
Systems

GC28-0631-1

OS/VS Data Management for
System Programmers

VS1 Release 1
VS2 Release 1

Second Edition (September 1972)

This edition replaces the previous edition (numbered GC28-0631-0) and makes that edition
obsolete.

This edition applies both to Release 1 of OS/VS1 and to Release 1 of OS/VS2, and to all
~~ub~;,,'quent releases of either system unless otherwise indicated in new editions or technical
lle\"Isletters.

Significant technical and editorial changes made in this edition are outlined in "Summary of
~lajor Changes" following the list of figures. This summary is followed by a brief discussion
of differences between OS/VS Data Management for System Programmers and OS/MFT
and OS/MVT Data Management for System Programmers. Each technical change is marked
by a vertical line to the left of the change.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM SRL Newsletter, GN20-0360, that amends IBM System/360 and System/3 70
Bibliography, GA22-6822, to learn which editions and technical newsletters are applicable
and current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' comments are provided at the back of this publication. If the forms have
been removed, comments may be addressed to IBM Corporation, Programming Publications,
Department D78, Monterey and Cottle Roads, San Jose, California 95114. All comments
become the property of IBM.

© Copyright International Business Machines Corporation 1972

PREFACE

This publication provides information on how to modify and extend the data
management capabilities of the OS/VS system control program; the intended audience
is system programmers.

Some topics included are:

• Maintaining the System Catalog
• Maintaining the Volume Table of Contents
• Executing Your Own Channel Programs
• Using XDAP to Read and Write Data Sets on Direct Access Devices
• Password Protecting Your Data Sets

The OS/VS system control program provides simpler ways (for example, job control
language, utility programs, access method routines) to do each of these things. The
information presented in this book (consisting of macro specifications and how-to
information) is intended to provide greater flexibility of implementation methods.

Other topics presented are:

• Using System Macro Instructions to Refer to, Validate, and Modify System Control
Blocks

• Adding a UCS Image or FCB Image to the System Image Library.

This book makes reference to the DEB validity checking (DEBCHK) macro instruction
and the authorized program facility (APF). This information applies only to
installations using VS2; for installations using VS 1, it is provided for planning purposes
only.

Prerequisite Reading

Readers are expected to understand how to:

Code programs in assembler language as described in OS/VS and DOS/VS
Assembler Language, GC33-4010.

• Use the standard linkage conventions as described in OS/VS Supervisor Services
and Macro Instructions, GC27-6979.

• Maintain the catalog and VTOC as described in OS/VS JCL Services,
GC28-0617, OS/VS Utilities, GC3S-000S, and OS/VS Data Management
Services Guide, GC26-3783.

• Use the access methods to do input/output using the data management macros as
described in OS/VS Data Management Services Guide, GC26-3783, and OS/VS
Data Management Macro Instructions, GC26-3794.

• Protect data sets as described under "IEHPROGM" in OS/VS Utilities,
GC3S-000S.

More specific prerequisite reading is listed at the beginning of each chapter, as it relates
to the particular topic.

Preface iii

Related Reading

All of the chapters of this publication make reference to:

OS / VS 1 System Data Areas, SY28-0605
OS/VS2 System Data Areas, SY28-0606

These books present the detailed descriptions of system control blocks and common
work areas.

More specific related reading is listed at the beginning of each chapter, as it relates to
the topic under discussion.

How to Use This Book

You can use the macro specifications, coding examples, and how-to information in the
chapter about catalog maintenance to code your own routines to add, delete, and
update entries in the system catalog. This section contains data area layouts for and
descriptions of the fields of all the control blocks that can appear in the system catalog.

If you want to read a data set control block, rename a data set, or delete a data set
using the system macros, the chapter on maintaining the volume table of contents
(VTOC) provides macro specifications, coding examples, and how-to information.

If you want to code your own channel programs to modify the control program or to
provide support for unsupported I/O devices, the chapter on using EXCP provides
detailed descriptions of which control blocks you must provide and the functions you
must perform.

Macro specifications and how-to information are provided for using the XDAP macro
instruction to read from and write to direct-access devices without using the access
method routines (SAM, ISAM, or BDAM).

If you want to implement data set protection for your facility, the chapter on data set
protection:

1. Tells how to build a PASSWORD data set.
2. Describes how the system control program responds to job control language and

IEHPROGM utility statements in maintaining the PASSWORD data set.
3. Tells you how to use the PROTECT macro instruction to maintain (add records to,

delete records from, changes records in) and read the PASSWORD data set.

The chapter on system macro instructions provides how-to information and macro
specifications for:

1. Using system mapping macros to allow you to access system control blocks and
work areas using symbolic names.

2. Examining device-type information in unit control blocks (UCBs).
3. Modifying a job file control block (JFCB) before opening a data set.
4. Removing queued requests and restoring requests to queues.
5. Protecting YOl!r Jala sets by verifying data extent blocks.

You can use the coding examples and how-to information in the last chapter to help
you add a universal character set (UCS) image or a forms control buffer (FCB) image
to the system image library (SYS1.IMAGELIB).

iv OS/VS Data Management for System Programmers

CONTENTS

Page

iii Preface
iii Prerequisite Reading
iv Related Reading
iv How to Use This Book

ix Figures

xi Summary of Major Changes

xiii How OS/VS Differs From OS/MFT and OS/MVT Data Management for
System Programmers

1 Maintaining the System Catalog
1 Introduction
2 Reading a Block From the Catalog
2 Reading a Block by Data Set Name (LOCATE and CAMLST NAME)
4 Reading a Block by Generation Data Set Name (LOCATE and

CAMLST NAME)
6 Reading a Block by Alias (LOCATE and CAMLST NAME)
7 Reading a Block by Relative Block Address (LOCATE and CAMLST

BLOCK)
9 Building and Deleting Indexes
9 Building an Ind~x (INDEX and CAMLST BLDX)

10 Building a Generation Index (INDEX and CAMLST BLDG)
11 Deleting an Index (INDEX and CAMLST DL TX)
12 Assigning an Alias for an Index (INDEX and CAMLST BLDA)
13 Deleting an Alias for an Index (INDEX and CAMLST DLTA)
14 Connecting and Disconnecting Control Volumes
14 Connecting Control Volumes (INDEX and CAMLST LNKX)
15 Disconnecting Control Volumes (INDEX and CAMLST DRPX)
16 Working with Data Set Catalogs
17 Cataloging a Data Set When Index Levels Exit (CATALOG and

CAMLST CAT)
18 Cataloging a Data Set by Creating Required Index Levels (CATALOG

and CAMLST CA TBX)
20 Uncataloging a Data Set While Retaining Index Levels (CATALOG

and CAMLST UNCAT)
20 Uncataloging a Data Set and Removing Index Levels (CATALOG and

CAMLST UCATDX)
21 Recataloging a Data Set (CATALOG and CAMLST RECA T)
23 Catalog Block Entries
23 Volume Index Control Entry
24 Index Control Entry
25 Index Link Entry and Index Pointer Entry
26 Data Set Pointer Entry
27 Volume Control Block Pointer Entry
28 Volume Control Block
29 Control Volume (CVOL) Pointer Entry

Contents v

Page

30 Control Volume Pointer Entry (OLD)
30 Alias Entry
31 Generation Index Pointer Entry

33 Maintaining the Volume Table of Contents
33 Introduction
34 Reading a DSCB by Name (OBTAIN and CAMLST SEARCH)
35 Reading a DSCB by Actual Device Address (OBTAIN and CAMLST

SEEK)
36 Deleting a Data Set (SCRATCH and CAMLST SCRATCH)
38 Renaming a Data Set (RENAME and CAMLST RENAME)

43 Executing Your Own Channel Programs (EXCP)
43 Executing Channel Programs in System and Problem Programs
44 System Use of EXCP
45 Use of EXCP in Problem Programs
45 EXCP Operations in a Nonpageable Region
45 EXCP Requirements
45 Channel Program
46 Control Blocks
46 Input/Output Block (lOB)
46 Event Control Block (ECB)
46 Data Control Block (DCB)
47 Data Extent Block (DEB)
47 Channel Program Execution
47 Initiation of the Channel Program
48 Modification of a Channel Program During Execution
49 Completion of Execution
49 Interruption Handling and Error Recovery Procedures
50 Appendages
53 Page Fix (PGFX) and Start I/O (SIO) Appendage
53 Page Fix (PGFX) Appendage
53 Normal Page Fix List Processing
53 Extended (lO-entry) Page Fix List Processing
54 Start I/O (SIO) Appendage
55 Program Controlled Interruption (PCI) Appendage
56 End-of-Extent Appendage
56 Channel End (CE) Appendage
57 Abnormal End (XCE) Appendage
5R Block Multiplexer Channel Programming Notes
60 Macro Specifications for Use With EXCP
60 DCB - Define Data Control Block for EXCP
61 Foundation Block Parameters
62 EXCP Interface Parameters
62 Foundation Block Extension and Common Interface Parameters
64 Device-Dependent Parameters
66 OPEN - Initialize Data Control Block
67 EXCP - Execute Channel Program

vi OS/VS Data Management for System Programmers

Page

67 ATLAS - Assigning an Alternate Track and Copying Data from the
Defective Track

68 U sing ATLAS
69 Operation of the ATLAS Program
72 EOV - End of Volume
74 CLOSE - Restore Data Control Block
75 Control Block Fields
75 Input/Output Block Fields
77 Event Control Block Fields
77 Data Extent Block Fields

79 Using XDAP to Read and Write to Direct-Access Devices
79 Introduction
79 XDAP Requirements
80 Macro Specifications for Use With XDAP
80 DCB - Define Data Control Block
80 OPEN - Initialize Data Control Block
81 XDAP - Execute Direct-Access Program
82 EOV - End of Volume
83 CLOSE - Restore Data Control Block
83 Control Blocks Used with XDAP
83 Event Control Block
83 Input/ Output Block
84 Direct-Access Channel Program
85 Conversion of Relative Block Address to Actual Device Address
87 Obtaining Sector Number of a Block on a Device With the RPS Feature

89 Password Protecting Your Data Sets
89 Introduction
90 PASSWORD Data Set Characteristics
91 Creating Protected Data Sets
91 Protection Feature Operating Characteristics
91 Termination of Processing
91 Volume Switching
92 Data Set Concatenation
92 SCRATCH and RENAME Functions
92 Counter Maintenance
92 Using the PROTECT Macro Instruction to Maintain the PASSWORD

Data Set
93 PASSWORD Data Set Characteristics and Record Format When You

Use the PROTECT Macro Instruction
93 Number of Records for Each Protected Data Set
93 Protection Mode Indicator
94 PROTECT Macro Specification
99 Return Codes From the PROTECT Macro

99 System Macro Instructions
99 Introduction

Contents vii

Page

99 Mapping System Data Areas
99 IEFUCBOB - Mapping the UCB

100 IEFJFCBN - Mapping the JFCB
100 CVT - Mapping the CVT
100 Obtaining I/O Device Characteristics
100 DEVTYPE Macro Specification
101 Device Characteristics Information
102 Output for Each Device Type
104 Reading and Modifying a Job File Control Block
105 OPEN - Initialize Data Control Block for Processing the JFCB
105 RDJFCB - Read a Job File Control Block
107 Ensuring Data Security by Validating the Data Extent Block
108 DEBCHK - Macro Specification
110 Removing Queued Requests and Restoring the Requests
111 PURGE - Remove an RQE From a Queue
113 RESTORE - Return Purged lOBs to Queues

115 Adding a U CS Image or FCB Image to the System Image Library
115 Introduction
115 Adding a UCS Image to the Image Library
117 Adding an FCB Image to the Image Library

119 Index

viii OS/VS Data Management for System Programmers

FIGURES

Page

23 Figure I. The Volume Index Control Entry
24 Figure 2. The Index Control Entry
25 Figure 3. The Index Link and Index Pointer Entries
26 Figure 4. The Data Set Pointer Entry
27 Figure 5. The Volume Control Block Pointer Entry
28 Figure 6. The Volume Control Block
29 Figure 7. The Control Volume (CVOL) Pointer Entry
30 Figure 8. The Alias Entry
31 Figure 9. The Generation Index Pointer Entry
52 Figure 10. The Request Queue Element (RQE)
52 Figure II. Entry Points, Returns, and Available Work Registers for

the I/O Supervisor Appendages
61 Figure 12. Data Control Block for Format EXCP (After Open)
72 Figure 13. Error Locations and Return Codes if CCHH is in the Count

Area Field
73 Figure 14. Error Locations and Return Codes if CCHHRKDD is in

the Count Area Field
76 Figure 15. Input/Output Block Format
78 Figure 16. Event Control Block After Posting of Completion Code

(EXCP)
84 Figure 17. Event Control Block After Posting of Completion Code

(XDAP)
85 Figure 18. The XDAP Channel Programs
95 Figure 19. Parameter List for ADD Function
96 Figure 20. Parameter List for REPLACE Function
97 Figure 2I. Parameter List for DELETE Function
97 Figure 22. Parameter List for LIST Function
98 Figure 23. Return Codes from the PROTECT Macro Instruction

110 Figure 24. Macro Definition, JCL, and Utility Statements for
Adding the PURGE Macro to Your :Macro Library

111 Figure 25. Macro Definition, JCL, and Utility Statements for
Adding the RESTORE Macro to Your Macro Library

112 Figure 26. PURGE Parameter List
114 Figure 27. Purge Chain for Restoring lOBs

Figures ix

SUMMARY OF MAJOR CHANGES

New Device Support

OS/VS2 supports several devices that are not supported by OS/VSl. The devices are:

• IBM 3505 Card Reader
• IBM 3525 Card Punch
• IBM 3400 Magnetic Tape Units
• IBM 2305-1 Fixed-Head Storage Device

The information about these new devices does not apply to installations using OS/VS 1.

DEB Validity Checking

For installations using OS/VS2, a data set security feature has been added to the
system control program to prevent inadvertant or malicious access by one user to
another user's data. The macro specifications for the DEBCHK macro instruction is
presented in the "System Macro Instructions" chapter. Information about this feature
is provided to installations using OS/VS1 for planning purposes only.

Authorized Program Facility (APF)

Editorial Changes

The APF security-integrity feature in OS/VS2 makes it impossible for an unauthorized
problem program to update a volume table of contents on a direct-access storage
volume. Information on this restriction is provided in the "System Macro Instructions"
chapter under the RDJFCB macro instruction. The APF feature is not available to
installations using OS/VS 1.

The chapter titled "Maintaining the Catalog and the VTOC" has been divided into two
chapters "Maintaining the Catalog" and "Maintaining the VTOC." Macro
specifications have been added to all chapters.

Summary of Major Changes xi

HOW OS/VS DIFFERS FROM OS/MFT and OS/MVT DATA
MANAGEMENT FOR SYSTEM PROGRAMMERS

Page Fixing Using EXCP

The OS/VS relocation feature makes it necessary to (1) execute your program in a
nonpageable region or (2) fix certain data areas and control blocks in real storage when
executing your own channel programs. Significant changes were made to the chapter
on executing your own channel programs using the EXCP macro instruction.

Direct-Access Device Support

OS/VS does not support five direct access devices that are supported by OS
MFT/MVT. The devices are:

• IBM 2301 Drum
• IBM 2303 Drum
• IBM 2302 Disk Storage
• IBM 2311 Disk Storage
• IBM 2321 Data Cell Drive

How OS/VS Differs From OS/MFT and OS/MVT Data Management for System Programmers xiii

MAINTAINING THE SYSTEM CATALOG

Introduction

This chapter contains detailed information on how to maintain and modify the system
catalog.

More detailed information about the catalog routines is available in OSjVS Catalog
Management Logic.

Before using the information in this chapter, you should be familiar with the
info~mation contained in the following publications:

OSjVS and DOSjVS Assembler Language, GC33-4010, which contains
information you will need in order to code programs in the assembler language.

OSjVS Data Management Services Guide, GC26-3783, which contains a general
description of the structure of catalog indexes and generation data groups.

OSjVS Utilities, GC35-0005, which tells how to use utility programs to maintain
the system catalog.

as j VS JCL Services, GC28-0617, which tells how to catalog and uncatalog data
sets using job control language statements.

The catalog management routines that maintain and modify the catalog are called by
the assembler language macro instructions presented in this chapter. These macros are
most commonly used by the system control program or the IEHPROGM utility, but
you may use them in your own routines.

-Catalog management is a component of the OSjVS system control program that is used
for keeping track of data sets when a problem program provides only the name of a
cataloged data set. The catalog, itself a system data set (DSNAME=SYSCTLG),
contains data set names correlated with the volume identification (volume serial
number) and device type.

The physical organization of the catalog is the same as that of a partitioned data set
directory. It is formated into 256-byte blocks, containing variable-length entries. Data
area layouts and detailed descriptions of the fields of each entry are provided in Figures
1 through 9 at the end of this chapter.

The functions you can perform using the catalog management macro instructions are:

Reading a block from the catalog.
Building an index.
Building a generation index.
Deleting an index.
Assigning an alias.
Deleting an alias.
Connecting control volumes.
Disconnecting control volumes.

• Cataloging a data set.
Removing data set references from the catalog.
Recataloging a data set.

Maintaining the System Catalog 1

Specifications for coding the macro instructions are presented with each function to be
performed. Accompanying the descriptions are coding examples and programming
notes; exceptional-return condition codes follow the coding examples. In the functional
descriptions, offsets into data areas are numbered from zero (the first byte is byte
zero).

Reading a Block From the Catalog

To read an entry from the catalog, use the LOCATE AND CAMLST macro
instructions. You may specify the entry you want to read into your work area by using
either (1) the fully or partially qualified name of a data set, or (2) the relative block
address (TTR) of the block containing the entry. If you specify a fully qualified data
set name, a list of volumes on which the data set resides will be read into your work
area. This volume list always begins with a I-byte entry that is count of the number of
the number of volumes in the list. If the data set resides on more than 20 volumes, the
address of a volume control block will follow the volume list entries.

If you specify a partially qualified data set name, the first block in the catalog
corresponding to the lowest-level index specified will be read into your work area.

If you specify a relative block address (TTR), the block at that relative address in the
catalog will be read into your work area.

See Figures 1 through 9 for descriptions of the contents of the volume control block
and the other catalog data areas.

Reading a Block by Data Set Name (LOCATE and CAMLST NAME)

When you specify a data set name and the named data set resides on five or fewer
volumes, a volume list is built in your work area. A volume list consists of an entry for
each volume on which part of the data set resides; it is preceded by a 2-byte field that
contains a count of the number of volumes in the list. The count fields is followed by
a variable number of 12-byte entries. Each 12-byte entry consists of a 4-byte device
code, a 6-byte volume serial number, and a 2-byte data set sequence number.

If, however, the named data set resides on more than five volumes, a volume control
block is read into your work area. A volume control block has essentially the same
contents as a volume list, except that it can contain as many as 20 entries and can be
linked to another volume control block (see Figure 6). The count field of each volume
control block contains the remaining number of volume entries. For example, if a data
set resides on 61 volumes, the count field would be decreased by 20 (61, 41, 21, 1) as
you read each successive volume control block into your area. The first two bytes of
the block contain the number of volume pointers for the data set. Each volume pointer
is a 12-byte field that contains a 4-byte device code, a 6-byte volume serial number,
and a 2-byte data set sequence number.

For VSl systems, device codes are presented in OS/VSl System Data Areas in the
section "The UCBTYP Field in the UCB."

For VS2 systems, device codes are presented in OS/VS2 System Data Areas in the
section "The UCBTYP Field in the UCB."

If the named data set is stored on more than 20 volumes, bytes 252-254 of the block
contain the relative track address of the next volume control block for the named data
set; the last block has binary zeros in bytes 252-254. Byte 255 contains a binary zero.

2 OS/VS Data Management for System Programmers

If the named data set is stored on only one volume, bytes 242-243 of your area contain
the relative track address of the DSCB for that data set; otherwise these bytes are zero.
Byte 255 contains a binary zero.

The format is:

[symbol]

[list-name]

LOCATE
CAMLST

list-addrx
NAME,dsname-relexp, [cvol-relexp] ,area-relexp

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

NAME
this operand must be coded as shown in order to read a block from the catalog by
name.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The area
that contains the name must be 44 bytes long. The name may be defined by a
C-type Define Constant (DC) instruction. -

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

area-relexp
specifies the virtual storage location of your 265-byte work area, which you must
define. The work area must begin on a doubleword boundary. The first 256 bytes
of the work area will contain a volume list or the volume control block that is read
from the catalog, and the last 6 bytes will contain the serial number of the volume
on which the block was found. If the data set resides on one volume, bytes
252-254 may contain the relative track address of the DSCB. This address is
relative to the beginning of the VTOC.

Example: In the following example, the catalog entry containing a list of the volumes
on which data set A.B resides is read into virtual storage. The search for the catalog
entry starts on the system residence volume.

* INDAB
AB
LOCAREA

*

LOCATE INDAB

Check Exceptional Returns

CAMLST
DC
DS
DS

NAME,AB"LOCAREA
CL44'A.B'
OD
265C

READ CATALOG ENTRY FOR
DATA SET A.B INTO VIRTUAL
STORAGE AREA NAMED LOCAREA.
LOCAREA ALSO CONTAINS 3-BYTE
TTR AND 6-BYTE SERIAL
NUMBER

The LOCATE macro instruction points to the CAMLST macro instruction. NAME,
the first operand of CAMLST, specifies that the system is to search the catalog for an
entry using the name of a data set. AB, the second operand, specifies the virtual
storage location of a 44-byte area into which you have placed the fully qualified name
of a data set. LOCAREA, the fourth operand, specifies a 265-byte area you have
reserved in virtual storage.

Maintaining the System Catalog 3

After execution of these macro instructions, the 265-byte area contains: a volume list
or a volume control block for the data set A.B and the 6-byte serial number of the
volume on which the entry was found (in bytes 259-264). If data set A.B resides on
only one volume, bytes 252-254 of your area may contain the relative track address of
the DSCB for data set A.B (relative to the beginning of the volume).

If a code of 4 is re,turned in register 15 indicating that the required control volume
(CVOL) was not mounted, bytes 259-264 of the work area will contain the volume
serial number of this required volume. If LOCATE finds an old CVOL pointer entry,
and the CVOL is not mounted, binary zeros will be returned in bytes 252-255 of the
work area. However, if a new CVOL pointer entry is found, the 4-byte device code of
the CVOL will be returned in those bytes.

Control will be returned to your program at the next executable instruction after the
LOCATE macro instruction. If the block has been successfully read from the catalog,
register 15 will contain zeros. Otherwise, register 15 will contain one of the following
exceptional return codes.

Code Interpretation

4 Either the required control volume was not mounted, there is a closed chain of
control volume pointers, or the specified volume does not contain a catalog
data set (SYSCTLG). The work area contains the volume serial number (in
bytes 259-264) and the device code of the volume, if available (in bytes
252-255). Your work area contains the last block that was searched.

8 One of the names of the qualified name was not found or an unidentified entry
was found. Register 0 contains the number of the last valid name in the
qualified name. For example, if the qualified name A.B.C.D were specified,
but name C did not exist at the level specified, register 0 would contain the
binary number 2. The work area contains the serial number of the volume
containing the index (in bytes 259-264).*

12 Either an index, an alias, or a control volume pointer was found when the list
of qualified names was exhausted. * If an index pointer entry was found, the
work area contains the first block of the specified index.

16 A data set resides at some level of the index other than the lowest index level
specified. The work area contains the serial number of the volume containing
the index in which a data set was found (in bytes 259-264). *

20 A syntax error exists in the name (for example, nine characters, a double
delimiter, blank name field, or a qualified name when a simple name is
needed).

24 A permanent I/O error was found when processing the catalog.

28 Relative track address (TTR) supplied to tOCA TEis out of the SYSCTLG
data set extents. *

32 Invalid work area pointer (for example, not a doubleword boundary).

* Register 0 contains the number of index levels that were searched before the failure
was encountered.

Reading a Block by Generation Data Set Name (LOCATE and CAMLST NAME)

You specify the name of a generation data set by using the fully qualified generation
index name and the relative generation number of the data set. The value of a relative

4 OS/VS Data Management for System Programmers

generation number reflects the position of a data set in a generation data group. The
following values can be used:

Zero - specifies the latest data set cataloged in a generation data group.

Negative number - specifies a data set cataloged before the latest data set.

Positive number - specifies a data set not yet cataloged in the generation data group.

When you use zero or a negative number as the relative generation number, a volume
list or volume control block (depending on whether these are more than five volumes in
the data set) is read into virtual storage and the relative generation number is replaced
by the absolute generation name.

When you use a positive number as the relative generation number, an absolute
generation name is created and replaces the relative generation number. Nothing is
read into your work area, because there are no entries in the catalog data sets.

The format is:

[symbol]

[list-name]

list-addrx

LOCATE

CAMLST

list-addrx

NAME,dsname-re/exp,{ cvol-re/exp] ,area-re/exp

points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

NAME
this operand must be coded as shown in order to read a block from the catalog by
generation data set name.

dsname-relexp
specifies the virtual storage location of the name of the generation index and the
relative generation number. The area that contains these must be 44 bytes long.
The name may be defined by a C-type Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

area-relexp
specifies the virtual storage location of your 265-byte work area, which you must
define. The work area must begin on a doubleword boundary. The first 256 bytes
of the work area will contain a volume list or the volume control block that is read
from the catalog, and the last 6 bytes will contain the serial number of the volume
on which the block was found. If the data set resides on one volume, bytes
252-254 may contain the relative track address of the DSCB. This address is
relative to the beginning of the volume.

Example: In the following example, the list of volumes that contain generation data set
A.PAY(-3) is read into virtual storage. The search for the catalog entry starts on the
system residence volume.

The LOCATE macro in&truction points to the CAMLST macro instruction. NAME,
the first operand of CAMLST, specifies that the system is to search the catalog for a
catalog entry by using the name of a data set. AP A Y, the second operand, specifies
the virtual storage location of a 44-byte area into which you have placed the name of

Nlaintaining the System Catalog 5

LOCATE INDGX READ CATALOG ENTRY FOR

Check Exceptional Returns

INDGX
APAY
LOCAREA

CAMLST
DC
DS
DS

NAME,APAY"LOCAREA DATA SET A.PAY(-3) INTO YOUR
CL44'A.PAY(-3)' STORAGE AREA NAMED LOCAREA.
OD LOCAREA ALSO CONTAINS 6-BYTE
265C VOLUME SERIAL NUMBER

the generation index and the relative generation number of a data set in the generation
data group. LOCAREA, the fourth operand, specifies a 265-byte area you have
reserved to receive the catalog information.

After execution of,these macro instructions, your 265-byte area contains: the catalog
entry for generation data set A.PA Y(-3) and the 6-byte serial number of the volume on
which the block was found (in bytes 259-264). If data set A.PAY(-3) resides on one
volume, bytes 252-254 of your area may contain the relative track address of the
DSCB for that data set (relative to the beginning of the VTOC). In addition, the
system will have replaced the relative generation number that you specified in your
44-byte area with the data set's absolute generation name. Control will be returned to
your program at the next executable instruction after the LOCATE macro instruction.
If the index block has been located and read successfully, register 15 will contain zeros.
Otherwise, register 15 will contain one of the exceptional return codes described in the
previous example.

Reading a Block by Alias (LOCATE and CAMLST NAME)

For each of the preceding functions, you can specify an alias as the first name in the
qualified name of an index level, data set, or generation data set. Each function is
performed exactly as previously described, with one exception: the alias name specified
is replaced by the true name. Be aware, however, that if the true name of the data set
is longer than the alias, the fully qualified name may exceed 44 characters.

The format is:

symbol]

[list-name]

list-addrx

LOCATE
CAMLST

list-addrx

NAME,dsname-relexp, [cvol-relexp] ,area-relexp

points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

NAME
this operand must be coded as shown in order to read a block from the catalog by
name.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name, the first or
only name of which is the alias. The area that contains the name must be 44 bytes
long. The name may be defined by a C-type Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

6 OS!VS Data Management for System Programmers

area-relexp
specifies the virtual storage location of your 265-byte work area, which you must
define. The work area must begin on a doubleword boundary. The first 256 bytes
of the work area will contain a volume list or the volume control block that is read
from the catalog, and the last 6 bytes will contain the serial number of the volume'
on which the block was found. If the data set resides on one volume, bytes
252-254 may contain the relative track address of the DSCB. This address is
relative to the beginning of the VTOC.

Example: In the following example, the catalog entry containing a list of the volumes
on which data set A.B.C resides is read into virtual storage. (Data set A.B.C, however,
is addressed by an alias name -x is an alias for A.) The search for the catalog entry
starts on the system residence volume.

INDAB
ABC
LOCAREA

*

LOCATE INDAB READ CATALOG ENTRY FOR

Check Exceptional Returns

CAMLST
DC
DS
DS

NAME,ABC"LOCAREA DATA SET X.B.C INTO VIRTUAL
CL44'X.B.C.' STORAGE AREA NAMED LOCAREA.
OC LOCAREA ALSO CONTAINS
265C 3-BYTE TTR AND 6-BYTE

SERIAL NUMBER

The LOCATE macro instruction points to the CAMLST macro instruction. NAME,
the first operand of CAMLST, specifies that the system is to search the catalog for an
entry using the name of a data set. ABC, the second operand, specifies the virtual
storage location of a 44-byte area into which you have placed the fully qualified name
of a data set. (In this case, data set A.B.C is addressed by its alias X.B.C.)
LOCAREA, the fourth operand, specifies a 265-byte area you have reserved in virtual
storage.

After execution of these macro instructions, the 265-byte area contains: a volume list
or a volume control block for the data set A.B.C and the 6-byte serial number of the
volume on which the entry was found (in bytes 259-264). If data set A.B.C resides on
only one volume, bytes 252-254 of your area may contain the relative track address of
the DSCB for data set A.B.C (relative to the beginning of the VTOC).

If a code of 4 is returned in register 15 indicating that the required control volume
(CVOL) was not mounted, bytes 259-264 of the work area will contain the volume
serial number of this required volume. If LOCATE finds an old CVOL pointer entry,
and the CVOL is not mounted, binary zeros will be returned in bytes 252-255 of the
work area. However, if a new CVOL pointer entry is found, the 4-byte device code of
the CVOL will be returned in those bytes.

Reading a Block by Relative Block Address (LOCATE and CAMLST BLOCK)

You can read any block in the catalog by specifying, in the form TTR, the
identification of the block and its location relative to the beginning of the catalog. TT
is the number of tracks from the beginning of the catalog, R is the record number of
the desired block on the track.

Maintaining the System Catalog 7

The format is:

[symbol]
[list-name]

LOCATE

CAMLST

list-addrx
BLOCK,ttr-relexp,[cvol-relexp] ,area-relexp

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

BLOCK
you must code this operand as shown.

ttr-relexp
specifies the virtual storage location of a 3-byte relative block address (TTR). This
address indicates the position relative to the beginning of the catalog data set, of the
track containing the block (TT), and the block identification (R) on that track.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

area-relexp
specifies the virtual storage location of your 265-byte work area, which you must
define. The work area must begin on a double word boundary. The first 256 bytes
of the work area will contain the block that is read from the catalog, and the last 6
bytes will contain the serial number of the volume on which the block was found.
If the data set resides on one volume, bytes 252-254 will contain the relative track
address of the DSCB.

Example: In the following the block at the location indicated by TTR is read into
virtual storage. The specified block is in the catalog on the system residence volume.

LOCATE BLK

Check Exceptional Returns

BLK CAMLST BLOCK,TTR"LOCAREA READ A BLOCK INTO VIRTUAL

* STORAGE. AREA NAMED LOCAREA
TTR DC H'5' RELATIVE TRACK 5

DC X'03' BLOCK 3 ON TRACK
LOCAREA DS OD LOCAREA ALSO CONTAINS 6-BYTE

DS 265C SERIAL NO.

The LOCATE macro instruction points to the CAMLST macro instruction. BLOCK,
the first operand of CAMLST, specifies that the system is to search the catalog for the
block indicated by TTR, the second operand. LOCAREA, the fourth operand, specifies
a 265-byte area you have reserved in virtual storage.

