
(,'•..

\.. __ .

Systems

GC28-0645-1
File No. S370-39

OS/VS2 TSO
Terminal User's Guide

VS2 Release 2

Second Edition (February, 1974)

This is a major revision of, and obsoletes, GC28-0645-0. See the Summary of
Amendments following the contents. Changes or additions to the text and illustrations
are indicated by a vertical line to the left of the change.

This edition applies to release 2 of OS/VS2 and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes are continually
made to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360 and System/370 Bibliography,
GA22-6822, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming
Systems Publications, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972,1974

II •

I

~ .. --

,

c

Preface

This publication explains how to use the TSO Command Language. The TSO
commands can be used to perform the following functions:

• Start and end a terminal session.
• Enter and manipulate data.
• Execute programs at the terminal.
• Test a program.

• I

• Wnte and use command procedures.
This publication tells you how commands are used to perform these
functions. For details on how to code each command, refer to the
publication OS/VS2 TSO Command Language Reference, GC28-0646.
This publication is based on the following:

• Program products are not discussed in this manual.
• All examples in this manual show the user's input in lowercase letters

and the system output in uppercase letters.
• All examples in this manual assume that you are using an IBM 2741

Communication Terminal, and that you must press the RETURN key to
enter data. For information on your type of terminal refer to the
publication OS/MVT and OS/VS2 TSO Terminals, GC28-6762.

Publications referenced in this manual include:
OS/MIT and OS/VS2 TSO Terminals, GC28-6762
OS/VS2 TSO Command Language Reference, GC28-0646
OS/VS Access Method Services, GC26-3836
OS/VS2 JCL, GC28-0692
OS/VS Data Management Services Guide, GC26-3783
OS/VS Linkage Editor and Loader, GC26-3803
OS/VS2 Data Areas, SYB8-0606
IBM System/3 70 Principles of Operation, GA22-7000

Preface 3

,

4 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

Contents

c··· .
\""'-.-.~ .,..

Summary of Amendments . 9

Introduction 11

Section I: Basic Information for Using TSO 12
Using a Terminal 12

Entering Information at a Terminal 12
" Standard Terminal Conventions 12

Character and Line Deletion 12
Line by Line Data Entry 13

Using TSO Commands 13 .. Positional Operands 14
Keyword Operands 14
Abbreviating Keyword Operands 14
Delimiters 15
Sub commands 15
Syntax Notation Conventions 15
When to Enter a Command or Subcommand 17

Using System-Provided Aids 17
The Attention Interruption 17
Messages 18

Mode Messages 18
Prompting Messages 19
Informational Messages 20
Broadcast Messages 20

The HELP Command 20
Explanations of Commands 20
Syntax Interpretation of HELP Information 21
Explanations of Subcommands 21

Using Data Set Naming Conventions 22
I C·' Exceptions to Data Set Naming Conventions 22

I

Specifying Data Set Passwords 25
Partitioned Data Sets 25
Data Set Types for the EDIT Command 26

Section II: Starting and Ending a Terminal Session 27
Identifying Yourself to The System 27

User Attributes 29
Logging On 29

Defining Operational Characteristics 30
Terminal Characteristics 30
Your User Profile 30

Receiving and Sending Broadcast Messages 31
Receiving Broadcast Messages 31
Sending Messages 32

Displaying Session Time Used 33
Testing Long Running Programs 33

Ending Your Terminal Session 34

Section III: Entering and Manipulating Data 35
Using the EDIT Command .. 35

Entering Data in Input Mode 35
Entering Subcommands in EDIT Mode 35
Switching Modes 36
Functions of EDIT Subcommands 36
Functions of Other Commands 36

Identify Data Sets 37
Creating a Data Set 37
Placing Data into Columns 38
Finding and Positioning the Current Line Pointer 41

Finding the Current Line Pointer 41
Positioning the Current Line Pointer 42 (--- Updating a Data Set 44
Deleting Data from a Data Set 44 _ ",,;

Contents 5

- _-_ .. _-------_ .. _. __ .. _-_ __ ._ .. _._.- ._--_ __ __ .•....•....... _-----_.

Inserting Data in a Data Set .
Replacing Data in a Data Set
Quoted String Notation . . .
Renumbering Lines of Data .

Listing the Contents of a Data Set
Storing a New Data Set

Creating an Updated Copy of a Data Set
Saving Updates to a Data Set

Ending the ED IT Functions
Renaming a Data Set

Renaming a Data Set
Renaming a Member of a Partitioned Data Set
Assigning an Alias to a Member . . .
Renaming Common Qualifiers

Listing Information About Your Data Set
Protecting Your Data Sets
Deleting a Data Set

Section IV: Executing Programs at a Terminal
Allocating a Data Set

Assigning Attributes to a Data Set
Freeing an Allocated Data Set
Creating a Program
Compiling a Program
Link Editing a Compiled Program
Executing a Program
Loading a Program

Section V: Testing a Program at a Terminal
Where You Would Use TEST
Addressing Restrictions
Executing a Program Under the Control of TEST
Establishing and Removing Breakpoints within a Program
Displaying Selected Areas of Storage
Changing Instructions, Data Areas, or Register Contents
Forcing Execution of Program Subroutines
Using TEST After a Program Abend
Determining Data Set Information

Section VI: Command Procedures
Creating Command Procedures

Command Procedure Statements
Writing a Simple Command Procedure
Writing a Command List (CLIST) into a Partitioned Data Set
Defining a Private Command Procedure Library

A Compiler Command Procedure
Establishing Symbolic Values

A Sample PROC Statement
Writing a Command Procedure with Symbolic Values
Symbolic Values
A Sample Command Procedure with Symbolic Values
Assigning Defaults for Optional Symbolic Values
A PROC Statement That Assigns a Default
Documenting a Command Procedure with Symbolic Values
Examples of Symbolic Substitution . . .

Writing a Conditional Command Procedure
Using the WHEN Statement
SYSRC Operand of WHEN
Executing an Alternate Procedure
Executing an Alternate Command
Ending a Command Procedure Strategically
Testing Conditions for Termination
Ending the Command Procedure

Calling Command Procedures
Calling a Command Procedure in a CLIST Data Set
Calling a Command Procedure in a Command Procedure Library
Implicit Form of the EXEC Command
Calling a Command Procedure in any Other Data Set
Calling a Command Procedure with Symbolic Values

6 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

45
47
51
52
53
54
55
56
56
57
57
57
57
58
59
59
60

61
62
64
65
65
66
67
69
71

74
76
77
78
78
79
80
81
81
82

83
83
83
84
84
84
85
86
86
86
87
87
87
87
87
88
89
89
89
89
89
90
90
91
91
91
91
91
91
92

r

Figures

Ie

'i C'\

. ---_ .. _------

Allocating a Terminal
How to List Output at Your Terminal
Nested Procedures

Index

Figure 1. Descriptive Qualifiers
Figure 2. Default Names Supplied by the System . .
Figure 3. Descriptive Qualifiers Supplied by Default
Figure 4. Sample Instruction Sheet for an IBM 2741 Terminal
Figure 5. Default Tab Settings
Figure 6. Value of the Current Line Pointer Referred to by an Asterisk (*)
Figure 7. Allocating Data Sets for the Assembler
Figure 8. Assigning Attributes to a Data Set . .
Figure 9. Creating an Assembler Source Program
Figure 10. Data Set Names of the Compilers
Figure 11. COBOL Compilation
Figure 12. Link-Editing and Executing a Program
Figure 13. Loading a Program
Figure 14. The TEST Subcommands
Figure 15. A Command Procedure to Invoke the PL/I(F) Compiler
Figure 16. Use of a Command Procedure
Figure 17. Implicit Use of EXEC Command
Figure 18. Documentation of a Command Procedure with Symbolic Values

,_I Figure 19. Substitution Using Keyword Parameters
Figure 20. Allocating a Terminal in a Command Procedure
Figure 21. A Command Procedure to Invoke a User Program
Figure 22. A Command Procedure for a Compile-Load-Go Sequence
Figure 23. Using a Compile-Load-Go Command Procedure

92
92
93

95

23
24
24
28
39
41
64
65
66
66
67
71
73
77
85
86
86
88
88
92
93
94
94

Contents 7

. " __ ._----_. __ . ._-_ .. _-" _.. ". __ . ,,_ .. ,._ ... _ .. ------

8 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

(....... ,

\.....~.

C.. ;
-,-

..

c'·_····
'\

)

Summary of Amendments
for GC28-0645-1
OS/VS2 Release 2

This publication has been redesigned into six distinct

sections:

Section I: Basic Information for Using TSO

Section II: Starting and Ending a Terminal Session

Section III: Entering and Manipulating Data

Section IV: Executing Programs at a Terminal

Section V: Testing a Program at a Terminal

Section VI: Command Procedures

In addition to routine technical and editorial changes to

both text and examples, the individual sections have been

updated as follows:

Section I: Basic Information for Using TSO

This section has been redesigned and updated to provide
the necessary information to use TSO at a terminal.
Specifically, this section describes the use of:

• Terminals
• TSO commands

System-provided aids
Data set naming conventions

Section II: Starting and Ending a Terminal Session

This section has been updated to include additional and
enhanced functions of LOGON, PROFILE, and TIME
commands .

-, ._ - ... ----............... ""' --_." ... ' ... ,,_ ... ' .. " _.,-,----

Section III: Entering and Manipulating Data

This section has been updated to provide information
concerning the functions available under EDIT with the
ALLOCATE, SEND, and SUBMIT subcommands of EDIT.

Section IV: Executing Programs at a Terminal

This section has been expanded to include a discussion of
data set allocation, assigning attributes ',0 data sets, and
freeing allocated data sets.

Section V: Testing a Program at a Terminal

This section has been expanded to include information
previously included only in TSO Guide to Writing a Terminal
Monitor Prlilgram or a Command Processor, GC28-0648.

Section VI: Command Procedures

This section has been expanded and redesigned to provide a
broader overiew of the nature and function of command
procedures as well as the specific information required to
write and use them.

Summary of Amendments 9

/

10 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

1'·· .. -',

(,-_ ...

(-- ..
j

./

- --_._-_._----------

Introduction

TSO is a time sharing system that lets you use the facilities of a computer at a terminal. A
terminal is a typewriter-like device connected through telephone or other communication lines
to the computer. A terminal can be at any distance from the computer -- in the same room or
in another city. Because the system processes instructions much faster than you can enter them
through the terminal, it can process input from many terminals at the same time it is
processing work entered in the conventional manner in the computer room. However, due to
the speed of the system, you will be able to work almost as though you had exclusive use of
the system.

You can tell the system what work you want done by typing in one or mOle of the
commands that form the TSO command language. The command language can be used to:

• Enter, store, modify, and retrieve data at the terminal.
• Develop programs written in Assembler, FORTRAN, COBOL, PL/I, or other languages.
• Execute programs.

Your installation determines which of the facilities of the system you can use by determining
which commands are available to you.

When you enter a command in the system, the system performs the work requested by that
command and sends messages back to your terminal. Messages tell you the status of your
program and whether the system is ready to accept another command.

If you fail to include some necessary information with the command, the system sends you a
message prompting you for the necessary information. You may then respond by typing in the
information requested.

Whenever you are not sure which command to use or how to use a particular command,
you can type HELP. HELP is a command that provides you with information about all other
TSO commands.

This manual explains how to perform various functions using the command language. The
manual is divided into the following sections:

1. Basic information for using TSO

2. Starting and ending a terminal session
3. Entering and manipulating data
4. Executing programs at a terminal
5. Testing a program at a terminal
6. Command procedures

The first three items must be known by all system users. Items 4 - 6 describe specific
functions that you may wish to perform.

This manual tells you how commands are used to perform the functions mentioned above.
For details on how to enter each command, refer to the manual TSO Command Language
Reference.

Introduction 11

Section I: Basic Information For Using TSO

Before using TSO you should know how to use:

• A terminal
• TSO commands
• System provided aids
• Data set naming conventions

Using a Terminal
A terminal session is designed to be relatively simple: a terminal user identifies himself to the
system and then issues commands to request work from the system. As the session progresses,
the user has a variety of aids available at the terminal which he can use if he encounters any
difficulties.

Entering Information at a Terminal

All TSO terminals have a typewriter-like keyboard. The features of each keyboard vary from
terminal to terminal; for example, one terminal may not have a backspace key, while another
may not allow for lowercase letters. The features of each terminal as they apply to TSO are
described in the publication, TSO Terminals. The examples in this book are addressed to a
user of an IBM 2741 Communication Terminal.

Standard Terminal Conventions

Certain conventions apply to the use of all TSO terminals. They are:

• Any lowercase letters you type are interpreted by the system as uppercase letters. For
example, if you type in:

abcDe8-fg

the system interprets it as:

ABCDE8-FG

The only exceptions are certain text-handling applications which allow you to type in text
with both uppercase and lowercase letters. Text handling is discussed in the section "Entering
and Manipulating Data."

• All messages or other output sent to you by the system comes out in uppercase letters.
The only exception is the output from the special text-handling applications mentioned
previously which comes out both in uppercase and lowercase.

Character and Line Deletion

To correct typing mistakes you can request that the character you just typed be deleted or that
all the preceding characters in the line be deleted. You can define character-deletion and
line-deletion control characters, or you can use the default characters in the system. For
example, if the control characters are the quotation mark ('1) for deleting the preceding
character, and the percent sign (%) for deleting the current line, and you type the following
message:

first ent%Sect"onft''''d ENR"try

12 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

('"
\

C
···'~. "
~.'

C
', '.

I

,/

it is received by the system as:

SECOND ENTRY

Note that you can use the character-deletion character repetitively (to delete more than one of
the preceding characters in the line).

The blank space produced when you hit the space bar is also considered to be a character,
and you can delete it using the character-deletion or line-deletion characters. For example, if
you type the following line:

a b%cd liE "f

it is received by the system as:

CD EF

Normally, you will use the default characters in the system, (usually the backspace and the
attention key). However, you can use the PROFILE command to establish your own
character-deletion and line-deletion characters. The PROFILE command is described in the
section, "Starting and Ending a Terminal Session." The ability to change the character-deletion
and line-deletion characters is useful when you use more than one type of terminal. For
example, any time you have to use a terminal that does not have backspace and attention keys,
you can use the PROFILE command to select two other suitable characters as the
character-deletion and line-deletion characters.

Line by Line Data Entry

After you type a line and make any necessary corrections, you can enter that line as follows:

• Press the RETURN key on an IBM 2741 Communication Terminal.
• Press the RETURN key on an IBM 1052 Printer-Keyboard (If the 1052 does not have the

automatic EOB feature, hold down the ALTN coding key and press the EOB(S) key.)l
• Hold the CTRL key and press the XOFF key on a Teletype2 terminal.

Notes:

• All examples in this manual assume that you are using an IBM 2741 Communication
Terminal, and that you must press the RETURN key to enter a line.

