
GC28-0600-2

Systems OS/VS2 Planning and Use Guide

VS2 Release 1

Second Edition (September, 1972)

This is a major revision of, and obsoletes, GC28-0600-1. Changes or additions to the text and
illustrations are indicated by a vertical bar to the left of the change.

This edition applies to release 1 of OS/VS2 and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes are continually
made to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360 and System/370
Bibliography, GA22-6822, and the current SRL Newsletter, GN20-0360, for the
editions that are applicable and current.

Requests for copies of IBM pUblications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this pUblication. If the form
has been removed, comments may be addressed to IBM Corporation, Publications
Development, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972

This publication describes OS/VS2. The purpose of
the publication is to introduce VS2 concepts and
provide planning information for users preparing to
have VS2 installed. The publication assumes basic
knowledge of OS/MVT. (MVT is described in IBM
System/360 Operating System: MVT Guide,
GC28-6720.)

This publication is divided into the following
chapters:

• Introduction -- This chapter presents an
overview of VS2. The chapter also discusses the
advantages of a virtual storage system, the new
functions provided by VS2, and the basic
configuration and supported devices of the
system.

• System Control Program -- This chapter presents
an overview of the five major components of the
VS2 system control program: job management,
task management, input/output supervision, data
management, and recovery management. For
each item discussed, a summary of the major
changes from MVT is provided.

• Standard Support Programs -- This chapter
presents an overview of VS2 standard support
programs (such as utilities, service aids, and
linkage editor) that interact with the system
control program. For each item discussed, a
summary of the major changes from MVT is
provided.

• Options -- This chapter presents an overview of
the optional facilities that can be added to the
VS2 system during and after system generation.
For each item discussed, a summary of the
major changes from MVT is provided.

• Compatibility -- This chapter describes the
differences and incompatibilities that exist
between VS2 and MVT. Where applicable,
differences and incompatibilities that apply to
MFf and VS 1 are also discussed. The chapter
provides basic information that the user needs in
converting from MVT to VS2.

• Defining the System -- This chapter provides
preliminary planning information that the user
needs in defining his system. For example, the
chapter describes the VS2 system generation
procedures and macro instructions, and the VS2
system initialization procedures and parameters.

Preface

• Job Management and Supervisor Services for
System Programmers -- This chapter describes
how to modify, extend, or implement various
facilities of the control program. It is designed
primarily for system programmers responsible for
maintaining, updating, and extending the system
facilities.

• Supervisor Macro Instructions for System
Programmers -- This chapter describes
supervisor macro instructions and parameters
that are restricted to authorized programs,
programs executing in the supervisor state, or
programs operating under protection key zero. It
is designed primarily for system programmers
responsible for maintaining, updating, and
extending the system facilities.

• System Overview -- This chapter graphically and
concisely explains the job, task, data, and
recovery management components of the VS2
control program to both the new and the
experienced user. This chapter refers to other
IBM publications that contain detailed
infmmation suitable for the experienced user.

• Glossary -- This chapter defines new VS2 terms
used in this publication~ The chapter does not
define data processing and MVT terms
commonly in use.

The following items are described in this
publication for planning purposes only, and are not
available with the initial release of VS2:

• Dynamic support system (DSS)

• Virtual storage access method (VSAM)

Availability dates for support of the above items
may be obtained from the local IBM branch office.

Related Publications

The following publications contain general
information on OS/VS.

Introduction to Virtual Storage in System/370,
GR20-4260

This publication provides an overview of the
advantages and concepts of virtual storage
systems.

mM System/370 System Summary, GA22-7001
This publication provides an overview of the
system concepts and features of System/370,
including a discussion of the components
comprising OS/VS.

3

IBM Data Processing Glossary, GC20-1699
This publication defines terms and concepts used
in IBM publications.

OS/VSl Plannjng and Use Guide, GC24-5090
This publication describes OS /VS 1. It can assist
installation personnel in selecting and evaluating
VS 1, and can assist system programmers in
implementing, modifying, and extending the
capabilities of the VS 1 control program.

In this publication, the following publication are
referred to for more information on specific
subjects:

os TCAM Concepts and Facilities, GC30-2022

OS/VS BTAM, GC27-6980

OS/VS Checkpoint/Restart, GC26-3784

OS/VS Data Management for System Programmers,
GC28-0631

OS/VS Dynamic Support System, GC28-0640

OS/VS JCL Reference, GC28-0618

OS/VS Linkage Editor and Loader, GC26-3813

OS/VS Message Library: VS2 System Messages,
GC38-1002

OS/VS OLTEP, GC28-0636

OS/VS RDE Guide, GC28-0642

OS/VS Service Aids, GC28-0633

OS/VS Supervisor Services and Macro Instructions,
GC27-6979

OS/VS System Generation Introduction, GC26-3790

OS/VS System Management Facilities, GC3S-0004

OS/VS SYS1.LOGREC Error Recording, GC28-0638

4 OS/VS2 Planning and Use Guide

OS/VS TCAM Programmer's Guide, GC30-2034

OS/VS Virtual Storage Access Method (VSAM)
Planning Guide, GC26-3799

OS/VS Utilities, GC35-0005

OS/VS and DOS/VS Assembler Language,
GC33-4010

OS/VS2 Debugging Guide, GC28-0632

OS/VS2 System Generation Reference, GC26-3792

OS/VS2 TSO Command Language Reference,
GC28-0646

OS/VS2 TSO Guide, GC28-0644

Operator's Library: OS/VS2 Reference, GC38-0210

System/370 Program Product Language and Sort
Processors, GC28-8200

This publication also refers to the following logic
manuals:

OS/VS Graphic Access Method Logic, SY27 -7240

OS/VS I/O Supervisor Logic, SY24-3823

OS/VS Open/Close/EOV Logic, SY26-3785

OS/VS Recovery Management Support Logic,
SY27-7252

OS/VS TCAM Logic, SY30-2039

OS/VS2 IPL and NIP Logic, SY27 -7243

OS/VS2 Job Management Logic, SY28-0620

OS/VS2 Supervisor Logic, SY27 -7244

OS/VS2 System Data Areas, SY28-0606

OS/VS2 TSO Control Program Logic, SY28-0649

Contents

Introduction . . .
Virtual Storage
New Functions

Compatibility . .
Advantages of VS2 .

System Flexibility
System Throughput
Programmer Productivity
System Integrity

VS2 Overview
Address Translation
Paging
Storage Maps. . .
Storage Protection

Configuration
Basic Configuration
External Page Storage
Input/Output Devices

System Control Program
Job Management

Master Scheduler .
Initialization. .
Command Processing .

Job Scheduler
Reader/Interpreter . .
Initiator/Terminator
Output Writer . . .

Facilities
Multiple Console Support (MCS)
System Log
Hardcopy Log
Checkpoint/Restart
System Management Facilities (SMF) .
Job Step Timing . .

Task Management
Interruption Supervision
Paging Supervision . .
Task Supervision . . .
Contents Supervision .
Virtual Storage Supervision
Timer Supervision

Input/Output Supervision. . .
Starting I/O Operations ..
Terminating I/O Operations
Restarting I/O Operations .

Data Management
Standard Access Methods .

Basic Sequential Access Method (BSAM)
Queued Sequential Access Method (QSAM)
Basic Direct Access Method (BDAM)
Basic Partitioned Access Method (BP AM) .

Catalog Management
Direct Access Device Space Management (DADSM)
Input/Output Support

Open Processing
Close Processing
End-of-Volume Processing

Direct Access Volume Serial Number Verification
Recovery Management

Machine Check Handler (MCH)
Channel Check Handler (CCH).
Dynamic Device Reconfiguration (DDR)

Standard Sapport Programs. .
OS/VS2 Assembler
Linkage Editor F and Loader

11
11
15
15
17
17
17
18
18
19
19
19
20
23
24
24
24
25

29
29
29
29
30
30
30
31
31
31
32
32
32
32
33
34
34
34
35
36
36
37
37
38
38
38
39
39
39
42
42
42
42
42
43
43
43
43
43
44
44
44
45
45

47
47
48

Contents 5

Utilities.
System Utilities

IEHATLAS
IEHDASDR.
IEHINITT
IEHLIST ..
IEHMOVE .
IEHPROGM
IFHSTATR .

Data Set Utilities
IEBCOMPR
IEBCOPY
IEBDG ..
IEBEDIT .
IEBGENER
IEBISAM .
IEBPTPCH
IEBTCRIN
IEBUPDTE

Independent Utilities
IBCDASDI
IBCDMPRS .. .
ICAPRTBL .. .

Reliability, Availability, Serviceability (RAS)
Dynamic Support System (DSS)
Missing Interruption Checker .
Online Test Executive Program
Problem Determination
Service Aids . .

AMAPTFLE
AMASPZAP
AMBLIST ..
AMDPRDMP
AMDSADMP
Generalized Trace Facility (GTF)
IFCDIPOO .
IFCEREPO
IMCOSJQD

Storage Dumps

Options
Options Included During System Generation

Time Sharing Option (TSO)
Differences in TSO for VS2
Basic Preparation

Automatic Volume Recognition (AVR)
Device Independent Display Operator Console Support (DIDOCS)/
Status Display Support (SDS)
Time Slicing
Shared Direct Access Storage Devices (Shared DASD)
Alternate Path Retry (APR) . .
Reliability Data Extractor (ROE)
Track Stacking
Automatic Priority Group (APG)
Access Methods.

Telecommunications Access Method (TCAM)
Virtual Storage Access Method (VSAM)
Basic Telecommunications Access Method (BT AM)
Basic Indexed Sequential Access Method (BISAM) .
Queued Indexed Sequential Access Mehod (QISAM)
Graphics Access Method (GAM) ..

Options Included After System Generation

Compatibility.
Operator Commands . . .

MVT Commands . . .
CANCEL Command
DISPLAY Command
DUMP Command .
MODE Command .
MONITOR Command

6 OS/VS2 Planning and Use Guide

48
48
48
49
49
49
50
50
50
50
50
51
51
51
51
52
52
52
52
53
53
53
53
53
53
54
54
55
55
55
55
56
56
56
57
57
57
57
58

59
59
59
60
62
62

63
63
63
64
64
64
6-5
65
65
66
67
67
67
67
68

69
69
69
70
70
70
70
71)

MOUNT Command
SET Command
START Command
V ARY Command

TSO Commands
MODIFY Command
START Command.
Parameter Abbreviations

Job Control Language ...
JOB Statement

ADDRSPC Parameter
REGION Parameter
ROLL Parameter

EXEC Statement
ADDRSPC Parameter
REGION Parameter
ROLL Parameter

DD Statement
DCB Parameter ..
OUTUM Parameter
SEP Parameter
UNIT Parameter . .

Problem Programs
Basic and Extended Control Mode PSWs
Execute Channel Program (EXCP) Macro Instruction

Coding Guidelines
Emulators
Reassembly /Recompilation
System Data Sets

Required Libraries and Data Sets
Optional Libraries and Data Sets
Shared Data Sets

System Macro Instructions
New VS2 Macro Instructions ..
Changed MVT Macro Instructions

Major VS2-MVT Differences . .
Unsupported MVT Functions.
VS2-MVT Differences .

Major VS2-VS1 Differences
Unsupported Devices

Defining the System. .
System Generation. .

Macro Instructions
Options
Planning Considerations

System Initialization . .
SYS1.PARMUB

IBM-Supplied Lists .
User-Supplied Lists .

VS2 System Parameters
Unsupported MVT Parameters

System Restart
System Libraries
The PRESRES Volume Characteristics List

Characteristics of the PRESRES List
Writing the PRESRES Entry
Adding the List

Job Management and Supervisor Services for System Programmers
Job Classes
Job and Dispatching Priorities. . .
SYSOUT and Message Classes
Standard IBM Cataloged Procedures

SYSIN and SYSOUT Data Blocking
Cataloged Reader Procedures

RDR, RDR400, and RDR3200 . . .
EXEC Statement.
DD Statement for the Input Stream
DD Statement for the Procedure Library
DD Statement for the CPO Data Set ..

71
71
71
71
71
71
72
72
73
74
74
74
75
75
75
75
75
75
75
75
76
76
76
76
77
77
77
78
78
78
79
80
80
80
81
81
81
82
83
84

85
85
86
87
88
96
96
96
97
97

102
103
103
103
103
104
104

105
105
106
106
107
107
108
108
109
112
113
113

Contents 7

IEFREINT
EXEC Statement.
DD Statement for the Input Stream
DD Statement for the Procedure Library
DD Statement for the CPO Data Set

Cataloged Initiator Procedures
INIT

EXEC Statement.
DD Statements for the Control Volumes
DD Statements for the Dedicated Data Sets .

INITD
EXEC Statement.
DD Statements for the Dedicated Utility Data Sets
DD Statements for the LOADSET Data Set
Miscellaneous DD Statement Considerations

Cataloged Writer Procedures
WTR

EXEC Statement.
DD Statement for the Output Data Set

Job Queue Format
Logical Track Size - JOBQFMT . . .
Initiator Queue Records - JOBQLMT .

Number of Generation Data Groups
Number of Passed Data Sets
Number of I/O Devices for Passed Data Sets
Number of Volumes
Number of System Messages
Use of Automatic Restart

Write-To-Programmer Queue Records - JOBQWTP
Queue Records for Cancellation - JOBQTMT

Number of Devices .
Number of Jobs

Output Separation
Characteristics of an Output Separator

Punch-Destined Output . . 0 • • 0

Printer-Destined Output. 0 • • 0 0

Writmg an Output Separator Program 0

Parameter List . 0 0 • • • 0 • • 0

Programming Conventions
Output from the Separator Program
Using the Block Character Routine .

System Output Writer Routines ...
Characteristics of an Output Writer
Writing an Output Writer Routine

Parameter List 0 0 0 •

Programming Conventions
Processing Performed by the Output Writer

Message Routing Exit Routines 0 ••• 0 • 0 0

Characteristics of MCS 0 • • 0 • • • 0 • •

Programming Conventsions for WTO/WTOR Routines
Messages Not Using Routing Codes

Writing a WTO/WTOR Exit Routine ...
Adding a WTO/WTOR Exit Routine 0 ••

Inserting the WTO/WTOR Exit Routine
ST AE and ST AI Exit and Retry Routines 0 0 0

SYS loP ARMLIB Data Set Lists 0 • • • 0 • 0

Initialization 0 0 0 0 0 0 0 0 • • • 0 • •

Characteristics and Formats of SYS1.PARMLIB Members
Resident BLDL Lists (IEABLDOO and IEABLDxx) .
Fixed LP A Lists (IEAFIXOO and IEAFIXxx)
Modified LPA List (IEALPAxx)
System Parameter Lists (IEASYSOO and IEASYSxx)
LPA Packing List (IEAPAKOO)
LPA Directory Load List (IEALODOO)
Link Library List (LNKLSTOO)

Adding the Lists to SYS1.PARMLIB
Shared Direct Access Storage Devices (Shared DASD)

Devices That Can be Shared
Volume/Device Status.
System Configuration
Volume Handling . . .

8 OS/VS2 Planning and Use Guide

114
115
115
115
116
116
116
116
117
118
120
120
121
121
121
123
123
124
124
126
127
128
128
128
128
128
129
129
130
130
131
131
131
131
132
132
132
132
133
133
134
135
135
135
135
136
137
140
140
140
142
142
143
143
143
145
145
146
146
147
147
148
148
148
149
149
150
150
150
150
151

Macro Instructions Used with Shared DASD
Releasing Devices .
Preventing Interlocks . .
Volume Assignment .' .
Program Libraries . . .
Finding the UeB Address

The Must Complete Function .
Characteristics of the Must Complete Function
Programming Notes

Program Properties Table
Authorized Program Facility (APF)

Linkage Editor Authorization
Nonpageable Dynamic Area

Supervisor Macro Instructions for System Programmers
ATTACH.
CIRB.
DEQ .. .
ENQ .. .
EXTRACT
EXTRACT - List Form
EXTRACT - Execute Form
1M GLIB .
MODESET
PGFIX
PGFIX - Non-Standard Form .
PGFREE
PGFREE - Non-Standard Form .
PGLOAD.
QEDIT
RESERVE
STAE
ST AE - List Form .
ST AE - Execute Form
SYNCH
TESTAUTH
WTO/WTOR

System Overview
Method of Operation .
Program Organization
System Communications

System Control Blocks. .
Request Blocks
Contents Directory . .
Dynamic Area Controi
Subpool Storage Control. .
Load Module Storage Control

Glossary

151
151
151
151
152
152
155
156
157
158
158
159
159

161
161
163
164

.' 165
166
169
169
170
170
171
174
175
176
177
180
180
182
185
185
186
187
187

191
191
213
216
216
218
220
221
221
222

223

Contents 9

Figures
Figure I. Relationship Between Virtual Storage, Real Storage, and External Page Storage 12
Figure 2. MVT and VS2 Storage Overviews . 13
Figure 3. Relationship Between Virtual Storage Address Space and Available External Page Storage 14
Figure 4. Major MVT Functions Not Supported in VS2 16
Figure 5. VS2 Virtual Storage Map . . 22
Figure 6. VS2 Real Storage Map 23
Figure 7. External Page Storage Devices 25
Figure 8. VS2 Changes to Job Management 29
Figure 9. VS2 Changes to Task Management 34
Figure 10. VS2 Changes to Input/Output Supervision 38
Figure 11. VS2 Changes to Data Management 39
Figure 12. Summary of Standard VS2 Access Method Characteristics 41
Figure 13. VS2 Changes to Recovery Management. . . 44
Figure 14. VS2 Changes to Standard Support Programs 47
Figure 15. VS2 Utilities 48
Figure 16. VS2 Changes to Options. 59
Figure 17. New TSO Operator Parameters for VS2 61
Figure 18. Comparison of TSOAUX and TSOMAX Parameters 62
Figure 19. VS2 Changes to MVT Operator Commands. . . . 70
Figure 20. Parameter Abbreviations for TSO Operator Commands 73
Figure 21. VS2 Changes to Job Control Language 74
Figure 22. Emulators Supported in VS2 78
Figure 23. VSl Support of MVT Devices Not Supported in VS2. . 84
Figure 24. VS2 Options and System Generation Macro Instructions 87
Figure 25. System Planning Considerations 89
Figure 26. VS2 System Initialization Parameter Summary. 98
Figure 27. General Logic of Standard Output Writer. 138
Figure 28. Supervisor Macro Instructions for System Programmers 161
Figure 29. EXTRACT Answer Area Fields 168
Figure 30. MCSFLAG Parameters 189
Figure 31. Overview of Method of Operation Diagrams 193
Figure 32. Sequence of Operation 214
Figure 33. Description of System Control Blocks. . . . 217
Figure 34. Relationship Between System Control Blocks 218
Figure 35. Description of Request Blocks 219
Figure 36. Relationship of RBs in RB Queue 219
Figure 37. Description of Contents Directory Queues 220
Figure 38. Description of Dynamic Area Queues . 221
Figure 39. Description of Subpool Queues. 221
Figure 40. Description of Storage Control 222

Diagrams
Diagram 1. Program Structure . 194
Diagram 2. System Initialization 196
Diagram 3. Processing Input . 200
Diagram 4. Processing Jobs 202
Diagram 5. Processing Output 204
Diagram 6. Recovery Management 206
Diagram 7. TSO 208

10 OS/VS2 Planning and Use Guide

Introduction

Operating System/Virtual Storage 2 (VS2) is a compatible extension of OS/MVT
(multiprogramming with a variable number of tasks) that is specially modified to take
advantage of relocation hardware and the extended control features of System/370.

Virtual Storage

One of the primary differences between VS2 and MVT is that VS2 provides 16,777,216 bytes
of. addressable space, called virtual storage. It is addressable space that appears to the user's
program as real storage. When a user's instructions and data are ready for processing by the
CPU, they are brought into real storage locations.

When instructions and data are said to be in "virtual storage", they are actually in a portion
of auxiliary storage called external page storage. When they are needed for execution, the
instructions and data are loaded into real storage through a process called paging. The data
and instructions are contained in 4K-byte blocks of storage, called pages.

In VS2, the term real storage is used for what was called main storage in MVT; that is, real
storage is the storage of System/370 from which the central processing unit directly obtains
instructions and data, and to which it directly returns results. Instructions and data are brought
into real storage from virtual storage only when they are actually required by an executing
program, and altered instructions and data are returned to virtual storage when they are no
longer being accessed. Therefore, at any given time, real storage contains only a portion of the
total contents of virtual storage. The relationships between virtual storage, real storage, and
external page storage are illustrated in Figure 1.

The map of virtual storage in VS2 resembles that of main storage in MVT, except that the
addressable space is enlarged. Figure 2 shows the similarities. In both systems, the dynamic
area (from which regions are allocated) occupies the middle of storage, while each end is used
for programs established at IPL time. In VS2, the virtual storage areas that correspond to the
fixed areas of main storage in MVT are called the nondynamic areas.

TheoreticaUy, the size of virtuai storage is limited only by the addressing scheme of the
computing system. (In System/370, a 24-bit address is used, allowing up to 16,777,216 bytes
of addressable storage.) In reality, the size of virtual storage is limited by the amount of
auxiliary storage available in the system. This concept is illustrated in Figure 3.

Introduction 11

... -1
I I
: I
I I
I I
I I
I I
I I

Routine 1 Routine 2

Routine 4 Routine 5

I

Routine 3

Routine 6

I
I , ,
I , , ~ ___________________ J

RooHn. 1 1
Routine 6

I Rowin. 41

Job A in Virtual Storage

This is how Job A, consisting of six
routines, appears to the user. Job A is
treated as one contiguous area.

Job A in Real Storage

This is how Job A resides in real
storage. Only the pages containing
the routines currently being executed
are paged in from externa I page
storage.

Job A in External Page Storage

This is how Job A resides in external
page storage. All of job A resides in
external page swrage. Instructions
and data are paged from external
page storage as required.

Figure 1. Relationship Bl;!tween Virtual Storage, Real Storage, and External Page Storage

12 OS/VS2 Planning and Use Guide

OS/MVT
Main Storage

,...----------. HI GH

Fixed Area

Dynamic Area

Fixed Area

L.-. ______ ~ LOW

LOW, HIGH

OS/VS2
Virtual Storage

HIGH ,--------....,

Nondynamic Area

Dynamic Area

Nondynamic Area

LOW~------~

Ends of storage with low and high address.

Figure 2. MVT and VS2 Storage Overviews

Introduction 13

Real Storage External Page Storage

v~'-------~
~ Paging V

....... -
IBM 2305 Fixed Head Storage Model 2
{maximum capacity - 10.2 megabytes}

In this system, virtual storage address space is limited to less than 16 megabytes because the combined
amount of real storage and external page storage is less than 16 megabytes.

Rea I Storage

/ Paging
~

External Page Storage

.-- -:::: :::::--
~ - :::::
~ ::::::: - =::: ,/ ~ ~ :::: - =:::: ;::::-
........ - :::::

IBM 3330 Series Disk Storage
{maximum capacity - 94.1 megabytes}

In this system, the available external page storage exceeds 16 megabytes, so the amount of virtual
storage address space is limited to 16 megabytes by the 24-bit addressing scheme of the system.

Figure 3. Relationship Between Virtual Storage Address Space and Available External Page Storage

14 OS/VS2 Planning and Use Guide

New Functions

In addition to the benefits of using a virtual storage system (described in the following
section), VS2 provides new functional enhancements over MVT. They include:

• Simplified system generation in which IBM performs various functions (including installation
verification procedures) previously performed by the user.

• Additional standard facilities in VS2 that were previously optional:

Basic direct access method (BDAM)
Channel check handler (CCR)
Checkpoint/ restart
Dynamic device reconfiguration (DDR)
Hardcopy log
Job step timing
Machine check handler (MCR)
Missing interruption checker
Multiple console support (MCS)
Online test executive program (OLTEP)
PCI fetch
System log
System management facilities (SMF)
V olume statistics

• Additional parameter lists that can be specified during system generation and used at
initialization time.

• New debugging tool for authorized maintenance personnel (dynamic support system) to help
correct causes of software failures.

• New timing facilities (CPU timer and clock comparator).

• Enhanced I/O load balancing.

• New dispatching facility to provide more efficient use of CPU and I/O resources (automatic
priority group).

• Improved system security and integrity (authorized program facility, fetch protection. data
extent block validity checking, local system queue area, missing interruption· checker).

• Enlarged link pack area (fixed and pageabie) that contains reenterabie routines used
concurrently by all tasks in the system.

• Operator capability to cancel a job waiting for a region or a data set.

• New optional access method (virtual storage access method).

• Enhanced support programs (VS2 assembler, linkage editor, IEBCOPY utility program).

• Enhanced system management facilities (SMF).

Compatibility
VS2 is an extension of MVT; VSl is an extension of MFT. Although the major thrust for
compatiblility discussed in this publication is between VS2 and MVT, VS2 is also an extension
of VSl. Compatibility between MVT, MFT, VS2, and VSl is discussed in detail in the chapter
"Compatibility" .

The main compatibility objective of VS2 is that all problem programs that run under MVT
also run under VS2. In VS2, a part of virtual storage -- the nonpageable dynamic area -- was
established to accommodate those programs that can not be executed in a virtual storage
environment. Another objective is that capabilities added to VS2 not affect currently existing
interfaces between problem programs and the operating system.

Introduction 15

The known incompatibilities that do exist, and the modifications necessary to compensate
for them, are described later in this publication. The following list briefly states the
incompatibilities:

• MVT operator commands contain some new parameters, and some old parameters that
should not be specified because they specify nonsupported functions. In several cases, the
output generated by the commands has changed.

• TSO operator commands START and MODIFY contain both new parameters and changes
to the existing parameters; also, all operator parameters now contain unique abbreviations.

• Job control language (JCL) is basically unchanged, and all jobs that run in MVT can be
executed in VS2 without modification to the JCL.

• All problem programs that execute under Release 21 of MVT also execute, with no
modifications, under VS2.

• Reassembly/recompilation of programs is unnecessary except for users of TCAM message
control programs and users of programs which have unique system dependencies.

• System data sets, except for three new data sets (SYS 1.LPALIB, SYS i.PAGE, and
SYS1.DSSVM), are the same as their MVT counterparts.

• Certain major functions in MVT are not supported in VS2. See Figure 4.

MVT Function Not Supported Comparable VS2 Function

Automatic SYSIN batching (ASB) reader ---
Conversational remote job entry (CRJE) Time sharing option (TSO)
Direct system output (DSO) writer ---
Graphic job processor (GJP) ---
IEBUPDAT utility program IEBUPDTE utility program
IEHIOSUP utility program Pageable link pack area
Main storage hierarchy support ---
Multiprocessing (MP65) ---
Queued telecommunications access method (QTAM) Telecommunications access method (TCAM)
Remote job entry (RJE) ---
Rollout/rollin Paging
Satellite graphic job processar (SGJP) ---
Scatter load Paging
System environment recording routines (SERO and SER1) Recovery management support
TESTRAN program ---
Transient areas Pageable link pack area

Figure 4. Major MYT Functions Not Supported in YS2

Planning aids for defining a system, optimizing the performance of a system, and modifying a
system are vital to successfully meeting the needs of an installation.

In VS2, the process of defining the system has been made easier by the improved system
generation and system initialization facilities. These processes are discussed in the chapter
"Defining the System".

The performance of a system depends to a large extent on the specifications oi job ciasses,
job priorities, and system output classes. In VS2, these facilities are the same as their
counterparts in MVT.

Modification of a system, including maintenance and updating, is primarily the responsibility
of the system programmers at an installation. Except for those MVT facilities that are not
supported in VS2 or are no longer needed, the external implementation of the MVT facilities is

16 OS/YS2 Planning and Use Guide

the same for VS2. The facilities that fall into this category are listed below, and are described
later in this publication.

• Cataloged procedures.

• System output writers.

• Job queue formatting.

• Output separation.

• Message routing exit routines.

• PRESRES volume characteristics list.

• Must complete function.

• Shared direct access storage devices.

• Time slicing.

Advantages of VS2
This chapter has already briefly described the functional enhancements VS2 provides over
MVT. However, the most important new feature of VS2 is its support of a virtual storage
environment. The advantages that can result from using a virtual storage system are described
below.

System Flexibility

In scheduling, installations strive to match work to be done against available real storage and
input/ output devices. In VS2, virtual storage can make this installation preplanning easier. The
result is:

• Less planning to prevent storage fragmentation. In systems without virtual storage, storage
fragmentation was a primary consideration when selecting jobs to be multiprogrammed.
Detailed planning of job mixes to avoid storage fragmentation in real storage is no longer
necessary. (In virtual storage, some fragmentation will exist, but its effect will be minimal.)

• More flexible backup. Since a small CPU can be used to execute programs designed to run
on a larger CPU, storage size is now less of a consideration when planning for a backup
CPU.

• More efficient use of system resources. Since real storage is obtained and released
dynamically, only the real storage that is needed is tied to a job currently executing. In
systems without virtual storage, all real storage belonging to a job could not be reassigned
by the system until the end of the job.

• Easier handling of priority jobs. In systems without virtual storage, a high priority job would
have to to wait to be executed if there was insufficient real storage to contain the job (for
example, if large production jobs were occupying most of storage). In VS2, virtual storage
space increases the probability that high priority jobs can begin execution without waiting
for completion of the large, low priority jobs.

System Throughput

Throughput is the total volume of work performed by a computing system over a given period
of time. In VS2, virtual storage management has considerable influence on the system
throughput. As a result, the following enhancements may result in improved system
throughput:

• More system functions that can be shared by all users are resident in virtual storage.
Resident reenterable functions eliminate duplicate copies of code, reduce the need to access
system libraries, and save the time required to load these functions with each program.

Introduction 17

• More job steps can be initiated, thus achieving a higher degree of mUltiprogramming.
Because of virtual storage and demand paging, entire jobs do not occupy real storage at any
one time.

• Better balance in the use of the CPU and the input/output devices is achieved. In VS2, the
optional dynamic dispatching facility automatically allocates varying slices of time to jobs
having the same dynamic dispatching priority, giving preference to I/O-bound jobs over
CPU-bound jobs.

• More regions can be started because of the larger addressable space. Thus, if the time
sharing option is included in the system, the added regions can be used to serve more
terminals.

Programmer Productivity

The additional virtual storage available with VS2 helps to reduce many of the former
constraints of program design, thus allowing the programmer to concentrate on applications.
As a result:

• More addressable space is available for programs. Since jobs requiring more real storage
than is actually available can run in VS2, storage constraints have been eased for the
programmer. In most cases, programming practices such as overlays have been made
unnecessary.

• Programs with large storage requirements can be tested on machines with small real storage.
Since programs are loaded into virtual storage and only parts of the programs are paged on
demand into real storage, applications intended for large machines can be tested on smaller
machines.

• Programs can be changed more easily. Since storage size is not a primary concern of the
programmer, he can avoid intricate coding when changing a program.

System Integrity

Integrity is preservation of data or programs for their intended purpose. In VS2, system
integrity has been improved in the following ways:

• The authorized program facility (APF) limits the use of sensitive system and (optionally)
user services and resources to authorized system and user programs. The authorization
consists of a code that is used with programs residing in the password protected
SYSl.LINKLIB and SYSl.SVCLIB data sets, and in the link pack area. The
SYS 1.LINKLIB, SYS 1.LPALIB, and SYS 1.SVCLIB data sets are the only data sets in
which an authorized program can reside. For a complete description of APF, see the chapter
"Job Management and Supervisor Services for System Programmers".

A new system macro instruction, TEST AUTH, has been defined to support APF. The
macro instruction tests the authorization of the caller and informs the caller if it is
authorized to perform a particular function. For a complete description of the TESTAUTH
macro instruction see the chapter "Supervisor Macro Instructions for System Programmers".

• The data extent block (DEB) validity checking facility prevents a user from unauthorized
access to data on an external device and alleviates several possibilities of transferring control
in the supervisor state to an unauthorized routine.

A new system macro instruction, DEBCHK, has been defined to support DEB validity
checking. The macro instruction is used to verify that a DEB is valid. For a complete
description of the DEBCHK macro instruction, see OS/VS Data Management for
System Programmers. GC28-0631.

18 OS!VS2 Planning and Use Guide

• The local system queue area (LSQA) prevents excessive use of system queue area (SQA)
space. The LSQA consists of one or more segments that are associated with each virtual
storage region and contain job-related system control blocks. The isolation of job-related
system control blocks makes it less likely for job failures to cause system failures. The
LSQA is protected via read-only access from the problem program.

• The storage protection feature, consisting of both store and fetch protection, prevents
unauthorized or unintentional access to virtual or real storage by other than the intended
user. (See the discussion of storage protection later in this chapter.)

VS2 Overview
The functional capability of VS2 consists of the MVT functional base which has been
extended to take advantage of virtual storage. The virtual storage concept is implemented
through facilities called address translation and paging.

Address Translation

Paging

In VS2, references in a program to virtual storage locations must be translated into references
to real storage locations. The process of changing the address of a data item or an instruction
to its real storage address is called address translation. In VS2, the dynamic address translation
(DAT) facility of the System/370 machines performs this function.

During execution of a program, each virtual storage address is translated as the instruction is
executed. Translation occurs only when the central processing unit is operating in translation
mode; that is, bit 5 of the extended control (EC) mode program status word (PSW) is 1.
Storage addresses referenced by channels for input/output operations are not translated by the
DAT feature; they are translated by the I/O supervisor.

New program interruptions indicate when the translation process cannot be completed. They
are:

• Page translation exception, which occurs when a virtual address cannot be translated by the
hardware because the invalid bit in the page table entry for that address is set. The page
table indicates whether a page is in real storage and correlates virtual addresses with real
storage addresses.

• Segment translation exception, which occurs when a virtual address cannot be translated by
the hardware because the invalid bit in the segment table entry for that address is set. The
segment table is used to controi user access to virtual storage segments.

• Translation specification exception, which occurs when a page table entry, segment table
entry, or the control register pointing to the segment table contains information in an invalid
format.

A program can be executing even though some of its pages are not in real storage. The
specific pages needed in real storage at any given time depend upon the particular program
being executed. The process of transferring pages between real storage and external page
storage (the portion of auxiliary storage used to contain pages) is called paging.

When an instruction is executed and addresses are translated, an interruption occurs if a
page is referred to and it is not in real storage. The paging supervisor brings the page into real
storage from an external page storage device. (The paging supervisor is discussed in the
chapter "System Control Program".)

Introduction }9

When real storage is needed for a page being paged in from external page storage the real
storage will be made available by the paging supervisor. If a page in real storage was modified
during execution, it is written out to an external storage device to make room for the required
page. If a page in real storage was not modified and an exact copy of the page already exists
on an external storage device, then the page need not be written out; the page awaiting real
storage space is loaded into real storage overlaying the unmodified page.

The system sometimes commits more real storage that can be supported efficiently, and
excessive paging occurs in an effort to satisfy that commitment. If the paging rate becomes
excessive, there is a constant request queue at the paging device, and active programs resident
in storage become idle, waiting for service to their paging requests. This condition, called
thrashing, results in little useful work being done. To control thrashing, the dispatcher selects
and marks tasks nondispatchable. When the paging rate subsides, the tasks that were marked
nondispatchable are reset to dispatchable status.

Some programs cannot be paged. For example, programs that modify channel programs
while they are executing cannot be paged since the I/O supervisor duplicates and uses a copy
of the channel command words (CCWs) as part of its translation process; any changes made
to the original CCW during execution would not be known to the I/O supervisor.

Programs that are highly time dependent (such as the magnetic ink character recognition
programs) cannot be paged because the time required to translate the channel programs cannot
be handled in the amount of time available. Such programs must be run in an area of virtual
storage that has the same range of addresses as real storage, called nonpageable dynamic
storage (or virtual equals real or V = R storage).

Storage Maps
Figure 5 shows a map of virtual storage. Figure 6 shows a map of real storage. The maps are
divided into the following areas:

System Queue Area - The system queue area is an area of virtual storage reserved for control
blocks not related to jobs and job steps and tables (such as the segment tables) maintained by
the control program. The amount of fixed real storage required to back up the system queue
area varies with the demands of the system.

Pageable Link Pack Area - The pageable link pack area is an area of virtual storage that
contains reenterable routines that can be used concurrently by all tasks in the system. As
needed, parts of this area are paged into real storage. The fixed link pack area, described
below, is an extension of this area.

Pageable BLDL Table - The BLDL table can be either fixed or paged, but not both. (The
fixed BLDL table is described beloW.) The pageable BLDL table occupies an area in the upper
portion of virtual storage. It consists of the list of entries for the SYS 1.LINKLIB data set that
are to be paged into real storage as needed.

Master Scheduler Region - The master scheduler region is an area of virtual storage that
contains the master scheduler routine. As needed, parts of this area are paged into real storage.

Master Scheduler Local System Queue Area - The master scheduler LSQA is an area of virtual
storage that contains system control blocks (such as the task control block) for the master
scheduler. At least one page of this area always remains in real storage.

Pageable Dynamic Area - The page able dynamic area is an area of virtual storage whose virtual
storage addresses are not necessarily identical to real storage addresses. It is used for programs
that can be paged during execution, Reader/interpreter regions, system output writer regions,
initiator/terminator regions, regions fof pageable problem programs, and LSQAs for each of
these types of regions are all allocated from the page able dynamic area.

20 OS/VS2 Planning and Use Guide

Nonpageable Dynamic Area - The nonpageable dynamic area (also called virtual equals real or
V =R storage) is an area of virtual storage whose virtual storage addresses are identical to real
storage addresses. It is used for programs that are not to be paged during execution. If the
virtual storage in this area is not assigned for nonpageable programs, the real storage with the
same storage addresses is available for paging. The minimum size of this area is 64K bytes.
(Considerations for using this area are described in the chapter "Job Management and
Supervisor Services for System Programmers".)

Fixed BLDL Table - The BLDL table can be either fixed or paged, but not both. The fixed
BLDL table is present only if the user specifies it to occupy an area in the lower portion of
virtual storage. It consists of the list of entries for the SYS 1.LINKLIB data set that are to
remain in real storage.

Fixed Link Pack Area - The fixed link pack area is present only if the user specifies it at IPL
time. It is an extension of the pageable link pack area and occupies an area in the lower
portion of virtual storage. It is used for frequently used reenterable routines which are to
remain in real storage.

Nucleus - The nucleus, mapped into virtual storage at location zero, consists of those system
programs which must remain in real storage while the system is in use.

Virtual storage is divided into 256 segments of 64K bytes each. Each segment is divided
into 16 pages of 4K bytes each. Regions in the page able area of virtual storage are allocated in
multiples of 64K bytes (segments); regions in the nonpageable dynamic area of virtual storage
are allocated in multiples of 4K bytes (pages).

Introduction 21

HIGH

System Queue Area

Pageable
Link Pack Area

Pageable BLDL Table

Master Schedu ler

Master Scheduler LSQA

Dynamic
Area

LOW

LOW, HIGH

Pageable
Dynam i c Area

Ends of storage with low and high address.

Figure 5. VS2 Virtual Storage Map

22 OS/VS2 Planning and Use Guide

Initiator LSQA

Reader LSQA

Writer LSQA

Job A LSQA

Job B LSQA

Available Pageable
Dynamic Area

Job B

Job A

Writer

Reader

Initiator ,

Note: Shaded areas are always in real
storage. Unshaded areas are paged
into real storage as needed.

HIGH
System Queue Area

Master Scheduler lSQA

Pageable Dynamic Area

Nonpageable Dynamic Area

Axed BlDl Table

Axed link Pack Area

Nucleus

lOW

lOW, HIGH

Ends of storage with low and high address.

Figure 6. VS2 Real Storage Map

Storage Protection

Parts of the system queue area and the master schedu ler LSQA
are always in real storage.

This area is used for programs that can be paged during
execution. It is also used for parts of the SQA and master
scheduler LSQA that are expanded to meet the demands of
the system.

This area is used for programs that are not to be paged during
execution. If not assigned to nonpageable programs, this
area is avai lab Ie for paging.

The (optional) fixed BLDL table, the (optional) fixed link
pack area, and the nucleus are always in real storage.

Storage protection is a feature that prevents unauthorized or unintentional access to virtual
storage by other than the intended user. Because of the larger addressable space that can be
used to start more regions in a virtual storage system, storage protection is extended to allow
for the additional number of regions that have to be protected. In VS2, storage protection
limits both store and fetch access to storage. (Store protection prevents the contents of storage
from being altered by storage addressing errors in programs or input from I/O devices. Fetch
protection prevents the unauthorized retrieval of data and instructions from storage.)

Programs executing in pageable dynamic storage have read-only access to the areas of the
system that are always in real storage (for example, nucleus and system queue area), and full
access to only their own regions. All programs executing in page able dynamic storage are
assigned the same non-zero protection key.

Programs executing in nonpageable dynamic storage have the same access as programs
executing in pageable dynamic storage. However, these programs each have unique non-zero
protection keys.

System tasks have access to all allocated areas of virtual storage. These tasks have a
protection key of zero.

Programs executing in page able dynamic storage are protected from each other by the
valid/invalid bits in the segment table entries; thes~ bits control the address range the

Introduction 23

programs can reference. Programs executing in nonpageable dynamic storage are protected
from each other through their protection keys. The protection keys are also used to provide
protection between programs executing in page able and nonpageable dynamic storage.

Configuration
OS/VS2 supports the System/370 models listed below. The Model 145 is available with the
initial release of OS/VS2; the local IBM branch office should be contacted for availability of
the other models.

Model 145
Model 15511
Model 158
Model 16511
Model 168

A batch and TSO system will operate in 512K bytes of real storage .. For a detailed
description of storage requirements, see OS/VS2 Storage Estimates, GC28-0604.

Basic Configuration
The minimum configuration required for VS2 is:

• One IBM System/370 of the type listed above, with the minimum storage as indicated
above. (The clock comparator and CPU timer feature (#2001) is required on the Model
145.)

• One multiplexer channel.

• One selector or block multiplexer channel.

• Three IBM 3330 Series Disk Storage devices, or four IBM 2314 Direct Access Storage
Facility or IBM 2319 Disk Storage devices.

• One card reader and punch.

• One line printer.

• One system console.

If IBM 3330 Series Disk Storage devices are used for system generation, a total of four devices
is necessary. A 9-track magnetic tape is required to restore the OS/VS2 system from magnetic
tape to a disk drive for system generation and maintenance.

External Page Storage
External page storage is the portion of auxiliary storage that is used to contain pages. There
should be sufficient external page storage in the system for all of virtual storage except that
part of virtual storage (essentially, the nucleus and other nonpageable storage) that
permanently resides in real storage. If the space is inadequate, a user may have to wait for
external page storage when his job is initiated.

If the time sharing option is included in the system, external page storage must also
accomodate swapping requirements. Although only 16,777,216 bytes are addressable, several
TSO users can share the same region and therefore external page storage in excess of
16,777,216 bytes may be needed for backup.

In VS2, a primary paging device is an auxiliary storage device that is used in preference to
secondary paging devices for paging operations; portions of a primary paging device can be
used for purposes other than paging operations. A secondary paging device is an auxiliary
storage device that is not used for paging operations until the available space on primary

IA minimum OS/VS2 system will operate in 384K bytes of real storage, batch and reader/writer operating
concurrently.

24 OS/VS2 Planning and Use Guide

paging devices falls below a specified minimum; portions of a secondary paging device can be
used for purposes other than paging operations.

Figure 7 shows the devices that may be used for external page storage, and their capacities.
If both fixed-head and moveable-head devices are used, the fixed-head devices should compose
the primary external page storage. External page storage may be allocated on as many as 16
devices of the types eligible.

When the primary paging device or devices become full, page migration occurs. Page
migration is the transfer of pages from the primary paging device to the secondary paging
device to make more space available on the primary device. The pages transferred are
assoicated with the region in the pageable dynamic area with the lowest priority.

Device Maximum number of pages Maximum capacity
in megabytes

IBM 2305 Modell, Fixed Head Storage 1,146 4.7
IBM 2305 Model 2, Axed Head Storage 2,483 10.2
IBM 2314 Direct Access Storage Facility 6,392 26.2
IBM 2319 Disk Storage 6,392 26.2
IBM 3330 Series Disk Storage 22,968 94.1

Figure 7. External Page Storage Devices

Input/ Output Devices

The following input/output devices will be supported in VS2. (Any changes to the following
list of supported devices are available from the local IBM branch office.)

Unless otherwise noted in this list, terminals are supported in both TCA~Y1 and BTA~1.
Availability of TCAM support for those terminals indicated by asterisk (*) may be obtained
from the local IBM branch office.

Note: Terminals which are equivalent to those explicitly supported may also function
satisfactorily. The customer is responsible for establishing equivalency. IBM assumes no
responsibility for the impact that change to the IBM-supplied products or programs may have
on such terminals.

Direct Access Storage Devices

IBM 2305 Fixed Head Storage Model 1 (Models 165II and. 168 only)
IBM 2305 Fixed Head Storage Model 2
IBM 2314 Direct Access Storage Facility
IBM 2319 Disk Storage
IBM 3330 Series Disk Storage

Note: All of the above devices are supported as system residence, input/output, paging, and
spooling devices.

Direct Access Storage Control Units

IBM 2835 Storage Control Modell (Models 165II and 168 only)
IBM 2835 Storage Control Model 2
IBM 2844 Auxiliary Storage Control
IBM 3345 Storage and Control Frame Models 3, 4, and 5 (Model 145 only)
IBM 3830 Storage Control Models 1 and 2 (including 2 channel switch additional #8171)
IBM Integrated File Adapter (IFA) Feature #4650 (Model 145 only)
IBM Integrated Storage Controls (ISC) Feature #4650 (Models 158 and 168 only)

Magnetic Tape Devices

IBM 2401 Magnetic Tape Unit
IBM 2420 Magnetic Tape Unit

Introduction 25

IBM 2495 Tape Cartridge Reader
IBM 3410 Magnetic Tape Unit (Models 145, 15511, and 158 only)
IBM 3411 Magnetic Tape Unit and Control (Models 145, 15511, and 158 only)
IBM 3420 Magnetic Tape Unit

Control Units

IBM 2803 Tape Control
IBM 2804 Tape Control
IBM 3803 Tape Control

Tape Switch

IBM 2816 Switching Unit

Paper Tape Devices

IBM 2671 Paper Tape Reader

Printers

IBM 1403 Printer Models 2,7, and Nl
IBM 1443 Printer Model Nl
IBM 3211 Printer

Printer Control Units

IBM 2821 Control Unit Model 2 and 3
IBM 3811 Printer Control Unit

Card Readers and Punches

IBM 2501 Card Reader Models B 1 and B2
IBM 2520 Card Read Punch
IBM 2540 Card Read Punch
IBM 3505 Card Reader
IBM 3525 Card Punch

Reader and Punch Control Units

IBM 2821 Control Unit Models 1, 5, and 6

Optical Character Recognition (OCR)/ Magnetic Ink Character Recognition (MICR) Devices

IBM 1287 Optical Reader
IBM 1288 Optical Page Reader
IBM 1419 Magnetic Character Reader (Dual Address Adapter #7730 and Expanded
Capability #3800 features required)

Consoles

IBM 2150 Console/IBM 1052 Printer-Keyboard Model 7
IBM 2250 Display Unit Models 1 and 3
IBM 2260 Display Station Model 1
IBM 2740 Communication Terminal Model 1
IBM 3066 System Console (Models 16511 and 168 only)
IBM Model 158 Display Console
IBM 3210 Console Printer-Keyboard
IBM 3215 Console Printer-Keyboard
IBM 3270 Information Display System
IBM 3213 Printer (Model 158 only)

Start/Stop Terminals

IBM 1030 Data Collection System
IBM 1050 Data Communication System
IBM 1060 Data Communication System
IBM 2260 Display Station Models 1 and 2
IBM 2265 Display Station

26 OS/VS2 Planning and Use Guide

IBM 2740 Communication Terminal Models 1 and 2
IBM 2741 Communication Terminal
IBM 2760 Optical Image Unit
IBM System/7 (as an IBM 2740 Communication Terminal Modell with checking)
AT & T Model 83B3 Selective Calling Stations
Teletype1 Models 33 and 35 (Paper tape is not supported with Teletype))
Western Union Plan lISA Outstations
IBM World Trade Telegraph Terminals

Binary Synchronous Terminals

IBM 1130 Computing System Processor Station
IBM 1800 Data Acquisition and Control System Processor Station (BT AM support only)
IBM 2770 Data Communication System
IBM 2780 Data Transmission Terminal
*IBM 2790 Data Communication System (BTAM support only)/2715 Transmission Control
Unit Model 2
IBM 2972 General Banking System Models 8 and 11 (BTAM suport only)
*IBM 3270 Information Display System
*IBM 3670 Brokerage Communication System (TCAM support only)
IBM 3735 Programmable Buffered Terminal
IBM System/3 Processor Station
IBM System/360 Processor Station (including Model 25 Integrated Communications
Adapter)
IBM System/360 Model 20 Processor Station
IBM System/370 Processor Station (including Model 135 Integrated Communications
Adapter)

Locally - Attached Term.inals

ffiM 2250 Display Unit Models 1 and 3 (GAM and GSP support only)
IBM 2260 Display Station Models 1 and 2 (GAM, GSP, and TCAM support only)
*IBM 3270 Information Display System

Telecommunication Control Units

IBM 2701 Data Adapter Unit
IBM 2702 Transmission Control
ffiM 2703 Transmission Control
*IBM 2715 Transmission Control Unit Model 1
*IBM 3705 Communications Controller (Emulation program support only) (TCAM support
only)
IBM 7770 Audio Response Unit Model 3 (IBM 2721 Portable Audio Terminal and IBM
2730 Transaction Validation Terminal Modell support only) (TCAM support only)

Devices Supported by World Trade Only

IBM 1275 Optical Reader Sorter (Dual Address Adapter and Expanded Capability feature
required)
mM 1419 Magnetic Character Reader Models 31 and 32 (Dual Address Adapter and
Expanded Capability feature required)

ITrademark of Teletype Corporation, Skokie, Illinois.

Introduction 27

28 OS!VS2 Planning and Use Guide

System Control Program

The VS2 system control program consists of the following major components:

• Job management, which schedules all work done by the computing system.

• Task management, which allocates system resources and controls system execution.

• Input/output supervision, which performs all I/O operations.

• Data management, which coordinates data flow.

• Recovery management, which attempts to recover from system malfunctions.

Job Management
Job management is a term that is generally used to describe the functions of the master
scheduler and the job scheduler. The master scheduler and the job scheduler are major parts of
the operating system that control the processing of jobs. The master scheduler initializes the
system and responds to operator commands by initiating the requested actions. The job
scheduler reads and interprets job definitions, schedules the jobs for processing, initiates and
terminates the processing of jobs and job steps, and records job output data.

Figure 8 provides a summary of the VS2 changes. to the job management functions.

Facility

Master scheduler

Job scheduler

Multiple console support (MCS)
System log
Hardcopy log
Job step timing
Checkpoint/restart

System management facilities (SMF)

Automatic volume recognition (AYR)
Time slicing
Device independent display operator console

support (DIDOCS)/status display support (SDS)
Track stacking

Figure 8. VS2 Changes to Job Management

Master Scheduler

Change

Changes to operator commands to reflect virtual storage
and nonsupport of some MYT parameters.
ASB reader, DSO writer, and column binary not
supported; new!/O lead balancing facility; new
maximum number (63) of initiators that can be started;
ability of operator to cancel a job waiting for a region
or a data set.
Now standard (previously optional).
Now standard (previously optional).
Now standard (previously optional).
Now standard (previously optional).
Now standard (previously optional); only 2K block
size supported.
Now standard (previously optional); tape and
OUTUM faclilty not supported; new exit for system
output; new accounting information to record virtual
storage usage.
None. (See the chapter IJOptions".)
None. (See the chapter II Options".)
None. (See the chapter II Options" .)

None. (See the chapter II Options lJ
.)

The master scheduler is one of the system tasks established when the system is loaded. Its
functions can be divided into two categories: initialization and command processing.

Initialization

Master scheduler initialization consists of the following functions:

• Initializing the communications task to handle all communication with the operator console.

• Scheduling execution of the initial SET command.

System Control Program 29

• Initializing the time-of -day clock.

• Initializing the job queue (SYSl.SYSJOBQE) data set or performing restart processing.

• Setting volume attributes of all volumes listed in PRESRES.

• Scheduling execution of the automatic START commands.

• Scheduling execution of the SEND command.

• Initializing the system log.

• Initializing the system management facilities (SMF).

• Initializing the missing interruption checker task.

Major Changes from MVT: In YS2, initializing of the I/O load balancing function is
performed.

Command Processing

Command processing is the reading, scheduling, and executing of operator commands issued
via either a console device or an input job stream.

The reading of commands entered via a console device is performed by routines operating
under a console communication task; the reading of commands entered via an input job stream
is performed by routines operating under a reader task associated with that input job stream.

The scheduling of a command is the storing of the command and the readying of a task to
continue processing the command. A command scheduling routine operates under either the
console communications task (when the command was issued via a console device), or the
reader task (when the command was issued via an input job stream).

The executing of a command is the performance of the function specified in the command.
The functions are performed either as new tasks established by the master scheduler or as
parts of existing system tasks. Commands are classified, accordingly, as task-creating
commands and existing-task commands. In VS2, the task-creating commands START and
MOUNT are attached and run in a separate region.

Major Changes from MVT: In YS2, the size of the master scheduler region can be specified at
IPL time. Also, some operator commands have been changed; these changes are discussed in
the chapter "Compatibility".

Job Scheduler
The job scheduler is divided into three major parts: the reader/interpreter, the
initiator/terminator, and the output writer. Each part is a separate task and can thus be
executed concurrently with and independently of the others.

Iteader/Interpreter

The reader/interpreter reads job and step definitions from an input job stream, analyzes the
definitions, and builds control blocks and tables that are used during initation and execution of
the job steps. The reader/interpreter also reads and analyzes commands encountered in the
input stream. When the reader/interpreter encounters data in the input stream, it writes the
data on a direct access device.

The control blocks and tables constructed by the reader/interpreter contain the following
information:

• Job attributes.

• Job step attributes.

• Information needed to assign devices to data sets.

• Data set attributes.

30 OS/VS2 Planning and Use Guide

Facilities

Major Changes from MVT: In VS2, the automatic SYSIN bat ching (ASB) reader is not
supported. Therefore, column binary is also not supported.

Initiator /Terminator

The initiator/terminator selects jobs and job steps to be executed. It analyzes the I/O device
requirements of the job steps, allocates devices to them, creates tasks for them, and at
completion of the jobs, supplies control information for writing job output on a system output
unit.

After selecting an interpreted job to be executed, the initiator/terminator examines the
types of regions requested for the job. If a job or job step requires nonpageable dynamic
storage for execution, the initator/terminator reserves a unique non-zero protection key for the
job. (See the discussion of storage protection in the chapter "Introduction".)

During allocation, in order to reduce contention for I/O devices, a new algorithm for I/O
load balancing is used. The new algorithm allocates devices for data sets that have nonspecific
device requests. Rather than basing the algorithm on a count of allocated data sets on a device
(as in MVT), in VS2 the actual number of I/O requests to . a tape or direct access device will
be monitored to get a more accurate picture of I/O load. The device determined to be the best
candidate for allocation to a given data set is then selected.

The following factors can contribute to the efficient allocation of I/O devices and thus help
the user realize benefit from I/O load balancing:

• Devices not dedicated to specific applications should be distributed evenly across channels;
within channels, they should be distributed evenly across control units.

• DD statements entered at the time of job initiation should be sequenced in the order of
expected activity.

Major Changes from MVT: In MVT; a maximum of 15 initiators could be started; in VS2, a
maximum of 63 initiators can be started. In VS2, the operator has the ability to cancel a job
waiting for a region or a data set. VS2 provides a more accurate algorithm for I/O load
balancing.

Output Writer

The output writer transfers system messages and system output data sets from the direct access
volume on which they were initially written by the system to a specified output device.

Output data sets can be directed to a class of devices, and references to the data are then
placed on an output work queue. Because the queue is maintained in priority sequence, the
system output writers can select jobs in the output work queue on a priority basis.

Major Changes from MVT: In VS2, the direct system output (DSO) writer is not supported.

The major facilities provided by job management are:

• Multiple. console support.

• System log.

• Hardcopy log.

• Checkpoint/restart.

• System management facilities.

• Job step timing.

System Control Program 31

Multiple Console Support (MCS)

Multiple console support (MCS) allows one operating system to use many operator consoles.
Each console in a multiple console configuration is defined by specifying:

• The operator commands the system will accept from that console.

• A console to act as an alternate if a failure occurs.

• The types of messages the console will receive.

In a system with MCS, one console acts as the master console and the rest (up to
thirty-one) are secondary consoles. The master console is the basic console required for
operator-system communication; it alone can accept all possible operator commands, change
the status of the hardcopy log and the messages to be recorded on it, switch to a different
master console, and receive all messages not specifically assigned to any other console. A
secondary console is any console other than the master console; it handles one or more
functions assigned to it (for example, it might handle tape activity).

Major Changes from MVT: In VS2, MCS is a standard facility; in MVT, MCS was optional.

System Log

The system log consists of data sets on which the communication between problem programs,
operators, and the system is recorded. It may contain the following kinds of information:

• Job time, job step time, and data from the JOB and EXEC statements of a job that has
ended.

• Operating data entered by problem programs using a write-to-Iog (WTL) macro instruction.

• Descriptions of unusual events that occurred during a shift.

• Write-to-operator (WTO) and write-to-operator with reply (WTOR) messages.

• Accepted replies to WTOR messages.

• Commands issued through operator's consoles and the input stream, and commands issued
by the operating system.

Major Changes from MVT: In VS2, the system log is a standard facility; in MVT, it was
optional.

Hardcopy Log

The hardcopy log is a permanent record of system activity that is mandatory for systems with
an active graphic console or multiple active consoles; for other systems, the primary console
device serves as the hardcopy log.

Since multiple console support allows more than one console in a system, an installation
might find it helpful to record all the messages issued by and to a system. The hardcopy log is
a place to collect these messages, and therefore an installation can review system activity by
reviewing message activity.

Major Changes from MVT: In VS2, the hardcopy log is a standard facility; in MVT, it was
optional.

Checkpoint/Restart

If a job step is terminated before successful completion, checkpoint/restart can make it
possible to resume execution from the beginning of the step or from a place within the step.
Either way, the restart can be made to occur after resubmission of the job by the programmer
or it can be made to occur automatically when the failure occurs.

The CHKPT macro instruction is coded in the user's program at a checkpoint to be taken.
A checkpoint is the point at which information about the status of a job can be recorded so
that the job step can be later restarted.

32 OS/VS2 Planning and Use Guide

Checkpoint/ restart includes a checkpoint routine and several restart routines.

The checkpoint routine gathers and records on a checkpoint data set enough information
about the status of the job step and its related control blocks to allow a restart from the place
where the checkpoint is taken.

The restart routines can be invoked when a job step is resubmitted for restart, or they can
be invoked automatically when a failure occurs. The functions performed by restart routines
depend upon the type of restart that is requested.

If the restart is to be made from the beginning of a job step, the REST AR T parameter of
the JOB statement must contain the name of the step to be restarted, and routines of the
ready task simply bypass preceding steps and begin processing with the named step.

If a step is to be restarted from the beginning, automatically, then restart processing begins
during step termination. The step termination routine of job management invokes routines to
verify that a restart can be performed and requests the operator to authorize the restart.

If a step is to be restarted from a place where a checkpoint was taken and the job is
resubmitted, the REST ART parameter of the JOB statement must identify the step and
checkpoint identifier, while a SYSCHK DD statement must describe the checkpoint data set.

If a step is to be restarted automatically from a place where a checkpoint was taken, the
step termination routine invokes routines to ensure that all data sets for the step are kept.

For a detailed description of checkpoint/restart, see OS/VS Checkpoint Restart,
GC26-3784.

Major Changes from MVT: In VS2, checkpoint/restart is a standard facility; in MVT, it was
optional. Also, in VS2, only 2K block size data sets are supported for checkpoint/restart data
sets.

System Management Facilities (SMF)

System management facilities (SMF) coHect and record system information. The information
obtained can be used in management information reports that describe system efficiency,
performance, and usage. The SMF records contain such data as:

• System configuration.

• Job and job step identification.

• CPU wait time.

• CPU and input/output device usage.

• Temporary and non-temporary data set usage and status.

• Virtual and real storage usage.

• Status of removable direct access volumes.

• Allocation recovery records.

• Paging statistics.

SMF provides exits to installation-supplied routines that can monitor the operation of a job
or job step and generate the installation's own SMF records. The exit routines can cancel jobs,
write records to the SMF data set, open and close user-defined data sets, suppress the writing
of certain SMF records, and enforce installation standards (such as identification of users).
Dummy routines are automatically provided for all unused exits.

For a detailed description of SMF, see OS/VS System Management Facilities,
GC35-0004.

Major Changes from MVT: SMF has been changed in the following ways:

• SMF is a standard facility of VS2.

• SMF records in VS2 contain additional accounting information to record new system
environmental characteristics.

System Control Program 33

• SMF in VS2 provides one new exit from the system control program that receives control
each time an SMF logical record has been formatted and is ready to be written out. The
exit may prevent the record from being written.

• In VS2, SMF does not support tape for recording SMF data.

• In VS2, the OUTLIM facility is not supported.

Job Step Timing

Each job step can be timed and the time limits enforced. The amount of time used is recorded
after a job step is finished. In addition, the following are induded in this facility: the ability to
request the date plus the time of day, to change the time at midnight, and to request, check,
and cancel intervals of time.

Major Changes from MVT: In VS2, the job step timing facility is standard; in MVT, it was
optional.

Task Management
Task management is a major function of the operating system that coordinates the use of
resources and maintains the flow of central processing unit (CPU) operations. It assigns
resources to perform tasks, keeps track of all such assignments, and ensures that the resources
are freed upon task completion. VS2 changes to task management functions are summarized in
Figure 9.

Facility

I nterruption supervision

Paging supervision

Task supervision
Contents supervision

Virtual storage supervision

Timer supervision

Figure 9. VS2 Changes to Task Management

Interruption Supervision

Change

New timer facilities (CPU timer and clock comparator);
new program interruptions (translation exceptions,
program event recording, set system mask, and monitor call);
new extended control (EC) mode architecture.
New support for virtual storage; support for 1$0 swapping
function.
New dispatching facility (automatic priority group).
Scatter load, TESTRAN, storage hierarchies, and transient
areas not $upported; PCI fetch now standard (previously
optional).
Support for virtual storage (similar to MVT main storage
supervision) •
New timer facilities (CPU timer and clock comparator);
location 80 timer not supported.

