
Systems

GC28;..0617-2
Fi Ie No. 5370-36

OS /VS JCL Services

VS1 Release 2
VS2 Release 1

Preface

OS/VS JCL Services describes services provided by
the operating system that an applications
programmer can request by coding parameters of
the job control language (JCL). This book is
written primarily for applications programmers who
code JCL statements for their jobs. It is divided
into two parts:

The introduction describes the nine JCL
statements and the organization of services used in
this book. This publication does not include
descriptions of all JCL services: a list of JCL
services, noting the publication in which each is
described and the parameter, subparameter, or
statement used to request the service, is included in
the introduction.

The descriptions of JCL services are grouped
into five sections: Running Your Job; Defining and
Describing Data Sets; Special Data Sets; Obtaining
Output; Cataloged and In-stream Procedures. Each
ch:;tpter describes when or why you would want to
request the service discussed, and how to request
or control the service.

The book assumes the reader has a basic
knowledge of computer operating systems and

Third Edition (December, 1972)

some familiarity with job control language.
Background information on VS 1 and VS2 is
included in the IBM System Summary, GA22-7001.

Parameters of the job control language are
discussed only in the context of requesting services.
Complete JCL parameter descriptions are included
in the OS/VS JCL Reference, GC28-0618.

Publications to which the text refers:

OS/VS JCL Reference, GC28-0618

OS/VS Data Management Services Guide, GC26-3783

OS/VS Data Management Macro Instructions,
GC26-3793

OS/VS Supervisor Services and Macro Instructions,
GC27-6979

OS/VS Checkpoint/Restart, GC26-3784

OS/VS Utilities, GC35-000S

Introduction to Virtual Storage in System/370,
GR20-4260

This is a major revision of, and obsoletes, GC28-0617-1. See Summary of Amendments
following the Contents. Changes or additions to the text and illustrations are indicated
by a vertica1line to the left of the change.

This edition applies to release 2 of OS/VSl and release 1 of OS/VS2 and to all
subsequent releases until otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/360 and
System/370 Bibliography, Order No. GA22-6822, and the current SRL Newsletter, Order No.
GN20-0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Programming Publications,
Dept. G60, PO Box 6, Endicott, New York l3760. Comments become the property of
IBM.

© Copyright International Business Machines Corporation 1972

Summary of Amendments

Introduction
The JCL Statements.
Introducing the JCL Services

List of JCL Services

Descriptions of JCL Services

Contents

7

9
9

10
12

19

Running Your Job 21
Job Scheduling 23

Assigning a Job to a Job Class 23
Dynamic Dispatching and Time Slicing (VSl only) . 24

Assigning a Priority to Your Job 24
Assigning a Dispatching Priority to Job Steps (VS2 only) 24
Priorities and Time Slicing (VS2 only). 26
Priorities and Automatic Priority Group (APG) (VS2 only) 26
Delaying Job Initiation 26

Requesting Storage for Execution of a Program 27
When to Request Real Storage for a Program 27
How to Request Storage with the REGION Parameter (VSl only) 28
How to Request Storage with the REGION Parameter (VS2 only) 28

Conditional Execution of Job Steps 31
Specifying Return Code Tests 31
Determining Further Execution of the Job . 32
Determining the Execution of a Single Step 32
Specifying Tests on Both the JOB and EXEC Statements 33

Restarting a Job 35
Types of Restart 35
Requesting Restart 35

Defining the Checkpoint Data Set 36
Modifying a Job Before Deferred Restart 37

Making Changes Before Deferred Step Restart 38
Making Changes Before Deferred Checkpoint Restart 38

Defining and Describing Data Sets. 41
Requesting Units and Volumes for Data Sets 43

Specifying Volume Information. 43
Specific Volume Requests . . 43
Nonspecific Volume Requests 43
Using Private Volumes . . . 44
Multivolume Data Sets . . . 44

Requesting Multiple Volumes 44
Positioning Within a Multivolume Data Set 45

Sharing Volumes Between Data Sets 45
Specifying Unit Information . . . 45

Requesting More than One Unit . 46
Deferred Mounting of Volumes 47
Unit Separation (VSl only) . . . 47
Sharing a Unit Between Data Sets 47
When You do not Have to Code the UNIT Parameter 48
Bypassing Allocation of Units and Volumes 49

Requesting Space for a Single Data Set. 51
Letting the System Assign Specific Tracks 51

The Basic Request: Unit of Measurement and Primary Quantity 51
Requesting Whole Cylinders 52
How the System Satifies Your Primary Request . . 52

A Secondary Request for Space 53
How the System Satisfies Your Secondary Request 54

Requesting Space for a Directory or Index 54
Requesting Contiguous Space . . . 55
Releasing Unused Space 55

Assigning Specific Tracks 55
Requesting Space for a Group of Data Sets 57

Contents 3

Sharing Cylinders Between Data Sets
The Sequence of DD Statements

Requesting Blocks of Space. .
Requesting Cylinders
Requesting a Secondary Quantity

Suballocating Space
Defining the Master Data Set
Suballocating Space from the Master Data Set .

How a Secondary Space Request is Satisfied
Identifying the Master Data Set
Example of Suballocating Space for Data Sets

Disposition Processing of Data Sets
Specifying Data Set Status
Specifying a Disposition for the Data Set

Deleting a Data Set
Keeping a Data Set
Cataloging a Data Set
Uncataloging a Data Set
Passing a Data Set . . .

Default Disposition Processing
Bypassing Disposition Processing

Insuring Data Set Integrity
Exclusive Control of a Data Set
Shared Control of a Data Set
How the System Performs Data Set Integrity Processing

Special Data Sets
Creating and Using Private and Temporary Libraries

Creating a Private Library
Adding Members to a Private Library

Retrieving an Existing Private Library
Concatenating Private Libraries

Temporary Libraries
Defining a Dummy Data Set

Coding the DUMMY Parameter
Coding DSNAME=NULLFILE. .
Requests to Read or Write a Dummy Data Set

Using a Dedicated Data Set for Allocating a Temporary Data Set
Defining the Temporary Data Set.

Obtaining Output .
Controlling the Output Listing of JCL Statements, Messages, and Dumps

Requesting Listing of JCL Statements and Messages
Assigning Messages to an Output Class
Requesting an Abnormal Termination Dump .

Writing Output Data Sets.
Assigning Output Data Sets to Output Classes

Processing Output Classes.
Using an Installation-Written Writer Routine
Delaying the Writing of an Output Data Set
Job Separators

Specifying the Device
Suppressing the Writing of an Output Data Set.

Requesting Multiple Copies of an Output Data Set (VSl only)
Requesting Multiple Copies with the COPIES Parameter
Requesting Multiple Copies with the WRITER Command

Printer Forms and Print Chain Control
Requesting a Special Output Form
Requesting a Special Character Set

Requesting the Fold Option . .
Requesting Operator Verification

Requesting a Specific Image
Requesting Alignment of Forms .
Requesting Operator Verification

Controlling Output to a Workstation (VSl only)
Routing Output to Another Destination . .

Sending Messages to Other Destinations

Cataloged and In-stream Procedures
Writing Cataloged and In-stream Procedures

4 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

57
57
58
58
59
59
60
60
60
61
61
63
63
63
64
64
64
65
65
65
66
67
67
67
67

69
71
71
72
73
74
74
75
75
75
76
77
77

79
81
81
82
82
85
85
85
86
86
86
86
87
89
89
89
91
91
91
92
92
92
93
93
95
95
96

97
99

Figures

Identifying an In-stream Procedure
Placing a Cataloged Procedure in a Procedure Library. . . .
Allowing for Changes in Cataloged and In-stream Procedures

Using Cataloged and In-stream Procedures
How to Call Cataloged and In-stream Procedures .
Modifying Cataloged and In-stream Procedures. .

Modifying Parameters on an EXEC Statement .
Modifying Parameters on a DD Statement

Modifying Parameters on DD Statements that Define Concatenated Data Sets
Adding D D Statements to a Procedure

Identifying Procedure Statements on an Output Listing
Using Symbolic Parameters

Defining Symbolic Parameters When Writing a Procedure
Caution Concerning Leading and Trailing Commas
Assigning Default Values to Symbolic Parameters ..

Assigning Values to and Nullifying Symbolic Parameters
Assigning a Value to a Symbolic Parameter
Nullifying a Symbolic Parameter

Example of a Procedure Containing Symbolic Parameters

Glossary

Index ..

99
100
100
101
101
101
102
103
104
105
106
107
107
108
109
110
110
111
111

113

117

Figure 1. Job Control Statements 10
Figure 2. System Action for Determining if Enough Space is Available to Satisfy Primary Quantity 53
Figure 3. Defining a Temporary Data Set in Order to Use the Space Allocated to a Dedicated Data Set 77
Figure 4. Identification of Cataloged Procedure Statements on the Output Listing 106
Figure 5. Identification of In-stream Procedure Statemenfs on the Output Listing 106

Contents 5

6 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Changes Relating Only to the VSl User:
I/O load balancing is an optional feature in VSl release
2; if it is included in the system, unit separation requests
are unnecessary, as described) under "Unit Separation" in
the chapter "Requesting Units and Volumes for Data
Sets."

Remote entry services (RES) allow the VSl user to
submit jobs to the central computing center from a
workstation and to route output to workstations. A new
chapter "Controlling Output to a Workstation" has been
added to the section "Obtaining Output."

A new parameter, HOLD, allows the VSl user to delay
the writing of an output data set until it is requested, as
described under "Delaying the Writing of an Output
Data Set" in the chapter "Writing Output Data Sets."

By assigning a job to an installation-prescribed job class,
the VS 1 user can take advantage of time slicing and
dynamic dispatching, as described under "Dynamic
Dispatching and Time Slicing" in the chapter "Job
Scheduling. "

Summary of Amendments
for GC28-0617-2

VSl Release 2
VS2 Release 1

Unit affinity cannot be requested for new data sets, as
noted under "Sharing a Unit Between Data Sets" in the
chapter "Requesting Units and Volumes for Data Sets."

A warning about the printing of return codes is included
in the chapter "Conditional Execution of Job Steps."

Changes Relating to Both the VSl and VS2 User:
Incorrect information was included in the chapter "Using
a Dedicated Data Set." This chapter has been rewritten
and retitled "Using a Dedicated Data Set for Allocating
a Temporary Data Set."

The chapter "Requesting Space for a Data Set" has been
rewritten to improve clarity. The information is now
included in two chapters, "Requesting Space for a Single
DataSet" and "Requesting Space for a Group of Data
Sets."

Summary of Amendments 7

Summary of Amendments
for GC28-0617-1
VSl Release 1
VS2 Release 1

OS/VS JCL Services, GC28-0617-1, replaces OS/VSl Job
Management Services, GC28-0617-0. The overview of job
management (Part I) in Job Management Services is
replaced by an introduction to JCL and JCL services in
this book. The services themselves have been
reorganized, and additional services are included. In
general, OS/VS JCL Services applies to both VS 1 and
VS2; certain information that pertains to only one
system is marked as such in the text.

The following chapters or additions to chapters apply to
VS 1, as well as VS2:

"Defining the Checkpoint Data Set" in the chapter
"Restarting a Job"

"Requesting Space for a Data Set"

"Creating and Using Private and Temporary
Libraries"

8 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

"Using a Dedicated Data Set"

"Requesting an Abnormal Termination Dump" in the
chapter "Controlling the Output Listing of JCL
Statements, Messages, and Dumps"

• "Requesting a Specific Image" in the chapter "Printer
Forms and Print Chain Control"

"Writing Cataloged and In-stream Procedures"

"Using Symbolic Parameters"

Two technical changes for VS 1 update incorrect
information that was included in OS/VSl Job
Management Services:

• you need not code MSGLEVEL= 1 when automatic
restart is to be performed;

• you can request a special character set for a 1403
printer by coding the UCS and UNIT parameters.

Introduction

You can write programs in anyone of a number of languages. The operating system will
translate the language into machine language so that your instructions can be executed and
your work performed. However, in addition to coding programs to actually perform work, you
must submit your programs to the operating system: a collection of related problem programs
is submitted as a job; you define a job with the job control language (JCL).

A job can consist of one or more job steps; each job step is a unit of work associated with
one processing program or one cataloged procedure and related data. (A cataloged procedure
is a set of job control statements that has been placed in a partitioned data set called the
procedure library; you can retrieve a cataloged procedure by coding its name on an EXEC
statement.) You identify each job step with an EXEC statement; each data set used by a job
step, with a DD statement; and the job itself, with a JOB statement. These three job control
statements and six additional statements are summarized under "The JCL Statements."

In addition to identifying data sets, job steps, and the job, you can code parameters on JCL
statements to request resources and services from the operating system. The operating system
is responsible for managing all the resources of the computing system and will automatically
perform many services in processing your job; however, you can influence the processing of
your job by coding JCL parameters. For example, the operating system selects your job for
execution, but you can influence when your job is selected, or you can delay its selection, by
coding parameters on the JOB statement. You can ask for resources --for example, you can
request a specific volume on which you want a data set written. A list of services provided by
coding JCL parameters and an outline of the organization of services used in this book are
included under "Introducing the JCL Services."

The JCL Statements

The job control language consists of nine statements. The name and purpose of each statement
is summarized in Figure 1.

Basically, each job requires only the use of the JOB statement (to identify the job), EXEC
statements (to identify each step), and DD statements (to identify data sets used by the job).
The null statement is optional, but its use at the end of a job insures that JCL statements from
another job will not be read as part of your job; the delimiter statement can be used to
indicate the end of data in the input stream. You code PROC and PEND statements when you
write an in-stream procedure. (An in-stream procedure is a set of job control statements
placed in the input stream that can be used any number of times during a job by naming the
procedure on an EXEC statement.) The use of these statements in in-stream procedures, and
the optional use of the PROC statement in cataloged procedures, is discussed in the chapter
"Writing Cataloged and In-stream Procedures." The command statement provides the facility
to submit operator commands through the input stream; this statement is used primarily by the
operator. The comment statement is useful to make your programs readily understandable by
other programmers and by yourself. Details on coding all these statements, and a fuller
description of each statement, are included in the OS/VS JCL Reference, GC28-0618.

Introduction 9

Name of Statement Purpose

job (JOB) marks the beginning of a job; assigns a name to the job

execute (EX EC) marks the beginning of a job step; identifies the program to be executed or the
cataloged or in - stream procedure to be called; assigns a name to the step

data definition (DD) identifies a data set and describes its attributes

delimiter (/* or two characters indicates the end of data placed in the input stream
designated by the user)

null (//) marks the end of a job

procedure (PROC) for cataloged procedures, assigns default values to parameters defined in the
procedure; for in - stream procedures, marks the beginning of the procedure

procedure end (PEND) marks the end of an in -stream procedure

comment (//*) contains comments

command enters operator commands through the input stream

Figure 1. Job Control Statements

The parameters that can be coded on JCL statements give JCL its versatility. There are two
types of parameters: positional parameters must appear in a specified order on a JCL statement;
keyword parameters consist of a keyword followed by one or more values and must follow any
positional parameters coded on the statement. Complete lists of all the possible positional and
keyword parameters that can be coded on JCL statements are included in the OS/VS JCL
Reference, GC28-0618. Syntax rules for coding the parameters are also described in the OS/VS
JCL Reference.

Introducing the JCL Services

JCL services described in this publication are divided into five sections:

• running your job
• defining and describing data sets
• special data sets
• obtaining output
• cataloged and in-stream procedures

Each section is divided into chapters describing individual services: why you would want to
request the service and how to request the service.

Not every service provided by JCL is included in this book. The following list is intended to
acquaint you with the services available; the list notes where the service is described and what
statement, parameters or subparameters you code to request the service. Individual services
provided by coding subparameters of the DCB parameter are not included: the services you
can request with DCB subparameters depend on what access method you are using. For lists
of DCB subparameters that can be coded for each access method, see the OS/VS JCL
Reference, GC28-0618; services provided by many DeB subparameters are described in greater
detail in OS/VS Data Management Services Guide, GC26-3783. For example, the JCL Reference
tells you the data set organizations you can request in the DSORG subparameter; the Data
Management Services Guide describes the different data set organizations in detail.

10 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

The list is divided into six areas:

• running your job
• defining and describing data sets
• special data sets
• obtaining output
• cataloged and in-stream procedures
• TSO and TeAM services

Introduction 11

List of JCL Services

RUNNING YOUR JOB

Service Publication(s) where JCL Statement, Parameter, or Subparameter Used
Described

automatic priority group, using (VS2 JCL Services, "Job PRTY parameter on JOB statement; DPRTY
only) Scheduling" parameter on EXEC statement

conditional execution of job steps JCL Services, COND parameter on JOB or EXEC statement
"Conditional Execution
of Job Steps"

delaying job initiation JCL Services, "Job TYPRUN = HOLD parameter on JOB statement
Scheduling"

dispatching priority, assigning (VS2 JCL Services, "Job DPRTY parameter on EXEC statement
only) Scheduling"

executing programs contained in JCL Reference, "The PG M parameter on EXEC statement
libraries PGM Parameter"

job class, assigning JCL Services, "Job CLASS parameter on JOB statement
Scheduling"

job priority, assigning JCL Services, "Job PRTY parameter on JOB statement
Scheduling"

job scheduling JCL Services, "Job PRTY, CLASS and TYPRUN = HOLD parameters on
Scheduling" JOB statement; DPRTY parameter on EXEC

statement

limiting the amount of time a job JCL Reference, "The TIME parameter on JOB statement
uses the CPU TI M E Parameter"

limiting the amount of time a job JCL Reference, "The TIME parameter on EXEC statement
step uses the CPU TIME Parameter"

passing accounting information to JCL Reference, "The ACCT parameter on EXEC statement
accounting routines ACCT Parameter"

passing information to processing JCL Reference, "The PARM parameter on EXEC statement
program PARM Parameter"

restarting a job Checkpoint / Restart, RD parameter on JOB or EXEC statement; RESTART
"Use of the Restart parameter on JOB statement
Facilities", JCL
Services, "Restarting a
Job"

scanning JCL for errors (VS1 only) JCL Reference, "The TYPRUN = SCAN parameter on JOB statement
TYPRUN Parameter"

specifying accounting information JCL Reference, accounting information parameter on JOB statement
"Accounting Information
Parameter"

storage for execution of a program, JCL Services, REGION and ADDRSPC parameters on JOB or EXEC
requesting "Requesting Storage for statement

Execution of a Program"

time slicing facility, using JCL Services, "Job PRTY parameter on JOB statement; DPRTY
Scheduling" parameter on EXEC statement

12 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

DEFINING AND DESCRIBING DATA SETS (Part 1 of 2)

Service

assigning specific tracks on a direct
access volume to a data set

bypassing disposition processing

cataloging a data set

completing the data control block

contiguous space for a data set,
requesting

data set disposition, specifying

exclusive control of a data set,
requesting

identifying a data set to the system

including data in the input stream

insuring data set integrity

keeping a data set

label type, specifying

multiple units, requesting

multivolume data sets, creating and
retrieving

optimizing channel use (VS1 only)

passing a data set

Publication(s) where
Described

JCL Services,
"Requesting Space for a
Single Data Set"

JCL Services, "Defining
a Dummy Data Set"

JCL Services,
"Disposition Processing
of Data Sets"

Data Management
Services Guide "The
Data Control Block";
JCL Reference, "The
DCB Parameter"

JCL Services,
"Requesting Space for a
Single Data Set"

JCL Services,
"Disposition Processing
of Data Sets"

JCL Services, "Insuring
Data Set Integrity"

JCL Reference,
"Identifying a Data Set
to the System"

JCL Reference, "The *
Parameter", "The DATA
Parameter", "The DLM
Parameter"

JCL Services, "Insuring
Data Set Integrity"

JCL Services,
"Disposition Processing
of Data Sets"

JCL Reference, "The
LABEL Parameter"

JCL Services,
"Requesting Units and
Volumes for a Data Set"

JCL Services,
"Requesting Units and
Volumes for a Data Set"

JCL Reference, "The
AFF Parameter"

JCL Services,
"Disposition Processing
of Data Sets"

JCL Statement, Parameter, or Subparameter Used

SPACE parameter on DO statement

DUMMY or DSNAME = NULLFILE parameter on DO
statement

CATLG subparameter of DISP parameter on DO
statement

DCB parameter on DO statement

CONTIG subparameter of SPACE parameter on DO
statement

DISP parameter on DO statement

DISP parameter on DO statement

DDNAME, DSNAME, and LABEL parameters on DO
statement

*, DATA, and DLM parameters on DO statement

DISP parameter on DO statement

KEEP subparameter of DISP parameter on DO
statement

LABEL parameter on DD statement

unit count or P subparameter of UNIT parameter on
DO statement

unit count and volume sequence number
subparameters of VOLUME parameter on DO
statement

AFF parameter on DO statement

PASS subparameter of DISP parameter on DO
statement

Introduction 13

DEFINING AND DESCRIBING DATA SETS (Part 2 of 2)

Service Publication(s) where JCL Statement, Parameter, or Subparameter Used
Described

postponing definition of a data set JCL Reference, "The DDNAME parameter on DO statement
DDNAME Parameter"

private volumes, using JCL Services, PRIVATE and RETAIN subparameters of VOLUME
"Requesting Units and parameter on DO statement
Volumes for a Data Set"

protecting a data set JCL Reference, "The PASSWORD, NOPWREAD, RETPD, and EXPDT
Label Parameter" subparameters of LABEL parameter on DO statement

releasing unused space JCL Services, RLSE subparameter of SPACE parameter on DO
"Requesting Space for a statement
Single Data Set"

shared control of a data set, JCL Services, "Insuring SHR subparameter of DISP parameter on DO
requesting Data Set Integrity" statement

sharing tracks or cylinders between JCL Services, SPLIT parameter on DO statement
data sets "Requesting Space for a

Group of Data Sets"

sharing units between data sets JCL Services, AFF subparameter of UNIT parameter on DD
"Requesting Units and statement
Volumes for a Data Set"

sharing volumes between data sets JCL Services, SER or REF subparameter of VOLUME parameter on
"Requesting Units and DD statement
Volumes for a Data Set"

space for directory or index, JCL Services, SPACE or SUBALLOC parameter on DO statement
requesting "Requesting Space for a

Single Data Set"

space for a group of data sets, JCL Services, SPLIT or SUBALLOC parameter on DO statement
requesting "Requesting Space for a

Group of Data Sets"

space for a single data set, JCL Services, SPACE parameter on DO statement
requesting "Requesting Space for a

Single Data Set"

suballocating data sets JCL Services, SUBALLOC parameter on DD statement
"Requesting Space for a
Group of Data Sets"

uncataloging a data set JCL Services, UNCATLG subparameter of DISP parameter on DD
"Disposition Processing statement
of Data Sets"

units, requesting JCL Services, UNIT parameter on DO statement
"Requesting Units and
Volumes for a Data Set"

unit separation, requesting (VS1 only) JCL Services, SEP subparameter of UNIT parameter on DO
"Requesting Units and statement
Volumes for a Data Set"

volumes, requesting JCL Services, VOLUME parameter on DD statement
"Requesting Units and
Volumes for a Data Set"

whole cylinders, requesting JCL Services, ROUND subparameter of SPACE parameter on DO
"Requesting Space for a statement
Single Data Set"

14 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

SPECIAL DATA SETS

Service Publication(s) where JCL Statement, Parameter, or Subparameter Used
Described

checkpoint data set, defining Checkpoi nt / Restart, SYSCHK DD statement
"Use of the Checkpoint
Facilities"; JCL
Services, "Restarting a
Job"

concatenated data sets, defining JCL Reference, D D statements
"Programming Notes"

dedicated data sets, using for JCL Services, "Using a D D statement
allocating a temporary data set Dedicated Data Set for

Allocating a Temporary
Data Set"

dummy data set, defining JCL Services, "Defining DUMMY or DSNAME = NULLFILE parameter on DD
a Dummy Data Set" statement

generation data groups, creating and JCL Reference, D D statement
using "Creating and Retrieving

Generation Data Sets"

indexed sequential data sets, creating Data Management D D statement
and using Services Guide,

"Processing an Indexed
Sequential Data Set";
JCL Reference,
"Creating and Retrieving
Indexed Sequential Data
Sets"

private libraries, creating and using JCL Services, "Creating JOBLIB or STEPLIB DD statement
and Using Private and
Temporary Libraries"

temporary libraries, creating and JCL Services, "Creating o.D statement
using and Using Private and

Temporary Libraries"

OBTAINING OUTPUT (Part of 1 of 3)

Service Publication(s) where JCL Statement, Parameter, or Subparameter Used
Described

abnormal termination dump, JCL Services, SYSABEND or SYSUDUMP DD statement
requesting "Controlling the Ouptut

Listing of JCL
Statements, Messages,
and Dumps"

alignment of forms, requesting JCL Services, "Printer ALIGN subparameter of FCB parameter on DD
Forms and Print Chain statement
Control"

assigning messages to an output JCL Services, MSGCLASS parameter on JOB statement
class "Controlling the Output

Listing of JCL
Statements, Messages,
and Dumps"

assigning an output data set to an JCL Services, "Writing SYSOUT parameter on DD statement
output class Output Data Sets"

Introduction 15

Obtaining Output (Part 2 of 3)

Service Publication(s) where JCL Statement, Parameter, or Subparameter Used
Described

controlling the output listing of JCL JCL Services, MSGLEVEL and MSGCLASS parameters on JOB
statements, messages and dumps "Controlling the Output statement; SYSABEND or SYSUDUMP DD

Listing of JCL statement
Statements, Messages,
and Dumps"

listing of JCL statements and JCL Services, MSGLEVEL and MSGCLASS parameters on JOB
messages, requesting "Controlling the Output statement

Listing of JCL
Statements, Messages
and Dumps"

controlling output to a workstation JCL Services, SYSOUT, DEST parameter on DD statement
(VS1 only) "Controlling Output to a

Workstation "

delaying the writing of an output JCL Services, "Writing HOLD = YES parameter on DD statement
data set Output Data Sets"

dump, requesting JCL Services, SYSABEND or SYSUDUMP DD statement
"Controlling the Output
Listing of JCL
Statements, messages
and Dumps"

fold option, requesting when you JCL Services, "Printer FOLD subparameter of UCS parameter on DD
request a special character set Forms and Print Chain statement

Control"

holding an output data set JCL Sergices, "Writing HOLD = YES parameter on DD statement
Output Data Sets"

multiple copies of an output data set JCL Services, COPIES parameter on DD statement
(VS1 only) "Requesting Multiple

Copies of an Output
Data Set"

operator verification of special JCL Services, "Printer VERIFY subparameter of UCS parameter on DD
character sets, requesting Forms and Print Chain statement

Control"

operator verification of a specific JCL Services, "Printer VERIFY subparameter of FCB parameter on DD
image on a 3211 printer, requesting Forms and Print Chain statement

Control"

printer forms and print chain control JCL Services, "Printer UCS, FCB, and SYSOUT parameters on DD
Forms and Print Chain statement
Control"

routing output to another destination JCL Services, DEST parameter on DD statement
"Controlling Output to a
Workstation "

special character set, requesting JCL Services, "Printer UCS parameter on DD statement
Forms and Print Chain
Control"

special output form, requesting JCL Services, "Printer SYSOUT parameter on DD statement
Forms and Print Chain
Control"

special image for a 3211 printer, JCL Services, "Printer FCB parameter on DD statement
requesting Forms and Print Chain

Control"

16 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

Obtaining Output (Part 3 of 3)

Service Publication(s) where JCL Statement, Parameter, or Subparameter Used
Described

specifying an output device JCL Services, "Writing UNIT parameter on DO statement
Output Data Sets"

suppressing the writing of an output JCL Services, "Defining DUMMY or DSNAME = NULLFILE parameter on DO
data set a Dummy Data Set" statement

using an installation-written writer JCL Services, "Writing SYSOUT parameter on DO statement
routine Output Data Sets"

writing output data sets JCL Services, "Writing SYSOUT or UNIT parameter on DO statement
Output Data Sets"

CATALOGED AND IN-STREAM PROCEDURES

Service Publication(s) where JCL Statement, Parameter, or Subparameter Used
Described

adding DO statements to a procedure JCL Services, "Using DO statement
Cataloged and In-stream
Procedures"

assigning values to symbolic JCL Services, "Using PROC or EXEC statement
parameters Symbolic Parameters"

calling cataloged and in-stream JCL Services, "Using EXEC statement
procedures Cataloged and In-stream

Procedures"

modifying parameters on EXEC and JCL Services, "Using EXEC statement
DO statements in a procedure Cataloged and In-stream

Procedures"

nullifying symbolic parameters JCL Services, "Using EXEC or PROC statement
Symbolic Parameters"

using cataloged and in-stream JCL Services, "Using EXEC, DD statements
procedures Cataloged and In-stream

Procedures"

using symbolic parameters JCL Services "Using PROC, EXEC, DD statements
Symbolic Parameters"

writing cataloged and in-stream JCL Services, "Writing PROC, PEND, EXEC, DD statements
procedures Cataloged and In-stream

Procedures"

TSO AN 0 TCAM SERVICES

Service Publication(s) where JCL Statement, Parameter, or Subparameter Used
Described

accessing messages received from a JCL Reference, "The QNAME parameter on DO statement
terminal via TCAM QNAM E Parameter"

indicating that a data set is going to JCL Reference, "The TERM parameter on DD statement
or coming from a terminal TERM Parameter"

requesting notification when JCL Reference, "The NOTIFY parameter on DO statement
background job is complete NOTI FY Parameter"

Introduction 17

18 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

Descriptions of J CL Services

Descriptions of JCL Services 19

20 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

The operating system is responsible for reading your job into
the system, interpreting your J CL statements to determine the
requirements of your job and job steps, satisfying those
requirements, scheduling your job, and selecting it for
execution. The system will automatically perform most of
these services for you, but you can code J CL parameters to
influence how these services are performed and to request
resources your job requires for its execution. For example, the
system will schedule your job for execution, but you can
influence when your job is selected by coding the CLASS and
PRTY parameters on the JOB statement.