• If you want to enter a line of blanks, press the key used to enter a line (RETURN key on
the 2741) after entering at least one blank.

You cannot use the character-deletion and line-deletion characters to make corrections to
the line after you enter it. If the line you entered was a command, you must use the attention
interruption (described later in this section) to cancel the line. If the line you entered was data,
you cap change it by using the EDIT command (described in the section, "Entering and
Manipulating Data").

Using TSO Commands
A command consists of a command name followed, usually, by one or more operands. A
command name is typically a familiar English word, that describes the funtion of the
command. For instance, the RENAME command changes the name of a data set. Operands

1 For information about the terminal you are using, refer to TSO Terminals.

2 Trademark of the Teletype Corporation.

Section I: Basic Information For Using TSO 13

provide the specific information required for the command to perform the requested operation.
For instance, operands for the RENAME command identify the data set to be renamed and
specify the new name:

RENAME OLDNAME NEWNAME

I t \
command name operand-l operand-2

(old data-set-name) (new data-set-name)

Two types of operands are used with the commands: positional and keyword.

Positional Operands

Positional operands follow the command name in a prescribed sequence. In the command
descriptions within this manual, the positional operands are shown in lowercase characters. A
typical positional operand is:

data-set-name

You must replace "data-set-name" with an actual data set name when you enter the command.

When you want to enter a positional operand that is a list of several names or values, the
list must be enclosed within parentheses. The names or values must not include unmatched
right parentheses.

Keyword Operands

Keywords are specific names or symbols that have a particular meaning to the system. You can
include keywords in any ortier following the positional operands. In the command descriptions
within this book, keywords are shown in upper case characters. A typical keyword is:

TEXT

In some cases you may specify values with a keyword. The value is entered within parentheses
following the keyword. The way a typical keyword with a value appears in this book is:

LINESIZE(integer)

Continuing this example, you would select the number of characters that you want to
appear in a line and substitute that number for the "integer" when you enter the operand:

LINESIZE(80)

Note: If conflicting keywords are entered, the last keyword entered overrides the previous
ones.

Abbreviating Keyword Operands

You must enter keywords spelled exactly as they are shown or you may use an acceptable
abbreviation. You may abbreviate any keyword by entering only the significant characters; that
is, you must type as much of the keyword as is necessary to distinguish it from the other
keywords of the command or subcommand. For instance, the LISTBC command has four
keywords:

MAIL NOTICES
NOMAIL NONOTICES

14 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

(:~

(.-.. ,

~~4'

C)

Delimiters

The abbreviations are:

M for MAIL (also MA and MAl)
NOM for NOMAIL (also NOMA and NOMAI)
NOT for NOTICES (also NOTI, NOTIC, and NOTICE)
NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC,

and NONOTICE)

When you type a command, you should separate the command name from the first operand by
one or more blanks. You should separate operands by one or more blanks or a comma. Do not
use a semicolon as a delimiter because the characters entered after a semicolon are treated as
comments. Using a blank or a comma as a delimiter, you can type the LISTBC command like
this:

LISTBC NOMAIL NONOTICES

or like this:

LISTBC NOMAIL,NONOTICES

or like this:

LISTBC NOMAIL NOTICES

A list of items may be enclosed in parentheses and separated by blanks or commas, for
example: .

LISTDS (MYDSA MYDSB,MYDSC)

Enter a blank by pressing the space bar at the bottom of your terminal keyboard. You can
also use the TAB key to enter one or more blanks.

Subcommands

The work done by some of the commands is divided into individual operations. Each operation
is defined and requested by a subcommand. To request one of the individual operations, you
must first enter the command. You can then enter a subcommand to specify the particular
operation that you want performed. You can continue entering subcommands until you enter
the END subcommand.

The commands that have subcommands are ACCOUNT, EDIT, OPERATOR, OUTPUT and
TEST.

Syntax Notation Conventions

The notation used to define the command syntax and format in this publication is described in
the following paragraphs.

1. The set of symbols listed below is used to define the format but you should never type
them in the actual statement. The special uses of these symbols are explained in
paragraphs 5-9.

hyphen -

underscore

braces {}

brackets []

ellipsis ...
Section I: Basic Information For Using TSO 15

2. You should type uppercase letters, numbers, and the set of symbols listed below in an
actual command exactly as shown in the statement definition.

apostrophe '

asterisk *
comma,

equal sign =
parentheses 0

period.

3. Lower-case letters, and symbols appearing in command definition represent variables fOl
which you should substitute specific information in the actual command.

Example: If name appears in a command definition, you should substitute a specific value
(for example, ALPHA) for the variable when you enter the command.

4. Stacked items represent alternatives. You should select only one such alternative.

Example: The representation

A
B
C

indicates that either A or B or C is to be selected.

5. Hyphens join lowercase words and symbols to form a single variable.

Example: If member-name appears in a command definition, you should substitute a
specific value (for example, BETA) for the variable in the actual command.

6. An underscore indicates a default option. If you select an underscored alternative, you
need not specify it when you enter the command.

Example: The representation

A
B
C

indicates that you are to select either A or B or C; however, if you select B, you need
not specify it, because it is the default option.

7. Braces group related items, such as alternatives.

Example: The representation

ALPHA=({~} ,D)

indicates that you must choose one of the items enclosed within the braces. If you select
_ A, the result is ALPHA=(A,D).

8 .. Brackets also group related items; however, everything within the brackets is optional and
may be omitted.

16 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

-I r
" '",,~_ •• ,A

.------ - ----.--------

Example: The representation

indicates that you may choose one of the items enclosed within the brackets or that you
may omit all of the items within the brackets. If you select only D, you may specify
ALPHA=(,D).

9. An ellipsis indicates that the preceding item or group of items can be repeated more than
once in succession.

Example:

ALPHA [,BETA ...]

indicates that ALPHA can appear alone or can be followed by ,BETA any number of times
in succession.

When to Enter a Command or Subcommand

The system lets you know when it is ready to accept a new command by sending you the
message:

READY

The system remains able to receive commands until you enter one of the commands that
have subcommands. The system then accepts only that command's subcommands until you
request a READY message by entering the END subcommand.

Using System-Provided Aids
Several aids are available for your use at the terminal:

• The attention interruption stops processing so that you can enter a command.
• The HELP command provides information about the commands.
• The conversation messages guide you at the terminal.

The Attention Interruption

The attention interruption allows you to interrupt processing at any time so that you can enter
a command or subcommand. For instance, if you are executing a program and the program
gets in a loop, you can use the attention interruption to halt execution. As another example,
when you are having the data listed at your terminal and the data that you need has been
listed, you may use the attention interruption to stop the listing operation instead of waiting
until the entire data set has been listed.

If, after causing an attention interruption, you want to continue with the operation that you
interrupted, you can do so by pressing the return key before typing anything else; however,
input data that was being typed or output data that was being printed at the time of the
attention interruption may be lost. You can also request an attention interruption while at the
command level, enter the TIME command, and then resume with the interrupted operation by
pressing the return key.

Note: One output record from the interrupted programs may be printed at the terminal after
you enter your next command. This is normal for some programs.

Section I: Basic Infonnation For Using TSO 17

Messages

If your terminal has an interruption facility, you can request an attention interruption by
pressing the appropriate key (the ATTN key on IBM.2741 Communication Terminals). Whether
or not your terminal has a key for attention interrupt~ons,. you can use the TERMINAL ('
command to specify particular operating conditions that the system is tq interpret as a request "-~
for an attention interruption. More specifically, you can specify a sequence of characters that
.the system is to interpret as a request for an attention interruption. In addition, you can
request the system to pause after a certain number of seconds of processing time has elapsed
or after a certain number of lines of output have been displayed at your terminaL When the
system pauses, you can enter the sequence of characters that you define as a request for an
attention interruption.

Note: If you are using the attention key as a line-delete indicator, pressing the attention key
(after entering characters in a line, and before pressing the carriage return,) will cause the line
you entered to be ignored by the system. Another depression of the attention key is required I..

to cause an interruption.

These are three types of responses to an attention interruption entered by a terminal user:

System Response

I

D

Explanation

Ignored (no more attention exits available).

Input line has been deleted. List of messages is made available.

"attention message" One of the message types is made available.

There are four types of messages:

• Mode messages.
• Prompting messages.
• Informational messages.
• Broadcast messages.

Mode Messages

A mode message tells you when the system is ready to accept a new command or
subcommand. When the system is ready to accept a new command it prints:

READY

When you enter a command that has sub commands and the system is ready to accept that
command's subcommands, it prints the name of the command, for example:

EDIT

You can then enter the subcommands you want to use. The TEST message also appears
after each TEST subcommand has been processed. If the system has to print any output or
other messages, as a result of the previous command or TEST subcommand, it does so before
printing the mode message. (The use of mode messages in the EDIT command is discussed in
the section "Entering and Manipulating Data.")

Sometimes you can save a little time by entering two or more commands in succession
without waiting for the intervening READY message. The system then prints the READY

messages in succession after the commands. If you enter the following commands without
waiting for the intervening mode messages, your listing will be:

18 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

READY
attrib .. .
allocate .. .
test ...
READY
READY
READY

There is a drawback to entering commands withput waiting for the intervening mode
messages. If you make a mistake in one of the commands, the system sends you messages
telling you of your mistake, and then it cancels the remaining commands you have entered.
After you correct the error, you have to reenter the other commands.

Unless you are sure that there are no mistakes in your input, you should wait for a READY

message before entering a new command.

Note: Some terminals "lock" the keyboard after you enter a command, and therefore you
cannot enter commands without waiting for the intervening READY message. Terminals which
do not lock the keyboard may occasionally do so, for example when all buffers allocated to the
terminal are used.

Prompting Messages

A prompting messages tells you that required information is missing or that information you
supplied was incorrectly specified. A prompting message asks you to supply or correct that
information. For example, partitioned-data-set-name is a required operand of the CALL
command; if you enter the CALL command without that operand the system will prompt you
for the data-set-name and your listing will look as follows:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested operand, in this case the data set name, and
by pressing the RETURN key to enter it. For example if the data set name is ALPHA.DATA you
would complete the prompting message as follows:

ENTER DATA SET NAME
alpha. data

If you wish, you will receive prompting messages when appropriate. However, the PROFILE
command can be used to suppress prompting.

If an informational message ends with a plus sign (+) you can request an additional
message by entering a question mark (?) after READY. Informational messages have only one
second level message, while prompting messages may have more than one.

To request an additional level of message:

1. Type a question mark (?) in the first position of the line.
2. Press the RETURN key.

level 1 ENTER DATA SET NAME+
level 2 ENTER THE NAME OF A PARTITIONED DATA SET AND MEMBER THAT

CONTAINS THE PROGRAM TO BE EXECUTED.

If you enter a question mark, and there are no messages to provide further detail, you
receive the following message:

NO INFORMATION AVAILABLE

Section I: Basic Infonnation For Using TSO 19

I ;

You can stop prompting sequence by entering the requested information or by requesting an
attention interruption.

Inf ormationaiMessages

An infotmatlonal'message tells you about the status of the system and your t~rminal session.
For example,' an informational' message·can tell you how much'tinw you have used.
Informational 'messages 'do :,nor require a',response,

If an informational message ends with a pl:us sign' (+) you can request an additional
message by entering a questionmatk (?)after READY. Informational messages have only one
second level message, while' prompting messages may have more' than one.

Broadcast Messages
, ,

Broadcast. messages, are messages of general 'interest to users of the system. Both the system
operator and any user of the system can send broadcast messages. The system operator can
send, messages to ,all users ,of the system or to individual users. For example"he may send the
f~llowing message to all users: ' , ,

DO NOT USE TERMINALS #4, 5,AND 6 ON 6/30. THEY ARE RESERVED FOR
DEPA.RTMEN,T 791.

You, or any other user, cansen,dmessages to o'therusers or to the system operator. For
example, you may send, or receive, the following message:

DEPARTMEN,T NO.4672 WILL BE CHA~GED TO 4675 STARTING 8/25

A message sent by another user will show his user identification so you will know who sent
you the message. .

The HELP Command

The 'HELP command can' be used by a terminal user to receive all the information necessary to
use any TSO command. The, information requested will be printed out at the user's terminal.

Explanations of Commands

To receive a list of all the TSOcommands in the SYS1.HELP data set along with a description
of each, enter the HELP command as follows:

help

Information about installation written commands may be placed in the SYS i.HELP data set.
You can also get all the information available on a specific command in SYS1.HELP by entering
the specific commandname as an operand on the HELP command, as follows:

help call

If you want to know just the function of a particular command, DELETE, for instance, enter
the HELP command as follows:

READY
help delete function

If you want to know just the syntax of a particular command, TEST, for instance, enter the
HELP command as follows:

20 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

C
""',

I

READY
help test syntax

If you want to know both the function and the operands of a particular command, EXEC,

for instance, enter the HELP command as follows:

READY
help exec function operands

Syntax Interpretation of HELP Information

The syntax notation used to present HELP information at your terminal is different from the
syntax notation used in this publication. Since the HELP information resides in the SYS1.HELP

data set, it is restricted to characters that can be represented at your terminal. If you want to
use the HELP command, you should become familiar with the syntax interpretation by entering
the HELP command as follows:

READY
help help
FUNCTION -

THE HELP COMMAND PROVIDES FUNCTION, SYNTAX, AND OPERAND INFORMATION
ON COMMANDS.

SYNTAX -
HELP' 'COMMAND NAME' FUNCTION SYNTAX

OPERANDS('KEYWORD LIST') ALL

REQUIRED- NONE
DEFAULTS- ALL IF FUNCTION, SYNTAX, OR OPERANDS NOT SPECIFIED.
ALIAS H
NOTE IF HELP IS ENTERED WITHOUT ANY OPERANDS A LIST OF

AVAILABLE COMMANDS WITH A SHORT DESCRIPTION OF EACH
WILL BE DISPLAYED.

NOTE 'KEYWORD LIST' IS OPTIONAL WHEN OPERANDS IS USED.

Syntax Interpretation -

1. User supplied values are apostrophes. Two sets of apostrophes means the value should
be supplied within a set of apostrophes.

2. Words without apostrophes are to be entered as shown.
3. Commas, periods, parentheses, and asterisks are to be entered as shown.
4. Exclusive choices are indicated by slash (/).
5. Mutually exclusive formats are separated by 'or'.

Explanations of Sub commands

You can also receive a list of all the subcommands of a command having subcommands. For
example, to get a list of the subcommands of EDIT, you must first get the system to issue the
edit mode message. The following simulated listing shows how to successfully enter EDIT
command that specifies an existing data set, so as to receive the EDIT message:

READY
edit cmdlang old asm
EDIT
help

Help entered without any operands will produce a list of sub commands of EDIT.