All supervisory activity begins with an interruption (a break in the normal sequence of
instruction execution). An interruption can occur either because a program has requested a
control program service or because an event has occurred which requires supervisory
processing. There are five types of interruptions:

• Supervisor call (SVC) interruptions occur when a supervisor call (SVC) instruction is
executed.

• Input/output interruptions occur when an I/O device is readied or an I/O operation
terminates, or during an I/O operation such as a program controlled interruption (PCI).

• Timer/external interruptions occur when a specified time interval expires or when the
interruption key of the system control panel is pressed.

34 OS/VS2 Planning and Use Guide

• Program interruptions occur when a program attempts an invalid action, when a data error
is detected, or where a page fault occurs.

• Machine check interruptions occur when the CPU detects hardware malfunctions.

Any interruption causes the current program status word (PSW) to be replaced by a new
PSW. The new PSW causes an appropriate interruption handler to receive control, depending
on the type of interruption. The interruption handler saves critical information (such as register
contents and PSW information) necessary to return control to the interrupted program after
the interruption is processed. In most cases, the interruption handler analyzes the interruption
and passes control to a special purpose routine for processing the interruption.

Major Changes from MVT: In VS2, the interruption handlers will support the new timer
facilities and react to the new program interruptions (translation exceptions, program event
recording, set system mask, and monitor call). All of the interruption handlers have been
modified to support the new extended control (EC) mode architecture; for a discussion of EC
mode, see "Problem Programs" in the chapter "Compatibility".

Paging Supervision

The paging supervisor allocates and releases real storage space for pages, and transfers pages
between real storage and external page storage. Whenever a virtual address in a page is
referred to and that page is not in real storage, an interruption occurs and control is given to
the paging supervisor.

First, page reclamation is attempted in order to satisfy the request if the page is already in
storage. In this case, the page may be available (previously released but not yet paged out), in
page-out processing (being transferred from real storage to external page storage), or in
page-in processing (being transferred from external page storage to real storage). If the
required page is found, appropriate action is taken to use the pageo Otherwise; to move pages
into real storage, the paging supervisor maintains a list of page frames that are not receiving a
high reference rate by the programs that are currently using them.

When the number of available page frames falls below a predetermined value specified at
NIP time, the paging routines will select the page frames of the least-used pages and make
them available for use. The selection process is primarily based on the change and reference
bit settings in the storage key associated with each page frame.

If a page in a selected frame has been changed, the changed page is moved to external page
storage before the page frame is made available. If a page in a selected frame has not been
changed, it is not moved to external page storage if a copy already exists in external page
storage.

The selecting of page frames continues until a predetermined maximu~ number of available
frames is reached. During this process, page frames that contain unreferenced pages are
selected before page frames that contain referenced pages. Also, page frames that contain
unchanged pages are selected before page frames that contain changed pages.

The paging process utilizes an efficient slot sorting technique to optimize paging operations
by minimizing page data set seek or rotational delay time, or both. A slot is a continuous area
on a paging device in which a page can be stored. The capability to access the next slot
sequentially forms the basis of the slot sorting algorithm.

In summary, the paging supervisor:

• Recognizes when a page must be transferred to real storage.

• Selects a page frame in which to place the page.

• Maintains a supply of page frames.

• Saves pages that have been changed in real storage.

• Recognizes when a page must be made non-transferable to external page storage.

System Control Program 35

Major Changes from MVT: The paging supervisor is necessary to support virtual storage, and
was not needed in MVT. When the time sharing option (TSO) is included in the system, the
paging supervisor performs the swapping function performed by the TSO supervisor in MVT.

Task Supervision

The task supervisor performs services requested by tasks and allocates CPU time among
competing tasks. A task is described to the operating system by a task control block (TCB)
and many services provided by task supervision relate to the TCB. The services supplied are
listed below. Where applicable, the macro instructions used to request the services are shown
in parentheses.

• Attaching/detaching a subtask (ATTACH/DETACH).

• Changing the dispatching priority of a task (CHAP).

• Extracting information from a TCB (EXTRACT).

• Specifying a user program interruption exit routine (SPIE).

• Synchronizing a program with one or more events (WAIT ,POST).

• Serializing the use of one or more resources (ENQ, DEQ, RESERVE).

• Scheduling asynchronous exit routines.

• Testing the authorization of a user to perform a given function (TEST AUTH).

• Modifying information contained in the program status word (MODESET).

• Returning control by the dispatcher.

Major Changes from MVT: In VS2, a single task priority level may be identified at system
generation or system initialization time for the dynamic dispatcher. Tasks within this priority
level will be dispatched in a way that makes better use of the system's CPU and I/O
resources. (The priority level cannot be identified also as a time-slicing group).

Contents Supervision

The contents supervisor locates requested programs, fetches the programs to virtual storage if
necessary, and schedules their execution. The major contents supervision functions are
requested by the LINK, LOAD, DELETE, XCTL, and ATTACH macro instructions. The
functions are:

• Maintaining directories which describe all modules located in various portions of virtual
storage.

• Searching directories for requested modules.

• Testing the status of modules to determine if they are available for use.

• Deferring requests for unavailable modules and restarting the deferred requests when the
modules become available.

• Requesting the use of modules that are not in virtual storage.

• Scheduling execution of modules.

Program controlled interruption (PCI) permits the program to cause an I/O interruption
during execution of an I/O operation. PCI provides an means of alerting the program of the
progress of chaining during an I/O operation. It also permits programmed dynamic storage
aiiocation.

PCI fetch is able to bring a program into storage with only one seek of the disk if:

• A buffer is always available for relocation dictionaries.

• No errors occur during the I/O operation.

• No cylinders are crossed while bringing in the program.

36 OS/VS2 Planning and Use Guide

• The speed of the· central processing unit allows PCI to modify the channel command word
before it reaches the channel.

An additional WAIT and seek are required each time a buffer is not available. A seek is
required each time an error occurs or a cylinder is crossed. If the speed of the central
processing unit does not allow PCI to perform its function in time, the number of seeks
needed by the standard fetch are required.

Major Changes from MVT: VS2 does not support scatter loading, TESTRAN attributes, or
hierarchy support; these functions will be ignored if requested. Also, in VS2, transient areas
are no longer needed because the page able link pack area contains all those modules that
formerly executed out of transient areas. PCI fetch is standard in VS2; in MVT, it was
optional.

Virtual Storage Supervision

The virtual storage supervisor allocates address space within virtual storage. The supervisor
routines service two macro instructions: GETMAIN (used to allocate virtual space) and
FREEMAIN (used to free allocated virtual space):

• The GETMAIN routines service requests for virtual storage space, including requests for a
region, space within a region, space within a local system queue area, and space within the
system queue area.

• The FREEMAIN routines service all requests for making space available for reallocation,
including requests for an entire region, space within a region, space within a local system
queue area, and space within the system queue area.

Various supervisor services use areas in the system queue area and local system queue areas
called quickcells. During execution of GETMAIN requests, these areas reduce the time
required to allocate space for control blocks, and thus service the requests more quickly.

Major Changes from MVT: The virtual storage supervisor in VS2 perform the same function
as the main storage supervisor in MVT. Basically, only internal changes have occurred as a
result of the use of virtual storage. However, GETMAIN has been extended to service requests
for virtual storage beginning on a page boundary. Also, subpools in VS2 are allocated in
4K-byte blocks. .

Timer Supervision

The timer supervisor uses three timers, each with one microsecond precision, to service
requests of programmers:

• The time-of -day clock is used to calculate the time of day and maintain the current date.
This clock can only be set at IPL time.

• The clock comparator is used to measure elapsed time and schedule activity for specific
times of the day. A value is placed in the clock comparator and when the time-of -day clock
reaches that value, an external interruption occurs.

• The CPU timer is used to time tasks. A value is placed in the timer and when the timer is
decremented to zero, an external interruption occurs.

Timer supervision is performed by four major routines:

• The TIME routine supplies the current date and time of day.

• The STIMER routine processes requests for interval timing based on task execution or real
time.

• The TTIMER routine supplies the time remaining in a previously requested interval or it
cancels previous timing requests.

• The timer second-level interruption handler processes timer interruptions.

System Control Program 37

Major Changes from MVT: In VS2, timer supervision routines support the CPU timer and the
clock comparator, which are new features. The location 80 timer of MVT is not supported
since the time-of -day clock is used instead.

Input/ OUtput Supervision
The input/output (I/O) supervisor starts, terminates, and (where necessary) restarts activity
on input/output devices. Its overall objective is to ensure that requested I/O operations are
performed. The VS2 changes to I/O supervision are summarized in Figure 10.

Faci lity Change

Starting I/o Translation of virtual channel programs to real channel programs; page fixing.

Terminating I/o None.

Restarti ng I/O Translation of virtual channel programs to real channel programs; page fi xi ng.

Figure 10. VS2 Changes to Input/Output Supervisor

Starting I/O Operations

Two parts of the control program are normally involved in starting I/O operations: access
method routines and the I/O supervisor.

Each access method routine prepares information required by the I/O supervisor to start
I/O operations. It gathers information used to initiate the I/O operations and places the
information in control blocks. It then issues an EXCP macro instruction, causing entry to the
I/O supervisor.

The I/O supervisor determines if the I/O device associated with the operation is not busy,
and if so, whether any channel associated with the device is not busy. When both the device
and an associated channel are not busy, the I/O supervisor prepares for the execution of
channel programs and issues a START I/O instruction to initiate the operation.

The I/O supervisor must distinguish between two classes of channel programs:

• Channel programs that will run without address translation. These channel programs are
submitted for execution from programs executing in nonpageable dynamic storage.

• Channel programs that will not run without address translation. These channel programs are
submitted for execution from programs executing in pageable dynamic storage. The I/O
supervisor provides the necessary translation by building another copy of the channel
program. This copy contains real storage addresses instead of virtual storage a,ddresses, and
takes into account discontiguous pages frames in real storage. In addition, the I/O
supervisor fixes all required pages for the duration of the I/O operation. (Translation of
virtual storage channel programs to real storage channel programs is required because
channels do not use the segment and page tables for translation.)

Major Changes from MVT: The I/O supervisor in VS2 translates virtual storage channel
programs to real storage channel programs; this feature was not needed in MVT. Also, the
I/O supervisor performs page fixing.

TermiJiating I/O Operations

I/O operations terminate either normally because the operation is completed, or abnormally
because an error is detected. When an 110 operation terminates, an I/O interruption occurs,
causing CPU control to be passed first to the I/O interruption handler and then to the I/O
interruption supervisor portion of the I/O supervisor to process the interruption.

38 OS/VS2 Planning and Use Guide

The I/O supervisor posts the completion of the I/O operation, schedules error routines
when the operation terminated abnormally, and, if possible, starts another I/O operation on
the channel. Then the I/O interruption supervisor returns control to the interruption handler.

Major Changes from MVT: None.

Restarting 110 Operations

When an error occurs during I/O activity, the I/O supervisor invokes an I/O error routine
which records the error on the SYS1.LOGREC data set and begins a cycle of restarts. The
cycle continues either until the error is corrected or until it is declared to be permanent
(uncorrectable) .

An error is considered to be corrected by an I/O error routine when no errors occur during
a retry of the I/O activity. When an error is corrected, the I/O supervisor continues
processing normally as if no error had been found.

I/O error routines count the number of retries and indicate that the error is permanent
when the maximum allowable number of retries has been reached. When a permanent error is
found none of the related requests for the involved data set are started.

Major Changes from MVT: The I/O supervisor in VS2 translates virtual storage channel
programs to real storage channel programs; this feature was not needed in MVT. Also, the
I/O supervisor performs page fixing.

Data Management

Data management is a major function of the operating system that involves organizing,
cataloging, storing, retrieving, and maintaining data. The data management routines are
primarily responsible for moving information between virtual storage and external storage.
Figure 11 provides a summary of the VS2 changes to the data management facilities.

Facility Change

Access methods Standard support of QSAM and BDAM
(previously optional); optional support of new VSAM
(see the chapter "Options"); QTM·A not supported;
support of chained scheduling only in nonpageable
storage (BSAM and QSAM).

Catalog management None.

Direct access device space management (DADSM) None.

I/o support DEB validity checking performed.

Shared direct access storage devices (shared DASD) None. (See the chapter" Options" .)

Direct access volume serial number verification Now standard (previously optional).

Figure 11. VS2 Changes to Data Management

Standard Access Methods

Access methods are techniques for moving data between virtual storage and input/output
devices. In VS2, there are four standard access methods, each of which pairs a data set
organization with a retrieval technique. The choice of which access method to use depends
upon which best suits a particular application or installation.

System Control Program 39

VS2 data sets can be organized in four ways:

• Sequential: Records are arranged in physical sequence, and are usually read or updated in
the same order in which they appear. This organization is used for all magnetic tapes, but
may also be selected for direct access devices. Punched tape, punched cards, and printed
output are considered to be sequentially organized.

In the sequential organization, individual records cannot be located quickly. Also, records
usually cannot be deleted or added easily unless the entire data set is rewritten. This
organization is generally used when most records are processed each time the data set is
used.

• Indexed Sequential: Records are arranged in collating sequence on the tracks of a direct
access volume according to a key that is part of every record, The location of each record is
computed through the use of indexes maintained by the system. This organization permits
direct as well as sequential access to any record.

In this organization, since the system has control over the location of the individual records,
the user needs to do very little input/output programming. Also, since a separate area of the
data set is set aside for added records, the data set need not be rewritten to accommodate
new records.

In VS2, access methods using indexed sequential data sets are optional.

• Direct: Records are arranged in random order on a direct access volume. Each record is
stored or retrieved directly with addressing as specified by the user. This organization is
generally used for data sets whose characteristics do not permit the use of sequential or
indexed sequential organization, or for data sets where the time required to locate individual
records must be kept to an absolute minimum.

In this organization, the user is largely responsible for the programming required to locate
the records.

• Partitioned: This organization has characteristics of both the sequential and the indexed
sequential organizations. Independent groups of sequentially organized data, called members,
are in direct access storage. Each member has a unique name stored in a directory that is
part of the data set and contains the location of the member's starting point.

Partitioned organization is used mainly to store programs, subroutines, and tables. As a
result, partitioned data sets are often referred to as libraries.

VS2 data access techniques are divided into two categories:

• Queued: This technique provides GET and PUT macro instructions to handle individual
records. It offers a maximum amount of automatic input/output facilities. It may be used
only to retrieve records in a sequential order (for example, records on magnetic tape).

The GET and PUT macro instructions cause automatic blocking and deblocking of the
records stored and retrieved. Look-ahead buffering and synchronization of input and output
operations with CPU processing are automatic features of this technique.

• Basic: This technique provides READ and WRITE macro instructions to handle blocks (not
records). It places some of the responsibility for data handling on the programmer but gives
him more control of input/output operations. It is used when the operating system cannot
predict the sequence in which the records are to be processed, or when some or all of the
automatic functions performed by the queued access technique are not desired.

Since READ and WRITE macro instructions process blocks, the blocking and deblocking of
records is the responsibility of the programmer. Aithough iook-ahead buffering and
synchronized scheduling are not automatically included in this technique, macro instructions
are provided to perform these functions.

40 OS/VS2 Planning and Use Guide

Following are brief descriptions of the four access methods that are standard in VS2; Figure
12 summarizes their characteristics. Optional access methods that are available in VS2
(telecommunications access method, virtual storage access method, basic telecommunication
access method, basic indexed sequential access method, queued indexed sequential access
method, and graphics access method) are described in the chapter "Options".

~
Sequential Pc:rtitioned Direct

Access
Method QSAM BSAM BPAM BDAM

Characteristics

Primary macro instructions GET READ READ READ
PUT WRITE WRITE WRITE
PUTX FIND

STOW

Synchronization of program with Automatic CHECK* CHECK* WAIT *
I/O

I I I

Record formats transmitted Logical Block Block Block
- F, V - F, V,U (part of - F,V,U
Block member)
-V - F, V,U

Buffer creation and construction BUILD* , BUILD* , BUllD* , BUllD* ,
GETPOOl*, GETPOOl*, GETPOOl*, GETPOOl*,
Automatic Automatic Automatic Automatic

Buffer techniques Automatic, GETBUF*, GETBUF*, GETBUF*
Simple, FREEBUF* FREEBUF* FREEDBUF* ,
Exchange Dynamic

FREEDBUF*

Transmittal modes (work area/buffer) Move, lX X X Data,
Locate,
Substitute

Note: * denotes a macro instruction.

Figure 12. Summary of Standard VS2 Access Method Characteristics

System Control Program 41

Basic Sequential Access Method (BSAM)

BSAM can be used for storing or retrieving data blocks arranged sequentially on sequential
access or direct access devices. (See descriptions of basic and sequential above.)

Major Changes from MVT: In VS2 BSAM, chained scheduling is only available to programs
excuting in nonpageable dynamic storage. Requests for chained scheduling from programs
executing in page able regions will be ignored, and normal scheduling will be substituted.

Queued Sequential Access Method (QSAM)

QSAM is an extended version of BSAM where a queue is formed of input data waiting
processing or output data awaiting transfer to auxiliary storage or an output device. (See
description of queued and sequential above.)

Major Changes from MVT: In VS2 QSAM, chained scheduling is only available to programs
executing in nonpageable dynamic storage. Requests for chained scheduling from programs
executing in pageable regions will be ignored, and normal scheduling will be substituted.

Basic Direct Access Method (BDAM)

BDAM is used to directly retrieve or update particular blocks of a data set on a direct access
device. (See descriptions of basic and direct above.)

Major Changes from MVT: None.

Basic Partitioned Access Method (BP AM)

BPAM can be used to create program libraries in direct access storage for convenient storage
and retrieval of programs. (See descriptions of basic and partitioned above.)

Major Changes from MVT: None.

Catalog Management

Catalog management routines maintain the collection of data set indexes (the catalog) that is
used by the control program to locate volumes. The catalog management routines also locate
the cataloged data sets.

The catalog, itself a data set (SYSCTLG), resides on one or more direct access volumes. It
contains indexes that relate data set names to the serial numbers and device types of the
volumes containing the data sets.

In maintaining the catalog, catalog management routines create and delete indexes, and add
~r remove entries. To locate a data set, catalog management routines search through the
indexes for the index entry containing the last part of the qualified name of the data set.

The catalog management routines are used primarily by the job scheduler and the
IEHPROGM utility program, although they can be used by any processing program:

• The scheduler invokes the catalog management routines during the initiation and termination
of a job step. During initiation, a catalog management routine locates cataloged data sets.
During termination, a catalog management routine may catalog or uncatalog data sets
referred to during the job step and specified for the catalog.

• The IEHPROGM utility program invokes catalog management routines to create and delete
indexes, and to add or remove entries. The IEHPROGM program does not locate data sets.

• Processing programs can invoke the catalog management routines via the CATALOG,
INDEX, and LOCATE assembler language macro instructions. These macro instructions
provide access to all the catalog management routines.

Major Changes from MVT: None.

42 OS/VS2 Planning and Use Guide

Direct Access Device Space Management (DADSM)

Direct access device space management (D ADSM) consists of routines that allocate space on
direct access volumes to data sets. The routines are used primarily by job management routines
during the initiating of job steps when space is obtained for output data sets. They are also
used by other data management routines for increasing the space already assigned to a data
set, and for releasing space no longer needed.

The DADSM routine controls allocation of space through the volume table of contents
(VTOC). The VTOC is built when a volume is initialized by the direct access storage device
initialization (lBCDASDI) utility program. The VTOC indicates the current usage of the space
on the volume.

When space is needed on a volume, the DADSM routines check the VTOC for enough
contiguous, available tracks to satisfy the request. If there are not enough contiguous tracks,
the request is filled using up to five noncontiguous groups of free tracks.

Major Changes from MVT: None.

Input/ Output Support

Input/output (I/O) support routines perform three functions associated with I/O operations:

• Opening a data control block before a data set is read or written.

• Closing a data control block after a data set has been read or written.

• Processing end-of-volume (EOV) conditions when an end-of-volume or end-of-data (EOD)
set condition occurs during an I/O operation.

Open Processing

Before access can be gained to a data set, the data control block (DCB) for that data set must
be opened by means of an OPEN macro instruction. When a processing program issues an
OPEN macro instruction, the Open routine of the control program performs:

• V olume mounting and verification.

• Merging of data set attributes from the DD statement and the data set label into the control
blocks.

• Determination of access method routines.

Major Changes irom MVT: Open processing in VS2 performs DEB validity checking.

Close Processing

After processing has been completed for a data set, the data control block (DCB) for that data
set must be closed by means of a CLOSE macro instruction. When a processing program
issues a CLOSE macro instruction, the Close routine of the control program performs:

• Input and output label processing.

• Volume disposition.

• Restoration of data control block to its original condition by removing the information that
was merged from the DD statement.

Major Changes from MVT: Close processing in VS2 performs DEB validity checking.

End-of -Volume Processing

End-of-volume (EOV) processing is performed when end-of-data set or end-of-volume
conditions occur during I/O operations on sequentially organized data sets. When a routine of
a sequential access method encounters a tape or file mark (end-of-data set) or an
end-of-volume condition, the routine issues an SVC instruction to pass control to the EOV
routine.

System Control Program 43

Major Changes from MVT: None.

Direct Access Volume Serial Number Verification

Direct access volume serial number verification is standard in VS2. The volume serial number
of a direct access device is checked after an unsolicited device-end interruption condition has
been corrected and the volume has been put back online again.

When an unsolicited device-end interruption is received from a direct access device, the I/O
supervisor ensures that the volume serial number of the mounted volume agrees with the
volume serial in the unit control block (UCB).

Major Changes from MVT: In VS2, direct access volume serial number verification is a
standard facility; in MVT, it was optional.

Recovery Management
Recovery management facilities gather information about hardware reliability and allow retry
of operations that fail because of CPU, I/O device, or channel errors. The facilities of VS2
that record the environment of the system at the time of a machine malfunction and attempt
to recover from the malfunction are the machine check handler and the channel check handler;
the facility that attempts recovery from various I/O errors is dynamic device reconfiguration.
Figure 13 provides a summary of the VS2 changes to the recovery management programs.

Facility Change

Machine check handler (MCH) Now standard (previously optional); enhanced MODE command.

Channel check handler (CCH) Now standard (previously optional).

Dynamic device reconfiguration (DDR) Now standard (previously optional); system residence device and
page data set nat supported.

A I ternate path retry (APR) None. (See the chapter" Options".)

Figure 13. VS2 Changes to Recovery Management

Machine Check Handler (MCH)

Machine check handler (MCH) is a standard facility of VS2 that attempts to reduce lost
computing time due to machine malfunctions.

Recovery from machine malfunctions is initially attempted by the hardware instruction retry
(HIR) and error correction codes (ECC) facilities of the machine. If the machine recovery
attempts are unsuccessful, a machine check interruption will occur. MCH then analyzes the
data and attempts to keep the system as fully operational as possible. It may:

• Attempt to repair malfunctions and, if possible, resume operation, leaving no adverse effects
on the system. \

• Attempt to terminate affected tasks and resume operation.

• Isolate the failure to a page frame in real storage, and mark the page frame as invalid or
unavailable for use by the paging supervisor.

• Place the system in a wait state.

In all cases, whether or not recovery is successful, MCH constructs records of the error
environment on the SYSl.LOGREC data set and issues diagnostic messages to the operator.

Major Changes from MVT: In VS2, MCH is a standard facility; in MVT, it was optional. In
VS2, there is an enhanced MODE command that is used for all machine models. The MCH
facility in VS2 has been expanded to allow MCH to mark ~ page frame unavailable.

44 OS/VS2 Planning and Use Guide

Channel Check Handler (CCH)
Channel check handler (CCH) is a standard facility of VS2 that allows the user to recover
from errors in the execution of channel programs. CCH receives control from the I/O
supervisor when a channel data check, channel control check, or interface control check
occurs.

For all three checks, it provides the operator with information about channel errors that
enables him to keep statistics about the channel or help bring about recovery from system
termination conditions.

In addition, for channel control checks and interface control checks, it provides the
device-dependent error recovery procedures (ERPs) of the I/O supervisor with information
needed to attempt a retry of a channel operation that has failed.

Major Changes from MVT: In VS2, CCH is a standard facility; in MVT, it was optional.

Dynamic Device Reconfiguration (DDR)
Dynamic device reconfiguration (DDR) is a standard facility of VS2 that allows the system
and the user to circumvent an I/O failure, if possible, by moving a demountable volume from
one device to another. The device swap is accomplished without abnormal termination of the
affected job and without another initial program load (IPL).

A request to move a volume may be initiated by either the system or the operator. The
system requests DDR after a permanent (uncorrectable) I/O error has occured. The operator
may request DDR at any time by issuing the SWAP command. He may substitute one device
for another, or simply interrupt processing on a device to carry out cleaning procedure.

Major Changes from MVT: In VS2, DDR is a standard facility; in MVT, it was optional. In
VS2, DDR for the system residence device is not supported. Also, DDR does not support the
page data sets.

System Control Program 45

46 OS/VS2 Planning and Use Guide

Standard Support Programs

In addition to the job management, task management, input/output supervision, data
management, and recovery management components of the system control program, VS2
contains a number of other standard support programs that are necessary to run the system.
Figure 14 provides a summary of the VS2 changes to these programs.

Facility

OS/VS2 assembler

linkage editor F and loader

Utilities

Dynamic support system (DSS)
Missing interruption checker
Online test executive program (OLTEP)

Problem determination
Reliability data extractor (ROE)
Service aids

Storage dumps

Change

New assembler with improved diagnostics and extended language
capobil i ty •
New control statements and parameters to order and align CSECTs
and common areas, and to designate APF codes.
IEHATLAS - restricted by APF;
IEHPROGM - restricted by APF;
IEHDASDR - restricted by APF, and automatically invoked by
AMDSADMP;
IEBCOPY - supports new LOAD/UNLOAD functions for library
distribution.
New system debugging tool for authorized maintenance personnel.
Now standard (was previously optional).
Executes in nonpageable storage, except for logout analysis; now
standard (previously optional).
None.
None. (See the chapter "Options II.)
AMAPTFLE - supports independent component releases;
AMASPZAP - restricted by APF.
Provides dumps of real and/or virtual storage; new DSS dump
facility •

Figure 14. VS2 Changes to Standard Support Programs

OS/VS2 Assembler
The OS/VS2 assembler is a standard facility that translates source statements into machine
language, assigns virtual storage locations to instructions and other elements of the program,
and performs auxiliary assembier functions designated by the programmer. (The auxiliaiY
functions assist the programmer in such areas as checking and documenting programs,
generating macro instructions, and controlling the assembler itself.)

The output of the assembler program is the object program, a machine-language translation
of the source program. The assembler produces a printed listing of the source statements and
object program statements, and additional information useful to the programmer in analyzing
his program. The object program is in the format required by the linkage editor.

The OS/VS2 assembler is the only language translator distributed with the VS2 system
control program. For a detailed description of the assembler, see OS/VS and DOS/VS
Assembler Language, GC33-4010.

Major Changes from MVT: This facility is not available in MVT. It provides improved
diagnostics and extended language capability over assembler F available in MVT.

Standard Support Programs 47

Linkage Editor F and Loader

Utilities

The linkage editor F and the loader are standard facilities of VS2 that are used to prepare the
output of language translators for execution.

Linkage editor processing is a necessary step that follows source program assembly. Input to
the linkage editor may consist of a combination of object modules, load modules, and control
statements. The primary purpose of the linkage editor is to combine and edit these modules
into a single load module that can be brought into virtual storage by program fetch and then
executed.

The loader combines the basic editing and loading functions of the linkage editor and
program fetch in one job step. It prepares the executable program in virtual storage and passes
control to it prior to execution. The loader is designed for high-performance loading of
modules that do not require the special processing facilities of the linkage editor and program
fetch. It does not produce load modules for program libraries.

For a detailed description of the linkage editor and loader, see OS/VS Linkage Editor
and Loader, GC26-3813.

Major Changes from MVT: In VS2, several new control statements and parameters are
available to order CSECTs and common areas in a load module, to align CSECTs and
common areas on a page boundary, and to designate the authorization code for APF . .In VS2,
linkage editor E is not distributed with the system control program; that is, only linkage editor
F is distributed with VS2.

The VS2 utilities are standard programs that organize and maintain data. They are divided into
three categories: system utilities, data set utilities, and independent utilities. Figure 15 lists
these utilities. For a detailed description of the utilities, see OS / VS Utilities, GC35-0005.

System Utilities Data Set Utilities Independent Uti lities

IEHATLAS IEBCOMPR IBCDASDI
IEHDASDR IEBCOPY IBCDMPRS
IEHINITT IEBDG ICAPRTBL
IEHLlST IEBEDIT
IEHMOVE IEBGENER
IEHPROGM IEBISAM
IFHSTATR IEBPTPCH

IEBTCRIN
IEBUPDTE

Figure 15. VS2 Utilities

System Utilities
System utility programs manipulate collections of data and system control information. The
programs are executed or invoked through the use of job control statements and utility control
statements.

IEHATLAS

The IEHATLAS program is used when a defective track is indicated by a data check or
missing address marker condition. It locates and assigns an alternate track to replace the
defective track. Usable data records on the defective track are retrieved and transferred to the
alternate track. The bad record from the defective track is replaced on the alternate by a
correct copy. (The correct copy must be provided by the user.)

48 OS/VS2 Planning and Use Guide

Major Changes from MVT: In VS2, use of this utility is restricted through the authorized
program facility.

IEHDASDR

The IEHDASDR program prepares direct access volumes for VS2 use and ensures that any
permanent hardware errors (i.e., defective tracks) encountered on direct access volumes will
not seriously degrade the performance of those volumes. During generation of the stand-alone
dump service aid program via the AMDSADMP macro instruction, IEHDASDR is invoked to
dump the program on a residence volume.

In addition, the IEHDASDR program can write the entire contents or portions of a direct
access volume onto a volume or direct access device type, onto a magnetic tape volume or
volumes, or onto a system output device. Data that is written onto a magnetic tape volume is
arranged so that it can subsequently be "restored" to its original organization by the
IEHDASDR program. The direct access device types supported by the IEHDASDR program
are IBM 2305 Fixed Head Storage Models 1 and 2, IBM 2314 Direct Access Storage Facility,
IBM 2319 Disk Storage, and IBM 3330 Series Disk Storage.

IEHDASDR has been enhanced to allow the user to construct his own IPL program, and
have it (and all IPL records necessary to initialize it) written on track 0 of a supported device.

The IEHDASDR program can be used to:

• Check tracks, assign alternate tracks for defective tracks, and perform initialization and
formatting functions to make a direct access volume suitable for VS2 use. Surface analysis
does not apply for the IBM 3330 Series Disk Storage.

• Initialize and format direct access devices.

• Assign aiternate tracks for specified defective or questionable tracks on disk volumes.

• Create a backup or transportable copy of a direct access volume, or list the contents on a
system output device.

• Copy data from a magnetic tape volume onto a direct access volume.

Major Changes from MVT: In VS2, use of this utility is restricted through the authorized
program facility. Also, in addition to the enhancements noted above, the AMDSADMP service
aid program now creates the job stream for the IEHDASDR program.

IEHINITI

The IEHINITI program places VS2 volume labels written in EBCDIC, in BCD, or in ASCII
(American Standard Code for Information Interchange) onto any number of magnetic tapes
mounted on one or more tape drives. Each volume label created by the program contains:

• A standard volume label with a user specified serial number and user identification.

• A dummy header label (an 80-byte record containing HDR1 and an ASCII character).

• A tapemark.

Major Changes from MVT: None.

IEHLIST

The IEHLIST program can be used to list:

• Entries in a catalog.

• Entries in the directory of one or more partitioned data sets.

• Entries in a volume table of contents, in edited or unedited form.

Major Changes from MVT: None.

Standard Support Programs 49

IEHMOVE

The IEHMOVE program moves or copies logical collections of VS2 data.

The program can be used to move or copy:

• A data set residing on one or as many as five volumes.

• A group of cataloged data sets.

• A catalog, or portions of a catalog.

• A volume of data sets.

The scope of a basic move or copy operation can be enlarged by:

• Merging members from two or more partitioned data sets.

• Including or excluding selected members.

• Renaming moved or copied members.

• Replacing selected members.

Major Changes from MVT: None.

IEHPROGM

The IEHPROGM program provides facilities for modifying system control data and for
maintaining data sets at an organizational level.

The program can be used to:

• Scratch a data set or a member.

• Rename a data set or a member.

• Catalog or uncatalog a data set.

• Build or delete an index or an index alias.

• Connect or release two volumes.

• Build and maintain a generation data group index.

• Maintain data set passwords.

Major Changes from MVT: In VS2, use of this utility is restricted through the authorized
program facility.

IFHSTATR

The IFHST ATR program selects, formats, and writes information from type 21 (error statistics
by volume) records. The records exist on the IFASMFDP tape. They can also be retrieved
directly from SYS I.MANX or SYS I.MANY data sets (on a direct access storage device);
however, the IFHSTATR program does not clear the SYSl.MANX or SYS1.MANY data sets
and therefore does not make them available for additional records.

Major Changes from MVT: None.

Data Set Utilities

Data set utility programs manipulate partitioned, sequential, or indexed sequential data sets.
Data ranging from fields within a logical record to entire data sets can be manipulated. The
programs are executed or invoked through the use of job control statements and utility control
statements.

IEBCOMPR

The IEBCOMPR program compares two identically organized data sets at the logical record
level. Data sets to be compared can be either sequential or partitioned.

50 OS/VS2 Planning and Use Guide

The program can:

• Verify a back-up copy of a sequential or partitioned data set.

• Verify portions of records within a sequential or partitioned data set.

User exits are provided at appropriate places for optional user routines that process user
labels, handle error conditions, and modify source records.

Major Changes from MVT: None.

IEBCOPY

The IEBCOPY program can copy or merge partitioned data sets. Specified members of
partitioned data sets can be selected for, or excluded from a copy operation. The program can
also compress a data set in place, optionally replace identically named members on data sets,
or optionally rename selected members.

The IEBCOPY program automatically lists the number of unused directory blocks and
unused tracks available for member records in the output partitioned data set. By means of the
LIST=NO operand the program can be made to suppress the names of copied members listed
by input partitioned data set.

Major Changes from MVT: In VS2, this utility supports LOAD/UNLOAD functions which
can be used for VS2 library distribution.

IEBDG

The IEBDG (data generator) program provides a pattern of test data to be used as a
programming debugging aid. A (test) data set, containing records of any format, can be
created by utility control statements, with or without input data.

An optional exit is provided to a user routine that can monitor each output record before it
is written. Sequential, indexed sequential, and partitioned data sets can be used for input or
output.

Major Changes from MVT: None.

IEBEDIT

The IEBEDIT program can create an output data set containing selected jobs or job steps. At
a later time, the data set can be used as an input stream for job processing.

Input to the IEBEDIT program is obtained from a sequential data set. The input data set
can reside on any input device supported by VS2 (e.g., magnetic tape, direct access, or card
reader). The program can select JOB statements, JOBLIB statements, and job steps from the
input data set and can include them in the output data set.

Major Changes from MVT: None.

IEBGENER

The IEBGENER program can copy a sequential data set or a partitioned member, or it can
create a partitioned data set from a sequential data set or a partitioned member. The program
expands existing partitioned data sets by creating partitioned members and merging them into
the data set to be expanded. The program can also reblock or change the logical record length
of a data set, or create user labels on sequential output data sets.

The IEBGENER program provides optional editing facilities with all applications. In
addition, it provides user exits at appropriate places for routines that process labels, manipulate
input data, create keys, and handle uncorrectable input/output errors.

Major Changes from MVT: None.

Standard Support Programs 51

IEBISAM

The IEBISAM program can copy an indexed sequential data set directly from one direct access
volume to another. Alternatively, the IEBISAM program can reorganize an indexed sequential
data set into a sequential data set and place that data set on a direct access or on a magnetic
tape volume. The data set is in a form that can be subsequently loaded; that is, it can be
converted back into an indexed sequential data set.

Optionally, the IEBISAM program can be used to print the records of an indexed sequential
data set.

Major Changes from MVT: None.

IEBPTPCH

The IEBPTPCH program prints or punches all, or selected portions, of a sequential or
partitioned data set. Records can be printed or punched to meet either standard specifications
or user specifications.

The IEBPTPCH program provides optional editing facilities. In addition, user exits are
provided at appropriate places for routines that process labels and/or manipulate input or
output records.

Major Changes from MVT: None.

IEBTCRIN

The IEBTCRIN program reads input from the IBM 2495 Tape Cartridge Reader (TCR), edits
the data as specified by the user, and produces a sequentially organized output data set. The
input consists of cartridges written by either the IBM Magnetic Tape SELECTRIC Typewriter
(MTST) or the IBM 50 Magnetic Data Inscriber. An input data set (one or more cartridges)
must consist of either all MTST cartridges or all Magnetic Data Inscriber cartridges.

The program can construct records from the stream of data bytes read sequentially from the
Tape Cartridge Reader. The user has the option of gaining temporary control (via a
user-supplied exit routine) to process each logical record.

The output produced by the program is a sequential data set that can be written on any
QSAM-supported output device (for example, a system output device, a magnetic tape volume
or a direct access volume). A second sequential data set may be produced for error records.

Major Changes from MVT: None.

IEBUPDTE

The IEBUPDTE program incorporates both IBM- and user-generated source language
modifications into sequential or partitioned data sets. The input and output data sets may
contain blocked or unblocked logical records with record lengths of up to 80 bytes. Exits are
provided at appropriate places for user routines that process header and trailer labels.

The program can:

• Add, copy, and replace members or data sets.

• Add, delete, replace, and renumber the records within an existing member or data set.

• Assign sequence numbers to the records of a member or data set.

• Convert sequential input into partitioned output or vice versa.

In general, the program may be used to:

• Create and update symbolic libraries.

• Incorporate changes to partitioned members or sequential data sets.

• Change the organization of a data set from sequential to partitioned or vice versa.

Major Changes from MVT: None.

52 OS/VS2 Planning and Use Guide

Independent Utilities
Independent utility programs are used to prepare direct access devices for system use and to
ensure that any permanent hardware errors incurred on a direct access device do not seriously
degrade the performance of that device. They operate outside, and in support, of System/370.
They do not support the IBM 3066 System Console, which is only used with the System/370
Models 165II and 168. The user controls the operation of independent utility programs
through utility control statements. Since the programs are independent of the operating system,
job control statements are not required.

IBCDASDI

The IBCDASDI (DASDI) program performs two separate functions: it initializes direct access
volumes for use with the operating system, and assigns alternate tracks on non-drum, direct
access storage volumes. A single job can initialize one volume or assign alternates for specified
tracks on one volume. DASDI jobs can be performed continuously by stacking complete sets
of control statements.

Major Changes from MVT: None.

IBCDMPRS

The IBCDMPRS (DUMP/RESTORE) program dumps and restores the data on direct access
volumes. The contents of a direct access volume (all data except the home address and the
count field of record zero (RO» can be "dumped" onto IBM 2314 Direct Access Storage
Facility, IBM 2319 Disk Storage, or IBM 3330 Series Disk Storage devices or onto magnetic tapes,
and restored onto a direct access volume that resides on the same type of device as the source
volume. Both the source volume and the volume onto which data is to be restored must have
been initialized to System/370 specifications. This utility is useful for preparing transportable
copies and backup copies of direct access volume contents.

Major Changes from MVT: None.

ICAPRTBL

The ICAPRTBL (IBM 3211 Buffer-Loader) program loads the universal character set (UCS)
buffer and the forms control buffer (FCB) for a IBM 3211 Printer.

When the IBM 3211 Printer is assigned as the output portion of a composite console and an
unsuccessful attempt has been made to IPL because the DCS and FCB buffer contains
improper bit patterns, this utility can load the buffers so the system can be initialized by the
IPL program.

Under normal circumstances, where an operable console printer-keyboard is available, the
buffers will be loaded under control of the operating system.

Major Changes from MVT: None.

Reliability, Availability, Serviceability (RAS)
Reliability, availability, and serviceability (RAS) facilities consist of recovery and repair
procedures that are designed to reduce the frequency and impact of system interruptions
caused by hardware failures. The RAS facilities are designed to improve the reliability of the
hardware, to increase the availability of the computing system, and to improve the
serviceability of the system hardware components.

Dynamic Support System (DSS)

The dynamic support system (DSS) is a debugging tool that can be used by authorized
maintenance personnel, such as an IBM program systems representative, to help identify and
correct causes of software failures.

Standard Support Programs 53

DSS has its own input/output capability, and has access to all of virtual storage as well as
real storage. When running, it is stand-alone and has control of the system; however, DSS can
return control to the VS2 control program for further operations without system restart
processing. Since DSS takes control from the system on each activation, time dependencies
cannot be maintained. Thus, DSS should not be used while a time-sensitive program (for
example, a teleprocessing or time sharing task) is running. DSS could be used in development
testing of these programs or in locating and repairing a critical problem which prevents the
execution of these programs, but it should not be invoked during any time-dependent
production run.

No permanent changes can be made by DSS. That is, any modification made to the system
will not be carried over to the next IPL. Also, DSS cannot be used to modify itself, IPL, or
NIP.

Communication with DSS is by commands entered through the integrated operator's
console. The DSS language provides capabilities to:

• Display and alter real storage, virtual storage, and registers.

• Provide control for the program event recording (PER) hardware of System/370.

• Stop operation of the system at any instruction or PER interruption, perform maintenance
functions (that is; identify and correct the causes of the failure), and resume operations.

• Save information within DSS for later use, or write out the information on tape or
high-speed printers.

• Use tape or card readers for secondary command input devices.

• Write procedures that are used for reiterative command sequences.

For a detailed description of DSS, see OS/VS Dynamic Support System, GC28-0640.

Major Changes from MVT: This facility is not available in MVT.

Missing Interruption Checker
Missing interruption checker is a standard facility of VS2 that notifies the operator if a
device-end or channel-end interruption is not received within a specified period of time. The
absence of such interruptions may mean that a mount message has not been satisfied or that a
device has malfunctioned.

Specific actions an operator may have to take depend upon the conditions he encounters.
He may be required to ready a device on which a volume has been mounted, examine
indicator lights on the device for abnormal signs, or terminate the job.

Major Changes from MVT: This facility is available in MVT only as a program temporary fix
(PTF).

Online Test Executive Program (OLTEP)

The online test executive program (OLTEP) acts as an interface between the operating system
and online test programs that are to be run. OL TEP schedules and controls the activities of
the test programs. The programs can be used to:

• Test control units and input/output devices.

• Diagnose equipment malfunctions.

• Verify repairs.

• Test engineering changes.

• Perform periodic maintenance checks.

While OLTEP is being run, continuous communication is maintained with the operator. The
programs can be run to obtain printed diagnostic information, or they can be run to exercise a
device while it is being tested with hardware testing equipment.

54 OS/VS2 Planning and Use Guide

For a detailed description of OLTEP, see OS/VS OLTEP, GC28-0636.

Major Changes fromMVT: In VS2, OLTEP is a standard facility; in MVT, it was optional. In
VS2, OL TEP executes in page able storage only when it is invoked to do logout analysis
(LOA); otherwise, OLTEP can be executed only in nonpageable storage.

Problem Determination

Problem determination can be thought of as an activity that is required to identify a failing
hardware unit or program and determine who is responsible for maintenance. It helps to
establish whether a failure is in the system control program, in a software component added to
the system by the user (type I programs and program products), or in the user's application
programs.

Problem determination is accomplished with procedures specified by IBM. In some cases,
these procedures may be initiated by a message or code issued by the system control program;
the message or code, in tum, may direct the user to take certain definitive actions such as
running a service aid or utility program. In all cases, a definite action will be specified and
should be taken before a service call is to be placed to IBM for either hardware or
programming assistance.

Major Changes from MVT: None.

Service Aids

The service aids help in diagnosing and repairing system or application program failures. For a
detailed description of the IFCDIPOO and IFCEREPO service aids, see OS/VS
SYSl.LOGREC Error Recording, GC28-0638. For a detailed description of the other service
aids, see OS/VS Service Aids, GC28-0633.

AMAPfFLE

The AMAPTFLE service aid is a problem program that is used to apply program temporary
fixes (PTFs). AMAPTFLE has two functions:

• An application function generates control statements and applies PTFs in one operation.

• A generate function produces the JCL and control statements needed to apply PTFs. The
JCL must be executed in a later, separate step.

Major Changes from MVT: In VS2, AMAPTFLE will support independent component
releases.

AMASPZAP

The AMASPZAP service aid is a problem program that allows the user to inspect and modify
data at the time a problem is diagnosed. Various combinations of AMASPZAP control
statements enable the user to:

• Inspect and modify instructions and data in any load module that exists as a member of a
partitioned data set.

• Inspect and modify data in a specific data record that exists in a data set residing on a
direct access device.

• Dump an entire data set, a specific member of a partitioned data set, or any portion of a
data set residing on a direct access device.

• Update the system status index (SSI) in the directory entry for a load module.

• Update the AMASPZAP identification record (IDR) for a load module.

Major Changes from MVT: In VS2, the use of this service aid is restricted through the
authorized program facility.

Standard Support Programs 55

AMBLIST

The AMBLIST service aid is a problem program that assists in problem determination by
providing:

• Formatted listings of linkage editor/loader input and output (that is, object and load
modules).

• A cross-reference listing of symbolic references within a load module without re-processing
that module through the linkage editor.

• A formatted listing of all information in a module's control section (CSECT) identification
records (lDR).

• A formatted listing of all IDR indications of program modifications for a load module or
library.

• A map of a system's nucleus.

• A map of the pageable link pack area (LP A). (Note that this map is not of the modified
LP A or fixed LP A.)

Major Changes from MVT: None.

AMDPRDMP

The AMDPRDMP service aid is a problem program that formats and prints the contents of the
AMDSADMP output data set, the SYS I.DUMP data set, the TSO DUMP data set, and the
GTF output data set. Users can control AMDPRDMP output with control statements. Some of
the areas and traces that can be printed are:

• Active modules in the link pack area.

• QCB trace.

• System control blocks for all active tasks.

• Allocated pageable storage.

• Virtual storage ranges.

• Real storage ranges.

• Page data set dumps.

• System nucleus.

• GTF trace data.

Major Changes from MVT: In VS2, areas of virtual storage are printed; in MVT, only areas of
main storage were printed.

AMDSADMP

The AMDSADMP macro instruction is used to generate a stand-alone service aid program that
provides the user with a flexible, installation-tailored dump facility. It can generate one of the
following types of dump programs:

• Low-speed - The low-speed dump program dumps the contents of real storage to a printer
or tape. The dump output is translated and deblocked. Output which is directed to tape may
be printed by the AMDPRDMP service aid or the IEBPTPCH utility program. (IPL of the
program must be from a direct access volume.)

• High-speed - The high-speed dump program dumps the contents of real storage to tape.
Optionally, it can aiso produce dumps oi page data sets. The dump output is in large (2K),
untranslated hexadecimal blocks. The AMDPRDMP service aid must be used to format,
translate, and print the output. (IPL of the program may be from either a tape or a direct
access volume.)

Major Changes from MVT: In VS2, the high-speed dump program can produce dumps of the
page data set(s).

56 OS/VS2 Planning and Use Guide

Generalized Trace Facility (GTF)

The generalized trace facility (GTF) service aid is a problem determination aid that can be
used to trace software (system or problem program) behavior. GTF uses the monitor call
(MC) instruction to detect occurrences of system events and to create trace records. Problem
programs may also use a GTF macro instruction (GTRACE) to record problem program data
in the trace data set.

GTF can single out those programming activities to be traced within the system, including
110 interruptions, program interruptions, and supervisor call interruptions.

The output from GTF can be a trace data set that is used with the edit function of the
AMDPRDMP service aid. The AMDPRDMP service aid provides the capability to format
specific trace activities. It operates as a problem program that can be called via the job control
language.

Major Changes from MVT: None.

IFCDIPOO

The IFCDIPOO service aid is a problem program that is used to:

• Initialize the SYS 1.LOGREC data set during system generation.

• Reinitialize the SYS 1.LOGREC data set if an error has resulted in the destruction of the
SYS 1.LOGREC header record and makes the data set unusable.

• Reallocate the SYS 1.LOGREC data set to increase or decrease the space allocation.

This service aid is run and controlled by job control statements; no user or utility control
statements are needed.

Major Changes from MVT: None.

IFCEREPO

The IFCEREPO service aid is a problem program that is used to:

• Select and format environment records from the SYS 1.LOGREC data set and write them to
an output device.

• Select environment records from the SYSl.LOGREC data set and accumulate them on a
history data set.

• Write the accll..T!mlated records on the history data set to an output device.

• Summarize the information contained in the records on the SYS 1.LOGREC or history data
sets.

• Process (edit, write, accumulate, and summarize) records produced on different machine
models.

This service aid is run and controlled by job control statements; no user or utility control
statements are needed.

Major Changes from MVT: None.

IMCOSJQD

The IMCOSJQD service aid is a problem program that produces a formatted copy of the
contents of the job queue data set. It does not alter the status of the records to be written out.
The user does not need to know the explicit address of the job queue data set, only the
address assigned to the direct access device on which the volume containing the job queue is
mounted.

Standard Support Programs 57

When the program locates the job queue, the records are read and, either serially or
selectively, identified by type and address, formatted, and written out. The job queue may be
written out by job, job step, or in its entirety.

This service aid is run and controlled by job control statements; no user or utility control
statements are needed.

Major Changes from MVT: None.

Storage Dumps
Storage dumps give the user a meaningful image of his programs. The routines available to
provide dumps include:

• ABDUMP, which provides a formatted dump of selected areas of a problem program's
virtual storage. ABDUMP is invoked by the SNAP and ABEND macro instructions.

• DSS DUMP, which allows the user of the dynamic support system (DSS) to dump both real
and virtual storage. DSS DUMP is invoked by DSS.

• CONSOLE DUMP, started by the console operator, invokes SVC DUMP, described below.
See the discussion of the DUMP command in the chapter "Compatibility".

• TSO DUMP, invoked by the time sharing option (TSO), invokes SVC DUMP, -described
below.

• SVC DUMP, provides a dump of selected areas of virtual storage (the nucleus, system
queue area, local system queue area, region, and link pack area modules used). SVC DUMP
is invoked by a key zero routine. The dump provided by SVC DUMP can be printed by the
AMDPRDMP service aid.

• SADMP DUMP, which provides an installation-tailored dump of virtual storage, and can be
printed by the AMDPRDMP service aid. SADMP DUMP is invoked by the AMDSADMP
service aid.

For a detailed description of storage dumps, see OS / VS2 Debugging Guide, GC28-036. 2

Major Changes from MVT: In VS2, dumps are provided of real storage and/or selected areas
of virtual storage; in MVT, dumps are for main storage only. Also, the DSS facility is not
available in MVT.

58 OS/VS2 Planning and Use Guide

Options

The items discussed in the preceding chapter are standard support programs of the VS2 system
control program. In addition to the standard support programs, the user can add optional
facilities to his system. There are two types of options: options included in the system during
system generation and options included in the system after system generation.

Options Included During System Generation

Options included in the system during system generation are contained in the distribution
library and added to the system during the IBM installation process. Figure 16 provides a list
of these options and their changes from MVT.

Facility

Alternate path retry (APR)
Automatic priority group (APG)
Automatic volume recogni·tion (AVR)
Device independent display operator

console support (DIDOCS)/status display
support (SDS)

Reliability data extractor (RDE)
Shared direct access storage devices

(shared DASD)
Time sharing option (TSO)

Time slicing
Track stacking
Access methods

Figure 16. VS2 Changes to Options

Time Sharing Option (TSO)

None.
New dispatching facility.
None.
None.

None.
None.

Change

Support for swapping performed by VS2 paging supervisor; new
use of virtual storage to support more TSO regions i new
parcmeters on START and MODIFY commands; increased number
of regions (from 14 to 42) for foreground jobs; parallel S'Ncpping
allowed to four devices.
None.
None.
Support for TCAM, VSAM, ST AM, SISAM, QISAM, and GAM.

The time sharing option (TSO) of VS2 adds general purpose time sharing to the VS2
control program. The installation can dedicate the system to time sharing operations, or it can
run concurrent time sharing and batch operations.

TSO adds a number of capabilities to the facilities already available through the VS2 control
program:

• It gives users access to the system through a command language which is entered at
remote terminals -- typewriter-like keyboard-printer or keyboard-screen devices connected
through telephone or other communication lines to the computer.

• It gives those who may not be programmers the use of data entry, editing, and retrieval
facilities.

• It makes the facilities of the operating system available to programmers at remote terminals
to develop, test, and execute programs conveniently, without the job turnaround delays
typical of batch processing. Both terminal-oriented and batch programs can be developed at
terminals.

• It allows the management of an installation to dynamically control the use of the system's
resources from a terminal.

Options 59

• It creates a time-sharing environment for terminal-oriented applications. Some applications,
such as problem-solving languages, terminal-oriented compilers, and text-editing facilities,
are available as IBM program products. Installations can add others suited to their particular
needs.

TSO consists of control routines, service routines and command processors, and a number
of IBM program products. All the facilities available with TSO in MVT are available with TSO
in VS2. VS2 enhances TSO in the following ways:

• The use of virtual storage makes it possible to run more foreground regions.

• The use of virtual storage allows the installation to place frequently used TSO commands or
service routines in the pageable link pack area or TSO link pack area without reducing the
amount of real storage available. When TSO is not active, the TSO LPA does not require
address space.

• The paging supervisor, which does all swapping, uses external page storage for swapping,
thereby eliminating the swap data set.

For a detailed description of TSO, see OS/VS2 TSO Guide, GC28-0644.

Differences in TSO for VS2

TSO in VS2 differs from TSO in MVT in several respects:

• The number of regions that can be assigned to foreground jobs is increased from 14 for
TSO in MVT to 42 for TSO in VS2.

• The paging supervisor executes all swaps.

• The LSQA is no longer taken from the region; each TSO region is allocated one segment of
LSQA.

• Swapping is now a process by which the valid pages (addressable pages) in a user's region
are usually block paged to external page storage and always block paged from external page
storage.

• The amount of external page storage required in VS2 must be sufficient to accomodate
('back up') the paging of background pages and the paging and swapping of foreground
pages.

• Swapping can be directed to specific page data set devices. The parallel swapping capability
that existed for TSO in MVT is expanded to allow swapping to as many as four devices.
These can be the same devices that receive pages from background jobs.

• Background regions must have 100% backup in external page storage. For example, a
background job that requests a 128K region is allocated 128K (32 pages) of external page
storage as backup.

• Most TSO jobs do not continually need an amount of external page storage equivalent to
the region sizes requested. Consequently, foreground jobs are backed up by an installation
• specified amount of external page storage that is a percentage of the total amount of
external page storage required.

TSO in VS2 uses eight new parameters, including parameters to handle the assignment of
external page storage and establish thresholds to guarantee that both background and
foreground jobs have minimum amounts of external page storage. Figure 17 defines the
parameters and Figure 18 shows the relationship between the TSOAUX and TSOMAX
parameters in a system.

60 OS/VS2 Planning and Use Guide

Parameter

TSOAUX

TSOMAX

BACKUP

SWAP

NOSWAP

AUXLlST

LPAR

LPAF

When Specified

System generation, or
system initialization, or
START TSO, or MODIFY
TSO

START TSO or
MODIFY TSO

START TSO or
MODIFYTSO

START TSO

START TSO

START TSO or
MODIFYTSO

START TSO

START TSO

Default

0%

100%

100%

None

NOSWAP

None

None

None

Figure 17. New TSO Operator Parameters for VS2

Effect

Specifies the minimum percentage of virtual
storage dynamic area reserved for foreground
jobs and backed up by external page storage.
By implication, this parameter also specifies
the maximum percentage of virtual storage
dynamic area avai lable for background jobs
and backed up by external page storage.

Specifies the maximum percentage of virtual
storage dynamic area avai lable for foreground
jobs and backed up by external page storage.
By implication, this parameter also specifies
the minimum percentage of virtual storage
dynamic area reserved for background jobs
and backed up by external page storage.

Specifies the percentage of virtual storage
dynamic area assigned to foreground "jobs that
will be backed up by external page storage.

Specifies up toA volume serial numbers of
volumes containing page data sets to which
swapping is' to be directed. Parallel swapping
is accomplished when two or more devices are
specified. If no devices are specified, the
primary page data set with the most page slots
available will be used, or, if a secondary
device is defined, it wiii be used.

Specifies that the regular page data set is to
be used for swapping. This parpmeter
nullifies the SWAP parameter.

Specifies that information concerning the use
and availability of auxiliary storage is to be
listed.

Specifies TSO LPA modules reauired. The
START TSO command will be r~jected unless
the named modules are found in SYS 1. LlNKLIB
or the TSO link pack area.

Specifies that, in addition to the processing
for the LPAR parameter, the named TSO
modules will be fixed in the TSO link pack
area as long as TSO is active.

Options 61

Total External Page Storage
Gre~er than 16 megabytes

I
Virtual Storage Dynamic Area 1 I .,1

I I 1
Avai lable Virtual Storage for
Background

I I I
__________ ~I ________ ~.~: I

I I I

Available Virtual Storage and
External Page Storage for TSO

TSOAUX guarantees a minimum amount of
virtual storage dynamic area for TSO jobs.

TSOMAX guarantees a minimum amount of
virtual storage dynamic area for background jobs.

Figure 18. Comparison of TSOAUX and TSOMAX Parameters

Basic Preparation

I I :
:.. I I
I I I
I I I
I I TSOAUX I
I ~
I I I
I I I
I TSOMAX I

~~--------~I J
I I I
I I I

The procedure to prepare TSO in VS2 is basically the same as it was in MVT. To prepare
TSO, the installation must:

• Generate a system including TSO.

• Tailor a TSO-TCAM message control program.

• Define a member of SYS l.P ARMLIB to contain TSO system parameters.

• Define LOGON procedures.

• Define the user attribute data set (UADS) to contain user identification records.

Major Changes from MVT: See the section "Differences in TSO for VS2" above. For a
summary of all changes to the TSO operator commands, see "TSO Commands" in the chapter
"Compatibility. "

Automatic Volume Recognition (A VR)

Automatic volume recognition (A VR) is an option of VS2 that permits the operator to
pre mount direct access or tape volumes on any available devices prior to the initiation of the
job step that requires the volumes. The operator can therefore reduce the time lost in
performing job setups.

If the operator does not pre mount tape volumes, A VR allows him to select devices he
wishes to use during job step initiation. A VR also allows him to manually restart an I/O job
without demounting volumes and then remounting the same volumes.

In VS2, the system attempts to balance channel loads by using the I/O load balancing
algorithm to allocate data sets with nonspecific device requests. In some installations, however,
a system slowdown may result if A VR causes one channel to be overloaded with most of the
data handiing.

Major Changes from MVT: None.

62 OS/VS2 Planning and Use Guide

Device Independent Display Operator Console Support (DIDOCS)/Status Display Support (SDS)

Device independent display operator console support (DIDOCS)/status display support (SDS)
is an option of VS2 that allows graphic display devices to be used as operator consoles. Its use
can result in faster communication between the system and the operator than can be achieved
with standard printer-keyboard or composite console devices. DIDOCS/SDS is not a standard
facility of VS2; however, it will be included in the system when a graphic console is included.
It provides the following advantages to the operator:

• He can respond to a message or enter a command while messages are being written to the
screen.

• He is shown all action messages to be answered, and can delete any he no longer needs.

• He can use the light pen or cursor, when available, to delete messages and perform other
display-oriented functions.

• He can obtain an in-line display or an out-of-line display within specified screen display
areas.

• He can obtain a dynamic status display from a MONITOR ACTIVE command.

• He can initiate automatic command entry either by the use of the selector pen or from the
program function keyboard (PFK) by an operator command.

Although multiple console support (MCS) is required for DIDOCS, MCS is standard in
VS2, and need not be specified separately.

Major Changes from MVT: None.

Time Slicing

Time slicing is an option of VS2 that lets each task of a specified priority have control of the
central processing unit (CPU) for a specified interval of time. Normally a task maintains
control either until it is complete, until a higher-priority task becomes ready, or until it must
wait for some event (such as an I/O operation). With time slicing, a group of tasks are
allotted an interval of time which is divided among them.

When a member of the time-slice group has been active for the allotted length of time, it is
interrupted and control is given to another member of the group which will, in turn, have
control of the CPU for the same amount of time. In this way, all member tasks are given an
equai siice of CPU time and no task within the group can monopolize the CPU. Only tasks in
the group are time-sliced, and they are time-sliced only when the priority level of the group is
the highest priority level that has a ready task.

When a time-sliced task loses control prior to the expiration of its interval, the remainder of
the interval is not saved. If the task was waiting for an event, the next task is dispatched. If a
task of higher priority became ready, the higher priority task is dispatched when control is
returned to the group, not the task that lost control.

The priority level identified for the time slice group cannot also be identified for the
automatic priority group (APG).

Major Changes from MVT: None.

Shared Direct Access Storage Devices (Shared DASD)

Shared direct access storage devices (shared DASD) is an option of VS2 that enables
independent operating systems (VS 1, VS2, MVT, and MFT) to share common data on a
shared direct access storage device.

The sharing is made possible by a two-channel switch that allows the control unit for the
device to be switched between two channels, each from a different system. (A 4-channel
switch is supported by the mM 3330 Series Disk Storage device.) The VS2 control program

Options 63

protects data being used in one central processing unit (CPU) from modification by a program
in the other CPU, and minimizes access-arm contention between the devices.

Shared OASO offers the following advantages:

• Reduction of time spent in data set creation and maintenance, and a reduction in space
requirements (whenever a single data set can service mUltiple users).

• Flexibility in scheduling jobs on CPUs that have access to the common data base.

• Availability of a system through the flexibility of job scheduling in the event of a
malfunction in any CPU.

• Increase in the amount of work processed, since two CPUs are using common data at the
same time.

In a shared OASO environment, volume handling is conducted in parallel on both sharing
systems. Therefore, the operator's responsibility is increased, and good communication between
operators of the systems must be maintained.

For a listing of the system data sets and libraries that can be shared, see System Oata Sets
in the chapter "Compatibility".

Major Changes from MVT: None.

Alternate Path Retry (APR)

Alternate path retry (APR) is an option of VS2 that ensures that an alternate path to a device
is tried (whenever possible) when a failing path is detected. Until a retry is successful, APR
places any failing paths offline to prevent further retries from being initiated on these paths.
When retry succeeds, APR restores all of the original paths, and resumes normal system
operation.