The section is divided into four chapters:

• Job Scheduling

• Requesting Storage for Execution of a Program

• Conditional Execution of Job Steps

• Restarting a Job

Running Your Job

Running Your Job 21

22 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Job Scheduling

When jobs are read into the system, they are placed in an input queue: the input queue is
divided into job class queues and, within each job class queue, jobs are placed according to
their priority. Jobs in the same class with the same priority are placed in the input queue in the
order they were read into the system. An initiator selects jobs from the input queue. (An
initiator can be thought of as a guide assigned to lead jobs of specified classes through the
system. There can be only as many jobs acJive in the system concurrently as there are
initiators started by the operator.) An initiator is assigned job classes to process: it selects jobs
from the first class assigned to it according to the priority of the jobs until no more jobs exist
in that class, and then selects jobs from the next class assigned. You influence how your job is
placed in the input queue --therefore, when your job is selected for execution-- by assigning a
job class and priority to your job. In V82, you can also assign a dispatching priority to job
steps in your job; the dispatching priority determines in what order job step tasks in your job
will use real storage and CPU resources.

Although you can influence your job's selection by assigning a job class and priority to your
job, you cannot predict whether a job in one job class queue will be selected for execution
before another job in a different job class queue. When jobs exist in the same job class queue,
you cannot be certain that one job will complete execution before the other job is selected,
even if you assign a higher priority to the first job. In some cases, you might submit two jobs,
for example, JOBA and JOBB, where JOBA must complete execution before JOBB is initiated
--JOBA might create records that JOBB will use. You will have to delay JOBB's initiation until
JOBA completes execution. A strong possibility can exist that resources a job requires will not
be available --in this case, you can delay the job's initiation until required resources are
available. You delay a job's initiation by coding TYPRUN=HOLD on the JOB statement.

Assigning a Job to a Job Class

Job classes are established by an installation to group jobs with similar characteristics. By
assigning jobs to job classes, the installation tries to avoid contention between jobs that require
the same resources by preventing them from running concurrently. For example, the
installation might assign jobs that run for less than one minute to class C and jobs that have
high I/O requirements to class D. When a job's characteristics could place it in one of several
job classes (i.e., a job might run for less than one minute and have high I/O requirements),
you must determine which characteristic is most important in achieving a good balance of jobs
in the computing system. The job class itself is a letter from A through 0; its meaning is
defined by the individual installation.

You assign your job to a job class by coding the CLASS parameter on the JOB statement:

//PGM JOB ... CLASS=C

If you do not code the CLASS parameter, the reader assigns a default class of A to the job. If
you code an incorrect job class (a letter other than A through 0), the job is abnormally
terminated. If you code an inactive job class -- a class that has not been assigned to an
initiator -the job is placed in the input queue but is not selected until an initiator is started to
process that job class.

Job Scheduling 23

Dynamic Dispatching and Time Slicing (VSl only)

VS 1 offers two options to provide more efficient use of the CPU: dynamic dispatching and
time slicing. During system generation, your installation can specify time slicing or dynamic
dispatching for a group of contiguous partitions. Both options can be included in the same
system, but cannot be specified for the same partitions.

With time slicing, each task in each partition specified for time slicing is assigned an equal
interval of time to retain control of the CPU; therefore, no task in the group can monopolize
the CPU.

With dynamic dispatching, tasks in the group are considered either I/O-bound (relying
heavily on input/output operations) or CPU-bound (making heavy demands on real storage).
Each task is assigned an equal time interval to retain control of the CPU: if a task does not
use its entire interval of allotted time, it is considered I/O-bound; if it does, it is considered
CPU-bound. I/O-bound tasks are given higher dispatching priority within the group so that
system through-put can be increased. (Dispatching priority is a number assigned to tasks, used
to determine the order in which they will use the CPU.)

Your installation assigns job classes to each partition; different specific job classes should be
assigned to partitions that include dynamic dispatching and to partitions that include time
slicing. To take advantage of dynamic dispatching or time slicing, assign your job to the
appropriate job class established by your installation.

Assigning a Priority to Your Job

Within a job class, jobs are selected for execution from the input queue according to job
priority. Jobs with the same class and priority are placed in the input queue in a first in/first
out order.

You assign a priority to your job in the PRTY parameter on the JOB statement:

//PGM JOB ... CLASS=C,PRTY=10

The priority is a number from ° to 13; 13 is the highest priority. In the above example, an
initiator assigned to process job class C will begin execution of PGM after all jobs in class C
with a higher priority and before all jobs in class C with a lower priority. If other jobs in class
C also have a priority of 10, the initiator will choose the job that was read into the system
first.

If you do not code a priority, the system will assign the default established in the reader
procedure.

Note for VSl: The system programmer can establish a number less than 13 as the highest
priority for jobs submitted from a work station. If you are submitting a job from a work
station and code a priority greater than the established limit, that priority will be replaced by
the default.

Assigning a Dispatching Priority to Job Steps (VS2 only)

Dispatching priority determines in what order tasks will use real storage and CPU resources. A
task is a unit of work for the central processing unit from the standpoint of the control
program; a task initiated by an initiator in accordance with specifications on an EXEC
statement is known as a job step task. By coding a dispatching priority, you influence when job
steps in your job will use real storage and CPU resources.

You do not have to code a dispatching priority --if you do not, job steps in your job are
assigned the same dispatching priority as the job. In some cases, however, you may want a job

24 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

step to have a higher or lower priority than the job. For example, in STEP3 of a job, you code
COND=ONL Y on the EXEC statement, indicating that the step should be executed only if a
preceding step abnormally terminated. (The COND parameter is described in detail in the
chapter "Conditional Execution of Job Steps.") You can assign this step a dispatching priority
higher than the job's dispatching priority to get the job through the system quickly. In another
job, one step makes heavy demands for real storage. You can assign this step a dispatching
priority lower than the job's priority, so that the step does not monopolize CPU resources.

To assign a dispatching priority, code the DPRTYparameter on the EXEC statement. In
the DPRTY parameter, you can code two values. The system substitutes these values in the
following formula to form the dispatching priority:

(valuel x 16) + value2 = step's dispatching priority

Value1 has the same meaning as the value assigned in the PRTY parameter on the JOB
statement. If you do not code value1, the system assumes a default value of O. If you do not
code value2, the system assumes a value of 11. If you omit the DPRTY parameter completely,
the step has the same dispatching priority as the job; the job's dispatching priority is computed
by substituting the job's priority in the following formula:

(priority x 16) + 11 = job's dispatching priority

You can code numbers between 0 and 15 for value1 and value2; a higher number indicates a
higher dispatching priority. However, you should avoid assigning 15 to value1 --15 is used for
certain system tasks. For example, if you code:

DPRTY=(10,5)

the dispatching priority is (10 x 16) + 5 = 165. If you code:

DPRTY=8

8 is substituted for value 1 in the formula, and 11. is assumed for value2; the dispatching
priority is (8 x 16) + 11 = 139. If you code:

DPRTY=(,12)

o is assumed for value1 and 12 is substituted for value2; the dispatching priority is (0 x 16) +
12 = 12.

For example, you assign a priority of 8 to a job named ACCOUNT. STEP2 of the job
makes heavy demands on real storage --you want to assign this step a lower dispatching
priority than the job. STEP3 is executed only if a preceding step terminates abnormally --you
want to assign a higher dispatching priority to STEP3:

//ACCOUNT
//STEP1

//STEP2

//STEP3

JOB
EXEC

EXEC

EXEC

... PRTY=8
PGM=UPDATE

PGM=ENHANCE,DPRTY=5

PGM=ERROR,COND=ONLY,DPRTY=(10,13)

In STEP1, you did not code the DPRTY parameter: the job step has the same dispatching
priority as the job.

Job Scheduling 25

Priorities and Time Slicing (VS2 only)

Time slicing is an option of VS2 that lets each task of a specified priority have control of the
CPU for a specified interval of time. Normally a task maintains control until it is complete,
until a higher-priority task becomes ready, or until it must wait for some event (such as an
I/O operation). With time slicing, a group of tasks are allotted an interval of time which is
divided among them --all tasks within the group are given an equal slice of CPU time and no
task within the group can monopolize the CPU.

Your installation provides for time slicing during system generation, at which time it
specifies the priorities that will be time sliced. To include a job in a time sliced group, code the
priority specified at system generation as your job's priority in the PRTY parameter on the
JOB statement. To include a job step in a time sliced group, code the priority specified at
system generation as the first value (valuel) in the DPRTY parameter on the EXEC
statement; the second value (value2) must either be omitted or assigned the value 11.

Priorities and Automatic Priority Group (APG) (VS2 only)
Automatic priority group (APG) is an option of VS2 that assigns a single priority to a group
of tasks in an attempt to provide optimum use of CPU and I/O resources by these tasks. APG
is a method of achieving a good mix of CPU-bound tasks (tasks that make heavy demands for
real storage) and I/O-bound tasks (tasks that rely heavily on input/output operations). Each
task in the APG is dispatched with a time interval --if a task uses its entire interval of allotted
time (i.e., does not relinquish control of the CPU voluntarily), it is considered CPU-bound;
tasks that do not use their entire interval of allotted time are considered I/O-bound.
I/O-bound tasks are ordered so that those which use smaller portions of their time interval are
ranked high among the tasks waiting for the CPU. CPU-bound tasks receive control in a cyclic
manner, ensuring that any available CPU time is distributed equitably among them.

Your installation specifies the priority associated with APG during system generation or
system initialization. To include your job in the APG, code this priority as your job's priority
in the PRTY parameter on the JOB statement. To include a job step in the APG, code the
priority associated with the APG as the first value (valuel) in the DPRTY parameter; the
second value (value2) in the DPRTY parameter must either be ommitted or assigned a value
of 11.

Delaying Job Initiation
To delay a job's initiation, code TYPRUN =HOLD on the JOB statement. The job is removed
from the input queue and placed on a hold queue until the operator issues a RELEASE
command for the job. (A hold queue is simply a waiting list for jobs whose initiation is being
delayed.) You must notify the operator when you delay a job's initiation --no message is issued
when a job is read into the system, and if the operator does not check, he will not know that a
job has been placed on the hold queue. When the operator releases the job, it is again placed
in an input queue, according to class and priority, and is eligible for execution.

For example, you are submitting two jobs, JOBA and JOBB. JOBB requires a data set
created by JOBA. You can delay the initiation of JOBB until JOBA completes execution:

//JOBB JOB ..• TYPRUN=HOLD

Include a note with your job to tell the operator that JOBB is being placed on the hold queue
and should be released when JOBA completes execution. The operator issues a DISPLAY
command to learn if JOBA has completed execution. When JOBA is complete, he will issue
the RELEASE command for JOBB.

26 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Requesting Storage for Execution of a Program

In VS, storage available for execution of your programs is divided into real storage and external
page storage:

• real storage is the storage of System/370 from which the central processing unit can directly
obtain instructions and data and to which it can directly return results.

• external page storage is auxiliary storage that contains programs in the form of fixed-length
blocks called pages.

When a program is selected, it is brought into external page storage and divided into pages.
The supervisor is responsible for transferring pages of your program from external page storage
to real storage for execution. This paging is done automatically by the supervisor; to you, it
appears as if your entire program exists in real storage. (The concept of paging is described in
greater detail in Introduction to Virtual Storage in System/370, GR20-4260.)

Real storage and external page storage are the physical counterparts of virtual storage:
virtual storage is addressable space that appears to the user as real storage, from which
instructions and data are mapped into real storage locations. The size of virtual storage is
limited by the addressing scheme of the computing system and by the amount of auxiliary
storage available, rather than by the actual number of real storage locations.

When to Request Real Storage for a Program

For most programs, the supervisor transfers pages of your program to real storage as they are
required for execution; not all pages of your program are necessarily in real storage at one
time and the pages that are in real storage at once do not necessarily occupy contiguous space.
Certain programs, however, must have all their pages in contiguous real storage while they are
executing --they cannot be paged during execution. These programs include:

• programs that modify a channel program while it is active, such as the Online Test
Executive Program (OLTEP) in VS2;

• programs that are highly time-dependent, such as the Magnetic Ink Character Recognition
(MICR) programs.

These programs must be placed into an area of virtual storage called the nonpageable dynamic
area, whose virtual addresses are identical to real addresses; they are the only programs for
which you should request real storage. You request real storage with the REGION parameter;
the meaning of the REGION parameter differs in VSl and VS2 --for details see "How to
Request Storage with the REGION parameter" for the system you are using.

In both VS 1 and VS2, you identify programs that must not be paged during execution by
coding the ADDRSPC (address space) parameter on the JOB or EXEC statement and
specifying the subparameter REAL. When coded on the JOB statement, you are specifying
that each step of the job must not be paged during its execution. To specify this requirement
for a specific step, code ADDRSPC=REAL on the EXEC statement for that step. If you code
the ADDRSPC parameter on the JOB statement, the parameter is ignored on EXEC
statements in the job. The default assumed if you do not code the ADDRSPC parameter is
ADDRSPC=VIRT, indicating that the program can be paged during its execution. Therefore
you must code ADDRSPC=REAL if your program must be brought into contiguous real
storage for its execution.

Requesting Storage for Execution of a Program 27

How to Request Storage with the REGION Parameter (VSl only)

In OS/VS1, you code the REGION parameter only for programs that must not be paged
during their execution -- the REGION parameter is ignored unless you also code
ADDRSPC=REAL. If you code ADDRSPC=REAL but do not code the REGION parameter,
the system supplies a default established in the reader procedure.

In the REGION parameter, specify the number of contiguous 1024-byte areas of real
storage required. If you request an odd number, the system increases the number to the next
highest even number.

The amount you specify must include any additional requests your program makes during its
execution (for example, a request made with the GETMAIN macro instruction). Any request
for additional storage is actually a request for real storage from the area specified in the
REGION parameter. The size of your request has no relationship to the size of the virtual
storage partition, since the job does not execute in virtual storage; the maximum size you
request, therefore, depends on the physical size of the nonpageable dynamic area and the
extent of system activity at the time the request is made.

Note: Main storage hierarchy support and the rollout/rollin feature are not supported in VS.
However, you need not recode statements that contain the ROLL parameter or that contain
REGION specifications originally made for hierarchy support. The system will check the
ROLL parameter for correct syntax, but will otherwise ignore it. In the REGION parameter,
the system will round the values specified to even numbers, if the numbers were odd, and add
the values. For example, if a REGION parameter originally specified for hierarchy support is:

//PGM JOB ... REGION=(11K,18K)

the system will round 11K to 12K, add the values, and assign 30K of real storage to each step
of the job named PGM.

The REGION parameter can be coded on either the JOB or EXEC statement. When you
code the REGION parameter on the JOB statement, you are requesting that much storage for
each step of the job; to specify a different region size for each step, code the REGION
parameter on the EXEC statements of the job steps in the job. (If the REGION parameter is
coded on the JOB statement, REGION parameters coded on the job's EXEC statements are
ignored.)

In the following example, you are specifying that the entire job must be in real storage
during its execution and are requesting that the system assign 60 contiguous 1024-byte areas
of real storage to each step.

//PGM JOB ... ADDRSPC=REAL,REGION=60K

How to Request Storage with the REGION Parameter (VS2 only)

You can code the REGION parameter for all your programs in VS2. The meaning of the
REGION parameter differs, however, depending on if the program cannot be paged during its
execution (you code ADDRSPC=REAL) or if pages of the program can be transferred to real
storage as required for execution (ADDRSPC= VIRT is coded or implied).

When you code ADDRSPC=REAL and the REGION parameter, the amount of space you
request is allocated to your program from the nonpageable dynamic area --your request is
actually a request for real storage. Specify the required number of contiguous 1024-byte areas
of real storage in the REGION parameter. The amount of real storage you request cannot
exceed the size of the nonpageable dynamic area; your installation determines the size of the
nonpageable dynamic area during system generation and therefore limits the amount of real

28 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

storage that can be allocated to your program. If the number you specify is not an even
multiple of 4 K, the system will round your request up to a multiple of 4 K (4 K is the size of a
page in VS2). For example, if you code:

//PROGRAM JOB ... ADDRSPC=REAL,REGION=22K

the system will round up your request to 24K and assign 24 contiguous l024-byte areas of
real storage to your program in the nonpageable dynamic area.

When you code the REGION parameter for programs that can be paged during their
execution, the system allocates the space you request in external page storage. The supervisor
obtains real storage for pages of your program as required for execution --your request in the
REGION parameter is not a request for real storage. Specify the number of contiguous
1024-byte areas of virtual storage your program requires. If the number is not an even multiple
of 64K, the system will round your request up to a multiple of 64K. (64K is the size of a
segment in VS2, a continuous area of virtual storage which is allocated to a job or system
task.) For example, if you code:

//DOTHIS JOB ... REGION=128K

the system assumes ADDRSPC=VIRT and assigns 128 contiguous 1024-byte areas of virtual
storage to your program.

Whether you are requesting space in real storage (i.e., you code ADDRSPC=REAL) or in
virtual storage (i.e.,) you do not code the ADDRSPC parameter or code ADDRSPC=VIRT),
the amount of space you request must include any additional requests your program makes
during its execution (for example, a request made with the GETMAIN macro instruction). Any
request for additional storage is actually a request for storage from the area specified in the
REGION parameter.

Note: Main storage hierarchy support and the rollout/rollin feature are not available in VS.
However, you need not recode statements that contain the ROLL parameter or that contain
REGION specifications originally made for hierarchy support: the system will check the ROLL
parameter for correct syntax, but will otherwise ignore it; in the REGION parameter, the
system will add the values coded and use this sum as your request.

The REGION parameter can be coded on either the JOB or EXEC statement. When you
code the REGION parameter on the JOB statement, you are requesting that much storage for
each step of the job; to specify a different region size for each step, code the REGION
parameter on the EXEC statements of the job steps in the job. If the REGION parameter is
coded on the JOB statement, REGION parameters coded on the job's EXEC statements are
ignored.

If you do not code the REGION parameter, a default region size established in the reader
procedure is used.

Requesting Storage for Execution of a Program 29

30 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

Conditional Execution of Job Steps

Depending on the results of one step of a job, you may not wish to execute subsequent steps
-- if a compilation fails, you would not want to waste computing time attempting subsequent
linkage editing or execution steps. You can specify tests to determine whether to bypass or
execute job steps, based on the results from previous steps.

The results of a job step can be reflected in a return code, a number from 0 to 4095. The
compiler, assembler and linkage editor programs and problem programs written in assembler
language, PL/I, FORTRAN, American National Standard COBOL and RPG can set return
codes. Some return codes are standard for certain programs; for example, a return code of 8
issued by a compiler or linkage editor indicates that serious errors were found and execution is
likely to fail. In problem programs you can assign a number as the return code to signify a
certain condition. For example, if STEPI of a job reads accounts to be processed in
subsequent job steps, you might set a return code of 10 if no delinquent accounts are found.
Before you execute STEP3 to process delinquent accounts, you could test the return code from
STEP 1 ; if the return code from STEPI is 10 -- there are no delinquent accounts -- you can
skip STEP3. You specify the test to check the return code from STEPI by coding the COND
parameter of the job control language. You can code the COND parameter on either a JOB or
EXEC statement.

Note: In VS 1, return codes issued by each step are included on the output listing. If a step
does not issue a return code, however, the message is still printed and can contain meaningless
information.

Specifying Return Code Tests

In the COND parameter, you can specify up to eight tests to determine if the system should
bypass a job step. (If you specify more than eight tests, the system issues a JCL error message
and the job is failed.) Each test consists of a number from 0 to 4095 and a logical operator
indicating how that number is to be compared with the return code. The logical operators are:

GT (greater than)
GE (greater than or equal to)
EQ (equal to)
NE (not equal to)
L T (less than)
LE (less than or equal to)

If the system determines that a comparison is true, the job step is skipped (if COND was
coded on the EXEC statement) or all remaining job steps are skipped (if COND was coded on
the JOB statement).

For example, if you code COND=«(10,GT),(20,LT», you are asking, "Is 10 greater than
the return code or is 20 less than the return code?"

If the return code is 12, neither test is satisfied; no job step is skipped. All the tests you
specify must be false if processing is to continue without skipping any job steps.

If the return code is 2S, the first test is still false, but the second test is satisfied: 20 is less
than 2S. The system will bypass one job step or all remaining job steps, depending on if the
COND parameter was coded on the EXEC statement or the JOB statement.

Conditional Execution of Job Steps 31

Determining Further Execution of the Job

Code the COND parameter on the JOB statement to determine if execution of the job should
continue.

The test you specify in the COND parameter on a JOB statemerlt is used to check the
return code from each step before the next step is processed. At the end of each step, the
initiator compares the return code from the step with the number (or numbers) you specified
in the COND parameter on the JOB statement. If any of the tests are satisfied, the rest of the
steps are bypassed and the job is terminated.

For example, a program written in the assembler language issues return codes indicating the
severity of errors found in the program: a return code of 0 indicates no errors or warnings
were found; 4 indicates possible errors; and higher return codes indicate more severe errors.
The job consists of a compiler step, linkage editor step, and execution step. If any errors are
found, you want the job terminated. Since all steps issue the same return codes to indicate the
same conditions, it is practical to code the COND parameter on the JOB statement:

//PGM JOB ... COND=(4,LE)

Determining the Execution of a Single Step

By coding COND on the EXEC statement, you can determine whether a single step will be
executed or bypassed.

You should code COND on the EXEC statement when:

1. you want to specify different tests for each job step;

2. if a test you specify is true, you want to skip just that one step, rather than bypassing all
subsequent steps in the job;

3. you want to name a specific step whose return code is to be tested;

4. you want to specify special conditions for executing a job step.

The initiator checks the COND parameter on the EXEC statement. If one of the tests you
specify is satisfied, the system bypasses that step and goes on to the next step.

You can instruct the system to test the return code from a particular step or from every
preceding step. Include the name of the step if you want just that step's return code tested; if
that step was bypassed, the test is ignored. If you do not include a stepname, the system
checks the return code from every preceding step.

STEPI of a job prepares a company's payroll; STEP3 makes a monthly deduction for
additional health insurance coverage. If the deduction is not to be made this week from any of
the paychecks, STEPI issues a return code of 15. On the EXEC statement for STEP3 you can
instruct the system to skip STEP3 if no deduction is to be made:

//STEP3 EXEC ... COND=(15,EQ,STEP1)

If a preceding step called a procedure, you can request the system to check the return code
issued by a step in the procedure by coding the stepname and procedure stepname. In the
above example, if the return code was issued by a procedure step named PROCSTEP in a
procedure called by STEPl, you would code:

//STEP3 EXEC ... COND=(15,EQ,STEP1.PROCSTEP)

32 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

caution: If a job step refers to a data set created in a preceding step, that data set will not exist
if the preceding step was bypassed. If a data set was cataloged in a preceding job step and you
make a backward reference to that data set, unit and volume information for the data set will
not be available if the preceding step was skipped.

In addition to specifying conditions for bypassing a step, you can specify conditions for
executing a step. Normally, all subsequent steps are bypassed if one step abnormally
terminates. However, you can request the system to execute a step even if a previous step
abnormally terminated byl coding EVEN in the COND parameter:

//STEP3 EXEC ... COND=EVEN

To instruct the system to execute a step only if a previous step abnormally terminated, code
ONLY:

//STEP3 EXEC ... COND=ONLY

If, however, the error causing termination occurs during the scheduling of the job, before the
program receives control, the rest of the job steps are bypassed even if you do code EVEN or
ONLY -- this will happen if the system encounters J CL errors or is unable to allocate space to
a data set.

caution: If a job step that specifies the EVEN or ONLY subparameter refers to a data set that
, was to be created or cataloged in a preceding step, the data set may be incomplete if the step

creating it abnormally terminated.

When you code the EVEN or ONLY subparameter, you can also specify up to seven tests
to check return codes from previous steps. If one of the return code tests is satisfied, even
though the conditions for the EVEN or ONLY subparameter are also satisfied, the step is
bypassed. The return code tests override the EVEN or ONLY subparameter if the conditions
both specify are met.

If you code

//STEP5 EXEC ... COND=((10,EQ,STEPl),(20,LT),EVEN)

you are instructing the system to:

1. bypass STEPS if 10 is equal to the return code issued by STEP1;

2. bypass STEPS if any of the previous steps issued a return code greater than or equal to 20;

3. if the return code tests are not satisfied, execute STEPS even if a previous step abnormally
terminated.

Specifying Tests on Both the JOB and EXEC Statements

The COND parameter on the JOB statement overrides the COND parameter on an EXEC
statement: if the test specified on the JOB statement is satisfied, all subsequent steps are
bypassed no matter what you code in the COND parameter on the EXEC statements of these
steps.

Conditional Execution of Job Steps 33

34 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Restarting a Job

When a job step abnormally terminates, you may have to resubmit the job for execution; this
means lost computer time and a delay in obtaining the desired results. The operating system
provides checkpoint/restart facilities to reduce the effects of abnormal termination. When a
job step terminates abnormally or when a system failure occurs, the checkpoint/restart
facilities allow you to restart the step from the beginning or from a checkpoint within the step.
You can request that the restart automatically follow abnormal termination or you can request
restart later by submitting a new job.

This chapter describes how you code JCL to request checkpoint/restart services; a complete
description of planning for and using the checkpoint/restart facility is documented in OS/VS
Checkpoint/Restart, GC26-3784.

Types of Restart

Basically, there are two types of restart:

• step restart, from the beginning of a job step

• checkpoint restart, from a checkpoint within a job step. You establish checkpoints in a job
step by coding the CHKPT macro instruction for each checkpoint. (The CHKPT macro
instruction is described in OS/VS Data Management Macro Instructions, GC26-3793.)

You can request that either type of restart automatically follow abnormal termination (called
automatic restart) or you can request either type by submitting a new job (called deferred
restart).

When you submit a job for deferred restart, you actually resubmit the original job with
certain changes indicating where restart is to occur (at the beginning of a step or at a
checkpoint within the step). If necessary, you can make more extensive changes, such as
corrections to data that will be processed after restart. At times, you may wish to make such
changes and then restart a job step that has terminated normally but has produced incorrect
results.

Automatic restart is possible only when the abnormal completion code is one of a set of
codes specified at system generation. All automatic restarts must be authorized by the
operator. If there is an uncorrectable error during the automatic step or checkpoint restart, the
output data sets for the job are printed, ptoviding you with the output from all of the steps up
to and including the step that abnormally terminated. You will also receive a virtual storage
dump if you provided a SYSABEND or SYSUDUMP DD statement in your job. (For details
on requesting a dump, see the chapter "Controlling the Output Listing of JCL Statements,
Messages, and Dumps.")

Requesting Restart

You specify the type of restart that can occur by coding the RD (restart definition) parameter
on the JOB or EXEC statement. If you want to allow different types of restart for the
different steps in your job, code the RD parameter on the EXEC statement; when the RD
parameter is coded on the JOB statement, the restart request applies to every step in the job
and any RD parameters coded on EXEC statements are ignored.

One of four possible subparameters can be coded:

• R -- Automatic step restart is permitted if no checkpoint is established in the step before
abnormal termination occurs. If a checkpoint is established before the step abnormally

Restarting a Job 35

terminates, only checkpoint restart can occur, unless you cancel the CHKPT macro
instruction before restart is performed. If you do cancel the CHKPT macro instruction
before restart is performed (by coding a CHKPT macro instruction and specifying
CANCEL), automatic step restart can be performed.

• RNC -- Automatic step restart is allowed and automatic checkpoint restart is not allowed.
Specifying RD=RNC suppresses the action of all CHKPT macro instructions included in
your program.

• NC -- Neither automatic step restart nor automatic checkpoint restart is allowed. The action
of all CHKPT macro instructions is suppressed.

• NR -- CHKPT macro instructions can establish checkpoints but automatic restart (whether
checkpoint or step) is not allowed. Code RD=NR when you might want to resubmit the job
at a later time and restart the job from a checkpoint.

For example, if you code:

//PGM JOB ... RD=RNC,MSGLEVEL=(1,1)

automatic step restart is permitted; automatic checkpoint restart is not allowed.

When you resubmit a job to be restarted (deferred restart), you must code the RESTART
parameter on the JOB statement. If you omit the RESTART parameter, execution of the job is
not resumed at a point you indicate, execution of the entire job is repeated.

In the REST ART parameter, you specify the step at which execution should be resumed
(deferred step restart) or the step and checkpoint (deferred checkpoint restart). When you
specify a checkpoint, execution of the job is resumed within the step.

As the first subparameter, you specify the step at or within which execution will be
resumed. If a step calls a cataloged procedure and you want to resume execution at or within a
step in the procedure, specify both the job step name and procedure step name; for example:

//PGM JOB ... RESTART=JOBSTEP2.PROCSTP3

Execution will begin at PROCSTP3 in the cataloged procedure called by JOBSTEP2. If you
want execution to begin at or within the first step, you can code an *. For example:

//PGM JOB ... RESTART=*

Execution will resume at the beginning of the first step; if the first step calls a cataloged
procedure, execution will begin at the first step in the procedure.

To resume execution within a step, follow the stepname with the name of the checkpoint:

//PGM JOB ... RESTART=(*,CHKPT2)

In this example, execution resumes at CHKPT2 in the first step of the job.

If you request deferred checkpoint restart, you must include a DD statement in the
resubmitted job that defines the checkpoint data set.

Defining the Checkpoint Data Set

The name of the DD statement defining the checkpoint data set must be SYSCHK and the
statement must immediately precede the first EXEC statement of the resubmitted job. (If you
do include a SYSCHK DD statement, but restart is to begin at a step, the statement is
ignored.)

36 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

The checkpoint data set contains entries describing the checkpoints you created in the job.
(For information on creating checkpoints in your job, see OS/VS Checkpoint/Restart,
GC26-3784.) The system automatically writes these entries into a checkpoint data set; the
serial number of the volume on which a checkpoint is written is included in the console
message printed after the writing of the checkpoint entry. You must indicate on the SYSCHK
DD statement what volume the checkpoint entry you are using is found.

When the checkpoint data set is not cataloged, you code the VOLUME parameter and
specify the volume serial number of the volume on which the checkpoint entry is written. If
the checkpoint data set is cataloged, you need not code the VOLUME parameter unless the
checkpoint entry exists on a tape volume other than the first volume of the data set; then, you
must code either a volume sequence number or the volume serial number. If you code a
volume serial number ,you must code the UNIT parameter.

