group of resources and some of the
users require control of a second resource while retaining control
of the first resource, it is still possible to avoid interlocks. In
this case the order in which control of the resources is requested
should be the same for each user. For instance, if resources A, B,
and C are required in the performance of many tasks, the requests
should always be made in the order of A, B, and C. An interlock
situation will not develop, since requests for resource A will
always precede requests for resource B.

The above is not an exhaustive list of the procedures to be used to
avoid an interlock. You could also make repeated requests for control
specifying the RET=USE operand, which would prevent the task from being
placed in the wait condition; if no interlock was developing, of course,
this would be a waste of execution time. The solution to the interlock
problem in all cases requires the cooperation of all the users of the
resources.

44

CHAPTER 6: INTERRUPTION, TERMINATION, AND DUMPING SERVICES

PROGRAM INTERRUPTION PROCESSING

Some conditions encountered in a program cause a program interrup
tion. These conditions include incorrect operands and operand specifi
cations, as well as exceptional results, and are known generally as pro
gram exceptions. For certain exceptions (fixed-point and decimal over
flow, exponent underflow and significance), interruptions can be dis
abled by setting the corresponding bits in the program status word to
zero.

When a task becomes active for the first time, all program interrup
tions that can be disabled are disabled, and a standard control program
exit routine, included when the system was generated, is provided. This
control program exit routine is given control when certain program
interruptions occur; it issues an ABEND macro instruction specifying
task abnormal termination and requesting a dump. By issuing the SPIE
macro instruction, you can specify your own exit routine to be given
control for one or more types of program exceptions. The macro instruc
tion specifies the address of the exit routine to be given control when
specified program exceptions occur. If the SPIE macroinstruction spe
cifies an exception for which the interruption has been disabled, the
control program enables the interruption when the macro instruction is
issued.

The SPIE macro instruction can be issued by any program being
executed in performance of the task. When the task is active, your exit
routine receives control for all interruptions resulting from exceptions
specified in the SPIE macro instruction unless the current routine for
the task is operating in supervisor mode. For other program interrup
tions, control is given to the control program exit routine. Each suc
ceeding SPIE macro instruction completely overrides specifications in
the previous macro instruction.

PROGRAM INTERRUPTION CONTROL AREA

The expansion of the SPIE macro instruction produces a control pro
gram parameter list, called a program interruption control area (PICA).
The PICA, shown in Figure 32, contains the new program mask for the
interruption types that can be disabled, the address of the exit routine
to be given control, and a code for interruption types (exceptions) spe
cified in the SPIE macro instruction.

A program that issues a SPIE macro instruction must restore the PICA
that was in effect when control was received. It must do so before it
returns control to the calling program, or transfers control to another
program by issuing an XCTL macro instruction. When the SPIE macro
instruction is issued, the control program returns the address of the

DISPLACEMENT
{Bytes} 0 2 3 4 5

I
I Pro- Interruption

0000 I gram Exit Routine Address Type
: Mask

Figure 32. Program interruption control area

Chapter 6: Interruption, Termination, and Dumping Services 45

previous PICA in register 1. The control program returns zero in
register 1 when there is no previous PICA, that is, when no SPIE macro
instruction has been issued earlier in performance of the task.

Figure 33 shows how to restore a previous PICA. The first SPIE macro
instruction designates an exit routine called FIXUP that is to be given
control if fixed-point overflow occurs. The address returned in regist
er 1 is stored in the fullword called HOLD. At the end of the program,
the execute form of the SPIE macro instruction is used to restore the
previous PICA.

PROGRAM INTERRUPTION ELEMENT

At the first execution of a SPIE macro instruction during the perfor
mance of a task, the control program creates a 32-byte program interrup
tion element (PIE) in the virtual storage area assigned to the job step
and, in VS1, a 32-byte work area in the protected queue area for the
program check handler. This program interruption element is used each
time a SPIE macro instruction is issued during the performance of the
task and contains the information shown in Figure 34.

The PICA address in the program interruption element is the address
of the program interruption control area used in the last execution of a
SPIE macro instruction for the task. When control is passed to the rou
tine indicated in the PICA, the old program status word contains the
interruption code in bits 16-31; these bits can be tested to determine
the cause of the program interruption. The contents of registers 14,
15, 0, 1, and 2 at the time of the interruption are stored by the con
trol program as indicated.

REGISTER CONTENTS UPON ENTRY TO USER'S EXIT ROUTINE

When control is passed to the designated exit routine, the register
contents are as follows:

Register 0: Internal control program information.

Register 1: Address of the program interruption element for the task
that caused the interruption.

Registers 2-12: Same as when the program interruption occurred.

Register 13: Address of the save area for the main program. The exit
routine must not use this save area.

Register 14: Return address (to the control program).

Register 15: Address of the exit routine.

r---~----------------,
I I
I SPIE FIXUP,(8) Privide exit routine for fixed-point overflow I
I ST 1,HOLD Save address returned in register 1 I
I I
I L 5,HOLD Reload returned address I
I SPIE MF=(E,(S» Use execute form and old PICA address I
I I
I HOLD DC F'O' I L __ J

Figure 33. Using the SPIE macro instruction

46

(

\

DISPLACEMENT
(Bytes) 0

4

12

16

20

24

28

32

Reserved

Old Program
Status Word

2 3

PICA Address

..
I

I (I nterrupti on Codes) L _________

Register 14

Register 15

Register 0

Register 1

Register 2

Figure 34. Program interruption element

The exit routine must be in virtual storage when it is required, and
must return control to the control program using the address passed in
register 14. The control program restores registers 14, 15, 0, 1, and 2
from the program interruption element after control is returned, but
does not restore the contents of registers 3-13. If a program interrup
tion occurs when the program interruption exit routine is in control,
the control program exit routine is given control.

To determine which type of interruption occurred, the exit routine
can test bits 28 through 31 of the old program status word (OPSW) in the
program interruption element. The routine can then take corrective
action or can simply ignore the exceptional condition.

The exit routine can alter the contents of the registers when control
is returned to the interrupted program. For registers 3 through 13, the
routine alters the contents of the actual registers. For registers 14
through 2, the routine alters the contents of the register save area in
the program interruption element, because the control program reloads
these registers from this area when it returns control to the inter
rupted program. The exit routine can also alter the last four bytes of
the OPSW in the program interruption element. By changing the OPSW, the
routine can select any return point in the interrupted program.

HANDLING ABNORMAL CONDITIONS

It is not possible to provide procedures for all possible conditions
which can occur during the execution of a program. You should, of
course, be sure that you can process all valid data, and that your pro
gram satisfies all the requirements of the problem. The more general
you make the program, the greater the number of additional routines you
will require to handle special cases. But you will not be able to pro
vide routines to detect and correct all of the special or abnormal con
ditions that can occur.

Chapter 6: Interruption, Termination, and Dumping Services 47

The control program does a great deal of checking for abnormal condi
tions. A standard program interruption routine is provided to detect
and process errors such as protection violations or addressing errors.
The data management and supervisor routines provide some error checking
facilities to ensure that, based on the information you have provided,
only valid data is being processed, and that no requests with conflict
ing requirements have been made. For the abnormal conditions that can
possibly be corrected, control is returned to your program with a return
code indicating the probable source of the error. For conditions that
indicate that further processing would result in degradation of the sys
tem or destruction of existing data, the control program abnormal ter
mination routine is given control.

There will be abnormal conditions unique to your program, of course,
that the control program cannot detect. Figure 35 is an example of one
of these. The routine shown in Figure 35 checks a control field in an
input parameter list to determine whiCh function the program is to per
form. Only characters between 1 and 4 are valid in the control field.
The presence of any other character is invalid, but the routine must be
prepared to detect and handle these characters. The routine sho~ld ind
icate its inability to continue processing by returning control to the

Yes

Yes

Yes

Yes

No

Figure 35. Detecting an abnormal condition

48

I
I

\i

calling program with an error return code. The calling program should
then try to interpret the return code and to recover from the error. If
it cannot do so, the calling program should detach its incomplete sub
tasks, execute its usual termination procedures, and return control to
its calling program, again with an error return code. This procedure
may result in termination of all the tasks of a job step; if it does,
the COND parameters of the JOB and EXEC statements may be used to deter
mine whether subsequent job steps should be executed.

An alternative to this procedure is to pass control to the control
program abnormal termination routine by issuing an ABEND macro instruc
tion. This alternative is simpler, but it offers less opportunity for
error recovery and continued processing unless a STAE macro instruction,
specifying a STAE exit routine address, is issued to override the ABEND.
The use of STAE is discussed in the Planning and Use Guide. The abnorm
al termination facilities available through the use of the ABEND macro
instruction are discussed below; an explanation of the facility to
intercept abnormal termination through the STAE macro instruction is
presented following the ABEND discussion.

The position within the job step hierarchy of the task for which the
ABEND macro instruction is issued determines the exact function of the
abnormal termination routine. If an ABEND macro instruction is issued
when the job step task (the highest level or only task) is active, or if
the STEP operand is coded in an ABEND macro instruction issued during
the performance of any task in the job step, all the tasks in the job
step are terminated. An ABEND macro instruction (without a STEP
operand) that is issued in performance of any task other than the job
step task usually causes only that task and the subtasks of that task to
be abnormally terminated. However, if the abnormal termination cannot
be fulfilled as requested, it may be necessary for the control program
to abnormally terminate the job step task. The most frequent cause of
this is that the subtask does not have sufficient virtual storage for
ABEND's processing. ABEND ·steals· virtual storage allocated to the job
step task and needed by it to continue normal processing. The abnormal
termination routine works in the same manner whether it is given control
from the control program or a problem program.

When a task is abnormally terminated, the control program performs
the following functions:

• Lowers the responsibility counts for the load modules brought into
virtual storage during the performance of the task.

• Releases the virtual storage subpools owned by the tasks.

• Cancels the time interval if one had been established for the task.

• Issues a CLOSE macro instruction for any data control blocks that
were opened during the performance of the task.

• Purges any outstanding input or output requests.

• Cancels any requests for operator replies made using a WTOR macro
instruction.

• Cancels any requests for resources made using an ENQ macro
instruction.

If the job step is not to be terminated, the following action is
taken:

• The abnormal termination functions listed above are performed,
starting with the lowest level task, for each of the subtasks of the
task that was active when the ABEND macro instruction was issued.

Chapter 6: Interruption, Termination, and Dumping Services 49

• The completion code specified in the ABEND macro instruction is
placed in the task control block of the active task (the task for
which the ABEND macro instruction was issued).

• If the ECB operand was written in the ATTACH macro instruction
issued to create the active task, the ECB is posted with the comple
tion code specified in the ABEND macro instruction.

• If the ETXR operand was written in the ATTACH macro instruction
issued to create the active task, the end-of-task exit routine is
scheduled to be given control when the originating task becomes
active.

• If neither the ECB nor ETXR operands were written when the ATTACH
macro instruction was issued, a DETACH macro instruction is issued
by the control program for the active task.

If the job step is to be terminated, the following action is taken:

• The abnormal termination functions listed above are performed,
starting with the lowest level task, for all tasks in the job step.
All virtual storage belonging to the job step is released. None of
the end-of-task exit routines are given control.

• The completion code specified in the ABEND macro instruction is
written on the system output device.

• Unless you specify otherwise in your job control statements, the
remaining job steps in the job are skipped. However, the statements
defining these steps are checked for proper syntax.

It is possible to restart a job step that has been abnormally ter
minated. Restart can occur either at the teginning of the job step or
at an internal checkpoint. A detailed discussion of checkpoint and
restart appears in Checkpoint/Restart.

DUMPING SERVICES

There are three types of storage dunps produced by the operating
system:

• A dump obtained through use of the DUMP operand in the ABEND macro
instruction.

• A dump obtained through use of the SNAP macro instruction.

• An SVC dump, produced in the event of a failure by a system routine.

You can request a dump by using the ABEND or SNAP macro instruction.
You cannot request the SVC dump -- it is produced automatically by the
system whenever a failure occurs in a system routine.

ABEND AND SNAP DUMPS

When the dump is requested using an ABEND macro instruction, no
further processing is performed for the active task; use of the SNAP
macro instruction allows the task to continue after the completion of
the dump. The control program usually request a dump for you when it
issues an ABEND macro instruction.

50

(
\

The data set containing the dump can reside on any device which is
supported by the basic sequential access method (BSAM). The dump is
placed in the data set described by the DD statement you provide. If a
printer is selected the dump is printed immediately. However, if a
direct access or tape device is designated, a separate job must be sche
duled to obtain a listing of the dump, and to release the space on the
device.

The format of the dump is shown in the publication VSl Debugging
Guide. The entire dump shown in that publication is provided in an
abnormal termination dump if a DD statement with a DD name of SYSABEND
is provided; only the problem program areas and system control blocks
associated with the problem program are dumped if a DD statement with a
DD name of SYSUDUMP is provided. Use of the SNAP macro instruction
allows you to request only selected portions of the entire dump for any
task in the job step; the format of the portions selected is the same as
the format of the same portions of an abnormal termination dump.

When an abnormal termination dump is requested, the entire dump is
provided for the active task, along with a dump of the control blocks
and save area for each of the higher level tasks which are predecessors
of the active task being terminated and for each of the subtasks of the
active task. The control program dump routine uses the addresses you
stored in words 2 and 3 of each save area to follow the chain of save
areas provided by each calling program in each task. If an ABEND macro
instruction was issued when task Bl (Figure 8) was active, for example,
a complete dump would be provided for task Bl. The control blocks and
save areas for task B, task Bla, and the job step task would also be
provided in separate dumps.

To get a dump:

• You must provide a DD statement for each job step in which a dump is
requested. For an abnormal termination dump, the DD name must be
SYSABEND or SYSUDUMP; for a SNAP macro instruction dump, the DD name
must be any name except SYSABEND or SYSUDUMP. Figure 36 shows a set
of job steps that include DD statements for ABEND dump data sets.

Figure 36. sample DD statements for an ABEND dump

Chapter 6: Interruption, Termination, and Dumping Services 51

• To obtain a dump using the SNAP macro instruction, you must provide
a data control block and issue an OPEN macro instruction for the
data set before any SNAP macro instructions are issued. The data
control block must contain the following parameters: DSORG=PS,
RECFM=VBA, MACRF=W, BLKSIZE=882, and LRECL=125. (The data control
block is discussed in the Data Management Services manual.) If
yourprogram is to be processed by the loader, you should also issue
a CLOSE macro instruction for the SNAP data control block.

INDICATIVE DUMP (VS1)

You can obtain an indicative dump, as shown in VSl Debugging Guide.
This dump is provided in response to a request for an abnormal termina
tion dump when either you did not provide a DD statement with the DD
name SYSABEND or SYSUDUMP, or the control program entry for that DD sta
tement was destroyed. The indicative dump is printed on the system out
put device.

SVC DUMP

If a system routine fails, the system automatically supplies a dump
of the contents of virtual storage. This dump, called the SVC dump,
provides diagnostic information. The system writes the dump in the sys
tem data set SYS1.DUMP or in a tape volume at the device deSignated when
the operating system was initially loaded. Use the BMDPRDMP service aid
program to obtain a printout of the dump. A description of HMDPRDMP and
the dump formats appear in the Service Aids publication. For guidance
in using the dump, refer to the VS Debugging Guides.

52

(

CHAPTER 1: VIRTUAL STORAGE MANAGEMENT

You obtain the use of the virtual storage area assigned to your job
step through implicit and explicit requests for virtual storage. The
use of a LINK macro instruction is an example of an implicit request;
the control program allocates storage before bringing the load module
into your job pack area. The use of the GETMAIN macro instruction is an
explicit request for a certain number of bytes of virtual storage to be
allocated to the active task. In addition to your requests for virtual
storage, requests are made by the control program and data management
routines for areas to contain some of the control blocks required to
manage your tasks.

Note: If your job step is to be executed as a nonpageable (V=R) task,
the REGION parameter value specified on the job or execute statement
determines the amount of virtual (real) storage reserved for the job
step. If you run out of storage because of a system failure, such as in
a GETMAIN request, increase the REGION parameter size.

The following paragraphs discuss some of the techniques that can be
applied for efficient use of the virtual storage area reserved for your
job step. These techniques apply as well to the data management por
tions of your programs. The specific data management storage allocation
facilities are discussed in the Data Management Services and Data Mana
gement Macro Instructions publications; the principles discussed here
provide the background you need to use these facilities.

EXPLICIT REQUESTS FOR VIRTUAL STORAGE

Virtual storage can be explicitly requested for the use of the active
task by issuing a GETMAIN macro instruction. The virtual storage requ
est is satisfied by allocating to the active task a portion of the vir
tual storage area reserved for the job step. The virtual storage area
is usually not set to zero when allocated (the storage is zeroed in VS2
for the initial allocation of a page).

You release virtual storage by issuing a FREEMAIN macro instruction.
This does not release the area from control of the job step, but makes
the area available to satisfy the requirements of additional requests
for any task in the job step. The virtual storage assigned to a task is
also given up to a different task in the same job step when the task
terminates, except as indicated under "Subpool Handling." Releasing
virtual storage for use by other job steps is discussed under "Relin
quishing Virtual Storage."

Specifying the Size of the Area

Virtual storage areas are always allocated to the task in multiples
of eight bytes and may begin on either a doubleword or page boundary.
The request for virtual storage is given in terms of bytes; if the numb
er specified is not a multiple of eight, it is rounded to the next high
er multiple of eight. You can make repeated requests for a small number
of bytes as you need the area or you can make one large request to com
pletely satisfy the requirements of the task. There are two reasons for
making one large request: it is the only way you can be sure of getting
contiguous storage and avoid fragmenting your partition, and because you
only make one request, the amount of control program overhead is less.

Chapter 1: Virtual Storage Management 53

Types of Explicit Reguests

There are three methods of explicitly requesting virtual storage
using a GETMAIN macro instruction. Each of the methods, which are desi
gnated by coding an associated character in the operand field of the
GETMAIN macro instruction, has certain advantages, depending on the
requirements of your program. The last two methods do not produce
reenterable coding unless coded in the list and execute forms, as indi
cated in -Implicit Requests.- The methods are as follows:

Register Type (R): Specifies a request for a single area of virtual
storage of a specified length. The address of the area is returned in
register 1. This type of request produces reenterable coding, because
parameters are passed to the control program in registers, not in a
parameter list.

Element Type (E): Specifies a request for a single area of virtual
storage of a specified length. The control program places the address
of the allocated area in a fullword that you supply.

Variable Type (V): Specifies a request for a single area of virtual
storage vith a length between two values you specify. The control pro
gram attempts to allocate the maximum length you specify; if not enough
storage.is available to allocate the maximum length, the largest area
with a length between the two values is allocated. The control program
places the address of the area and the length allocated in two consecu
tive fullwords that you supply.

In addition to the above methods of requesting virtual storage, you (
can designate the request as conditional or unconditional. (A register
type request is always unconditional.) If the request is unconditional
and sufficient virtual storage is not available to fill the request, the
active task is abnormally terminated. If the request is conditional,
however, and insufficient virtual storage is available, a return code of
4 is provided in register 15; a return code of 0 is provided if the
request was satisfied.

An example of using the GET MAIN macro instruction is shown in Figure
36. The example assumes a program that operates most efficiently with a
work area of 16,000 bytes, with a fair degree of efficiency with 8,000
bytes or more, inefficiently with less than 8,000 bytes. The program
uses a reenterable load module having an entry name of REENTMOD, and
will use it again later in the program; to save time, the load module
was brought into the job pack area using a LOAD macro instruction so
that it will be available when it is required.

A conditional request for a single element of storage with a length
of 16,000 bytes is requested in Figure 37. The return code in register
15 is tested to determine if the storage is available; if the return
code is 0 (the 16,000 bytes were allocated), control is passed to the
processing routine. If sufficient storage is not available, an attempt
to obtain more virtual storage is made by issuing a DELETE macro
instruction to free the area occupied by the load module REENTMOD. A
second GETMAIN macro instruction is issued, this time an unconditional
request for an area between 4,000 and 16,000 bytes in length. If the
minimum size is not available, the task is abnormally terminated. If at
least 4,000 bytes are available, the task can continue. The size of the
area actually allocated is determined, and one of the two procedures
(efficient or inefficient) is given control.

54

r--,

PROCEED2
PROCEED1
MIN
SIZES

ANSWADD

address 1
(low)

GETMAIN EC,LV=16000,A=ANSWADD,

LTR 15,15
BZ PROCEED1

DELETE EP=REENTMOD
GETMAIN VU,LA=SIZES,A=ANSWADD

L

CH

BNL

DC
DC

DC
DC

4,ANSWADD+4

4,MIN

PROCEED1

'8000'
F'16000'

F'O'
F' 0'

Conditional request for
16,000 bytes in processor
storage
Test return code
If 16,000 bytes allo
cated, proceed
If not,
Try to get smaller amount
in virtual storage
Load and test allocated
length
If 8,000 or more, use
procedure 1
If less than 8,000 use
procedure 2

Min. size for procedure 1
Min. size to proceed
size of area for maximum
efficiency
Address of allocated area
Size of allocated area

Figure 37. Using the GETMAIN macro instruction

1 page ---...... ~-----.......

~----------------v------------------
Released virtual storage

address 2
(high)

Figure 38. Releasing virtual storage

Relinquishinq Virtual Storaqe

All storage obtained for your program by the GETMAIN macro instruc
tion is automatically freed by the control program when the job step
terminates. Freeing storage in this manner requires no action on your
part.

When an area of virtual storage within your program no longer has
meaningful or significant contents, you can make this sto~age available
by issuing a PGRLSE macro instruction. The PGRLSE macro makes all real
and external page storage wholly associated with the area of virtual
address space specified available as shown in Figure 38. The address
space remains intact, but its contents are forfeited. When the using
program can discard the contents of a large virtual area (one or more
complete pages) and reuse the address space without the necessity of
paging operations, PGRLSE may improve operating efficiency.

When you issue a FREEMAIN macro instruction, FREEMAIN does the equi
valent of PGRLSE for any resulting free page.

Chapter 7: Virtual Storage Management 55

subpool Handling (In,VSl Systems)

Although subpOdls are not created in VSl systems, it is convenient
to call the partition itself ·subpool 0." That is, all virtual storage
available to the user in a partition is shared by all tasks active in
that partition.

User programs may request virtual storage from the partition by spe
cifying any subpool number from 0 to 127 or by specifying no number at
all. Implied requests for storage, initiated when the user executes an
ATTACH, LINK, LOAD, or XCTL macro instruction, are recorded by the con
trol program in order for the storage to be freed during termination.

Subpool Handling (In VS2 Systems)

In an operating system with VS2, subpools of virtual storage are pro
vided to assist in virtual storage management and for communications
between tasks in the same job step. Because the use of subpools
requires some knowledge of how the control program manages virtual
storage, a discussion of virtual storage control is presented here.

VIRTUAL STORAGE CONTROL: When the job step is given a region of virtual
storage, all of the storage area available for your use within that
region is unassigned. Subpools are created only when a GETMAIN macro
instruction is issued designating a subpool number. If no subpool numb
er is deSignated, the virtual storage is allocated from subpool 0, which
is created for the ,job step by the control program when the job-step
task is initiated.

Note: If virtual storage is allocated to a subtask by the user program
while the system is being executed in the supervisor state or with a
protection key of 0, no other task should free that virtual storage. If
some other task does free that virtual storage, you get unpredictable
results.

For purposes of control and virtual storage protection, the control
program considers all virtual storage within the region in terms of
4096-byte blocks. These blocks are assigned to a subpool, and space
within the blocks is allocated to a task by the control program when
requests for virtual storage are made. When there is sufficient unallo
cated virtual storage within any block assigned to the designated sub
pool to fill a request, the virtual storage is allocated to the active
task from that block. If there is insufficient unallocated virtual
storage within any block assigned to the subpool, a new block (or
blocks, depending on the size of the request) is assigned to the sub
pool, and the storage is allocated to the active task. The blocks
assigned to a subpool are not nece~sarily contiguous unless they are
assigned as a result of one request. Only blocks within the region
reserved for the associated job step can be assigned to a subpool.

Figure 39 is a simplified view of a virtual-storage region containing
four 4096-byte blocks of storage. All the requests are for virtual
storage from subpool O. The first reques~ from some task in the job
step is for 1008 bytes; the request is s~tisfied from the b~ock shown as
Block A in the figure. The second request, for 400~Q,_bytes, is too large
to be satisfied from the unused portion of Block A, Lso the c.ontro[~,pro
gram assigns the next available block, Block B, to subpool: 0, and allo
cates 4000 bytes from Block B to the active task. A third-~equest is
then received, this time for 2000 bytes. There is not sufficient unal
located area remaining in Block B (blocks are checked in the order first
in, first out), but there is enough area in Block A, so an additional
2000 bytes are allocated to the task from Block A. Because all tasks
may share .subpool 0, Request 1 and Request 3 do not have to be made from
the same task, even though the areas are contiguous and from the same
4096 byte block. Request 4, for 6000 bytes, requires that the control

56

(

Request 2 - 4000 bytes

Request 4 - 6000 bytes

Block D

~
4096 Bytes

Block C

Request 1 - 1008 bytes

Request 3 - 2000 bytes

Figure 39. Virtual-storage control

program allocate the area from 2 contiguous blocks which were previously
unassigned, Block D and Block C. These blocks are assigned to subpool
O.

As indicated in the preceding example, it is possible for one 4096-
byte block in subpool 0 to contain many small areas allocated to many
different tasks in the job step, and it is possible that numerous blocks
could be split up in this manner. Areas acquired by a task other then
the job-step task are not released automatically on task termination.
Even if FREEMAIN macro instructions were issued for each of the small
areas before a task terminated, the probable result would be that many
small unused areas would exist within each block, while the control pro
gram would be continually assigning new blocks to satisfy new requests.
To avoid this situation, you can define subpools for exclusive use by
individual tasks.

Any subpool can be used exclusively by a single task or shared by
several tasks. Each time that you create a task, you can specify which
subpools are to be shared. Unlike other subpools, subpool 0 is shared
by a task and its subtask, unless you specify otherwise. When subpool 0
is not shared, the control program creates a new subpool 0 for use by
the subtask. As a result, both the task and its subtask can request
storage from subpool 0, but both will not receive storage from the same
4096-byte block. When the subtask terminates, its virtual storage areas
in subpool 0 are released; since no other tasks share this subpool, com
plete 4096-byte blocks are made available for reallocation.

When there is a need to share subpool 0, you can define other sub
pools for exclusive use by individual tasks. When you first request
storage from a subpool other than subpool 0, the control program assigns
a new 4096-byte block to that subpool, and allocates storage from that
block. The task that is then active is assigned ownership of the sub
pool and, therefore, of the block. When additional requests are made by
the same task for the same subpool, the requests are satisfied by allo
cating areas from that block and as many additional blocks as are
required. If another task is active when a request is made with the
same subpool number, the control program assigns a new block to a new
subpool, allocates storage from the new block, and assigns ownership of
the new subpool to the second task.

Chapter 7: Virtual Storage Management 57

A task can specify subpools numbered from 0 to 127. FREEMAIN macro
instructions can be issued to release any subpool except subpool 0, thus
releasing complete 4096-byte blocks. When a task terminates, its
unshared subpools are released automatically.

Owning and Sharing: A subpool is initially owned by the task that was
active when the subpool was created. The subpool can be shared with
other tasks, and ownership of the subpool can be assigned to other
tasks. Two macro instructions are used in the handling of subpools:
the GETMAIN macro instruction and the ATTACH macro instruction. In the
GETMAIN macro instruction, the SP operand can be written to request
storage from subpools 0 to 127; if this operand is omitted, subpool 0 is
assumed. The operands that deal with subpools in the ATTACH macro
instruction are:

• GSPV and GSPL, which give ownership of one or more subpools (other
than subpool 0) to the task being created.

• SHSPV and SHSPL, which share ownership of one or more subpools (oth
er than subpool 0) with the new subtask.

• SZERO, which determines whether subpool 0 is shared with the
.subtask.

All of these operands are optional. If they are omitted, no subpools
are given to the subtask, and only subpool 0 is shared.

Creating a Subpool: A new subpool is created whenever any of the
operands described above is written in an ATTACH or a GETMAIN macro
instruction, and that operand specifies a subpool which is not currently
owned by or shared with the active task. If one of the ATTACH macro
instruct-ion operands causes the subpool to be created, the subpool numb- /
er is entered in the list of subpools owned by the task, but no blocks ~
are assigned and no storage is actually allocated. If a GET MAIN macro
instruction results in the creation of a subpool, the subpool number is
assigned to one or more 4096-byte blocks, and the requested storage is
allocated to the active task. In either case, ownership of the subpool
belongs to the active task; if the subpool is created because of an
ATTACH macro instruction, ownership is transferred or retained depending
on the operand used.

Transferring Ownership: An owning task gives ownership of a subpool to
a direct subtask by using the GSPV or GSPL operands in the ATTACH macro
instruction issued when that subtask is created. Ownership of a subpool
can be given to any subtask of any task, regardless of the control level
of the two tasks involved and regardless of how ownership was obtained.
A subpool cannot be shared with one or more subtasks and then trans
ferred to another subtask, however; an attempt to do this results in
abnormal termination of the active task. Ownership of a subpool can
only be transferred if the active task has ownership; if the active task
is having a subpool and an attempt is made to pass ownership to a sub
task, the subtask receives shared control and the originating task
relinquishes the subpool. Once ownership is transferred to a subtask or
relinquished, any subsequent use of that subpool number by the originat
ing task results in the creation of a new subpool. When a task that has
ownership of one or more subpools terminates, all of the virtual storage
areas in those Subpools are released. Therefore, the task with owner
ship of a subpool should not terminate until all tasks or subtasks shar
ing the subpool have completed their use of the subpool.

Sharing a Subpool: Shared use of a subpool can be given to a direct
subtask of any task with ownership or shared control of the subpool.
Shared use is given by specifying the SHSPV and SHSPL operands in the
ATTACH macro instruction issued when the subtask is created. Any task
with ownership or shared control of the subpool can add to or reduce the

58

size of the subpool through the use of GETMAIN and FREEMAIN macro
instructions. When a task that has shared control of the sub pool ter
minates, the subpool is not affected.

Subpools in Task Communication: The advantage of subpools in virtual
storage management is that, by assigning separate subpools to separate
subtasks, the breakdown of virtual storage into small fragments is
reduced. An additional benefit from the use of subpools can be realized
in task communication. A subpool can be created for an originating task
and all parameters to be passed to thesubtask placed in the subpool.
When the subtask is created, the ownership of the subpool can be passed
to the subtask. After all parameters have been acquired by the subtask,
a FREEMAIN macro instruction can be issued, under control of the sub
task, to release the subpool virtual storage areas. In a similar mann
er, a second subpool can be created for the originating task, to be used
as an answer area in the performance of the subtask. When the subtask
is created, the subpool ownership would be shared with the subtask.
Before the subtask is terminated, all parameters to be passed to the
originating task are placed in the subpool area; when the subtask is
terminated, the subpool is not released, and the originating task can
acquire the parameters. After all parameters have been acquired for the
originating task, a FREEMAIN ma~ro instruction again makes the area
available for reuse.

IMPLICIT REQUESTS FOR VIRTUAL STORAGE

You make an implicit request for virtual storage every time you issue
a LINK, LOAD, ATTACH, or XCTL macro instruction. In addition, you make
an implicit request for virtual storage when you issue an OPEN macro
instruction for a data set. This section discusses some of the techni
ques you can use to cut down on the amount of real storage required by a
job step, and the assistance given you by the control program.

Reenterable Load Modules

A reenterable load module is designed so that it does not modify
itself during execution. Only one copy of the load module is paged into
real storage to satisfy the requirements of any number of tasks in a job
step. This means that even though there are several tasks in the job
step and each task concurrently uses the load module, the only real
storage needed is an area large enough to hold one copy of the load
module (plus a few bytes for control blocks). The same amount of real
storage would be needed if the load module were serially reusable;
however, the load module could not be used by more than one task at a
time.

Reenterable Macro Instructions

All of the macro instructions described in this manual can be written
in reenterable form. These macro instructions are classified as one of
two types: macro instructions which pass parameters in registers 1 and
0, and macro instructions which pass parameters in a list. The macro
instructions that pass parameters in registers present no problem in a
reenterable program; when the macro instruction is coded, the required
operand values should be contained in registers. For example, the POINT
macro instruction requires that the DCB address and block address be
coded as follows:

[symbol] POINT dcb address, block address

Chapter 7: Virtual Storage Management 59

One method of coding this in a reenterable program would be to require
that both of these addresses refer to a portion\of storage allocated to
the active task through the use of a GETMAIN macro instruction. The
addresses would change for each use of the load module. Therefore, you
would load one of the general registers 2-12 with the address, and
designate the appropriate registers when you code the macro instruction.
If register 4 contains the DCB address and register 6 contains the block
address, the POINT macro instruction is written as,follows:

POINT (4), (6)

The macro instructions that pass parameters in a list require the use
of special forms of the macro instruction when used in a reenterable
program. The macro instructions that pass parameters in a list are
identified within their descriptions in the macro instruction section of
this manual. The expansion of the standard form of these macro instruc
tions results in an in-line parameter list and executable instructions
to branch around the list, to load the address of the list, and to pass
control to the required control program routine. The expansions of the
list and execute forms of the macro instruction simply divide the func
tions provided in the standard form expansion: the list form provides
only the parameter list, and the execute form provides executable
instructions to modify the list and pass control. You provide the
instructions to load the address of the list into a register.

The list and execute forms of a macro instruction are used in con
junction to provide the same services available from the standard form
of the macro instruction. The advantages of using list and execute for
ms are as follows:

• Any operands that remain constant in every use of the macro instruc
tion can be coded in the list form. These operands can then be
omitted in each of the execute forms of the macro instruction which
use the list. This can save appreciable coding time when you use a
macro instruction many times. (Any exceptions to this rule are
listed in the description of the execute form of the applicable
macro instruction.)

• The execute form of the wacro instruction can modify any of the
operands previously designated. (Again, there are exceptions to
this rule.)

• The list used by the execute form of the macro instruction can be
located in a portion of virtual storage assigned to the task through
the use of the GETMAIN macro instruction. This ensures that the
program remains reenterable.

Figure 40 shows the use of the list and execute forms of a DEQ macro
instruction in a reenterable program. The length of the list con
structed by the list form of the macro instruction is obtained by sub
tracting two symbolic addresses; virtual storage is allocated and the
list is moved into the allocated area. The execute form of the DEQ
macro instruction does not modify any of the operands in the list form.
The list had to be moved to allocated storage because the control pro
gram can store a return code in the list when RET=BAVE is coded. Note
that the coding in the routine labeled MOVERTN is valid for lengths up
to 255 bytes only. Some macro instructions do produce lists greater
than 255 bytes when many operands are coded (for example, OPEN and CLOSE
with many data control blocks, or ENQ and DEQ with many resources), so
in actual practice a length check should be made.

60

r--~--------------~--------,
\

LA 3,MACNAME Load address of list form
LA 5,NSIADDR Load address of end of

list
SR 5,3 Length to be moved in

register 5
BAL 14, MOVERTN Go to routine to move

list
DEQ ,MF= (E, (1» Release allocated

resource

* The MOVERTN allocates storage from subpool 0 and moves up to 255
* bytes into the allocated area. Register 3 is from address,
* register 5 is length. Area address returned in register 1.

MOVERTN GETMAIN R,LV=(5),
LR 4,1 Address of area in

register 4
BCTR 5,0 Subtract 1 from area

length
EX 5, MOVEINST Move list to allocated

area
BR 14 Return

MOVEINST MVC 0(1,4),0(3)

MACNAME DEQ (NAME1,NAME2,S,SYSTEM),RET=HAVE,MF=L
NSIADDR
NAME1 DC CL8'MAJOR'
NAME 2 DC CLS'MINOR'

Figure 40. Using the list and the execute forms of the DEQ macro
instruction in a reenterable program

Nonreenterable Load Modules

The use of reenterable load modules does not automatically conserve
virtual storage: in many applications it will actually prove wasteful.
If a load module is not used in many jobs and if it is not employed by
more than one task in a job step, there is no reason to make the load
module reenterable. The allocation of virtual storage for the purpose
of moving coding from the load module to the allocated area is a waste
of both time and virtual storage when only one task requires the use of
the load module.