APR also permits the operator to vary a path to a device online or offline. The operator,
however, cannot vary the last remaining path to a device offline, nor can he vary
teleprocessing paths or paths to shared direct access storage devices.

Major Changes from MVT: None.

Reliability Data Extractor (RDE)

The reliability data extractor (ROE) is an option of VS2 that generates system initialization
(IPL) and system termination (EOO) records, and collects them on SYSl.LOGREC. The IPL
record contains the reason for restarting the system and names the type of equipment or
program (if any) that is responsible for the restart; the EOO record defines the time span of
processing for the restart. The IPL and EOO records can be examined after use of the
IFCEREPO service aid program. The program can:

• Print the IPL and EOO records, and print a summary of all the IPL and EOO records that
are on SYSl.LOGREC; this permits examination of the records to determine the reasons
for repeated system initializations.

• Write the records from SYS 1.LOGREC to a measurement data set (generally a tape). The
information on SYSl.LOGREC includes, in addition to the IPL and EOO records, error
recording records from the SDR, MCH, TPER, CCH, and OBR error recording routines.

For a detailed description of RDE, see OS/VS RDE Guide, GC28-0642.

Major Changes From MVT: None.

Track Stacking
Track stacking is an option of VS2 that is used to handle the data brought in from the
SYS 1.SYSJOBQE data set. It permits one or more logical tracks for a particular job to reside
temporarily in storage as an ordered series.

64 OS/VS2 Planning and Use Guide

If a larger part of the computer time at an installation is spent in job scheduling,
performance can be improved by using track stacking. Track stacking allows the moving of an
entire locical track from the input queues into storage for use by the initiators; this reduces the
number of accesses and thus reduces arm interference. Track stacking may be specified at
system generation time or at IPL time; if the track stacking facility is used, region sizes for the
initiators are increased to include the additional buffer space.

Major Changes From MVT: None.

Automatic Priority Group (APG)

Automatic priority group (APG) is an option of VS2 that assigns a single priority level to a
group of tasks in an attempt to provide optimum use of CPU and I/O resources by these
tasks. The priority level may be identified at system generation or system initialization time.

Tasks are dispatched and shifted within the APG based on their characteristics. Tasks are
considered CPU-oriented if they appear to be oriented more towards use of the CPU resource.
Tasks are considered I/O-oriented if they seem more inclined towards use of I/O (paging I/O
is excluded from this determination).

All tasks in the APG are dispatched with a time interval. A task is considered CPU-oriented
in APG if it uses its entire interval of allotted time - that is, if it does not give up control
voluntarily. A task is considered I/O-oriented in APG if it does not use its entire interval of
allotted time.

Important features of the APG group are:

• Tasks within the I/O subgroup are ordered such that those which use smaller portions of
their interval are ranked higher in the queue.

• CPU tasks receive control in a cyclic manner. thus ensuring that any available CPU time is
distributed equitably among them.

• Potential I/O tasks are not locked at the bottom of the CPU subgroup indefinitely.

• APG is self-adjusting within user-specified limits to maintain a mix of CPU-bound jobs to
I/O-bound jobs.

The priority level identified for the APG cannot also be identified as a time slice group.

Major Changes from MVT: This facility is not available in MVT.

Access Methods

Access methods are techniques for moving data between virtual storage and input/output
devices. The access methods that are optional in VS2 are the telecommunications access
method (TCAM), the virtual storage access method (VSAM), the basic telecommunications
access method (BT AM), the basic indexed sequential access method (BISAM), the queued
indexed sequential access method (QISAM), and the graphics access method (GAM).

Telecommunications Access Method (TCAM)

The telecommunications access method (TCAM) is an option of VS2 that is a generalized I/O
control system that extends the techniques of data management to the teleprocessing
environment. The data sets addressed by the user (via GET, PUT, READ, and WRITE macro
instructions) are queues of messages coming from, or going to, remote terminals via
communications lines. If the time sharing option (TSO) is included in the system, TCAM
provides the terminal support.

In addition to controlling the transfer of messages to user-written application programs,
TCAM provides a flexible, message control language. TCAM macro instructions can be used
to construct an installation-oriented message control program for controlling message traffic
among remote terminals, and between remote terminals and application programs.

Options 65

A teleprocessing control system created through the use of the TCAM message control
language can:

• Establish contact and control message traffic between computer and terminals.

• Delete and insert line control characters automatically, thus freeing the user from line
control considerations.

• Assign, use, and free buffers dynamically.

• Edit incoming and outgoing messages.

• Forward messages to destination terminals and application programs.

• Take corrective action and provide special handling for messages containing errors.

• Maintain statistical information about message traffic.

TCAM offers an extensive set of facilities. They include:

• Online testing of teleprocessing terminals and control units.

• Program debugging aids.

• Network reconfiguration facilities.

• Checkpoint/restart.

• I/O error recording.

• Operator control to examine and alter network status.

• Alternate destination capability.

For a description of TCAM, see OS TCAM Concepts and Facilities, GC30-2022 and
OS/VS TCAM Programmer's Guide, GC30-2034.

Major Changes from MVT: TCAM message control programs must be reassembled and
linkage edited before execution in VS2. Also, VS2 TCAM supports fetch protection.

Virtual Storage Access Method (VSAM)

The virtual storage access method (VSAM) is a new access method that is used with direct
access storage devices. VSAM creates and maintains two types of data sets.

One type of data set is sequenced by a key field within each record and is called a
key-sequenced data set. Data records are located by using the key field and an index that
records each key field and the address of the associated data, similar to ISAM.

The other type of data set is sequenced by the time of arrival of each record into the data
set and is called an entry-sequenced data set. Data records are located by using the record's
displacement from the beginning of the data set. The displacement is called the relative byte
address, similar to the relative block address used with BDAM.

VSAM stores, retrieves, and updates user data records in these types of device indepen.dent
data sets. The data records are stored in a new data format designed for device independence.
This ensures long term data stability and suitability for use in data base applications. Data in
both types of data sets can be accessed either sequentially or directly.

VSAM enhances may ISAM capabilities including performance, device independence,
concurrent processing, data portability, and kinds of accessing supported. It provides multiple
levels of password security protection. It also creates and maintains separate catalogs that
contain information about each VSAM data set and are used to link a data set with its index.

VSAM provides a multifunction utility program that will define, delete, print, copy. and
provide backing and portability of VSAM data sets. An ISAM interface routine to allow most
existing ISAM programs access to VSAM data sets is also provided.

For a detailed description of VSAM, see OS/VS Virtual Storage Access Method (VSAM)
Planning Guide, GC26-3799.

Major Changes from MVT: This facility is not available in MVT.

66 OS/VS2 Planning and Use Guide

Basic Telecommunications Access Method (BT AM)

The basic telecommunications access method (BT AM) is an option of VS2 that provides the
basic modules for constructing a teleprocessing program, including routines for controlling a
variety of terminal units, communications lines, and transmission control units. BT AM can be
used as a component in the development of more sophisticated teleprocessing systems, and can
be modified to support special configurations not supported by other access methods.

BT AM provides the capabilities to:

• Poll terminals and receive messages.

• Address terminals and send messages.

• Dynamically chain input buffers.

• Dial and answer.

• Detect and correct errors.

• Write output buffer chains.

• Perform code translation.

BTAM controls terminal I/O operations initiated by READ and WRITE macro instructions
in the user's problem program. Although BT AM controls data transmission, it does not provide
elaborate message queuing or process messages.

For a detailed description of BTAM, see OS/VS BTAM, GC27-6980.

Major Changes from MVT: None.

Basic Indexed Sequential Access Method (BISAM)

The basic indexed sequential access method (BISAM) is an option of VS2 that is used in one
form to directly retrieve or update particular blocks of a data set on a direct access device. An
index, which is used to locate the data set, is stored with the data set. Other forms of this
method can be used to store or retrieve sequential blocks of the same data set. (See
description of basic and indexed sequential in the discussion of standard access methods in the
chapter "System Control Program. 'I)

Major Changes from MVT: None.

Queued Indexed Sequential Access Method (QISAM)

The queued indexed sequential access method (QISAM) is an option of VS2 that is an
extended version of BISAM where a queue is formed of input data waiting processing or
output data awaiting transfer to auxiliary storage or output devices. (See descriptions of
queued and indexed sequential in the discussion of standard access methods in the chapter
"System Control Program.")

Major Changes from MVT: None.

Graphics Access Method (GAM)

The graphics access method (GAM) is an option of VS2 that consists of I/O and control
routines that transfer data to and from graphic devices. GAM, part of the graphic
programming services (GPS), provides the following facilities:

• Buffer management routines that allocate, control, and protect buffer storage.

• Data management routines that store graphic orders and data in user-specified output areas.

• READ/WRITE level macro instructions that transfer data between virtual storage and the
graphic device buffers.

• Basic and express attention handling routines that facilitate man-machine communication.

• Error handling routines that diagnose synchronous errors and perform the necessary error
handling.

Options 67

When GAM is included at system generation time, problem oriented routines (POR) and
the graphic subroutine package (GSP) may also be included.

For a detailed description of GAM, see OS/VS Graphic Access Method Logic,
SY27-7240.

Major Changes from MVT: None.

Options Included Mter System Generation
Type I programs are free and can be added to the system after system generation. They are
not distributed with the control program, and must be ordered separately.

Program products, available from IBM for a license fee, provide the user with specialized
problem programs; they are added to the system after system generation and installation. (For
a catalog to IBM program products that provide language and sort/merge processing support,
see System/3 70 Program Products Language and Sort Processors, GC28-8200.)

Information on the availability of all type I programs and program products, and
documentation on their use, is available from the local IBM sales office.

Major Changes from MVT: Any restrictions on use of the type I programs and program
products are available from the local IBM sales office.

68 OS/VS2 Planning and Use Guide

Compatibility

VS2 is an extension of the MVT configuration; VS 1 is an extension of the MFT configuration.
This chapter describes the differences and incompatibilities between VS2 and MVT, with
references, where applicable, to VS1 and MFT. It is divided into the following sections:

• Operator commands.

• Job control language.

• Problem programs.

• Coding guidelines.

• Emulators.

• Reassembly / recompilation.

~ System data sets.

• System macro instructions.

• Major VS2 - MVT differences.

• Major VS2 - VS1 differences.

Operator Commands

Operator commands aie statements to the control program, issued via a console device or the
input stream, which cause the control program to provide requested information, alter normal
operations, initiate new operations, or terminate existing operations.

This section does not describe all of the operator commands needed to run jobs in VS2.
Rather, it describes the parameters that have changed from MVT to VS2.

MVT Commands

Except for the major changes noted beiow, the operator commands for VS2 are the same as
the commands for MVT. Figure 19 provides a summary of the changes. For a detailed
description of the commands, see Operator's Library: OS/VS2 Reference, GC38-0210.

Compatibility 69

Command Parameter Change

CANCEL Operator can cancel job waiting for region or data set.

DISPLAY A Output changed to reflect virtual storage.
N RJE and ASS reader queues not supported.
Q RJE and ASS reader queues not supported.

DUMP ALL Parameter not supported.

MODE One simplified command for all models.

MONITOR A Output changed to reflect virtual storage.

MOUNT H Parameter not supported.

SET GMT New parameter for time -of-day clock.

START H Parameter not supported.
LSQA New parameter for local system queue areas.

VARY F Parameter not supported.
M Parameter not supported.
OFFGFX Parameter not supported.
ONGFX Parameter not supported.
S Parameter not supported.

Figure 19. VS2 Changes to MVT Operator Commands

CANCEL Command

The specification of the CANCEL command is the same for VS2 and MVT. However, the
command can now be used to cancel a job waiting for a region or a data set.

DISPLAY Command

The specification of the DISPLAY command is the same for VS2 and MVT. However, the
output generated by this command is different in the following instances:

• If the parameter A is specified in the command, the output will include the starting and
ending virtual storage addresses of the region, the number of pages allocated for the local
system queue area (LSQA) for the job step, and an indication of whether the job step is
executing in page able or nonpageable storage. Also, the output now permits up to 255
active tasks to be displayed.

• If the parameters N or Q are specified in the command, the output will no longer include
the remote job entry or automatic SYSIN batching reader queues, since these facilities are
no longer supported.

DUMP Command

The specification of the DUMP command is the same for VS2 and MVT. However, the
parameter ALL is no longer supported. Since the output generated by the DUMP command in
VS2 is virtual storage, if ALL was specified the output would consist of all 16,777,216 bytes
of virtual storage.

MODE Command

The specification of the MODE command is different because in VS2 one simplified 1-10DE
command can be used for all machine models.

70 OS/VS2 Planning and Use Guide

MONITOR Command

The specification of the MONITOR command is the same for VS2 and MVT. However, the
output generated by the command is different in the following instance:

• If the parameter A is specified in the command, the output will include the starting and
ending virtual storage addresses of the region, the number of pages allocated for the local
system queue area (LSQA) for the job step, and an indication of whether the job step is
executing in page able or nonpageable storage.

MOUNT Command

The specification of the MOUNT command is the same for VS2 and MVT. However, the
parameter H (hierarchy) should not be specified. If H is specified, the system will issue a
message stating that H is an invalid keyword; the operator will then have to reissue the
command, omitting the H parameter.

SET Command

The specification of the SET command at IPL time is the same for VS2 and MVT. However, a
new parameter, GMT, can be specified. If GMT is specified, the DATE and CLOCK values in
the command are Greenwich Mean Time.

START Command

The specification of the START command is the same for VS2 and MVT. However, the
parameter H (hierarchy) should not be specified. If H is specified, the system will issue a
message stating that H is an invalid keyword; the operator will then have to reissue the
command, omitting the H parameter.

The START command also has a new parameter, LSQA, which specifies the number of
segments of LSQA to be allocated to the task being started.

V ARY Command

The specification of the VARY command is the same for VS2 and MVT. However, the
parameters ONGFX and OFFGFX (and F, M, and S) should not be specified. If the
parameters are specified, a rejection message will be issued and the operator will have to
reissue the command, omitting the parameters. These parameters have been eliminated since
the graphic job processor (GJP) and the satellite graphic job processor (SGJP) are no longer
supported.

TSO Commands
This section does not describe all the changes to the TSO operator commands. However, it
does list the significant changes to the MODIFY and START commands for VS2. It also lists
the new abbreviations that can be specified for the operator parameters. For a detailed
description of the TSO commands, see OS/VS2 TSO Command Language Reference,
GC28-0646.

MODIFY Command

The following parameters allow installation control over auxiliary storage, and can be specified
on the MODIFY command. The parameters are described in detail in the discussion of TSO in
the chapter "Options".

AUXLIST
BACKUP

Compatibility 71

TSOAUX

TSOMAX

The following parameters have been changed on the MODIFY command:

REGNMAX=nnn, where nnn=0-42 -- can now be specified.

REGSIZE(region-number)=xxxK, where the maximum is 896K -- replaces old REGSIZE
parameter.

START Command

The following new parameters allow installation control over auxiliary storage, and can be
specified on the START command. The parameters are described in detail in the discussion of
TSO in the chapter "Options."

AUXLIST

BACKUP

LPAF

LPAR

NOSWAP

SWAP

TSOAUX

TSOMAX

The following parameters have been deleted from the START command:

FORM

MAP

The following parameters have been changed on the START command:

DUMP=DUMP -- replaced by DUMP

DUMP=NODUMP -- replaced by NODUMP'

LIST -- no longer positional.

LP A -- can now be specified.

REGNMAX=nnn, where nnn=0-42 -- can now be specified.

REGSIZE(region-number)=xxxK, where the maximum is 896K -- replaces old REGSIZE
parameter.

Parameter Abbreviations

All operator parameters are listed in Figure 20. Following each parameter is its unique
abbreviation for VS2. These abbreviations are new for VS2.

72 OS/VS2 Planning and Use Guide

Parameter Abbreviation Parameter Abbreviation

ACTIVITY AC NOPREEMPT NOPRE
AUXLlST AU NOPRIORITY NOPRI
BACKGROUND BACKG NOSWAP NOSWAP
BACKUP BACKU NOSWAPlOAO NOSWAPl
CYCLES C NOWAIT NOW
DECAYACT DECAYA OCCUPANCY 0
DECAYWAIT OECAYW PREEMPT PRE
DRIVER DRIVER PRIORITY PRI
DSPCH OS REGNMAX REGN
DUMP DU REGSIZE REGS
HOLD H SERVICE SE
LIST 1I SMF SMF
lPA lP SUBMIT SUBM
lPAF lPAF SUBQUEUES SUBQ
lPAR lPAR SWAP SWAP
MAXOCCUPANCY MAXO SWAPlOAD SWAPl
MAX SWAP MAXS TERMAX TE
MINSLICE MI TSCREGSZ TSC
NOACTIVITY NOAC TSOAUX TSOA
NOAVGSERVICE NOAV TSOMAX TSOM
NOBACKGROUND NOB USERS U
NOOUMP NOD WAIT W
NOOCUPANCY NOO

Figure 20. Parameter Abbreviations for TSO Operator Commands

Job Control Language

Every job submitted for execution by the operating system must include job control language
statements. These statements contain information required by the operating system to initiate
and control the processing of jobs.

This section does not describe all of the job control language needed to run jobs in VS2.
Rather, it describes the parameters and subparameters that have changed from MVT to VS2.
However ,most jobs that run in Release 21 of MVT can be executed in VS2 without changing
the job control language. Also, if the default region size in VS2 is at least as large as the
partition size in VS 1 and MFT, VS 1 and MFT jobs that run in Release 21 of MVT can be
executed in VS2 without changing the job control language. Figure 21 provides a summary of
the J CL changes.

For a detailed description of JCL, see OS/VS JCL Reference, GC28-0618.

Compatibility 73

Statement Parameter Change

JOB ADDRSPC Assigns pageable or nonpageable storage space, and defaults to pageable
storage.

REGION Assigns real storage space in 4K multiples and virtual storage space in 64K
multiples; reassigns MVT hierarchy 1 storage.

ROLL Ignores th i s parameter.

EXEC ADDRSPC Assigns pageable or nonpageable storage space, and defaults to pageable
storage.

REGION Assigns real storage space in 4K multiples and virtual storage space in 64K
multiples; reassigns MVT hierarc~.y 1 storage.

ROLL Ignores this parameter.

DO DCB Specifies BIAM online terminal test option in EROPI subparameter;
H lARCH Y subparameter.

OUTUM Ignores this parameter.
SEP Ignores unit separation for nonspecific devices.
UNIT Ignores unit separation for nonspecific devices as specified in SEP

subparameter.

Figure 21. VS2 Changes to Job Control Language

JOB Statement

Except for the changes noted below, the JOB statement for VS2 is the same as the JOB
statement for MVT.

ADDRSPC Parameter

ingores

A new parameter, ADDRSPC. is added to the JOB statement in VS2. It may be specified as
either ADDRSPC= VIRT or ADDRSPC=REAL:

• If ADDRSPC= VIRT is specified, the job is assigned a region in pageable storage.

• If ADDRSPC=REAL is specified, the job is assigned a region in nonpageable storage.

If the ADDRSPC parameter is not coded, the default value is VIRT. Therefore, if the current
job control language for a job is not changed, the job will be executed in pageable storage. If the
job must be executed in nonpageable storage, ADDRSPC=REAL must be specified.

If the ADDRSPC parameter is coded on the JOB statement, its value overrides any value in
the ADDRSPC parameters that may be specified in the EXEC statements for that job.

REGION Parameter

In MVT, the size requested in the REGION parameter of the JOB statement was rounded up to
the next 2K multiple. In VS2:

• If ADDRSPC=REAL is specified, the requested region size is rounded up to the next 4K
(page) mUltiple .

• If ADDRSPC=VIRT is specified or if the ADDRSPC parameter is not coded, the requested
region size is rounded up to the next 64K (segment) multiple.

in VS2, hierarchy 1 storage does not exist. Therefore, if the current job control language for a
job is not changed, the hierarchy 1 storage specified is added to the amount of hierarchy 0
storage specified. Hence, the job will get the amount of storage requested, but it will all be in
contiguous virtual storage.

Since VS2 subpools are allocated in 4K blocks (vs 2K blocks in MVT), it may be necessary to
increase the region size to accomodate this difference.

74 OS/VS2 Planning and Use Guide

ROLL Parameter

In VS2, rollout/rollin is not supported since paging gives real storage to tasks as they need it.
Therefore, if the current job control language for a job is not changed, the ROLL parameter of
the JOB statement will be ignored. That is, the ROLL parameter will be treated as if
ROLL=(NO,NO) had been specified.

If the current job control language for a job specifies ROLL=(,YES) , it may be necessary to
increase the value in the REGION parameter to account for the larger addressing space needed.

EXEC Statement
Except for the changes noted below, the EXEC statement for VS2 is the same as the EXEC
statement for MVT.

ADDRSPC Parameter

A new parameter, ADDRSPC, is added to the EXEC statement in VS2. Its function is the same
as that described under the ADDRSPC parameter of the JOB statement.

If the ADDRSPC parameter is coded on the EXEC statement, its value applies only to the job
step specified on that EXEC statement. However, if the ADDRSPC parameter was coded on the
JOB statement, its value on the JOB statement overrides any values specified in the EXEC
statements for that job.

REGION Parameter

Changes to the REGION parameter of the EXEC statement for VS2 are the same as those
described under the REGION parameter of the JOB statement.

ROLL Parameter

Changes to the ROLL parameter of the EXEC statement for VS2 are the same as those
described under the ROLL parameter of the JOB statement.

DD Statement
Except for the changes noted below, the DD statement for VS2 is the same as the DD statement
for MVT.

DCB Parameter

In VS2, a new value can be specified for the EROPT subparameter of the DCB parameter of the
DD statement. If EROPT=T is coded, it indicates a request for the basic telecommunication
access method (BT AM) online terminal test option.

VS2 does not support MVT main storage hierarchy support. Therefore, if the current job
control language for a job is not changed, the HIARCHY subparameter of the DCB parameter
will be ignored.

OUTLIM Parameter

In VS2, the function provided by the OUTLIM parameter of the DD statement is not supported.
Therefore, if the current job control language for a job is not changed, the OUTLIM parameter
will be ignored.

Compatibility 75

SEP Parameter

The SEP parameter of the DD statement is used to request channel separation. In VS2, if a
nonspecific volume is requested for a data set and channel separation is also requested for that
data set, the channel separation will be ignored; space allocation will be automatically controlled
by the I/O load balancing facility. Therefore, in this situation, if the current job control language
for a job is not changed, the SEP parameter will be ignored.

UNIT Parameter

Changes to the SEP subparameter of the UNIT parameter of the DD statement for VS2 are the
same as those described under the SEP parameter of the DD statement.

Problem Programs
VS2 was designed to be an extension of MVT. Thus, all problem programs (MFT, MVT, and
VS1) that execute under Release 21 of MVT, except as noted below, also execute, with no
modifications, under VS2. The following problem programs do not have to be modified to
execute in VS2:

• Problem programs that are not system or environment dependent.

• Problem programs that are coded according to the guidelines described in the OS System
Reference Library publications.

• Problem programs that do not modify the system.

• Problem programs that do not access control block fields not available through normal system
functions (that is, through EXTRACT or DEVTYPE macro instructions).

Basic and Extended Control Mode PSW s
Each interruption has associated with it a program status word (PSW). System/370 has two PSW
formats, differentiated by bit 12, the former USASCII bit:

• When the bit is off (=0), the format is of basic control (BC) mode in which the features of a
System/360 computing system and additional System/370 features, such as new machine
instructions, are operational on a System/370 computing system. BC mode is used in VS2 at
IPL time.

• When the bit is on (= 1), the format is of extended control (EC) mode in which all the
features of a System/370 computing system, including dynamic address translation, are
operational.

Because of the two PSW formats, the following problem programs that execute under the BC
mode PSW may have to be modified to execute under the EC mode PSW:

• Problem programs that reference the following PSW fields directly:

system mask
bit 12
interruption code
instruction length code (ILC)
condition code (CC)
program mask

• Programs that use the load PSW (LPSW) macro instruction to enable or disable the system.
The LPSW macro instructions should be replaced with MODESET macro instructions;
otherwise, system integrity may be impaired or address ability may be inaccurate.

• Programs that use absolute addresses to refer to locations in low storage above 127 decimal,
since the system reserved area in low storage has been expanded.

• Programs that use the set storage key (SSK) or insert storage key (ISK) macro instructions,
since the register containing the storage key now contains additional information.

76 OS/VS2 Planning and Use Guide

Execute Channel Program (EXCP) Macro Instruction

The execute channel program (EXCP) macro instruction provides a device-dependent means of
performing I/O operations. The user of EXCP must provide control information regarding the
channel program to be executed; he has the option of specifying the use of I/O appendages
during the progress of I/O operations associated with his data set.

Because of virtual storage, the following problem programs that contain EXCP macro
instructions may have to be modified to execute in page able storage:

• Problem programs that modify channel programs while they are executing. Since the I/O
supervisor builds a translated copy of the channel program, any changes made to the original
channel program would not be known to the 1/ 0 supervisor. If the problem programs are not
modified, they must be executed in nonpageable storage.

• Problem program appendages. In order to avoid a disabled page fault, the appendages must
ensure that referenced pages are fixed in storage before they are entered; this can be
accomplished by using the new page fix appendage. If the appendages are not modified, they
should be executed in nonpageable storage.

Coding Guidelines

Emulators

Many coding techniques that are used in MVT can also be used in VS2. Because of virtual
storage, however, VS2 necessitates new techniques that should be considered. Although the new
techniques are not necessary in order for the programs to run, they may improve system
performance.

Although paging occurs frequently in the system, a key objective in new coding techniques is
to reduce paging whenever possible. The following guidelines may help achieve this goal:

• 4K-byte blocks (pages) should be coded. Frequently-used programs or loops within programs
should be kept on one page whenever possible.

• Seldom used routines (such as initialization, error, and termination routines) should be kept
separate from those which are frequently used.

• Frequently-used subroutines should be coded inline each time they are needed. In this case,
any increase in total program size will be offset by the decrease in paging.

• Data areas should be arranged on a single page. Multiple-page lists, chains, and tables should
be avoided.

• Input/output data areas and event control blocks (ECBs) should be kept on a single page.
This prevents referring to several pages when searching for an ECB.

• Pages for buffers should be released as soon as they are all used.

• Dynamically changeable code should be kept on one page if possible. If a page has been
changed, it must be paged out before the real storage it occupies can be reused; otherwise, the
contents of the page can just be overlaid.

Integrated emulator programs allow object programs written for another system to be executed in
VS2 with little or no reprogramming. Utilizing the compatibility feature (consisting of hardware
and microprogrammed routines that aid emulation), the emulator programs operate as problem
program in VS2.

The emulators allows multiprogramming of emulator jobs with other jobs. However, since the
emulators employ both programming and circuitry to imitate the processing of other systems,
their availability is model-dependent. The emulators supported by the different models are listed
in Figure 22.

Compatibility 77

Information on restrictions on use of the emulators and dates on availability are available from
the local IBM branch office.

Emulator Model 145
Models 15511 Models 16511

and 158 and 168

1401/1440/1460 x x
1410/7010 x x
DOS x x
7070/7074 x x
7080 x
709/7090/7094/7094-11 x

Figure 22. Emulators Supported in VS2

Reassembly /Recompilation
Essentially all programs executing under MVT can execute under VS2 without reassembly or
recompilation. The primary exception is that users of the telecommunications access method
(TCAM) must reassemble and linkage edit their message control programs before execution.

Also, PL/I F programs executing under the queued telecommunications access method
(QT AM) prior to Release 20 of MVT must be reassembled and linkage edited before
execution in VS2.

System Data Sets
Some system data sets are basic to VS2 and are required for every operating system. Other
system data sets are optional and are required only when selected program options are
included in the system.

Most system data sets in VS2 are the same as their counterparts in MVT. However, the
SYS 1.LPALIB data set, new in VS2, now contains all of the SVCs and most of the modules
that were formerly contained in the SYSl.LINKLIB and SYSl.SVCLIB data sets; all the
modules contained in this new data set appear in the fixed or page able link pack areas in VS2.

VS2 also provides two other new data sets: SYSl.PAGE and SYSl.DSSVM. The
SYSl.PAGE data set is used to satisfy demand paging requirements; the SYSl.DSSVM data
set is used to contain the DSS command language modules.

Required Libraries and Data Sets

The following libraries and data sets are required for every operating system, and must be on
the system residence volume.

• SYSCTLG (system catalog) -- The system catalog contains pointers to all the cataloged data
sets in an operating system.

• SYS 1.LOGREC -- This data set is used by recovery management to record statistical data
about machine errors.

• SYSl.NUCLEUS (nucleus library) -- The nucleus library contains the resident portion
(nucleus) of the controi program and modules selected and link edited during system
generation.

• SYSl.SVCLIB (SVC library) -- The SVC library contains recovery management support
(RMS) modules required for system error recovery.

• PASSWORD -- This data set contains records that associate the names of protected data
sets with the passwords assigned to the data sets.

78 OS/VS2 Planning and Use Guide

The following libraries and data sets are required for every operating system, and must be
on direct access volumes. They may be on the system residence volume.

• SYS 1.DSSVM -- This data set contains the command language modules used by the
dynamic support system (DSS).

• SYSl.IMAGELIB -- This library contains the 1403 and 3211 universal character set (UCS)
and the forms control buffer (FCB) image modules.

• SYSl.LINKLIB (link library) -- The link library contains programs and routines that are not
in the link pack area and are referred to by ATTACH, LINK, LOAD, or XCTL macro
instructions.

• SYSl.LPALIB -- This library contains all modules appearing in the link pack area (LPA).
Since all modules residing in this library are brought into the LP A at IPL time, this library
may be placed on a demountable volume that may be removed after IPL.

• SYSl.MAN (SMF data set) -- The SMF data set contains the data collected by the system
management facilities (SMF) routines. A primary data set (SYS 1. MANX) and an alternate
data set (SYS 1.MANY) are required.

• SYS I.PAGE -- This data set is used to satisfy demand paging requirements. It is also used
for block paging of TSO users.

• SYS 1.P ARMLIB -- This library contains the PRESRES list used by the- master scheduler,
the SMFDEFLT list used by the SMF routines, the BLDL list, and various parameters used
by NIP.

• SYSl.PROCLIB (procedure library) -- The procedure library contains cataloged procedures
used to perform specific system functions.

• SYS 1.SAMPLIB -- This library contains the independent utility programs, the IPL text, the
SMF exit routines, and the installation verification procedures needed to verify the operation
of the generated system control program.

• SYSl.SYSJOBQE -- This data set is used as a work area by the job scheduler.

The following data sets are required if the time sharing option (TSO) is included in the
system, and must be on direct access volumes.

• SYS1.BRODCAST -- This data set contains two types of TSO messages: notices and mail.

• SYSl.CMDLIB -- This library contains TSO command processors, service routines, and
utilities.

• SYS 1.HELP -- This library is required if the TSO HELP command is used. It contains
.information regarding the syntax, operands, and functions for each TSO command.

• SYSl.UADS -- This library contains a list of terminal users who are authorized to use TSO.
It also contains information about each of them.

Optional Libraries and Data Sets

The following libraries and data sets are optional and, if selected, must be on direct access
volumes. They may be on the system residence volume.

• SYSl.DUMP -- This data set is used to contain a dump recorded in the event of abnormal
termination of a critical task. This data set may reside on a tape device.

• SYSl.MACLIB (macro library) -- The macro library contains macro definitions for the
system macro instructions.

• SYSl.SYSVLOGX and SYSl.SYSVLOGY (system log data sets) -- The system log data
sets are used to contain write-to-log(WTL) messages before they are printed on a system
output device.

• SYS 1. TELCMLIB (telecommunications library) -- The telecommunications library contains
telecommunication subroutines in load module form.

Compatibility 79

The following data sets are optional if the telecommunications access method (TeAM) is
included in the system, and, if selected, must be on direct access devices. They may be on the
system residence volume.

• TeAM checkpoint data set -- This data set contains all information needed to reconstruct
the message control program environment upon restart.

• TeAM message queues data set -- This data set contains the messages between the central
computer and the remote stations.

Shared Data Sets
If the shared DASD option is included in the system, systems can share common data.
Although any of the installation's application data sets can be shared~ not all system data can
be shared. Following is a list of those system data sets that cannot be shared.

• PASSWORD
• SYSl.LOGREC
• SYS 1.LP ALIB
• SYSl.MANX
• SYSl.MANY
• SYS l.NUCLEUS
• SYSl.PAGE
• SYS 1.SVCLIB
• SYS l.SYSJOBQE
• SYSl.SYSVLOGX
• SYS1.SYSVLOGY
• SYSCTLG

System Macro Instructions
Several n~w macro instructions have been added to VS2 to support the new functions
available. Other macro instructions have been changed from MVT. Although this section does
not provide a detailed description of the new and changed parameters in the macro
instructions, it does provide a brief overview of the functions and the uses of the macro
instructions.

New VS2 Macro Instructions
The following macro instructions are new and are restricted to authorized programs, programs
executing in the supervisor state, and programs operating under protection key zero. The
PGFIX, PGFREE, PGLOAD, and MODE SET macro instructions are described in the chapter
II Supervisor Macro Instructions for System Programmers II.

PGFIX -- This macro instruction prevents virtual storage from being paged. It can be used to
support 110 operations and to avoid integrity problems that may result from disabled page
faults.

PGFREE -- This macro instruction frees virtual storage to be paged. It is used to cancel the
effect of the PGFIX macro instruction.

PGLOAD -- This macro instruction moves virtual storage pages into real storage page frames.
It can be used to ensure that a page will be in real storage when needed.

MODESET -- This macro instruction is used to change the status of programs between
supervisor state and problem program state, key zero and non-key zero, and enabled and
disabled.

80 OS/VS2 Planning and Use Guide

The following macro instruction are new and are not restricted in use to specific programs:

DEBCHK -- This macro instruction supports the data extent block (DEB) validity checking
facility. It can be used to verify that a DEB is valid. The DEBCHK macro instruction is
described in OS / VS Data Management for System Programmers, GC28-0631.

PGRLSE -- This macro instruction deallocates page frames and the slots allocated to the
virtual storage pages. It is used to free up real storage and the external page storage associated
with it. The PGRLSE macro instruction is described in OS/VS Supervisor Services and
Macro Instructions, GC27-6979.

TESTAUTH -- This macro instruction supports the authorized program facility (APF). It is
used to determine if a program is authorized to use a program or function restricted in use by
APF. The TESTAUTH macro instruction is described in the chapter "Supervisor Macro
Instructions for System Programmers".

Changed MVT Macro Instructions
The following macro instructions exist in MVT, but have been changed in VS2.

ENQ/DEQ -- These macro instructions now support an ECB option.

SPIE -- This macro instruction now supports program interruptions that result from page
translation exceptions.

Major VS2 - MVT Differences
This section describes the major functional differences and incompatibilities that exist between
VS2 and MVT. However, it does not include those areas (for example, job control language or
operator commands) previously mentioned in this chapter.

U"nsupported MVT Functions
Some of the major functions in MVT are not supported in VS2. Some of the functions have
been replaced by improved functions in VS2; others have been eliminated and have no
comparable replacements.

The following MVT functions are not supported in VS2, but are provided for by
comparable VS2 functions.

• Conversational remote job entry (CRJE) -- This function is provided for by the time
sharing option (TSO).

• IEBUPDAT utility program -- This function is provided for by the IEBUPDTE utility
program.

• IEHIOSUP utility program -- This function is no longer needed because of the deletion of
most modules from the SVC library.

• Queued telecommunications access method (QTAM) -- This function is provided for by the
telecommunications access method (TCAM).

• Rollout/rollin -- This function is no longer needed because demand paging gives real
storage to tasks as they need it.

• Scatter load -- This function is no longer needed because of the VS2 paging function.

• System environment recording routines (SERO and SERl) -- This function is provided for
by recovery management routines.

• Transient areas -- This function is no longer needed because all SVC routines reside in
either the fixed or pageable link pack area.

Compatibility 81

The. following major MVT functions are not supported in VS2, and have no comparable
VS2 functions.

• Automatic SYSIN batching (ASB) reader.

• Direct system output (DSO) writer.

• Graphic job processor.

• Main storage hierarchy support.

• Multiprocessing.

• Remote job entry.

• Satellite graphic job processor (SGJP).

• TESTRAN.

VS2 - MVT Differences

Following are other differences that exist between VS2 and MVT.

• In VS2, lists of system parameters may be preformatted for use during system initialization.
For more detailed information, see the following chapter "Defining the System".

• In VS2, part of MVT NIP has been replaced by a new system generation option,
DEVSTAT.

• IN VS2, the authorized program facility (APF), DEB validity checking, and LSQA provide
increased system integrity.

• In VS2, chained scheduling is supported only in nonpageable storage. If chained scheduling
is requested in pageable storage, the request is ignored and normal scheduling is substituted.

• The VS2 SMF data set is not supported on tape. Also, SMF records in VS2 contain
additional information.

• In VS2, priority queuing must be specified for all devices that contain the page data set.

• VS2 subpools will be allocated in 4K (page) blocks vs 2K blocks in MVT. VS2 also uses a
"best fit" algorithm (i.e., storage closest in size to the request) vs a first fit algorithm (i.e.,
storage that is large enough to accomodate the request) in MVT.

• VS2 has no maximum channel program length.

• In VS2, storage protection implies both store and fetch protection.

• In VS2, all modules residing in the SYS 1.LP ALIB data set are brought into the link pack
area at IPL time. If a BLDL macro instruction is issued for any of the modules, a return
code indicating 'not found' is returned since the SYSl.LPALIB data set is no longer
considered part of the system after IPL.

• Any modification (via AMASPZAP or the linkage editor) to modules that were made
resident in virtual storage at IPL will require a subsequent re-IPL to cause the modification
to become part of the system. This would include any module selected at system
initialization via FIX and MLP A options as well as all modules from SYS 1.LP ALIB.

In addition, if a module contained in SYSl.LPALIB is modified as above, at re-IPL either
the pageable LP A must be rebuilt or the modified LP A must be used to cause the
modification to become part of the system.

• In VS2, an OPEN macro instruction must be issued for every data extent block (DEB)
created in order to support DEB validity checking.

• VS2 does not support the 6-hour and 24-hour pseudo-clocks, and interruptions from
location 80; these functions are replaced by the time-of-day clock and the clock comparator.

• In VS2, the LP A directory cannot be modified after system initialization.

• VS2 allows the operator to cancel a job waiting for storage or a data set.

82 OS/VS2 Planning and Use Guide

•

• In VS2, SVC DUMP has been expanded to alow dumping of selected area of virtual storage
and selective setting of the system to non-dispatchable.

• In VS2, dynamic device reconfiguration for the system residence device and the page data
set is not supported.

• Only Linkage editor F is distributed with VS2. In the job control language, only the aliases
IEWL or LINKEDIT can be used; other names can be used only if the linkage editor is
re-linkage edited with the other names declared as aliases.

• User-written EDIT exit routines for GTF running under MVT must be modified for
operation in VS2 because of differences in the format of trace data for system events.

• VS2 assembler replaces both assembler E and assembler F. If the user has any macro
instructions that have the same names as any new commands or instructions of the VS2
assembler, the macro instructions will be interpreted erroneously as the assembler commands
or instructions.

• To ensure that direct access volume serial number verification is effective for the volume
containing the page data set, the user must ensure that the direct access volume verification
modules are always part of the fixed LP A, and that a fixed LP A is specified at each IPL.
The necessary modules to accomplish this are provided in the IBM-supplied list IEA~IXOO.

• In MVT, the user could issue a READ CCW and rely on the SLI bit to terminate data
transfer. In VS2, the user must ensure that the buffer area assigned within his region is
large enough to contain the full count specified in the CCW; if not, the request will be
terminated. (Note that the assigned buffer space must be allocated space within the region
-- for example, via GETMAIN.)

• In MVT and VS2, a user data set can be shared by tasks in the same family tree structure.
in VS2, however, the user must ensure that all I/O is completed before the issuing task
terminates. For a data set that is not owned by the terminating task (that is, was not
opened by the terminating task), the terminating task will be abnormally terminated. For
tasks with non-teleprocessing I/O outstanding, ABEND code E06 describes a mechanism to
complete the I/O. Tasks with outstanding teleprocessing I/O must update their programs to
ensure that the I/O is complete.

Major VS2 - VSl Differences
This section does not attempt to give a functional description of VS1. Rather, it serves to list
the functional differences and incompatibilities that exist between VS1 and VS2. For a
complete description of VS 1, see OS / VS 1 Planning and Use Guide, GC24-0S09.

• VS 1 Release 1 is an extension of MFT Release 20.1; VS2 Release 1 is an extension of
MVT Release 21.

• VS1 allows the user to specify up to 16,777,216 bytes of address space; VS2 always
provides 16,777,216 bytes of address space.

• VS 1 divides storage into pages of 2K bytes each; VS2 divides storage into pages of 4 K
bytes each.

• VS 1 allocates external page storage on as many as 8 devices; VS2 allocates external page
storage on as many as 16 devices.

• VS1 supports job processing through the job entry subsystem (JES) facility; VS2 supports
job processing via MVT job management.

• VS1 reader procedure specifies PGM=IEFVMA; VS2 reader procedure specifies
PGM=IEFIRC.

• VS 1 supports the direct system output (DSO) writer; VS2 does not.

• VS1 uses transient areas; VS2 uses the link pack area.

Compatibility 83

•
• VS 1 supports the function provided by the OUTLIM parameter of the DD statement; VS2

does not.

• VSl service aid HMDPRDMP formats and prints VSl dumps only; VS2 service aid
AMDPRDMP formats and prints VS2 dumps only.

• VSl service aid HMDSADMP reads records of 2K bytes each; VS2 service aid
AMDSADMP reads records of 4K bytes each.

• VS 1 does not support the time sharing option (TSO); VS2 does.

• VS 1 does not support dynamic dispatching; VS2 does.

• VS 1 does not support I/O load balancing; VS2 does.

Unsupported Devices

Figure 23 describes the VSl support of those System/370 MVT hardware devices not
supported in VS2.

For a list of all the devices that are supported in VS2, see Input/Output Devices in the
chapter "Introduction".

Device Supported in VS1

IBM 1017 Paper Tape Reader
IBM 1018 Paper Tape Punch
IBM 1255 Magnetic Character Reader
IBM 1259 Magnetic Character Reader
IBM 1270 Optical Reader Sbrter
IBM 1442 Model N1, Card Read Punch x
IBM 1442 Model N2, Card Punch x
IBM 2245 Printer
IBM 2301 Drum Storage
IBM 2303 Drum Storage
IBM 2311 Disk Storage Drive
IBM 2321 Data Cell Drive
IBM 2402 Magnetic Tape Unit
IBM 2403 Magnetic Tape Unit and Control
IBM 2404 Magnetic Tape Unit and Control
IBM 2415 Magnetic Tape Unit and Control x
IBM 2596 Card Read Punch x
IBM 2841 Storage Control Unit
IBM 3881 Optical Mark Reader
IBM System/370 Model 135 x

Figure 23. VS 1 Support of MVT Devices Not Supported in VS2

84 OS/VS2 Planning and Use Guide

Defining the. System

During system generation and system initialization, the user is able to define or change the
operation of a standard or optional feature of the system control program. By defining the
system to meet the needs of the installation, he can increase the performance and overall
efficiency of the system. This chapter provides preliminary planning information on defining
the system, and is divided into the following categories:

• System generation.

• System initialization.

• System restart.

• System libraries.

• PRES RES volume characteristics list.

System Generation
System generation is the process of selecting VS2 modules from IBM-distributed libraries and
tailoring them to create an operating system for an installation. There are five major steps in
generating a new operating system:

• Planning -- The distribution libraries containing the VS2 modules must be ordered from
IBM. The VS2 options must be selected that, with the standard VS2 features, will constitute
the desired system. If an existing VS2 operating system is not available to generate the new
system, the VS2 starter system must also be ordered.

• Stage I -- The macro instructions needed to specify the options and standard features of the
new system must be selected and coded. These macro instructions are assembled and
expanded into job control language and utility control statements.

• Initialization -- The direct access volumes that will contain the distribution libraries (and the
starter system) must be initialized. The volumes on which the new system will be generated
must also be initialized, and data sets on the system volumes must be allocated.

• Stage II -- The job control language and utility control statements from stage I assemble,
link-edit, and specify modules to be moved or copied from the distribution libraries into the
new operating system.

• Testing -- After the new system is generated, the IBM Program Systems Representative
verifies via the installation verification procedures that the system is operational.

System generation is a process that results in an operating system adapted to both the
machine configuration and the data processing needs of an installation. After installation needs
have been determined, the "tailored" operating system to meet those needs is specified through
system generation macro instructions.

The first time VS2 is installed, the ffiM-supplied VS2 starter system is required. (The starter
system consists of a VS2 operating system that is used to generate VS2.) For subsequent
installations, either the starter system or an existing VS2 operating system can be used.

The ffiM Program Systems Representative will perform the installation verification
procedures (IVP) to ensure that the system is operational on the hardware configuration. This
procedure will be performed as part of ffiM's system control program installation procedure
for the initial installation of VS2 and will also be performed for subsequent updates.

Two other types of system generation can also be performed: nucleus only and I/O device
only. The nucleus generation is performed when only changes to the nucleus of the control
program need to be made. The I/O device generation is performed when only I/O devices and
channels are to be added, deleted, or modified. (Note: The processor-only generation available
to users of MVT is not available in VS2.)

Defining the System 85

For a description of the system generation process, see OS/VS System Generation
Introduction, GC26-3790.

In VS2, system generation is improved in the following ways:

• Many facilities that were optional in MVT are now standard. This results in fewer macro
instructions and parameters to be specified.

• IBM generates (from the user's system generation statements) and installs one system
control program per CPU. IBM installation also includes verification procedures to check
that the installed system functions properly. (In MVT, these functions were performed by
the user.)

• Additional system initialization lists are available to be pre formatted and taken from the
SYS l.P ARMLIB data set for use at IPL time.

Macro Instructions

System generation macro instructions are used to describe the new system. The macro
instructions describe the machine configuration, the control program, the data management
routines, and the user-written routines. They are also used to specify the program options that
are to be included in the system.

The macro instructions that can be specified in VS2 are:

• CENPROCS -- specifies the central processing unit and secondary model support.

• CHANNEL -- specifies the channel characteristics. A CHANNEL macro instruction is
required for each channel in the installation's computing system.

• CKPTREST -- specifies standard system completion codes not eligible for automatic restart,
and user completion codes that are eligible for automatic restart. If the CKPTREST macro
instruction is not specified, the standard set of codes will be used.

• CTRLPROG -- specifies control program options. If the CTRLPROG macro instruction is
not specified, the default values are assumed.

• OAT AMGT -- specifies optional access methods (BT AM, BISAM, QSIAM, and TCAM) to
be included in the system. (GAM is specified via the GRAPHICS macro instruction.)

• OAT ASET -- specifies system data sets and the volumes on which they reside. A
OAT ASET macro instruction is required for each data set defined that is not located on the
system residence device.

• EDIT -- specifies the physical characteristics and processing attributes of the data sets to be
processed by the TSO EDIT command.

• EDITOR -- specifies linkage editor options. If the EDITOR macro instruction is not
specified, the default values are assumed.

• GENERATE -- specifies the data sets, volumes, and I/O devices required for the system
generation process, the system generation output options, and the type of generation being
performed.

• GRAPHICS -- specifies inclusion of graphic programming services (problem oriented
routines and graphic subroutine package) and the GAM access method.

• IODEVICE -- specifies characteristics of an I/O device and its operating system
requirements. An IODEVICE macro instruction is required for each uniquely addressabie
I/O device.

• LINKLIB -- specifies user-written routines, in load-module form, to be added to the link
library or the fixed link pack area of the new system.

• LOADER -- specifies options to be included in the loader processing program. If the
LOADER macro instruction is not specified, the default values are assumed.

86 OS/VS2 Planning and Use Guide

Options

• LPALIB -- specifies user-written routines, in load-module form, to be added to the link
pack area.

• MACLIB -- specifies functional macro instructions to be excluded from the macro library of
the new system.

• PAGE -- specifies the page data set(s). The PAGE macro instruction may be used to define
up to 16 page data sets by being specified once for each data set required. The
specifications in the PAGE macro instruction may be overridden at NIP time.

• RESMODS -- specifies user-written routines, in object or load-module form, to be added to
the system nucleus member being generated.

• SCHEDULR -- specifies job and master scheduler options.

• SECONSLE -- specifies secondary consoles for the multiple console support function.

• SVCTABLE -- specifies the number, type, APF authorization, and entry status of the user
written SVC routines to be added to the new system.

• TSO -- specifies a system with the time sharing option.

• UCS -- specifies the IBM standard character set images for an IBM 1403 Printer with the
universal character set feature or an IBM 3211 Printer. If the ues macro instruction is not
specified, it is expected that the character set images will be included by a process other
than system generation.

• UNITNAME -- specifies a group of I/O devices. A UNITNAME macro instruction is
required for each named group of I/O devices in the system, except for unique device types.

For a detailed description of the macro instructions, see OS/VS2 System Generation
Reference, GC26-3792.

System control program options are included in the system via the system generation macro
instructions. Figure 24 lists the options and the macro instructions by which they are specified.
For a description of each individual option, see the chapter "Options".

Option

Alternate path retry (APR)
Automatic priority group (APG)
Automatic volume recognition (AVR)
Basic indexed sequential access method (BISAM)
Basic telecommunications access method (BTAM)
Device independent display operator console support

(DIDOCS)/status display support (SDS)
Graphics access method (GAM)
Queued indexed sequential access method (QISAM)
Reliabi lity data extractor (RDE)
Shared direct access storage devices (shared DASD)
Telecommunications access method (TCAM)
Time sharing option (TSO)
Time slicing
Track stacking

Figure 24. VS2 Options and System Generation Macro Instructions

Macro Instruction

iODEViCE
CTRlPROG
SCHEDUlR
DATAMGT
DATAMGT
SCHEDUlR

GRAPHICS
DATAMGT
CTRlPROG
IODEVICE
DATAMGT
TSO
CTRlPROG
SCHEDUlR

Defining the System 87

Planning Considerations

The primary step in generating a new system to satisfy the needs of an installation is to
determine exactly what those needs are. Figure 25 lists planning questions that must be
considered before system generation. The questions are divided into the following categories:

• Machine configuration.

• Control program.

• Data management routines.

• User-written routines.

• New system data set allocation and cataloging.

• Generation.
The first column in the figure lists the questions to be answered before system generation.

The second and third columns indicate the system generation macro instructions and
parameters in which the answers to the questions are specified. The last column points either
to the publications that contain the answers to the questions or to the publications that contain
the most information about the indicated subjects.

For a detailed description of the macro instructions and the parameters, see OS/VS2
System Generation Reference, GC26-3792. For information on those questions that do not
have specific publication references, also see OS/VS2 System Generation Reference.

88 OS/VS2 Planning and Use Guide

Question to be Answered Sys Gen Sys Gen Publication Containing info
Before System Generation Macro Parameter Related to Question

Machine Configuration

What CPU is to be used ? CENPROCS MODEL

What additional CPUs wi II require EREP support ? CENPROCS SECMODS OS/VS SYS 1. LOGREC Error
Recording

How many channels and of what type are to be CHANNEL TYPE
used ?

What addresses are to be specified for the channels? CHANNEL ADDRESS

What I/o devices are to be used to support the 10DEVICE UNIT
installation?

What addresses are to be specified for the I/o 10DEVICE ADDRESS
devices?

What nonstandard error routi nes are to be used for 10DEVICE ERRTAB
the I/o devices?

How much buffer space is to be allowed for 2250-1 10DEVICE EXPBFR
programs that use EXPRESS attention handling
routines?

What optional features are included on the 10DEVICE FEATURE
devices?

What are the graphic control units to which the 10DEVICE GCU
2260-2 devices are attached ?

What types of I/o device queueing are to be 10DEVICE 10REQUE
provided for the devices?

What are the model numbers of the devices to be 10DEVICE MODEL
used ?

How many 256-byte buffers are to be allowed ina 10DEVICE NUMSECT
2840 control unit assigned to a 2250-3 device?

How many work stations are to be connected to a 10DEVICE OBRCNT
2715 in c 2790 data communication system?

Is alternate path retry (APR) to be included in the 10DEVICE OPTCHAN
system?

What numbers are to be assigned to 2840 devices 10DEVICE PCU
to which 2250-3 devices are attached ?

Which set address (SAD) commands are to be issued 10DEVICE SETADDR
for each 2702 device?

What teleprocessing control units are to be used 10DEVICE TCU
for telecommunications lines?

What adapter is to be used to connect a 10DEVICE ADAPTER
telecommunications line to a transmission control
unit?

What additional device characteristics are to be 10DEVICE DEVTYPE OS/VS2 System Data Areas
specified for non-IBM devices?

Figure 25. VS2 System Planning Considerations (Part 1 of 7)

Defining the System 89

Question to be Answered Sys Gen Sys Gen Publication Contai ni ng Info
Before System Generation Macro Parameter Related to Question

Machine Configuration (continued)

What standard IBM character set images are to be UCS IMAGE OS/VS Data Management
used ? for System Programmers

What standard IBM character set images are to be UCS DEFAULT OS/VS Data Management
used as defaults when the JCL for a job does not for System Programmers
spec i fy any sets ?

What symbolic names are to be specified for UNITNAME NAME
groups of I/o devices ?

What addresses are to be specified for I/o devices UNITNAME UNIT
in a group?

Control Program

Which installation-created ABEND codes are to CKPTREST ELlGBLE OS/VS Checkpoint/Restart
be eligible for automatic restart?

Which IBM ABEND codes are not to be eligible CKPTREST NOTELIG OS/VS Checkpoint/Restart
for automatic restart?

Is the ASCII SVC to be included in the system? CTRLPROG ASCII

How many simultaneous I/o operations are to be CTRLPROG MAXIO OS/VS2 Storage Estimates
processed in the system? That is, how many
request queue elements are to be included in the
nucleus?

Is the BLDL table to be fixed or paged ? CTRLPROG BLDL OS/VS2 Planning and Use
Guide

Is the reliability data extractor (ROE) to be CTRLPROG RDE OS/VS SYS 1 • LOGREC
included in the system? Error Recordi ng

OS/VS2 Planning and Use
Guide

Is reduced error recovery for mqgnetic tapes to be CTRLPROG RER OS/VS2 Planning and Use
included in the system? Guide

Is the automatic priority group (APG) option to be CTRLPROG APG OS/VS2 Planning and Use
included in the system? Guide

What is to be the initial size of the DEB table used CTRLPROG DEBTSZE OS/VS2 Planning and Use
for DEB validity checking? Guide

How much is the size of the DEB table to be CTRLPROG DEBTINC OS/VS2 Planning and Use
expanded if the initial size is too small for a job Guide
step? OS/VS2 Storage Estimates

What is to be the size and number of cells in the CTRLPROG LSQACEL OS/VS2 Planning and Use
local system queue area? Guide

OS/VS2 Storage Estimates

Is NIP to treat DASD and tape devices that are not CTRLPROG DEVSTAT OS/VS2 Planning and Use
ready as being offline? Guide

How much rea I storage is needed to run jobs CTRLPROG REAL OS/VS2 Planning and 'J~e
in nonpageable dynamic storage? Guide

OS/VS2 Storage Estimates

Figure 25. VS2 System Planning Considerations (Part 2 of 7)

90 OS/VS2 Planning and Use Guide

Question to be Answered Sys Gen Sys Gen Publication Containing Info
Before System Generation Macro Parameter Related to Question

Control Program (continued)

What is to be the size and number of cells in the CTRLPROG SQACEl OS/VS2 Planning and Use
system queue area ? Guide

OS/VS2 Storage Estimates

Is the output to reflect local standard time instead CTRLPROG TZ OS/VS2 Planning and Use
of Greenwich Mean Time? Guide

How many 64K segments are to be reserved for CTRLPROG QSPACE OS/VS2 Storage Estimates
system queue area ?

Is time slicing to be included in the system? CTRLPROG TMSlICE OS/VS2 Planning and Use
Guide

Is the system trace table to be included in the CTRLPROG TRACE OS/VS2 Planning and Use
system? Guide

OS/VS2 Storage Estimates

How much virtual storage is to be avai lable to EDITOR SIZE OS/VS linkage Editor and
the linkage editor and its text buffers? loader

OS/VS2 Storage Estimates

What library is to be used by the loader to resolve LOADER LIB OS/VS linkage Editor and
external references? loader

What is to be the primary input data set for the LOADER LIN OS/VS linkage Editor and
!oader? loader

What loader options are to be included in the LOADER PARM OS/VS Linkage Editor and
system? Loader

How much virtual storage is to be allowed for LOADER SIZE OS/VS linkage Editor and
the loader, its tables, its buffers, and the problem loader
program? OS/VS2 Storage Estimates

Which groups of macro definitions are to be MACLIB EXCLUDE OS/VS2 Planning and Use
excluded from SYS1.MAClIB? That is, is macro Guide
support for BTAM, TCAM, GPS, OCR, and TSO aSI

A/52 Stoiaga Estimates

to be included in the system?

Is the page data set(s} to be included in the primary PAGE TYPE OS/VS2 Planning and Use
or secondary device? Guide

How much space is to be allocated to the page data PAGE SIZE OS/VS2 Storage Esti mates
set(s) ?

Is the paging device to contain the pageable link PAGE LPA OS/VS2 Planning and Use

pack area ? Guide

What is to be the address of the paging device? PAGE UNIT OS/VS2 Planning and Use
Guide

What volume is to contain the page data set? PAGE VOLNO OS/VS2 Planning and Use
Guide

Figure 25. VS2 System Planning Considerations (Part 3 of 7)

Defining the System 91

Question to be Answered Sys Gen Sys Gen Publication Containing Info
Before System Generation Macro Parameter Related to Question

Control Program (continued)

What is to be the address of the primary console? SCHEDULR CONSOLE OS/VS2 Planning and Use
Guide

Are the volume error statistics to be written to the SCHEDULR ESV OS/VS2 Planning and Use
console or the SMF data sets? Guide

Is error volume analysis to be included in the SCHEDULR EVA OS/VS2 Planning and Use
system? Guide

What is to be the address of the hardcopy log, and SCHEDULR HARDCPY OS/VS2 Planning and Use
how are routing codes to be assigned? Guide

OS/VS Message Library:
Routing and Descriptor Codes

How many real storage buffers are to hold logical SCHEDULR INITQBF OS/VS2 Storage Estimates
tracks from SYS 1 • SYSJOBQ E ?

What is to be the number of records in a logical SCHEDULR JOBQFMT OS/VS2 Storage Estimates
track in SYS 1.SYSJOBQE ?

How many records are to be reserved in SCHEDULR JOBQLMT OS/VS2 Storage Estimates
SYS 1.SYSJOBQE for each initiator?

How many records are to be reserved in SCHEDULR JOBQTMT OS/VS2 Storage Estimates
SYS1.SYSJOBQE for termination of jobs that need
more records for initiation?

How many records in SYS 1.SYSJOBQE are to be SCHEDULR JOBQWTP OS/VS2 Storage Estimates
reserved for wri te-to-programmer routi nes ?

What routing codes are to be assigned to messages SCHEDULR OLDWTOR OS/VS Message Library:
that do not have routi ng codes ? Routing and Descriptor Codes

How many reply queue elements are to be used by SCHEDULR REPLY OS/VS2 Storage Estimates
WTOR routines?

What additional routing codes are to be received SCHEDULR ROUTCDE OS/VS Message Library:
by the master console? Routing and Descriptor Codes

Is a START INIT command to be executed SCHEDULR STARTI Operator's Library:
automatically after each IPL ? OS/VS2 Reference

Is a START RDR command to be executed SCHEDULR STARTR Operator's Li brary:
automatically after each IPL ? OS/VS2 Reference

Is a START WTR command to be executed SCHEDULR STARTW Operator's Library:
automatically after each IPL ? OS/VS2 Reference

What address is to be specified for the integrated SCHEDULR IOC OS/VS2 Planning and Use
operator console to be used with DSS ? Guide

Is automatic volume recognition (AVR) to be SCHEDULR VLMOUNT OS/VS2 Planning and Use
included in the system? Guide

What density is to be selected for 7-track tapes SCHEDULR TAVR OS/VS2 Planning and Use
to be used with AVR ? Guide

What default SYSOUT class is to be assigned to SCHEDULR WTLCLSS OS/VS2 Planning and Use
write-to-Iog (WTL) messages? Guide

Figure 25. VS2 System Planning Considerations (Part 4 of 7)

92 OS/VS2 Planning and Use Guide

Question to be Answered Sys Gen Sys Gen Publication Containing Info
Before System Generation Macro Parameter Related to Question

Control Program (continued)

How many buffers are to be reserved for WTO SCHEDULR WTOBFRS OS/VS2 Storage Estimates
routines?

What dimensions are to be specified for display SCHEDULR AREA Operatorls Library:
areas to be reserved for status displays by the OS/VS2 Display Consoles
primary console?

How many records are to be reserved in SCHEDULR BCLMT OS/VS2 TSO Guide
SYS 1.BRODCAST for broadcast messages? OS/VS2 Storage Estimates

Is the 2250 or 3277 console, if used, to have a PFK SCHEDULR PFK Operator IS Library:
command entry and/or a light pen command entry ? OS/VS2 Display Consoles

How many temporary storage areas for WTL messages SCHEDULR WTLBFRS OS/VS2 Storage Estimates
are to be reserved in SYS l.SYSVLOGX or
SYS 1.SYSVLOGY ?

What are to be the addresses of the alternate SECONSLE ALTCONS OS/VS2 Planning and Use
consoles for the secondary console? Guide

What dimensions are to be specified for display SECONSLE AREA Operatorls Library:
areas to be reserved for status displays for the OS/VS2 Display Consoles
secondary console?

What is to be the address of the secondary console? SECONSLE CONSOLE OS/VS2 Planning and Use
Guide

What are to be the routing codes associated with SECONSLE ROUTCDE OS/VS Message Library:
the secondary console? Routing and Descriptor Codes

Is the 2250 or 3277 console, if used as a secondary SECONSLE PFK Operatorls Library:
console, to have a PFK command entry and/or a OS/VS2 Display Consoles
I ight pen command entry ?

Is the secondary console to be used as an output- SECONSLE USE OS/VS2 Planning and Use
only console for status displays, or as an output- Guide
only console for operator messages, or for full
capacity ?