In the DSNAME parameter, you code the name of the checkpoint data set; if the data set is
partitioned, do not include a member name. The DISP parameter must specify or imply a
status of OLD and disposition of KEEP. Code the LABEL parameter if the data set does not
have standard labels; if the data set exists on 7-track magnetic tape with nonstandard or no
labels, you must also code DCB=TRTCH=C. (The TRTCH subparameter of the DCB
parameter specifies the recording technique for seven-track tape; for details, see "The DCB
Parameter" in the OS/VS JCL Reference, GC28-0618; details on specifying label type are also
included in the OS/VS JCL Reference under "The LABEL Parameter.")

For example, the checkpoint data set named CHKLIB is cataloged and the checkpoint entry
you are using exists on the first volume of the data set:

IIALAS
IISYSCHK
IisTEP1

JOB
DD
EXEC

RESTART=(*,CHKPT2)
DSNAME=CHKLIB,DISP=OLD

In the following example, the checkpoint data set named TRY.AGAIN is not cataloged and
exists on 7 -track magnetic tape with nonstandard labels; the checkpoint entry you are using to
restart the step exists on the volume with serial number 438291:

IIALACK
IISYSCHK
II

JOB
DD

RESTART=(STEP2,CHKPT4)
DSNAME=TRY.AGAIN,DISP=OLD,UNIT=3400-2,
VOL=SER=438291,LABEL=(,NSL),DCB=TRTCH=C

If the RESTART parameter on the JOB statement in the preceding example were
RESTART=STEP2, deferred step restart would be performed and the SYSCHK DD statement
would be ignored.

Modifying A Job Before Deferred Restart

You can make changes to your job before submitting it for deferred restart. For example, you
might vary device and volume configurations, alter data, or request restart on an alternate
system with the same configuration used originally.

Some changes, however, are required before restarting the step. You must check all
backward references to steps that precede the restart step and eliminate all backward
references used in the PGM and COND parameters on the EXEC statement and the
SUBALLOC parameter and VOLUME=REF =reference on the DO statements. (A backward
reference of VOLUME = REF = reference is allowed if the referenced statement includes the
volume serial numbers in the SER subparameter of the VOLUME parameter.)

Other required changes depend on whether you are requesting deferred step restart or
deferred checkpoint restart; they are described below.

Restarting a Job 37

Making Changes Before Deferred Step Restart

Modifications before performing deferred step restart may be required in two cases:

1. A data set was defined as NEW during the original execution. If it was created during the
original execution, you must change the data set's status to OLD, define a new data set, or
delete the data set before resubmitting the job.

2. A data set was passed and was to be received by the restart step or a step following the
restart step. If the passed data set is not cataloged, you must supply, in the receiving step,
volume serial numbers, device type, data set sequence number, and label type. (Label type
cannot be retrieved from the catalog.)

To limit the number of modifications required before you resubmit the job, you can assign
conditional dispositions during the original execution. (Data sets assigned a temporary name or
no name can only be assigned a conditional disposition of DELETE.) If deferred step restart
will be performed, conditional dispositions should be used:

• to delete all new data sets created by the restart step.

• to keep all old data sets used by the restart step, other than those passed to the step. (If a
nontemporary data set is defined as DISP=(OLD,DELETE), it is very important that you
assign a conditional disposition of KEEP.)

• to catalog all data sets passed from steps preceding the restart step to the restart step or to
a step following the restart step.

Making Changes Before Deferred Checkpoint Restart

When performing deferred checkpoint restart, the system will automatically make some
modifications for the restart step, using information contained in the checkpoint entry.

An internal representation of your statements is kept as control information within the
system. Some of the control information for the restart step or steps following the restart step
may have to be modified before execution can be resumed at a checkpoint. The following
modifications for the restart step are automatically made by the system, using information
contained in the checkpoint entry:

• The status of data sets used by the step is changed from NEW to OLD. (If a new data set
was assigned a nonspecific volume and was not opened before the checkpoint was
established, this change is not made.)

• If nonspecific volumes were requested for a data set used in the restart step, the assigned
device type and volume serial numbers are made part of the control information.

• For a multivolume data set, the volume being processed when the checkpoint was
established is mounted.

The only required modification that you must make to a control statement is to supply
certain information about a data set that was being passed by a step preceding the restart step
to a step following the restart step. You must supply, in the receiving step, volume serial
numbers, device type, data set sequence number, and label type. You will not have to make
these modifications if, during the original execution, you assigned a conditional disposition of
CA TLG to such data sets and used standard labels. If the data set is cataloged, the system can
retrieve this information from the catalog. (Label type cannot be retrieved from the catalog.)
You should also use conditional dispositions to keep all data sets used by the restart step. Data
sets assigned a temporary name or no name can only be assigned a conditional disposition of
DELETE. Therefore, if you plan a deferred checkpoint restart, you should not define your
data sets as temporary. (For any nontemporary data set that may be deleted, it is very
important that you assign a conditional disposition of KEEP.)

38 OSjVS JCL Services (VS 1 Release 2 and VS2 Release 1)

Before resubmitting the job for checkpoint restart, you can make other modifications to
control statements associated with the restart step or steps following the restart step. The
following items apply to the step in which restart is to occur:

• The DD statements in the restart step can be altered, but the statements must have the
same names as used originally. You can also include additional DD statements.

• If a data set was open at the time a checkpoint was established and restart is to begin at
that checkpoint, DD statements in the restart step can define the same data set. If there is
no need to process a data set after restart, you can define the data set by coding the
DUMMY parameter or DSNAME=NULLFILE on the DD statement provided that: (1) the
basic sequential access method (BSAM) or the queued sequential access method (QSAM)
was being used to process the data set when the checkpoint was established (2) the data set
is not the checkpoint data set that is being used to restart the job step, and (3) the job step
is not restarted from a checkpoint that was established in an end-of-volume exit routine for
the data set. The name of the DD statement must be the same as the one used for the data
set during the original execution of your program.

• If DUMMY is not specified, the DD statements must define the same data sets. Also, the
data sets must not have been moved on the volume or onto another volume.

• If a data set was not open when the checkpoint was established and is not needed during
restart, you can replace the parameters used to define the data set with the DUMMY
parameter.

• You can alter the data in the restart step. If you omit the data, a delimiter statement is not
required, unless the data was preceded by a DD DATA statement.

Restarting a Job 39

40 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Defining and Describing Data Sets

You must define every data set your job uses or creates on a
data definition (DD) statement. The OS/VS JCL Reference,
GC28-0618, describes every parameter you can code on aDD
statement and illustrates the parameters necessary to create,
retrieve, and extend data sets. This section describes in greater
detail how to request certain resources for a data set and how
you can instruct the system to handle a data set. The five
chapters are:

- Requesting Units and Volumes for Data Sets

\

- Requesting Space for a Single Data Set

- Requesting Space for a Group of Data Sets

- Disposition Processing of Data Sets

- Insuring Data Set Integrity

Defining and Describing Data Sets 41

42 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Requesting Units and Volumes for Data Sets

On the DD statement defining a data set, you indicate the device on which the data set can be
found or will be written by specifying unit and volume information. Input/output devices are
grouped according to type; a device type is a kind of device: direct access, magnetic tape, unit
record, graphic. A unit is a particular device: a 2314 direct access device, a 1403 unit record
device; a volume is a section of auxiliary storage that is serviced by a single read/write
mechanism --for example, a reel of magnetic tape, a drum, or a disk pack.

Specifying Volume Information

Volumes exist on direct access and magnetic tape devices and must be mounted on devices
before they can be used. To inform the system on which volume an existing data set can be
found or a new data set will be created, you make a specific or nonspecific volume request.

Specific Volume Requests

A specific volume request informs the system of the volume serial number(s) of the volume(s)
you require. You must make a specific volume request for an existing data set; when you are
creating a data set, you can make either a specific or nonspecific volume request.

A volume request is specific when:

• the data set is passed from an earlier step or is cataloged. The system obtains the volume
serial numbers from the passed data set queue or from the catalog; you need not code the
UNIT and VOLUME parameters, unless you want to request a private volume, retain a
private volume (the volume on which a passed data set resides is automatically retained),
code a volume sequence number, or request additional volumes or units. Each of these
options is further described in the following paragraphs.

• you specify the serial numbers in the SER subparameter of the VOLUME parameter, i.e.,
VOL=SER=(948762,945231).

• you refer the system to an earlier specific volume request to copy the volume serial numbers
by coding the name of a passed or cataloged data set or a previous DD statement in the
REF subparameter of the VOLUME parameter. To refer the system to a passed or
cataloged data set, you code VOL=REF=dsname. To refer to a DD statement in the same
step, code VOL=REF=*.ddname; in a preceding step, VOL=REF=*.stepname.ddname; or
in a procedure step that is in a procedure called by a preceding step,
VOL=REF=*.stepname.procstepname.ddname.

Nonspecific Volume Requests

Nonspecific volume requests can be made only for new data sets. When you make a nonspecific
volume request, you do not specify volume serial numbers; you need not code the VOLUME
parameter unless you are requesting a private volume, want to retain the private volume you
request, or request more than one volume.

Note: After volumes are assigned to your data sets, space for the data sets is allocated on those
volumes. Data sets for which you made nonspecific volume requests are allocated space in the
order their DD statements appear in the job; as a result, the order of the nonspecific volume
requests in a job step can influence whether the data sets can be allocated the space they
require. For example, if a data set requiring a small amount of space precedes a large data set,
space for the small data set may be allocated on a volume with a great deal of free space;
however, the space left on the volume after the small data set is allocated may be insufficient

Requesting Units and Volumes for Data Sets 43

to satisfy the large request. In general, it is best to place nonspecific volume requests for data
sets that require a great deal of space before other nonspecific volume requests in the job step.

Using Private Volumes

A private volume cannot be allocated to satisfy nonspecific volume requests. Therefore, if you
request a private volume, you will be the only user using that volume, unless another job
makes a specific volume request for that volume. To request a private volume, code PRIVATE
as the first subparameter in the VOLUME parameter.

You can code PRIV ATE with both specific and nonspecific volume requests. When making
a specific volume request for a direct access volume, you must code PRIVATE if you want a
private volume; tape volumes for which you make a specific volume request are automatically
made private, so you need not code the PRIVATE subparameter. For example, you are making
a specific volume request for a direct access volume and want the volume to be private:

VOL=(PRIVATE,SER=485267)

The system will automatically demount the volume at the end of the job step unless the
volume is being used by another job, the data set is passed, you code RETAIN in the
VOLUME parameter, or the volume is permanently resident or reserved (permanently resident
volumes are volumes that cannot be physically demounted or that contain system data sets;
reserved volumes are volumes that remain mounted until the operator issues an UNLOAD
command). If you expect to use a data set for which you requested a private volume in a
subsequent step, you can code RETAIN to ensure that the volume remains mounted:

VOL=(PRIVATE,RETAIN)

The volume will remain mounted until the end of the job. If the data set resides on more
than one volume and the volumes are mounted in sequential order, only the last volume is
retained.

You need not code RETAIN for a passed data set; the volume on which a passed data set
resides automatically remains mounted.

Multivolume Data Sets

If you are creating or extending a data set that may require more than one volume, you should
request in the volume count subparameter of the VOLUME parameter the maximum number of
volumes that may be required. If you are defining an existing multivolume data set and would
like to begin processing with other than the first volume, code the volume sequence number
subparameter.

Requesting Multiple Volumes

You request multiple volumes in the volume count subparameter of the VOLUME parameter.
The maximum number of volumes you can request is 255; since each volume must be mounted
on a unit before it can be used, you must:

• request as many units as volumes so that each volume will be mounted on a device, or

• for direct access volumes, make sure the volumes are nonsharable. A nonsharable volume
can be allocated to only one data set at a time and, therefore, can be demounted after its
use by your job so that another volume can be mounted. When you make a specific volume
request and request more volumes than units, the system automatically assigns the
nonsharable attribute to the volumes. For a nonspecific request for direct access volumes,
you must code PRIV ATE in the VOLUME parameter. (The system automatically demounts

44 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

tape volumes so you do not have to code PRIVATE for tapes.) For example, if you are
making a nonspecific volume request for a data set that will require three direct access
volumes, you would code:

VOL=(PRIVATE",3)

Positioning Within a Multivolume Data Set

When you are reading or lengthening an existing multivolume data set, you can instruct the
system to begin processing other than the first volume by coding the volume sequence number
subparameter.

Usually you code a volume sequence number when you are defining an existing cataloged or
passed data set; for example,

//STATE DD ... VOL=(,3,REF=DATASET)

DATASET is a cataloged data set; the system obtains the volume serial numbers from the
catalog and begins processing with the third volume.

If you specify volume serial numbers for an existing data set, the system starts with the
volume corresponding to the volume sequence number. For example,

//THIS DD ... VOL=(,2,VOL=SER=550001,550002,550003)

The system begins processing with volume 550002. Volumes 550001 and 550003 are also
allocated to the data set and will be mounted when required.

Sharing Volumes Between Data Sets

To conserve space and to use fewer volumes, you can request that data sets be assigned the
same volume. Data sets on the same volume have volume affinity.

You can request volume affinity either implicitly or explicitly:

• by specifying the same volume serial numbers for the data sets in the SER subparameter of
the VOLUME parameter.

• by using the REF subparameter of the VOLUME parameter to indicate that volumes
identified in the catalog or on an earlier DD statement in the job are to be assigned to the
data set being defined.

Specifying Unit Information

You provide the system with the information it needs to assign a device to a data set in the
UNIT parameter. To indicate what unit or type of unit you want, code one of the following:

• the unit address
• the device type
• the group name

The unit address is a 3-character address made up of the channel, control unit, and unit
number. For example, unit 180 indicates you want channel 1, control unit 8, and unit o.
Specifying a unit address, however, limits unit assignment: the system can assign only that
specific unit and, if the unit already is being used, the job must be delayed or cancelled.

Requesting Units and Volumes for Data Sets 45

A device type corresponds to a particular set of features of input/output devices. When you
code a device type, you allow the system to assign any available device of that device type.
For example, if you want a 2314 disk storage facility, you code:

UNIT=2314

The system assigns an available 2314.

Each installation can also define group names during system generation to· signify a group of
devices that may not all be of the same type. When you code a group name, you allow the
system to assign any available device included in the group. For example, if the group named
DISK includes all 2314 and 3330 disk storage facilities and you code UNIT=DISK, the system
assigns an available 2314 or 3330 device.

If a group contains more than one device type (for example, SYSSQ may refer to all tape
and direct access devices), you should not code the group name when defining an existing data
set. The volume on which the data set resides may require a device different from the one
assigned to it. For example, if the data set resides on a tape volume, it must be assigned to a
tape device.

Requesting More than One Unit

To increase operating efficiency, you can request multiple units for a multivolume data set or
for a data set that may require additional volumes. When each required volume is mounted on
a separate device, execution of the job step is not interrupted to allow the operator to demount
and mount volumes. You should always request multiple units when the data set may be
extended to a new volume if:

• the data set resides on a permanently resident or reserved volume --permanently resident
and reserved volumes cannot be demounted in order to mount a new volume.

• the data set shares cylinders with other data sets or is suballocated space. (Suballocated data
sets and data sets that share cylinders are described in the chapter "Requesting Space for a
Group of Data Sets. ")

You request multiple units by:

• coding the unit count subparameter in the UNIT parameter, or
• requesting parallel mounting.

You can request as many as 59 units in the unit count subparameter~ for example, if you want
three 2314's allocated to your data set, code:

UNIT=(2314,3)

You can request parallel mounting when you make a specific volume request. The system
counts the number of volumes requested (by counting the volume serial numbers specified on
the DD statement or counting the volume serial numbers in the catalog or passed data set
queue) and assigns that number of devices. You code P in place of the unit count
subparameter:

//AMPLE DD DSNAME=ENUF,DISP=OLD,UNIT=(2314,P),VOL=SER=(40653,13262)

The system assigns two 2314's to the data set defined by AMPLE -- one for each volume
requested in the VOLUME parameter.

46 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Def erred Mounting of Volumes

If your job step includes a data set that might not be used, depending on conditions
determined in the job step, you can request that the system not mount the volume containing
the data set until the data set is opened. This saves time mounting the volume before the job
step begins execution.

Code the DEFER subparameter:

UNIT=(2314"DEFER)

The system will assign a 2314 to the data set but will not request that the volume be mounted
until it is required.

The DEFER subparameter should not be coded on a DD statement that defines an indexed
sequential data set or that defines a new data set to be written to a direct access device.

Unit Separation (VSl only)

When you make nonspecific volume requests for data sets, the system chooses volumes to be
assigned to the data sets. A feature of VS1, called I/O load balancing, controls the choice of
volumes and devices so that I/O contention on each device is equalized. I/O load balancing
monitors the activity to each device; in choosing a device, it considers such variables as the
speed of the device and the number of I/O events to each device. Because I/O load balancing
reduces contention for devices on a system-wide basis, there is no need to request unit
separation for data sets by coding the SEP subparameter of the UNIT parameter: if SEP is
coded, it is ignored.

Your installation, however, can exclude the I/O load balancing feature from the system
during system generation. If I/O load balancing is excluded, requests for unit separation are
valid: you can request that a data set not be assigned to the same device as other data sets.

To request unit separation, code the SEP parameter and list up to eight ddnames of DD
statements that define data sets that should not share a device with the data set you are
defining:

//NOSHARE DD ... UNIT=(2314,SEP=(DD1,DD2,DD3»)

The data set defined by NOSHARE will be assigned to a device different from the devices
assigned to DD1, DD2, and DD3. The DD statements you list (in this example, DDl, DD2,
and DD3) must precede this statement and must be included in the same job step. If one of
the listed DD statements defines a dummy data set, the system ignores the unit separation
request for that data set.

Unit separation requests have meaning only for direct access devices. If the system cannot
satisfy a request for unit separation, because of insufficient devices available, the request is
ignored.

Note for VS2: I/O load balancing is a standard feature in VS2; the SEP subparameter of
the UNIT parameter is ignored if coded.

Sharing a Unit Between Data Sets

To conserve the number of devices used in a job step, you can request that an existing data
set be assigned to the same device or devices assigned to a data set defined earlier in the job
step. When two or more data sets are assigned the same device, the data sets are said to have
unit affinity. When the data sets reside on different volumes, unit affinity implies deferred

Requesting Units and Volumes for Data Sets 47

mounting for one of the volumes, since both volumes cannot be mounted on the same device
at the same time.

You request unit affinty by coding UNIT=AFF=ddname on a DD statement. The ddname
is the name of an earlier DD statement in the same job step, and the system obtains unit
information from this statement. The data set defined on the DD statement that requests unit
affinity is assigned the same device or devices as the data set defined on the named DD
statement. If the ddname refers to a DD statement that defines a dummy data set, the data set
defined on the DD statement requesting unit affinity is assigned a dummy status.

Note for VSl: Unit affinity cannot be requested for a new, direct access data set; if you do
request unit affinity for a new data set, your job will be abnormally terminated.

When You Do Not Have to Code the UNIT Parameter

In a few cases, the system can obtain unit information from sources other than the UNIT
parameter. In these cases, you do not have to code the UNIT parameter:

• When the data set is cataloged. For cataloged data sets, the system obtains unit and volume
information from the catalog. However, if VOLUME=SER=serial number is coded on a
DD statement that defines a cataloged data set, the system does not look in the catalog. In
this case, you must code the UNIT parameter. If the VOLUME parameter is not coded but
you request a device in the UNIT parameter, the request for a particular type of device is
ignored. (A request for additional devices is, however, honored.)

• When the data set is passed from a previous job step. For passed data sets, the system
obtains unit and volume information from an internal table. However, if
VOLUME=SER=serial number is coded on a DD statement that defines a passed data set,
the system does not look in the internal table. In this case, you must code the UNIT
parameter. If the VOLUME parameter is not coded but you request a device in the UNIT
parameter, the request for a particular type of device is ignored. (A request for additional
devices is, however, honored.)

• When the data set is to use the same volumes assigned to an earlier data set, i.e.,
VOLUME=REF=reference is coded. In this case, the system obtains unit and volume
information from the earlier DD statement that specified the volume serial number or from
the catalog. If you request a device in the UNIT parameter, the request for a particular type
of device is ignored. (A request for additional devices is, however, honored.)

• When the data set is to share tracks, blocks, or cylinders with an earlier data set, i.e.,
SUBALLOC or SPLIT is coded. (The SUBALLOC and SPLIT parameters are described in
the chapter, "Requesting Space for a Group of Data Sets.") In this case, the system obtains
unit and volume information from the earlier DD statement that specifies the total amount
of space required for all the data sets. If the VOLUME parameter is coded, it is ignored. If
you request a device in the UNIT parameter, the request for a particular type of device is
ignored. (A request for additional devices is, however, honored.)

In all of the cases listed above, you can code the UNIT parameter when you want additional
devices assigned.

You must not code the UNIT parameter when defining a data set included in the input
stream. If UNIT is coded on a DD * or DD DATA statement, the job is abnormally
terminated.

48 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

Bypassing Allocation of Units and Volumes

When you define a data set as a dummy data set, allocation is bypassed: no units, volumes, or
direct access space is allocated to the data set. To define a dummy data set, you code the
DUMMY parameter or assign the data set name NULLFILE in the DSNAME parameter. For
details, see the chapter "Defining a Dummy Data Set."

Requesting Units and Volumes for Data Sets 49

50 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Requesting Space for a Single Data Set

You must request space for every data set you create on a direct access volume. To request
space, code the SPACE parameter on the DD statement defining the data set. (You can also
request space for a group of data sets on a single direct access volume by coding the SPLIT or
SUBALLOC parameters --see the chapter "Requesting Space for a Group of Data Sets. ") The
SPACE parameter provides two ways to request space:

• tell the system how much space you want and let the system assign specific tracks

• tell the system the specific tracks on which you want the data set written.

Letting the system assign specific tracks is the easiest and most frequently-used method of
requesting space; the other methods of requesting space are available to increase performance,
by minimizing access time and therefore increasing the efficiency of input/output operations.
However, in most applications, the increase in efficiency by using alternate methods of
requesting space is negligible. Examples of the types of applications that benefit from assigning
specific tracks (or by coding the SPLIT and SUBALLOC parameters, in the chapter
"Requesting Space for a Group of Data Sets") are included in the detailed description of each
method.

Letting the System Assign Specific Tracks

The easiest way to request space is to let the system assign specific tracks; you need specify
only the unit of measurement to be used to compute the space requirement, and how many of
the units of measurement your data set requires. In addition, this form of the SPACE
parameter offers several options; you can request:

• a secondary quantity, to be used if the data set runs out of space

• space for a directory or index

• release of unused space

• contiguous space

• whole cylinders.

The required subparameters and each of the options are discussed in the following
paragraphs.

The Basic Request: Unit of Measurement and Primary Quantity

When the system assigns specific tracks, you are required to specify only the unit of
measurement the system should use to allocate space and how much space you need, called the
primary quantity. As the unit of measurement, you can specify:

• the average block length of the data, for blocks

• TRK, for tracks

• CYL, for cylinders.

As the primary quantity, you code an integer, indicating how many blocks, tracks, or
cylinders you require.

It is easiest to specify an average block length: the system will compute the least number of
tracks required to contain the number of blocks you specify and will allocate that number.
Specifying block length also maintains device independence: you can code a group name that

Requesting Space for a Single Data Set 51

includes different direct access devices in the UNIT parameter, or you can change the device
type in the UNIT parameter without altering your space request. (Wh~n a group name includes
both tape and direct access devices, the SPACE parameter is ignored If a tape volume is
assigned to the data set.)

If the blocks have keys, you must also code the DCB subparameter KEYLEN on the DD
statement and specify the key length, i.e., DCB=KEYLEN=key length. For example, the
average block length of your data is 1,024 bytes and you expect to write 75 blocks of data;
each block is preceded by a key 8 bytes long. The simplest space request, then, is:

//REQUEST DD ... SPACE=(1024,(75)),DCB=KEYLEN=8

The system computes how many tracks you need, depending on what device you request in the
UNIT parameter.

When you specify TRK or CYL, you must compute the number of tracks or cylinders
required; you should consider such variables as the device type, track capacity, tracks per
cylinder, cylinders per volume, data length (blocksize), key length, and device overhead. These
variables, and examples of estimating space requirements for partitioned and indexed sequential
data sets, are described in OS/VS Data Management Services Guide, GC26-3783, under "Data
Set Disposition and Space Allocation." Figures illustrating direct access capacities and track
capacities are also included in the OS/VS JCL Reference, GC28-0618.

Requesting Whole Cylinders

Cylinder allocation allows faster input/output of sequential data sets than does track
allocation. When you request space in terms of average block length, you can request that the
space allocated begin and end on cylinder boundaries: code ROUND as the last subparameter
in the SPACE parameter. For example, extending the previous example of a data set requiring
75 blocks with an average block length of 1024, you would code:

//REQUEST DD ... SPACE=(1024,(75)",ROUND)

The smallest number of whole cylinders needed to contain your request will be allocated.

How the System Satisfies Your Primary Request

Enough available space must exist on one volume to satisfy your primary request. If enough
space is not available on a single volume, the system will abnormally terminate the step or
search another volume, depending on the type of volume request you make. Figure 2 illustrates
system action for determining if enough space is available to satisfy your primary request.

52 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Type of Volume Request System Action

Specific volume request For a single volume If sufficient space is not available, job step is abnormally
(i.e., volume serial numbers terminated.
are specified)

For multiple volumes Search volumes in order specified until

(1) Finds volume with sufficient space. (Volumes
with insuffi ci ent space for pri mary quantity wi II
sti II be used to allocate secondary quantity, if
necessary.)

(2) Determines none of specified volumes contain
sufficient space -- job step is abnormally
terminated.

Nonspecific volume request If space is not available on first volume chosen, system
(i .e., system chooses wi II choose another vo lume and continue search, causing
volume) volumes to be mounted if necessary, until:

(1) Volume with sufficient space is found.

(2) Determines that no volume with sufficient space
is available -- job step is abnormally terminated.

Figure 2. System Action for Determining if Enough Space is Available to Satisfy Primary Quantity

The system attempts to allocate the primary quantity in contiguous tracks or cylinders. If
contiguous space is not available, the system satisfies the request with up to five noncontiguous
extents (i.e., blocks) of space. (If you specify user labels -- i.e., you code SUL in the LABEL
parameter-- the system allocates up to four noncontiguous extents of space. The system
allocates a track for user labels separate from the primary quantity; this one track is considered
an extent, and, therefore, up to four additional extents are allocated to satisfy the primary
quantity.) The system uses the limit of five extents for the primary quantity to maintain a level
of performance for input/output operations: if a data set is too fragmented on a volume, the
speed of input/output operations is proportionately reduced.

In some applications, high efficiency of input/output operations may be important --you can
assure that contiguous space is allocated by coding the CONTIG subparameter. See
"Requesting Contiguous Space" for details.

A Secondary Request for Space

In the primary quantity, you need not anticipate all future demands for space for a data set.
You can code a secondary request for space, to be used only if the data set exceeds its
allocated space. The secondary quantity will be allocated as often as necessary.

Code an integer following the primary quantity that indicates how many additional tracks,
cylinders, or blocks should be allocated. If your request is in units of blocks, you must code
the maximum block length of your data, in either the DCB macro instruction or the BLKSIZE
subparameter of the DCB parameter on the DD statement: the system uses the maximum
block length to compute how many additional tracks to allocate.

Requesting Space for a Single Data Set 53

A secondary quantity can be requested when you create a data set or when you retrieve an
existing data set, whether or not you coded a secondary quantity in the original request. A
secondary request for an existing data set is in effect only for the duration of the job step and
overrides an original request if one was made. For example, when you created a data set
named DARTS, you did not code a secondary quantity. You are retrieving the data set in a
later job to lengthen it and want to request 50 additional blocks of space:

II PUB
II

DD DSN=DARTS,DISP=OLD,SPACE=(1024,(100,50)),
DCB=BLKSIZE=2048

The secondary request for 50 blocks is in effect only for the duration of this step. The unit of
measurement and primary quantity must be recoded exactly as they appeared in the original
request.

How the System Satisfies Your Secondary Request

The system allocates the secondary quantity every time your data set has used its allocated
space. The system will attempt to allocate additional space contiguous with the primary
quantity; however, if contiguous space is not available, the system allocates up to five
noncontiguous extents of space equalling the secondary quantity.

Secondary space need not be allocated on the same volume as the primary quantity.
However, the system will allocate all requested space on the same volume until (1) it
determines insufficient space is available; or (2) sixteen extents of space have been allocated
to the data set on one volume. If either of these conditions occurs, the system will allocate
space on another volume as long as you requested sufficient volumes in the VOLUME
parameter --see "Multivolume Data Sets" in the chapter "Requesting Units and Volumes for
Data Sets."

Requesting Space for a Directory or Index

If you are creating a partitioned data set, you must request space for a directory. A directory is
an index used by the system to locate members in a partitioned data set. It consists of
256-byte records, and you must specify, in the SPACE parameter, how many records the
directory is to contain. You should request enough space for a directory to allow for growth of
the data set: you cannot lengthen the directory, as you can lengthen the data set itself by
requesting a secondary quantity. If you run out of space in the directory, you must recreate the
data set. For a complete description of the directory, including details on member entries that
will enable you to compute how many records to request, see "Processing a Partitioned Data
Set" in the OS/VS Data Management SerVices Guide, GC26-3783.

If you are creating an indexed sequential data set and are not defining the index on a
separate DD statement, you must request space for an index if the data set occupies more than
one cylinder: code an integer indicating how many cylinders should be allocated for the index.
(The space request for an indexed sequential data set must be in terms of cylinders.)

The directory or index is allocated from the space you request as the primary quantity.
Therefore, you must consider the size of your directory or index in estimating the primary
space request. The system determines whether you are requesting space for a directory or an
index by examining the DSORG subparameter of the DCB parameter on the DD statement.
DCB=DSORG=IS or DCB=DSORG=ISU must be included on any DD statement defining
an indexed sequential data set. If neither is specified, the system assumes you are requesting
space for a directory.

54 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

For example, you are creating an indexed sequential data set and requesting 2 cylinders for
an index:

IIINDEXDS DD ... SPACE=(CYL,(10,,2)),DCB=DSORG=IS

The system recognizes that you are requesting space for an index because of the DCB
subparameter DSORG=IS.