Section I: Basic Information For Using TSO 21

" ,,_ ,,---------_ _ ... _------_ _--------

Using Data Set Naming Conventions
The name you give a data set should follow certain conventions. A TSO data set name
normally has three fields:

• Identification qualifier (used to make the data set name unique).
• User-supplied name (optional for a partitioned data set).
• Descriptive qualifier, which has meaning to the TSO commands.

The fields must be separated by periods. Each field consists of 1-8 alphameric characters
and begins with an alphabetic or national ($, @, and #) character. The total length of the
name, including periods, must not exceed 44 characters. For example, a typical data set name
is:

SMITH. ACCTS.DATA

User-identification-----------~. 1 I
User-supplied name---------------...... -

Descriptive qualifier-------------------I

When you create a data set you need specify only the user-supplied name. The system
supplies values for the other two fields. The identification qualifier is either the user
identification you specified with the LOGON command, or a qualifier you assign to yourself by
using the PROFILE command. The user-supplied name can be a simple name or several simple
names separated by periods. The descriptive qualifier is one of those listed in Figure 1.
Sometimes, the system infers the descriptive qualifier from the data set type operand entered
with the EDIT command. If you do not specify a data set type the EDIT command prompts you
for it. (You should be aware of the distinction between EDIT command data set type and a
descriptive qualifier.) You specify the descriptive qualifier as part of a data set name, for
example:

PARTS.DATA

Exceptions to Data Set Naming Conventions

You may specify a fully qualified name (a name with all three qualifiers) by enclosing it in
apostrophes. For example,

'JONES.PROG1.ASM'

This is required when you have to use a data set with an identification qualifier other than
your own user identification. This procedure will also reduce response time since fewer system
functions must be performed.

22 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

,(---"

\ ' ., '~

\

\." "

(~.J.

C)

Descriptive Qualifier

ASM

BASIC

CLIST

CNTL

COBOL

DATA

FORT

IPLI

LINKLIST

LIST

LOAD

LOADLIST

OBJ

OUTLIST

PLI

STEX

TESTLIST

TEXT

VSBASIC

Data Set Contents

Assembler (F) input

ITF:BASIC Statements

TSO commands and subcommands

*JCL and SYSIN for SUBMIT command

American National Standard COBOL statements

Uppercase text

FORTRAN IV (E, G, Gl, or H) statements and free- or fixed-format Code and
Go FORTRAH statements

ITF:PL/I statements

Output listing from lin}(age editor

Listings

Load module

Output listing from loader

Object module

*Output listing from OUTPUT command

PL/I (F), PL/I Checkout, or PL/I Optimizing compiler statements

ST A TIC external dat~ from ITF:PLI

Output listing from TEST command

Uppercase and lowercase text

VSBASIC statements

*Refer to Appendix A in the publication: TSO Command Language Reference

Figure 1. Descriptive Qualifiers

Any name that does not conform to the naming conventions must be enclosed in
apostrophes. For example, if you have a data set named RECORDS, with no identification or
descriptive qualifiers, enter:

'records'

The system will not append the identification and descriptive qualifiers to data set names
that are enclosed in apostrophes.

You can refer to an existing data set by its user-supplied name and descriptive qualifier. For
example, if your data set is named:

SMITH.PART1.DATA

You may want to specify the data set name as:

part 1 .data

or specify the data set type if you are using the EDIT command. For example:

edit part1 old data

Section I: Basic Information For Using TSO 23

If you specify:

EDIT PARTS ASM
LINK PARTS or
LINK (PARTS)
CALL PARTS

EDIT PARTS(JAN) ASM
LINK PARTS(JAN) or
LINK (PARTS(JAN»
CALL PARTS(JAN)

EDIT (PARTS) ASM
LINK «PARTS»
CALL (PARTS)

The input data
set name is:

UID.PARTS.ASM

UID.PARTS.OBJ
UID.PARTS.LOAD(TEMPNAME)

UID.PARTS.ASM(JAN)

UID.PARTS.OBJ(JAN)
UID.PARTS.LOAD(JAN)

UID.ASM(PARTS)
UID.OBJ(PARTS)
UID.LOAD(PARTS)

Figure 2. Default Names Supplied by the System

The output data set
name will be:

UID.PARTS.ASM

UID.PARTS.LOAD(TEMPNAME)

UID.PARTS.ASM(JAN)

UID.PARTS.LOAD(JAN)

UID.ASM(PARTS)
UID.LOAD(PARTS)

Note: In these examples, UID stands for your user identification, or an identifier assigned by
the PROFILE command. TEMPNAME is the membername supplied by the system.

Note: Member names must be enclosed in parentheses to distinguish them from data set
names.

DESCRIPTIVE QUALIFIERS

Command

ASM
CALC
CALL
COBOL
CONVERT

EXEC
FORMAT
FORT
LINK

LOADGO

OUTPUT
RUN

SUBMIT
TEST

Input

ASM
STEX
LOAD
COBOL
IPLI
FORT
CLIST
TEXT
FORT
OBJ
LOAD
OBJ
LOAD

ASM
FORT
BASIC
COBOL
IPLI
CNTL
OBJ
LOAD

Output

OBJ
STEX

OBJ
PLI
FORT

OBJ
LOAD

Figure 3. Descriptive Qualifiers Supplied by Default

Listing

LIST

LIST

LIST
LIST
LINKLIST

LOADLIST

OUTLIST

TESTLIST

Most of these commands require the listed descriptive qualifier if data set names are
unqualified. Other commands such as LISTDS do not require any descriptive qualifier (if the
name is unique).

24 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

r----'
~, .

r··'

\ /

----- ------_. __ ._------------ -

Specifying Data Set Passwords

When referencing password protected data sets, you may specify the password as part of the
data set name (you will be prompted for it otherwise). The password is separated from the
data set name by a slash (I) and optionally, by one or more standard delimiters (tab, blank, or
comma).

Partitioned Data Sets

You can also create and edit partitioned data sets. A partitioned data set consists of one or
more data sets called members. Each member can be created and edited separately and each
has a name. A member name is enclosed in parentheses and appended to the right of the fully
qualified data set name. For example, the fully qualified name of member MEMI of the
SMITH.PART1.DATA data set is:

SMITH.PART1.DATA(MEM1)

You need only use the user-supplied name and member name to refer to the member. The
system appends the identification and descriptive qualifiers and moves the member name to the
end to form the fully qualified name. For example, to refer to member MEMI you can specify:

part 1 (mem 1)

or you might specify

part1.data(mem1)

In the second example, the system will append only the identification qualifier.

The following example uses the EDIT command to create member ONE of a partitioned data
set named JONES.T42.DATA. The second EDIT command, creates member TWO of
JONES.T42.DATA. Note that the NEW operand must be specified in both cases. The third EDIT

command, specifies that changes are to be made to member ONE (the OLD operand is the
default).

READY
edit t42.data(one) new data
INPUT

READY
edit t42.data(two) new data
INPUT

READY
edit t42.data(one) data
EDIT

Section I: Basic Information For Using TSO 25

Data Set Types for the EDIT Command

After you specify the data set name and the NEW or OLD operand, you should specify the data
set type. The data set type is an operand that describes the contents of the data set. The type
operand is one of the sources from which the system can obtain the descriptive qualifier. (If
the descriptive qualifier is a valid data set type, you may specify the descriptive qualifier as
part of the data set name, rather than giving data set type: specify EDIT myds.DAT A instead of
EDIT myds DATA.) The valid types are:

ASM
BASIC
CLIST
CNTL
COBOL
DATA
FORTE
FORTG
FORTGI
FORTH
GOFORT
IPLI
PLI
PLIF
TEXT
VSBASIC

Note: Any user data set types, specified at system generation time, are also valid data set
types.

If the system cannot find the data set type from other sources, you are prompted for it.

26 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

\.""

•

(....
I

"-.._J

-------_. __ . __ .. _---_._------_ .. --------_._ _-----------

Section II: Starting and Ending a Terminal Session

This section describes the commands you can use to:

• Identify yourself to the system.
• Define operational characteristics of your session.
• Receive and send broadcast messages.
• Display session time used.
• End your terminal session.

Identifying Yourself to the System
The first thing you must do to start a terminal session is to turn on the power according to
instructions provided by your installation. In many cases, you will find an instruction sheet
such as the one shown in Figure 4 attached to the terminal. In the example shown in Figure 4,
instructions 1 through 8 must be followed to turn on the power and to establish and maintain
connection with the system.

After you turn on the power you must use the LOGON command to identify yourself to the
system. You supply, as operands of LOGON, the user attributes assigned to you by your
installation. Your user attributes will consist of, at the minimum, a userid. The others listed
below are optional and will be prompted for if required:

• User identification (required) -- The name or code by which you are known to the
system.

• Password (required if your installation assigns you one) -- A further identification used
for additional security protection.

• Account number (optional) -- The account to which your terminal session is charged.
• Procedure name (optional) -- The name of a series of statements that defines your job to

the system.
• Performance group (optional) -- The performance group you wish to use during the

session.

Starting and Ending a Tenninal Session 27

TERMINAL #7

(Available 9:00 a.m. - 3:00 p.m.
For additional time call A. Jones ext 1234)

1. Turn ON/OFF switch to ON.

2. Make sure the COM/LCL switch is set to COM.

3. Remove handset from telephone (data set).

4. Press TALK button on telephone.

5. Dial ext. or __ _

6. Wait for a high pitched tone. When you hear this tone you
are in contact with the computer. (If you get a busy signal
or no answer, hang up and repeat from step 3 trying another
extension) .

7. Push the DATA button on the telephone. If DATA button light
goes off at any point during session, repeat from step 3.

8. Replace handset on the cradle.

9. Enter LOGON command:

logon_I __ acct (__) proc(__) size(_)

userid password account no. procedure nnnn

[
notices] [mail]
no no-frees nomail

10. The default TERMINAL command for an IBM 2741 Terminal is:

terminal nolines no seconds noinput break no timeout linesize(120)

If you want to change any of the defaults, use this form of
the TERMINAL command:

terminal lines(seconds (input (linesize(

11. The default PROFILE command for an IBM 2741 Terminal is:

[PERFORM (value)] [RECONNECT]

profile char(bs) line (attn) prompt intercom nopause nomsgid nomode prefix(userid) nowtpmsg

If you want to change your user profile (any of the
above defaults), use this form of the PROFILE command:

profile char () line() prompt no intercom pause msgid

nochar noline

The following operands are recommended for this
terminal:
char (bs) and line (attn)

Note: Please turn ON/OFF switch to OFF after you enter LOFOFF.

Figure 4. Sample Instruction Sheet for an IBM 2741 Terminal

28 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

:/".,---'
\
'\ ,.'

c.

C
~\

/ _ ..

Your user attributes are recorded in the system together with the attributes of all other
terminal users. When you log on, the system compares the attributes you specify in the LOGON

command to the attributes recorded in your user profile, to determine if you are an authorized
user of the system.

User Attributes

You can have a simple set of attributes, such as the following:

SMITH User identification

LOCK Password

79345 Account Number

P79 Procedure name

or a more complex set, such as

SMITH
~I

LOCK SEVEN KEY

I I~I
79345 79374 74325

/ /\ \
P79 P80 P81 P82

user identification

Passwords

Account Numbers

Procedure Names

The latter set has three passwords (LOCK,SEVEN, and KEY) associated with your user
identification. If you use the password LOCK, you can have your processing charged only to
account 79345 and you can use only procedure P79. If you use the password SEVEN, you can
have your processing charged to either account 79374 or 74325. If you choose account 79374,
you can use either procedure P80 or P81. If you choose account 74325, you can use only
procedure P82. Another way of using procedure P82 is to choose password KEY. KEY only has
account 74325 and procedure P82 associated with it.

Logging On

The LOGON command is a simple means of telling the system your user identification,
password, account number, procedure name, performance group, and whether you want the
reconnect option. For example, if you want to use procedure P81, you must enter:

logon smith/seven acct (79374) proc(p81)

Whenever there is only one account number or procedure name associated with the user
identification and password the system selects it by default. For example, account 79345 and
procedure P79 are the only account and procedure associated with password LOCK. Therefore,
when you log on you need only enter:

logon smith/lock

instead of:

logon smith/lock acct(79345) proc(p79)

Note: Some terminals have a feature which inhibits the printing of passwords on the console
listing.

Starting and Ending a Terminal Session 29

If you choose password SEVEN, you must specify which account number you want. If you
select account 74325, you do not have to specify the procedure because there is only one
procedure associated with the account.

logon smith/seven acct(74325)

If you select account 79374, you must also select a procedure name because there are two
procedures associated with the account. For example,

logon smith/seven acct(79374) proc(p80)

If you choose password KEY, you do not have to specify to account number and procedure
name because there are only one account number and one procedure name associated with
KEY.

Note: In some instances your installation may require a modification in the way that you
enter the LOGON command; for example, you may have to precede LOGON with a quotation
mark. Your installation's management is responsible for advising you of such a change.

Defining Operational Characteristics
Operational characteristics can be divided into terminal characteristics and a user profile.
Terminal characteristics identify:

• How you can request an attention interruption.
• Whether the keyboard is to lock up if you do not enter anything for. a while.
• The length of the line that can be displayed or printed at your terminal.

Some of the characteristics a user profile identifies:

• What your character-deletion and line-deletion characters are.
e Whether you want to receive prompting messages.
• Whether you will accept messages from other terminals.

Refer to the PROFILE and TERMINAL commands in TSO Command Language Reference
for additional information about defining terminal and user profile characteristics.

Terminal Characteristics

Your installation establishes default terminal characteristics for all the TSO terminals. If you
want to change any of those characteristics for the duration of your session you can use the
TERMINAL command. After your session is over, the defaults selected by the installation will
again be valid for that terminal. For example, assume that the default for the number of lines
of continuous output that are printed before you receive an automatic interruption is 50. You
can use the TERMINAL command to request that 100 lines be printed before you receive an
interruption. When you log on for your next session at that terminal, SO lines will again be the
default, provided there has been a logoff prior to the logon. The terminal characteristics remain
the same for a re-Iogon terminal session and assume the default values with a logoff.

Your User Profile

The system has a user profile for you (see the default PROFILE command in Figure 4). When
you log on that profile will be in effect. If you want to change any item in your profile, you
can do so with the PROFILE command. Any change you make becomes a permanent part of
your profile. That is, the next time you log· on that change will be in effect. For example,
assume that the line-deletion character in your profile is a percent (%) sign. You can use the
PROFILE command to change it to a number (#) sign, throughout the current session. When

30 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

c· .. ···
' -,,'

C)

------~.- .. -------... ---.

you log on for your next session your line deletion character will be the number sign. If you
want to change it back to the original percent sign you must again use the PROFILE command.

Receiving and Sending Broadcast Messages
There are two types of broadcast messages you can receive: notices and mail. Notices are
messages sent by the system operator to all users. Mail consists of messages sent by the
operator or another user directly to you. You can send mail to other users and to the system
operator.