Which groups of operator commands are to be SECONSLE VALDCMD Operator IS Library:
entered from the secondary console? OS/VS Console Configurations

What are the physical characteristics and processing EDIT DSTYPE, OS/VS2 TSO Command
attributes of the data sets to be handled by the TSO BLOCK, Language Reference
EDIT command ? FORMAT,

FIXED,VAR,
CONVERT,
USERSRC

What is the installation-supplied processor to be EDIT
used by TSO EDIT to syntax-check lines in the data

CHECKER OS/VS2 TSO Guide

set?

What is the installation-supplied processor to be EDIT PRMPTR OS/VS2 TSO Guide
used by the RUN subcommand of TSO EDIT?

What is the installation-supplied user exit routine EDIT USEREXT OS/VS2 TSO Guide
to be used by 150 EDIT to interpret nonstandard
data set type operand parameters ?

Figure 25. VS2 System Planning Considerations (Part 5 of 7)

Defining the System 93

Question to be Answered Sys Gen Sys Gen Publication Containing Info
Before System Generation Macro Parameter Related to Question

Control Program (continued)

How many lines at a terminal are to be entered TSO LOGLINE OS/VS2 TSO Guide
before an attempt to LOGON is automatically
canceled?

'J

How many seconds are to elapse before an TSO LOGTIME OS/VS2 TSO Guide
attempt to LOGON is automatically canceled ?

What are to be the class defaults for the OUTPUT TSO OUTCLS OS/VS2 TSO Guide
command?

How many logical tracks in SYS l.SYSJOBQE are TSO SUBMITQ OS/VS2 Storage Estimates
to be reserved for background jobs initiated in a
TSO foreground ?

How much external page storage is TSO TSOAUX OS/VS2 TSO Guide
to be made avai lable for use by TSO ?

Data Management Routines

Which of the optional access methods (BTAM, DATAMGT ACSMETH OS/VS2 Planning and Use
TCAM, and ISAM) are to be added to the system? Guide

OS,NS2 Storage Estimates
OS/VS BTAM
OS TCAM Concepts and
Facilities

Is the graphic subroutine package (GSP) to be GRAPHICS GSP OS/VS Graphic Subroutine
added to the system? Package (GSP) for FORTRAN

IV, COBOL, and PL/l

Are problem oriented routines (POR) to be added GRAPHICS PORRTNS os,Ns Graphic Programming
to the system? Services (GPS) for the IBM

2250 Display Unit

User- Written Routines

What routines are to be added to SYS 1. LlNKLlB ? LlNKLlB MEMBERS OS,NS2 Planning and Use
Guide

What partitioned data set contains the routines to LlNKLlB PDS OS/VS2 Planning and Use
be added to SYS1.lINKLlB ? Guide

Which of the routines being added to SYS 1. LlNKLlB LlNKLlB REStDNT OS/VS2 Planning and Use
are to become resident in the link pack area? Guide

What routines are to be added to SYS l.lPALlB ? lPALIB MEMBERS OS/VS2 Planning and Use
Guide

What partitioned data set contains the routines to be lPALlB PDS OS,NS2 Planning and Use
added to SYS l.lPALlB ? Guide

Which of the routines being added to SYS l.lPALlB lPALlB RESIDNT OS/VS2 Planning and Use
are to become resident in the link pack area? Guide

What routines are to be added to SYS1.NUClEUS ? RESMODS MEMBERS OS,NS2 Planning and Use
Guide
OS/VS2 Storage Estimates

Figure 25. VS2 System Planning Considerations (Part 6 of 7)

94 OS/VS2 Planning and Use Guide

Question to be Answered Sys Gen Sys Gen Pubiication Containing Info
Before System Generation Macro Parameter Related to Question .

User- Written Routines (continued)

What partitioned data set contains the routines RESMODS PDS OS/VS2 Planning and Use
to be add ed to S YS 1 • N UC LEUS ? Guide

• What is the number, type, and function code of SVCTABLE operand OS/VS2 Planning and Use
each SVC to be added to SYS 1.SVCLlB ? Guide

New System Data Set Allocation and Cataloging

What system data sets are needed ? DATASET system OS/VS2 Planning and Use
data set Guide

What is the device type of the volume containing DATASET VOL OS/VS2 Storage Estimates
each system data set?

What unit of space and how much space should be DATASET SPACE OS/VS2 Storage Estimates
allocated to each system data set?

Generation

What type of system generation is being performed? GENERATE GENTYPE OS/VS2 System Generation
Reference

What index qualifier should be specified for new GENERATE INDEX OS/VS2 System Generation
system data sets ? Reference

What data set is to contain the object modules GENERATE OBJPDS OS/VS2 System Generation
assembled during stage 11 of system generation? Reference

What job class is to be used for output from stage
IT of system generation? GENERATE JCLASS OS/VS2 System Generation

Reference

What output class is to be used for output from GENERATE OCLASS OS/VS2 System Generation
stage II of system generation? Reference

What is the device type and serial number of the GENERATE RESVOL OS/VS2 System Generation
system residence volume? Reference

Figure 25. VS2 System Planning Considerations (Part 7 of 7)

Defining the System 95

System Initialization
Before VS2 can process jobs, the control program and its associated control blocks and work
areas must be loaded into virtual storage and prepared for operation. Loading these control
program modules is the function of the initial program loader (IPL).

Afte~ the IPL ~rogram completes it loading functions, control passes to the nucleus
initialization program (NIP), which performs functions necessary to initiate operation of the
control program. (For example, NIP defines storage areas and initializes certain tables, work
areas, and control blocks.) NIP also loads and initializes routines (such as fixed LPA routines)
selected by the user.

The nucleus initialization program (NIP) provides initialization of both real and virtual storage
in VS2. To give the installation control over virtual storage, NIP recognizes several new
parameters. The installation is able to specify these new parameters, as well as the supported
MVT parameters, via the master console or a new SYSl.PARMLIB member. The parameters
specified are variable with each execution of the initial program loader (IPL) program.

SYSl.PARMLIB
The SYSl.PARMLIB data set in VS2 includes both IBM-supplied and user-supplied parameter
lists. The formats for the lists have been revised from MVT to allow better space utilization.
within parameter records and to afford more flexibility in their definition. However, all MVT
parameter lists that are still valid lists in VS2 need not have their formats changed.

IBM-Supplied Lists

The following IBM-supplied lists are currently included in SYS l.PARMLIB for MVT, but are
not included in VS2:

• IEAIGEOO -- resident error recovery procedures list.

• IEAIGGOO -- resident access methods list.

• IEARSVOO -- resident SVC list.

The following lists are currently included in SYS l.P ARMLIB for MVT, and are also
included in VS2. A complete discussion of the lists is found in the chapter "Job Management
and Supervisor Services for System Programmers".

• IEABLDOO -- resident BLDL list.

• LNKLSTOO -- link library list.

The following lists are new for VS2:

• IEASYSOO -- It is created during stage II of system generation and includes all system
parameters defined during system generation. If not modified in response to the "SPECIFY
SYSTEM PARAMETERS" message, the IEASYSOO list of parameters is used for the IPL
in process.

• lEAP AKOO -- It consists of lists of modules, where the modules in each list are to be
packed together in one or more pages. Processing of one module in a list will usually result
in another module in the same list receiving control, thus reducing paging activity. During
initialization, NIP will load modules into the link pack area in the groupings specified by
lEAP AKOO. Those modules not included in lEAP AKOO will be loaded into the link pack
area in the most efficient manner, based upon size. If desired, additional user-specified lists
may be added to lEAP AKOO via the IEBUPDTE utility program.

• IEALODOO -- It is used to place names of frequently-used modules from the pageable link
pack area onto the active LPA queue. The list is supplied to improve performance by
speeding up the search mechanism that finds the control blocks for the modules, thus
reducing paging.

96 OS/VS2 Planning and Use Guide

• IEAFIXOO -- It is used to indicate reenterable routines from the SYS l.LINKLIB,
SYS l.LP ALIB, and SYS l.SVCLIB data sets that are to be made resident as a nonpageable
extension to the link pack area. The routines in this area (called the fixed link pack area)
are resident only for the current IPL. If a routine is searched for, the fixed link pack area is
searched first, the modified link pack area is searched second, and the page able link pack
area is searched last. If a system restart is initiated and a previously created link pack area
is used, the routines in the fixed link pack area must be respecified if desired.

User-Supplied Lists

The SYS l.P ARMLIB lists described below are not supplied by IBM, but are defined by the
VS2 user via the IEBUPDTE utility program. They are all new for VS2.

• IEASYSxx -- The installation is able to specify system parameters through the IEASYSxx
list in SYSl.PARMLIB; in fact, multiple sets of system parameters can be maintained in
SYS l.P ARMLIB. The set of system parameters which is to be effective for any given IPL
process is determined by the operator's response to the "SPECIFY SYSTEM
PARAMETERS" message. The operator's reply may include a list of parameters to be used
or one of the SYS l.P ARMLIB parameter lists. If the SYS l.P ARMLIB list being used does
not prohibit operator intervention, the operator can override all parameters. By using a
SYS l.P ARMLIB parameter list, the operator is freed from typing in all the necessary
entries. The IEASYSxx list is specified by the SYSP system parameter.

• IEALP Axx -- The IEALP Axx list is used to indicate reenterable routines from the
SYS l.LINKLIB, SYS l.LPALIB, and SYS l.SVCLIB data sets that are to be made resident
as a pageable extension to the link pack area. The routine in this area (called the modified
link pack area) are resident only for the current IPL. If a routine is searched for, the
modified link pack area is searched first, followed by the pageable link pack area. If a
system restart is initiated and a previously created link pack area is used, the routines in the
modified link pack area must be respecified if desired. The IEALP Axx list is specified by
the MLPA system parameter.

• IEAFIXxx -- The IEAFIXxx list is used to indicate reenterable routines from the
SYS l.LINKLIB, SYS l.LP ALIB, and SYS l.SVCLIB data sets that are to be made resident
as a nonpageable extension to the link pack area. The routines in this area (called the fixed
link pack area) are resident only for the current IPL. If a routine is searched for, the fixed
link pack area is searched first, the modified link pack area is searched second, and the
page able link· pack area is searched last. If a system restart is initiated and a previously
created link pack area is used, the routines in the fixed link pack area must be respecified if
desired. The IEAFIXxx list is specified by the FIX system parameter.

• IEABLDxx -- The IEABLDxx list specifies the names of modules from SYS l.LINKLIB
which are to have directory entries built by NIP. This list eliminates the directory search
required when a load module is requested from SYS l.LINKLIB. The IEABLDxx list is
specified by either the BLDL or BLDLF system parameter.

VS2 System Parameters
Each parameter in the SYS l.P ARMLIB lists is specified in the same format as that required by
the "SPECIFY SYSTEM PARAMETERS" message. Figure 26 provides a summary of these
parameters and, for convenience, groups them into nine general categories. Following the
figure is a more detailed description of the parameters.

Defining the System 97

For a detailed description and specification of these parameters, see the explanation of the
"SPECIFY SYSTEM PARAMETERS" message (IEAIOIA) in OSjVS Message Library:
VS2 System Messages, GC38-1002.

NIP Categories /
f--r-r--r---7--r--lr----r--7~

Value Specified

APG x Automatic priority group for dispatcher.

BLDL x Pageable directory for SYS 1. LlNKLIB.

BLDlF x x Nonpageable directory for SYS 1.lINKLIB.

CLPA x Link pack area to be recreated.

CPOE x Channel programs for paging supervisor.

DUMP x Tape volume for SYS 1.DUMP.

FIX x x Reenterable routines for nonpageable lPA.

HARDCPY x Hard copy log •

lSQACEL x Quickcells for local system queue area.

MLPA x Reenterable routines for pageable lPA.

MPA x Master scheduler region size.

OPI x Operator intervention restrictions in SYS 1. PARMLIB.

PAGE x Location and allocation parameters for page data set.

PAL x Paging algorithm limits.

REAL x x Nonpageable storage size.

SQA x Pageable system queue area size.

SQACEL x Quickcells for system queue area.

SYSP x SYS1.PARMLIB parameter list to be merged with IEASYOO.

TMSl x Time slice groups.

TRACE x Entries in system trace table.

TSOAUX x Minimum auxi liary storage backup for TSO jobs.

Figure 26. VS2 System Initialization Parameter Summary

APG
specifies an automatic priority group for the dispatcher.

If the APG and TMS~ parameters specify the same priority, the APG specification of that
priority will be accepted.

BLDL
specifies a directory for the SYS 1.LINKLIB data set in page able storage.

98 OS/VS2 Planning and Use Guide

The value specified is appended to IEABLD to form the name of a SYS 1.P ARMLIB
member to contain the list of modules for which entries are to be built in the resident
BLDL table.

The directory created in response to the BLDL parameter will reside in page able storage.

If the BLDL and BLDLF parameters are both specified, the BLDL parameter will be
ignored. A warning message will be issued to identify this condition.

If specified during system generation and not modified, the IEABLDOO list is used.

BLDLF
specifies a directory for the SYS 1.LINKLIB data set in nonpageable storage.

The value specified is appended to IEABLD to form the name of a SYS1.PARMLIB
member to contain the list of modules for which entries are to be built in the resident
BLDL table.

The directory created in response to the BLDLF parameter will reside in nonpageable
storage.

If the BLDLF and BLDL parameters are both specified, the BLDLF parameter will be
accepted. A warning message will be issued to identify this condition.

If specified during system generation and not modified, the IEABLDOO list is used.

CLPA
specifies that the link pack area is to be recreated.

If a previously created link pack area is found in one of the page data sets, it is deleted and
the space it occupied is made available for system paging uSe.

CPQE
specifies the number of channel programs to be used by the paging supervisor.

The value specified is the number of channel programs to be added to the minimum number
of channel programs (10 for a single page data set, and 15 for two or more page data sets).

If the CPQE parameter is not specified and the time sharing option is included in the
system, the minimum numbers described above will be increased by 80.

DUMP
specifies whether a tape volume is to be used for the SYSl.DUMP data set.

If the SYS1.DUMP data set is cataloged on a direct access device, the DUMP parameter
will be ignored.

If the DUMP parameter is not specified and if the SYS I.DUMP data set is not cataloged, a
message will be issued requesting that a tape volume be provided and specified for the
SYSl.DUMP data set.

FIX
specifies reenterable routines from the SYS 1.LINKLIB, SYS I.LP ALIB, and SYS I.SVCLIB
data sets or from a user-specified library to be made resident as a nonpageable extension to
the link pack area.

The value specified is appended to IEAFIX to form the name of a SYSI.PARMLIB
member to contain the list of modules to be loaded.

If specified during system generation and not modified, the IEAFIXOO list is used.

For more information on the IEAFIXxx list, see "User-Supplied Lists" in this chapter.

Defining the System 99

HARDCPY
specifies that the hard copy log is desired, whether the system log is to be used as hardcopy
log, and whether messages are to be recorded on the hardcopy log.

If the console configuration contains an active graphic console or more than one active
console, a hardcopy log is required. In this case, if routing codes 1,2, 3, 4, 7,8, or 10 are
desired, they need not be specified since all of these codes are automatically assigned by the
system.

LSQACEL
specifies quickcells (reserved space used to reduce time required to allocate space for a
control block) in the local system queue area.

The size of a quickceU will be rounded up by the system to an even multiple of 8 bytes.
The total size of the quickcell area is limited to 4K bytes.

MLPA
specifies reenterable routines from the SYSl.LINKLIB, SYSl.LPALIB, and SYSl.SVCLIB
data sets to be made resident as a page able extension to the link pack area.

The value specified is appended to IE ALP A to the form the name of a SYS 1.P ARMLIB
member to contain the list of modules to be loaded.

For more information on the IEALPAxx list, see "User-Supplied Lists" in this chapter.

MPA
specifies the master scheduler region in pageable storage.

The value specified is the number of 64K byte segments to be added to the minimum size
(l28K bytes) of the master scheduler region.

If the specified amount of virtual storage is not available, a warning message will be issued.
The MJ;» A parameter may be respecified at that time.

OPI
specifies operator intervention restrictions of the system parameters in the SYS 1.P ARMLIB
list.

The OPI parameter can only be included in the SYSl.PARMLIB list. It may be specified for
individual system parameters or for the entire set of system parameters.

PAGE
specifies the location and allocation parameters for the page data set(s).

The value specified may include the unit address or the volume serial number of the device
containing the page data set, the number of storage blocks to be page able to the data set,
the number of tracks or cylinders to be assigned to the data set, the largest single area
currently available on the device assigned to the data set, whether the page data set is to be
reformatted, whether the page data set is to contain the link pack area and its directory, and
whether the page definition is to be displayed on the console.

PAL
specifies page fix count limits, page replacement threshholds, and intervals and limits for the
task disable algorithm.

REAL
specifies nonpageable storage.

The value specified is the number of 4K byte pages to be added to the minimum address
space (64K bytes) reserved for nonpageable storage.

100 OS/VS2 Planning and Use Guide

If the specified amount of real storage is not available, a warning message will be issued.
The REAL parameter may be respecified at that time.

SQA
specifies the system queue area in page able storage.

The value specified is the number of 64K byte segments to be added to the minimum size
(64K bytes) of the system queue area.

If the specified amount of virtual storage is not available, a warning message will be issued.
The SQA parameter may be respecified at that time.

The size of the system queue area cannot be increased during a restart that reuses the
previously initialized link pack area. If the SQA parameter is specified on the restart, and
the size is less than that specified on the previous system start, a warning message will be
issued and the size will be increased to that of the previous system start. If the SQA
parameter is specified on the restart, and the size is greater than that specified on the
previous system start, a message will be issued requesting that the SQA parameter be
canceled or a system start be initiated.

SQACEL
specifies quickcells (reserved space used to reduce time required to allocate space for a
control block) in the system queue area.

The size of a quickcell will be rounded up by the system to an even multiple of 8 bytes.
The total size of the quickcell area is limited to 4K bytes.

SYSP
specifies the SYS l.P ARMLIB list of system parameters which is to be merged with the
default list of system parameters, IEASYSOO.

The value specified is appended to IEASYS to form the name of a SYS l.P ARMLIB
member to contain the list of system parameters to be used for the current IPL.

If not modified via this parameter, only the IEASYSOO list is used. The IEASYSOO member
contains the values selected during system generation for various system parameters unless
the contents of the list have been modified by the system programmer at the installation.

The members specified by the SYSP parameter are treated in an ascending priority sequence
-- that is, parameters defined in a member specified near the beginning of the list will be
replaced by the same parameters defined in a member specified near the end of the list. In
the process of merging parameters with the IEASYSOO list, IEASYSOO assumes the lowest
priority.

TMSL
specifies time slice groups.

The minimum acceptable time slice is 20 milliseconds and any specification less than this
value will be increased to 20 milliseconds.

If the TMSL and APG parameters specify the same priority, the TMSL specification of that
priority will be ignored.

TRACE
specifies entries in the system trace table.

The value specified here in the TRACE parameter overrides the value specified during
system generation. If zero is specified, the system trace option is canceled for the current
IPL. If zero was specified during system generation and overridden here, the trace table will
not include entries for SIOs.

Defining the System 101

If the specified amount of real storage is not available, a warning message will be issued.
The TRACE parameter may be respecified at that time.

TSOAUX
specifies minimum auxiliary storage backup for TSO jobs.

The value specified is the pages of auxiliary storage required to back up the pageable area
to be reserved for paging TSO-related tasks.

The storage indicated in this parameter will not be available for allocation to non
TSO-related tasks for the duration of the IPL; however, the TSOAUX value may be
respecified when TSO is started.

If the number of pages remaining for non-TSO use is less than 500, the number of
TSO-reserved pages will be decreased to provide the system with 500 pages. If the total
number of pages is less than 500, the TSOAUX parameter will be ignored. In both cases, a
warning message will be issued to identify the conditions.

Unsupported MVT Parameters

Some of the system parameters in MVT are not supported in VS2. Some of the parameters
have been replaced by new parameters in VS2; others have been eliminated because their
functions are not supported.

If an unsupported parameter is specified, a message will be issued identifying the condition;
all parameters specifieq after the nonsupported parameter will have to be respecified for the
system.

The following MVT system parameters are not supported in VS2, but are provided for by
comparable VS2 functions.

• MIN -- This parameter is no longer needed in VS2 since the minimum space is now
determined by the scheduler.

• MOD -- The CPU model identification is determined in VS2 by the store CPU
identification instruction.

• MPS -- This parameter is replaced by the VS2 MPA parameter.

• RAM -- Routines from SYSl.SVCLIB and SYSl.LINKLIB can be added to the VS2 link
pack area via the SYS 1.LP ALIB data set or via the MLP A or FIX parameters.

• RERP -- In VS2, error recovery procedure (ERP) routines are always resident in the link
pack area.

• RESVC -- In VS2, SVC routines are always resident in the link pack area.

• SQS -- This parameter is replaced by the VS2 SQA parameter.

The following MVT system parameters are not supported in VS2, and have no comparable
VS2 functions.

• AL TSYS -- Dynamic device reconfiguration for the system residence device is not
supported.

• HRAM -- MVT hierarchy support is not needed in VS2.

• HSVC -- MVT hierarchy support is not needed in VS2.

• QBF -- The buffer space specified by this parameter can now be specified only at system
generation time.

102 OS/VS2 Planning and Use Guide

System Restart
It is sometimes necessary to shut down the system because of end-of -shift, end-of -day, normal
maintenance, or system malfunction. At these times, in MVT, system restart allows the system
to resume operations without redefining the job queues.

In VS2, as in MVT, system restart also allows reuse of the previously initialized job queue.
However, in VS2, another type of system restart is available that allows reuse of the
previously-initialized link pack area. Unless the CLPA parameter is specified requesting that
the link pack area be recreated or unless the link pack area is reformatted via the PAGE
parameter, this second type of restart is performed.

System Libraries
To increase system throughput, libraries should be balanced on devices, and devices should be
balanced on channels. Ideally, each library should be on a different device, and each device
should be on a different channel.

If all libraries are placed on the same device, throughput will be decreased because of
excessive arm interference. However, when more than one library is placed on an IBM 2314
Direct Access Storage Facility, IBM 2319 Disk Storage, or IBM 3330 Series Disk Storage
device, arm movement can be reduced by placing the volume table of contents (VTOC)
approximately midway between the first and last cylinders being used. The libraries, starting
with the most frequently referenced, can then be alternately placed on both sides of the
VTOC with the least referenced libraries farthest from the VTOC.

For improved system efficiency in VS2, it is recommended that the following libraries be
allocated on cylinder boundaries:

• SYS I.LINKLIB

• SYSl.MACLIB

• SYS1.PROCLIB

• SYS l.SYSJOBQE

The PRESRES Volume Characteristics List
This topic describes the creation and use of a direct access volume characteristics list that is
placed in the system parameter library under the member name PRESRES (permanently
resident and reserved).

Characteristics of the PRESRES List
The PRESRES volume characteristics list defines the mount characteristics (permanently
resident, reserved) and allocation characteristics (storage, public, private) for any, or all, direct
access volumes used by an installation. Use of the PRESRES list can only be suppressed by
deleting the member from the parameter library (SYSl.PARMLIB).

The scheduler
f

after receiving control from the nucleus initialization program (NIP),
compares the vo ume serial numbers in the PRESRES characteristics list wIth those of
currently mounted direct access volumes. Each equal comparison results in the assignment to
the mounted volume of the characteristics noted in the PRESRES entry. (Fields in the unit
control block for the device on which the volume is mounted are set to reflect the desired
characteristics.) If the volume is the IPL volume or the volume containing the data sets
SYSl.LINKLIB, SYSl.PROCLIB, SYS1.SYSJOBQE, SYS1.PAGE, or a volume that cannot
physically be demounted, the mount characteristic (permanently resident) has already been
assigned and only the allocation characteristic is set.

A mounting list is issued for the volumes in the PRESRES characteristics list that are not
currently mounted (except those for which mounting messages have been suppressed), and the
operator is given the option of mounting none, some, or all of the volumes listed. The mount
and allocation characteristics for the volumes mounted by the operator are set according to the
PRESRES list entry for the volume; the operator mounts the unit on the volume he selects.
The mounting list is subject to the following restrictions:

Defining the System 103

• A PRESRES entry identifying a volume that cannot physically be demounted will appear in
the mounting list issued to the operator if the volume (device) is OFFLINE or is not
present in the system.

• Only the first 102 volumes on the PRESRES list can be placed on the mount list.
After the scheduler has finished PRESRES processing, reading of the job input stream begins,
and the PRES RES list is not referred to again until the next IPL.

To assign allocation characteristics other than "public" to volumes whose mount
characteristic is "permanently resident", users can use a PRESRES characteristic list entry.

Selection of the volumes for which PRESRES entries are to be created should be done so
that critical volumes are protected. Since the combination' of mount and allocation
characteristics assigned to a specific volume determines the types of data sets that can be
placed on the volume and the volume's usage, the user can exercise effective control over the
volume through a PRESRES list entry.

Writing the PRESRES Entry
Each PRESRES entry is an 80-byte record~ consisting of a 6-byte volume serial number field,
a I-byte mount characteristic field, a I-byte allocation characteristics field, a 4-byte device
type field, a I-byte mount-priority field, and an optional information field. Commas are used
to delimit the fields, except that the optional information field is always preceded by a blank.
All character representation is EBCDIC. The format of the entry is described below.
• Volume serial number -- up to six characters, left justified.
• Mount characteristic -- 0 to denote permanently resident, 1 to denote reserved. The default

characteristic is "permanently resident" and is assigned if any character other than 0 or 1 is
present in the field.

• Allocation characteristic -- 0 to denote storage, 1 to denote public, 2 to denote private. The
default characteristics is "public" and is assigned if any character other than 0, 1, or 2 is
present in the field.

• Device type -- a four-digit number designating the type of direct access device on which the
volume resides, e.g. the IBM 2319 Disk Storage is indicated by the notation 2319. Note that
this field only indicates the basic device type for the associated volume. The operator should
be advised if the device requires special features to process the data on the· designated
volume.

• Mount priority -- N to denote that mount messages at IPL time for a volume should be
suppressed. This field allows the user to list seldom used volumes in the PRESRES list
without having a mount message issued at each IPL. When these volumes are required, they
may be mounted and attributes will be set from the PRESRES list entry. If the mount
message is not to be suppressed, the mount priority field and the preceding comma may be
omitted.

• Optional information -- descriptive information about the volume. This information is not
used by the system, but will be available to the user on a printout of the list. If necessary,
comments may start in the second byte after the mount priority field or, if the mount
priority field is omitted, in the second byte following the comma after the device type field.
Embedded blanks are not permitted in the volume serial, mount, allocation, or device type

fields.

Adding the List
The IEBUPDTE utility program places the list (under the member name PRESRES) in the
system parameter library, SYS I.P ARMLIB. This utility is also used to maintain the list.

104 OS/VS2 Planning and Use Guide

Job Management and Supervisor Services for System Programmers

This chapter describes how to modify, extend, or implement some of the job management and
supervisor facilities of the control program. The information is designed primarily for system
programmers responsible for maintaining, updating, and extending these facilities.

Descriptions of macro instructions needed to implement some of the above facilities are in
the following chapter, "Supervisor Macro Instructions for System Programmers".

Note: For coverage of data management services for system programmers, see OS/VS Data
Management for System Programmers, GC28-0631.

Job Classes
In VS2, the user can control not only the priority of jobs but also the actual mix of jobs in the
system; this is done by assigning jobs to job classes. The job class is assigned on the JOB
statement (CLASS=jobclass), and when an initiator that can handle that particular class is
started, the job will be processed in priority order.

There are no absolute rules for assigning job classes, and some experimentation is necessary.
Generally, jobs of similar characteristics should be assigned to the same class. For example, if
several jobs are time-dependent and execute in nonpageable dynamic storage, it may not be
desirable to tie up all of nonpageable dynamic storage by having these jobs running
concurrently. These jobs may all be assigned to class B (or C or D -- class names have no
inherent meaning); then, if only one initiator is started that can handle class B jobs, there will
never be more than one of these jobs executing at once. In this manner, sections of storage are
free to process other jobs.

Suppose the following assignments are made:

Class B = jobs that are time-dependent.

Class C = jobs of less than one minute running time.

Class D = jobs with high I/O requirements.

With these assignments the operator may issue these commands:

START INIT",BCD

START INITmCDB

START INIT",DCB

If the three initiators are processing jobs with the same priority and all necessary resources
(for example, I/O devices and data sets) are available, then three jobs, one from each of the
three different classes, would run concurrently. If a job from one of the classes has higher
priority than the others, it will be initiated first, assuming all necessary resources are available.

When the operator starts an initiator, he indicates what class or classes it can handle
(START INIT",A). An initiator can handle up to fifteen job classes, and as many as
sixty-three initiators can be running at once. (This means that a maximum of 63 user-programs
in pageable dynamic storage can be operating concurrently in addition to 14 system tasks and
jobs in nonpageable dynamic storage). The operator's job might be simplifi~d by having
mnemonically named catalog procedures for these initiators.

If the system uses automatic volume recognition (A VR), efficiency can be improved by
assigning jobs that require non-resident volumes to the same class. With A VR, if volumes
required by a job are not mounted at allocation time (and the DEFER subparameter is not
specified), no other jobs can be initiated until the required volumes are mounted by the
operator. Thus, if jobs that will require non-resident volumes are assigned to the same class,
only one initiator will be issuing mount messages and it will be easier for the operator to
anticipate which volumes to mount. Also, performance can be improved by assigning these

Job Management and Supervisor Services for System Programmers 105

jobs the same priority~ if they run at the same priority, they will be initiated on a
first-in-first-out basis, and the operator can anticipate which volumes to mount next.

The job class is specified as a parameter on the JOB statement. Its format is:

/ /jobname JOB CLASS=jobclass

Jobclass may be any single letter from A-a. If no job class is specified, the default will be
class A.

An initiator that can handle all job classes in the system should always be running. If a job
is submitted and there is no initiator running for all the job classes, it will remain in the input
queues indefinitely or until the operator checks the input queues and discovers the job (by
means of the DISPLAY N command).

For more information, see OS/VS leL Reference, GC2S-061S.

Job and Dispatching Priorities
While job classes control which jobs are to be initiated, job priorities control the order of the
jobs in each class. Priorities can range from 0-13 (where 13 is the highest). The priority is
assigned as a parameter on the JOB statement as follows:

/ /jobname JOB PRTY=priority

The priority can be any decimal integer from 0-13. If no priority is specified, the default
priority as specified in the reader catalog procedure is assumed. There are no absolute rules for
assigning job priorities; they will depend on the job mixes and turnaround requirements of the
jobs that are run.

The actual value used by the supervisor to determine which task receives control of the
CPU next is dispatching priority. It may be calculated from the job priority stated on the JOB
statement, or the dispatching priority may be stated explicitly on the EXEC statement by using
the DPRTY parameter. Dispatching priorities should be assigned with the assumption that
tasks of higher priority will be given control when competing with tasks of lower priority.
Tasks with a large number of input/output operations should be assigned higher dispatching
priorities than tasks with little input/output.

SYSOUT and Message Classes
Output from a problem program is assigned to an output class which will be processed by
output writers. A maximum of 36 SYSOUT classes may be named with single letters (A-Z) or
digits (0-9) for output class names. The names have no inherent meaning but are simply used
to group output of similar characteristics. Writers are assigned to process only certain classes
of output; these classes may be assigned in the output writer cataloged procedure, or the
operator may assign them as parameters in the START command.

Careful planning of output classes can improve throughput at an installation. By assigning
jobs to carefully planned output classes and making sure that operators know which writers to
run at all times, all output devices are used constantly and there is no wasteful contention for
these devices. If output is assigned to a class for which no writer is started, it will remain
indefinitely in the output queue occupying direct access space that might be needed by another
program.

In planning SYSOUT classes, the following should be considered:

• A special output class may be reserved for very high priority jobs. For instance, only jobs
requiring turnaround time of less than an hour may be assigned a class of A.

• If the system has a universal character set printer that will be used as an output device, a
separate output class may be assigned to each character set image stored in the system
library. This will minimize the changing of printer chains and trains.

106 OS/VS2 Planning and Use Guide

• If the system has a printer with a forms control buffer (FCB), a separate output class may
be assigned to each FCB image. This will minimize the changing of printer forms.

• Although a writer may handle as many as eight different output classes, it can only write
output on one device. For example, if the following command is issued,

START WTR,OOE"ABCDEF

the writer started would handle six different classes, but all these classes would be written on
the printer at the specified address OOE. If one of the classes is to be written on tape, it could
not be handled by this writer.

The output class is specified as a parameter on the DD statement defining the output data
set; its format is SYSOUT=x where x is any single letter (A-Z) or digit (0-9).

System messages that are generated during the execution of a program must also be routed
to an output device; if it is desired that messages appear with their program output, messages
should be assigned to the same message class as the output.

The message class is assigned as a parameter of the job statement; its format is
MSGCLASS=x where x is any single letter (A-Z) or digit (0-9). If no message class is
specified, the default class specified in the RDR procedure is· used.

Standard IBM Cataloged Procedures
After the job classes and output classes are planned and it is decided what job mixes are
needed to run concurrently, catalog procedures for readers, writers, and initiators can be
planned. The operator's job can be simplified and time can be saved by having several
cataloged procedures for each of these and having them named so that operators can tell what
they do by their names. For instance, a reader that reads from tape with a blocking size of
3200 could be named RT32. An output writer that writes class A output to a printer could be
WPA. An initiator cataloged procedure that processes class A FORTRAN jobs might be
IFRT A. By thus naming procedures, when one of the system tasks stops or is waiting for
work, the operator will know what task is involved by its name.

Generally, the cataloged procedures should be as specific as possible in providing parameters
so the operator need only type the START command and the name of the procedure. If
parameters are to be changed (for instance the blocksize in a reader procedure), symbolic
parameters should be used. The operator can type in the changed parameter, and it will
override the one in the procedure. The START command can also start problem programs, but
SMF (system management facilities) win not be recorded, nor will checkpoint/restart be done
for these jobs.

SYSIN and SYSOUT Data Blocking
Blocking input stream records reduces the time required to access and process them. If the
records are blocked, auxiliary storage space is conserved since more records can occupy the
same amount of space. There are two types of blocking for the input reader:

• input to the reader from the job stream
• output from the reader (input to the processing program)

If the input is to be blocked, the number of buffers and their sizes are specified on the
IEFRDER statement in a reader cataloged procedure. This is dependent on the type of input
device used. These can be overridden by specifying the new buffer sizes and number in the
START command for the reader.

The output from the reader (the input stream data that is transferred from the input stream
to a direct access device) can be blocked. The block size is indicated in the IEFDATA
statement in the reader cataloged procedure.

Blocking system output will improve performance since it also reduces disk arm interference;
of course, at the same time, it requires additional virtual storage allocation for the problem

Job Management and Supervisor Services for System Programmers 107

program region, the reader, and the output writer. The additional space required in each case is
equal to the logical record length times the blocking factor plus the input buffer space. This
blocking is specified in the program which writes the output data set on a direct access device
(for later writing by the writer), and should be considered when specifying region size in the
writer procedure.

Cataloged Reader Procedures
IBM supplies four cataloged procedures for readers. These procedures can be used and
modified, if desired, or the user's own procedures can be written. Every cataloged procedure
for a reader requires four job control statements:

• An EXEC statement named IEFPROC to specify the reader.

• A DD statement named IEFRDER to provide the reader with a description of the input
stream.

• A DD statement named IEFPDSI to describe the procedure library.

• A DD statement named IEFDA T A to define the spooling, or concurrent peripheral
operation (CPO), data set that is used for intermediate storage of input stream data.

RDR, RDR400, and RDR3200

The readers RDR, RDR400, and RDR3200 provided by IBM are essentially the same except
for different blocking factors.

The standard reader procedure supplied by IBM is named RDR. It specifies a block size of 80
bytes for the concurrent peripheral operation (CPO) data set.

IIIEFPROC
II

IIIEFRDER
II
II
II
IIIEFPDSI

IIIEFDATA
II
II
II

EXEC

DD

DD

DD

PGM=IEFIRC,REGION=10K, X
PARM='00103005001024905010SYSDAbbbE00001A'

UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN, X
DISP=OLD, X
DCB=(BLKSIZE=80,BUFL=80, X
BUFNO=1,RECFM=F)

DSNAME=SYS1.PROCLIB,DISP=SHR

UNIT=SYSDA,
SPACE=(80,(500,500),RLSE,CONTIG),
DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
BUFNO=2,RECFM=F,DSORG=RD)

X
X
X

A second reader procedure supplied by IBM is named RDR400. It specifies a block size of
400 bytes for the CPO data set.

IIIEFPROC
II

IIIEFRDER
II
II
II

IIIEFPDSI

IIIEFDATA
II
II
II

EXEC

DD

DD

DD

108 OS/VS2 Planning and Use Guide

PGM=IEFIRC,REGION=12K, X
PARM='00103005001024905010SYSDAbbbE00001A'

UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN, X
DISP=OLD, X
DCB=(BLKSIZE=80,LRECL=80,BUFL=80, X
BUFNO=l,RECFM=F)

DSNAME=SYS1.PROCLIB,DISP=SHR

UNIT=SYSDA,
SPACE=(80,(500,100),RLSE,CONTIG),
DCB=(BLKSIZE=400,LRECL=80,BUFL=400,
BUFNO=2,RECFM=FB,DSORG=PS)

X
X
X

A third reader procedure supplied by IBM is named RDR3200. It specifies a block size of
3200 bytes for the CPO data set.

IIIEFPROC
II

EXEC PGM=IEFIRC,REGION=14K, X
PARM='00103005001024905010SYSDAbbbE00001A'

IIIEFRDER
II

DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN, X
DISP=OLD, X

II DCB=(BLKSIZE=80,LRECL=80,BUFL=80, X
II BUFNO= 1 , RECFM=F)

IIIEFPDSI

IIIEFDATA
II

DD

DD

DSNAME=SYS1.PROCLIB,DISP=SHR

UNIT=SYSDA,
SPACE=(80,(500,12),RLSE,CONTIG),
DCB=(BLKSIZE=3200,LRECL=80,BUFL=3200,
BUFNO=1,RECFM=FB,DSORG=PS)

X
X
X II

II

The IBM-supplied procedures can be adapted by an installation to meet its needs. The
parameters to be specified for the EXEC and DD statements are described in the following
sections.

EXEC Statement

The EXEC statement specifies the reader and its region size. It also passes a set of parameters
to the reader. Its format is:

IIIEFPROC EXEC PGM=IEFIRC, REGION=nnnnnK, X
PARM='bpptttooommmiiicccrlssssssssaaaaefh'

The step name must be IEFPROC as shown. The parameter requirements are:

PGM=IEFIRC
specifies the reader. Its name is IEFIRC.

REGION =nnnnnK
specifies the region size for the reader. The value nnnnn represents a number from one to
five digits that is multiplied by K (1024 bytes) to designate the region size. The region
requirement depends on the size of the buffers. An insufficient size specification will result
in an abnormal termination. If a blocked procedure library is used, the region size must be
increased by the block size. This allows for the increase in buffer size. If double buffering is
used, the region size must be increased by twice the block size .

P ARM = 'bpptttooommmiiicccrlssssssssaaaaefh'
is a set of parameters for the reader. This parameter field must consist of 35 characters.
Their meanings are:

b
any character from 0 through 9 or A through F indicating whether an account number is
required and whether a programmer name is required. The following chart shows the
meaning of each possible character.

Job Management and Supervisor Services for System Programmers 109

Characters Accounting Programmer
Information Name
Required? Required?

0,4,8, or C no no
1,5,9, or D no yes
2,6,A, or E yes no
3,7,8, or F yes yes

pp
two numeric characters from 00 to 14 indicating the default priority for jobs read from this
input stream. When no priority is specified in the JOB statement, the default priority is
assigned to the job. Priority 14 should be avoided because it is used by the system to
expedite the processing of certain jobs.

ttt
three numeric characters indicating the default for the maximum time (in minutes) that each
job step may run.

000

three numeric characters indicating the default for the number of primary tracks assigned
for SYSOUT data sets. This primary allocation should meet most needs, so that secondary
allocation will not usually be needed.

mmm
three numeric characters indicating the default for the number of secondary tracks assigned
for SYSOUT data sets.

iii
three numeric characters less than 255 indicating the dispatching priority of this reader while
it is processing JCL statements.

ccc
three numeric characters indicating the default for the region size (specified as a number of
1024 byte blocks) assigned to job steps read from this input stream.

r
a numeric character from 0 to 3 that specifies the disposition of commands read from the

input stream. The character has the following meanings:
o - The reader passes the command to the command scheduling routine to be executed.

1 - The reader displays the command (via a WTO macro instruction), and passes it to the
command scheduling routine to be executed.

2 - The reader displays the command (via a WTO macro instruction), asks the operator
whether the command should be executed (via a WTOR macro instruction), and passes
the command to the command scheduling routine if the operator replies yes.

3 - The reader ignores the command and treats it as a "no operation".

The WTO and WTOR macro instructions issued by the reader are sent to the MCS master
console.

a numeric character 0 or 1 specifying the bypass label processing option. 0 signifies that the
bypass label processing parameter in the label field of a DD statement is to be ignored; the
label parameter is processed as no label. 1 signifies that the bypass label processing is not to
be ignored; the label parameter is processed as it appears.

ssssssss
eight alphameric characters specifying the default device for SYSOUT. This becomes the
UNIT subparameter in the DD statement defining SYSOUT (if the UNIT field is omitted

110 OS/VS2 Planning and Use Guide

•

from the DD statement). If the designation is fewer than eight characters, the ssssssss field
must be padded to the right with blanks.

This default device can be specified by its address, group, or type. However, the
UNIT =type form may cause all units of that type to be used for system output, since the
device allocation program spreads the data sets among all candidate devices. To reserve
some devices for private volumes, the UNIT group defined should be a subset of the
available direct access devices. The name SYSOUT may be specified as the default unit
name for the system output data sets if it was specified at system generation; when this
default is used, a unit count of 1 is implied.

aaaa
four hexadecimal numbers from 0000 to EOOO indicating which operator command groups
are to be executed if read from this input stream. Four blanks default to 'EOOO'.
The following table shows the operator commands that are affected by the aaaa parameter.

The commands are grouped by function. If the command is in a group authorized by the aaaa
parameter, it is processed. If the command is not authorized ~y the aaaa parameter, it is
ignored and an error message is sent to the master console.

Note: Informational commands (Group 0) are always valid when entered into the input
stream.

Bit settings for the aaaa parameter are

Byte Bits

0 0
I
2

3-7

0-7

Bit
Settings

or}()oo

00000000

Meaning

Group I commands executed
Group 2 command executed
Group 3 commands executed
n _ .. ,..,. .. l
I'.I;;;:'~I v~u

Reserved

Example: If commands from command groups 2 and 3 to be executed when entered into
the input stream, code the aaaa parameter: "6000".

Command
Group Function Commands

o Informational BRDCST LOG REPLY
CONTROL MONITOR SEND
DISPLAY MSGRT STOPMN

System Control CANCEL MODIFY START
HALT RELEASE STOP
HOLD RESET WRITELOG
MODE SET

2 I/O Control MOUNT UNLOAD VARY
SWAP

3 Console Control V AR Y

1,2,3 Master Console All commands are valid, plus
VARY CONSOLES
V AR Y HARDCPY
VARY MSTCONS

Note: VARY (Group 2) is accepted only for a non-console device online or offline. VARY
(Group 3) provides only for console switching and console reconfiguration or secondary
consoles.

ef
MSGLEVEL value in absence of a value in the JOB statement. If there is no
MSGLEVEL= parameter in the JOB statement, job control statements and

Job Management and Supervisor Services for System Programmers 111

allocation/ termination messages are recorded in the system output data set according to the
value of the ef parameter. The values and their effects are:

e
Kinds of job control statements recorded.

o - JOB statement only.
1 - Input statements, cataloged procedure statements, and symbolic parameter substitution

values.
2 - Input statements only, including instream procedures.

A blank defaults to a value of O.

f
Kinds of allocation/termination messages recorded.
o - None, except in the case of an abnormal termination. (In that event, all messages are

recorded.)
1 - All.

A blank defaults to a value of 1.

h
MSGCLASS default value (A-Z, 0-9). If there is no MSGCLASS keyword parameter in the
JOB statement, job control statements and allocation/termination messages are recorded
according to the message class specified by this character. If the character is blank or
absent, A is the default class.

D D Statement for the Input Stream

The procedure for the reader must include a DD statement that describes the input stream.
The format for this statement is:

IIIEFRDER
II

DO UNIT=device,LABEL=(,type),VOLUME=SER=SYSIN,
DCB=(list of attributes) [,DSNAME=name,
DISP=OLD]

x
X

II

The DD name must be IEFRDER as shown. The IEFRDER statement can be overridden
with a START command. The parameter requirements are as follows:

UNIT =device
specifies the device from which the input stream is to be read. This can be any device
supported by the queued sequential access method (QSAM). The device can be specified by
its address, type, or group.

LABEL=(,type)
describes the data set label (needed only for tape data sets). If this parameter is omitted, a
standard label is assumed.

VOLUME=SER=SYSIN
specifies the volume containing the input stream. This parameter is required for magnetic
tape or direct access volumes. The serial SYSIN is recommended for identification of this
volume, but other serials can be used.

DCB=(list of attributes)
specifies the characteristics of the input stream and the buffers. If the BLKSIZE, LRECL,
and BUFL subparameters are not specified, an 80-byte value is assigned to each. Other
subparameter fields may be specified as needed; if they are not specified, the QSAM default
attributes are assigned, as follows:

112 OS/VS2 Planning and Use Guide

BUFNO - two buffers
RECFM - U-format, with no control characters
TRTCH - odd parity, no data conversion, and no translation
DEN - lowest density

DSNAME=name
specifies the name of the input stream data set to be read. This keyword should be used
only with direct access or tape input stream.

DISP=OLD
specifies that the input stream is an existing data set.

D D Statement for the Procedure Library

The procedure for the reader must include a DD statement that defines the procedure library.
This statement must follow the IEFRDER statement which describes the input stream. The
format for this statement is:

IIIEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR

The DD name must be IEFPDSI as shown. The parameter requirements are as follows:

DSNAME=SYS 1.PROCLIB
identifies the procedure library. To concatenate other data sets with the system library, the
IEFPDSI DD statement may be followed by other unnamed DD statements, thus expanding
the system procedure library.

DISP=SHR
specifies that the procedure library is an existing data set and can be shared with other
tasks.

DD Statement for the CPO Data Set

The procedure for the reader/interpreter must include a DD statement that defines the
spooling, or CPO (concurrent peripheral operation) data set. Two DeB parameters (BLKSIZE
and BUFNO) may be overridden by parameters in the input stream on DD * and DD DATA
statements. The CPO data set is used for intermediate storage of input stream data. The
format for this statement is:

IIIEFDATA
II

DD UNIT=device,
SPACE=(units,(quantities)[,RLSE,CONTIG]),
VOLUME=SER=volser,DISP=(status,disp),
DCB=(list of attributes),DSORG=PS

x
X
X II

II

This DD name must be IEFDATA as shown. The parameter requirements are as follows:

UNIT = device
specifies one or more direct access devices on which data sets from the input stream will be
written. If more than one device is provided, the different data sets are not necessarily
written in a continuous manner from device to device. Instead, the different data sets might
be spread among the available devices according to a reader algorithm based on priorities
and optimum access. If all the input stream data sets are to be written on the same device,
the VOLUME parameter (described below) should be used in this DO statement to identify
the specific volume. The DEFER option must not be used.

Caution: The UNIT group names should not b~ used unless the request is for no more than
one device, or unless the group is defined to have devices of only one type.

Job Management and Supervisor Services f~r System Programmers 113

IEFREINT

SPACE=(units,(quantities)[,RLSE,CONTIG])
specifies space allocation for the direct access volume. The optional RLSE subpara,rneter
releases all unused space to the system when the data set is closed. The optional CONTIG
subparameter ensures that space is allocated in contiguous tracks or cylinders.

VOLUME=SER=volser
identifies a specific direct access volume. This parameter is not required, but can be used to
cause all input stream data sets to be written on the same volume. This parameter should be
used if the DISP parameter is specified.

DISP= (status,disp)
specifies the status and disposition of the CPO data set. This parameter is not required, but
can be used to bypass the first space allocation defined on the SPACE parameter. To do
this, specify the parameter as DISP=OLD. The system then assumes that the data set exists,
and does not allocate space for the reader/interpreter program. Subsequently, the
reader/interpreter forces a DISP=(NEW,PASS) status for the CPO data set so that space is
allocated on it for recording the input stream data sets.

DCB= (list of attributes)
specifies the characteristics of the CPO data set and the buffers to be used by the data set.
The RECFM and the LRECL subparameters cannot be overridden and should not be
specified. The values for these subparamaters are RECFM=FB and LRECL=80. The
BLKSIZE and BUFL sybparameters must be specified in the IEFDA T A DD statement. The
BLKSIZE and BUFNO values may be overridden by specifying them on a DD * or DD
DATA statement in the reader input stream. However, the BLKSIZE and BUFNO values
on the IEFDA T A statement are always used as upper limits. Thus, if the overriding
statements exceed these limits, the IEFDA T A values are used. The BUFNO and RECFM
subparameters, if not specified, assume the QSAM default attributes as follows:

BUFNO -- two buffers.
RECFM -- U-format, with no control characters.

DSORG=PS
must be coded as shown.

The procedure named IEFREINT is used to process job control statements for a job being
restarted, and is a skeleton of the normal reader procedures. Its main functions are to define
the restart reader program, named IEFVRRC, and to make the procedure library accessible to
that program. The procedure is:

IIIEFPROC EXEC PGM=IEFVRRC, RESTART READER PROGRAM

II REGION=50K, RESTART READER REGION

II PARM=RESTART

IIIEFRDER DD DUMMY

//TL;'L;'nnCT DD T\C'l\l7\f\IfV-l'\TC'" 1 nT1r"\/"""IT Tn DISP-OLD PROCEDURE LIBRAR":{ / I ...J... J...JL L L,.)t...J..L UoJlH-U'lL-oJ.L...) I • r I"\U'-..-Li D,

IIIEFDATA DD DUMMY

The IBM-supplied procedure can be adapted by an installation to meet its needs. The
parameters to be specified for the EXEC and DD statements are described in the following
sections.

114 OS/VS2 Planning and Use Guide

EXEC Statement

The EXEC statement specifies the reader and its region size. It also passes a parameter to the
reader program. The format for the EXEC statement is:

//IEFPROC EXEC PGM=IEFVRRC,REGION=nnnnnK,PARM=RESTART

The step name must be IEFPROC, as shown. The parameter requirements are:

PGM=IEFVRRC

specifies the reader program. The name of the program must be IEFVRRC, as shown.

REGION =nnnnnK

specifies the region size for the reader. The value nnnnn represents a number from one to
five digits that is multiplied by K (K= 1024 bytes) to designate the region size. The region
requirement depends on the size of the buffers . An insufficient size specification will result
in an abnormal termination. If blocked procedure library has been specified, the region size
must be increased by the block size. This is to allow for the increase in buffer size.

PARM=RESTART

must be coded as shown.

DD Statement for the Input Stream

The procedure for the restart reader must include a DD statement that describes the input
stream. The format for this statement is:

//IEFRDER DD DUMMY

This statement must be named IEFRDER, as shown. The parameter requirements are:

DUMMY
must be coded as shown. System input is taken from the
SYS 1.SYSJOBQE data set which is already open.

DD Statement for the Procedure Library

The procedure for the restart reader must include a DD statement that defines the procedure
library. This statement must follow the IEFRDER statement which describes the input stream.
The format for this statement is:

//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR

This statement must be named IEFPDSI, as shown. The parameter requirements are:

DSNAME=SYS 1.PROCLIB

identifies the procedure library. To concatenate other data sets with the system library, the
IEFPDSI DD statement may be followed by other unnamed DD statements, thus expanding
the system procedure library.

DISP=SHR

specifies that the procedure library is an existing data set. The procedure library is assigned
the share status (SHR) when referred to by the reader.

Job Management and Supervisor Services for System Programmers J 15

DD Statement for the CPO Data Set

The procedure for the restart reader must include a DD statement that defines the CPO
(concurrent peripheral operation) data set. Since the data is already in the checkpoint data set,
DUMMY serves as the operand. The format for this statement is:

//IEFDATA DD DUMMY

This statement must be named IEFDATA,as shown. The parameter requirement is:

DUMMY
must be coded as shown.

Cataloged Initiator Procedures

INIT

Different initiator cataloged procedures may be written for the different types of jobs that
initiators will handle. There may be a FORTRAN initiator (an initiator to handle the job
classes to which FORTRAN jobs are assigned), a COBOL initiator, an initiator for I/O bound
jobs or an initiator for CPU bound jobs.

A cataloged procedure for an initiator requires only one job control statement: an EXEC
statement. Additional DD statements may be optionally added so that specific control volumes
are mounted before an initiator is started.

An EXEC statement named IEFPROC specifies the initiator program and any job classes to
be associated with the initiator (if the START command does not specify job classes).
Optional DD statements specify control volumes to be allocated to the initiator task.

The standard initiator cataloged procedure supplied by IBM is named INIT. The procedure
is:

//IEFPROC EXEC PGM=IEFIIC,PARM='A,LIMIT=13'

User-written initiator procedures must follow the format for the standard procedure. The
parameters to be specified for the EXEC and DD statements are described in the following
sections.

EXEC Statement

The EXEC statement specifies the initiator program and passes a set of parameters to it. The
format for the EXEC statement is:

//IEFPROC EXEC PGM=IEFIIC,PARM='x[(n)] [,x1[(n1)] 000 [,LIMIT=K]]'

The step name must be IEFPROC, as shown. The parameter requirements are as follows:

PGM=IEFllC
specifies the initiator program. The name of the program must be IEFllC, as shown.

PARM='x[(n)][,x1[(n.)] ... [,LIMIT=K]]'

x - Job class. (Letter A - O. One to fifteen job classes may be named.)

n - (0 - 15) A force value priority at which all jobs from the preceding class will be run.

K - (0 - 15) The priority above which no jobs will be run by this initiator.

If the START command for an initiator includes any job class references, all job class
definitions in the cataloged procedure are voided.

116 OS/VS2 Planning and Use Guide

The LIMIT=K entry in the cataloged procedure means that no job may be run at a priority
higher than the value indicated by K. The force value (n above) is used for a job unless it is
greater than the limit value (K above). A force value (n) priority may not always be specified;
if it is not, and the limit value, K, is not exceeded the priority is determined by the following
order:

• The EXEC statement
• The JOB statement
• The cataloged reader procedure

If a job class is assigned a force priority, it overrides the priority indicated in any of the above
three sources.

nn Statements for the Control Volumes

DD statements for control volumes are optional. The standard procedure INIT does not
include a DD statement for a control volume.

A control volume that will be referred to during a catalog search can be mounted before the
search begins. DD statements for control.volumes may be included in initiator procedures
cataloged in the procedure library (SYS 1.PROCLIB). Such DD statement cause direct access
volumes to be mounted and allocated for the initiator. This facility is particularly useful when
control volumes will be needed for job batches.

Initiation with a DD statement for a control volume ensures that the control volume will be
mounted prior to a catalog search for a specified data set. If such DD statements for control
volumes are not included in initiator procedures, an attempt will be made to mount a required
control volume if a catalog search can not be completed during allocation for a step. However,
when control volumes are mounted in this manner, they are eligible for demounting
immediately after the catalog search has been completed and will not necessarily remain
mounted for the life of the job or job step requiring them.

By starting an initiator that includes a DD statement for a control volume, mounting is
requested before the initiator is allowed to start initiating jobs. If the volume is already
mounted, the initiator proceeds with initiation.

When a STOP command is issued for the started iqitiator and the volume is demountable
and PRIV ATE, it will be demounted if no other job steps or initiators are allocated to the
volume. The volume would stay mounted until the last job step using it terminates or until the
initiators using it are stopped, at which time the volume would be demounted.

As many volumes may be defined by DD statements in the initiator procedure as the user finds
useful. The following is an example of a -DD statement that could be included in an initiator
procedure for a control volume:

//ddname
{

address}
DD VOLUME=(PRIVATE,SER=ser#),UNIT= type

group
,DISP=SHR

VOLUME = (PRIVATE,SER=ser#) ,
specifies the volume serial of the control volume. PRIVATE ensures that this volume will
not be used to satisfy job step data set requests unless requested by the specific volume
serial number. Also, unless already mounted and permanently resident or reserved, the
volume will be demounted when the initiator is stopped, when last used by job steps being
processed by other initiators, or when other initiators allocated to the volume are stopped.

Job Management and Supervisor Services for System Programmers 117

{

addreSS}
UNIT= type

group
specifies the unit address, unit type, or group on which the control volume is to be
mounted.

DISP=SHR
specifies that a temporary data set will not be allocated to the volume. A dsname will be
generated for the temporary data set and when the initiator is stopped, a message will be
written on the system output data set that the data set has been kept. This message can be
ignored as no action needs to be taken.

DD Statements for the Dedicated Data Sets

Dedicated data sets save the time taken repeatedly to allocate (and deallocate) space used only
temporarily during a job step. A dedicated data set· is allocated space when the initiator is
started and belongs to the initiator. Every job step running under that initiator can use the
dedicated data set as a temporary data set. If dedicated data sets are used for temporary data
sets, the checkpoint/restart facility is internally suppressed. To dedicate any data set quickly to
successive jobs or job steps, a DD statement is added to the initiator procedure.

A data set is dedicated by adding a DD statement (for each data set to be dedicated) to the
initiator procedure. The unit must be a direct access storage device; the space may be for a
sequential or partitioned data set. Each DD statement must be of the following form:

//ddname

ddname

DD UNIT=unitparms,VOL=volparms,
SPACE=(kind,(amount,increment,dirblks)),
DISP={new,delete)

specifies user-supplied ddname to identify the DD statement. The ddname is used (in the
form DSNAME= & ddname) in the DD statement of the problem program job step which is
to make use of the dedicated data set.

UNIT =unitparms
specifies parameters that describe the unit to be used for the dedicated data set. The unit
must be a direct access storage device. The AFF = and DEFER unit parameters may not be
used. The unit parameters specified here override those of the job step DD statement for
which the dedicated data set is used.

VOLUME = volparms
specifies volume parameters. A volume may be specified for each unit specified in the
preceding unitparms entry. The volume parameters specified here override those of the job
step DD statement for which the dedicated data set is used.

SP A CE= (kind, (amount, increment,dirblks»
specifies type and size of space (in terms of CYL, TRK, avgbl, or ABSTR) to be allocated
to the data set. If ,dirblks is omitted, the data set request implies sequential organization. If
"dirblks is used, the data set request implies partitioned organization.

When a dedicated data set with partitioned organization reaches an EOV condition, the
initiator must be restarted. The DD statement in the problem program job step that is to use a
dedicated data set must describe a problem program data set of the same organization as the
dedicated one.

118 OS/VS2 Planning and Use Guide

D ISP = new ,delete
specifies these disposition parameters. They may either be coded explicitly or may take
effect by default, if the DTSP= entry is ommitted.

The effect of new is that the data set is allocated from any available space on the volume,
each time a START initiator operator command is used or the system is restarted.

The effect of delete is that the data set is not kept when the initiator is stopped and the
space is available for reallocation to other jobs.

If a dedicated data set is to be used temporarily in a job step, the temporary data set should
be defined in a DD statement of the form:

Iiddname DD DSNAME=&ddname,

SPACE=(avgbl,(amount,increment,dirblks)),

UNIT=unitparms,DISP=(new,delete),DCB=dcbparms

x

II
II

x

DSNAME= & ddname
specifies the name of the DD statement for the dedicated data set, preceded by an & sign.

(avgbl, (amount,increment,dirblks))
specifies the space request, in terms of average block length only, needed for the temporary

data set.

An attempt to allocate the dedicated data set will be replaced by the normal allocation
procedure if one of the following conditions is encountered:

If the total space (primary and increments) requested exceeds the total space (primary and
increments) available to the dedicated data set.

If the use of ,dirblks (presence or absence) differs from that in the DD statement of the
dedicated data set, (or if ISAM is specified).

If the use of ,dirblks requested exceeds the space for ,dirblks specified in the dedicated
data set.

• If the space request is shown in other than average block length.

• Although the total space (primary and increments) requested is compared to the total space
(primary and increments) available to the dedicated data set, the primary quantity in the
DD statement of the initiator procedure will be allocated to the data set, and not the
primary quantity requested here. If a secondary quantity is specified, it will override the
secondary quantity specified in the initiator procedure's DD statement.

UNIT =unitparms
specifies unit parameters to be used for the temporary data set, if the dedicated data set is
not used. The unit may be a magnetic tape unit, as well as a direct access storage device.

DISP=(new,delete)
specifies disposition parameters. They may either be coded explicitly or may take effect
through default.

DCB=dcbparms
specifies DCB parameters required for the temporary data set. A previous user may have
left the dedicated data set with undesired DCB parameters.

If a secondary increment is coded in the SPACE parameter, the DCB subparameter
BLKSIZE should be coded since the system will use it to calculate the number of tracks
required to fulfull the secondary quantity request.

Job Management and Supervisor Services for System Programmers 119

INITD
Language processor programs, such as FORTRAN compilers, make much use of temporary
data sets. To permit ready use of the dedicated data set feature with IBM-supplied processor
procedures, IBM supplies the initiator procedure INITD. It becomes part of the system by
inclusion in the SYS 1.PROCLIB at system generation time.

INITD is an initiator procedure that dedicates five utility data sets commonly used with
IBM-supplied processor procedures. To use the dedicated data set facility with these
procedures, the INITD inititator should be started.

Before including the INITD procedure in the system, the space allocations, unit
specifications, and ddnames used in the procedure should be reviewed against the system's
requirements. If they are significantly different, they should be coded.

The INITD procedure is:

//IEFPROC EXEC PGM=IEFIIC,PARM='A,LIMIT=13,

//SYSUT1

//SYSUT2

//SYSUT3

//SYSUT4

//LOADSET

DD DSNAME=&UT1,SPACE=(1700,(200,100)"CONTIG),UNIT=SYSDA

DD DSNAME=&UT2,SPACE=(1700,(200,100),

UNIT=(SYSDA,SEP=SYSUT1)

DD DSNAME=&UT3,SPACE=(1700,(200,100)),

UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2))

DD DSNAME=&UT4,SPACE=(460,(700,100)),

UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2,SYSUT3))

DD DSNAME=&LOADSET,UNIT=(SYSDA,SEP=SYSUT1),

SPACE=(3600,(100,10))

Each statement of the INITD procedure is explained in detail in the following sections.