After execution of these macro instructions, the 265-byte area contains: the 256-byte
block and the 6-byte serial number of the volume on which the block was found (in
bytes 259-264).

Control will be returned to your program at the next executable instruction following
the LOCATE macro instruction. If the index block at the address you specified as
been successfully located and read into your work area, register 15 will contain zeros.
Otherwise, register 15 will contain one of the exceptional return codes described with
the first example in this section.

8 OS/VS Data Management for System Programmers

Building and Deleting Indexes

You handle indexes - build them, delete them, etc. - by using combinations of the
INDEX and CAMLST macro instructions.

Building an Index (INDEX and CAMLST BLDX)

To build a new index structure and add it to the catalog, you may create each level of
the index separately. (You can also create index levels while you are cataloging a data
set onto those index levels. See" Cataloging When Index Levels Exist (CATALOG
and CAMLST CAT)" and "Cataloging by Creating Required Index Levels
(CATALOG and CAMLST BLDX).") To create each level of the index, use the
INDEX and CAMLST macro instructions.

These two macro instructions can also be used to add index levels to existing index
structures.

The format is:

symbol]

[Jist-name]

list-addrx

INDEX

CAMLST
list-addrx

BLDX,name-re/exp, [cvol-re/exp]

points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

BLDX
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully qualified name of a data set or
index level. The name cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by blanks. The name may be defined by a C-type
Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

Example: In the following example, index structure A.B.C is built on the control
volume whose serial number is 000045.

INDEXA
INDEXB
INDEXC
VOLNUM
ALEVEL
BLEVEL
CLEVEL

INDEX INDEXA BUILD
Check Exceptional Returns

INDEX INDEXB BUILD
Check Exceptional Returns

INDEX INDEXC BUILD
Check Exceptional Returns

CAMLST BLDX,ALEVEL,VOLNUM
CAMLST BLDX,BLEVEL,VOLNUM
CAMLST BLDX,CLEVEL,VOLNUM

INDEX A

INDEX STRUCTURE

INDEX STRUCTURE

DC CL6'000045' VOLUME SERIAL NUMBER
DC CL2 ' A' INDEX STRUCTURE NAMES
DC CL4'A.B' FOLLOWED BY A B~ANK
DC CL6'A.B.C' WHICH DELIMITS FIELDS

A.B

A.B.C

Maintaining the System Catalog 9

Each INDEX macro instruction points to an associated CAMLST macro instruction.
BLDX, the first operand of CAMLST, specifies that an index level be built. The
second operand specifies the virtual storage location of the area into which you have
placed the fully qualified name of an index level. The third operand specifies the
virtual storage location of the area into which you have placed the 6-byte serial number
of the volume on which the index level is to be built.

Control will be returned to your program at the next executable instruction following
the INDEX macro instruction. If the index has been built successfully, register 15 will
contain zeros. Otherwise, register 15 will contain one of the following exceptional
return codes.

Code Interpretation

4 Either the required control volume was not mounted, or the specified volume
does not contain a catalog data set (SYSCTLG).

8 The existing catalog structure is inconsistent with the operation performed.
(Because the INDEX macro instruction uses the search routine of the
LOCATE macro instruction, register 1 contains the condition code that would
be given by the LOCATE macro instruction, and register 0 contains the
number of index levels referred to during the search.)

12 An attempt was made to delete an index or generation index that has an alias
or has indexes or data sets cataloged under it. The index is unchanged.

16 The qualified name specified when building an index or generation index
implies an index structure that does not exist; the high level index, specified
when connecting control volumes, does not exist.

20 Space is not available on the specified control volume.

24 Not used with the INDEX macro instruction.

28 A permanent I/O error was found when processing the catalog.

72 The VTOC of a DOS volume could not be converted to as format.

Building a Generation Index (INDEX and CAMLST BLDG)

You build a generation index by using the INDEX and CAMLST macro instructions.
All higher levels of the index must exist. If the higher levels of the index are not in the
catalog, you must build them. How to build an index has been explained previously.

The format is:

[symbol]

[list-name]

list-addrx

INDEX
CAMLST

Iist-addrx

BLDG,name-relexp, [cvol-relexp] " [DELETE] , [EMPTY],
number -absexp

points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

BLDG
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully qualified name of a data set or
index level. The name cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by blanks. The name may be defined by a C-type
Define Constant (DC) instruction.

10 OS/VS Data Management for System Programmers

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

DELETE
specifies that all data sets on direct-access volumes that are removed from a
generation data group are to be deleted, that is, the space allocated to the data
set(s) is to be made available for reallocation. A SCRATCH macro instruction will
be issued by the catalog management routines to delete the data set, which will be
deleted from the volume if there are no conditions preventing deletion (e.g.,
expiration date not passed, password not verified, volume not mounted, permanent
I/O error encountered while trying to delete the data set).

EMPTY
specifies that references to all data sets in a generation data group cataloged in the
generation index are to be removed from the index when the number of entries
specified is exceeded.

Number - absexp
specifies the number of data sets to be included in a generation data group. This
number must be specified, and cannot exceed 255.

Example: In this example, generation index D is built on the control volume, serial
number 000045. The higher level indexes A.B.C already exist. When the number of
generation data sets in the generation index D exceeds four, the oldest data set is
uncataloged. When the data set has been successfully uncataloged and the DELETE
operand has been specified, the catalog management routines issue a SCRATCH macro
(see "Maintaining the Volume Table of Contents") to delete the data set. If there are
no conditions preventing the data set from being deleted (for example, the expiration
date was not passed, the password could not be verified, or a permanent 110 error was
encountered when trying to delete the data set), the data set will be deleted.

GENINDX
DLEVEL
VOLNUM

INDEX GENINDX BUILD GENERATION INDEX
Check Exceptional Returns

CAMLST BLDG,DLEVEL,VOLNUM, ,DELETE, ,4
DC CL8'A.B.C.D' ONE BLANK, DELIMITER
DC CL6'000045'

The INDEX macro instruction points to the CAMLST macro instruction. BLDG,
operand of CAMLST, specifies that a generation index be built. DLEVEL specifies
the virtual storage location of an area into which you have placed the fully qualified
name of a generation index. VOLNUM specifies the virtual storage location of the
area into which you have placed the 6-byte serial number of the volume on which the
generation index is to be built. DELETE specifies that all data sets dropped from the
generation data group are to be deleted. The final operand, 4, specifies the number of
data sets that are to be maintained in the generation data group .. Control will be
returned to your program at the next executable instruction following the INDEX
macro instruction. If the generation index was built successfully, register 15 contains
zeros. Otherwise, register 15 will contain one of the exceptional return codes described
under "Building an Index (INDEX and CAMLST BLDX)."

Deleting an Index (INDEX and CAMLST DLTX)

You can delete any number of index levels from an existing index structure. Each level
of the index is deleted separately. Generation indexes are also removed this way.
(Y ou can also delete index levels automatically when they are no longer needed. See

Maintaining the System Catalog 11

"U ncataloging a Data Set While Retaining Index Levels (CAT ALOG and CAMLST
UNCAT)" and "Uncataloging a Data Set and Removing Index Levels (CATALOG
and CAMLST UCATDX)" in this chapter for details). You delete each level of the
index by using the INDEX and CAMLST macro instructions.

If an index level either has an alias, or has other index levels or data sets cataloged
under it, it cannot be deleted.

The format is:

Iist-addrx [symbol]

[list-name]

INDEX
CAMLST DL TX,name-relexp, [cvol-relexp]

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

DLTX
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully qualified name of a data set or
index level. The name cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by blanks. The name may be defined by a C-type
Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

Example: In the following example, index level C is deleted from index structure
A.B.C. The search for the index level starts on the system residence volume.

INDEX DELETE
*

Check Exceptional Returns

DELETE CAMLST DLTX,LEVELC
LEVELC DC CL6'A.B.C'

DELETE INDEX LEVEL C FROM
INDEX STRUCTURE A.B.C

ONE BLANK FOR DELIMITER

The INDEX macro instruction points to the CAMLST macro instruction. DL TX, the
first operand of CAMLST, specifies that an index level be deleted. LEVELC\ the
second operand, specifies the virtual storage location of the area into which you have
placed the fully qualified name of the index structure whose lowest level is to be
deleted. Control will be returned to your program at the next executable instruction
following the INDEX macro instruction. If the index level(s) was successfully deleted,
register 15 contains zeros. Otherwise, register 15 contains one of the excep tional
return codes described in "Building an Index (INDEX and CAMLST BLDX)."

Assigning an Alias for an Index (INDEX and CAMLST BLDA)

You assign an alias to an index level by using the INDEX and CAMLST macro
instructions. An alias can be assigned only to a high level index; e.g., index A of index
structure A.B.C can have an alias, but index B cannot. Assigning an alias to a high
level index effectively provides aliases for all data sets cataloged under that index. An
alias cannot be assigned to a generation index with only one level.

12 OS/VS Data Management for System Programmers

The format is:

[symbol]

[list-name]

INDEX
CAMLST

list-addrx

BLDA,index name-re/exp, [cvol-re/exp] ,alias name-re/exp

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

BLDA
this operand must be coded as shown.

index name-relexp
specifies the virtual storage location of the name of a high-level index. The area
that contains the name must be 8 bytes long. The name may be defined by a
C-type Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

alias name-relexp
specifies the virtual storage location of the name that is to be used as an alias for a
high-level index. The area that contains the name must be 8 bytes long. The name
may be defined by a C-type Define Constant (DC) instruction.

Example: In the following example, index level A is assigned an alias of X. The search
for the index level starts on the system residence volume.

*

ALIAS
DSNAME
DSALIAS

INDEX ALIAS

Check Exceptional Returns

BUILD AN ALIAS FOR A HIGH
LEVEL INDEX

CAMLST BLDA,DSNAME"DSALIAS
DC CL8'A' MUST BE 8-BYTE FIELDS
DC CL8'X'

The INDEX macro instruction points to the CAMLST macro instruction. BLDA, the
first operand of CAMLST, specifies that an alias be built. DSNAME, the second
operand, specifies the virtual storage location of an 8-byte area into which you have
placed the name of the high-level index to be assigned an alias. DSALIAS, the fourth
operand, specifies the virtual storage location of an 8-byte area into which you have
placed the alias to be assigned.

Control will be returned to your program at the next executable instruction following
the INDEX macro instruction. If the alias has been successfully assigned, register 15
will contain zeros. Otherwise, register 15 will contain one of the exceptional return
codes described in "Building an Index (INDEX and CAMLST BLDX)."

Deleting an Alias for an Index (INDEX and CAMLST DLTA)

You can delete an alias previously assigned to a high level index by using the INDEX
and CAMLST macro instructions.

The format is:

[symbol]

[list-name]

INDEX
CAMLST

list-addrx

DL TA,alias name-re/exp, [cvol-re/exp]

Maintaining the System Catalog 13

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

DLTA
this operand must be coded as shown.

alias name-relexp
specifies the virtual storage location of the name that is to be used as an alias for a
high-level index. The area that contains the name must be 8 bytes long. The name
may be defined by a C-type Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

Example: In the following example, alias X, previously assigned as an alias for index
level A, is deleted. The search for the alias starts on the system residence volume.

INDEX DELALIAS
*

Check Exceptional Returns

DELALIAS CAMLST DLTA,ALIAS
ALIAS DC CL8'X'

DELETE AN ALIAS FOR A
HIGH LEVEL INDEX

MUST BE 8-BYTE FIELD

The INDEX macro instruction points to the CAMLST macro instruction. DLT A, the
first operand of CAMLST, specifies that an alias be deleted. ALIAS, the second
operand, specifies the virtual storage location of the 8-byte area into which you have
placed the alias to be deleted.

Connecting and Disconnecting Control Volumes

You connect and disconnect control volumes by using combinations of the INDEX and
CAMLST macro instructions.

Connecting Control Volumes (INDEX and CAMLST LNKX)

You connect two control volumes (CVOLs) by using the INDEX AND CAMLST
macro instructions. If a control volume is to be connected to the system residence
volume, you need supply only the serial number of the volume to be connected and the
name of a high level-index associated with the volume to be connected.

If a control volume is to be connected to a control volume other than the system
residence volume, you must supply the serial numbers of both volumes and the name of
a high-level index associated with the volume to be connected.

The result of connecting control volumes is that the volume serial number of the
control volume connected and the name of a high-level index are entered into the
volume index of the volume to which it was connected. This entry is called a control
volume pointer.

The format is:

[symbol]

[list-name]

INDEX
CAMLST

list-addrx

LNKX,index name-relexp,[cvol-relexp] ,new cvol-relexp

14 OS/VS Data Management for System Programmers

list-addrx

points tp the parameter list (labeled list-name) set up by the CAMLST macro
InstructIOn.

LNKX
this operand must be coded as shown.

index name-relexp
specifies the virtual storage location of the name of a high-level index. The area
that contains the name must be 8 bytes long. The name may be defined by a
C-type Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

new cvol-relexp
specifies the virtual storage location of the 4-byte device code and 6-byte volume
serial number of the control volume that is to be connected to another control
volume.

Example: In the following example, the control volume whose serial number is 001555
is connected to the control volume numbered 000155. The name of the high-level
index is HIGHINDX.

INDEX CONNECT CONNECT TWO CONTROL VOLUMES
Check Exceptional Returns

CONNECT
*

CAMLST LNKX,INDXNAME,OLDCVOL

INDXNAME DC
OLDCVOL DC
NEWCVOL DC

DC

CL8'HIGHINDX'
CL6'000155'
X'30C02008'
CL6'001555'

WHOSE SERIAL NUMBERS ARE
000155 AND 001555.

2314 DISK DEVICE CODE

The INDEX macro instruction points to the CAMLST macro instruction. LNKX, the
first operand of CAMLST, specifies that control volumes be connected. INDXNAME,
the second operand, specifies the virtual storage location of the 8-byte area into which
you have placed the name of the high-level index of the volume to be connected.
OLDCVOL, the third operand, specifies the virtual storage location of a 6-byte area
into which you have placed the serial number of the volume to which you are
connecting. NEWCVOL, the fourth operand, specifies the virtual storage location of a
10-byte area into which you have placed the 4-byte binary device code of the volume
to be connected followed by the 6-byte area to contain the volume serial number of the
volume to be connected.

Control will be returned to your program at the next executable instruction following
the INDEX macro instruction. If the control volumes have been successfully
connected, register 15 will contain zeros. Otherwise, register 15 will contain one .Qf the
exceptional return codes described in the section "Building an Index (INDEX and
CAMLST BLDX)."

Disconnecting Control Volumes (INDEX and CAMLST DRPX)

You disconnect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be disconnected from the system residence
volume, you need supply only the name of the high-level index associated with the
volume to be disconnected.

Maintaining the System Catalog 15

If a control volume is to be disconnected from a control volume other than the system
residence volume, you must supply, in addition to the name of the high-level index, the
serial number of the control volume from which you want to disconnect.

The result of disconnecting control volumes is that the control volume pointer is
removed from the volume index of the volume from which you are disconnecting.

The format is:

INDEX Iist-addrx [symbol]

[list-name] CAMLST DRPX,index name-relexp,[cvol-addrx]

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

DRPX
this operand must be coded as shown.

index name-relexp
specifies the virtual storage location of the name of a high-level index. The area
that contains the name must be 8 bytes long. The name may be defined by a
C-type Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

Example: In the following example, the control volume that contains the high-level
index HIGHINDX is disconnected from the system residence volume.

INDEX DISCNECT
*

Check Exceptional Returns

DISCNECT CAMLST DRPX,INDXNAME
INDXNAME DC CL8'HIGHINDX'

DISCONNECT TWO CONTROL
VOLUMES

MUST BE 8-BYTE FIELD

The INDEX macro instruction points to the CAMLST macro instruction. DRPX, the
first operand of CAMLST, specifies that control volumes be disconnected.
INDEXNAME, the second operand, specifies the virtual storage location of the 8-byte
area into which you have placed the name of the high-level index of the control volume
to be disconnected.

Control will be returned to your program at the next executable instruction following
the INDEX macro instruction. If the control volumes were successfully disconnected,
register 15 will contain zeros. Otherwise, register 15 will contain one of the
exceptional return codes described in the section "Building an Index (INDEX and
CAMLST BLDX)."

Working with Data Set Catalogs

You catalog, uncatalog, and recatalog data sets by using combinations of the
CATALOG and CAMLST macro instructions.

When you catalog a data set, the CATALOG macro instruction points to the CAMLST
macro instruction; parameters of the CAMLST macro instruction specify the options
for cataloging a data set. When the CAT parameter is used, all index levels required to

16 OS/VS Data Management for System Programmers

catalog the data set must exist in the catalog. The index structure need not exist when
the CATBX parameter is used; any missing index levels are automatically created.
CATBX does not apply to generation indexes.

You must build a complete volume list in virtual storage. This volume list consists of
an entry for each volume on which the data set is stored. The first two bytes of the list
indicate the number of entries in the volume list; the number cannot be zero. Each
12-byte volume list entry consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The sequence number is always zero
for direct access volumes.

For VS 1 systems, device codes are presented in OS / VS 1 System Data Areas in the
section "The UCBTYP Field in the UCB."

For VS2 systems, device codes are presented in OS/VS2 System Data Areas in the
section "The UCBTYP Field in the UCB."

When you uncatalog or recatalog a data set, you use CATALOG and CAMLST in
much the same way they are used in cataloging.

Cataloging a Data Set When Index Levels Exist (CATALOG and CAMLST CAT)

When the index levels already exist for a data set, you can use the CAT parameter of
the CAMLST macro instruction to catalog the data set. Missing index levels cause an
exceptional return code to be set.

The format is:

[symbol]

[list-name]

list-addrx

CATALOG
CAMLST

list-addrx

CAT,name-relexp, [cvol-relexp] ,vol list-relexp,

[DSCBTTR = dscb ttr-relexp]

points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

CAT
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully qualified name of a data set or
index level. The name cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by blanks. The name may be defined by a C-type
Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list. The area
must begin on a half-word boundary.

DSCBTTR= dscb ttr-relexp
specifies the virtual storage location of the 3-byte relative block address (TTR) of
the format-1 data set control block (DSCB) for a data set that resides on only one
volume. The address is relative to the beginning of the volume.

Example: In the following example, the data set named A.B.C is cataloged under an
existing index structure A.B. The data set is stored on two volumes.

Maintaining the System Catalog 17

*
*

ADDABC
DSNAME
VOLUMES

CATALOG ADDABC

Check Exceptional Returns

CATALOG DATA SET A.B.C.
THE INDEX STRUCTURE A.B
EXISTS

CAMLST CAT, DSNAME , ,VOLUMES
DC CL6'A.B.C' ONE BLANK FOR DELIMITER
DC H'2' DATA SET ON TWO VOLUMES
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000014' VOLUME SERIAL NUMBER
DC H'O' DATA SET SEQUENCE NUMBER
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'OOOOlS' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro instruction . CAT.
the first operand of CAMLST, specifies that a data set be cataloged. DSNAME, the
second operand, specifies the virtual storage location of the area into which you have
placed the fully qualified name of the data set to be cataloged. VOLUMES, the fourth
operand, specifies the virtual storage location of the volume list you have built.

Control will be returned to your program at the next executable instruction following
the CATALOG macro instruction. If your data set has been successfully cataloged,
register 15 will contain zeros. Otherwise, register 15 will contain one of the following
exceptional return codes.

Code Interpretation

4 Either the required control volume was not mounted, or the specified volume
does not contain a catalog data set (SYSCTLG).

8 The existing catalog structure is inconsistent with the operation performed.
(Because the CATALOG macro instruction uses the SEARCH option of the
LOCATE macro instruction, register 1 contains the return code that would be
returned by the LOCATE macro instruction. See the exceptional return
considered as a result of the execution of a LOCATE macro under "Reading a
Block from the Catalog." Register 0 contains the number of the index levels
referred to before the exception was noted.)

12 Not used with the CATALOG macro instruction.

16 The index structure necessary to catalog the data set does not exist.

20 Space is not available on the specified control volume.

24 An attempt was made to catalog an improperly named generation data set, or
the generation index is full and the named data set is older than any currently
in the index.

28 A permanent I/O error was encountered when processing the catalog.

72 The VTOC of a DOS volume could not be converted to OS format.

Cataloging a Data Set by Creating Required Index Levels (CATALOG and CAMLST
CATBX)

When index levels are missing, you can use the CA TBX parameter of the CAMLST
macro instruction to automatically create them before cataloging the data set.

18 OS/VS Data Management for System Programmers

The format is:

[symbol]

[list-name]

CATALOG

CAMlST

list-addrx

CATBX,name-relexp,[cvol-relexp] ,vol list-relexp,

[DSCBTTR = dscb ttr-relexp]

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

CATBX
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully qualified name of a data set or
index level. The name cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by blanks. The name may be defined by a C-type
Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list. The area
must begin on a half-word boundary.

DSCBTTR= dscb ttr-relexp
specifies the virtual storage location of the 3-byte relative block address (TTR) of
the identifier (format-I) DSCB for a data set that resides on only one volume. The
block address is relative to the beginning of the volume.

Example: In the following example, the index structure A.B is created and data set
A.B.C is cataloged. The data set is stored on one volume.

*

CTBXABC
DSNAME
VOLUMES

TTR
*

CATALOG CTBXABC

Check Exceptional Returns

CATALOG DATA SET A.B.C.
CREATE NEEDED INDEX LEVELS

CAMLST CATBX,DSNAME"VOLUMES,DSCBTTR=TTR
DC CL6'A.B.C' ONE BLANK FOR DELIMITER
DC H'l' ONE VOLUME
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000015' VOLUME SERIAL NUMBER
DC H'O' DATA SET SEQUENCE NUMBER
DC XL3'000103' TTR OF DSCB RELATIVE TO

BEGINNING OF VTOC

The CATALOG macro instruction points to the CAMLST macro instruction. CA TBX,
the first operand of CAMLST, specifies that a data set is to be cataloged and any
required higher level indexes are to be created. DSNAME, the second operand,
specifies the virtual storage location of an area into which you have placed the fully
qualified name of the data set to be cataloged. VOLUMES, the fourth operand,
specifies the virtual storage location of the volume list you have built.
DSCBTTR= TTR, the fifth operand, specifies the virtual storage location into which
you have placed the relative track address of the DSCB for the data set to be
cataloged. The DSCBTTR operand is optional and is ignored for data sets residing on
more than one volume.

Maintaining the System Catalog 19

Control will be returned to your program at the next executable instruction following
the CATALOG macro instruction. If the index levels have been successfully created,
register 15 will contain zeros. Otherwise, register 15 will contain one of the
exceptional return codes described in the previous example.

Uncataloging a Data Set While Retaining Index Levels (CATALOG and CAMLST
UNCAT)

When the UNCAT operand of the CAMLST macro instruction is used, a data set
reference is removed, but all index levels are retained.

The format is:

list-addrx [symbol]

[list-name]

CATALOG

CAMLST UNCAT,name-relexp, [cvol-relexp]

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

UNCAT
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully qualified name of a data set or
index level. The name cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by blanks. The name may be defined by a C-type
Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

In the following example, references to data set A.B.C are removed from the catalog.

*

REMOVE
DSNAME

CAT ALOG REMOVE

Check Exceptional Returns

CAMLST
DC

UNCAT,DSNAME
CL6'A.B.C'

REMOVE REFERENCES TO DATA
SET A.B.C FROM CATALOG

ONE BLANK FOR DELIMITER

The CATALOG macro instruction points to the CAMLST macro instruction. UNCAT
specifies that references to a data set be removed from the catalog. DSNAME
specifies the virtual storage location of the area into which you have placed the fully
qualified name of the data set whose references are to be removed.

Uncataloging a Data Set and Removing Index Levels (CATALOG and CAMLST
UCATDX)

When the UCATLiX operand of the CAMLST macro instruction is used, a data set
reference and unneeded indexes, with the exception of the highest-level index, are
removed from the catalog.

20 OS/VS Data Management for System Programmers

The format is:

list-addrx [symbol]
[list-name]

CATALOG
CAMLST UCATDX,name-re/exp, [cvol-re/exp]

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

UCATDX
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully qualified name of a data set or
index level. The name cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by blanks. The name may be defined by a C-type
Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

Example: In the following example, references to data set A.B.C are removed from the
catalog. Index B is removed unless it contains references to other data sets. Index A
remains because it is the highest-level index.

CATALOG RMDSNNDX
*

Check Exceptional Returns

RMDSNNDX CAMLST UCATDX, DSNAME
DSNAME DC CL6'A.B.C'

REMOVE REFERENCES TO DATA
SET A.B.C FROM CATALOG

AND REMOVE UNEEDED INDEXES
ONE BLANK FOR DELIMITER

The CATALOG macro instruction points to the CAMLST macro instruction.
UCATDX, the first operand, specifies that references to a data set be removed from
the catalog. DSNAME, the second operand, specifies the virtual storage location of the
area into which you have placed the fully qualified name of the data set whose
references are to be removed.

Control will be returned to your program at the next executable instruction following
the CATALOG macro instruction. If the data set has been successfully uncataloged
and its related index levels removed, register 15 will contain zeros. Otherwise, register
15 will contain one of the exceptional return codes described in the section titled
"Cataloging a Data Set When Index Levels Exist (CATALOG and CAMLST CAT)."

Recataloging a Data Set (CATALOG and CAMLST RECAT)

You recatalog a cataloged data set by using the CATALOG and CAMLST macro
instructions. Usually, a data set is recataloged when a new volume is added to the data
set.

As in the original cataloging procedure, you must build a complete volume list in virtual
storage. This volume list consists of an entry for each volume on which the data set
resides. The first 2 bytes of the list indicate the number of entries in the list; the
number may not be zero. Each 12-byte volume pointer consists of a 4-byte device

Maintaining the System Catalog 21

code, a 6-byte volume serial number, and a 2-byte data set sequence number. The
sequence number is always zero for direct access volumes.

For VSl systems, device codes are presented in OS/VSl System Data Areas in the
section "The UCBTYP Field in the UCB."

For VS2 systems, device codes are presented in OS/VS2 System Data Areas in the
section "The UCBTYP Field in the UCB."

The format is:

[symbol]
[list-name]

CATALOG
CAMLST

list-addrx
RECAT ,name-relexp, [cvol-relexp], vol list -relexp,
[DSCBTTR = dscb ttr-relexp]

list-addrx
points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

RECAT
this operand must be coded as shown.

cvol-relexp
specifies the virtual storage location of a 6-byte volume serial number for the
volume to be processed. If this parameter is not specified, the system residence
volume is processed.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list. The area
must begin on a half-word boundary.

DSCBTTR= dscb ttr-relexp
specifies the virtual storage location of the 3-byte relative track address (TTR) of
the identifier (format-I) DSCB for a data set that resides on only one volume. The
address is relative to the beginning of the volume.

Example: In the following example, the two-volume data set named A.B.C is
recataloged to add a third volume. An entry is added to the volume list, which
previously contained only two entries.

CATALOG RECATLG
*

Check Exceptional Returns

RECATALOG DATA SET A.B.C
ADDING A NEW VOLUME

RECATLG CAMLST RECAT , DSNAME , ,VOLUMES
DSNAME DC CL6'A.B.C' POINTER TO THE VOLUME LIST.
* FOR DELIMITER ONE BLANK
VOLUMES DC H'3' THREE VOLUMES.

DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000014' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000015' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'000016' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro instruction. RECAT,
the first operand of CAMLST, specifies that a data set be recataloged. DSNAME, the
second operand, specifies the virtual storage location of an area into which you have

22 OS/VS Data Management for System Programmers

placed the fully qualified name of the data set to be recataloged. VOLUMES, the
fourth operand, specifies the virtual storage location of the volume list you have built.

In this example, the entry for the new volume is added to the existing data set pointer
entry by replacing the old volume list with the new volume list. If the total number of
volumes in the data set had been increased to six or more, the data set pointer entry
would have been replaced with a volume control block, which would contain an entry
for each volume of the data set.

Control is returned to your program at the next executable instruction following the
CATALOG macro instruction. If the data set has been successfully recataloged,
register 15 will contain zeros. Otherwise, register 15 will contain on of the exceptional
return codes described in the section "Cataloging a Data Set When Index Levels Exist
(CATALOG and CAMLST CAT)."

Catalog Block Entries

This section describes the format and contents of each of the entries that may appear
in the catalog.

Volume Index Control Entry

Field 1: Name Field 2: 05 Field 4: Field 6: Field 8:
TTR of last C TTR of last TTR of first Unused

X '000000000000000 1 ' block in 0 block in unused block bytes
volume U SYSCTLG in SYSCTLG
index N data set 00 data set 00

T

1 ... :t--________ 7

T:'I Length:

10 2~ :y,:s2 ___ 14 __ 1_5 __ 16 ____ 1_8 __ 1_9 __ 2_0 ___ 2 __ J
The volume index control entry contains information about the entire catalog and the volume index. It
is always the first entry in the catalog. It is 22 bytes long and contains eight fields.

Field 1: Name (8 bytes) - contains only a binary one to ensure that this entry is the first entry in
the first block of the index.

Field 2: Last-block address (3 bytes) - contains the relative track address (TTR) of the last block in
the volume index.

Field 3: Halfword count (1 byte) - contains a binary five to indicate that five halfwords follow.

Field 4: Catalog upper limit (3 bytes) - contains the relative track address (TTR) of the last block in
the catalog data set.

Field 5: Zero field (1 byte) - contains binary zeros.

Field 6: First-available-block address (3 bytes) - contains the relative track address (TTR) of the
unused block in the catalog that is closest to the beginning of the catalog data set.

Field 7: Zero field (1 byte) - contains binary zeros.

Field 8: Unused (2 bytes)

Figure 1. The Volume Index Control Entry

Maintaining the System Catalog 23

Index Control Entry

Field 1: Name Field 2: 03 Field 4: Field 6:
TTR of last TTR of first Unused

X'OOOOOOOOOOOOOO01 ' block in this C block in 001- bytes
index 0 this index «2 ,- :::>

U ..10 «u
N
T

o 7 8 10 11 12 I
..... t------------ Total Length: 18 bytes -----------t.~

This index control entry is quite similar to a volume index control entry, but it only contains
information about the index, which it begins. It is 18 bytes long and contains six fields.

Field 1: Name (8 bytes) - contains only a binary one to ensure that this entry, because it has the
lowest binary name value, is the first entry in the first block of the index.

Field 2: Last block address (3 bytes) - contains the relative track address (TTR) of the last block
assigned to this index.

Field 3: Halfword count (1 byte) - contains a binary three to indicate that 3 halfwords follow.

Field 4: Index lower limit (3 bytes) - contains the relative track address (TTR) of the block in which
this entry appears.

Field 5: Number of aliases (1 byte) - contains the binary count of the number of aliases assigned
to the index. If the index is not a high level index, this field is zero.

Field 6: Unused (2 bytes)

Figure 2. The Index Control Entry

24 OS/VS Data Management for System Programmers

Index Link Entry and Index Pointer Entry

Index Link Entry

Field 1: Name Field 2: 00

X'FFFFFFFFFFFFFFFF' ITR of next
block in C
index 0
(or zero if no U
next block) N

T

0 7 8 10 11

,. Total Length: 12 bytes ..

I ndex Pointer Entry

Field 1: Name Field 2: 00
ITR of Index

Index Name (padded to right C

with blanks if necessary) 0
U
N
T

1

_ 0 7 8 10 111

.... _t------- Total Length: 12 bytes ~

The index link and index pointer entries are quite similar. An index link entry is used to chain several
blocks of an index together, and an index pointer entry is used to chain an index to the next lower
level index. An index link entry is always the last entry in any index block. These blocks contain
three fields and are 12 bytes long.

Field 1: Name (8 bytes) - contains the name of the index to which this entry points. If the entry is
an index link entry, the name field contains X'FF FF FF FF FF FF FF FF.

Field 2: Address (3 bytes) - contains either the relative block address (TTR) of the first block of the
index if it is an index pointer entry, or the relative block address (TTR) of the next block of
the index if it is an index link entry.

Field 3: Halfword count (1 byte) - contains 1 byte of binary zeros to indicate that the entry ends
here.