You should not make a load module reenterable or serially reusable if
reusability is not really important to the logic of your program. Of
course, if reusability is important, you can issue a LOAD macro instruc
tion to load a reusable module, and later issue a DELETE macro instruc
tion to release its area.

Freeing of Virtual Storage

As indicated previously, the control program establishes two respon
sibility counts for every load module brought into virtual storage in
response to your requests for that load module. The responsibility
counts are lowered as follows:

• If the load module was requested in a LOAD macro instruction, that
responsibility count is lowered using a DELETE macro instruction •

• If the load module was requested in a LINK, ATTACH, or XCTL macro
instruction, that responsibility count is lowered using an XCTL
macro instruction or by returning control to the control program.

Chapter 7: Virtual storage Management 61

• When a task is terminated, the responsibility counts are lowered by
the number of requests for the load module made in LINK, LOAD,
ATTACH, and XCTL macro instructions during the performance of that
task, minus the number of deletions indicated above.

The virtual storage area occupied by a load module can be released by
issuing a FREEMAIN macro instruction when the responsibility counts
reach zero. When you plan your program, you can design the load modules
to give you the best trade-off between execution time and efficient pag
ing. If you use a load module many times in the course of a job step,
issue a LOAD macro instruction to bring it into virtual storage; do not
issue a DELETE macro instruction until the load module is no longer
needed. Conversely, if a load module is used only once during the job
step, or if its uses are widely separated, issue a LINK macro instruc
tion to obtain the module and issue an XCTL from the module (or return
control to the control program) after it has been executed.

There is a minor problem involved in the deletion of load modules
containing data control blocks. An OPEN macro instruction must be
issued before the data control block is used, and a CLOSE macro instruc
tion issued when it's no longer needed. If you do not issue a CLOSE
macro instruction for the data control block, the control program issues
one for you when the task is terminated. However, if the load module
containing the data control block has been removed from virtual storage,
the attempt to issue the CLOSE macro instruction causes abnormal ter
mination of the task. You must either issue the CLOSE macro instruction
yourself before deleting the load module, or ensure that the data con
trol block is still in virtual storage when the task is terminated.

62

(

CHAPTER 8: MISCELLANEOUS SERVICES

TIMING SERVICES

Interval timing is a standard feature of VS. It provides the ability
to request the date and time of day and provides for setting, testing.
and canceling intervals of time.

Date and Time of Day

The operator is responsible for initially supplying the correct date
and the time of day in terms of a 24-hour clock. You request the date
and time of day using the TIME macro instruction. The control program
returns the date in register 1 and the time of day in register 0 or in a
doubleword supplied by you if the MIC operand was specified.

The date is returned in register 1 as packed decimal digits of the
form OOyydddc, where yy are the last two digits of the year and ddd is
the day of the year. C is the sign character hexadecimal F, which
allows the year and day information to be unpacked directly for print
ing. One procedure used to request the date and time is shown in Figure
41.

The time of day is returned in register 0 in the form specified in
the TIME macro instruction. The time of day is returned as an unsigned,
32-bit, binary number that specifies the elapsed number of either hun
dredths of a second, if BIN is coded. or timer units. if TU is coded.
(A timer unit is equal to 26.04166 microseconds.) If DEC is coded or
the operand is omitted. the time of day is returned as packed decimal
digits of the form HHMMSSth (hours, minutes, seconds. tenths of a
second, and hundredths of a second). The packed decimal digits can be
unpacked by changing the wh w value to a zone sign and using an UNPK
instruction or by inserting zones between each decimal digit. If MIC
was specified, the time of day is returned in the doubleword supplied.
with bit 51 the low-order digit of the value. Register 0 is set to 0,
and register 15 has the return code for MIC.

All references to time of day and date use the time-of-day (TOD)
clock. a 64-bit binary counter. The TOD clock runs continuously while
the power is oni the clock is not affected by the system stop
conditions. The operator normally sets the clock only after an inter
ruption of CPU power has caused the clock to stop. and restoration of
power has restarted it. The operator sets the clock using the SET com
mand with the DATE and CLOCK parameters. (For more information about
the TOD clock, see IBM System/310 Principles of Operation.)

r--,
I I
I TIME Request date and time I
I ST 1,ANS Store packed date I
I UNPK DOUBLE,ANS Unpack date for printing I
I 01 DOUBLE+1.X'FO· I
I I
I ANS DS F Fullword for packed date I
I DOUBLE DS D Doubleword for unpacked date I L-___ J

Figure 41. Requesting the date and time

Chapter 8: Miscellaneous Services 63

Interval Timing

A time interval, up to a maximum of 24 hours, can be established for
any task in the job step through the use of the STIMER macro instruc
tion, and the time remaining in the interval can be tested and canceled
through the use of the TTIMER macro instruction. Each task in the job
step can have an active time interval. The time interval can be estab
lished by anyone of the following five methods.

• BINTVL: Requires an unsigned 32-bit binary number, the low-order
bit having a value of 0.01 seconds.

• TUINTVL: Requires an unsigned 32-bit binary number, the low-order
bit having a value of 26.04166 microseconds (1 timer unit).

• DINTVL: Requires an 8-byte field containing unpacked decimal digits
of the form HHMMSSth (hours, minutes, seconds, tenths and hundredths
of a second, based on a 24-hour clock).

• TOO: Requires an 8-byte field similar to the field required for
DINTVL. The control program interprets the time specified as the
time of day at which the interval is to expire.

• MIC: Requires an 8-byte field containing an unsigned 64-bit binary
number, bit pOSition 51 of which is the low-order digit of the
interval value.

When you test the time remaining in the interval with the TU option
(default), the time remaining is returned as a 32-bit, unsigned, binary
number in register 0, the low-order bit having a value of 26.04166
microseconds. If you test the time remaining with TTIMER MIC, the time
remaining is returned in microseconds in the specified area. If the
interval has already expired, the content of register 0 is set to O.

When you request a time inte~val, you also specify the manner in
which the interval is to be decreased, through the use of the TASK,
REAL, or WAIT parameter of the STIMER macro instruction. REAL and WAIT
both indicate that the interval is to be decreased continuously, whether
the associated task is active or not. TASK indicates that the interval
is to be decreased only when the associated task is active. If REAL or
TASK is coded, the task continues to compete with the other ready tasks
for control; if WAIT is coded, the task is placed in the wait condition
until the interval expires, at which time the task is placed in the
ready condition.

When TASK or REAL is designated, the address of a timer completion
exit routine can be specified. This is the first routine to be given
control when the associated task is made active after the completion of
the time interval. (If the address of the exit routine is not speci
fied, there is no notification of the completion of the time interval.)
The exit routine must be in virtual storage when required, and must save
and restore registers and return control to the address in register 14.
After control is returned to the control program, control is passed to
the next instruction in the main program.

Figure 42 shows the use of a time interval when testing a new loop in
a program. The STIMER macro instruction sets a time interval of 5.12
seconds, which is to be decreased only when the task is active, and pro
vides the address of a routine called FIXUP to be given control when the
time interval expires. The loop is controlled by a BXLE instruction.

The loop continues as long as the value in register 12 is less than
or equal to the value in register 7. If the loop'stops, the TTIMER
macro instruction causes any time remaining in the interval to be can
celed; the exit routine is not given control. If, however, the loop

64

/

\

r--,
STIMER TASK,FIXUP,BINTVL=TIME set time interval

LOOP
TM TIMEXP,X' 01' Test if fixup routine

entered
BC 1,NG Go out of loop if time

interval expired
BXLE 12,6,LOOP If processing not com-

plete, repeat loop
TTIMER CANCEL If loop completes, cancel

remaining time

NG

USING FIXUP,15 Provide addressability
FIXUP SAVE (14,12) Save registers

01 TlMEXP,X'Ol' Time interval expired,
set switch in loop

RETURN (14,12) Restore registers

TIME DC X'00000200' Timer is 5.12 seconds
TIMEXP DC X'OO' Timer switch --------__ J

Figure 42. Interval timing

is still in effect when the time interval expires, control is given to
the exit routine FIXUP. The exit routine saves registers and turns on
the switch tested in the loop. The FIXUP routine could also print out a
message indicating that the loop did not go to completion. Registers
are restored and control is returned to the control program. The control
program returns control to the main program and execution continues.
When the switch is tested this time, the branch is taken out of the
loop. caution should be used to prevent a timer exit routine from issu
ing an STIMER specifying the same exit routine. An infinite loop may
occur.

The priorities of other tasks in the system may also affect the
accuracy of the time interval measurement. If you code REAL or WAIT,
the interval is decreased continuously and may expire when the task is
not active. (This is certain to happen when WAIT is coded.) After the
time interval expires, assuming the task is not in the wait condition
for any other reason, the task is placed in the ready condition and then
competes for CPU time with the other tasks in the system that are also
in the ready condition. The additional time required before the task
becomes active will then depend on the relative dispatching priority of
the task.

EXTENDED-PRECISION FLOATING-POINT SIMULATION

The System/310 Extended-Precision Floating-Point Simulator provides
full extended-precision arithmetic for alIOS users. A divide macro
instruction (DXR) is provided for the models that have the extended
precision floating arithmetic facility and all eight instructions are
provided for the models that do not. Thus, you can use extended- '
precision floating-point instructions whether or not your particular
machine model has the extended-precision floating-point facility. To do
so, write a program-interruption-handling exit routine. The exit rou
tine is required:

Chapter 8: Miscellaneous Services 65

• If your machine model already has the extended-precision floating
point facility, and you also wish to use the extended-precision
floating-point divide (DXR) macro instruction.

• If your machine model does not have the extended-precision floating
point instructions, but you wish to use these instructions and the
extended-precision floating-point divide instruction.

To determine if the extended-precision floating-point feature is
installed in your CPU, call the module IEAXPSIM, which returns a pointer
to the appropriate simulator.

The format of the extended-precision floating-point divide (DXR)
instruction is described in the macro instructions section, and the for
mats of the other extended-precision floating-point instructions are
described in Principles of Operation.

Extende1-Precision Division

To perform extended-precision division, use the DXR macro instruction:

DXR reg1,reg2

where reg1 contains the dividend, reg2 the divisor.

The first operand (the dividend) is divided by the second operand
(the divisor) and is replaced by the normalized quotient. No remainder
is preserved. For a discussion of normalization, refer to the section
-Floating-Point Arithmetic· in Principles of Operation.

Division Process

The quotient fraction has 28 hexadecimal digits and is developed such
that it is the largest number for which the absolute value of the pro
duct of the quotient and the divisor fractions is either equal to or
less than the absolute value of the adjusted (normalized) dividend frac
tion. All digits of the dividend and divisor fractions are involved in
the operation: the dividend fraction is extended with low-order zeros.

The sign of the quotient is determined by the rules of algebra:
however, if the quotient is made a true 0, its sign is made plus.

Unless the quotient is made a true 0, the characteristic, sign, and
high-order 14 hexadecimal digits of the normalized quotient fraction
replace the high-order part of the first operand. The low-order 14
hexadecimal digits of the quotient fraction replace the high-order part
of the first operand. The low-order 14 hexadecimal digits of the quo
tient fraction replace the lo~order fraction of the first operand. The
lo~order sign is made equal to the high-order sign, and the low-order
characteristic is made 14 less than the high-order characterictic.
However, when the subtraction of 14 causes the low-order characteristic
to become less than 0, it is made 128 greater than its correct value.
Extended-precision arithmetic is further discussed in Principles of
Operation.

Arithmetic Exceptions

The following exceptions can occur when using the DXR macro
instruction.

• Exponent overflow.

• Exponent underflow.

• Floating-point divide.

66

(
~

Exponent overflow is recognized when the characteristic of the norma
lized quotient exceeds 127 and the fraction of the quotient is not O.
The operation is completed by making the high-order characteristic 128
less than the current value. If the low-order characteristic also
exceeds 127, it is decreased by 128. The quotient fraction and sign
remain unchanged. A program interruption for exponent overflow then
occurs.

Exponent underflow is recognized when the characteristic of the nor
malized quotient is less then 0 and neither operand fraction is o. If
the exponent underflow mask bit is set, the operation is completed by
making the characteristics of both parts 128 greater than their correct
values. The quotient fraction and sign remain unchanged. A program
interruption for exponent underflow then occurs. If the exponent unde
rflow mask is 0, a program interruption does not occur; instead, the
operation is completed by making both the high-order and low-order parts
of the quotient a true o.

Exponent underflow is not recognized when the low-order characterist
ic is less than 0 and the high-order characteristic is greater than or
equal to o. Similarly, exponent underflow is not recognized when one or
both of the operands underflow during prenormalization, but the quotient
can be expressed without encountering underflow.

The floating-point divide exception is recognized when the divisor
fraction is o. The operation is suppressed, and a program interruption
for floating-point divide occurs.

When the dividend fraction is 0, the quotient is made a true 0, and a
possible exponent overflow or underflow is not recorgnized. A division
of 0 by 0, however, causes the operation to be suppressed and an inter
ruption for floating-point divide to occur.

The condition code remains unchanged for all arithmetic exceptions.
Figure 43 describes the program interruptions that can occur.

r-------------T--~--------------,
IInterruption I I Action I
I Type I Description I Taken I
~-------------+----------------~------------------------+--------------~
Operation IThe instruction is not installed. IThe operation

I lis suppressed.
I I

Specification I Registers other than 0 or 4 are IThe operation
I specified, or positions 16-23 do not con-lis suppressed.
Itain O's. I
I I

Exponent IThe characteristic of the normalized IThe operation
Overflow Iquotient exceeds 127, and neither operandlis completed.

Ifraction is o. I
I I

Exponent I The characteristic of the normalized I The operation
Underflow Iquotient is less than 0, neither lis completed.

I operand fraction is 0, and the exponent I
lunderflow mask bit is set. I
I I

Floating- IThe divisor fraction is o. IThe operation
Point I I is suppressed.

I Divide I I L _____________ ~ ___ ~ ______________ J

Figure 43. Summary of program interruptions

Chapter 8: Miscellaneous Services 67

calling the Simulator

To use the extended-precision floating-point instructions that your
machine model does not have, call the extended-precision floating-point
simulator from a program-interruption-handling exit routine. The simu
lator is a program that is automatically included in your operating sys
tem at system generation time. Writing an exit routine to handle pro
gram interruptions is discussed under "Program Interruption Processing."

To use the extended-precision floating-point simulator, specify in
the SPIE macro instruction that your exit routine is to receive control
if an operation exception occurs. In addition, the exit routine must
perform the following tasks, in this order:

• Check that the exception is for floating-point divide.

• Prepare a parameter list to pass to IEAXPSIM.

• Pass the control to IEAXPSIM, using standard operating system
conventions.

• Prepare a parameter list to pass to the simulator.

• Pass control to the simulator, using standard operating system
conventions.

• Check the code returned by the simulator.

• Perform corrective action if necessary.

In addition, the exit routine may perform the following tasks:

• Load the IEAXPSIM module, using the LOAD macro instruction, before
its use.

• Delete the IEAXPSIM module, using the DELETE macro instruction, aft
er its use.

• Load the simulator, using the LOAD macro instruction, the first time
it is needed.

• Delete the simulator, using the DELETE macro instruction, at the end
of the job step.

Designing the Exit Routine

The following paragraphs and Figure 44 should help you design your
exit routine.

The parameter list that you pass to IEAXPSIM must be pointed to by
register 1 and must contain a pointer to a doubleword area into which
IEAXPSIM will move the name of the simulator module to which you will
pass control.

The parameter list that you pass to the simulator must be pointed to
by register 1 and must contain the following:

1. A pointer to the PIE.

2. A pointer to the area containing the contents of general registers
0 through 15 at interrupt time.

3. A pointer to a work area.

4. A pointer to a byte that is nonzero if the last bit of the quotient
for a DXR need not be correct.

68

r--,
USING EXTPRE,15

EXT PRE STM 3,13,SIMSV+12
LR 4,15
USING EXTPRE,4
MVC SIMSV(12),20(1)
MVC SIMSV+56(S),12(1)
ST 14,RET
ST 1,PARMB
LA 13,SAVESIM
L 15,SIMADD
LTR 15,15

BNZ TOSIM

LOAD EP=IEAXPSIM
LR 15,0

Save registers not in PIE

Establish addressability
Registers 0-2 from PIE
Regist'ers 14-15 from PIE
Save return address
Pointer to PIE
Load save area address

Does SIMADD contain
address?

If so, go directly to
simulator

Put IEAXPSIM's address in
register

LA 1,PARMA
BALR 14,15

Load pointer to
Get simulator's

doublewordl
address I

DELETE
LOAD
LR

ST
TOSIM LA

BALR
LTR
BZ

EP=IEAXPSIM
EPLOC=SIMUL
15,0

O,SIMADD
1,PARMB
14,15
15,15
GOODOUT

Load simulator
Put simulator's
register

address in

Save address of simulator
Parameter list address
Go to simulator
Error or exceptional
condition?

*HERE THE EXIT ROUTINE SHOULD DETERMINE THE ERROR OR THE
*EXCEPTIONAL CONDITION THAT OCCURRED IN SIMULATING AND
*TAKE APPROPRIATE ACTION.

GOO DO UT
B
EQU

OUT
*

*HERE THE EXIT' ROUTINE SHOULD TAKE APPROPRIATE ACTION WHEN
*NO ERROR OR EXCEPTIONAL CONDITION OCCURRED DURING SIMULATION.

OUT L
LM
BR

14,RET
3,13,SIMSV+12
14

Restore registers
Return

*WHEN THE EXIT ROUTINE NO LONGER NEEDS THE SIMULATOR,
*THE ROUTINE SHOULD DELETE IT.

PARMA
SIMUL
PARMB

DELETE

DS
DS
DS
DC
DC
DC

EPLOC=SIMUL

X'SO',AL3(SIMUL)
D
F
A (SIMSV)
A (WORIO
X, SO' ,A13 (ZERO)

Pointer to simulator name
Simulator name
For pointer to PIE
Address of register area
Address of wor,k area
Divide adjust switch
pointer ,

ZERO DC X'O' Adjust switch for divide
WORK DC SOD Work areal
SIMSV DS 16F Register area
SIMADD DC F'O' Address of simulator
RET DS F Return address
SAVES 1M DS lSF Save area

I
I

L __ J

Figure 44. Calling the extended-precision floating-point simulator

Chapter S: Miscellaneous Services 69

The work area must be at least 30 doublewords (240 bytes) if your
installation's machine model has the extended-precision floating-point
facility or at least 50 doublewords (400 bytes) if it does not. The
exit routine shown in Figure 44 can be used for either type machine
model because its work area is 50 doublewords.

To obtain the name of the extended-precision floating-point simulator
installed in your system, call the module IEAXPSIM, which returns a
pointer to the name of the simulator in the doubleword that you provide.
In Figure 44, the doubleword is SIMUL.

Before passing control to the simulator, you can use the LOAD macro
instruction to bring the simulator into virtual storage if it is not
already there. The entry point name is specified as the name returned
from IEAXPSIM. After issuing LOAD, you can pass control to the simula
tor, using standard calling conventions.

Upon regaining control from the simulator, the exit routine should
check register 15 for one of the two return codes shown in Figure 45.

If the return code is X'FF', the exit routine determines the kind of
error encountered by the simulator by examining the interruption code.
Figure 46 shows the possible settings of the interruption code.

The simulator adjusts the condition code in the old PSW in the PIE
(bits 34-35) to indicate the result of an AXR or SXR macro instruction.
When a program interruption occurs within the simulator while fetching
the argument of the MXD macro instruction, the instruction address in
the PSW in the PIE is restored to its setting at operation-interruption
time.

The simulator never alters the program check old PSW at location 40.
Its interruption code will be an operation exception except for the MXD
macro instruction, when it may be a protection, addressing, or specifi
cation exception.

The simulator should be deleted by the using program if it was
obtained by the I,OAD macro instruction.

If the full simulator (IEAXPALL) is loaded on a CPU that already has
the extended-precision floating-point facility, no abnormal conditions
result. Only the DXR macro instruction is simulated. However, the
simulation of the DXR function is slower than if the IEAXPDXR were used,
since the other extended-precision operations in the divide algorithm
are also simulated.

If IEAXPDXR is loaded on a CPU without the extended-precision
floating-point facility, a OC1 ABEND occurs when an extended-precision
divide is simulated. In the simulation of the other extended-precision
macro instructions, a return code of X'FF' is passed to the caller and
no simulation is attempted.

r--,
I Hexadecimal I
I Code Meaning I
~--~ I 00 The operation was successful. I
I I
I FF The operation was not successful, or an exceptional I
I condition occurred. I L __ J

70

Figure 45. Return codes from the extended-precision floating-point
simulator

(

\

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

r--,
I Meaning of Interruption I
~--,----~

The simulator found that the operation was not an 0001
extended-precision floating-point operation and
returned control without further processing.

Protection exception ~ 3 0100

Addressing exception~ 3 0101

Specification exception~ 2 3 0110

Exponent overflow exception 4 1100

Exponent underflow exception4 1101

Significance exception4 1110

Floating-point divide4 1111
~--~ I 1When the simulator encounters these exceptions, it stop processing I
I and returns control to the exit routine. I
I 2Anincorrect extended-precision floating-point register was speci- I
I fied, the third byte of the DXR macro instruction was not X·OO·, or I
I a register other than 0 or 4 was specified. in the Rl or R2 field of I
I the DXR macro instruction. I
I 3The error occurred during the processing of an MXD macro I
I instruction. I
I 4The error occurred during simulation. I L __ J

Figure 46. Interruption codes returned by the simulator

COMMUNICATING WITH THE SYSTEM OPERATOR

The WTO and the WTOR macro instructions allow you to write messages
to the operator. The WTOR macro instruction also allows you to request
a reply from the operator. If your system has the,MCS (multiple console
support) option, messages can be sent to (and replies received from) as
many as 32 operator consoles.

There are two basic forms of the WTO macro instruction: the single
line form, and the multiple-line form. To use the single-line form,
code the single-line message within apostrophes. The message that the
operator receives does not contain these apostrophes. The message can
include any character that is valid in a character (C-type) DC instruc
tion, except the new-line control character (hexadecimal value 15). It
is assembled as a variable-length record, which is written automatical
ly; you do not have to provide a data control clock.

To use the multiple-line form of the macro instruction, code the text
of each line within apostrophes followed by a line type indicator. Enc
lose both of these items in one set of parentheses. Up to ten conti
guouslines of information may be passed to the operator's console.

The following should be considered when issuing multiple-line WTO
messages •

• Multiple-line WTO messages are not passed to the user-written WTO
,exit routine •

• When a console switch takes place, unended multiple-line WTO mes
sages and multiple-line WTO messages in the process of being written
to the original console are not moved to the new console.

Chapter 8: Miscellaneous Services 71

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

• When the system hard-copy log is an active operator's console, only
the hard-copy versions of multiple-line messages are written to the
console •

• An active operator's console should be used as the hard-copy log
only in an emergency.

See the macro instructions section for an explanation of the Farame
ters in the multiple-line form of the WTC macro instruction.

The message is routed (in a system with the MCS option) using the
routing codes specified in the WTO macro instruction. At system genera
tion, each operator's console in the system is assigned routing codes
which correspond to the functions tha"t the installation wants that con
sole to perform. When any of the routing codes assigned to a message
match any of the routing codes assigned to a console, the message is
sent to that console. For more information about routing codes, refer
to Appendix C. (For RES users, the message is routed according to the
user's queue identification number (QIL).)

Disposition of the message (in a system with the MCS option) is indi
cated through the descriptor codes specified in the WTC macro instruc
tion. Descriptor codes classify WTO messages so that they may be prop
erly presented on, and deleted from, display devices. Each WTO macro
instruction should contain one descriptor code. The descriptor code is
not printed or displayed as part of the message text. If a descriptor
code of 1 or 2 is coded into the WTO macro instruction, an indicator (*
or @) is inserted as the first character of the message. The indicator
informs the operator that he is required to take some iremediate action.
If a descriptor code other than 1 or 2 is coded, a blank is inserted as
the first character, indicating that no immediate action is needed~ For
more information about descriptor codes, refer to Appendix C.

A sample WTO macro instruction is shown in Figure 47. The routing
code (ROUTCDE) and descriptor code (DESC) keyword parameters are ignored
if the MCS option is not included in the system (except for WTP: see
writing to the Programmer below).

To use the WTOR macro instruction, you code the message exactly as
designated in the single-line WTO macro instruction. (The WTOR macro
instruction cannot be used to pass multiple-line messages.) When the
message is written, the control program adds a two-character message
identifier before the message to associate the reply with the message.
The control program also inserts an indicator as the first character of
all WTOR messages, thereby informing the operator that immediate action
is required. You must, however, indicate the response desired. In
addition, you must supply the address of the area in which the control
program is to place the reply, and you must indicate the length of the
reply. The length of the reply may not be zero. You also supply the
address of an event control block which the control program posts after
the reply has been placed, left-adjusted, in your designated area.

72

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

r--,
I Single-line WTO 'BREAKOFF POINT REACHED. TRACKING COMPLETED.', C I
I format ROUTCD~14,DESC=7 I
I Multiple- WTO ('SUBROUTINES CALLED',C), C I
I line format ('ROUTINE TIMES CALLED',L),('SUBQUER',D), C I
I (list form) (' ENQUER' ,D) , ('WRITER' ,D) , C I'
I ('DQUER',DE), C I
I ROUTCDE=(2,14),DESC=(7,8),MF=L I L __ J

Figure 47. Writing to the operator

r--,
I I
I XC ECBAD,ECBAD Clear ECB I
I WTOR 'STANDARD OPERATING CONDITIONS? REPLY YES OR NO', C I
I REPLY,3,ECBAD,ROUTCDE=(1,lS),DESC=7 I
I WAIT ECB=ECBAD I
I I
I ECBAD DC F'O' Event control block I
I REPLY DC C'bbb' Answer area I L _____________________________ . ___ J

Figure 48. writing to the operator with a reply

A sample WTOR macro instruction is shown in Figure 48. The refly is
not necessarily available at the address you sfecified until a WAIT
macro instruction has ~een issued.

When a WTOR macro instruction is issued with more than one routing
code, any console within those areas has the authority to reply. The
first reply received by the control program is returned to the issuer of
the WTOR, providing the syntax of the reply is correct. If the syntax
of the reply is not correct, another reply is accepted. The WTOR is
satisfied when the control program moves the reply into the issuer's
reply area and posts the event control block. Each console that
received the original WTOR will also receive the accepted reply. The
master console operator may answer any WTOR, even if he did not receive
the original message.

WRITING TO THE PROGRAMMER

The WTO and the WTOR macro instructions allow you to write messages
to the programmer, as .well as to the operator. At system generation,
your installation determines how many 176-tyte 5MBs (system message
blocks) to allow. You can override this number at initial program load;
however, the number of 5MBs allowed must range from 1 to 20.

When you submit your job, you can specify the message output class
for your messages by using the MSGCLASS parameter of the JOB statement.
(For a description of the MSGCLASS parameter, refer to the 'Job Control
Language Reference manual.) All WTO and WTOR messages within the number
of 5MBs allowed per job will appear in the designated message output
class. When you exceed the number of allowatle 5MBS, no subsequent mes
sages will appear in the message output class.

To write a message to the programmer, you must specify ROUTCDE=11 in
the WTO or the WTOR macro instruction. If you use routing code 11 alone
or together with other routing codes, the message goes to the message
output class, as described above. The message can also go to the
console(s} in the situations described by Figure 49 •

. Chapter 8: Miscellaneous Services 13

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

r--,
I If you specify a routing code of 11 (ROUTCDE=ll) I
~----------------------------T--------------T--------------------------~
I In this macro instruction: I In a system: I Your message goes to the: I

~----------------------------+--------------+--------------------------~
I WTO I With MCS I Message output class; I
I I I Consoles designated to I
I I I receive message with I
I I I ROUTCDE=11 I

~----------------------------+--------------+--------------------------~
I WTO I without MCS I Message output class I

~----------------------------+--------------+--------------------------~
I WTOR I With MCS I Message output class; I
I I I Master console I
~----------------------------+--------------+--------------------------~
I WTOR I Without MCS I Message output class; I
I I I Master Console I
~----------------------------~--------------~--------------------------~
I If, in addition to routing code 11, you specify the appropriate I
I routing code(s) in either a WTO or a WTOR macro instruction with or I
I without MCS, the message appears on the console(s) designated to I
I receive the routing code(s). In addition, the message appears in I
I the same places as it does when you specify only routing code 11 (as I
I shown above), with one exception. For WTOR with MCS, the message I
I goes to the master console only if you specify that console's rout- I
I ing code. I L __ J

Figure 49. Using WTO and WTOR to write messages to the programmer

WRITING TO THE HARD-COPY LOG

When using an operating system that has the MCS (multiple console
support) option, you can record information on the hard-copy log. Since
the MCS option allows more than one console in a system, an installation
might find it helpful to be able to record all the messages issued by
and to a system. The hard-copy log provides a place to collect these
messages and therefore allows an installation to review system activity
by reviewing message activity.

Since the hard-copy log is optional, you should know whether your
system was generated with it. The hard-copy log is either an operator's
console with output capability or the system log.

To record information on the hard-copy log, you use the WTO or WTOR
macro instruction. Your installation must have decided which system
functions are to be logged and assigned appropriate routing codes to the
hard-copy log. The routing codes that you assign to your WTO or WTOR
macro instruction are compared to the routing codes assigned to the log.
If one or more codes match, the message is entered in the log. This
means you do not have to issue a WTL macro instruction to record system
and problem program information when the same information is going to
the operator. You must, however, know which system functions the log is
recording and assign an appropriate routing code to your WTO or WTOR
macro instruction.

For each entry in the hard-copy log, both the time when the message
is received by the system and the routing codes for the message are
appended to the beginning of the message text. Recording the time that
the message was received, a procedure called time stamping, allows you
to obtain a chronological record of system activity. For a system that
does not have the timer option, the space for time stamping is filled
with zeros.

Whether the hard-copy log is the operator's console or the system
log, the hard-copy log information cannot te confused with other infor
mation. This is because the hard-copy log entries are prefixed with the
time stamp and the routing codes.

74

WRITING TO THE SYSTEM LOG

The system log (optional in VS1, standard in VS2) consists of two
SYSOUT data sets on which the communication between the operator and the
system is recorded. You can use the system log by coding the informa
tion that you wish to log in the Wtext" operand of the WTL macro
instruction.

The data set receiving data from the control program, user programs,
and operators is the primary data set. The data set being written, or
waiting to be written, to a system output device is the alternate data
set. The primary 'data set, the one that is open and receiving input, is
logically connected to two buffers. The control program fills one buff
er and writes it to the primary data set while filling the other buffer.
The alternate data set has been logically disconnected from the buffers
because it has been filled and must wait to be written to a system out
put device. After being written to a system output device, the altern
ate data set can be used again to receive input. When receiving input,
the alternate data set becomes the primary data set.

When the WTL macro instruction is executed, the control program
places your text in one of the buffers and, when the buffer is full,
writes the buffer onto the system log primary data set. The control
program writes the text of your WTL macro instruction on the master con
sole instead of on the system log if one of the following two conditions
exists:

• The system log is not supported •

• The system log is supported, but the system log data sets are tem
porarily inactive because both are full and waiting to be written.

Your installation probably has an operator procedure to follow for both
of the above conditions.

Although when using the WTL macro instruction you code the message
within apostrophes, the written message does not contain the apos
trophes. The message can include any character that is valid for the
WTO macro instruction and is assembled and written the same way as the
WTO macro instruction. MCS routing codes and descriptor codes are not
assigned, since they are not needed by the WTL macro instruction.

MESSAGE DELETION

If your system is using a cathode-ray tube (CRT) display as a con
sole, unnecessary messages can be deleted from the operator's screen by
the programmer. The control program assigns a message identification
number to each WTO and WTOR message and returns the message identifica
tion number in register 1. The DOM macro instruction uses the identifi
cation number to indicate which message is to be deleted. The message
identification number must not be confused with the reply identification
number that is assigned to WTOR replies.

GENERALIZED TRACE FACILITY INTERFACE

One of the capabilities of GTF (generalized trace facility) is the
recording of data originated by application programs. The interface
between the application programs and GTF is the GTRACE macro instruc
tion. (For a complete discussion of GTF, see the Service Aids
publication.)

GTRACE allows from 1 to 256 bytes of data to be entered in a GTF
buffer and recorded. When the GTRACE macro instruction is executed, GTF

Chapter 8: Miscellaneous Services 75

must be active and conditioned to receive application data and to record
this data on an external device; otherwise the data will not be
accepted. Return codes are used to indicate the result of the
operation.

Recorded data is processed by the edit function of the HMDPRDMP ser
vice aid. If you want more than a hexadecimal dump of the records, you
may prepare formatting routines for use with the HMDPRDMP edit function.
Association between your recorded data and the formatting routine that
is to process it is established by entering a format identifier in the
GTRACE macro instruction. This identifier defines the formatting rou
tine that is to process the record. For a more complete discussion of
HMDPRDMP, see the Service Aids publication.

To use the GTRACE macro instruction, specify the address and the
number of bytes of data to be entered, along with an event identifier.
A unique event identifier may be specified each time the GTRACE macro
instruction is used. This identifier may be used, for example, in out
put record identification. The optional FID parameter indicates the
formatting routine to be used by HMDPRDMP in processing the record. In
Figure 50, 200 bytes of data, beginning at location AREA, are to be
recorded with an event identifier of 37. In Figure 50 HMDUSR28 is
designated.

r--, I GTRACE DATA=AREA,LNG=200,ID=37,FID=40 I L __ J

Figure 50. Using the GTRACE macro instruction

76

• I~

(

PART II: MACRO INSTRUCTIONS

CHAPTER 9: INTRODUCTION TO SUPERVISOR MACRO INSTRUCTIONS

You can communicate service requests to the control program using a
set of macro instructions provided by IBM. These macro instructions are
available only when programming in the assembler language, and are pro
cessed by the assembler program using macro definitions supplied by IBM
and placed in the macro library when the system was generated.

The processing of the macro instruction by the assembler program
results in a macro expansion, generally consisting of data and execut
able instructions in the form of assembler language statements. The
data fields are the parameters to be passed to the requested control
program routine; the executable instructions generally consist of a
branch around the data, instructions to load registers, and either a
branch instruction or a supervisor call (SVC> to give control to the
proper program. The exact macro expansion appears as part of the
assembler output listing.

MACRO INSTRUCTION FORMS

When written in the standard form, some of the macro instructions
result in instructions that store into an inline parameter list. The
option of storing into an out-of-line parameter list is provided to
allow the use of these macro instructions in a reenterable program. You
can request this option through the use of list and execute forms. When
list and execute forms exist for a macro instruction, their descriptions
follow the description of the standard form.

Use the list form of the macro instruction to provide a parameter
list to be passed either to the control program or to a problem program,
depending on the macro instruction. The expansion of the list form con
tains no executable instructions; therefore registers cannot be used in
the list form.

Use the execute form of the macro instruction in conjunction with one
or two parameter lists established using the list form. The expansion
of the execute form provides the executable instructions required to
modify the parameter lists and to pass control to the required program.
Only the ATTACH, LINK, and XCTL macro instructions use two parameter
lists: a problem program list, resulting from the address parameter and
VL operands,' and a control program list, resulting from the remaining
operands. The control program list is required, and the problem program
list is optional in these macro instructions.