EXEC Statement

The EXEC statement for the INITD procedure is:

//IEFPROC EXEC PGM=IEFIIC,PARM='A,LIMIT=13,

IEFPROC
specifies the step name. Must be coded as shown.

PGM=IEFIIC
specifies the program to be executed in this job step. Must be coded as shown. Whether
dedicated data sets are used depends on the DO statements that follow the EXEC
statement, not on the name of the program.

PARM=' A ,LIMIT = 13'
specifies the parameter list for the initiator program. A is the class of jobs to be processed,
LIMIT=13 is the dispatching priority limit for this initiator. Both of these values can be
overridden by values used with the ST ART command for the initiator.

120 OS/VS2 Planning and Use Guide

DD Statements for the Dedicated Utility Data Sets

There are four DD statements in the IN lTD procedure that allocate space to four commonly
used utility data sets. The statements are:

//SYSUT1
//SYSUT2

//SYSUT3

//SYSUT4

DSNAME=

DD DSNAME=&UT1,SPACE=(1700,(200,100)"CONTIG),UNIT=SYSDA
DD DSNAME=&UT2,SPACE=(1700,(200,100)),
UNIT=(SYSDA,SEP=SYSUT1)
DD DSNAME=&UT3,SPACE=(1700,(200,100)),
UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2))
DD DSNAME=&UT4,SPACE=(460,(700,100)),
UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2,SYSUT3))

specifies a temporary data set.

SPACE=
specifies the first three data sets will be assigned space that can accommodate 200 blocks of
1700 bytes. When that space is exhausted, additional space will be allocated for 100 blocks
at a time. Additionally, for the fourth data set, SYSUT4, all the primary space is to be
allocated for 700 blocks of 460 bytes initially. When exhausted, space is to be allocated for
100 blocks at a time.

UNIT=
specifies space to be allocated from direct access storage devices. If possible, each data set
is to be on a separate device from every other data set to avoid contention for the device.

DD Statement for the LOAD SET Data Set
In the INITD procedure, the dedicated data set for the object module -- the LOADSET data
set -- is defined as follows:

//LOADSET DD DSNAME=&LOADSET,SPACE=(3600,(100,10)),

UNIT=(SYSDA,SEP=SYSUT1)

LOADSET
specifies the dsname of the dedicated data set.

DSNAME= & LOADSET
specifies a temporary data set.

SPACE=(3600,(100,10»
specifies space allocation commonly used in compilers.

UNIT =
specifies space to be allocated on a direct access storage device but not the same one as the

SYSUT1 data set.

Miscellaneous DD Statement Considerations

The three topcis described below indicate considerations when using dedicated data sets.

Use of Dedicated Data Sets by Processing Programs for Utility Data Sets: Presently, processor
programs show the temporary nature of the utility data sets by omitting a DSNAME= entry. If
these DD statements are revised with the addition of a DSNAME= & name entry, the system
will attempt to use dedicated data sets of the INITD program for job steps processed under
that initiator.

Job Management and Supervisor Services for System Programmers 121

To illustrate the necessary change, the following is a DO statement from a catalog procedure
for which a temporary data set will be allocated:

/ISYSUT1 OD UNIT=SYSDA, SPACE=(1024, (20(l, 65))

The temporary character of this data set is shown by the absence of a DSNAME= entry. To
force consideration of the dedicated data set. assuming that the step is running under the
INITD procedure, a DSNAME= & name (or & & name) entry should be added referring to the
dedicated data set to be considered for use:

//SYSUTl DO UNIT=SYSDA,SPACE=(1024,(200,65)),OSNAME=&SYSUTl

\Vith the addition of the dedicated data set feature, the allocation program now tirst searches
the DO statements in the initiator procedure for an already existing data set with a DO name
like that following the & sign (the symbolic name). If the allocation program finds such a data
set, it next determines whether the organization (sequential, partitioned) of the dedicated data
set is the same as that of the temporary data set, and whether the total space requirements
(primary and increments) of the temporary data set fall within the total space allocation of the
dedicated data set. If there is no dedicated data set with the symbolic name, if the
organizations are not the same, or if the temporary space does not fit within the dedicated
space, the initiator will attempt normal allocation. It is for the latter event that unit parameters
should be present.

System Library Data Sets as Dedicated Data Sets: System library data sets may be referred to
rpeatedly in a batch of jobs. To save allocating the system data set in each job and step, the
system data set can be dedicated in an initiator procedure. Caution must be exercised when
dedicating system libraries or other non-temporary data sets. The DO statement in the initiator
procedure must have the disposition specified as old or share and keep to prevent the deletion
of the data set when the initiator is stopped. In the same manner, the disposition on the job
step DO statement referring to the dedicated library must also be old or share and keep or
pass to allow the dedication to take place without a space comparison. The example data set
references are as follows.

The following is the DO statement in a procedure that results in the allocation of a COBOL
library to the job step calling the procedure:

//SYSLIB DO OSNAME=SYS1.COBLIB,DISP=(SHR,KEEP)

The explicit data set reference (DSNAME=SYS l.COBLIB) requires a search of the catalog in
each job step using the procedure. To save the repeated catalog search, move the DO
statement should be moved to the initiator procedure and replaced in the COBECLG
procedure with a DO statement in which the OSNAME= & name entry refers to the ddname
of the dedicated data set. Allocation treats this as a dedication request, dedicated if so found.
The new DO statement in the procedure, after adding the present one to the initiator, is:

//SYSLIB DO DSNAME=&SYSLIB,DISP=(SHR,KEEP)

The result is one catalog search per initiator instead of one catalog search every job step.
However, this procedure requires the initiator with the dedicated data set. Using this modified
procedure with an unmodified initiator will result in failure to allocate.

122 OS/VS2 Planning and Use Guide

Disposition of Temporary Dedicated Data Sets: Allocation/termination routines do not delete
temporary dedicated data sets at the end of each job step, but, instead, keep them until the
initiator stops. This occurs even if there is a specification of DISP=(NEW,DELETE) or
DISP=(MOD,DELETE) on the DD statement for the data set. Therefore, if an attempt is
made to use such a data set a second time in the same job, it will contain data from the
previous use. This can be a problem if cataloged procedures are being used and the same
procedure is used twice within the same job. For example: assume that a procedure is used
twice within the same job and it uses a dedicated data set with a disposition of (MOD,PASS)
for the compile step and (OLD,DELETE) for the linkage edit step. When the procedure is
entered for the second time, the object module produced by the second compile step will be
placed in back of the object module produced by the fir~t compile step. Since both object
modules are assigned identical names by the compiler, only the first will be linkage edited.

This problem can be avoided by not using dedicated data sets for jobs that run the same
cataloged procedure twice. Alternatively, using DISP=(NEW,DELETE), each cataloged
procedure could be submitted as separate jobs instead of being submitting as separate job steps
within the same job.

The following can be used to determine the disposition, by allocation/termination, of
temporary data sets:

• DISP=NEW,OLD,SHR, or MOD is treated as OLD.

• DISP=,DELETE or , KEEP is treated as KEEP.

• DISP=,PASS is trated as PASS.

Cataloged Writer Procedures

WTR

A cataloged procedure for output writers requires two job control statements: an EXEC
statement and a DD statement.

An EXEC statement named IEFPROC specifies the output writer program.

A DD statement named IEFRDER defines the output data set.

The standaid output wiitei pioceduie supplied by IBM is named \VTR. The \VTR procedure
is:

IIIEFPROC
II
IIIEFRDER
II
II
II

EXEC

DD

PGM=IEFSD080,REGION=20K,
PARM='PA'
UNIT=1403,VOLUME=(",35),
DSNAME=SYSOUT,DISP=(NEW,KEEP),
DCB=(BLKSIZE=133,LRECL=133,BUFL=133,
BUFNO=2,RECFM=FM)

X

X
X
X

When creating an output writer procedure, the procedure format and the statement
requirements must be conformed to. The IBM-supplied procedure may be used as an example.
The statements are explained individually in the following sections.

Job Management and Supervisor Services for System Programmers 123

EXEC Statement

The EXEC statement specifies the output writer program and its region size. It also passes a
set of parameters to the output writer program. The format for the EXEC statement is:

IIIEFPROC
II

EXEC PGM=IEFSD080,REGION=nnnnnK,
PARM='cxxxxxxxx,seprname'

X

The step name must be IEFPROC, as shown. The parameter requirements are as follows:

PG M= IEFSD080
specifies the output writer program. The name of the program must be IEFSD080, as
shown.

REG ION = nnnnnK
specifies the region size for the output writer. The value nnnnn represents a number from
one to five digits that is multiplied by K (K= 1024 bytes) to designate the region size. The
region requirement depends on the size of the buffers and the data set writer used . An
insufficient size specification will result in an abnormal termination.

P ARM=' cxxxxxxxx,seprname'
is· a set of parameters for the output writer program. The first part of this parameter field
can contain from two to nine characters. The second part of this parameter field, if
specified, is separated from the first part by a comma, and contains a program name from
one to eight characters. Both parts of this parameter field are explained below.

c
. an alphabetic character, either P (for printer) or C (for punch), that specifies the type of
control characters for the output of the writer.

xxxxxxxx
from one to eight (no padding required) single-character class names for system output.
These characters specify the type of output that the writer can process, and also establish
the priority of the output classes, with the highest priority on the left. If class name
parameters are included in the START command, they override this entire set of class
names in the cataloged procedure.

seprname
the name of the program (up to eight characters) that provides job separation in the
output data set. The named program must reside in the link library (SYS l.LINKLIB) or
the LPA library (SYS1.LPALIB). The name IEFSD094 specifies the output separator
supplied by lBM, or the name of a user-written program can be specified. This
subparameter may be omitted, in which case no output separator is used.

DD Statement for the Output Data Set

The procedure for the output writer must include a DD statement that defines the output data
set. The format for this statement is:

IIIEFRDER
II
II
II
II
II

DD

124 OS/VS2 Planning and Use Guide

UNIT=device,LABEL=(,type)
VOLUME=(",volcount),
DSNAME=anyname,DISP=(NEW,KEEP)
DCB=(list of attributes),
UCS=(code [, FOLD]{[, VERIFY]),
FCB=(image-id ,ALIGN})

,VERIFY

X
X
X
X
X

This DO name must be IEFRDER as shown. The parameter requirements are as follows:

UNIT =device
specifies the printer, magnetic tape, or card punch device on which the output data set will
be written.

LABEL= (,type)
describes the data set label (needed only for tape data sets). If this parameter is omitted, a
standard label is assumed.

VOLUME= (",volcount)
limits the number of tape volumes that can be used by this writer during its entire operation
(from the time it is started to the time it is stopped). This parameter is not required fer
printer or card punch devices.

DSNAME=anyname
specifies a name for the output data set (tape only, for label purposes), so that it can be
referred to by subsequent job steps. This name is also necessary for specification of the
KEEP subparameter in the DISP field.

DISP= (NEW ,KEEP)
specifies the KEEP subparameter to prevent deletion of the output data set (tape only) at
the conclusion of the job step.

DCB=(list of attributes)
specifies the characteristics of the output data set and the buffers. TheBLKSIZE and
LRECL subparameter fields must be specified in all cases. The BUFL subparameter field, if
not specified, is calculated on the basis of the BLKS!ZE value. Other subparameter fields
may be specified as needed; if they are not, they will assume the QSAM default attributes
which follow:

BUFNO -
RECFM -
TRTCH -
DEN --

three buffers for the 2540 device, two buffers for all other devices.
U-format, with no control characters.
odd parity, no data conversion, and no translation.
lowest density.

UCS=(code[,FOLD][,VERIFYD
specifies the code for a universal character set (UCS) image that will be loaded into the
UCS buffer. FOLD causes bits 0 and 1 to be ignored when comparing characters between
the UCS buffer and the print line buffer. This option allows lowercase alphabetic characters
to be printed in uppercase by an uppercase print chain or train. VERIFY causes the
specified UCS image to be printed for verification by the operator. The UCS parameter is
optional, and is valid only when the output device is a 1403 or 3211.

FCB=(image-id {,ALIGN})
,VERIFY

causes the forms control buffer (FCB) image with the specified image-id to be loaded into
the FCB. One of two optional parameters, ALIGN or VERIFY, can be coded. Either
parameter allows the operator to align forms. In addition, VERIFY causes the specified
FCB image to be printed for visual verification. The FCB parameter is valid only when the
output device is a 3211.

Job Management and Supervisor Services for System Programmers 125

For the processing of output jobs that require special chains for printing, specific classes
should be assigned for each different chain. The desired chain can be specified in the writer
procedure, and when that writer is started the chain will be loaded automatically. (Printers
used with special chains should be named with esoteric device names as defined at system
generation time.)

The following sequence is an example of a writer cataloged procedure for the Pll chain.

IIIEFPROC EXEC PGM=IEFSD080,REGION=20K, X

II PARM='PDEG,IEFSD094'

IIIEFRDER DD UNIT=SYSPR,DSNAME=SYSOUT,FCB=(STD2,ALIGN), X

I I UCS=Pl1, X / /

II DISP=(,KEEP),DCB=(BLKSIZE=133,BUFL=133, X

II LRECL=133,BUFNO=2,RECFM=FM)

If the output device is a 3211, a DeS or FeB image can be loaded dynamically between
the printing of data sets. Therefore, a mixture of data sets using different images in a single
output class is allowed; however, this may require mounting trains and changing forms, and
may not be desirable. When the output device is a 1403, the DeS image is specified at
START WTR time and cannot be changed until the writer is stopped; all data sets within an
output class must be printed using the same train. This parameter cannot be overridden for a
specific data set when using the (asynchronous) sysout writer. The FeB image is ignored when
the 1403 is specified.

Job Queue Format
The job queue format is specified when the system is generated and may be altered during
subsequent system initialization procedures. Formatting consists of specifying the number of
queue records in a job queue logical track, reserving queue records for initiators, the
write-to-programmer routines, and reader/interpreters, and reserving queue records for job
cancellation.

The basic element of the system job queue (the data set SYSl.SYSJOBQE) is a 176-byte
record -- the queue record. The total number of queue records available is fixed by the space
allocated to the SYS I.SYSJOBQE data set. Queue records contain the tables, control blocks,
and system messages developed by the reader/interpreter, write-to-programmer, and initiator
control program routines -- the information used to run a job.

Lack of queue records to work with is not critical for a reader/interpreter routine.
Processing of the input job stream assigned to a reader/interpreter is suspended until queue
records become available, at which time processing is resumed. An initiator, however, must
have sufficient queue records available to complete the initiation and running of a job,
or the job is canceled. Because one or more reader/interpreters and one or more initiators
may be concurrently active, steps must be taken to ensure that queue r.ecords are available to
each initiator started, so that it may complete its operations. In addition, queue records must
be reserved for use by initiators in the event job cancellation does take place. The main
function of job queue formatting is to reserve queue records for initiator use.

To format the job queue, each of the following must be designated:

• The number of queue records to be contained in a job queue logical track. A logical track
consists of a header record (20 bytes) plus the designated number of queue records.
Reader /interpreters and initiators are assigned queue records in terms of logical tracks.

126 OS/VS2 Planning and Use Guide

• The number of queue records to be reserved for use by an initiator. Each initiator is
allocated this number of records. If the allocation is insufficient for the job currently being
processed by the initiator, the job is canceled.

• The number of queue records to be reserved for use in case of job cancellation. All
initiators that cancel use these queue records. If the allocation is insufficient, the initiator is
placed in aWAIT state and a messages issued.

• The number of queue records to be reserved for write-to-~rogrammer routine use for each
job that may be started by an initiator.

The balance of the queue (total queue records less the reservations in the last three items
above) is available for use by the reader/interpreters.

Initial values for logical track size, queue record reservation for initators, queue record
reservation for write-to-programmer, and queue record reservation for job cancellation, should
be specified in the SCHEDULR macro instruction parameters JOBQFMT, JOBQLMT,
JOBQWTP, and JOBQTMT respectively.

The service aid program IMCOSJQD provides a formatted dump of the entire job queue, or
selected portions of it. The formatted dump includes the master queue control record (QCR)
which contains the physical parameters of the job queue.

There are no comprehensive, foolproof formulas for calculating values ~f JOBQFMT,
JOBQLMT, JOBQTMT, and JOBQWTP. The values to be estimated are dependent upon the
requirements and structure of the jobs to be presented to the system, the number of job steps,
the number of II 0 devices required, the number and type of data sets, the number of volumes,
and most unpredictable, the number of system messages issued during the initiation and
running of a job. The rest of this topic provides some basic guidelines for use in determining
these values.

Logical Track Size -- JOBQFMT
Logical track size -- the number of queue records in a logical track -- affects the efficient use
of queue records. Reader/interpreters and initiators are allocated queue records in terms of
logical tracks. Unused queue records in a logical track are not available for use by other
reader /interpreters or initiators. Therefore, an over-generous logical track size specification
results in wasted queue records and reduction of job queue capacity; i.e., the unused queue
records, if available, could contain the required information for another job.

Logical track size affects performance to some extent. Specification of a logical track size of
10 queue records or less can result in excessive execution of the track assignment routines,
etc., i.e., the "overhead" required to use very small logical track sizes impairs performance.

As a starting point, the default value for JOBQFMT (12 queue records) should be used.

Logical track size (or multiples of it) may correspond to the physical track capacity of the
device on which the job queue is resident. For example, if the IBM 2305 Fixed Head Storage
unit is to be used, 66 queue records may be contained in one physical track. In this case, a
logical track size of 22 queue records should be specified, thereby allocating 3 logical tracks to
one physical track (3 x 22 = 66 queue records). The 3 logical track header records (20 bytes
each) use up the remaining record.

Logical tracks can contain the same number of queue records as are reserved for initiator
use.

Job Management and Supervisor Services for System Programmers 127

Initiator Queue Records -- JOBQLMT
The value specified for JOBQLMT must be large enough for the queue entries of any job that
enters the system. The following list shows the factors that affect the value of JOBQLMT:

• Number of entire generation data groups in a job.
• Number of passed data sets in a job.
• Number of devices required for passed data sets.
• Number of volumes containing the data sets in a step.
• Number of system messages issued during initiation of a step.
• Use of automatic restart.

The sum of the queue records required for each of these items provides a JOBQLMT value.

When a START initiator command is issued, a ch~ck is made to see if enough free logical
tracks are available to provide the required number of queue records for the initiator. If not,
the command is rejected.

Each time an initiator is started, the number of records reserved for an intiator is added to
the total number of records reserved for active initiators. For example, if the number of
records reserved for each initiator is 60, the number of records reserved for termination is 40,
and 4 initiators have been started, then the number of records reserved is 340. This total
includes 60 records reserved for each initiator, 40 records reserved for termination, and 60
records reserved as a basic threshold.

Number of Generation Data Groups

Each entire generation data group (GDG) used during a job increases the number of queue
records needed by an initiator. Two queue records should be reserved for every generation in
excess of the first in a GDG. One queue record should be reserved for every four GDGs used
in a job.

Thus, if a job uses two entire GDGs, one having 5 data sets (generations), and the other
having 24 data sets, 55 queue records must be reserved -- (4+23)x2+ 1.

Number of Passed Data Sets

Two queue records are needed by an initiator for every three data sets passed during a job. If
the number of data sets passed is not a multiple of three, queue records must be allocated as if
the number of data sets passed was a multiple of three. Thus if one, two, or three data sets are
passed, two queue records are allocated; if four, five, or six data sets are passed, 4 queue
records are allocated, and so on.

Number of I/O Devices for Passed Data Sets

When a data set being passed requires more than ten I/O devices, one queue record is
required by an initiator. This queue record accommodates 43 devices. If the number of
required devices exceeds 53, a second queue record is needed. Separate calculations must be
made for each data set.

Number of Volumes

An initiator requires queue records for each data set that occupies more than five volumes, and
is located by a search of the catalog. (If a data set's location is specified in a DD statement,
the reader routines acquire the necessary records.) One queue record is needed if the data set
occupies between 6 and 20 voiumes~ two queue records if 21 to 35 voiumes~ three if 36 to 50
volumes; and so on. Separate calculations must be made for each data set.

128 OS/VS2 Planning and Use Guide

Number of System Messages

An initiator requires queue records for system messages it issues. If it is assumed that each
message is 80 characters in length, each queue record holds two messages. Messages from
initiators are primarily device allocation, allocation recovery, data set disposition, SMF or
accounting messages, and the keep messages for tapes used in each step.

To cover most device allocation messages, one queue record should be allowed for every
three DD statements. To cover data set disposition messages, one queue record should be
allowed for each DD statement. As part of the data set disposition messages, the SMF or
accounting messages should be counted as two lines per queue record. Also two lines should
be counted per queue record for tape messages.

Allocation recovery messages apply to devices that are offline. To cover most situations,
queue records should be allocated as follows:

• Determine the largest number of devices of a given class that will be offline at any given
time.

• Divide by seven.
• Add two.

Since this calculation is for a job step, the result should be multiplied by the number of
steps in a large job.

System messages are the least predictable of all the variables used in calculating initiator
queue record needs. The number of messages depends on the number of devices offline, the
number not available, and the number required at any given time.

The initiator needs queue space for a TIOT (task input/output table) for each step. The
space needed can be approximated as follows:

• Determine the number of DD statements in the largest step in a job.
• Multiply the number of DD statements by 20.
• Add 24.
• Divide by 172 and rounding the dividend up.
• Add 1.

This gives the largest amount of queue records required for a job.

Under certain conditions, the initiator may need additional space. Two specific conditions
are:

• VOLT (volume table) -- The initiator builds a VOLT, if one does not exist, for all
non-specific device requests. One queue record will hold 28 volume serial numbers.

• Mount CVOL (control volume) -- Five records will be created for each CVOL not
mounted. The initiator builds a JCT (job control table), a SCT (step control table), a SlOT
(step input/output table), a JFCB (job file control block) and a VOLT if a CVOL is not
mounted. The initiator writes these queue records into the jobqueue.

Use of Automatic Restart

To use automatic restart in the system, the number or records specified for the JOBQLMT
parameter must be substantially increased. Specifically:

• The initiator needs its nonnal set of queue records (described by the JOBQLMT
parameter) to initiate the job for the first time; it needs an additional set of records to start
a second job while the first job is going through the restart process.

• Since the restart process involves rereading, reinterpreting, and reinitiating the first job, an
additional set of reader/interpreter records is needed, together with a third set of initiator
records.

Job Management and Supervisor Services for System Programmers 129

Finally, when checkpoint/restart is being performed, one or two sets of restart housekeeping
records are needed. Altogether, the number of records to be specified for JOBQLMT when
automatic restart is being used is:

JOBQLMT + (3 x L) + R + (a x 12)

L - Number of records normally specified for JOBQLMT (that is, when automatic restart
is not being used).

R - Number of records normally needed by the reader/interpreter.

a= 1 - If jobs may be automatically restarted only once.

a=2 - If jobs may be automatically restarted more than once.

12 - N umber of records needed for restart housekeeping.

If jobs with automatic restart may be held for operator restart, the initiator queue record
requirement is further increased, because the system must keep both the queue records for the
held jobs and their associated housekeeping records until the job is restarted. The formula then
becomes:

JO BQLMT = (3 x L) + R + (a x 12) + H (L + (a x 12»

H - Number of jobs that may be held.

Other terms

As explained previously.

Write-To-Programmer Queue Records -- JOBQWTP
Unless specified otherwise, the system allocates two job queue records to the
write-to-programmer (WTP) function. Out of the 176 bytes in each of these records, 161 are
available for WTP messages. A record can hold as many messages as will fit into the available
space, each message occupying 1 byte per character plus 1 byte per message for an initiator
assigned serial number.

To change the number of records available for this function, the number should be specified
either with the JOBQWTP operand of the SCHEDULR macro instruction in the system
generation statements or during initialization in reply to message lEA 1 01 A (but only if Q-F
was used with the set command). However, since both system and application tasks contend
for the space available to an initiator in the system job queue, and since WTP message may be
created faster than the writer may be writing them out, caution should be exercised in raising
the JOBQWTP value above 2.

Queue Records for Cancellation -- JOBQTMT

If an intiator's queue record requirements exceed the number of queue records reserved for it,
the job associated with that initiator is canceled. Queue records must be reserved for this
purpose. Enough queue records must be reserved to accommodate two (or more) initiators that
may be cancelling concurrently. The JOBQTMT value (like the value JOBQLMT) is
unpredictable because of factors such as the installation's configuration, the size of the job
being canceled, and the number of jobs that can be multiprogrammed ..

The following guidelines should be considered in calculating JOBQTMT:

• Number of devices used during a job.

• Number of jobs that might be concurrently canceled because of insufficient initiator queue
records.

• For any system task to be started, combined JCL from its associated catalogued procedure
and the START command must first be interpreted. This requires queue records, and the
system allows assignment of records for this purpose whenever any logical track are
available. During normal use of the queues, this space is always available. However, in order
to insure availability of queue records for system tasks when the reserves approach the

130 OS/VS2 Planning and Use Guide

critical state, the value of JOBQTMT should be increased over the above amount by the
number of records necessary to get tasks started. (This is especially true for writer and
initiator tasks, since they return queue records to the system.) This amount may be
estimated in a manner similar to calculating JOBQLMT, taking into consideration that each
valid START command generates one input and one output queue entry.

N umber of Devices

The devices currently assigned to a job are released when the job i~ canceled. Since messages
are issued when devices are released, a number of queue records should be reserved equal to
the largest number of devices assigned at anyone "time to a job, multiplied by two. Thus if the
largest job (in terms of devices) has three steps requiring 4, 11, and 8 devices respectively, 22
queue records should be reserved.

Number of Jobs

The number of queue records reserved for cancellation must be large enough to fill the
requirements of all jobs being canceled at anyone time because of insufficient initiator queue
records. If the estimate of initiator queue records was accurate, it is unlikely that more than
one job (if any) will be cancelling at anyone time.

An initiator that runs out of queue records for cancellation is placed in the wait state and
an operator message is issued. This can result in the interlocking of all reader/interpreters,
initiators, and sysout writers functioning at the moment.

Output Separation
The system output writer can use the output separator facility to write separation records prior
to writing the output of each job. These separation records make it easy to identify and
separate the various job outputs that are written contiguously on the same printer or card
punch device.

Characteristics of an Output Separator

The system output writer may be used by a problem program to channel its output eventually
to a printer or punch. When this is done, however, the system output stream goes
uninterruptedly from one job to another, making it difficult to separate the output of one job
from that of another, unless output separation is provided for.

The output separator facility of the operating system provides a means of identifying and
separating the output of various jobs processed by the same output unit. To do this, the
separator writes separation records to the system output data set prior to the writing of each
job's output.

The IBM output separator or the user's own output separator can be used.

The output separator function operates under control of the system output writer. The
separator program must reside in the link library (SYSl.LINKLIB) or the LPA library
(SYSl.LPALIB). Its name, IEFSD094, must be included as a parameter in the output writer
procedure -- the second part of the P ARM field in the EXEC statement -- to separate job
output. (A cataloged procedure for the writer is fully described elsewhere in this chapter). The
type of separation provided by the separator depends on whether the output is punch-destined
or printer-destined.

Job Management and Supervisor Services for System Programmers 131

Punch-Destined Output

The IBM-supplied separator provides three specially punched cards (deposited in stacker 1)
prior to the punch card output of each job. Each of these separator cards is punched in the
following format:

Columns
Columns
Columns
Column
Columns

I to 35
36 to 43
44 to 45
46
47 to 80

Printer-destined Output

- blanks
- jobname
-- blanks
- output c1assname
-- blanks

The IBM -supplied separator provides three specially printed pages prior to printing the output
of each job. Each of these three separator pages is printed in the following format:

• Beginning at the channell location (normally near the top of the page), the jobname is
printed in block character format over 12 consecutive lines. The first block character of the
8-character jobname begins in column 11. Each block character is separated by 2 blank
columns.

• The next 2 lines are blank.

• The output class name is printed in block character format covering the next 12 lines. This is
a I-character name, and the block character begins in column 55.

• The remaining lines to the bottom of the page are blank.

In addition to the above, a full line of asterisks (*) is printed twice (overprinted) across the
folds of the paper. These lines are printed on the fold preceding each of the three separator
pages, and on the fold following the third page. This feature provides easy separation of job
output in a stack of printed pages.

For printer-destined output with the IBM-supplied separator, a channel 9 punch should
be included in addition to the channel 1 punch on the carriage control tape or in the
forms control buffer (FeB). The channel 9 punch controls the location of the line of asterisks
and should correspond to the bottom of the page. To print the line of asterisks on the fold of
the pages, offset the printer registration should be offset.

Writing an Output Separator Program
The output separator program can be written by using the information provided by the output
writer and by conforming to the requirements explained below. The separator program, when
added to the link library (SYSl.LINKLIB) or the LPA library (SYSl.LPALIB), is invoked by
specifying its name as a parameter in the EXEC statement of the output writer cataloged
procedure.

Parameter List

The output writer provides the separator program with a 4-word parameter list of needed
information. When the program receives control, register 1 contains the address of a 4-word
parameter list, and the parameter list contains the following:

Bytes 0-3 -

Bytes 4-7 -

Bytes 8-11 -

Bytes 12-15 -

132 OS!VS2 Planning and Use Guide

In this word, byte 0 contains switches that indicate the type of output unit, and
bytes 1-3 are reserved for future use.

This word is the address of the output DCB (data control block).

This word is the address of an 8-character field containing the jobname.

This word is the address of a I-character field containing the output c1assname.

In the parameter list, the three high-order bits of byte 0 are switches that the separator
program uses to determine the type of output unit. The first bit to the left is set to O. The
second bit is set to 1 if the output unit is a punch device or a tape device with punch-destined
output. The third bit is set to 1 if the output unit is a printer or punch device. The resulting bit
combinations indicate the following:

OIl.
001.
010
000

2520 or 2540 punch device
1403, 1443, or 3211 printer device
tape device with punch-destined output
tape device with printer-destined output

The parameter list also points to the DCB for the output data set. This DCB is established
for the queued sequential access method (QSAM), and is already open when the separator
program receives control.

The address of the jobname and the address of the output classname are provided in the
parameter list so that this information may be used in the separation records written by the
separator program.

Programming Conventions

When using the system output writer, the separator program, if specified in the output writer
cataloged procedure, is brought in by a LINK macro instruction issued from module IEFSD078
of the output writer. The separator program can be any size, but a program over 8K may
affect the region requirement of the output writer.

Caution: Since the separator program operates with the supervisor protection key, but in the
program mode, the separator program must insure data protection during its execution.

When writing a separator program, the following programming conventions must be

• The program must conform to the standard linkage coventions. This includes saving and
restoring the contents of registers 0 through 12, and 14. These registers can be preserved
with the SAVE and RETURN macro instructions. When the pr.ogram receives control, the
address of a standard save area is in register 13.

• The program must use the PUT macro instruction in the locate mode to write separation
records on the output data set. (This method is required by the QSAM DCB that is open
for the output data set.)

• The program must estabiish its own synchronous error exit routine, and the address of this
routine must be placed into the DCBSYNAD field of the output DCB. This gives control to
the error exit routine in case an uncorrectable I/O error occurs while writing the program's
output.

• The program should use the RETURN macro instruction to return control to the output
writer. Before returning, the program must free any main storage it obtained during its
operation; and the program must place a return code (binary) in register 15. The return
codes signify:

o -- Successful operation.

8 -- Unrecoverable output error (should be set if the error exit routine is entered).

Output from the Separator Program

The separator program can write any kind of separation identification. The jobname and the
output classname for each job are available through the parameter list for inclusion in the
output, if desired. An IBM-supplied routine can be used that constructs block characters
(explained later). As many separator cards can be punched or as many separator pages can be
printed as necessary.

Job Management and Supervisor Services for System Programmers 133

The output from the separator program must conform to the attributes of the output data
set. These attributes, which can be determined from the open output DCB pointed to by the
parameter list, are:

• Record format (fixed, variable, or undefined length).
• Record length.
• Type of carriage control characters (machine, USASI, or none).

For printer-destined output, the separation records should be begun on the same page as the
previous job output, or any subsequent page should be skipped to. However, the separator
program should skip at least one line before writing any records, because in some cases the
printer is still positioned on the line last printed.

After completing the output of the separation records, the separator program should write
sufficient blank records to force out the last separation record. This also allows the error exit
routine to obtain control if an uncorrectable output error occurs while writing the last record.
The requirements are:

• One blank record for printer-destined output.
• Three blank records for punch-destined output.

Using the Block Character Routine

For printer-destined output, the separator program can use an IBM-supplied routine to
construct separation records in a block character format. This routine is a reenterable module
named IEFSD09S, and resides in the module library (SYSl.AOSBO).

The block character routine constructs block letters (A to Z), block numbers (0 to 9), and a
blank. The program furnishes the desired character string and the construction area. The block
characters are constructed one line position at a time. Each complete character is contained in
12 lines and 12 columns; therefore, a block character area consists of 144 print positions. For
each position, the routine provides either a space or the character itself.

The routine spaces 2 columns between each block character in the string. However, the
routine does not enter blanks between or within the block characters. The program must
prepare the construction area with blanks or other desired background before entering the
block character routine.

To use the IBM-supplied block character routine, the separator program executes the CALL
macro instruction with the entry point name of IEFSD09S. Since the block characters are
constructed one line position at a time, complete construction of a block character string
requires 12 entries to-the routine. Each time, provide the address of a 4-word parameter list
should be provided in register 1. The parameter list must contain the following:

Bytes 0-3 -

Bytes 4-7 -

Bytes 8-11 -

Bytes 12-15 -

This word is the address of a field containing the desired character string in EBCDIC
format.
This word is the address of a full word field containing the line count as a binary
integer from 1 to 12. This represents the line position to be constructed on this call.
This word is the address of a construction area in main storage where the routine will
construct a line of the block character string. The required length in bytes of this
construction area is 14n-2, where n represents the number of characters in the string.
This word is the address of a fullword field containing, in binary, the number of
characters in the string.

134 OS/VS2 Planning and Use Guide

System Output Writer Routines
When a job is executing, system messages and data sets specifying the SYSOUT parameter
(e.g., in the DD statement) are recorded on direct access devices. When the job completes,
entries are made in system output class queues that represent the data sets and messages
directed to the output classes. Later, system output writers remove these entries from the
queues and process the data they represent. Processing consists of writing system messages to
the output device and calling a data set writer routine for each data set encountered.

Th e data set writer routine used for a data set may be specified by name in a DD
statement; otherwise, a standard IBM-supplied writer routine is used. The standard routine
transcribes the data set to the specified output device, making only those data format and
control character transformations required to conform to the attributes specified for the output
data set.

The following material describes how to write a nonstandard data set writer routine.

Characteristics of an Output Writer

Before writing or modifying an output writer routine, the functions performed by the standard
data set writer should be understood. In general, these functions include opening the data set
(referred to as an input data set) that contains the processed information, obtaining the
records of the data set, making any necessary transformations in record format or control
character attributes, and placing these (possibly transformed) records in the output data set,
which appears on a specified output device. The standard writer also must close the input data
set and restore system conditions to the state they were in before the writer routine was
invoked.

Writing an Output Writer Routine

To use the output writer routine, the name of the routine should be specified as a parameter in
the SYSOUT operand of a DD statement. The routine must be in the link library
(SYSl.LINKLIB) or the LPA library (SYSl.LPALIB). A writer routine is not limited in size
except that size may influence the region requirements of the system output writer.

In VS2, the routine is attached (via the ATTACH macro instruction) when a data set
requiring the routine is to be processed. The standard linkage conventions for attaching are
used. Any storage required for work areas and tables should be obtained by the GETMAIN
macro instruction and released by the FREEMAIN macro instruction. The output writer
routines must be reenterable.

When the routine is finished, it must return control to the standard writer by using the
RETURN macro instruction.

Parameter List

After job management routines perform initialization requirements and open the output data
set into which the writer routine will put records, control is given to the routine via the
ATTACH macro instruction. At this time, general registers 1 and 13 contain information that
the program must use. Register 1 contains the storage address of a 12-byte list. The
information in this parameter list follows:

Job Management and Supervisor Services for System Programmers 135

Output Device Indicator.
Byte 0 Bit 0

Bit 1
(High-order bit): This bit should be off (set to 0).
If this bit is on, the output unit is either a punch or a tape with a
punch as the final destination.

Bytes 1-3
Bytes 4-7

Bytes 8-11

Bit 2
Bits 3-7

If this bit is on, the output unit is either a printer or a punch.
No significant information.

Not used, but must be present
This word contains the address of the data control block (DeB) for the opened output
data set to be referred to by the writer.
This word contains the DeB address for the input data set from which your writer will
obtain logical records. (At the time this 12-byte parameter list is given to the
writer, the input data set is not open.)

The switches indicated by the three high-order bit settings in byte 0 should be used to
translate control character information from the input data set records to the form required by
the output data set records. The high-order three bits of byte 0 signify the type of output
device as follows:

OIL .. .
001.. .. .
010
000

2520 or 2540 punch unit
1403, 1443, or 3211 printer device
tape device with punch-destined output
tape device with printer-destined output

When the writer gets control, it must preserve the contents of register 0 through 12, and 14.
Register 13 contains the address of a standard register save area that saves the contents of
these registers. Save the contents of register 13 should be saved by using the SAVE macro
instruction.

Programming Conventsions

An output writer routine must issue an OPEN macro instruction to open the desired input
data set residing on a direct access device as a result of the previous execution of a processing
program. (Note: The output data set used by a writer is opened by a job management routine
before control is given to the writer. This output data set must be given records by a PUT
macro instruction operating in the "locate" mode.

If the processing program that produces a given data set (to be used as an input data set by
a writer) did not open the data set, the data set contains no records, and the DCBBLKSI and
DCBBUFL fields of the input DCB contains zero. The DCBBLKSI field may also be zero
even if the data set does contain records -- if the processing program did not put the block
size value for the input data set in the DCB. If both these DCB fields' are zero, a value (the
standard writer uses the decimal value 18) is inserted in the DCBBLKSI field to permit the
open routine to continue. The standard writer does this via a routine pointed to by an entry in
the EXLIST parameter of the DCB. Since there is no data set, nothing is put on the output
device. The data set writer must provide a SYNAD routine to process errors associated with
the output as well as the input data set.

The standard data set writer also includes accounting support for the SMF output writer
record (record type 6).

Before the OPEN macro instruction .is issued, the DCBD macro instruction can be used to
symbolically define the fields of the DCB, and the EXLIST and/or SYNAD routine addresses
can be inserted. Other than SYNAD, no modifications can be made to the output DCB.

After the routine finishes writing the output data set, it must close the input data set and
return using the RETURN macro instruction. A return code must be placed in register 15. This
code should indicate that an unrecoverable output error either has occurred (code of 8) or has
not occurred (code of 0).

t 36 OS/VS2 Planning and Use Guide

3525 Note -- Interpret Punch: The programming support for the 3525 includes an
INTERPRET PUNCH feature which is supported by BSAM and QSAM. The support for this
feature includes the punching and printing of graphically printable punched characters on print
lines one and three of the card. Line one includes the first 64 characters and line three
includes the last 16 characters (right justified). Extraneous characters are printed for
non-graphic eight-bit codes.

If the INTREPRET PUNCH function is designated via the new FUNC parameter in either
a DCB or DD statement, an existing output data set will be interpreted as well as punched.

Note: The output must be 80 bytes, or 81 bytes if first character control is being used.

Processing Performed by the Output Writer

Figure 27 provides a general description of the procedures followed by the standard writer.
When writing a writer routine, items can be deleted, modified, or added to some of these
procedures, depending on the characterisitics of the data set(s). However, the procedures must
be consistent with operating system conventions.

Saving Register Contents: Upon entering the writer program, the program must save the
contents of the general registers, as previously discussed.

Obtaining Main Storage for Work Areas: In this work area, switches are established, record
lengths and control characters are saved, and space is reserved for other uses. Storage is
obtained by a GETMAIN macro instruction.

Processing Input Data Set(s): To process a data set, the writer must get each record
individuaHy from the input data set, tiansfoim (if necessary) the record format and the control
characters associated with the the record in accordance with the output data set requirements,
and put the record in the output data set. Data set processing by the standard writer can be
considered in three aspects.

1. The first consideration is what must be done before actually obtaining records from an input
data set. If the output device is a printer, provision must be made to handle the two forms
of record control character that may accompany a record in an output data set. The printer
is designed so that if the output data set records contain machine control characters, a
record (line) is printed before the effect of its control character is considered. However, if
USASI control characters are used in the output data set records, the control character
effect is considered before the printer prints a record.

Thus, if all the input data sets do not have the same type of control characters, it may be
desirable to avoid overprinting of the last line of one data set with the first line of the
following data set. If the records of the input data set have machine control characters
(mcc) and the output data set records are to have USASI control characters (acc), the
standard writer produces a control character that indicates one line should be skipped before
printing the first line of output data.

If the input data set records have acc and the output data set records are to be written with
mcc, the standard writer prints a line of blanks before printing the first actual output data
set record. Following this line of blanks, a one-line space is generated before the first output
record is printed. The preceding "printer initialization" procedure (or a similar one based on
the characteristics of the data sets) is recommended.

Job Management and Supervisor Services for System Programmers 137

Entry From
Control Program
Module IEFSD070

Get Input Record

Modify Input Record
Length For Control

Character

Translate Control
Character For Output

If Required

No GenerateControl

Set Message If Invalid
Control Char

Figure 27. General Logic of Standard Output Writer

138 OS/VS2 Planning and Use Guide

No

If Printer, Adjust
Control Character

Attachment

Buffering For End Of
Input Data Set (put
Out Last Record)

Return To
Module IEFSD070

2. After an input data set is properly opened and any necessary printer initialization
completed, the writer obtains records from the input data set. The locate mode of the GET
macro instruction is used. As each record is obtained, its format and control character must
be adjusted, if necessary, to agree with that required for output.

Note: The MACRF field of the input data set DCB should be checked to see if GET in
locate mode can be used. If not, the MACRF field must be overridden.

Since the output data set is previously opened by another routine (job management), a
writer routine must adhere to the established conventions. The data set is opened to receive
records from the PUT macro instruction operating in the locate mode. For fixed-length
record output, the length of the records in the output data set is obtained from the
DCBLRECL field of the DCB. If an input record length is greater than the length specified
for the records of the output data set, the standard writer truncates the necessary right-hand
bytes of the input record. If the input record length is smaller than the output record length,
the standard writer left-justifies the input record and adds blanks on the right end to give
the correct length.

When the output record length is variable and the input record length is fixed, the standard
writer constructs each output record by adding control character information (if necessary)
and variable record control information to the output record. The record control information
is four bytes long and the control character information is one byte long. Both additions are
made to the left end of the record. If the output record is not at least 18 bytes long, it is
further modified by padding bytes (blanks) added to the right end of the record. If the
output record length does not agree with the length of the output buffer, the standard writer
makes the proper adjustment.

3. The third aspect is an end-of-input data set routine. The standard writer handles output to
either a card punch unit or a printer unit, as required. Output to an intermediate device such
as a tape unit is consideied in light of the ultimate destination (e.g., punch or printer). If
proper consideration is not given, all records from a given data set may not be available on
the output device until the output of records from the next data set is started or until the
output data set is closed. When the output data set is closed, the standard writer
automatically puts out the last record of its last input data set.

Punch Output: Normally, when the standard writer is using a card punch as the output device,
the last three output records are not in the collection pockets of the punch when the input
data set is closed. To put out these three records with the rest of the data set and with no
intervening pauses, the writer provides for three blank records following the actual data set
records.

Printer Output: When the standard writer uses a printer as an output device, the last record of
the input data set is not normally put in the output data set when the input data is closed. To
force out this last record, the writer generates a blank record that follows the last record of the
actual data set.

The problem of overprinting the last line of one data set by the first line of the following
data set must also be considered. Depending on the combination of input record control
character and required output record control character, a line of blanks and a spacing control
character may be used either individually or in combination to preclude overprinting. (Note: If
overprinting is desired for some reason, control characters in the data set records themselves
may be used to override the effect (but not the action) of the previously described solutions to
overprinting.)

Closing Input Data Set(s): After the standard writer finishes putting out the records of an
input data set, it closes the data set before returning control to the system output writer. All
input data sets must be closed.

Job Management and Supervisor Services for System Programmers 139

Releasing Main Storage: The storage and buffer areas obtained for the writer must be
released to the system before the writer relinquishes control. The FREE MAIN macro
instruction should be used for this.

Restoring Register Contents: The original contents of general registers 0 through 12, and 14
must be restored. The RETURN macro instruction is used for this. To inform the operating
system of the results of the processing done by the writer, a return code is placed in general
register 15 before control is returned. If the writer routine terminates because of an
unrecoverable error on the output data set, the return code is 8; otherwise, the return code is
O. Unrecoverable input errors must be handled by the data set writer.

Message Routing Exit Routines
This topic provides detailed information on how to write user exit routines that modify the
routing and descriptor codes of WTO or WTOR messages for the VS2 operating system.
Information is provided on inserting this exit routine into the resident portion of the control
program. In addition, a description of the characteristics and configuration of MCS is supplied.

Characteristics of M CS
The mUltiple console support (MCS) facility routes messages to different functional areas
according to the type of information that the message contains. In MCS, a functional area is
defined as one or more operator's consoles that are doing the same type of work. (Some
examples of functional areas are: (1) the tape pool area, (2) the disk pool area, and (3) the
unit record pool area.) Each WTO and WTOR macro instruction is assigned one or"more
routing codes which are used to determine the destination of the message. There are fifteen
routing codes that can be used. When the message is ready to be routed, the routing codes
assigned to the message are compared to the routing codes assigned to each console. If any of
the routing codes match, the message is sent to that console.

If the standard routing codes provided on application and system messages do not cover
special situations at an installation, the routing codes can be modified by coding a user exit
routine. The exit routine receives control prior to the routing of messages so users can examine
the message text and modify the message's routing and descriptor codes. The system will use
the modified routing codes to route the message. Descriptor codes provide a mechanism for
message presentation and deletion, and are explained later in this chapter.

Automatic console switching occurs when permanent hardware errors are detected.
Command-initiated console switching is provided to permit restructuring of the system console
configuration and the hard copy log by system operators. Consoles can be moved into or out
of functional areas at any time during system operation.

A hard copy log records messages, operator and system commands, and operator and system
responses to commands. The hard copy log can be a console device or it can be the system log
(SYSLOG). The number and type of messages recorded on the log is optional. The installation
may wish to record a selected group of messages, or it may wish to record all messages. If
commands are recorded, the system automatically records command responses.

Whenever possible, the hardcopy function should be delegated to an output-only device
(such as a printer) or to the system log.

Programming Conventions For WTO/WTOR Routines
The programming conventions for the \VTO/WTOR exit routine are summarized below.
Details about many of the conventions are in the reference notes that follow; the notes are
referred to by the numbers in the last column of the table.

140 OS/VS2 Planning and Use Guide

Conventions

Part of resident
cont rol program

Size of routine

Reenterable routine

May not allow inter
ruptions

Name of routine

Disposition of
general registers

Format of text
and codes

May issue WAIT,
XCTL, WTO or
WTOR macro
instructions

Method of
abnormal
termination

Exit from routine

Reference
Code

Requirements

Yes

Any size

Optional. but must be serially
reusable

Yes

Must be IEECYXIT

Registers must be saved at entry
and restored prior to returning

Provided through the DSECT
IEECUCM

No

None

RETURN macro instruction

Reference Notes

Reference
Code

2

3

4

If the exit routine is to be reenterable, macro instructions should not be used whose expansions
store information into an inline parameter list.

2 The exit routine should be written so that program interruptions cannot occur. If a program
interruption occurs during execution of the exit routiine, the routine loses control and the
communications task is terminated.

3 DSECT IEECUCM provides the format of the message text, routing codes and descriptor codes.
The pointer in register I points to the first word of the message text, UCMMSTXT. The format
is:

UCMMSTXT Message flagging and text (128 characters-padded
with blanks)

UCMROUTC Routing codes (4 bytes)

UCMDESCD Descriptor codes (4 bytes)

DSECT IEECUCM is contained in SYS1.MODGEN

System messages have a message code that may be examined to aid in identifying system
messages, but it must not be modified.

The UCMROUTC field contains the routing codes. A bit setting of "I" indicates that the
WTO or WTOR was assigned that particular routing code. Bit assignments and their meanings
are:

Bit Assignment Meaning

Byte 0
Bit 0 Routing code 1 Master Console Action
Bit 1 Routing code 2 Master Console Information
Bit 2 Routing code 3 Tape Pool
Bit 3 Routing code 4 Direct Access Pool
Bit 4 Routing code 5 Tape Library
Bit 5 Routing code 6 Disk Library
Bit 6 Routing code 7 Unit Record Pool
Bit 7 Routing code 8 Teleprocessing Control

Job Managementand Supervisor Services for System Programmers 141

Byte 1
Bit 0 Routing code 9 System Security
Bit 1 Routing code 10 System Error/Maintenance
Bit 2 Routing code 11 Programmer Information
Bit 3 Routing code 12 Emulators
Bit 4 Routing code 13 A vailable for Customer Usage
Bit 5 Routing code 14 A vail able for Customer Usage
Bit 6 Routing code 15 Available for Customer Usage
Bit 7 Routing code 16 Reserved

Byte 2 Reserved

Byte 3 Reserved

The UCMDESCD field contains the descriptor codes. A bit
setting of "1" indicates that the WTO or WTOR was
assigned that particular descriptor code. Bit
assignments and their meanings are:

Bit Assignment Meaning

Byte 0
Bit 0 Descriptor code 1 System Failure
Bit 1 Descriptor code 2 Immediate Action Required
Bit ~2 Descriptor code 3 Eventual Action Required
Bit 3 Descriptor code 4 System Status
Bit 4 Descriptor code 5 Immediate Command Response
Bit 5 Descriptor code 6 Job Status
Bit 6 Descriptor code 7 Application Program/Processor
Bit 7 Descriptor code 8 Out-of-Line Message

Byte 1
Bit 0 Descriptor code 9 DISPLA Y or MONITOR command response

Descriptor codes
10 through 16 Reserved

Byte 2 Reserved

Byte 3 Reserved

4 The exit routine is part of the communications task. Abnormal termination of the exit routine
causes the communications task to terminate abnormally.

Messages Not Using Routing Codes

There are certain messages that the exit routine does not see. These are messages that have the
MSGTYP operand in the WTO or WTOR macro instruction coded with the JOBNAMES,
STATUS, ACTIVE or Y parameter, multiple-line WTOs (including status displays) and
messages that are being returned to the requesting console, i.e., a response to a DISPLAY A
command. Routing of these messages is on criteria other than the routing codes; therefore, the
system bypasses the exit routine.

Writing a WTO/WTOR Exit Routine

To modify the standard routing codes and descriptor codes, a WTO /WTOR Exit Routine must
be written. This routine will be part of the control program. If a message's routing code field is
used by the operating system to route the message, the routine will receive control prior to the
routing of the message. When the routine receives control, register 1 contains a pointer to the
first word of the message text. The message text field is 128 bytes long, iollowed by a
four-byte routing code field and a four-byte descriptor code field. The exit routine may
examine but not modify the message text.

A message will be sent to only those locations specified in the modified routing codes. All
messages with modified routing codes are sent to the hard copy log when the log is included in
the operating system. When the log is not included, the exit routine must not suppress

142 OS/VS2 Planning and Use Guide

messages that contain a routing code of 1,2,3,4,7,8, or 10 since messages with these codes
are necessary fof system maintenance. Message suppression is turning off all routing codes of a
message, causing the message to be discarded. WTO messages can be suppressed. If a WTOR
message is suppressed, it will be sent to the master console by the operating system.

Adding a \VTO/WTOR Exit Routine to the Control Program

The WTO/WTOR exit routine is standard. If the user does not specify one, the IBM-supplied
module (IEECVCTE) is included.

Task supervision must be performed for the exit routine every time a message is routed by
its routing codes. If the communications task abnormally terminates, the linkage to the user
exit routine is suppressed.

Inserting the WTO /WTOR Exit Routine

To enter the exit routine into the control program before system generation, the Linkage
Editor should be used to replace the dummy WTO /WTOR exit routine IEECVCTE in
SYS I.AOSCS with the WTO /WOTR exit routine.

To enter the exit routine into the control program after system generation, the Linkage
Editor should be used to replace the dummy WTO/WTOR exit routine IEECVCTE in the
SYSl.NUCLEUS with the user-written WTO/WTOR exit routine. This will require"a nucleus
replace and a re-IPL.

ST AE and ST AI Exit and Retry Routines
Each STAE exit routine is represented by one or more STAE control blocks (SCBs). Each
STAE control block is queued in a last-in, first-out order to the TCB (TCBNSTAE field) of
the task within which they werc created. ST AI control blocks also represent exit routines, but
are created when the ST AI operand is specified in an A TT ACH macro instruction. ST AI
control blocks are always placed at the top of the queue (ahead of the STAE control blocks)
in a last-in, first-out order and are propagated (a duplicate ST AI control block is created and
queued) to all lower-level subtasks of the subtask created with the STAI operand.

Thus, if task A attached subtask B specifying the ST AI operand, and sub task B attached
sub task C which, in turn, attached subtask D, a ST AI control block would be created and
queued to the TCB for subtask B, and could be propagated to the queues originating at the
TeEs for subtask C and sllbtask Do If a STAI control block were created for subtask C (the
ATTACH macro instruction issued by subtask B specified the ST AI operand), this STAI
control block would be placed at the top of subtask C's SCB queue ahead of the ST AI control
block created for subtask B. In this case, both ST AI control blocks would be propagated to the
TCB for subtask D. All ST AI control blocks precede all ST AE control blocks on the SCB
queue.

If a task is scheduled for abnormal termination, the exit routine specified by the most
recently issued ST AE macro instruction (represented by the highest ST AE control block on the
queue) is given control and executes under a program request block created by the SYNCH
service routine. The STAE exit routine must specify, by a return code in register 15, whether a
retry routine is to be scheduled. If no retry routine is to be scheduled (return code=O) and this
is a subtask with a STAI control block on the SCB queue, the exit routine specified in the
ST AI control block is given control. If there is no ST AI control block on the queue, abnormal
termination continues.

Job Management and Supervisor Services for System Programmers 143

If the STAE exit routine indicates that a retry routine has been provided (return code=4),
register 0 must contain the address of the retry routine and register 1 must contain the address
of the same work area passed to the exit routine. (The first word of the work area may be
modified by the exit routine to point to another parameter list in his region.) The ST AE
control block is freed and the request block terminated up to, but not including, the RB of the
program that issued the ST AE macro instruction. This is done by pointing to an SVC 3
instruction in the old PSW field of each RB to be purged. In addition, open DCBs which can
be associated with the purge RBs are closed and queued I/O requests associated with these
DCBs being closed are deleted from the I/O restore chain.

The RB purge is an attempt to cancel the effects of partially executed programs that are at
a lower level in the program hierarchy than the program under which the retry will occur.
However, certain effects on the system will not be canceled by this RB purge. Example of
these effects are as follows: .,
• Subtask created by a program to be purged.

• Resources allocated by the ENQ macro instructions.

• DCBs that exist in dynamically acquired virtual storage.

When the ST AE exit routine gains control, it can examine the code in register 0 to
determine if there were active input/output operations at the time of the ABEND and if the
input/ output operation are restorable. If there are quiesced restorable input/output operations,
they can be restored, in the ST AE retry routine, by using word 26 in the work area. Word 26
contains the link field passed as a parameter to SVC Restore. SVC Restore is used to have the
system restore all I/O request on the I/O restore chain.

Users can selectively restore specific I/O requests on the I/O restore chain by using word 2
in the work area. Word 2 contains the address the first I/O block on the I/O restore chain.
This address can be used as a starting point for issuing EXCP for the I/O requests that you
want to restore.

In supervisor mode, users may want the failing task to remain in its present status and not
be reestablished. A retry routine may be scheduled withough a purge of the RB chain by
returning to the ABEND /ST AE interface routine with an 8 in register 15, and register 0 and 1
initialized as described above. If the ST AE retry routine is scheduled, the system automatically
cancels the active SCB and the preceding SCB, if there is one, will become the active SCB.
Users wanting to maintain within the retry routine must reestablish an active SCB within the
retry routine, or must issue multiple ST AE requests prior to the time that the retry routine
gains control. Also, if a STAI had been issued for this task, it must be reissued by the retry
routine to be made effective again.

A ST AI exit routine, if specified in a previous ATTACH macro instruction, will receive
control if a ST AE exit routine is not specified, if a ST AE exit routine is specified but indicates
that a retry routine is not provided, if a ST AE exit routine terminates abnormally, or if a
ST AE or a ST AI retry routine abnormally terminates. The ST AI exit routine must specify by a
return code in register 15 one of the following:

Return Code Action to be Taken

o No retry provided. The next STAI exit routine is to be given control or, if there is not

another ST AI exit routine, abnormal termination is to continue.

16

4 or 12

8

No further ST AI processing is to occur Abnormal termination processing is to continue.

A retry routine is to be scheduled and the request block queue is to be purged.

A retry routine is to be scheduled but the request block queue is not to be purged (if the user

is not in supervisor mode, the return code will be ignored and abnormal termination

processing continues).

144 OS/VS2 Planning and Use Guide

When the RB queue is not to be purged, a new PRB is created for the retry routine and
placed on the RB queue immediately after the SVRB for the ABEND routine, so that when
the ABEND routine returns via an SVC 3 instruction the retry routine will receive control.

If the RB queue is to be purged, the ST AI retry routine is executed under the PRB for the
last ST AE or ST AI exit routine or, if no PRB for an exit routine exists on the queue, under
the most recently created PRB that is pointed to by the oldest (first created) non-PRB on the
queue (the oldest non-PRB will be the last RB purged).

Like the ST AE/ST AI exit routine, the STAE/ST AI retry routine must be in storage when
the exit routine determines that retry is to attempted. If not already resident within your
program, the retry routine may be brought into storage via the LOAD macro instruction by
either the user's program or exit routine.

Upon entry to the STAE/STAI retry routine, register contents are as follows:

Register 0: 0
Register 1: Address of the work area, as previously described, except that word 2 now contains the

address of the first I/O block and word 26 now contains the address of the I/O restore

Register 2-13:
Register 14:
Register 15:

chain.
Unpredictable.
Address of an SVC 3 instruction.
Address of the ST AE/ST AI retry routine.

The retry routine should use the FREEMAIN macro instruction to free the 104 bytes of
storage occupied by the work area when the storage is no longer needed. This storage should
be freed from subpool 0 which is the default subpool for the FREEMAIN macro instruction.

Again, if the ABEND/STAE interface routine was not able to obtain storage for the work
area, register 0 contains a 12; register 1, the ABEND completion code upon entry to the
STAE retry routine; and register 2, the address of the first I/O Block on the restore chain, or
o if I/O is not restorabie.

Note: If the program using the ST AE macro instruction terminates via the EXIT macro
instruction, the EXIT routine cancels all SCBs related to the terminating program. If the
program te.rminates via the XCTL macro instruction, the EXIT routine cancels all SCBs
related to the terminating program except those SCBs that were created with XCTL= YES
option. If the program terminates by any other means, the terminating program must reinstate
the previous SCB by canceling all SCBs related to the terminating program.

SYSl.pARMLiB Data Set Lists
The SYS 1.P ARMLIB system data set contains the members used by the nucleus initialization
program (NIP) during the initial program loading (IPL) process. Each member may be used in
conjunction with operator action to dynamically tailor the system to individual installation
requirements.

During system generation, the SYS 1.P ARMLIB data set is created and initialized with the
basic member supplied by IBM. Members may be added or modified during later steps of
system generation; for more information, see OS / VS2 System Generation Reference,
GC26-3792.

When the system is generated, the SYS 1.P ARMLIB data set may be modified by use of the
IEBUPDTE utility program.

Initialization

The nucleus initialization program searches the system catalog to locate the SYS 1.P ARMLIB
data set. If it is not found in the catalog, SYSl.PARMLIB is assumed to reside on the IPL
volume. If no VTOC entry can be found, the master console will receive the message
"IEA2111 OBTAIN FAILED FOR SYS1.PARMLIB DATA SET" and the system will enter
wait state with X'37'.

Job Management and Supervisor Services for System Programmers 145

If the SYS 1.PARMLIB data set is found, NIP opens SYS 1.PARMLIB and processing
continues.

Characteristics and Formats of SYS1.PARMLIB Members

The names and contents of the SYS1.PARMLIB lists are:

List Name List Contents

IEABLDOO - standard list Names of SYS1.L1NKLIB library load
IEABLDxx - alternate list(s) modules whose directory entries are

to be entered in the BLDL table.

IEAFIXOO - standard list Names of SYS1.SYCLlB, SYSI.LPALlB,
IEAFIXxx - alternate list (s) and SYS 1.L1NKLIB modules which are to

be loaded in real storage and fixed.

IEALODOO - standard list Names of SYS1.LPALIB modules whose
directory control block information is
to be maintained in nonpageable storage.

IEALPAxx - alternate list(s) Names of SYS1.SYCLlB, SYS1.LPALlB, and
SYS I.L1NKLIB modules which should be
included in the pageable LPA.

IEAPAKOO - standard list

IEASYSOO - standard list
IEASYSxx - alternate list(s)

LNKLSTOO - standard list

Groups of names of SYS I. LPALI B modules
which are to be packed together in the
LPA.

List of parameters that may be specified
at "SPECIFY SYSTEM PARAMETERS" time
of OS/YS2 nucleus initialization process.

Names of additional data sets that may be
concatenated with SYS1.L1NKLIB data sets.

All members of SYS 1.P ARMLIB have certain basic characteristics in common. Unless
otherwise stated below, the input format to IEBUPDTE is of the following format:

• Record size is 80-byte card record images.

• Any columns between 1 and 71 may contain SYS 1.P ARMLIB data.

• Continuation is indicated by a comma after the last entry on a record, followed by a blank.
Optionally, a non-blank character in column 72 may be used to show continuation.

• Leading blanks on all cards are suppressed, so that data on the records may be free from
for the convenience of the user.

Resident BLDL Lists (IEABLDOO and IEABLDxx)

The resident BLDL list, IEABLDxx, specifies the names of modules from SYS 1.LINKLIB or
any data set concatenated to SYS 1.LINKLIB which are to have directory entries built by NIP.
This eliminates the directory search required when a load module is requested from
SYS 1.LINKLIB.

The directory created will reside either in the fixed or pageable area of the system,
depending upon whether the BLDL or BLDL reply is specified by the operator in response to
the "SPECIFY SYSTEM PARAMETERS" message. The BLDL and BLDLF parameters are
mutually exclusive. The fixed BLDL list increases the real storage requirements of the system
and should be used only for frequently used modules.