Figure 3. The Index Link and Index Pointer Entries

Maintaining the System Catalog 25

Data Set Pointer Entry

Field 1: Name Field 2: * Field 4: Field 5: Field 6: Field 7:

Lowest level name of data Dummy Volume Device Code Serial Number of volume Data set

set or complemented generation pointer field: Count on which data set resides sequence
number (if part of GOG) zeros number

(zero for
direct
access)

o 7 8 10 11 12 13 14 17 18 23 24 25

'------------------~-----------------Repeated for each volume

'~ ----------------- Total Length: 26 to 74 bytes ----------------45 'r---+-
* Count: equal to 6 times the number

of volumes, plus 1.

The data set pointer entry can appear in any index. It contains the simple name of a data set and from one to five 12-byte
fields, each of which identifies a volume on which the named data set resides. If the data set resides on more than five
volumes, a volume control block pointer entry is substituted for the data set pointer entry. A volume control block pointer entry
points to a volume control block or chain of volume control blocks that point to the volumes that contain the data set.

The data set pointer entry varies in length. The length is determined by the formula 14 + 12m, where m is the number of
volumes containing the data set. The variable m can be from one to five. The data set pointer entry can appear in any index,
and it contains five fields.

Field 1: Name (8 bytes) - contains the simple name of the data set whose volumes are identified in field 5.

Field 2: Address (3 bytes) - this would normally be the address field, but since a data set pointer entry references no other
entries in the catalog, it contains three bytes of binary zeros.

Field 3: Halfword count (1 byte) - contains the binary count of the number of halfwords that follow. The number is found
by the formula 6m + 1, where m is the number of volumes on which the data set resides. The variable m can be
from one to five.

Field 4: Volume count (2 bytes) - contains the binary count of the number of volumes identified in 'field 5 of this entry.

Field 5: Device code (4 bytes) - contains the device code of the device on which the volume with the volume serial number
in field 6 can be mounted.

For VS1 systems, device codes are presented in OS/VSl System Data Areas in the section "The UCBTYP Field in the
UCB."

For VS2 systems, device codes are presented in OS/VS2 System Data Areas in the section "UCBTYP Field in the
UCB."

Field 6: Volume serial number (6 bytes) - contains the volume serial number of one of the volumes of the data set.

Field 7: Volume sequence number (2 bytes) - contains the sequence number of the data set on a magnetic tape volume. It
is zero for any other device class.

Figure 4. The Data Set Pointer Entry

26 OS/VS Data Management for System Programmers

Volume Control Block Pointer Entry

Field 1: Name Field 2: 01 Field 4:
Lowest level of data set name TTR of C Dummy

Volume 0 data
Control U entry:
Block N zeros

T

1.
0

.... -1----------- Total Length: 14 bytes

7 8 10 11 12 13

The volume control block pointer entry is used instead of a data set pointer entry when the data set
resides on more than five volumes. This entry points to a volume control block, which, in turn,
describes the data set. The entry is 14 bytes long.

Field 1: Name (8 bytes) - contains the last name of the qualified name of the data set identified by
this entry.

Field 2: Address (3 bytes) - contains the relative block address (TTR) of the volume control block
identifying the volumes containing the data set named in field 1.

Field 3: Halfword count (1 byte) - contains a binary one to indicate that one halfword follows.

Field 4: Zero field (2 bytes) - contains binary zeros.

Figure 5. The Volume Control Block Pointer Entry

Maintaining the System Catalog 27

Volume Control Block

C Field 2: Field 3: Field 4: Field 5: Field 6:
0 Device Serial number Data set sequence Ten bytes of zeros TTR of next
U Code of volume n number for the volume control
N volume described block, or zero 00

T in field 5. Zero if none
for direct access

l

0 1 m m+3 m+4 m+9 m+10 m+12 242 251 252 254 255

---- -~ ---Repeated once for each volume; total 6 to 20

.. 5 S Total Length: 256 bytes

A volume control block contains the description of all the volumes of a data set that resides on more than five volumes. One
volume control block can describe as many as 20 volumes. Volume control blocks may be chained together to catalog a data
set residing on more than 20 volumes.

The volume control block is always 256 bytes long, regardless of the number of volumes described.

Field 1: Volume count (2 bytes) - the first volume control block contains the binary count of the total number of volumes
on which the data set resides. The value of this field is reduced by 20 for each subsequent volume control block.
If, for example. the data set resides on 61 volumes, there will be four volume control blocks for the data set. The
volume count field of each will contain 61, 41, 21, and 1, respectively.

...

Fields 2, 3, and 4: Volume identification (12 to 240 bytes) - contains from one to twenty 12-byte entries, each of which
identifies a volume on which the data set resides. Each entry contains a 4-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The data set sequence number is zero for data sets on

Field 5:

Field 6:

direct-access volumes.

Zero field (10 bytes) - contains binary zeros.

Chain address (3 bytes) - contains the relative block address (TTR) of the next volume control block, if additional
blocks are needed to describe the data set. If this is the last volume control block for the data set. this field will be
set to binary zeros.

Field 7: Zero field (1 byte) - contains binary zeros.

Figure 6. The Volume Control Block

28 OS/VS Data Management for System Programmers

Control Volume (CVOL) Pointer Entry

Field 1: Name Field 2: 05 Field 4: Field 5:
Name of index on Dummy pointer C Device Code of Serial number of
other control volume field: zeros 0 control volume control volume

U
N
T

0 7 8 10 11 12 15 16

:11
• Total Length: 22 bytes

NOTE: Prior to release 17, the control volume pointer entry contained a count of 03
and did not have a Device Code field (Field4)

Note: Prior to release 17, the control volume pointer entry contained a count of 03 and did not have
a device code field (field 4).

The CVOL pointer entry is used to indicate that a particular index resides on a volume other than the
system residence volume. Control volume pointer entries can exist only in the volume index. They
are 22 bytes long.

Field 1: Name (8 bytes) - contains a high-level index name that appears in the volume index of the
control volume identified in fields 4 and 5.

Field 2: Address (3 bytes) - contains zeros, because this entry references no other entry in the
catalog.

Field 3: Halfword count (1 byte) - contains the number 5 to indicate that five halfwords follow.

Field 4: CVOL device code (4 bytes) - This field contains the device code of the specified control
volume.

Field 5: CVOL volume serial number (6 bytes) - contains the volume serial number of the control
volume which has an entry in its volume index of the same name as this entry:

Figure 7. The Control Volume (CVOL) Pointer Entry

Maintaining the System Catalog 29

Control Volume Pointer Entry (Old)

Alias Entry

Until Release 17 of OS MFT /MVT, the control volume pointer entry was the same as
the present control volume pointer, except that there was no field 4 (device code). The
old CVOL pointer entry was 18 bytes long; after Release 17, it is 22 bytes long. Since
some control volumes may still contain entries in the old format, and since the catalog
management routines still check for it, it is mentioned here.

Field 1: Name Field 2: 04 Field 4:
Name of alias TTR of Index C Name of high level index

named in field 0 to wh ich th is is an alias
3 U

N
T

0 7 8 10 11 12 19

.. Total Len th: 20 b tes g y ..

The alias entry is used to specify a substitute name for a high-level index. Alias entires only appear in
the volume index. They are 20 bytes long.

Field 1: Name (4 bytes) - contains the alias of the high-level index identified in field 2.

Field 2: Address (3 bytes) - contains the relative block address (TTR) of the first block of the index
named in field 4.

Field 3: Halfword count (1 byte) - contains a binary four to indicate that four halfwords follow.

Field 4: True name field (8 bytes) - contains the name of theindex whose alias appears in field 1.
The address of the index is in field 2.

Figure 8. The Alias Entry

30 OS/VS Data Management for System Programmers

Generation Index Pointer Entry

*1 *2
Field 1: Name Field 2: 02 Field 6:
Name of generation index TTR of C Count of

generation 0 genera-
index U tions

N currently
T in index

1 ...

0 7 8 10 11 12 13 14 1 .. 51

.... -t---------Total Length: 16 bytes --------------..-

*1 Field 4:
Flags: bits meaning

0-5 Reserved
6 Delete
7 Empty

*2 Field 5:
Count of maximum generations to be maintained in index

The generation index pointer entry points to a generation index. It is basically the same as an index
pointer entry, except that is includes the flag and count fields. It is 16 bytes long.

Field 1:

Field 2:

Field 3:

Field 4:

Field 5:

Field 6:

Name (8 bytes) - contains the lowest level name of the generation data group. That is, a
generation data set named WEEKLY.INVNTRY.G0001VOO would have the name INVNTRY
in the generation index pointer entry name field.

Address field (3 bytes) - contains the relative block address (TTR) of the generation index
named in field 1.

Halfword count (i byte) - contains a binary two to indicate that two halfwords follow.

Flags (1 byte) - contains flags that govern the uncataloging of data sets as specified by
the DELETE and EMPTY options of the INDEX macro instruction. The options and their
hexadecimal codes are:

EMPTY = 01, DELETE = 02, and EMPTY and DELETE = 03; if no option was specified
this byte is 00.

Maximum number of generations allowed (1 byte) - contains the binary count of the
maximum number of generations allowed in the index at one time, as specified in the
INDEX macro instruction.

Current generation count (2 bytes) - contains the binary count of the number of
generations cataloged in the index.

Figure 9. The Generation Index Pointer Entry

Maintaining the System Catalog 31

MAINTAINING THE VOLUME TABLE OF CONTENTS

Introduction

This chapter contains information on how to read and change the volume table of
contents (VTOC) used on direct-access storage device volumes. The information
consists of how-to information, macro specifications, and coding examples for the
OBTAIN, SCRATCH, and RENAME macro instructions.

More detailed information about how the routines claled by these macros work is
available in OS/VS DADSM Logic, SY26-3787.

Before using the information in this chapter you should be familiar with the information
contained in the following publications:

OS/VS and DOS/VS Assembler Language, GC33-4010, which contains
information you will need in order to code programs in the assembler language.

OS/VS Data Management Services Guide, GC26-3783, contains a general
description of direct-access device characteristics and the volume table of contents.

OS/VS Utilities, GC35-0005, tells how to use utility programs to maintain the
volume table of contents.

OS/VSl System Data Areas, SY28-0605, contains descriptions, (1) for OS/VSl,
of the data set control block (DSCB) formats and (2) the contents of the fields of
each DSCB.

OS/VS2 System Data Areas, SY28-0606, which contains descriptions, for
OS/VS2, of (1) the data set control block (DSCB) formats and (2) the contents of
the fields of each DSCB.

In the same way that the catalog management routines keep track of cataloged data
sets, the direct-access device space management (DADSM) routines maintain the
volume table of contents (VTOC) on direct-access storage devices. This chapter tells
how to use the OBTAIN, SCRATCH, and RENAME macro instructions. These
macros are most commonly used by the system control program and the data set utility
programs (IEHMOVE, IEBCOPY, and IEHPROGM), but you may use them in your
own routines. The functions you can perform with these macros are:

• Reading a data set control block from the VTOC - OBTAIN
• Deleting a data set - SCRATCH

Changing the name of a data set - RENAME

You can read a data set control block (DSCB) into virtual storage by using the
OBTAIN and CAMLST macro instructions. There are two ways to specify the DSCB
that you want to read: by using the name of the data set associated with the DSCB, or
by using the absolute track address of the DSCB. You must provide a 148-byte data
area in virtual storage, into which the DSCB will be read. When you specify the name
of the data set, an identifier (format-I) DSCB is read into virtual storage. To read a
DSCB other than a format-l DSCB, you must specify an absolute track address (see
second example). (DSCB formats and field descriptions are contained in OS/VSl
System Data Areas and OS / VS2 System Data Areas.)

You can delete a data set by using the SCRATCH and CAMLST macro instructions.
This causes the DSCBs for the data set to be deleted.

Maintaining the Volume Table of Contents 33

You can change a data set name by using the RENAME and CAMLST macro
instructions. This causes the data set name in the identifier (format-I) DSCB for the
data set to be replaced with new name.

Accompanying the descriptions of the macro instructions are coding examples,
programming notes, and exceptional return code descriptions.

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH)

When a data set name is specified, the 96-byte data portion of the identifier (format-I)
DSCB, and the absolute track address of the DSCB are read into virtual storage. The
absolute track address is a 5-byte field in the form CCHHR. When the absolute track
address of a DSCB is specified, the 44-byte key portion and the 96-byte data portion
of the DSCB are read into virtual storage, as shown in the second coding example.

[symbol]

[list-name)

list-addrx

OBTAIN
CAMLST

list-addrx

SEARCH,dsname-relexp,vol-relexp,wkarea-relexp

points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

SEARCH
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The area
that contains the name must be 44 bytes long. The name must be defined by a
C-type Define Constant (DC) instruction.

vol-relexp
specifies the virtual storage location of the 6-byte volume serial number of the
volume on which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a I48-byte work area that you must define.
The work area must begin on a doubleword boundary.

Example: In the following example, the identifier (format-I) DSCB for data set A.B.C
is read into virtual storage using the SEARCH option. The serial number of the
volume containing the DSCB is 770655.

OBTAIN
*

DSCBABC READ DSCB FOR DATA
SET A.B.C INTO DATA

Check Exceptional Returns

DSCBABC CAMLST
DSABC DC
VOLNUM DC
WORKAREA DS

DS
*

SEARCH, DSABC,VOLNUM,WORKAREA
CL44'A.B.C' AREA NAMED WORKAREA.
CL6'770655' 96-BYTE DATA PORTION IS
OD READ. THE REST OF THE AREA
148C IS USED BY THE OBTAIN

ROUTINE

The OBT A!N macro instruction points to the CAMLST macro instruction. SEARCH,
the first operand of CAMLST, specifies that a DSCB be read into virtual storage, using
the data set name you have supplied at the address indicated in the second operand.
DSABC, the second operand, specifies the virtual storage location of a 44-byte area

34 OS/VS Data Management for System Programmers

into which you have placed the fully qualified name of the data set whose format-1
DSCB is to be read. VOLNUM, the third operand, specifies the virtual storage
location of a 6-byte area into which you have placed the serial number of the volume
containing the required DSCB. WORKAREA, the fourth operand, specifies the virtual
storage location of a 148-byte work area into which the DSCB is to be read.

Control will be returned to your program at the next executable instruction following
the OBTAIN macro instruction. If the DSCB has been successfully read into your
work area, register 15 will contain zeros. Otherwise, register 15 will contain one of the
following exceptional return codes:

Code Interpretation

4 The required volume was not mounted.
8 The format-1 DSCB was not found in VTOC of specified volume.
12 A permanent I/O error was found when processing the specified volume.
16 Invalid workarea pointer.

After execution of these macro instructions, the first 96 bytes of the work area contain
the data portion of the identifier (format 1) DSCB; the next 5 bytes contain the
absolute track address (CCHHR) of the DSCB.

Reading a DSCB by Actual Device Address (OBTAIN and CAMLST SEEK)

You can read any DSCB from a VTOC using the SEEK option.

The format is:

[symbol]

[list-name]

list-addrx

OBTAIN

CAMLST

list-addrx

SEEK,cchhr-relexp, vol-relexp, wkarea-relexp

points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

SEEK
this operand must be coded as shown.

cchhr-relexp
specifies the virtual storage location of the 5-byte absolute device address
(CCHHR) of a DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume serial number of the
volume on which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 148-byte work area that you must define.
The ~ork area must begin on a doubleword boundary.

Example: In the following example, the DSCB at actual-device address X'OO 00 00 01
07' is read into the virtual storage location READAREA, using the SEEK option. The
DSCB resides on the volume with the volume serial number 108745.

The OBTAIN macro points to the CAMLST macro. SEEK, the first operand of
CAMLST, specifies that a DSCB be read into virtual storage. MBBCCHHR, the
second operand, specifies the storage location that contains the 5-byte actual-device

Maintaining the Volume Table of Contents 35

OBTAIN
*

ACTADDR READ THE DSCB AT ACTUAL
DEVICE INTO

Check Exceptional Returns

ACTADDR CAMLST
CCHHR DC
VOLSER DC
READAREA DS

DS
*

SEEK,CCHHR,VOLSER,READAREA RETURNS
XL5'0000000107' STORAGE LOCATION NAMED
CL6'108745' WORKAREA. 140-BYTE DSCB IS
OD READ. THE LAST 8 BYTES OF
148C READAREA IS USED BY THE

OBTAIN ROUTINE.

address of the DSCB. VOLSER, the third operand specifies the storage location that
contains the volume serial number of the volume on which the DSCB resides. The
fourth operand, READAREA, specifies the storage location into which the 140-byte
DSCB is to be read. The last 8 bytes are used by the OBTAIN routine.

Control will be returned to your program at the next executable instruction following
the OBTAIN macro instruction. If the DSCB has been successfully read into your
work area, register 15 will contain zeros. Otherwise, register 15 will contain one of the
following exceptional return codes:

Code Interpretation

4 The required volume was not mounted.

8 The format-l DSCB was not found in VTOC of specified volume.

12 A permanent I/O error was found when processing the specified volume.

16 Invalid workarea pointer.

Deleting a Data Set (SCRATCH and CAMLST SCRATCH)

You delete a data set stored on direct-access volumes by using the SCRATCH and
CAMLST macro instructions. This causes all data set control blocks (DSCBs) for the
data set to be deleted, and all space occupied by the data set to be made available for
reallocation. If the data set to be deleted is sharing one or more cylinders with one or
more data sets (a split-cylinder data set), the space will not be made available for
reallocation until all data sets on the shared cylinders are deleted.

A data set cannot be deleted if the expiration date in the identifier (format-I) DSCB
has not passed, unless you choose to ignore the expiration date. You specify that the
expiration date is to be ignored by using the OVRD option in the CAMLST macro
instruction.

If a data set to be deleted is stored on more than one volume, either a device must be
available on which to mount the volumes, or at least one volume must be mounted. In
addition, all other required volumes must be serially mountable.

When deleting a data set, you must build a volume list in virtual storage. This volume
list consists of an entry for each volume on which the data set resides. The first two
bytes of the list indicate the number of entries in the list. Each 12-byte entry consists
of a 4-byte device code, a 6-byte volume serial number, and a 2-byte scratch status
code. Device codes are presented in OS/VSl System Data Areas and in OS/VS2
System Data Areas in the sections titled "The UCBTYP Field of the UCB."

Volumes are processed in the order that they appear in the volume list. The volume at
the beginning of the list is processed first. If a volume is not mounted, a message is

36 OS/VS Data Management for System Programmers

issued to the operator requesting him to mount the volume. This is only done if you
indicate the direct access device on which unmounted volumes are to be mounted by
loading register 0 with the address of the UCB associated with the device to be used.
If you do not load register 0 with a UCB address, its contents must be zero, and at
least one of the volumes in the volume list must be mounted before the SCRATCH
macro instruction is issued.

If the operator cannot mount the requested volume, he issues a reply indicating that he
cannot fulfill the request. A condition code is then set in the last byte of the volume
pointer (the second byte of the scratch status code) for the unavailable volume, and the
next volume indicated in the volume list is processed.

The format is:

[symbol]

[list-name]

list-addrx

SCRATCH
CAMLST

list-addrx

SCRATCH,dsname-relexp,vol Iist-relexp,,[OVRD]

points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

SCRATCH
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The area
that contains the name must be 44 bytes long. The name must be defined by a
C-type Define Constant (DC) instruction.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list. The area
must begin on a half-word boundary.

OVRD
when coded as shown, specifies that the expiration date in the DSCB should be

ignored.

Example: In the following example, data set A.B.C is deleted from two volumes. The
expiration date in the identifier (format 1) DSCB is ignored.

*

DELABC
DSABC
VOLIST

SR 0,0 SET REG 0 TO ZERO
DELETE DATA SET SCRATCH DELABC
A.B.C. FROM TWO VOLUMES,

Check Exceptional Returns

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC

SCRATCH,DSABC"VOLIST"OVRD
CL44'A.B.C' IGNORING THE EXPIRATION
H' 2' DATE IN THE DSCB.
X'30C02008' 2314 DISK DEVICE CODE
CL6'000017' VOLUME SERIAL NO.
H'O' SCRATCH STATUS CODE
X'30C02008' 2314 DISK DEVICE CODE
CL6'000018' VOLUME SERIAL NO.
H'O' SCRATCH STATUS CODE

The SCRATCH macro instruction points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that a data set be deleted.
DSABC, the second operand, specifies the virtual storage location of a 44-byte area

Maintaining the Volume Table of Contents 37

into which you have placed the fully qualified name of the data set to be deleted.
VOLIST, the fourth operand, specifies the virtual storage location of the volume list
you have built. OVRD, the sixth operand, specifies that the expiration date in the
DSCB of the data set to be deleted be ignored.

When you attempt to delete a password-protected data set, the operating system issues
a message (IEC301A) to ask the operator at the console or terminal operator of a
remote console to enter the password. The data set will be scratched only if the
password supplied is associated with a "WRITE" protection mode indicator. The
protection word indicator is described in the chapter titled "Data Set Protection."

Control is returned to your program at the next executable instruction following the
SCRATCH macro instruction. If the data set has been successfully deleted, register 15
will contain zeros and the scratch status code in the volume list entry for each volume
will be set to zero. Otherwise, register 15 will contain one of the exceptional return
codes that follow. To determine whether the data set has been successfully deleted
from each volume on which it resides, you must examine the scratch status code, the
last byte of each entry in the volume list.

Code Interpretation
in
Reg. 15

4

8

No volumes containing any part of the data set were mounted, nor did register
o contain the address of a unit that was available for mounting a volume of
data set.

An unusual condition was encountered on one or more volumes.

After the SCRATCH macro instruction is executed, the last byte of each 12-byte entry
in the volume list indicates the following conditions in binary codes:

Scratch
Status
Code Interpretation

o The DSCB for the data set has been deleted from the VTOC on the volume
pointed to.

1 The VTOC of this volume does not contain the format-1 DSCB for the data
set to be deleted.

2 The macro instruction failed when the correct password was not supplied in the
two attempts allowed.

3 The data set was not deleted from this volume because either the OVRD
option was not specified or the retention cycle has not expired.

4 A permanent I/O error was found when processing this volume.

5 A device for mounting this volume was unavailable.

6 The operator was unable to mount this volume.

Renaming a Data Set (RENAME and CAMLST RENAME)

You rename a data set stored on one or more direct-access volumes by using the
REN AME and CAMLST macro instructions. This causes the data set name in all
identifier (format-I) DSCBs for the data set to be replaced by the new name that you
supply.

38 OS/VS Data Management for System Programmers

If a data set to be renamed is stored on more than one volume, either a device must be
available on which to mount the volumes, or at least one volume must be mounted. In
addition, all other volumes of the data set must be serially mountable.

When renaming a data set, you must build a volume list in virtual storage. This volume
list consists of an entry for each volume on which the data set resides. The first two
bytes of the list indicate the number of entries in the list. Each 12-byte volume list
entry consists of a 4-byte device code, a 6-byte volume serial number, and a 2-byte
rename status code. Device codes are presented in OS/VSl System Data Areas and
in OS/VS2 System Data Areas in the sections titled "The UCBTYP Field of the
UCB." Volumes are processed in the order they appear in the volume list. The first
volume on the list is processed first. If a volume is not mounted, a message is issued to
the operator requesting him to mount the volume. This "is only done if you indicate the
direct-access device on which unmounted volumes are to be mounted by loading
register 0 with the address of the UCB associated with the device to be used. If you
do not load register 0 with a UCB address, its contents must be zero, and at least one
of the volumes in the volume list must be mounted before the RENAME macro
instruction is executed.

If the operator cannot mount a volume in the volume list, he issues a reply indicating
that he cannot fulfill the request. A condition code is then set in the last byte of the
volume list entry (the second byte of the rename status code) for the unavailable
volume, and the next volume indicated in the volume list is processed or requested.

The format is:

[symbol]
[list-name]

list-addrx

RENAME
CAMLST

list-addrx
RENAME,dsname-relexp,new name-relexp,vollist-relexp

points to the parameter list (labeled list-name) set up by the CAMLST macro
instruction.

RENAME
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The area
that contains the name must be 44 bytes long. The name must be defined by a
C-type Define Constant (DC) instruction.

new name-relexp
specifies the virtual storage location of a fully qualified data set name that is to be
used as the new name. The area that contains the name must be 44 bytes long.
The name must be defined by a C-type Define Constant (DC) instruction.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list. The area
must begin on a halfword boundary.

Example: In the following example, data set A.B.C is renamed D.E.F. The data set
resides on two volumes.

The RENAME macro instruction points to the CAMLST macro instruction.
RENAME, the first operand of CAMLST, specifies that a data set be renamed.
OLDNAME, the second operand, specifies the virtual storage location of a 44-byte
area into which you have placed the fully qualified name of the data set to be renamed.

Maintaining the Volume Table of Contents 39

*

SR
RENAME

0,0
DSABC

Check Exceptional Returns

SET REG 0 TO ZERO
CHANGE DATA SET
NAME A.B.C. TO D.E.F

DSABC
OLDNAME
NEWNAME
VOLIST

CAMLST RENAME,OLDNAME,NEWNAME,VOLIST
DC CL44'A.B.C'
DC CL44'D.E.F'
DC H' 2'
DC X'30C02008'
DC CL6'000017'
DC H'O'
DC X'30C02008'
DC CL6'000018'
DC H' 0'

TWO VOLUMES
2314 DISK DEVICE CODE
VOLUME SERIAL NO.
RENAME STATUS CODE
2314 DISK DEVICE CODE
VOLUME SERIAL NO.
RENAME STATUS CODE

NEWNAME, the third operand, specifies the virtual storage location of a 44-byte area
into which you have placed the new name of the data set. VOLIST, the fourth
operand, specifies the virtual storage location of the volume list you have built.

Control is returned to your program at the next executable instruction following the
RENAME macro instruction. If the data set has been successfully renamed, register 15
will contain .zeros, and the rename status code in the volume list entry for each volume
will be set to zero. Otherwise, register 15 will contain one of the exceptional return
codes that follow. To determine whether the data set has been successfully renamed
on each volume on which it resides, you must examine the rename status code, the last
byte of each entry in the volume list.

Return Interpretation
Code in
Reg. 15

4 No volumes containing any part of the data set were mounted, nor did register
o contain the address of a unit that was available for mounting a volume of the
data set.

8 An unusual condition was encountered on one or more volumes.

After the RENAME macro instruction is executed, the last byte of each 12-byte entry
in the volume list indicates the following conditions in binary code:

Rename
Status
Code Interpretation

o The DSCB for the data set has been renamed in the VTOC on the volume
pointed to.

1 The VTOC of this volume does not contain the format-1 DSCB for the data
set to be renamed.

2 The macro instruction failed when the correct password was not supplied in the
two attempts allowed.

3 A data set with the new name already exists on this volume.

4 A permanent I/O error was found when processing this volume.

5 A device for mounting this volumes was unavailable.

6 The operator was unable to mount this volume.

When you attempt to rename a password-protected data set, the operating system
issues a message (IEC301A) to ask the operator or remote console operator to verify

40 OS/VS Data Management for System Programmers

the password. The data set will be renamed only if the password supplied is associated
with a "WRITE" protection mode indicator. The chapter titled "Data Set Protection"
provides a description of the protection mode indicator.

Maintaining the Volume Table of Contents 41

EXECUTING YOUR OWN CHANNEL PROGRAMS (EXCP)

The execute channel program (EXCP) macro instruction provides you with a
device-dependent means of performing the I/O operations. This chapter contains a
general description of the function and application of the EXCP macro instruction,
accompanied by descriptions of specific control blocks and macro instructions used with
EXCP. Factors that affect the operation of EXCP, such as device variations and
program modification, are also discussed.

Before reading this chapter, you should be familiar with system functions and with the
structure of control blocks, as well as with the operational characteristics of the I/O
devices required by your channel programs. Operational characteristics of specific I/O
devices are contained in IBM publications for each device.

To understand this chapter, you need to understand the information in these
publications:

OS/VS Data Management Services Guide,- GC26-3783, explains the standard
procedures for I/O processing under the operating system.

OS/VS and DOS/VS Assembler Language, GC33-4010, contains the
information necessary to code programs in the assembler language.

OS/VS Data Management Macro Instructions, GC26-3793, describes the system
macro instructions that can be used in programs coded in the assembler language.

OS/VSl System Data Areas, SY28-0605, contains format and field descriptions,
for OS/VS 1, of the system control blocks referred to in this chapter.

OS/VS2 System Data Areas, SY28-0606, contains format and field descriptions,
for OS/VS2, of the system control blocks referred to in this chapter.

The execute channel program (EXCP) macro instruction causes a supervisor-call
interruption to pass control to the I/O supervisor. EXCP also provides the I/O
supervisor with control information regarding a channel program to be executed. When
the IBM standard data access methods are being used, the access method routines are
responsible for issuing EXCP. If you are not using the standard access methods, you
may issue EXCP in your program. Direct use of EXCP provides you with device
dependence in organizing data and controlling I/O devices.

You issue EXCP primarily for I/O programming situations to which the standard
access methods do not apply. When you are writing your own data access methods,
you must include EXCP for I/O operations. EXCP must also be used for processing
nonstandard labels, including reading and writing labels and positioning magnetic tape
volumes.

To issue EXCP, you must provide a channel program (a list of channel command
words) and several control blocks in your program area. The I/O supervisor then
schedules I/O requests for the device you have specified, executes the specified I/O
commands, handles I/O interruptions, directs error recovery procedures, and posts the
results of the I/O requests.

Executing Channel Programs in System and Problem Programs

This section briefly explains the procedures performed by the system and the
programmer when EXCP is issued by the routines of the standard data access methods.

Executing Your Own Channel Programs (EXCP) 43

The additional procedures that you must perform when issuing EXCP yourself are then
described by direct comparison.

System Use of EXCP

When using a standard data access method to perform I/O operations, the programmer
is relieved of coding channel programs and' of constructing the control blocks necessary
for the execution of channel programs. To permit I/O operations to be handled by an
access method, the programmer need only issue the following macro instructions:

A DCB macro instruction that produces a data control block (DCB) for the data set
to be retrieved or stored. If appendages are not being used, a short DCB is
constructed. Such a DCB does not support reduced error recovery.

An OPEN macro instruction that initializes the data control block and produces a
data extent block (DEB) for the data set.

A macro instruction (e.g., GET, WRITE) that requests I/O operations.

Access method routines will then:

l. Create a channel program that contains channel commands for the I/O operations
on the appropriate device.

2. Construct an input/output block (lOB) that contains information about the
channel program.

3. Construct an event control block (ECB) that is later posted with a completion
code each time the channel program terminates.

4. Issue an EXCP macro instruction to pass the address of the lOB to the routines
that initiate and supervise the I/O operations.

The input/output supervisor will then:

5. Construct a request queue element (RQE) for scheduling the request.

6. If the requestor is in pageable partition, fix the pages to be referenced during the
I/O operation so that they cannot be paged out; this includes pages for I/O
control blocks and appendages.

7. If the requestor is in a page able partition, translate the requestor's virtual channel
program into a real channel program in the System Queue Area and fix the pages
to be used as data areas during the I/O operation.

8. Issue a start input/output (SIO) instruction to cause the channel to execute the
real channel program.

9. Process I/O interruptions and schedule error recovery procedures when necessary.

10. If the requestor is in a pageable partition, retranslate the "last CCW + 8" address
in the channel status word (CSW) to the corresponding virtual address.

11. If the requestor is in a page able partition, free the real storage used for the channel
program translation and unfix the pages that were fixed especially for the just
completed I/O operation.

12. Post a completion code in the event control block after the channel program has
been executed.

Note: If the requestor is in a nonpageable partition, he provides a real channel
program, so items 6, 7, 10, and 11 are not performed.

44 OS/VS Data Management for System Programmers

The programmer is not concerned with these procedures and does not know the status
of I/O operations until they are completed. Device-dependent operations are limited to
those provided by the macro instructions of the particular access method selected.

Use of EXCP in Problem Programs

To issue the EXCP macro instruction directly, you must perform the procedures that
the access methods perform, as summarized in items 1 through 4 of the preceding
discussion. You must, in addition to constructing and opening the data control block
with the DCB and OPEN macro instructions, construct a channel program, an
input/ output block, and an event control block before you can issue EXCP. The I/O
supervisor always handles items 5 through 12.