The CALL, DEQ, ENQ, and SNAP macro instructions can result in vari
able length parameter lists. The length of the parameter list generated
by the list form of the macro instruction must be equal to the maximum
length list required by any execute form that refers to the list. The
maximum length list can be constructed in one of three methods:

• Code the parameters required for the maximum length execute form in
the list form.

• Provide a OS instruction immediately following the list form to
allow for the maximum length parameter list.

Chapter 9: Introduction to Supervisor Macro Instructions 77

• Acquire a maximum length list by using commas in the list form to
indicate the maximum number of parameters. For example, the STORAGE
operand of the SNAP macro instruction could be coded as STORAGE=
(""",,) to allow for five pairs of addresses. The actual
addresses would be provided in the execute form.

CODING AIDS

The symbols [], { }, , ••• , and ____ are used to indicate how a macro
instruction may be written. DO NOT CODE THESE SYMBOLS. The specific
meanings of these symbols are given at the bottom of each page on which
they are used; their general definitions are given below:

[] indicates optional operands. The operand enclosed in the brackets
(for example, [VL]) mayor may not be coded, depending on whether
or not the associated option is desired. If more than one item is
enclosed in brackets (for example, [REREADl), one or none of the
items may be coded. LEAVE J

{ } indicates that a choice must be made. One of the operands from the
vertical stack wi thin braces (for example, {rinput]}> must be

. ~utput
coded, depending on which of the associated services is desired.

, ... indicates that more than one set of operands may be designated in
the same macro instruction.

indicates a value that is used in default of a specified value.
This value is assumed if the operand is not coded.

WRITING THE MACRO INSTRUCTIONS

The system macro instructions are written in the assembler language,
and are subject to the rules contained in the publication VS Assembler
Language. Write system macro instructions, like all assembler language
instructions, in the following format:

r--------T------------T-------------------------------------T----------,
I Name I Operation I Operands I Comments I

~--------+------------+-------------------------------------+----------~
I symbol I Macro name I Blank, or one or more operands I I
I or I I separated by commas I I
I blank I I I I L ________ ~ ____________ ~ _____________________________________ ~ __________ J

Use the operands to specify the services and options to be performed;
write them according to the following general rules:

78

• If the selected operand is written in all capital letters (for
example, STEP, DUMP, RET=USE), code the operand exactly as shown.

• If the selected operand is written in lower case letters, substitute
the indicated value, address, or name.

• If the selected operand is a combination of capital and lower case
letters separated by an equal sign (for example, EP=entry point
name), code the capital letters and equal sign as shown, then make
the indicated substitution.

• Code commas and parentheses exactly as shown, only omit the comma
following the last operand coded. The use of commas and parentheses
is indicated by brackets and braces, exactly as operands.

/

\

When substitution is required, the method of specifying the operand
depends on the requirements of the control program. Descriptions of
list and execute form macro instructions indicate specifically how the
operands should be coded; the descriptions of the standard forms of the
macro instructions indicate only what is to be coded. Appendix A shows
specifically how the operands are to be coded. The table in Appendix A
contains all of the operands for which substitution is required and
indicates the allowable ways of writing the operands. The classifica
tions are as follows:

SYM
is any symbol valid in the assembler language.

DEC DIG
is any decimal digit up to the value indicated in the associated
macro instruction description. If both SYM and DEC DIG are
checked, an absolute expression is also allowed.

REGISTER
is always coded within parentheses, as follows:

(2-12) - one of general registers 2 through 12 that you have pre
viously loaded with the right-adjusted value or address
specified in the associated macro instruction description.
The unused high-order bits must be set to zero. You may
designate the register symbolically or with an absolute
expression.

(1) - general register 1, previously loaded as indicated above.
Designate the register as (1) only.

(0) - general register 0, previously loaded as indicated above.
Designate the register as (0) only.

RX TYPE
is any address that is valid in an RX-type instruction (for
example, LA).

ADCON TYPE
is any address that may be written in an A-type address constant.

CONTINUATION LINES

You can continue the operand field of a macro instruction on one or
more additional lines according to the following rules:

1. Enter a continuation character (not blank, and not part of the
operand coding) in column 12 of the line.

2. continue the operand field on the next line, starting in column 16.
All columns to the left of column 16 must be blank.

You can code the operand field being continued in one of two ways.
Code the operand field through column 71, with no blanks, and continue
in column 16 of the next line; or truncate the operand field by a comma,
where a comma normally falls, with at least one blank before column 71,
and then continue in column 16 of the next line. Figure 51 shows an
example of each method. Additional information on the continuation of
any assembler language macro instruction is provided in the publication
VS Assembler Lanqauge.

Chapter 9: Introduction to Supervisor Macro Instructions 19

ADDITIONAL MACRO INSTRUCTIONS

Descriptions and definitions of the following macro instructions are
contained in the publications VS1 Planning and Use Guide and VS2 Plan
ning and Use Guide.

ATLAS
CATALOG
CIRB
CVT
EOV
EXTRACT
MODESET

PURGE
RESERVE
RESTORE
SMFWTM
STAE
SYNCH
TESTAUTH

r--------T------------T--T-T---l
I Name I Operation I Operand Comments I I I

~--------+------------+--+-+---~
I NAME1 I OP1 I OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAIXI I
I I I ND5,OPERAND6 THIS IS ONE WAY I I I
~--------+------------+--+-+---~
I NAME2 I OP2 I OPERAND1, OPERAND2 , THIS IS I X I I
I I I OPERAND 3 , ANOTHER WAY I X I I
I I I OPERAND4 I I I L ________ L ____________ i __ ~_L ___ J

Figure 51. Continuation coding

80

(
'~

CHAPTER 10: DESCRIPTIONS OF THE MACRO INSTRUCTIONS

The macro instructions are described in alphabetical order. For your
convenience, the upper right-hand corner of each page contains the name
of the macro instruction described on the page.

Chapter 10: Descriptions of the Macro Instructions 81

ABEND

ABEND -- Abnormally Terminate a Task

Use the ABEND macro instruction to abnormally terminate the active
task and all its subtasks. ABEND can request a dump of all virtual
storage areas and control blocks pertaining to the tasks being abnormal
ly terminated, and can specify that the entire job step is to be abnorm
ally terminated. If the job step task is abnormally terminated or if
ABEND specifies job step termination, the completion code is recorded on
the system output device, and the remaining job steps in the job are
either skipped or executed as specified in their job control statements.

If the job step is not to be terminated, the following action is
taken:

• The task that was active when ABEND was issued is terminated, along
with all of the subtasks of that active task.

• The completion code is posted as indicated in the completion code
operand description.

• One end-of-task exit routine is selected to be given control; the
one specified in the ATTACH macro instruction that created the task
that was active when ABEND was issued. The exit routine is given
control when the originating task of the task for which ABEND was
issued becomes active. None of the end-of-task exit routines speci
fied for any subtasks of the task for which ABEND was issued are
given control.

The ABEND macro instruction "is written as follows:

r----------T-------T---------------------------------, I [symbol] I ABEND I completion code[,DUMP] [,STEP] I L __________ ~ _______ ~ _________________________________ J

completion code

DUMP

is a maximum of 4095. The value may be specified symbolically, as
a decimal digit, or as one of the registers 1 through 12 (in paren
theses). Using a value greater than 4095 causes unpredictable user
or system completion codes, or both. If the job step"is to be ter
minated, the completion code is recorded as user code on the system
output device. If the job step is not to be terminated, the com
pletion code is placed in the task control block of the active task
and in the event control block specified in the ECB operand of the
ATTACH macro issued to create the active task.

is written as shown. It is used to request a dump of all virtual
storage areas assigned to the task and all control blocks pertain
ing to the task. A sample abnormal termination dump is contained
in the VSl and VS2 Debugging Guides.

A separate dump is provided for each of the tasks being terminated
as a result of ABEND. In addition, a dump of the control blocks
and save areas is provided for each of the higher level tasks that
are direct predecessors of the task being terminated. You should
provide a //SYSABEND or a //SYSUDUMP DD statement; if you do not,
you receive only an indicative dump. If the operand is omitted or
if insufficient storage is available in the partition for the
abnormal termination to be performed, no dump is provided.

[] indicates optional name or operands.

82

(

STEP

ABEND

is written as shown. It indicates that the entire job step of the
active task is to be abnormally terminated.

Note: During the ABEND process, the terminating task is multiprogrammed
with other tasks in the system. Therefore, the resulting storage dump
may reflect changes that occur during ABEND execution to storage areas
not uniquely related to the abnormally terminating task.

Chapter 10: Descriptions of the Macro Instructions 83

ATTACH

ATTACH -- Create a New Task (VS1)

Use the ATTACH macro instruction to create a new task. The new task
is a subtask of the originating task. Both tasks exist in the same par
tition and compete for execution with each other and with all other
tasks in the system, based on dispatching priority. The limit and dis
patching priorities of the new subtask are the same as those of the ori
ginating task unless modified in the ATTACH macro instruction.

The originating task specifies the entry point of the program to be
given control when the subtask begins execution. The specified entry
point must be a member name or an alias in a directory of a partitioned
data set, or it must have been specified in an IDENTIFY macro instruc
tion. If the specified entry point cannot be located, the new subtask
is abnormally terminated. The load module containing the program is
brought into storage if a usable copy is not available.

A linkage relationship is established between the originating task
and the subtask by the task control block. The originating task can
pass a parameter list to the subtask; it can also provide an event con
trol block in which termination of the new task is posted, and an exit
routine to be given control upon subtask termination. The address of
the task control block for the subtask is returned in register 1.

ATTACH cannot be issued in a STAE exit routine. The program issuing
ATTACH must not terminate before all its subtasks have terminated.

For systems with the time-slicing option, the dispatching priority
determines whether the new task will participate in time-slicing. The
new task executes asynchronously to the calling task, but within the
same partition.

Write the standard form of the ATTACH macro as follows. Information
about the list and execute forms follows this description.

r----------T--------T--------------------~---------------------------,
I [symbol] I ATTACH I {EP=Symbol } I
I I I EPLOC=address of name I
I I I DE=address of list entry I
I I I [,DCB=dcb address] I
I I I [,PARAM=(addresses)[,VL=l]] I
I I I [,ECB=ecb address] [,ETXR=exit routine address] I
I I I [,LPMOD=number][,DPMOD=number] I L __________ ~ ________ ~ __ J

EP=
is the entry name in the load module to be given control.

EPLOC=

DE=

is the virtual storage address of the entry name. pad the name
with blanks to eight bytes, if necessary.

is the address of the name field of a 58-byte list entry for the
entry name. The list entry is constructed using the BLDL macro
instruction. The DCB operand must indicate the same data control
block used in the BLDL macro instruction.

[] indicates optional name or operand; select one from vertical stack
with { }.

84

DCB=

ATTACH

is the address of the data control block for the partitioned data
set containing the entry name. Specifying an address of zero or
omitting the DCB operand indicates the data set is in the link
library or the job step library.

PARAM=

VL=l

is one or more address parameters, separated by commas, to be
passed to the called program. Each address is expanded inline to a
fullword on a fullword boundary, in the order designated. Register
1 contains the address of the first parameter when the program is
given control. If this operand is omitted, register 1 is not
altered.

is written as shown. Use it only if PARAM is designated, and only
if the called program can be passed a variable number of parame
ters. VL=l causes the high-order bit of the last address parameter
to be set to 1; the bit can be checked to find the end of the 1ist.

ECB=

ETXR=

is the address of an event control block (fullword on a fullword
boundary) to be used by the control program to indicate the ter
mination of the new task. The return code (if the task is ter
minated normally) or the completion code (if the task is terminated
abnormally) is also placed in the event control block. If you code
this operand, you must also issue a DETACH macro instruction to
remove the subtask from the system after the subtask has been
terminated.

is the address of the end-of-task exit routine to be given control
after the new task is normally or abnormally terminated. The exit
routine is given control when the originating task becomes active
after the subtask is terminated, and must be in virtual storage
when required. If the same routine is used for more than one sub
task, it must be reenterable. If you code this operand, you must
also issue a DETACH macro instruction to remove the subtask from
the system after the subtask has been terminated.

The contents of the registers when the exit routine is given con
trol are as follows:

Register
o

Contents
Control program information.

1

2-12
13
14
15

Address of the task control block for the task that was
terminated.
Unpredictable.
Address of a save area provided by the control program.
Return address (to the control program).
Address of the exit routine.

The exit routine is responsible for saving and restoring the regis
ters. It operates logically as a subroutine and must return con
trol to the control program.

LPMOD=
is the number to be subtracted from the current limit priority of
the originating task. The result is the limit priority of the new
task. If omitted, the current limit priority of the originating
task is assigned as the limit priority of the new task.

Chapter 10: Descriptions of the Macro Instructions 85

ATTACH

DPMOD=

86

is the signed number to be algebraically added to the current dis
patching priority of the originating task. The result is-assigned
as the dispatching priority of the new task, unless it is greater
than the limit priority of the new task. If the result is greater,
the limit priority is assigned as the dispatching priority. If you
specify a register, a negative number must be in two's complement
form in the register. If you omit this operand, the dispatching
priority assigned is the smaller of either the new task's limit
priority or the originating task's dispatching priority.

ATTACH

ATTACH -- Create a New Task (VS2)

The ATTACH macro instruction causes the control program to create a
new task and indicates the entry point in the program to be given con
trol when the new task becomes active. The entry point name that is
specified must be a member name or an alias in a directory of a parti
tioned data set, or must have been specified in an IDENTIFY macro
instruction. If the specified entry point cannot be located, the new
subtask is abnormally terminated.

The address of the task control block for the new task is returned in
register 1. The new task is a subtask of the originating task; the ori
ginating task is the task that was active when the ATTACH macro instruc
tion was issued. The limit and dispatching priorities of the new task
are the same as those of the originating task unless modified in the
ATTACH macro instruction. The dispatching priority determines whether
or not the new task participates in time slicing or in the APG (automat
ic priority group).

The load module containing the program to be given control is brought
into virtual storage if a usable copy is not available in virtual
storage. The issuing program can provide an event control block, in
which termination of the new task is posted, an exit routine to be given
control when the new task is terminated, and a parameter list whose
address is passed in register 1 to the new task. If the ECB or ETXR
operands are coded, a DETACH macro instruction must be issued to remove
the subtask from the system before the program that issued the ATTACH
macro instruction terminates. If the ECB or ETXR operands are not
coded, the subtask is automatically removed from the system upon comple
tion of its execution. The ATTACH macro instruction can also be used to
specify that ownership of virtual storage subpools is to be assigned to
the new task, or that the subpools are to be shared by the originating
task and the new task.

The ATTACH macro instruction cannot be issued in a STAE exit routine.
The program issuing the ATTACH macro instruction must not terminate
before all of its subtasks have terminated.

For further discussions of time slicing and the use of an existing
copy of a load module, refer to Part I.

The standard form of the ATTACH macro instruction is written as
follows:

Chapter 10: Descriptions of the Macro Instructions 87

ATTACH

r----------T--------T--,
[symbol] ATTACH {EP=Symbol } [,DCB=dcb address]

EPLOC=address of name
DE=address of list entry

[,LPMOD=number] [,DPMOD=number]
[,PARAM=(addresses) [,VL=l]]
[,ECB=ecb address] [,ETXR=exit routine address]

~GSPv=number J
~GSPL=address of list [

,SBSPv=number]
,SHSPL=address of list

{
YES}

[,SZERO= NO]

[,TASKLIB=dcb address]

[,STAI=(exit address[,parameter list address])]

HALT YES
{

NONE }

[,PURGE= QUIESCE] [,ASYNCH={NO }] __________ ~ ________ ~ __ J

EP=
is the entry name in the load module to be given control.

EPLOC=

DE=

DCB=

is the virtual storage address of the entry name. The name must be
padded with blanks to eight bytes, if necessary.

is the address of the name field of a list entry ~or the entry
name. The list entry is constructed using the BLDL macro instruc
tion. The DCB operand must indicate the same data control block
used in the BLDL macro instruction.

is the address of the data control block for the partitioned data
set containing the entry name. The address of the data control
block for either the link or job library is designated by specify
ing an address of 0 or by omitting the DCB operand.

LPMOD=
is the number to be subtracted from the current limit priority of
the originating task. The result is the limit priority of the new
task. If omitted, the current limit priority of the originating
task is assigned as the limit priority of the new task.

DPMOD=
is the signed number to be algebraically added to the current dis
patching priority of the originating task. The result is assigned
as the dispatching priority of the new task, unless it is greater
than the limit priority of the new task. If the result is greater,
the limit priority is assigned as the dispatching priority.

[] indicates optional name or operand; select one from vertical stack
within { }; select one or none from vertical stack within [].

88

ATTACH

If a register is designated, a negative number must be in two's
complement form in the register. If this operand is omitted, the
dispatching priority assigned is the smaller of either the new
task's limit priority or the originating task's dispatching
priority.

PARAM=

V~l

ECB=

is one or more address parameters, separated by commas, to be
passed to the called program. Each address is expanded in line to
a fullword on a fullword boundary, in the order designated.
Register 1 contains the address of the first parameter when the
program is given control. If this operand is omitted, register 1
is not altered.

is written as shown. It can be designated only if PARAM is desig
nated, and should be used only if the called program can be passed
a variable number of parameters. VL=l causes the high-order bit of
the last address parameter to be set to 1: the bit can be checked
to find the end of the list.

is the address of an event control block to be used by the control
program to indicate the termination of the new task. The return
code (if the task is terminated normally) or the completion code
(if the task is terminated abnormally) is also placed in the event
control block. If this operand is coded, a DETACH macro instruc
tion must be issued to remove the subtask from the system after the
subtask has been terminated.

ETXR=

GSPV=

is the address of the end-of-task exit routine to be given control
after the new task is normally or abnormally terminated. The exit
routine is given control when the originating task becomes active
after the subtask is terminated, and must be in virtual storage
when required. If the same routine is used for more than one sub
task, it must be reenterable. If this operand is coded, a DETACH
macro instruction must be issued to remove the subtask from the
system after the subtask has been terminated. The contents of the
registers when the exit routine is given control are as follows:

Register
o

1

2-12

13

14

15

Contents
Control program information.

Address of the task control block for the task that was
terminated.

Unpredictable.

Address of a save area provided by the control program.

Return address (to the control program).

Address of the exit routine.

The exit routine is responsible for saving and restoring the
registers.

is a virtual storage subpool number. ownership of the specified
virtual storage subpool is assigned to the new task. Programs of
the originating task can no longer use the associated virtual
storage area.

Chapter 10: Descriptions of the Macro Instructions 89

GSPL=

ATTACH

is the address of a list of virtual storage subpool numbers. The
first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage
subpool number. ownership of each of the specified virtual storage
subpools is assigned to the new task. Programs of the originating
task can no longer use the associated virtual storage areas.

SHSPV=
is a virtual storage subpool number. Programs of both the ori
ginating task and the new task can use the associated virtual
storage area.

SHSPL=
is the address of a list of virtual storage subpool numbers. The
first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage
subpool number. Programs of both the originating task and the new
task can use the associated virtual storage areas.

SZERO=
is used to indicate whether subpool 0 is to be shared with the sub
task. YES specifies that subpool 0 is to be shared; NO specifies
that subpool 0 is not to be shared. YES is assumed if this operand
is omitted.

TASKLIB=

STAI=

is used to indicate whether a task library DCB address has been
supplied. If an address is supplied, it is stored in TCBJLB.
otherwise, TCBJLB is propagated from the originating task.

is used to indicate whether a STAI SCB is to be created; any STAI'
SCBS queued to the originating task are propagated to the new task.
The first address supplied should be the address of the STAI exit
routine which is to receive control if the subtask abnormally ter
minates. The STAI exit routine must be in virtual storage at the
time of abnormal termination. The second address is the address of
a parameter list which may be used by the STAI exit routine. A BC
(basic control) mode PSW is reflected in the STAE work area.

PURGE=
is used to indicate what action is to be taken with regard to I/O
operations when the subtask is abnormally terminated. This operand
is used only in conjunction with the STAI= operand. No action may
be specified (NONE), a halting of I/O operations may be requested
(HALT), or a quiescing of I/O operations may be indicated
(QUIESCE). The meaning of the PURGE= operand is exactly as speci
fied in the STAE macro description. If omitted, QUIESCE is
assumed.

ASYNCH=

90

is used to indicate whether asynchronous exits are to be allowed
when a subtask ABEND occurs. This operand is used only in conjunc
tion with the STAI= operand. The meaning of the ASYNCH= operand is
exactly as specified in the STAE macro description. If omitted, NO
is assumed.

(

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

ATTACH - L Form

ATTACH -- List Form

Two parameter lists are used in an ATTACH macro instruction: a con
trol program parameter list and an optional problem program parameter
list. You can construct only the control program parameter list in the
list form of AT'TACH. Address parameters to be passed in a parameter
list to the problem program can be provided using the list form of the
CALL macro instruction. This parameter list can be referred to in the
execute form of ATTACH.

The description of the standard form of ATTACH explains the function
of each operand. The description of the standard form also indicates
which operands are always optional and which are required in at least
one of the pair of list and execute forms. The operand combinations in
the shaded area of the format description may only be used in a VS2 sys
tem. The TQE and FPREGSA operands are only used in a VS1 system. The
format description below indicates the optional and required operands in
the list form only.

r----------T--------T--,
[symbol] ATTACH I {EP=symbol } I

I EPLOC=address of name I
I DE=address of list entry I
I [,DCB=dcb address] [,ECB=ecb address] I
I [,ETXR=exit routine address] [,LPMOD=number] I
I [,DPMOD=number],SF=L I
I YES} I

] [,FPREGSA= NO]

----------~--------

symbol
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

number
is any absolute expression valid in the assembler language.

SF=L
indicates the list form of ATTACH.

[] indicates optional name or operands; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 91

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

ATTACH - E Form

ATTACH -- Execute Form

Two parameter lists are used in ATTACH: a control program parameter
list and an optional problem program parameter list. Either or both of
these parameter lists can be remote and can be referred to and modified
by the execute form of ATTACH. If only the problem program parameter
list is remote, operands that require use of the control program para
meter list cause that list to be constructed inline as part of the macro
expansion.

The description of the standard form of ATTACH explains the function
of each operand. The description of the standard form also indicates
which operands are always optional and which are required in at least
one of the pair of list and execute forms. The operand combinations in
the shaded area of the format descriptions may only be used in a VS2
system. The TQE and FPREGSA operands are only used in a VSl system. If
specified in the list form, you need nct respecify them in the execute
form. The format description below indicates the optional and required
operands in the execute form only.

r----------T--------T--,
[symbol] ATTACH {EP=symbol }

EPLOC=address of name
DE=address of list entry

[,DCB=dcb address]
r,PARAM=(addresses) r,VL=l]]
r,ECB=ecb address] [,ETXR=exit routine address]
[,LPMOD=number] [,DPMOD=number]

{YESl {YES}
[, TQE= NO (] [, FPREGSA= NO]

,MF=(E,{prOblem program list
(1)

,SF= (E, {Control list

,MF=(E, address
(1)

----------~-------

symbol
is any symbol valid in the assembler language.

address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. You may specify the register symbolically or with
an absolute expression; always code it within parentheses.

number
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. You may specify the register symbolically or
with an absolute expression; always code it within parentheses.

[] indicates optional name or operand; select one from vertical stack
within { }.

92

ATTACH - E Form

MF=(E,{prOblem program list address})
(1)

indicates the execute form of the macro instruction using a remote
problem program parameter list. Any control program parameters
specified are provided in a control program parameter list expanded
inline. If you also specify PARAM, the address parameters are
placed on contiguous fullword boundaries, beginning at the address
specified in the MF operand and sequentially overlaying correspond
ing full words in the existing list. The address of the problem
program parameter list can be coded as described under "address,"
or can be loaded into register 1, in which case MF=(E,(l» should
be coded.

SF=(E,{Control program list address})
(15)

indicates the execute form of the macro instruction using a remote
control program parameter list. Any problem program parameters
specified are provided in a problem program parameter list expanded
in line. The address of the control program parameter list can be
coded as described under "address," or can be loaded into register
15, in which case SF=(E,(15» should be coded.

MF=(E,{addreSS}),SF=(E,{addreSS})
(1) (15) ,

indicates the execute form of the macro instruction using both a
remote problem program parameter list and a remote control program
parameter list. The addresses of the parameter lists are coded or
loaded into registers 1 and 15, as explained above.

Chapter 10: Descriptions of the Macro Instructions 93

CALL

CALL -- Pass Control to a Control section

CALL passes control to a control section at a specified entry point
as follows:

• OVERLAY: The overlay segment containing the designated entry point
is brought into virtual storage if required, and control is passed
to the segment. (15) must not be designated in an exclusive call.
Refer to Linkage Editor and Loader for details on overlay. The CALL
macro instruction cannot be used in an asynchronous exit routine.

• NON-OVERLAY: If a symbol is designated, the linkage editor includes
the load module containing that entry point in the same load module
containing the CALL instruction. When the CALL macro instruction is
executed, control is passed to the control section at the specified
entry point. If (15) is designated, the load module containing the
entry point must be in virtual storage, and register 15 must contain
the address of the entry point.

The linkage relationship established when control is passed is the
same as that created by a BAL instruction; that is, the issuing program
expects control to be returned. The control program is not involved in
passing control, so the reusability of the called program must be main
tained by the user.

An address parameter list can be constructed and a calling sequence
identifier can be provided. The standard form of the CALL macro
instruction is written as follows. Information about the list and
execute forms follows this description.

r----------T------r--, I [symbol] I CALL I {entry point name}[,(addreSS parameters) [,VL1] I
I I I (15) I
I I I [, ID=numberl I L __________ ~ ______ ~ ___ -J

entry point name
is the name of the entry point to be given control; the name is
used in the macro instruction as the operand of a V-type address
constant; before execution it must be resolved to a virtual address
by linkage editing. If (15) is designated, register 15 must con
tain the address of the entry point to be given control.

address parameters

VL

are one or more address, parameters, separated by commas, to be
passed to the called program. Each address is expanded, in the
order designated, to a full word on a fullword boundary. When con
trol is passed, register 1 contains the address of the first param
eter. If no address parameters are designated, the contents of
register 1 are not changed.

is written as shown. It can be designated only if address parame
ters are designated. Use it only when a variable number of parame
ters can be passed to the called program. VL causes the high-order
bit of'the last address parameter in the macro expansion to be set
to 1; the bit can be checked by the called program to find the end
of the list.

[] indicates optional name or operand; select one from vertical stack
within { }.

94

(

ID=

CALL

maximum value is 216_1. The last fullword of the macro expansion
is a NOP instruction containing the ID value in the low-order two
bytes. When the called program is given control, the address
resides at 2 bytes past the location pointed to by register 14.

Upon entry to the called program, register contents are as follows:

Register
1

14
15

Contents
Address of parameter list if present.
Return address.
Entry point of called program.

Chapter 10: Descriptions of the Macro Instructions 95

CALL - L Form

CALL -- List Form

The list form of the CALL macro instruction is used to construct a
nonexecutable problem program parameter list. This list form generates
only ADCONs of the address parameters. This problem program parameter
list can be referred to in the execute form of a CALL, LINK, ATTACH, or
XCTL macro instruction.

The description of the standard form of the CALL macro instruction
explains the function of each operand. The description of the standard
form also indicates which operands are always optional and which are
required in at least one of a pair of list and execute forms. The for
mat description below indicates the optional and required operands in
the list form only. The comma before the parenthesis must be coded to
indicate the absence of the entry name operand, which is not allowed in
the list form.

r----------T------r----------------------------------, I [symbol] I CALL I ,(address parameters) [,VL],MF=L I L __________ ~ ______ ~ __________________________________ J

~~l
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

MF=L
indicates the list form of the CALL macro instruction.

[] indicates optional name or operands.

96

(
\

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

CALL - E Form

CALL -- Execute Form

A remote problem pI"ogram parameter list is referred to and can be
modified by the execute form of the CALL macro instruction. Only
executable instructions and a VCON of the entry point are generated.

The description of the standard form of the CALL macro instruction
explains the function of each operand. The description of the standard
form also indicates which operands are always optional and which are
required in at least one of the pair of list and execute forms. The
format description below indicates the optional and required operands in
the execute form only.

r----------T------T--,
I [symbol] I CALL I {entry point name}[,(addreSs parameters)] [,VLl I
I I I (15) I
I I I [,ID=number],MF=(E,{prOblem program list addreSS}) I
I I I (1) I L __________ ~ ______ ~ __ J

name, symbol
is any symbol valid in the assembler language.

address
is any a&dress of an existing address constant that is valid in an
Rx-type instruction, or one of general registers 2 through 12, pre
viously loaded with the indicated address. The register may be
designated symbolically or with an absolute expression, and is
always coded within parentheses.

number
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses.

MF=(E,{prOblem program list addreSS})
(1)

indicates the execute form of the macro instruction using a remote
problem program parameter list. The address of the problem program
parameter list can be coded as described under "address,n or can be
loaded into register 1, in which case code MF=(E, (1». Register 1
or the problem program list address must point to the list form of
CALL. If the address parameter is also specified, the ADCCNs of
the parameter are placed on contiguous fullword boundaries begin
ning at the address specifie& in the MF operand, and sequentially
overlaying corresponding fullwords in the existing list.

[1 indicates optional name or operand; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 97

Page of GC27-6979-1, Issued January 3, 1973 cy TNL GN27-1400

C~P

CHAP -- Change Dispatching Priority

CHAP changes the dispatching priority of the task or any of its sub
tasks. CHAP may also change the limit priority of a subtask. (See the
section apriority of Subtasks" in this publication. The algebraic sum
of the priority change value and the dispatching priority of the subject
task determines the new dispatching priority •

• If the subject task is the task executing CHAP, its dispatching
priority is set equal to the sum of the priority change value and
the dispatching priority. This value is not set at less than zero
or greater than the limit priority for the task. Its limit priority
is unaffected •

• If the subject task is a subtask of the task executing CHAP, its
dispatching priority is set equal to the sum of the priority change
value and the dispatching priority. This value is not set at less
than zero or greater than the limit priority of the task executing
CHAP. After this modification, if the subtask's dispatching priori
ty exceeds its limit priority, the limit priority is made equal to
the dispatching priority.

Notes: The limit priority of the job step task depends on the PRTY pa
rameter of the JOB statement. The dispatching priority of any task
determines whether or not the task participates in time slicing (applic
able when the operating system includes the time-slicing option). For
more details, refer to Time Slicing in the Services section.

If the CHAP issuer is in the dynamic dispatching group, the CHAP
request is ignored. If the CHAP issuer is not in the dynamic dispatch
ing group, and the resultant dispatching priority for the CHAPed task is
equal to the dispatching priority of the dynamic dispatching group, the
CHAPed TCB is moved in the ready queue to the position immediately in
front of the dynamic dispatching group. You m~y not CHAP into, or out
of a dynamic dispatching group.

The standard form of CHAP is written as follows:

r----------T------T---------------------------~--------------------,
I [symbol] I CHAP I priority change value [,tcb location addreSS] I
I I I , '§' I L __________ ~ ______ ~ __ J

priority change value
is the signed value to be added to the dispatching priority of the
specified task. If the value is negative and contained in a
register, it should be in two's complement form.

tcb location address
specifies the address of a fullword on a fullword boundary contain
ing the address of a task control block for a subtask of the active
task. The address of the task control block is an output of the
ATTACH macro. 'S' indicates that the priority of the active task
is to be changed. 'S' is assumed if the operand is omitted or if
it is coded to specify a zero address.

[1 indicates optional name or operand; select one or none from vertical
stack within [1; indicates an assumed value.

98

DELETE

DELETE -- Relinquish Control of a Load Module

DELETE cancels the effect of a previous LOAD macro instruction. If
DELETE cancels the only outstanding LOAD request for the module and no
other requirements exist for the module, the virtual storage occupied by
the load module is released and is available for reassignment by the
control program. The name specified in DELETE must be the same as that
specified in the LOAD macro instruction that brought the load module
into storage; it must be issued by the same task that issued the LOAD
macro instruction.

The DELETE macro is written as follows:

r---------~--------T----------------------------l
I [symbol] I DELETE I {EP=symbol } I
I I I EPLOC=address of name I
I I I DE=address of list entry I L-_________ ~ ________ ~ ____________________________ J

EP=
is the entry name used in the associated LOAD macro instruction.

EPLOC=

D~

is the address of the entry name described above. Pad the name
with blanks to eight bytes, if necessary.

is the address of the name field of a 58-byte list entry for the
entry name described above, constructed using the BLDL macro
instruction.

When control is returned, register 15 contains a 0 if the operation
was completed successfully. Register 15 contains a 4 if a LOAD was not
issued for the task issuing the DELETE instruction or if the responsibi
lity count' had previously become zero.

[] indicates optional name; select one from vertical stack within { }.

Chapter 10: Descriptions of the Macro Instructions 99

DEQ

DEQ -~ Release a serially Reusable Resource

DEQ removes control of one or more (maximum is 255) serially reusable
resources from the active task. It can also be used to determine wheth
er control of the resource is currently assigned to or requested for the
active task. Register 15 is set to 0 if the request is satisfied. An
unconditional request to release a resource from a task that is not in
control of the resource, or a request that contains an invalid address
of a resource results in abnormal termination of the task.

The standard form of the DEQ macro instruction is written as follows.
Information about the list and execute forms follows this description.

r--------T---T---,
I [symbol] IDEQI (qname address,rname address, [rname length],[STEP J' ...) I
I I I S~T~ I
I I I [, RET=HAVE] I L ________ .L ___ .L ___ J

qname address
is the address in virtual storage of an eight-character name
(padded with blanks on the right if necessary). Every program
issuing a request for a serially reusable resource must use the
same qname and rname to represent the resource. The name should
not start with SYS, so that it will not conflict with system names.
The name must be the same qname previously specifi~d for the
resource in an ENQ macro instruction.

rname address
is the address in virtual storage of the name used in conjunction
with the qname to represent the resource acquired by a previous ENQ
macro instruction. The name can be qualified and must be from 1 to
255 bytes long.

rname length
is the length of the rname described above. The length must have
the same value as specified in the previous ENQ macro instruction.
If the operand is omitted, the assembled length of the rname is
used. You can specify a value between 1 and 255 to override the
assembled length, or a value of O. If you specify 0, the length of
the rname must be contained in the first byte at the rname address
designated above.

STEP or SYSTEM
is written as shown. You must specify the same STEP or SYSTEM
option as you used in the ENQ macro instruction requesting the
resource. You can specify up to 255 resources.

RET=HAVE
is written as shown. It specifies that the request for releasing
the resources named in DEQ is to be honored only if the active task
has been assigned control of the resources. If the operand is
omitted, the request for release is unconditional, and the active

[] indicates optional name or operand; select one or none from vertical
stack within [1. , .•• indicates that more than one resource can be
specified in the DEQ macro instruction, to a maximum of 255.

100

DEQ

task is abnormally terminated if it has been assigned control of
the resources. The results of conditional requests are indicated
by the return codes shown in Figure 52.

Return codes are provided by the control program only if RET=HAVE is
designated. If all of the return codes for the resources named in DEQ
are 0 register 15 contains O. If any of the return codes are not 0
register 15 contains the address of a virtual storage area containing
the return codes as shown in Figure 53. The return codes are placed in
the parameter list resulting from the macro expansion in the same
sequence as the resource names in the DEQ macro instruction. The return
codes are shown in Figure 52.

r------T---,
I Code I Meaning I
~------+---~
I 0 I The resource has been released. I
I I I
I 4 I The resource has been requested for the task, but the task I
I I has not been assigned control. The task is not removed from I
I I the wait condition. (This return code could result if DEQ is I
I I issued within an exit routine which was given control because I
I I of an interruption.) I
I I I
I 8 I Control of the resource has not been requested by the active I
I I task, or the resource has already been released. I L ______ ~ ___ J

Figure 52. DEQ macro instruction return codes

Address
Returned in
Register 15

Return
Codes

I
I
I
v 1 2 3 v 4

o r-------T-------T-------T-------T--
I I I I I
I I I IRC I
I I I I 1 I

12 ~-------+-------+-------+-------+--
I I I I I
I I I IRC I
I I I I 2 I

24 .-------+-------+-------+-------+--
I I I I I
I I I IRC I
I I I I 3 I

36 ------- -------+-------+-------+--

12

Return codes are 12
bytes apart, starting 3
bytes from the address
in register 15.