146 OS/VS2 Planning and Use Guide

The member name for the standard list is IEABLDOO. The load module names must be
listed in the same order as they appear in the directory; that is, they must appear in ascending
collating sequence. (Note: Directory entries in the resident BLDL table are not updated as a
result of updating the load module in the library. The old version of the load module is used
until an IPL process updates the resident BLDL table.)

If specified during system generation and not modified through operator communication or
the SYS l.PARMLIB list of system parameters (lEASYSOO), the default IEABLDOO is used.

F~nnat: The format of IEABLDxx lists are as follows:

• The names of modules to be fixed are separated by commas;

• Continuation is indicated by a comma after the last module name on a record.

Fixed LP A Lists (IEAFIXOO and IEAFIXxx)

The fixed LPA list, IEAFIXxx, indicates those modules from SYS I.sYCLIB, SYS I.LPALIB,
and/ or SYS I.LINKLIB which should be included in the nonpageable extension to the link
pack ~rea. The list should contain a minumum number of modules which are required or may
result in a significantly improved system performance when the modules are fixed rather than
paged.

The IBM-supplied list (IEAFIXOO) contains two modules that should always be part of the
fixed LP A. These modules are required to handle direct access volume serial number
verification for the volume containing the page data set.

Format: The format of the IEAFIXxx lists are as follows:

• The library name (i.e., SYSl.SYCLIB) must be represented in the initial record of the
PARMLIB list, followed by at least one blank character.

• The string of module names which are to be loaded from that library follow the blank
character on the record.

• Additional records do not require the library name unless the source library for the modules
is to be changed.

• Module names are separated by commas.

• The last module name for a library must be followed by a comma if the list contains
another library name. The last module name for the last library should not be followed by a
comma.

Modified LP A List (lEALP Axx)

The modified LP A list, IEALP Axx, indicates those modules from SYS I.SYCLIB,
SYS I.LPALIB, and SYS I.LINKLIB which should be temporarily included in the pageable link
pack area. IEALP AOO may include the names of modules that reside on the SYS I.LP ALIB
data set; if this is done, the modules built in the modified LP A will beused in preference to the
existing LP A modules.

Format: The format of the IEALP Axx lists are as follows:

• The library name (Le., SYS l.SYCLIB) must be represented in the initial record of the
P ARMLIB list, followed by at least one blank character.

• The string of module names which are to be loaded from that library follow the blank
character on the record.

• Additional records do not require the library name unless the source library for the module
is to be changed.

• Module names are separated by commas.

• Continuation is indicated by a comma after the last module name on a record.

Job Management and Supervisor Services for System Programmers 147

System Parameter Lists (IEASYSOO and IEASYSxx)

The system parameter list, IEASYSxx, may include all system parameters which are valid input
to the "SPECIFY SYSTEM PARAMETERS" message. The standard list, IEASYSOO, is
created during Stage 2 of the OS/VS2 system generation process. This parameter list enables
the user to specify all parameters needed by a particular IPL process without specifying them
from an operator's console.

One of the additional aspects of this feature is that operator intervention may be restricted
by use of the 'OPI-YES/NO' parameter. Operator override of an individualparameterlist may
be restricted via the command.

Format: The format of the IEASYSxx lists are as follows:

• Parameters must be separated by commas; blanks between parameters are not acceptable.

• The standard message reply header (i.e., ROO,) required by the "SPECIFY SYSTEM
PARAMETERS II message must not be present in the list.

• The set of parameters must not be enclosed in quotes.

• Continuation is indicated by a comma after the last parameter or subparameter on a record.

LPA Packing List (IEAPAKOO)

The LP A packing list; IEAPAKOO, specifies the names of modules residing on the
SYS I.LP ALIB data set that may be grouped together by packing the LP A. The placement of
these modules may sharply reduce page faults as well as eliminate wasted space within the
LPA.

The total size of all modules in a group must not exceed 4K (page size). Also, the modules
should show an affinity for other modules of a group via system calls.

The proper loading of modules into the LP A is done at NIP time, based upon the data
contained in lEAP AKOO.

There are no alternate lists for IEAPAKOO. If IEAPAKOO is not found as a member of
SYS I.P ARMLIB, NIP will continue processing.

Format: The format of the IEAPAKOO list is as follows:

• Each entry of the list is a group of module names enclosed in parantheses of the format
(A,B, ... ,C) ... ,(A,B, ... ,C).

• Groups and module names within groups are separated by commas.

• Continuation after a group is indicated by a comma following the closing parenthesis.

• Continuation within a group is indicated by a comma following the module name within a
group. The group must be ended by a parenthesis on the continuation record.

• Aliases for a module cannot be an entry within a group. Only major names are processed by
NIP.

LPA Directory Load List (IEALODOO)

The LP A directory load list, IEALODOO, indicates those modules residing on SYS I.LP ALIB or
in the page able LP A which are to have the contents supervision directory control block
information initialized by NIP in nonpageable storage. This list improves performance since
contents supervision does not have to search to find the module in the LP A directory, thus
reducing the number of page faults that may occur. Candidates for this list are modules that
are frequently used.

Format: The format of the IEALODOO list is as follows:

• The names of modules to be loaded from SYS 1.LP ALIB are separated by commas.

• Continuation is indicated by a comma after the last module name on a record.

148 OS/VS2 Planning and Use Guide

Link Library List (LNKLSTOO)

The link library list, LNKLSTOO, enables concatenating up to 16 data sets, on multiple
volumes, to form SYS 1.LINKLIB. LNKLSTOO is not generated at system generation but may
be added to SYS 1.P ARMLIB via the IEUPDTE utility program. Each data set that is
concatenated with SYS 1.LINKLIB may have up to 16 extents. (Note: After additions or
changes are made to data sets concatenated with SYS 1.LINKLIB, the system should be
re-IPLed to update the description of the SYSl.LINKLIB to the system.)

Format: The format of the link library list, LNKLSTOO, is as follows:

• The string of data set names that are to be concatenated with SYS 1.LINKLIB follw the
name SYS 1.LINKLIB, separated by commas.

• Continauation is indicated by a comma after the last name on a record.

• The maximum number of data set names other than SYSl.LINKLIB is 15. This allows 16
data sets including SYS 1.LINKLIB to be concatenated.

Adding the Lists to SYS1.PARMLIB

To place these lists in SYS 1.P ARMLIB, the IEBUPDTE utility program may be used as shown
below:

//ADDLISTS
//STEP
//SYSPRINT
//SYSUT2
//SYSIN
./

./
SYS1.LINKLIB

./
.. /

./

./

./

./

./

./

./
/*

JOB 61938,R.L. WILSON
EXEC PGM=IEBUPDTE,PARM=MOD
DD SYSOUT=A
DD DSNAME=SYS1.PARMLIB,DISP=OLD
DD DATA
ADD NAME=IEABLDOO,LIST=ALL

NUMBER NEW1=01~INCR=02

IEFSD061,IEFSD062,IEFSD064,IEFSD104,
IEFVM1,IEFWCOOO,IEFWDOOO,IEFW21SD,
IEFW41SD,IEFW42SD,IEFXJOOO
REPL NAME=IEALODOO,LEVEL=01,SOURCE=1,
LIST=ALL
NUMBER NEW1=10,INCR=100
IEAFAB400, IGG0325A,IGG0325H,IGC0003B,
IGG0325B,IGG0325D,IGG~325E,

IGG0325G,IFG0202J,IFG0202K,IFG0202L
REPL NAME=IEAPAKOO,LEVEL=Ol,SOURCE=1,LIST=ALL
NUMBER NEW1=01,INCR=02
(IEFAB400,IGG0325A,IGG0325H,IGC0003B),
(IGG0325B,IGG0325D,IGG0325E,
IGG0235G),(IFG0202J,IFG0202K,IFG0202L)
ADD NAME=IEASYS05,LIST=ALL
NUMBER NEW1=01,INCR=02
MLPA=(OO,01),TRACE=(50,OPI=NO),
BLDL=OO,SQA=2
ADD NAME=IEASYS06,LIST=ALL
NUMBER NEW=01,INCR=02
MLPA=(02,03),BLDLF=(OO,Ol),
TRACE=100,SQA=1,CPQE=10,
FIX=(OO,Ol),OPI=NO
ENDUP

Job Management and Supervisor Services for System Programmers 149

Shared Direct Access Storage Devices (Shared DASD)
The Shared DASD facility allows computing systems to share direct access storage devices.
Systems can share common data and consolidate data when necessary; no change to existing
records, data sets, or volumes is necessary to use the facility. However, reorganization of
volumes may be desirable to achieve better performance.

Devices that Can be Shared
The following control units and devices are supported by the Shared DASD option:

• IBM 2314 Direct Access Storage Facility equipped with the two-channel switch -- IBM
2314 disk Storage Module.

• IBM 2314 Direct Access Storage Facility combined with the IBM 2844 Auxilliary Storage
Control -- IBM Disk Storage Module. Device reservation and release are supported by this
combination with or without the presence of the two-channel switch. Two channels -- one
from System A and one from System B -- may be connected to the combination. In
addition, the two-channel switch may be installed in either or both· of the control units, thus
permitting as many as four systems to share the devices.

• IBM 2835 Storage Control Unit with two-channel switch -- IBM 2305 Fixed Head Storage
Facility.

• IBM 3830 Storage Control Unit with two-channel switch -- IBM 3330 Series Disk Storage
Drive.

Alternate channels to a device from anyone system may only be specified for the IBM 2314
Direct Access Storage Facility, or the IBM 3330 Series Storage Unit.

Volume/Device Status
The Shared DASD facility requires that certain combinations of volume characteristics and
device status be in effect for shared volumes of devices. One of the following combinations
must be in effect for a volume or device:

System A
Permanently resident
Reserved
Removable
Offline

Systems B, C, D
Permanently Resident
Reserved
Offline
Removable or reserved

If a volume/device is marked removable on anyone system, the device must be in offline
status on all other systems. The mount characteristic of a volume and/or device status may be
changed on one system as long as the resulting combination is valid for other systems sharing
the device. No other combination of volume characteristics and device status is supported.

System Configuration
Operating system configurations do not have to be identical to share a data set. The only
additional equipment needed for the Shared DASD option is either a two-channel switch or a
2844 Auxilliary Control unit. The user must also observe certain restrictions about the data
sets that are shared. The following data sets cannot be shared:

PASSWORD
SYS1.LOGREC
SYSl.LPALlB
SYSl.MANX
SYSl.MANY
SYS1.NUCLEUS

150 OS/VS2 Planning and Use Guide

SYS1.PAGE
SYSl.SVCLIB
SYSl.SYSJOBQE
SYS1. SYSVLOGX
SYS 1.SYSVLOGY
SYSCTLG

Volume Handling

Volume handling on the Shared DASD option must be clearly defined since operator actions
on the sharing system must be performed in parallel. The following rules should be in effect
when using the Shared DASD option:

• Operators should initiate all shared volume mounting and demounting operations. The
system will dynamically allocate devices unless they are in reserved or permanently resident
status, and only the former can be changed by the operator.

• Mounting and demounting operations must be done in parallel on all sharing systems. A
VARY OFFLINE must be effected on all systems before a device may be dismounted.

• Valid combinations of volume mount characteristics and device status for all sharing systems
must be maintained. To IPL a system, a valid combination must be established before
device allocation can proceed. This valid combination is established either by specifying
mount characteristics of shared devices in PRESRES, or varying all sharable devices off line
prior to issuing START commands and then following parallel mount procedures described
in Operator's Library: OS/VS2 Reference, GC28-02I0.

Note: The Set-Must-Complete (SMC) parameter available with the ENQ macro instruction
may also be used with RESERVE.

Note: If a restart occurs when a RESERVE is in effect for devices, the system will not restore
the RESERVE; the user's program must reissue the RESERVE.

Macro Instructions Used with Shared D ASD

The RESERVE macro instruction is used to reserve a device for use by a particular system; it
must be issued by each task needing device reservation. The EXTRACT macro instruction is
used to obtain the address of the task input/output table (TIOT) from which the UCB address
can be obtained. The topic "Finding the UCB Address" explains this procedure. The macro
instructions are described in the chapter "Supervisor Macro Instructions for System
Programmers. "

Releasing Devices

The DEQ macro instruction is used in conjunction with RESERVE just as it is used with
ENQ. It must describe the same resource and its scope must be stated as SYSTEMS; however,
the UCB=pointer address parameter is not required. If the DEQ macro instruction is not
issued by a task which has previously reserved a device, the system will free the device when
the task is terminated.

Preventing Interlocks

Certain precautions must be taken to avoid system interlocks when the RESERVE macro
instruction is used. The more often device reservations occur in each sharing system, the
greater the chance of interlocks occurring. Allowing each task to reserve only one device
minimizes the exposure to interlock. The system cannot detect interlocks caused by program
use of the RESERVE macro instruction and enabled wait states will occur on the system or
systems.

Volume Assignment

Since exclusive control is by device, not by data set, consider which data sets reside on the
same volume. In this environment it is quite possible for two tasks in two different systems -
processing four different data sets on two shared volumes -- to become interlocked. For
example, data sets A and B reside on device C, and data sets D and E reside on device F.
Task X in system X reserves device C in order to use data set A; task Y in system Y tries to
reserve device F in order to use data set D. Now task X in system X tries to reserve device F

Job Management and Supervisor Services for System Programmers 151

in order to use data set E and task Y in system Y tries to reserve device C in order to use
data set B. Neither can ever regain control, and neither will complete normally. When the
system has job step time limits, the task, or tasks, in the interlock would be abnormally
terminated when the time limit expires. Moreover, an interlock could mushroom, encompassing
new tasks as these tasks try to reserve the devices involved in the existing interlock.

Program Libraries

When assigning program libraries to shared volumes, precaution must be taken to avoid
interlock. For example, SVCLIB for system A resides on volume X, while SVCLIB for system
B resides on volume Y. Task A in system A invokes a direct access device space management
function for volume Y, resulting in that device being reserved. Task B in system B invokes a
similar function for volume X, reserving that device. However, each load module transfers to
ano.ther load module via XCTL. Since the SVCLIB for each system resides on a volume
reserved by the other system, the XCTL marco instruction cannot complete the operation,
therfore an interlock occurs in this particular case, since no access to SVCLIB is possible, both
systems will eventually enter an enabled wait state.

Finding the U CB Address

This explains procedures for finding the VCB address for use by the RESERVE macro
instruction; it also shows a sample assembler language subroutine which issues the RESERVE
and DEQ macro instructions and can be called by higher level languages.

Providing the Unit Control Block Address to RESERVE: The EXTRACT macro instruction is
used to obtain information from the task control block (TCB). The address of the TIOT can
be obtained from the TCB in response to an EXTRACT. Prior to issuing an EXTRACT
macro instruction, the user sets up an answer area in main storage which is to receive the
requested information. One full word is required for each item to be provided by the control
program. If the user wishes to obtain the TIOT address, he must specify FIELDS=TIOT in the
EXTRACT macro instruction.

The address of the TIOT is then returned by the control program, right adjusted, in the full
work answer area.

The TIOT is constructed by job management routines and resides in main storage during
step execution. The TIOT consists of one or more DD entries, each of which represents a data
set defined by a DD statement for the jobstep. Each entry includes the DD name. Associated
with each DD entry is the VCB address of the associated device. In order to find the VCB
address, the user must locate the DD entry in the TIOT corresponding to the DD name of the
data set for whcih he intends to issue the RESERVE macro instruction.

The UCB address can be obtained via the DEB and the DCB. The data control block
(DCB) is the block within which data pertinent to the current use of the dataset is stored.
The address of the data extent block (DEB) is contained at offset 44 decimal after the DCB
has been opened. The DEB contains an extension of the information in the DCB. Each DEB
is associated with a DCB, and the two point to each other.

The DEB contains information concerning the physical characteristics of the data set and
other information that is used by the control program. A device dependent section for each
extent is included as part of the DEB. Each such extent entry contains the UCB address of the
device to which that portion of the data set has been allocated. In order to find the VCB
address, the user must locate the extent entry in the DEB for which he intends to issue the
RESERVE macro instruction. (In disk addresses of the form IviBBCCHHR, the M indicates
the extent number starting with 0).

152 OS/VS2 Planning and Use Guide

Procedures for Finding the VCB Address of a Reserved Device: If the data set is a multivolume
sequential data set, it must be assumed that all jobs will process that data set in a sequential
manner starting with the first volume of the data set. In this case, by issuing a RESERVE for
the first volume only, the user effectively reserves all the volumes of the data set.

For data sets using the queued access methods in the update mode or for unopened data
sets:

1. Extract the TIOT from the TCB.
2. Search the TIOT for the DD name associated with the shared data set.
3. Add 16 to the address of the DD entry found in step 2. This results in a pointer to the

UCB address obtained in step the TIOT.
4. Issue the RESERVE macro specifying the address obtained in step 3 as the operand of the

UCB keyword.

For opened data sets:

1. Load the DEB address from the DCB field labeled DCBDEBAD.
2. Load the address of the the field labeled DEBDVMOD in the DEB obtained in step 1. The

result is a pointer to the UCB address in the DEB.
3. Issue the RESERVE macro specifying the address obtained in step 2 as the operand of the

UCB keyword.

For BDAM data sets the user may reserve the device at any point in the processing in the
following manner:

1. Open the data set successfully.
2. Convert the block address used in the READ/WRITE macro to an actual device address of

the form MBBCCHHR.
3. Load the DEB address from the DCB field labeled DCBDEBAD.
4. Load the address of the field labeled DEBDVMOD in the DEB.
5. Multiply the "M" of the direct access address by 16.
6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the next

READ/WRITE operation. The sum is also a pointer to the UCB address for this extent.
7. Issue the RESERVE macro specifying the address obtained in step 6 as the operand of the

UCB keyword.

If the data set is an ISAM data set, QISAM in the load mode should by used only at system
update time. Further, if it is a multivolume ISAM data set, it must be assumed that all jobs will
access the data set through the highest level index. The indexes should never reside in main
storage when the data set is being shared. In this case, by issuing a RESERVE macro for the
volume on which the highest level index resides, the user effectively reserves the volumes on
which the prome data and independent overflow areas reside. The following procedures can by
used to achieve this:

1. Open the data set successfully.
2. Locate the actual device address (MBBCCHHR) of the highest level index. This address

can be obtained from the DCB.
3. Load the DEB address from the DCB field labeled DCBDEBAD.
4. Load the address of the field labeled DEBDVMOD in the DEB.
5. Multiply the "M" of the actual device address located in step 2 by 16.
6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the next

READ/WRITE operation. The sum is also a pointer to the UCB address for this extent.
7. Issue the RESERVE macro specifying the address obtained in step 6 as the operand of the

UCB keyword.

Job Management and Supervisor Services for System Programmers 153

RES and DEQ Subroutines: The following assembler language subroutine can be used by

assembler language programs to issue the RESERVE and DEQ macro instructions. Parameters
that must by passed to the RESDEQ routine, if the RESERVE macro instruction is to be
issued, are:

DDNAME - the eight character name of the DDCARD for the device to be reserved.

QNAME - an eight character name.

RNAME LENGTH - one byte (a binary integer) that contains the RNAME length value.

RNAME - a name from 1 to 255 charcters in length.

The DEQ macro instruction does not require the UCB=pointer address as a parameter. If the
DEQ macro is to be issued, a fullword of binary zeros must be placed in the DDNAME field
before control is passed.

154 OS/VS2 Planning and Use Guide

RESDEQ

*PROCESS

NEXTDD

CSECT

SAVE
BALR
USING
ST
LA
ST
LR
LR
L
CLC
BE

(14,12),T
2,0
*,2

13,SAVE+4
11,SAVE
11,8(13)
1 3, 11
9,1
3, o(9)
0(4,3),=F'0'

WANTDEQ

SAVE REGISTERS
SET UP ADDRESSABILITY

ADDRESS OF MY SAVE AREA IS STORED
IN THIRD WORD OF CALLER'S SAVE AREA
ADDRESS OF MY SAVE AREA
ADDRESS OF PARAMETER LIST
DDNAME PARAMETER OR WORD OF ZEROS
WORD OF ZEROS IF DEQ IS REQUESTED

FOR DETERMINING THE UCB ADDRESS USING THE TIOT
XR 11,11 REGISTER USED FOR DD ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7,ADDRTIOT ADDRESS OF TASK I/O TABLE
LA 7,24(7) ADDRESS OF FIRST DD ENTRY
CLC 0(8,3),4(7) COMPARE DDNAMES
BE FINDUCB
IC 11,0(7)
LA 7 , ° (7 , 1 1)
CLC 0(4,7),=F'0'
BNE NEXTDD

LENGTH OF DD ENTRY
ADDRESS OF NEXT DD ENTRY
CHECK FOR END OF TIOT

ABEND 200,DUMP DDNAME IS NOT IN TIOT, ERROR
FINDUCB LA 8,16(7) ADDRESS OF WORD IN TIOT THAT
* CONTAINS ADDRESS OF UCB
*PROCESS FOR DETERMINING THE QNAME REQUESTED
WANTDEQ L 7,4(9) ADDRESS OF QNAME LENGTH

MVC QNAME(8),0(7) MOVE IN QNAME
*PROCESS FOR DETERMINING THE RNAME AND THE LENGTH OF RNAME

*
*

ISSUEDEQ
RETURN

MOVERNAM
ADDRTIOT
SAVE
QNAME
RNAME
RNLEN

D

L
MVC
L
STC

7,8(9) ADDRESS OF RNAME LENGTH
RNLEN+3(1),0(7) MOVE BYTE CONTAINING LENGTH
7,RNLEN
7,RNAME

L 6,12(9)
BCTR 7,0
EX 7,MOVERNAM
CLC 0(4,3),=F'0'
~.t; ISSUEDEQ

STORE LENGTH OF RNAME IN THE
FIRST BYTE OF RNAME PARAMETER
FOR RES/DEQ MACROS
ADDRESS OF RNAME REQUESTED
SUBTRACT ONE FROM RNAME LENGTH
MOVE IN RNAME

RESERVE (QNAME,RNAME,E,0,SYSTEMS),UCB=(8)
B RETURN
DEQ (QNAME,RNAME,O,SYSTEMS)
L 13,SAVE+4 RESTORE REGISTERS AND RETURN
RETURN (14,12),T
BCR 15,14
MVC RNAME+1(0),0(6)
DC F'O'
DS 18F
DS 2F
DS CL256
DC F'O'
EN

The Must Complete Function
System routines (routines operating under a storage key of zero) often engage in updating
and/ or manipulation of system resources such as system data sets, control blocks, and queues.
These resources contain information critical to continued operation of the system and they
must complete their operations on the resource. Otherwise, the resource may be left

Job Management and Supervisor Services for System Programmers 155

incomplete or may contain erroneous information -- either condition leads to unpredictable
results.

The ENQ service routine provides the must complete function and ensures that a routine
queued on a critical resource(s) can complete processing of the resource(s) without
interruptions leading to termination. The must complete function places other tasks in a wait
state until the requesting task -- the task issuing a ENQ macro instruction with the .
set-must-complete (SMC) operand -- has completed its operations on the resource. The
requesting task releases the resource and terminates the must complete condition by issuing a
'DEQ macro instruction with the reset-must-complete (RMC) operand. The ENQ and DEQ
macro instructions are described in the chapter "Supervisor Macro Instructions for System
Programmers" .

For the time it is in effect, the must complete function serializes operations to some extent
in the computing system. Therefore, its use should be minimized -- use the function only in a
routine that processes system data whose' validity must be ensured.

As an example, in multitask environments, the integrity of the volume table of contents
(VTOC) must be preserved during an updating process so that all future users may have
access to the latest, correct, version of the VTOC. Thus, in this case, enqueue on the VTOC
and use the must complete function (to suspend processing of other tasks) when updating a
VTOC.

Just as the ENQ function serializes use of a resource requested by many different tasks, the
must complete function serialize execution of tasks.

Characteristics of the Must Complete Function
The must complete function can be applied at two levels:

The System Level: Only the current task, and system tasks can execute. All other tasks in the
system are placed in a wait state.

The Step Level: In a region only the current task is allowed to execute. All other tasks in the
jobstep, including the initiator task, are placed in a wait state.

CA UTION: Use of the must complete function at the system level should not be attempted
until all aternatives have been exhausted. Except for extremely unusual conditions the system
level of must complete should never be used.

When the must complete function is requested the requesting task is marked as being in the
must complete mode and all asynchronous exits from the requesting task are deferred. Other
tasks in the system (except the allowed tasks at the system level) or associated with the
requesting task in a job step (step level) are placed in a wait state. Thus, tasks external to the
requesting task are prevented from initiating procedures that will cause termination of the
requesting task. Other external events, such as a CANCEL command issued by an operator, or
a job step timer expiration are also prevented from terminating the requesting task.

The must complete mode of operation is not entered until the resource(s) queued upon are
available.

The failure of a jobstep at the step level results in the abnormal termination for the jobstep
and any associated tasks or resources. The programmer recieves a message stating that the
failure occured in the step must complete status.

The failure of a jobstep at the system level is handled differently. The user can attempt to
retry the operation. using STAEISTAI exit retry routines, for example. However, should the
retry fail, the system will abnormally terminate the jobstep, and perform the following
operations:

• Purges page-in requests for the jobstep.

• Purges 110 requests.

• Purges asynchronous exit queues.

156 OS/VS2 Planning and Use Guide

• Provides a diagnostic dump.

• Purges any associated resources.

• Makes any system must complete resources permanently unavailabel.

• Allows resources dependent on system must complete resources to continue processing, if
possible.

• Issues a message to the operator.·

• Sets all tasks below the master scheduler non-dispatchable.

• Sets all tasks associated with the failing task non-dispatchable.

• Passes control to the dispatcher.

The operator should notify the system programmer, who can run· diagnostics, such as DSS,
to attempt recovery, or who can IPL the system.

Programming Notes
1. All data used by a routine that is to operate in the must complete mode should be checked

for validity to ensure against a program-check interruption.

2. A routine that is already in the must complete mode may call another routine which also
operates in the must complete mode. An internal count is maintained of the number of
SMC requests; an equivalent number of RMC requests is required to reset the must
complete function.

3. Interlock conditions can arise with the use of the ENQ function. Additionally, an interlock
may occur if a routine issues an ENQ macro instruction while in the must complete mode.
The wanted resource may already be queued on by a task placed in the wait state due to
the must complete request already made. Since the resource cannot be released, job step
tasks are abnormally terminated, and system tasks are retried.

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be used, unless
extreme care is taken, by a routine operating in the must complete mode. An interlock
condition will result if a serially-reusable routine requested by one of these macro
instructions has been requested by one of the tasks made non-dispatchable by the use of the
SMC operand or was requeste? by another task and has been only partially fetched.

For example, suppose routine "b" in task B has requested and is using subroutine "c".
Subsequently routine "a" in task A (of a higher priority than task B) receives control of the
processing before routine "b" finishes with subroutine "c". If routine "a" issues an ENQ
macro instruction with the SMC operand and puts task B (and, thus, routine "b") in a
non-dispatchable condition, subroutine "c" remains assigned to routine "b". Now, if routine
"a" issues a request (via a LINK, LOAD, etc. macro instruction) for subroutine "c", an
interlock will occur between tasks A and B: task A cannot continue since subroutine "c" is
still assigned to task B, and task B cannot continue (and thus release subroutine "c")
because task A in the must complete mode has made task B nondispatchable.

5. The time a routine is in the must complete mode should be kept as short as possible -- enter
at the last moment and leave as soon as possible. One suggested way is to:

a. ENQ (on desired resource(s))

b. ENQ (on same resource(s)),RET=HA VE,SMC={SYSTEM }
. STEP

Item a gets the resource(s) without putting the routine into the must complete mode.

Later, when appropriate, issue the ENQ with the must complete request (Item b). Issue a
DEQ macro instruction to terminate the must complete mode as soon as processing is
finished.

6. The macro instruction STATUS changes the dispatchability staus of tasks for users with a
protection key of O. STATUS can also change the must complete status of a task.

Job Management and Supervisor Services for sSystem Programmers 157

Tasks placed in the wait state by the corresponding ENQ macro instruction are made
dispatch able and asynchronous exits from the requesting task are enabled.

Program Properties Table
The program properties table is a nonexecutable module (IEFSDPPT) that is used to assign
special properties to programs that must execute in a privileged mode. When a program is
executed, the table is scanned to determine if any of the special properties defined in the table
apply to the program.

Each entry in the table consists of ten bytes:

• The first eight bytes contain the program name. The program name is the name specified in
the PGlVl parameter of the first EXEC statement of the job.

• The last two bytes indicate the properties assigned to that program. Bit 0 of the properties
field is used to indicate that the job cannot be canceled. Bit 1 is used to indicate that a
unique protection key is to be assigned to the job. The remainder of the field is reserved for
the inclusion of more properties.

The program properties table contains five dummy entries. The user can place program
names in these entries via the AMASPZAP service aid program. If more than five programs
are to be added to the table, the module must be updated, and then reassembled and relink
edited.

Authorized Program Facility (APF)
The authorized program facility (APF) limits the use of sensitive system and (optionally) user
services and resources to authorized system and user programs. The authorization consists of a
code that is specified when the program is link edited. For a program to be authorized, it must
be link edited with this code and reside in either the SYS l.LINKLIB or SYS l.SVCLIB data
sets, or the link pack area. The SYSl.LINKLIB, SYSl.SVCLIB, and SYSl.LPALIB data sets
are the only data sets in which an authorized program can reside.

Authorization is at the job step level -- that is, the authorization of the first program
executed in the job step determines the authorization of the job step. Therefore, if the first
program executed has been link edited as authorized and resides in the SYS I.LINKLIB or
SYS I.SVCLIB data sets or the link pack area, the job step will be authorized. If the
authorized job step invokes (via the LINK, LOAD, ATTACH, or XCTL macro instruction)
any program (authorized or not) residing in the SYS I.LINKLIB or SYS I.SVCLIB data sets or
the link pack area, authorization is retained. However, if the authorized job step invokes any
program that does not reside in the SYS1.LINKLIB or SYSl.SVCLIB data sets or the link
pack area, the authorization is lost for the remainder of the job step. Also, once a job step
becomes unauthorized, it cannot be reinitialized as authorized.

The system services and resources that are restricted in use include SVC 28 (CVOL), SVC
59 (OLTEP), SVC 82 (DASDR), SVC 85 (DDR), SVC 107 (MODESET), and SVC 113 (the
new PGFREE, PGFIX, and PGLOAD system paging macro instructions). The system
programs that are authorized under APF to use the restricted SVCs are the IEHDASDR,
IEHATLAS, and IEHPROGM utility programs, and the AMASPZAP service aid program. All
programs executing in the supervisor state or under protection key zero are authorized by the
system for the use of all SVCs.

The user programs that must be authorized include those programs that call the authorized
system programs and those programs that use the restricted SVCs directly. In addition,
programs must be authorized to open a VTOC for updating, to delete operator messages other
than one which the programs originated, and to have their messages identified as system rather
than user messages. (Any problem programs executing in Release 21 of MVT that use these
restricted SVCs or authorized programs must be relink edited and moved to the proper

l58 OS/VS2 Planning and Use Guide

libraries to become authorized under APF. During system generation, the user can designate
the user SVCs that are to be authorized.)

A new system macro instruction, TESTAUTH, has been defined to support APF. The
macro instruction tests the authorization of the caller and informs the caller if it is authorized
to perform a particular function. For a complete description of the TESTAUTH macro
instruction, see the chapter "Supervisor Macro Instructions for System Programmers".

Linkage Editor Authorization

The linkage editor permits an installation to establish authorization of the programs either
through a new parameter in the linkage edit step or through a new linkage editor control
statement.

To assign an authorization code via the new parameter, AC (1) should be coded in the
P ARM field, as follows:

IILKED EXEC PGM=HEWL,PARM=AC(1), ...

If no authorization code is assigned in the linkage editor job step, the default is zero. The
authorization code for a given output module can be overridden with the SETCODE
statement.

If the SETCODE statement is used to establish authorization, it must be placed before the
NAME statement for the output load module. The format of the SETCODE statement is:

Operation

SETCODE
Operand
AC(I)

The SETCODE statement will override an authorization code assigned in the P ARM field
of the EXEC statement. If mOie than one SETCODE statement is assigned to a given output
load module, the last statement found will be used.

In the following example, the SETCODE statement assigns an authorization code to the
output load module MOD 1.

IILKED EXEC
IISYSPRINT DD
IISYSUTl DD
IISYSLMOD DD
/ /SYSLIN ·DD
II
II DD

1*

SETCODE
NAME

Nonpageable Dynamic Area

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(10,5))
DSNAME=SYS1.LINKLIB,DISP=OLD
DSNAt'vlE= &, &'LOADSET, DISP=(OLD, PASS)
UNIT=SYSDA

*
AC(1)
MOD 1 (R)

The nonpageable dynamic area is used for programs that are not to be paged during execution.
Use of this are should be reserved for programs that cannot be executed in pageable dynamic
storage and for programs that are not readily adaptable to a pageable environment.

If the nonpageable dynamic area is to be used, the following items should be considered:

• A large nonpageable dynamic area has a degrading effect on system performance, even
when no regions in this area are allocated. This situation occurs because the allocation
routines will perform extended searches and page manipulation in order to avoid allocation
of long-term fixed pages and SQA and LSQA pages in the nonpageable dynamic area.

• To minimize the allocation of long-term fixed pages and SQA and LSQA pages in the
nonpageable dynamic area, the size of the nonpageable dynamic area should be kept as
small as possible in relation to the actual size of real storage. In a heavily overcommited

Job Management and Supervisor for System Programmers t 59

system, allocation of long-term fixed pages and SQA and LSQA pages in the nonpageable
dynamic area becomes more likely and may present severe restrictions in allocating regions
in this area.

• If long-term fixed pages or SQA or LSQA pages are allocated in the nonpageable dynamic
area, regions cannot be allocated in the area that intersects with these pages. Since the
anticipated duration of these pages is the life of the IPL, it is possible that the existence of
these pages will have a cumulative degrading effect on the system.

• If short-term fixed pages are specified when long-term fixed pages should be specified,
undetectable allocation in nonpageable dynamic area will occur. Also, severe system
degradation will occur. (The long or short fix option selected should be based on the length
of time between when a page is fixed and freed. As a rule of thumb, the long option should
be specified if the time interval of the fix can be measured as a number of seconds.)

• If the actual usage of the nonpageable dynamic area is close to the size of the nonpageable
dynamic area, any allocation of long-term fixed pages or SQA or LSQA pages that does
occur is more likely to impact the ability to perform allocation in this area.

• Linkage to a module that resides in the link pack area by other than a LOAD macro
instruction will not cause the module to be fixed. Therefore, if a module in the nonpageable
dynamic area issues a LINK macro instruction (without a preceding LOAD macro
instruction) for a module in the link pack area, the page(s) containing the referenced
module will not be fixed. In addition, modules from the link pack area that are calle"d via a
LOAD macro instruction from a task in the nonpageable area are fixed outside of the
nonpageable area.

• For key zero requests, all channel programs which originate outside of the nonpageable
dynamic area will be translated. However, if a channel program originates in the
nonpageable dynamic area and issues a TIC instruction outside this area, the CCW string
may not be translated. Likewise, if a CCW string within the nonpageable dynamic area
refers outside of the nonpageable area, translation will not occur. (Note that all non-key
zero requests will not be translated.)

• When allocation is attempted for a region in the nonpageable dynamic area, any contiguous
space that does not contain any long-term fixed pages or SQA or LSQA pages may be used.
Although this will increase the probability of successful allocation for this request, it will
also increase the probability of fragmentation in the nonpageable dynamic area.

• In a heavily I/O-oriented system, allocation in the nonpageable dynamic area may be
blocked due to a high amount of fixed pages for I/O. Conversely, the existence of an
allocated region in the nonpageable dynamic area may prevent I/O fixing. This situation
occurs because allocated pages for the nonpageable dynamic area are included in fix
threshold calculations.

'60 OS/VS2 Planning and Use Guide

Supervisor Macro Instructions for System Programmers

ATTACH

This chapter contains the description and formats of supervisor macro instructions and
parameters that are restricted to authorized programs, programs executing in the supervisor
state, or programs operating under protection key zero. The macro instructions are designed
primarily for system programmers responsible for maintaining, updating, and extending the
facilities of the control program.

Figure 28 lists the macro instructions described and identifies which macro instructions are
fully described and which macro instructions are partially described in this chapter. For those
macro instructions partially described, only those parameters that are restricted in use are
described in this chapter; coverage of the other parameters of the macro instructions is
contained in OS/VS Supervisor Services and Macro Instructions, GC27-6979.

Fully Described

CIRB
EXTRACT
IMGlIB
MODESET
PGFIX
PGFREE
PGLOAD
QEDIT
RESERVE
STAE
SYNCH
iESiAUiH

Partially Described

ATTACH
DEQ
ENQ
WTO
WTOR

Figure 28. Supervisor Macro Instructions for System Programmers

Note: For coverage of data management macro instructions for system programmers, see
OS/VS Data Management for System Programmers, GC28-0631.

This explicit form of A TT ACH permits greater flexibility in both the use and the result of use
of the A TT ACH macro instruction. This form of the macro instruction differs from the implicit
form by the addition of eight keyword parameters to those described for the implicit form in
the .Supervisor Services and Macro Instructions publication. Only the added eight parameters
are shown and explained in this description.

These eight parameters can be used only with tasks whose protection key is zero. If they
are used with other tasks, the default values are used.

Note: The ATTACH macro instruction may not be issued by a task in 'must complete' mode.

Supervisor Macro Instructions for System Programmers 161

[symbol] ATTACH

JSTCB
Address to be placed in the TCBJSTCB field of the TCB of the newly created task. The
address determines whether the attached task is a new job step or a task in the present job
step.

YES-Address of the TCB of the newly created task; that is, this TCB points to itself, thus
creating a new job step. A new job step is required if ownership of programs is being
transferred from the attaching to the attached task, that is, if GIVEJPQ= YES is coded in
the macro instruction.

NO- Address of the TCB of the task using the ATTACH; that is, the attached task is to be
a task in the present job step.

SM
Operating state of the machine when executing the attached task.

SUPV -Supervisor mode.

PROB -Problem program mode.

SVAREA
Need for save area.

YES -A' save area is needed for the attaching task. The ATTACH routine will obtain a 72
byte save area. If both attaching and attached task share subpool zero, the save area is
obtained there; otherwise, it is obtained from a new 4K byte block.

NO - No save area is needed.

KEY
Protection/Key of the newly created (attached) task.

ZERO -Zero.

PROP -Copy the key from the TCBPKF field of the TCB for the task using the ATT ACR.

GIVEJPQ
Ownership of programs used by the attaching task. If ownership is to pass to the attached
task, the attached task must be a new job step; that is, JSTCB= YES must be used.

YES -Pass ownership to the newly created task. On completion of the new task, all
programs, both those passed to the new task by the old and those acquire by it, are
freed.

NO -Ownership of programs used by the attaching task remain with the task; programs
acquired by the attached task remain with it. The attached task shares use of the
programs of the attaching task during their common existence. At the conclusion of
the attached task, the programs it acquired are freed; when the attaching task
terminates, its programs are freed.

JSCB
Job step control block address. If specified, that job step control block is used for the new
task. If not specified, the job step control blcok of the attaching task is also used for the
new task.

162 OS/VS2 Planning and Use Guide

CIRB

DISP
Dispatchability of the subtask

YES -Dispatchable.

NO -Non-dispatchable.

TID
Task ID (0-255) to be placed in the TCBTID field of the attached task. The default is zero.
The parameter may be specified as a decimal value or a value in one of general registers 2
through 12.

Note: If the task to be attached is to be a separate step (JCTCB= YES), ownership of
programs may be passed (GIVEJPQ=YES) or retained (GIVEJPQ=NO). If the newly
attached task is not to be a separate st~p (JSTCB=NO), ownership of programs cannot be
passed but must be retained (GIVEJPQ=NO).

The CIRB macro instruction is included in SYS 1.MACLIB and must be included in the system
at system generation time if the macro instruction is to be used. The issuing of this macro
instruction causes a supervisor routine (called the exit effector routine) to create an
interruption request block ORB) if one does not already exist for the requesting task. In
addition, other operands of this macro instruction may specify the building of a register save
area and/or a work area to contain interruption queue elements, which are used by supervisor
routines in the scheduling of the execution of user exit routines.

The CIRB macro instruction is written as follows:

[symbolj CIRB

EP

EP=addrx [,KEY= {~~PR}J
[, SVAREA= { ~~S n
[,RETIQE= t~~s}]

[, ENABLE= {~~S}]

[,MODE=
. _~ r . ~

{PP lJ L,STAB=codeJ
SUPR~

[
, WKAREA={valUel]

(reg)f

[, TYPE={~~~B)]

specifies the entry point of the user's asynchronous exit routine; -this parameter is reguired
with IRB creation; it may not be specified on a TIRB request.

KEY
specifies whether the asynchronous routine will operate with a key of zero (SUPR) or with
a key obtained from the TCB of the task issuing the CIRB macro instruction (PP). For an
IRB, the default is (PP); for a TIRB, the default is (SUPR). KEY=PP may not be specified
with TYPE=TIRB.

MODE
specifies whether the asynchronous routine will be executed in problem program (PP) or
supervisor (SUPR) mode. For an IRB, the default is (PP); for a TIRB, the default is
(SUPR). MODE=PP may not be specified with TYPE=TIRB.

STAB
indicates bit settings to be made in the RBST AB field of the newly created IRB or TIRB.
Any of the following may be specified:

(RE) -turns on the RBUSIQE bit; if this bit is on, EXIT will free the SQE/IQE when the
asynchronous routine returns; for a TIRB, the default is ST AB= (RE).

Supervisor Macro Instructions for System Programmers 163

DEQ

(DYN) -turns on the RBFDYN bit; if this bit is on, EXIT will free the RB; STAB=(DYN)
can not be specified for a TIRB.

(RE,DYN) -combines the above function; can not be specified for a TIRB.
(DYN,RE)

Note: For an IRB, the specification of (RE) has no effect, as the CIRB service routine
unconditionally sets this bit (RBUSIQE) to zero when creating an IRB.

SVAREA
specifies whether a 72-byte register save area is to be obtained from the virtual storage
assigned to the problem program. For both IRBs and TIRBs the default is SVAREA=NO;
SV AREA = YES may not be specified with TYPE = TIRB. If a save area is requested, CIRB
places the save area address in the IRB.

WKAREA
specifies the number of double words (decimal value) required for an area in which the
invoker of CIRB can build IQEs; this value may also be placed in one of the general
purpose registers 2-12, in which case the register may be identified by a numerical value (2)
or symbolically (REGX). The default for both IRBs and TIRBs is zero. The WKAREA
parameter may not be specified with TYPE=TIRB.

RETIQE
specifies whether the first bit of the RBIQETP subfield of RBST AB should be turned on;
this bit identifies the associated queue elements as IQEs or SQEs, as opposed to RQEs. If
RETIQE=NO, the bit is set to one. The default for IRBs is RETIQE= YES; for a TIRB,
the default is RETIQE=NO. RETIQE=YES may not be specified with TYPE=TIRB.

TYPE
specifies whether a TIRB or IRB is to be created. If this parameter specifies TYPE= TIRB,
the 'WKAREA=' and 'EP=' parameters are invalid. Also, the following values must be
specified if these parameters are explicitly coded; KEY =SUPR, MODE=SUPR,
STAB=(RE), SVAREA=NO, RETIQE=NO, ENABLE=NO. If these parameters are
omitted, the correct default values for TYPE=TIRB will be assumed.

For TYPE=IRB, the 'EP=' parameter must be supplied. Otherwise, there are no restrictions
on parameter specification. The default is IRB.

ENABLE
specifies whether the RBOPSW field in the IRB or TIRB is to be enabled or disabled for
I/O and external interruptions. If the IRB is to run in problem program mode, the default is
ENABLE=YES; if it is to run in supervisor mode, the default is ENABLE=NO.
ENABLE = YES may not be specified with TYPE=TIRB.

The DEQ macro instruction is used to remove control of serially reusable resources from the
active task. It should be used to release control of every resource assigned through the use of
the ENQ macro instruction.

For users operating under a protection key of zero, the DEQ macro instruction may be used
for several restricted functions, as indicated by the parameters below. For a description of the
ordinary DEQ macro instruction parameters, see OS I VS Supervisor Services and ~"4acro

Instructions, GC27-6979. The other parameters are written as follows:

164 OS/VS2 Planning and Use Guide

ENQ

[symbol] DEQ

RMC

[RMC= { ~~~~EM}] [TCB=
[GENERIC= {~~S}]

{
tCb addressll

(reg) fJ

specifies that the requesting task release the resources and terminate the must complete
function. The RMC (reset-must-complete) operand indicates the level (SYSTEM or STEP)
to which the must complete function is to apply. The SYSTEM or STEP parameter must
agree with the parameter specified in the SMC operand of the corresponding ENQ macro
instruction.

TCB
specifies the address of a fullword on a fullword boundary that contains the address of a
TCB , or it specifies a register (2-12) containing the address of a TCB (not necessarily the
current TCB) on whose behalf the DEQ is to be done.

This parameter may not be specified with RMC=. The caller (not the directed task) will be
abnormally terminated if RET=NONE is specified or RET= is omitted and an attempt is
made to DEQ a resource not requested or not owned by the directed task.

GENERIC
specifies whether or not (YES or NO) all queue elements for the task under the specified
major name will be dequeued, regardless of whether they have control of the resource. The
specification of a minor name will be ignored.

This parameter may not be specified with RMC= or RET=NONE. The parameter must be
specified with RET =HA VE.

The ENQ macro instruction is used to request control of serially reusable resources for the
active task.

For users operating under a protection key of zero, the ENQ macro instruction may be used
for several restricted functions, as indicated by the parameters described below. For a
description of the ordinary ENQ macro instruction parameters, see OS/VS Supervisor
Services and ~"Aacro Instrr.J.ctions, GC27-6979. The other parameters are written as follows:

[symbol] ENQ ... [SMC= {~~~~EM1}]~TCB= {tCb ~~~~~ss}]
[,ECB=ecb address]

SMC
specifies. that the must complete function place other tasks in a wait state until the
requesting task has completed its operations on the resource. The SMC (set-must-complete)
operand indicates the level (SYSTEM or STEP) to which the must complete function is to
apply.

TCB
specifies the address of a full word on a fullword boundary that contains the address of a
TCB, or it specifies a register (2-12) containing the address of a TCB (not necessarily the
current TCB) on whose behalf the ENQ is to be done.

This parameter may not be specified with ECB=~ SMC=, RET=HAVE, or RET=NONE.
The parameter must be specified with RET=TEST, RET=USE, or RET=CHNG.

Supervisor Macro Instructions for System Programmers 165

ECB

EXTRACT

specifies a conditional request for all of the resources named in the macro instruction. The
parameter specifies the address of an ECB.

This parameter may not be specified with RET=, SMC=, or TCB=.

Return codes are provided by the control program if ECB is designated. The return codes
are:
Return Meaning Code

() Resource is available: caller has resource.

4 Resource is in use: the request has been placed on the queue.

S The caller has already enqueued on the resourc.e and is in control.

12 Resource is permanently unavailable.

16 A previous ENQ with ECB is outstanding.

20 The caller has already enqueued on the resource, but does not have control.

The EXTRACT macro instruction causes the control program to provide information from
specified fields of the task control block or a subsidiary control block for either the active task
or one of its subtasks. The information is placed in an area provided by the problem program
in the order shown in Figure 29.

The standard form of the EXTRACT macro instruction is written as follows:

[symbol] EXTRACT

answer area address

answer area address[,tcb location address]
, 's'

,FIELDS=(codes) -

is the address in virtual storage of one or more consecutive fullwords, starting on a fullword
boundary, to contain the requested information. The address may be written in an A-Type
address constant, or one of registers 2 through 12, previously loaded with the indicated
address. The register may be designated symbolically or with an absolute expression, and is
always coded within parentheses. The number of fullwords required is the same as the
number of fields specified in the FIELDS operand, unless FIELDS= (ALL) is coded. If
FIELDS=(ALL) is coded, seven fullwords are required.

tcb location address
specifies the address of a fullword on a fullword boundary containing the address of a task
control block for a subtask of the active task. The address may be written in an A-Type
address constant, or one of registers 2 through 12, previously loaded with the indicated
address. The register may be designated symbolically or with an absolute expression, and is
always coded within parentheses. 'S' indicates that information is requested from the task
control block for the active task. 'S' is assumed if the operand is omitted or if it is coded to
specify a zero address.

FIELDS=
is one or more of the following sets of characters, written in any order and separated by
commas, which are used to request the associated task control block information. The
information from the requested field is returned in the relative order shown in Figure 29; if
the information from a field is not requested, the associated fullword is omitted. If ALL is
specified, the answer area will include all the fields in Figure 29 from GRS to TIOT,
including the reserved word. Addresses are always returned in the low-order lhree bytes of
the fullword, and the high-order byte is set to zero. Fields for which no address or value has
been specified in the task control block are set to zero.

166 OS/VS2 Planning and Use Guide

ALL
requests information from the GRS, FRS, RESERVED, AETX, PRI, CMC, and TIOT
fields.

GRS
the address of the save area used by the control program to save the general registers (in
the order of ° through 15) when the task is not active.

FRS
the address of the save area used by the control program to save the floating point
registers (in the order of 0, 2, 4, 6) when the task is not active.

AETX
the address of the end of task exit routine specified in the ETXR operand of the
ATT ACH macro instruction used to create. the task.

PRI
the current limit (third byte) and dispatching (fourth byte) priorities of the task. The two
high-order bytes are set to zero.

CMC
the task completion code. If the task is not complete, the field is set to zero.

TIOT
the address of the task input/output table.

COMM
the address of the command scheduler communications list. The list consists of a pointer
to the communications event control block and a pointer to the command input buffer.
The high-order bit of the last pointer is set to one to indicate the end of the list.

PSB
the address of the protected storage control block (PSCB), which is extracted from the
job step control block. This field is meaningful only for jobs running in a time sharing
environment.

TSO
the address of the time sharing flags field in the task control block. This field is
meaningful only for jobs running in a time sharing environment.

TJID
the terminal job identifier (TJID) of the task specified in the tcb location address
operand. Thi~ field is meaningful only for jobs running in a time sharing environment.

Note: The user must provide an answer area consisting of contiguous fullwords, one for
each of the codes specified in the FIELDS operand, with the exception of the ALL code. If
ALL is specified, the user must provide a 7 -word answer area to accomodate the GRS,
FRS, RESERVED, AETX, PRI, CMC, and TIOT fields. The ALL code does not include
the COMM, PSB, TSO, and TJID codes.

For example, if FIELDS=(TIOT,GRS,PRI,TSO,PSB,TJID) is coded, a 6-fullword answer
area address is required, and the extracted information will appear in the answer area in the
same relative order as shown in Figure 29. (That is, GRS will be returned in the first word,
PRI in the second word, TIOT in the third word, etc.)

If FIELD=(ALL,TSO,PSB,COMM,TJID) is coded, an ll-fullword answer area is required,
and the extracted information will appear in the answer area in the relative order shown in
Figure 29.

Supervisor Macro Instructions for System Programmers 167

Answer Area Address

,
I I I

GRS I ADDRESS I I
I I

FRS
I T

I I ADDRESS ! I
I I I RESERVED (set to zero) I I

AETX
1 1
I ADDRESS I I I

PRI I I I
00

I
00 ! VALUE I VALUE

CMC
I I
I COMPLETION CODE I
I I

TIOT
I

I
I

I ADD RESS I
I I
I I I

COMM I ADDRESS ! I
I

TSO
I I

I ! ADDRESS ! I

PSB
I I

I I ADDRESS ! I I

1 T I

TJID I l VALUE !

4---1 Byte -I- 1 Byte -I- 1 Byte .1-- 1 Byte ______

- 4 Bytes ..
Figure 29. EXTRACT Answer Area Fields

168 OS/VS2 Planning and Use Guide

EXTRACT -- List Form
The list form of the EXTRACT macro instruction is used to construct a control program
parameter list.

The description of the standard form of the EXTRACT macro instruction provides the
explanation of the function of each operand. The format description below indicates the
optional and required operands in the list form only.

The list form of the EXTRACT macro instruction is written as follows:

[symbol] EXTRACT [answer area address] [: ~~~ location address]

[,FIELDS=(codes)] ,MF=L

address
is any address that may be written in an A-type address constant.

codes
are one or more of the sets of characters defined in the description of the standard from of
the macro instruction. Each use of the FIELDS operand in the execute form overrides any
previous codes.

MF=L
indicates the list form of the EXTRACT macro instruction.

EXTRACT -- Execute Form
A remote control program parameter list is referred to, and can be modified by, the execute
form of the EXTRACT macro instruction.

The description of the standard form of the EXTRACT macro instruction provides the
explanation of the function of each operand. The format description below indicates the
optional and required operands in the execute form only.

The execute form of the EXTRACT macro instruction is written as follows:

[symbol]

address

EXTRACT [answer area address] r,tc. b location addressl
-' S'

L' [,FIELDS=(codes)] J

,MF= (E' {~~~trol program list addreSS})

is any address that is valid in an RX-type instruction, or one of general registers 2 through
12, previously loaded with the indicated address. The register may be designated
symbolically or with an absolute expression, and is always coded within parentheses.

codes
are one or more of the sets of characters defined in the description of the standard form of
the macro instruction. If the FIELDS operand is used in the execute form, any codes
specified in a previous FIELDS operand are cancelled and must be respecified if required
for this execution of the macro instruction.

MF=(E,control program list address)
(1)

indicates the execute form of the macro instruction using a remote control program
parameter list. The address of the control program parameter list can be coded as described
under address, or can be loaded into register 1, in which case MF=(E,(1) should be coded.

Supervisor Macro Instructions for System Programmers 169

1M GLIB
The IMGLIB macro instruction is used to open or close SYS l.lMAGELIB. When issued to
open the image library, it is usually followed by a BLDL macro instruction and a LOAD
macro instruction which, respectively, search the library for the image and load it into storage.

The IMGLIB macro instruction is written as follows:

[symbol]

OPEN

IMGLIB {OPEN }
CLOSE

,dcbaddr

specifies that SYSl.lMAGELIB is to be opened and the address of the data control block
(DCB) returned in register one.

CLOSE
specifies that SYS1.IMAGELIB is to be closed.

dcbaddr
is either the address of the SYS l.IMAGELIB DCB or is a register containing the
SYS l.lMAGELIB DCB address.

MODESET

The MODESET macro instruction causes a supervisor routine (IEAVMODE) to alter the SVC
old program status word (PSW) so that the desired PSW will be loaded when MODESET
returns to the user via the type I exit routine.

The MODESET macro instruction is written as follows:

[symbol] MODESET [KEY= {
NZERO}] [{PROB}]

ZERO ,MODE= SUP

KEY
specifies that the PSW key (bits 8-11) is to be either set to zero (ZERO) or set to the value
in the caller's TCB (NZERO).

MODE
specifies that the mode indicator (bit 15) in the PSW is to be turned on (PROB) or turned
off (SUP).

ENABLE
specifies that the I/O summary bit (bit 6) and external interrupt bit (bit 7) in the PSW
system mask are to be turned on (YES) or turned off (NO).

SYSMASK
specifies that bits 5, 6, 7 are to be either turned on or turned off in the system.

170 OS/VS2 Planning and Use Guide

PGFIX

RELOC

10

specifies that the address translation bit (bit 5) in the system mask is to be turned on (YES)
or turned off (NO).

specifies that the I/O summary bit (bit 6) in the system mask is to be turned on (YES) or
turned off (NO).

EXT
specifies that the external interrupt bit (bit 7) in the system mask is to be turned on (YES)
or turned off (NO).

MF
specifies the form of the macro instruction. If this parameter is omitted, the standard form
of the macro instruction is assumed.

L indicates that the list form of the macro instruction is to be generated~ the expansion will
contain no executable code.

REG

E, address indicates that the execute form of the macro instruction is to be generated~
'address' refer to the storage of the MODESET parameter list.

E, (1) indicates that the execute form of the macro instruction is to be generated~
register 1 has been loaded with the address of the parameter list to be used.

specifies that register 1 contains the parameter list to be passed to MODESET.

If MF=(E,address), MF=(E(l)), or REG=(l) is coded, then no other parameters may be
specified with MODE SET .

The PGFIX macro instruction is used to lock virtual page into page frames, preventing those
pages from being paged out while the requesting task's region occupies real storage. The
"locking" of these pages does not prevent them from being paged out when an entire region is
swapped out of real storage for TSO users. Consequently, the user of the PGFIX macro
instruction cannot assume a constant real address mapping for fixed pages that are susceptible
to swapping.

The user of the PGFIX macro instruction should also be aware of the impiication of
PGFIX. VS2 uses a system oriented algorithm in controlling the number of fixed pages. The
algorithm ensures that on a system basis, the number of fixed pages at anyone time does not
exceed a preassigned threshhold. As a result of using this approach, there is no control
mechanism provided by VS2 that monitors fixing at the task level.

An installation should establish firm control over who uses the PGFIX macro instruction,
and over what duration of fix. Poor control can result in any of the following:

• Low priority tasks being set nondispatchable because of thrashing. This occurs because the
number of fixed pages has reduced the working set to a size that cannot handle the current
paging rate.

• Degraded system throughput performance because of the increased paging rate.

Supervisor Macro Instructions for System Programmers 171

• Nonpageable jobs not being started because long fixes have been assigned in the
nonpageable dynamic area. Also, the more pages that are fixed, the smaller is the number of
pages that are available and the greater is the contention for the smaller number of available
page frames.

• Possible system wait states because no pages frames are available to satisfy SQA requests.

• Potential interlocks when the SUSPEND option is used.

The macro instruction is written as follows:

[symbol] PGFIX L,LA= {(reg)}
addr

L
indicates that a parameter list is being supplied with this request.

LA
specifies the address of a parameter list that describes the extents of the virtual area(s) to
be fixed.

The parameter list must be guaranteed nonpageable, and must remain unchanged until the
operation is posted complete. If it is not protected and nonpageable, an exposure to system
error is incurred. To be nonpageable, the parameter list must:

• Reside in subpool 233, 234, 235, 243, 244, 245, 253, 254, or 255 (i.e., LSQA or SQA).

• Reside in a nonpageable dynamic region.
• Reside in the nucleus or fixed link pack area.

• Be fixed by a previous PGFIX macro instruction.

Parameter List

EeB

If a return code of 4 or a completion code of 4 is presented to the issuer of the PGFIX
macro instruction, the parameter list may have been modified to indicated that one or
more virtual areas that were requested for fixing are undefined. (Virtual areas that have
not been allocated to a region (in 4K blocks), are considered to be undefined and
unaddressable.) The execution of the PGFIX macro instruction will flag a parameter list
entry that describes an undefined virtual area. The flag is located at byte 4, bit 3 of the
parameter list entry, and is referred to as the "error" flag in the parameter list
description.

specifies the address of an event control block. Since paging I/O may be required to satisfy
a FIX request, an EeB must be provided so that the requester can be informed when the
FIX is done. The supervisor will post the EeB with a completion code when the request is
completed.

Caution: Only one FIX at a time should be issued with a given EeB; two incomplete FIXes
should not be waiting on the same EeB.

172 OS/YS2 Planning and Use Guide

ECB Completion Code
If a hexadecimal return code of 8, 28 (with SUSPEND option specified), or 2C (with
SUSPEND option specified), is received following macro execution, the ECB supplied as
an operand of the PGFIX macro instruction will be posted asynchronously with a
completion code. The completion code, stored in the ECB, should be examined after
WAIT macro execution.

Completion Code Meaning

00 Operation complete; no action.

04 Error detected; no pages were fixed.

48 Operation purged; the ECB must be reinitialized and the PGFIX macro instruction mllst

be reissued. The completion code occurs when an asynchronous system event has caused

the issuing task to be quiesced. The FIX operation must be rescheduled before it can

complete.

ECBIND
specifies the address of an indirect area, where bytes 1-4 contain the address of an ECB
and byte 0 contains the ECB completion code when the ECB is posted.

LONG
indicates to the ~upervisor the relative real time duration anticipated for the FIX. If Y is
specified, the requester is indicating that the duration of the FIX will be relatively long. (As
a rule of thumb, the duration of a FIX is considered long if the time interval can be
measured on a ordinary timepiece). Special consideration may be given to a LONG request
by the supervisor in allocating real storage to prevent fragmentation of the nonpageable
dynamic area. Y is the default value.

if N is specified, the time duration of the FIX is assumed to be relatively short; for
example, the time needed to complete an I/O operation to a direct access device is
considered to be short.

RELEASE
If Y is specified, the contents of the virtual areas specified for fixing can be discarded
before fixing occurs. For areas which consist of a 4K page or more, page-in operations for
those pages can be bypassed if those pages do not occupy real storage; scratch page frames
may be assigned to them. The use of this option does not guarantee that the FIX will
complete immediately (a wait for page frame allocation may be required, for example).

If N is specified, the· contents of the virtual areas being fixed must be retained. N is the
default value.

SUSPEND
If Y is specified, the paging supervisor will internally queue the request if real storage is
depleted.

If N is specified, the paging supervisor will reject the request if real storage is depleted. N is
the default value.

Control is returned to the instruction following the PGFIX macro instruction. When control is
returned, register 15 contains one of the following return codes:

Supervisor Macro Instructions for System Programmers 173

Hex Code Meaning

00 Operation complete.

04 Error detected; no pages were fixed.

08 Operation proceeding; aWAIT macro instruction should be issued for the ECB that was used

with the PGFIX macro instruction.

24 FIX request too large; no pages were fixed.

If SUSPEND option is specified:

28 FIX request queued due to a shortage of long-term fixable real storage (long wait). If no interlock

exposure exists, and if a long-term wait (possibly for the "life" of a subsystem) is acceptable, a

WAIT macro instruction should be issued. Otherwise. the PGFIX operation should be canceled

using the PGFREE macro instruction with the ECB/ECBIND operand.

PGFIX -- Non-Standard Form
[symbol] PGFIX R,A=

This form of the PGFIX macro instruction differs from the standard form in the following
ways:

• A parameter list is not used.

• SUSPEND and RELEASE options are not provided.

• Only one virtual area, one byte in length, can be fixed by execution of this macro form.

R

A

indicates that no parameter list is being supplied with this request.

virtual address of the single-byte area to be fixed.