Requesting Contiguous Space

If the system cannot allocate the primary quantity in contiguous space, it will allocate up to
five extents of noncontiguous space equalling the primary request, as described under "How
the System Satisfies Your Primary Request." The efficiency of input/output operations is
lessened when space for your data set is divided. However, in most applications, the effect is
negligible; only when you are defining an empty data set for suballocation (see the chapter
"Requesting Space for a Group of Data Sets") or certain system data sets (e.g.,
SYSl.PARMLIB) is contiguous space required.

Although contiguous space is not required for most data sets in applications programs, a
high level of efficiency in input/output operations might be desired for some applications,
notably in teleprocessing. To ensure that contiguous space is allocated, code the CONTIG
subparameter:

IIRESERVS
II
II

DD DSN=FLIGHTS4,DISP=(NEW,KEEP),
SPACE=(CYL,(50)"CONTIG),
UNIT=2314,VOL=SER=436921

If contiguous space is not available, the job is abnormally terminated.

If you code a secondary quantity and request contiguous space, the primary request will be
satisfied with contiguous space, but the secondary quantity will not necessarily be contiguous.

Releasing Unused Space

When a data set has been created and you do not expect to lengthen it, you can release
unused space that was allocated to the data set. You should always do this if you made a
large, safe request for primary space. Code RLSE in the SPACE parameter.

You can code RLSE when you create a data set or when you retrieve an existing data set
--the unused space is released when the data set is closed. If you requested space in units of
tracks, unused tracks are released; in units of cylinders, unused cylinders are released; in units
of blocks, unused tracks or cylinders, whichever the system allocated, are released. When
coding RLSE for an existing data set, you should recode the unit of measurement and primary
quantity exactly as they appeared in the original request. For example, if your original request
was:

SPACE=(TRK,(100,50))

You can release unused tracks by coding, when you retrieve the data set,

SPACE=(TRK,(100),RLSE)

Requesting Space for a Single Data Set 55

Assigning Specific Tracks

You can request that specific tracks on a volume be allocated to your data set. This is the
most stringent request for space: if any of the tracks you request are occupied, the space
cannot be allocated and your job is abnormally terminated. Usually, you request specific tracks
in order to place a frequently-used data set near the volume table of contents (VTOC) to
minimize access arm movement and thereby increase the speed of 110 operations. A library
that is heavily referenced might be a good candidate for placement near the VTOC. However,
in most applications, requesting specific tracks is unnecessary.

To request specific tracks, you must code:

• ABSTR as the first subparameter, indicating absolute tracks

• a primary quantity, specifying the number of tracks to be allocated

• the relative track number of the first track to be allocated.

For a partitioned data set, you must also specify how many records you want allocated for a
directory. If you are defining an indexed sequential data set and are not defining the index on
a separate DD statement, you must request space for an index if the data set occupies more
than one cylinder. The number of tracks for the index must be equal to one or more cylinders
and any other DD statement defining the indexed sequential data set (i.e., a separate DD
statement defining an overflow area) must also request specific tracks. The space for the index
or directory is allocated from the primary quantity.

To determine the relative track number, count the first track of the first cylinder on the
volume as 0, and count through the tracks on each cylinder until you reach the track on which
you want the data set to start. (You cannot request track 0.) The system automatically
converts the relative track number to an address; this address varies with different devices. For
indexed sequential data sets, the relative track number must correspond to the first track on a
cylinder. Capacities of direct access devices are included in the OS/VS JCL Reference,
GC28-0618.

For example, you are creating an indexed sequential data set named WEBSTER on volume
727104 on a 2314 direct access device. You need 4 cylinders for the primary quantity, which
includes 1 cylinder for the index. WEBSTER is a heavily-used library and you want to place it
near the VTOC. On volume 727104, the VTOC begins on the seventh cylinder; on a 2314
direct access device, 20 tracks equal 1 cylinder. To place WEBSTER directly before the
VTOC --starting at the beginning of the third cylinder-- you would code:

IIINDEXDS
II

DD DSN=WEBSTER,DISP=(,KEEP),UNIT=2314,VOL=SER=727104,
SPACE=(ABSTR,(80,40,20)),DCB=DSORG=IS

80 is your primary quantity, equalling 4 cylinders; 40 is the relative track number of the first
track on the third cylinder; 20 is your request for 1 cylinder for the index.

56 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Requesting Space for a Group of Data Sets

You must request space for every data set you create on a direct access volume. In most
applications, you request space for each data set by coding the SPACE parameter -- see the
chapter "Requesting Space for a Single Data Set." But in some cases, to increase performance,
you may want to place a group of data sets on a single volume in a certain order. JCL
provides two metp.ods for doing this; you can:

• share cylinders between two or more related data sets in a single job step; portions of each
data set occupy tracks within every allocated cylinder. This method is useful when you are
processing large data sets with corresponding records.

• suballocate space for each data set from an empty data set you define that contains enough
space for all the data sets in the group; the data sets can be placed in contiguous space in a
specific order.

More detailed examples of when to use each method are included in the detailed description
of the method.

Sharing Cylinders Between Data Sets
Sharing cylinders between data sets is useful when you are creating two or more large data sets
with corresponding records. For example, a college has one data set containing students'
names, identification numbers, and addresses; a second data set contains each student's
courses; a third data set lists all the courses, the enrollment in each course, and the grade
earned by each student in each course. If these data sets share cylinders, considerable time can
be saved when they are processed: each data set occupies a portion of the tracks in every
allocated cylinder; movement of the access arm is decreased and processing time is therefore
decreased. The decrease in time, however, is significant only for large data sets, and you
should request a private volume: if other data sets are using the volume concurrently, the
benefit is lost. (For details on requesting a private volume, see "Using Private Volumes" in the
chapter "Requesting Units and Volumes for Data Sets.")

To share cylinders, you define the data sets by coding a sequence of DD statements using
the SPLIT parameter to request space.

The Sequence of DD Statements

Each DD statement in the sequence defines one of the data sets in the group. On the first DD
statement, you must:

• define the first data set in the group.

• request space for all the data sets in the group; if the system cannot allocate this space on a
single volume, the job is abnormally terminated.

• indicate how many tracks per cylinder are to be allocated to this data set.

• code unit and volume information.

Optionally, you can code a secondary quantity, which is allocated to any data set in the
group that runs out of space.

On subsequent DD statements in the sequence, the SPLIT parameter simply indicates how
many tracks per cylinder are to be allocated to the data set. You need not code unit and
volume information --the VOLUME parameter, if coded, is ignored. The UNIT parameter is
also ignored, with the exception of a request for additional devices. (See "Requesting a
Secondary Quantity" for details on when to request additional devices.)

Requesting Space for a Group of Data Sets 57

You can request space for the data set either in terms of average block length or cylinders.
The way you indicate the number of tracks per cylinder to be allocated to each data set
depends on the unit of measurement you code.

Requesting Blocks of Space

To request blocks of space, specify the average block length of the data and how many blocks
you expect to write for all the data sets combined. The system computes for you how many
cylinders are required, depending on what device you request in the UNIT parameter.

To indicate how many tracks per cylinder are to be allocated to each data set, specify a
percent of the total tracks on a cylinder. The system computes how many tracks the percent
indicates and rounds down to the next full track; as a result, the percent you request must
equal at least one full track or the step is abnormally terminated. For example, if you request
50/0 of the tracks on a cylinder on a 3330, you are requesting .95 tracks and the job step is
abnormally terminated; if you request 10% of the tracks on a 3330, you are requesting 1.90
tracks and the system allocates one track per cylinder.

In the following example, the average block length of your data is 1,024 bytes and you need
800 blocks for three data sets. You want to allocate 200/0 of the tracks on each allocated
cylinder to the first data set, named CAMEL; 35% to the data set named LLAMA; and 450/0
to the data set named OSTRICH. The DD statements would be:

IIDD1
II
IIDD2
IIDD3

DD DSN=CAMEL,DISP=(,KEEP),UNIT=2314,
VOL=SER=253540,SPLIT=(20,1024,(800))

DD DSN=LLAMA,DISP=(,KEEP),SPLIT=35
DD DSN=OSTRICH,DISP=(,KEEP),SPLIT=45

You choose the percent of tracks to be allocated to each data set so that, when you reach the
end of a cylinder, you will have finished processing the portions of all three data sets on that
cylinder. You must consider the size of each data set, the size of the records in each data set,
and what type of operation you are performing, e.g., reading, writing, modifying records.

Requesting Cylinders

To request cylinders, you specify CYL as the unit of measurement and an integer indicating
how many cylinders should be allocated for all the data sets in the group. When you specify
CYL, you must compute the number of cylinders required, considering the device type, track
capacity, tracks per cylinder, cylinders per volume, data length (blocksize), keylength, and
device overhead. These variables are described in OS/VS Data Management Services Guide,
GC26-3783. Figures illustrating direct access capacities and track capacities are also included
in the OS/VS JCL Reference, GC28-0618.

To indicate how many tracks per cylinder should be allocated to each data set, you simply
specify a number of tracks. For example, you are requesting 7 cylinders on a 2314 for three
data sets named KING, QUEEN, and JACK. On a 2314, each cylinder contains 20 tracks:
KING should occupy 8 tracks per cylinder; QUEEN, 6 tracks per cylinder; and JACK, 6
tracks per cylinder.

You would code:

IIDDA
II
IIDDB
IIDDC

DD DSN=KING,DISP=(,KEEP),UNIT=2314,
VOL=SER=123456,SPLIT=(8,CYL,(7))

DD DSN=QUEEN,DISP=(,KEEP),SPLIT=6
DD DSN=JACK,DISP=(,KEEP),SPLIT=6

You choose the number of tracks per cylinder to be allocated to each data set so that, when
you reach the end of a cylinder, you will have finished processing the portions of all three data

58 OS/VS JCL Services (VSt Release 2 and VS2 Release 1)

sets on that cylinder. You must consider the size of each data set, the size of the records in
each data set, and what type of operation you are performing, e.g., reading, writing, modifying
records.

Requesting a Secondary Quantity

You can specify a secondary quantity in the SPLIT parameter on the first DD statement in the
sequence. The system will allocate additional blocks or cylinders (whichever you requested as
the primary quantity) to any data set in the group that runs out of space. (If you requested
blocks, you must code the maximum block length of the data in the BLKSIZE subparameter of
the DCB parameter or in the DCB macro instruction. The system uses the maximum block size
to determine how many additional tracks to allocate.) If you do not request a secondary
quantity and a data set runs out of space, the job step is abnormally terminated.

Additional space is not split with the other data sets and can be allocated on another
volume, if you requested multiple volumes in the VOLUME parameter. If the data set might
be extended to another volume, you should also request an additional device --the volume
containing the shared data sets need not be demounted, then, in order to mount the volume
for the secondary quantity. You request mUltiple devices in the UNIT parameter --see
"Requesting More than One Unit" in the chapter "Requesting Units and Volumes for Data
Sets." The request for an additional device can be coded on any DD statement in the
sequence.

For example, in a preceding example, you requested 800 blocks with an average block
length of 1,024 bytes. The first data set required 20% of the tracks on each cylinder. To
include a secondary request for 35 additional blocks, you could code:

IIDD1
II

DD DSN=CAMEL,DISP=(,KEEP),UNIT=(2314,2),
VOL=(PRIVATE,,2),SPLIT=(20,1024,(800,35))

An additional unit and volume is requested in case the secondary quantity must be allocated
on another volume.

Suballocating Space

The method of suballocating space is primarily used to reserve a block of space for a group of
data sets. You first create a master data set in contiguous space on a single volume that
contains enough space for all the data sets in the group, but that does not itself contain any
data. Then you suballocate space from the master data set for data sets in the group .. An
installation might reserve blocks of space for different departments, or distinct applications, or
to give programmers a certain amount of work space.

For example, a master data set reserves 8 cylinders of space on a 2314 for use by an
accounting department, DEPT41. DEPT41 creates four data sets, suballocating space for each
from the master data set. Each new data set is assigned to the first available area of unused
space in the master data set, so that the data sets can be placed in a specific order (i.e., in the
order in which they are defined). If DEPT41 is processing some of these data sets at the same
time, processing time can be decreased by making the volume on which they reside private.· (A
private volume cannot be allocated to satisfy a nonspecific volume request; therefore, other
data sets will not be allocated to a private volume unless they specifically request it by coding
its volume serial number.) Access-arm movement is decreased, since all the data sets occupy a
contiguous area on the volume and other data sets are not using the volume.

Requesting Space for a Group of Data Sets 59

Defining the Master Data Set

You define the master data set by coding the SPACE parameter. The SPACE parameter offers
two methods for requesting space: letting the system assign specific tracks and requesting
specific tracks. When you let the system assign specific tracks, you code a subset of the
available subparameters. You must code:

• the unit of measurement and primary quantity

• CONTIG to request contiguous space.

Optionally, you can code the ROUND subparameter to request whole cylinders when the unit
of measurement is average block length. Both methods of requesting space are described in
detail in the chapter "Requesting Space for a Single Data Set." The specific subparameters
listed above are described under "The Basic Request: Unit of Measurement and Primary
Quantity," "Requesting Contiguous Space", and "Requesting Whole Cylinders" in that
chapter.

You must include unit and volume information on the DD statement defining the master
data set. Sufficient contiguous space to satisfy the primary quantity must exist on a single
volume or the job step is abnormally terminated.

For example, to define the master data set to be used by DEPT41, you could code:

llMASTER
II

DD DSN=DEPT41,DISP=(,KEEP),UNIT=2314,
VOL=SER=123456,SPACE=(CYL,(8)"CONTIG)

Suballocating Space from the Master Data Set

To suballocate space from the master data set, you code the SUBALLOC parameter. The
SUBALLOC parameter is very much like the SPACE parameter when you let the system
assign specific tracks. You must specify a unit of measurement and a primary quantity --the
unit of measurement need not be the same as you specified when defining the master data set.
Optionally, you can request secondary space and space for a directory. For details on coding
these requests, see "The Basic Request: Unit of Measurement and Primary Quantity", "A
Secondary Request for Space," and "Requesting Space for a Directory or Index" in the
chapter "Requesting Space for a Single Data Set." Details on how a secondary space request is
satisfied are included below.

In the SUBALLOC parameter, you must also identify the master data set from which space
is to be suballocated --see "Identifying the Master Data Set" in this chapter.

How a Secondary Space Request is Satisfied

Secondary space allocated to your data set is not allocated from the master data set and can
be allocated on a separate volume, if you requested more than one volume when you defined
the master data set. If the data set might be extended to another volume, you should also
request an additional device, so that the volume containing the master data set need not be
demounted. You can request an additional device in the UNIT parameter on either the DD
statement defining the master data set or the DD statement defining the data set to be
suballocated. (For details on how to request an additional device, see "Requesting More than
One Unit" in the chapter "Requesting Units and Volumes for Data Sets.") With the exception
of a request for an additional device, the UNIT and VOLUME parameters are ignored, if
coded, on a DD statement that defines a suballocated data set.

60 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

Identifying the Master Data Set

In the SUBALLOC parameter, you must identify the master data set from which space is to
be suballocated. You can suballocate space from an existing master data set --i.e., you need
not create the master data set in the same job as you create a data set to be suballocated.
However, your job must include a DD statement defining the master data set. You refer to this
DD statement in the SUBALLOC parameter by coding:

• ddname --if the DD statement defining the master data set appears in the same job step .

• stepname.ddname --if the DD statement appears in an earlier job step.

• stepname.procstepname.ddname --if the DD statement appears in a procedure step that is
part of a cataloged or in-stream procedure called by an earlier job step.

Example of Suballocating Space for Data Sets

An accounting department, DEPT41, defines a master data set reserving 8 cylinders of space
on a 2314. Three data sets are suballocated from this space in two different jobs:

• the first data set, named FIRST, is a partitioned data set requiring 3 cylinders: you must
request space for a directory containing 10 records.

• the second data set, named SECOND, requires 50 tracks; you also want to request a
secondary quantity of 25 tracks. If space for the secondary quantity is not available on the
same volume as the master data set, you want the secondary quantity allocated on another
volume: you must request multiple volumes when defining the master data set and request
an additional device.

• in a later job, you define a third data set, named THIRD; the average block length of the
data in THIRD is 1024 bytes and you expect to write 100 blocks of data.

You would code:

IIJOBA
IISTEPl
llMASTER
II
IISUBl
II
IisTEP2
IISUB2
II
IIJOBB
IISTEPA
llMASTER
I/SUB3
II

JOB
EXEC
DD

DD

EXEC
DD

JOB
EXEC
DD
DD

PGM=INVENT
DSN=DEPT41,DISP=(NEW,CATLG),UNIT=2314,
VOL=(PRIVATE"2),SPACE=(CYL,(8),,CONTIG)
DSN=FIRST,DISP=(,KEEP),
SUBALLOC=(CYL,(3,,10),MASTER)
PGM=REDO
DSN=SECOND,DISP=(,KEEP),UNIT=(,2)
SUBALLOC=(TRK,(50,25),STEP1.MASTER)

PGM=CONVERT
DSN=DEPT41,DISP=OLD
DSN=THIRD,DISP=(,KEEP),
SUBALLOC=(1024,(100),MASTER)

Requesting Space for a Group of Data Sets 61

62 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Disposition Processing of Data Sets

Disposing of data sets at the end of a job step is known as disposition processing. You request
disposition processing by coding the DISP parameter on the DD statement defining the data
set. In the DISP parameter, you can code:

• data set status as the first subparameter, indicating if the data set is new, is old, can be
shared with other jobs, or can be lengthened;

• normal disposition as the second subparameter, indicating how the data set should be
handled if the job step terminates normally;

• conditional disposition as the third subparameter, indicating how the data set should be
handled if the job step terminates abnormally.

If you do not code one of the subparameters, or omit the DISP parameter entirely, the system
supplies default values, as described under "Default Disposition Processing."

Specifying Data Set Status

You indicate a data set's status by coding one of the following:

• NEW - the data set is being created in this job step.

• OLD - the data set existed before this job step.

• SHR - the data set existed before this job step and can be read simultaneously by other
jobs.

• MOD - the system assumes the data set exists and will position the read/write mechanism
after the last record in the data set; if the system cannot find volume information for the
data set, the system assumes the data set will be created in the job step.

When, you code SHR, you are requesting shared control of the data set and your job should be
reading the data set only. When you code NEW, OLD, or MOD, you are requesting exclusive
control of the data set. Shared and exclusive control are described in the chapter "Insuring
Data Set Integrity."

Specifying a Disposition for the Data Set

You can specify one disposition, called a normal disposition, to be used when the job step
terminates normally (i.e., successfully) and another disposition, called the conditional
disposition, to be used when the job step terminates abnormally.

For normal disposition, you can request as the second subparameter that the data set be:

• deleted by coding DELETE
• kept by coding KEEP
• cataloged by coding CATLG
• uncataloged by coding UNCATLG
• passed by coding PASS

For conditional disposition (the third subparameter of the DISP parameter), you can code all
of the above with the exception of PASS.

Disposition processing differs for data sets on direct access volumes and data sets on
magnetic tape volumes. A direct access volume contains a volume table of contents (VTOC)
which consists of control blocks describing the data sets and available space on the volume.

Disposition Processing of Data Sets 63

The handling of tape and direct access volumes when you specify a particular disposition is
described below.

Deleting a Data Set

Specifying DELETE requests that the data set's space on the volume be released at the end of
the job step (when coded as the normal disposition) or if the step abnormally terminates
(when coded as the conditional disposition). If the data set resides on a tape volume, the tape
is rewound and the volume is available for use by other job steps. If the data set exists on a
direct access volume, the control block describing the data set is removed from the VTOC and
the space on the volume is then available to other data sets.

In one case, however, a data set on a direct access volume will not be deleted, even though
you specify DELETE: when the expiration date or retention period has not expired. You can
specify a length of time that a data set must be kept by assigning a retention period or
expiration date in the LABEL parameter on the DD statement. Specifying a retention period
or expiration date is described in the OS/VS JCL Reference, GC28-0618, under "The LABEL
Parameter. "

If you are deleting a cataloged data set, the entry for the data set in the system catalog is
also removed, provided the system obtained volume information for the data set from the
catalog (i.e., the volume's serial number was not coded on the DD statement). If the system
did not obtain volume information from the catalog, the data set is still deleted but its entry in
the catalog remains. If an error is encountered while attempting to delete a data set, its entry
in the catalog will not be removed. (The data set will or will not be deleted, depending on
where the error occurs.) You can use the IEHPROGM utility program to delete an entry from
the catalog. (The IEHPROGM utility is described in OS/VS Utilities, GC3S-000S.)

DELETE is the only valid conditional disposition for a data set with no name or a
temporary name.

Keeping a Data Set

Specifying KEEP instructs the system to keep a data set intact until a subsequent job step or
job requests that the data set be deleted or until the expiration date or retention period is
passed. (You can specify an expiration date or retention period, indicating the length of time a
data set must be kept, in the LABEL parameter on the DD statement. If you do not specify a
time period, the system assumes a retention period of 0 days. Coding an expiration date or
retention period is described under "The LABEL Parameter" in the OS/VS JCL Reference,
GC28-0618.)

For data sets on direct access devices, the entry describing the data set in the VTOC and
the data set itself is kept intact. For data sets on tape, the volume is rewound and unloaded
and a KEEP message is issued to the operator.

Cataloging a Data Set

To more easily keep track of and retrieve data sets, the system provides a cataloging facility.
The catalog is itself a data set that is organized into levels of indexes; entries in the
lowest-level index contain data set names and volume information for the data sets. By
cataloging data sets, you can group collections of data sets; when retrieving a cataloged data
set, you do not have to specify volume information, you need only code the DSNAME
parameter and a status in the DISP parameter other than NEW. If the data set name is a
qualified name (a qualified name is composed of multiple names separated by periods; each
name corresponds to an index level in the catalog), all but the lowest-level index must exist in
the catalog. (You create indexes in the catalog by using the IEHPROGM utility -- see OS/VS

64 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Utilities, GC35-0005; qualified names are described in the OS/VS JCL Reference, GC28-0618,
under "Specifying the DSNAME Parameter.")

To request that a data set be cataloged, code CATLG as the disposition; the system creates
an index entry in the catalog that points to the data set. The disposition CA TLG implies
KEEP.

You can specify a disposition of CATLG for an already cataloged data set. This should be
done when you are lengthening the data set with additional output (a status of MOD is coded)
and the data set may exceed one volume. If the system obtained volume information for the
data set from the catalog (i.e., the volume's serial number was not coded on the DD
statement) and you code DISP=(MOD,CATLG), the system updates the entry to include the
volume serial numbers of any additional volumes.

A collection of cataloged data sets that are kept in chronological order can be defined as a
generation data group (GDG). The entire GDG is stored under a single data set name; each
data set within the group, called a generation data set, is associated with a generation number
that indicates how far removed the data set is from the original generation. If you do not code
a disposition when creating a generation data set, or specify a disposition other than CATLG,
the system assumes CATLG. For more information on defining and creating generation data
groups, see the OS/VS JCL Reference, GC28-0618.

If the data set name is enclosed in apostrophes, you must not assign the disposition CA TLG
to it.

Uncataloging a Data Set

To remove the entry describing a data set from the catalog, code UNCATLG as the
disposition. Specifying UNCATLG does not request the initiator to delete the data set -- just
the reference in the catalog is removed. When you request use of the data set in a subsequent
job or job step, you must include volume information on the DD statement.

Passing a Data Set

If more than one step in a job requests the same data set, each step using the data set can
pass the data set for use by a subsequent step. When a data set is passed, the volume
containing the data set remains mounted; when a subsequent step uses that data set, allocation
and disposition processing does not have to be performed for the data set.

To pass a data set, you code PASS as the normal disposition; PASS cannot be specified as
the conditional disposition. You continue to code PASS each time the data set is referred to
until the last time it is used in the job. At this time, you assign it a final disposition. If you do
not assign the data set a final disposition, the system deletes the data set if it was created in
the job and keeps the data set if it existed before the job.

If the data set exists on a direct access volume, the volume remains mounted. A magnetic
tape volume containing a passed data set remains mounted, but the tape is rewound between
steps unless you request otherwise in the CLOSE macro instruction. (A description of the
CLOSE macro instruction is included in OS/VS Data Management Macro Instructions,
GC26-3793.)

Default Disposition Processing

If you do not code the DISP parameter, or omit one of the subparameters, the system supplies
default values.

Disposition Processing of Data Sets 65

If you do not specify a data set status, the system assumes NEW. If you do not code the
second or third subparameters, the system determines how a data set should be handled
according to the status of the data set: data sets that existed before the job step are
automatically kept (data sets for which you coded OLD, SHR, or MOD when volume
information is available): data sets created in the job step are automatically deleted (data sets
for which you coded NEW, MOD when volume information is not available, or for which you
did not code a status).

If a step abnormally terminates before it actually begins execution (for example, during
allocation of units and volumes or direct access space), the system ignores the disposition you
code and again automatically keeps existing data sets and deletes new data sets.

For example, if you code:

DISP=(,PASS,CATLG)

the system assumes the data set is new. If the job step abnormally terminates during its
execution, the system will catalog the data set, as instructed by the conditional disposition of
CATLG. If, however, the step abnormally terminates before it actually begins execution, the
system will delete the data set, since it is a new data set.

Bypassing Disposition Processing

If you define a data set as a dummy data set, the DISP parameter, if coded, is ignored and
disposition processing is not ~erformed. For details, see "Defining a Dummy Data Set."

66 OS/VS JCL Services (VS1 Release 2 and VS2 Release 1)

Insuring Data Set Integrity

Your job must receive control of the nontemporary data sets it requests: you can request either
exclusive control, allowing no other job to use the data set, or shared control, allowing the data
set to be used by other jobs that also request shared control. The process of securing control
of data sets for use by a job is called data set integrity processing.

Data set integrity processing avoids conflict between two or more jobs that request use of
the same data set. For example, two jobs, one named READ and another named MODIFY,
both request the data set FILE. READ wants only to read and copy certain records; MODIFY
deletes some records and changes other records in the data set FILE. If both jobs have control
of FILE concurrently, READ cannot be certain of the records contained in FILE --cannot be
sure of the integrity of the data set. MODIFY should have exclusive control of the data set;
READ can share control of FILE with other jobs that also want only to read the data set. You
indicate the type of control a data set requires in the DISP parameter on the DD statement
defining the data set.

Exclusive Control of a Data Set

When a job has exclusive control of a data set, no other job can use that data set until the job
having exclusive control terminates. A job should have exclusive control of a data set in order
to modify, add, or delete records.

In some cases, you may not need exclusive control of the entire data set. You can request
exclusive control of a block of records by coding the DCB, READ, WRITE, and RELEX
macro instructions. (These instructions are described in OS/VS Data Management Macro
Instructions, GC26-3793.)

To request exclusive control of a data set, you code NEW, OLD, or MOD as the first
subparameter of the DISP parameter.

Shared Control of a Data Set

A data set on a direct access storage device can be used concurrently by several jobs, if these
jobs request shared control of the data set; however, none of the jobs should change the data
set in any way.

To request shared control, you code SHR as the first subparameter in the DISP parameter.
If more than one step of your job requests a data set, you must code SHR every time you
define the data set if it is to be used by concurrently executing jobs. Data set integrity
processing is performed once for a job; a data set has one type of control -- either shared or
exclusive -- for the entire job. If you code NEW, OLD, or MOD on any reference to a data
set, the system assigns exclusive control to the data set for the entire job; a reference
requesting exclusive control will override any number of references requesting shared control.

How the System Performs Data Set Integrity Processing

Data set integrity processing is performed only for nontemporary data sets. (A temporary data
set is, by definition, a new data set that is created and deleted in the same job. Another job
cannot request a temporary data set; therefore, there is no possibility of conflict, and data set
integrity processing is unnecessary.)

Insuring Data Set Integrity 67

The system recognizes a nontemporary data set by the data set name assigned to it in the
DSNAME parameter. You do not have to code the DSNAME parameter for temporary data
sets; if you do, the name begins with the characters & &. Any data set name, then, that does
not begin with & & indicates a nontemporary data set, even though the data set may be created
and deleted within the job. (A data set name preceded by one ampersand is treated as a
symbolic parameter if a value is assigned to it; if no value is assigned, a data set name
preceded by only one ampersand is treated as the name of a temporary data set. Symbolic
parameters and assigning values to symbolic parameters are described under "Using Symbolic
Parameters. ")

To secure control of a data set for a job, the system enqueues on the data set, marking the
data set as requested by that job and noting what kind of control was requested. The job will
receive control of the data set if:

• the data set js not being used by another job, or

• the data set is being used by anot4er job but both the job requesting the data set and the
job using the data set request shared control.

For example, a job named READ requests shared control of a data set named FILE; if FILE
is being used by a job named LOOKAT and LOOKAT also requests shared control, both
READ and LOOKAT can use the data set at the same time.

A job will not receive control of a data set if:

• the data set is being used by another job and that job has exclusive control, or

• the data set is being used by another job (with either exclusive or shared control), but the
job requesting use of the data set requests exclusive control.

For example, the job named MODIFY requests exclusive control of the data set FILE; FILE
is already being used by the job LOOKAT. MODIFY cannot receive control of the data set
until LOOKAT has terminated.

If any of the data sets a job requests are not available, the system issues a message to the
operator indicating the unavailable data sets. The message and the operator's response differ in
VSl and VS2.

In VS1, the operator replies with one of the following responses:

• RETRY -- the initiator attempts to enqueue again on the data sets.

• CANCEL -- execution of the job is caricelled.

• HOLD -- the job is placed in a HOLD state until released by the operator when the data
sets are available.

In VS2, the system issues the message "JOB IS WAITING ON DATA SETS." The initiator
that started the job will automatically wait until the required data sets become available, unless
the operator cancels the job.