Receiving Broadcast Messages

You can use three commands to control which broadcast messages you receive: LOGON,

PROFILE, and LISTBC.

When you log on, broadcast messages sent to all users (notices) and those intended only for
you (mail) are displayed at your terminal. You can use the following operands of the LOGON

command to prevent printing either type of message at your terminal:

• NONOTICES suppresses printing of broadcast messages intended for all terminal users.
• NOMAIL suppresses printing of broadcast messages intended specifically for you.

For example, if you enter:

logon smith acct(72411) nomail

You will not receive mail but you will receive all notices that are available at the time.

NONOTICES and NOMAIL suppress those broadcast messages outstanding at the time you log
on. You will automatically receive any broadcast messages issued after you log on. You cannot
stop the operator from sending you notices, but you can specify that you do not want to
receive any mail by using the NOINTERCOM operand of the PROFILE command. For example,
if you enter the following commands:

READY
profile nointercom

you request that all broadcast messages (notices and mail) available at logon be displayed, but
that all mail sent to you after logon be suppressed throughout your session. (Note that
NOINTERCOM can be a default of your user profile, and therefore you may not have to specify
it with the PROFILE command.)

At any time during your session you can use the LISTBC command to request that either all
available notices for users, or all your mail (or both) be displayed. If you enter:

listbc

you will get all broadcast messages (notices and mail).

If you enter:

listbc nomail

you will get only notices.

If you enter:

listbc nonotices

you will get only your mail.

Starting and Ending a Terminal Session 31

The notices you get are both the notices available at the time you logged on and those
issued throughout your session. This enables you to see what notices were available at logon
time, if you specified NONOTICES in your LOGON command. (The system operator can delete
notices at any time. Consequently you will get only those notices he has not deleted.)

Mail messages sent directly to you are automatically deleted by the system after you receive
them. Therefore the mail you get when you use the LISTBC command are those messages
available at logon time, if you specified NOMAIL in your LOGON command, and those
suppressed as a result of the NOINTERCOM operand of the PROFILE command. After you use
the LISTBC command to see your mail, the NOINTERCOM operand will again be in effect.

If there are no messages available when you use the LISTBC command you will receive the
following message:

NO BROADCAST MESSAGES

If you want to cancel the effect of the NOINTERCOM operand, enter:

profile intercom

You will receive any mail issued after you enter this command. To obtain your mail
messages issued before you entered INTERCOM, use the LISTBC command.

Sending Messages

You can use the SEND command to send mail messages to another terminal user or to a
system operator. The SEND command can be used at any time after you log on.

You can send a mail message to another user only if you know his user identification. For
example, the command:

send 'do not use procedure 245 until notified'
user(jones,smith)

will send the message enclosed in quotes to the two users whose identifications are JONES and
SMITH.

When you send a message to another user, he will receive it immediately if he is logged on
and is accepting messages. If he is not logged on or is not accepting messages, you are notified
and your message is deleted. For example, assume that SMITH is not logged on, JONES is not
accepting messages, and CLARK is both logged on and accepting messages. When you send the
following message:

send 'this is a message' user(smith,jones,clark)

SMITH and JONES do not receive the message, you are notified, and the message is deleted.
CLARK receives the message.

You can request the system to save your message until the user you sent it to logs on or
decides to accept messages, by using the LOGON operand of the SEND command. For example,
if you enter:

send 'this is a message' user(smith,jones,clark) logon

SMITH will receive your message when he logs on, JONES will receive it when he uses the
LISTBC command, and CLARK will receive it immediately.

32 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

c-····
............

'j

/"_

l ~,I --

o

You can send a message to only one operator at a time. With the SEND command, you can
identify an operator by a number. For example,

send 'important message' operator(7)

If there is only one operator at your installation, you can omit the operand. For example,

send 'important message'

If there are several operators and you omit the operand, your message is sent to the mail
operator.

Displaying Session Time Used

Use the TIME command to obtain the following information:

• Cumulative CPU time (from logon)
• Cumulative session time (from logon)
• Service units used
• Local time of day
• Today's date

You must first cause an attention interruption prior to entering the TIME command while a
program is executing. The TIME command has no effect upon the executing program.

Testing Long-Running Programs

If a TSO command has been executing longer than expected, you can interrupt it to check its
CPU and execution time. Then, depending on your analysis of the times returned, you can
either resume processing from the point of interruption, or, you can cancel the processing of
that command. The following example shows how a LOADGO command was interrupted; a
TIME command was entered successfully; and a carriage return was entered to resume the
processing of the LOADGO command.

READY
loadgo pehtest
> (an attention interruption was entered here)
READY
time
(Your time information is printed here)

READY
(a carriage return was entered here)
VALID TYPES FOR DATA SET PEHTEST ARE LOAD AND OBJ
ENTER TYPE-
obj
READY (indicates that LOADGO has completed successfully)

Note: If the user had decided to cancel the processing of LOADGO, he would only have had
to issue another command after the third READY to cancel LOADGO.

Starting and Ending a Terminal Session 33

Ending Your Terminal Session
You can end your terminal session in two ways:

• By entering the LOGOFF command to end the session.
• By entering the LOGON command to start a new session.

The LOGOFF command:

• Logically disconnects your terminal from the system. If LOGOFF HOLD is specified, the
terminal remains physically connected and you can enter a new LOGON command;
however, terminal characteristics established by a TERMINAL command during the
previous session are no longer in effect.

A typical logoff follows:

READY
logoff
D58PEH LOGGED OFF TSO AT 15:24:47 on MAY 22, 1973+

The LOGON command:

Terminates your current session and starts a new one at the same time.

A typical logon follows:

READY
logon d58peh/d58paswd 10781525
D58PEH LOGGED OFF TSO AT 10:14:06 ON MAY 23, 1973+
D58PEH LOGON IN PROGRESS AT 10:14:40 ON MAY 23, 1973
READY

Note: In the case of a re-Iogon as shown above, the terminal characteristics of the old session -----
(' ' .. are carried over into the new session.

........ ~~."

34 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

o

Section III: Entering and Manipulating Data

The processing of data is an important part of almost all system applications. Therefore, you
should learn how to enter data into the system and how to modify, store, and retrieve data
after it has been entered. For example, a data set may contain:

• Text used for information storage and retrieval.
• A source program.
• Data used as input to a program.

When you create a data set you must give it a name. The system uses the name to identify
the data set whenever you want to modify or retrieve it.

Using the Edit Command
The EDIT command, which is used to enter and manipulate data sets, operates in either of two
modes: input mode or edit mode. When you use the EDIT command to enter data into a data
set, you are using the input mode. When you use the EDIT command to enter subcommands to
manipulate the data in a data set you are using the edit mode.

Entering Data in Input Mode

In input mode, you can type a line of data and then enter it into the data set by pressing the
RETURN key. You can continue entering lines of data as long as EDIT is operating in input
mode. If you enter a command or subcommand while in input mode the system adds it to the
data set as input data. The command or subcommand is taken as data and is not executed.

You can have the system assign a line number to each line as it is entered. Line numbers
make edit mode operations much easier, since you can refer to each line by its own number.
When you are working with a line-numbered data set, you can request the system to print out
the new line number at the start of each new input line. If the data set does not have line
numbers, you can request that a prompting character be displayed at the terminal before each
line is entered.

Entering Subcommands in Edit Mode

After you finish entering data in the data set, you can switch to edit mode by entering a null
line. (Press the RETURN key to enter a null line.)

The system lets you know you are in edit mode by printing the following message:

EDIT

In edit mode you can enter subcommands to point to particular lines of the data set, to
modify or renumber lines, to add and delete lines, or to control editing of input.

When EDIT is operating in edit mode, it uses an indicator called the currentline pointer to
keep track of the next line of data to be processed. The operations you indicate with the
subcommands are performed starting at the line indicated by the pointer. For example, the
DELETE subcommand deletes the line indicated by the pointer. After a subcommand is
executed the system repositions the pointer in accordance with the subcommand you are using.

You may want to reposition the pointer before a subcommand is executed. You can do so
by using one of two methods: line number editing or context editing. Line number editing can
be used only if your data set has line numbers. You can specify a line number as an operand
of a subcommand and the system will move the pointer to that line before it executes the
subcommand. Context editing can be used for data sets with or without line numbers. A set of

Entering and Manipulating Data 35

subcommands .UP, DOWN, TOP, BOTTOM, and FIND allows you to move the pointer up or
down ·aspecified number of lines', or to find aline with a particular series of characters in it
and niove the pointer to it. After the pointer is positioned you can enter the subcommand that
performs . the fuDctionsre.quired. The subcommand may contain an asterisk (*) instead of a line
number to' specify the line indicated by the pointer, or it may default to the current line. .

Switching -Modes

After you finish editing the data, you can switch to input mode in two ways:

• Entering the INPUT or INSERT subcommand.
• Entering a null line. (Press the RETURN key to enter a null line.)
The system lets you know you have selected input mode by printing the following message:

INPUT

You can temdnate -the EDIT command at any time by switching to edit mode (if not already
in edit mode) and entering .the END subcommand. The system then prints a READY message,
and you can enter any command you choose.

Note: If you want to enter a blank line in your data set, you must enter a blank by pressing
the space bar, and then press the RETURN key. You can then enter other lines after the blank
line. If you fail to -enter a blank and press only the RETURN key, you enter a null line which
causes EDIT to switch -modes from INPUT mode to EDIT mode.

Functions of Edit Sub commands

The remainder of this chapter describes how you can use the subcommands of -EDIT to:

• Identify whether a data set is new or old.
• Create a data set.
• Place data into columns.
• Find and position the current line pointer.
• Updata a data set.
• List the contents of a data set.
• Store a new or updated data set.
• Allocate a data set.
• Submit a data set for batch execution.
• Send a message.
• End the EDIT functions.

Functions of Other Commands

The following functions described in this chapter are performed with commands other than
EDIT:

• Rename a data set.
• Delete a data set.
• Allocate a data set. I

l • Free an allocated data s\x.
• List information about your data sets.

Note: A data set may be allocated by using the ALLOCATE command or the ALLOCATE

subcommand of EDIT.

36 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

("-
\ ,.

C
"-'~'

.~-.-.,

C: .. '-'

Identifying Data Sets
The EDIT command is used to specify the name of a data set and whether you want to create
it or edit it. If you indicate that you are going to create a new data set, the system enters input
mode. If you indicate that you are going to edit an existing data set, the system enters edit
mode after you enter the EDIT command. For example, the NEW operand in the following
EDIT command specifies that you are going to create a new data set named ACCTS.DATA.

After you enter the command the system enters input mode.

READY
edit accts.data new
INPUT

In the following example, the OLD operand of the EDIT command specifies that you want to
edit an existing data set named PARTS.TEXT. After you enter the command, the system enters
edit mode.

READY
edit parts. text old
EDIT

As you can see, the NEW operand specifies that you are going to create a data set, and the
OLD operand specifies that the data set already exists.

Creating a Data Set
You create a data set when EDIT is in input mode. You request input mode when you enter
one of the following:

• The NEW operand in the EDIT command.
• The INPUT subcommand while in edit mode.
• The INSERT subcommand with no operands, while in edit mode.
• A null line if the system is in edit mode.

After you enter the EDIT command with the NEW operand the system sends you the following
message:

INPUT

After this message, the system prints the first line number of your data set, unless you
specified NONUM in the EDIT command. The first line number printed is 00010. Type the first
line of input to the right of the line number and press the RETURN key to enter it. The system
then prints the second line number, which is 00020, and you may then enter your second line
of input, and so on.

Caution: A hyphen at the end of an input line indicates logical continuation of the line. In
input mode, logical continuation is meaningful only if you are using the syntax checking
facility. Whether or not you are syntax checking, however, the input processor will delete the
hyphen from the end of the line except in a few special instances. The rules governing
handling of a hyphen at the end of a line in input mode are detailed in TSO Command
Language Reference.

When you reach the end of the data you want to enter, press the RETURN key without
entering anything (a null line) and the system switches to edit mode. The following example
illustrates the points just discussed:

Entering and Manipulating Data 37

READY
edit accts
INPUT
00010
00020
00030
00040

new data

#23942
#32135
#32174
#49213
#52221 00050

00060
EDIT

(null line)

5
21
12
35
50

@2.75
@3.90
@1.80
@7.95
@2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

In the example, the line numbers have the standard increment of 10. If you prefer a
different increment, you can use the INPUT subcommand to specify another increment. To do
this you must first request a switch to edit mode by entering a null line after you receive the
INPUT message. Then enter the INPUT subcommand specifying the number of the first line and
the size of the increment. After entering the INPUT subcommand the system switches to input
mode and prompts you with the first line number. For example, to start with line 5 and use
increments of 5, you could use the following sequence:

READY
edit accts new data

(null line)
INPUT
00010
EDIT
input 5 5
INPUT
00005
00010
00015
00020
00025
00030
EDIT

#23942
#32135
#32174
#49213
#52221

(null line)

5
21
12
35
50

@2.75
@3.90
@1 .80
@7.95
@2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

You can create the same data set in edit mode. However, you must enter the line numbers
you wish to use.

READY
edit accts new data
INPUT
00010
EDIT
5
10
15
20
25

(null line)

#23942
#32135
#32174
#49213
#52221

5
21
12
35
50

@2.75
@3.90
@1 .80
@7.95
@2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

Note: Requesting an increment larger than 1 makes it easier to insert lines in your data set
later on.

Placing Data into Columns
You can use the TAB key of your terminal to align data in columns, just as· you would with an
ordinary typewriter. However, this mechanical tab setting is not recognized by the system,
which interprets each striking of the TAB key as a space. For example, if you enter the
following three lines and align them with the TAB key, they appear at the terminal as follows:

39427
22
987654

abcde
fghijkl
mnop

49211
441
2

38 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

72669
123456
31

ab4
72de

xyz

C~

C
","

... ~ •• r'

but they are received by the system as follows:

39427 ABCDE 49211 72669 AB4
22 FGHIJKL 441 123456 72DE
987654 MNOP 2 31 XYZ

If you want the system to place your data into columns, you must establish logical tab
settings with the T ABSET subcommand of the EDIT command or else use the defaults provided
by the system. If you have established logical tab settings for your data set, the system will
arrange each item in its proper column whenever you press the TAB key. The mechanical tab
settings in your terminal need not correspond to the logical tab settings. For example, assume
that the logical tab settings for the data set are columns 10,20, and 30, while the mechanical
tab settings in the terminal are columns 5, 10, and 15. When you type in the following seven
lines using the TAB key:

abc
mno
yzO

def ghi
pqr stu
123 456

jkl
vwx
789

they are arranged by the system as follows:

ABC
MNO
YZO

DEF
PQR
123

GHI
STU
456

JKL
VWX
789

column 15
column 10
column 5
column 1

column 30
column 20
column 10
column 1

You may find it convenient to make the mechanical tab settings coincide with the logical
tab settings. Details for doing this are given in the section describing the T ABSET subcommand,
under the EDIT command, in the TSO Command Language Reference manual.