Fixing actually occurs on a 4K storage block, even though the virtual area specified is a
single byte in length. Thus, any virtual area less than 4 K in length can be fixed with this
macro form, as long as the area does not cross a 4K boundary. Note that an area less than
4K in length and allocated using the GETMAIN macro instruction with the
BNDRY=PAGE parameter can be guaranteed as fixed using this form of the PGFIX macro
instruction.

ECB
the address of an event control block. Since paging 110 may be required to satisfy a FIX
request, an ECB must be provided to that the requester can be informed when the FIX is
done. The supervisor will post the ECB with a completion code when the request is
completed.

Caution: Only one FIX at a time should be issued with a given ECB; two incomplete FIXes
should not be waiting on the same ECB.

ECB Completion Code
If a return code of 8 is received following macro execution, the ECB supplied as an
operand of the PGFIX macro instruction will be posted asynchronously with a
completion code. The completion code, stored in the ECB, should be examined after
WAIT macro execution.

174 OS/VS2 Planning and Use Guide

PGFREE

Completion Code Meaning

00 Operation complete; no action.

04 Error detected; no fixing has occurred.

30 Operation purged; the ECB must be reinitialized and the PGFIX macro instruction must

he reissued. This completion code occurs when an asynchronous system event has

caused the issuing task to he quiesced. The FIX operation must be rescheduled before it

can complete.

ECBIND
specifies the address of an indirect area, where -bytes 1-4 contain the address of an ECB
and byte 0 contains the ECB completion code when the ECB is posted.

LONG
indicates to the supervisor the relative real time duration anticipated for the FIX. If Y is
specified, then the requester is indicating that the duration of the FIX will be relatively
long; as a rule of thumb, the duration of a FIX is considered LONG if the time interval can
be measured on an ordinary timepiece (a number of seconds, or more). Special
consideration must be given to a long request by the supervisor in allocating real storage to
prevent fragmentation of the nonpageable dynamic area. Y is the default value.

If N is specified, the time duration of the FIX is assumed to be relatively short; for
example, the time needed to complete an I/O operation to a direct access device is
considered to be short.

Control is returned to the instruction following the PGFIX macro instruction. When control is
returned, register 15 contains one of the following return codes:

Hex Code Meaning

00 Opeiation complete.

04 Error detected; no fixing has occurred.

08 Operation proceeding; issue aWAIT macro instruction for the ECB that was used with the

PGFIX macro instruction.

28 FIX request rejected due to shortage of fixable real storage. Caller must reissue request at a later

time. If no interlock exposure exists, reissue request with SUSPEND option. This option cannot

be specified in non-standard form.

2C FIX request queued due to shortage of fixable real storage (short-term wait). If no interlock

exposure exists, issue WAIT macro instruction as above. If an interlock exposure exists, cancel the

PGFIX operation using the PGFREE macro instruction with the ECB/ECBIND operand.

If SUSPEND option is not specified;

2C FIX request rejected due to shortage of fixable real storage. Caller must reissue request at a later

time. If no interlock exposure exists, reissue request with SUSPEND option.

The PGFREE macro instruction is used to reverse the action of the PGFIX macro instruction,
thus making specified virtual areas eligible for paging. A PGFREE macro instruction must be
issued for each PGFIX macro instruction that was issued against a page. In addition to
reversing the action of the PGFIX macro instruction, the PGFREE macro instruction may be
used to cancel PGFIX requests before they complete.

Supervisor Macro Instructions for System Programmers 175

The macro instruction is written as follows:

[symbol] PGFREE L,LA= {(reg)}
addr

[

ECB= {(reg)} 1
addr

[RELEASE= {~ }] ,ECBIND= {~~~~I}

L
indicates that a parameter list is being supplied with this request.

LA
the address of a parameter list that describes the extents of the virtual area(s) to be freed
(un-fixed) .

The same restriction applies to PGFREE parameter list as that which applies to the PGFIX
parameter list (i.e., the parameter list must be nonpageable).

ECB
the address of an event control block that was used in a prior execution of a PGFIX macro
instruction. When this operand is specified, a PGFIX operation that has not completed and
was issued with the same ECB address as the ECB operand of PG FIX will be cancelled. If
no incomplete PGFIX operation exists with that ECB address, the ECB/ECBIND operand
is ignored by PGFREE.

If, an incomplete PGFIX operation exists and the ECB/ECBIND operand is not specified
with PGFREE, the results of the PGFIX operation are unpredictable.

ECBIND
specifies the address of an indirect area, where bytes 1-4 contain the address of the ECB
and byte 0 contains the ECB completion when the ECB is posted.

RELEASE
If Y is specified, the contents of the virtual area(s) specified for unfixing can be discarded
after unfixing occurs. For areas which circumscribe a 4K page or more, future page-out
operations for those pages can be eliminated; the real storage occupied by those areas can
be made available at once.

If N is specified, the contents of the virtual area(s) being unfixed must be retained. N is the
default value.

PGFREE -- Non-Standard Form
[symbol] PGFREE R,A=

{ (reg)} [, ECB= {(reg)} 1
addr addr

,ECBIND= {(reg)}
addr

This form of the PGFREE macro differs from the standard form in the following ways:

• A parameter list is not used.

• RELEASE option is not provided.

• Only one virtual area, one byte in length, can be unfixed by the execution of this macro
form.

R
indicates that no parameter list is being supplied with this request.

A
specifies the virtual address of the single-byte virtual area to be unfixed.

176 OS/VS2 Planning and Use Guide

ECB and ECBIND
specifies the address of an event control block; see the description of the operand in the
standard form of PGFREE.

General register 15 contains a return code after macro execution:

Return code = 0 -- operation successful

Return code = 4 -- operation could not be done.

Parameter List Structure
The basic parameter list is composed of one or more contiguous double word entries; each
entry describes an area of virtual storage. In addition, the first entry defines indicators for
th~ functions and/or options requested; these indicators are set by the PGFIX and
PGFREE macros. Each parameter list entry has the following format:

PGLOAD

o
FLAGS START ADDRESS

4
FLAGS

5 7
END ADDRESS +1

• START ADDRESS is the virtual address of the origin of the virtual area to be fixed or
freed.

• END ADDRESS + 1 is the virtual address of the byte immediately following the end of the
virtual area. Note that this address is equal to the start address plus the length, in bytes, of
the area.

• FLAGS are defined as followed:

Byte 0, bit 0 0) Continuation Flag
The entry is defined as 4 bytes in length; bytes 1 through 3 are a pointer to the next
parameter list entry. This feature allows several parameter lists to be chained as a single
logical parameter list.

Byte 0, bits 1-7 (.xxx xxxx) Reserved
These bites are used in the first entry by the interface; they may not be used by the
macro caller.

Byte 4, bit 0 (1) Last Entry Flag
This flag must be used to terminate the parameter list; it is set in the last doubleword
entry in the list.

Byte 4, bit 1 (.1) Null Entry Flag
When this flag is set, the entry in which it is set is ignored.

Byte 4, bit 2 C.1.) Reserved

Byte 4, bit 3 (... 1) Error Flag
This flag is set by PGFIX in conjunction with completion code 4; it indicates that the
flagged entry represents a virtual area of which some portion is undefined.

Byte 4, bites 4-7 C ... xxxx) Reserved

The PGLOAD macro instruction can explicitly request that virtual pages be placed in real
storage. The function precludes any logical dependence upon the residency of those pages at
the completion of the PGLOAD operation.

The misuse of this function can have adverse effects on system performance. Causing
unnecessary pages to be brought into real storage will force more useful pages to be displaced,
and consequently, cause unnecessary paging activity.

Supervisor Macro Instructions for System Programmers 177

The PGLOAD function can be used in conjunction with the EC mode SPIE capability, so
that a program may execute in parallel with the resolution of a page fault. In terms of
performance, this usage is beneficial only when the program using the function is a bottleneck
to the rest of the system (e.g., a heavily used subsystem).

The macro instructions is written as follows:

[symbol] PGLOAD
{

(regl}

[

ECB= {(reg l} 1

R

A

L

addr addr

{
(. reg l}
addr

,ECBIND~ {~~~~)}

[

ECB= {~~~; l} 1 [, RELEASE~ g}]
,ECBIND= {(reg)} J

addr

specifies that a single virtual storage address is provided as an argument.

specifies the virtual storage address of an area that resides within the 4K page that is to be
brought into real storage.

specifies that a parameter list, containing one or more virtual address ranges, is provided as
an argument.

LA
specifies the address of the parameter list.

The basic parameter list is composed of one or more continguous double word entries; each
entry describes an area of virtual storage. In addition, the first entry defines indicators for
the functions and/or options requested; these indicators are set by the PGLOAD macro.
Each parameter list entry has the following format:

o
FLAGS

1
START 'ADDRESS

4
FLAGS

5 7
END ADDRESS+l

• START ADDRESS is the virtual address of the origin of the virtual area to be loaded into
real storage.

• END ADDRESS + 1 is the virtual address of the byte immediately following the end of the
virtual area. Note that this address is equal to the start address plus the length, in bytes, of
the area.

• FLAGS are defined as follows:

Byte 0, bit ° (1) Continuation Flag
The entry is defined as 4 bytes in length; bytes 1 through 3 are a pointer to the next
parameter list entry. This feature allows several parameter lists to be chained as a single
logical parameter list.

Byte 0, bits 1-7 (.xxx xxxx) Reserved
These bits are used in the first entry by the interface; they may not be used by the
macro caller.

178 OS/VS2 Planning and Use Guide

Byte 4, bit 0 (1) Last Entry Flag
This flag must be used to terminate the parameter list; it is set in the last double word
entry in the list.

Byte 4, bit 1 (.1) Null Entry Flag
When this flag is set, the entry in which it is set is ignored.

Byte 4, bit 2 (.. 1) Reserved

Byte 4, bit 3 (... 1) Error Flag
This flag is set by the LOAD PAGE processor; it indicates that the flagged entry
represents a virtual area, of which some portion is undefined. The setting of this flag will
accompanied by a return code or completion, code of 4.

Byte 4, bits 4-7 (.... xxxx) Reserved
The parameter list for PGFIX must be guaranteed nonpageable, and must remain
unchanged until the operation is posted complete. To be nonpageable, the parameter list
must:

• Reside in subpool 233, 234, 235, 243, 244, 245, 253, 254, or 255 (i.e., LSQA or SQA).
• Reside in a nonpageable dynamic region.
• Reside in the nucleus or fixed link pack area.
• Be fixed by a PG FIX macro instruction.
The parameter list is used like a control block by the supervisor and in particular by the
interruption handlers. If it is not protected and nonpageable, an exposure to system error is
incurred.

ECB
The address of an event control block. The complete bit in the ECB should be set to O. The
ECB will be posted by the supervisor after the PAGE LOAD operation has completed.

Caution: Even though a LOAD PAGE operation has been posted complete, the virtual area
may no't be in real replacement in an asynchronous fashion by the supervisor. The posting
of the ECB indicates only that a page-in operation was successfully completed at some
point prior to the posting of the ECB.

ECBIND
specifies the address of an indirect area, where bytes 1-4 contain the address of the ECB
and byte 0 contains the ECB completion code when the ECB is posted.

RELEASE
If Y is specified, the contents of the virtual areas specified can be discarded before the
operation occurs. For areas which contain a 4K page or more, page-in operations for those
pages can be bypassed if those pages do not already occupy real storage~ scratch page
frames may be assigned to them. The use of this option does not guarantee that the
PGLOAD will complete immediately (a wait for page frame allocation may be required, for
example).

If N is specified, the contents of the virtual areas will be retained. N is the default value.
General register 15 contains a return code after macro execution.

Hex Code Meaning

00 Operation complete~ no action.

04 Error detected.

08 Operation proceedin~~ issue aWAIT macro instruction for the ECB that was used with the

PGLOAD macro instruction.

Supervisor Macro Instructions for System Programmers 179

QEDIT

ECB Completion Code
If a return code of 8 is received following macro execution, the ECB supplied as an
operand of the PGLOAD macro instruction will be posted asynchronously with a
completion code. This completion code, stored in the ECB, should be examined after
WAIT macro execution.

Hex Code Meaning

00 Operation complete.

04 Error detected.

Parameter List
If a return code of 4 or a completion code of 4 is presented to the issuer of the PGLOAD
macro instruction, the parameter list may have been modified to indicate that one or more
virtual areas were requested for loading are undefined. (Virtual areas that have not been
allocated to a region in 4K block, are considered to be undefined and unaddressable.) The
execution of the PGLOAD macro instruction will flag any parameter list entry that
describes and undefined virtual area. The flag is located at byte 4, bit 3 of the parameter
list entry, and is referenced to as the "error" flag in the parameter list.

The QEDIT macro instruction generates the required entry parameters and the linkage to SVC
34 for the following uses:

• Dechaining and freeing of a command input buffer (CIB) from the CIB chain for a task.

• Setting a limit for the number of CIBs that may be simultaneously chained for a task.

The QEDIT macro instruction is written as follows:

[symbol] QEDIT ORIGIN=address [,BLOCK=address]
[,CIBCTR=number]

ORIGIN = address
specifies the address of the pointer to the first CIB chain for the task. This address is
obtained using the EXTRACT macro instruction. If ORIGIN is the only parameter
specified, the entire CIB chain will be freed. The address is any address valid in an RX
instruction or one of general registers 2 through 12, previously loaded with the indicated
address. The register may be designated symbolically or with an absolute expression, and is
always coded within parentheses.

BLOCK=address
specifies the address of the CIB that is to be freed from the CIB chain for a task. The
address is any address valid in an RX instruction or one of general registers 2 through 12,
previously loaded with the indicated address. The register may be designated symbolically or
with an absolute expression, and is always coded within parentheses.

CIBCTR=number
is an integer (from 0 to 255) to be used as a limit for the number of CIBs to be chained at
any time for a task.

RESERVE
The RESERVE macro instruction is used to reserve a device for use by a particular system; it
must be issued by each task needing device reservation. The RESERVE macro instruction
protects the issuing task from interference by other tasks in the system. Each task issuing two
RESERVE instructions for the same resource without an intervening DEQ will result in an
abnormal termination unless the second RESERVE specifies the keyword parameter RET =.
(If a restart occurs when a RESERVE is in effect for devices, the system will not restore the

180 OS/VS2 Planning and Use Guide

RESERVE~ the user's program must reissue the RESERVE.) Even if a DEQ is not issued for
a particular device, termination routines will release devices reserved by a terminating task.

The RESERVE macro instruction is written as follows:

[rname

(qname address,rname address,

length] 'SYSTEM,rRET~ ~m:!]
lECB~eCb address

,UCB=pointer address

[symbol] RESERVE

qname address
the address in virtual storage of an eight-character name. Every task (within the system)
issuing RESERVE against the same resource (data and device) must use the same
qname-rname combination to represent the resource. The qname should not start with SYS.

marne address
the address in virtual storage of a name used in conjunction with the qname to represent the
resource. The rname can be qualified, and may be 1 to 255 bytes in length.

E or S
specifies either exclusive control or the resource (E) or shared control with other tasks in
the system(S). The default is E.

rname length
the length, in bytes, of rname. If omitted, the assembled length of marne is used. If zero (0)
is specified, the length of rname must be contained in the first byte of the field designated
by the rname address.

SYSTEMS
specifies that the resource represented by qname-mame is known across systems as well as
within the system whose task is issuing RESERVE~ i.e., the resource is shared between
systems.

RET
specifies a conditional request for all the resources named in the RESERVE macro
instruction. If the operand is omitted and ECB is not specified, the request is unconditional.
(RET and ECB cannot both be specified.) The types of conditional requests are as follows:

TEST -- tests the availability status of the resources. The requestor is never assigned control
of the resources.

USE -- specifies that control of the resources be assigned to the active task only if the
resources are immediately available. If any of the resources are not available, the active task
is not placed in a wait condition.

HAVE -- specifies that control of the resources is requested only if a request has not been
made previously for the same task.

ECB=ecb address
specifies a conditional request for all of the resources named in the RESERVE macro
instruction. The address is of an event control block. If the operand is omitted and RET is
not specified, the request is unconditional. (ECB and RET cannot both be specified.)

Supervisor Macro Instructions for System Programmers 181

STAE

Return codes are provided by the control program only if RET or ECB are designated;
otherwise, return of the task to the active condition indicates that control of the resource
has been assigned to the task. Return codes are identical to those supplied by the ENQ
macro instruction.

UCB=pointer address
specifies either the address of a fullword that contains the address of the unit control block
(UCB) for the device to be reserved, or a general register (2-12) that points to a fullword
containing the address of the unit control block for the device to be reserved.

To use the shared DASD option in higher level languages, an assembler language subroutine
should be written to issue the RESERVE macro instruction. The following information should
be passed to this routine: ddname, qnarne address, rnarne address, rnarne length, and RET
parameter.

The ST AE macro instruction enables the user to intercept a scheduled ABEND and to have
control returned to him at a specified exit routine address. The ST AE macro instruction
operates in both problem program and supervisor modes.

The ST AE macro instruction creates a STAE control block (SCB) which represents a ST AE
environment tht remains in effect during the execution of the program that issued the ST AE or
until canceled by a subsequent ST AE. When a RETURN or XCTL is issued, the system
automatically cancels the ST AE environment for that program, unless XCTL= YES is coded in
the ST AE macro instruction. If XCTL= YES is coded and an XCTL macro instruction is
issued, the ST AE environment remains in effect for the program that receives control as a
result of the XCTL macro instruction.

When a ST AE environment is canceled, the last ST AE environment that was created and
not subsequently overlayed or canceled (if any) becomes the current ST AE environment.

Note that issuing a LINK macro instruction does not cancel the STAE environment and that
the user is responsible for canceling the ST AE environment if his program does not exit via a
RETURN or XCTL. The user cannot cancel or overlay a ST AE control block not created by
his own program.

Within the STAE exit routine, the user may perform pre-termination functions or diagnose
an error. Upon completion of STAE exit routine processing, the user can either allow abnormal
termination processing to continue for the task or request that a ST AE retry routine be
scheduled which would circumvent the scheduled ABEND.

The ST AE exit routine cannot contain a ST AE or an ATTACH macro instruction. When a
ST AE retry routine is not to be scheduled, the ST AE exit routine should return with a code of
zero in register 15.

Entry to a ST AE retry routine cancels the ST AE environment. If a ST AE retry routine
causes the task to resume execution, the ST AE environment should be reestablished from
within the retry routine.

182 OS/VS2 Planning and Use Guide

The ST AE macro instruction is written as follows:

[symbol] STAE

exit address
specifies the address of a ST AE exit routine to be entered if the task issuing this macro
instruction terminates abnormally. If 0 is specified, the most recent ST AE request is
canceled. The address may be loaded into one of the general registers 2 through 12.

OV
indicates that the parameters passed in this ST AE macro instruction are to overlay the data
contained in the previous ST AE request. In the standard form only of the ST AE macro
instruction, if any of the parameters XCTL, PURGE, or ASYNCH are not specified, the
default value for the omitted parameter is assigned.

CT
indicates the creation of a new ST AE request. If neither OV or CT is specified, CT is
assumed.

PARAM=list address
specifies the address of a parameter list eontaining data to be used by the STAE exit
routine when it is scheduled for execution. The address may be loaded into one of the
general registers 2 through 12.

XCTL=YES
indicates that the ST AE macro instruction will not be canceled if an XCTL macro
instruction is issued.

XCTL=NO
indicates that the ST AE macro instruction will be canceled if an XCTL is issued by this
program. If neither XCTL= YES or XCTL=NO is coded, XCTL=NO is assumed.

PURGE=
QUIESCE

indicates that all outstanding requests for input/output (I/O) operations will be saved when
the ST AE exit is taken. At the end of the ST AE exit routine, the user can code a retry
routine to handle the outstanding I/O requests.

If the PURGE operand is not specified, QUIESCE is assumed. If I/O cannot be quiesced,
then I/O is halted (see PURGE=HALT).

HALT
indicates that all outstanding requests for input/output operations will not be saved when
the ST AE exit is taken.

NONE
indicates that input/output processing is allowed to continue normally when the ST AE exit
is taken.

Supervisor Macro Instructions for System Programmers 183

Notes: If any IBM-supplied access method, except EXCP, is being used, the
PURGE= NONE option is recommended. If this is done, all control blocks affected by
input/ output processing may continue to change during ST AE exit routine processing.

If PURGE=NONE is specified and the ABEND was originally scheduled because of an
error in input/output processing, an ABEND recursion will develop when an input/output
interruption occurs, even if the exit routine is in progress. Thus, it will appear that the exit
routine failed when, in reality, input/output processing was the cause of the failure.

ASYNCH=

YES
indicates that asynchronous interrupt processing is allowed to interrupt the processing done
by the STAE exit routine. ASYNCH= YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their normal
processing are going to be requested by the ST AE exit routine.

• PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE= NONE is specified and the CHECK macro instruction is issued in the ST AE
exit routine for any access method that requires asynchronous interruptions to complete
normal input/output processing.

Note: If ASYNCH= YES is specified and the ABEND was originally scheduled because of
an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous interruption occurs. Thus, it will appear that the exit routine failed when, in
reality, asynchronous exit handling was the cause of the failure.

NO
indicates that asynchronous interrupt processing is not allowed to interrupt the processing
done by the ST AE exit routine. IF the ASYNCH operand is not specified, NO is assumed.

ISAM Notes: If ISAM is being used and PURGE=HALT is specified or PURGE=QUIESCE
is specified but I/O is not restored:

• Only the input/output event on which the purge is done will be posted. Subsequent event
control blocks (ECBs) will not be posted.

• The ISAM check routine will treat purged I/O as normal I/O.

• Part of the data set may be destroyed if the data set is being updated or added to when the
failure occurred.

Control is returned to the instruction following the ST AE macro instruction. When control
is returned, register 15 contains one of the following return codes:

Hex Code Meaning

00 Indicates successful completion of creating, overlaying, or canceling a ST AE request.

04 Indicates that ST AE was unable to obtain storage for the ST AE request.

08 Indicates that the user was attempting to cancel or overlay a nonexistent STAE request, or that

the user issued a STAE in his STAE exit routine.

OC Indicates that the exit routine or parameter list address was invalid.

10 Indicates that the user was attempting to cancel or overlay a STAE request of another user.

184 OS/VS2 Planning l'Ind Use Guide

STAE -- List Form

The list form of the ST AE macro instruction is used to construct a control program parameter
list.

The description of the standard form of the ST AE macro instruction provides the
explanation of the function of each operand.

The format description below indicates the optional and required operands in the list form
only.

The list form of the STAE macro instruction is }Vritten as follows:

[symbol] STAE [exit address] [PARAM=list address]

[PURGE=l~~~rEfJ [ASYNCH= {~~S}J
,MF=L

address
is any address that may be written in an A-type address constant.

MF=L
indicates the list form of the ST AE macro instruction.

STAE -- Execute Form

A remote control program parameter list is used in, and can be modified by, the execute form
of the ST AE macro instruction. The control program parameter list can be generated by the
list form of the ST AE macro instruction. If the user desires to dynamically change the contents
of the remote ST AE parameter list, he may do so by coding a new exit address and/or a new
parameter list address. If exit address or P ARM = is coded, only the associated field in the
remote STAE parameter list will be changed. The other field will remain as it was before the
current ST AE request was made.

The description of the standard form of the ST AE macro instruction provides the
explanation of the function of each operand.

The format description below indicates the optional and required operands in the execute
form only.

The execute form of the ST AE macro instruction is written as follows:

[symbol] STAE

[ASYNCH=

address})

address
is any address that is valid in an RX-type instruction, or one of the general registers 2
through 12, previously loaded with the indicated address. The register can be designated
symbolically or as an absolute expression, and is always coded within parentheses.

Supervisor Macro Instructions for System Programmers 185

SYNCH

MF=(E, remote list address)
0)

indicates the execute form of the ST AE macro instruction using a remote parameter list.
The address of the remote parameter list can be loaded into register 1, in which case
MF=(E,O) should be coded.

The SYNCH macro instruction permits control program supervisor call (SYC) routines to
make synchronous exits to a processing program. It is written as .follows:

[symbol]

entry-point

SYNCH
{
entry-point}
(15)

specifies the address of the entry point for the processing program. that is to be given
control.

(5)

if (15) is specified, the entry-point address of the processing program must have been
pre-loaded into parameter register 15 before execution of this macro instruction.

SYNCH Macro Definition

MACRO
&NAME SYNCH

AIF
AIF

&NAME LA

AGO
.REG AIF
&NAME LR

.SVC SVC
MEXIT

.NAMEIT ANOP
&NAME SVC

MEXIT
. E1 IHBERMAC

MEND
27,405

&EP
(, &EP' EQ "). E 1
(, &EP' (1, 1) EQ '('). REG
15,&EP

.SVC
(, &EP' EQ '(15'). NAME 1 'I'

LOAD ENTRY POINT
ADDRESS.

15,&EP(1) LOAD ENTRY POINT
ADDRESS.

12 ISSUE SYNCH SVC

12 ISSUE SYNCH SVC

Programming Notes: In general, the SYNCH macro instruction is used when a control program
in the supervisor state is to give temporary control to a processing program routine, and when
the processing program is expected to return control to the supervisor state. The program to
which control is given must be in virtual storage when the macro instru'ction is issued. The use
of this macro instruction is similar to that of the BALR instruction in that register 15 is used
for the entry point address. When the processing program returns control, the supervisor state
bit, the storage protection key bits, the system mask bits, and the program mask bits of the
.program status word are restored to the settings they had before execution of the SYNCH
macro instruction.

Example: As a result of an OPEN macro instruction, label processing may be carried out to a
point at which a user's processing program indicates that private processing is desired (or
necessary). The control program's open routine then will issue a SYNCH macro instruction
giving the entry point of the subroutine required for the user's private label processing.

186 OS/VS2 Planning and Use Guide

TESTAUTH

The TESTAUTH macro instruction supports the authorized program facility (APF). If is used
to determine if a program is authorized to use a program or function restricted in use by APF.

The macro instruction is written as follows:

[symbol] TESTAUTH FCTN=value
[,AUTH=value]

FCTN
specifies a value representing whether the function is to be performed. If 0 is specified, no
authorization is required for the function. If 1 is specified, authorization is required. The
value may be specified as one of general registers 2 through 12 previously loaded with the
right-adjusted value. The register may be designated symbolically or with an absolute
expression, and is always coded within parentheses.

AUTH
specifies a value representing the authorization level to be tested. If 0 is specified, the job
step is not authorized to perform any restricted function. If 1 is specified, the job step is
authorized to perform restricted functions. If AUTH is not coded, the authorization of the
current job step is used.

Control is returned to the instruction following the TESTAUTH macro instruction. When
control is returned, register 15 contains one of the following return codes:

Hex Code Meaning

00 The task is authorized for the specified function.

04 The task is not authorized for the specified function.

08 The specified values for the function or authorization codes are not valid.

WTO/WTOR

The write-to-operator (WTO) and write-to-operator with reply (WTOR) macro instructions
have two special operands, MSGTYP and MCSFLAG. Only programmers familiar with
multiple console SUppOit (MCS) should uSe these operands, since using them improperiy couid
impede the entire message routing sc.heme. These operands set flags to indicate that certain
system functions must be performed, or that a certain type of information is being presented
by the WTO or WTOR macro instruction.

The MSGTYP and MCSFLAG operands may be specified in either the standard or list form
of the WTO and WTOR macro instruction. The standard form of the WTO macro instruction
is shown below. Only the MSGTYP and MCSFLAG parameters are shown and explained in
this description. For ordinary WTO/WTOR macro instruction parameters, see the description
in OS/VS Supervisor Services and Macro Instructions, GC27-6979 .

[symbol] WTO/WTOR
. . . [MSGTYP= ACTIVE] SESS

N
Y
JOBNAMES
STATUS

[,MCSFLAG=(name [, name], ...)]

Supervisor Macro Instructions for System Programmers 187

MSGTYP=JOBNAMES or MSGTYP=ST ATUS or MSGTYP=SESS
specifies that the message is to be routed to the console which issued the MONITOR
JOBNAMES, MONITOR STATUS or MONITOR SESS command, respectively. When the
message type is identified by the operating system, the message will be routed to only those
consoles that had requested the information. Omission of the MSGTYP parameter causes
the message to be routed as specified in the ROUTCDE parameter.

MSGTYP=ACTIVE
specifies that the multiple-line message is in response to a MONITOR A (MN A) command
and should be routed to the console that issued the command.

MSGTYP=YmMSGTYP=N
specifies that two bytes are to be reserved in the WTO or WTOR macro expansion so that
flags can be set to describe what MSGTYP functions are desired (see below). Y specifies
that two bytes of zeros are to be included in the macro expansion at displacement WTO +
4 + the total length of the message text, descriptor code, and routing code fields. N, or
omission of the MSGTYP parameter, specifies that the two bytes are not needed, and that
the message is to be routed as specified in the ROUTCDE parameter. If an invalid
MSGTYP value is encountered, a value of N is assumed, and a diagnostic message is
produced (severity code of 8).

The bit definitions for MSGTYP= Y follow:

Bit 0: MONITOR JOBNAMES

Bit 1: MONITOR STATUS

Bit 2:MONITOR ACTIVE

Bits 3-4:Reserved

Bit 5:MONITOR SESS

Bits 6-15: Reserved for future system use

When MSGTYP= Y is specified, the issuer of the WTO or WTOR macro instruction that
contains the MSGTYP information must set the appropriate message identifier bit in the
MSGTYP field of the macro expansion. Prior to executing the WTO or WTOR SVC (SVC
35), the issuer must also set byte 0 of the MCSFLAG field in the macro expansion to a
value of hexadecimal 10. This value indicates that the MSGTYP field is to be used for the
message routing criteria. When the message type is identified by the system, the message
will be routed to all consoles that had requested that particular type of information. Routing
codes, if present, will be ignored.

MCSFLAG
specifies that the macro expansion should set bits in the ,MCSFLAG field as indicated by
each name coded. Names and their corresponding bit settings are shown in Figure 30.

188 OS!VS2 Planning and Use Guide

Name Bit Meaning

---- 0 Invalid entry.

REGO 1 Message is to be queued to the console whose source 10 is
passed in Register O.

RESP 2 The WTO is an immediate command response.

---- 3 I nva I id entry.

REPLY 4 The WTO macro instruction is a reply to a WTOR macro
instruction.

BROCST 5 Message should be broadcast to all active consoles.

HROCPY 6 Message queued for hard copy only. This operand is invalid
with the multiple -line form of WTO.

QREGO 7 Message is to be queued unconditionally to the console whose
source 10 is passed in Register O.

NOTIME 8 Time is not appended to the message. This operand is invalid
with the multiple -line form of WTO.

--- 9-12 Invalid entry.

NOCPY 13 If the WTO or WTOR macro instruction is issued by a program
in the supervisor state, the message is not queued for hard
copy. Otherwise, this parameter is ignored.

--- 14 -15 Invalid entry.

Note: Invalid specifications are ignored and produce an appropriate error message.

Figure 30. MCSFLAG Parameters

Supervisor Macro Instructions for System Programmers 189

190 OS/VS2 Planning and Use Guide

System Overview

The system overview chapter summarizes the VS2 control program, emphasizing job, task,
data, and recovery management. Users who wish to learn general concepts about how VS2
operates can use the system overview as a basic learning tool. Users who must learn the logic
of VS2 can use the system overview as an index to get to the appropriate logic manuals.

This chapter consists of three sections:

• Method of Operation
• Program Organization
• System Communications

The Method of Operation section consists of seven M. O. (Method of Operation) diagrams
which show functions performed by VS2. The M. O. diagrams show initialization, input
processing, job processing, output processing, recovery operations, and TSO (time sharing
option) processing.

The Program Organization section shows the sequence of operation for a typical batch job
stream. This section user cross-references (numbers in parentheses) to the M. O. diagrams to
correlate the two sections to one another.

The System Communications section gives the meaning of several important and new
control blocks used by VS2. The new control blocks are used for paging data between virtual
and real storage.

The preface lists the publications referred to in this chapter.

Method of Operation
This section illustrates the functions performed by the VS2 control program. It consists of
seven diagrams:

• Program Structure
• System Initialization
• Processing Input
• Processing Jobs
• Processing Output
• Recovery Management
• TSO

The extended descriptions refer to other IBM publications containing detailed information
about the function illustrated, and when appropriate, refer to index words in the referenced
publication. The user can look up the index word in the referenced publication, and find
detailed information quickly.

System Overview 191

192 OS/VS2 Planning and Use Guide

t:Il
'<
~
(1)

3
o
<:
(1)

~ (i.

~ -\C)
IJ.l

J
System
Initialization

Diagram 2

1
Processing]
Input

Diagram 3

Figure 31. Overview of Method of Operation Diagrams

I
Processing
Jobs

c:SIVS2 Control
Proglram Structure

Diagram 1

t
I

Processing
Output

Diagram 4 Diagram 5

I
Recovery
Management

Diagram 6

I
TSO (Time
Sharing Option)

Diagram 7

.... - Indko'" rno;n en"y po;n'

••• I~ - Indicates user action

Indicates secondary control flow

____ ...,: > - Indicates data flow

-- - ---. - Indicates data pointer

Legend for Diagrams 2-7

-'
\()
~

o
en
.........
< en
N

."
Q)
::l
::l
S·

(1Q

Pol
::l
0..

c::
fJJ
(1)

a
t:
~
(1)

Job Management

Reads jobs
into the
control
program,
schedules
,-hem for
I~xecution ,
(md writes
fob output

Diagram 1. Program Structure

i Task Management

Initiator/ Processes

Terminator interruptions
and requests

I
for supervisory
services

Reader/
Interpreter

I
Writer

I
Master
Scheduler

I

VS2 Control Program -

Data Management I Recovery Management r-
Interruption Handles I/O Attempts Channel Check
Supervisor input/ Supervisor recovery Handler
(See note 1) output from hardware

I
operations

I
and software

I errors

Task Access Methods Machine Check
Supervisor (See note 2) Handler

I I I
Contents Dynamic Device
Supervisor Reconfiguration

I Note 1. Interruption supervisor processes I
five types of interruptions:

Paging • SVC
Supervisor • External/Timer

• I/O

I • Program
• Machine Check

Virtual Storage Note 2. Access methods consist of:
Supervisor • ISAM

I • SAM

• BDAM

Timer • TeAM
• VSAM Supervisor
• BTAM

• BPAM
I • BSAM

• QSAM
Termination
Supervisor

J

V'J
'<
~
~

3
o
<
~

~
cD"
~

~
VI

DIagram 1. Program Structure

Diagram 1 Illustrates the major functions that constitute
VS2. Since each function consists of many routines, and
this system overview Is not detailed, only the basic concepts
of VS2 are described.

-\0
Cf\

o
CIl
........
<:
CIl
N
~
5)
::s
::s
5'

fJQ

Pl
::s
c..
c::
rJJ
(J)

o c: a:
(J)

Input

SYS1.NUCLEUS

SYS1.PARMLIB

SYS1 .. LPALIB

Operator pushes
LOAD Button

Parameters

Diagram 2. System Initialization (Part 1 of 2)

2 Sets boundaries for real storage above nucleus. (See
Figure 6.)

3 Initializes SQA for:
• Operator Consoles
• Non-console Devices
• RAS Facilities
• NVT, CVT, and PVT
• Page Table and System Segment Table

Defines the LPA and loads the requested LPA modules
into virtual storage.

To Diagram 2 (2 of 2)

c;n
'<
~
(1)

3
o
<:
(1)

~ (DO
~

~
-J

Diagram 2. System Initialization

Item I Description

1 After the operator presses the lOAD button, the first

2

3

4

IPl record, containing a CON (channel command word),
Is read into locations 0-23. The CON in this record
reads, in tum, a chain of CONs, which read in the
remainder of the IPl control section. The doubleword
at location 0-15 then becomes the new PSW (program
status word). IPl completes its processing by:

• Clearing general and floating poi~t registers.
• Clearing real storage to the highest addressable

location.
• Relocating code above the nucleus.
• loading the selected nucleus and transfering

control to NIP (nucleus initialization pragram).

NIP determines the boundaries for real and virtual
storage above the nucleus.

NIP initializes important devices, tables, and system
facilities, such as the NVT (nucleus vector table), the
CVT (communications vector table), the PYT (paging
supervisor vector table), and the volumes used for
paging.

NIP determines the restart characteristics of the system.
It then loads the lPA (link pack area) according to the
values in the parameter list in SYS1.PARMLIB.

Reference

IPl and NIP
logic

IPl and NIP
logic

IPl and NIP
logic

IPl and NIP
logic

Index Word

record reading

nucleus type

storage
boundaries

quickstart

\Q
00

o
VI

.........
<
VI
N

~
;-
::l
::l
5'

(JQ

~
::l
0..

C
'" (1)

a
c:
0.:
(1)

Input

PRESRES
List

Volume
Characteristics

SET Command

SET Parameters

SET Parameters

Diagram 2, System Initialization (Part 2 of 2)

5 Initializes the communications task .••••••••••••

6 Processes the SET command ••••••••••••••••

7 Initializes the Time-of-Day Clock. '"--_________ _

8 Initializes the Job Queue Data Set • •••••••••••

9 Initializes volume attributes [I =============~

10 Initializes the system log ••••••••••••••••

Initializes SMF (system management facilities) ••••••••

To Diagram 3

Console Initialization
Routine

Command
Scheduling Routine

Queue
Initialization Task

Log Initialization
Routine

SMF Initialization
Routine

Output

Appropriate UC B
i ,

CI.l
'<
~ o
3
o
<:
o
~
(D'
:€ -\0
1.0

Diagram 2. System Initial ization

Item Description
r-----

5 The master scheduler IPL routine initializes the console.
Then, the IPL routine displays commands available for
execution as a result of the AUTO parameter in a SET
command.

6 The SET command causes the master scheduler JPL
routine to look for the procedure I ibrary and the work
queue data set. After finding the procedure library
data set, the Command Scheduling routine catalogs
the procedure library data set into the save volume on
which it was found.

7 The master scheduler IPL routine asks the operator for
SET parameters to set the TOD (time-of-day) clock.

8 The IPL routine uses an ATTACH macro to pass control to
the queue initialization task.

9 The volume-attribute-setting routine ensures that the
volumes specified in the PRES RES data set are mounted
and that the volume attributes are correct in the proper
UCB.

10 The system log data sets are located and initial ized. If
there is no log in the system, the operator receives a
message to that effect.

11 SMF initialization includes obtaining and storing SMF
parameters, allocating devices for and opening of SMF
data sets, establishing the SMF task, initializing a
lO-minute timer, and issuing the initial SMF records.

Reference Index Word

Job
Mana!~ement
Logic

Job SET
Management command
Logic

Job SET
Management command
Logic

Job
Management
Logic

Job
Management
Logic

Job system log
Mana!~ement
Logic

Job SMF
Mana!~ement initial ization
Logic

N

8

o
til
........
<
til
N

J2
III
:::l
:::l
5·

rJQ

III
:::l
0-

r:
rJl
(I)

a
c:
0.:
(I)

Input

JCL EJ
c:J

SYS1.PROCLIB

TSO Device

§u Q
SYSIN

-----oJ

JCT

TSO Commands
TCAM Commands
OS!VS2 Commands

* The Moster Scheduler is permanent;
the others, dynamic.

Diagram 3. Processing Input

I !~m~n. 1
II

i: ~
Command

II ~IM~I II~II ~

I I

>I

1 Master scheduler establishes the
START command task for START
command.

2 Reads data from the input stream or
from cataloged procedures. The
interpreter builds tables and control
blocks for use by the control program.

3 Allocates space for control blocks
in SYSl.SYSJOBQE.

4 Stores system input data records
in temporary storage.

5 Selects a job by priority and
allocates system resources.

6 Gives the job control by placing it
on the TCB queue.

7 Keeps track of system records.

8 Process commands in the input stream.

9 Provides for error recovery. (if necessary)

To Diagram 4

System Task
Control (STC)
Routine

Master Schdlr
Command
Processing
Routine

Recovery
Management

Output

SYS1.SYSJOBQE

SYSIN

Batch
Only

Permanent
TCB*

Master
Schdr
TCB

TSO
Only

JOB B
(for SYSOUT)

DO
00*

TCB Queue

CJ)
'<
til
;;
3
o
<
('P

:;;!
(D"
$!
N :=

Diagram 3. Processing Input

ftem

1

2

3

4

Description

After master scheduler initial ization, the master
scheduler prepares for START commands by using the
START command task.

When the operator Issues a START RDR command, the
ST ART command task of the master scheduler issues an
ATTACH macro instruction to give control to the reader.
The input stream can come from several I/o devices:
terminals, readers, direct access and tape devices. The
input stream consists of JOB, EXEC, and DO statements,
data, and commands. The interpreter builds tables and
control blocks, such as the JFCB (job file control block),
constructed for each DO statement encountered, the SCT
(step control table), constructed for the EXEC statement,
the JCT (job control table), constructed for the job
statement, and the DSB (data set block) for SYSOUT
data sets. These control blocks represent the input
stream to the operating system. TSO jobs are read and
interpreted by the same routines as background jobs,
but they are initiated differently. Item 6 explains the
procedure used to initiate TSO jobs.

The reader places the JCT, SCT, JFCBs and other control
blocks on the SYS1.SYSJOBQE data set to await
processing. These records define variables such as device
types, access routine methods, and data organization.

The reader stores the input data on the SYSIN data set.
The JFCB built for the 00* statement points to the input
data. When the problem program receives control, it
will read the data from the SYSIN data set, after
determining its location from information on

'SYS1.SYSJOSQE.

5 I The operator starts the initiator for a particular class by
Issuing a START INIT command. In OS/yS2, 63 (42 for
TSO) initiators can be started concurrently since in the
virtual storage environment protection keys are no
longer limited to 16. The initiator selects the highest
priority job on the queue and allocates virtual storage,
auxiliary storage, I/O devices, data sets, or any other
system resources. A TlOT (task input/output table)
contains the allocation requests. The initiator
determines resource requirements by the values contained
in the control blocks built by the reader and

Reference

Job
Management
Logic

Job
Management
Logic

.lob
Management
Logic

.lob
Management
Logic

Job
Management
Logic

Index Word

control block
creating

job queue

input storage

resource
requests

Item

6

7

8

Description

interpreter. If the resources requested by a task cannot
be acquired, the task waits. (The operator'haS' the
option of canceling the task.)

The initiator gives control to toe task by placing the
task's TCB (task control block) on the TCB queue. (The
system task control (STC) routine attaches the task to
the TCB queue after receiving control from the
initiator.) The TCB queue consists of two types of
TCSs -- permanent and dynamic. Permanent TCBs are·
constructed during system initialization, and consist of
the paging supervisor I'ask, the system error task, the
dynamic device reconfiguration task, the master
scheduler task, and others. Dynamic TCBs are
constructed when the ATTACH macro is issued. All
tasks in VS2 have their TCBs on this queue. Tasks
operating under control of TSO have a similar TCB
structure; however, TSO tasks are queued from the
TSC (time sharing control) routine, and not the
initiator.

Various catalog management routines keep system
records in order and easily accessible.

The master scheduler processes commands entered into
the operating system. Commands can be either of two
types: task-creating or existing-task commands.
Existing -task commands can be processed by the
appropriate command processing routines upon entry;
task-creating commands must be schedu led for
execution. In the second case, the master scheduler
builds a CSCB (command schedul ing control block) to
contain the command request. The command wi II then
be processed when the resources become available.

9 I The VS2 control program contains recovery
management suppart that reduces or cancels the effects
of most programming and hardware errors. When an
interruption (Diagram 4, item 3) that would stop the
operating system occurs, supervisor routines pass control
to the appropriate recovery management routines.
Diagram 6 details the major recovery management services
available to the VS2 user.

Reference

Job
Management
Logic

Job
Management
Logic

Index Word

attaching task

command
types

existing
task

task
creating

N
o
N

o
en
"-< en
N

"'C
;;;;-
:::3
:::3

:::3
'fCI

Pl
:::3
0-

C
Vl
~

o
= 0.:
~

Input

138- 139
134·- 135
186- 187
142·- 143
232 - 239

Real Storage Locations
of Interruption Codes

From Diagram 3

1 Supervises task processing by handling
requests for supervisor services,

• Task Supervision

• Con,tents Supe:-:isio.n ~1
• Paging SupervISion •.
• Virtual Storage Supervision
• Timer Supervision
• Termination Supervision

2 Selects jobstep or task to process based .on:
• Priority
• Ready Status

and dispatches ready jobs • I

3 Handles interruptions:

• SVC
• Timer/External
• I/O Interruptions • I
• Program Check Interruptions
• Machine Check Interruptions

Routes Control to
appropriate Supervisor
Routine

Dispatcher (TSO
and Background)

Routes Control
to appropriate
Interruption
Handler

To Dispatcher or
To Caller

Output

4 Handles OPEN and CLOSE requests) , ~

TSO Routines

5 Haodl" "'''',,'' fa, TSO a"" TCAM ,.",k., • I
System Contml Blocks • (Diagram 7) Ii

6 Handles abnormal termination of tasks (including TSO tasks)J

PSW

Diagram 4. Processing Jobs

7 Provide for error recovery (if necessary) • I Recovery
Management

(Diagram 6)

t;I}
'<
~
~

3
o
<
~

~ (DO
~

~ w

Diagram 4. Processing Jobs

Item

1

2

3

Description

The supervisor handles requests for supervisor services.
Requests of this nature are in the form of macro
instructions. These macros, when expanded, end with
an SVC (supervisor call) instruction. The SVC in turn
causes an interruption (a machine characteristic) as
described in item 3. The supervisor then manipulates
the system control blocks to change the schedul ing or
execution of system tasks.

Each task in the system has an execution priority between'
o (lowest) and 15. System tasks a.tways have the highest
priorities. The TCB contains a bit indicating whether or
not a task is ready to process. The dispatcher (a
supervisor routine that is part of the task supervisor)
chooses the highest priority ready task, and marks it as
dispatchable. The task can now receive control.

The VS2 control program processes five Iypes of
interruptions. Each interruption, except for machine
check interruptions, is routed through a series of
routines that determine the cause of the interruption
and the Iype of processing required to satisfy the
interruption. Machine check interruptions go to the
Machine Check Handler, a part of recovery
management (Diagram 6). When interruptions occur,
the current PSW (program status word) contains a
record of the system status, and a spec ific location in
real storage contains a code indicating the cause of the
interruption.

RefEtrence

Supervisor
Logic

Supervisor
Logic

Supervisor
Logic

Index Word

dispatcher
TCB

interruption
handling

Item

4

5

6

II 7

Description

The OPEN routines (part of data management) locate
and logically connect the input data sets to the job.
Further, they fill in the final information needed by
the DCB (data control block), and build the DEB (data
extent block). Data management access method
routines need this information to transfer data. The
CLOSE routines logically disconnect the data sets
from the job.

TSO and TCAM consist of routines that operate under
control of the VS2 control program. TSO routines
service requests to dynamically change the operation
of TSO. TCAM runs under control of VS2 with specific
routines handling service requests, in a manner
similar to TSO. (See Diagram 7.)

When a task fails to finish, supervisor routines
terminate it abnormally. Depending on the failure,
either the entire job step task or the single task is
terminated. If desired, a dump of the task can be taken
to help indicate the reason for the failure.

The VS2 control program contains recovery management
support that reduces or cancels the effects of most
programming and hardware errors. When an
interruption that would stop the operating system occurs,
supervisor routines pass control to the appropriate
recovery management routines.

Reference

OPEN/CLOSEI
EOV Logic

TSO Control
Program Logic

Supervisor
Logic

Index Word

termination

N o
~

o
rJJ

.........
<
rJJ
N

"0
~
::s
::s ;.

(JQ

pj
::s
0-

C
en
~

o
c:
0.:
~

Input
From Diagram 4

0: ::>I

B 'I

Interruption
Code

Diagram 5. Processing Output

Output

1 Stores output data and messages wh ile they are
processed by the control program. i ~

2 Queues pointers to date and messages. ' : ::::::t

3 Selects output data when it is ready to be -- ----
written by the control program.

r-
I

--'
SYS1.SYSJOBQE

t
I

4 Writes output from SYSOUT to selected devices. i)t

5 Writes messages from SYSOUT to selected devices.

6 Deletes control blocks from SYS1.SYSJOBQE
and terminates the task.

I
____ I_~

7 Provides for error recovery. (If necessary) III Recovery
Management
(Diagram 6)

To Diagram 2, unfil Operating
System has no work to do.
Then, WAIT

00
D

tn
'<
~
~ a
o
<:
~

~
0·
~

~
V'I

Diagram 5. Processing Output

Item

1

2

3

4

5

6

Description

Each task issues data handling macros during its
processing, and the control program stores the data in the
SYSOUT data set. System messages issued to the
programmer are also stored in the SYSOUT data set. TSO
and TCAM transfer data by using message handl ing
programs created by TCAM macro instructions. The
TCAM Logic and the TSO Control Program Logic
publications describe message handling programs.

Pointers to data, such as DSBs (data set blocks) and 5MBs
(system message blocks) are located on the SYSJOBQE
data set. These control blocks contain addresses and
other system control information.

The operator issues a start command (START WTR) to start
a writer for any of 36 output classes. After the writer
receives control (via an ATTACH macro), it selects data
from its class. The writer will print the data as output
from that class until the operator issues a STOP command
or unti I there is no data. More than one writer can be
active at a time, with more than one writer active for
each class.

The writer writes the data to the device specified by the
installation.

The writer writes the messages to the programmer as
specified.

Supervisor routines disconnect the control blocks
associated with the task, and then terminate the task
normally.

7 I The VS2 control program contains recovery management
support that reduces or cancels the effects of most
programming and hardware errors. When an interruption
that would stop the operating system occurs, supervisor
routines pass control to the appropriate recovery
management routines.

Reference

Job
Management
Logic

Job
Management
Logic

Job
Management
Logic

Job
Management
Logic
Job
Management
Logic
Supervisor
Logic

Job
Management
Logic

Index Word

reading
records

termination

N o
0\

o
V'J
<
V'J
N

."
ji)
::l
::l
5·
00

~
::l
Co

C
til
(D

a
c:
0.:
(D

Input
From Machine Check
Interruption
MCH

SWAP Co

System or operator

Diagram 6. Recovery Management

1 Soves important records.

2 Analyzes the error and determines whether or not the
operating system can continue processing.

POST • If the operating system ~ continue: .

• Me". i: ~
• CCH . • Goes to MCH, which
• If it E.!:!!!. continue: places system in wait

state

3 Sui Ids appropriate records.

: ~~=: .1 i1
4 Gives control to the appropriate supervisor routine

5 Verifies the DDR request and determines if
DDR should be terminated. Message I I
If DDR is terminated: • SVC 3 Routine

6 Executes the various DDR requests: I I I
• Obtains devices for SWAP commonds
• SWAP UCS information
• Requests and monitors the exchange of the volumes.

Interrupted Program
Receives Control

Fixed
Logout Area

I I

U~B address

Validity Bits

VJ
'<
'" (D
3
o
<
~

~
ro'
~
N

8

Diagram 6. Recovery Management

Item

1

2

3

Description

MCH (machine check handler) saves the machine check
PS>N (program status word) and the fixed logout area.
This allows control to be returned to the CPU (central
processing unit) at the point where the error occured, if
necessary •

MCH receives control when the machine-check
interruption code indicates:

• System damage, where the error cannot be
attributed to the instruction referred to by old
PS>N •

• Instruction processing damage, where the instruction
referred to by the old PS>N foiled.

• Hardware retry successful, where the CPU
instruction was retried successfully.

• ECC (error correction code), where the ECC
facility repaired the error.

• Time facility damage, where the TOD clock failed.
• Timer damage, where the high resolution timer

contained a parity error.
CCH (channel check handler) receives control from the
I/O supervisor when the extended CS>N (channel status
word) indicates:

• A channel data check
• A channel control check
• An interface control check.

Unlike MCH, CCH cannot place the system in a wait
state. CCH gives control to MCH for system
termination conditions.

MCH performs two types of error recording: one for
formatted error recording where the records go to
SYS1.LOGREC for eventual printing; and the other for
emergency recording where the records go to
SYS1.LOGREC when the system cannot continue. The
MCH error record consists of the abbreviated record,
the fixed logout, and the damage-ossessment field of
the MCH common area.

CCH prepares input for the I/O supervisor, which
attempts channel retry. The input consists of the CCH
error record, which contains an ERPIB (error recovery
procedure interface block) and a channel inboard
record.

Reference

Recovery
Mana"ement
SUPPOl't Logic

Index Word

Recovery I error analys is
Mana~lement

Support Logic

channel failure

Recovery I recovery paths
Management
Support Logic

Recovery I ERPIB
Management
Support Logic

Item Description Reference Index Word

4 MCH gives control to the dispatcher Recovery I/O supervisor
or to the interrupted program. CCH passes control to Management processing
the I/O supervisor, which uses the CCH records to Support Logic termination
attempt channel retry operations.

5 DDR (dynamic device reconfiguration) allows the Recovery S>N AP command
operator to move a volume from an I/O unit that has Management
recurring failures to another. The SWAP command Support Logic
initiates DDR. DDR verifies the SWAP request, controls
the execution of the request, and then performs the
request.

6 DDR prepares for volume changing by updating the UCB Recovery
(unit control block) information for the devices Management
indicated by the request. Support Logic

N o
00

o
en
'< en
N

'"0
~
::::l
::::l
5"

fJQ

~
::::l
0-

C
fJ)
(!)

o
c::
0.:
(!)

Input

C] START
STOP

L..-___ --IMODIFY

SYS1.PROCLIB

Attention Button on
Console Device

Diagram 7. TSO (Part 1 of 2)

START, STOP, or
MODI

From
Diagram 4 ••• tI

ut

TSC

1 Initializes TSO when operator enters START TSO command,
and processes MODIFY and STOP commands. i "'"-..J

2 Handles SWAP requests for TSO users. • I

RCT

3 Schedules attention interruptions and quiesces foreground
jobs for swap-out.

4 Restores foreground jobs after SWAP-I N •

Logon/logoff Scheduler

Paging
Supervisor

5 Validates user identification and constructs JOB and EXEC I ; :>t
statements from infonnation on LOGON command. Attaches I
program named in LOGON procedure. •

To Diagram 7 (2 of 2)

Job Management
Routines
(Diagram 3)

TSO Control Blocks

!f
~
3
o
<:
til

~
~.

~

Diagram 7. Time Sharing Option

Item I Description Reference Index Word

1 I The operator starts TSO with a START TSO command. I TSO Control I operator action
The TSC (time sharing control task) receives control after Program Logic

2

3

the START command and obtains a foreground region by
using VS2 task management routines (see Diagrams 1 and
4). The TSC also handles STOP and MODIFY commands,
performing the requested functions.

TSO does not use separate page data sets; rather, it
relies on the paging supervisor for swapping TSO users
to and from external page storage. The TSC interfaces
with the paging supervisor and signals it to perform
swapping.

The TSC attaches an RCT (region control task) for each
region. The TSC serves two purposes: scheduling
attention interruptions, and quiescing and restoring
foreground jobs. Before a foreground job can be swapped
out, all I/O activity must be quiesced-stopped in an
orderly manner-ond control blocks must be removed from
system queues. Since most control blocks for regions in
OS/yS2 reside in the LSQA (local system queue area),
they can be swapped out with the rest of the region after
the foreground job has been quiesced.

4 I The RCT logically restores foreground jobs by
reestablising pointers to control blocks and by
reactivating intercepted I/o requests.

5 The Logon/logoff scheduler validates the user
identification and builds JOB and EXEC statements from
operands on the LOGON command. The Logon/logoff
scheduler passes these statements to reader/interpreter
and Initiator routines (Diagram 3) which allocate
resources to the job the same as for batch jobs. Th is
technique ensures compatibility between foreground and
background jobs. The Logon/logoff scheduler invokes
the TMP (terminal monitor program).

paging

RCT
TSC

Logon/logoff
scheduler

tv

:::;l

:>
fl
........
<
fl
OJ

3!
;-.)

:::l
:::l

:l
''I
»

l
n
~

;)

"
")

Specifies problem
"'-program, command v

process.

User-entered Command

C ...
I

v

ParametE!r List

Data Manageme nt ...
Macros [.....

"
I

- ...

LOGON or LOGOFF
Command

Diagram 7. TSO (Part 2 of 2)

From Diagram 7 (l of 2)

. . -"""'''"'''"'
TMP --

6 Attaches user prqblem program or command processer and ..
gives it control . ATTACH Routines

Driver Output

7 Monitors events throughout TSO and VS2. I

-"
TSO Dispatcher v

8 Operates under VS2 dispatcher to communicate Driver
requests.

Parameter List

TCAM/TIOC

9 Acts as the interface between the TSO program and the ..
terminal. .. TCAM Routines

...

Logon/Logoff Scheduler .. To Diagram 4

10 Performs IOogoff functions

til

~
(D

3
o
t;l
:!
(D"
:E
~

Item Description

6 I The TMP attaches problem programs or command
processors requested by the terminal user. Once the
attached foreground program gains control of the CPU,
it has control for a set amount of time called a time
slice. This ensures efficient use of system resources by
both background and foreground jobs. The Driver
(Item 7) controls the length of the time-slice.

7 The Driver receives information from other TSO routines
and the control program, then uses this information to
assess the workload of the system, and monitors efficient
operation of TSO. One aspect is controll ing the length
of TSO time-slices.

8 I The TSO Dispatcher communicates the TSO Driver's
requests for status changes in TSO to the TSC and the
RCT. The TSO Dispatcher also rearranges the TCB
ready queue to indicate the current priority of tasks in
the system (time sharing tasks and background tasks) as
determined by the Driver.

9 TSO uses TCAM (telecommunications access method) to
communicate with the terminal user. Several routines
provide the function of initialization and I/O transfer:

TIOC (terminal I/O coordinator) acts as the interface
between TCAM and the terminal user of a problem
program. noc routines move data between TSO
buffers and problem program buffers. TSO subroutines
of TCAM move data from TCAM buffers to TSO buffers
for input processing, and vice-versa for output
processing.

TCAM message handler routines process messages to
and from terminals. TCAM message handler "routines
consist of assembled TCAM macros. The TCAM
Concepts and Facilities publication explains how to
assemble message handler routines.

10 I The Logon/Logoff scheduler is brought into a region
when a LOGOFF command or when a second LOGON
command is entered during the terminal session. The
logoff routines terminate the user's session and perform
statistics updating.

Reference Index Word

driver

TCAM Logic
TSO Control I terminal
Program Logic communications

212 OS/VS2 Planning and Use Guide

Program Organization
This section shows the sequence of operation for a job in a typical batch job stream. To
simplify basic concepts of VS2, the figure does not consider IPL and NIP, nor does it consider
TSO processing. IPL and NIP processing and TSO processing are described in M. O. diagrams
2 and 7 respectively; the numbers in the lower right-hand corner of each block refers to the
appropriate M. O. diagram.

. System Overview 213

,----- - -- ---l
Job I I ,.-----, Job Entered I

I ~) I
I
L ____ _ ,----
I
I
I

....,

Job Stored in
Temporary Storage l===::::::

(3)

Job Interpreted

~)

Job Scheduled

(3)

Job Initiated

(3)

I
I
I
I
I
I
I L ____ ~

I
I
I
I

No I
--~

Task Attached

I (3) I
L_ -I..as~a~e~t-.J

Figure 32. Sequence of Operation (Part 1 of 2)

214 OS/VS2 Planning and Use Guide

,------,
I I

SYS1.SYSJOBQE I
I

SYSIN Data Set I
I I
L __ Data Manag~n~

r----------l
SYS1.SYSJOBQE

SYSIN

I
I
I

I
I
I
I
I
I

(4) I
I

Interruptions
...----1: __ --1.._.... I

Supervisor Services '--111-----1

Requested
(4)

CPU

L ___ _
Task I
~a~~~'2!.J

,-- ----------1
I
I
I

Yes

I
I

I Recovery !
I No Managem(~{ I L _____________ J

Job Output Stored
in Temporary
Storage

(5)

Job Detached

r----~------,

I I
I SYSOUT I

I----L--~...r-..... Data Set I

I I
I :
L _ ::a~ ~~a!:~n~ _ J

'--__ -r-_----.;(~5).... Representative
Control Blocks

Job Terminated

(5)

Write Error Records
if Possible

r----- -----------...,
I
I

I

I
I
I
I
I

Attempt Retry if
system continues

I
I
I
I Recovery I

N~ ___ .0a~~e~~ .-J L ____ _

r-----
I
I
I Job Output
I Written

I (5)
I I
I Job Management I L ___________ J

r-----...,
I I

: I Recovery Management
I ~} I L _________ .J

L _______ -,

ODi
I I
L ___ .!:a~ ~a~~~~ ____ J

Figure 32. Sequence of Operation (Part 2 of 2)

System Overview 215

System Communications
This section describes the purpose of several control blocks and tables used by the VS2 control
program. The description of control blocks is not meant to be exhaustive. Control blocks are
described in more detail in the VS2 System Data Area publication and in the "Data Areas"
section of logic manuals.

System Control Blocks
The method of operation diagrams referred to various control blocks, such as the DCB and the
DEB. Control blocks contain information about a particular system resource. For example, the
DCB describes I/O devices and the TCB contains information about a task. In short, control
blocks communicate information needed by the various components of the control program.
Figure 33 lists and describes the following system control blocks:

• Communications Vector Table (CVT)

• Task Control Block (TCB)

• Task Input/Output Table (TIOT)

• Data Extent Block (DEB)

• Data Control Block (DCB)

• Dnit Control Block (DCB)

• Input/Output Block (lOB)

• Event Control Block (ECB)

• Page Table (PGT)

• Segment Table (SGT)

• External Page Table (XPT)

• Page Frame Table (PFT)

Figure 34 illustrates the relationship between system control blocks.

216 OS/VS2 Planning and Use Guide

CYT The CYT provides a means of communication between nonresident routines and the control
program nucleus. It points to two words of TCB addresses that locate the TCB of the active
task.

TCB The operating system keeps pointers to all information related to a task in a TCB. Diagram 3
illustrates the TCB queue, showing permanent TCBs and dynamic TCBs, and represents tasks
attached and created with the ATTACH macro. The TCB contains pointers to other system
control blocks. These control blocks contain such data as which I/O devices are allocated to
the task, which data sets are open, and which load modules are requested.

TlOT The TIOT contains pointers to control blocks used by I/O support routines. It points to the
addresses of unit control blocks allocated to the task, the job and step name, the ddnames
associated with the step, and the status of each device and volume used by the data sets. Job
management constructs a TIOT for each task in the system.