After issuing EXCP, you should issue a WAIT macro instruction specifying the event
control block to determine whether the channel program has terminated. If volume
switching is necessary, you must issue an EOV macro instruction. When processing of
the data set has been completed, you must issue a CLOSE macro instruction to restore
the data control block.

EXCP Operations in a Nonpageable Region

User-constructed channel programs for I/O operations in a nonpageable region are not
translated. Because the partition is nonpageable, any CCWs created by the user have
correct real data addresses. (Translation would only recreate the user's channel
program, so the CCWs are used directly.)

System requests for I/O on behalf of a user, however, do not always operate in the
user's nonpageable region. These requests make use of areas with a protection key of
0, which are pageable. Therefore, system requests for I/O on behalf of the user can
require translation.

Modification of an active channel program by data read in or by CPU instructions is
legitimate in a nonpageable region, but not in a pageable region. Refer to the section
"Modification of a Channel Program During Execution".

EXCP Requirements

Channel Program

This section describes the channel program that you must provide in order to issue
EXCP. The control blocks that you must either construct directly, or cause to be
constructed by use of macro instructions, are also described.

The channel program supplied by you and executed through EXCP is composed of
channel command words (CCWs) on doubleword boundaries. Each channel command
word specifies a command to be executed and, for commands initiating data transfer,
the area to or from which the data is to be transferred. Channel programs to be
executed under VS 1 in a pageable partition are restricted to no more than 240 CCWs.
The I/O supervisor abnormally terminates an I/O requestor requiring translation of a
channel program exceeding that limit. No such restriction applies to channel programs
to be executed under VS2.

Channel command word formats used with specific I/O devices can be found in IBM
Systems Reference Library publications for each device. All channel command words

Executing Your Own Channel Programs (EXCP) 45

Control Blocks

described in these publications can be used, with the exception of REWIND and
UNLOAD (RUN). In addition, both data chaining and command chaining may be
used.

Chaining is the successive loading of channel command words into a channel from
contiguous doubleword locations in real storage. Data chaining occurs when a new
channel command word loaded into the channel defines a new storage area for the
-original I/O operation. Command chaining occurs when the new channel command
word specifies a new I/O operation. For detailed information about chaining, refer to
IBM System/3 70 Principles of Operation, GA22-7000.

To specify either data chaining or command chaining, you must set appropriate bits in
the channel command word, and indicate the type of chaining in the input/output
block. Both data and command chaining should not be specified in the same channel
command word; if they are, data chaining takes precedence.

When a channel program includes a list of channel command words that chain data for
reading operations, no channel command word may alter the contents of another
channel command word in the same list. (If such alteration were allowed,
specifications could be placed into a channel command word without being checked for
validity. If the specifications were incorrect, the error could not be detected until the
chain was completed. Data could be read into incorrect locations and the system could
not correct the error.)

When using EXCP, you must be familiar with the function and structure of an
input/output block (lOB), an event control block (ECB), a data control block (DCB),
and a data extent block (DEB). Brief descriptions of these control blocks follow.
Their fields are illustrated in the section "Macro Specifications for Use with EXCP."

Input/Output Block (lOB)

The input/output block is used for communication between the problem program and
the system. It provides the addresses of other control blocks, and maintains
information about the channel program, such as the type of chaining and the progress
of I/O operations. You must define the input/output block and specify its address as
the only parameter of the EXCP macro instruction.

Event Control Block (ECB)

The event control block provides you with a completion code that describes whether
the channel program was completed with or without error. AWAIT macro instruction
for synchronizing I/O operations with the problem program must be directed to the
event control block. You must define the event control block and specify its address in
the input/output block.

Data Control Block (DCB)

The data control block provides the system with information about the characteristics
and processing requirements of a data set to be read or written by the channel
program. A data control block must be produced by a DCB macro instruction that
includes parameters for EXCP. If appendages are not being used, a short DCB is
constructed. Such a DCB does not support reduced error recovery. You specify the
address of the data control block in the input/output block.

46 OS/VS Data Management for System Programmers

Data Extent Block (DEB)

The da.ta extent block contains one or more extent entries for the associated data set,
as well as other control information. An extent defines all or part of the physical
boundaries on an I/O device occupied by, or reserved for, a particular data set. Each
extent entry contains the address of a unit control block (UCB), which provides
information about the type and location of an I/O device. More than one extent entry
can contain the same UCB address. (Unit control blocks are set up at system
generation time and need not concern you.) For all I/O devices supported by the
operating system, the data extent block is produced during execution of the OPEN
macro instruction for the data control block. The system places the address of the data
extent block into the data control block.

Channel Program Execution

This section explains how the system uses your channel program and control blocks
after you issue EXCP.

Initiation of the Channel Program

By issuing EXCP, you request the execution of the channel program specified in the
input/ output block. The I/O supervisor validates the request by checking certain fields
of the control blocks associated with this request. If the I/O supervisor detects invalid
information in a control block, it initiates abnormal termination procedures.

The I/O supervisor gets:

the address of the data control block from the input/output block

the address of the data extent block from the data control block

the address of the unit control block from the data extent block

The I/O supervisor places the lOB, TCB, DEB, and UCB addresses and other
information about the channel program into an area called a request queue element
(ROE). The I/O supervisor uses ROEs to form logical channel queues of scheduled
I/O operations. Unless you are providing appendage routines (described in the section
"Appendages"), you should not be concerned with the contents of ROEs.

If you are operating in a page able partition, the I/O supervisor now prepares to
translate your virtual channel program into a real channel program. It does this by
initializing translation tables and fixing the pages containing the control blocks
associated with your request. If you are providing appendages, the I/O supervisor also
passes control to your page fix appendage to permit you to specify the pages that must
be fixed to prevent page exceptions from occurring during execution of one of your
appendages. (A page exception during appendage execution causes abnormal
termination.) The I/O supervisor then fixes the pages you specify upon return from
your page fix appendage.

Next the I/O supervisor determines whether a channel and the requested I/O device
are ready for the channel program. If they are not ready, the ROE is placed in the
appropriate logical channel queue, and control is returned to the problem program.
Later, when a channel and device are ready, the I/O supervisor resumes control to start
the I/O operation.

Executing Your Own Channel Programs (EXCP) 47

If you have provided a start I/O (SIO) appendage, the I/O supervisor now passes
control to it. The return address from the SIO appendage determines whether the I/O
supervisor must:

execute the I/O operation normally,
skip the I/O operation, or
perform extended translation on the channel program before beginning the
I/O operation.

See "Appendages" in this chapter for a description of the SIO appendage and its
linkage to the I/O supervisor.

If you are issuing EXCP from in a pageable partition, the channel program you
construct contains virtual addresses. However, because channels cannot use virtual
addresses, the I/O supervisor must:

translate your virtual channel program into one that uses only real addresses, and

fix in real storage the pages used as I/O areas for the data transfer operations
specified in your channel program.

The I/O supervisor builds the translated (real) channel program in a portion of real
storage called the System Queue Area. If the I/O device is other than a 2314 or 2319
direct-access device or a magnetic tape device, the I/O supervisor then places the
address of the start of the translated channel program into the channel address word
(CAW) and issues a start input/output (SIO) instruction.

Before issuing the SIO instruction for a 2314 or 2319 direct-access device, the I/O
supervisor issues an initial (or stand-alone) seek, which is overlapped with other
operations. You specify the seek address in the input/output block. When the seek
has completed, the I/O supervisor constructs a command chain to reissue the seek, sets
the file mask specified in the data extent block, and passes control to your real channel
program. (When using OS/VS, you cannot issue the initial seek or set the file mask
yourself. The file mask is set to prohibit Seek Cylinder commands, or, if space is
allocated by tracks, Seek Track commands. If the data set is open for INPUT or
RDBACK, Write commands are also prohibited.)

Before issuing SIO for a magnetic tape device, the I/O supervisor constructs a
command chain to set the mode specified in the data extent block and passes control to
your real channel program. (When using OS/VS, you cannot set the mode yourself.)

ltlodification of a Channel Program During Execution

Any user problem program that modifies an active channel program by data read in by
either the I/O operation or by CPU instructions must be run in a nonpageable
partition. It cannot run in a pageable partition because of the channel program
translation performed by the I/O supervisor. (In a pageable partition, an attempt to
modify an active channel program affects only the virtual image of the channel
program, not the real channel program being executed by the channel.)

A program of this type can be changed to run in a page able partition by either:

executing the modified portion of the channel program as a separate I/O
operation, or

using the SIO Extend and PCI Modify appendage interfaces of the I/O supervisor,
described in the section on appendages.

48 OS/VS Data Management for System Programmers

Completion of Execution

The system considers the channel program completed when it receives an indication of
a channel end condition in the channel status word (eSW). When channel end occurs,
the request element for the channel program is made available, and a completion coqe
is placed into the event control block. The completion code indicates whether errors
are associated with channel end. If device end occurs simultaneously with channel end,
errors associated with device end (i.e., unit exception or unit check) are also accounted
for.

If device end occurs after channel end and an error is associated with device end, the
completion code in the event control block does not indicate the error. However, the
status of the unit and channel is saved in the unit control block (UeB) for the device,
and the UeB is marked as intercepted. The input/output block for the next request
directed to the I/O device is also marked as intercepted. The error is assumed to be
permanent, and the completion code in the event control block for the intercepted
request indicates interception. The IFLGS field of the data control block is also
flagged to indicate a permanent error. Note that when a Write Tape Mark or Erase
Long Gap eew is the last (or only) eew in your channel program, the I/O
supervisor will not attempt recovery procedures for device end errors. In these
circumstances, command chaining a NOP cew to your Write Tape Mark or Erase
Long Gap ecw ensures initiation of device end error recovery procedures.

To be prepared for device end errors, you should be familiar with device characteristics
that can cause such errors. After one of your channel programs has terminated, you
should not release buffer space until you have determined that your next request for
the device has not been intercepted. You may reissue an intercepted request.

Interruption Handling and Error Recovery Procedures

An I/O interruption allows the CPU to respond to signals from an I/O device which
indicate either termination of a phase of I/O operations or external action on the
device. A complete explanation of I/O interruptions is contained in IBM System/3 70
Principles of Operation, GA22-7000. For descriptions of interruptions by specific
devices, refer to IBM publications for each device.

If error conditions are associated with an interruption, the I/O supervisor schedules the
appropriate device-dependent error routine. The channel is then restarted with another
request that is not related to the channel program in error. (The paragraphs following
this one under this topic discuss "related" channel programs.) If the error recovery
procedures fail to correct the error, the system places ones in the first two bit positions
of the IFLGS field of the data control block. You are informed of the error by an
error code that the system places into the event control block.

Related channel programs are requests that are associated with a particular data control
block and data extent block in the same job step. They must be executed in a definite
order, i.e., the order in which the requests are received by the I/O supervisor. A
channel program is not started until all previous requests for related channel programs
have been completed. You specify, in the input/output block, whether the channel
program is related to others.

If a permanent error occurs in a channel program that is related to other requests, the
request elements for all the related channel programs are removed from their queue and
made available. This process is called purging. The addresses of the input/output
blocks for the related channel programs are chained together, with the address of the

Executing Your Own Channel Programs (EXCP) 49

Appendages

first input/output block in the chain placed into the DEBUSPRG field of the data
extent block. The address of the second input/output block is placed into the
IOBRESTR field of the first input/output block, and so on. The last input! output
block in the chain is indicated by all ones in the last byte of the IOBRESTR field. The
chain defines the order in which the request elements for the related channel programs
are removed from the request queue.

For all requests related to the channel program in error, the system places completion
codes into the event control blocks. The DCBIFLGS field of the data control block is
also flagged. Any requests for a data control block with error flags are posted
complete without execution. To reissue requests related to the channel program in
error, you must reset the first two bits of the DCBIFLGS field of the data control
block to zeros. You then issue a RESTORE macro instruction, specifying, as the only
parameter, the address of the DEBUSPRG field of the data extent block. This causes
execution of all the related channel programs. (The RESTORE macro definition and
how to add it to the macro library are in "System macro Instructions.") Alternatively,
to restart only particular channel programs rather than all of them, you may reissue
EXCP for each channel program desired.

This section discusses the appendages that you may optionally code when using EXCP.
Before a programmer-written appendage can be executed, it must be included in the
SVC library. These procedures are explained first; descriptions of the routines
themselves and of their coding specifications follow.

An appendage must be a member of the SVC library. The full member name of an
appendage is eight bytes in length, but the first six bytes are required by IBM standards
to be the characters IGG019. The last two characters must be provided by you as an
identification; they may range in collating sequence from WA to Z9.

The SVC library is a partitioned data set named SYS 1.SVCLIB. If you are using VS 1,
you can insert an appendage into the SVC library during the system generation process
or by link-editing it into the SYSl.SVCLIB. If you are using VS2, you can insert an
appendage into SYSl.LPALIB when you generate your system, or you can link-edit the
appendage into SYS 1.LP ALIB.

To enter a routine into the SVC library during system generation, use the SVCLIB
macro instruction, which is described in OS/VSl System Generation Reference,
GC26-3791.

To enter an appendage into OS/VS2 during system generation, use the LP ALIB macro,
which is described in OS/VS2 System Generation Reference, GC26-3792.

An appendage is a programmer-written routine that provides additional control over
I/O operations. By providing appendages, you can examine the status of I/O
operations and determine the actions to be taken for various conditions. An appendage
may receive control when one of the following occurs:

Page fixing
Start I/O
Program controlled interruption
End of extent
Channel end
Abnormal end

50 OS/VS Data Management for System Programmers

An appendage is executed in supervisor state. An appendage must not issue any SVC
instructions or instructions that change the status of the computing or operating system
(for example, WTO, LPSW, or any privileged instructions). Because an appendage
runs disabled for all types of interrupts except for machine checks, it must not enter
loops that test for completion of I/O operations. An appendage must not alter storage
that is used by either the supervisor or the I/O supervisor.

The last two characters of an appendage's 8-character name must be specified in the
DCB macro instruction, as described in the section "Macro Specification for Use with
EXCP". When an OPEN macro instruction for the data control block is issued, any
appendages specified in the DCB macro instruction are loaded into the problem
program partition. They are loaded into virtual storage if the partition is pageable.

Your appendage routines are made available to the I/O supervisor when the DCB for
the data set is opened. The address of each appendage you have provided (and the
number of 2K segments of storage each occupies) is placed in a table called the
appendage vector table. This table is always constructed by the system when OPEN is
issued; if an appendage is not provided, the table contains the address of a branch (BR
14) instruction that immediately returns control to the I/O supervisor. Using the
appendage vector table, the I/O supervisor branches and links to each appendage at
the appropriate time.

The I/O supervisor uses registers to pass parameters to the appendages as follows:

Register 1: Address of the request queue element (RQE) for the channel
program. The RQE consists of 20 bytes formatted as shown in Figure 10.

Register 2: Address of the input/output block (lOB).

Register 3: Address of the data extent block (DEB).

Register 4: Address of the data control block (DCB).

Register 7: Address of the unit control block (UCB).

Register 14: Address of the location in the I/O supervisor to which control is to
be returned after execution of the appendage. When returning control to the I/O
supervisor, you may use displacements from the return address in register 14.
Allowable displacements are summarized in the following table and described later
for each appendage.

Register 15: Address of the entry point of the appendage, except in the instance
of the page fix appendage. Refer to the following table.

You may not change register 1 in an appendage; this is reserved in case an abnormal
condition occurs while the appendage is in control. Register 9, if used, must be set to
binary zero before control is returned to the system. All other registers, except those
indicated in the descriptions of each appendage, must be saved and restored if they are
used. Figure 11 summarizes register conventions.

The types of appendages are listed in the following paragraphs, with explanations of
when they are entered, how they return control to the system, and which registers they
may use without saving and restoring.

Executing Your Own Channel Programs (EXCP) 51

0(0) 2(2)

TSTLNK TSTUCB
Address of Next RQE Address of UCB
in This Queue

4(4) 5(5)

TSTIOT TSTIOB
TCB Address of lOB
Identification

8(8) 9(9)

TSTPRI TSTOEB
Requestor's Address of DE B
Priority

12(OC) 13(00)
TSTKEY TSTTCB

Requestor's
Protection Address of TCB
Key

16(10) 17(11)
Channel Address of Channel Program
Program Translation Header Block
Translation
Flags

Figure 10. The Request Queue Element (RQE)

Appendages Entry Point Returns Available Work Reg.*

Extent Error
EOE Reg 15 Reg 14 + 0 Return

Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Try Again

SIO Reg 15 Reg 14 + 0 Normal Reg. 10, 11, and 13
Reg 14 + 4 Skip
Reg 14 + 8 Extend

PCI Reg 15 Reg 14 + 0 Normal Reg. 10, 11,12, and 13
Reg 14 + 4 Modify

CE Reg 15 Reg 14 + 0 Normal
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP
Reg 14 + 12 By-Pass

XCE Reg 15 Reg 14 + 0 Normal
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP
Reg 14 + 12 By-Pass

PG FX Reg 15 + 4 Reg 14 + 0 Normal fix list Reg. 10, 11, and 13
Reg 14 + 4 Extended fix list

·Certain register conventions for passing parameters from appendages to the I/O supervisor must be followed. These
conventions are described in the appendage descriptions.

Figure 11. Entry Points, Returns, and Available Work Registers for the 110 Supervisor
Appendages

52 OS/VS Data Management for System Programmers

Page Fix (PGFX) and Start I/O (SID) Appendage

This appendage comprises two essentially independent appendages. The total
appendage can be viewed as a re-enterable subroutine having two entry points, one for
SIO and one for PGFX.

The SIO entry point is offset 0 in the subroutine; it may be a branch to another area of
the appendage. The entry point to the PGFX appendage is at offset +4 in the
subroutine.

Page Fix (PGFX) Appendage

The purpose of this appendage is to list all of the areas that must be fixed (made
nonpageable) to prevent paging exceptions from occurring during the execution of
appendages related to the current I/O request. This appendage may be entered more
than once. However, each time it is entered, it must create the same list of areas to be
fixed, including the boundary of any items used to create the list. After the first entry
to this appendage, any paging exceptions occurring during processing of this or related
appendages cause abnormal termination.

Normal Page Fix List Processing

On entry to this appendage, register 10 points to a work area for a list of 7 page fix
entries of 8 bytes each. Each page fix entry placed in the list by the appendage must
have the following doubleword format:

Starting Virtual Ending Virtual
X'OO' Address of Area X'OO' Address of Area

to be Fixed to be Fixed + 1

-4- 1 Byte ~ III 3 Bytes • ~ 1Byte~ .. 3 Bytes

On return to the I/O supervisor (via the return address provided in register 14),

•

register 10 must point to the first page fix entry in the work area, and register 11 must
contain the number of page fix entries in the work area. The I/O supervisor then fixes
the pages corresponding to the areas listed by the PGFX appendage. The pages remain
fixed until the associated I/O request queue element is de queued from its logical
channel queue.

Extended (10-entry) Page Fix List Processing

For installations using VS2, as many as 10 entries (three more than allowed for the
normal list) are allowed. At entry to the page-fix appendage, register 10 points to an
area to be used for a page-fix list. If your DCB, lOB, or ECB (DECB) exceed the
sizes fixed by the I/O supervisor, you must include one or more entries in the fix list
that contain these control blocks. The sizes of the control blocks fixed by I/O
supervisor follow:

DCB
lOB
ECB (DECB)

104 bytes*
. 80 bytes + a 16-byte prefix, for a total of 96 bytes.

32 bytes

*In installations using YSl, Release 1, the I/O supervisor fixes a 252-byte area for the DCB.

Executing Your Own Channel Programs (EXCP) 53

You must return to I/O supervisor using a branch entry to the location at register 14 +
4. Register 10 must point to the extended fix list and register 11 must contain the
number of entries in the extended fix list. The I/O supervisor will then fix the pages
containing the entries in your fix list. These pages remain fixed until the associated
request queue element is dequeued from its logical channel queue.

To use extended channel program translation, you must provide the address of the first
entry in parameter list in register 10 and put the count of the number of entries in the
list in register 11. In addition, you must provide a count of the number of CCWs in
the list or a count of the number of indirect addresses associated with the CCW. You
must set bit 0 of the count field (called the I bit) to 0 to indicate that bits 1-7 contain a
count of the contiguous virtual CCWs; set the I bit to 1 to indicate that bits 1-7
contain a count of the indirect addresses associated with the CCW.

Start I/O (SIO) Appendage

Unless an error procedure is in control, the I/O supervisor passes control to the SIO
appendage just before the I/O supervisor translates your channel program. You have
an opportunity to modify or extend his channel program after he requests the I/O
operation. However, you should not alter the IOBSTART field of your lOB in the SIO
appendage; changing the address in IOBSTART has no effect on where the I/O
supervisor begins CCW translation. If the I/O activity is not initiated because of a
busy condition and the I/O request has not been translated, this appendage is
re-entered before the SIO instruction is issued; otherwise, it is not re-entered.

Optional return vectors give the I/O requestor the following choices:

Reg. 14 + 0
Normal return. Normal channel program translation and SIO instruction execution
occur.

Reg. 14 + 4
Skip the I/O operation. The channel program is not posted complete, but the
request queue element is made available. The I/O requestor may post the channel
program as follows:

1. Save necessary registers.
2. Place pointer to post entry address from the communications

vector table (CVT) in register 15.
3. Place current TCB address from the CVT in register 12.
4. Place ECB address from the lOB in register 11.
5. Set the completion code in the high-order byte in register 10.
6. Go to POST using BALR 14,15.

Reg. 14 + 8
Extended channel program translation. The SIO appendage must define to the I/O
supervisor all of the channel command words (CCWs) that can be used in the
forthcoming I/O operation. The definition includes the CCW chain pointed to by
the IOBSTART field of the input/output block, the normal starting CCW location.
Through this definition the SIO appendage indicates to the I/O supervisor the
CCWs that can be changed in a program controlled interrupt (PCI) appendage.
The definition thus enables the I/O supervisor to translate much of the requestor's
channel program before the SIO instruction is issued. In this way the amount of
translation performed following a PCI appendage is minimized. To use extended
channel program translation, you must provide the address of the first CCW in
register 10 and put the count of the number of CCW s in the list in register 11. In

54 OS/VS Data Management for System Programmers

addition, you must provide a count of the number of CCWs in the list or a count of
the number of indirect addresses associated with the CCW. You must set bit 0 of
the count field (called the I bit) to 0 to indicate that bits 1-7 contain a count of the
contiguous virtual CCWs; set the I bit to 1 to indicate that bits 1-7 contain a count
of the indirect addresses associated with the CCW.

+0 +1

Count Address of a virtual CCW

An I = 0 entry must precede an I = 1 entry.

Program Controlled Interruption (PCI) Appendage

This appendage is entered when a program controlled interruption occurs. At the time
of the interruption, the contents of the channel status word will not have been placed
in the "channel status word" field of the input/output block. The channel status word
can be obtained from location 64.

You may use registers 10 through 13 in a PCI appendage without saving and restoring
their contents. This appendage may be reentered for the same channel program if the
error recovery procedure is in the process of retrying a CCW with the program
controlled interrupt (PCl) bit set on. The lOB error flag is set when the error recovery
procedure is in control (IOBFLAG 1 = X'20').

Refer to the topic "Block Multiplexor Channel Programming Notes" later in this
chapter for special PCI conditions encountered with command retry.

To return control to the I/O supervisor for normal interruption processing, use the
return address in register 14. To make use of the "PCI Modify" interface of the I/O
supervisor, use register 14 + 4 as the return address.

The PCI Modify interface enables you to make changes to translated (real) CCWs in
the midst of an I/O operation. In the PCI appendages you can make changes to the
virtual image of the channel program whose execution is interrupted. To cause the I/O
supervisor to make corresponding changes to the real channel program, you must
construct a "PCI Modify Parameter List" in a fixed area of storage that you provide.
The list must contain the virtual address of each CCW changed. Each entry in the list
consists of four bytes as follows:

X'OO' Address of a virtual CCW

4-1 Byte 3 Bytes ..

Executing Your Own Channel Programs (EXCP) 55

On exit from the PCI appendage (via register 14 + 4), register 10 must point to the
first entry in the list, and re~ister 11 must contain the number of entries in the list.

The I/O supervisor then finds the real CCW corresponding to each virtual CCW
specified in the list, translates the virtual CCW to real, and replaces the real CCW. If
the CCW requires entries from the indirect address list, an entry is provided.

Transfer-in-channel (TIC) commands are resolved to previously defined CCW strings
only, and cannot be used to expose new CCW strings. Also, new pages to be fixed
cannot be exposed now.

Error conditions created by incorrect specifications of PCI Modify Parameter List
entries abnormally terminate the I/O requestor. Examples of such error conditions are:

The virtual CCW listed exposes a new CCW string or data page.

A page exception is encountered in accessing an entry in the list.

End-of -Extent Appendage

This appendage is entered when the seek address specified in the input/output block is
outside the allocated extent limits indicated in the data extent block.

If you use the return address in register 14 to return control to the system, the
abnormal end appendage is entered. An end-of-extent error code (X'42') is placed in
the "ECB code" field of the input/output block for subsequent posting in the ECB.

You may use the following optional return addresses:

• Contents of register 14 plus 4 - The channel program is posted complete; its
request element is returned to the available queue.

Contents of register 14 plus 8 - The request is tried again.

You may use registers 10 through 13 in an end-of-extent appendage without saving and
restoring their contents.

Note: If an end-of-cylinder or file-protect condition occurs, the I/O supervisor updates
the seek address to the next higher cylinder or track address, and re-executes the
request. If the new seek address is within the data set's extent, the request is executed;
if the new seek address is not within the data set's extent, the end-of -extent appendage
is entered. If you wish to try the request in the next extent, you must move the new
seek address into the UCB at UCB+48.

If a file protect is caused by a full seek (command code=07) embedded within a
channel program, the request is flagged as a permanent error, and the abnormal end
appendage is entered.

Channel End (CE) Appendage

This appendage is entered when a channel end (CE), unit exception (VEX) with or
without channel end, or channel end with wrong length record (WLR) occurs without
any other abnormal end conditions.

If you use the return address in register 14 to return control to the I/O supervisor, the
channel program is posted complete, and its request element is made available. In the
case of unit exception or wrong length record, the error recovery procedure is
performed before the channel program is posted complete, and the 10BEX flag (X'04')
in 10BFLAG 1 is set on. The condition code may be directly tested by using a BC

56 OS/VS Data Management for System Programmers

instruction. A CC=O means no UEX or WLR accompanied this interruption. The
CSW status may be obtained from the IOBCSW field.

If the appendage takes care of the wrong length record and/or unit exception, it may
turn off the IOBEX (X'04') flag in IOBFLAG 1 and return normally. The event will
then be posted complete (completion code X'7F' under normal conditions, taken from
the high-order byte of the IOBECBCC field). If the appendage returns normally
without resetting the IOBEX flag to zero, the request will be routed to the associated
device error routine, and then the abnormal end appendage will be immediately entered
with IOBECBCC completion code is set to X'41'.

You may use the following optional return addresses:

Contents of register 14 plus 4 - The channel program is not posted complete, but
its request element is made available. You may post the event by using the calling
sequence described under the start I/O appendage. This is especially useful if you
wish to post an ECB other than the IOBECB.

Contents of register 14 plus 8 - The channel program is not posted complete, and
its request element is placed back on the request queue so that the I/O operation
can be retried. For correct re-execution of the channel program, you must
re-initialize the IOBFLAG 1, IOBFLAG2, and IOBFLAG3 fields of the
input/ output block and set the "Error Counts" field to zero. As an added
precaution, the IOBSENSO, IOBSENS 1, and IOBCSW fields should be cleared.

Contents of register 14 plus 12 - The channel program is not posted complete, and
its request element is not made available. (The request element is assumed to be
used in a subsequent asynchronous exit routine.)

You may use registers 10 through 13 in a channel end appendage without saving and
restoring their contents.

Abnormal End (XCE) Appendage

This appendage may be entered on abnormal conditions, such as: unit check, unit
exception, wrong length indication, program check, protection check, channel data
check, channel control check, interface control check, chaining check, out-of-extent
error, and intercept condition (Le., device end error). It may also be entered when an
EXCP is issued for a DCB that has already been purged.

1. When this appendage is entered due to a unit exception and/or wrong length record
indication, the IOBECBCC is set to X'41'. For further information on these
conditions see "Channel End Appendage."

2. When the appendage is entered due to an out-of-extent error, the IOBECBCC is
set to X'42'.

3. When the appendage is first entered due to an intercept condition, the IOBECBCC
is set to X'7E'. If it is then determined that the error condition is permanent, the
appendage will be entered a second time with the IOBECBCC set to X'44'. The
intercept condition signals that an error was detected at device end after channel
end on the previous request.

4. When the appendage is entered due to an EXCP being issued to an already purged
DCB, this request will enter the abnormal end appendage with the IOBECBCC set
to X'48'. This applies only to related requests.

Executing Your Own Channel Programs (EXCP) 57

5. When the appendage is entered with the 10BECBCC set to X'7F', it may be due to
a unit check, program check, protection check, channel data check, channel control
check, interface control check, or chaining check. When the 10BECBCC is X'7F',
it may be the first detection of an error in the associated channel program, or it
could occur after an error routine has attempted to correct the error but was
unsuccessful in its retry. Under these two conditions, the lOB error flag is set in
10BFLAG 1; it indicates that the error routine has declared the error to be
permanent. When the 10BEX flag (bit 5 of the lOB FLAG 1) is on, the
10BECBCC field will contain a 41, 42, 48, 4B, or 4F in hexidecimal, indicating a
permanent I/O error. .

To determine if an error is permanent, you should check the 10BECBCC field of the
lOB. To determine the type of error, check the channel status word and the sense
information in the lOB. However, when the 10BECBCC is X'42' or X'48', these
fields are not applicable. For X'44' the CSW is applicable, but the sense is valid only
if the unit check bit is set. If you use the return address in register 14 to return control
to the system, the channel program is posted complete, and its request element is made
available. (The SYNADAF macro instruction, described in OS/VS Data
Management Macro Instructions, may be used in an error analysis routine to analyze
permanent I/O errors.) You may use the following optional return addresses:

Contents of register 14 plus 4 - The channel program is not posted complete, but
its request element is made available.

Contents of register 14 plus 8 - The channel program is not posted complete, and
its request element is placed back on the request queue so that the request can be
retried. For correct re-execution of the channel program, you must re-initialize the
10BFLAG 1, IOBFLAG2, and IOBFLAG3 fields of the input/output block and set
the 10BERRCT field to zero. As an added precaution, the 10BSENSO,
10BSENS 1, and 10BCSW fields should be cleared.

Contents of register 14 plus 12 - The channel program is not posted complete, and
its request element is not made available. (The request element is assumed to be
used in a subsequent asynchronous exit.)

You may use registers 10 through 13 in an abnormal end appendage without saving and
restoring their contents.

Block Multiplexer Channel Programming Notes

Command retry is a function of the block multiplexer channel supporting the 3330 Disk
Storage and the 2305 Fixed Head Storage devices. When the channel receives a retry
request, it repeats the execution of the channel command word (CCW) requiring no
additional input/output interrupts. For example, a control unit may initiate a retry
procedure to recover from a transient error.

58 OS/VS Data Management for System Programmers

A command retry during the execution of a channel program may cause any of the
following conditions to be detected by the initiating program:

Modifying CCWs: A CCW used in a channel program must not be modified
before the CCW operation has been successfully completed. Without the command
retry function, a command was fetched only once from storage by a channel.
Therefore, a program could determine through condition codes or program
controlled interruptions (PCl) that a CCW had been fetched and accepted by the
channel. This permitted the CCW to be modified before re-execution. With the
command retry function, this cannot be done, since the channel will fetch the CCW
from storage again on a command retry sequence. In the case of data chaining, the
channel will command retry starting with the first CCW in the data chain.

Program Controlled Interrupts: A CCW containing a PCI flag may cause multiple
program controlled interruptions to occur. This happens if the PCI-flagged CCW
was retried during a command retry procedure, and a PCI could be generated each
time the CCW is re-executed.