If you do not use the T ABSET subcommand, the default tab settings used by the system vary
with the data set type. The defaults are shown in Figure 5.

Descriptive Qualifier

ASM

BASIC

CLIST

CNTL

COBOL

DATA

FORT

IPLI

PLI

TEXT

VSBASIC

User Defined Qualifier

Figure 5. Default Tab Settings

Default Tab Setting Columns

10,16,31,72

10,20,30,40,50,60

10,20,30,40,50,60

10,20,30,40,50,60

8,12,72

10,20,30,40,50,60

7,72

5,10,15,20,25,30,35,40,45,50

5,10,15,20,25,30,35,40,45,50

5,10,15,20,30,40

10,15,20,25,30,35,40,45,50,55

10,20,30,40,50,60

Entering and Manipulating Data 39

If you. want to change the default settings or other settings you previously established, or
nullify all, tabs, you must use the T ABSET subcom~and. If you want to change the default
settings, you will, probably do so' before you create the data set. That means you must request
edit mode after' you enter, the, EDIT command, then enter the T ABSET subcommand and return
to the input,mode to create th~ data. set. For example, if you want t,o create a TEXT data set
with the logical tabs at columns 10,25, and '35, you can use the following sequence:

READY
exit series new text
INPUT
00010 (null line)
EDIT
tabset (10 2535)

(riull line)

INPUT
00010

If you prefer, you. can define tab settings by entering a line containing t's in positions
corresponding to desired tab settings. For example, to establish tab settings in columns 10,25,
and 35 you can use the TABSET'subcommand as follows:

tabset image
123456789tbbbbbbbbbbbbbbtaaaaaaaaat

You must fill the spaces between the t's with blanks or characters other than t. Do not use
the TAB key when entering the IMAGE line, nor the backspace except as a character-delete
character.

If you want to nullify the existing tab settings for the data set, enter the T ABSET
subcommand as follows:

tabset off

The maximum number of logical tab settings that can be defined is ten.

40 OS!VS2 TSO Terminal User's Guide (VS2Release 2)

,r'--',
I,
'-.--.""

Finding and Positioning the Current Line Pointer

Unless you plan to use line numbers for all your edit operations, you should know how to find
and reposition the current line pointer. These operations are described in the following
paragraphs.

Finding the Current Line Pointer

The location of the current line pointer is determined by the last subcommand you entered. If
you are editing an old data set, the current line pointer is positioned at the first line of the
data set upon initial entry into edit mode. Figure 6 shows the location of the pointer at the
end of each subcommand. If you do not remember this information, you can use the LIST

subcommand with the * operand to find the line at which the pointer is positioned. For
example:

list *
THIS IS THE LINE AT WHICH THE CURRENT LINE POINTER IS
POSITIONED

Edit Subcommands

ALLOCATE

BOTTOM

CHANGE

DELETE

DOWN

END

FIND

HELP

INPUT

INSERT

Insert/Replace/Delete

LIST

PROFILE

RENUM

RUN

SAVE

SCAN

SEND

SUBMIT

TABSET

TOP

UP

VERIFY

Value of the Pointer at Completion of Subcommand

No change

Last line (or line zero for empty data sets)

Last line changed

Line preceding deleted line, if any, else zero

The line n down from where you were at the start of the subcommand, or the
bottom of the data set. (n is the value of the 'count' parameter.)

No change

Found line, if any, else no change

No change

Last line entered

Last line entered

Inserted or replaced line, or line preceding the deleted line, if any, or else zero.

Last line listed

No change

Same relative record

No change

No change"

Last line referred to, if any

No change

No change

No change

Zero value

The line n lines up from where you were at the start of the subcommand, or the
top of the data set. (n is the value of the 'count' parameter.)

No change

Figure 6. Values of the Current Line Pointer Ref erred to by an Asterisk (*)

Entering and Manipulating Data 41

You can also have the system display the line at which the pointer is positioned every time
the pointer changes as a result one of the EDIT subcommands. To do this use the VERIFY

subcommand as follows:

verify
I
i

The VERIFY s~bcommand is in effect until you enter it again with the OFF operand:

verify off

Positioning the Current Line Pointer

You can use the UP, DOWN, TOP, BOTTOM and FIND subcommands to move the current line
pointer.

The UP subcommand moves the pointer a specified number of lines up, relative to the
beginning of your data set. For example, to move the pointer so that it refers to a line located
five lines before the location currently referred to, enter:

up 5

The DOWN subcommand moves the pointer a specified number of lines down, relative to
the end of your data set. For example, to move the pointer so that it refers to a line located
12 lines after the location currently referred to, enter:

down 12

The TOP subcommand moves the pointer to the position preceding the first line of your data
set. (For line numbered data sets, the pointer is set to zero. If line number zero exists, then
line number zero becomes the current line.) TOP is often used in combination with the DOWN

subcommand. For example, if you want the pointer to refer to the third line of your data set,
use the following sequence:

top
down 3

The 'BOTTOM subcommand moves the pointer to the last line of the data set.

The FIND subcommand moves the pointer to a line that contains a specified sequence of
characters. For example, to move the pointer to the line that contains PLACED BEFORE ENTRY

enter:

find xplaced before entry

The "x" inserted before "placed" is a special delimiter that marks the beginning of the
sequence of characters the system has to search for. The special delimiter can be any character
other than a number, apostrophe, semicolon, blank, tab, comma, parenthesis, asterisk, or one
of the characters in the sequence you want to find. The special delimiter must be placed next
to the first character of the sequence you want to find. Any blanks inserted between the
special delimiter and the first character are considered to be part of the sequence of characters.

An alternate method for specifying the sequence of characters for FIND is quoted-string
notation. With this method, the specified sequence must start and end with an apostrophe. If
an apostrophe is one of the characters in the specified sequence, you must enter two
apostrophes for the single apostrophe in the specified sequence. For example, to find the
character sequence:

42 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

c~1

c····"
........ ,~

.. -----.--... -.---.

{"'.'.

(I

'--"""

c······:
...... i

o

---_._ _---_ ...

·single 'quote'

using quoted-string notation, enter:

FIND 'single "quote'"

If you prefer, you can have the system search for the sequence of characters starting at the
same column of each line. For example, if you want to search for PLACED BEFORE ENTRY in
column seven of each line, enter:

find xplaced before entry x7
or

find 'placed before entry '7

Notice that the same special delimiter or, apostrophe used at the beginning of the sequence
of characters must also precede the column number.

The FIND subcommand starts looking for the sequence of characters beginning with the line
at which the pointer is located. Therefore, unless you are sure the characters are in a line
following the one indicated by the pointer, you should use the TOP subcommand to move the
pointer to the beginning of the data set. For example:

top
find xplaced before entry

The following is a data set used to illustrate the examples of positioning the current line
pointer. Although this data set has line numbers, they are not used in the examples.

00010
00020
00030
00040
00050
00060
00070
00080
00090

TEMPERATURE DATA FOR 7/29/70
HIGHEST, 90 AT 12:30 P.M.
LOWEST, 73 AT 5:40 A.M.
MEAN, 83
NORMAL ON THIS DATE, 77
DEPARTURE FROM NORMAL, +6
HIGHEST TEMPERATURE THIS DATE, 99 IN 1949
LOWEST TEMPERATURE THIS DATE, 59 IN 1914
TEMPERATURE HUMIDITY INDEX, 81

Assume that you do not know the present location of the current line pointer, and would
like to move it to the fifth line (00050). Enter:

top
down 5

To move the pointer from the fifth line (00050) to the third line (00030), enter:

up 2

To move the pointer to the line that contains FROM NORMAL enter:

find xfrom normal

To move the pointer to the last line (00090), enter:

bottom

Entering and Manipulating Data 43

Updating a Data Set
The sub commands of the EDIT command allow you to update a data set. That is, they allow C~
you to: ."

• Delete data from a data set.
• Insert data in a data set.
• Replace data in a data set.
• Renumber lines of a data set.

These functions are described in the following paragraphs.

Deleting Data From a Data Set

If you want to delete only one line of data you do not need a subcommand. Indicate only the
line number or an asterisk. For example, if you want to delete line 30, enter:

30

If you want to delete the line indicated by the current line pointer, enter:

*

You can also use the DELETE subcommand to perform the same function. For example,

delete 30
or

delete *

DELETE also allows you to delete more than one consecutive line. To do so you can specify
the line numbers of the first and last lines to be deleted, or the number of lines to be deleted
starting with the line indicated with the current line pointer. For example, if you want to delete
all the lines between, and including lines 15 and 75, enter:

delete 15 75

If you want to delete 12 lines starting with the line indicated by the current line pointer, enter:

delete * 12

If you want to delete all the lines in your data set, use the TOP and DELETE subcommands in
combination, specifying for DELETE a number of lines greater than the number of lines in your
data set.

top
delete * 99999999

After the system deletes the lines you requested, the current line pointer is positioned at the
line before the first deleted line.

44 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

-.----.---~.---------------.------

C
·'"

"I

.... /

o

Inserting Data in a Data Set

To insert only one line of data in a line-numbered data set, you do not need a subcommand;
indicate only the line number. The line number referred to should not exist. (That is, it should
fall between two existing line numbers in the data set.) For example, if you want to insert
"RECORDED DAILY IN CENTRAL" as line 22, enter:

22 recorded daily in central

The characters you want to enter must be separated from the line number or the asterisk by
a single blank or a comma. Any additional blanks or commas are considered to be part of the
input data. You may optionally use the tab key to separate characters from the line number or
asterisk. In this case all blanks, including the first, reSUlting from the tab will be part of your
input data. The number of blanks resulting from the tab is determined by the logical tab
setting. The logical tab setting results from the T ABSET subcommand or the default tab setting.

To insert one line of data after the current line, use the INSERT subcommand with the
insert-data operand. For example:

list *
TAKE ME OUT
insert to the ballgarne

The rules for separating inserted data from the subcommand name are the same as for
separating data from line numbers.

To insert more than one line, use the INSERT or INPUT subcommands. INPUT or INSERT

can be used for data sets with or without line numbers.

The INSERT sub commands inserts one or more lines of data following the location pointed
to by the current line pointer.

For example, assume that you have the following data set:

A. CARSON DEPT A72
T. DANIELS DEPT 792
C. DICKENS DEPT 981
R. EMERSON DEPT 245
E. FARRELL DEPT B32
C. LEVI DEPT 229
D. MADISON DEPT D49

To insert three lines after the entry for E. FARRELL and before the entry for C. LEVI, you
must first position the current line pointer at the fifth line. Your listing would look like this:

EDIT
top
down 5
insert
INPUT
e. glotz
p. henry
h. hill

EDIT

dept 741
dept 333
dept R92

(null line)

You must enter a null line to indicate the end of your input.

Entering and Manipulating Data 4S

The INPUT subcommand is used in a manner similar to the INSERT subcommand if your
data set does not have line numbers. Use an asterisk in the INPUT subcommand to indicate
that the lines of input that follow are to be inserted in the location following the current lirie
pointer. For example, assume that you have the following data set:

A. CARSON DEPT A72
T. DANIELS DEPT 795
C. DICKENS DEPT 981
R. EMERSON DEPT 245
E. FARRELL DEPT B32
C. LEVI DEPT 229
D. MADISON DEPT D49

To insert three lines after the line for E. FARRELL and before the line for C. LEVI, your listing
would look like the following:

EDIT
top
down 5
input *
INPUT
e. glotz
p. henry
h. hill

EDIT

dept 741
dept 333
dept R92

(null line)

Note: that after you enter the INSERT or the INPUT subcommand, EDIT switches to input
mode.

If your data set has line numbers, you can use the INPUT or INSERT subcommand to insert
one or more lines of data between two existing lines of the data set. You can also indicate a
smaller increment for the new line numbers so that they fit between the line numbers of the
existing lines. For example, assume you have the following data set:

00010
00020
00030
00040

1932
2579
4798
5344

$1 .50
$1 .39
$1 .75
$2.49

To insert three lines between lines 20 and 30, to have the first line numbered 22, and to
increment this number by two in the following lines, your listing would look as follows:

EDIT
input
INPUT
00022
00024
00026
00028
EDIT

22 2

2795 $0.79
3241 $2.81
4152 $1.79
(null line)

The updated data set would look like this;

00010
00020
00022
00024
00026
00030
00040

1932
2579
2795
3241
4152
4798
5344

$1 .50
$1. 39
$0.79
$2.81
$1.79
$1 . 75
$2.49

46 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

('"''

_ '

C)

... _-------_.--_ ----

Another way to insert three lines between lines 20 and 30 is to use the INSERT
subcommand, as follows:

EDIT
top
down 2
insert
INPUT
00021
00022
00023
00024
EDIT

2795 $0.79
3241 $2.81
4152 $1.79
(null line)

Note: that INSERT automatically increments the line numbers by one.

The updated data set would look like this:

00010
00020
00021
00022
00023
00030
00040

1932
2579
2795
3241
4152
4798
5344

$1 .50
$1 .39
$0.79
$2.81
$1 .79
$1 . 75
$2.49

If you do not change the increment, and there is no room for the new lines, you receive an
error message. If you wish, you can renumber the lines of your data set. This procedure is
explained in the paragraph entitled "Renumbering Lines of Data."

To enter lines at the end of the data set, enter the INPUT subcommand without operands. If
the data set has line numbers you will be prompted with the line number. For example:

EDIT
input
INPUT
00050
00060
00070
EDIT

6211 $3.95
7199 $0.85
(null line)

Replacing Data in a Data Set

You can replace an entire line, or a sequence of characters in a line or in a range of lines.

If you are only replacing one line of data, you do not need a subcommand. Indicate only
the line number or an asterisk. For example, if you want to replace the contents of line 70
with "SEVERAL REPORTS WERE MADE", enter:

70 several reports were made

If you want to replace the contents of the line indicated by the current line pointer, enter:

* several reports were made

The characters you want to enter must be separated from the line number or the asterisk by
a single blank or a comma. Any additional blanks or commas are considered to be part of the
input data. You may optionally use the tab key to separate characters from the line number or
asterisk. In this case all blanks, including the first, resulting from the tab will be part of your
input data. The number of blanks resulting from the tab is determined by the logical tab
setting. The logical tab setting results from the T ABSET subcommand or the default tab setting.

Entering and Manipulating Data 47

You can also replace lines of data when you use the INPUT subcommand. If you use the R
operand, the lines starting with the line indicated by the line number or the asterisk are
replaced by the lines you enter. For example, assume that you have the following data set: (~'"

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/15
STAGE 3 9/29

To replace the third and fourth lines, you must first position the current line pointer at the '
third line.