DEB A DEB describes a data set's auxiliary storage assignments and contains pointers to DCBs
and UCBs. The DEB is created and queued to ihe TCB at the time a data set is opened.
Each TeB contains a pointer to the first DEB on its that points to data sets which are
opened for the task at a given time, what extents are occupied by open data sets, and where
the DCB and UCB are located.

DCB The DCB is the place where the operating system and the problem program store all
pertinent information about a data set. The DCB points to the lOB. It may be completely
filled by operands in the DCB macro instruction, or partially filled in and completed when
the data set is opened, with subparameters in a DD statement and/or information from the
data set label. The format of DCBs differs slightly for each of the access methods and device
types.

UCB The UCB describes the characteristics of an I/O device. One UCB is associated with each
I/O device configured into a system.

lOB The lOB is the source of infoimation required by the I/O supervisor. It is filled in with
information when an I/O operation is requested. The lOB points to the DCB associated with
the I/O operation and to the channel command associated with a particular device.

ECB The ECB is a 1-word control block created when an EXCP macro instruction is issued,
initiating an asynchronous I/O operation. At the completion of the I/O operation, the access
method routine posts the ECB. By checking this ECB, the completion status of an I/O
operation can be determined. In all access methods, the ECB is the first word of a larger
block, the data event control block.

PGT The PGT converts the page number to a real storage address. Each page number in the PGT
has a real storage address associated with it. The PGT consists of page table entries, which
are created by the create page table routine.

SGT The SGT translates the segment number to the correct page table number. Each segment
number in the SGT has a page table number associated with it. YS2 uses two segment tables:
one with a protection key of 0 for system programs; and the other with a protection key of
one for problem programs. The SGT consists of segment table entries, which are created by
NIP routines.

XPT The XPT keeps track of every page on external page storage. For each PGT entry, there is a
corresponding XPT entry. The XPT consists of external page table entries, which are created
by the create page table routine.

PFT The PFT contains a list of the page frames available in real storage, and keeps track of all of
the virtual storage area available for paging. Each page frame starts on a 4K boundary and is
4K bytes long. To expedite paging operations, PFT entries contain a bit signifying whether or
not that page was changed while in real storage. Pages that were changed are paged out to
make room for pages needed for execution. Pages that were not changed are overlayed
directly, since a copy of them exists on external page storage.

Figure 33. Description of System Control Blocks

System Overview 217

Figure 34. Relationship Between System Control Blocks

Request Blocks
Frequently, the routines that constitute a task are not all brought into the dynamic area with
the first load module. Instead, they are requested by the task as it requires them. This dynamic
loading capability necessitates using a control block to describe each load module associated
with a task -- a request block (RB). An RB is created by the control program when it receives
a request from the system or from a problem program to fetch a load module for execution.
Figure 35 lists and describes these RBs used in VS2:

• Interrupt Request Block ORB)

• Program Request Block (PRB)

• Supervisor Interrupt Request Block (SIRB)

• Supervisor Request Block (SRB)

• Task Interrupt Request Block (TIRB)

218 OS/VS2 Planning and Use Guide

IRB An IRB is created each time an asynchronous exit routine is executed. It is associated with an
event that can occur at any time during program execution. The IRB is filled at the time the
event occurs, just before control is given to the exit routine.

PRB A PRB is created whenever an XCTL, ATTACH, SYNCH, or LINK macro instruction is
issued. It maintains information concerning non-supervisory routines that must be executed
to perform a task.

SIRB An SIRB is similar to an IRB, except that it is associated only with IBM-supplied
input/output error routines. SIRBs maintain information concerning I/O error handling
routines. Associated error routines are fetched from the SYS1.SVCLIB data set.

SVRB An SVRB is created each time a type II, III, or IV supervisor call is issued. This block is used
to store information if an interruption occurs during execution of these SVC routines.

TIRB A TIRB is created by the A TT ACH routines for each task. The TIRB represents control
program services that must be performed asynchronously.

Figure 35. Description of Request Blocks

With the possibility of many RBs subordinate to one task, it is necessary that queues of RBs
be maintained. VS2 maintains an active RB queue. The active RB queue is a chain of request
blocks describing active load modules and SVC routines. This queue can contain PRBs,
SVRBs, IRBs, SIRBs, and under certain conditions, LPRBs. Figure 36 illustrates the active RB
queue.

+RB-C

TCB

, ,

RB-A RB-B RB-C
~

+A - + B - +C r---

'"'"--- + TCB + RB-A + RB-B

, , , ,

A B C

- .-..---- - -- -- -

Programs

Figure 36. Active RB Queue

System Overview 219

Contents Directory

The contents directory is made up of four separate queues: the link pack area control queue
(LPAQ); the job pack area control queue (JPAQ); the load list, and the link pack area
directory (LPD). Figure 37 describes the following queues used in VS2:

• Link Pack Area Queue (LPAQ)

• Job Pack Area Queue (JPAQ)

• Load List
• Link Pack Area Directory (LPD)

LPAQ

JPAQ

Load List

The LPAQ is a record of every program in the system link pack area. This area contains
reenterable routines specified by the control program or by the user. The routines in the
system link pack area can be used repeatedly to perform any task of any job step in the
system. The entries in the LPAQ are contents directory entries (CDEs).
The JPAQ represents each job step in the system that uses a program not in the link
pack area. The JPAQ, like the LPAQ, is made up of CDEs. It describes routines in a
job step region. The routines in the job pack area can be either reenterable or not
reenterable. These routines however, cannot be used to perform a task that is not part
of the job step.
The load list is a chain of request blocks or LLEs (load list elements) describing load
modules invoked by a LOAD macro instruction. The load list differs from the active RB
queue in that RBs and associated load modules are not deleted automatically. They
remain intact until a DELETE macro instruction deletes them, or job step termination
occurs.
The load list represents routines that are brought into a job pack area or are found in
the link pack area. Each load list element is associated with a CDE in the JPAQ or the
LPAQ; the programs represented in the load list are thus also represented in one of the
other contents directory queues.
Load list elements also contain a count field. Each time a LOAD macro instruction is
issued for a load module already represented on the load list, the count is incremented
by one. As corresponding DELETE macro instructions are issued, the count is
decremented until it reaches zero.

LPD The LPD contains a record of every program in the pageable link pack area. The LPD
consists of link pack directory entries (LPDEs) that point to LPA programs. The LPD
resides in the LPA, and it can be paged.

Figure 37. Description of Contents Directory Queues

220 OS/VS2 Planning and Use Guide

Dynamic Area Control

Storage control information is kept in a series of control blocks called queue elements. Figure
38 describes the following queue elements used in VS2:

• Partition Queue Element (PQE)

• Free Block Queue Element (FBQE)

PQE The PQE associated with a region resides in the system queue area. PQEs head a chain of
FBQEs that describe free space in a region. PQEs are connected to the TCBs for all task s in the
job step through a dummy PQE located in the system queue area. Virtual storage supervisor
routines create PQEs.

FBQE The FBQEs chained to a PQE reflect the total amount of free space in a region. Each FBQE is
associated with one or more contiguous 4K blocks of free storage area. FBQEs reside in the
lowest part of their associated area. As the amount of free space within the region changes,
FBQEs are added to and deleted from the the free block queue. Virtual storage supervisor
routines create FBQEs.

Figure 38. Description of Dynamic Area Queues

Subpool Storage Control
The virtual storage in a region used by problem programs and system programs is assigned by
one or more numbered subpools. (Subpools can also be shared by tasks.) Subpools are
designated by a number assigned to the area through a GETMAIN macro instruction. Subpool
numbers available for problem program use range from 0 to 127. Subpool numbers 128
through 255 are either unavailable or used by system programs. Figure 39 lists and describes
the following queues used in VS2:

• Subpool Queue Element (SPQE)

• Descriptor Queue Element (DQE)

• Free Queue Element (FQE)

SPQE SPQEs describe the subpools created for a task. SPQEs reside in the system queue area and are
chained to the TCB that uses the subpool. Tl;ley serve as a link between the TCB and the
descriptor queue (made up of DQEs), and may be part of a subpool queue if the task uses more
than one subpool. If a subpool is used by more than one task, only one SPQE is cieated. Virtual
storage supervisor routines create SPQEs.

DQE DQEs pointed to by each SPQE reflect the total amount of space assigned to a subpool. Each
DQE is associated with one or more 4K blocks of storage set aside as a result of a GETMAIN
macro instruction. Each DQE is also the starting point for the free queue (made up of FQEs).
Virtual storage supervisor routines create DQEs.

FQE The FQE describes a free area within the blocks described by a DQE. As area distribution with
the set of blocks changes, FQEs are added to and deleted from the free queue. Virtual storage
supervisor routines create FQEs.

Figure 39. Description of Subpool Queues

System Overview 221

Load Module Storage Control
Each load module in the dynamic area is described by the following entries that tell how much
space it occupies. Figure 40 describes the following elements used in VS2:

• Contents Directory Element (CDE)

• Extent List (EXLST)

• Allocated Queue Element (AQE)

CDE The contents directory is a group of queues, each of which describes an area of virtual storage.
The CDEs in each queue represent the load modules residing in the associated. area. There is a
CDE queue for the link pack area and one for each region, or job pack area.

EXLST The total amount of virtual storage occupied by a load module is reflected in an EXLST.
EXLSTs contain the address of the virtual storage block. IDENTIFY, Laoder, and Program
Fetch create EXLSTs.

AQE The AQE points to allocated storage in the SQA (system queue area) or in an LSQA (local
system queue area) with either the requesting task or the job-step task. Virtual storage
supervisor routines create AQEs.

Figure 40. Description of Storage Control

222 OS/VS2 Planning and Use Guide

Glossary

This glossary defines new OS/VS2 terms that are used in
this pUblication. For definitions of terms not included in
this glossary, see IBM Data Processing Glossary,
GC20-1699.

address translation: The process of changing the address
of a data item or an instruction from its virtual address to
its real storage address. See also dynamic address
translation.

automatic priority group: A group of tasks at a single
priority level that are dispatched according to a special
algorithm that attempts to provide optimum use of CPU
and I/O resources by these tasks. See also dynamic
dispatching.

basic control (BC) mode: A mode in which the facilities
of a System/360 computing system and additional
System/370 features, such as new machine instructions, are
operational on a Sysiem/370 computing system. See also
extended control (EC) mode.

BC mode: Basic control mode.

DAT: Dynamic address translation.

demand paging: Transfer of a page from external page
storage to real storage at the time it is needed for
execution.

disabled page fault: A page fault that occurs when I/O
and external interruptions are disallowed by the CPU.

DSS: Dynamic support system.

dynamic address translation (DAT): (I) The change of a
virtual storage address to a real storage address during
execution of an instruction. See also address translation. (2)
A hardware feature that performs the translation.

dynamic area: The portion of virtual storage that is
divided into regions that are assigned to job steps and
system tasks. See also pageable dynamic area, nonpageable
dynamic area. Contrast with nondynamic area.

dynalrJc dispatcl-.i.n.g: l~~ facility that assigns priorities to
tasks within an automatic priority group to provide
optimum use of CPU and I/O resources.

dynamic support system (DSS): An interactive
debugging facility that allows authorized maintenance
personnel to monitor and analyze events and alter data.

EC mode: Extended control mode.

enabled page fault: A page fault that occurs when I/O
and external interruptions are allowed by the CPU.

extended control (EC) mode: A mode in which all the
features of a System/370 computing system, including
dynamic address translation, are operational. See also basic
control(BC) mode.

external page storage: The portion of auxiliary storage
that is used to contain pages.

fIXed: Not capable of being paged out.

fIXed BLDL table: A BLDL table that the user has
specified to be fixed in the lower portion of real storage.

fIXed link. pack area: An extension of the link pack area
that occupies fixed pages in the lower portion of real
storage.

Glossary 223

fixed page: A page in real storage that is not to be paged
out.

frame: Same as page frame~

link pack area (LPA): An area of virtual storage
containing reenterable routines that are loaded at IPL time
and can be used concurrently by all tasks in the system.

local system queue area (LSQA): One or more
segments associated with each virtual storage region that
contain job-related system control blocks.

LPA: Link pack area.

LSQA: Local system queue area.

nondynamic area: The area of virtual storage occupied by
the resident portion of the control program (the nucleus and
the link pack area). Contrast with dynamic area.

nonpageable dynamic area: An area of virtual storage
whose virtual addresses are identical to reai addresses; it is
used for programs or parts of programs that are not to be
paged during execution.

page: (1) A fixed-length block of instructions, data, or
both, that can be transferred bet.ween real and external page
storage. (2) To transfer instructions, data, or both between
real storage and external page storage.

page data set: A data set in external page storage, in
which pages are stored.

page fault: A program interruption that occurs when a
page that is marked not in real storage is referred to by an
active page. Synonymous with page translation exception.

page fixing: Marking a page nonpageable so that it
remains in real storage.

page frame: A block of real storage that can contain a
page. Synonymous with frame.

page-in: The process of transferring a page from external
page storage to real storage.

page-out: The process of transferring a page from real
storage to external page storage.

page table (PGT): A table that indicates whether a page
is in real storage and correlates virtual addresses with real
storage addresses.

page translation exception: A program interruption that
occurs whe\1 a virtual address cannot be translated by the
hardware because the invalid bit in the page table entry for
that address is set. Synonymous with page fault. See also
segment translation exception, translation specification
exeception.

page able dynamic area: An area of virtual storage whose
addresses are not identical to real addresses; it is used for
programs that can be paged during execution.

paging: The process of transferring pages between real
storage and external page storage.

paging device: A direct access storage device on which
pages (and possibly other data) are stored.

paging supervisor: A part of the supervisor that allocates
and releases real storage space (page frames) for pages, and
initiates page-in and page-out operations.

PER: Program event recording.

primary paging device: An auxiliary storage device that is
used in preference to secondary paging devices for paging
operations. Portions of a primary paging device can be used
for purposes other than paging operations.

program event recording (PER): A hardware feature
used to assist in debugging programs by detecting program
events.

real address: The address of a location in real storage.

real storage: The storage of a System/370 computing
system from which the central processing unit can directly
obtain instructions and data, and to which it can directly
return results.

secondary paging device: An auxiliary storage device that
is not used for paging operations until the available space
on primary paging devices falls below a specified minimum.
Portions of a secondary paging device can be used for
purposes other than paging operations.

segment: A continuous 64K area of virtual storage, which
is allocated to a job or system task.

segment table (SGT): A table used in dynamic address
translation to control user access to virtual storage
segments. Each entry indicates the length, location, and
availability of a corresponding page table.

segment translation exeception: A program interruption
that occurs when a virtual address cannot be translated by
the hardware because the invalid bit in the segment table
entry for that address is set. See also page translation
exception. translation specification exception.

224 OS/VS2 Planning and Use Guide

SQA: System queue area.

swapping: In VS2 with TSQ, a paging technique that writes
the active pages of a job to external page storage and reads
pages of another job from external page storage into real
storage.

system queue area (SQA): An area of virtual storage
reserved for system-related control blocks.

translation specification exception: A program
interruption that occurs when a page table entry, segment
table entry, or the control register pointing to the segment
table contains information in an invalid format. See also
page translation exception, segment translation exception.

virtual address: An address that refers to virtual storage
and must, therefore, be translated into a real storage
address when it is used.

virtual equals real (V =R) storage: Same as nonpageable
dynamic area.

virWal storage: Addressable space that appears to the user
as real storage, from which instructions and data are
mapped into real storage locations. The size of virtual
storage is limited by the addressing scheme of the
computing system and by the amount of auxiliary storage
available, rather than by the actual number of real storage
locations.

V =R storage: Same as nonpageabJe dynamic area.

Indexes to OS/VS publications are consolidated in
the OS/VS Master Index, GC28-0602, and the
OS/VS Master Index of Logic, GY28-0603. For
additional information about any subject listed
below, refer to other publications listed for the
same subject in the Master Index.

A macro instruction parameter 174,176,178
A operator command parameter 70,71
ABDUMP 58
ABEND macro instruction 58
access method routines 38
access methods

basic direct access method (BDAM) 42
basic indexed sequential access method (BISAM) 67
basic partitioned access method (BP AM) 42
basic sequential access method (BSAM) 42
basic telecommunications access method (BT AM) 67
graphics access method (GAM) 67-68
optional 65-68
queued indexed sequential access method (QISAM) 67
queued sequential access method (QSAM) 42
standard 39-42
summary of standard access method characteristics 41
telecommunications access method (TCAM) 65-66
virtual storage access method (VSAM) 66

address
real 224
virtual 224

address translation 19
definition 223

addressable space 11
ADDRSPC job control language parameter

EXEC statement 75
JOB statement 74

advantages of VS2 17-19
ALL operator command parameter 70
allocated queue element (AQE) 222
alternate path retry (APR) 64
AL TSYS system initialization parameter 102
AMA...PTFLE service aid 55
AMASPZAP service aid 55

restricted by APF 158
used with program properties table 15·8

AMBLIST service aid 56
AMDPRDMP service aid 56

SADMP DUMP printed by 58
SVC DUMP printed by 58
used with AMDSADMP service aid 56
used with GTF service aid 57

AMDSADMP service aid 56
invocation of IEHDASDR 49
printed by AMDPRDMP service aid 56
SADMP DUMP invoked by 58

APF (authorized program facility) 18,158-159
APG (automatic priority group) 65
APG system initialization parameter 98
appendages 77
APR (alternate path retry) 64
AQE (allocated queue element) 222
arm interference 103
ASB (automatic SYSIN batching) reader 31
assembler E 83
assembler F 47,83
assembler, VS2 47

ASYNCH macro instruction parameter 184
AITACH macro instruction 36,161-163

used with APF 158
A IT ACH request 202

Index

AT & T Model 83B3 Selective Calling Stations 27
AUTH macro instruction parameter 187
authorized program facility (APF) 18,158-159

authorization code 159
TEST AUTH macro instruction 81

AUTO operator command parameter 197
automatic priority group (APG) 65

definition 223
system initialization parameter 98
time slice group 63

automatic SYSIN batching (ASB) reader 3i,82
DISPLAY command 70

automatic volume recognition (A VR) 62
job classes 105-106

auxiliary storage 11
AUXLIST operator command parameter 71,72,61
A VR (automatic volume recognition) 62

backup 17
BACKUP operator command parameter 71,72,61
basic control (BC) mode 76

definition 223
baSic data access technique 40
basic direct access method (BDAM) 42
basic indexed sequential access method (BISAM) 67

QISAM extended version of 67
basic partitioned access method (BP AM) 42
basic sequentiai access method (BSAM) 42

QSAM extended version of 42
basic telecommunications access method (BT AM) 67

EROPT subparameter 75
batch job stream 214-215
BC (basic control) mode 76
BDAM (basic direct access method) 42
binary synchronous terminals 27
BISAM (basic indexed sequential access method) 67
BLDL system initialization parameter 98-99
BLDL table

fixed 20
pageable 20

BLDLF system initialization parameter 99
block character routine 134
BLOCK macro instruction parameter 180
BP AM (basic partitioned access method) 42
BSAM (basic sequential access method) 42
BT AM (basic telecommunications access method) 67

CANCEL command 70
card punches 26
card readers 26
catalog management 42
cataloged procedures 107-108

initiator 116-123
reader 108-116
writer 123-126

CCH (channel check handler) 45
CDE (contents directory entries) 222
CENPROCS macro instruction 86
chained scheduling 42,82

Index 225

channel check handler (CCH) 45
dependencies on MCH 207
ERPIB 207
error records 64
extended channel status word 206
types of errors recognized 207

channel control check 45
channel data check 45
channel programs 38

modification 77
translation 38

channel separation 76
CHANNEL macro instruction 86
channels

I/O load balancing 31
sharing data 103

CHAP macro instruction 36
checkpoint/restart 32-33
CIBCTR macro instruction parameter 180
CIRB macro instruction 163-164
CKPTREST macro instruction 86
CLASS job control language parameter 105-106
classes

job 105-106
message 106-107
system output 106-107

clock comparator 37,38
CLOSE macro instruction 43
CLOSE macro instruction parameter 170
close processing 43
CLOSE requests 202
CLP A system initialization parameter 99
coding guidelines 77
column binary 31
command processing 30
command scheduling control block (CSCB) 201
commands, operator 69-73

CANCEL 70
DISPLAY 70
DUMP 70
LOGOFF 211
LOGON 209
MODE 70,44
MODIFY 71-72
MONITOR 71
MOUNT 71
SET ~1, 198,199
START 71,72
SWAP 45
VARY 71

communications task 196
communications vector table (CVT) 197,216,217
compatibility 15-17,69-84

coding guidelines 77
emulators 77-78
job control language 73-76
major VS2-MVT differences 81-83
major VS2-VS 1 differences 83-84
operator commands 69-73
problem programs 76-77
reassembly 78
recompilation 78
system data sets 78-80
system macro instructions 80-81

concurrent peripheral operation (CPO) data set 108-109
configuration 24-27
console communications task 30
CONSOLE DUMP 58
consoles 26
contents directory 220
contents directory entries (CDE) 222

226 OS/VS2 Planning and Use Guide

contents supervision 36-37
control units 26
conversational remote job entry (CRJE) 81
conversion (see compatibility)
CPO (concurrent peripheral operation) data set 108-109
CPQE system intialization parameter 99
CPU timer 37,38
CPU-oriented task 65
CRJE (conversational remote job entry) 81
CSCB (command scheduling control block) 201
CT macro instruction parameter 183
CTRLPROG macro instruction 86
CVOL 158
CVT (communications vector table) 197,216,217

DADSM (direct access device space management) 43
DA T (dynamic address translation) 19
data access techniques 40
data blocking 107-108
data control block (DCB) 216,217
data extent block (DEB) 216,217
data extent block (DEB) validity checking 18,43

DEBCHK macro instruction 81
data management 39-44

access methods 39-40
optional 65-68
standard 39-42

catalog management 42
direct access device space management (DADSM) 43
direct access volume serial number verification 44
illustrated 194,203,205,214-215
input/ output support 43-44
summary of changes from MVT 39

data set block (DSB) 200,201,204,205
data set organizations 40
data set utility programs 50-52

IEBCOMPR program SO-51
IEBCOPY program 51
IEBDG program 51
IEBEDIT program 51
IEBGENER program 51
IEBISAM program 52
IEBPTPCH program 52
IEBTCRIN program 52
IEBUPDTE program 52

data sets, system 78-80
DATAMGT macro instruction 86
DATASET macro instruction 86
DCB (data control block) 216,217
DCB job control language parameter 75
DD statement 75-76

IEFREINT cataloged procedure 115-116
INIT cataloged procedure 117-119
INITD cataloged procedure 121-123
RDR cataloged procedure 112-114
RDR400 cataloged procedure 112-114
RDR3200 cataloged procedure 112-114
WTR cataloged procedure 124-126

DDR (dynamic device reconfiguration) 45,206,207
DEB (data extent block) 216,217
DEBCHK macro instruction 81

used by data extent block validity checking 18
defining the system 85-104
DELETE macro instruction 36
demand paging

definition 223
DEQ macro instruction 36,81,164-165
DETACH macro instruction 36
device independent display operator console support

(DIDOCS) 63
devices, input/output 25-27,84

DIDOCS (device independent display operator console
support) 63

direct access device space management (DADSM) 43
direct access storage control units 25
direct access storage devices 25
direct access volume serial number verification 44
direct data sets 40
direct system output (DSO) writer 31,82
directory queue element (DQE) 221
disabled page fault

definition 223
dispatching priorities 106

DISP macro instruction parameter 163
dispatching priorities 106
DISPLAY command 70
DPRTY job control language parameter 106
DQE (directory queue element) 221
driver 210,211
DSB (data set block) 200,201,204,205
DSO (direct system output) writer 31,82
DSS (dynamic support system) 53-54
DSS DUMP 58
bUMP command 70
DUMP operator command parameter 72
DUMP system initialization parameter 99
dumps, storage 58
dynamic address translation (DAT) 19

definition 223
dynamic area

definition 223
nonpageable 20
page able 20

dynamic area control 221
dynamic device reconfiguration (DDR) 45,206,207
dynamic dispatching 18

definition 223
dynamic support system (DSS) 53-54

definition 223
storage dump 58

E macro instruction parameter 181
EC (extended control) mode 76
ECB (event control block) 217
ECB macro instruction parameter

166,172-173,174-175,176,177,179,181
ECBIND macro instruction parameter 173,175,176,177,179
EDIT macro instruction 86
EDITOR macro instruction 86
emulators 77-78
ENABLE macro instruction parameter 164,170
enabled page fault

definition 223
End-of-volume (EOV) processing 43-44
ENQ macro instruction 36,81,165-166
entry-sequenced data set 66
EOD (end-of-data) records 64
EP macro instruction parameter 163
EROPT job control language subparameter 75
event control block (ECB) 217
EXCP macro instruction 77,38
EXEC statement 75

APF authorization 159
IEFREINT cataloged procedure 115
INIT cataloged procedure 116-117
INITDcataloged procedure 120-121
RDR cataloged procedure 109-112
RDR400 cataloged procedure 109-112
RDR3200 cataloged procedure 109-112
WTR cataloged procedure 124

execute channel program (EXCP) macro instruction 77,38
existing-task commands 30

EXLST (extent list) 222
extended control (EC) mode 76

definition 223
extent list (EXLST) 222
external interruptions 34
external page storage 24-25,11

definition 223
external page table (XPT) 217
EXTRACT macro instruction 36

execute form 169
list form 169
standard form 166-168

F operator command parameter 71
FBQE (free block queue element) 221
FCTN macro instruction parameter 187
fetch protection 23
FIELDS macro instruction parameter 166-167
FIX system initialization parameter 99
fixed

definition 223
fixed BLDL table 20

definition 223
fixed link pack area 20

definition 223
fixed page

definition 223
FORM operator command parameter 72
FQE (free queue element) 221
fragmentation, storage 17
frame, page 223
free block queue element (FBQE) 221
free queue element (FQE) 221
FREEMAIN macro instruction 37

GAM: (graphics access method) 67-68
generalized trace facility (GTF) 57

printed by AMDPRDMP service aid 56
GENERATE macro instruction 86
GENERIC macro instruction parameter 165
GET macro instruction 40
GETMAIN macro instruction 37
GIVEJPQ macro instruction parameter 162
GJP (graphic job processor) 82
glossary 223-224
GMT operator command parameter 71
GPS (graphic programming services) 67
graphic display devices

used as operator consoles 32
graphic job processor (GJP) 82

VARY command 71
graphic programming services (GPS) 67
graphic subroutine package (GSP) 68
graphics access method (GAM) 67-68
GRAPHICS macro instruction 86
GSP (graphic subroutine package) 68
GTF (generalized trace facility) 57

H operator command parameter 71
hardcopy log 32

multiple console support (MCS) 32
HARDCPY system initialization parameter 100
HIARCHY job control language sub parameter 75
hierarchy support, main storage 37,82
HRAM system initialization parameter 102
HSVC system initialization parameter 102

Index 227

I/O appendages 77
I/O device generation 85
I/O load balancing 31,30

related to A VR 62
1/ 0 operations

restarting 39
starting 38
terminating 38-39

I/O supervisor 38,39
1/ O-oriented task 65
IBCDASDI utility program 53

DADSM routines 43
IBCDMPRS utility program 53
IBM-supplied lists 96-97
ICAPRTBL utility program 53
IEABLDxx list 97,146-147
IEABLDOO list 96,146-147
IEAFIXxx list 97,147
IEAFIXOO list 97,147
IEAIGEoo list 96
IEAIGGOO list 96
IEALODoo list 96,148
IEALPAxx list 97,147
IEAPAKoo list 96,148
IEARSVoo list 96
IEASYSxx list 97,148
IEASYSoo list 96,148
IEBCOMPR utility program 50-51
IEBCOPY utility program 51
IEBDG utility program 51
IEBEDIT utility program 51
IEBGENER utility program 51
IEBISAM utility program 52
IEBPTPCH utility program 52

AMDSADMP output printed by 56
IEBTCRIN utility program 52
IEBUPDAT utility program 81
IEBUPDTE utility program 52

replacement for IEBUPDAT 81
IEFDA T A DO statement 108
IEFPDSI DO statement 108
IEFPROC EXEC statement 108,116,123
IEFRDER DD statement 108,123
IEFREINT cataloged procedure 114-116
IEFSDPPT module 158
IEHA TLAS utility program 48-49

restricted by APF 158
IEHDASDR utility program 49

restricted by APF 158
IEHINITT utility program 49
IEHIOSUP utility program 81
IEHLIST utility program 49
IEHMOVE utility program 50
IEHPROGM utility program 50

catalog management routines used by 42
restricted by APF 158

IFCDlPOO service aid 57
IFCEREPO service aid 57

records generated by ROE 64
IFHST A TR utility program 50
IMCOSJQD service aid 57-58
1M GLIB macro instruction 170
independent utility programs 53

IBCDASDI program 53
IBCDMPRS program 53
ICAPRTBL program 53

indexed sequential access method (lSAM) 67
related to VSAM 66

indexed sequential data sets 40
INIT cataloged procedure 116-119
INITD cataloged procedure 120-123

228 OS/VS2 Planning and Use Guide

initial program loader (lPL) 96
initialization, master scheduler 29-30
initiator cataloged procedures 116-123

INIT 116-119
INITD 120-123

initiator queue records (JOBQLMT) 128-130
initiator/terminator 31
input/output block (lOB) 217
input/output devices 25-27

I/O load balancing 31
supported 25-27
unsupported 84

input/ output interruptions 34
input/output supervision 38-39

restarting I/O operations 39
starting I/O operations 38
summary of changes from MVT 38
terminating I/O operations 38-39

input/output support 43-44
close processing 43
end-of -volume processing 43-44
open processing 43

installation verification procedures (IVP) 85
Integrated File Adapter 25
Integrated Storage Controls 25
interface control check 45
interruption checker, misSing 54
interruption codes 202
interruption request block (IRB) 219
interruption supervision 34-35
interruption types 34-35,194
10 macro instruction parameter 171
lOB (input/output block) 217
IODEVICE macro instruction 86
IPL (initial program loader) 96

BC mode 76
dynamic support system 54
illustrated 196-199
records 64,197

IRB (interruption request block) 219
ISK (insert storage key) macro instruction 76
IVP (installation verification procedures) 85

JCT (job control table) 200,201
JFCB (job file control block) 200,201
job classes 105-106
job control language 73-76

DD statement 75,76
EXEC statement 75
JOB statement 74-75
summary of changes from MVT 73

job control table (JCT) 200,201
job file control block (JFCB) 200,201
job management 29-34

automatic volume recognition (A VR) 62
checkpoint/restart 32-33
devi~e independent display operator console support

(DIDOCS) 63
hardcopy log 32
illustrated 194,200-205,214-215
job scheduler 30-31
job step timing 34
master scheduler 29-30
multiple console support (MCS) 32
services for system programmers 105-160
status display support (SDS) 63
summary of changes from MVT 29
system log 32
system management facilities (SMF) 33-34
time slicing 63
track stacking 64-65

job queue format 126-131
job pack area control queue (JP AQ) 220
job priorities 106
job scheduler 30-31
JOB statement 74-75

job classes 105-106
job priorities 106

job step timing 34
JOBQFMT (logical track size) 127
JOBQLMT (initiator queue records) 128-130
JOBQTMT (queue records for cancellation) 130-131
JOBQWTP (write-to-programmer queue records) 130
JPAQ (job pack area control queue) 220
JSCB macro instruction parameter 162
JSTCB macro instruction parameter 162

KEY macro instruction parameter 162,163,170
key-sequenced data set 66
key zero routine

SVC DUMP invoked by 58

L macro instruction parameter 172,176,178
LA macro instruction parameter 172,176,178
LCS (see main storage hierarchy support)
libraries, system 103
link library (SYS I.LINKLIB data set) 79
LINK macro instruction 36

used with APF 158
link pack area (LP A)

definition 223
fixed 20
pageable 20
use with APF 158

link pack area queue (LPAQ) 220
link pack area directory (LPD) 220
iink pack area direciory eniries (LPDE) 220
linkage editor E 48
linkage editor F 48

APF authorization 159
LINKLIB macro instruction 86
LIST operator command parameter 72
LNKLSToo list 96,149
LOAD button 196,197
load list 220

DELETE macro instruction 220
LOAD macro instruction 220

LOAD macro irLStruction 36
used with APF 158

load module storage control 222
loader 48
LOADER macro instruction 86
local system queue area (LSQA)

definition 223
master scheduler 20
system integrity 18

locally-attached terminals 27
location 80 timer 38
log, hardcopy 32
log, system 32
logical track size (JOBQFMT) 127
LOGOFF command 211
LOGON command 209
logon/logoff scheduler 208,209

use of reader/interpreter 209
LOGON command 209

LONG macro instruction parameter 173,175
LP A (link pack area) 20
LPA operator command parameter 72
LP AF operator command parameter 72,61
LP ALIB macro instruction 87
LPAQ (link pack area queue) 220

LPAR operator command parameter 72,61
LPD (link pack area directory) 220
LPDE (link pack area directory entries) 220
LPSW macro instruction 76
LSQA (local system queue area) 223
LSQA operator command parameter 71
LSQACEL system initialization parameter 100

M operator command parameter 71
machine check handler (MCH) 44,206-207

error records 64
machine check PSW 206
machine logout 206
types of errors recognized 207
use of SYS1.LOGREC 207

machine check interruptions 35
MACLIB macro instruction 87
macro instructions

ABEND 58
ATTACH 36,161-163
CENPROCS86
CHANNEL 86
CHAP 36
CIRB 163-164
CKPTREST 86
CLOSE 43
CTRLPROG 86
DATAMGT 86
DATASET 86
DEBCHK 18,81
DELETE 36
DEQ 36,81,164-165
DETACH 36
EDIT 86
EDITOR 86
ENQ 36,81,165-166
EXCP 77,38
EXTRACT 36,166-169
FREEMAIN 37
GENERATE 86
GET 40
GETMAIN 37
GRAPHICS 86
IMGLIB 170
IODEVICE 86
ISK 76
LINK 36
LINKLIB 86
LOAD 36
LOADER 86
LPALIB 87
LPSW 76
MAC LIB 87
MODESET 36,76,80,170-171
OPEN 43
PAGE 87
PGFIX 80,171-175
PGFREE 80,175-177
PGLOAD 80,177-180
PGRLSE 81
POST 36
PUT 40
QEDIT 180
READ 40
RESERVE 180-182
RESMODS 87
SCHEDULR 87
SECONSLE 87
SNAP 58
SPIE 36,81
SSK 76

Index 229

STAE 182-186
SVCTABLE 87
SYNCH 186
TESTAUTH 36,81,187
TSO 87
UCS 87
UNITNAME 87
WAIT 36
WRITE 40
WTO 187-189
WTOR 187-189
XCTL 36

macro library (SYS I.MACLIB data set) 79
magnetic ink character recognition (MICR)

devices 26
programs 20

magnetic tape devices 25-26
main storage 11
main storage hierarchy support 37,82

HIARCHY parameter 75
REGION parameter 74,75

main storage supervision 37
major VS2-MVT differences 81-83
major VS2-VSl differences 83-84
MAP operator command parameter 72
master console 32
master scheduler 29-30
master scheduler initialization 29-30,196-199
master scheduler local system queue area 20
master scheduler region 20
MCH (machine check handler) 44
MCS (multiple console support) 32
MCSFLAG macro instruction parameter 188
message classes 106-107
message handler routines 211
message routing exit routines 140-143
method of operation 191-212
MF macro instruction parameter 169,171,185,186
migration, page 25
MIN system initialization parameter 102
minimum configuration 24
missing interruption checker 54
MLP A system initialization parameter 100
MOD system initialization parameter 102
MODE command 70,44
MODE macro instruction parameter 163,170
Model 158 Display Console 26
MODESET macro instruction 36,76,80,170-171

use with APF 158
modified link pack area 97
MODIFY command

TSO 71-72
monitor call interruptions 35
MONITOR command 71

dynamic status display 63
MOUNT command 71

task-creating command 30
MP A system initialization parameter 100
MPS system initialization parameter 102
MSGCLASS job control language parameter 107
MSGTYP macro instruction parameter 188
multiple console support (MCS) 32

hardcopy log 32
message routing exit routines 140-143
required for DIDOCS 63
WTO!WTOR macro instructions 187-189

multiprocessing 82
must complete function 155-158

DEQ macro instruction 164-165
ENQ macro instruction 165-166

230 OS!VS2 Planning and Use Guide

MVT (multiprocessing with a variable number of tasks) 11
commands 69-71

N operator command parameter 70
new functions 15
NIP (nucleus initialization program) 96
NO DUMP operator command parameter 72
nondynamic area

definition 223
nonpageable dynamic area 20

definition 223
use of 159-160

NOSW AP operator command parameter 72,61
nucleus 20
nucleus generation 85
nucleus initialization program (NIP) 96

illustrated 196-199
nucleus library (SYS1.NUCLEUS data set) 78
nucleus vector table (NVT) 196
NVT (nucleus vector table) 196

OBR error records 64
OFFGFX operator command parameter 71
OL TEP (online test executive program) 54,55
ONGFX operator command parameter 71
online test executive program (OLTEP) 54-55
OPEN macro instruction 43
OPEN macro instruction parameter 170
Open processing 43
OPEN requests 202
operator commands 69-73

groups 111
MVT commands 69-71
summary of changes from MVT 70
TSO commands 71-73

OPI system initialization parameter 100
optical character recognition (OCR) devices 26
options

included after system generation 68
program products 68
type I programs 68

included during system generation 59-68
access methods 65-68
alternate path retry (APR) 64
automatic priority group (APG) 65
automatic volume recognition (A VR) 62
basic indexed sequential access method (BISAM) 67
basic telecommunications access method (BT AM) 67
device independent display operator console support

(DIDOCS) 63
graphics access method (GAM) 67-68
queued indexed sequential access method (QISAM)

67
reliability data extractor (RDE) 64
shared direct access storage devices (shared DASD)

63-64
status display support (SDS) 63
telecommunications access method (TCAM) 65-66
time sharing option (TSO) 59-62
time slicing 63
track stacking 64-65
virtual storage access method (VSAM) 66

summary of changes from MVT 59
ORIGIN macro instruction parameter 180
OUTUM job controi ianguage parameter 75,34
output separation 131-134
output writer 31
OV macro instruction parameter 183

page
definition 223

page data set
definition 223

page fault
definition 223
disabled (definition) 223
enabled (definition) 223

page fixing 38,39
definition 223

page frame
definition 223
reclamation 35

page frame table (PFr) 217
page-in

definition 223
PAGE macro instruction 87
page migration 25
page-out

definition 223
page reclamation 35
page storage, external 24-25
PAGE system initialization parameter 100
page table (PGT) 217

definition 223
page translation exception 19

definition 223
pageable BLDL table 20
pageable dynamic area 20

definition 223
pageable link pack area 20
paging 19-20

control blocks 191
definition 223
macro instructions 80

paging device
definition 223
primary 24-25
secondary 24-25

paging supervision 35-36
paging supervisor 35,19-20

definition 223
paging supervisor vector table (PVT) 197
PAL system initialization parameter 100
paper tape devices 26
P ARAM macro instruction parameter 183
parameter abbreviations, TSO 72-73
parameters, job control language

ADDRSPC 74-75
CLASS 105-106
DCB 75
DPRTY 106
EROPT 75
HIARCHY 75
MSGCLASS 107
OUTLIM 75
PGM 158
PRTY 106
REGION 74,75
ROLL 75
SEP 76
UNIT 76

parameters, macro instruction
A 174,176,178
ASYNCH 184
AUTH 187
BLOCK 180
CIBCTR 180
CLOSE 170
CT 183
DISP 163

E 181
ECB 166,172-173,174-175,176,177,179,181
ECBIND 173,175,176,177,179
ENABLE 164,170
EP 163
FCTN 187
FIELDS 166-167
GENERIC 165
GIVEJPQ 162
10 171
JSCB 162
JSTCB 162
KEY 162,163,170
L 172,176,178
LA 172,176,178
LONG 173,175
MCSFLAG 188
MF 169,171,185,186
MODE 163,170
MSGTYP 188
OPEN 170
ORIGIN 180
OV 183
PARAM 183
PURGE 183
R 174,176,178
REG 171
RELEASE 173,176,179
RELOC 171
RET 181
RETIQE 164
RMC 165
S 181
SM 162
SMC 165
STAB 163-164
SUSPEND 173
SVAREA 162,164
SYSMASK 170-171
SYSTEMS 181
TCB 165
TID 163
TYPE 164
UCB 182
WKAREA 164
XCTL 183

parameters, operator command
A 70,71
ALL 70
AUTO 197
AUXLIST 71,72,61
BACKUP 71,72,61
DUMP 72
F 71
FORM 72
GMT 71
H 71
LIST 72
LPA 72
LPAF 72,61
LPAR 72,61
LSQA 71
M 71
MAP 72
N 70
NODUMP 72
NOSWAP 72,61
OFFGFX 71
ONGFX 71
Q 70
REGNMAX 72

Index 231

REG SIZE 72
S 71
SWAP 72,61
TSOAUX 72,61
TSOMAX 72,61

parameters, system initialization
ALTSYS 102
APG98
BLDL 98-99
BLDLF 99
CLPA 99
CPQE 99
DUMP 99
FIX 99
HARDCPY 100
HRAM 102
HSVC 102
LSQACEL 100
MIN 102
MLPA 100
MOD 102
MPA 100
MPS 102
OPIl00
PAGE 100
PAL 100
QBF 102
RAM 102
REAL 100-101
RERP 102
RESVC 102
SQA 101
SQACEL 101
SQS 102
SYSP 101
TMSL 101
TRACE 101-102
TSOAUX 102

partition queue element (PQE) 221
partitioned data sets 40
PASSWORD data set 78

not shared 80
PCI (program controlled interruption) 36-37
PER (program event recording) 35
PFT (page frame table) 217
PGFIX macro instruction 80

non-standard form 174-175
restricted by APF 158
standard form 171-174

PGFREE macro instruction 80
non-standard form 176-177
restricted by APF 158
standard form 175-176

PGLOAD macro instruction 80,177-180
restricted by APF 158

PGM job control language parameter 158
PGRLSE macro instruction 81
PGT (page table) 217
PL/I F 78
POR (problem oriented routines) 68
POST macro instruction 36
PQE (partition queue element) 221
PRB (program request block) 219
PRES RES volume characteristics list 103-104
primary paging device 24-25

definition 223
page migration 25

printer control units 26
printers 26

232 OS/VS2 Planning and Use Guide

priority
automatic priority group 158-159
dispatching 106
job 106
time slicing 63

problem determination 55
AMBLIST serivce aid 56

problem oriented routines (POR) 68
problem program compatibilities 76-77
procedure library (SYS1.PROCLIB data set) 79
program controlled interruption (PCI) 36-37
program event recording (PER) 35

definition 224
program interruptions 19,35
program organization 213-215
program products 68

TSO 60
program properties table 158
program request block (PRB) 219
program status word (PSW) 76

interruptions 35
translation mode 19

program temporary fix (PTF) 55
programmer productivity 18
protection key 23-24
protection, storage 23-24
PRTY job control language parameter 106
PSW (program status word) 76
PTF (program temporary fix) 55
PURGE macro instruction parameter 183
PUT macro instruction 40
PVT (paging supervisor vector table) 197

Q operator command parameter 70
QBF system initialization parameter 102
QEDIT macro instruction 180
QISAM (queued indexed sequential access method) 67
QSAM (queued sequential access method) 42
QTAM (queued telecommunications access method) 81
queue records for cancellation (JOBQTMT) 130-131
queued data access technique 40
queued indexed sequential access method (QISAM) 67
queued sequential access method (QSAM) 42
queued telecommunications access method (QT AM) 81
quickcells 37

R macro instruction parameter 174,176,178
RAM system initialization parameter 102
RAS (reliability, availability, serviceability) 53-58
RCT (region control task) 208-209
RDE (reliability data extractor) 64
RDR cataloged procedure 108-114
RDR400 cataloged procedure 108-114
RDR3200 cataloged procedure 108-114
READ macro instruction 40
reader and punch control units 26
reader cataloged procedures 108-116

IEFREINT 114-116
RDR 108-114
RDR400 108-114
RDR3200 108-114

reader/interpreter 30-31
real address

definition 224
real storage 11

definition 224
map 23

REAL system initialization parameter 100-101
reassembly 78
recompilation 78

recovery management 44-45,64
alternate path retry (APR) 64
channel check handler (CCH) 45
dynamic device reconfiguration (DDR) 45
illustrated 194,206-207,214-215
machine check handler (MCH) 44
optional facilities 64
standard facilities 44-45
summary of changes from MVT 44

REG macro instruction parameter 171
region control task (RCT) 208-209
REGION job control language parameter

EXEC statement 75
JOB statement 74

REGNMAX operator command parameter 72
REGSIZE operator command parameter 72
RELEASE macro instruction parameter 173,176,179
reliability, availability, serviceability (RAS) 53-58

dynamic support system (DSS) 53-54
missing interruption checker 54
online test executive program (OLTEP) 54-55
problem determination 55
service aids 55-58
storage dumps 58

reliability data extractor (RDE) 64
RELOC macro instruction parameter 171
remote job entry (RJE) 82

DISPLAY command 70
request blocks 218-219
RERP system initialization parameter 102
RESERVE macro instruction 36,180-182
RESMODS macro instruction 87
restarting I/O operations 39
RESVC system initialization parameter 102
RET macro instruction parameter 181
RETIQE macro instruction parameter 164
RMC macro instruction parameter 165
ROLL job control language parameter

EXEC statement 75
JOB statement 75

rollout/rollin 81
ROLL parameter 75

routing codes 140-143

S macro instruction parameter 181
S operator command parameter 71
SADMP DUMP 58
satellite graphic job processor (SGJP) 82

VARY command 71
scatter load 37,81
scheduler, job 30-31
scheduler, master 29-30
SCHEDULR macro instruction 87
SCT (step control table) 200-201
SDR error records 64
SDS (status display support) 63
secondary console 32
secondary paging device 24-25

definition 224
page migration 25

SECONSLE macro instruction 87
segment

definition 224
segment table (SGT) 217

definition 224
segment translation exception 19

definition 224
SEP job control language parameter 76
SEP job control language subparameter 76
separation, output 131-134
sequential data sets 40

service aids 55-58
AMAPTFLE program 55
AMASPZAP program 55
AMBLIST program 56
AMDPRDMP program 56
AMDSADMP program 56
generalized trace facility (GTF) 57
IFCDIPOO program 57
IFCEREPO program 57
IMCOSJQD program 57-58

SERO (system environment recording routine) 81
SER1 (system environment recording routine) 81
SET command 71,198,199
set system mask interruptions 35
SETCODE statement 159
SGJP (satellite graphic job processor) 82
SGT (segment table) 217
shared DASD (shared direct access storage devices)

63-64,150-155
shared data sets 80
shared direct access storage devices (shared DASD)

63-64,150-155
RESERVE macro instruction 180-182

SIRB (supervisor interruption request block) 219
slot sorting 35
SM macro instruction parameter 162
5MB (system message block) 204-205
SMC macro instruction parameter 165
SMF (system management facilities) 33-34,198-199
SNAP macro instruction 58
specification exception 35
SPIE macro instruction 36,81
SPQE (subpool queue element) 221
SQA (system queue area) 20
SQA system initialization parameter 101
SQACEL system initialization parameter 101
SQS system initialization parameter 102
SSK (set storage key) macro instruction 76
ST AB macro instruction parameter 163-164
ST AE macro instruction

execute form 185-186
list form 185
standard form 182-184

STAE routines 143-145
ST AI routines 143-145
standard support programs 47-58

summary oi changes irom MVT 47
ST ART command 71,72

job classes 105
system output classes 107
task· 200
task-creating command 30
TSO 72

START INIT command 200
START RDR command 200
start/stop terminals 26-27
ST ART TSO command 209
START WTR command 204-205
starter system 85
starting I/O operations 38
status display support (SDS) 63
STC (system task control routine) 200-201
step control table (SCT) 200-201
STIMER routine 37
storage

auxiliary 11
external page 24-25
main 11
maps 20-23
real 11,23
relationships between real, virtual, and external page 12
virtual 22

Index 233

storage dumps 58
storage fragmentation 17
storage protection 23-24,19
store protection 23
subpool queue element (SPQE) 221
subpool storage control 221
subpools 82

REGION parameter 74,75
supervisor (see task management)
supervisor call interruptions 34
supervisor interruption request block (SIRB) 219
supervisor macro instructions for system programmers

161-189
supervisor request block (SVRB) 219
supervisor routines 202
supervisor services for system programmers 105-160
support programs, standard 47-58
SUSPEND macro instruction para,meter 173
SV AREA macro instruction parameter 162,164
SVC DUMP 58
SVC library (SYS1.SVCLIB data set) 78
SVC 28 158
SVC 59 158
SVC 82 158
SVC 85 158
SVC 107 158
SVC 113 158
SVCT ABLE macro instruction 87
SVRB (supervisor request block) 219
SW AP command

dynamic device reconfiguration 45
operator initiated 206
system initiated 206

SW AP operator command parameter 72,61
swapping

definition 224
SYNCH macro instruction 186
SYSCTLG data set

catalog management 42
not shared 80

SYSIN data set 78,204
SYSMASK macro instruction parameter 170-171
SYSOUT classes 106-107
SYSOUT data set 204
SYSP system initialization parameter 101
system catalog (SYSCTLG data set) 78
system communications 216-222
system control blocks 216-218
system control program 29-45

data management 39-44
input/output supervision 38-39
job management 29-34
recovery management 44-45
task management 34-38

system data sets 78-80
optional 79-80
related to VSAM 66
required 78-79
shared 80

system environment recording routines (SERO and SER 1)
81

system flexibility 17
system generation 85-95

improvements 86
macro instructions 86-87
options specified after 68
options specified during 59-68
parameters 89-95
planning considerations 88-95
process 85

234 OS/VS2 Planning and Use Guide

system initialization 96-102
IBM-supplied lists 96-97
parameters 97-102
process 96
SYS1.PARMLIB data set 96-97
unsupported MVT parameters 102
user-supplied lists 97

system integrity 18-19
system libraries 103
system log 32,198-199
system macro instructions 80-81
system management facilities (SMF) 33-34,198-199
system message block (SMB) 204-205
system output classes 106-107
system output writers 135-140
system overview 191-222
system parameters (see parameters)
system programmers

job management services 105-160
supervisor macro instructions 161-189
supervisor services 105-160

system queue area (SQA) 20
definition 224

system resources 17
system restart 103
system task control routine (STC) 200-201
system throughput 17-18
system utility programs 48-50

IEHA TLAS program 48-49
IEHDASDR program 49
IEHINITT program 49
IEHLIST program 49
IEHMOVE program 50
IEHPROGM program 50
IFHST A TR program 50

SYSTEMS macro instruction parameter 181
System/3 Processor Station 27
System/7 27
System/360 Model 20 Processor Station 27
System/360 Processor Station 27
System/370 Model 135 84
System/370 Model 14524
System/370 Model 15511 24
System/370 Model 158 24
System/370 Model 165II 24
System/370 Model 168 24
System/370 Processor Station 27
SYS1.BRODCAST data set 79
SYS1.CMDLIB data set 79
SYSl.DSSVM data set 79
SYS1.DUMP data set 79

printed by AMDPRDMP service aid 56
SYS I.HELP data set 79
SYS1.1MAGELIB data set 79

IMGLIB macro instruction 170
SYS1.LINKLIB data set 79

library placement 103
use with APF 158

SYS1.LOGREC data set 78
contains records generated by M CH 44
contains records generated by RDE 64
contains records of I/O errors 39
formatted by IFCEREPO service aid 57
initialized by IFCDIPOO service aid 57
not shared 80

SYS1.LPALIB data set 79
not shared 80
use with APF 158
used by NIP 196

SYS1.MACLIB data set 79
library placement 103

SYS 1. MAN data set 79
SYSl.MANX data set 79

not shared 80
records retrieved by IFHST A TR program 50

SYS1.MANY data set 79
not shared 80
records retrieved by IFHST A TR program 50

SYSl.NUCLEUS data set 78
not shared 80
used by NIP 196

SYSl.PAGE data set 79
not shared 80

SYS 1. P ARMLIB data set 79
lists 96-97,145-149
used by NIP 196

SYS1.PROCLIB data set 79
cataloged procedures 200
library placement 103

SYS l.SAMPLIB data set 79
SYSl.SVCLIB data set 78

not shared 80
use with APF 158

SYSl.SYSJOBQE data set 79
data handled by track stacking 64-65
job queue format 126-131
library placement 103
not shared 80
used by reader routines 200-201

SYS1.SYSVLOGX data set 79
not shared 80

SYS1.SYSVLOGY data set 79
not shared 80

SYS 1. TELCMLIB data set 79
SYSl.UADS data set 79,208

tape switch 26
task control block (TCB) 200

defined 217
dynamic TCB 201
in TSO 201
permanent TCB 201

task-creating commands 30
task input/output table (TIOT) 217
task interruption request block (TIRB) 219
task management 34-38

contents supervision 36-37
illustrated 194,202-205,214-215
interruption supervision 34-35
paging supervision 35-36
summary of changes from MVT 34
task supervision 36
timer supervision 37-38
virtual storage supervision 37

task supervision 36
TCAM (telecommunications access method) 65-66
TCAM/TIOC 210-211
TCB (task control block) 200
TCB macro instruction parameter 165
TCB queue 200
telecommunications access method (TCAM) 65-66

checkpoint data set 80
macro instructions 211
message control program 66
message queues data set 80
reassembly / recompilation 78
replacement for QT AM 81
terminals supported 27

telecommunications control units 27
telecommunications library (SYS1.TELCMLIB data set) 79
Teletype Model 33 27
Teletype Model 35 27

Terminal input/output coordinator (TIOC) 211
terminal monitor program (TMP) 210-211

attaches programs 211
time slice 2 t 1

terminating I/O operations 38-39
termination 203
TESTAUTH macro instruction 36,81,187

use with APF 18,159
TESTRAN program 37,82
thrashing 20
TID macro instruction parameter 163
time-of-day clock 37

initialization 198-199
TIME routine 37
time sharing control task (TSC) 208-209
time sharing option (TSO) 59-62

commands 71-73,208
external page storage 24
illustrated 208-211
parameter abbreviations 72-73
replacement for CRJE 81
required data sets 79
routines comprising TSO 208-211
storage dump 58
summary of new parameters 61-62
swapping 208-209
TCAM terminal support 65

time slice 63,211
time slicing 63

APG priority level 65
timer interruptions 34
timer supervision 37-38
TIOC (terminal input/output coordinator) 211
TIOT (task input/output table) 217
TIRB (task interruption request block) 219
TMP (terminai monitor program) 2i0-2i i
TMSL system initialization parameter 101
TPER error records 64
TRACE system initialization parameter 101-102
track stacking 64-65
transient areas 37,81
translation exception 35

page 19
segment 19

translation specification exception 19
definition 224

TSC (time sharing control task) 208-209
TSO (time sharing option) 59-62
TSO dispatcher 210-211

interaction with TSO routines 211
TSO DUMP 58

printed by AMDPRDMP service aid 56
TSO macro instruction 87
TSOAUX operator command parameter 72,61
TSOAUX system initialization parameter 102
TSOMAX operator command parameter 72,61
TTIMER routine 37
type I programs 68
TYPE macro instruction parameter 164

UCB (unit control block) 217
UCB macro instruction parameter 182
UCS macro instruction 87
unit control block (UCB) 217
UNIT job control language parameter 76
UNITNAME macro instruction 87
user-supplied lists 97
utilities 48-53

data set utility programs 50-52
IEBCOMPR program 50-51
IEBCOPY program 51

Index 235

IEBDG program 51
IEBEDIT program 51
IEBGENER program 51
IEBISAM program 52
IEBPTPCH program 52
IEBTCRIN program 52
IEBUPDTE program 52

independent utility programs 53
IBCDASDI program 53
IBCDMPRS program 53
ICAPRTBL program 53

system utility programs 48-50
IEHA TLAS program 48-49
IEHDASDR program 49
IEHINITT program 49
IEHLIST program 49
IEHMOVE program 50
IEHPROGM program 50
IFHST A TR program 50

V =R (virtual equals real) storage 20
V ARY command 71
virtual address

definition 224
virtual equals real (V=R) storage 20

definition 224
virtual storage 11

definition 224
map 22

virtual storage access method (VSAM) 66
virtual storage supervision 37
VSAM (virtual storage access method) 66
VSl

differences from VS2 83-84
VS211

differences from MVT 81-83
differences from VS 1 83-84

VS2 assembler 47

WAIT macro instruction 36
Western Union Plan tt5A Outstations 27
WKAREA macro instruction parameter 164
World Trade devices 27
World Trade Telegraph Terminals 27
WRITE macro instruction 40
write-to-programmer queue records (JOBQWTP) 130
writer

direct system output (DSO) 31,82
output 135-140

writer cataloged WTR procedure 123-126
writer routines 204-205
WTO macro instruction 187-189
WTO/WTOR exit routines 140-143
WTOR macro instruction 187-189
WTR cataloged procedure 123-126

XCTL macro instruction 36
used with APF 158

XCTL macro instruction parameter 183
XPT (external page table) 217

1017 Paper Tape Reader 84
1018 Paper Tape Punch 84
1030 Data Collection System 26
1050 Data Communication System 26
1052 Printer-Keyboard Model 7 26
1060 Data Communication System 26
1130 Computing System Processor Station 27
1255 Magnetic Character Reader 84
1259 Magnetic Tape Reader 84

236 OS/VS2 Planning and Use Guide

1270 Optical Reader Sorter 84
1275 Magnetic Character Reader 27
1287 Optical Reader 26
1288· Optical Page Reader 26
1403 Printer Model N 1 26
1403 Printer Model 2 26
1403 Printer Model 7 26
1419 Magnetic Character Reader 26
1419 Magnetic Character Reader Model 31 27
1419 Magnetic Character Reader Model 3227
1442 Card Read Punch Model Nl 84
1442 Card Punch Model N2 84
1443 Printer Model N 1 26
1800 Data Acquisition and Control System Processor

Station 27
2150 Console 26
2245 Printer 84
2250 Display Unit Model 1

console 26
locally-attached terminal 27

2250 Display Unit Model 3
console 26
locally-attached terminal 27

2260 Display Station Model 1
console 26
locally-attached terminal 27
start/stop terminal 26

2260 Display Station Model 2
locally-attached terminal 27
start/ stop terminal 26

2265 Display Station 26
2301 Drum Storage 84
2303 Drum Storage 84
2305 Fixed Head Storage Model 1 25

IEHDASDR utility program 49
2305 Fixed Head Storage Model 2 25

IEHDASDR utility program 49
2311 Disk Storage Drive 84
2314 Direct Access Storage Facility 25

arm movement 103
IBCDASDI utility program 53
IEHDASDR utility program 49

2319 Disk Storage 25
arm movement 103
IBCDASDI utility program 53
IEHDASDR utility program 49

2321 Data Cell Drive 84
2401 Magnetic Tape Unit 25
2402 Magnetic Tape Unit 84
2403 Magnetic Tape Unit and Control 84
2404 Magnetic Tape Unit and Control 84
2415 Magnetic Tape Unit and Control 84
2420 Magnetic Tape Unit 25
2495 Tape Cartridge Reader 26

IEBTCRIN utility program 52
2501 Card Reader Model Bl 26
2501 Card Reader Model B2 26
2520 Card Read Punch 26
2540 Card Read Punch 26
2596 Card Read Punch 84
2671 Paper Tape Reader 26
2701 Data Adapter Unit 27
2702 Transmission Control 27
2703 Transmission Control 27
2715 Transmission Control Model 1 27
2715 Transmission Control Unit Model 2 27
2740 Communication Terminal Model 1

console 26
start/stop terminal 27

2740 Communication Terminal Model 2 27
2741 Communication Terminal 27

2.760 Optical Image Unit 27
2770 Data Communication System 27
2780 Data Transmission Terminal 27
2790 Data Communication System 27
2803 Tape Control 26
2804 Tape Control 26
2816 Switching Unit 26
2821 Control Unit Modell 26
2821 Control Unit Model 2 26
2821 Control Unit Model 3 26
2821 Control Unit Model 5 26
2821 Control Unit Model 626
2835 Storage Control Modell 25
2835 Storage Control Model 2 25
2841 Storage Control Unit 84
2844 Auxiliary Storage Control 25
2972 General Banking System Model 8 27
2972 General Banking System Model 11 27
3066 System Console 26

independent utilities support 53
3210 Console Printer-Keyboard 26
3211 Printer 26

ICAPRTBL utility program 53
3213 Printer 26
3215 Console Printer-Keyboard 26
3270 Information Display System

binary synchronous terminal 27
console 26
locally-attached terminal 27

3330 Series Disk Storage 25
arm movement 103
IBCDMPRS utility program 53
IEHDASDR utility program 49
4-channel switch 63

3345 Storage and Control Frame Model 3 25
3345 Storage and Control Frame Model 4 25
3345 Storage and Control Frame Model 5 25
3410 Magnetic Tape Unit 26
3411 Magnetic Tape Unit and Control 26
3420 Magnetic Tape Unit 26
3505 Card Reader 26
3525 Card Punch 26
3670 Brokerage Communication System 27
3705 Communications Controller 27
3735 Programmable Buffered Terminal 27
3803 Tape Control 26
3811 Printer Control Unit 26
3830 Storage Control Model 1 25
3830 Storage Control Model 2 25
3881 Optical Mark Reader 84
7770 Audio Response Unit Model 3 27

Index 237

238 OS/YS2 Planning and Use Guide

OS,NS2 Planning and Use Guide

GC28-0600-2

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? ___ _
Number of latest Technical Newsletter (if any) concerning this publication: ____________ _
Please indicate in the space below if you wish a reply.

~~a_nk xou for your cooperati~_~._ N~ postage !tamp ~ecessary if mailed in the U.S.A. Elsewhere, an

READER'S
COMMENT
FORM

GC28-0600-2

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

(")

S.
Q
."
o
0::
l>
0'
:J
IIQ

!:
:J
(l)

I
Fold Fold

- - -- --- - - - ---- - -----~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

I
First Class I
Permit 81
Poughkeepsie
New York

----------------~
Fold

llrn~
<!>

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold I
I
I

o
VI

"< VI
tV
"'tJ

0"
:J
j :;.

cc
o
:J
0..

C
lb
G)
c
c.:
CD

Vl

>

GC28-0600-2

ilrnoo
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

o
VI

~
VI
N

"'0

C
:J
2.
:J
co
C
:J
Cl...

s;:
CD

G>
c
c:
CD

G>
n
N
(Xl
I

~
8
I

N