68 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Data sets can be defined to satisfy a special purpose. Such
data sets are usually defined with a special ddname, a specific
data set name, or a specific parameter. This section describes
three types of special data sets:

• Creating and Using Private and Temporary Libraries

• Defining a Dummy Data Set

• Using a Dedicated Data Set for Allocating a Temporary
Data Set

Special Data Sets

Special Data Sets 69

70 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Creating and Using Private and Temporary Libraries

A library is simply a partitioned data set -- a data set in direct access storage that is divided
into partitions, called members, each of which can contain a program or part of a program.
Each partitioned data set contains a directory (or index) that the control program can use to
locate a program in the library. All programs that can be executed must exist in a library --i.e.,
must be members of a partitioned data set. There are three types of libraries:

• the system library
• private libraries
• temporary libraries

The system library is a partitioned data set named SYS 1.LINKLIB that contains frequently
used programs and programs used by the system. You need not define the system library in
your job; the system will automatically look in the system library for a program you want
executed.

A private library is a partitioned data set that contains programs not used frequently enough
to warrant being included in the system library. You inform the system that a program exists in
a private library by coding a DD statement defining that library. You can define a private
library to be used throughout the job by coding a DD statement with the ddname JOBLIB, or
define a library to be used in a specific step by coding a DD statement with the ddname
STEPLIB.

A temporary library is a partitioned data set created in the job to store a program , as a
member of the partitioned data set, until it is executed in a following step. For example, if in
your job you want to assemble, linkage edit, and then execute a program, you must make the
output of the linkage editor a member of a library. Any library that you create and delete in
the same job is a temporary library.

To execute a program contained in a library, code the PGM parameter as the first
parameter on the EXEC statement. If the program exists in the system library, simply code the
program name, i.e., PGM=program name. If the program exists in a private library, code either
PGM=program name or PGM= * .stepname.ddname or
PGM= * .stepname. procstepname.ddname. Stepname and procstepname identify the job step or
job step and procedure step defining the library; the named DD statement must define the
library; the named DD statement must define the program as a member of a partitioned data
set. To calla program contained in a temporary library thatis not defined with a JOBLIB DD
or STEPLIB DD statement you must code PGM=*.stepname.ddname or
PGM= * .stepname. procstepname.ddname.

If you define a private library, the system looks first in that library for a program you want
executed; if it does not find the program in the private library, it then searches the system
library.

This chapter describes how to code JCL statements to create or retrieve private and
temporary libraries. Complete information on creating a partitioned data set, adding members
to and deleting members from a partitioned data set, is included in OS/VS Data Management
Services Guide, GC26-3783.

Creating a Private Library

Use the JOBLIB DD statement to create a private library. The JOBLIB DD statement must
appear immediately after the JOB statement --do not use the ddname JOBLIB unless you are
defining a private library. The library defined with a JOBLIB DD statement is automatically

Creating and Using Private and Temporary Libraries 71

available to every step in your job. (The STEPLIB DD statement is included among the DD
statements in a step and is available only to that step unless you pass the library or redefine it
in subsequent steps; since the library defined on a JOBLIB DD statement is available to every
step, it is easier to create a library with the JOBLIB DD statement.)

When you create the library on the JOBLIB DD statement, you are creating a partitioned
data set. Steps in your job must add members to the library before those members (programs)
can be used by subsequent steps.

On the JOBLIB DD statement, you assign the library a name in the DSNAME parameter,
give unit and volume information in the UNIT and VO~UME parameters (a partitioned data
set must be contained on one direct access volume; if, however, you make a nonspecific
volume request, you need not code the VOLUME parameter), request space for the entire
library in the SPACE parameter, and assign a data set status and disposition in the DISP
parameter. Code NEW as the data set status and either CATLG or PASS as the data set
disposition. When you specify CATLG, the library is cataloged, available throughout the job,
and kept at the end of the job. When you specify PASS, the library is available throughout the
job, but is deleted at job termination. (If you do not code a disposition, or code a disposition
other than CATLG or PASS, the system assumes PASS.) You must also code the DCB
parameter if complete data control block information is not included in the data set label.

Adding Members to a Private Library

You add members to the library in job steps within the job. Code a DD statement that
defines the library and names the member to be added to the library: in the DSNAME
parameter, follow the library name with the name of the program you are adding to the
library, for example, DSNAME=LIBRARY(PROGRAM). Do not code the SPACE parameter:
you requested space for the entire library on the JOBLIB DD statement. In the DISP
parameter, specify MOD as the data set status: the partitioned data set already exists since you
created it in the JOBLIB statement, and you are lengthening it with a new member. If you
cataloged the library in the JOBLIB DD statement, .e., coded DISP=(NEW,CATLG), you
must not respecify CA TLG when you add a member: you need not code a disposition at all.
For a cataloged library, you do not have to specify unit and volume information, except in one
instance: if you are adding a member to the library in the first step of your job, you must
supply unit and volume information; the library is not cataloged until the first step completes
the execution. You can refer to the JOBLIB DD statement for unit and volume information by
coding VOL=REF=*.JOBLIB.

In the following example, JOBLIB DD statement creates a library named GROUPLIB;
STEP 1 adds the programnamed RATE to the library; STEP2 calls the program RATE:

IIEG
IIJOBLIB
II
II
IISTEPl
IIADDPGMD
II
IISTEP2

JOB
DD

EXEC
DD

EXEC

DSNAME=GROUPLIB,DISP=(NEW,CATLG),
UNIT=2314,VOL=SER=727104,
SPACE=(CYL,(50,3,4))
PGM=FIND
DSNAME=GROUPLIB(RATE),DISP=OLD,
VOL=REF=*.JOBLIB
PGM=RATE

In STEPl, the system looks for the program named FIND in the system library --the private
library created on the JOBLIB DD statement does not actually exist until a member is added
to it. In STEP2, the system looks for the program named RATE first in the private library.

72 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

Retrieving an Existing Private Library
If you are retrieving several programs from one library (i.e., several steps in your job will be
using the library), use the JOBLIB DD statement to define the library: the library will be
available in every step of the job for which you do not code a STEPLIB DD statement. The
JOBLIB DD statement must appear immediately after the JOB statement. To make a library
available in a single step, define the library on a STEPLIB DD statement. The STEPLIB DD
statement is included with the DD statements for a step (in no specific order) and is available
only to that step, unless you pass the library and retrieve it in a subsequent step. Use the
ddnames JOBLIB and STEPLIB only when you are defining private libraries.

The system will search for a program in the private library you define before it searches the
system library. If both JOBLIB and STEPLIB DD statements appear in a job, the STEPLIB
definition has precedence, i.e., the private library defined by the JOBLIB DD statement is not
searched for any step that contains the STEPLIB definition. If you want the JOBLIB
definition ignored but the step does not require use of another private library, define the
system library on the STEPLIB DD statement:

IISTEPLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR

You retrieve a private library as you would any partitioned data set: if the library is
cataloged, or in the case of a STEPLIB definition, passed from a previous step, you need not
specify unit and volume information; otherwise, you must code the UNIT and VOLUME
parameters.

For both cataloged and uncataloged libraries, you code: the DSNAME parameter, specifying
the name of the library; the DCB parameter, if complete data control block information is not
included in the data set label; and the DISP parameter, specifying data set status and
disposition. Normally, you will want to specify SHR as the data set status: SHR indicates that
the data set is old, but also allows other jobs to simultaneously use the library. All references
to the library in your job must specify SHR if the data set is to be shared; do not code SHR,
however, if you will be adding members to the library in your job. (A more thorough
discussion of sharing a data set is included in the chapter "Insuring Data Set Integrity. ") Code
P ASS as the data set disposition for a library defined on the JOBLIB DD statement: PASS
makes the library available throughout the job. (If you do not code a disposition, the system
assumes PASS.) For a library defined on a STEPLIB DD statement, code any valid disposition,
depending on how you want the data set treated after its use in the job step: for example, if
the library is not cataloged, and you want it to be cataloged, code CATLG; if you want the
library deleted, code DELETE.

The following job includes both JOBLIB DD and STEPLIB DD statements:

IICAMILLE
IIJOBLIB
IISTEP1
IISTEP2
IISTEPLIB
II

JOB
DD
EXEC
EXEC
DD

DSNAME=LIB5.GRP4,DISP=SHR
PGM=FIND
PGM=GATHER
DSNAME=ACCOUNTS,DISP=(SHR,KEEP),
UNIT=2314,VOL=SER=727104

In STEPI, the system searches the library named LIB5.GRP4, defined on the JOBLIB DD
statement, for the program named FIND. In STEP2, the system searches the library named
ACCOUNTS, defined on the STEPLIB DD statement, for the program named GATHER. If
the program is not found in the private library, the system searches the system library.

You can add a program to an existing library by coding a DD statement in a job step that
defines the library and names the program to be added --see "Adding Members to a Private
Library" for details on coding this DD statement. The new member must be added to the

Creating and Using Private and Temporary Libraries 73

library before it can be executed --i.e., the step that adds the program to the library must
precede the step that calls the program. Do not code SHR as the data set's status when
modifying the library.

Concatenating Private Libraries

If your job uses programs contained in several libraries, you can concatenate these libraries on
one JOBLIB DD statement or one STEPLIB DD statement; all the libraries you concatenate
must be existing libraries. Omit the ddname from all the DD statements defining the libraries,
except the first:

IIJOBLIB
II
II
1/

DD DSNAME=D58.LIB12,DISP=(SHR,PASS)
DD DSNAME=D90.BROWN,DISP=(SHR,PASS),

UNIT=3330,VOL=SER=411731
DD DSNAME=A03.EDUC,DISP=(SHR,PASS)

This entire group must appear immediately after the JOB statement. When you concatenate
libraries using STEPLIB as the ddname, the entire group appears as part of the DD statements
for the step.

The system will search the libraries for a program in the order in which the DD statements
defining the libraries are coded.

Temporary Libraries
Temporary libraries are libraries that are created and deleted within the job. It is not necessary
to define a temporary library on a JOBLIB DD or STEPLIB DD statement: simply code aDD
statement creating a partitioned data set and adding the program to it in the step that produces
the program. You can then retrieve this program in a subsequent step.

For example, STEP2 illustrated below calls the program IEWL, which linkage edits object
modules to form a load module that can be executed. You must place the results of the linkage
edit step in a library, so that a subsequent step can use those results. Since the results are not
a program other jobs will call, it is logical to place the program in a temporary library:

//STEP2
/IRESULT
II
//STEP3

EXEC
DD

EXEC

PGM=IEWL
DSNAME=&&PARTDS(PROG),UNIT=2314,
DISP=(NEW,PASS),SPACE=(1024,(50,20,1))
PGM=*.STEP2.RESULT

You call the program in STEP3 by naming the step in which the library was created and the
name of the DD statement that defines the program as a member of a library. If STEP2 had
called a procedure, and the DD statement named RESULT were included in PROCSTEP3 of
the procedure, you would code PGM=*.STEP2.PROCSTEP3.RESULT.

74 OS/VS JCL Services (VS1 Release 2 and VS2 Release 1)

Defining a Dummy Data Set

To save processing time, you might not want a data set to be processed every time the job is
executed. For example, while testing a program, you might want to suppress the writing of an
output data set until you are sure it will contain meaningful output; you might want to skip the
reading of a data set to be used only once a week. When you define a dummy data set,
input/ output operations are bypassed, disposition processing is not performed, and devices and
storage are not allocated to the data set.

You define a dummy data set by:

• coding the DUMMY parameter on the DD statement, or
• assigning the data set name NULLFILE in the DSNAME parameter on the DD statement.

Coding the DUMMY Parameter

Code DUMMY as the first parameter on the DD statement. DUMMY is a positional
parameter: it must precede all keyword parameters on the DD statement.

When the DUMMY parameter is coded, all other parameters on the DD statement, with the
exception of the DCB parameter, are ignored. (The parameters are checked for syntax,
however; if a parameter is coded incorrectly, a JCL error message is issued.) Therefore,
although you may code UNIT, VOLUME, and DISP, no devices or external storage is
allocated to the data set and no disposition processing is performed. The DCB parameter must
be coded if you would code it for normal I/O operations. For example, when an OPEN
routine requires a BLKSIZE specification to obtain buffers and BLKSIZE is not specified in
the DCB macro instruction, you should supply this information in the DCB parameter on the
DD statement. (A description of the DCB parameter is included in the OS/VS JCL Reference,
GC28-0618.) When a DD statement that overrides a procedure DD statement contains the
DUMMY parameter, all of the parameters coded on the procedure DD statement are nullified,
except for the DCB parameter.

If you request unit or volume affinity with a dummy data set, the data set requesting
affinity is assigned a dummy status. (Unit and volume affinity is described in the chapter
"Requesting Units and Volumes for a Data Set. ")

When you want the data set to be processed, replace the DD statement containing the
DUMMY parameter with a DD statement containing the parameters required to define the
data set. When a procedure DD statement contains the DUMMY parameter, you can nullify it
by coding the DSNAME parameter on the overriding DD statement and assigning a data set
name other than NULLFILE.

Note: In VS2, the time-sharing option (TSO), which can be included in the system during
system generation, provides conversational time sharing from remote terminals. During the
TSO LOGON procedure, you can code a DD statement and specify the parameter DYNAM to
indicate that dynamic allocation of data sets is to be used; no devices or external storage is
allocated to the data set, but space is reserved in internal tables so that data set requirements
that arise during the terminal session can be satisfied. If a DD DYNAM statement is used in
the background (batch processing), or in the foreground before allocation, the DYNAM
parameter has the same effect as coding DUMMY.

Coding DSNAME=NULLFILE

Assigning the name NULLFILE in the DSNAME parameter has the same effect as coding
DUMMY. The data set is assigned a dummy status; no devices or storage is allocated and no

Defining a Dummy Data Set 75

disposition processing is performed. All parameters except for DSNAME and DCB are
ignored. (You must code the DCB parameter when defining a dummy data set if you would
code it for normal I/O operations.)

When you want the data set to be processed, replace the name NULLFILE with another
data set name. (Assigning names to data sets is described in the OS/VS JCL Reference,
GC28-0618, under "Specifying the DSNAME Parameter.")

Requests to Read or Write a Dummy Data Set

When your program asks to read a dummy data set, an end-of-data-set exit is taken
immediately. When your program requests that the data set be written, the request is
recognized but no data is transmitted. Your program must use the basic sequential access
method (BSAM) or queued sequential access method (QSAM) when requesting to write a
dummy data set; if any other access method is used, the job is terminated.

If you define a data set as a dummy data set, the DISP parameter, if coded, is ignored and
disposition processing is not performed. For details, see "Defining a Dummy Data Set."

76 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

Using a Dedicated Data Set for Allocating a Temporary Data Set

Temporary data sets are data sets that are created and deleted within the same job. To save
the time required to repeatedly assign and release space to temporary data sets, your
installation can define dedicated data sets.

To create a dedicated data set, your installation adds a DD statement defining the dedicated
data set to an initiator procedure. (An initiator procedure is simply the cataloged procedure for
an initiator.) When the initiator is started, space is allocated to the dedicated data set; every
job step running under the initiator can then use the dedicated data set as a temporary data
set.

Defining the Temporary Data Set

The parameters that define the temporary data set are illustrated in Figure 3.

Parameter Comments

DSNAME = &ddname Ddname specifies the name of the DO statement in the initiator
procedure that defines the dedicated data set.

SPACE You must request space in terms of average block length; any
secondary quantity you code overrides a secondary quantity specified for
the dedicated data set. If the data set is partitioned, include a request
for the directory.

UNIT This must be coded, in case the dedicated data set is not used. You can
request either a magnetic tape or direct access device.

DISP If coded, the DISP parameter must specify (NEW,DELETE).

DCB Unless you cpde required DCB subparameters for the data set, the
system will use DCB subparameters coded by a previous user of the
dedicated data set. If you code a secondary quantity in the SPACE
parameter, you must specify the maximum block length of your data in
the BLKSIZE sub parameter .

Figure 3. Defining a Temporary Data Set in order to Use the Space Allocated to a Dedicated Data Set

The system will use the space allocated to the dedicated data set for your data set, unless:

• The total space (primary and secondary requests) requested for the temporary data set
exceeds the total space (primary and secondary requests) allocated to the dedicated data set.

• The temporary data set and dedicated data set do not both have either sequential or
partitioned organization. For example, if the dedicated data set is partitioned (therefore,
space for a directory is requested in the SPACE parameter) and the temporary data set is
sequential (no space for a directory is requested), the dedicated data set will not be used.

• Both the temporary and dedicated data sets are partitioned, but the temporary data set's
request for a directory is larger than the space allocated for the dedicated data set's
directory.

• The temporary data set is an ISAM data set.

If any of these conditions are true, normal allocation of the temporary data set will occur.

Using a Dedicated Data Set for Allocating a Temporary Data Set 77

For example, the ddname of a dedicated data set is DEDICAT. To request that the space
allocated to DEDICAT be used for a temporary data set, you code:

IIDD1
II
II

DD DSNAME=SDEDICAT,UNIT=2314,
SPACE=(1024,(100,25)),DISP=(NEW,DELETE),
DCB=BLKSIZE=2048

Your installation sets up the guidelines for using dedicated data sets. When an initiator is
started, the operator can assign job classes to it to process: certain job classes can always be
assigned to an initiator containing a dedicated data set. When you assign your job to one of
these job classes, you can use the dedicated data set. The same ddname defining a dedicated
data set can be included in more than one initiator procedure: you could code this ddname
when you want to use a dedicated data set. The guidelines for knowing when a dedicated data
set will be available to your job depend on the individual installation.

78 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Output from your job can include a listing of JCL statements
and messages, a dump in the event of abnormal termination,
and output data sets. You request output by coding J CL
parameters. Output data sets and dumps must be defined on
DD statements; you request listings of JCL statements and
messages by coding parameters on the JOB statement. When
you request that an output data set be printed, you can also
request options that control how the data set is printed.

This section includes five chapters:

Obtaining Output

• Controlling the Output Listing of JCL Statements, Messages, and Dumps

• Writing Output Data Sets

• Requesting Multiple Copies of an Output Data Set (VS 1 only)

• Printer Forms and Print Chain Control

• Controlling Output to a Workstation (VS 1 only)

Obtaining Output 79

80 OS/VS JCLServices (VS 1 Release 2 and VS2 Release 1)

Controlling the Output Listing of JCL Statements,
Messages, and Dumps

The system produces messages about your job concerning allocation of units and volumes,
disposition of data sets, and termination of job steps and the job. You can request that these
messages, called allocation/termination messages, and/or the JCL statements from your job
and from cataloged procedures called by your job be included on an output listing. You route
allocation/ termination messages to an output device by assigning the messages from your job
to an output class.

In the event of abnormal termination of a step, you can also request a dump, containing the
contents of parts of virtual storage. You must include a DD statement definign a data set to
contain the dump with the job control statements for the step.

Requesting Listing of JCL Statements and Messages

By coding the MSGLEVEL parameter on the JOB statement, you inform the system of what
statements and messages you want included on the output listing.

As the first subparameter, you code 0, 1, or 2, to indicate what statements you want:

o only the JOB statement.

1 all JCL statements from the job (which includes in-stream procedures) and from cataloged
procedures called by the job, including the internal representation of cataloged procedure
statements after symbolic parameters are substituted.

2 input JCL statements from the job, which includes in-stream procedures. (Statements from
cataloged procedures called by the job are not included.)

The notation used on the output listing to identify cataloged and in-stream procedure
statements is described in the chapter "Using- Cataloged and In-Stream Procedures."

As the second subparameter, you code 0 or 1 to instruct the system to write:

o no allocation/termination messages, unless the job abnormally terminates. If the job does
terminate abnormally, allocation/termination messages are included on the output listing.

1 all allocation/termination messages.

If you omit the MSGLEVEL parameter or one of the subparameters, the default value in
the input reader procedure is used. This default is (1,1), which requests all JCL statements and
all allocation/termination messages, unless changed by your installation.

For example, if you want only the JOB statement displayed and all allocation/termination
messages, code:

//PGM JOB ... MSGLEVEL=(O,l)

If the IBM-supplied default is used, you can omit the second subparameter and code:

//PGM JOB ... MSGLEVEL=O

Controlling the Output Listing of JCL Statements, Messages, and Dumps 81

Assigning Messages to an Output Class

To route system messages to a system output device, you assign the messages to an output
class. Output classes, designated by a letter (A-Z) or a number (0-9), are defined by the
installation to group output that will be written to the same device. For example, class W
might be reserved for output to be written to a printer and requiring a special form.

You assign messages to an output class by coding the MSGCLASS parameter on the JOB
statement:

//PGM JOB ... MSGCLASS=W

If you do not code the MSGCLASS parameter, a default value established in the input reader
procedure is used. This default is A unless changed by your installation.

Ordinarily, you will want system messages for a job to be written to the same device as
output data sets from that job: assign the same output class to output data sets and messages
or omit the MSGCLASS parameter and assign the default output class for messages to output
data sets. (You assign data sets to an output class in the SYSOUT parameter on the DD
statement -- see the chatper "Writing Output Data Sets. ")

Requesting an Abnormal Termination Dump

To obtain a dump in the event of abnormal termination of a job step, you must code a DD
statement defining a data set to which the dump can be written. The name of the DD
statement must be either SYSABEND or SYSUDUMP. (If you include more than one DD
statement defining a dump, only the last statement is used.)

When you code SYSUDUMP as the ddname, your dump contains only the contents of the
processing program's virtual storage area. When you code a SYSABEND DD statement, the
contents of your dump differs in VSl and VS2:

• in VSl, coding SYSABEND provides a dump containing the processing program's virtual
storage area, the system nucleus, the pageable supervisor, and the entire system queue area
(the system queue area, SQA, is an area of virtual storage reserved for system-related
control blocks).

• in VS2, the SYSABEND DD statement provides a dump containing the processing program's
virtual storage area, the system nucleus, the entire system queue area (the SQA is an area
of virtual storage reserved for system-related control blocks), all local system queue areas
(an LSQA is one or more segments associated with each virtual storage region that contains
job-related system control blocks), and any active link pack area (LPA) modules for the
failing task (an LPA is an area of virtual storage containing selected reenterable and serially
reusable routines that can be used concurrently by all tasks in the system). If GTF is active·
in the system and performing an internal trace, you will receive GTF trace records; if GTF
is active but performing an external trace, no trace information is included in the dump.
(GTF is a feature of OS/VS that allows you to trace selected system events.)

Complete descriptions of dumps and information on reading dumps are included in the
OS/VSl Debugging Guide, GC24-S093, and the OS/VS2 Debugging Guide, GC28-0632.

To have the dump printed, you either assign the dump to an output class in the SYSOUT
parameter on the DD statement or code the UNIT parameter and specify the unit record
device. For details, see the chapter "Writing Output Data Sets." To store the dump, define the
data set as you would any other data set, coding the DSNAME, DISP, UNIT, VOLUME, and,
if the data set will exist on a direct access device, SPACE parameters. In the DISP parameter,
code DELETE as the normal disposition: if the job terminates normally, you do not need the

82 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

dump. You can code KEEP or CATLG as the conditional disposition, but it is not necessary.
The system will not delete a data set defined with a SYSABEND DD or SYSUDUMP DD
statement if the step abnormally terminates.

The following DD statement requests that a dump be printed if the job step abnormally
terminates:

IISYSUDUMP DD SYSOUT=A

To store the dump, you could code:

IISYSUDUMP DD
II

DSNAME=DUMP,DISP=(NEW,DELETE),
UNIT=2400,VOL=SER=147958

Controlling the Output Listing of JCL Statements, Messages, and Dumps 83

84 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Writing Output Data Sets

There are two ways to instruct the system to write output data sets:

1. by assigning the data set to an output class;

2. by specifying the device on which the output will be written.

When you assign a data set to an output class, it is written by routines called output writers: in
VS 1, output writers include the system output writer and the direct system output (DSO)
writer; in VS2, the output writer is the system output writer. When you specify the device you
want, allocation routines assign that device, if it is available, exclusively to the job that
requests it and data management routines write the output.

Assigning Output Data Sets -to Output Classes

The purpose of output classes is to group output with similar characteristics that will be written
to the same device. There are 36 possible output classes, each designated by a letter from A
through Z or a number from 0 through 9. The letter and number names have no inherent
meaning -each installation defines its own output classes when the system is generated. For
example, output class W might contain output to be written to a printer and requiring a special
form; class J might be reserved for high-volume output.

To assign an output data set to an output class, you code the SYSOUT parameter on the
DD statement defining the data set:

//DATASET DD SYSOUT=W

If you want the output data set and the messages from your job to be printed on the same
output listing, specify the same output class in the SYSOUT parameter as you specified for
messages in the MSGCLASS parameter. If you omjtted the MSGCLASS parameter, code the
default output class for messages in the SYSOUT parameter. (For details on coding the
MSGCLASS parameter, see the chapter I I Controlling the Output Listing of J CL Statements,
Messages, and Dumps. II)

Processing Output Classes

The operator controls the processing of output classes by issuing commands to start writers
(the START command), modify the classes of output the writer processes (the MODIFY
command), and stop the writer (the STOP command). In the START command, the operator
can assign output classes to the writer to be processed; if he does not specify output classes,
defaults from the writer procedure are used. The writers used to process output classes differ
in VS 1 and VS2.

The system output writer is available in both VS 1 and VS2; it is the most efficient way to
write output. The output is first written to a direct access device. When a system output writer
is started, it writes the output from the direct access device to a system output device
according to the output classes it was assigned to process and, within an output class,
according to the priority of the job which produced the output. (Output in a single output class
from jobs with the same priority or from a single job are written in a first in/first out order.)
System output devices are simply the devices on which output classes are written; they include
printers, punches, and magnetic tape.

In VS 1, the direct system output (DSO) writer is also available to write output classes. The
DSO writer writes output data sets directly from a job to a system output device while the job

Writing Output Data Sets 85

is executing; messages from the job are first written to a direct access device and then written
to a system output device at job termination.

Using an Installation-Written Writer Routine

Instead of using the IBM-supplied output writer routine, your installation can provide its own
routine. If you want your installation's routine to be used, specify the name of the routine in
the SYSOUT parameter. For example, if you are assigning an output data set to class Band
want the installation-written routine named WRITE to be used to write the data set, code:

//OUTPUT DD SYSOUT=(B,WRITE)

Delaying the Writing of an Output Data Set (VSl only)
You can delay the writing of an output data set until the operator requests that the data set be
written. The reasons to delay writing a data set are varied, for example: if a data set is very
large and not immediately needed, you might not want to monopolize an output device until
other, smaller data sets are written: if a data set requires special forms that are not
immediately available --e.g., a data set containing payroll information requires 5,000 payroll
checks-- the data set will not be printed until the operator supplies those forms; if you are
routing the data set to another destination, the data set will not be printed until that
destination requests it.

Code HOLD= YES on the DD statement defining the data set:

//LARGE DD SYSOUT=W, HOLD=YES

The data set is placed on a hold queue until the operator releases it by issuing a ROUTE
command. You must notify the operator when you code HOLD= YES for a data set: when a
data set is placed on a hold queue, no message is sent to the operator. If you are routing the
data set to another destination, you can notify that destination by coding a SEND command.
Details on routing a data set to another destination and coding the SEND command are
included in the chapter "Controlling Output to Workstations (VS 1 only)."

Job Separators

To make it easier to separate the output from different jobs, your installation can include a
routine in the writer procedure to write job separators, for example, three listing pages or three
punched cards containing the name of the job whose output follows and the output class.

In VSl, the operator can specify one of two writer procedures for direct system output
(DSO) processing: the DSO procedure or the DSOJS procedure. If DSOJS is specified, job
separators are automatically written to separate the output from different jobs.

Specifying the Device

To write an output data set without using the output writers, you can code the UNIT
parameter on the DD statement defining the data set and specify the device on which you
want the data set written. The system will allocate the device exclusively to your job if the
device is available: no other job can write output to that device until it is released -- jobs
cannot share an output device as they can when you assign output to output classes.

Data management routines write the output from the program to the device specified in the
UNIT parameter.

If you code both the UNIT parameter and the SYSOUT parameter when defining a data
set, the UNIT parameter is ignored.

86 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Specifying a particular output device in the UNIT parameter is the least efficient method to
route system output.

Suppressing the Writing of an Output Data Set

Whether you route an output data set by coding the SYSOUT parameter or the UNIT
parameter, you can suppress the writing of the data set by defining it as a dummy data set.
This is useful when you are testing a program and do not want data sets printed until you are
sure they will contain meaningful output. Suppressing the writing of a data set saves processing
time.

If you are routing an output data set by coding the SYSOUT parameter, code the DUMMY
parameter to define the data set as a dummy data set. When DUMMY is coded, the SYSOUT
parameter is ignored and the data set is not written.

If you are specifying the device on which the data set will be written in the UNIT
parameter, you can assign the data set a dummy status by coding DUMMY or by assigning the
data set name NULLFILE. All parameters other than DUMMY or DSNAME=NULLFILE
and DeB are ignored; no units are assigned to the data set. When your program requests that
the data set be written, the request is recognized but no data is transmitted. Your program
must use the basic sequential access method (BSAM) or queued sequential access method
(QSAM) when requesting to write a dummy data set; if any other access method is used, the
job is terminated.

For details on coding the DUMMY parameter or DSNAME=NULLFILE, see the chapter
"Defining a Dummy Data Set."

Writing Output Data Sets 87

88 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Requesting Multiple Copies of an Output Data Set (VSl only)

With VS 1 you can control the number of hard copies produced by the printer, punch, or tape.
You can obtain as many as 255 copies of an output data set by:

• coding the COPIES parameter on the DD statement defining the data set, or

• requesting that the operator specify the desired number of copies in the REPEAT parameter
of the WRITER command.

Requesting Multiple Copies with the COPIES Parameter

When you assign a data set to an output class in the SYSOUT parameter (see the chapter
"Writing Output Data Sets "), you can also code the COPIES parameter and request as many
as 255 copies of the data set:

//RECORD DD SYSOUT=W,COPIES=32

In the above example, you are requesting 32 copies of the data set. If you omit the COPIES
parameter, a default value of 1 is assumed.

The job is cancelled if you code COPIES on a DD statement that does not include the
SYSOUT parameter or if you specify a value less than 1 or greater than 255.

Requesting Multiple Copies with the WRITER Command

You can obtain multiple copies of an output data set by requesting that the operator specify
the number of copies in the REPEAT parameter of the WRITER command. For example, if
the operator specifies REPEAT = 2, two copies of the data set will be printed. The command
must be issued while the writer is processing the data set.