EDIT
top

8/21

down 2
input * r
INPUT
stage 2
stage 3 9/15

(null line)
EDIT

Your updated data set would look like this:

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/21
STAGE 3 9/15

In the following example, assume that the data set has line numbers:

00010
00020
00030
00040

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/15
STAGE 3 9/29

To replace lines 30 and 40, your listing should look as follows:

EDIT
input
INPUT
00030
00040
00050
EDIT

30 r

stage 2
stage 3
(null line)

8/21
9/15

Your updated data set will look as follows:

00010
00020
00030
00040

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/21
STAGE 3 9/15

If the data set has line numbers, you can replace a line and insert additional lines. For
example, assume the same data set:

00010
00020
00030
00040

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/15
STAGE 3 9/29

\~." .. "

To replace line 30 and insert two lines with a line increment of 2, your listing should look as ('"'''',
follows:

.............. ,.

48 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

f'-"
(
'-... /

c ·· ,
I

-_ .. /

o

------.... -------... -.--........ ---

EDIT
input 30 2 r
INPUT
00030 stage 2 part 1 8/15
00032 stage 2 part 2 8/21
00034 stage 2 part 3 9/15
00036 (null line)
EDIT

Your updated data set will look as follows:

00010 COMPLETION SCHEDULE
00020 STAGE 1 7/19
00030 STAGE 2 PART 1 8/15
00032 STAGE 2 PART 2 8/21
00034 STAGE 2 PART 3 9/15
00040 STAGE 3 9/29

To replace more than one line with a greater number of lines, you can also use the DELETE
subcommand to delete those lines and then use either INPUT or INSERT to insert the
replacement lines. Use this procedure when the data set does not have line numbers.

Use the CHANGE subcommand to change only part of a line or lines. For example, to
change the characters "DAILY INVENTORY" to "WEEKLY REPORT" in line 12 of your data set,
enter:

change 12 /daily inventory/weekly report/

The" I" placed before the characters to be changed and before the replacement characters
is a special delimiter that marks the beginning of those sequences of characters. The special
delimiter can be any character other than a number, blank, tab, comma, semicolon, apostrophe,
parenthesis, or asterisk. Make sure the character you select as a special delimiter does not
appear in the sequence of characters you specify. If you leave blanks between the last
character to be replaced and the special delimiter for the replacement characters, the blanks
are considered part of the characters to be replaced. The special delimiter need not appear at
the end of the replacement characters unless other parameters are to follow.

Instead of using a line number you can use an asterisk. For example if the change is to be
made to the line indicated by the current line pointer, enter:

change * xdaily inventoryxweekly reportx

You can have the system search for a sequence of characters in a range of lines rather than
in one line. You can indicate the range of lines by giving the numbers for the first and last
lines of the range, or by indicating the current line pointer and the number of lines you want
to have searched. For example, if the characters "DAILY INVENTORY" appear somewhere
between lines 15 and 19, enter:

change 15 19 !daily inventory!weekly report!

If the characters appear within the 10 lines starting with the one indicated by the current
line pointer, enter:

change * 10 ?daily inventory?weekly report?

Entering and Manipulating Data 49

You can change the sequence of characters every time it appears within the range of lines.
To do this specify the ALL operand after the replacement sequence. The special delimiter must
be used to terminate the replacement string before typing "all." For example, (=~'.

change 15 19 !daily inventory!weekly report! all
or
change * 10 !daily inventory!weekly report! all

If you wish, you can have the system locate a sequence of characters in a line and print that
line up to those characters. You can then type new characters to complete the line and enter
the new line when you press the RETURN key. For example, assume that you want to change
the characters "TUESDAY" in the following line:

00015 PARTS DELIVERIES ARE MADE ON TUESDAY

Your listing will look as follows:

change 15 /tuesday
00015 PARTS DELIVERIES ARE MADE ON

If the characters you want to change are in the line indicated by the current line pointer, your
listing would look like this:

change * /tuesday
00015 PARTS DELIVERIES ARE MADE ON

You can also request that the system print out a specified number of characters of a given
line. Then you can enter the characters you want to replace the remaining characters in the
line. For example, you can request that the first 26 characters of the line "PARTS DELIVERIES
ARE MADE ON TUESDAY" be printed:

change 15 26
00015 PARTS DELIVERIES ARE MADE

You can have the system print the first several characters of a range of lines. This is
particularly useful when you want to change a column in a table. For example, assume that
you have the following data set:

00010
00012
00014
00016
00018

ENROLLMENT DATES
P. JONES MAY 15
A. SMITH MAY 31
J. DOE JUNE 7
B. GREEN JUNE 9

JUNE 12
JULY 19
JULY 17
AUGUST 3

If you want to change the data in the last column, which begins in position 17, enter:

change
00010
00012
00014
00016
00018

10 18 17
ENROLLMENT
P. JONES
A. SMITH
J. DOE
B. GREEN

DATES
MAY 15
MAY 31
JUNE 7
JUNE 9

50 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

c~1

'\ C,
"

,I

.. /

If you want to change the data in the last column and the current line pointer is at line 10,
enter:

change
00010
00012
00014
00016
00018

* 5 17
ENROLLMENT
P. JONES
A. SMITH
J. DOE
B. GREEN

DATES
MAY 15
MAY 31
JUNE 7
JUNE 9

You can insert a sequence of characters at the beginning of the line. For example, if line 15 of
your data set is as follows:

00015 EMPLOYEE ABSENTEEISM

enter:

change 15 //weekly report of /

to obtain:

00015 WEEKLY REPORT OF EMPLOYEE ABSENTEEISM

You can also delete a sequence of characters using the CHANGE subcommand. For example,
to delete WEEKLY from line 15 above, enter:

change 15 /weekly//

to obtain:

00015 REPORT OF EMPLOYEE ABSENTEEISM

Quoted String Notation

In these examples of the CHANGE subcommand of EDIT, special-delimiter notation has been
used to specify character sequences. You may, however, use an alternate form of notation, the
quoted-string notation. General rules for quoted-string notation are:

• Begin and end each sequence with an apostrophe. (The system
will ignore the apostrophes in its operations on your character
sequence.)

• Separate character sequences with a blank.
• Specify two apostrophes in place of one whenever you wish to

include an apostrophe within a character sequence.

For example, to replace WEEKLY with DAILY in the current line, you can use the
special-delimiter notation:

change * /weekly/daily/

or the quoted-string notation:

change * 'weekly' 'daily'

Entering and Manipulating Data 51

To delete DAILY from the current line, you can use:

change * 'daily' "

instead of:

change * /daily//

To insert WEEKLY at the beginning of line 15, you can use:

change 15 " 'weekly'
or
change 15 //weekly/

To replace characters after TUESDAY'S in line 30 of your data set, you can use the
special-delimiter notation:

00030 THIS IS TUESDAY'S CHILD
change 30 /tuesday's/
00030 THIS IS monday's child

or the quoted-string notation:

00030 THIS IS TUESDAY'S CHILD
change 30 'tuesday' 's'
00030 THIS IS monday's child

Renumbering Lines 0/ Data

You can use the RENUM subcommand of EDIT to assign line numbers to a data set without
line numbers, or to renumber the lines of a data set with line numbers. If you enter:

renum

the system assigns new line numbers to all the lines of the data set. The first line will be
assigned the number 10 and subsequent lines will be incremented by 10.

You can assign a number to the first line of the data set. For example, if you want the first
line to have number 5, enter the following:

renum 5

The remaining line numbers will be 15,25,35, etc.

You can specify an increment other than 10 in addition to the number of the first line. For
example if you want the first line to be number one, and the remaining line numbers to
increase by 3, enter:

renum 1 3

If your data set already has line numbers, you can specify that renumbering is to start at a
given line. You must also specify the new number for this line (which must be equal to or
greater than the old line number) at line 23, and the new line number is to be 25 and the
increment is to be 5, enter:

renum 25 5 23

52 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

cl

C·'~"
~'

o

-----~----.. - --------------------

The preceding example shows renumbering of all lines following a given line. You may want
to limit the renumbering to a range of lines. You must specify the new line number (greater
than the line prior to the old line number), the increment to be used, the old line number (first
line to be renumbered), and the end line number (last line to be renumbered). For example, if
you want to renumber lines 25 through 50, assigning line number 40 to the first renumbered
line and using an increment of 2, enter:

renum 40 2 25 50

If you use the RENUM subcommand to renumber your data set, the renumber increment
that you specify is used when you enter the INPUT subcommand the next time during the edit
session. For example, if the following sequence occurred:

list
00010 LINE 1 OF DATA
00020 LINE 2 OF DATA
00030 LINE 3 OF DATA
END OF DATA
renum 3
input
INPUT
00012 line 4 of data
00015 line 5 of data
00018 (null line)
EDIT

Your data set would look like this:

00003 LINE 1 OF DATA
00006 LINE 2 OF DATA
00009 LINE 3 OF DATA
00012 LINE 4 OF DATA
00015 LINE 5 OF DATA

If you want to override the existing line number increment use the increment operand on
the INPUT subcommand.

Listing the Contents of a Data Set
The LIST subcommand of EDIT allows you to display the contents of a data set at your
terminal. To list the entire contents of the data set, enter:

list

To list a group of lines, enter the number of the first and last lines of the group. For
example, to list lines 20 through 110 of the data set, enter:

list 20 110

If your data set does not have line numbers, you can use the current line pointer and the
number of lines to be listed. For example, to list the 20 lines that begin with the line indicated
by the' pointer enter:

list * 20

To list only one line, indicate the line number or the current line pointer. For example, if
you wish to list line 22, enter:

list 22

Entering and Manipulating Data 53

If you want to list the line pointed at by the current line pointer, enter:

list *

You can use the SNUM operand of LIST to suppress listing the line numbers of a
line-numbered data set. (If your data set does not have line numbers, this operand has no
effect.) For example, any of the following commands produces a listing of the lines indicated
without their line numbers:

list snum
list 20 110 snum
list * 20 snum
list 22 snum
list * snum

The LIST subcommand uses a standard listing format. If you list a non-line-numbered data
set, or a line-numbered data set using the SNUM operand (to suppress line numbers), the lines
displayed will consist of only the data portion of the records. For example, to list a
non-line-numbered data set:

list
LINE 1 OF DATA
LINE 2 OF DATA
LINE 3 OF DATA
END OF DATA

If you list a line-numbered data set, the system will suppress up to three leading zeros in
each line number, and separate the line number from the data with a blank. The line number
prints to the left of the data. For example data with an 8-digit line number would print:

list
00010 LINE 1 OF DATA
00020 LINE 2 OF DATA
00030 LINE 3 OF DATA
END OF DATA

If you are editing a line-numbered COBOL data set, with a six-character sequence (line
number) field, either one or three leading zeros will be deleted depending on the command.
For the INPUT command, one leading zero is suppressed; for the LIST command three leading
zeros are suppressed, as follows:

edit a new cobol
INPUT
00010

'00020
00030
00040
EDIT
list

identification division
program-id. calc.
environment division
(null line)

010 IDENTIFICATION DIVISION
020 PROGRAM-ID. CALC.
030 ENVIRONMENT DIVISION
END OF DATA

Storing a New Data Set
The data set you create or change is retained by the system only until you finish using the
EDIT command and its subcommands. That is, as soon as you notify the system that you want
to use another command and you get a READY message, your newly created data set, or your

54 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

(-"1
"-,,, .•• 1

C
"'''',,

...... .,1·

...... _-------------

new set of changes, is discarded. If you want the system to make your new data set a
permanent data set, or you want the system to incorporate your changes into the existing data
set, you must use the SAVE subcommand of the EDIT command.

For example, in the following sequence you create a data set named RECORDS and ask the
system to store it as a permanent data set:

READY
edit records new data
INPUT
00010
00020
00030
00040
EDIT
save
EDIT
end
READY

project 21
project 23
project 39
(null line)

7/10-8/25
7/10-9/12
8/1-9/15

a. jones
p. smith
r. brown

In the following sequence you add a line to the RECORDS data set and ask the system to
make it part of the data set:

READY
edit records old data
EDIT
40 project 428/15-9/21
save
EDIT
end
READY

Creating an Updated Copy of a Data Set

s. green

In some cases you may want to preserve the existing data set intact and have the system make
the changes to a data set that is a copy of the original data set. To do this you must enter a
new data set name for the copy when you enter the SAVE subcommand. For example, if you
want to keep the RECORDS data set intact, and you want your changes to be made to a copy
of RECORDS named PROJS, use the following sequence:

READY
edit records old data
EDIT
40 project 428/15-9/21
save projs
EDIT
end
READY

s. green

Now you have two data sets. The one named RECORDS looks like this:

00010 PROJECT 21 7/10-8/25 A. JONES
00020 PROJECT 23 7/10-9/12 P. SMITH
00030 PROJECT 39 8/1-9/15 R. BROWN

The data set named PROJS looks as follows:

00010 PROJECT 21 7/10-8/25 A. JONES
00020 PROJECT 23 7/10-9/12 P. SMITH
00030 PROJECT 39 8/1-9/15 R. BROWN
00040 PROJECT 42 8/15-9/21 S. GREEN

Entering and Manipulating Data 55

Saving Updates To A Data Set

You can use the SAVE subcommand whenever you are using the EDIT command. For example,
you can create a data set and save it. Then you can start making changes to the data set and
once you are satisfied with those changes you can save them to make them part of the data
set. For example, in the following sequence you create a data set, save it, replace line 30,
insert three lines after line 50, list the data set, delete line 56, renumber the data set, and save
it.

READY
edit phones new text
INPUT
00010 telephone listing - sales dept
00020 j. adams 1291
00030 c. allan 2431
00040 a. bailey 3255
00050 b. crane 4072
00060 e. foster 1384
00070 f. graham 2291
00080 d. murphy 9217
00090 (null line)
EDIT
save
EDIT
30 c. alden 2241
input 52 2
INPUT
00052 1. davis 4119
00054 j. egan 6835
00056 e. foster 1384
00058 (null line)
EDIT
list

00010 TELEPHONE LISTING - SALES DEPT
00020 J. ADAMS 1291
00030 C. ALDEN 2241
00040 A. BAILEY 3255
00050 B. CRANE 4072
00052 L. DAVIS 4119
00054 J. EGAN 6835
00056 E. FOSTER 1384
00060 E. FOSTER 1384
00070 F. GRAHAM 2291
00080 D. MURPHY 9217
delete 56
renum
save
EDIT
end
READY

Ending the Edit Functions
Use the END subcommand to terminate the operation of the EDIT command. If you have made
changes to your data set and have not entered the SAVE subcommand, the system will ask you
if you want to save the modified data set. If so you can enter the SAVE subcommand. If you
do not want to save the changes, reenter the END subcommand.

After you enter the END subcommand you receive the READY message. You can then enter
another command.

56 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

C~.'
,.~,'

(:1

(""/

_.'