Residual Count: If a channel program is prematurely terminated during the retry
of a command, the residual count in the channel status word (CSW) will not
necessarily indicate how much storage was used. For example, if the control unit
detects a "wrong length record" error condition, an erroneous residual count is
stored in the CSW until the command retry is successful. When the retry is
successful, the residual in the CSW is the correct length of the data transfer. Since
the channel will not allow more data to be transferred than is specified in the count
field of the CCW, this situation will occur only when reading variable records or
unknown record types.

Command Address: When data chaining with command retry, the CSW may not
indicate how many CCWs have been executed at the time of a PCl. For example:

CCW# Channel Program

1 Read data chain
2 Read data chain
3 Read data chain, PCI
4 Read command chain

In this example, assume that the control unit signals command retry on Read #3 and
the CPU accepts the PCI after the channel resets the command address to Read # 1
because of command retry. The CSW stored for the PCI will contain the command
",ddress of Read #1, when actually the channel has progressed to Read #3.

"Bit Spinning" on Data Read: Any program that tests a data storage location to
determine when a CCW has been executed and continues to execute based on this
data may get incorrect results if an error is detected and the CCW is retried. An
example of this is a PCI appendage in which ones are placed in a buffer area that
will be overlaid with zeros when a record is read. When the PCI appendage is
entered, a check for zeros is made and the appendage will continue to loop until the
record is read into the buffer (indicated by ones changed to zeros). If the
appendage uses the data from this record to modify a channel program, the results
will be unpredictable during a command retry sequence, as the CCW has not been
correctly executed.

Executing Your Own Channel Programs (EXCP) 59

Macro Specifications for Use With EXCP

If you are using the EXCP macro instruction, you must also use DCB, OPEN, CLOSE,
and, in some cases, the EOV macro instruction. The parameters of these macro
instructions and the EXCP macro instructions are explained here. A diagram of the
data control block is included with the description of the DCB macro instruction.

DCB - Define Data Control Block for EXCP

The EXCP form of the DCB macro instruction produces a data control block that can
be used with the EXCP macro instruction. You must issue a DCB macro instruction
for each data set to be processed by your channel programs. Notation conventions and
format illustrations of the DCB macro instruction are given in the Data Management
Macro Instructions publication. DCB parameters that apply to EXCP may be divided
into four categories, depending on the following portions of the data control block that
are generated when they are specified:

Foundation block. This portion is required and is always 12 bytes in length. You
must specify two of the parameters in this category.

EXCP interface. This portion is optional. If you specify any parameter in this
category, 20 bytes are generated.

Foundation block extension and common interface. This portion is optional and is
always 20 bytes in length. If this portion is generated, the device dependent portion
is also generated.

Device dependent. This portion is optional and is generated only if the foundation
block extension and common interface portion is generated. Its size ranges from 4
to 20 bytes, depending on specifications in the DEVD parameter. However, if you
do not specify the DEVD parameter (and the foundation extension and common
interface portion is generated), the maximum 20 bytes for this portion are
generated.

Some of the procedures performed by the system when the data control block is
opened and closed (such as writing file marks for output data sets on direct access
volumes) require information from optional data control block fields. You should make
sure that the data control block is large enough to provide all information necessary for
the procedures you want the system to handle.

Figure 12 shows the relative position of each portion of an opened data control block.
The fields corresponding to each parameter of the DCB macro instruction are also
designated, with the exception of DDNAME, which is not included in a data control
block that has been opened. The fields identified in parentheses represent system
information that is not associated with parameters of the DCB macro instruction.

Sources of information for data control block fields other than the DCB macro
instruction are data definition (DD) statements, data set labels, and data control block
modification routines. You may use any of these sources to specify DCB parameters.
However, if a portion of the data control block is not generated by the DeB macro
instruction, the system does not accept information intended for that portion from any
alternative source.

60 OS/VS Data Management for System Programmers

DCB
Address

+4

+8

+12

+16

+20

+24

+28

+32

+36

The device dependent portion of
the data control block varies
in length and format according
to specifications in the DSORG
and DEVD parameters. Illustra-
tions of this portion for each
device type are included in
the description of the DEVD
parameter.

BUFNO BUFCB

BUFL I DSORG

IOBAD

BFTEK,
BFALN EODAD

HIARCHY

RECFM EXLST

DCB
Address

+40

Device
Dependent +44

+48

+52

+56

Common
Interface +60

+64

+68
Foundation
Block
Extension

mOT)

(IFLGS)

(OFLGS)

OPTCD

EOEA

SIOA,PGFX

XENDA

MACRF

(DEB Address)

Reserved

Reserved

Reserved

PCIA

CENDA

Reserved

Foundation
Block

EXCP
Interface

Figure 12. Data Control Block Format for EXCP (After OPEN)

Foundation Block Parameters

DDNAME=symbol
The name of the data definition (DD) statement that describes the data set to be
processed. This parameter must be given.

MACRF=(E)
The EXCP macro instruction is to be used in processing the data set. This operand
must be coded. If, however, you are processing a multivolume, direct data set
(DSORG=DA), you should code MACRF=(W) or (R). This results in the
operating system's performing automatic volume mounting and causes the Open
routines to complete the data extent block (DEB) that represents all volumes of the
data set. Do not use MACRF = (W) or (R) if you want to use your own
appendages; they will not be loaded.

REPOS= Y
N

Magnetic tape volumes: If your system generation statements include the dynamic
device reconfiguration (DDR) entry, then this parameter controls whether the DDR
routine will attempt to reposition the volume after swapping devices. (To have the

Executing Your Own Channel Programs (EXCP) 61

DDR routine attempt to reposition your tape volume, you must maintain the block
count in the DCBBLKCT field.)

y - Yes, attempt to reposition.

N - No, do not attempt to reposition.

If the operand is omitted, N is assumed.

EXCP Interface Parameters

EOEA=symbol
2-byte identification of an end-of-extent appendage that you have entered into the
SVC or LPA library. (See Note A.)

PCIA=symbol
2-byte identification of a program controlled interruption (PCI) appendage that you
have entered into the SVC or LP A library. (See Note A.)

SIOA=symbol
2-byte identification of a start I/O (SIO) appendage that you have entered into the
SVC or LPA library. (See Note A.)

CENDA=symbol
2-byte identification of a channel end appendage that you have entered into the
SVC or LPA library. (See Note A.)

XENDA=symbol
2-byte identification of an abnormal end appendage that you have entered into the
SVC or LPA library. (See Note A.)

Note A: The full name of an appendage is 8 bytes in length, but the first six bytes are
required by IBM standards to be the characters IGG019. You provide the last two
characters as the identification; they may range in collating sequence from W A to Z9.

PGFX= {Yes I No}
A yes response indicates the existence of a user page fix appendage. If you specify
PGFX=yes, also specify SIOA=XX.

OPTCD=Z
indicates that for magnetic tape (input only) a reduced error recovery procedure (5
reads only) will occur when a data check is encountered. It should be specified
only when the tape is known to contain errors and the application does not require
that all records be processed. Its proper use would include error frequency analysis
in the SYNAD routine. Specification of this parameter will also cause generation of
a foundation block extension. This parameter is ignored unless it was selected at
system generation.

IMSK=value
Any specification indicates that the system will not use IBM -supplied error routines.

Foundation Block Extension and Common Interface Parameters

EXLST = address
the address of an exit list that you have written for exceptional conditions. The
format of this exit list is given in OS/VS Data Management Services Guide.

EODAD=address
the address of your end-of-data set routine for input data sets. If this routine is not
available when it is required, the task is abnormally terminated.

62 OS/VS Data Management for System Programmers

DSORG= {PS}
{PO}
{DA}
{IS}

the data set organization (one of the following codes). Each code indicates that the
format of the device-dependent portion of the data control block is to be similar to
that generated for a particular access method:

Code DCB Format for

PS QSAM or BSAM
PO BPAM
DA BDAM
IS QISAM or BISAM

Note: For direct-access devices, if you specify either PS or PO, you must maintain the
following fields of the device-dependent portion of the data control block so that the
system can write a file mark for output data sets:

The track balance (DCBTRBAL) field, which contains a 2-byte binary number that
indicates the remaining number of bytes on the current track.
The full disk address (DCBFDAD) field, which indicates the location of the current
record. The address is in the form MBBCCHHR.

IOBAD=address
the address of an input/output block (lOB). If a pointer to the current lOB is not
required, you may use this field for any purpose.

The following parameters are not used by the EXCP routines, but they provide
cataloging information about the data set. This information can be used later by access
method routines that read or update the data set.

RECFM=code
the record format of the data set. Record format codes are given in OS/VS Data
Management Macro Instructions. When writing a data set to be read later using one
of the access method routines, the RECFM, LRECL, and BLKSIZE should be
specified to identify the data set attributes. LRECL and BLKSIZE can only be
specified in a DD statement, since these fields do not exist in a DCB used by
EXCP.

BFTEK={S IE}
the buffer technique, either simple or exchange.

BFALN={F I D}
the word boundary alignment of each buffer, either fullword or doubleword.

BUFL=length
the length in bytes of each buffer; the maximum length is 32,767.

BUFNO=number
the number of buffers assigned to the associated data set; the maximum number is
255.

BUFCB=address
the address of a buffer pool control block, i.e., the 8-byte field preceding the
buffers in a buffer pool.

Executing Your Own Channel Programs (EXCP) 63

Device-Dependent Parameters

DEVD=code
the device on which the data set may reside. The codes are listed in order of
descending space requirements for the data control block:

Code Device

DA Direct access
TA Magnetic tape
PT Paper tape
PR Printer
PC Card punch
RD Card reader

Note: If you do not wish to select a specific device until job set-up time, you should
specify the device type requiring the largest area.

The following diagrams illustrate the device-dependent portion of the data control
block for each device type specified in the DEVD parameter, and for each data set
organization specified in the DSORG parameter. Fields that correspond to
device-dependent parameters in addition to DEVD are indicated by the parameter
name. For special services, you may have to maintain the fields shown in parentheses.
The special services are explained in the note that follows the diagram.

Device-dependent portion of data control block when DEVD=DA and DSORG=PS or
po:
DCB
Address +4

+8

+12

+16

Reserved
_I

DCBFDAD

DCBDVTBL Reserved

DCBKEYLE DCBDEVT DCBTRBAL

Note: For output data sets, the system uses the contents of the full disk address
(DCBFDAD) field plus one to write a file mark when the data control block is closed,
provided the track balance (DCBTRBAL) field indicates that space is available. You
must maintain the contents of these two fields yourself if the system is to write a file
mark. OPEN will initialize DCBDVTBL and DCBDEVT.

Device-dependent portion of data control block when DEVD=DA and DSORG=IS or
DA:

DCB
Address +16 DCBKEYLE Reserved

Device-dependent portion of data control block when DEVD= T A and DSORG=PS:
DCB
Address +12 BLKCT

+16 DCBTRTCH I Reserved I DCBDEN I Reserved

Note: For output data sets, the system control program uses the contents of the block
count (DCBBLKCT) field to write the block count in trailer labels when the data
control block is closed or when the EOV macro instruction is issued. You must

64 OS/VS Data Management for System Programmers

maintain the contents of this field yourself if the system is to write the correct block
count.

When using EXCP to process a tape data set open at a checkpoint, you must be careful
to maintain the correct count; otherwise, the system may position the data set
incorrectly when restart occurs.

If your system generation statements include the dynamic device reconfiguration entry,
this field must be maintained by you for repositioning. Also, your DCB macro
instruction must include the REPOS= Y entry.

Device-dependent portion of data control block when DEVD=PT and DSORG=PS:

DCB
Address +16 DCBCODE I Reserved /

Device-dependent portion of data control block when DEVD=PR and DSORG=PS:

DCB
Address +16 DCBPRTSP I Reserved

Device-dependent portion of data control block when DEVD=PC or RD and
DSORG=PS:

DCB
Address +16 DCBMODE,DCBSTACK Reserved

The following DCB operands pertain to specific devices and may be specified only
when the DEVD parameter is specified.

KEYLEN =length
for direct-access devices, the length in bytes of the key of a physical record, with a
maximum value of 255. When a block is read or written, the number of bytes
transmitted is the key length plus the record length.

CODE=value
for paper tape, the code in which records are punched:

Value Code

I IBM BCD
F Friden
B Burroughs
C National Cash Register
A ASCll
T Teletype'
N no conversion (format-F records only)

If this parameter is omitted, N is assumed.

DEN=value
for magnetic tape, the tape recording density in bits per inch:

Value

a
1
2
3

Density

Model 2400/3400 7-track
200
556
800

Model 2400/3400 9-track

800
1600

If this parameter is omitted, the lowest density is assumed.

, Trademark of Teletype Corporation

Executing Your Own Channel Programs (EXCP) 65

TRTCH=value
for 7 -track magnetic tape, the tape recording technique:

Value Tape Recording Technique

C Data conversion feature is available.
E Even parity is used. (If omitted, odd parity is assumed.)
T BCDIC to EBCDIC translation is required.

MODE=value
for a card reader or punch, the mode of operation. Either C (column binary mode)
or E (EBCDIC code) may be specified.

ST ACK=value
for a card punch or card reader, the stacker bin to receive cards, either 1 or 2.

PRTSP=value
for a printer, the line spacing, either 0, 1, 2, or 3.

OPEN - Initialize Data Control Block

The OPEN macro instruction initializes one or more data control blocks so that their
associated data sets can be processed. You must issue OPEN for all data control
blocks that are to be used by your channel programs. (A dummy data set may not be
opened for EXCP.) Some of the procedures performed when OPEN is executed are:

Construction of data extent block (DEB).
Transfer of information from DD statements and data set labels to DCB.
Verification or creation of standard labels.
Tape positioning.
Loading of your appendage routines.

The three parameters of the OPEN macro instruction are:

[symbol] OPEN (dcb address,[(options)], ...)

dcb address - A-type Address or (2-12)
the address of the data control block to be initialized. (More than one data control
block may be specified.)

option l
the intended method of I/O processing of the data set. You may specify this
parameter as either INPUT, RDBACK, or OUTPUT. For each of these, label
processing when OPEN is executed is as follows:

INPUT - Header labels are verified.
RDBACK - Trailer labels are verified.
OUTPUT - Header labels are created.

If this parameter is omitted, INPUT is assumed.

option2
the volume disposition that is to be provided when volume switching occurs. The
operand values and meanings are as follows:

REREAD - Reposition the volume to process the data set again.
LEAVE - No 'additional positioning is performed at end-of-volume processing.
DISP - The disposition indicated on the DD statement is tested and

appropriate positioning provided. This service is assumed if this
operand is omitted and volume positioning is applicable. If there is
no disposition specified in the DD statement when this operand is
specified, LEAVE is assumed.

66 OS/VS Data Management for System Programmers

When you code MACRF = (E) in the DCB macro instruction, indicating that your
program uses the EXCP macro instruction, the Open routines process your data control
block as if it represents a single-volume, physical-sequential data set, except that the
DCB fields are merged (from and to the DSCB and JFCB for the data set) according
to the DSORG you specify in the DCB macro instruction.

However, if you are concatenating partitioned data sets, mount messages will be issued,
volume verification will be performed, and a DEB will be built that represents all the
extents and volumes of the concatenated data set.

You should recognize that if you are opening multiple-volume direct or index-sequential
data sets, only the first volume of the data set is guaranteed to be mounted by the
operating system, and the DEB built by the Open routines for the data set will
represent only the first volume.

The list and execute forms of the OPEN macro instruction are described in OS/VS
Data Management Macro Instructions.

EXCP - Execute Channel Program

The EXCP macro instruction requests the initiation of the I/O operations of a channel
program. You must issue EXCP whenever you want to execute one of your channel
programs. The only parameter of the EXCP macro instruction is:

[symbol] EXCP iob-address

iob-address - A-type address, (2-12), or (1)
the address of the input/output block of the channel program to be executed.

ATLAS - Assigning an Alternate Track and Copying Data from the Defective Track

A program that uses the EXCP macro instruction for input and output may use the
ATLAS macro instruction, during the execution of the program, to obtain an alternate
track and to copy a defective track onto the alternate track. With the use of ATLAS,
the program can recover from permanent (hard) errors encountered in the execution of
the following types of I/O commands:

Search ID.

Write. (The error condition must be confirmed during the execution of the channel
program by a CCW that checks the data written.)

Read count. Errors in the CCHHR part of the count area can be recovered from
unless the record is the home address or record zero. Errors in the KDD part of
the count area cannot be recovered from unless the user has identified the defective
record.

Your DCB must include the DCBRECFM field and the field must show whether the
data set is in the track overflow format. If it is, recovery from errors in last records on
tracks depends on your identifying the track overflow record segments.

Recovery takes the form of obtaining an alternate good track and copying the defective
track onto the good alternate one. Unless a re-execution of the channel program by
ATLAS can correct the defect, the user should examine, and if necessary replace,
defective records in a subsequent job if the data set is to be processed again.

Executing Your Own Channel Programs (EXCP) 67

The format is:

[symbol] ATLAS
{R}

PARMADR = {address} [,CHANPRG = {NR}]

{f} {YES}
[,CNTPTR = {F}] [,WRITS = {NO}]

PARMADR

+0

+4

+8

Address of a parameter address list of the following format:

t Parameter list

t lOB for the channel program that encountered the error

t Count area field

The count area field contains the CCHHRKDD of a defective record or the CCHH
of a track that is to be copied.

address, (2-12) or (1) Address is given as the symbolic label of the address list or as
the number of a general register that contains the address of the list.

{R}
CHANPRG= {NR}

specifies whether the channel program that encountered the error can be executed
again.

R - Channel program may be executed again by ATLAS. Before permitting
re-execution of the channel program by ATLAS, you must reset the error
indications of the previous execution fields in the DCBIFLGS. (See the
example of the use of ATLAS below.)

NR - Channel program may not be executed again.

If this parameter is omitted, R is assumed.

CNTPTR
specifies whether the count area field contains a full count area (CCHHRKDD) or
a partial count area (CCHH).

P - Part of the count area (the CCHH address of the track to be copied).

F - Full count area (CCHHRKDD count of the record that was found defective).

If this parameter is omitted, P is assumed.

WRITS
track overflow segment identification.

If your data set is in the track overflow format, this identification determines
recovery from errors in last records on tracks.

YES - If this is the last record on the track, it is a segment other than the last of a
track overflow record.

68 OS/VS Data Management for System Programmers

Using ATLAS

NO - If this is the last record on the track, it is the last or only segment of a track
overflow record.

If this parameter is omitted, it is assumed that it cannot be established whether a
last record is a segment of an overflow record.

If a channel program encounters a unit check condition (shown in the CSW) in its
execution, the 110 supervisor program will place the Sense bytes in the lOB. ATLAS
can be used to recover from sense conditions shown by the following bit settings:

IOBSENSO X'08'

IOBSENSI X'80'

IOBSENSl X'02'

Data check (except in the count area)

Data check in the count area

Missing address marker (see the following for
combinations of this bit setting which ATLAS
cannot handle.)

However, defects in the home address record or the record zero record cannot be
recovered from through the use of ATLAS. These conditions are shown by:

IOBSENS 1 X'02' and IOBSENSO X'O l' - home address defect.

IOBSENSI X'OA' - record zero defect, or, home address cannot be located.

Also, before using ATLAS, you must reset error indications as follows:

NI DCBIFLGS,X'3F' Reset the DCBIFLGS error indications.

The ATLAS program will attempt to find a good alternate track and will attempt to
copy the defective track onto the good track, including all error conditions in either key
or data areas. The error conditions may be rectified by re-executing the channel
program or through the use of the IEHATLAS utility program in a subsequent step.

Example: the following illustrates the use of the ATLAS macro instruction.

*

*
*

EXCP
WAIT
TM
BO

TM
BL
TM
BO
TM
BO
TM

BO
ATLASGO EQU
*

NI
ATLAS

MYIOB
ECB=MYECB
MYECB, X ' 20 '
NEXT

IOBCSW+3,X'02'
OTHER
IOBSENSO,X'08'
ATLASGO
IOBSENS1,X'80'
ATLASGO
IOBSENS1,X'OA'

OTHER

*

TEST FOR I/O ERROR
NO, SUCCESSFUL, GO TO ANOTHER
ROUTINE
UNIT CHECK
NO, DO OTHER ERROR PROCESSING
DATA CHECK
YES, VALID. ERROR
DATA CHECK IN COUNT
YES, VALID ERROR
MISSING ADDRESS MARKER AND NO
RECORD FOUND
YES, ATLAS CANNOT HANDLE
ERROR; DO OTHER ERROR
PROCESSING NO, MISSING
ADDRESS MARKER ONLY.

DCB1FLGS,X'3F' RESET ERROR INDICATORS
PARMADR=THERE,CHANPRG=R

Executing Your Own Channel Programs (EXCP) 69

Operation of the ATLAS Program

The ATLAS program (SVC 86):

Establishes the availability and address of the next alternate track from the format-4
DSCB of the VTOC.

Brings all count fields from the defective track into storage to establish the
description of the track.

Initializes the alternate track. (Write home address, write record zero.)

Brings the key and data areas of each record into storage, one at a time, and
combines them with their new count area to write the complete record onto the
alternate track.

• When the copying is finished, chains the alternate to the defective track and updates
the VTOC.

Control is returned to your program at the next executable instruction following the
ATLAS macro instruction. The success of the ATLAS macro instruction can be
determined by examining the contents of register 15, which will contain one of the
return codes described below. If register 15 contains 0, 36, 40, or 44, the contents of
register 0 may be significant.

70 OS/VS Data Management for System Programmers

Decimal
Return
Code Interpretation

o Successful completion. Key and data areas have been copied from the
defective track onto a good alternate one. The only error encountered was in
the record identified by the user's CCHHRKDD value.

If the channel program is re-executable, it has been successfully re-executed.

4 This device type does not have alternate tracks that can be assigned by
programming.

8 All alternate tracks for the device have been assigned.

12 A request for storage (GETMAIN macro instruction) could not be satisfied.

16 All attempts to initialize and transfer data to an alternate track failed. The
number of attempts made is equal to 10% of the assigned alternates for the
device.

20 The type of error shown by the sense byte cannot be handled through the
use of the ATLAS macro instruction. The condition is other than a data
check (in the count or data areas) or a missing address marker.

24 The format-4 DSCB of the VTOC cannot be read, therefore alternate track
information is not available to ATLAS.

28 The record specified by the user was the format-4 DSCB and it could not be
read.

32 An error found in count area of last record on the track cannot be handled
because last-record-on-track identification is not supplied.

36 An error was encountered when reading or writing the home address record
or record zero. No error recovery has taken place. If register 0 contains
X'Ol 00 00 00', the defect is in record zero.

40 Successful completion. Key and data areas have been copied from the
defective track onto a good alternate one. However, the alternate track may
have records with defective key or data areas. Register 0 identifies the first
three found defective as follows:

n R R R

n - Number of record numbers that follow (0, 1, 2, or 3).

R - The number of the record found defective but copied anyhow.

If the channel program is re-executable, it has been successfully re-executed.

44 Error /Errors encountered and no alternate track has been assigned. The
return parameter register (register 0) will contain the R of a maximum of
three error records.

Error conditions that return this code are:

1. ATLAS received an error indication for a record with a data length in the
count field of zero. Recovery was not possible because a distinction
cannot be made between an EOF record and an invalid data length.

Executing Your Own Channel Programs (EXCP) 71

Not Last on Track

Last
on
Track

2. An error occurred while reading the count field of a record and the KDD
(key length-data length) was found to be defective.

3. More than three records on the specified track contained errors in their
count fields.

48 No errors found on the track, no alternate assigned. ATLAS will not assign
an alternate unless a track has at least one defective record.

52 I/O error in re-executing user's channel program. A good alternate is
chained to the defective track and data has been transferred. The user's
control blocks will give indication of the error condition causing failure in
re-execution of his channel program.

56 The DCB reflects a track overflow data set, but the DCB device type shows
that the device does not support track overflow.

60 The CCHH of the user-specified count area is not within the extents of his
data set.

Figures 13 and 14 summarize the return codes that reflect track error conditions by
error location.

Area in Error

Record in Error Count Area
Key Area Data Area

CCHHR KDD

Record r (r f 0)

0 44 40 40

WRITS=YES 0 44 40 40

WRITS=NO 0 44 40 40

Omitted* 32 44 40 40

Record Zero

36 36 36 36

Home Address

36

* Omitted and the Data Set is in the Track Overflow Format.

Figure 13. Error Locations and Return Codes if CCHH is in the Count Area Field

EOV - End of Volume

The EOV macro instruction identifies end-of -volume and end-of -data set conditions.
For an end-of-volume condition, EOV causes switching of volumes and verification or
creation of standard labels. For an end-of-data set condition, EOV causes your
end-of-data set routine to be entered. Before processing trailer labels on a tape input
data set, you must decrement the DCBBLKCT field. You issue EOV if switching of

72 OS/VS Data Management for System Programmers

Not Last on Track

La$t
on
Track

Not Last on Track

Las!
on
Track

magnetic tape or direct-access volumes is necessary, or if secondary allocation is to be
performed for a direct-access data set opened for output.

Area in Error

Record in Error Count Area
Key Area Data Area

CCHHR KDD

Record n (n=R in CCHHRKDD)

0 0 0 0

WRITS=YES 0 0 0 0

WRITS=NO 0 0 0 0

Omitted * 32 32 0 0

Record m (m -I R in CCHHB.KDD)

0 44 40 40

WRITS=YES 0 44 40 40

WRITS=NO 0 44 40 40

Omitted * 32 44 40 40

Record Zero

36 36 36 36

Home Address

36

* Omitted and the Data Set is in the Track Overflow Format.

Figure 14. Error Locations and Return Codes if CCHHRKDD is in the Count Area Field

For magnetic tape, you must issue EOV when either a tapemark is read or a reflective
spot is written over. In these cases, bit settings in the I-byte DCBOFLGS field of the
data control block determine the action to be taken when EOV is executed. Before
issuing EOV for magnetic tape, you must make sure that appropriate bits are set in
DCBOFLGS. Bit positions 2,3,6, and 7 of DCBOFLGS are used only by the system;
you are concerned with bit positions 0,1,4, and 5. The use of these DCBOFLGS bit
positions is as follows:

Bit °
set to 1 indicates that a write command was executed and that a tape mark is to be
written.

Bit 1
indicates that a backward read was the last 110 operation.

Bit 4
indicates that data sets of unlike attributes are to be concatenated.

Bit 5
indicates that a tape mark has been read.

If bits ° and 5 of DCBOFLGS are both off when EOV is executed, the tape is spaced
past a tapemark, and standard labels, if present, are verified on both the old and new
volumes. The direction of spacing depends on bit 1. If bit 1 is off, the tape is spaced
forward; if bit 1 is on, the tape is backspaced.

Executing Your Own Channel Programs (EXCP) 73

If bit 0 is on when EOV is executed, a tapemark is written immediately following the
last data record of the data set. Standard labels, if specified, are created on the old and
the new volume.

When issuing EOV for sequentially organized output data sets on direct-access
volumes, you can determine whether additional space has been obtained on the same or
a different volume. You do this by checking the volume serial number in the unit
control block (UCB) both before and after issuing EOV.

The only parameter of the EOV macro instruction is:

[symbol] EOV deb address

deb address - A-type address, (2-12), or (1)
the address of the data control block that is opened for the data set. If this
parameter is specified as (1), register 1 must contain this address.

CLOSE - Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so that
processing of their associated data sets can be terminated. You must issue CLOSE for
all data control blocks that were used by your channel programs. Some of the
procedures performed when CLOSE is executed are:

Release of data extent block (DEB)

Removal of information transferred to data control block fields when OPEN was
executed

Verification or creation of standard labels

• Volume disposition

Release of programmer-written appendage routines

[symbol] CLOSE (deb address, [option] , ...)

deb address - A-type address or (2-12)
the address of the data control block to be restored. More than one data control
block may be specified.

option
the type of volume disposition intended for the data set. You may specify this
parameter as LEAVE, REREAD, or DISP. The corresponding volume disposition
when CLOSE is executed is as follows:

LEAVE - Volume is positioned at logical end of data set.
REREAD - Volume is positioned at logical beginning of data set.
DISP - The disposition indicated on the DD statement is tested, and

appropriate positioning is provided. This service is assumed if this
operand is omitted and volume positioning is applicable. If there is no
disposition specified in the DD statement when this operand is
specified, LEAVE is assumed.

This parameter is ignored if specified for volumes other than magnetic tape or direct
access.

74 OS/VS Data Management for System Programmers

Note: When CLOSE is issued for data sets on magnetic tape volumes, labels are
processed according to bit settings in the DCBOFLGS field of the data control block.
Before issuing CLOSE for magnetic tape, you must set the appropriate bits in
DCBOFLGS. The DCBOFLGS bit positions that you are concerned with are listed in
the EOV macro instruction description. The list and execute forms of the CLOSE
macro instruction are described in OS/VS Data Management Macro Instructions.

Control Block Fields

The fields of the input/output block, event control block, and data extent block are
illustrated and explained here; the data control block fields have been described with
the parameters of the DCB macro instruction in the section "EXCP Programming
Specifications. "

Input/Output Block Fields

The input/output block (lOB) is not automatically constructed by a macro instruction;
it must be defined as a series of constants and must be on a fullword boundary. For
unit record and tape devices, the lOB is 32 bytes in length. For direct access,
teleprocessing, and graphic devices, 8 additional bytes must be provided.

In Figure 15, the shaded areas 'indicate fields in which you must specify information.
The other fields are used by the system and must be defined as all zeros. You may not
place information into these fields, but you may examine them.

IOBFLAGI (1 b~ te)
the type of channel program. You must set bit positions 0, 1, and 6. One bits in
positions 0 and 1 indicate data chaining and command chaining, respectively. (If
both data chaining and command chaining are specified, the system does not use
error recovery routines except for the 2671, 1052, and 2150.) A one bit in position
6 indicates that the channel program is not related to any other channel program.
Bit positions 2, 3, 4, 5, and 7 are used only by the system.

IOBFLAG2 (1 byte)
is used only by the system.

IOBSENSO and IOBSENSI (2 bytes)
are placed into the input/output block by the system when a unit check occurs.

IOBECBCC (1 byte)
the first byte of the completion code for the channel program. The system places
this code in the high-order byte of the event control block when the channel
program is posted complete. The completion codes and their meanings are listed
under "Event Control Block Fields."

IOBECBPT (3 bytes)
the address of the 4-byte event control block that you have provided.

IOBFLAG3 (1 byte)
is used only by the system.

IOBCSW {7 bytes)
the low-order seven bytes of the channel status word, which are placed into this
field each time a channel end occurs.

Executing Your Own Channel Programs (EXCP) 75

0(0) IOBFLAG2 IOBSENSO IOBSENS1

4(4) IOBECBCC

8(8) IOBFLAG3

12(C)

16(10) IOBSIOCC

20(14) Reserved

24(18) IOBRESTR

28(1C)

32(20)

IOBRESTR+1

IOBERRCT

Direct Access, Teleprocessing, and Graphic Devices

All
Devices

Figure 15. Input/Output Block Format

10BSIOCC (1 byte)
in bits 0 and 1, the instruction-length code; in bits 2 and 3, the start I/O (SIO)
condition code for the SIO instruction the system issues to start the channel
program; and in bits 4 through 7, the program mask.

10BSTART (3 bytes)
the starting address of the channel program to be executed.

Reserved (1 byte)
used only by the system.

10BDCBPT (3 bytes)
the address of the data control block of the data set to be read or written by the
channel program.

10BRESTR (1 byte)
used by the system for volume repositioning in error recovery procedures.

10BRESTR+ 1 (3 bytes)
used by the system to indicate the starting address of a channel program that
performs special functions for error recovery procedures. The system also uses this
field in procedures for making request elements available, as explained under "Error
Recovery Procedures for Related Channel Programs."