Figure 53. Return code area used by DEQ

Chapter 10: Descriptions of the Macro Instructions 101

DEQ - L Form

DEQ -- List Form

Use the list form of DEQ to construct a control program parameter
list. You can specify any number of resources in DEQ; therefore, the
number of qname and rname combinations in the list form of DEQ must be
equal to the maximum number of qname and rname combinations in any
execute form of DEQ that refers to that list form.

The description of the standard form of the DEQ macro instruction
explains the function of each operand. The description of the standard
form also indicates which operands are always optional and whic~ are
required in at least one of the pair of list and execute forms. The
format description below indicates the optional and required operands in
the list form only.

r----------T-----T---, I [symbol] I DEQ I ([qname address]. [rname addressl,[rname length], I
I I I [SYSTEM], •••) [,RET=HAVE] ,MF=L I
I I I STEP I L __________ ~ _____ ~ ___ J

Symbol
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

length
is any absolute expression valid in the assembler language.

MF=L
indicates the list form of the DEQ macro instruction.

[] indicates optional name or operand; , ••• indicates that more than
one qname and rname combination with associated options can be coded.
Select one or none from vertical stack within [].

102

\

DEQ - E Form

DEQ -- Execute Form

A remote control program parameter list is used in, and can be modi
fied by, the execute form of the DEQ macro. The parameter list can be
generated by the list form of either the DEQ or the ENQ macro
instruction.

The description of the standard form of DEQ explains the function of
each operand. The description of the standard form also indicates which
operands are always optional and which operands are required in at least
one of the pair of list and execute forms. The format description below
indicates the optional and required operands in the execute form only.

r---------~----~---, I [symbol] I DEQ I [([qname address], [rname address], [rname length], I
I I I rSYSTEM1,···)] [,RET=HAVE] I
I I I LSTEP J , RET=NONE I
I I I ,MF=(E,{Control program list address}> I
I I I (1) I L __________ ~ _____ ~ ___ J

symbol
is any symbol valid in the assembler language.

address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. You may designate the register symbolically or with
an absolute expression: always code it within parentheses.

length
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. You may designate the register symbolically
or with an absolute expression: always code it within parentheses.

RET=NONE
specifies an unconditional request to release all of the resources.
The request is processed as though no RET operand had been coded.

MF=(E,{control program list address})
(1)

indicates the execute form of the macro instruction using a remote
control program parameter list. Code the address of the control
program parameter list as described under "address," or you can
load the address into register 1, in which case you should code
MF= (E, (1» •

[] indicates optional name or operand: select one from vertical stack
within { }: ,... indicates that more than one qname and rname combina
tion with associated options can be coded. Select one or none from
vertical stack within [1.

Chapter 10: Descriptions of the Macro Instructions 103

DETACH

DETACH -- Delete a Subtask (VS1)

DETACH removes a previously terminated subtask from the system by
releasing the storage containing the TCE (task control block) of the
subtas~. The subtask must be detached by the task that created it or by
a task using the same TCE as the creating task, and the ATTACH macro
instruction used to create the subtask must have specified the ECB or
ETXR operand. You can issue a DETACH only for subtasks created by an
active task.

All subtasks created through execution of the ATTACH macro instruc
tion specifying ECE or ETXR must be detached before the originating task
terminates. Failure to detach the subtasks results in abnormal termina
tion of the originating task when it attempts normal termination. If
neither ECE nor ETXR is specified in the ATTACH macro instruction,
DETACH should not be issued.

If a DETACH is issued for a subtask that has not completed execution,
that subtask and all its subtasks are abnormally terminated. If an ECE
for recording the subtask's termination is present, it is posted, but an
end-of-task exit routine is ignored. Instead, the detaching task
regains control at the next sequential instruction.

If an invalid TCE address is passed to DETACH, the task that issued
the DETACH is abnormally terminated.

If a subtask was created by an ATTACH macro instruction that speci
fied the ECE operand, and the subtask has not yet terminated, DETACH
abnormally terminates the subtask, specifies the completion code, and
posts it in the ECB.

If a subtask was created by an ATTACH macro instruction that did not
specify ECE or ETXR, and the task has terminated, an attempt to detach
the subtask results in abnormal termination of the task issuing DETACH.

The DETACH macro instruction is written as follows:

r----------T--------T------------------------,
I [symbol] I DETACH I tcb location address I L __________ ~ ________ ~ ________________________ J

tcb location address
is the virtual storage address of a fullword on a fullword boun
dary. The fullword contains the address of the task control block
for the subtask to be removed from the system. The address of the
task control block is an output of the ATTACH macro instruction.

[] indicates optional name.

104

DETACH

DETACH -- Delete a Subtask (VS2)

The DETACH macro instruction is used to remove from the system a sub
task created by an ATTACH macro instruction that specified the ECB or
ETXR operand. Each subtask created in this manner must be removed from
the system before the originating task terminates. Failure to remove
these subtasks causes abnormal termination of the originating task and
all of its subtasks. Issuing a DETACH macro instruction that specifies
a subtask created without the ECB or ETXR operand also causes abnormal
termination of the originating task when the specified subtask has
already terminated. Issuing a DETACH macro instruction that specifies a
subtask that has not terminated causes termination of that subtask and
all of its subtasks. A DETACH macro instruction can be issued only for
subtasks created by the active task.

The DETACH macro instruction is written as follows:

r----------T--------T--,
I I I {YES} I I [symbol] I DETACH Itcb location address [,STAE= NO] I L __________ ~ ________ ~ __ J

tcb location address

STAE=

is the virtual storage address of a fullword on a fullword boun
dary. The fullword contains the address of the task control block
for the subtask to be removed from the system.

YES

NO

indicates that the exit routine specified in a STAE macro instruc
tion issued by the subtask is to be given control if the subtask is
scheduled for abnormal termination while it is being detached. If
a retry routine is specified by the STAE exit routine, it is not
given control.

indicates that the exit routine specified in the STAE macro
instruction will not be given control if the subtask is scheduled
for abnormal termination (ABEND) while it is being detached. If
neither YES nor NO is specified, NO is assumed.

When control is returned, register 15 contains one of the following
return codes:

Hexadecimal
Code
00

04

Explanation
Successful completion.

Incomplete subtask detached; STAE exit taken.

Chapter 10: Descriptions of the Macro Instructions 105

DOM

DOM -- Delete Operator Message (MCS with DIDOCS only)

The DOM macro instruction deletes a message or group of messages from
display on the display operator console. When a program no longer
requires that a message be displayed, issue a DOM macro instruction to
delete the message.

Depending on the timing of the DOM relative to the WTO(R), the mes
sage mayor may not be displayed. If the message is being displayed, it
is removed when space is required for other messages.

When a WTO or WTOR macro instruction is executed, the control program
assigns an identification number to the message. The control program
returns the assigned identification number (24 bits and right-justified)
to the issuing program in general register 1. When display of the mes
sage is no longer needed, the DOM macro instruction should be coded
using the identification number that was returned in general register 1.

The DOM macro instruction is written as follows:

r----------T-----T-------------------,
I [symbol] 100M I {MSG=register } I
I I I MSGLIST=address I L _________ ~~ _____ ~ ___________________ J

MSG=
specifies a general register from 1 through 12 that contains the
24-bit, right-justified identification number of the message to be
deleted. Use this operand to delete a single message. If you use
register 1, the macro expansion is shortened by two bytes.

MSGLIST=
specifies the address of a list of one or more fullwords, each word
containing a 24-bit, right-justified identification number of a
message to be deleted. A maximum of 60 identification numbers may
be in the message list. If more than 60 identification numbers are
in the list, only the first 60 are processed. Begin the list on a
fullword boundary. Indicate the end of the list by setting the
high-order bit of the last fullword entry to 1. If you use regist
er 1, the macro expansion is shortened by four bytes. If any
register 2 through 12 is used, the mqcro expansion is shortened by
two bytes.

[] indicates optional name; select one from the vertical stack within
{ }.

106

DXR

DXR -- Divide Extended Register

Use the DXR macro instruction to divide one extended-precision
floating-point number by another. A detailed description of the divi
sion process and extended precision and rounding is given in IBM System/
370 Principles of Operation.

To use the DXR macro instruction, you must provide a SPIE exit rou
tine to process the program exception caused (intentionally> by execu
tion of the DXR instruction. The SPIE exit routine is described in the
section on Extended-Precision Floating-Point Simulation in the Services
section of this publication.

The DXR macro instruction is written as follows:

r----------T-----T-----------,
I [symbol] I DXR I reg1,reg2 I L _________ ~ _____ ~ ___________ J

reg1

reg2

is the register that contains the dividend. The quotient is placed
in this register; the remainder is discarded.

is the register that contains the divisor.

Notes: Following is a list of limitations that apply to both the reg1
and the reg2 operand:

• Registers 0 and 4 are the only registers that can be specified.
However, you can specify them in either order.

• Specify registers as decimal digits 0 or 4 or as symbols that have
been equated to these decimal digits.

• Never code these registers within parentheses.

[] indicates optional name.

Chapter 10: Descriptions of the Macro Instructions 107

ENQ

ENQ -- Request Control of a serially Reusable Resource

ENQ requests the control program to assign control of one or more (up
to 255) serially reusable resources to the active task. If any of the
resources are not available, the active task is placed in a wait condi
tion until all of the requested resources are available. Once control
of a resource has been assigned to a task, it remains with that task
until one of the programs of the same task issues a DEQ macro instruc
tion specifying the same resource. Register 15 is set to 0 if the requ
est is satisfied.

You can also use ENQ to determine the status of the resource: wheth
er it is immediately available or in use, and whether control has been
previously requested for the active task in another ENQ macro
instruction.

You may request either shared or exclusive use of a resource. The
resource is represented in ENQ by a pair of names, the gname and the
rname. The control program does not correlate the names with the actual
resource. The relation of the name to the actual resource is your
responsibilitYi ENQ simply coordinates access to whatever it is the
names represent. The names may be given meaning restricted to a job
step or across job steps. In either case, all programs for which coor
dination of the resource is provided must represent it by the same name.

Issuing two ENQ macro instructions for the same resource without an
intervening DEQ macro instruction results in abnormal termination of the
task, unless the second ENQ designates RET=TEST, USE, CHNG, or HAVE. If
normal termination of a task is attempted while the task still has con
trol of any serially reusable resources, or if resource input addresses
are incorrect, the task is abnormally terminated.

The standard form of the ENQ macro is written as follows. Informa
tion about the list and execute forms follows this description.

r----------T-----T---,
I [symbol] I ENQ I (qname address, rname address, [~J ,[rname length], I
I I I S I
I I I [SYSTEM] , •••) [' RET=TEST] I I I I STEP , RET=USE I
I I I , RET=HAVE I
I I I ,RET=CHNG I L __________ ~ _____ ~ ___ J

qname address
is the address in virtual storage of an eight-character name.
Every program issuing a request for a serially reusable resource
must use the same qname and rname to represent the resource. The
name should not start with SYS, so that it will not conflict with
system names.

rname address
is the address in virtual storage of the name used in conjunction
with the qname to represent a single resource. The name can be
qualified and must be from 1 to 255 bytes long.

[] indicates optional name or operand; select none or one from vertical
stack within []i ,... indicates that more than one resource may be
specified in the ENQ macro instruction, to a maximum of 255; ____ indi-
cates an assumed value.

108

E

S

ENQ

is written as shown. It specifies that the request is for exclu
sive control of the resource. If you omit the operand, a request
for exclusive control is assumed. If the resource is modified
while under control of the task, the request must be for exclusive
control.

is written as shown. It specifies that the request is for shared
control of the resource. If the resource is not modified while
under control of the task, the request should be for shared
control.

rname length

STEP

is the length of the rname described above. If you omit the
operand, the assembled length of the rname is used. You can speci
fy a value between 1 and 255 to override the assembled length, or
you may specify a value of O. If 0 is specified, the length of the
rname must be contained in the first byte at the rname address
designated above.

is written as shown. It specifies that the resource is used only
within the job step of the issuing program, and that a request for
the same qname and rname from a program in another job step denotes
a different resource. This option is assumed if the operand is
omitted.

SYSTEM

RET=

is written as shown. It specifies that the resource may be used by
programs of more than one job step, and that requests for the same
qname and rname from programs of other job steps in the system
denote the same resource.

Because SYSTEM and STEP are opposite in meaning, both cannot refer
to the same resource~ 1If two macro instructions specify the same
qname and rname, but one specifies SYSTEM and the other specifies
STEP, they are treated as requests for different resources. Con
versely, when one resource is used by a single job step and another
is used by several job steps, the same qname and rname can be used
for both.

specifies a conditional request for all of the resources named in
the ENQ macro instruction. If the operand is omitted, the request
is unconditional. The results of a conditional request are indi
cated by the return codes described in Figure 54; the types of con
ditional requests follow.

TEST - tests the availability of the resources but does not request
control of the resources.

USE - specifies that control of the resources be assigned to the
active task only if the resources are immediately available.
If any of the resources are not available, the active task
is not placed in a wait condition.

HAVE - specifies that control of the resources is requested only if
a request has not been made previously for the same task.

CHNG - specifies that the status of the resource specified is to be
changed from shared to exclusive control.

Chapter 10: Descriptions of the Macro Instructions 109

ENQ

Return codes are provided by the control program only if you specify
RET=TEST, RET=USE, RET=CHNG, or RET=HAVE; otherwise, return of the task
to the active condition indicates that control of the resource has been
assi.gned to the task. If all return codes for the resources named in
the ENQ macro instruction are 0, register 15 contains O. If any of the
return codes are not 0, register 15 contains the address of a storage
area containing the return codes, as shown in Figure 55. The return
codes are placed in the parameter list resulting from the macro expan
sion in the same sequence as the resource names in the ENQ macro
instruction. The return codes are shown in Figure 54.

r------T---,
Icode I Meaning I
~------+---------------T---------------T---------------T---------------~

I RET=TEST I RET=USE I RET=HA VE I RET=CHNG I
~---------------+---------------~---------------+---------------~ o IThe resource islcontrol of the resource has IThe status of I
I immediately I been assigned to the active I the resource I
I available. ltask. Ihas been I
I I Ichanged to I
I I I exclusive. I
~---------------~---------------T---------------+---------------~

4 IThe resource is not immediately I IThe status can-I
I available. I Inot be changed I
I I I to shared. I
~-------------------------------~---------------+---------------~

8 IA previous request for control of the same IThe resource I
Iresource has been made for the same task. Tasklhas not been I
Ihas control of resource. I queued. I
~---~---------------~

12 IResource is permanently unavailable. I
~--------------~-------------------------------~---------------~

120 IA previous request for control of the same INot used. I
I Iresource has been made for the same task. Taskl I
I Idoes not have control of resource. I I l ______ ~ __ ~ _______________ J

Figure 54. ENQ return codes

Address
Returned in
Register 15

I
I
I

Return
Codes

v 1 2 3 v 4
o r-------T-------T-------T-------T--1

I I I I I
I I I IRC I
I I I I 1 I

12 ~-------+-------+-------+-------+-
I I I I I
I I I IRC I
I I I I 2 I

24 ~-------+-------+-------+-------+--
I I I I I
I I I IRC I
I I I I 3 I

36 ------- -------f-----~-f------- --
I

I I I I N I l _______ ~ _______ ~ _______ ~ _______ ~ __ ~

12
--,

I
I
I

--~
I
I
I

--~
I
I
I

--:i

o

Return codes are 12
bytes apart, starting 3
bytes from the address
in register 15.

Figure 55. Return code area used by ENQ

110

ENQ - L Form

ENQ -- List Form

Use the list form of ENQ to construct a control program parameter
list. Any number of resources can be specified in the ENQ macro
instruction; therefore, the number of qname and mame combinations in
the list form of the ENQ macro instruction must be equal to the maximum
number of qname and rname combinations in any execute form of the macro
instruction that refers to that list form.

The description of the standard forrr of ENQ provides the explanation
the function of each operand. The description of the standard form also
indicates which operands are always optional and which are required in
at least one of the pair of list and execute forms. The format descrip
tion below indicates the optional and required operands in the list form
only.

r----------T----~---,
I [symbol] I ENQ I ([qname address], [rname address], [E], [rname length], I
I I I S I
I I I [SYSTEM1, ••• > [,RET=HAVE],MF=L I
I I I STEP J ' RET=TEST I
I I I ,RET=USE I
I I I , REI'=CHNG I L __________ ~ _____ ~ ___ J

symbol
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

length
is any absolute expression valid in the assembler language.

MF=L
indicates the list form of the ENQ macro.

[] indicates optional name or operand; ,... indicates that more than
one qname and rname combination with associated options can be coded;
select one or none from vertical stack within []; indicates an
assumed value.

Chapter 10: Descriptions of the Macro Instructions 111

ENQ - E Form

ENQ -- ~xecute Form

A remote control program parameter list is used in, and can be modi
fied by, the execute form of the ENQ macro instruction. The parameter
list can be generated by the list form of ENQ.

The description of the standard form of ENQ provides the explanation
the function of each operand. The description of the standard form also
indicates which operands are always optional and which operands are
required in at least one of the pair of list and execute forms. The
format description below indicates the optional and required operands in
the execute form only.

r----------T-----T---, I [symbol] I ENQ 1[([qname address], [rname address], r~], [rname length], I
I I I Ls I
I I I [SYSTEM 1 , ...)] [' RET=HA VE] I I I I STEP J ' RET=TEST I
I I I , RET=USE I
I I I ,RET=CHNG I
I I I , RET=NONE I
I I I,MF=(E,{Control program list addreSS}) I
I I I (1) I L __________ ~ _____ ~ ___ J

symbol
is any symbol valid in the assembler language.

address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. The register may be designated symbolically or with
an absolute expression; always code it within parentheses.

length
is any absolute expression ~hat is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses.

REI'=NONE
specifies an unconditional request for control of all of the
resources. The request is processed as though no RET operand had
been coded.

MF= (E, {control program list address}>
(1)

indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under "address," or can be
loaded into register 1, in which case code MF=(E,(1».

[] indicates optional name or operand; select one from vertical stack
within { }; ,... indicates that more than one qname and and rname com
bination with associated options can be coded; select one or none from
vertical stack within []; ____ indicates an assumed value.

112

FREE MAIN

FREEMAIN -- Release Allocated Virtual Storage

The FREEMAIN macro instruction releases one or more areas of virtual
storage, or an entire virtual storage subpool, previously assigned to
the active task as a result of a GETMAIN macro instruction. The active
task is abnormally terminated if the specified virtual storage does not
start on a doubleword boundary or if the specified area or subpool is
not currently allocated to the active task. Register 15 is set to 0 to
indicate successful completion.

The standard form of the FREEMAIN macro instruction is written as
shown in the format description below. The operand combinations in the
shaded area of the format description below must not be used in a VSl
system; the job step would be abnormally terminated.

r----------T----------T--,
I [symbol 1 I FREE~~N I E.LV=number A=address[,SP=number1 I
I I I I
I I I I
I I I R,SP=(O) I
I I I R.LV=(O),A=address I
I I I R.LV=(O),A=(l) I
I I I R,LV=number,A=address[,SP=number1 I
I I I R,LV=number,A=(l) [,SP=number1 I
I I I V,A=address[,SP=number1 I
t----------~----------L--~ I Note: Only those operand combinations indicated above are valid. I L __ J

E

L

R

V

(element) written as shown; specifies release of a single area of
virtual storage allocated from the subpool indicated ~ the SP
operand. The length of the virtual storage area is indicated by
the LV operand; the address of the virtual storage area is provided
at the address indicated in the A operand.

(list) written as shown; specifies release of one or more areas of
virtual storage from the subpool indicated by the SP operand. The
length of each virtual storage area is indicated ~ the values in a
list beginning at the address specified in the LA operand. The
address of each of the virtual storage areas must be provided in a
corresponding list whose address is specified in the A operand.
All virtual storage areas must start on a double word boundary.

(register) written as shown; specifies release of one area of vir
tual storage from the subpool indicated by the SP operand, or spe
cifies release of the entire subpool indicated by the SP operand.
If the release is not for the entire subpool, the address of the
virtual storage area is indicated by the A operand. The length of
the area is indicated by the LV operand. The virtual storage area
must start on a doubleword boundary.

(variable) written as shown; specifies release of one area of vir
tual storage from the subpool indicated by the SP operand. The
address and length of the virtual storage area are provided at the
address specified in the A operand.

[1 indicates optional name or operand; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 113

LV=

A=

LA=

SP=

114

FREEMAIN

is the length, in bytes, of the virtual storage area being
released. The value should be a multiple of 8; if it is not, the
control program uses the next higher multiple of 8. If R is coded,
LV=(O) may be designated; the high-order byte of register 0 must
contain the subpool number, and the low-order three bytes must con
tain the length (in this case, the SP operand is invalied).

is the virtual storage address of one or more consecutive full
words, starting on a fullword boundary. If the words are within an
area to be released, they must be completely within the area and
must not begin in the first two words of the first area. If E or R
is designated, one word, which contains the address of the virtual
storage area to be released, is required. If V is coded, two words
are required; the first word contains the address of the virtual
storage area to be released, and the second word contains the
length of the area. If L is coded, one word is required for each
virtual storage area to be released; each word contains the address
of one virtual storage area. If R is coded, any of the registers 1
through 12 can be designated, in which case the address of the vir
tual storage area, not the address of the fullword, must have pre
viously been loaded into the register. The specification of
register 1 saves two bytes in the macro expansion.

is the virtual storage address of one or more consecutive fullwords
starting on a fullword boundary. One word is required for each
virtual storage area to be released; the high-order bit in the last
word must be set to 1 to indicate the end of the list. Each word (
must contain the required length in the low-order three bytes. The \
full words in this list must correspond with the fullwords in the
associated list specified in the A operand. If the words are
within an area to be released, they must be completely within the
area and must not begin in the first two words of the first area.
The words must not overlap the virtual storage area specified in
the A operand.

if the SP operand is optional (shown within brackets), it specifies
the subpool number of the virtual storage area to be released. The
subpool number can be between 0 and 127. If the SP operand is
optional and is omitted, subpool 0 is assumed. If the SP operand
must be coded, it specifies the number of the subpool to be
released, and the valid range is 1 through 127. Subpool 0 cannot
be released. SP=(O) can be designated, in which case the subpool
number must be previously loaded into the high-order byte of
register 0; the three low-order bytes must be set to O.

FREEMAIN - L Form

FREEMAIN -- List Form

Use the list form of the FREEMAIN macro instruction to construct a
nonexecutable control program parameter list. Do not use the list and
execute forms of the FREEMAIN macro instruction with the R-type (regist
er) of the macro instruction.

The description of the standard form of FREEMAIN explains the func
tion of each operand. The description of the standard form also indi
cates which operands are always optional and which are required in at
least one of the pair of list and execute forms. The operand combina
tions in the shaded area of the format description may only be used in a
VS2 system. The format description below indicates the optional and
required operands in the list form only.

r-[;~l]-i-;;;~~;-T--{-I~~.-[I~-~I~.i~}-l
I I I ...«, IhANtlljL . , w .'. ••• ",.',.' '. . , ~Ulm~w., I
I I I [V] [,A=address] [, SP=number] I
I I I MF=L I
~----------~----------~--~ I Note: Only those operand combinations indicated above are valid. I L ___ J

symbol
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

number
is any absolute expression valid in the assembler language.

MF=L
indicates the list form of the FREEMAIN macro instruction.

[] indicates optional name or operand; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 115

FREEMAIN - E Form

FREEMAIN -- Execute Form

A remote control program parameter list is used in, and can be modi
fied by, the execute form of the FREEMAIN macro instruction. The param
eter list can be generated by the list form of either a GETMAIN or a
FREEMAIN. The list and execute forms of FREEMAIN cannot be used with
the register (R) type of the macro instruction.

The description of the standard form of FREEMAIN explains the func
tion of each operand. The description of the standard form also indi
cates Which operands are always optional and which are required in at
least one of the pair of list and execute forms. The operand combina
tions in the shaded area of the format description may only be used in a
VS2 system. The format description below indicates the optional and
required operands in the execute form only.

f-[;;~l]l-;;;~i;l--{_-}l
I I I [V] [,A=address1 [,SP=number1 I
I I I ,MF=(E,{Control program list addreSS}> I
I I I (1) I
~----------~----------~---i I Note: Only those operand combinations indicated above are valid. I L ___ J

symbol
is any symbol valid in the assembler language.

address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. You may designate the register symbolically or with
an absolute expression; always code it within parentheses.

number
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. You may designate the register symbolically
or with an absolute expression; always code it within parentheses.

~~=(E,{control program list address}>
(1)

indicates the execute form of the macro instruction and specifies
the address of a remote control program parameter list constructed
by the list form of FREEMAIN. In the remote control program param
eter list, the operands for the execute form of FREEMAIN overlay
the operands specified by the list form.

[] indicates optional name or operand; select one from vertical stack
within { }.

116

(

GETMAIN

GETMAIN -- Allocate Virtual Storage

The GETMAIN macro instruction requests the control program to alloc
ate one or more areas of virtual storage to the active task. The virtu
al storage areas are allocated from the specified subpool in the virtual
storage area assigned to the associated job step. The virtual storage
areas each begin on a doubleword or page boundary and are not cleared to
o when allocated. The total of the lengths specified must not exceed
the length available to the job step_ The virtual storage areas are
released when the task assigned ownership terminates, or through the use
of the FREEMAIN macro instructions.

The control program does not use the virtual storage area of the
address in register 13 as a save area when processing release requests,
if R 1S coded.

The standard form of the GETMAIN macro instruction is written as
shown in the format description below. The operand combinations in the
shaded area of the format description below must not be used in a VS1
system; the job steps would be abnormally terminated.

r--------T------~--- -,
I [symbol] I G ETMA IN I

[
BNDRY={DBLWD}] : I I I

I I I PAGE I
I I I I
I I I R,LV=number,[,SP=numberl I
I I I R,LV=(O) I

VC,LA=address,A=address[,SP=numberl f,BNDRY={DBLWD}] I
I I I VU,LA=address,A=address[,SP=numberl l PAGE I
I I I

~--------~-------~---~
INote: Only those operand combinations indicated above are valid. I L __ J

E

L

R

(element) written as shown; specifies a request for a single area
of virtual storage from the subpool indicated by the SP number,
having a length indicated by the LV operand. The address of the
allocated virtual storage area is returned at the address indicated
in the A operand.

(list) written as shown; specifies a request for one or more areas
of virtual storage from the subpool indicated by the SP number.
The length of each virtual storage area is indicated by the values
in a list beginning at the address specified in the LA operand.
The address of each of the virtual storage areas is returned in a
list beginning at the address specified in the A operand. No vir
tual storage is allocated unless all of the requests in the list
can be satisfied.

(register) written as shown; specifies a request fo~ a single area
of virtual storage to be allocated from the indicated subpool. and
to have a length indicated by the LV operand. The address of the
allocated virtual storage area is returned in register 1. If R is
designated, the requests are unconditional; a request for more vir
tual storage than is available results in abnormal termination of
the task.

[1 indicates optional name or operand; select one from vertical stack
within { }; indicates an assumed value.

Chapter 10: Descriptions of the Macro Instructions 117

v

c

u

LV=

LA=

A=

SP=

GETMAIN

(variable) written as shown; specifies a request for a single area
of virtual storage to be allocated from the subpool indicated by
the SP number, and to have a length to be between two values at the
address specified in the LA operand. The address and actual length
of the allocated virtual storage area are returned by the control
program at the address indicated in the A operand.

(conditional) written as shown; specifies that the request is con
ditional and that the task is not to be abnormally terminated if
more virtual storage is requested than is available. If the requ
est is staisfied, register 15 contains a return code of 0; if not
satisified, the return code is 4.

(unconditional) written as shown; specifies that the request is
unconditional. An unconditional request for more virtual storage
than is available will result in abnormal termination of the requ
esting task.

is the length, in bytes, of the requested virtual storage. The
number should be a multiple of 8; if it is not, the control program
uses the next higher multiple of 8. If R is specified, LV=(Ol may
be coded; the low-order three bytes of register 0 must contain the
length, and the high-order byte must contain the subpool number.

is the virtual storage address of consecutive fullwords starting on (4

a fullword boundary. Each fullword must contain the required ~
length in the low-order three bytes, with the high-order byte set
to O. The lengths should be multiples of 8; if they are not, the
control program uses the next higher multiple of 8. If V was
coded, two words are required. The first word contains the minimum
length required, the second word contains the maximum length. If L
was coded, one word is required for each virtual storage area
requested; the high-order bit is the last word must be set to 1 to
indicate the end of the list. The list must not overlap the virtu-
al storage area specified in the A operand.

is the virtual storage address of consecutive fullwords, starting
on a fullword boundary. The control program places the address of
the virtual storage area allocated in the low-order three bytes.
If E was coded, one word is required. If L was coded, one word is
required for each entry in the LA list. If V was coded, two words
are required. The first word contains the address of the virtual
storage area, and the second word contains the length actually
allocated. The list must not overlap the virtual storage area spe
cified in the LA operand.

is the number of the subpool from which the virtual storage area is
to be allocated. The number must be between 0 and 127. If the
operand is omitted, subpool 0 is specified.

BNDRY=

118

is the type of alignment required for the start of the requested
area. DBLWD indicates a doubleword boundary; PAGE indicates align
ment with the start of a virtual page (2K boundary). If BNDRY= is
omitted, DBLWD is assumed. BNDRY= is not valid for R-type (regist
er) GETMAINs.

GE'l'MAIN

After execution of the GETMAIN requests, the return code in register
15 is as follows:

Hexadecimal
Code
00

04

Meaning
The virtual storage requested was allocated.

No vritual storage was allocated (conditional form only).

Note: A request for zero ~tes or an unconditional request for more
virtual storage than is available results in abnormal termination of the
job step.

Chapter 10: Descriptions of the Macro Instructions 119

GETMAIN - L Form

GETMAIN -- List Form

Use the list form of the GETMAIN macro instruction to construct a
control program parameter list. The list and execute forms of GETMAIN
cannot be used with the R-type (register) of the macro instruction.

The description of the standard forro of GETMAIN explains the function
of each operand. The description of the standard form also indicates
which operands are always optional and which are required in at least
one of the pair of list and execute forms. The operand combinations in
the shaded area of the format description may only be used in a VS2 sys
tem. The format description below indicates the optional and required
operands in the list form only.

r----------T---------T--, I I I [Ee] [,LV=number] I
I [symbol] I GETMAIN I [V=number [,A=address] [, SP=number] I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I [,BNDRY={DBLWD}] ,MF=L I
I I I PAGE I
~----------~---------~--~ I Note: Only those operand combinations indicated above are valid. I L ___ J

symbol
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

number
is any absolute expression valid in the assembler language.

MF=L
indicates the list form of the GETMAIN macro instruction.

[] indicates optional name or operand; select one from vertical stack
within { }; indicates an assumed value.

120

GETMAIN - E Form

GETMAIN -- Execute Form

A remote control program parameter list is used in, and can be modi
fied by, the execute form of the GETMAIN macro instruction. The parame
ter list can be g~nerated by the list form of either a GETMAIN or a
FREEMAIN. The list and execute forms of GETMAIN cannot be used with the
R-type (register) of the macro instruction.

The description of the standard form of GETMAIN explains the function
of each operand. The description of the standard form also indicates
which operands are always optional and which are required in at least
one of the pair of list and execute forms. The operand combinations in
the shaded area of the format description may only be used in a VS2 sys
tem. The format description below indicates the optional and required
operands in the execute form only.

r----------T--------~---,
[symbol] GETMAIN [EC] [,LV=number]

[EU1[LV=number] [,A=address] [,SP=number]

[,BNDRY={DBLWD }l
PAGE

,MF=(E,{control program list address})
(1)

~----------~---------~---1 I Note: Only those operand combinations indicated above are valid. I L __ J

symbol
is any symbol valid in the assembler language.

address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. You may designate the register symbolically or with
an absolute expression; always code it within parentheses.

number
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses.

MF=(E,{control program list address})
(1)

indicates the execute form of the macro instruction psing a remote
control program parameter list. The address of the control program
parameter list can be coded as described under -address,- or can be
loaded into register 1, in which case MF=(E,(l» should be coded.

(] indicates optional name or operand; select one from vertical stack
within { }; indicates an assumed value.

Chapter 10: Descriptions of the Macro Instructions 121

GTRACE

GTRACE -- Record Trace Data

Use the GTRACE macro instruction to record data in a trace data set,
using GTF (generalized trace facility). This data set may later become
input to an editing function provided by HMDPRDMP service aid. An
optional parameter allows you to specify a specific format routine (user
written if desired) to process the record after the trace output is
edited.

To use GTRACE, GTF must be active and ready to accept data from the
problem program. Also, the trace data set must be identified in the GTF
job control statements.

The standard form of the GTRACE macro instruction is written as shown
below. Information about the list and execute forms follows this
description.

r----------T------~------------------------------------, I [symbol] I GTRACE I DATA=address,LNG=number,ID=number I
I I I [,FID=numberl I L __________ ~ ________ ~ ____________________________________ J

DATA=

LNG=

IO=

FID=

is the virtual storage address of the data to be recorded.

is the number of bytes of data to be recorded. Specify any number
from 1 to 256.

is the identifier to be associated with the record. ID values are
assigned as follows:

0-1023
1024-4095

user events
reserved

is the format identifier indicating the format routine used to pro
cess the record when the trace output is edited by HMDPRDMP. You
may provide your own routine to handle this data. Format identifi
er values are:

o
1-80

81-255

hexadecimal dump of entry
user format identifiers
reserved

If the FID parameter is omitted, 0 is assumed.

The format identifier must be converted to hexadecimal. If it is not
0, it is appended to the name HMDUSR to form the name of the format rou
tine used by HMDPRDMP to process the record. For example, FI0=50 con
verts to X'32'. Module HMDUSR32 is used by HMDPRDMP to process the
trace record.

Formatting routines must be in SYS1.LINKLIB or in a private library
defined in a JOBLIB or STEPLIB DD statement for BMDPRDMP.

A return code is placed in register 15 when control is returned to
the problem program.

(] indicates optional name or operand.

122

/

\

Hexadecimal
Code
00

04

08

OC

10

14

18

1C

20

Explanation
Successful completion.

GTRACE

GTF not active or not accepting problem program entries.

Length specified in LNG parameter is greater than 256.

Invalid data address.

FID value is greater than 255.

Value of ID parameter is greater than 1023.

Buffers are full; record was not placed in buffer.

Invalid address of parameter list.

Data paged-out, cannot be gathered.

Chapter 10: Descriptions of the Macro Instructions 123

GTRACE - L Form

GTRACE -- List Form

The list form of the GTRACE macro instruction constructs a control
program parameter list. Use the list form of GTRACE to pass address
parameters in a parameter list to the control program. This parameter
list can then be referred to by issuing the execute form of GTRACE.

The description of the standard form of GTRACE explains the function
of each operand. The format description below indicates the optional
and required operands for the list form only.

r----------T--------T--------------------------------, I [symbol] I GTRACE I [DATA=address][,LNG=length] I
I I I [,FID=numberl,MF=L I L __________ ~ ________ ~ ________________________________ J

address
is any address value that can be expressed as an A-type address
constant.

length
is any number from 1 to 256.

number
is any number from 0 to 80.

MF=L
indicates the list form of the macro instruction.

Note: The ID parameter is not valid in the list form of GTRACE.