If you want multiple copies of all the output data sets in one class for a job, the operator
can specify both the number of copies desired and the subparameter JOB in the REPEAT
parameter of the WRITER command; for example:

REPEAT=(3,JOB)

When JOB is specified, the number indicates you want additional copies of the data sets; in
this example, four copies of each data set will be printed all together. The command must be
issued while the writer is processing the job's output.

A maximum of 255 copies can be specified. If multiple copies are requested in both the
COPIES parameter on the DD statement and in the WRITER command, the number of copies
specified in the command overrides the number specified on the DD statement.

Requesting Multiple Copies of an Output Data Set (VSl only) 89

90 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

Printer Forms and Print Chain Control

When requesting that an output data set be printed, you can give the system special
instructions on how to print the data set; you can request:

• a special output form;

• a special character set, when output is being printed by a 3211 or 1403 printer with the
universal character set;

• a specific image, which controls how many lines per inch are printed and the length of the
form, when the data set is written to a 3211 printer.

Requesting a Special Output Form

To request that an output data set be printed on a special form, include the form number in
the SYSOUT parameter on the DD statement defining the data set. For example, if you assign
the data set OUTPUT to output class W which routes -the data set to a printer and you want
OUTPUT printed on form 1014, code:

//OUTPUT DD SYSOUT=(W,,1014)

The system will issue a message to the operator instructing him to supply form 1014 to the
printer.

Requesting A Special Character Set

The universal character set (UeS) feature allows for different sets of characters to be
printed for commercial and scientific applications. This feature can be requested for 3211 and
1403 printers during system generation.

To request a special character set for a 3211 or 1403 printer, specify the code identifying
the character set in the ues parameter. The codes for the IBM standard special character sets
are:

1403 3211 Characteristics

AN All Arrangement A, standard EBCDIC character set, 48 characters
HN Hll Arrangement H, EBCDIC character set for FORTRAN and

COBOL, 48 characters
Gll ASCII character set

PCAN Preferred alphameric character set, arrangement A
PCHN Preferred alphameric character set, arrangement H
PN Pll PL/I alphameric character set
QN PL/I preferred alphameric character set for scientific applications
RN Preferred character set for commercial applications of FORTRAN

and COBOL
SN Preferred character set for text printing
TN Tll Character set for text printing, 120 characters
XN High-speed alphameric character set for 1403, Model 2
YN High-speed preferred alphameric character set for 1403, Model 3 or

N1

Not all of these character sets may be available at your installation. In addition, your
installation can design character sets to meet special needs; these character sets are assigned a
unique code by the installation.

Printer Forms and Print Chain Control 91

The operator is responsible for mounting the chain or train corresponding to the character
set you request. If you do not code the UCS parameter, the operator supplies a default.

For both the 3211 and 1403 printers, you can code the UCS parameter with the UNIT
parameter; for example:

//OUTPUT DD UNIT=1403,UCS=TN

With the 3211 printer, you can also code the UCS parameter with the SYSOUT parameter:

//OUTPUT DD SYSOUT=C,UCS=A11

Requesting the Fold Option

You request the fold option when uppercase and lowercase data is to be printed in uppercase
only. To request folding, code FOLD following the character set you request:

UCS=(T11 , FOLD)

You must specify a character set code when you request folding.

Requesting Operator Verification

You can request that the operator visually verify that the character set image corresponds to
the graphics of the chain or train mounted on the printer. The character set image is displayed
on the printer before the data set is printed. Code VERIFY as the last subparameter in the
UCS parameter:

UCS=(A11"VERIFY)

You must specify a character set code when you request operator verification.

Requesting a Specific Image

You request a specific image for a 3211 printer by coding an image identifier in the FCB
parameter. The image identifier is a code that identifies the image to be loaded into the forms
control buffer (FCB). (The forms control buffer is a buffer containing 180 positions that is
used to store vertical formatting information; each position corresponds to a line on the form.
The FCB is part of the 3811 control unit, which serves as an interface between the system and
a 3211 printer.) The image identifier is retrieved from SYSl.IMAGELIB or defined in your \
program by specifying the address of a forms control buffer through the exit list facility of the
DCB macro instruction. (This facility is described in OS/VS Data Management Services Guide,
GC26-3783.)

IBM provides two standard FCB images, STD 1 and STD2. STD 1 specifies that 6 lines per
inch are to be printed on an 8.5 inch form. STD2 specifies that 6 lines per inch are to be
printed on an 11 inch form.

Your installation can provide additional images. If you omit the FCB parameter and the
data set is written to a 3211 printer, the default image is used if it is currently in the buffer.
Otherwise, the operator is requested to specify an image.

92 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Requesting Alignment of Forms

To request the operator to check the alignment of the printer forms before the data set is
printed, code ALIGN as the second subparameter of the FCB parameter:

//OUTPUT DD UNIT=3211,FCB=(STD1,ALIGN)

Requesting Operator Verification

You can request that the operator visually verify that the image displayed on the printer is the
desired image by coding VERIFY as the second subparameter of the FCB parameter. Coding
VERIFY also gives the operator an opportunity to align the forms --you cannot code ALIGN
if you code VERIFY. For example:

//OUTPUT DD SYSOUT=A,FCB=(STD2,VERIFY)

If output class A routes output to a 3211 printer, the system loads the image identified by
STD2 into the forms control buffer. If output class A does not correspond to a 3211 printer,
the FCB parameter is ignored.

Printer Forms and Print Chain Control 93

94 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Controlling Ouptut to a Workstation (VSl only)

In VS 1, remote entry services (RES) provide the facility to submit jobs to a central computing
center from a workstation and to route output to workstations. This avoids the inefficient
procedure of putting the jobs from a workstation together, submitting them to the central
computing center, having the operator there enter the jobs, and waiting for the output. Jobs
are entered directly from the workstation, and output from jobs is printed or punched on
remote devices, routed directly from the central computing center to the workstation.

When you submit a job from a workstation, the output is automatically returned to your
workstation: you simply assign output data sets to an output class in the SYSOUT parameter
and messages from your job to an output class in the MSGCLASS parameter. The system
output writer offers many of the same options for writing data sets that you can request when
submitting the job at the central computing center. You can request:

• that a data set be held until the operator requests that it be printed; see "Delaying the
Writing of an Output Data Set" in the chapter "Writjng Output Data Sets."

• a special output form by specifying a form number in the SYSOUT parameter --see the
chapter "Printer Forms and Print Chain Control."

• mUltiple copies of the data set --see the chapter "Requesting Multiple Copies of an Output
Data Set."

RES also provides an additional option: whether you are at a remote station or at the central
computing center, you can request that a data set be routed to another destination. To do this,
you code the DEST parameter, as described in this chapter.

Routing Output to Another Destination

Users at workstations are grouped into destinations. Each destination is identified by a user
identification of 1-7 alphameric characters, established by the system programmer. (The central
computing center is identified by the user identification CENTRAL.) A workstation can be
identified by a single identification --for example, a branch office of a bank; or by several
identifications --for example, a separate identification for each of the departments at a college.

Each user identification is associated with an authorization value, also established by the
system programmer, that controls to whom it can send output. A destination can send output
only to other destinations with an authorization value equal to or greater than its own. This
provides a means to control the output a destination can receive. For example, a shipping
department is assigned an authorization value equivalent to 6 (the value is actually expressed
in hexadecimal); destinations that can send output (orders, inventories, etc.) to the shipping
department are assigned authorization values lower than or equal to 6; destinations that cannot
send output to the shipping department are assigned authorization values greater than 6. Every
destination, however, can send output to CENTRAL.

To route an output data set to another destination, code the identification of that
destination in the DEST parameter on the DD statement defining the data set:

//RECORDS DD SYSOUT=A,DEST=LOC5

If you do not code the DEST parameter, or code an invalid identification, the output is
automatically returned to you. If you are not authorized to send output to the specified
destination, the output is returned to you with a warning message.

Controlling Output to a Workstation (VSl only) 95

You can notify another destination of the output it will receive by issuing the SEND
command, as described under "Sending Messages to Other Destinations."

Sending Messages to Other Destinations

The SEND command allows users to send messages to one another and to the ctmtral
operator. At a workstation, the operator is usually the only one who would enter the SEND
command from the console. However, an applications programmer can code the SEND
command on a command statement to be included in the input stream. This discussion will
address the SEND command only in the following situations:

• you wish to notify another destination that you have routed a data set to it.

• you wish to notify another destination that a data set routed to it is on the hold queue.

Not every option of the SEND command is included here; for a complete description, see
OS/VSl RES: Workstation User's Guide, GC28-6879.

To issue the SEND command in one of the above situations, code:

• SEND or SE, to identify the command.

• the text of the message enclosed in apostrophes, limited to 115 characters, including blanks.

• the destination to which the message is directed, USER=userid. (Multiple destinations can
be specified, if they are enclosed in parentheses.)

• when the message is to be sent. If you do not indicate this, the system assumes NOW --the
message is sent as soon as the command statement is processed; if the destination receiving
the message is not logged-on, the message is not sent and a diagnostic message is returned
to you. Usually you will want to specify LOGON -- the message is sent immediately, if the
receiving destination is logged-on; if the destination is not logged-on, the message is saved
and sent when the destination next establishes connection with the central system.

The command statement can be included in the input stream, either within a job (before an
EXEC statement, a null statement, or another command statement) or between jobs. However,
if the command is placed between jobs and is coded incorrectly, the command will not be
executed and no message will be sent: it is safest, then, to include a command statement
within a job. (Complete details on coding a command statement are included in the OS/VS
JCL Reference, GC28-0618.)

For example, you are routing a data set containing bank records to the destination identified
as DEPT58 and are placing the data set on the hold queue:

IIRECORDS DD SYSOUT=A,DEST=DEPT58,HOLD=YES

This DD statement is included in the job named COMPUTE --when a data set is placed on
the hold queue, it is identified by the name of the job which produced it.

You want to send a message to DEPT58, notifying them that the data set is on the hold
queue:

II SEND 'data set from job COMPUTE on hold queue',
II USER=DEPT58,LOGON

To remove this data set from the hold queue, the operator at DEPT58 issues a ROUTE
command, specifying the name of the job which produced the output (in this case COMPUTE)
and HOLD=NO.

96 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Cataloged and In-Stream Procedures

Applications that require many control statements and are
used on a regular basis can be considerably simplified through
the use of cataloged and in-stream procedures. A cataloged
procedure is a set of job control statements that are placed in
a partitioned data set known as the procedure library; an
in-stream procedure is a set of job control statements that are
placed in the input stream within a job. You can execute a
procedure simply by specifying its name on an EXEC
statement in your job.

This section describes how to write and use cataloged and
in-stream procedures; it is divided into three chapters:

• Writing Cataloged and In-Stream Procedures

• Using Cataloged and In-Stream Procedures

• U sing Symbolic Parameters

Cataloged and In-Stream Procedures 97

98 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

Writing Cataloged and In-Stream Procedures

Cataloged and in-stream procedures are simply the job control statements needed to perform
an application. A procedure contains one or more procedure steps, each step consisting of an
EXEC statement that identifies the program to be executed and DD statements defining the
data sets to be used or produced by the program. The program you request on the EXEC
statement must exist in a private or the system library. If you do request a program that is
contained in a private library, the procedure step calling that program must include a DD
statement with the ddname STEPLIB that defines the private library; the STEPLIB DD
statement is described in the chapter, "Creating and Using Private and Temporary Libraries."

Cataloged and in-stream procedures cannot contain:

• EXEC statements that refer to other cataloged or in-stream procedures;
• JOB, delimiter, or null statements;
• DD statements defining private libraries to be used throughout the job (DD statements with

the ddname JOBLIB);
• DD statements defining data in the input stream (statements including the * or DATA

parameters) .

Identifying an In-stream Procedure

To identify an in-stream procedure, you code the PROC and PEND job control statements.

On the PROC statement, which must be the first statement in an in-stream procedure, you
assign the procedure a name. This name is the name that a programmer codes to call the
procedure. Optionally, you can also assign default values to symbolic parameters contained in
the procedure and code comments. (A symbolic parameter is a symbol preceded by an
ampersand that stands for a parameter, a subparameter, or a value in a procedure; including
symbolic parameters in a procedure is described in detail in the chapter "Using Symbolic
Parameters. ") If you do not assign default values to symbolic parameters on the PROC
statement, you cannot code comments. The simplest form of the PROC statement, to identify
an in-stream procedure named PAYROLL, would be:

IIPAYROLL PROC

The PEND statement marks the end of the in-stream procedure. You can include a name on
the PEND statement and comments, but these are optional. Both of the following examples are
acceptable:

IIENDPROC
II

PEND
PEND

end of in-stream procedure

Writing Cataloged and In-Stream Procedures 99

The following example illustrates an in-stream procedure named SALES consisting of two
procedure steps. Note that STEP2 includes a STEPLIB DD statement to define the private
library in which the program JUGGLE can be found.

IISALES
IisTEP1
IIDD1A
IIDD1B
IISTEP2
IlsTEPLIB
IIDD2A
II

PROC
EXEC
DD
DD
EXEC
DD
DD
PEND

PGM=FETCH
DSNAME=RECORDS(BRANCHES),DISP=OLD
DSNAME=RECORDS(MORGUE),DISP=MOD
PGM=JUGGLE
DSNAME=PRIV. WORK, DISP=OLD
SYSOUT=A

Placing a Cataloged Procedure in a Procedure Library

The major difference between cataloged an in-stream procedures is that, whereas in-stream
procedures are placed within the job that calls them, cataloged procedures must be placed in a
procedure library before they can be used. A procedure library is simply a partitioned data set
containing cataloged procedures. IBM supplies a procedure library named SYS 1.PROCLIB, but
your installation can have additional procedure libraries with different names. When a
programmer calls a cataloged procedure, he receives a copy of the procedure; therefore, a
cataloged procedure can be used by more than one programmer simultaneously.

To add a procedure to a procedure library, you use the IEBUPDTE utility program. You
can also use the IEBUPDTE utility to permanently modify an existing procedure. (Before
modifying an existing cataloged procedure, however, you must notify the operator; he must
delay the execution of jobs that might use the procedure library while it is being updated.)
Details on using the IEBUPDTE utility are included in OS/VS Utilities, GC3S-000S. Before
placing a cataloged procedure in a procedure library, you can test it by first running it as an
in-stream procedure.

No special job control statements are used to identify a cataloged procedure. The PEND
statement is never used and the PROC statement is optional. You need code the PROC
statement as the first statement in a cataloged procedure only when you want to assign default
values to symbolic parameters. The name of the PROC statement is not necessarily the name
of the cataloged procedure; you assign the procedure a name when you add it to the procedure
library.

Allowing for Changes in Cataloged and In-stream Procedures

The usefulness of cataloged and in-stream procedures is destroyed if a programmer who uses
the procedure has to permanently modify the procedure every time he wants to make a
change. When you write a procedure, you can define, as symbolic parameters, those
parameters, subparameters and values that are likely to vary each time the procedure is used.
For details on coding symbolic parameters, see the chapter "Using Symbolic Parameters."

100 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

Using Cataloged and In-Stream Procedures

To use a cataloged or in-stream procedure, you specify the procedure name on an EXEC
statement; you can modify the procedure by adding DD statements, overriding, adding, or
nullifying parameters on EXEC and DD statements, and assigning values to symbolic
parameters. Calling and modifying procedures is explained in greater detail in the following
paragraphs.

How to Call Cataloged and In-Stream Procedures

To call a cataloged or in-stream procedure, you identify the procedure on the EXEC statement
of the step calling the procedure by coding:

• the procedure name; or

• PROC= the procedure name,

as the first operand on the EXEC statement.

A cataloged procedure must exist in the procedure library before you attempt to use it --if
the cataloged procedure exists in SYS 1.PROCLIB, the job that adds the procedure to the
library must terminate before the job that calls it is selected for execution. The input stream
reader is responsible for fetching cataloged procedures you call that exist in a private
procedure library (as opposed to the IBM-supplied procedure library, SYSl.PROCLIB).
Therefore, a cataloged procedure in a private procedure library must exist before a job that
calls it is read into the system. When using an in-stream procedure, include the procedure,
beginning with a PROC statement and ending with a PEND statement, with the job control
language for your job; the procedure must follow the JOB statement but appear before the
EXEC statement that calls it. You can include as many as fifteen uniquely-named in-stream
procedures in one job and can use each procedure as many times as you wish in the job.

"To call a cataloged procedure named PROCESSA, you would code:

//CALL
//CALL

EXEC
EXEC

PROCESSA
PROC=PROCESSA

or

On the EXEC statement, you can also code changes you would like to make for this execution
of the procedure.

Modifying Cataloged and In-Stream Procedures

You can modify a procedure by:

• assigning values to or nullifying symbolic parameters contained in the procedure;

• overriding, adding, or nullifying parameters on EXEC and DD statements in the procedure;

• adding DD statements to the procedure.

All changes you make are in effect only during the current execution of the procedure. For a
discussion of symbolic parameters, see the chapter "Using Symbolic Parameters." Other
modifications are described in the following sections.

Using Cataloged and In-Stream Procedures 101

Modifying Parameters on an EXEC Statement

To override, add, or nullify a parameter on an EXEC statement in a procedure, identify on the
EXEC statement that calls the procedure the parameter you are changing, the name of the
EXEC statement on which the parameter appears, and the change to be made:

IICALL EXEC procedurename,parameter.procstepname=value

When overriding a parameter, the value you code for the parameter on the EXEC statement
calling the procedure replaces the value assigned in the procedure. When adding a parameter,
that parameter is used in the execution of the procedure step. When nullifying a parameter,
you do not follow the equal sign with a value; the value assigned to the parameter in the
procedure is ignored. All changes you make are in effect only for the current execution of the
procedure.

You can make more than one change to each EXEC statement in the procedure, and you
can change parameters on more than one EXEC statement in the procedure. You cannot,
however,change the PGM parameter. When making changes on different steps in the
procedure, you must code all changes for one procedure step before changes to a subsequent
step.

For example, the first three EXEC statements in a procedure named IRISH are:

IISTEP1
IisTEP2
IisTEP3

EXEC
EXEC
EXEC

PGM=YEATS,PARM=' *14863'
PGM=NOLAN
PGM=SYNGE,TIME=(2,30)

and you want to make the following changes:

• nullify the P ARM parameter in STEP 1
• add the COND parameter, specifying the test (8,LT), in STEP2
• change the time limit in the TIME parameter in STEP3 to 4 minutes.

On the EXEC statement calling the procedure, you would code:

IICALL EXEC
II

IRISH,PARM.STEPI=,
COND.STEP2=(8,LT),TIME.STEP3=4

You can omit naming the procedure step when you change a parameter. When you do this,
the procedure is modified as follows:

• If the P ARM parameter is coded, it applies only to the first procedure step. If a P ARM
parameter appears in a later EXEC statement in the called procedure, it is nullified.

• If the TIME parameter is coded, it applies to the total procedure. If the TIME parameter
appears on any of the EXEC statements in the called procedure, it is nullified.

• If any other parameter is coded, it applies to every step in the called procedure. Nullifying
the parameter on the EXEC statement calling the procedure causes that parameter to be
ignored on every EXEC statement in the procedure; if you assign a value to the parameter
on the EXEC statement calling the procedure, the parameter is overridden where it appears
in the procedure and added to EXEC statements in the procedure on which it does not
appear.

102 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

For example, assume the EXEC statements in a procedure named COMPUTE are:

//STEP1
//STEP2
//STEP3

EXEC
EXEC
EXEC

PGM=LIST,TIME=(1,30)
PGM=UPDATE,RD=NC,TIME=2
PGM=CHECK,RD=RNC,COND=ONLY

You want to make the following changes:

1. assign a time limit of 4 minutes to the entire procedure; TIME parameters on individual
EXEC statements in the procedure will be nullified.

2. allow automatic step restart for each step of the job by coding RD=R. The RD parameter
will be added to the first step of the job and will override the RD parameters in STEP2 and
STEP3.

To call the procedure and make these changes, you would code:

//CALL EXEC COMPUTE,TIME=4,RD=R

During the execution of the procedure, the EXEC statements appear as:

//STEP1
//STEP2
//STEP3

EXEC
EXEC
EXEC

PGM=LIST,RD=R
PGM=UPDATE,RD=R
PGM=CHECK,RD=R,COND=ONLY

Any parameter changes that affect every step of the job (by omitting the procedure step
name) must be coded on the EXEC statement calling the procedure before changes to
parameters on different steps (i.e., you include the procedure step name).

Modifying Parameters on a DD Statement

To override, add, and nullify parameters on a DD statement in a procedure, you include a DD
statement containing the changes you want to make after the EXEC statement that calls the
procedure. The name of the DD statement containing the changes is composed of the
procedure step name and the ddname of the DD statement in the procedure:

//procstepname.ddname DD parameter=value

When overriding a parameter, the value you code replaces the value assigned to the
parameter in the procedure. You can also override a parameter in the procedure by coding a
mutually exclusive parameter on the DD statement containing the changes. (A table of
mutually exclusive parameters on the DD statement is included in the OS/VS JCL Reference,
GC28-0618.) When adding a parameter, the parameter is added to the DD statement in the
procedure for the current execution of the procedure. When nullifying a parameter, you do not
follow the equal sign with a value; that parameter in the procedure is ignored. You do not
have to nullify a parameter when you are replacing it with a mutually exclusive parameter. All
changes you make are in effect only for the current execution of the procedure.

You can change more than one parameter on a DD statement and you can change
parameters on more than one DD statement in the procedure. However, the DD statements
containing the changes must be coded in the same order as the corresponding DD statements
in the procedure.

Using Cataloged and In-Stream Procedures 103

For example, the first two steps of the cataloged procedure TEA are:

IISTEP1
IIDD1A
II
IIDD1B
IISTEP2
IIDD2A
II

EXEC
DD

DD
EXEC
DD

PGM=SUGAR
DSNAME=DRINK,DISP=(NEW,DELETE),
UNIT=2400,VOL=SER=568998
UNIT=SYSSQ
PGM=LEMON
UNIT=2314,DISP=(,PASS),
SPACE=(TRK,(20,2»

You want to make the following changes:

1. Change the disposition on the DD statement named DDlA to CATLG.
2. Change the unit on the DD statement named DDlB to TAPE.
3. Change the SPACE parameter on the DD statement named DD2A to

SPACE=(CYL,(4,l».

When calling the procedure, you would code:

IICALL
IlsTEP1.DD1A
IlsTEP1.DD1B
IISTEP2.DD2A

EXEC
DD
DD
DD

TEA
DISP=(NEW,CATLG)
UNIT=TAPE
SPACE=(CYL,(4,1 »

When changing DCB subparameters, you need code only those subparameters you are
changing. The DCB subparameters you do not code (and for which you do not code a
mutually exclusive subparameter) remain unchanged. For example, a DD statement named
DDl in a procedure step named STEPI contains
DCB=(BUFNO=l,BLKSIZE=80,RECFM=F,BUFL=80). To change the block size to 320
and the buffer length to 320, you would code:

IISTEP1.DD1 DD DCB=(BLKSIZE=320,BUFL=320)

The subparameters BUFNO and RECFM remain unchanged.

To nullify the DCB parameter, you must nullify each subparameter. For example, if a DD
statement in a procedure contains DCB=(RECFM=FB,BLKSIZE=l60,LRECL=80), you
must code DCB=(RECFM=,BLKSIZE=,LRECL=) in order to nullify the DCB parameter.

To nullify the DUMMY parameter, code the DSNAME parameter on the overriding DD
statement and assign a data set name other than NULLFILE. To nullify all the parameters on
a DD statement other than DCB, code DUMMY on the overriding DD statement. (The
DUMMY parameter is described in detail in the chapter, "Defining a Dummy Data Set.")

Modifying Parameters on DO Statements that Define Concatenated Data Sets

When a concatenation of data sets is defined in a cataloged procedure and you attempt to
override the concatenation with one DD statement, only the first (named) DD statement is
overridden. To override others, you must include an overriding DD statement for each DD
statement; the DD statements in the input stream must be in the same order as the DD
statements in the procedure. The second and subsequent overriding statements must not be
named. If you do not wish to change one of the concatenated DD statements, leave the
operand field blank on the corresponding DD statement in the input stream. (This is the only
case where a blank operand field for a DD statement is valid.)

104 OS/VS JCL Services (VS 1 Release 2 and VS2 Release 1)

For example, suppose you are calling a procedure that includes the following sequence of
DD statements in STEPC:

DD DSNAME=A.B.C,DISP=OLD IIDD4
II DD DSNAME=STRP,DISP=OLD,UNIT=2314,VOL=SER=X12182
II
II

DD DSNAME=TYPE3,DISP=OLD,UNIT=2314,VOLUME=SER=BL1421
DD DSNAME=A.B.D,DISP=OLD

To override the DD statements that define the data sets named STRP and A.B.D, you would
code:

IISTEPC.DD4 DD
II DD DSNAME=INV.CLS,DISP=OLD
II DD
II DD DSNAME=PAL8,DISP=OLD,UNIT=2314,VOL=SER=125688

Adding DD Statements to a Procedure

You can add DD statements to a procedure when you call the procedure. These additional DD
statements are in effect only during the current execution of the procedure.

To add a DD statement to a procedure step, follow the EXEC statement that calls the
procedure and any overriding DD statements for that step with the additional DD statement.
The ddname of the DD statement identifies the procedure step to which this statement is to be
added and must be assigned a name that is different from all the ddnames in the procedure
step. If you do not identify the procedure step in the ddname, the system assumes you are
adding the DD statement to the first step of the procedure.

For example, the first step of a cataloged procedure named MART is:

IISTEP1 EXEC
IIDDM DD
II
IIDDN DD

PGM=DATE
DSNAME=BPS(MEMG),DISP=OLD,
UNIT=2314,VOLUME=SER=554982
UNIT=SYSSQ

You want to make the following changes:

1. Change the UNIT parameter on the statement named DDN to UNIT= 180.

2. Add a DD statement, specifying UNIT = 181.

When calling the procedure, you would code:

IIPROC
IlsTEP1.DDN
IISTEP1.DDO

EXEC
DD
DD

MART
UNIT=180
UNIT=181

Using Cataloged and In-Stream Procedures 105

Identifying Procedure Statements on an Output Listing

You can request that cataloged and in-stream procedure statements be included on the output
listing by coding 1 as the first subparameter in the MSGLEVEL parameter on the JOB
statement. (For a description of the MSGLEVEL parameter, see "Controlling the Output
Listing of JCL Statements, Messages, and Dumps.") Procedure statements are identified on the
output listing as illustrated in Figures 4 and 5. The output listing will also show the symbolic
parameters and the values assigned to them.

Columns
123

XX cataloged procedure statement you did not override
X/ cataloged procedure statement you did override
xx* cataloged procedure statement, other than a comment

statement, that the system considers to contain
only comments

*** comment statement

Figure 4. Identification of Cataloged Procedure Statements on the Output Listing

Columns
123

++ in-stream procedure statement you did not override
+// in-stream procedure statement you did override
++* in-stream procedure statement, other than a comment statement,

that the system considers to contain only comments
*** comment statement

Figure 5. Identification of In-stream Procedure Statements on the Output Listing

106 OS/VS JCL Services (VS1 Release 2 and VS2 Release 1)

Using Symbolic Parameters

In order to be modified easily, cataloged and in-stream procedures can contain symbolic
parameters. A symbolic parameter is a symbol preceded by an ampersand that stands for a
parameter, a subparameter, or a value. In the following procedure step, the symbolic
parameters are underlined:

//STEP1 EXEC
/ /DD1 DD
//DD2 DD

PGM=UPDATE,ACCT=(PGMG,~DEPT)

DSNAME=INIT,UNIT=~DEVICE,SPACE=(CYL,(~SPACE,10))

DSNAME=CHNG,UNIT=2400,DCB=BLKSIZE=~LENGTH

When this procedure is executed, every symbolic parameter must either be assigned a value
or nullified; the changes are in effect only for the current execution of the procedure.
Therefore, the procedure can be modified each time it is executed, without being permanently
changed. Details on how to assign values to or nullify symbolic parameters are included under
"Assigning Values to and Nullifying Symbolic Parameters." How to include symbolic
parameters when writing a cataloged or in-stream procedure is described in the next section,
"Defining Symbolic Parameters When Writing a Procedure."

Defining Symbolic Parameters When Writing a Procedure

Any parameter, subparameter, or value in a procedure that may vary each time the procedure
is called is a good candidate for definition as a symbolic parameter. For example, if different
values can be passed to a processing program by means of the P ARM parameter on one of the
EXEC statements, you could define the P ARM field as one or more symbolic parameters, e.g.,
PARM=~ALLVALS or PARM=~DECK~CODE.

The symbolic parameter itself is one to seven alphameric and national (#,@,$) characters
preceded by a single ampersand. The first character must be alphabetic or national. Since a
single ampersand defines a symbolic parameter, you code double ampersands when you are not
defining a symbolic parameter. For example, if you want to pass 543 ~LEV to a processing
program by means of the PARM parameter, you must code PARM='543~~LEV'. The system
treats the double ampersand as if a single ampersand had been coded, and only one ampersand
appears in the results.

Parameters coded on the EXEC statement cannot be defined as symbolic parameters,
although you can define subparameters of the parameters symbolically. For example, you must
not code ~ACCT; however, you can code ACCT=(43877,~DEPT).

The definitions used to signify symbolic parameters should be consistent in all the cataloged
and in-stream procedures at an installation. For example, every time the programmer is to
assign his department number to a symbolic parameter, no matter which procedure he is
calling, the symbolic parameter could be defined as &DEPT. In different procedures, you could
code ACCT=(43877,~DEPT) and DSNAME=LIBRARY.&DEPT.TALLY. The programmer
would assign his department number to the symbolic parameter wherever that symbolic
parameter appears in a procedure.

The same symbolic parameter can appear more than once in a procedure, as long as the
value assigned to the symbolic parameter is a constant in the procedure. Therefore, you could
use ~DEPT more than once in a procedure, if the department number to be assigned is the
same in each case. But if you have two DD statements and include a symbolic parameter for
the primary quantity of the space request on each DD statement, you would not want to use
the same symbolic parameter, since the requests for primary quantity could be different for the
two data sets. Only one value can be assigned to each symbolic parameter used in a procedure;

Using Symbolic Parameters 107

if you assign more than one value to a symbolic parameter, only the first value is used and
that value is substituted wherever the symbolic parameter occurs.