76 OS/VS Data Management for System Programmers

IOBINCAM (2 bytes)
for magnetic tape, the amount by which the block count (DCBBLKCT) field in the
device-dependent portion of the data control block is to be incremented. You may
alter these bytes at any time. For forward operations, these bytes should contain a
binary positive integer (usually + 1); for backward operations, they should contain a
binary negative integer. When these bytes are not used, all zeros must be specified.

IOBERRCT (2 bytes)
the number of retries attempted during error recovery procedures.

IOBSEEK (first byte, M)
direct-access devices: Extent entry in the data extent block that is associated with
the channel program (0 indicates the first extent; 1 indicates the second, etc.).
Teleprocessing and graphic devices: The UCB index.

IOBSEEK (last 7 bytes, BBCCHHR)

Event Control Block Fields

You must define an event control block (ECB) as a 4-byte area on a fullword
boundary. When the channel program has been completed, the input/output supervisor
places a completion code containing status information into the ECB (Figure 16).
Before examining this information, you must test for the setting of the "Complete Bit."
If the complete bit is not on, and your problem program cannot perform other useful
operations, you should issue aWAIT macro instruction that specifies the event control
block. Under no circumstances may you construct a program loop that tests for the
complete bit.

Data Extent Block Fields

The data extent block (DEB) is constructed by the system when an OPEN macro
instruction is issued for the data control block. You may not modify the fields of the
DEB, but you may examine them. For VS1, the DEB format and field description are
contained in OS/VSl System Data Areas. For VS2, the DEB appears in OS/VS2
System Data Areas.

Executing Your Own Channel Programs (EXCP) 77

bit
o

WAIT Bit COMPLETE Bit Completion Code

2 31

WAIT bit
A one bit in this position indicates that the WAIT macro instruction has been issued, but that
the channel program has not been completed.

COMPLETE bit
A one bit in this position indicates that the channel program has been completed; If it has not
been completed, a zero bit is in this position.

Completion Cod,e
This code, which includes the wait and complete bits, may be one of the following 4-byte
hexadecimal expressions:

Code

7FOOOOOO

41000000

42000000

44000000

48000000

48000000

4FOOOOOO

Interpretation

Channel program has terminated without error.

Channel program has terminated with permanent error.

Channel program has terminated because a direct-access extent address has
been violated.

Channel program has been intercepted because of permanent error
associated with device end for previous request. You may reissue the
intercepted request.

Request element for channel program has been made available after it has
been purged.

One of the following errors occurred during tape error recovery processing.

• The CSW command address in the 108 is zeros.

• An unexpected load point was encountered.

Error recovery routines have been entered because of direct-access error but
are unable to read home address or record O.

Figure 16. Event Control Block After Posting of Completion Code (EXCP)

78 OS/VS Data Management for System Programmers

USING XDAP TO READ AND WRITE TO DIRECT-ACCESS DEVICES

Introduction

The execute direct-access program (XDAP) macro instruction provides you with a
means of reading, verifying, or updating blocks on direct-access volumes without using
an access method and without writing your own channel program. This chapter
explains what the XDAP macro instruction does and how you can use it. The control
block generated when XDAP is issued and the macro instruction used with XDAP are
also discussed.

Since most of the specifications for XDAP are similar to those for the execute channel
program (EXCP) macro instruction, you should be familiar with the "Executing Your
Own Channel Programs (EXCP)" chapter of this publication, as well as with the
information contained in OS/VS Data Management Services Guide, GC26-3783,
which provides how-to information for using the access method routines of the system
control program.

Execute direct-access program (XDAP) is a macro instruction that you may use to
read, verify, or update a block on a direct-access volume. If you are not using the
standard IBM data access methods, you can, by issuing XDAP, generate the control
information and channel program necessary for reading or updating the records of a
data set.

You cannot use XDAP to add blocks to a data set, but you can use it to change the
keys of existing blocks. Any block configuration and any data set organization can be
read or updated.

Although the use of XDAP requires much less storage than do the standard access
methods, it does not provide many of the control program services that are included in
the access methods. For example, when XDAP is issued, the system does not block or
deblock records and does not verify block length.

To issue XDAP, you must provide the actual device address of the track containing the
block to be processed. You must also provide either the block identification or the key
of the block, and specify which of these is to be used to locate the block. If a block is
located by identification, both the key and data portions of the block may be read or
updated. If a block is located by key, only the data portion can be processed.

For additional control over I/O operations, you may write appendages, which must be
entered into the SVC library. Descriptions of these routines and their coding
specifications are contained in the "Executing Your Own Channel Programs (EXCP)"
section of this publication.

XDAP Requirements

Before issuing the XDAP macro instruction, you must issue a DCB macro instruction,
which produces a data control block (DCB) for the data set to be read or updated.
You must also issue an OPEN macro instruction, which initializes the data control
block and produces a data extent block (DEB).

Using XDAP to Read and Write to Direct-Access Devices 79

When the XDAP macro instruction is issued, another control block, containing both
control information and executable code, is generated. This control block may be
logically divided into three sections:

An event control block (ECB), which is supplied with a completion code each time
the direct-access channel program is terminated.

An input/output block (lOB), which contains information about the direct-access
channel program.

A direct-access channel program, which consists of three or four channel command
words (CCWs). The type of channel program generated depends on specifications
in the parameters of the XDAP macro instruction.

After this XDAP control block is constructed, the direct-access channel program is
executed. A block is located by either its actual address or its key, and is either read or
updated.

When the channel program has terminated, a completion code is placed into the event
control block. After issuing XDAP, you should therefore issue a WAIT macro
instruction specifying the event control block to determine whether the direct-access
program has terminated. If volume switching is necessary, you must issue an EOV
macro instruction. When processing of the data set has been completed, you must issue
a CLOSE macro instruction to restore the data control block.

Macro Specifications for Use With XDAP

When you are using the XDAP macro instruction, you must also issue DCB, OPEN,
CLOSE, and, in some cases, the EOV macro instructions. The parameters of the
XDAP macro instruction are listed and described here. For the other required macro
instructions, special requirements or options are explained, but you should refer to
"Macro Specifications for Use with EXCP" for listings of their parameters.

DCB - Define Data Control Block

The EXCP form of the DCB macro instruction produces a data control block that can
be used with the XDAP macro instruction. You must issue a DCB macro instruction
for each data set to be read or updated by the direct-access channel program. The
section "DeB - Define Data Control Block for EXCP" contains a diagram of the data
control block, as well as a listing of the parameters of the DCB macro instruction.

OPEN - Initialize Data Control Block

The OPEN macro instruction initializes one or more data control blocks so that their
associated data sets can be processed. You must issue OPEN for all data control
blocks that are to be used by the direct-access program. Some of the procedures
performed when OPEN is executed are:

Construction of {hta extent block (DEB).

• Transfer of irllormation from DD statements and data set labels to the data control
block.

• Verification or creation of standard labels.

Loading of programmer-written appendage routines.

80 OS/VS Data Management for System Programmers

The two parameters of the OPEN macro instruction are the addressees) of the data
control block(s) to be initialized, and the intended method of I/O processing of the
data set. The method of processing may be specified as either INPUT or OUTPUT;
however, if neither is specified, INPUT is assumed.

XDAP - Execute Direct-Access Prograln

The XDAP macro instruction produces the XDAP control block (i.e., the ECB, lOB,
and channel program) and executes the direct-access channel program. The format of
the XDAP macro instruction is:

[symbol] XDAP ecb-symbo/,type,dcb-addr,area-addr,/ength-va/ue,

(key-addr,key/ength-va/ue)] ,b/kref-addr, [sector-addr],

[MF = ElL]

eeb-symbol - symbol or (2-12)
the symbolic name to be assigned to the XDAP control block. Registers can be
used only with MF=E or MF=L.

type - {RI}
{RK}
{WI}
{WK}
{VI}
{VIC}

the type of I/O operation intended for the data set and the method by which blocks
of the data set are to be located. Two values must be coded in this field. The
following combinations are valid: RI, RK, WI, WK, VI, and VK.

The codes and their meanings are:

R - Read a block.
W - Write a block.
V - Verify contents of a block but do not transfer data.
I - Locate a block by identification. (The key portion, if present, and the

data portion of the block are read or written.)
K - Locate a block by key. (Only the data portion of the block is read or

written.) If you code this value, you must code the key-addr and
key-length-value operands.

deb-addr - A-type address or (2-12)
the address of the data control block of the data set.

area-addr - A-type address or (2-12)
the address of an input or output area for a block of the data set.

length-value - absexp or (2-12)
the number of bytes to be transferred to or from the input or output area. If blocks
are to be located by identification and the data set contains keys, the value must
include the length of the key. The maximum number of bytes transferred is 32767.

key-addr - RX-type address or (2-12)
when blocks are to be located by key, the address of a virtual storage field that
contains the key of the block to be read or overwritten.

Using XDAP to Read and Write to Direct-Access Devices 81

keylength-value - absexp or (2-12)
when blocks are to be located by key, the length of the key. The maximum length
is 255 bytes.

blkref-addr - RX-type address or (2-12)
the address of a field in virtual storage containing the actual device address of the
track containing the block to be located. The actual address of a block is in the
form MBBCCHHR, where M indicates which extent entry in the data extent block
is associated with the direct-access program; BB is not used but must be zero; CC
indicates the cylinder address; HH indicates the actual track address; and R
indicates the block identification. R is not used when blocks are to be located by
key. (See "Conversion of Relative Block Address to Actual Device Address" later
in this chapter for more detailed information.)

sector-addr - RX-type address or (2-12)
the address of a I-byte field containing a sector value. The sector-address
parameter is used for rotational position sensing (RPS) devices only. The parameter
is optional, but its use will improve channel performance. When the parameter is
coded, a set-sector CCW (using the sector value indicated by the data address field).
precedes the Search-ID-Equal command in the channel program. The
sector-address parameter is ignored if the type parameter is coded as RK, WK, or
VK, or is omitted in the execute form of the XDAP macro instruction.

Note: No validity check is made on either the address or the sector value when the
XDAP macro is issued. However, a unit exception interrupt will occur during the
channel program execution if the sector value is larger than the maximum for the
device or if the sector-addr operand is used when accessing a device without RPS.
(See "Obtaining Sector Number of a Block or a Device with the RPS Feature" later
in this chapter for more detailed information.)

MF=
you may use the L-form of the XDAP macro instruction for a macro expansion
consisting of only a parameter list, or the E-form for a macro expansion consisting
of only executable instructions.

MF=L
The first two operands (ecb-symbol and type) are required and must be coded as
symbols. All other operands are optional except blkref-addr, which is ignored if
coded. The last five operands must be cod~d as A-type addresses.

MF=E
The first operand (ecb-symbol) is required and may be coded as a symbol or supplied
in register 2-12. The type, dcb-addr, area-addr, and length-value operands may be
supplied in either the L- or E-form. The blkref-addr operand may be supplied in
the E-form or moved into the lOB by you. The sector-addr is optional; it may be
coded either in both the L- and E-form or in neither.

The dcb-addr, area-addr, blkref-addr, and sector-value operands may be coded as
RX-type addresses or supplied in register 2-12. The length-value and keylength-value
operands can be specified as a decimal digit or supplied in register 2-12.

82 OS!VS Data Management for System Programmers

EOV - End of Volulne

The EOV macro instruction identifies end-of-volume and end-of-data set conditions.
For an end-of-volume condition, EOV causes switching of volumes and verification or
creation of standard labels. For an end-of-data set condition, EOV causes your
end-of-data set routine to be entered. When using XDAP, you issue EOV if switching
of direct-access volumes is necessary, or if secondary allocation is to be performed for
a direct-access data set opened for output.

The only parameter of the EOV macro instruction is the address of the data control
block of the data set.

CLOSE - Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so that
processing of their associated data sets can be terminated. You must issue CLOSE for
all data sets that were used by the direct-access channel program. Some of the
procedures performed when CLOSE is executed are:

Release of data extent block (DEB)

• Removal of information transferred to data control block fields when OPEN was
executed

Verification or creation of standard labels

Release of programmer-written appendage routines

The only parameter of the CLOSE macro instruction is the address of the data control
block to be restored. (More than one data control block may be specified.)

Control Blocks Used with XDAP

The three control blocks generated during execution of the XDAP macro instruction
are described here.

Event Control Block

The event control block (ECB) begins on a fullword boundary and occupies the first 4
bytes of the XDAP control block. Each time the direct-access channel program
terminates, the input/output supervisor places a completion code containing status
information into the event control block (Figure 17). Before examining this
information, you must test for the setting of the "COMPLETE Bit" by issuing a WAIT
macro instruction specifying the event control block.

Input/Output Block

The input/output block (lOB) is 40 bytes in length and immediately follows the event
control block. The "Control Block Guide" section in the EXCP section of this
publication contains a diagram of the input/output block. The only fields with which
the user of XDAP is concerned are the IOBSENSO, IOBSENS 1, and IOBCSW fields
(see Figure 13). You may wish to examine these fields when a unit check condition or
all I/O interruption occurs.

Using XDAP to Read and Write to Direct-Access Devices 83

WAIT Bit=Q COMPLETE Bit=1 Remainder of Completion Code

bit
Q 2 31

WAIT Bit
A one bit in this position indicates that the direct-access channel program has not been
completed.

COMPLETE Bit
A one bit in this position indicates that the channel program has been completed; if it has not
been completed, a zero bit is in this position.

Completion Code
This code, which includes the WAIT and COMPLETE bits, may be one of the following 4-byte
hexadecimal expressions:

Code

7FOOOOOO

41000000

42000000

44000000

48000000

4FOOOOOO

Interpretation

Direct-access program has terminated without error.

Direct-access program has terminated with permanent error.

Direct-access program has terminated because a direct-access extent address
has been violated.

Channel program has been intercepted because of permanent error associated
with device end for previous request. You may reissue the intercepted request.

Request element for channel program has been made available after it has been
purged.

Error recovery routines have been entered because of direct-access error but
are unable to read home address or record O.

Figure 17. Event Control Block After Posting of Completion Code (XDAP)

Direct-Access Channel Program

The direct-access channel program is 24 bytes in length (except when set sector is used
for RPS devices) and immediately follows the input/output block. Depending on the
type of I/O operation specified in the XDAP macro instruction, one of four channel
programs may be generated. The three channel command words for each of the four
possible channel programs are shown in Figure 18.

When a sector address is specified with an RI, VI, or WI operation, the channel
program is 32 bytes in length. Each of the channel programs in Figure 18 would be, in
this case, preceded by a set sector command.

84 OS/VS Data Management for System Programmers

Type of I/O Operation CCW Command Code

Read by identification 1 Search I D Equal
2 Transfer in Channel

Verify by identification 1 3 Read Key and Data

Read by key Search Key Equal
2 Transfer in Channel

Verify by key 1 3 Read Data

Search ID Equal
Write by identification 2 Transfer in Channel

3 Write Key and Data

Search Key Equal
Write by key 2 Transfer in Channel

3 Write Data

1 For verifying operations, the third CCW is flagged to suppress the transfer of information to virtual
storage.

Figure 18. The XDAP Channel Programs

Conversion of Relative Block Address to Actual Device Address

To issue XDAP, you must provide the actual'device address of the track containing the
block to be processed. If you know only the relative block address, you can convert it
to the actual address by using a resident system routine. The entry point to this
conversion routine is labeled IECPCNVT. The address of the entry point
(CVTPCNVT) is in the communication vector table (CVT). The address of the CVT
is in location 16. (For the displacements and descriptions of the CVT fields, see
OS/VSl System Data Areas for VSl systems and OS/VS2 System Data Areas for
VS2 systems.

The conversion routine does all its work in general registers. You must load registers 0,
1, 2, 14, and 15 with input to the routine. Register usage is as follows:

Register

o

1

2

3-8

9-13

Use

Must be loaded with a 4-byte value of the form TTRN, where
TT is the number of the track relative to the beginning of the
data set, R is the identification of the block on that track, and N
is the concatenation number of the data set. (0 indicates the first
or only data set in the concatenation, 1 indicates the second, etc.)

Must be loaded with the address of the data extent block (DEB)
of the data set.

Must be loaded with the address of an 8-byte area that is to
receive the actual address of the block to be processed. The
converted address is of the form MBBCCHHR, where M
indicates which extent entry in the data extent block is associated
with the direct-access program (0 indicates the first extent, 1
indicates the second, etc.); BB indicates the bin number of the
direct-access volume; CC indicates the cylinder address; HH
indicates the actual track address; and R indicates the block
identification.

Are not used by the conversion routine.

Are used by the conversion routine and are not restored.

Using XDAP to Read and Write to Direct-Access Devices 85

14

15

Must be loaded with the address to which control is to be
returned after execution of the conversion routine.

Is used by the conversion routine as a base register and must be
loaded with the address at which the conversion routine is to
receive control.

86 OS/VS Data Management for System Programmers

Obtaining Sector Number of a Block on a Device With the RPS Feature

To obtain the performance improvement given by rotational position sensing, you
should specify the sector-addr parameter on the XDAP macro. For programs which
may be used for both RPS and non-RPS devices, the UCBTYP field can be checked to
determine whether or not the device has the rotational position sensing feature.

The sector-addr parameter on the XDAP macro specifies the address of a one byte field
in your region. You must store the sector number of the block to be located in this
field. You can obtain the sector number of the block by using a resident conversion
routine, IECOSCR 1. The address of this routine is in field CVTOSCR 1 of the CVT,
and the address of th CVT is in location 16. The routine should be invoked via a
BALR 14, 15 instruction.

For RPS devices, the conversion routine does all its work in general registers. You
must load registers 0, 2, 14, and 15 with input to the routine. Register usage is as
follows:

Register

o

1

2

3-8,12,13

9-11

14

15

Use

For fixed-length records, register 0 must be loaded with a 4-byte
value in the form DDKR, where DD is a 2-byte field containing
the physical block size, K is a I-byte field containing the key
length, and R is a I-byte field containing the number of the
record for which a sector value is desired. The high-order bit of
register 0 must be turned off (set to 0) to indicate fixed-length
records.

For variable-length records, register 0 must be loaded with a
4-byte value in the form BBIR, where BB is the total number of
key and data bytes up to, but not including, the target record; I is
a I-byte key indicator (1 for keyed records, 0 for records witho~t
keys); and R is a I-byte field containing the number of the
record for which a sector value is desired. The high-order bit of
register 0 must be turned on (set to 1) to indicate variable-length
records.

Not used by the sector convert routine.

Must be loaded with a 4-byte field in which the first byte is the
UCB device type code for the device (obtainable from
U CB + 19), and the remaining three bytes are the address of a
I-byte area that is to receive the sector value.

Not used.

Used by the convert routine and are not saved or restored.

Must be loaded with the address to which control is to be
returned after execution of the sector conversion routine.

Used by the conversion routine as a base register and must be
loaded with the address of the entry point to the conversion
routine.

Using XDAP to Read and Write to Direct-Access Devices 87

PASSWORD PROTECTING YOUR DATA SETS

Introduction

To use the data set protection feature of the operating system, you must create and
maintain a PASSWORD data set consisting of records that associate the names of the
protected data sets with the password assigned to each data set. There are four ways
to maintain the PASSWORD data set:

You can write your own routines.

You can use the PROTECT macro instruction.

• You can use the utility control statements of the IEHPROGM utility program.

For OS/VS2 systems with TSO, you can use the TSO PROTECT command.

This chapter discusses only the first two of the four ways - it provides technical detail
about the PASSWORD data set that is necessary for writing your own routines, and it
describes how to use the PROTECT macro instruction. (The last two of the four ways
are disucssed in other publications, as indicated in the list of publications below.)

Before using the information in this chapter, you should be familiar with information in
several related publications. The following publications are recommended:

OS/VS Data Management Services Guide, GC26-3783, contains a general
description of the data set protection feature.

OS/VS Message Library: VSl System Messages, GC38-1001, contains a
description of the operator messages and replies associated with the data set
protection feature for VS 1.

OS/VS Message Library: VS2 System Messages, GC28-1002, contains a
description of the operator messages and replies associated with the data set
protection feature for VS2.

OS/VS JCL Reference, GC28-0618, contains a description of the data definition
(DD) statement parameter used to indicate that a data set is to be password
protected.

OS/VS DADSM Logic, SY26-3787, contains a description of the PASSWORD
data set record format.

OS/VS Utilities, GC35-0005, contains a description of how to maintain the
PASSWORD data set using the utility control statements of the IEHPROGM utility
program.

OS/VS2 TSO Command Language Reference, GC28-0646, describes the use of
the TSO PROTECT command.

In addition to the usual label protection that prevents opening of a data set without the
correct data set name, the operating system provides data set security options that
prevent unauthorized access to confidential data. Password protection prevents access
to data sets, until a correct password is entered by the system operator, or, for TSO, a
remcte terminal operator.

Password Protecting Your Data Sets 89

The following are the types of access allowed to password protected data sets:

PWREAD /PWWRITE - A password is required to read or write.

PWREAD/NOWRITE - A password is required to read. Writing is not allowed.

NOPWREAD/PWWRITE - Reading is allowed without a password. A password is
required to write.

To prepare for use of the data set protection feature of the operating system, you place
a sequential data set, named PASSWORD, on the system residence volume. This data
set must contain at least one record for each data set placed under protection. In turn,
each record contains a data set name, a password for that data set, a counter field, a
protection mode indicator, and a field for recording any information you desire to log.
On the system residence volume, these records are formatted as a "key area" (data set
name and password) and a "data area" (counter field, protection mode indicator, and
logging field). The data set is searched on the "key area."

You can write routines to create and maintain the PASSWORD data set. If you use
the PROTECT macro instruction to maintain the PASSWORD data set, see the section
in this chapter called "Using the Macro Instruction to Maintain the PASSWORD Data
Set." If you use the IEHPROGM utility program to maintain the PASSWORD data set,
see OS/VS Utilities. These routines may be placed in your own library or the system's
linkage editor library (SYSl.LINKLIB). You may use a data management access
method or EXCP programming to read from and write to the PASSWORD data set.

If a data set is to be placed under protection, it must have a protection indicator set in
its label (format-1 DSCB or header 1 tape label). This is done by the operating system
when the data set is created, by the IEHPROGM utility program, or, by the
PROTECT macro when creating or adding the control password. The protection
indicator is set in response to a value in the LABEL= operand of the DD statement
associated with the data set being placed under protection. OS/VS JCL Reference
describes the LABEL operand.

Note: Data sets on magnetic tape are protected only when standard labels are used.

Password-protected data sets can only be accessed by programs that can supply the
correct password. When the system control program receives a request to open a
protected data set, it issues a message that requests that the password be given. The
message goes to the operator console, or, if the program requesting that the data set be
opened is running under TSO in the foreground, to the TSO terminal operator. If you
want the password supplied by another method in your installation, you can modify the
READPSWD source module or code a new routine to replace READPSWD in
SYS1.SVCLIB.

PASSWORD Data Set Characteristics

The PASSWORD data set must reside on the same volume as your operating system.
The space you allocate to the PASSWORD data set must be contiguous, i.e., its DSCB
must indicate only one extent. The amount of space you allocate depends on the
number of data sets your installation wants to protect. Each entry in the PASSWORD
data set requires 132 bytes of space. The organization of the PASSWORD data set is
physical sequential, the record format is unblocked, fixed-length records (RECFM=F).
These records are 80 bytes long (LRECL=80,BLKSIZE=80) and form the data area
of the PASSWORD data set records on direct-access storage. In these direct-access
storage records, the data area is preceded by a key area of 52 bytes (KEYLEN =52).
The key area contains the fully qualified data set name of up to 44 bytes and a

90 OS/VS Data Management for System Programmers

password of one to eight bytes, left justified with blanks added to fill the areas. The
password assigned may be from one to eight alphameric characters in length. OSjVS
DADSM Logic, describes the PASSWORD data set record format.

You can protect the PASSWORD data set itself by creating a password record for it
when your program initially builds the data set. Thereafter, the PASSWORD data set
cannot be opened (except by the operating system routines that scan the data set)
unless the operator enters the password.

Note: If a problem occurs on a password-protected system data set, maintenance
personnel must be provided with the password in order to access the data set and
resolve the problem.

Creating Protected Data Sets

A data definition (DD) statement parameter (LABEL=) is used to indicate that a data
set is to be placed under protection. Operating procedures at your installation must
ensure that password records for all data sets currently under protection are entered in
the PASSWORD data set. You may, for example, create a data set and set the
protection indicator in its label, without entering a password record for it in the
PASSWORD data set. However, once the data set is closed, any subsequent attempt
to open results in termination of the program attempting to open the data set, unless
the password record is available and the operator can honor the request for the
password. (Note that if the protection module is NOPWREAD and the request is to
open the data set for input, no password will be required.)

Protection Feature Operating Characteristics

The topics that follow provide information concerning actions of the protection feature
in relation to termination of processing, volume switching, data set concatenation,
SCRATCH and RENAME functions, and counter maintenance.

Termination of Processing

Volume Switching

Processing is terminated when:

1. The operator cannot supply the correct password for the protected data set being
opened after two tries.

2. A password record does not exist in the PASSWORD data set for the protected
data aset being opened.

3. The protection mode indicator in the password record, and the method of II 0
processing specified in the Open routine do not agree, e.g., OUTPUT specified
against a read-only protection mode indicator.

4. There is a mismatch in data set names for a data set involved in a volume switching
operation. This is discussed in the next topic.

The operating system end-of-volume routine does not request a password for a data set
involved in a volume switch. Continuity of protection is handled in the following ways:

Input Data Sets - Tape and Direct-Access Devices: Processing continues if the data set
name in the tape label or DSCB on the volume switched to matches the name of the
data set opened with the password. If they do not match, processing is terminated.

Password Protecting Your Data Sets 91

Output Data Sets - Tape Devices: The protection indicator in the tape label for the
first data set on the volume switched to is tested:

1. If the protection indicator is set ON and the data set name in the label and the
name of the data set opened with the password match, processing continues. An
unequal comparison results in a call for another volume.

2. If the protection indicator is OFF, processing continues, and a new label is written
with the protection indicator set ON. '

3. If only a volume label exists on the volume switched to, processing continues, and a
new label is written with the protection indicator set ON.

Output Data Sets - Direct-Access Devices: For existing data sets, if the data set name
in a DSCB on the volume switched to and the name of the data set opened with the
password match, processing continues. For new output data sets, the volume switching
mechanism ensures continuity of protection: the DSCB created on the volume
switched to will indicate protection.

Data Set Concatenation

A password is requested for every protected data set that is involved in a concatenation
of data sets, regardless of whether the other data sets involved are protected or not.

SCRATCH and RENAME Functions

Counter Maintenance

Each attempt to delete or rename a protected data set results in a request for the
password via the IEC301A message. The password supplied in response to this
message must be associated with a "WRITE" protection mode indicator.

The operating system does not maintain the counter in the password record and no
overflow indication will be given (overflow after 65,535 openings). You must provide
a counter maintenance routine to check and, if necessary, reset this counter.

Using the PROTECT Macro Instruction to Maintain the PASSWORD Data Set

To use the PROTECT macro instruction, your PASSWORD data set must be on the
system residence volume. The PROTECT macro can be used to:

Add an entry to the PASSWORD data set.

Replace an entry in the PASSWORD data set.

Delete an entry from the PASSWORD data set.

Provide a list of information about an entry in the PASSWORD data set; this list
will contain the security counter, access type, and the 77 bytes of security
information in the "data area" of the entry.

In addition, the PROTECT macro, updates the DSCB of a protected direct-access data
set to reflect its protection status; this feature eliminates the need for you to use job
control language whenever you protect a data set.

92 OS/VS Data Management for System Programmers

PASSWORD Data Set Characteristics and Record Format When You Use the
PROTECT Macro Instruction

When you use the PROTECT macro, the record format and characteristics of the
PASSWORD data set are no different from the record format and characteristics that
apply when you use your own routines to maintain it.

Number of Records for Each Protected Data Set

When you use the PROTECT macro, the PASSWORD data set must contain at least
one record for each protected data set. The password (the last 8 bytes of the "key
area") that you assign when you protect the data set for the first time is called the
control password. In addition, you may create as many secondary records for the same
protected data set as you need. The passwords assigned to these additional records are
called secondary passwords. This feature is helpful if you want several users to have
access to the same protected data set, but you also want to control the manner in
which they can use it. For example: one user could be assigned a password that
allowed the data set to be read and written, and another user could be assigned a
password that allowed the data set to be read only.

Note: The PROTECT macro will update the protection mode indicator in the format-l
DSCB in the protected data set only when you issue it for adding, replacing, or deleting
a control password.

Protection Mode Indicator

You can set the protection mode indicator in the password record to four different
values:

• X'OO' to indicate that the password is a secondary password and the r Jtected data
set is to be read only (PWREAD).

• X'80' to indicate that the password is the control password and the protected data
set is to be read only (PWREAD).

• X'O l' to indicate that the password is a secondary password and the protected data
set is to be read and written (PWREAD/PWWRITE).

• X' 81' to indicate that the password is the control password and the protected data
set is to be read and written (PWREAD/PWRITE).

Because the DSCB of the protected data set is updated only when the control password
is changed, you may request protection attributes for secondary passwords that conflict
with the protection attributes of the control password.

Because of the sequence in which the protection status of a data set is checked, the
following defaults will occur:

If control password is:

1. PWREAD /PWRITE or
PWREAD/NOWRITE

2. NOPWREAD/PWWRITE

Secondary password must be:

PWREAD/PWWRITE or
PWREAD/NOWRITE

NOPWREAD/PWWRITE

If the control password is set to either of the settings in item 1 above, the secondary
password will be set to PWREAD /PWRITE if you try to set it to
NOPWREAD/PWWRITE.

Password Protecting Your Data Sets 93

If the control password is changed from either of the settings in item 1 to the setting in
item 2 above, the secondary password will be automatically reset to
NOPWREAD /PWWRITE.

If the control password is changed from the setting in item 2 to either of the settings in
item 1 above, the secondary password is set by the system to PWREAD /PWWRITE.

PROTECT Macro Specification

The format is:

[symbol] PROTECT parameter list address

parameter list address - A-type address, (2-12), or (1)
indicates the location of the parameter list. The parameter list must be set up
before the PROTECT macro is issued. The address of the parameter list may be
passed in register 1, in registers 2 through 12, or as an A-type address. The first
byte of the parameter list must be used to identify the function (add, replace,
delete, or list) you want to perform. See Figures 19 through 22 for the parameter
lists and codes used to identify the functions.

94 OS/VS Data Management for System Programmers

0

4

8

12

16

20

24

X'01' 1 000000

Data Set Length 5 Pointer to Data Set Name

00 9 000000

00 13 Pointer to Control Password

Number of Volumes 17 Pointer to Volume List

Protection Code 21 Pointer to New Password

String Length 25 Pointer to String

o X'01'
Entry code indicating ADD function.

13 Pointer to control password.
The control password is the password assigned when the data set was placed under
protection for the first time. The pointer can be 3 bytes of binary zeros if the new
password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you have to
specify the number of volumes in this field. A zero indicates that the catalog information
should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you provide
the address of a list of volume serial numbers in this field. Zeros indicate that the
catalog information should be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates default protection
(for the ADD function; the default protection is the type of protection specified in the
control password record of the data set); X'01' indicates that the data set is to be read
and written; X'02' indicates that the data set is to be read only; and X'03' indicates that
the data set can be read without a password, but a password is needed to write into it.
The PROTECT macro will use the protection code value, specified in the parameter list,
to set the protection mode indicator in the password record.

21 Pointer to new password.
If the data set is being placed under protection for the first time, the new password
becomes the control password. If you are adding a secondary entry, the new password
is different from the control password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in the
optional information field of the password record. If you don't want to add information,
set this field to zero.

25 Pointer to string.
The address of the character string that is going to be put in the optional information
field. If you don't want to add additional information, set this field to zero.

Figure 19. Parameter List for ADD Function

Password Protecting Your Data Sets 95

0

4

8

12

16

20

24

X'02' 1 00 0000

Data Set Length 5 Pointer to Data Set Name

00 9 Pointer to Current Password

00 13 Pointer to Control Password

Number of Volumes 17 Pointer to Volume List

Protection Code 21 Pointer to New Password

String Length 25 Pointer to String

o X'02'
Entry code indicating REPLACE function.