[] indicates optional name or operand.

124

GTRACE - E Form

GTRACE -- Execute Form

The execute form of the GTRACE macro instruction uses the remote con
trol program parameter list created by the list form of GTRACE. The
description of the standard form explains the function of each operand.
The format description below indicates the operands for the execute form
only.

r----------T--------T--,
I [symbol] I GTRACE I ID=ValUe,MF=(E,{parameter list addreSS}) I
I I I (1-12) I
I I I [,DATA=address] [,LNG=length] I
I I I [,FID=numberl I L __________ ~ ________ ~ __ J

value
is any number from 0 to 1023.

MF=(E,{parameter list address}>
(1-12)

indicates the execute form of the macro instruction using a remote
control program parameter list. If you load the address of the
list into register 1, code MF=(E,(l». If the address is not
loaded into register 1, code it as any address that is valid in an
RX-type instruction, or as a register 2-12, previously loaded with
the address. You may designate the register symbolically or with
an absolute expression. Always code the register value in
parentheses.

address
is any address that can be expressed as an A-type address constant.

length
is any number from l·to 256.

number
is any number from 0 to 80.

[1 indicates optional name or operand; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 125

IDENTIFY

IDENTIFY -- Add an Entry Point

Use the IDENTIFY macro instruction to add an entry point to a copy of
a load module currently in virtual storage. The copy must be one of the
following:

• A copy that satisfied the requirements of a LOAD macro instruction
issued during the execution of any task within the partition/region.

• The last load module given control, if control was passed to the
load module using a LINK, ATTACH, or XCTL macro instruction.

• The first load module of any task, if it is still in control.

The IDENTIFY macro instruction may not be issued by an asynchronous
exit routine. The routine associated with the entry point must be
reenterable.

In VS1, IDENTIFY may not be issued by a routine entered at an added
entry point. The added entry point can be used only in an ATTACH macro
instruction.

The IDENTIFY macro instruction is written as follows:

r--------T--------r--,
I [symbolJ I IDENTIFY I {EP=SymbOI },ENTRY=entry pOint address I
I I I EPLOC=address of name I L-_______ ~ ________ L-___ J

EP=
is the name of the entry pOint. The name does not have to corre
spond to any name or symbol in the load module, and must not corre
spond to any name, alias, or added entry point for a load module in
the resident reenterable module area, LPAQ area, or the job pack
area of the job step.

EPLOC=
is the address of the entry point name described under EP. Pad the
name with blanks to eight bytes, if necessary.

ENTRY=
is the virtual storage address of the entry point being added.

When control is returned, register 15 contains one of the following
return codes:

Hexadecimal
Code
00

04
08

OC

10

14

Meaning
Successful completion.
Entry point name and address already exist.
Entry point name duplicates the name of a load module cur
rently in virtual storage; entry point was not added.
Entry point address is not within an eligible load module;
entry point was not added.
Issued by an asynchronous exit routine; the entry point
was not added.
An IDENTIFY macro instruction was previously issued USing
the same entry point name but a different address; this
request was ignored.

[] indicates optional name; select one from vertical stack within { }.

126

LINK

LINK -- Pass Control to a program in Another Load Module

Use the LINK macro instruction to pass control to a specified entry
point in another load module; the entry point name must be a member name
or an alias in a directory of a partitioned data set. The load module
containing the program is brought into virtual storage if a useable copy
is not available. (Refer to the Services section of this publication,
for a discussion of the use of an existing copy of the load module.)

The linkage relationship established is the same as that created by a
BAL instruction; control is returned to the instruction following the
LINKmac·ro instruction after execution of the called program. The prob
lem program optionally can provide a parameter list to be passed to the
called program. If the called program terminates abnormally, or if the
specified entry point cannot be located, the task is abnormally
terminated.

The standard form of the LINK macro instruction is written as shown
below. Information about the list and execute forms follows this
description.

r----------T------r---,
I [symbol] I LINK I {EP=symbol } [,DCB=dcb address] I
I I I EPLOC=address of name I
I I I DE=address of list entry I
I I I [,PARAM=(addresses») [,VL=l] [,ID=numberl I L __________ ~ ______ ~ ___ J

EP=
is the entry point name in the program to be given control.

EPLOC=

DE=

DCB=

is the address of the entry point name described above. Pad the
name with blanks to eight bytes, if necessary.

is the address of the name field of a 58-byte (60 bytes in VS2)
list entry for the entry point name. The list entry is constructed
using the BLDL macro instruction using a length specification of 58
or 60 bytes. The DCB operand must indicate the same data control
block used in BLDL.

is the address of the data control block for the partitioned data
set containing the entry point name described above.

If the DCB operand is omitted or if DCB=O is specified when the
LINK macro instruction is issued by the job step task, the data
sets referred to by either the STEPLIB or JOBLIB DD statement are
first searched for the entry point name. If the entry point name
is not found, the link library is searched.

If tJ1e DCB operand is omitted or if DCB=O is specified when the
LINK macro instruction is issued by a subtask, the data sets asso
ciated with one or more data control blocks referred to by previous
ATTACH macro instructions in the subtasking chain are first
searched for the entry point name. If the entry point name is not
found, the search is continued as if LINK had been issued by the
job step task.

[] indicates optional name or operand; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 127

LINK

PARAM=

VL=l

I~

128

is one or more address parameters, separated by commas, to be
passed to the called program. Each address is expanded inline to a
fullword on a fullword boundary, in the order designated. Register
1 contains the address of the first parameter when the program is
given control. (If this operand is omitted, register 1 is not
altered.)

is written as shown. It can be designated only if PARAM is desig
nated, and should be used only if the called program can be passed
a variable number of parameters. VL=l causes the high-order bit of
the last address parameter to be set to 1; the bit can be checked
to find the end of the list.

specifies a decimal integer with a maximum value of 2~6-1. The
last fullword of the macro expansion is a NOP instruction contain
ing the ID value in bytes 3 and 4. This operand is useful for
debugging purposes only.

LINK - L Form

LINK -- List Form

Two parameter lists are used in a LINK macro instruction: a control
program parameter list and an optional problem program parameter list.
Only the control program parameter list can be constructed in the list
form of LINK. Address parameters to be passed in a parameter list to
the problem program can be provided using the list form of CALL. This
parameter list can be referred to in the execute form of LINK.

The description of the standard form of LINK explains the function of
each operand. The description of the standard form also indicates which
operands are always optional and which are required in at least one of
the pair of list and execute forms. The format description below indi
cates the operands in the list form only.

r----------T------T---,
I [symbol] I LINK I {EP=SymbOl }[,DCB=dCb address] I
I I I EPLOC=address of name I
I I I DE=address of list entry I
I I I , SF=L I L __________ ~ ______ ~ __ J

symbol
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

SF=L
indicates the list form of the LINK macro instruction.

[1 indicates optional name or operands; select one or none from verti
cal stack within [1.

Chapter 10: Descriptions of the Macro Instructions 129

LINK - E Form

LINK -- Execut e Form

Two parameter lists are used in a LINK macro instruction: a control
program parameter list and an optional problem program parameter list.
Either or both of these lists can be remote and can be referred to and
modified by the execute form of LINK. If only one of the parameter
lists is remote, operands that require use of the other parameter list
cause that list to be constructed inline as part of the macro expansion.

The description of the standard form of LINK explains the function of
each operand. The description of the standard form also indicates which
operands are always optional and which are required in at least one of a
pair of list and execute forms. The format description below indicates
the operands in the execute form only.

r----------T------r---,
I I I {EP=symbol }[,DCB=dCb address] I
I [symbol] I LINK I EPLOC=address of name I
I I I DE=address of list entry I
I I I l,PARAM=(addresses)][,VL=11[,ID=numberl I
I I I ,MF=(E,{prOblem program list addreSS}) I
I I I (1) I
I I I ,SF=(E,{Control program list addreSS}) I
I I I (15) I
I I I ,MF=(E,{addreSS}) ,SF=(E,{addreSS}) I
I I I (1) (15) I L __________ ~ ______ ~ ___ J

symbol
is any symbol valid in the assembler language.

address
is any address that is valid in an Rx-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. The register may be designated symbolically or with
an absolute expression; always code it within parentheses.

I ! t .

number
is any absolute expression that is valid in the assembler language.

MF=(E,{prOblem program list addreSS})
(1)

indicates the execute form of the macro instruction using a remote
problem program parameter list. Any control program parameters
specified are provided in a control program parameter list expanded
inline. The address of the problem program parameter list can be
coded as described under "address,· or can be loaded into register
1, in which case code MF=(E,(l». If you code the PARAM operand,
the addresses are placed in contiguous fullwords at the user pro
blem program list address.

SF=(E,{control program list address})
(15)

indicates the execute form of the macro instruction using a remote
control program parameter list. Any problem program parameters
specified are provided in a problem program parameter list expanded
inline. The address of the control program parameter list can be
coded as described under "address," or can be loaded into register
15, in which case code SF=(E, (15».

[] indicates optional name or operand; select one from vertical stack
within { }; select one or none from vertical stack within [1.

130

LINK - E Form

MF=(E,{address}),SF=(E,{addreSS})
(1) (15)

indicates the execute form of the macro instruction using both a
remote problem program parameter list and a remote control program
parameter list. The addresses of the parameter lists are coded or
loaded into registers 1 and 15, as explained above.

Select one from vertical stack within { }.

Chapter 10: Descriptions of the Macro Instructions 131

LOAD

LOAD -- Bring a Load Module Into Virtual storage

Use the LOAD macro instruction to bring the load module containing
the specified entry point into virtual storage, if a usable copy is not
available in virtual storage. (Refer to "Using an Existing Copy· for a
discussion of the use of an existing copy of the load module.) The
responsibility count for the load module is increased b¥ one. On out
put, the high-order byte of register 1 contains the authorization code
of the loaded module and the low three bytes contain the module's
length. Control is not passed to the load module; instead, the virtual
storage address of the designated entry point is returned in register o.
The load module remains in virtual storage until the responsibility
count is reduced to 0 through task terminations or until the effects of
all outstanding LOAD requests for the module have been canceled (using
the DELETE macro instruction), and there is no other requirement for the
module.

The entry point name in the load module must be a member name or an
alias in a directory of a partitioned data set. If the specified entry
point cannot be located, the task is abnormally terminated.

r----------T-----~---,
I [symbol] I LOAD I {EP=Symbol }[,DCB=dCb address] I
I I I EPLOC=address of name I
I I I DE=address of list entry I L __________ ~ ____ -_~ ___ J

EP=
is the entry point name in the load module to be brought into vir
tual storage. Pad the name with blanks to eight b¥tes, if
necessary.

EPLOC=

DE=

DCB=

is the virtual storage address of the entry point name described
above. Pad the name with blanks to eight bytes, if necessary.

is the address of the name field of a 58-byte list entry for the
entry point name instruction. The list entry is constructed by a
BLDL macro, using a length specification of 58 bytes. The DCB
operand must indicate the same data control block used in the BLDL
macro.

is the address of the data control block for the partitioned data
set containing the entry point name described above.

If the DeB operand is omitted or if DCB=O is specified when LOAD is
issued by the job step task, the data sets referred to by either
the STEPLIB or JOBLIB DD statement are first searched for the entry
point name. If the entry point name is not found, the link library
is searched.

If the DCB= operand is omitted or if DeB=O is specified when LOAD
is issued by a subtask, the data sets associated with one or more
data control blocks referred to by previous ATTACH macros in the
subtasking chain are first searched for the entry point name. If
the entry point name is not found, the search is continued as if
LOAD had been issued by the job step task.

[] indicates optional name operand; select one from vertical stack
within { }.

132

(

PGRLSE

PGRLSE -- Release Virtual storage contents

The PGRLSE macro instruction makes all complete pages of real and
external page storage wholly associated with the area of virtual address
space specified available. The address space remains intact but its
contents are forfeited. Use PGRLSE when a large area (one or more com
plete pages) of virtual storage within your program no longer has
meaningful or significant contents.

When you issue a PGRLSE macro instruction, all complete pages of vir
tual storage between the low and high addresses specified are released.
You can help reduce system overhead by releasing virtual storage when
you no longer need it.

The standard form of the PGRLSE macro instruction is written as fol
lows. Information about the list and execute forms follows this
description.

r----------T---------T---------------------------,
I [symbol] I PGRLSE I LA={addrl },HA={addr2} I
I I I (regl) (reg2) I L __________ ~ _________ ~ ___________________________ J

LA=

HA=

is the low address of the area to be released. Addrl specifies the
low address; regl indicates a general register containing the
address. LA=(l) may not be specified.

is the high address + 1 of the area to be released (low address +
length of area). Addr2 specifies the high address + 1; reg2 indi
cates a general register containing the address. HA=(O) may not be
specified.

Upon completion of PGRLSE, register 15 is set as follows:

Hexadecimal
Code
00-

04

Meaning
Successful completion.
Execution failed. The area specified, or a portion of
it, is protected from the requesting program. Any
valid portion of the area preceding the protected area
is released.

[] indicates optional name; select one from vertical stack within { }.

Chapter 10: Descriptions of the Macro Instructions 133

PGRLSE - L Form

PGRLSE -- List Form

Use the list form of the PGRLSE macro instruction to construct a con
trol program parameter list.

The description of the standard form of PGRLSE explains the function
of each operand. The description of the standard form also indicates
which operands are always optional and which are required in at least
one of the pair of list and execute forms. The following format
description indicates the operands in the list form only. If LA or HA
is coded, addresses must be specified; register notation cannot be used.

r----------T---------T-----------------------------, I [symbol] I PGRLSE I MF=L[,LA=addrl] [,HA=addr2] I L __________ ~ _________ ~ _____________________________ J

symbol
is any symbol valid in the assembler language.

MF=L
indicates the list form of the PGRLSE macro instruction.

addr
is any address that may be written in an A-type address constant.

[] indicates optional name or operands.

134

PGRLSE - E Form

PGRLSE -- Execute Form

A remote control program parameter list is referred to, and can be
modified by, the execute form of the PGRLSE macro instruction.

The description of the standard form of PGRLSE explains the fUnction
of each operand. The description of the standard form also indicates
which operands are always optional and which are required in at least
one of the pair of list and execute forms. The format description below
indicates the operands for the execute form only.

An execution error is indicated if the list address is outside of
your partition, or if it is of a different storage protection key.

r----------T--------~--,
I [symbol] I PGRLSE I MF=(E,{listaddr}) [,LA={addr1 }]~HA={addr2}] I
I I I (reg3) (reg1) l (reg2) I L __________ ~ _________ ~ __ J

symbol
is any symbol valid in assembler language.

MF={E,{listaddr})
\ (reg3)

addr

indicates the execute form of the macro instruction using a remote
control program parameter list. The address can be any address
that is valid in an RX-type instruction. Reg3 indicates a register
(2-12) containing the address. Optimum performance occurs if a
register is specified.

is any address that may be written as an A-type address constant.
Reg indicates one of the general registers previously loaded with
the indicated address. The register may be designated symbolically
or with an absolute expression, and is always coded within paren
theses. Neither LA=(l) nor HA=(O) may be specified.

[] indicates optional name or operand; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 135

POST

POST-- Signal Event Completion

Use the POST macro instruction to have the specified ECB (event con
trol block) set to indicate the occurrence of an event. If this event
satisfies the requirements of an outstanding WAIT macro instruction, the
waiting task is taken out of the wait state and dispatched according to
its priority. The bits in the ECB are set as follows:

Bit 0 of the specified ECB is set to 0 (wait bit).

Bit 1 is set to 1 (complete bit).

Bits 8 through 31 are set to the specified completion code.

Figure 58 shows the format of the event control block and its asso
ciated completion codes.

The POST macro is written as follows:

r----------T------T--------------------------------, I [symbol] I POST I ecb address[,completion code] I l __________ ~ ______ ~ ________________________________ J

ecb address
is the address of an event control block representing the event.

completion code
is a value between 0 and 22~-1. If the completion code is not
designated, 0 is assumed.

[] indicates optional name or operand.

136

\

RETURN

RETURN -- Return Control

The RETURN macro instruction restores control to the calling program
and signals normal termination of the called frogram. The return of
control is always made by executing a branch instruction using the
address in register 14. The RETURN macro instruction can restore a
designated range of registers, provide a return code in register 15, and
flag the save area used by the called program.

If registers are to be restored, or if an indicator is to be placed
into the save area, register 13 must contain the address of the save
area, which must have the standard format.

The RETURN macro instruction is written as follows:

r----------T--------T-------~--------------------------,
I [symbol] I RETURN I [(regl[,reg2])] [,T] [,Rc=number] I
I I I ,RC= (15) I L __________ ~ ________ ~ _________________________________ -J

regl,reg2

T

RC=

is the range of registers to be restored from the save area pointed
to by the address in register 13. The registers should be desig
nated to cause the loading of registers 14, 15, 0 through 12 when
used in an LM instruction. If you do not specify reg2, only the
register designated by the reg1 operand is loaded. If you omit the
operand, the contents of the registers are not altered. Do not
code reg1 or reg2 when returning control from a program interrup
tion exit routine.

causes the control program to flag the save area used by the called
program. A byte containing all l's is placed in the high-order
byte of word 4 of the save area after the registers have been
loaded. It designates that a called program has executed a return
to its caller. Do not specify this operand when returning control
from an exit routine.

is the return code to be passed to the calling program. The return
code should have a maximum value of 4095; it is placed right
adjusted in register 15 before return is made. If you code RC=(
15), it indicates that the return code has been previously loaded
into register 15; in this case the contents of register 15 are not
altered or restored from the save area. (If you omit this operand
the contents of register 15 are determined by the reg1,reg2
operands.)

[] indicates optional name or operand; select one or none from vertical
stack within [].

Chapter 10: Descriptions of the Macro Instructions 131

SAVE

SAVE -- Save Register contents

The SAVE macro instruction stores the contents of the specified reg
isters in the save area at the address contained in register 13. If you
wish, you may specify an entry point identifier. write the SAVE macro
instruction only at the entry point of a program because the code
resulting from the macro expansion requires that register 15 contain the
address of the SAVE macro prior to its execution. Do not use the SAVE
macro instruction in a program interruption exit routine.

The SAVE macro is written as follows:

r---------~-----_r--------------------------------------l I (symbol] I SAVE I (regl(,reg2]), [T] [,identifier name] I L __________ ~ ______ ~ ______________________________________ J

regl,reg2

T

is the range of registers to be stored in the save area at the
address contained in register 13. The registers should be designa
ted so they are stored in the order 14, 15, 0 through 12 when used
directly in an STM instruction. Do not specify register 13. The
registers are stored in words 4 through 18 of the save area. If
only one register is designated, only that register is saved.

specifies that registers 14 and 15 are to be stored in words 4 and
5, respectively, of the save area. If you specify both T and reg2,
and if regl is any of registers 14, 15, 0, 1, or 2, all of regis
ters 14 through the reg2 value are saved. The T operand permits
you to save two noncontiguous sets of registers.

identifier name
is an identifier to be associated with the SAVE macro instruction.
The name may be up to 70 characters and may be a complex name. If
an asterisk is coded, the identifier is the symbol associated with
the SAVE macro instruction, or, if the name field is blank, the
control section name is used. The identifier aids in locating a
program's save area in a dump. If the CSECT instruction name field
is blank, the operand is ignored. Whenever a symbol or an asterisk
is coded, the following macro expansion occurs:

• A count byte, containing the number of characters in the identi
fier name, is assembled four bytes following the address con
tained in register 15.

• The character string containing the identifier name is assembled,
starting at five bytes following the address contained in regis
ter 15.

• An instruction to branch around the count and identifier fields
is assembled.

(] indicates optional name or operand.

138

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

SEGWT

SEGWT -- Load Overlay Segment and Wait

The SEGWT macro instruction causes the control program to load the
specified segment and any segments in its path that are not part of a
path already in virtual storage. control is not passed to the specified
segment; control is not returned to the segment issuing the SEGWT macro
instruction until the requested segment is loaded. Refer to the publi
cation Linkage Editor and Loader, for details cn overlay operations.
The SEGWT macro instruction cannot be used in an asynchronous exit
routine.

The SEGWT macro instruction is written as follows:

r----------T-------r------------------------,
I [symbol] I SEGWT I external segment name I L __________ ~ _______ ~ ________________________ J

external segment name
is the name of a control section or entry point in the required
segment. An exclusive reference is not allowed. The name does not
have to be identified by an EXTRN statement.

[] indicates optional name.

Chapter 10: Descriptions of the Macro Instructions 139

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

SNAP

SNAP -- Dump Virtual Storage and continue

The SNAP macro instruction is used to obtain a dump of some or all of
the storage assigned to the current job step. Some or all of the con
trol program fields can also be dumped. The format of the dump is simi
lar to the abnormal termination dump shown in the VS1 and VS2 Debugging
Guides.

You must provide a data control block and issue an OPEN macro
instruction for the data set before any SNAP macro instructions are
issued. The DCB macro instruction must contain the following operands:

DSORG=PS,RECFM=VBA,~ACRF=(W),BLKSIZE=nnn,LRECL=125,
and DDNAME=any name but SYSABEND or SYSUDUMP

BLKSIZE must be 882 in VS1, and either 882 or 1632 in VS2. A SNAP data
set that is opened in a problem program that will be processed by the
system loader should be closed by the problem program.

The data set containing the dump can reside on any device supported
by BSAM (basic sequential access method). The dump is placed in the
data set described by the DD statement the user provides. If a printer
is selected, the dump is printed immediately; if a direct access or tape
device is designated, a separate job must be scheduled to obtain a list
ing of the dump.

sufficient unused storage must be available in the area assigned to
the job step to hold the control program dump routine and, if not
already in storage, the BSAM data management routines.

The standard form of the SNAP macro is written as shown below.
Information about the list and execute forms follows this description.

r--------T----T--,
I [symbol] I SNAP I DCB=dcb address[,TCB=address] I
I I I [,ID=number] [,SDATA=(code for control program blocks)] I
I I I [,PDATA=(code for problem program areas)] I
I I I [,STORAGE=(starting address, ending address, ••• ~ I
I I I ,LIST=address of list J I L ________ ~ ____ ~ __ J

DCB=

TCB=

is the address of the data control block for the data set that is
to contain the dump. This DCB must be open before SNAP is
executed. If the DCB is omitted or specified in register format,
the DCB address will default to o.

specifies the address of a fullword on a fullword boundary contain
ing the address of the task control block for a task of the current
job step. If omitted, or if the fullword contains 0, the dump is
for the active task. If a register is designated, the register can
contain 0 to indicate the active task, or can contain the address
of a task control block.

[] indicates optional name or operand; select one or none from vertical
stack within []; I ••• indicates that more than one pair of starting and
ending addresses can be specified.

140

I

ID=

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

SNAP

is a number between 1 and 127. The number is printed in the iden
tification heading associated with the dump. If specified in reg
ister format, the ID will default to o.

SDATA=
one to four of the following sets of characters, written in any
order and separated by commas. The characters are used to request
the associated control program information:

Code
ALL
NUC

TRT

CB

Q

Fields Dumped
All of the following fields.
All of the control prograre nucleus except the trace
table.
Trace Table. Ignored if GTF is active and was started
with the S parameter specified (formatting of the GTF
trace buffers suppressed).
Task control block (TCB), active request blocks (RBs),
job pack area control queue (JPACQ) and control blocks.
Ignored.

PDATA=
one to five of the following sets of characters, written in any
order and separated by commas. Use these characters to request the
following problem program information:

Code
ALL
PSW

REGS

SA or SAH

JPA or LPA
or ALLPA

SPLS

Fields Dumped
All of the following fields.
Program status word when the SNAP macro instruction was
issued.
Contents of the general registers when the SNAP macro
instruction was issued.
SA - provides linkage information and a back trace
through save areas. SA is selected if ALL is coded.
SAH - only linkage information.
JPA - all virtual storage assigned to the job step.
LPA - contents of the resident reenterable load module
area.
ALLPA - contents of both pack areas. ALLPA is selected
if ALL is coded.
All virtual storage assigned to job step.

STORAGE=

LIST=

is one or more pairs of starting and ending addresses; the areas
between the starting and ending addresses are dumped one fullword
at a time. If the starting and ending address'es are not fullword
multiples, the addresses are rounded down (starting> and up (end
ing) to a full word.

The area to be dumped must be in your program's partition/region.
If the addresses are not within the partition/region, a condition
code of 00 is returned but the storage area is not dumped.

the address of a list of starting and ending addresses of areas to
be dumped. The addresses in the list are treated in the same man
ner as the addresses described for the STORAGE operand. The list
must begin on a fullword boundary; each address in the list occu
pies one full word. The high-order byte of each word containing the
starting address of an area to be dumped must contain zeros or that
pair will be skipped. The high-order bit (bit 0) of the fullword
containing the last ending address in the list must be set to 1.

Chapter 10: Descriptions of the Macro Instructions 141

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

SNAP

Control is returned to the instruction following the SNAP macro
instruction. When control is returned, register 15 contains one of the
following return codes:

Hexadecimal
Code

00

04

08

OC

142

Meaning
Successful completion.

Data control block was not of en.

SVCDUMP issued by non-key 0, space unavailable, or dump
taken by task with a job step as a subtask.

Data control block type was not correct (DSORG, RECFM,
MACRF, BLKSIZE, or LRECL field).

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

SNAP - L Form

SNAP -- List Form

Use the list form of the SNAP macro to construct a control program
parameter list. You can specify any number of storage addresses using
the STORAGE operand. Therefore, the number of starting and ending
address pairs in the list form of SNAP must be equal to the maximum
number of addresses specified in any execute form of the macro, or a
OS instruction must immediately follow the list form to allow for the
maximum number of addresses.

The description of the standard forn, of the SNAF macro provides the
explanation of the function of each operand. The description of the
standard form also indicates which operands are always optional and
which are required in at least one of the pair of list and execute
forms. The format description below indicates the optional and required
operands in the list form only.

r--------T----T--,
I [symbol] I SNAP I [DCB=address] [,IO=number] [,SDATA=(code)] [,PDATA=(code)] I
I I I [, STORAGE= (address, address, • • .)1 , MF=L I
I I I ,LIST=address J I L ________ i ____ i __ J

symbol
is any symbol valid in the assembler language.

address

code

is any address that may be written in an A-type address constant.
If the address is omitted, the default value is o.

is written as indicated in the description of the standard form of
the macro instruction.

number
is any absolute expression valid in the assembler language.

MF=L
indicates the list form of the SNAP macro instruction.

[] indicates optional name or operandi select one or none from vertical
stack within [li , ••• indicates that more than one pair of starting
and ending addresses can be specified.

Chapter 10: Descriptions of the Macro Instructions 143

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

SNAP - E Form

SNAP -- Execute Form

A remote control program parameter list is referred to and can be
modified by the execute form of the SNAP macro instruction.

If you code only the DCB, ID, MF, or TCB operands in the execute form
of the macro instruction, the bit settings in the parameter list corres
ponding to the SDATA, PDATA, LIST, and STORAGE operands are not changed.
However, if you code one or more of the SDATA, PDATA, LIST operands, the
bit settings from the previous request are reset to zero, and only the
areas requested in the current macro instruction are dumped.

The description of the standard forn of SNAP explains the function of
each operand. The description of the standard form also indicates which
operands are always optional and which are required in at least one of
the pair of list and execute forms. The format description below indi
cates the optional and required operands in the execute form only.

r----------T------T--,
I [symboll I SNAP I [DCB=addressl [,TCB={'S' }l [,ID=numberl I
I I I - a ddre ss I
I I I [, PDATA=codel [,SDATA=codel I
I I I [, STORAGE= (address, address, ••• >] I
I I I ,LIST=address I
I I I ,MF=(E,{Control program list addreSS}> I
I I I (1) I L __________ ~ ______ L __ J

symbol
is any symbol valid in the assembler language.

address

• S'

is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. You may designate the register symbolically or with
an absolute expression; always code it within parentheses. If the
address is omitted, the default value is o.

is used to specify the task control block of the active task.

number

code

is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. You may designate the register symbolically
or with an absolute expression; always code it within parentheses.

is written as indicated in the description of the standard format
of the macro instruction.

MF=(E,{Control program list addreSS}>
(1)

indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under "address," or can be
loaded into register 1, in which case code MF=(E, (1)>.

[1 indicates optional name or operand; select one or none from vertical
stack within [1; , ••• indicates that more than one pair of starting
and ending addresses can be specified. Select one from vertical stack
within { }.

144

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

SPIE

SPIE -- Specify Program Interruption Exit

The SPIE macro instruction specifies the address of an interruption
exit routine and the program interruption tYfes that are to cause the
exit routine to be given control. If the program interruption types
specified can be masked, the corresponding program mask bit in the PSW
(program status word) is set to 1.

The effect of each SPIE macro instruction issued in performance of a
task supersedes the effect of the previous SPIE issued in performance of
the same task. The specified exit routine is given control when one of
the specified program interruptions occurs in any program of the task.

The SPIE macro instruction can be issued by any subtask of the task;
the resulting environment exists for the entire subtask.

A PICA (program interruption control area) is created as part of the
expansion of SPIE. The PICA, shown in Figure 56, contains the exit rou
tine's address and a code indicating the interruption types specified in
SPIE.

Any program issuing a SPIE macro instruction must restore the pre
vious PICA before returning to the calling program. The previous PICA
address is returned in register 1 after execution of SPIE; this address
can be used to restore the PICA before returning control. If the SPIE
macro instruction is the first issued in performance of the task,
register 1 is set to 0 when control is returned. A SPIE macro instruc
tion with no operands (a canceling SPIE) creates a null SPIE environ
ment (program mask set to zero, no program interrupts intercepted, and
no exit routine; however the PICA created by this SPIE is controlling
the SPIE environment). To reestablish a previous SPIE, whether or not a
canceling SPIE has been issued, issue the execute form of SPIE, specify
ing the address of the appropriate PICA. Issuing a canceling SPIE
causes the address of the previous PICA to be returned.

In addition to the PICA, there is one PIE (program interrupt element)
per task. The PIE is 32 bytes long, the first four bytes of which con
tain the address of the PICA. The forrrat of the PIE is shown in Figure
54. The PIE is built when the first SPIE macro instruction is issued
and remains in effect as long as the task is active.

The PICA address in the PIE is the address of the PICA used in the
last execution of a SPIE macro instruction for the task. When control
is passed to the routine indicated in the PICA, the old PSW contains the
interruption code in bits 16-31. These bits can be tested to determine
the cause of the program interruption. The contents of registers 14,
15, 0, 1, and 2 at the time of the interruption are stored by the con
trol program as indicated in Figure 57.

Bytes 1 3 2

~- ~~ --- -r--------T-----------T------------------------T---------------------,
I I I I I
I 0000 I Program I Exit Routine Address I Interruption Mask I
I I Mask I I I
I I I I I L ________ ~ ___________ ~ ________________________ ~ _____________________ J

Figure 56. Program interruption control area (PICA)

Chapter 10: Descriptions of the Macro Instructions 145

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

SPIE

o 1 2 3
r----------~------------------------------------,
I Reserved I PICA Address I

4~-----------~---------T--------------------------~
I Old Program I (Interruption Codes) I I status Word L __________________________ ~

I (Resulting from the Interruption) I
12~--~

I Register 14 I
16~--~

I Register 15 I
20~--~

I Register 0 I
24~--~

I Register 1 I
28~--~

I Register 2 I
32L--J

Figure 57. Prograre interruption element (PIE)

The standard form of the SPIE macro instruction is written as shown
below. Information about the list and execute forms follows this
description.

r----------T------T---,
I [symbol] I SPIE I [interruption exit address, (interruptions)] I L __________ ~ ______ ~ ___ J

interruption exit address
is the address of the exit routine to be given control when a pro
gram interruption of the type specified in the interruptions
operand occurs.

interruptions

146

is one or more decimal numbers, separated by commas, indicating the
type of program interruption to be handled by the user's exit rou
tine. Interruption types not specified are handled by the control
program. The interruption types can be designated in any order as
follows:

• One or more single numbers, each indicating the corresponding
program interruption type •

• One or more pairs of decimal numbers, each pair indicating a
range of corresponding interruption types. The second number
must be higher than the first and the pair of numbers must be
separated from each other by commas and enclosed in an addi
tional set of parentheses.

For example, (4,8) indicates interruption types 4 and 8; «4,8»
indicates interruption types 4 through 8. If a specified program
interruption type is maskable, the corresponding bit is set to 1.
The interruption types are as follows:

Number
1
2
3
4
5

Interruption Type
Operation
Privileged operation
Execute
Protection
Addressing

Number
6
7
8
9

10
11
12
13
14
15

Interruption Type (Cont'd)
Specification
Data
Fixed-point overflow (maskable)
Fixed-point divide
Decimal overflow (maskable)
Decimal divide
Exponent overflow
Exponent underflow (maskable)
Significance (maskable)
Floating-point divide

SPIE

The user-provided SPIE exit routine is executed whenever one of the
types of specified interruptions occurs. The ex'it routine must be in
virtual storage when it is required. Since the routine operates as a
subroutine of the control program, it must return control to the control
program.

Input to the SPIE exit routine is as follows.

Register 0: Control program information.

Register 1: Address of the PIE for the task that caused the inter
ruption (Figure 57).

Register 2-12: Same as when the program interruption occurred.

Register 13: Address of the save area for the main program. The
exit routine must not use this save area.

Register 14: Return address to the control program.

Register 15: Address of the exit routine.

The exit routine must be in virtual storage when it is required and
must return control to the control program using the address passed in
register 14. The control program restores registers 14, 15, 0, 1, and 2
from the PIE after control is returned but does not restore the contents
of registers 3-13.

To determine which type of interruption occurred, the exit routine
can test bits 28-31 of the OPSW (old program status word) in the PIE.
The routine can then take corrective action, or it can ignore the excep
tional condition.

The exit routine can alter the contents of the registers that are to
be returned to the interrupted program. For registers 3-13, the routine
alters the contents of the actual registers. For registers 14, 15, 0,
1, and 2, the routine alters the contents of the register save area in
the PIE. This is because the control program reloads these registers
from this save area when it returns control to the interrupted program.

The exit routine can also alter the last four bytes of the OPSW in
the PIE. By changing the OPSW, the routine can select any return point
in the interrufted program.

The control program returns control to the interrupted program by
loading a PSW constructed from the possibly modified OPSW saved in the
PIE.

If a program interruption occurs when the program interruption exit
routine is in control, the control program exit routine is given
control.

Chapter 10: Descriptions of the Macro Instructions 147

SPIE - L Form

SPIE -- List Form

Use the list form of the SPIE macro instruction to construct a con
trol program parameter list in the form of a program interruption con
trol area.

The description of the standard form of SPIE explains the function of
each operand. The description of the standard form also indicates which
operands are always optional and which are required in at least one of
the pair of list and execute forms. The format description below indi
cates the optional and required operands in the list form only.

r----------T-----T---, I [symbol] I SPIEl [interruption exit address] [,(interruptions)],MF=L I L __________ ~ _____ ~ ___ J

symbol
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

interruptions
are one or more decimal digits separated by commas.

MF=L
indicates the list form of the SPIE macro instruction.

[] indicates optional name or operands.

148

SPIE - E Form

SPIE -- Execute Form

A remote control program parameter list (program interruptions con
trol area) is used in, and can be modified by, the execute form of the
SPIE macro instruction. The PICA (program interruption control area)
can be generated by the list form of SPIE, or you can use the address of
the PICA returned in register 1 following a previous SPIE macro instruc
tion. If this macro instruction is being issued to reestablish a pre
vious SPIE environment, code only the MF oFerand.

The address of the remote control program parameter list associated
with any previous SPIE environment is returned by the SPIE macro
instruction.