-----.-----------.----~' ----

Renaming a Data Set
The RENAME command allows you to:

• Change the name of a nonVSAM data set. (The Access Method Services ALTER command
changes the name of a VSAM data set or a nonVSAM data set in a VSAM catalog.) For
additional information about ALTER, refer to OS/VS Access Method Services.

• Change the name of a member of a partitioned data set.
• Assign an alias to a member of a partitioned data set.
• Rename common qualifiers.

Renaming a Data Set

If your LOGON user identification is SMITH and you have a data set named
SMITH.RECPT.DATA and you want to change it to SMITH.ACCT.DATA, you can do so with any
of the following RENAME commands:

rename 'smith.recpt.data' 'smith.acct.data'
rename recpt.data acct.data
rename recpt acct

Notice that the fully qualified name must be enclosed in apostrophes.

The simple user-supplied name can be used if you have only one data set under that name.
However, if you have two data sets under the same user-supplied name, SMITH.RECPT.DATA
and SMITH.RECPT.TEXT, you must specify either RECPT.DATA or 'SMITH.RECPT.DATA' in the
RENAME command. If you do not specify the descriptive qualifier, the system will prompt you
for it.

The following examples show how you can use RENAME to change either the identification
qualifier or the descriptive qualifier.

rename 'smith.acct.data' 'jones.acct.data'
rename acct.data acct. text

The following examples show how you can change more than one qualifier at a time.

rename 'smith.acct.data' 'jones.recpt.text'
rename acct.data recpt.text

Renaming a Member of a Partitioned Data Set

When changing the name of a member of a partitioned data set, you must specify the existing
data set name and member name along with the new member name. For example, to change
the name of a member of SMITH.AB79. DATA from INPUT to ENTRY, you can do so with any
of the following commands:

rename 'smith.ab79.data(input)' (entry)
rename ab79.data(input) (entry)
rename ab79(input) (entry)

Assigning an Alias to a Member

Use the ALIAS operand to indicate that the new member name is an alias and not a
replacement. For example to assign the alias DAILY to member INPUT of SMITH.AB79.DATA,
use any of the following:

rename 'smith.ab79.data(input)' (daily) alias
rename ab79.data(input) (daily) alias
rename ab79(input) (daily) alias

Entering and Manipulating Data 57

After entering this command the member can be referred to as either
SMITH.AB79.DATA(INPUT) or SMITH.AB79.DATA(DAILY).

Renaming Common Qualifiers

Sometimes you may have two or more data set names that are identical in all but one of their
qualifiers. For example, you may have these data sets:

JONES.ALPHA.DATA
JONES.BETA.DATA

or

JONES.ALPHA.DATA
JONES.ALPHA.ASM

or

JONES.ALPHA.DATA
SMITH.ALPHA.DATA

You can use the RENAME command to replace one or both of their common qualifiers. For
example, you may want to change the group:

JONES.ALPHA.DATA
JONES.BETA.DATA

to

JONES.ALPHA.TEXT
JONES. BE'I'A. TEXT

or to

SMITH. ALPHA. DATA
SMITH.BETA.DATA

or to

SMITH.ALPHA.TEXT
SMITH. BETA. TEXT

In order to make the change, replace the dissimilar qualifier with an asterisk. For example,

jones.*.data

stands for "all data sets whose identification qualifier is JONES and whose descriptive qualifier
is DATA". If your logon identifier is Jones, you can then enter the RENAME command as
follows:

rename *.data *.text

to change the group

JONES.ALPHA.DATA
JONES.BETA.DATA

to

JONES.ALPHA.TEXT
JONES.BETA.TEXT

58 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

c:1

("

/ .. /

(~:

o

Enter the command

rename 'jones.*.data' 'smith.*.data'

to change the group

JONES.ALPHA.DATA
JONES.BETA.DATA

to

SMITH.ALPHA.DATA
SMITH. BETA. DATA

Enter the command

rename 'jones.*.data' 'smith.*.text'

to change the group

JONES.ALPHA.DATA
JONES.BETA.DATA

to

SMITH. ALPHA. DATA
SMITH.BETA.DATA

Listing Information About Your Data Sets
Use the LISTALC, LISTCAT, and LISTDS commands to list the names of your data sets and
obtain further information about them.

LIST ALC list the data sets presently allocated to you and tells how many more data sets you
can dynamically allocate using the ALLOCATE command. Other information can be obtained
about these data sets depending on the parameters you specify.

LISTCAT list the names of all cataloged data sets that have your user identification.
Cataloged data sets are those whose names are entered in the system catalog. The system
catalog is a list the system keeps of the names and locations of cataloged data sets.

LISTDS gives you information on specific data sets which are currently cataloged or
allocated, or both. The information you receive, which is described in detail in the publication,
JCL Reference, includes:

• The serial number of the volume on which the data set resides.
• The record format, logical record length, and blocksize of the data set.
• The data set organization.
• Directory information for a member of a partitioned data set.

For more information on the LISTALC, LISTCAT, and LISTDS commands refer to TSO
Command Language Reference. LISTCAT is also discussed in OS/VS Access Method Services.

Protecting Your Data Sets

The PROTECT command protects only nonVSAM data sets; an error message will be issued if
you attempt to protect a VSAM data set. To protect VSAM data sets, use the Access Method
Services ALTER and DEFINE commands. These commands are discussed in OS/VS Access
Method Services.

Entering and Manipulating Data 59

Deleting a Data Set

Use the Access Method Services DELETE command to delete one or more data sets or one or
more members of a partitioned data set. DELETE is discussed in OS/VS Access Method
Services and TSO Command Language Reference.

60 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

c ... ···,"'-'
........

c········
"

•• co··/

o

Section IV: Executing Programs at a Terminal

You can use the TSO co~ands to compile, link edit, and execute (or compile and load) your
source program at the terminal. TSO also allows you to use other programs, such as utilities, at
the. terminal. That is, instead of taking your job to the computing room to run it, you can use
the TSO commands to enter ·it through your terminal. These commands reduce your job
turnaround time because you get immediate results at the terminal. Sin'ce TSO commands are
designed to operate on cataloged data sets, data sets created in the background for use with
TSO in the foreground should be cataloged.

You can also use the terminal to submit your job for processing at the computer in the
conventional manner. That is, you submit your job through the terminal even if you do not
want to get immediate results at the terminal. The results are sent to you from the computer
room after your job is executed or you may obtain them at the terminal at a later time. Jobs
submitted in this manner are called batch jobs.

Most compile,rs or assemblers that can be used under OS/VS2 can be used from your TSO
tenninal. They ban be used to obtain results at the terminal, or for background jobs. In
addition to these programs, your installation may have one or more of the special TSO
programs for your use at the terminal. They are:

• Interactive Terminal Facility (ITF):PL/I -- A problem-solving language processor.
• Interactive Terminal Facility (ITF):BASIC-- A problem-solving language processor.
• Code and Go FORTRAN -- A FORTRAN compiler designed for a very fast

compile-execute sequence at the terminal.
• FORTRAN IV (Gt) -- A version of the FORTRAN IV (G) compiler modified for the

terminal environment.
• TSO FORTRAN Prompter -- An initialization routine to prompt you for options and

invoke the FORTRAN IV (Gl) Processor .
• FORTRAN Interactive Debug -- A tool for dynamic debugging of FORTRAN programs

(used in confunction with Code and Go FORTRAN or FORTRAN G1).

• FORTRAN IV Library (Mod 1) -- Execution-time routines for use with either
Code-and-Go FORTRAN or FORTRAN IV (Gl).

• Full American National Standard COBOL Version 3 or Version 4 -Versions of the
American National Standard COBOL compilers with extensions for the terminal
environment.

• TSO COBOL Prompter -- An initialization routine to prompt you for options and invoke
the full American National Standard COBGL Version 3 or 4 Processor.

• COBOL Interactive Debug -- A tool for dynamic debugging of COBOL programs (used
in conjunction with ANS COBOL Version 4).

• TSO Assembler Prompter -- An initialization routine to prompt you for options and
invoke the Assembler.

• PL/I Optimizing compiler and PL/I Checkout compiler -- Both compilers include the PL/I
Prompter, which is an initialization routine that prompts you for options and invokes the
compiler.

If your installation has the OS PL/I Optimizing compiler or the PL/I Checkout compiler, you
can compile and execute PL/I programs under TSO. The compilers are program products and
each includes the PL/I Prompter, which is an initialization routine that checks compiler options,
allocates data sets required by the compiler, and then invokes it.

If your. installation has one or more of the TSO program product PL/I compilers, it will
provide you with documentation that explains how to use them. This section explains how to
use the programs normally available under OS/VS2. The following paragraphs describe how you
can:

Executing Programs at a Terminal 61

• Allocate a data set
• Assign data set attributes
• Free an allocated data set
• Create a program
• Compile your program
• Link edit a compiled program
• Execute a program .
• Load a program

It is assumed that you are familiar with a programming language. The options and data set
requirements of the compilers, linkage editor, and loader are summarized in the programmer's
guide for the compiler you are using.

Allocating a Data Set
There are three basic times when you should allocate data sets with the ALLOCATE command
or the ALLOCATE subcommand of EDIT:

• To allocate data sets required by the program or compiler you intend to invoke.
• To allocate a data set for which special characteristics have been defined with the

A TTRIB command.
• To allocate data sets required by the linkage editor or loader when you use the CALL

command.

You should identify the data set requirements for any program that you intend to invoke. In
some cases, compilers have prompters that allocate the required data sets for you. The
documentation for a program or compiler specifies data set requirements. A data set with
unique characteristics assigned by the A TTRIB command may be allocated with the USING
operand of the ALLOCATE command.

This section is intended for those users who are going to compile, link edit, or execute (or
load) a program. Knowledge of a programming language (such as Assembler, COBOL,
FORTRAN or PL/I) and of the Job Control Language (JCL) statements required to compile, link
edit, and execute the program is useful for understanding this section.

The compiler, linkage editor, loader, and your own program require data sets in order to
operate. In an operating system without TSO these data sets are defined with data definition
(DD) JCL statements. In TSO, these data sets are defined through the EDIT and ALLOCATE
commands. You can use the EDIT command to define and create input data sets. You can use
the ALLOCATE command to define output and work data sets and libraries, and to allocate the
data sets you created with the EDIT command. This section discusses the ALLOCATE command
and the ALLOCATE subcommand of EDIT.

Note: Compilers that have prompters associated with them will allocate data sets for you.
Your installation can tell you if these program product facilities are available to you. The data
sets for the linkage editor and loader are allocated for you by the LINK and LOAD GO
commands, respectively. You need only allocate them if you invoke the linkage editor or the
loader with the CALL command.

The number of data sets ypu need is determined by the program (compiler, linkage editor,
loader, or your own program) you are going to use. (The publications associated with the
IBM-supplied programs list the data set requirements.) The number of data sets you can
allocate depends on the number of data sets assigned to you in your LOGON procedure. The
LOGON procedure defines a series of data sets. Some of these data sets are fully defined and
correspond to data sets that you always need in your processing. The remaining data sets are
left undefined; they are defined when you define a data set with an ALLOCATE or EDIT
command.

62 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

When you define a data set with the ALLOCATE command or subcommand, it remains
allocated until you use the FREE command to free it. You may allocate a data set to the
terminal by using an asterisk (*) with the data set name.

When you create a data set with the EDIT command, the system uses one of the undefined
data sets in the LOGON procedure to define the data set. When you save the data set and end
the EDIT command, the system saves the data set, enters its name in the system catalog, and
frees the definition in the LOGON procedure for further use. When you again use the EDIT

command to make changes to the saved data set, the system finds the data set through the
system catalog and uses another of the available definitions to define the data set. When you
end the EDIT command, the system frees the data set definition. If you want the data set to
remain allocated in your LOGON procedure, you must use the ALLOCATE command or
subcommand.

You can list the data sets allocated to you with the LIST ALC command (described in
"Listing the Names of Your Data· Sets"). The system lets you know, ~s part of the LISTALC

listing, how many DD statements are available for allocation. For example, if there are five
available data sets you get the following message:

5 DATA SETS CAN BE ALLOCATED DYNAMICALLY

You can allocate as many data sets as there are available definitions. If you need more data
sets you can free a previously allocated data set with the FREE command. After you free a
data set, you can use the available definition to allocate another data set with the ALLOCATE

command.

If you have to allocate the same data sets every time you log on, you can have your
installation allocate them in the form of fully defined data sets in the LOGON procedure or you
can build a command procedure containing your ALLOCATE statemerits and execute that
procedure as soon as you are logged on. In either case you do not have to type the same
ALLOCATE commands every time you log on.

The example in Figure 7 illustrates the use of the ALLOCATE command for allocating the
data sets required for an execution of the Assembler F compiler. The assembler requires eight
data sets for this compilation. They are:

SYSLIB

SYSUTI

SYSUT2

SYSUT3

SYSPRINT

SYSPUNCH

SYSGO

SYSIN

The macro library (usually SYS 1.MACLIB).

Work data set.
Work data set.
Work data set.

Output listing data set. Your terminal
is allocated for this purpose.
Data set for a punched deck of an object
m',4ule. It is to be produced on the
standard message output
class. (To change this output class
to a punch output class, see "Freeing
an Allocated Data Set".)
Data set for the object module.
Input source statements to the
assembler. It is entered with the
EDIT command and defined to the
assembler with the ALLOCATE command.

Executing Programs at a Terminal 63

READY
edit input.asm new
INPUT

.source statements

EDIT
save
EDIT
end
READY
allocate dataset('sys1.maclib') file(syslib) shr
READY
allocate file(sysut1) new block(400) space(400,50)
READY
allocate file(sysut2) new block(400) space(400,50)
READY
allocate file(sysut3) new block(400) space(400,50)
READY
allocate dataset(*) file(sysprint)
READY
allocate file(syspunch) sysout
READY
allocate dataset(prog.obj) file(sysgo) new block(80) space(200,50)
READY
allocate dataset(input.asm) file(sysin) old
READY

Figure 7. Allocating Data Sets for the Assembler '

Assigning Attributes to a Data Set

TSO data set characteristics are called attributes. Generally, you do not have to be concerned
with attributes because TSO assigns them automatically. In some instances, however, you may
want to allocate a data set with attributes different from those assigned automatically. The
ATTRIB command provides a way for you to do this.

The ATTRIB command is used to assign DCB and other parameters, such as retention and
expiration dates, to a data set, dynamically. This command function allows you to run existing
programs that are dependent upon JCL for specifying certain DCB parameters.

Basically, you use the A TTRIB command to build a list of the attributes that you want to
assign to a data set. Then you use the ALLOCATE command, specifying the name of the
attribute list as the value for the USING (attr-list-name) operand. The attributes in the list are
assigned to the data set when it is allocated.

You can refer to the attribute list any number of times during the remainder of your
terminal session. When you finish using an attribute list, use the FREE command to delete it
from the system.