9 Pointer to current password.
The address of the password that is going to be replaced.

13 Pointer to control password.
The address of the password assigned to the data set when it was first placed under
protection. The pointer can be set to 3 bytes of binary zero if the current password is
the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you have to
specify the number of volumes in this field. A zero indicates that the catalog information
should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you have to
provide the address of a list of volume serial numbers in this field. If this field is zero,
the catalog information will be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates that the protection
is default protection (for the REPLACE function the default protection is the protection
specified in the current password record of the data set); X'01' indicates that the data
set is to be read and written; X'02' indicates that the data set is to be read only; and
X'03' indicates that the data set can be re~d without a password, but a password is
needed to write into the data set.

21 Pointer to new password.
The address of the password that you want to replace the current password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in the
optional information field of the password record. Set this field to zero if you don't want
to add additional information.

25 Pointer to string.
The address of the character string that is going to be put in the optional information
field of the password record. Set the address to zero if you don't want to add additional
information.

Figure 20. Parameter List for REPLACE Function

96 OS/VS Data Management for System Programmers

0

4

8

12

16

X'03' 1 000000

Data Set Length 5 Pointer to Data Set Name

00 9 Pointer to Current Password

00 13 Pointer to Control Password

Number of Volumes 17 Pointer to Volume List

o X'03'.
Entry code indicating DELETE function.

9 Pointer to current password.
The address of the password that you want to delete. You can delete either a control
entry or a secondary entry.

13 Pointer to control password.
The address of the password assigned to the data set when it was placed under
protection for the first time. The pointer can be 2 bytes of binary zero if the current
password is also the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you have to
specify the number of volumes in this field. A zero indicates that the catalog information
should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you have to
provide the address of a list of volume serial numbers in this field. If this field is zero,
the catalog information will be used.

Figure 21. Parameter List for DELETE Function

0

4

8

X'04' 1 Pointer to 80 Byte Buffer

Data Set Length 5 Pointer to Data Set Name

00 9 Pointer to Current Password

o X'04'.
Entry code indicating LIST function.

Address of aD-byte buffer.
The address of a buffer where the list of information can be returned to your program by
the macro instruction.

9 Pointer to current password.
The address of the password of the record that you want listed.

Figure 22. Parameter List for LIST Function

Password Protecting Your Data Sets 97

Return Codes From the PROTECT Macro

When the PROTECT macro finishes processing, register 15 contains a return code that
indicates what happened during the processing. Figure 23 contains the return codes
and their interpretation.

Register 15

o

4

8
12
16
20

**24
28

*32

*36

*40

44
*48

*52

Interpretation

The updating of the PASSWORD data set was successfully
completed.

The PASSWORD of the data set name was already in the password

data set.

The password of the data set name was not in the PASSWORD data set.

A control password is required or the one supplied is incorrect.
The supplied parameter list was incomplete or incorrect.

There was an I/O error in the PASSWORD data set.

The PASSWORD data set was full.

The validity check of the buffer address failed.

The LOCATE macro failed. LOCATE's return code is in register 1, and the
number of indexes searched is in register O.

The OBTAIN macro failed. OBTAIN's return code is in register 1.

The DSCB could not be updated.

The PASSWORD data set does not exist.

Tape data set cannot be protected.

Data set in use.

*For these return codes, the PASSWORD data set has been updated, but the DSCB has not been
flagged to indicate the protected status of the data set.

**For this return code, a message is written to the console indicating that the PASSWORD data
set is full.

Figure 23. Return Codes from the PROTECT Macro Instruction

98 OS/VS Data Management for System Programmers

SYSTEM MACRO INSTRUCTIONS

Introduction

This chapter describes miscellaneous macro instructions that allow you either to modify
control blocks or to obtain information from control blocks and system tables.

Before reading this chapter, you should be familiar with the information in the
following publications:

OS/VS and DOS/VS Assembler Language, GC33-4010, contains the
information necessary to code programs in the assembler language.

OS/VSl System Data Areas, SY28-0605, contains format and field descriptions
of the VS 1 system control blocks referred to in this chapter.

OS/VS2 System Data Areas, SY26-0606, contains format and field descriptions
of the VS2 system control blocks referred to in this chapter.

The system macro instructions are described in these functional groupings:

• Mapping (IEFUCBOB, IEFJFCBN, and CVT)
Obtaining device characteristics (DEVTYPE)

• ManipUlating the JFCB (RDJFCB)
• Data security (DEBCHK)
• ManipUlating queues (PURGE and RESTORE)

Mapping System Data Areas

The IEFUCBOB, IEFJFCBN, and CVT macro instructions are used as DSECT
expansions that define the symbolic names of fields within the unit control block
(UCB), job file control block (JFCB), and communication vector table (CVT),
respectively. When coding these instructions, you must precede each with a DSECT
statement.

The IEFUCBOB and IEFJFCBN macro definitions are in the macro library
(SYS1.AMACLIB) ready for use. The CVT definition is in a system generation library
(SYS1.AMODGEN) and must be copied (using IEBCOPY) into SYS1.AMACLIB, or
SYS 1.AMODGEN may be concatenated to the macro library before reference can be
made to it.

The fields in these blocks are shown and described in OS/VS System Data Areas for
VSl systems and in OS/VS2 System Data Areas for VS2 systems.

IEFUCBOB - Mapping the UCB

This macro instruction defines the symbolic names of all fields in the unit control block
(UCB). Code this macro instruction with blank name and operand fields, and precede
it with a DSECT statement.

The format is:

[symbol] DSECT
IEFUCBOB

System Macro Instructions 99

IEFJFCBN - Mapping the JFCB

This macro instruction defines the symbolic names of all fields in the job file control
block (JFCB). Code this macro instruction with blank name and operand fields, and
precede it with a DSECT statement. .

The format is:

[symbol]

CVT - Mapping the CVT

DSECT
IEFJFCBN

This macro instruction defines the symbolic names of all fields in the communication
vector table (CVT). Code this macro instruction with blank name and operand fields,
and precede it with a DSECT statement.

The format is:

[symbol] DSECT
CVT

Obtaining 110 Device Characteristics

Use the DEVTYPE macro instruction to request information relating to the
characteristics of an I/O device, and to cause this information to be placed into a
specified area. (The results of a DEVTYPE macro instruction executed before a
checkpoint is taken should not be considered valid after a checkpoint/restart occurs.)

The topics that follow discuss the macro itself, device characteristics, and particular
output for particular devices.

DEVTYPE Macro Specification

The format is:

[symbol] DEVTYPE ddloc-addrx,area-addrx[,DEVTAB] [,RPS]

ddloc-addrx
the address of an 8-byte field that contains the symbolic name of the DD statement
to which the device is assigned. The name must be left justified in the 8-byte field,
and must be followed by blanks if the name is less than eight characters. The
doubleword need not be on a double word boundary.

area-addrx
the address of an area into which the device information is to be placed. The area
can be one, two, five, or six fullwords, depending on whether or not the DEVTAB
and RPS operands are specified. The area must be on a fullword boundary.

DEVTAB
This operand is only required for direct-access devices. If DEVT AB is specified,
the following number of words of information is placed in your area:

• For direct-access devices - 5 words
• For non-direct-access devices - 2 words

100 OS/VS Data Management for System Programmers

If you do not code DEVTAB, one word of information is placed in your area if the
reference is to a graphics or teleprocessing devices; for any other type of device, two
words of information are placed in your area.

RPS
If RPS is specified, DEVT AB must also be specified. The RPS parameter causes
one additional full word of RPS information to be included with the DEVTAB
information.

Note: Any reference to a dummy DD statement in the DEVTYPE macro instruction
will cause eight bytes of zeros to be placed in the output area. For installations using
OS/VSl, any reference to a JES spool device causes zeros to be placed in word 1 and
32,767 to be placed in word 2 in the output area.

Device Characteristics Information

The following information is placed into your area as a result of issuing a DEVTYPE
macro:

Word 1

Describes the device as defined in the UCBTYP field of the UCB. For a complete
description of this field, refer to:

OS/VSl System Data Areas, if you're using OS/VSl

OS/VS2 System Data Areas, if you're using OS/VS2.

Word 2

Maximum blocksize. For direct-access devices, this value is the maximum size of an
unkeyed block; for magnetic or paper tape devices, this value is the maximum
blocksize allowed by the operating system. For all other devices, this value is the
maximum blocksize accepted by the device.

If DEVTAB is specified, the next three fullwords contain the following information
about direct-access deivces:

Word 3

Bytes 1-2

Bytes 3-4

Word 4
Bytes 1-2

Byte 3

Byte 4

The number of physical cylinders on the device.

The number of tracks per cylinder.

Maximum track length. Note that for the 2305 and 3330
direct-access devices, this value is not equal to the value in word
two (maximum blocksize) as it is for other IBM direct-access
deivces.
Block overhead, keyed block - the number of bytes required for
gaps and check bits for each keyed block other than the last block
on a track.
Block overhead - the number of bytes required for gaps and check
bits for a keyed block that is the last block on a track.

System Macro Instructions 101

Word 5

Byte 1

Byte 2

Bytes 3-4

Block overhead,block without key - the number of bytes to be
subtracted if a block is not keyed.

bits 0-3 Reserved.
bit 4 If 1, bytes 3 and 4 of word 4 contain a halfword giving

the block overhead for any block on a track, including
the last block.

bits 5-6
bit 7

Reserved.
If 1, a tolerance factor must be applied to all blocks
except the last block on the track.

Tolerance factor - this factor is used to calculate the effective
length of a block. The calculation should be performed as follows:

Step 1 - add the block's key length to the block's data length.
Step 2 - test bit 7 of byte 2 of word S. If bit 7 is 0, perform step

3. If bit 7 is 1, multiply the sum computed in step 1
by the tolerance factor. Shift the result of the multiplication
lines bits to the right.

Step 3 - add the appropriate block overhead to the value obtained above.

If DEVT AB and RPS are specified, the next fullword contains the following
information:

Word 6

Bytes 1-2

Byte 3

Byte 4

Output for Each Device Type

RO overhead for sector calculations

Number of sectors for the device

Number of data sectors for the device

Maximum
Record Size DEVTAB

UCB Type Field (Word 2, (Words 3, 4, and 5,
Device (Word 1)** In Decimal) In Hexadecimal)

2540 Reader 80 Not Applicable
2540 Reader w / CI 80 Not Applicable
2540 Punch 80 Not Applicable
2540 Punch w / CI 80 Not Applicable

1442 Reader-Punch 80 Not Applicable
1442 Reader-Punch w/CI 80 Not Applicable
1442 Serial Punch 80 Not Applicable
1442 Serial Punch w/CI 80 Not Applicable

2501 Reader 80 Not Applicable
2501 Reader w/CI 80 Not Applicable

2520 Reader-Punch 80 Not Applicable
2520 Reader-Punch w / CI 80 Not Applicable
2520 82-83 80 Not Applicable
2520 82-83 w / CI 80 Not Applicable

102 OS/VS Data Management for System Programmers

RPS
(Word 6,
(In Hexadecimal)

Not Applicable
Not Applicable
Not Applicable
Not Applicable

Not Applicable
Not Applicab!e
Not Applicable
Not Applicable

Not Applicable
Not Applicable

Not Applicable
Not Applicable
Not Applicable
Not Applicable

Maximum
Record Size DEVTAB RPS

UCB Type Field (Word 2, (Words 3, 4, and 5, (Word 6,
Device (Word 1)** In Decimal) In Hexadecimal) (In Hexadecimal)

1287 Optical Reader 0 Not Applicable Not Applicable
1288 Optical Reader 0 Not Applicable Not Applicable
1419/1275 Reader/Sorter 0 Not Applicable Not Applicable
3505 Reader 80 Not Applicable Not Applicable
3505 Reader w/CI 80 Not Applicable Not Applicable
3525 Punch 80 Not Applicable Not Applicable
3525 Punch w / CI bO Not Applicable Not Applicable

1403 Printer 120* Not Applicable Not Applicable
1403 w/UCS 120* Not Applicable Not Applicable
1404 Printer 120* Not Applicable Not Applicable
1443 Printer 120* Not Applicable Not Applicable
3211 Printer 132* Not Applicable Not Applicable

2671 Paper Tape Reader 32767 Not Applicable Not Applicable

1052 Printer-Keybcard 130 Not Applicable Not .L\pplicable
1053 Printer Not Applicable Not Applicable

3210 Printer-Keyboard 130 Not Applicable Not Applicable
3215 Printer-Keyboard 130 Not Applicable Not Applicable

2400 (9-track) 32767 Not Applicable Not Applicable
2400 (9-track, p.e.) 32767 Not Applicable Not Applicable
2400 (9-track, d.d.) 32767 Not Applicable Not Applicable
2400 (7-track) 32767 Not Applicable Not Applicable
2400 (7-track, d.c.) 32767 Not Applicable Not Applicable
2495 Tape Cartridge Reader 0 Not Applicable Not Applicable

3400 (9-track, p.e.) 32767 Not Applicable Not Applicable
3400 (9-track, d.d.) 32767 Not Applicable Not Applicable
3400 (7 track) 32767 Not Applicable Not Applicable

2314/2319 DAS Facility 7294 00CB00141C7E922D2D010216 Not Applicable

2305-1 Fixed-Head Storage 14138 0030000838E80278CA090200 02985A57

2305-2 Fixed-Head Storage 14660 006AOO083AOA01215B090200 0140B4B1
3330 Disk Storage 13030 019B0013336DBFBF38010200 00ED807C

2250-1 Display Unit Not Applicable Not Applicable
2250-2 Display Unit Not Applicable Not Applicable
2253-3 Display Unit Not Applicable Not Applicable

Legend

CI-card image feature, d.c.-data conversion, d.d.-dual density, p.e.-phase encoding, UCS-universal character set, w / -with

*Although certain models can have a larger line size, the minimum line size is assumed.

**Device codes are presented in the data areas publications:

For VS1 systems, see OS/VS1 System Data Areas, "The UCBTYP Field of the UCB."

For VS2 systems, see OS/VS2 System Data Areas, "The UCBTYP Field of the UCB."

Communication Equipment

1 030,1 050,83B3, TWX,2250, S360
1060, 115A, 1130
2780
2740

Record Size

Not Applicable
Not Applicable
Not Applicable
Not Applicable

System Macro Instructions 103

Control is returned to your program at the next executable instruction following the
DEVTYPE macro instruction. If the information concerning the DDNAME you
specified has been successfully moved to your work area, register 15 will contain zeros.
Otherwise, register 15 will contain one of the following exception return codes.

04 - DDname not found.
08 - Invalid area address. The address of the output area either violates protection,

or it is out of the range of virtual storage.

Reading and Modifying a Job File Control Block

To accomplish the functions that are performed as a result of an OPEN macro
instruction, the Open routine requires access to information that you have supplied in a
data definition (DD) statement. This information is stored by the system in a job file
control block (JFCB).

Usually, the programmer is not concerned with the JFCB itself. In special applications,
however, you may find it necessary to modify the contents of a JFCB before issuing an
OPEN macro instruction. To assist you, the system provides the RDJFCB macro
instruction. This macro instruction causes a specified JFCB to be read into virtual
storage from the job queue (SYSl.SYSJOBQE) or system work area data set in which
it has been stored. The format and field descriptions of the JFCB are contained in
OS/VSl System Data Areas for VSl systems and in OS/VS2 System Data Areas
for VS2 systems.

When subsequently issuing the OPEN macro instruction, you must indicate, by
specifying the TYPE=J option, that you have supplied a modified JFCB to be used
during the initialization process.

The JFCB is returned to SYSl.SYSJOBQE or the system work area data set by the
Open routine or the OPENJ routine, if any of the modifications in the following list
occur. These modifications can occur only if the information is not in the JFCB when
the OPEN macro instruction is issued.

Expiration date field and creation date field merged into the JFCB from the
DSCB.
Secondary quantity field merged into the JFCB from the DSCB.
DCB fields merged into the JFCB from the DSCB.
DCB fields merged into the JFCB from the DCB.
Volume serial number fields added to the JFGB.
Data set sequence number field added to the JFC_B.
Number of volumes field added to the JFCB.

If you make these, or any other modifications, and you want the JFCB returned to the
job queue or system work area data set, you must set the high-order bit of field
JFCBMASK+4 to one. This field is in the JFCB. Setting the high-order bit of field
JFCBMASK+4 to zero does not necessarily suppress the return of the JFCB to the job
queue or system work area data set. If the OPEN or OPENJ routines have made any
of the above modifications, the JFCB is returned to the job queue or system work area
data set. To inhibit writing the JFCB back to the job queue or system work area data
set during an OPENJ, the field JFCBTSDM should be set to X'08' prior to issuing the
OPEN macro.

104 OS/VS Data Management for System Programmers

OPEN - Initialize Data Control Block for Processing the JFCB

The OPEN macro instruction initializes one or more data control blocks so that their
associated data sets can be processed.

A full explanation of the operands of the OPEN macro instruction, except for the
TYPE=J option, is contained in OS/VS Data Management Macro Instructions. The
TYPE=J option, because it is used in conjunction with modifying a JFCB, should be
used only by the system programmer or only under his supervision.

[symbol]

TYPE=J

OPEN (deb-addr,[(options)], ...)

[,TYPE = J]

specifies that for each d3trl control block referred to, yuu hav~ ~upplled a j()~ file
control block (JFCB) to be used during initialization. A JFCB is an internal
representation of information in a DD control statement.

During initialization of a data control block, its associated JFCB may be modified
with information from the data control block or an existing data set label or with
system control information.

The system always creates a job file control block for each DD control statement.
The job file control block is placed in a job queue on direct-access storage. Its
position, in relation to other JFCBs created for the same job step, is noted in a
table in virtual storage.

When this operand is specified, you must also supply a DD control statement.
However, the amount of information given in the DD statement is at your
discretion, because you can ignore the system-created job file control block. (See
the examples of the RDJFCB macro instruction for a technique for modification of
a system-created JFCB.)

Note: The DD statement must specify at least:

Device allocation (refer to OS/VS Job Control Language for methods of
preventing share status).

A ddname corresponding to the associated data control block DCBDDNAM field.

RDJFCB - Read a Job File Control Block

The RDJFCB macro instruction causes a job file control block (JFCB) to be read from
the job queue or system work area data set into virtual storage for each data control
block specified.

[symbol] RDJFCB (deb-address, [(options)] , ...)

deb-address, (options)
(same as dcb, option l , and option2 operands in OPEN macro instruction)

Although the option operands are not meaningful during the execution of the
RDJFCB macro instruction, these operands can appear in the L-form of either the
RDJFCB or OPEN macro instruction to generate identical parameter lists, which
can be referred to with the E-form of either macro instruction.

System Macro Instructions 105

Examples: The macro instruction at EX1 creates a parameter list for two data control
blocks: INVEN and MASTER. In creating the list, both data control blocks are
assumed to be opened for input; option2 for both blocks is assumed to be DISP. The
macro instruction at EX2 reads the system-created JFCBs for INVEN and MASTER
from the job queue into virtual storage, thus making the JFCBs available to the
problem program for modification. The macro instruction at EX3 modifies the
parameter list entry for the data control block named INVEN and indicates, through
the TYPE=J operand, that the problem program is supplying the JFCBs for system
use.

EX 1 RDJFCB (INVEN" MASTER) ,MF=L

EX2 RDJFCB MF=(E,EX1)

EX3 OPEN (,(RDBACK,LEAVE)),TYPE=J,MF=(E,EX1)

INVEN DCB
MASTER DCB
LSTA DS

DC
DC

EXLST=LSTA, .. .
EXLST=LSTB, .. .
OF
X'07'
AL3(JFCBAREA)

JFCBAREADS 176C

LSTB DS OF

Any number of data control block addresses and associated options may be specified in
the RD.TFCB macro instruction. This facility makes it possible to read job file control
blocks in parallel.

An exit list address must be provided in each data control block specified by an
RDJFCB macro instruction. Each exit list must contain an active entry that specifies
the virtual storage address of the area into which a JFCB is to be placed. A full
discussion of the exit list and its use is contained in OS/VS Data Management
Services Guide. The format of the job file control block exit list entry is as follows:

Type of Exit
List Entry

Job file
control block

Hexadecimal Code Contents of Exit List Entry
(high-order byte) (the low-order bytes)

07 Address of a 176-byte area to be provided if the RDJ FeB or
OPEN (TYPE =J) macro instruction is used. This area must
begin on a fullword boundary and must be located within the
user's region.

The virtual storage area into which the JFCB is read must be at least 176 bytes long.

The data control block may be open or closed when this macro instruction is executed.

106 OS/VS Data Management for System Programmers

If the JFCB is read successfully for all DCBs in the parameter list, a return code of
zero is placed in register 15. If the JFCB is not read for any of the DCBs because the
DDNAME is blank or a DD statement is not provided, then a return code of 4 is
placed in register 15.

Cautions: The following errors cause the results indicated:

Error

A DD control statement has not
been provided.

DDNAME field in DCB is blank.

A virtual storage address has
not been provided.

Result

A return code of 4 is placed in
register 15.

A write-to-programmer is issued, the
request for this DCB is ignored, and
a return code of 4 is placed in
register 15.

Abnormal termination of task.

Note that if you want to open a VTOC data set to change its contents (that is, open it
for OUTPUT, OUTIN, INOUT, or UPDAT), your program must be authorized under
the Authorized Program Facility (APF). APF provides security and integrity for your
data sets and programs. Details on how you authorize your program are provided in
the OS/VS2 Planning and Use Guide. APF information for installations using
OS/VS 1 is provided here for planning purposes only.

Ensuring Data Security by Validating the Data Extent Block

Protecting one user's data from inadvertent or malicious access by an unauthorized user
depends on protection of the data extent block (DEB). The DEB is a critical control
block because it contains information about the device a data set is mounted on and
describes the location of data sets on direct-access device storage volumes. The DEB
also contains the address of the appendage vector table (A VT). Using the A VT, a user
with malicious intent can modify the A VT to give control to his own routine in
supervisor state to read from and write to data sets to which he would otherwise be
denied access.

To guarantee protection of the DEB, the DEBCHK macro instruction is provided. The
DEBCHK macro is issued by several components of the system control program. For
exanlple,

the Open access method executors issue the macro to add the address of a DEB
they have built to a list of valid addresses called the DEB table. The DEB validity
checking routine builds and maintains a DEB table for each job step.

the I/O supervisor uses the macro to verify that the DEB passed with each EXCP
request is in the DEB table.

the Close component issues the macro to remove a DEB from the DEB table .

If you code a routine that builds a DEB, you must add the address of the DEB you
built to the DEB table. If you code a routine that depends on the validity of a DEB
that is passed to your routine, you should verify that the DEB passed to your routine
has a valid entry in the DEB table. Use the TYPE=ADD and the TYPE= VERIFY
operands of the macro, respectively.

System Macro Instructions 107

Additional details about the functions provided by the DEB validity checking routine
and about the contents of the DEB table are available in OSjVS OjCjEOV Logic,
SY26-3785.

The DEBCHK macro instruction provides four functions:

• adds the address of a DEB to the DEB table, which is located in protected storage.
The DEB table contains the address of every user DEB associated with a given
job step. Every system control program component that builds a user DEB must
add the address of that DEB to a DEB table.

• verifies that the DEB table associated with a given job step contains the address of
a valid DEB. Any system control program component or problem program can use
this function to verify that a DEB is valid.

• deletes the address of a DEB from the DEB table. Any program that deletes a user
DEB must, before it deletes the DEB, issue a DEBCHK macro with a
TYPE=DELETE operand to delete the address of the DEB from the DEB table. If
the DEB validity checking routine encounters an error while deleting the address
from the DEB table, the job step is abnormally terminated.

• deletes the address of a DEB from the DEB table in the same way as the preceding
function, except that, instead of terminating the job step, this function merely
returns an error code in register 15. This function is provided to prevent recurring
abnormal termination. The format of the DEBCHK and a description of the
operands follow:

DEBCHK - Macro Specification

[symbol] DEBCHK
{VERIFY } { amtype })

cbaddr [, TYPE = {ADD }] [,AM = {(amaddr)}]
(,MF=L {DELETE} {((amreg))}]

{PURGE}

chaddr RX-Type Address, (2-12), or (1)
a control block address passed to the DEBCHK routine. This operand is ignored if
MF=L is coded. For verify, add, and delete requests, cbaddr is the address of a
data control block (DCB) that points to the DEB whose address is either verified to
be in the DEB table, added to the DEB table, or deleted from the DEB table. For
the purge function, cbaddr is the address of the DEB whose pointer is to be purged
from the table: no reference is made to the DCB.

{VERIFY }
TYPE= {ADD }

{DELETE }
{PURGE }

indicates the function to be performed. If MF=L is coded, TYPE is ignored. The
functions are:

ADD. Before the DEB pointer can be added to the table, the DEB must be queued
on the current TCB DEB chain (the TCBDEB field contains the address of the first
DEB in the chain). The DEB address is added to the DEB table at some offset into
the table. That offset value is placed in the DEBTBLOF field of the DEB, and the
access method type is inserted into the DEBAMTYP field of the DEB. A zero is
placed in the DEBAMTYP field if the AM operand is not coded. TYPE=ADD can
be issued only in supervisor state.

108 OSjVS Data Management for System Programmers

VERIFY. This function is assumed if the TYPE operand is not coded. The control
program checks the DEB table to determine whether the DEB pointer is in the table
at the location indicated by the DEBTBLOF field of the DEB; the DEBAMTYP
field in the DEB is compared to the AM operand value, if given. The two must be
equal. TYPE= VERIFY can be issued in either supervisor or problem state.

DELETE. The DEB and the DCB must point to each other before the DEB address
can be deleted from the DEB table. TYPE=DELETE can be issued only in
supervisor state.

PURGE. The DEB pointer is removed from the DEB table without checking the
DCB. TYPE=PURGE can be issued only in supervisor state.

AM
specifies an access method value. Each value corresponds to a particular access
method type (note that BPAM and SAM have the same values):

Type Value

ISAM X'80'
BDAM X'40'
SAM X'20'
BPAM X'20'
TAM X'10'
GAM X'08'
TCAM X'04'
EXCP X'02'
NONE X'OO'

The operand can be coded in one of the following three ways, only the first of
which is valid for the list form (MF=L) of the instruction.

amtype
refers to the actual access method type: ISAM, BDAM, SAM, BPAM, TAM,
GAM, TeAM, or EXCP.

amaddr
is the RS-type address of the access method value. This format may not be
coded when MF = L is used.

amreg
is one of the general registers 1-14 that contains the access method value in its
low-order byte (bit positions 24-31). The high-order bytes are not inspected.
This form may not be used when MF=L is coded.

The use of amaddr and amreg should be restricted to those cases where the access
method value has been generated previously by the MF=L form of DEBCHK. If
MF=L is not coded, the significance of the AM operand depends upon the TYPE.

If TYPE is ADD and AM is specified, the access method value is inserted in
the DEBAMTYP field of the DEB, and all subsequent DEBCHK macros
referring to this DEB must either specify the same AM or omit the operand.
When the AM operand is omitted for TYPE=ADD, a null value (0) is placed in
the DEB and all subsequent DEBCHK macros must omit the AM operand.

If AM is specified when the TYPE is PURGE, DELETE, or VERIFY, the
access method value is compared to the value in the DEBAMTYP field of the
DEB. If AM is omitted, no comparison is made.

System Macro Instructions 109

MF
indicates the list form of the DEBCHK macro instruction. When MF =L is coded, a
parameter list is built consisting of the access method value that corresponds to the
AM keyword. This value may be referenced by name in another DEBCHK macro
by coding AM= (amaddr), or it may be inserted into the low-order byte of a
register before issuing another DEBCHK macro by coding AM= ((amreg)).

Removing Queued Requests and Restoring the Requests

You can stop the processing of I/O requests for a specific task or against a particular
data set, using the PURGE macro instruction. The function of the PURGE macro
instruction is to call the PURGE routine which removes request queue elements
(RQEs) from queues and frees RQEs. You can subsequently requeue the requests by
issuing the RESTORE macro. The PURGE and RESTORE macros give control to
routines documented in OS/VS I/O Supervisor Logic, SY24-5156. The logic of the
routines and additional details are available in that publication.

You can give control to the Purge and Restore routines in two ways: (1) by loading
register 1 with the address of your parameter list and issuing the assembler language
SVC instructions or (2) by issuing the PURGE and RESTORE macro instructions. If
your installation requires the use of macro instructions, you must add the macro
definitions to the macro library (SYSl.MACLIB) or place them in a partitioned data
set and concatenate this data set to the macro library. The macro definitions, JCL, and
utility statements needed to add the macros to your macro library are presented in
Figures 24 and 25. Whether you issue the macro instructions or the SVC instructions,
you must first build a parameter list. The SVC instructions are SVC 16 for PURGE
and SVC 17 for RESTORE.

PURGE Macro Definition

MACRO
&NAME PURGE &LIST

AIF ('&LIST'EQ") .E1
&NAME IHBINNRA &LIST LOAD REG 1

SVC 16
MEXIT

. E1 IHBERMAC 01,147 LIST ADDR MISSING
MEND

Control Statements Required

//jobname JOB {parameter}
//stepname EXEC PGM=IEBUPDTE, PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD *
./ ADD NAME=PURGE,LIST=ALL

./ ENDUP
/*

PURGE macro definition

Figure 24. Macro Definition, JCL, and Utility Statements for Adding PURGE Macro
to Your Macro Library

110 OS/VS Data Management for System Programmers

RESTORE Macro Definition

MACRO
&NAME RESTORE &LIST

AIF ('&LIST' EQ "). E1
&NAME IHBINNRA '&LIST LOAD REG 1

SVC 17 ISS'JE SVC FOR RESTOqE
MEXIT

. E1 IHBERMAC 01 , 150 LIST ADDR MISSING
MEND

Control Statements Required

//jobname JOB {parameters}
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DIS?=OLD
//SYSIN DD DATA
./ ADD NAME=RESTORE,LIST=ALL

./ ENDUP
/*

RESTORE macro definition

Figure 25. Macro Definition, JCL, and Utility Statements for Adding RESTORE
Macro to Your Macro Library

PURGE -- Remove an RQE Fronl a Queue

The Purge routine stops the processing of I/O requests by removing RQEs from
queues. The queues from which RQEs can be removed are:

a logical channel queue
the task supervisor request block queues
the task supervisor asynchronous exit queue
the dynamic device r~configuration (DDR) WAIT queue

The macro instruction used to call the Purge routine is coded as follow~:

[symbol] PURGE parameter-list address

parameter list address, RX-type address, (2-12) or (1)
specifies the address of a parameter list you have built on a full word boundary in
your region. The parameter list address can be specified as an RX-type constant or
in registers 2-12 or 1. You specify which queues you want altered by bit setting in
the first field (PRGOPT) of the parameter list. You also can choose to either halt
any currently active I/O operation (requests cannot be restored) or allow the
operation to quiesce (requests can be restored), again by using a bit setting in the
PRGOPT field of the parameter list (see Figure 26).

Note that you can bypass the purge of the request blocks chained to a TCB (or to
be chained to a TCB) by setting bit 5 of the PRGOPT field to 1.

System Macro Instructions 111

0(0) 1(1)

PRGOPT
Purge Options

4(4) 5(5)

PRGCOD
Complete Code

8(8) 9(9)

PRGCTR
Quiesce Count

Figure 26. PURGE Parameter List

Bytes and Field
Offset Alignment Name

0(0) PRGOPT
0 ...

1...

.0 ..

.l..

.. 0.

.. l.

... 0

.. . 1
0 ...
1...
.0 ..

.1..

.. 0.

.. l.

... x

1 (1) . 3 PRGDEB

4 (4) PRGCOD

112 OS/VS Data Management for System Programmers

PRGDEB
Address of Data Extent Block

PRGTCB
Address of Task Control Block

PRGCHN
Address of First Link in Chain

Description

Purge options.
Purge request queue elements for all entries in the data
extent block (DEB) chain, starting with the DEB whose
address is in PRGDEB.
Purge only the request queue element for the DEB whose
address is in PRGDEB.
Do not post the event control blocks for the purged
request queue elements.
Post the event control blocks for the purged request
queue elements. (A X'48' completion code is used.)
Allow the activity to quiesce .
Halt the I/O activity. (The effect of the Halt I/O
instruction is simulated if the operation is a seek.)