The description of the standard form of SPIE explains the function of
each operand. The description of the standard form also indicates which
operands are always optional and which are required in at least one of
the pair of list and execute forms. The format description below indi
cates the optional and required operands in the execute form only. If
the address of a previous PICA is used, only the MF operand should be
coded.

r----------T------r---,
I (symbol] I SPIE I (interruption exit address] [, (interruptions)] I
I I I ,MF=(E,{control program list address}} I
I I I (1) I L __________ ~ ______ ~ ___ J

~~l
is any symbol valid in the assembler language.

address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. You may designate the register symbolically or with
an absolute expression; always code it within parentheses.

interruptions
are one or more decimal numbers separated by commas.

MF=(E,{control program list address}}
(1)

indicates the execute form of the macro instruction using a remote
control program parameter list (program interruption control area).
The address of the control program parameter list can be coded as
described under "address," or can be loaded into register 1, in
which case code MF=(E,(l)}.

[] indicates optional name or operand; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 149

STATUS

STATUS -- Change Subtask Status (VS2 only>

The STATUS macro instruction lets the programmer change the dispat
chability status of one or all of his program's subtasks. One use of
the STATUS macro instruction is to restart subtasks that were stopped
when an attention exit routine was entered.

The STATUS macro instruction is used only in a VS2 environment. It
is ignored when it is issued in VS1.

The STATUS macro instruction is written as follows:

r--------T------T--, I [symbol] I STATUS I {START}[,TCB=subtask tcb address] I
I I I STOP I L ________ ~ ______ ~ __ J

START

STOP

TCB=

indicates that the STOP/START count in the task control block spe
cified in the TCB operand will be decreased by 1. If the TCB
operand is not coded, the STOP/START count is decreased by 1 in
subtask task control blocks for all the subtasks of the originating
task.

indicates that the STOP/START count in the task control block spe
cified in the TCB operand will be increased by 1. If the TCB
operand is not coded, the STOP/START count is increased by 1 in the
task control blocks for all the subtasks of the originating task.

is the address of a task control block that is to have its STOP/
START count adjusted. If this operand is not specified, the STOP/
START count is adjusted in the task control blockS for all the sub
tasks of the originating task.

Control is returned to the instruction following the STATUS macro
instruction. When control is returned, register 15 contains one of the
following return codes:

Hexadecimal
Code
00

04

150

Meaning
Successful.

The specified task control block does not belong to a
subtask of the originating task. The STATUS macro
intruction was ignored.

/
\
~

STINER

STlMER -- Set Interval Timer

Use the STIMER macro instruction to set a programmed timer to a spe
cified time interval (less than 24 hours) or to an interval that will
expire at a specified time of day. The interval is decreased con
tinuously. An optional timer completion routine is given control when
the time interval expires; if no timer completion routine is specified,
no indication that the time interval has expired is provided. Only one
time interval is in effect at a time. A second STIMER macro instruction
issued before the first time interval expires overrides the first
interval and exit routine.

The time interval may be a "real-time interval" (measured continuous
ly in real time) or a "task time interval" (measured only while the task
1S in execution.> If a real time interval is specified, the task may
elect to either continue or suspend execution during the interval. If
the task elects to continue execution, it may optionally specify an exit
routine to be given control on completion of the time interval. If the
task elects to suspend execution, it is restarted at the next sequential
instruction on completion of the time interval. If a task time interval
is specified, the task must continue. It may optionally specify an exit
routine to be given control on completion of the interval.

The STlMER macro instruction is written as shown in the following
format description. The operand combinations in the shaded area of the
format description may only be used in a VS2 system.

r--------T------r------------------------------------j-""""",.,.,.-.... :,' ,.,-., :::":-,.,.:,:,.,.,',.".".".,',.-,.,, .. ,',.,.,.,.:-,., ,.-:.,.,,: ... ,.-,,:,., ... ,.,.,-,.,""",.,'-" ... :,." .. ,.,-""',., .. ,',.,.,.----;,

I [SymbOl]ISTIMER~EAL[,timer completion exit addreSS]} ,DINTVL=address I
I I TASK[,timer completion exit address] ,BINTVL=address I
I I I AIT , TUINTVL=address\
I I \ , TOD=address I
I I I ~ ••• I:I... I L ________ ~ ______ ~ __ ~

REAL

'IASK

WAIT

is written as shown. It specifies that the timer interval is a
real-time interval and is to be decreased continuously. If the TaD
operand is coded, the interval expires at the indicated time of
day. You can also specify a real-time interval by using the WAIT
operand.

is written as shown. It specifies that the timer interval is a
task time interval and is to be decreased only when the associated
task is active.

is written as shown. It specifies that the time interval is a
real-time interval and is to be decreased continuously. The job
step is to be placed in the wait condition until the interval
expires.

timer completion exit address
is the address of the timer completion exit routine to be given
control after the specified time interval expires. The exit rou
tine is given control by means of an interruption of the task that
was active when the STIMER macro instruction was issued; the rou
tine must be in virtual storage when it is required. The contents

[] indicates optional name or operand; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 151

STIMER

of the registers when the exit routine is given control are as
follows:

Register
0-1
2 - 12

13
14
15

Contents
Control program information.
Unpredictable.
Address of a control-program-provided save area.
Return address (to the control program).
Address of the exit routine.

The exit routine is responsible for saving and restoring registers.
The exit routine executes as a subroutine, and must return control
to the control program.

DINTVL=
is the address in virtual storage of a doubleword on a doubleword
boundary containing the time interval. The time interval is pre
sented as unpacked decimal digits of the form:

HHMMSSth, where:

HH is hours (24-hour clock);
MM is minutes;
SS is seconds;

t is tenths. of seconds; and
h is hundredths of a second (maximum value 9).

BINTVL=
is the address in virtual storage of a fullword on a fullword boun
dary containing the time interval. The time interval is presented
as an unsigned 32-bit binary number; the low-order bit has a value (
of 0.01 second. ~

TUINTVL=

TOn:

MIC=

is the address of a fullword on a fullword boundary containing the
time interval. The time interval is presented as an unsigned 32-
bit binary number; the low-order bit has a value of one timer unit
(26.04166 microseconds).

is the address of a doubleword on a doubleword boundary containing
the time of day at which the interval is to be completed. The time
of day is presented as unpacked decimal digits of the form
HHMMSSth. If TASK is specified, the time of day is interpreted as
though the DINTVL operand had been specified.

is the address of a doubleword on a doubleword boundary containing
the time interval. The time interval is represented as an unSigned
64-bit binary number; bit 51 is the low-order digit of the interval
~l~.

Notes:

• The time interval specified by an STIMER macro instruction has no
relation to the time interval specified in an EXEC statement.

• If issued by a timer completion exit routine, an STIMER macro
instruction acts as a NOP instruction. However, the STIMER issued
from a timer completion exit routine must not specify the same exit
routine or an infinite loop results.

152

STIMER

• If WAIT is specified in a system running a single task, no produc
tion work is performed while the time interval is in effect. Notify
the system operator not to cancel the job.

• If the optional exit routine address and WAIT are not specified, no
indication of completion of the time interval is provided.

• The TTIMER macro instruction provides a facility for determining the
remaining time interval associated with STIMER.

When you are using VS, the priorities of other tasks in the sys
tem may also affect the accuracy of the time interval measurement.
If you code REAL or WAIT, the interval is decreased continuously and
may expire when the task is not active. (This is certain to happen
when WAIT is coded.) After the time interval expires, assuming the
task is not in the wait condition for any other reasons, the task is
placed in the ready condition and competes for control with the
other ready tasks in the system. The additional time required
before the task becomes active depends on the relative dispatching
priority of the task.

Chapter 10: Descriptions of the Macro Instructions 153

TIME

TIME -- Provide Time and Date

The TIME macro instruction causes the control program to return the
time of day and the date. The time of day and date are only as accurate
as the corresponding information entered by the operator, and the system
response speed.

The date is returned in register 1 as packed decimal digits of the
form 00 YY DD DC, where:

YY is the last two digits of the year;
ODD is the day of the year;

C is a 4-bit sign character that allows the data to be unpacked
and printed.

The time of day, based on a twenty-four-hour clock, returned in the
form designated by the operand shown below. For the DEC, BIN, and TU
operands, the time of day is returned in register O. For the MIC,
address operand, the time of day is returned in the specified address,
and register 0 is set to zero. If the operand is omitted, DEC is
assumed.

The TIME macro instruction is written as follows:

r----------T-----~----------------l

I [symbol] I TIME I [DEC] I
I I I BIN I
I I I TU I
I I I MIC,address I L __________ ~ ______ ~ _______________ _J

DEC

BIN

TU

MIC

is written as shown. Time of day is returned in register 0 as
packed decimal digits of the form:

BHMMSSth, where:

HH is hours (24 hour clock);
MM is minutes;
SS is seconds;

t is tenths of seconds; and
h is hundredths of second (maximum value 9).

is written as shown. Time of day is returned in register 0 as an
unsigned 32-bit binary number. The low-order bit is equivalent to
0.01 seconds.

is written as shown. Time of day is returned in register 0 as an
unsigned 32-bit binary number. The low-order bit is equivalent to
26.04166 microseconds (one timer unit).

is written as shown. It requests the time of day in microseconds.

[1 indicates optional name or operand; select one or none from within
[1; indicates an assumed value.

154

/
\

TIME

address
is the address of an a-byte area in storage where the time of day
is returned in microseconds with bit 51 equivalent to one
microsecond.

If the MIC,address operand is specified, register 15 contains one of
the following return codes when control is returned to the user:

Hexadecimal
Code
00

04

Meaning
Successful.

Unsuccessful. The specified address is not valid. The
date is stored in register 1: register 0 contains O.

~hapter 10: Descriptions of the Macro Instructions 155

TTIMER

TTIMER -- Test Interval Timer

In VS1, or in VS2 if TU is specified or assumed, the TTIMER macro
instruction causes the control program to return in register 0 the
amount of time remaining in a timer interval previously set by an STIMER
macro instruction. The time remaining is returned as an unsigned 32-bit
binary number specifying the number of timer units (26 microsecond
units) remaining in the interval. If a time interval has not been set,
register 0 contains o. TTIMER can also be used to cancel the remaining
time interval.

If MIC is specified in a VS2 system, the remaining time is returned
to the doubleword area specified in the address. Bit 51 of the area is
the low-order digit of the interval value. If a time interval has not
been set the area is set to O.

The operand combinations in the shaded area of the format description
may only be used in a VS2 system.

The TTIMER macro instruction is written as follows:

r----------T--------T----------
I I I
I [symbol] I TTl MER I [CANCEL] L ______ . ______ 4. ____ • ____ ._

4
. __ . _______ . ___ _

CANCEL

TU

MIC

is written as shown. It indicates that the rema1n1ng time interval
and exit routine, if any, are to be canceled. If WAIT was coded in
the STIMER macro instruction that established the interval, the
task is not taken out of the wait condition. If CANCEL is not
designated, the unexpired portion of the time interval remains in
effect.

is written as shown. Remaining time in the interval is returned in
register 0 as an unsigned 32-bit binary number. The low-order bit
is equivalent to 26.04166 microseconds (one timer unit).

is written as shown. It requests the remaining time in the interv
al to be retuned in microseconds. Address is the doubleword area
on a doubleword boundary where the remaining interval is to be
stored.

Note: For further information about the use of TTIMER, refer to the
description of the STIMER macro instruction.

If MIC, address is specified, register 15 contains one of the follow
ing return codes when control is returned to the user:

Hexadecimal
Code
00

04

Meaning
The area specified by address contains the time remain
ing in the interval.

The area specified is not contained within the reques
tor's allocated storage. If cancel was coded, the
interval was not canceled.

[] indicates optional name or operand; _____ indicates an assumed value.

156

i

\,

WAIT

WAIT -- Wait for One or More Events

The WAIT macro instruction is used to inform the control program that
performance of the active task cannot continue until one or more specif
ic events, each represented by a different ECB (event control block),
have occurred. Bit 0 of each ECB must be set to 0 before it is used.
The control program takes the following action:

• For each event that has already occurred (each ECB is already post
ed), the count of the number of events is decreased by 1.

• If the number of events is 0 by the time the last event control
block is checked, control is returned to the instruction following
the WAIT macro instruction.

• If the number of events is not 0 by the time the last ECB is
checked, control is not returned to the issuing program until suffi
cient ECBs are posted to bring the number to O. Control is then
returned to the instruction following the WAIT macro instruction.

The WAIT macro instruction is written as follows:

r----------T-----~--------------------------------------,
I [symbol] I WAIT I [number of events,l{ECB=address } I
I I I ECBLIST=address I L __________ ~ ______ ~ ______________________________________ J

number of events

ECB=

is a decimal integer from 0 to 255. Zero is an effective NOP
instruction: one is assumed if the operand is omitted. The number
of events must not exceed the number of event control blocks.

is the address of the event control block representing the single
event that must occur before processing can continue. The operand
is valid only if the number of events is specified as one or is
omitted.

ECBLIST=
is the address of a virtual storage area containing one or more
consecutive fullwords on a fullword boundary. Each fullword con
tains the address of an event control block: the high-order bit in
the last word (address) must be set to 1 to indicate the end of the
list. The number of event control blocks must be equal to or
greater than the specified number of events.

caution: A job step with all of its tasks in a WAIT condition is ter
minated upon expiration of the time limits that apply to it.

Example: You have previously initiated one or more activities to be
completed asynchronously to your processing. As each activity was
initiated, you set up an EeB in which bits 0 and 1 were set to o. You
now wish to suspend your task via the WAIT macro instruction until a
specified number of these activities has been completed.

[] indicates optional name or operand: select one from vertical stack
within { }

Chapter 10: Descriptions of the Macro Instructions 151

WAIT

completion of each activity must be made known to the system via the
POST macro instruction. POST causes an addressed ECB to be marked com
plete. If completion of the event satisfies the requirements of an out
standing WAIT, the waiting task is marked ready and will be executed
when its priority allows.

Event Control Block

The event control block is used for communication between various
components of the control program, as well as between processing pro
grams and the control program. An ECB is the subject of WAIT and POST
macro instructions. Figure 58 shows the format of the event control
block. A description of its fields follows the illustration.

r--,
1+0 +1 +2 +3 1
1 1
IWICI 1 1 1 1 L_~_~ _____________ ~ ________________ ~ __________________ ~ ________________ J

Figure 58. Event control block

Bytes and
Displacement Alignment
+0 1

158

Field Hex. Field Description, Contents,
Meaning Name Dig.

1 •..

. 1 •.
•• xx xxxx

Awaiting completion of an
event:
W - waiting for completion of
an event.
After completion of an event:
C - The event has completed •
Completion code.
One of the following completion
codes will appear at the com
pletion of a channel program:

Access Methods Except BTAM and
TCAM.

7F Channel program has terminated
without error. (CSW contents
useful.)

41 Channel program has terminated
with permanent error. (CSW
contents useful.>

42 Channel program has terminated
because a direct access extent
address has been violated.
(CSW contents do not apply.)

44 Channel program has been inter
cepted because of permanent
error associated with device
end for previous request. You
may reissue the intercepted
request. (CSW contents do not
apply. >

48 Request element for channel
program has been made available
after it has been purged. (CSW
contents do not apply.)

\

Bytes and
Displacement Alignment

+1 3

Field
Name

Hex.
Dig.
4F

WAIT

Field Description, Contents,
Meaning
Error recovery routines have
been entered because of direct
access error but are unable to
read home address or record o.
(CSW contents do not apply.)

7F Normal completion.

41 Completed with an I/O error.

48 Enable command halted, or, I/O
operation purged.

7F Normal completion (work unit in
work area).

70 The SETEOF macro instruction
was issued in the message com
mand program (no work unit in
work area).

50 Message was not found when the
READ macro instruction was
issued in conjunction with the
POINT macro instruction to
retrieve a message.

5C Congested destination message
queue data set (write only).

58 Sequence error.

54 Invalid message destination.

52 Work area overflow.

02 End-of-queue condition (not
end-of-file).

01 Read-ahead queue empty, but
destination queue not empty.

40 Data is on read-ahead queue.

Awaiting completion of an
event:
Request block address.
After completion of the event:
Zeros, or remainder of comple
tion code.

Chapter 10: Descriptions of the Macro Instructions 159

WAITR

WAITR -- Wait for One or More Events

The WAITR macro instruction is coded and is executed in exactly the
same manner as the WAIT macro instruction.

160

WTL

WTL -- Write to Log

The WTL macro instruction causes a message to be written to the sys
tem log. The message can include any character that can be used in a
C-type (character) DC statement, and is assembled as a variable-length
record.

The stanaard form of the WTL macro instruction is written as shown
below. Information about the list and execute forms follows this
description.

r----------T-----r-----------,
I [symbol] I WTL I 'message' I l __________ ~ _____ ~ ___________ J

message
is the message to be written to the system log. The message must
be enclosed in apostrophes, which will not appear in the log. The
message is limited to 126 characters.

[] indicates optional name.

Chapter 10: Descriptions of the Macro Instructions 161

WTL - L Form

WTL -- List Fonn

Use the list fOmi of the WTL macro instruction to construct a control
program parameter list. The message operand must be provided in the
list form of the macro instruction. The description of the standard
fonn of the WTL macro provides the requirements for writing the message.

The list form of the WTL macro is written as follows:

r----------T-----T-----------------,
I [symbol] I WTL I 'message',MF=L I L __________ i _____ i ________________ -J

message

MF=L

is any character string valid in a c-type (character) DC
instruction.

indicates the list form of the WTL macro instruction.

[] indicates optional name.

162

(

WTL - E Form

WTL -- Execute Form

A remote control program parameter list is used in the execute form
of the WTL macro instruction. The parameter list can be generated by
the list form of WTL. You cannot modify the message in the execute
form.

The execute form of the WTL macro is written as follows:

r---------~----_r--,
I [symbol] I WTL I MF=(E,{control program list address}) I
I I I (1) I L __________ ~ _____ ~ __ J

MF=(E,{Control program list address})
(1)

indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be loaded into register 1, in which case code
MF=(E, (1». If the address is not loaded into register 1, code it
as any address that is valid in an RX-type instruction, or one of
the general registers 2-12, previously loaded with the address.
You can designate a register symbolically or with an absolute
expression; always code it within parentheses.

[] indicates optional name; select one from vertical stack within { }.

Chapter 10: Descriptions of the Macro Instructions 163

WTO

WTO -- write to Operator (VS1 without Multiple Console Support)

The WTO macro instruction causes a message to be written to the
operator's console.

The standard form of the WTO macro instruction is written as shown
below. The operands in the shaded area of the format description are
used in operating systems that include the Multiple Console Support
(MCS) option; they are ignored if coded in an operating system that does
not include the MCS option, except for descriptor codes 1 and 2, and
routing code 11 which designates a Write-to-programmer request. Routing
and descriptor codes are described in Appendix C.

If you code a WTO macro instruction with a routing code of 11 in an
operating system without MCS, this message will go to the system message
class data set and not to the operator's console. If you want the mes
sage to also appear on the operator's console, code the appropriate
routing code (as described in Appendix C) in addition to routing code
11. For example:

WTO 'message', ROUTCDE=ll Results in a write-to-Programmer message.
The message will appear only on the sys
tem message class data set.

WTO 'message', ROUTCDE=(x,11) Where x represents any valid routing code
other than 11 (see Appendix C for a
description of these codes). Results in
both a Write-to-Programmer and a Write
to-Operator message. The message will
appear on both the system message class
data set and on the operator's console.

The operands in the nonshaded area can be coded with any configura
tion of the operating system. Information about the list and execute
forms follows the write-up for WTO with MCS support.

message
is the message to be written to the operator's console. The mes
sage must be enclosed in apostrophes which will not appear on the
console. It can include any character that can be used in a
character (C-type) DC instruction, except the New Line control
character (punch combination 11-9-5). The maximum message length
is 120 characters (bytes) for a user non-action message. All other
messages may be as long as 121 bytes. The message is assembled as
a variable-length record.

[] indicates optional name and operands.

164

/
\

Page of GC27-6979-1, Issued January 3, 1973 cy TNL GN27-1400

WTO -- Write to Operator (VS1 With Multiple Console Support)

The WTO macro instruction causes a rressage to be written to one or
more operator consoles.

WTO

The standard form of the WTO macro instruction is written as shown
below. Information about the list and execute forms follows this
description.

r----------T-----T--,
I [symbol] I WTO I {'message' } I
I I I ('text' [,line type]),... I
I I I [,ROUTCDE=(number[,numcer], •••)] I
I I I [, DESC=number] I L __________ ~ _____ ~ __ J

message
is the message to be written to one or more operator consoles. The
message must be enclosed in apostrophes; the apostrophes do not
appear on the console. It can include any character that can be
used in a character (C-type) DC instruction, except the New Line
control character (punch combination 11-9-5). The maximum message
length is 120 characters (bytes) for a user non-action message.
All other messages may be 121 characters. The message is assembled
as a variable-length record.

Note: All WTO messages with a descriptor code of 1 or 2 are action mes
sages. An asterisk is printed before the first character of an action
message to indicate a need for operator action.

('text'[,line type])
is used to write a multiple-line message to the operator. The mes
sage may be up to ten lines long (if more than ten lines are coded
in the macro, the macro is not generated and an MNOTE is issued).
This limit does not include the control line (message IEE932I), see
item C below.

text
is one line of the multiple-line message to be passed to the opera
tor. A line consists of a character string enclosed in apostrophes
(the apostrophes do not appear on the operator's console). Any
character valid in a C-type DC instruction may be coded except a
New Line control character. The maximum number of characters
depends on which line type is specified (see Figure 59).

line type
is an alphabetic indicator defining the type of information con
tained in the 'text' field of each line of the message:

C
indicates that the 'text' parameter is the text to be contained
in the control line of the message. The control line normally
contains a message title. C may only be coded for the first line
of a multiple-line message. If this parameter is omitted and
descriptor code 9 is coded, the system generates a control line
(message IEE932I) containing only a message identification num
ber. The control line remains static during framing operations
on a display console (provided that the message is displayed in
an out-of-line display area).

[] indicates optional name and operands.

Chapter 10: Descriptions of the Macro Instructions 165

Page of GC27-6979-1, Issued January 3, 1973 ty TNL GN27-1400

L

D

WTO

indicates that the 'text' parameter is a label line. Label lines
contain message heading information; they remain static during
framing operations on a display console (provided that the mes
sage is displayed in an out-of-line display area). Label lines
are optional. If coded, lines Rust either immediately follow the
control line or another label line or be the first line of the
multiple-line message if there is no control line. Only two
label lines may be coded per message.

indicates that the 'text' parameter contains the information to
be conveyed to the operator by the multiple-line message. During
framing operations on a display console, the data lines are
paged.

DE

E

indicates that the 'text' parameter contains the last line of
information to be passed to the operator.

indicates that the previous line of text was the last line of
text to be passed to the operator. The 'text' parameter, if any,
coded with a line type of E is ignored.

ROUTCDE=
specifies the routing codes to be assigned to the message. "Num
ber" must be a routing code from 1 through 16. Routing codes are
defined in Appendix C. If the ROUTCDE operand is omitted but DESC
is specified, routing code 2 is assigned.

DESC=
specifies the message descriptor code(s) to be assigned to the mes
sage. "Number" must be a descriptor code from 1 through 16.
Descriptor codes are defined in Appendix C. If the DESC operand is
omitted, no descriptor code is assigned.

If bo~h the ROUTCDE and DESC parameters are omitted, no routing or
descriptor codes are assigned.

When control is returned, general register 1 contains the identifica
tion number (24 bits and right-justified) assigned to the message.

Note: The two operands available to the system programmer are MSGTYP
and MCSFLAG. They are discussed in Appendix c.

r-------------------T-------------------------T------------------------,
I Line Type I VS1 I VS2 I
~-------------------+-------------------------+------------------------~
I C I 31 characters I 34 characters I
I L I 71 characters I 70 characters I
I D I 71 characters I 70 characters I
I DE I 71 characters I 70 characters I
~-------------------~-------------------------~------------------------~
INote: L, D, and DE lines displayed on a 2250 display console will be I
Itruncated to 70 characters. I L __ J

166

Figure 59. Maximum 'text' field characters in a multiple-line WTO
message

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

WTO

Return codes from execution of a WTO using the multiple-line feature are
as follows:

Hexadecimal
Code
00

04

08

12

16

20

Neaning
No errors encountered.

Number of lines passed was O. Request is ignored.

ID passed in register 0 does not match any on queue.
Request is ignored.

Invalid line type. An end has been forced at the point
of the error except if the first line is an E line, in
which case the request is ignored.

Request specified routing code 11 (WTP). Request is
ignored.

MLWTO request to hard copy only. Request is ignored.

Note: No return codes are issued by the WTO service routine if the
MLWTO feature is not used.

Chapter 10: Descriptions of the Macro Instructions 167

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

WTO

WTO -- Write to Operator (VS2 With Multiple Console SUFport)

The WTO macro instruction causes a rressage to be written to one or
more operator consoles.

The standard form of the WTO macro instruction is ~ritten as follows:

r--------T--------T--,
I [symbol] I WTO I {'n;essage'} I
I I I ('text'[,line type]),... I
I I I [, ROUTCDE= (number [, number] , •••)] I
I I I (, DESC= (number [, number] , •••)] I
I I I [,AREAID=char] I L ________ ~ ________ ~ __ J

message
is the message to be written to one or more operator consoles. The
message must be enclosed in apostrophes (the apostrophes do not
appear on the console). It can include any character that can be
used in a character (C-type) DC instruction, except the New Line
control character (punch combination 11-9-5). The maximum message
length is 124 characters (bytes). The message is assembled as a
variable-length record.

Note: All WTO messages with a descriptor code of 1 or 2 are action mes
sages. An indicator is printed before the first character of an action
message to indicate a need for operator action, but this does not reduce
the maximum length of an action message.

('text' [,line tYFe])

168

is used to write a multiple-line rressage to the operator. The mes
sage may be up to ten lines (if more than ten lines are passed by a
program, the system truncates the message at the end of the tenth
line). This limit does not inlude the control line (message
IEE932I). .

text
is one line of the multiple-line message to be passed to the opera
tor. A line consists of a character string enclosed in apostrophes
(the apostrophes do not appear on the operator's console). Any
character valid in a C-type DC instruction may be coded except a
New Line control character. The rraxirrum number of characters
depends on which line type is specified (see Figure 59).

line type
is an alphabetic indicator defining the type of information con
tained in the 'text' field of each line of the message:

C

L

indicates that the 'text' parameter is the text to be contained
in the control line of the message. The control line normally
contains a message title. C may only be coded for the first line
of a multiple-line message. If this parameter is omitted and
descriptor code 9 is coded, the system generates a control line
(message IEE932I) containing only a message identification num
ber. The control line remains static during framing operations
on a display console (provided that the message is displayed in
an out-af-line display area).

indicates that the 'text' parameter is a label line. Label lines
contain message heading information; they remain static during
framing operations on a display console (provided that the mes-

D

DE

E

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

WTO

sage is displayed in an out-of-line display area). Label lines
are optional. If coded, lines rrust either immediately follow the
control line or another label line or te the first line of the
multiple-line message if there is no control line. Only two
label lines may be coded per message.

indicates that the 'text' parameter contains the information to
be conveyed to the operator by the multiple-line message. During
framing operations on a display console, the data lines are
paged.

indicates that the 'text' patameter contains the last line of
information to be passed to the operator.

indicates that the previous line of text was the last line of
text to be passed to the operator. The 'text' parameter, if any,
coded with a line type of E is ignored.

ROUTCDE=

DESC=

specifies the routing codes to be assigned to the message. Number
must be a routing code from 1 through 16. (Routing codes are
defined in Appendix C). If the ROUTCDE operand is omitted but the
DESC is specified, routing code 2 is assigned.

specifies the message descriptor code or codes to be assigned to
the message. Number must be a descriptor code from 1 through 16.
(Descriptor codes are defined in Appendix C.) If the DESC operand
is omitted, no description code is assigned.

AREAID=
specifies a display area of the console screen on which a multiple
line message is to be written. "char" may be any alphabetic
character A-Z.

Z designates the message area (the screen's general message area,
rather than a defined display area); it is assumed nothing is
specified.

The AREAID parameter is only useful for out-of-line (descriptor
code 8 and 9) MLWTO messages which are to be sent to CRT consoles.

If both the ROUTCDE and DESC parameters are omitted, the routing code
specified in the OLDWTOR oferand of the system generation SCHEDULR macro
instruction is assigned. If the OLDWTOR operand is omitted, no routing
code is assigned.

When control is returned, general register 1 contains the identifica
tion number (24 bits and right-justified) assigned to the message.

Note: The two operands available to the system programmer are MSGTYP
and MCSFLAG. They are discussed in Supervisor Services and Macro
Instructions for the System Programmer.

Chapter 10: Descriptions of the Macro Instructions 169

Page of GC27-6979-1, Issued January 3, 1.973 by TNL GN27-1400

WTO

~eturn codes from execution of a WTO using the multiple-line feature are
as follows:

Hexadecimal
Code
00

04

08

12

16

20

Meaning
No errors encountered.

Number of lines passed was O. Request is ignored.

ID passed in register 0 does not match any on queue.
Request is ignored.

Invalid line type. An end has been forced at the point
of the error except if the first line is an E line, in
which case the request is ignored.

Request specified routing code 11 (WTP). Request is
ignored.

MLWTO request to hard copy only. Request is ignored.

Note: No return codes are issued by the WTO service routine if the
MLWTO feature is not used.

170

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

~O-Lfu~

WTO -- List Form

Use the list form of the WTO macro instruction to construct a control
program parameter list. The message operand must be provided in the
list form of the macro. The description of the standard form of the WTO
macro provides the requirements for writing the message.

The format description below indicates the optional and required
operands for the list form. The operands in the shaded area of the for
mat description are used with the Multiple Console Support (MCS) option;
they are ignored if coded without MCS, except routing codes 1 and 2
which designate a Write-to-Master Console and routing code 11 which
designates a Write-to-programmer request. (See the standard form of the
WTO macro for a description of this exception.)

r----------T-----T--,
I [symbol] I WTO I {('text' [,line type]), ••• } I
I I '~essa e' . I I

I I L __________ ~ ____ _

message
is a character string valid in a character (C-type) DC instruction,
except the line control character (punch combination 11-9-5).

'text'
is a character string valid in a C-type DC instruction except for
the New Line control character.

line type
is an alphabetic symbol indicating the type of information con
tained in the 'text' parameter.

indicates the list form of the WTO macro.

ROUTCDE=

DESC=

specifies the routing codes to be assigned to the message.

specifies the message descriptor code to be assigned to the
message.

Note: Two additional operands available to the system programmer
(MSGTYP and MCSFLAG) are discussed in Appendix C.

[] indicates optional name or operand.

Chapter 10: Descriptions of the Macro Instructions 171

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

WTO - E Form

--------W'I'e-~-Exe_cut_e-Fonn-------~----------

A remote control program parameter list is used in the execute form
of the WTO macro instruction. The parameter list can be generated by
the list form of WTO. The message cannot be modified in the execute
form of the macro.

The execute form of the WTO macro is written as follows:

r----------T-----T--,
I [symbol] I WTO I MF=(E,{Control program list addreSS}) I
I I I (1) I l __________ ~ _____ ~ __ J

MF=(E,{Control program list addreSS})
(1)

indicates the execute form of the macro instruction using a remote
control program parameter list. If you have loaded the address of
the control progran. parameter list into register 1, code
MF=(E,(l». If the address is not loaded into register 1, code it
as any address that is valid in an RX-type instruction, or one of
the general registers 2-12, previously loaded with the address.
Designate the register symbolically or with an absolute expression;
always code it within parentheses.

[] indicates optional name; select one from vertical stack within { }.

172

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

WTOR

WTOR -- Write to Operator With Reply (Without Multiple Console Support)

The WTOR macro instruction causes a message requiring a reply to be
written to the operator's console, and provides the information required
by the control program to return the reply to the issuing program.

The standard form of the WTOR macro instruction is written as shown
below. The operands in the shaded area of the format description are
used in an operating system that includes the Multiple Console support
(MCS) option; they are ignored if coded in an operating system that does
not include the MCS option, except for descriptor codes 1 and 2, and
routing code 11 which designates a Write-to-Programmer request. If a
WTOR message is coded with a routing code of 11 in an operating system
that does not. include the MCS option, the message portion of the message
will go to both the system message class data set and the operator's
console. The operands in the nonshaded area can be coded with any con
figuration of the opeI:ating system. Inforlration about the list and
execute forms follows this description.

r----------T------T--,
I [symbol] I WTOR I 'message',reply address h of r I
I I I ecb address I
I I I I L __________ ~_____ _ __________________________ J

message
is the message to be written to the operator's console. The mes
sage must be enclosed in apostrophes(the apostrophes do not appear
on the console). It can include any character that can be used in
a character (C-type) De instruction, except the New Line control
character (punch combination 11-9-5). The maximum message length
is 117 characters (bytes). The message is assembled as a variable
length record. No requirement exists to pad the message with
blanks.

Note: All WTOR messages are action messages. An indicator is
printed before the first character of an action message to indicate
a need for operator action.

reply address
is the address in virtual storage of the area into which the con
trol program is to place the reply. The reply is left-justified at
this address.

length of reply
is the length, in bytes, of the reply message. The maximum reply
length is 119 bytes. The minimum reply length is one byte.

ecb address
is the address of the event control block to be used by the control
program to indicate the completion of the reply.

[] indicates optional name or operand.

Chapter 10: Descriptions of the Macro Instructions 173

I

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

WTOR

WTOR -- Write to Operator With Reply (With Multiple Console support)

The WTOR macro instruction causes a message requiring a reply to be
written to one or more operator consoles and the system log, and pro
vides the information required by the control program to return the
reply to the issuing program.

The standard form of the WTOR macro is written as follows. Informa
tion about the list and execute forms follows this description.

r----------T------T-------------------------~--------------------,
I [symbol] I WTOR I 'message' ,reply address, length of reply, I
I I I ecb address[,ROUTCDE=(number[,number •••]) I
I I I [,DESC=number] I L __________ ~ ______ ~ __ J

message
is the message to be written to the of era tor's console. The mes
sage must be enclosed in apostrophes, which will not appear on the
console. It can include any character that can be used in a
character (C-type) DC instruction, except the New Line control
character (punch combination 11-9-5). The maximum message length
is 117 characters (bytes) in VS1, 121 characters in VS2. The mes
sage is assembled as a variable-length record. No requirement
exists to pad the message with blanks.

Note: All WTOR messages are action messages. An indicator is
printed before the first character of an action message to indicate
a need for operator action.

reply address
is the address in virtual storage of the area into which the con
trol program is to place the reply. The reply is left-justified at
this address.

length of refly
is the length, in bytes, of the reply message. The maximum reply
length is 115 characters when the operator enters REPLY id, 'reply'
and 119 characters when the operator enters Rid, 'reply'. The
minimum reply length is one byte.

ecb address
is the address of the event control block to be used by the control
program to indicate the completion of the reply.

ROUTCDE=

DESC=

specifies the routing codes to be assigned to the message. Number
must be a routing code from 1 through 16. Routing codes are
defined in Appendix C. If the ROUTCDE operand is omitted but the
DESC operand is specified, routing code 2 is assigned.

specifies the message descriptor code(s) to be assigned to
sage. Number must be a descriptor code from 1 through 16.
ptor codes are defined in Appendix C. If the DESC operand
omitted, no descriptor code is assigned.

the mes
Descri

is

If both the ROUTCDE and DESC operands are omitted, no routing or
descriptor codes are assigned.

(] indicates optional name or operand.

174

WWR

When control is returned, general register 1 contains the identifica
tion number (24 bits and right-justified) assigned to the message.

Note: The two operands available to the system programmer are MSGTYP
and MCSFLAG. They are discussed in Appendix C (VS1) and in VS2
Planning and Use Guide.

Chapter 10: Descriptions of the Macro Instructions 175

WTOR - L Form

WTOR -- List Form

Use the list form of the WTOR macro instruction to construct a con
trol program parameter list. The message operand must be provided in
the list form.