Caution Concerning Leading and Trailing Commas

All symbolic parameters must be assigned values or nullified before the procedure is
executed. (When you write a procedure, you can assign default values to the symbolic
parameters, or the programmer can assign values when he calls the procedure; for details, see
"Assigning Values to and Nullifying Symbolic Parameters. ") When a symbolic parameter is
nullified, a delimiter, such as a leading or trailing comma, is not automatically removed. Only
when the symbolic parameter is a positional subparameter followed by other subparameters
should the comma remain. In other cases, the remaining comma will cause a syntax error.

For example, you code for a unit request:

UNIT=(2314,~MORE,DEFER)

If ~MORE is nullified, the comma before it must remain, since the unit count subparameter is
positional and a comma must indicate its absence if other subparameters follow. When
~MORE is nullified, the parameter will appear as:

UNIT=(2314"DEFER)

However, if you code:

VOLUME=SER=(111111,~SERNO)

and ~SERNO is nullified, a leading comma will remain and cause a JCL syntax error. If a
symbolic parameter is a positional parameter followed by other parameters in the statement,
such as

//DEFINE DD ~POSPARM,DSN=ATLAS,DISP=OLD

the comma will remain at the beginning of the operand field if ~POSP ARM is nullified and
again cause a syntax error.

In these cases, you should not code the comma. When a symbolic parameter follows
information that does not vary, such as in VOLUME=SER=(111111,~SERNO}, you do not
have to code any delimiter. The system recognizes the symbolic parameter when it encounters
the single ampersand. For this example, you would code:

VOLUME=SER=(111111~SERNO)

When a value is assigned to the symbolic parameter, a comma must be included in the value,
i.e., SERNO=',222222'. (Since the comma is a special character, the value is enclosed in single
apostrophes. For rules on when special characters must be enclosed in apostrophes, see the
OS/VS JCL Reference, GC28-0618.)

When a symbolic parameter precedes information that does not vary, a period may be
required after the symbolic parameter to distinguish the end of the symbolic parameter from
the beginning of the information that does not vary. A period is required after the symbolic
parameter when the character following the symbolic parameter is:

• an alphabetic, numeric, or national (#,@,$) character;

• a left parenthesis or a period.

108 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

The system recognizes the period as a delimiter and the period does not appear in the
procedure after the symbolic parameter is assigned a value or nullified. (A period will appear
after the value when two consecutive periods are coded.)

Therefore, you should place a period after a symbolic parameter that stands for a positional
parameter followed by other parameters in the statement:

//DEFINE DD &POSPARM.DSN=ATLAS,DISP=OLD

If &POSP ARM is nullified, the statement appears as:

//DEFINE DD DSN=ATLAS,DISP=OLD

When you assign a value to &POSP ARM, you must include a comma:

POSPARM='DUMMY, ,

These rules are in effect whenever you concatenate a symbolic parameter with information
that does not vary. For example, placing a symbolic parameter after information that does not
vary:

• DSNAME=LIBRARY(&MEMBER)
• DSNAME= USERLIB. &LEVEL

In these examples, the system recognizes the symbolic parameter when it encounters the &.

And placing a symbolic parameter before information that does not vary:

• PARM='&OPTION+15'

&OPTION is not followed by period because of the +.

• DSNAME= &QUAL.246

The period is required because a numeric character follows the symbolic parameter.

• DSNAME=&LIBRARY.(MEMG)

The period is required because a left parenthesis follows the symbolic parameter.

• DSNAME=&DOCNO .. TXT

The period is required because a period follows the symbolic parameter. A single period will
appear in the results.

You can also define two or more symbolic parameters in succession without including a
comma, for example, PARM= &DECK&CODE. If a comma is desired in the results, a comma
must then be included in the value assigned to the symbolic parameter.

Assigning Default Values to Symbolic Parameters

You can assign default values to the symbolic parameters coded in the procedure on the
PROC statement. The PROC statement must always appear as the first statement in an
in-stream procedure; the PROC statement must be coded as the first statement in a cataloged
procedure only if you want to assign defaults. Generally, you should assign defaults to every
symbolic parameter in a procedure to limit the amount of coding necessary each time the
procedure is called. See the next section, "Assigning Values to and Nullifying Symbolic
Parameters", for details.

Using Symbolic Parameters 109

Assigning Values to and Nullifying Symbolic Parameters

When a procedure containing symbolic aprameters is used, each symbolic parameter must
either be assigned a value or nullified. Symbolic parameters are assigned values or nullified in
one of two ways:

• the programmer who uses the procedure codes the symbolic parameter on the EXEC
statement calling the procedure, either assignint it a value or nullifying it;

• the programmer who writes the procedure assigns a default value to or nullifies the symbolic
aprameter on the PROC statement, which must be the first statement in an in-stream
procedure and can be the first statement in a cataloged procedure.

The default assigned to a sybmolic parameter on a PROC statement is overridden when that
symbolic parameter is assigned a value or nullified on the EXEC statement that calls the
procedure.

Default values are not necessarily assigned to symbolic parameters in a procedure. Before
using any procedure, you must find out what symbolic parameters are used, the meaning of
each symbolic parameter, and what default, if any, is assigned. The PROC statement is
optional in cataloged procedures; if the PROC statement is not included, no default values can
be assigned to symbolic parameters in the procedure.

You need not code the symbolic parameters in any specific order when you assign values to
or nullify them.

Assigning a Value to a Symbolic Parameter

To assign a value to symbolic parameter, you code:

symbolic parameter=value

Omit the ampersand that'precedes the symbolic parameter in the procedure. For example, if
the symbolic parameter gNUMBER appears on a DD statement in the procedure, code
NUMBER = value on the PROC statement (if you are writing the procedure and assigning
defaults) or on the EXEC statement that calls the procedure (if you are using the procedure
and want this value to be in effect only for the current execution of the procedure).

There are some rules for assigning values to symbolic parameters:

1. The length of the value you assign is limited only in that the value cannot be continued
onto another statement. However, when a symbolic parameter is concatenated with other
information (for example, a data set name is LIBRARY. gDEPT .. MACS) , the combined
length of the value you assign and the concatenated information cannot exceed 120
characters.

2. If the value contains special characters, enclose the value in apostrophes (the enclosing
apostrophes are not considered part of the value). If the special characters include
apostrophes, each must be shown as two consecutive apostrophes.

3. If more than one value is assigned to a symbolic parameter as a default on the PROC
statement, only the first value encountered is used; likewise, if more than one value is
assigned to a symbolic parameter on an EXEC statement, only the first value encountered is
used.

4. If a symbolic parameter is a positional parameter followed by other parameters in the
statement, it should be followed in the procedure by a period instead of a comma; for
example:

110 OS/VS JCL Services (VS1 Release 2 and VS2 Release 1)

IIDEFINE DD gPOSPARM.DSN=ATLAS,DISP=OLD

Symbolic parameters that are keyword subparameters should appear in the procedure
without a preceding comma; for example:

VOLUME=SER=(111111gSERNO)

This is necessary so that, if the symbolic parameter is nullified, a leading or trailing comma will
not cause a JCL syntax error. (For a more complete discussion of this, see "Caution
Concerning Leading and Trailing Commas.")

In these cases, you must include a comma when you assign a value to the symbolic
parameter, i.e.,

POSPARM= ' DUMMY, ,
SERNO=' ,222222'

Since the comma is a special character, the value must then be enclosed in apostrophes.

Nullifying a Symbolic Parameter

To nullify a symbolic parameter, code:

symbolic parameter=

Omit the ampersand that precedes the symbolic parameter in the procedure and do not follow
the equal sign with a value.

For example, a DD statement in an in-stream procedure named TIMES is:

IIDD8 DD UNIT=3211,UCS=gUCSINFO

If you are writing the procedure and want to nullify & UCSINFO as a default on the PROC
statement, code:

IITIMES PROC UCSINFO=

If you are calling the procedure, and no default was assigned to & UCSINFO, or if
& UCSINFO was assigned a value on the PROC statement, you would nullify the parameter
on the EXEC statement that calls the procedure by coding:

IICALL EXEC TIMES,UCSINFO=

Example of a Procedure Containing Symbolic Parameters

The cataloged procedure named PAYROLL contains the following statements:

II
II
IISTEPl
IIDD1A
IISTEP2
IIDD2A
IIDD2B
//STEP3
IIDD3A
IIDD3B

PROC

EXEC
DD
EXEC
DD
DD
EXEC
DD
DD

DEPT=D58,GROUP=PGMRA,DEVICE=2314,
VOLCNT=2,SERNO=,POSPARM='DUMMY,'
PGM=GATHER
DSNAME=FILE.gDEPT .. CLASSA,DISP=OLD
PGM=DEDUCT
DSNAME=MEDICAL(gGROUP),DISP=MOD
DSNAME=LIST,UNIT=gDEVICE,VOL=(,,&VOLCNT)
PGM=COMPUTE
DSNAME=MASTER,UNIT=2314,VOL=SER=(111111gSERNO)
&POSPARM.SYSOUT=A

Using Symbolic Parameters 111

The PROC statement is included in order to assign defaults to the symbolic parameters in the
procedure.

When using this procedure, you want to override the following symbolic parameters and
assign these values:

& GROUP
&VOLCNT
&SERNO
&POSPARM

CLERK
3
222222
nullify

On the EXEC statement that calls the procedure, you would code:

IICALL EXEC
II

PAYROLL,GROUP=CLERK,VOLCNT=3,SERNO=' ,222222',
POSPARM=

112 OS/VS JCL Services (VS1 Release 2 and VS2 Release 1)

The following terms are defined as they are used in
this manual. If you do not find the term you are
looking for, refer to the Index or to the IBM Data
Processing Glossary, GC20-1699.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its
definitions from the American National Standard
Vocabulary for Information Processing
(Copyright© 1970 by American National
Standards Institute, Incorporated), which was
prepared by Subcommittee X3KS on Terminology
and Glossary of American National Standards
Committee X3. ANSI definitions are marked with

an *
allocation/termination messages: messages produced
by the system concerning allocation of resources,
disposition of data sets, and termination of job
steps and the job.

automatic priority group (APG): in VS2, a group of
tasks at a single priority level that are dispatched
according to a special algorithm that attempts to
provide optimum use of CPU and I/O resources by
these tasks.

automatic restart: a restart that takes place during
the current run, that is, without resubmitting a job;
an automatic restart can occur within a step or at
the beginning of a step. Contrast with deferred
restart.

backward reference: a facility of the job control
language that permits you to copy information from
or refer to DD statements that appear earlier in the
job.

catalog: the collection of all data set indexes that
are used by the control program to locate a volume
containing a specific data set.

cataloged data set: a data set that is represented in
an index or hierarchy of indexes in the system
catalog; the indexes provide the means for locating
the data set.

cataloged procedure: a set of job control statements
that has been placed in a partitioned data set called
the procedure library and that can be retrieved by
coding the name of the procedure on an execute
(EXEC) statement or started by a START
command.

checkpoint data set: a sequential or partitioned data
set containing a collection of records (called
checkpoint entries) that contain the status of a job
and the system at the time the records are written.
These records provide the information necessary
for restarting a job without having to return to the
beginning of the job.

Glossary

checkpoint restart: the process of resuming a job at
a checkpoint within the job step that was
abnormaly terminated. The restart can be
automatic or deferred, where deferred restart
involves resubmitting the job. Contrast with step
restart.

checkpoint/restart facility: a facility for restarting
execution of a program at some point other than at
the beginning, after the program was terminated
due to a program or system failure. A restart can
begin at a checkpoint within a job step or at the
beginning of a job step.

command statement: a job control statement that is
used to issue commands to the system through the
input stream.

comment statement: a job control statement used to
include information that may be helpful in running
a job or reviewing an output listing.

concatenated data sets: a group of logically
connected data sets that are treated as one data set
for the duration of a job step.

data definition (DD) statement: a job control
statement that describes a data set associated with
a particular job step.

data management: a major function of the operating
system that involves organizing, cataloging,
locating, storing, retrieving, and maintaining data.

data set: the major unit of data storage and
retrieval in the operating system, consisting of a
collection of data in one of several prescribed
arrangements and described by control information
to which the system has access.

dedicated data set: a data set assigned to an
initiator that is allocated space when the initiator is
started; every job step running under the initiator
can use the dedicated data set as a temporary data
set.

deferred restart: a restart performed by the system
on resubmission of a job by the programmer;
deferred restart can begin within a step or at the
beginning of a step. Contrast with automatic
restart.

delimiter statement: a job control statement used to
mark the end of data.

direct system output (DSO) writer: in VS1, a job
scheduler function that controls the writing of a
job's output data sets directly to an output device
during execution of the job.

dispatching priority: a number assigned to tasks,
used to determine the order in which they will use
the central processing unit.

Glossary 113

disposition processing: a function performed by the
initiator at the end of a job step to keep, delete,
catalog, or uncatalog data sets, or pass them to a
subsequent job step, depending on the data set
status or the disposition specified in the DISP
parameter of the DD statement.

dummy data set: a data set for which operations
such as disposition processing, input/output
operations, and allocation are bypassed.

*dump: (1) to copy the contents of all or part of
storage, usually from an internal storage into an
external storage. (2) the data resulting from the
process as in (1).

execute (EXEC) statement: a job control statement
that marks the beginning of a job step and
identifies the program to be executed or the
cataloged or in-stream procedure to be used.

external page storage: the portion of auxiliary
storage that is used to contain pages.

forms control buffer (FCB): a buffer containing 180
positions that is used to store vertical formatting
information for printing, each position
corresponding to a line on the form; the FCB is
part of the 3811 control unit, which serves as an
interface between the system and a 3211 printer.

generation data group (GDG): a collection of data
sets that are kept in chronological order; each data
set is called a generation data set.

generation data set: one generation of a generation
data group.

group name: a generic name for a collection of I/O
devices, for example, DISK or TAPE.

hold queue: a waiting list for jobs whose initiation
is to be delayed until the operator releases them
from the queue.

indexed sequential data set: a data set in which each
record contains a key that determines its location.
The location of each record is computed through
the use of an index.

initiator: the job scheduler function that selects jobs
and job steps to be executed, allocates
input/ output devices for them, places them under
task control, and at completion of the job, supplies
control information for writing job output on a
system output unit.

initiator procedure: the cataloged procedure that
controls an initiator.

input queue: a queue (waiting list) of job definitions
on direct access storage arranged in order of
assigned job class and assigned priority.

in-stream procedure: a set of job control statements
placed in the input stream that can be used any
number of times during a job by naming the
procedure on an execute (EXEC) statement.

114 OS/VS JCL Services (VSl Release 2 and VS2 Release 1)

job: a collection of related problem programs,
identified in the input stream by a JOB statement
followed by one or more EXEC and DD
statements.

job class: anyone of a number of job categories
that can be defined by the installation to classify
jobs. By classifying jobs and directing initiators to
initiate specific classes of jobs, it is possible to
control the mixture of jobs that are performed
concurrently.

job class queue: a waiting list of job definitions
within the input queue in which jobs assigned the
same class are arranged in order of priority; jobs
with the same class and priority are placed in a
first in/first out order.

job control language (JCL): a high-level
programming language used to code job control
statements.

*job control statement: a statement in a job that is
used in identifying the job or describing its
requirements to the operating system.

job priority: a value assigned to a job that, together
with an assigned job class, determines the priority
to be used in scheduling the job and allocating
resources to it.

job (JOB) statement: the job control statement that
identifies the beginning of a job. It contains such
information as the name of the job, an account
number, and the class and priority assigned to the
job.

job step: a unit of work associated with one
processing program or one cataloged procedure and
related data. A job consists of one or more job
steps.

job step task: a task that is initiated by an initiator
in accordance with specifications in an execute
(EXEC) statement.

keyword parameter: a parameter that consists of a
keyword, followed by one or more values.

library: a partitioned data set; see private library,
system library, temporary library.

mutually exclusive parameters: parameters that
cannot be coded on the same job control
statement.

nonpageable dynamic area: an area of virtual storage
whose virtual addresses are identical to real
addresses; it is used for programs or parts of
programs that are not to be paged during
execution.

nonsharable volume: a volume that cannot be
assigned to two or more data sets.

nonspecific volume request: a request that allows the
system to select suitable volumes.

nontemporary data set: a data set that exists after
the job that created it terminates.

null statement: a job control statement used to
mark the end of a job's control statements and
data.

output class: anyone of up to 36 different
categories, defined at an installation, to which
output data produced during a job step can be
assigned. When an output writer is started, it can
be directed to process from one to eight different
classes of output data.

output listing: a form that is printed at the end of a
job that can contain such information as job
control statements used by the job, diagnostic
messages about the job, data sets created by the
job, or a dump.

page: a fixed-length block of instructions, data, or
both, that can be transferred between real storage
and external page storage.

partition: see virtual storage partition.

partitioned data set: a data set in direct access
storage that is divided into partitions, called
members, each of which can contain a program or
part of a program. Each partitioned data set
contains a directory (or index) that the control
program can use to locate a program in the library.

passed data set: a data set allocated to a job step
that is not deallocated at step termination but that
remains available to a subsequent step of the same
job.

PEND statement: a job control statement used to
mark the end of an in-stream procedure.

permanently resident volume: a volume that cannot
be physically demounted or that cannot be
demounted until it is varied offline (i.e., removed
from the control of the central processing unit).

positional parameter: a parameter that must appear
in a specified order.

private library: a user-owned library that is separate
and distinct from the system library.

private volume: a mounted volume that the system
can allocate only to a data set for which a specific
volume request is made.

PROC statement: a job control statement that must
mark the beginning of an in-stream procedure; it
can also be used, in both cataloged and in-stream
procedures, to assign values to symbolic parameters
in the procedure.

procedure library: a partitioned data set containing
cataloged procedures; the IBM-supplied procedure
library is named SYS 1.PROCLIB.

procedure step: that unit of work associated with
one processing program and related data within a
cataloged or in-stream procedure. A cataloged or
in-stream procedure consists of one or more
procedure steps.

qualified name: a data set name that is composed of
multiple names separated by periods (e.g., A.B.C.).
For a cataloged data set, each name corresponds to
an index level in the catalog.

queue: a waiting line or list formed by items in a
system waiting for service; for example, tasks to be
performed or output to be written by a writer.

reader procedure: the cataloged procedure that
controls the input stream reader.

real storage: the storage of a system/370
computing system from which the central
processing unit can directly obtain instructions and
data, and to which it can directly return results.

remote entry services (RES): the functions added to
the job entry subsystem that allow servicing of
remote devices by the job entry subsystem of VS 1.
These services allow jobs and their associated input
and output to be entered from remote devices,
processed at the central system, and then
transmitted back to remote devices.

reserved volume: a volume that remains mounted
until the operator issues an UNLOAD command.

restart facility: see checkpoint/restart facility.

return code: a value placed in the return code
register at the completion of a program. The value
is established by the user and may be used to
influence the execution of succeeding programs or,
in the case of an abnormal end of task, may simply
be printed for programmer analysis.

segment: a continuous 64K area of virtual storage,
which is allocated to a job or system task.

specific volume request: a request for volumes that
informs the system of the volume serial numbers.

supervisor: the part of the control program that
coordinates the use of resources and maintains the
flow of CPU operations.

symbolic parameter: a symbol preceded by an
ampersand that stands for a parameter or the value
assigned to a parameter or subparameter in a
cataloged or in-stream procedure. Values are
assigned to symbolic parameters when the
procedure in which they appear is called.

system generation: the process of using an operating
system to assemble and link together all of the
parts that constitute another operating system.

system library: a partitioned data set named
SYS 1.LINKLIB that contains frequently used
programs and programs used by the system.

system output device: a device assigned to record
output data for a series of jobs.

system output writer: a job scheduler function that
writes output data sets onto a system output
device, independently of the programs that
produced the data sets.

SYS1.LINKLIB data set: see system library.

SYS1.PROCLIB data set: see procedure library.

Glossary 115

task: a unit of work for the central processing unit
from the standpoint of the control program;
therefore, the basic multiprogramming unit under
the control program.

temporary data set: a data set that is created and
deleted in the same job.

temporary library: a library that is created and
deleted within a job.

time sharing option (TSO): in VS2, an option that
allows a number of users to execute programs
concurrently and to interact with the programs
during execution from remote terminals.

time slicing: in VS2, an optional feature that can be
used to prevent a task from monopolizing the
central processing unit and thereby delaying the
assignment of CPU time to other tasks.

unit address: the three-character address of a
particular device, specified at the time a system is
installed; for example, 191 or 293.

universal character set (UeS) feature: a printer
feature that permits the use of a variety of
character arrays.

116 OS/YS JCL Services (YSt Release 2 and YS2 Release 1)

virtual storage: addressable space that appears to
the user as real storage, from which instructions
and data are mapped into real storage locations.
The size of virtual storage is limited by the
addressing scheme of the computing system and by
the amount of auxiliary storage available, rather
than by the actual number of real storage locations.

virtual storage partition: in VS 1, a division of the
dynamic area of virtual storage, established at
system generation, that is allocated to a job step or
a system task.

volume: that portion of an auxiliary storage device
that is accessible to a single read/write mechanism.

volume table of contents (VTOe): a table on a
direct access volume that describes each data set
on the volume.

workstation: a terminal device that mayor may not
be a CPU. At a workstation, an operator can
connect into a central system via LOGON, enter
jobs, and receive output.

writer procedure: the cataloged procedure that
controls the output stream writer.

[ndexes to OS/VS publications are consolidated in the
DS/VS Master Index, GC28-0602, and the OS/VS Master
[ndex of Logic, GY28-0603. For additional information
about any subject listed below, refer to other publications
listed for the same subject in the Master Index.

t+ 106
t-/ I 106
t+* 106
&

coding to use dedicated data set 77
identifying symbolic parameter 107

&&
identifying temporary data set 68

* parameter on DD statement
cannot use In cataloged or in-stream procedure 99

*** 106
abnormal termination dump, requesting 82-83
abnormal termination of a step

default disposition processing 66
requesting a dump 82-83
restarting the job 35-39
specifying conditional data set disposition 63-65
specifying tests for conditional execution of job steps 31-33

ABSTR sub parameter of SPACE parameter 55-56
adding a cataloged procedure to a procedure library 100
adding DD statements to a procedure 105
adding members to a private library 72
adding parameters to JCL statements in a procedure

on DD statements 103-105
on EXEC statements 102-103

adding records to a data set
requesting exclusive control 67

additional devices, requesting 46
additional space for a data set, requesting

SP ACE parameter 53-54
SPLIT parameter 59,57
SUBALLOC parameter 53-54,60

address, unit 45
ADDRSPC parameter 27
AFF sub parameter of UNIT parameter 47-48

cannot be coded for new data set (VS 1 only) 48
ALIGN sub parameter of FCB parameter 93
alignment of forms, requesting

with ALIGN subparameter of FCB parameter 93
with VERIFY sub parameter of FCB parameter 93

allocating space for data sets
SPACE parameter 51-56
SPLIT parameter 57-59
SUBALLOC parameter 59-61

alloca tion/ termina tion messages
definition 113
requesting listing 81

ampersand
coding as special character 107
coding to use dedicated data set 77
identifying symbolic parameter 107
identifying temporary data set 68

AN character set 91
APG

(see automatic priority group)

apostrophes
used to enclose values containing special characters 110

assigning data sets to the same unit
(see unit affinity)

assigning data sets to the same volume
(see volume affinity)

Index

assigning dispatching priority to job steps (VS2 only) 24-25
assigning jobs to a job class 23
assigning messages to an output class 82
assigning output data sets to an output class 85
assigning priority to a job 24
assigning specific tracks to a data set 55-56
assigning values to symbolic parameters

as default 109, 11 0-111
caution concerning leading and trailing commas 108-109
rules for assigning values 110-111
when procedure is called 110-111

authorization values
controlling the routing of data sets (VS 1 only) 95

automatic checkpoint restart 35
system action if uncorrectable error encountered 35

automatic priority group (APG-VS2 only)
definition 113
including job in 26
including job step in 26

automatic restart 35
definition 113
system action if uncorrectable error encountered 35

automatic step restart 35
system action if uncorrectable error encountered 35

average block length of data, specifying in space request
(see blocklength subparameter)

avoiding conflict between jobs requesting same data sets
insuring data set integrity 67-68

All character set 91

backward reference
definition 113
resolving for deferred restart 37

basic sequential access method (BSAM)
used when requesting to write a dummy data set 76

BSAM
(see basic sequential access method)

BLKSIZE subparameter of DCB parameter
specifying when making a secondary space request for

blocks 53
block length, specifying average when requesting space

(see blocklength subparameter)
blocklength subparameter

SPACE parameter 51-52
must be specified to use dedicated data set 77

SPLIT parameter 58
SUBALLOC parameter 51-52, 60
when blocks have keys 52

blocksize of data, specifying whei\making a secondary space
request for blocks
(see BLKSIZE subparameter of DCB parameter)

bypassing data set allocation
defining a dummy data.set 75-76

bypassing disposition processing
defining a dummy data set 75-76

bypassing I/O operations
defining a dummy data set 75-76

Index 117

bypassing job steps
COND parameter 31-33

calling a cataloged procedure 101
calling an in-stream procedure 101
catalog

definition 113
cataloged data set

definition 113
specifying unit and volume information 48

cataloged procedure
allowing for changes when writing 100
definition 113
identification of statements on output listing 106
list of related JCL services 17
requesting listing 81
using 101-106
using symbolic parameters 107-112
writing 99-100

cataloging a data set
CA TLG subparameter of DISP parameter 64-65

cataloging a passed data set
as conditional disposition in event of restart 38

CATLG subparameter of DISP parameter 64-65
changing a data set

requesting exclusive control 67
channel programs, active

requesting storage for programs that modify
VSl 27,28
VS2 27,28-29

character set codes
for 1403 printer 91
for 3211 printer 91

character sets, requesting 91-92
checkpoint data set 36-37

definition 113
checkpoint entries in checkpoint data set

written automatically by system 37
checkpoint restart

automatic 35
deferred 35
definition 113

checkpoints, establishing 35
checkpoint/restart facility

definition 113
using 35-39

CHKPT macro instruction 35
CLASS parameter on JOB statement 23
command statement 9-10

definition 113
SEND command 96

commas, trailing
caution when defining symbolic parameters 108-109

comment statement 9-10
definition 113

computing dispatching priority (VS2 only)
when DPRTY is coded 24-25
when DPRTY is not coded 24-25

concatenated data sets
definition 113
modifying parameters in cataloged or in-stream

procedures 104-105
concatenating private libraries 74
concatenating symbolic parameters with other information

length restriction 110

118 OS/VS JCL Services

concurrent use of a data set by several jobs 67
COND parameter

coded on JOB statement 32
coded on EXEC statement 32-33
resolving backward reference for deferred restart 37

conditional disposition of data sets
assigned for restart facilities 38
specified in DISP parameter 63-65

conditional execution of job steps 31-33
conserving number of units used in job step

unit affinity 47-48
conserving space on volumes

volume affinity 45
considerations in defining values as symbolic parameters 107-109
CONTIG subparameter of SPACE parameter 55
contiguous space

requesting 55
required for suballocated data sets 60

control of CPU by a task
determined with automatic priority groups (VS2 only) 26
determined with dynamic dispatching (VS 1 only) 24
determined with time slicing

VSl 24
VS2 26

normal conditions 26
control of non temporary data sets, obtaining

exclusive control 67
shared control 67
when a job can receive control 67-68
when a job cannot receive control 67-68

controlling printing of data sets
length of form and lines per inch 92-93
special character sets 91-92

COPIES parameter (VS 1 only) 89
CPU-bound tasks

inclusion in automatic priority group (VS2 only) 26
inclusion in dynamic dispatching group (VSl only) 24

creating a multivolume data set
requesting volumes 44

creating private and temporary libraries 71-74
CYL subparameter

SPACE parameter 51-52
SPLIT parameter 58-59
SUBALLOC parameter 51-52,60

cylinders, requesting
(see CYL sub parameter)

data definition (DD) statement 9-10
definition 113
defining data in the input stream

cannot use in cataloged or in-stream procedure 99
data management

definition 113
routines used to write a data set 86-87

DATA parameter on DD statement
cannot use in cataloged or in-stream procedure 99

data set
definition 113
disposition processing 63-66
system action when unavailable for job 67-68

data set disposition
modifying for restart 38
specifying in DISP parameter 63-66

data set integrity, insuring 67-68
data set integrity processing 67-68

data set name
temporary 67-68
nontemporary 67-68

data set status
MOD 63
NEW 63
OLD 63
SHR 63

DCB macro instruction
requesting exclusive control of part of a data set 67

DCB parameter
BLKSIZE sub parameter, specifying with space request

SPACE parameter 53
coded when defining a dummy data set 75
coded when using a dedicated data set 77
KEYLEN subparameter, specifying with space request 52
modifying in cataloged or in-stream procedure 104
TRTCH sub parameter, specifying for checkpoint data set 37
used to create private library 72
used to retrieve private library 73

DD statement
(see data definition statement)

dedicated data set
definition 113
using for allocating a temporary data set 77-78

default disposition processing 65-66
default values

COPIES parameter (VS 1 only) 89
data set disposition

conditional disposition 65-66
normal disposition 65-66

data set status 65-66
dispatching priority (DPRTY parameter - VS2 only) 24
job class (CLASS parameter) 23
job priority (pRTY parameter) 24
image identifier (FCB parameter) 92
message class (MSGCLASS parameter) 82
message level (MSGLEVEL parameter) 81
REGION parameter