Purge all requests .
Purge only related requests .
Normal purge.
Used only for TSO tasks.
Purge the asynchronous exit queue, the request block
queue, the logical channel queue, and the DDR wait
queue.
Purge the logical channel queue, the asynchronous exit
queue (removing only RQEs for requests in error), and
the DDR wait queue. Bypass the request blocks.
Purge by data extent block .
Purge by task control block. When this bit is on, the
setting of bit 0 is ignored.
Reserved .

Address of data extent block. If you are purging by
TCB, not required.

Completion code.

Bytes and
Offset Alignment

5 (5) .3

8 (8)

9 (9) .3

Field
Name

PRGTCB

PRGCTR

PRGCHN

Description

Address of task control block. If none, the current TCB
is used.

Quiesce count. The number of active request queue I

elements for which I/O activity has not yet been
completed.

Address of the first link in the chain of lOBs which are
purged. The first link can be located in the user's area,
or in the DEBUSPRG field of the DEB. It will point to
the first lOB in the chain. The last lOB in the chain will
contain ones in the low-order byte of the restart address
(IOBR) field. A diagram of the purge chain is shown in

Figure 27.

If you are purging all the I/O requests currently in a queue for a given data set using
the quiesce option, a chain of lOBs will be built whose addresses represent RQEs that
have been removed from a queue. When control is returned to your program, the
address of a pointer to the first lOB that was de queued will he in the PRGCHN field
of your parameter list. This address is used to restore the requests to queues.

RESTORE - Return Purged lOBs to Queues

You can restore I/O requests to the queues from which they were purged by issuing
the RESTORE macro instruction, which can be coded as follows:

[symbol] RESTORE purge chain-address

purge chain-address - RX-type address, (2-12) or (1)
specifies the address of the first of one or more lOBs you want restored to queues.
The purge chain address may be specified as either an RX-type constant or loaded
into registers 2-12 or 1. This field can be either (1) the address of the DEBUSPRG
field (offset 17 (X'11 ')) in a DEB or (2) a fullword in your region. The
IOBRESTR field (offset 24 (X'18')) of the lOB is used to chain lOBs. The last
three bytes of the IOBRESTR field of the last lOB in the chain are set to X'FF'
(see Figure 27).

System Macro Instructions 113

fullword in your region

-or-

.I

\IOB1

IOBRESTR 25(19)

I I ~

.... ,
"

10BRESTR 25(19)

IFF FF F;I

Figure 27. Purge Chain for Restoring lOBs

114 OS/VS Data Management for System Programmers

DEB

DEBUSPRG 17(11)

r- I

* bytes 26-28 (1A-1C)
contain X'FF' to indicate
that this is the last
lOB in the chain

ADDING A DCS IMAGE OR FCB IMAGE TO THE SYSTEM IMAGE
LIBRARY

Introduction

This chapter provides a detailed description of how to add either an IBM UCS
(universal character set) image or an IBM FCB (forms control buffer) image to
SYS 1.IMAGELIB.

Before reading this section, you should be familiar with the information in these
publications:

IBM 2821 Control Unit, GA24-3312, contains the information necessary to
create a user-designed chain/train for the 1403 Printer.

OS/VS Data Management Macro Instructions, GC26-3793, describes the
SETPRT macro instruction that loads a UCS image and an FCB image into their
respective buffers.

OS/VS JCL Reference, GC28-0618, describes the UCB and FCB parameters that
can be specified in a DD statement to load the UCS and FCB buffers when they
are opened.

IBM 3211 Printer and 3811 Control Unit Component Description, GA24-3543,
contains the information necessary to create a user-designed train for the 3211
Printer.

Unlike most other chapters in this publication, this chapter does not explain macro
ins~ructions. Rather, it shows how you can use the assembler and linkage editor to
place an image in the library; no executable code is generated - the assembler prepares
DCs and the linkage editor puts them in the library.

The remainder of this chapter discusses, first, UCS images, and, then, FCB images.

Adding a DeS Image to the Image Library

The IBM standard character set images listed in the following table may be included in
SYS 1.IMAGELIB at system generation by using the UCS macro instruction. You code
a member name for an image in the image library by prefixing a character set code
shown in the table with UCS1 or UCS2. UCS1 denotes a 1403 printer image and
UCS2 denotes a 3211 printer image (for example, UCS1AN or UCS2A11).

1403 AN, HN, PCAN, peHN, PN, QNC, QN, RN, SN, TN, XN, YN

3211 All, GIl, H11, P11, Tll

You may add a user-designed character image to the image library or make an existing
image a default image by following these rules:

1. The member name must be either the four characters UCS1 for the 1403 or UCS2
for the 3211 printer. The member name must be followed by a unique character set
code that is one to four characters long. This character set code can be any valid
combination of letters and numbers according to the rules for assembler language
symbols. The single letters U or C should not be used as a character set code since
they are symbols for special conditions recognized by the system. The assigned

Adding a UCS Image or FCB Image to the System Image Library 115

character set code must be specified on the DD statement or SETPRT macro
instruction to load the image into the ues buffer.

2. The first byte in the load module of a character set image specifies whether or not
the image is a default. A default image is indicated by X'80', and is used when the
ues parameter is not coded in the DD statement. X'OO' specifies that the image is
not to be used as a default.

3. The second byte of the load module indicates the number of lines (n) to be printed
for image verification.

4. Each byte of the next n bytes indicates the number of characters to be printed on
each verification line. (Note: For the 3211 printer, the maximum number of
characters printed per line is 48; the associative bytes are not printed during
verification.)

5. A 240-byte 1403 ues image or a 512-byte 3211 ues image must follow the
previously described fields. (A 3211 ues image has 432 characters, followed by
15 bytes of X ... OO', 64 bytes of associative bits, and a reserved byte (byte 512) of
X'OO'.) Two apostrophes or two ampersands must be coded to represent a single
apostrophe or a single ampersand, respectively, which is a part of a character set
image.

The following code is an example of adding a 1403 ues image, YN, to the image
library.

IIADDYN
IISTEP
II
IIASM.SYSIN
UCS1YN

1*

JOB MSGLEVEL=l
EXECPROC=ASMFCL, PARM.ASM= , NODECK, LOAD , , X

PARM.LKED='LIST,NCAL,NE,OL'
DD *
CSECT
DC X'80' (THIS IS A DEFAULT IMAGE)
DC AL1(6) (NUMBER OF LINES TO BE PRINTED)
DC AL1(39) (39 CHARACTERS PRINTED ON 1ST LINE)
DC AL1(42) (42 CHARACTERS PRINTED ON 2ND LINE)
DC AL1(39) (39 CHARACTERS PRINTED ON 3RD LINE)
DC AL1(39) (39 CHARACTERS PRINTED ON 4TH LINE)
DC AL1(42) (42 CHARACTERS PRINTED ON 5TH LINE)
DC AL1(39) (39 CHARACTERS PRINTED ON 6TH LINE)
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'

'DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
END

IILKED.SYSLMOD DD DSNAME=SYS1 .IMAGELIB(UCS1YN),DISP=OLD

The following example shows the code used to add a.3211 ues image (All) to the
image library. The first 432 bytes of the 3211 ues image correspond to the 432
positions on the print train. The next 64 bytes are associative bits used to avoid data
checks. See the publication IBM 3211 Printer and 3811 Control Unit Component
Description, GA24-3543, to determine how to code these bits for a particular train.

Note: Executing the ASMFeL procedure does not actually generate executable code.
The assembler/linkage editor is used as a vehicle to load the ues image into the image
library.

116 OS/VS Data Management for System Programmers

/ /ADDA 11
//STEP
//
//ASM.SYSIN
UCS2A 11

*
*

JOB MSGLEVEL=l
EXECPROC=ASMFCL,PARM.ASM= 'NODECK, LOAD' ,

PARM.LKED='LIST,NCAL,NE,OL'
DD *
CSECT
DC X' 80'
DC AL 1 (9)
DC AL1(48
DC AL1(48
DC AL 1 (48
DC ALl (48
DC AL1(48
DC AL1(48)
DC AL1(48)
DC AL1(48)
DC AL1(48)

(THIS IS A DEFAULT IMAGE)
(NUMBER OF LINES TO BE PRINTED)
(48 CHARACTERS PRINTED ON 1ST LINE)
(48 CHARACTERS PRINTED ON 2ND LINE)
(48 CHARACTERS PRINTED ON 3RD LINE)
(48 CHARACTERS PRINTED ON 4TH LINE)
(48 CHARACTERS PRINTED ON 5TH LINE)
(48 CHARACTERS PRINTED ON 6TH LINE)
(48 CHARACTERS PRINTED ON 7TH LINE)
(48 CHARACTERS PRINTED ON 8TH LINE)
(48 CHARACTERS PRINTED ON 9TH LINE)
THE FOLLOWING NINE LINES REPRESENT
THE TRAIN IMAGE

DC C'1234567890#@/STUVWXYZ&&,%JKLMNOPQR-$*ABCDEFGHI=. '
DC C'1234567890#@/STUVWXYZ&&,%JKLMNOPQR-$*ABCDEFGHI=. '
DC C'1234567890#@/STUVWXYZ&&,%JKLMNOPQR-$*ABCDEFGHI=. '
DC C'1234567890#@/STUVWXYZ&&,%JKLMNOPQR-$*ABCDEFGHI=. '
DC C'1234567890#@/STUVWXYZ&&,%JKLMNOPQR-$*ABCDEFGHI=. '
DC C'1234567890#@/STUVWXYZ&&,%JKLMNOPQR-$*ABCDEFGHI=. '
DC C'1234567890#@/STUVWXYZ&&,%JKLMNOPQR-$*ABCDEFGHI=. '
DC C'1234567890#@/STUVWXYZ&&,%JKLMNOPQR-$*ABCDEFGHI=. '
DC C'1234567890#@/STUVWXYZ&&,%JKLMNOPQR-$*ABCDEFGHI=. '
DC 15X'OO' RESERVED FIELD, BYTES 433-447

X

* THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
* UCSB BYTE POSITIONS 448-511

/*
//LKED.SYSLMOD

DC X'C01010101010101010100040404240004010'
DC X'101010101010101010004041000040401010'
DC x'lb1010101010004040000000101010101010'
DC X'10101010004040444800'
DC X'OO' RESERVED FIELD, BYTE 512
END

DD DSNAME=SYS1.IMAGELIB(UCS2A11),DISP=OLD

Adding an FeB Image to the Image Library

Two standard FCB images, STD 1 and STD2, can be included in SYS l.IMAGELIB
during system generation for a 3211 printer. STDI prints six lines per inch on a 8 1/2
inch form. STD2 prints six lines per inch on an eleven inch form. Channels for both
images are evenly spaced with channel one on the fourth lme and channel nine on the
last line.

In addition to the IBM-supplied images, user images can be defined. Each user image
is added to the image library as part of a load module. To add an FCB image to the
image library, follow these rules:

1. The member name cannot exceed eight bytes. The first four characters of this
member name must be FCB2. The characters that follow FCB2 identify the FCB
image and are referred to as the image identifier. Any combination of characters
that are valid in assembler language can be used with the exception of a single "S"
or a single "U" as an image identifier. The image identifier must be specified in a
DD statement or in the SETPRT macro instruction to load the image in the FCB
buffer.

2. The first byte of the load module of a forms control image specifies whether or not
the image is a default. A default image is indicated by X'80' and is used for all jobs

Adding a UCS Image or FCB Image to the System Image Library 117

that do not have the FeB parameter coded on the DD statement; X'OO' indicates
that the image is not to be used as a default.

3. The second byte of the load module i- -1kates the number of lines per form (FeB
image le~gth). The maximum image length is 180 lines. The FCB image must be
as long as the form. For example, if you are printing eight lines per inch on an
eleven inch form, the FeB image must be 88 bytes long; if you are printing six lines
per inch on the same form, the FCB image must be 66 bytes long.

4. The first byte of the FeB image (the third byte of the load module) defines the
number of lines per inch and a channel:

X'ln' means eight lines are printed per inch.
X'On' means six lines are printed per inch.

All remaining bytes (lines) must contain X'On' except the last byte. The last byte
must be X'ln'. The letter n can be a hexadecimal value from 1 to C, representing a
channel (one to twelve); or it can be zero (0), which means no channel is indicated.

In the following example, an FeB load module is assembled and added to
SYS l.1MAGELIB. The image defines a print density of eight lines per inch on an
eleven inch form.

IIADDFCB
IISTEP
II
IIASM.SYSIN
FCB2ID1
*THIS EXAMPLE
*WITH 8 LINES

JOB
EXEC

DD
CSECT

MSGLEVEL=1
PROC=ASMFCB,PARM.ASM= 'NODECK, LOAD ,
PARM.LKED='LIST,NCAL,NE,OL'
*

IS FOR A FORM LENGTH OF 11 INCHES
OF PRINT PER INCH (88 LINES)
DC X'80' THIS IS A DEFAULT IMAGE
DC AL 1 (88) ·LENGTH OF FCB IMAGE

X

DC X'10' 8 LINES PER INCH-NO CHANNEL FOR POS.1

1*
IILKED.SYSLMOD

DC XLLj'O' 4 LINES NO CHANNEL
DC X'01' CHANNEL 1 IN POSITION 6
DC XL6'0' 6 LINES NO CHANNEL
DC X'02' CHANNEL 2 IN POSITION 13
DC XL6'0'
DC X' 03'
DC XL6'0'
DC X' 04'
DC XL6'0'
DC X' 05'
DC XL6'0'
DC X' 06'
DC XL6'0'
DC X' 07'
DC XL6'0'
DC X' 08'
DC XL6' 0'
DC X' 09'
DC XL6'0'
DC X' OAt
DC XL6'0'
DC X' OBI
DC XL6'0'
DC x'OC' CHANNEL 12 IN POSITION 83
DC XL4'0' 4 LINES NO CHANNEL
DC X'10' POSITION 88 - LAST LINE IN IMAGE
END

DD DSNAME=SYSi.IMAGELIB(FCB2ID1),DISP=OLD

118 OS/VS Data Management for System Programmers

INDEX

Indexes for reference manuals are consolidated in OS/VS Master Index, GC28-0602. For additional
information about any subject listed below, refer to other publications listed for the same subject in the
Master Index.

abnormal end appendage (XCE) 57
access method routines, functions performed in

I/O operations 44
alias name

assigning for an index (INDEX and CAMLST BLDA) 12-14
coding example 13
exceptional return codes 10
macro specifications 13

deleting for an index (INDEX and CAMLST DLTA) 13-14
coding example 14
exceptional return codes 10
macro specifications 13

entry in catalog 30
alternate track 67
APF (authorized program facility) 107
appendages 50-58

I naming convention 51
programming restrictions 51

assigning an alternate track (ATLAS macro) 67
ATLAS macro instruction (SVC 86) 67-72

coding example 69
how to use 69
operations performed 70
return codes 71
specification 68
with track overflow option 67

authorized program facility (APF) 107

BF ALN operand of DCB macro 63
BFTEK operand of DCB macro 63
bit spinning on data read 59
BLDA operand of INDEX CAMLST macro 13
BLDG operand of INDEX CAMLST macro 10
BLDX operand of IND~X CAMLST macro 13
block multiplexer programming notes 58
BUFCB operand of DCB macro 63
BUFL operand of DCB macro 63
BUFNO operand of DCB macro 63
building a generation index (INDEX and CAMLST BLDG) 10

exceptional return codes 10
coding example 11
macro specifications 10

building an index (INDEX and CAMLST BLDX) 9
coding example 9
exceptional return codes 10
macro specifications 9

catalog block entries, data format 23-33
CATALOG and CAMLST macro instructions 16-23

with CAT operand 17
with CATBX operand 19
with RECAT operand 22
with UCATDX operand 21
with UNCAT operand 20

catalog maintenance
using CATALOG macro 16-23
using INDEX macro 9-16
using LOCATE macro 2-8

cataloging data sets 16-20
when index levels exist (CATALOG and CAMLST

CAT) 17
coding example 17
exceptional return codes 18
macro specifi~ations 17

when index levels must be created (CATALOG and
CAMLST CATBX) 18-20

coding example 19
exceptional return codes 18
macro specifications 19

CCW (channel command word)
translation by I/O supervisor

for programs in nonpageable regions 45
for programs in pageable regions 53

normal 54
extended 53

(see also EXCP)
CE (channel end)

appendage 56
operand of DCB 61

channel program
appendages for use with 50
execution

(see EXCP)
initiation 47
related 49
translation

normal 49
extended 54

checkpointed data sets, processing with EXCP 65
checking the data extent block (DEB) 107
CLOSE macro instruction

with EXCP 74
operations performed 74
options 74
specification 74

with XDAP 83
CODE operand of DCB macro 65
command retry for 3330 and 2305 58
communication vector table (CVT) mapping macro 100

Index 119

completion code in ECB
with EXCP 78,49
with XDAP 83

control password 93
control block fields, EXCP 75
control blocks

with EXCP 75
with XDAP 83

control volumes
connecting (INDEX and CAMLST LNKX) 14-18

coding example 15
exceptional return codes 10
macro specifications 14

disconnecting (INDEX and CAMLST DRPX) 15-16
cOdi'fig ~xample 16
exceptional return codes 10
macro specifications 16

control volumes (CVOL) pointer entry 29
before OS release 17 30

conversion
relative block address to actual device address

(IECPCNVT) 85
of sector value for RPS devices (IECOSCR1) 87

creating protected data sets 91
CVOL

(see control volume)
CVT (communication vector table) mapping macro 100

DADSM routines 33
data extent block (DCB)

fields with EXCP 77
validating 107

data set catalogs 16-23
data set control block

(see DSCB)
data set pointer entry 23,26
data set security

(see password protection and DEBCHK
macro)

DCB foundation block 117
DCB, initialize for processing the JFCB 105
DCB - define data control block for EXCP 60
DCB

exit list entry for RDJFCB 106
space requirements 64

DCBFDAD, maintaining 64
DCBIFLGS field of DCB, permanent I/O error

indicators 49
DCBOFLGS field of DCB 73 ..

bit settings for processing mod 73
DCBTRBAL, maintaining 64
DDR (dynamic device reconfiguration)

repositioning tape data sets 65
DEB fields, EXCP 77
DEBCHK macro instruction

functions of 108
specification 108

defective track
(see ATLAS macro instruction) 67

deleting a data set 36-38
coding example 37
exceptional return codes 38

120 OS/VS Data Management for System Programmers

macro instructions for (SCRATCH and CAMLST SCRATCH) 37
with password protection 38
when volume not mounted 37

deleting an index 11-13
coding example 12
exceptional return codes 10
macro specification for (INDEX and CAMLST DLTX) 12

DEVD operand of DCB macro 64
DEVD=DA, maintaining DCBFDAD and DCBTRBAL 64
DEVD=TA, maintaining DCBBLKCT

for checkpointed data sets 65
for output data sets 64
for systems with DDR 65

device characteristics 100
device selection, EXCP 64
device-dependent parameters, EXCP 64
DEVTYPE macro instruction 100-104

output from 102
for RPS devices 101
specification 100

direct-access device
channel program (XDAP macro) 80

DLTA operand of INDEX CAMLST macros 13
DLTX operand of INDEX CAMLST macros 12
DRPX operand of INDEX CAMLST' macros 16

space management (DADSM) routines 33
DSCB, reading from VTOC (OBTAIN macro) 33-36

by data set name (SEARCH option) 34-35
coding example 34
exceptional return codes 35
macro specifications (OBTAIN and CAMLST

SEARCH) 34
by relative block address (SEEK option) 35-36

coding example 35
exceptional return codes 36
macro specifications (OBTAIN and CAMLST

SEEK) 35
DSECT expansions

(see CVT, IEFJFCBN, IEFUCBOB)
DSORG operand of DCB macro 63

II
ECB fields

EXCP 77
XDAP 83

end-of-extent appendage 56
end-of-volume

condition 72
macro instruction (EOV) 74
on magnetic tape data sets 73

EODAD operand of DCB macro 62
EOV (end-of-volume) macro (SVC 55)

with EXCP 74
with XDAP 83

error recovery procedures 51
event control block fields

EXCP 77
XDAP 83

exceptional return codes
ATLAS 71
CATALOG macro 18
INDEX macro 10

exceptional return codes (Continued)
LOCATE macro 4
OBTAIN macro 35,40
RDJFCB macro 107
RENAME macro 40
SCRATCH macro 38

EXCP (execute channel program) macro instruction
command chaining 46
control blocks used with

DEB 77
ECB 77
lOB 75

da ta chaining 46
multivolume data set restriction 67
in nonpageable partition 45
other macros used with

ATLAS 67
CLOSE 74
DCB 60
EOV 72
OPEN 66

in problem programs 45
specification 67

in system control programs 44
validation of control blocks by I/O supervisor 47,107

executing channel programs
in problem programs 45
in system control programs 44

exit list entry for RDJFCB 106
EXLST operand of DCB macro 62
expiration date overriding 36

FCB (forms control buffer)
format-1 DSCB, reading from VTOC 34
forms control buffer (FCB) image

adding image to SYS1.IMAGELIB 117
rules 117

foundation block of DCB
defined 60
extension 62
parameters 61

fP,!1
~
generation data set, reading a catalog block for 4
generation index pointer entry in catalog 31

~,"\~', ',,:,1,.'

~

I bit 54
IECPCNVT (relative block to actual track address

conversion routine) 85
IECOSCR1 (sector conversion routine) 87
IEFJFCBN macro 100
IEFUCBOB macro 99

IEHATLAS utility program 69
IMSK operand of DCB macro 62
INDEX and CAMLST macro ini;tructions 9

with BLDA operand 13
with BLDG operand 10
with BLDX operand 9
with DLTA operand 13
with D L TX operand 12
with DRPX operand 16
with LNKX operand 15

index entries in catalog
control entry 24
link entry 25
pointer entry 25

index
(see alias, assigning for an index; alias deleting

for an index; building a generation index;
building an index; deleting an index)

input/output block fields
EXCP 75
XDAP 83

interruption handling and error recovery procedures 49
lOB fields

EXCP 75
XDAP 83

10BAD operand of DCB macro 63
IOBSENS fields with macro instruction 69
I/O device characteristics 100
I/O supervisor

appendages
abnormal end (XCE) 55
channel end (CE) 56
end-of-extent 56
entry points 52
page fix (PGFX) 53
program-controlled interrupt (PCI) 55
register usage 51,52
returns 52
start I/O (SIO) 54
use with EXCP 43

JFCB (job file control block)
mapping macro (IEFJFCBN) 100
processing 105

(see also RDJFCB)
JFCBMASK +4 field of JFCB 104
job file control block

(see JFCB)
job queue 104

KEYLEN operand of DCB macro 65

Index 121

II
LABEL= operand of DD statement, password
protected data set 91,90

LNKX operand with INDEX CAMLST macros 15
LOCATE and CAMLST macro instructions 2-8

with BLOCK operand 8
reading a catalog entry by name (NAME operand)

for data sets 3
for generation data sets 5
using alias name 6

reading a catalog entry by TTR 8
LPALIB system generation macro 50

II
MACRF=(E), DCB operand for EXCP 67
macro specifications for use with EXCP 60
macros

ATLAS 67-72
CATALOG 16-23
CLOSE

with EXCP 75
with XDAP 83

CVT 100
DEBCHK 107
EOV

with EXCP 74
with XDAP 83

EXCP 67
IEFJFCBN 100
IEFUCBOB 99
INDEX 9-16
LOCATE 2-8
OPEN

with EXCP 66
with XDAP 80

PROTECT 92
RDJFCB 105
XDAP 81

maintaining the PASSWORD data set 89
(see also PROTECT macro)

maintaining the system catalog 2-23
maintaining the volume table of contents (VTOC) 33-41
mapping macros

CVT 100
IEFJFCBN 100
IEFUCBOB 100

MODE operand of DCB macro 66
modification of a channel program during execution 48
multivolume direct and index-sequential data sets 67

II
nonpageable region/partition, EXCP operations in 45
NOPWREAD 93,90,91
NOWRITE 93,90

122 OS/VS Data Management for System Programmers

OBTAIN macro 34-36
obtaining a sector number (RPS devices) 87
OPEN macro instruction

with EXCP 66
dummy data set restriction 66
label processing 66
procedures performed 66
volume disposition 66

TYPE=J 104
opening a VTOC to change its contents restriction 107
OPENJ (OPEN, TYPE=J) 104
OPTCD=Z 62
output data sets, maintaining DCBBLKCT with EXCP 64

page fix (PGFX) appendage 53
pageable region/partition

(see translation of channel program)
password

control 93
parameter list 94

add a record 95
delete a record 97
list a record 97
replace a record 96

protection mode indicator 93
record 90
secondary 93
standard label restriction 90

PASSWORD data set
characteristics 90
creating 90

password protecting your data sets 89
password protection processing

counter maintenance 92
data set concatenation 92
termination 91
volume switching 91

PCI (program controlled interrupt)
appendage 55
modify interface 55
operand of DCB 62
parameter list 55

PGFX (page fix)
appendage 53
operand of DCB 62

posting of completion code in ECB
EXCP 78
XDAP 84

printer image 115
forms control buffer (FCB) 117
universal character set (UCS) 115

program controlled interrupt (PCI) appendage 55
PROTECT macro instruction 92

parameter list 94-99
return codes 98
specification 94

protection mode indicator 93
PR TSP operand of DCB macro 66
PURGE

chain 114
macro instruction 111

adding to macro library 110
definition 110
specification 111

PWREAD 93,90
PWWRITE 93,90

~." -RDJFCB macro instruction 105
coding examples 106
exceptional return codes 107
exit list entry for 106
specification 105

read a job file control block (JFCB) 105
reading a block from the catalog 2
reading a catalog block

using alias name 6
coding example 7
exceptional returns 7
macro specification 6

using a data set name 2
coding example 3
exceptional returns 4
macro specification 3

using a generation data set name 4
coding example 5
exceptional return codes 4
macro specification 5

using a relative block address 7
coding example .8
exceptional return codes 4
macro specifications 8

reading and modifying a JFCB 104
READPSWD module 90
recataloging a data set 21-23

coding example 22
exceptional return codes 18
macro specification 22

RECFM operand of DCB macro 63
recovering from permanent I/O errors 67

(see ATLAS macro instruction)
register

conventions for appendages 52
usage by I/O supervisor with EXCP 51

related channel programs 49
relative generation number 4-5
RENAME macro 38-43
rename status code 40
renaming a data set 38-41

coding example 39
exceptional return codes 40
macro specification 39
with password protection 41
status code 40

request queue element, illustration of 52
(see also RQE)

RESTORE macro instruction 110
adding to macro library 111
definition 111
specification 113

restoring lOBs 114
return codes

(see exceptional return codes)
rotational position sensing (RPS) devices, with

XDAP 82,87
RPS

(see rotational position sensing)
RQEs

freeing 111
illustration of 52
restoring 113

II
SCRATCH macro 36-38
scratch status code 38
scratching a data set 36-38

coding example 37
exceptional return codes 38
macro specification 37
with password protection 38
when volume not mounted 37

secondary password 93
sector

address in XDAP macro 82
conversion routine (lECOSCRl) 87

SIO (start I/O)
appendage 54
operand of DCB 62

STACK operand of DCB macro 66
standard label restriction, password
data sets 90

stand-alone seek for 2314 and 2319 48
start I/O appendages 54
status code

deleting a multivolume data set 38
renaming a multivolume data set 40

SVCLIB system generation macro instruction 50
system catalog, maintaining 2-23

using CATALOG macro 16-23
using INDEX macro 9-16
using LOCATE macro 2-8

system control blocks, macros for
mapping 99

CVT 100
IEFJFCBN 100
IEFUCBOB 99

modifying
DEBCHK, TYPE=ADD, DELETE, PURGE 107
OPEN, TYPE=J 105
PURGE 110
RDJFCB 105
RESTORE 110

obtain information from
DEBCHK, TYPE=VERIFY 107
DEVTYPE 100

Index 123

system macro instructions 99
(see also system control blocks, macros for)

system work area data set (SWADS) 104
SYS1.

SYSJOBQE 104
LPALIB 50
SVCLIB 50

a
TIC (transfers-in-channel) command, restriction 56
translation of channel programs by I/O supervisor

extended 54
in nonpageable regions 45
normal 54

true name longer than alias 5
TRTCH operand of DCB macro 66
TTR 85

II
UCB (unit control block)

getting information from
(see DEVTYPE macro)

mapping macro (IEFUCBOB) 99
UCS (universal character set) image 115

for 1403 printer 116
for 3211 printer 116

UEX (unit exception) 56
uncataloging a data set 20-21

retaining index levels 20
coding example 20
exceptional return codes 18
macro specification 20

removing index levels 20-21
coding example 21
exceptional return codes 18
macro specification 21

universal character set (UCS) image, adding to
SYS1.IMAGELIB 115

unit check with ATLAS 69
unit control block (UCB) mapping macro (IEFUCBOB) 99

II
validating the DEB 107
virtual=real

(see nonpageable region)
volume control block 2,23

pointer entry 27
volume index control entry 23
volume table of contents (VTOC), maintaining

using OBTAIN macro 34-36
using RENAME macro 38-43
using SCRATCH macro 36-38

volume list
in catalog maintenance 2
definition 2

124 OS/VS Data Management for System Programmers

rename status code 40
scratch status code 38

volume status code 38,40
volume switching 66
VS1 use of SVCLIB for I/O supervisor appendages 50
VS2 use of LPALIB for I/O supervisor appendages 50
VTOC

(see volume table of contents)

WAIT macro instruction
with EXCP 45

WLR (wrong-length record)
(see channel end appendage)

"WRITE" protection mode indicator 38,41

XCE (abnormal end)
appendage 57
operand of DCB macro 62

XDAP macro instruction 79
control blocks used with

channel program 84
ECB 83
lOB 83

macros required with
CLOSE 83
DCB 80
EOV 83
OPEN 80

specification 81
XD AP channel program 85
XCE (abnormal end)

appendage 57
operand of DCB 62

1403 printer
UCS image 115

coding example 116
2314 stand-alone seek 48
2319 stand-alone seek 48
3211 printer

FCB image 117
coding example 118

UCS image 115
coding example 116

GC28-0631-1

InternaUonal Business Machines Corporation
Dota Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

OS/VS Data Management for
System Programmers

READER'S COMMENT FORM

Your comments about this publication will help us to produce better publications for your use. If
you wish to comment, please use the space provided below, giving specific page and paragraph
references.

Please do not use this form to ask technical questions about the system or equipment or to make
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen
tative or to the IBM Branch Office serving your locality.

Reply requested Name

Yes D Job Title

No D Address

GC28-0631-1

___________________________ Zip ________________________ __

No postage necessary if mailed in the USA

GC28-0631-1

YOUR COMMENTS, PLEASE ...

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back.of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the· persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.·

POSTAGE WILL BE PAID BY .

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 078

fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

FIRST CLASS

PERMIT NO. 2078

SAN JOSE, CALIF.

fold

fM',W"!AM

M'N'fiMMJ
MAiWAM

fold

OS/VS Data Management for
System Programmers

READER'S COMMENT FORM

Your comments about this publication will help us to produce better publications for your use. If
you wish to comment, please use the space provided below, giving specific page and paragraph
references.

Please do not use this form to ask technical questions about the system or equipment or to make
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen
tative or to the IBM Branch Office serving your locality.

Reply requested Name

Yes D Job Title

No D Address

GC28-0631-1

______________ Zip _____________ _

No postage necessary if mailed in the USA

GC28-0631-1

YOUR COMMENTS, PLEASE ...

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of .IBM systems. Your answers to the questions on the back.of
this form, together with your comments, will help us produce better publications for your

/

u·se. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.·

POSTAGE WILL BE PAID BY .

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. D78

fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, Now York, New York 10017
(International)

FIRST CLASS
PERMIT NO. 2078

SAN JOSE, CALIF.

fold

, .ij

lew

PISRWW"

m
MM

•
M ; -

fold