The description of the standard forro of the WTO~.lhacro provides the
requirements for writing the message and the explanation of the function
of each operand. The description of the standard form also indicates
which operands are totally optional and which are required in at least
one of the pair of list and execute forms. The format description below
indicates the optional and required operands in the list form only. The
operands in the shaded area of the format descriptions are used with the
Multiple Console Support (MCS) option; they are ignored if coded wlthout
MCS, except routing codes 1 and 2 which designate a Write-to-Master
Console and code 11 in the ROUTCDE operand which designates a Write-to
Programmer request. (See the standard form of the WTOR macro instruc
tion for a description of this exception.)

The list form of the WTOR macro is written as follows:

r----------T------r--, I [symbol] I WTOR I 'message', [reply address], [length of reply] I
I I I , [ecb address] I
I I I I
I I I ,MF=L I L __________ ~ ______ ~ __ J

symbol
is any symbol valid in the assembler language.

address
is any address that can be written in an A-type address constant.

length
is any absolute expression valid in the assembler language.

message
is a character string valid in a character (C-type) DC instruction
except the line control character (punch combination 11-9-5).

ROUTCDE=

DESC=

MF=L

specifies the routing codes to be assigned to the message.

specifies the message descriptor code to be assigned to the
message.

indicates the list form of the WTOR macro.

Note: Two additional operands (MSGTYP and MCSFLAG) available to the
system programmer are discussed in Appendix C (VSl) and VS2 Planning
and Use Guide.

[] indicates optional name or operand.

176

('

\

WTOR - E Form

WTOR -- Execute Form

A remote control program parameter list is used in the execute form
of the WTOR macro instruction. The parameter list can be generated by
the list form of WTOR.

The description of the standard form of the WTOR macro provides the
explanation of the function of each operand. The description of the
standard form also indicates which operands are totally optional and
which are required in at least one of the pair of list and execute
forms. The format description below indicates the optional and required
operands in the list form only. The comma before the first operand is
required to indicate the absence of the message operand, which is not
allowed in the execute form.

The execute form of the WTOR macro is written as follows:

r----------T------T--, I [symbol] I WTOR I ,[reply addressl,[length of replyl,[ecb address] I
I I I ,MF=(E,{control program list addreSS}> I
I I I (1) I L __________ ~ ______ i __ J

symbol
is any symbol valid in the assembler language.

address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. Designate the register symbolically or with an
absolute expression; always code it within parentheses.

length
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. Designate the register symbolically or with
an absolute expression; always code it within parentheses.

MF=(E,{control program list address}>
(1)

indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under "address," or can be
loaded into register 1, in which case code MF=(E,(l». The para
meter list must be aligned on a fullword boundary. The list form
of WTOR provides this alignment.

[1 indicates optional name or operand; select one from vertical stack
within { }.

Chapter 10: Descriptions of the Macro Instructions 177

XCTL

XCTL -- Pass Control to a Program in Another Load Module

The XCTL macro instruction causes control to be passed to a specified
entry point in another load module; the entry point name must be a memb
er name or an alias in a directory of a partitioned data set. The load
module containing the entry point is brought into storage if a usable
copy is not available. The storage occupied by the load module that
issued the XCTL is eligible for reassignment by the control program if
no other requirement exists for that load module. The program executing
the XTCL macro instruction is logically removed from the active task,
and the program gaining control is established as a subprogram of the
program (system or user) that placed the issuer of XCTL into execution.

No return is made to the program issuing the XCTL macro instruction;
the responsibility count for the load module containing the XCTL macro
instruction is lowered by 1. A return to the program that placed the
issuer of XCTL into execution is required for successful completion of
the task. For this reason, registers 2 through 14, the program inter
ruption control area, and the program mask must be restored to the con
ditions that existed when the load module received control before the
XCTL macro instruction can be issued. If the specified entry point can
not be located, the task is abnormally terminated.

The standard form of the XCTL macro instruction is written as shown
below. Information about the list and execute forms follows this
description.

r----------T------T---,
I [symbol] I XCTL I [(reg1[,reg2])],{EP=symbol }I
I I I EPLOC=address of name I
I I I DE=address of list entry I
I I I [,DCB=dcb address] I L __________ ~ ______ ~ ___ J

(reg1, reg2)

EP=

is the range of registers from 2 through 12 to be restored from the
save area pointed to by register 13. The value of the reg1 operand
must be less than the value of the reg2 operand. If the reg2
operand is omitted, only the register specified is loaded; if both
operands are omitted, the contents of the registers are not
altered.

is the entry point name in the program to be given control. The
name must be padded with blanks on the right to eight bytes if
necessary. If the specified entry point cannot be found, the task
is abnormally terminated.

EPLOC=

D~

is the address of the entry point name described above. Pad the
name with blanks to eight bytes, if necessary.

is the address of the name field of a 58-byte list entry for the
entry point name. The list entry is constructed using the BLDL
macro instruction using a length specification of 58 h¥tes. The
DCB operand must indicate the same data control block used in the
BLDL macro instruction.

[] indicates optional name or operand; select one from vertical stack
within { }.

178

DCB=

XCTL

is the address of the data control block for the partitioned data
set containing the entry point name described above. The DCB must
not be defined in the program issuing the XCTL.

If the DCB operand is omitted or if DCB=O is specified when the
XCTL macro instruction is issued by the job step task, the data
sets referred to by either the STEPLIB or JOBLIB DD statement are
first searched for the entry point name. If the entry point name
is not found, the link library is searched.

If the DCB operand is omitted or if DCB=O is specified when the
XCTL macro instruction is issued by a subtask, the data sets asso
ciated with one or more data control blocks referred to by previous
ATTACH macro instructions in the subtasking chain are first
searched for the entry point name. If the entry point name is not
found, the search is continued as if the XCTL had been issued by
the job step task.

Chapter 10: Descriptions of the Macro Instructions 179

XCTL - L Form

XCTL -- List Form

Two parameter lists are used in an XCTL macro instruction: a control
program parameter list and an optional problem program parameter list.
Only the control program parameter list can be constructed in the list
form of XCTL. Address parameters to be passed in a parameter list to
the problem program can be provided using the list form 6f the CALL
macro instruction. This parameter list can be referred to in the
execute form of XCTL.

The description of the standard form of XCTL explains the function of
each operand. The description of the standard form also indicates which
operands are always optional and which are required in at least one of
the pair of list and execute forms. The format description below indi
cates the optional and required operands in the list form only.

r----------T------T---,
I [symbol] I XCTL I [EP=SymbOl]£,DCB=dCb address] I
I I I EPLOC=address of name I
I I I DE=address of list entry I
I I I ,SF=L I L __________ ~ ______ ~ __ J

symbol
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

SF=L
indicates the list form of the XCTL macro.

[] indicates optional name or operands; select one or none from vertic
al stack within [1.

180

XCTL - E Form

XCTL -- Execute Form

Two parameter lists are used in the XCTL macro 'instruction; a control
program parameter list and an optional problem program parameter list.
Either or both of these parameter lists can be remote and can be
referred to, and modifieq by, the execute form of XCTL. If only the
problem program parameter list is remote, operands that require the con
trol program parameter list cause that list to be constructed inline as
part of the macro expansion. If only the control program parameter list
is remote, no problem program parameters, including the regl,reg2
operand, can be specified

The description of the standard form of XCTL explains the function of
each operand. The description of the standard form also indicates which
operands are always optional and which are required in at least one of
the pair of list and execute forms. The format description below indi
cates the optional and required operands in the execute form only.

r----------T------T--, I [symbol] I XCTL I [Cregl[,reg2])] I
I I I [" EP=symbol] I I I I ,EPLOc=address of name [,DCB=dcb address] I
I I I ,DE=address of list entry I
I I I ,MF=CE,{problem program l1st address}) I
I I I (1) . I
I I I, SF= (E, {control program list address}) I
I I I (15) I
I I I ,MF=(E,{addreSS}) ,SF=(E,{address}> I
I I I (1) (15) I L-_________ ~ ______ ~ __ J

symbol
is any symbol valid in the assembler language.

address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi
cated address. Designate the register symbolically or with an
absolute expression; always code it within parentheses.

MF=(E,{problem program list address})
Cl)

indicates the execute form of the macro instruction using a remote
problem program parameter list. Any control program parameters
specified are provided in a control program parameter list expanded
in line. The address of the problem program parameter list can be
coded as described under waddress,· or can be loaded into register
1, in which case code MF=CE,(l».

SF=(E,{control program list address})
(15)

indicates the execute form of the macro instruction using a remote
control program parameter list. No problem program parameters can
be specified. The address of the control program parameter list
can be coded as described under waddress,w or can be loaded into
register 15, in which case code SF=(E,(15».

[1 indicates optional name or operand; select one from vertical stack
within { }; select one or none from vertical stack within [1.

Chapter 10: Descriptions of the Macro Instructions 181

XCTL - E Form

MF= (E, {address}>, SF= (E, {addreSs }>
(1) (15)

182

indicates the execute form of the macro instruction using both a
remote problem program parameter list and a remote control program
parameter list. The addresses of the parameter lists are coded or
loaded into registers 1 and 15, as explained above.

(
I
\

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

APPENDIX A: SUMMARY OF OPERANDS

Appendix A indicates how each operand may te coded in the standard
and, where applicable, in the list and execute forms of each macro
instruction. For e~ample, in ATTACH macro instruction the DCB operand
may be coded in the standard (S) form using registers 2-12 or as an A
type address constant, in the list (L) forrr as an A-type address con
stant, and in the execute (E) form using registers 2-12 or as an RX-type
address constant. Only the indicated ~ethods of coding should be used.

ABBREVIATIONS USED IN APPENDIX A

Abbreviation
Sym

Dec Dig

Register

RX-type

A-type

(2-12) -

(1) -

(0) -

Meaning
Any symbol valid in the assembler language.

Any decimal digits, up to the value indicated in
the associated macro instruction description.
If both Syro and Dec Dig arE checked, an absolute
expression is also allowed.

A general register, always coded within paren
theses, as follows:

one of the general registers 2 through 12, pre
viously loaded with the right-adjusted value or
address indicated in the macro instruction
description. The unused high-order bits must be
set to zero. The register may be designated
symbolically or with an absolute expression.

general register 1, previously loaded as indi
cated above~ Designate the register as (1)
only.

general register 0, previously loaded as indi
cated above. Cesignate the register as (0)
only.

Any address that is valid in an RX-type instruc
tion (for example, LA) may be designated.

Any address that may be written in an A-type
address constant may be designated.

Appendix A: Summary of Operands 183

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

r-------------T-----------------------------T---,
I I I Written as I
I I ~-----T-----T-----------------T----T------1
I I I I I Register I I I
I I I I ~-----T-----T-----~ lA-type I
I Macro I I I Dec I (2- I I IRX- ladcon I
I Instruction I Operands I Sym I Dig I 12) I (1) I (0) Itypeltype I
~-------------~-----------------------------+-----+-----+-----+-----+-----+----+------~
I ABEND I completion code I SIS I SIS I I I I
I ~-----------------------------+-----~-----~-----~-----~-----~----~------1
I I DUMP I wri tten as shown I
I ~-----------------------------+---~
I I STEP I wri tten as shown I
~-------------+-----------------------------+---1

ATTACH I ASYNCH= I YES or NO I
~-----------------------------+-----T-----T-----T-----T-----T----T------~
I DCB= I I I S E I I I E I S L I
~-----------------------------+-----+-----+-----+-----+-----+----+------1
I DE= I I I S E I I I E I S L I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I DPMOD= IS LEIS L EI S E I I I I I
~-----------------------------+-----+-----+-----+-----+-----+----+------1
I ECB= I I I S E I I I E I S L I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I EP= I S LEI I I I I I I
~-----------------------------+-----+-----+-----+-----+-----+----+------1
I EPLOC= I I I S E I I I E I S L I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I ETXR= I I I S E I I I E I S L I
~-----------------------------+-----~-----~-----~-----~-----~----~------1
I FPREGSA= I YES or NO I
~-----------------------------+-----T-----T-----T-----T-----T----T------~
I GSPL= I I I S E I I I E I S L I
~-----------------------------+-----+-----+-----+-----+-----+----+------1
I GSPV= I S LEI S LEI S E I I I I I
~-----------------------------+-----+-----+-----+-----+-----~----+------~
I LPMOD= IS LEIS L EI S E I I I I I
~-----------------------------+-----+-----+-----+-----+-----+----+------1
I PARM= I I I S E I I I E I S I
~-----------------------------+-----~-----~-----~-----~-----~----~------~
I PURGE: I QUIESCE, HALT, or NONE I
~-----------------------------+-----T-----T-----T-----T-----T----T------1
I SHSPL= I I I S E I I I E I S L I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I SHSPV= IS LEIS L EI S E I I I I I
~-----------------------------+-----+-----+-----+-----+-----+----+------1
I STAI= I I I S E I I I E I S L I
~-----------------------------+-----~-----~-----~-----~-----~----~------~
I SZERO= I YES or NO I
~-----------------------------+-----T-----T-----T-----T-----T----T------~
I TASKLIB= I I I S E I I I E I S L I
~-----------------------------+-----~-----~-----~-----~-----~----~------~
I TQE= I YES or NO I
~-----------------------------+---~
I VL=l Iwritten as shown I

~-------------+-----------------------------+-----T-----T-----T-----T-----T----T------~
I CALL I entry point name I S E I I I I I I I
I ~-----------------------------+-----+-----+-----+-----+-----+----+------~
I I address parameters I I I S E I I I E I S L I
I ~-----------------------------+-----~-----~-----~-----~-----~----~------~
I I VL I wri tten as shown I
I ~-----------------------------+-----T-----T-----T----~-----T----T------~
I I ID= I S E I S E I I I I I I
~-------------+------~----------------------+-----+-----+-----+-----+-----+----+------~
I CHAP I priority change value I SIS I S I J S I I I
I ~-----------------------------+-----+-----+----~+-----+-----+----+------1
I I tcb location address I I I SIS I I S I I
~-------------+-----------------------------+-----+-----+-----+-----+-----+----+------1
I DELETE I DE= I I I S I I SIS I I
I ~-----------------------------+-----+-----+-----+-----+-----+----+------~
I I EP= I S I I I I I I I
I ~-~---------------------------+-----+-----+-----+-----+-----+----+------1
I I EPLOC= I I I S I I SIS I I L _____________ ~ _____________________________ ~ _____ ~ _____ ~ _____ ~ _____ ~ _____ ~ ____ ~ ______ J

184

----------T-----------------------------T---,
I I Written as I
I ~-----T----~----------------~----T------~
I I I I Register I I I
I I I ~-----T-----T-----~ lA-type I

cro I I I Dec I (2- I I IRX- ladcon I
.struction I Operands I 8ym I Dig I 12) I (1) I (O) Itypeltype I
----------+-----------------------------+-----+-----+-----+-----+-----+----+------~
:Q I qname address I I I S E I I I E I 8 L I

~-----------------------------+-----+-----+-----+-----+-----+----+------~
I rname address I I I S E I I I E I 8 L I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I rname length IS L EI8 L EI S E I I I I I
~-----------------------------+-----~-----~-----~-----~-----~----~------~
I 8TEP or SYSTEM Iwritten as shown I
~-----------------------------+---~ I RET=HAVE I wri tten as shown I

,----------t-----------------------------+-----T-----T-----T----~----~----T------~
~ACH I tcb location address I 8 I I 8 I 8 I I 8 I I

~-----------------------------+-----~-----~-----~-----~----~--~-----~ I STAE= I YES or NO I
·---------_+-----------------------------+-----T-----T-----T-----T----~----T------~
~M I M8G= I I I 8 I S I I I '1

~-----------------------------+-----+-----+-----+-----+-----+----+------~
I MSGLI8T= I 8 I I 8 I 8 I I 8 I I

._---------+-----------------------------+-----+-----+-----+-----+-----+----+------~
:R I regl I 8 I 8 I I I I I I

~----------------------------+-----+-----+-----+-----+-----+----+------~
I reg 2 I 8 I 8 I I I I I I

.----------+-----------------------------+-----+-----+-----+-~---+-----+----t------~
IQ I qname address I I I S E I I I E I 8 L I

~-----------------------------+-----+-----+-----+-----+-----+----+------~
I rname addres s I I I S E I I I E I S L I
~-----------------------------+-----~-----~-----~-----~-----~----~------~
I E or S Iwritten as shown I
~-----------------------------+-----T-----T----~----~----~----T------~
I mame length IS L EI8 L EI 8 E I I I I I
~-----------------------------+-----~-----~-----~-----~-----~--~------~
I STEP or 8Y8TEM I written as shown I
~-----------------------------+--~ I RET= I TEST, USE, or HAVE I

-----------+-----------------------------+---~
mEMAIN I E, L, R or V Iwritten as shown I

~----------------------------+-----T----~-----T----~----~---~------~
I A=(with E, L, or V) I I I S E I I I E I 8 L I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I A= (with R) I I I SIS I I S I I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I LA= I I I 8 E I I I E IS L I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I LV=(with E) IS LEIS L EI S E I I I I I
~-----------------------------+-----+-----+-----+-----+-----+----t------~
I LV=(with R} I 8 I 8 I 8 I I 8 I I I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I 8P=(with E, L, or V) 18 LEIS L EI 8 E I I I I I
~-----------------------------+-----+-----+-----t-----+-----+----t------~
I 8P=(with R} I 8 I 8 I 8 I I 8 I I I

-----------+-----------------------------+-----~-----~-----~-----~----~-~----~
~MAIN I EC, EU, LC, LU, VC, or VU I refer to macro description I

~-----------------------------+-----T-----T----~----~----~----T------~
I A= I I I 8 E I I I E I 8 L I
~-----------------------------+-----~-----~-----~-----~-----~----~------~
I BNDRY= IDBLWD or PAGE I
~-----------------------------+-----T-----T----~----~----~----T---~--~
I LA= I I I 8 E I I I E I 8 L I
~-----------------------------+-----+-----+-----+-----+-----+----+------~
I LV=(with E) 18 L EI8 L EI 8 E I I I I I ___________ ~ _____________________________ ~ _____ ~ _____ ~ _____ ~ _____ ~ _____ ~ ____ ~ ______ J

Appendix A: Summary of Operands 185

r-------------T-----------------------------T--
1 1 I written as I·: t-----T-----T----;;~i;~;;-----T----r--1
I I I I ~-----T----_r----_I IA-ty{:
I Macro I I I Dec I (2- 1 I IRX- I adcoI'l
I Instruction 1 Operands I 5ym I Dig I 12) I (1) 1 (0) Itypeltype

~-------------+-----------------------------+-----+-----+-----+-----+-----+----+-----
1 GETMAIN 1 LV(with R) 1 5 I 5 I 5 1 I S I 1
I (cont'd) ~-----------------------------+-----+-----+-----+-----+-----+----+-----
1 1 SP=(with E, L, or V) 15 L EI5 L EI 5 E I I I 1
I ~-----------------------------+-----+-----+-----+-----+-----+----+-----
I I 5P=(with R) I 5 I 5 I 5 I I 5 I I
~-------------+-----------------------------+-----+-----+-----+-----+-----+----+-----
I GTRACE I OAT A= I I I 5 I I I 5 IS L E

I ~-----------------------------+-----+-----+-----+-----+-----+----+-----
1 1 LNG= 1 5 LEI 5 LEI 5 LEI I I I
1 ~-----------------------------+-----+-----+-----+-----+-----+----+-----
I 1 FID= 1 5 LEI 5 LEI 5 LEI I I I
1 ~-----------------------------+-----+-----+-----+-----+-----+----+-----
1 1 ID= I 5 E I 5 E I I I I I
~-------------+-----------------------------+-----+-----+-----+-----+-----+----+-----
I IDENTIFY I ENTRY= I I I 5 1 5 I I 5 I
1 ~-----------------------------+-----+-----+-----+-----+-----+----+-----
1 1 EP= I 5 1 I I I 1 1
1 ~-----------------------------+-----+-----+-----+-----+-----+----+-----
1 1 EPLOC= 1 I I 5 I I 5 1 5 I
~-------------+-----------------------------+-----+-----+-----+-----+-----+----+-----
1 LINK 1 DCB= I I 1 5 Ell I E I 5 L
I ~-----------------------------+-----+-----+-----+-----+-----+----+-----
1 1 DE= I 1 I 5 E I liE I 5 L

1 ~-----------------------------+-----+-----+-----+-----+-----+----+-----
1 1 EP= 1 5 LEI 1 I 1 1 I
I ~-----------------------------+-----+-----+-----+-----+-----+----+-----

: ~-~::~::----------------------~-----+-----+-~-~-+-----+-----+--~-+-~-:~ 1 1 10= 1 5 E 1 5 Ell 1 I 1
1 ~-----------------------------+-----+-----+-----+-----+-----+----+-----
1 1 PARAM= 1 I I 5 ElliE I 5
1 ~-----------------------------+-----~-----~-----~-----~-----~----~-----
1 1 VL=l I wri tten as shown

~-------------~-----------------------------+-----T-----T-----T-----T-----T----T-----
1 LOAD 1 DCB= 1 I I 5 1 5 1 1 5 I
I ~-----------------------------+-----+-----+-----+-----+-----+----+-----
I I DE= 1 I I 5 1 I 5 I 5 I
I ~-----------------------------+-----+-----+-----+-----+-----+----+-----
I I EP= I 5 I 1 I I I I
I ~-----------------------------+-----+-----+-----+-----+-----+~--+-----
I I EPLOC= I I I 5 I I 5 I 5 I
~-------------+-----------------------------+-----+-----+-----+-----+-----+----+-----
I PGRLSE I LA= I I I 5 E I I S E I 15 L :E

1 ~-----------------------------+-----+-----+-----+-----+-----+----+-----
I I HA= I I I 5 E I 5 E I I 1 5 L :E

1 ~-----------------------------+-----+-----+-----+-----+-----+----+-----
I I list addr= I I I I 1 I E I
I ~-----------------------------+-----+-----+-----+-----+-----+----+-----
I I reg 3= I 1 I E I I I I
~------------+--------------------~-------+-----+-----+-----+-----+-----+----+-----
I POST I ecb address 1 I 1 5 I 5 I I 5 I

.1 ~-----------------------------+-----+-----+-----+-----+-----+----+-----
1 1 completion code I S I 5 1 5 I I 5 I I
~-------------+-----------------------------+-----+-----+-----+_ .. _--+-----+----+-----
I RETURN I (regl,reg2) I I 5 I I I I I
1 • ~-----------------------------+-----~-----~-----~-----~-----~----~----.
liT Iwritten as shown

I ~-----------------~-----------+-----T-----T---------------------------
I 1 RC= 1 5 1 5 1 or (15) ~ L _____________ ~ _____________________________ ~ _____ ~ _____ ~ ___________________________ _

186

------------T-----------------------------T---,
I 1 Written as I
1 ~-----T-----T-----------------T----~-----~
I 1 I I Register 1 I I
I 1 I ~----~----~-----~ I A-type I

~acro I 1 I Dec I (2- I I IRX- I adcon 1
[nstruction I Operands I 5ym 1 Dig I 12) I (1) I (0) I type I type 1
------------+-----------------------------+-----+-----t-----+-----+-----t----+------~
iAVE I (regl,reg2) 1 I 5 1 1 I 1 1 I

~-----------------------------+-----~-----~-----~-----~-----~----~------~
I T I wri tten as shown 1
~----------------------------+---~
I identifier name Icharacter string or * 1

------------t-----------------------------+-----T-----T-----T-----T-----T----T------~
iEGWT I external segment name I 5 I I 1 I I 1 1

------------+--------T--------------------+-----+-----+-----+-----+-----t----+------~
)NAP I DCB= I 1 1 5 Ell I E I 5 L 1

~-----------------------------+-----+-----+-----+-----+-----+----t------~
I ID= 15 L EI5 L EI 5 E I I 1 I 1
~-----------------------------+-----+-----+-----+-----+-----t----+------~
I LI5T= I I I 5 E I I I E I 5 L 1
~-----------------------------+-----~-----~-----~-----~-----~----~------~
I PDATA Irefer to macro description I

~----------------------------+---~
I 5DATA Irefer to macro description I

~-----------------------------+-----T-----T-----T-----T-----T----T------~
I 5TORAGE I I I 5 E I liE I 5 L I
~-----------------------------+-----+-----t-----+-----+-----+----+------~
I TCB= 1 I I 5 Ell lEI 5 I

.-----------+--~--------------------------+-----+-----+-----+-----+-----+----+------~
;PIE 1 interruption exit address I I I 5 E I I I E I 5 L 1

~-----------------------------+-----+-----+-----+-----+-----+----+------~
I interruptions 1 15 L EI 1 I 1 I 1

.-----------+-----------------------~-----+-----~-----~-----~-----~-----~----~------~

.TATU5 1 STOP or 5TART 1 written as shown I
~-----------------------------+-----T-----T-----T-----T-----T----T------~
I TCB= I I I 5 I I 1 5 I I

.-----------+-----------------------------+-----~-----~-----~-----~-----~----~------~
:TIMER I REAL, TA5K or WAIT Iwritten as shown I

~-----------------------------+-----T-----T-----T----~----~----T------~
1 timer completion exit addr 1 I I 5 I 1 5 1 5 I I

~-----------------------------+-----+-----+-----+-----+-----+----+------~
.1 BINTVL= I I I 5 I 5 I I 5 I I
~-----------------------------+-----+-----+-----+-----+-----t----t------~
I DINTVL= I 1 1 5 I 5 I 1 5 I 1

~-----------------------~-----+-----t-----+----_+-----t-----+----+------~
I MIC= I I 1 5 I 5 I I 5 I I
~-----------------------------+-----+-----+-----+-----t-----+----t------~
1 TOD= 1 liS I 5 I I 5 I I
~-----------------------------+-----+-----t-----+-----t-----+----+------~
I TUINTVL= I I I 5 I 5 I I 5 I I

.-----------+-----------------------------+-----~-----~-----~-----~-----~----~------~
~IME I DEC or BIN or TU I wri tten as shown I

~-----------------------------+---~ I MIC Iwritten as shown I

~-----------------------------+-----T-----T-----T---~----~----T------~
1 address I 1 I 5 I I 5 1 5 I 1

.-----------+-----------------------------+-----~-----~-----~-----~-----~----~------~
'TIMER I CANCEL I written as shown I

~~----------------------------+---~
I TU. or MIC Iwritten as shown I

·-----------r--------------------~--------+-----T-----T-----T-----T-----T----~-----~
fAIT I number of events I 5 I 5 I 5 1 I 5 I I I
~ITR ~-----------------------------+-----+-----+-----+-----+-----+----+------~

I ECB= 1 I 1 5 I 5 I I 5 I I
~-----------------------------+-----+-----t-----+-----+-----+----t------~
1 ECBLI5T= I I I 5 I 5 I I 5 I I

.-----------+-----------------------------+-----~-----~-----~-----~-----~----~----~
fTL I message I any message within apostrophes 1 . ___________ ~ _____________________________ L ___ J

Appendix A: Summary of Operands 187

r-------------T-----------------------------T---~-----------------------------~-----. I I I Written as
I I ~-----T-----T-----------------T----~--~
I I I I I Register I I
I I I I ~----~----~----_f I A-tYl
I Macro I I I Dec I (2- I I IRX- ladcol
I Instruction I Operands I 5ym I Dig I 12) I (1) I (~) Itypeltype
~-------------t-----------------------------+-----~-----~-----~-----~-----~----~---.
I WTO I message lany message within apostrophes
I ~-----------------------~-----+-----T-----T-----T-----T-----T----~---
I I ROUTCDE= I 15 L I I I I I
I ~-----------------------------+-----t-----t-----t-----+-----t----t----
I I DE5e= I 15 L I I I I I
~-------------t-----------------------------+-----~-----~-----~-----~-----~----~----.
I WTOR I message I any message within apostrophes
I ~-----------------------------+-----T-----T----~----~----~----T----I I reply address' I I I 5 E I I I E I 5 L
I ~-----------------------------+-----t-----t-----+-----+-----+----+----.
I I length of reply I 5 LEI 5 LEI 5 E I I I I
I ~-----------------------------+-----t-----+-----t-----+-----+----+----
I I ecb address I I I S E I I I E I 5 L
I ~-----------------------------t-----t-----+-----+-----+-----+----+_---
I I ROUTCDE= I 15 L I I I I I
I ~-----------------------------+-----t-----t-----+-----+-----+----t----
I I DE5C= I 15 L I I I I I
~-------------+-----------------------------+-----+-----+-----+-----+-----+----+----

XCTL I (reg1,reg2) I 15 E I I I I E I 5
~-----------------------------+-----+-----+-----t-----+-----+----+----
I DCB= I I I 5 E I I I E I 5 L

~-----------------------------+_----+-----t-----+-----+-----+----+----
I DE= I I I 5 E I I I E I 5 L
~-----------------------------+_----+-----+-----+-----t-----+----t----
I EP= 15 L EI I I I I I
t-;;~~~----------------------t-----t---~-t-~-;-t-----t-----t--~-t-;-l
~-----------------------------+-----+-----+-----t-----+-----+----+----
I HIARCHY= I 15 LEI I I I I
~-----------------------------t-----+-----+-----+-----+-----+----+----
I PARAM= I I I E I I I E I L _____________ ~ ____________________________ ~ ____ ~ _____ ~ _____ ~ _____ ~ _____ ~ ____ ~ ___ _

188

APPENDIX B: MACRO INSTRUCTIONS

Explanation of style
Footnotes:

Words in all capitals are coded as shown; appropriate values are
to be substituted for words in lower case. letters. Shaded
operands may only be used in a VS2 system. Brackets, [] ,
enclose operands that may be used or omitted as required;
stacking within braces, { }, is used to indicate a choice of
operands or values. Underlining, _, indicates a default value.

* In full-word on full-word boundary
** In double-word on double-word boundary
+ Left justified in double-word on byte boundary
o Multiple of eight; value given in bytes

I LOAD MODULE CONTROL I
Pass control
and initiate
execution

CALL entry point name [,(address parameter [,address parameter] ...) [,VL]]

Dynamically
load and
initiate
execution

Transfer
control

Dynam ically
load

Delete

Identify
embedded
entry point

Load
overlay
segment

LINK

XCTL

LOAD

DELETE

IDENTIPY

SEGWT

[,10=0 to 65535]

~
EP=entry point name ' f
EPLOC=address of entry point name+ [,DCB=dcb address]
DE=address of list entry

[,PARAM=(address parameter [, address parameter] ...) [,VL=1]]

[,10=0 to 65535]

~
EP=entry point name f

[(register (s) 2-12) 1, EPLOC=address of entry point name+
DE=address of list entry

[,OGB=dcb address]

~
EP= entry point name f
EPLOC=address of entry point name+ [,DCB=dcb address]
OE=address of list entry

~
EP=entry point name ~
EPLOC=address of entry point name+
OE=address of list entry

{
EP=entry point name } ,ENTRY=entry point address
EPLOC=address of entry point name+

external segment name

Appendix B: Macro Instructions 189

ISYNCHRONIZATION I
Wait for
event

Wait for event
while lower
priority task
is executed

Post event
completion

Request
control of
serially
reusable
resource

Release
serially
reusable
resource

Set interval
timer

Test interval
timer

WAIT

WAITR

POST

ENO

DEO

STIMER

TTIMER

[number of events,] j ECB=ecb address t
1 ECBLlST=address of list of ecb addresses* ~

[number of events,] j ECB=ecb address t
1 ECBLlST=address of list of ecb addresses* ~

ecb address [,0 to 16,777,215]

(qname address,rname address{~} [rname length]

[

,R ET=TEST]
,RET=USE
,RET=HAVE
,RET=CHNG

,[SYSTEM] , ...)
STEP

(qname address,rname address, [rname length] ,[STEP], ...)

[,RET=HAVE] SYSTEM

E means exclusive control t default is E
S means shared control ~

SYSTEM means resource used by more than one job
STEP means resource used by issu ing job

~
REAL, [address of interval end routine] ~
TASK, [address of interval end routine]
WAIT

,DINTVL=address of decimal interval**
,BI NTVL=address of binary interval in seconds*
.,TUINTVL=address of binary interval in timer units*
,TOD=addr.e.ss of time-of-day of interval end**

[CANCEL]

TIME AND TIME INTERVALS FOR TIME, TTIMER, AND STIMER

Decimal (DEC and DINTVL operands);

190

Eight packed decimal digits in format HHMMSSth
HH = hours in 24-hour clock
MM = minutes
SS - seconds
t = tenths of seconds
h = hundredths of seconds

Binary in seconds (BIN or BINTVL operands):
Unsigned 32-bit binary number in a full-word on full-word
bound~ry; least significant bit has a value of 0.01 second

Binary in timer units (TU or TUINTVL operands):
Unsigned 32·bit binary number in a full-word on full-word
boundary; least significant bit has a value of 1 timer unit
(1 timer unit = 26 micro-seconds)

Binary in microseconds (MIC operand):
Unsigned 64-bit binary number in a double-word on a
double-word boundary. Bit 51 is the low order digit of
the interval value.

I PROGRAM INTERRUPTION CONTROL I
Enable and
disable
program
interruptions
and transfer
control to
interruption
exit routine

SPIE [interruption exit routine address]

[,(interruption type [,interruption type] ...)]

INTERRUPTION TYPES FOR SPIE

Type Meaning Maskable : Type Meaning Maskable I Type Meaning Maskable --
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing

CONTROL BLOCKS

Event control block (ECB):

o 1 2 31 bits
Ir,-w""Tl-c-'l--po-S-T-C-O-D-E

W = wait flag
C = completion flag

1--

No I 6 Specification No I 11 Decimal divide No
No I 7 Data No I 12 Exponent overflow No
No I 8 Fixed-point overflow Yes I 13 Exponent underflow Yes
No I 9 Fixed-point divide No I 14 Significance Yes
No I 10 Decimal overflow Yes I 15 Floating-point divide No

Program interruption control area (PICA): Program interruption element (PI E):

o
I
I pro-

0000 I gram
I mask

2 3

exit routine
address

4 5 bytes

interruption
mask

o 2 3 bytes

I PI CA address o
4
8

Old Program Status Word

12
16
20

after interruption
Register 14
Register 15
Register 0

24 Register 1
28 Register 2

bytes

Appendix B: Macro Instructions 191

I GENERAL SERVICES I
Delete
message(s)
from
display

Write to
operator

Write to
operator
and wait
for reply

Write to
log

Divide
extended
precision
floating
point numbers

Get time
and date

DOM

WTO

WTOR

WTL

DXR

TIME

{

MSG=register containing 24-bit, right~justifiedmessage number }
MSG LlST=address of list of fullwords, each a 24-bit, right-justified.

identification number of message to be deleted

[DESC=message descriptor code(s)]

'message' ,address of reply area,length of replY,ecb address

[,ROUTCDE=(number [,numberl 'oo.)] [,DESC=message descriptor code(s)]

'message'

register containing dividend,register containing divisor

Only registers 0 and 4 can be used;
they may be specified in either order.

[

DEC] BIN

~Yc,address
TIME AND TIME INTERVALS FOR TIME, TTIMER, AND STiMER

Decimal (DEC and DINTVL operands):
Eight packed decimal digits in format HHMMSSth

HH = hours in 24-hour clock
MM = minutes
SS = seconds
t = tenths of seconds
h = hundredths of seconds

Binary in seconds (BIN or BINTVL operands):
Unsigned 32~bit binary number in a full-word on full
word boundary; least significant bit has a value of
0.01 second

Binary in timer units (TU or TUINTVL operands):
Unsigned 32-bit binary number in a full-word on full
word boundary; least significant bit has a value of 1
timer unit (1 timer unit = 26 micro-seconds)

Binary in microseconds (MIC operand):
Unsigned 64-bit binary number in a double-word on a
double-word boundary. Bit 51 is the low order digit
of the interval value.