VS1 28
VS2 29

special character sets 92
symbolic parameters 109

DEFER sub parameter of UNIT parameter 47
deferred checkpoint restart 35-39

identifying step and checkpoint to be restarted 36
deferred mounting of volumes 47
deferred restart 35-39

definition 113
deferred step restart 35-36, 37-38

identifying step to be restarted 36
defining and describing data sets

disposition processing of data sets 63-66
insuring data set integrity 67-68
list of related JCL services 13-14
requesting space for a single data set 51-56
requesting space for a group of data sets 57-61
requesting units and volumes for a data set 43-49

defining checkpoint data set 36-37
defining dummy data set 75-76
delaying job initiation 26, 23
delaying mounting of volumes 47
delaying writing of a data set (VS 1 only) 86
DELETE subparameter of DISP parameter

direct access data sets 64
tape data sets 64

deleting a data set
requested in DISP parameter 64

deleting new data sets
as conditional disposition in event of restart 38

deleting records from a data set
requesting exclusive control of the data set 67

deleting unused space for a data set 55
delimiter statement 9-10

cannot use in cataloged or in-stream procedure 99
definition 113

delimiting a positional symbolic parameter in a
procedure 108-109

DEST parameter (VS1 only) 95-96
destination

description 95
specifying in DEST parameter 95-96

determining the execution of a job step
coding COND on the EXEC statement 32-33

determining further execution of a job
coding COND on the JOB statement 32

device type
specifying in UNIT parameter 45-46

devices, requesting additional 46
direct access data sets

disposition processing 63-65
requesting shared control 67

direct access volumes
used to contain patitioned data sets 72
volume positioning for passed data sets 65

direct system output with job separators (DSOJS-VS 1 only) 86
direct system output (DSO) writer (VS 1 only) 85-86

definition 113
directory, requesting space for

SPACE parameter 54
SUBALLOC parameter 54,60

DISP parameter
coded when creating private library 72
coded when retrieving private library 73
coded when storing a dump 82-83
conditional disposition 63-66
data set status 63
normal disposition 63-66
requesting control of a data set 67

dispatching priority (VS2 only) 24-25
and automatic priority groups 26
and time slicing 26
definition 113
higher than job!s priority 25
lower than job's priority 25

disposing of data sets
when step terminates abnormally 63-65
when step terminates normally 63-65

disposition processing
conditional disposition 63-65
definition 113
normal disposition 63-65

DSNAME parameter
coded when using a dedicated data set 77
non temporary data set 68
temporary data set 68
used to create dummy data set 75-76
used to create private library 72
used to nullify DUMMY in procedure DD statement 104
used to retrieve private library 73
used to store a dump 82

Index 119

DSNAME=NULLFILE
used to create dummy data set 75-76
used when restarting a step 39

DSO writer
(see direct system output writer)

DSOJS
(see direct system output with job separators)

DSORG subparameter of DCB parameter
used when requesting space for an index 54

dummy data set
bypassing allocation 49
bypassing disposition processing 66
bypassing I/O operations 87
defining 75-76
definition 114
unit separation with 47-48
used when restarting a step 39

DUMMY parameter
used to create dummy data set 75
used to override parameters on procedure DD statement 104
used when restarting a step 39

duration of changes in cataloged and in-stream procedures 101
dump, requesting 82-83

definition 114
DYNAM parameter (VS2 only)

use with time sharing option 75
use in background 75

dynamic dispatching (VS 1 only) 24

end-of-data-set exit
taken when reading a dummy data set 76

enqueueing on a data set 68
esoteric group name

(see group name)
EVEN sub parameter of COND parameter 33

ignored if error occurs during job scheduling 33
exclusive control of a data set

of part of a data set 67
overriding request for shared control 67
requesting 67

EXEC statement (see execute statement)
execute statement 9-10

definition 114
calling cataloged or in-stream procedure

cannot use within cataloged or in-stream procedure 99
executing a job step

requested in COND parameter 33
executing programs contained in libraries 71

,temporary library 74
existing data sets

default disposition processing 65-66
v())lume request 43

exit li~t facility of DCB macro instruction
specifying address of forms control buffer 92

expiration date of a data set
when DELETE is coded 64
when KEEP is coded 64

extending a data set
requesting additional space 53-54
requesting multiple units 46

external Page storage 27
definiti~n 114

120 OS/VS JCll, Services

FCB
(see forms control buffer)

FCB images, standard 92
FCB parameter 92-93
FOLD sub parameter of UCS parameter 92
folding 92
forms control buffer (FCB) 92

definition 114
formula for computing dispatching priority (VS2 only)

when DPRTY is coded 25
when DPRTY is not coded 25

GDG
(see generation data group)

generation data group (GDG)
definition 114
specifying disposition of CATLG 65

generation data set
definition 114
specifying disposition of CA TLG 65

generic device type
(see device type)

group name 45, 46
definition 114
used to define existing data set "46

group of data sets, requesting space
SPLIT parameter 57-59
SUBALLOC parameter 59-61

grouping devices
group name 46

grouping jobs with similar characteristics
purpose of job classes 23

grouping output with similar characteristics
purpose of output classes 85

GIl character set 91

HN character set 91
HOLD parameter (VS 1 only) 86
hold queue 26

definition 114
holding a data set (VS 1 only) 86
holding ajob until resources are available 23, 16
H 11 character set 91

identifying the data set from which space is to be
suballocated 61

identifying an in-stream procedure 99-100
identifying procedure to be executed

cataloged procedure 101
in-stream procedure 101

identifying procedure statements on an output listing
cataloged procedure 106
in-stream procedure 106

IEBUPDTE utility program
used to add cataloged procedure to procedure library 100
used to permanently modify a cataloged procedure 100

IEHPROGM utility
used to delete entry from catalog 64-65

image for printing a data set, requesting 92-93
image identifier, coding in FCB parameter 92

inactive job class 23
including a job in an automatic priority group (VS2 only) 26
including a job in a time sliced group (VS2 only) 26
including a job step in an automatic priority group (VS2 only)
including a job step in a time sliced group (VS2 only) 26
increasing efficiency of input/output operations

requesting unit separation (VS1 only) 47
incremental quantity in space request

(see secondary quantity)
index area, specifying space for 54-55
indexed sequential data set

assigning specific tracks 56
cannot code DEFER subparameter of UNIT parameter 47
definition 114
requesting space for an index 54-55.

influencing when a job is selected for execution
assigning job class ·23
assigning job priority 24
delaying job selection 26

influencing when job steps use real storage
assigning dispatching priority (VS2 only) 24-25

informing the system of volume serial numbers
specific volume request 43

initiator
definition 114
selecting jobs for execution 23

initiator procedure
adding dedicated data sets 77
definition 114

input/output devices, requesting 45-49
input/output operations, bypassing 76,87
input queue 23

definition 114
installation-written writer routine, using 86
in-stream procedure

allowing for changes when writing 100
definition 114
list of related JCL services 17
using 101-106
using symbolic parameters 107-112
writing 99-100

insuring data set integrity 67-68
I/O-bound tasks

inclusion in automatic priority group (VS2 only) 26
inclusion in dynamic dispatching group (VS 1 only) 24

I/O load balancing
unit separation requests unnecessary 47

JCL
(see job controllanguage)

job 9
definition 114

job class 23
and dynamic dispatching (VS 1 only) 24
and time slicing (VS1 only) 24
definition 114

job class queue 23
definition 114

job controllanguage (JCL) 9-10
definition 114
list of JCL services 12-17

job control statements 9-10
definition 114

job initiation, delaying 23, 26

26

job priority 24
and automatic priority groups (VS2 only) 26
and time slicing (VS2 only) 26
definition 114
when routing output to workstation (VS 1 only) 24

job scheduling 23-26
job selection, influencing

assigning job class 23
assigning job priority 24
delaying job selection 26

job separators 86
JOB statement 9-10

cannot use in cataloged or in-stream procedure 99
definition 114

job step 9
definition 114

job step selection 23
job step task 24

definition 114
JOBLIB DD statement

cannot use in cataloged or in-stream procedure 99
concatenating libraries 74
creating a private library 71-72
effect when STEPLIB DD statement is also coded 73
placement of statement in job 71, 73
retrieving a private library 73-74

KEEP subparameter of DISP parameter
coded in event of restart 38
direct access data sets 64
implied with CATLG 65
tape data set 64

keeping a data set
(see KEEP subparameter of DISP parameter)

KEYLEN subparameter of DCB parameter
specifying with space request in units of blocks 52

keylength
(see KEYLEN subparameter of DCB parameter)

keyword parameter 10
definition 114

leading commas
caution when defining symbolic parameters 108-109

length restriction
concatenating a symbolic parameter to other information
value assigned to symbolic parameter 110

lengthening a data set
MOD subparameter of DISP parameter 63
multivolume data set 44
requesting additional space 53-54
requesting exclusive control 67

letting the system assign specific tracks for a data set 51-55
library

definition 114
private 71-74
system 71
temporary 71, 74

limit of values coded in DPRTY parameter (VS2 only) 25
limitation of specifying unit address 45
limiting modification for restart

coding conditional dispositions for data sets 38
list of JCL services 12-17
listing of JCL statements, requesting 81

110

Index 121

listing of procedure statements, requesting
cataloged procedure 81
in-stream procedure 81

LOGON operand of SEND command 96

main storage hierarchy support
REGION parameter specifications

VS1 28
VS2 29

maximum number of copies of output data set (VS 1 only) 89
maximum number of units you can request 46
maximum number of volumes you can request 44
message class parameter 82
message level parameter 81
messages from your job, routing 81
messages, sending

(see also SEND command)
when routing output to workstations 96

minimizing access-arm movement on direct access volume
sharing cylinders between data sets 57-59
suballocating space when data sets are processed serially 59-61

MOD subparameter of DISP parameter 63
requesting exclusive control of a data set 67

MODIFY command
used by operator to change output classes a writer

processes 85
modifying a cataloged procedure

permanently modifying 100
when calling the procedure 101-105
with symbolic parameters 107-112

modifying control statements for deferred restart
checkpoint restart 37, 38-39
step restart 37-38

modifying a data set
requesting exclusive control 67

modifying an in-stream procedure
when calling the procedure 101-105
with symbolic parameters 107-112

modifying parameters in a procedure
on DD statements 103-105
on EXEC statements 102-103

MSGCLASS parameter on JOB statement 82
MSGLEVEL parameter on JOB statement 81
multiple copies of an output data set (VSl only)

requested with COPIES parameter 89
requested with WRITER command 89

multiple units, requesting
for group of data sets to be suballocated 60
when to request 46

multiple volumes, requesting
for group of data sets to be suballocated 60
for multivolume data set 44-45

multivolume data set
mounting for deferred checkpoint restart 38
requesting units 44, 46
requesting volumes 44-45

mutually exclusive parameters
definition 114
used to override a parameter in a procedure 103

name of a data set
temporary data set 68
nontemporary data set 68

naming a specific step whose return code should be tested 32-33

122 OS/VS JCL Services

NC subparameter of RD parameter 36
NEW subparameter of DISP parameter

data set status 63
requesting exclusive control 67

new data sets
default disposition processing 66
modifying disposition for deferred step restart 38
on direct access devices

coding DEFER subparameter 47
specifying data set status 63
volume request 43

NR sub parameter of RD parameter 36
nonpageable dynamic area 27

definition 114
nonsharable volume

definition 114
requesting for multivolume data set 44-45

nonspecific volume request 43-44
definition 114
order of requests in a job step 43-44
preparation for deferred checkpoint restart 38
satisfying space request 53

nontemporary data sets
definition 114
requesting control 67-68

normal disposition of data sets 63-65
notifying another destination of output data sets

being routed to the destination 96
placed on hold queue 96

notifying the operator
before permanently modifying a cataloged procedure 100
of jobs on the hold queue 26
when you hold a data set 86

NOW operand of SEND command 96
null statement 9-10

cannot use in cataloged or in-stream procedure 99
definition 115

NULLFILE, data set name
used to create dummy data set 75-76

nullifying parameters in a procedure
DCB parameter 104
DUMMY parameter 104
on DD statements 103-104

all the parameters on a DD statement 104
on EXEC statements 102-103
symbolic parameters 111

as default 110
caution concerning leading and trailing commas 108-109
when procedure is called 110

obtaining output
controlloing output listing of JCL statements,

messages, and dumps 81-83
controlling output to a workstation (VSl only) 95-96
list of related JCL services 15-17
printer forms and print chain control 91-93
requesting multiple copies of an output data set (VS 1 only) 89
writing output data sets 85-87

old data sets
specifying data set status 63

OLD subparameter of DISP parameter
data set status 63
requesting exclusive control 67

ONLY sub parameter of COND parameter 33
ignored if error occurs during job scheduling 33

operator verification, requesting
of image 93
of special character set 92

order in which job steps use real storage
dispatching priority (VS2 only) 24-25

order of coding changes to procedure steps
on DD statements 103
on EXEC statements 102

order of nonspecific volume requests 43-44
order of searching libraries for a program 73

when libraries are concatenated 74
output

printing dumps 82-83
printing listing of JCL statements 81
printing output data sets 85-87
printing system messages 82

output class
definition 115
for data sets 85
for messages 82

output data sets
routing to workstations (VS 1 only) 95-96
writing 85-87

output device
(see system output device)

output form
requested in SYSOUT parameter 91

output listing
definition 115
identifying cataloged procedure statements 106
identifying in-stream procedure statements 106
preventing printout of data sets 87
requesting allocation/termination messages 81
requesting dump 82-83
requesting JCL and procedure statements 81

output writers
direct system output (DSO) writer (VS 1 only) 85-86
system output writer 85

output writer routine
IBM-provided 85
installation routine requested in SYSOUT parameter 86

overriding default values assigned to symbolic parameters
in a procedure 110

overriding original secondary quantity request for space 53-54
overriding parameters in a procedure

on the DD statement 103-105
on the EXEC statement 102-1"03

overriding positional symbolic parameters 108-109

P sub parameter of UNIT parameter 46
page 27

definition 115
size in VS2 29

parallel mounting 46
parameters on EXEC statement

cannot be defined as symbolic parameters 107
PARM parameter

modified in procedure 102
partition

(see virtual storage partition)
partitioned data set

definition 115
requesting space for a directory 54

PASS sub parameter of DISP parameter 65
volume positioning for direct access data set 65
volume positioning for tape data set 65

passed data set
data set disposition 65
definition 115
modifying for deferred checkpoint restart 38
modifying for d'eferred step restart 38

passing a private library
automatic when defined by JOBLIB DD statement 71-72
defined by STEPLIB DD statement 71, 73

PCAN character set 91
PCHN character set 91

PEND statement 9-10,99
definition 115
use in in-stream procedure 99

percentage of tracks per cylinder to be allocated to one of a
group of data sets, specifying 58

permanently resident volume
definition 115
private volume not demounted 44

PGM parameter
cannot modify in cataloged or in-stream procedure 102
resolving backward reference for deferred restart 37
retrieving a program in a private library 71
retrieving a program in a temporary library 71, 74

placement of jobs in input queues
job selection 23
jobs with same class and priority 23

placement of jobs in job class queues
job selection 23
jobs with same priority 23

placing a cataloged procedure in a procedure library 100
placing an in-stream procedure in input stream 101
placing jobs on the hold queue 26
PN character set 91
positional 'parameter 10

definition 115
DUMMY parameter 75
when a symbolic parameter 108-109

positioning within a multivolume data set 45
preventing job initiation 26
primary quantity, specifying

SPACE parameter 51-52
print chain control parameter

(see UCS parameter)
printer display of character set images, requesting

VERIFY sub parameter of UCS parameter 92
printers

character sets for 1403 printer 91
character sets for 3211 printer 91
images for 3211 printer 92

priorities and al!tomatic priority groups (VS2 only) 26
priorities and time slicing (VS2 only) 26
priority

(see job priority, dispatching priority)
private library

creating 71-72
definition 115
retrieving

to be used throughout ajob 73-74
to be used in a specific step 73-74

using 71-74
PRIVATE sub parameter of VOLUME parameter 44
private volume

definition 115
req uesting 44
retaining 44
specific requests for a direct access volume 44
specific requests for a tape volume 44

PROC statement 9-10
definition 115
use in cataloged procedure 100
use in in-stream procedure 99
used to assign default values to symbolic parameters 110

procedure end (PEND) statement 9-10,99
definition 115
use in in-stream procedure 99

procedure library
definition 115
IBM-supplied 100
installation-supplied 100

procedure statement
(see PROC statement)

procedure step 99
definition 115

Index 123

processing a multi-volume data set 44-45
processing output classes 85-86
programs for which you must request real storage 27
programs that can set return codes 31
programs that exist in a library, retrieving 71
programs that modify active channel programs

requesting real storage
VSl 27-28
VS2 27, 28-29

providing optimum use of CPU and I/O resources by a group
of tasks

automatic priority groups (VS2 only) 26
dynamic dispatching (VS 1 only) 24

providing unit information
(see UNIT parameter)

PRTY parameter 24
purpose of job classes 23
purpose of output classes 85
Pll character set 91

QN character set 91
QNC character set 91
QSAM

(see queued sequential access method)
qualified data set name 64

definition 115
queue

(see also input queue; job class queue)
definition 115

queued sequential access method (QSAM)
used when requesting to write a dummy data set 76

R subparameter of RD parameter 35-36
RD parameter of JOB statement 35-36
READ macro instruction

requesting exclusive control of part of a data set 67
reader procedure

default for job class 23
default for job priority 24
definition 115

reading a data set
requesting shared control 67

reading a dummy data set 76
reading a job into the system

placement on queues for job selection 23
reading a multivolume data set 45
real storage

definition 115
requesting

VSl 27-28
VS2 27, 28-29

REAL subparameter of ADDRSPC parameter 27
REF subparameter of VOLUME parameter

making specific 'volume request 43
used to request volume affinity 45

referring to a data set in a job step that was skipped or
abnormally terminated 33

referring to original data set from which space is to be
suballocated 61

referring the system to an earlier volume request 43
REGION parameter 28-29

ignored in VSl when ADDRSPC=REAL is not coded 28
meaning in VS 1 when ADDRSPC=REAL is coded 28
meaning in VS2 when ADDRSPC=REAL is coded 28-29
meaning in VS2 when ADDRSPC==REAL is not coded 29

relative track number
determining 56
specifying where you want a data set placed on a volume 55-56

RELEASE command 26
releasing a job from the hold queue 26

124 OS/VS JCL Services

releasing space on direct access volumes
when deleting a data set 64
unused space for a data set 55

RELEX macro instruction
requesting exclusive control of part of a data set 67

remote entry services (RES-VS 1 only)
controlling output to a workstation 95-96

options available for output 95
definition 115
submitting jobs to central computing center 95

removing a job from the hold queue
RELEASE command 26

REPEAT parameter of WRITER command (VSl only) 89
requests for additional storage made by a program

in VSl 28
in VS2 29

requests to read or write a dummy data set 76
RES

(Eremote entry services)
reserved volume

definition 115
private volume not demounted 44

resolving backward references before deferred restart 37
restart facility

(see checkpoint/restart facility)
RESTART parameter on JOB statement 36
restarting a job step

at beginning of job step 36
within a step 36

resubmitting a job for execution
at beginning of a step 35-36
within a step 35-36

RETAIN subparameter of VOLUME parameter 44
coded for multivolume data set 44
unnecessary to code for passed data set 44

retaining a private volume 44
retention period

when DELETE is coded 64
when KEEP is coded 64

retrieving an existing private library 73-74
retrieving a program contained in a library 71
return codes

definition 115
assigned by user 31
standard 31
warning about listing of return codes (VS 1 only) 31

return code tests, specifying 31
rewinding tapes

when DELETE is coded 64
when KEEP is coded 64
when PASS "is coded 65

RLSE subparameter of SPACE parameter 55
RN character set 91
RNC subparameter of RD parameter 36
ROUND subparameter of SPACE parameter 52
ROUTE command

used by operator to release data set from hold queue 96
routing output data sets

assigning an output class 85
coding the UNIT parameter 86
to another destination (VS 1 only) 95-96
to same device as messages 85

routing system messages
assigning an output class 82
to same device as data sets 82

running your job
conditional execution of job steps 31-33
job scheduling 23-26
list of related JCL services 12
requesting storage for execution of a program 27-29
restarting a job 35-39

satisfying nonspecific volume requests
caution concerning order of requests 43-44

satisfying space request, system action
primary quantity 52-53
secondary quantity
SPACE parameter 54
SPLIT parameter 59
SUB~!JLOC __ parameter 60

scheduling jobs for execution 23-26
SE command

(see SEND command)
secondary quantity for space, requesting

SPACE parameter 53-54
specifying blocksize when requesting blocks 53
SPLIT parameter 59
SUBALLOC parameter 60, 53-54

segment 29
definition 115

selecting jobs for execution 23
delaying job selection 23,26
job class 23
job priority 24

selecting job steps for execution 24-25
SEND command

coded on command statement 96
limit of message 96
including in input stream, warning 96
notifying destination of output data set

being routed to it 96
placed on hold queue 96

specifying when message should be send 96
sending messages to workstations (VS 1 only) 96

(see also SEND command)
SEP su bparameter of UNIT parameter (VS 1 only) 47
separating data sets on different devices 47
separating output from different jobs 86
sequence of DD statements

concatenated data sets 74
sharing cylinders between data sets 57-58
suballocating space 59-61

SER subparameter of VOLUME parameter
making specific volume request 43
used to request volume affinity 45

shared control of data sets, requesting 67
sharing cylinders on the same volume between data sets

SPLIT parameter 57-59
sharing a data set

requested in DISP parameter 67
sharing a library 73
sharing an output device between jobs

DSO writer (VS 1 only) 85-86
system output writer 85

sharing units 47-48
sharing volumes 45
SHR subparameter of DISP parameter

data set status 63
sharing a private library 73
requesting shared control 67

simplifying frequently-used applications
using cataloged or in-stream procedures 101-106

SN character set 91
SPACE parameter

creating a private library 72
defining an empty data set for suballocation 60
requesting space for a data set

letting the system assign specific tracks 51-55
requesting specific tracks 55-56

storing a dump 82
using a dedicated data set 77

space on a direct access volume, requesting

for a group of data sets
SPLIT parameter 57-59
SUBALLOC parameter 59-61

for a single data set
SPACE parameter

letting the system assign specific tracks 51-55
requesting specific tracks 55-56

special characters in value assigned to symbolic parameter 110
special character set, requesting 91-92
special data sets

creating and using private and temporary libraries 71-74
defining a dummy data set 75-76
list of related JCL services 15
using a dedicated data set for allocating a temporary

data set 77-78
special form for output

requested in SYSOUT parameter 91
specific tracks for a data set

letting the system assign 51-55
requesting 55-56

specific volume request
definition 115
informing system of volume serial numbers 43
requesting parallel mounting 46
satisfying space request 53

specifying device for an output data set 86-87
specifying same volume serial numbers for data sets

(see volume affinity)
SPLIT parameter

requesting space for a group of data sets 57-59
unit request 48

standard FCB images 92
START command

used by operator to start a writer 85
starting a writer

(see START command)
status of data sets

changed for deferred restart 38
specified in DISP parameter 63

STD1, standard FCB image 92
STD2, standard FCB image 92
step restart

automatic 35
deferred 35

STEPLIB DD statement
concatenating libraries 74
defining the system library 73
included in procedure step 99
precedence over JOBLIB DD statement 73
used to retrieve a private library 73-74

STOP command
used by operator to stop a writer 85

storage for execution of a program, requesting
VS1 27-28
VS2 27,28-29

SUBALLOC parameter
requesting space for a group of data sets 59-61
resolving backward reference for deferred restart 37

suballocating space on one volume to a group of data sets
SUBALLOC parameter 59-61
unit request 48

supervisor
definition 115

Index 125

supervisor (continued)
responsible for paging 27

suppressing processing of a data set
DSNAME=NULLFILE 75-76"
DUMMY parameter 75

symbolic parameters
assigning values to and nullifying 11 O~ 111

as default 110-111, 109
when procedure is called 110-111

derming 107-109
assigning defaults 109
caution concerning leading and trailing commas 108-109
considerations for defining values as symbolic

parameters 107 -108
preceding information that does not vary 108-109
restriction for defining on EXEC statements in a

procedure 107
two or more in succession 109

definition 115
SYSABEND DD statement 82-83

contents of dump 82
SYSCHK DD statement

defining checkpoint data set for deferred
checkpoint restart 36-37

ignored for deferred step restart 36
SYSOUT parameter

coding with UCS parameter 92
installation-provided writer routine 86
must be coded for output routed to workstation 95
output class 85
special form number 91
used to print a dump 82-83

system failure
resubmitting a job 35-39

system generation
definition 115

system library 71
definition 115

system messages, routing 82
system output device 85

definition 115
system output writer 85

definition 115
used to route output to workstations 95

SYSUDUMP DD statement 82-83
contents of dump 82

SYSl.IMAGELIB data set 92
SYS l.LINKLIB data set 71

(see also system library)
SYS1.PROCLIB data set 100

(see also procedure library)

task 24
definition 116

TCAM JCL services, list of 17
telecommunications access method (TCAM)

list of JCL services 17
temporary data set

defining to use dedicated data set 77-78
definition 116
specifying conditional disposition of DELETE 64
unnecessary to perform data set integrity processing 67-68

temporary library
creating 74
definition 116

126 OS/VS JCL Services

temporary library (continued)
using 74

termination before step begins execution
data set disposition proce,ssing 66

test to determine job or step execution
specified in COND parameter 31

TIME parameter
modified in procedure 102

time-dependent programs
requesting real storage 27

time intervals for using CPU
automatic priority group (VS2 only) 26
dynamic dispatching (VSl only) 24
time slicing

VSl 24
VS2 26

time sharing option (TSO-VS2 only)
definition 116
DYNAM parameter 75
list of JCL services 17

time slicing
definition 116

VSl 24
VS2 26

TN character set 91
tracks, requesting

in SPACE parameter
letting the system assign tracks 51-55
requesting specific tracks 55-56

trailing commas
caution when defining symbolic parameters 108-109

TRK subparameter
of SPACE parameter 51

TRTCH subparameter of DCB parameter
specifying when defining checkpoint data set 37

TSO
(see time sharing option)

type of control of non temporary data sets
exclusive 67
shared 67

TYPRUN=HOLD 26
Til character set 91

UCS parameter 91-92
coded with SYSOUT parameter 92
coded with UNIT parameter 92

unavailable data sets, system action
in VSl 68
in VS2 68

uncataloging a data set 65
UNCATLG subparameter of DISP parameter 65
unit

(see also UNIT parameter)
requested in UNIT parameter 45-48

unit address 45
definition 116

unit affinity
cannot be requested for new data sets (VS 1 only) 48
requested in UNIT parameter 47-48
requested with dummy data set 75

unit count subparameter 46
unit information, obtained from sources other than

UNIT parameter 48
unit of measurement, specifying for space request

SPACE parameter 51

UNIT parameter
coding with UCS parameter 92
creating private library 72
printing a dump 82-83
requesting multiple units 44-45
requesting units 44-48
requesting unit affinity 47-48
requesting unit separation (VS 1 only) 47
storing a dump 82-83
when you do not have to code UNIT parameter 48

unit separation, requesting (VS1 only) 47
unnecessary with I/O load balancing 47

units of blocks, requesting space in terms of
SPACE parameter 51-52

requesting space equal to one or more cylinders 52
. SPLIT parameter 58

universal character set (UCS) feature 91
definition 116

user identification, coding in DEST parameter (VS 1 only) 95
user label on data set

effect on space allocation 53
using fewer units

requesting unit affinity 47-48
using fewer volumes

requesting volume affinity 45

V=R dynamic area
(see nonpageable dynamic area)

VERIFY subparameter
of FCB parameter 93
of UCS parameter 92

verifying character set image 92
verifying image of printer form 93
VIRT subparameter of ADDRSPC parameter 27
virtual storage 27

definition 116
virtual storage partition (VS 1 only)

definition 116
does not affect size of request for storage 28

volume
(see also VOLUME parameter)
definition 116

. requested in VOLUME parameter 43-45
volume affinity

requested using REF subparameter 45
requested using SER subparameter 45
requested with dummy data set 75

volume count sub parameter 44-45
VOLUME parameter

creating private library 72
nonspecific volume requests 43
requesting private volumes 44
requesting volume affinity 45
requesting volumes for multivolume data set

on direct access devices 44-45
on tape 44-45

retaining private volumes 44
specific volume request 43

volume sequence number subparameter 45
volume serial numbers, specifying 43
volume table of contents (VTOC) 63-64

definition 116
volumes, requesting 43-45

(see also VOLUME parameter)
maximum number 44

VOLUME=REF
copying volume serial numbers 43
resolving backward reference for deferred restart 37

VTOC
(see volume table of contents)

workstation
controlling output to (VS 1 only) 95-96

options available for output 95
definition 116

WRITE macro instruction
requesting exclusive control of part of a data set 67

writer
(see output writers)

WRITER command 89
writer procedure

definition 116
writing a dummy data set 76
writing output directly to the output device

direct system output (DSO) writer (VS 1 only) 85-86
writing system output

by direct system output (DSO) writer (VS 1 only) 85-86
by system output writer 85

XN character set 91
XX 106
XX* 106
X/ 106

YN character set 91

1403 printer
requesting a special character set 91-92

3211 printer
requesting a special character set 91-92
requesting a specific image 92-93

3811 control unit
containing forms control buffer (FCB) 92

Index 127

(;C28-0617-2

J1~~
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

o
Vl

'< Vl

'-
("')
r
Vl
CD

:<
o·
CD

'"

CD

Z
o

»

OS,NS JCL Services

GC28-0617-2

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? ___ _
Number of latest Technical Newsletter (if any) concerning this publication: ____________ _
Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. Elsewhere, an
IBM office or representative will be happy to forward your comments.

READER'S
COMMENT
FORM

GC28-0617-2

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

(")

s.
~
"'It o
0:
»
0"
::l

OQ

r-
5·
111

I
Fold Fold

--------------------~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

First Class
Permit 170
Endicott
New York

I
I
I
I

I
I
I
I
I
I
I
I
I

----------------~
Fold

~J]3~
<J>

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

o
Vl

'<
Vl

I-
()
r
Vl
CD ..,
< o·
~

(b

Z
o
Vl
W
'I o
I

W
~

»

G>
()

'" 00
I

~

OS;VS JCL Services

GC28-0617-2

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? ___ _
Number of latest Technical Newsletter (if any) concerning this publication: ____________ _
Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. Elsewhere, an
IBM office or representative will be happy to forward your comments.

READER'S
COMMENT
FORM

uLLO-UO I/-L

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

I
Fold Fold

- - ---: - - - - - - - - - - - - - - - - -~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

First Class
Permit 170
Endicott
New York

I
I
I
I

I
I
I
I
I
I
I
I
I

----------------~
Fold

J1rnoo
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

<D
Z
o

-0
~.
::s
(!)
a...

::s
C
~

» .