Save
register
contents

SAVE (register(s) 14 through 12) [,T] [,identifier]

192

In SAve, T means: save

registers 14 and 15.

(

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

I GENERAL SERVICES I
Dump
storage
and continue

Record
trace data

SNAP

GTRACE

I TERMINATION I
Terminate
normally

Terminate
abnormally

RETURN

ABEND

DCB=address of data control block [,TCB=address of TCB address*]

[,10=1 to 127]

[,SDATA=(1 ~~~! [:~~~l"')]
CB ,CB

,0 ,0

ALL
PSW
REGS

,ALL
,PSW
,REGS

[,PDATA=(SA or SAH ,SA or ,SAH ...)]

SNAP

ALL =

NUC =

TRT =

CB =

SNAP

ALL =

PSW =

REGS =

SA =

SAH =

JPA =

LPA =

ALLPA =

SPLS =

JPA or LPA or ALLPA
SPLS

SDATA VALUES
all of the following fields
all of nucleus except trace table
trace table

,JPA or ,LPA or ,ALLPA
,SPLS

TCB, active RBs, JPACO, and MSS control blocks

PDATA VALUES
all of the following fields (assume SA and ALLPA)
Program Status Word when SNAP was issued
contents of general registers when SNAP was issued
linkage information and back trace
linkage information only
all virtual storage assigned to job step
contents of resident reenterable load module
JPA + LPA
contents of virtual storage subpools 0 - 127

[
,STORAGE = (starting address, ending address, ...)]
,LIST = address of list

DATA=address,LNG-number of bytes of data,l D=record 10

[,F I D=format identifier routine]

[(register(s) 14 through 12)] [,T] [j,RC=Ot04095 l J
I,RC=(15) 5

In RETURN, T means: place all ones
in high-order byte of save area word 4.

o to 4095, [DUMP] [,STEP]

Ap~endix B: Macro Instructions 193

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

I TASK CONTROL I
Dynamically
load and
initiate
execution

Delete

Change
priority

194

ATTACH

DETACH

CHAP

1
EP=entry point name f
EPLOC=address of entry point name + [,DCB=dcb address]
DE=address of name field of list entry

[,PARAM=(address parameter [,address parameter] .. .) [,VL--: 11]

[,ECB=ecb address] [,ETXR=-"address of routine to be entered when]
su btask term i nates

[,LPMOD-::::number subtracted from limit priority]

[,DPMOD=signed number algebraically added to dispatching priority]

[,TQE= {YES}]
1\]0

[,FPREGSA= { ~~S}]

address of tcb address *

VSl only

signed number to be algebraically added to dispatching priority

[
,address of tcb addreSS] r---------------,
,'_S'

'S' indicates that the priority of the
active task is to be changed.

I VIRTUAL STORAGE ALLOCATION I
Allocate
storage

Release
storage

Release
virtual
storage

GETMAIN

GETMAIN

FREEMAIN

FREEMAIN

R,LV=length O [,SP=O to 127]

~ ~~ ~ ,L V=lengtho

~ ~~ f ,LA=address of lengthO list
,A=address of specification list

[,SP=O to 127] [,BNDRY= {DBLWD}]
PAGE

R,LV=length O ,A=address of storage area address* list [,SP=O to 127]

~'LV=lengthO} ,A=address of storage area address' list I,SP=O to 127]

MODE OPERANDS FOR GETMAIN AND FREEMAIN

R=register type
E=single area, fixed length
V=single area, variable length
L=virtual area(s), variable length(s)
U=unconditional
C =conditiona I

PGRLSE LA=low address of area,HA=high address+1 of area

Appendix B: Macro Instructions 195

I

\

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

APPENDIX C: MESSAGE ROUTING FOR MULTIPLE OPERATOR CONSOLES

ROUTING CODES

Routing codes provide the mechanism to route WTO and WTOR messages to
the locations where they are needed. They indicate the functional area
or areas to which a message is to be sent. If no routing code is
assigned, default is to routing as if Master Console Information. These
codes are not printed or displayed as part of the message text. To use
routing codes effectively, the system Rust have the Multiple Console
Support (MCS) option included at system generation. Without the MCS
option, all routing codes are assigned to the one active console, except
when routing code 11 is used to obtain a Write-to-Programmer message in
the message output class.

Routing codes and their definitions are:

Code
-1-

Description
MASTER CONSOLE. This routing code is for messages that must be
sent to the master console because some action is required by the
master console operator, or because the message contains informa
tion considered critical to the continued operation of the sys
tem. Keep the number of messages with this attribute to a
minimum.

2 MASTER CONSOLE INFORMATIONAL. This routing code is for informa
tional messages to the master console operator. Informational
messages usually require no action from the operator. If they
do, that action should be at the operator's discretion.

3 TAPE POOL. See routing code 4.

4 DIRECT ACCESS POOL. The tape pool and direct access pool routing
codes are for messages that contain instructions for volume
handling in the tape and disk areas. Messages about error condi
tions which occur as a result of the operation of these devices
may also be assigned one of these routing codes.

5 TAPE LIBRARY. See routing code 6.

6 DISK LIBRARY. The tape library and disk library routing codes
are used for any message that specifies tape library information
or disk library information.

7 UNIT RECORD POOL. This routing code is for messages about prin
ters, punches, and card readers. Send the following classes of
information to this pool:

• Types of printer chains or trains required.

• Carriage control tapes required.

• Types of forms or cards required.

• Error conditions on unit record equipment.

8 TELEPROCESSING CONTROL. Use this routing code for messages
relating to teleprocessing.

9 SYSTEM SECURITY. Use this routing code for messages of interest
to the system security office (such as password messages).

Appendix C: Message Routing for Multiple Operator Consoles 197

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

10 SYSTEM/ERROR MAINTENANCE. Use this routing code for any message
indicating system errors or incorrectable I/O errors, and for any
message associated with system maintenance.

11 PROGRAMMER INFORMATION. Use this routing code for messages of
interest to the programmer. The message is included in the mes
sage class for the job and written on the system output device.

12 EMULATOR INFORMATION. This routing is for messages issued by an
emulator program.

13 USER ROUTING CODE. Available for customer usage.

14 USER ROUTING CODE. Available for customer usage.

15 USER ROUTING CODE. Available for customer usage.

16 RESERVED FOR FUTURE USE.

DESCRIPTOR CODES

Descriptor codes functionally classify WTO and WTOR messages so that
they may be properly presented on all consoles and deleted from display
type consoles. Each WTO and WTOR message should contain one descriptor
code. If no descriptor code is coded in the WTO or WTOR, no descriptor

I code is assumed. Descriptor codes 1 through 7 are mutually exclusive.
Descriptor codes 8 and 9, however, may be u. sed with any other descriptor
code. These codes are not printed or displayed as part of the message
text. To use descriptor codes (except codes 1 and 2), the system must
have the Multiple Console Support (MCS) option included at system
generation.

Descriptor codes and their definitions are:

Code
1

2

3

4

5

6

198

.Description
SYSTEM FAILURE. This descriptor code is for messages that indic
ate that a catastrophic error has occurred and another IPL of the
system is required.

IMMEDIATE ACTION REQUIRED. This descriptor code is for messages
that request an immediate operator action (completion of the
action is required before a task can proceed). Messages with
descriptor code 2 must be deleted by a Delete Operator Message
(DOM) macro instruction when the operator action has been accomp
lished, or the operator will have to perform the action to delete
the messages.

EVENTUAL ACTION REQUIRED. This descriptor code is for messages
requesting operator action where a task does not await completion
of the action.

SYSTEM STATUS. This descriptor code is for messages that indic
ate the status of the system, such as system task status or a
hardware unit status such as uncorrectable I/O errors.

IMMEDIATE COMMAND RESPONSE. This descriptor code is for error
and nonerror messages that are written as a direct result of an
operator or system command.

JOB STATUS. This descriptor code is for messages that indicate
the status of a job or job step.

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

7 APPLICATION PROGRAM/PROCESSOR. This descriptor code is for mes
sages issued by problem programs or by processors executed as
problem programs. This descriptor code is the End-of-Step mes
sage deletion indicator, and all messages with this code are
deleted when the job step in which they were issued is
terminated.

8 OUT-OF-LINE NESSAGE. This descriptor code is used for one mes
sage or a group of one or more ~essages that is to be displayed
out of line. If the device supfort cannot print a message out of
line, the code will be ignored and the message will be printed in
line with other messages.

9 RESPONSE TO OPERATOR REQUEST (MLWTO). This code specifies that
the multiple line message is a response to an operator's request
for information via the DISPLAY or MONITOR command. Specifying
code 9 with a multiple line WTO will cause an MLWTO identifica
tion number to be put in the control line of the message so that
the message may be canceled. If a control line does not exist,
the system will provide one as follows:

IEE932I nnn

where nnn is the identification number.

10-16 RESERVEL FOR FUTURE USE.

OPERANDS FOR USE BY THE SYSTEM PROGRAMMER (VS1)

For a description of the system programmer WTO operands in VS2, see
the publication OS/vS2 Planning and Use Guide.

The WTO and WTOR macro instructions have two special operands, the
MSGTYP and MCSFLAG operands. These operands should be used only by the
system programmer who is thoroughly familiar with the Multiple Console
Support (MCS) Communications Task, since improper use of these operands
can impede the entire message routing scheme. These operands set flags
to indicate that certain system functions must be performed, or that a
certain type of information is being presented by the WTO or WTOR.

The MSGTYP and MCSFLAG operands may be specified on either the stan
dard or list form of the WTO and WTOR macro instruction. The standard
form of the WTO macro instruction is shown below.

r---------~-----T--,
I [symbol] I WTO I {' message' } I
I I I ('text' [,line type]),... I
I I I [,ROUTCDE=(number[,number], •••)] I
I I I [, DESC=numberl I
I I I N I
I I I [, MSGTYP= Y] I
I I I JOBNAMES I
I I I STATUS I
I I I ACTIVE I
I I I [,MCSFLAG= (name [, name ••• 1) I L __________ ~ _____ ~ __ J

, message'
specifies that the message text is to be placed between the first
and second apostrophes.

[] indicates optional name or operand; select one from vertical stack
within { }.

Appendix C: Message Routing for Multiple Operator Consoles 199

page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

ROUTCDE=
specifies the routing codes to be assigned to the message.

DESC=
specifies the descriptor codes to be assigned to the message.

MSGTYP=JOBNAMES or MSGTYP=STATUS
specifies that the message is to be routed to the console which
issued the DISPLAY JOBNAMES or DISPLAY STATUS command, respective
ly. When the message type is identified by the operating system,
the message will be routed to only those consoles that had
requested the information. Omission of the MSGTYP parameter causes
the message to be routed as specified in the ROUTCDE parameter.

I
MSGTYP=ACTIVE

specifies that the multiple-line message is in response to a MON
ITOR A (MN A) command and should ce routed to the console that
issued the command.

MSGTYP=Y or MSGTYP=N
specifies that two bytes are to be reserved in the WTO or WTOR
macro expansion so that flags can be set to describe what MSGTYP
functions are desired. Y specifies that two bytes of zeros are to
be included in the macro expansion at displacement WTO + 4 + the
total length of the message text, descriptor code, and routing code
fields. N, or omission of the MSGTYP parameter, specifies that the
two bytes are not needed, and that the message is to be routed as
specified in the ROUTCDE parameter. If an invalid MSGTYP value is
encountered, a value of N is assuffied, and a diagnostic message is
produced (severity code of 8).

When MSGTYP=Y, the issuer of the WTO or WTOR macro instruction that
contains the MSGTYP information must set the appropriate message
identifier bit in the MSGTYP field of the macro expansion (see
Figure 60). Prior to executing the WTO or WTOR SVC (SVC 35), he
must also set byte 0 of the MCSFLAG field in the macro expansion to
a value of X'lO'. This value indicates that the MSGTYP field is to
be used.for the message routing criteria. When the message type is
identified by the system, the message is routed to all consoles
that had requested that particular type of information. Routing
codes, if present, are ignored.

r-----T--------------------------------,
I Bit I Meaning I
~-----+--------------------------------~
I 0 I DISPLAY JOBNAMES I
~-----+--------~-----------------------~
I 1 I DISPLAY STATUS I
~-----+--------------------------------~
I 2-151 Reserved for system use. I
I I Must be zeros. I L _____ ~ ________________________________ J

Figure 60. Bit definition for MSGTYP=Y

MCSFLAG
specifies that the reacro expansion should set bits in the MCSFLAG
field as indicated by each name ceded. Names and their correspond
ing bit settings are shown in Figure 61.

ROUTCDE, DESC, and MSGTYP parameter comrinations are shown in Figure
62. Coding of anyone of the four keyword parameters (ROUTCDE, DESC,
MSGTYP, MCSFLAG) causes a new format WTO or WTOR to be generated.

200

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

r--------T-------T--,
I Name I Bit I Meaning I
.--------+-------+--~
I ---- I 0 I I

~--------+-------+--~
I REGO I 1 I Message is to be queued to the console I
I I I whose source ID is passed in Register O. I
~--------+-------+--~
I RESP I 2 I The WTO is an immediate command response. I
.--------+-------+--~-~
I ---- I 3 I I
~--------+-------+--~
I REPLY I 4 I The WTO macro instruction is a reply to a I
I I I WTOR macro instruction I
~--------+-------+--~
I BRDCST I 5 I Message should be troadcast to all active I
I I I consoles. I

~--------+-------+--~
I HRDCPY I 6 I Message queued for hard copy only. I

.--------+-------+--~
I QREGO I 7 I Message is to be queued unconditionally to I
I I I the console whose source ID is passed in I
I I I Register O. I
~--------+-------+--~
I NOTIME I 8 I Time is not ap~ended to the message. I

.--------+-------+--~
I ---- I 9 I MLWTO indicator. I
~--------+-------+--~
I ---- I 10-12 I I
.--------+-------+--~
I NOCPY I 13 I Protect key 0 user only. I
~--------+-------+--~
I ---- I 14-15 I I
.--------~-------~--~
I Note: Invalid specifications are ignored and produce an I
I appropriate error message. I L ___ J

Figure 61. MCSFLAG parameters

Appendix C: Message Routing for Multiple Operator Consoles 201

Page of GC27-6979-1, Issued January 3, 1973 by TNL GN27-1400

r---r---------------------------------------TT---,
I I Parameter Coded I I Expansion Generates I
r---+---------T---------T--------T----------++---------------T---------------T-------------T--------------~
I No. I ROUTCDE I DESC I MSGTYP I MCSFLAG II ROUTCDE I DESC I MSGTYP I MC SF LAG I
.---+---------+---------+--------+----------++---------------+---------------+-------------+-------------~
11 ISpecifiedlSpecifiedl Y I Optional I I Codes Specified I Codes Specified I Zeros lAs Specified# I
I 2 I Specified I Specified I N I Optional I I Codes SpecifiedlCodes SpecifiedlField OmittedlAs Specified# I
I 3 ISpecifiedl Specified I JOBNAMES I Optional I I Codes Specified I Codes Specified I X'SOOO' lAs Specified# I
I 4 ISpecifiedlspecifiedl STATUS I Optional I I Codes Specified I Codes Specified I X'4000' lAS Specified# I
I 5 I Specified I Specified I Omitted I Optional I I Codes SpecifiedlCodes SpecifiedlField OmittedlAs Specified# I
.---+---------+---------+--------+----------++---------------+---------------+-------------+--------------~
I 6 I Specified I Omitted I Y I Optional I I Codes Specified I Zeros I Zeros lAS Specified# I
I 7 I Specified I omitted I N I Optional I I Codes Specified I Zeros IField OmittedlAs Specified# I
I S I Specified I Omitted I JOBNAMESI Optional I I Codes Specified I Zeros I X'SOOO' lAS Specified# I
I 9 I Specified I omitted I STATUS I Optional I I Codes Specified I Zeros I X'4000' lAs Specified# I
110 I Specified I Omitted I omitted I Optional I Icodes specified I Zeros IField OmittedlAs Specified# I
r---+---------+---------+--------+----------++---------------+---------------+-------------+--------------~
111 I Omitted I Specified I Y I Omitted* I I Routing Code 2 ICodes Specified I Zeros I X'SOOO' I
112 I Omitted I Specified I N I Omitted* I I Routing Code 2 ICodes SpecifiedlField Omitted I X'SOOO' I
113 I Omitted I Specified I JOB NAMES I Omitted* I I Routing Code 2 ICodes Specified I X'SOOO' I X'SOOO' I
114 I Omitted I Specified I STATUS IOmitted* I I Routing Code 2 ICodes Specified I X'4000' I X'SOOO' I
115 I Omitted I Specified I omitted I Omitted* I I Routing Code 2 Icodes SpecifiedlField Omitted I X'SOOO' I
.---+---------+---------+--------+----------++---------------+---------------+-------------+-------------~
116 I Omitted I Specified I Y I REGO/QREGO I I Zeros ICodes Specified I Zeros lAs Specified# I
117 I Omitted I specified I N IREGO/QREGOI I Zeros ICodes SpecifiedlField OmittedlAs Specified# I
11S I Omitted I Specified I JOBNAMES I REGO/QREGO I I Zeros ICodes Specified I X'SOOO' lAS Specified# I
119 I Omitted I Specified I STATUS IREGO/QREGOI I Zeros ICodes Specified I X'4000' lAs Specified# I
120 I Omitted I Specified I OmittedIREGO/QREGOI I Zeros ICodes SpecifiedlField OmittedlAs Specified# I
.---+---------+---------+--------+----------++---------------+---------------+-------------+-------------~
121 I Omitted I omitted I Y I Omitted* I I Routing Code 2 I Zeros I Zeros I X'SOOO' I
122 I Omitted I Omitted I N I Omitted* I I Routing Code 2 I Zeros IField Omitted I X'SOOO' I
123 1 Omitted 1 Omitted I JOBNAMESI Omitted* I I Routing Code 2 I Zeros I X'SOOO' I X'SOOO' I
124 I Omitted I Omitted I STATUS I Omitted* I 1 Routing Code 2 I Zeros I X'4000' I X'SOOO' I
125 I Omitted I Omitted I omitted I Omitted* I IField Omitted IField Omitted IField Omitted I Zeros I
.---+---------+---------+--------+----------++---------------+---------------+-------------+--------------i
126 I Omitted I Omitted I Y IREGO/QREGOI I Zeros I Zeros I Zeros lAs Specified# I
127 I Omitted I Omitted I N IREGO/QREGOII Zeros I Zeros IField OmittedlAs Specified# I
12S I Omitted I omitted IJOBNAMESIREGO/QREGOII Zeros I Zeros I X'SOOO' lAs Specified# I
129 I Omitted I omitted I STATUS I REGO/QREGO I 1 Zeros I Zeros I X'4000' lAS Specified# I
130 1 Omitted I Omitted I OmittedIREGO/QREGOI I Zeros I Zeros IField OmittedlAs Specified# I
.---~---------~---------~--------~----------~~---------------~---------------~-------------~--------------~
1* If an MCSFLAG other than REGO or QREGO is specified, the expansion generates the same fields except I
I that the MCSFLAG field contains the MCSFLAG specified and the high-order bit set to 1. I
1# High order bit set to 1 to indicate a new format macro expansion (routing code and descriptor code I
1 fields exist). I L ___ J

Figure 62. ROUTCDE, DESC, and MSGTYP combinations

202

Indexes to systems reference manuals are
:onsolidated in OS/VS Master Index, GC28-
602. For additional information about any
,ubject listed below, refer to other publi
:ations listed for the salue subject in the
laster index.

,-type ADCON 79
.BEND 82,83

use of 48
.bnormal condition handling 47-50
.bnormal termination 49-51,82

control program functions 49,50
dump 50,51
job step not terminated 50
job step terminated 50

Lbnormally terminate a task (ABEND) 83
Lctive task 12
~DCON 79
Ldd an entry point (IDENTIFY) 126
Ldditional entry points 37
Llias names

in ATTACH 84,81
in LINK 127
in LOAD 132
in XCTL 178

Lllocate main storage (GETMAIN) 117
lllocation of virtual storage 117
tnswer area 21
lsynchronous exit routines (see exit
routines)
lsynchronous interrupt processing (see
interrupt processing)
ITLAS (see Planning and Use Guide)
~TTACH

execute form 92,93
list form 91
standard form 84,87

with CALL 96
with DETACH 104,105
with IDENTIFY 84,87,126

use of 10-12,15
lvoiding interlock 43,44

~LDL macro instruction
with ATTACH 84,81
with LINK 121
with LOAD 132
use of 28,31,32

)oundary, page 9
)ring load module into virtual storage

(LOAD) 132
~SAM, with SNAP 140
3TAM, with ECB 159

~ALL

execute form 97
list form 96
standard form 94,95

use of 21,22,33
called pro9ram 3
calling program 3
CANCEL, with TTIMER 156
CATALOG (see Planning and Use Guide)
cathode-ray tube display 75
change dispatching priority (CHAP) 98
change subtask status (STATUS) 150
CHAP 98

use of 12
characteristics, summary of VS2 2
CIRB (see Planning and Use Guide)
code

completion
in ABEND 82
in ATTACH 85
in ECB operand 85
in POST 136

descriptor 12
return 7,8

f rom DELETE 99
from DEQ 101
in ECB operand 85
from ENQ 108
from GETMAIN 118
from IDENTIFY 126
from SNAP 140

routing 72
coding aids 18
communications

subtask 14-16
task 14-16

completion code (see code)
conditional requests

from DEQ 100
from ENQ 108
from GETMAIN 111
to release resource control 100
for resource control 108
for virtual storage 117

console, operator's 71,72
continuation lines 79
control

exclusive 40
passing of

with ATTACH 84,81
with CALL 94
with LINK 127
with XCTL 118

releasing of, with DELETE 99
requesting of, with ENQ 108

after ATTACH 84,87
after CALL 94
after LINK 121

returning, with RETURN 22,131
shared requests for 40

conventions
linkage 3,18
system 18

count, responsibility 60-62
decreasing, with DELETE 99
increasing, with LOAD 132

INDEX

Index 203

create a new task with ATTACH 84,81
creating a subpool 58
CRT display 15
CVT (see Planning and Use Guide)

data control block
with LOAD 132
with SNAP 140

data definition (see DD statement)
date and time 63,154
DCB

with LOAD 132
with SNAP 140

DD statement
with GTRACE 122
with SNAP 140
SYSABEND 84
SYSUDUMP 84

DEC DIG 19
DELETE 99

with LOAD 132
use of 60,62

delete
operator message 106
subtask 104,105

deletion of messages 15
DEQ

execute form 102
list form 103
standard form 100
use of 41-43

descriptor codes 12
design techniques 8,9
DETACH 104,105

use of 15
dispatching priority 10-12

with ATTACH 84,81
with CHAP 98

divide extended register (DXR) 101
DOM 106

use of 15
DPRTY parameter 11
dump

with ABEND 50,51,82
abnormal termination 50,51
indicative 51
with SNAP 50,51
SVC 50,51

dump virtual storage and continue
(SNAP) 140

dumping services 50
duplicate names 10
DXR 107

use of 65-11

ECB (see event control block)
efficient deSign for paging, techniques
for 8

emulator message routing 198
end-of-task exit routines (see exit
routines)

ENQ

204

execute form 112
list form 111
standard form 108-110
use of 33,41-43

ENTRY instruction 20
entry name on EXEC statement 25
entry points

additional 31,126
in IDENTIFY 126
in LINK 121
in LOAD 132
in XCTL 118

calling sequence identifiers 31
name

in ATTACH 84,81
in CALL 94
in DELETE 99
in IDENTIFY 126
in LINK 121
in LOAD 132
in SEGWT 139
in XCTL 118

EOV (see Planning and Use Guide)
event completion 136
event control block (ECB) 38,158,159

with ABEND 82
with ATTACH 15,16,85
with POST 136
with WAIT 158,159

exclusive reference 108
exclusive requests 40
EXEC statement 3,4

PARM field of 3,4
with STIMER 152

execute form of macro instruction 60
execution

parallel 18
serial 18

existing copy
use of 28,30

exit routines
asynchronous

with CALL 94
with IDENTIFY 126
with SEGWT 139

end-of-task (ETXR)
wi th ABEND 82
with ATTACH 85
with SPIE 145-141

extended-precision floating-point
simulation 65-10

EXTRACT (see Planning and Use Guide)

FREE MAIN 113-116
execute form 116
list form 115
standard form 113,114
use of 53,55

generalized trace facility 15,16,122
GETMAIN 111-121

execute form 121
list form 120
standard form 111,118
use of 53,54

GTF 15,122
GTRACE 122-125

execute form 125
list form 124

standard form 122,123
use of 75,76

hard-copy log"writing to 73,74

identification number, message 72
identifier, calling sequence

in CALL 94
IDENTIFY 126

with ATTACH 84,87,126
with LINK 126
with LOAD 126
with XCTL 126
use of 37

indicative dump 51
interlock condition 43,44

avoiding 43,44
interrupt processing 45

asynchronous
with ATTACH 84,87

masking
with'SPIE 145
with XCTL 178

types 146
interval timer 63,64

set 151
test 156

JOB statement
with CHAP 98

job step 10
job, step task 10
job step termination 82

libraries 25,26
job 25
link 25
private 25,26
step 25

limit priority 10-12
with ATTACH 86
with CHAP 98

LINK 127-131
with CALL 96
execute form 130,131
with IDENTIFY 126
list form 129
standard form 127,128
use of 10,31,32

linkage editor 17
list form of macro instructions 60
LOAD 132

with DELETE 99
with IDENTIFY 126
use of 30,31

load module 17
characteristics 17
execution

with ATTACH 84,87
with CALL 94
with LINK 127

names 18
structures 17

dynamic 17

planned overlay 17
simple 17

load overlay segment and wait (SEGWT) 139
loading registers 19
log

hard-copy 73,74
system 74,75
with WTL 161
with 'WTOR 174

macro formats 78
macro instructions

execute form 60
list form 60

masking program interruptions
with SPIE 145
with XCTL 178

master console information 197
MCS (see multiple console support)
MCSFLAG 199-201
member name

in ATTACH 84,87
in LINK 127
in LOAD 132
in XCTL 178

message
action 72

with WTO 164,168,169
with WTOR 173,174

deletion 75
routing 72,197,198
to log 161
to operator 71,72

with reply 72
to programmer 73

with DOM 106
with WTL 161
with WTO 164,168,169
with WTOR 173,174

microseconds, time of day returned in 63
minimizing paging 8
MODEST (see Planning and Use Guide)
module

reenterable 33
serially reusable 33

MSGCLASS parameter of JOa statement 73
MSGTYP 199-201
multiply console support (MCS) 72,197

routing codes 72,197,198
with WTO 168,169
with WTOR 174

new line control character 72
with WTO 164,168,169
with WTOR 173,174

nonoverlay segment 94
non-reenterable load modules 61,62

old program status word (OPSW) 46,47
OPEN, with SNAP 46,47,140
operands

for system programmers 199~201

summary 183-188
operator message 71,72

Index 205

with DOM 106
with WTL 161
with WTO 164,168,169
with WTOR 173,174

OPSW 46,47,146
options, control program 2
originating task 10,84,87
overlay segment 94

with CALL 94
with SEGWT 139

owned subpools 57

pack, job 25
page 8
page boundary 9
paging 8
paging rate 8
parallel execution 10,18
parameter

list 7,8,21
passing 19,21

with ATTACH 84,87
with CALL 94
with LINK 127

partition 14
passing control 7,8,18-36

with CALL 94
called program 7,8
calling program 7,8
conventions 7,8
in a dynamic structure 25-36
with return 19,20
without return 18,19
in a simple structure 18-23

PGRSLE 133-135
execute form 135
list form 134
standard form 133
use of 55

PICA 45,46
PIE 46,146
POINT, use of 56
POST 136

use of 38
with WAIT 157

predecessor task 14,15
priority

actual 10
altering 11,12
dispatching 10,11

with ATTACH 84,87
with CHAP 98

job 11
job step task 11
limit 10-12

with ATTACH 84,87
with CHAP 98

task 10-12
problem program parameter list 77
program interruption

control 45
control area 45,46
element 46
types 45,46

programmer message routing 198
provide time and date (TIME) 154
PURGE (see Planning and Use Guide)

206

qname rname list 41,108

real storage 8
real time interval 151
record, trace data 122,75
reenterable

load modules 56
macro instructions 56
modules 30,33

registers
base 6,7
calling program 4
general 3
linkage 3
parameter 3,4
restoring 6
saving 4-8,138

release
resource, with DEQ 100
storage, with FREEMAIN 113
storage, with PGRLSE 133

relinquish control of a load module
(DELETE) 99

reply, operator's 72,173,174
request

conditional (see conditional requests)
resource, with ENQ 108
storage, with GETMAIN 117

RESERVE (see Planning and Use Guide)
resident access method area 30
resident reenterable module area 30
resource

release 100
request control 108
request status 108

resources
getting control of 38-43
naming 39
serially reusable 38,39

simultaneous use of 38,39
preventing 39
testing for 39

use of 38,39
responsibility count 31,32,35,36,60-62

decreasing, with DELETE 99
increasing, with ~AD 132

RESTORE (see Planning and Use Guide)
RETURN 137

use of 23,24
return code 7,8
rname operand of ENQ., use of 39
routing codes 72
routing messages 197,198
RX-type 79

SAVE 138
use of 4

save areas 4,6,7,138
chaining 6,7
with ETXR operand 85
with FREEMAIN 113
for general registers 6,138
with GETMAIN 117
providing 6
with SAVE 138
with STIMER 151

with XCTL 178
;ecurity message routing 71,197
;egment overlay 83
;egment, VS2 8
;EGWT 139
;erial execution 18
;erially reusable module 30,33
;ervices, summary of 1
;et interval timer (STIMER) 151
;hared requests 40
;hared subpools 57
;ignal event completion (POST) 136
,MB (system message blDCk) 73
,MFWTM (see Planning and Use Guide)
,NAP 140-144

dump 50,51
execute form 144
list fonn 143
standard form 140-142
use of 50

3pecify program interruption exit
(SPIE) 145

3PIE 145
with DXR 107
execute form 149
list fonn 148
standard form 145-147
use of 45-47

STAE (see Planning and Use Guide)
STAE exit routine 48

(see also Planning and Use Guide)
STATUS 150
STIMER 151

with TTIMER 156
use of 64,65

STM (store multiple) instruction 4,6
storage

allocation, with GETMAIN 117
auxiliary 8
external page 8
free, with FREEMAIN 113
load module, with LOAD 132
real 8
release, with PGRLSE 133
virtual 8

subpool
with FREEMAIN 113
with GETMAIN 117
handling 56

subpool creation 58
subpools in task communication 59
subtask 10,84,87

creating with ATTACH 84,87
deleting with DETACH 104,105

SVC dump 50,52
SYM 79
SYNCH (see Planning and Use Guide)
system

failure 50
log 74,75

with WTL 161
with WTOR 174

message block (SMB) 73
operator communication with 71-75

task, creation 84,87
task communication, subpools in 59

task control block (TCB)
with ATTACH 84,87
with DETACH 104,105

task ownership of subpool
task priority 10
task synchronization 38
tasks

hierarchy 14-16
levels of 14-16
originating 14
predecessor 14-15
sub 14
termination 82,137
time interval 64

TeAM, with ECB 159
TCB (see task control block)
teleprocessing message routing 197
termination

abnormal 16
with ABEND 82
with ATTACH 84,87
with DEQ 100,101
with DETACH 104,105
with ENQ 108
with FREEMAIN 113
with GETMAIN 118
with LINK 127
with LoaD 132
from unreleased resources 108
with XCTL 178

normal
with RETURN 137
of subtask 84,87

test interval timer (TTIMER) 156
TESTAUTH (see Planning and Use Guide)
TIME 154,155

use of 63
time interval, expiration of 64
time of day 63
time-of-day (TOD) clock 63
time-slicing 12,14

dispatching priority 84,87
timer

get time and date 154
set timer 151
test timer 156

timing services 63
transferring subpool ownership 58
TTIMER 156

with STIMER 153
use of 64

unconditional request
for resource control 108
for virtual storage 118

unit record message routing 197
user exit routine 46,47
user message routing 198

virtual storage 8,53-62
allocation 117
management of 53-62
release 53,61,62

with ABEND 82
with DELETE 99

Index 207

with FREEMAIN 113
with PGRLSE 133

requests for 53-61
explicit 53-56
implicit 56-61

use of 53-62
V-type address constant 20
VS2, summary of characteristics 2
VS2 segment 8
VS2 subpool handling 56

WAIT 157-159
with STlMER 151
use of 38

wait condition
from ENQ 108
from STlMER 151
from WAIT 157

WAITR 160
write-to-master console 71,72,197

with WTO 168,169
with WTOR 174

write-to-operator 71-75
write-to-programmer 73

with WTO 164,168,169
with WTOR 173,174

writing the macro instructions 78,79
WTL 161-163,73

execute form 163
list form 162

208

standard form 161
WTO 164-172

with nOM 106
execute form 172
list form 171
withMCS option 16Q,165
witho·ut MCS option 168,169
MCSFLAG 199-201
MSGTYP 199-201
standard form 16Q,165,168,169
use of 72,73

WTOR 173-177
with nOM 106
execute form 177
list form 176
standard form 173-175
with MCS option 17Q,175
without MCS option 173
MCSFLAG 199-201
MSGTYP 199-201
use of 72

XCTL 178-182
with CALL 96
execute form 181,182
list form 180
standard form 178,179
use of 3Q,35
with IDENTIFY 126

o
~.

OS/VS
Supervisor Services and
Macro Instructions

GC27-6979-1

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

How did you use this publication?

o As an introduction o As a text (student)

o As a reference manual o As a text (instructor)

READER'S
COMMENT
FORM

o For another purpose (explain) __ _

Please comment on the general usefulness of the book; suggest additions, deletions, and clarifications; list
specific errors and omissions (give page numbers):

What is your occupation? __________________________________ ..;.. _____________ _

Number of latest Technical Newsletter (if any) concerning this publication: _____ --_--' __________ _

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

GC27-6979-1

Your comments, please •••

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

o
S.

I
I
I
I

Fold Fold I
.. ······ .. · ······· .. ··· .. ····· .. ·····1

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 636
Neighborhood Road
Kingston, New York 12401

First Class
Permit 40
Armonk
New York

... ~ ... ·· ········ .. ···· .. · ·1
Fold

Int.matlonal Bu.ln ••• Machin •• Corporation
Data Proc ... lng DIvI.lon
1133 W •• tch r Avenue, White Plain., New York 10804·
(U.S.A. only)

IBM World Tracie Corporation
121 United Nation. Plus, N.w York, N.w York 10017
(International)

Fold

Technical Newsletter

OS/VS
Supervisor Services and
Macro Instructions

© IBM Corp. 1972

This Newsletter No.
Date

Base Publication No.
System

Previous Newsletters

This Technical Newsletter, a part of Release 2 of VS1, provides
replacement pages for the subject publication. Pages to be
inserted and/or replaced are as follows:

Cover
1 ,2
11-12.~
71-74
83-86
91,92

97,98
139-146
165-174
183,184
193,194
197-202

A change to the text or illustrations is indicated by a vertic
al line to the left of the change.

Summary of Amendments

This Technical Newsletter documents additions provided by
release 2 of VS1. It also includes maintenance changes apply
ing to both VS1 and VS2.

Please file this cover letter at the back of the manual to pro
vide a record of changes.

GN27-1400
January 3, 1973

GC27-6979-1
OS/VS

None

IBM Corporation, Programming Publications, Dept. 636, Neighborhood Road, Kingston, N. Y. 12401

PRINTED IN U.S.A.

GC27-6979-1

Intematlonal Bualneaa Machlnea Corporation
Data Proceulng Dlvlalon
1133 Weatcheater Avenue, White Plalna, New York 10804
(U.S.A. only)

IBM World Trade Corporation
121 United Natlona Plaza, New York, New York 10017
(Intematlonal)