The operands of the ATTRIB command (as discussed in TSO Command Language
Reference) correspond to data control block (DCB) and other parameters discussed in the
following publications:

• JCL Reference
• Data Management Services Guide

Note: Not all DCB parameters can be specified via ATTRIB.

64 OS!VS2 TSO Terminal User's Guide (VS2 Release 2)

(-,

"''','''' "

c· .,
............

You should understand the purpose of DCB parameters as presented in the~e publicatiot1s
before using the ATTRIB command.

The example in Figure 8 illustrates the use of the ATTRIB command. In this example, the
attributes are the logical record length, the block size, and the expiration date .

attr debparms lreel(24) blksize(96) expdt(72111)
READY
alloe da('attr.show') using(debparms) new bl(80) sp(1,1) vol(231400)
READY
free attrlist(debparms)

Figure 8. Assigning Attributes to a Data Set

Freeing an Allocated Data Set

Use the FREE command to release any data sets allocated to you. You can also use this
command to change the output class of a SYSOUT data set, or to release attribute lists created
by the A TTRIB command.

To free a data set specify its data set name or its file name (ddname). If your terminal has
been allocated as a data set, you must free it through its file name. You can use the LIST ALC

command to obtain the file names and data set nameS of the data sets allocated to you.

The following example frees the data sets allocated in Figure 7. The output class of the
SYSPUNCH and SYSPRINT data sets is changed to B.

free dataset('sys1.maelib' ,prog.obj,input.asm) file(sysut1,
sysut2,sysut3,sysprint,syspuneh) sysout(b)

Creating a Program
Before your source program is compiled you must introduce it into the system. You do so with
the EDIT command, as described in the section, "Entering and Manipulating Data."

When you enter the EDIT command you must specify the type operand or give a descriptive
qualifier to the data set name. The type (or descriptive qualifier) tells the systetn which
programming language you are using. If you are writing a program and JCL statements to be
submitted as a background job, use CNTL as the type or descriptive qualifier.

The EDIT command allows you to specify certain options for your source program. You can
use the SCAN operand to request syntax checking when the data set type is GOFORT, FORTE,

FORTG, FORTGI, FORTH, BASIC, PLIF, PLI, or IPLI. You can use the LINE operand to specify
the length of the input line for PL/I source programs. The length of the input line for the
Assembler, FORTRAN, and COBOL is 80 characters.

After you create your source program you must use the SAVE subcommand to save the data
set before you end the EDIT command. Your source program is now ready for compilation.

The example in Figure 9 shows the creation of an assembler source program.

Executing Programs at a Terminal 65

READY
edit
INPUT

EDIT
save
EDIT
end
READY

prog1 new asm

source program

Figure 9. Creating an Assembler Source Program

Compiling a Program
If you are using a TSO program product compiler and prompter, you can ignore this section.
The prompter allocates data sets and calls the compiler for you.

You can use the CALL command to invoke the compiler that will compile your source
program. Before you use the CALL command to invoke the compiler you must use ALLOCATE

commands to allocate all the data sets required for compilation. The data sets required by your
compiler are described in that program product's user's guide publication.

You must give the data set name of your compiler in the CALL command. The data set
names are shown in Figure 10. (In the example, the compilers are stored in LINKLIB.)

Compiler

Assembler
American National Standard COBOL
FORTRAN E
FORTRAN G
FORTRAN H
PL/I F

Figure 10. Data Set Names of the Compilers

Data Set Name -- -- ---
'SYS1.LINKLIB(IEUASM)'
'SYS1.(IKFCBLOO)'
'SYS1.LINKLIB(IEJFAAO)'
'SYS1.LINKLIB(IEYFORT)'
'SYS1.LINKLIB(IEKAAOO)'
'SYS1.LINKLIB(IEMAA)'

Notice that the data set name is a fully qualified name and must be enclosed in apostrophes.
For example, if you want to use the FORTRAN H compiler, enter:

READY
call 'sys1.1inklib(iekaaOO)'

In addition to the compiler's data set name, you can enter the compiler options you desire
in the CALL command. These options are those specified with the P ARM parameter of the
EXEC statement in JCL. For example, if you want to use the MAP, NOID, and OPT=2 options of
the FORTRAN H compiler, enter:

READY
call 'sys1.1inklib(iekaaOO)' 'map noid opt=2'

Any messages and other output produced by the compiler will appear in your listing after
the CALL command. Once the compiler completes its processing you receive the READY

message. You can then free any allocated data sets you no longer need.

Figure 11 shows the commands required to create a COBOL source program, allocate the
eight data sets required for compilation, call the COBOL compiler, and free all allocated data
sets except the one that contains the compiled program (object module). It is assumed you are
using your user identification as part of all data set names except SYS1.COBLIB.

66 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

(".,----,

(
\ , ... ".'

C)

READY
edit
INPUT

EDIT
save
EDIT
end
READY

prog2 new cobol

source program

allocate dataset('sysl.coblib') file(syslib) shr
READY
allocate file(sysutl) new block(460) space(700,100)
READY
allocate file(sysut2) new block(460) space(700,100)
READY
allocate file(sysut3) new block(460) space(700,100)
READY
allocate file(sysut4) new block(460) space(700,100)
READY
allocate dataset(*) file(sysprint)
READY
allocate dataset(prog2.obj) file(syslin) new block(80) space(500,100)
READY
allocate data set(prog2.cobol) file(sysin) old
READY
call 'sysl.linklib(ikfcblOO)' 'map load nodeck flagw'

COBOL listings and messages

READY
free file(syslib,sysutl,sysut2,sysut3,sysut4,sysprint,sysin)
READY

Figure 11. COBOL Compilation

Link Editing a Compiled Program

The LINK command makes available to you the services of the linkage editor. The linkage
editor processes the compiled program (object module) and readies it for execution. The
processed object module becomes a load module. Optionally, the linkage editor can process
more than one object module and/or load module and transform them into a single load
module.

In your LINK command you must first list the name or names of the object modules you
want to link edit. (If you omit the descriptive qualifier the system assumes OBJ.) After the
names of the object modules you should use the LOAD operand to indicate the name of a
member of a partitioned data set where you want the load module placed. (If you omit the
user-supplied name of the load module data set the system assumes it has the same
user-supplied name as the object module. If you omit the descriptive qualifier the system
assumes LOAD. If you omit the member name the system assumes TEMPNAME.) For example,
if you want to link edit the load module in the JONES.PROG2.0BJ data set and place the
resultant load module in member TEMPNAME of the JONES.PROG2.LOAD data set, enter:

link prog2

If you want to link edit the load module in the JONES.PROG2.0BJ data set and place the
resultant load module in member ONE of the JONES.MODS.LOAD data set, enter:

Executing Programs at a Tenninal 67

READY
link prog2 load(mods(one))

The following example shows how to link edit the two object modules in the
SMITH.PGM1.0BJ and SMITH.PGM2.0BJ data sets. The resultant load module is placed in
member TEMPNAME of the SMITH.LM.LOAD data set.

READY
link (pgml,pgm2) load(lm)

You can control the link editing process with linkage editor control statements. These
control statements can be in a previously created data set, or can be introduced through the
terminal. You must give the name of the data set, or an asterisk (indicating that you will
introduce the control statements through the terminal) in the list of input data sets. The
following example shows how to link edit the object module in the CARTER.TRAJ.OBJ data set.
There are control statements in the CARTER.CNTL.DATA data set. The load module is placed
in member TEMPNAME of CARTER.TRAJ.LOAD.

READY
link (traj,cntl.data)

Using the same example, if you want to introduce the control statements through your
terminal, enter:

READY
link (traj,*)

The system will prompt you for the control statements at the appropriate time. You must
follow your last control statement with a null line.

You can also have the linkage editor search a subroutine library to resolve external
references. (External references are references to other modules.) The subroutine library is
usually one of the language libraries and it is specified with one of the following operands:

Operand

COBLIB
FORTLIB
PLILIB

Subroutine Library

SYS1.COBLIB
SYS1.FORTLIB
SYS1.PL1LIB

In addition to, or instead of a language library, you can use the LIB operand to specify the
name of one or more user libraries. The libraries are searched in the order you specify.

The following example shows how to link edit the object module in JAMES.PRG.OBJ. The
load module is placed in JAMES.PRG.LOAD(TEMPNAME). The libraries SYS1.PLlLIB, and
DEPT39.LIB.SUBRT2 are to be searched to resolve external references.

READY
link prg plilib lib('dept39.lib.subrt2')

The LINK command also lets you specify the linkage editor options. These options are those
specified with the P ARM parameter of the EXEC statement when you are running the linkage
editor directly under the operating system rather than through TSO. For example, if you want
to use the LET and XCAL options when the object module in AGNES.RET.OBJ is link edited
and placed in AGNES.TBD.LOAD(MOD), enter:

READY
link ret load(tbd(mod)) let xcal

68 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

(~"',',I
........... "

C""/
.'

Linkage editor listings (specified with the MAP, XREF, and LIST options) are directed to a
data set or to your terminal. You indicate your choice with the PRINT operand. The following
example shows that the object module in BILL.PRGM.OBJ is to be link edited and placed in
BILL.PRGM.LOAD(TEMPNAME). The listing produced by the MAP option is to be placed in the
BILL.LIST.LINKLIST data set.

READY
link prgm map print(list)

Note that if you omit the descriptive qualifier from the print data set name, the system
assumes LINKLIST. If you omit the user-supplied name, the systems it has the same
user-supplied name as the object module. For example if the listing is to be placed in the
BILL.PRGM.LINKLIST data set, enter:

READY
link prgm map print

Using the same example, if you want the listing to appear on your terminal, enter an
asterisk in the PRINT operand.

READY
link prgm map print(*)

Error messages are listed at the terminal as well as on the print data set when you specify a
data set name instead of an asterisk. If you want the error messages to appear only on the
print data set, enter the NOTERM operand. For example,

READY
link prgm map print noterm

Executing a Program

You can use the CALL command to execute your program after it has been link edited. You
can also use CALL to execute any other program in the load module form, such as utilities and
compilers.

Before you use CALL to execute your program you can use the EDIT and ALLOCATE
commands to define your data sets. Use EDIT to create your input data sets, and ALLOCATE
to allocate your input, work, and output data sets.

You must specify the data set name and member name of the member that contains your
program in load module form. If you want to execute a program that resides in
DEPTB.PROGS.DAILY(NUM3), enter:

READY
call 'deptb.progs.daily(num3),

If you omit the descriptive qualifier and member name, the system assumes LOAD and
TEMPNAME, respectively. For example, if your LOGON identifier is "JONES" and if your
program resides in JONES.LIB.LOAD(MEM2), enter:

READY
call lib(mem2)

If your program resides in JONES.LIB.LOAD(TEMPNAME), enter:

READY
call lib

Executing Programs at a Terminal 69

You can pass parameters to your program if you wrote it in assembler or PL/I(F). These are
the parameters you would specify with the PARM parameter of the EXEC statement in JCL. For
example, if you want to pass the parameters OPTIONl and OPTIONS to a program that resides (------
in JONES.ASMPG.LOAD(MEM3), enter: '-.." .. ",

READY
call asmpg(mem3) 'option1 optionS'

Figure 12 shows how the COBOL program created and compiled in Figure 11 can be link
edited and executed. In Figure 11, the compiled program (object module) was placed in
PROG2.0BJ. After link editing, the load module is placed in PROG2.LOAD(TEMPNAME). Your
program requires three data sets for execution. The input data set, INPUT.DATA, is created
with the EDIT command. ALLOCATE commands are used to allocate the input data set, a work
data set, and an output data set. CALL is used to execute your program. The PROG2.COBOL,
PROG3.0BJ, PROG2.LOAD, and INPUT. DATA data set are deleted. (The other data sets,
allocated in Figure 11, are automatically deleted because they were not given a data set name
when allocated.) It is assumed you are using your user identification as part of the data set
names.

If your program has an error termination, you can use the facilities of the TEST command to
debug your program.

70 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

c~1

,r ,
.f "

",-,-----,I

C)

READY
link prog2 print(*) map

linkage editor messages and listings

READY
edit input.data new
INPUT

EDIT
save
EDIT
end
READY

input data

allocate dataset(input.data) file(input) old
READY
allocate file(work) new block(100) space(300,10)
READY
allocate dataset(*) file(print)
READY
call prog2

output from your program

READY
delete (prog2.* input.data)
READY

Figure 12. Link Editing and Executing a Program

Loading a Program

The LOADGO command makes available to you the services of the loader. The loader
combines the basic functions of the linkage editor and program fetch. That is, the loader link
edits and executes your program. Therefore, the LOADGO command combines the basic
functions of the LINK and CALL commands. No load module is produced. For complete
information on the loader, refer to the publication, Linkage Editor and Loader.

The loader can process and execute a compiled program (object module) or a link edited
program (load module). Optionally, it can combine object modules and/or load modules and
execute them. (If you want to load and execute a single load module, the CALL command is
more efficient.)

Before you use the LOADGO command you can use the EDIT and ALLOCATE commands to
create and allocate any data sets required to execute your program.

Executing Programs at a Terminal 71

In your LOADGO command you must list the name or names of the object and load modules
you want to load. For example, if you want to load the object module in JONES.PROG3.0BJ,

enter:

READY
loadgo prog3

If you want to load the object modules in JONES.PROG3.0BJ, JONES.COB.OBJ and the load
module in JONES.COB.LOAD(TWO), enter:

READY
loadgo (prog3 cob.obj cob.load(two))

You can also pass parameters to your program if you wrote it in assembler or PL/I(F). These
are the parameters you would specify with the PARM parameter of the EXEC statement in JCL.

For example, if you want to pass the parameters OPTIONl and OPTION5 to a compiled program
that resides in JONES.ASMPG.OBJ, enter:

READY
loadgo asmpg 'option1 optionS'

You can have the loader search a subroutine library to resolve external references. The
subroutine library is usually one of the language libraries. If so, it is specified with one of the
following operands:

Operand

COBLIB
FORTLIB
PLILIB

Subroutine Library

SYS1.COBLIB
SYS 1 . FORTLIB
SYS1.PL1LIB

In addition to, or instead of, a language library you use the LIB operand to specify the name
of one or more user libraries. The libraries are searched in the order you specify.

The following example shows how to load the object module in JONES.PRG.OBJ. The
libraries SYS1.PLlLIB, and DEPT39.LIB.SUBRT2 are to be searched to resolve external references.

READY
loadgo prg plilib lib('dept39.lib.subrt2')

The LOADGO command also lets you specify the loader options. These options are those
specified with the PARM parameter of the EXEC statement in JCL. For example, if you want to
use the LET and EP(MAIN) options when the object module in JONES.CIR.OBJ is loaded, enter:

READY
loadgo cir let ep(main)

Loader listings (specified with the MAP option) are directed to a data set or to your
terminal. You indicate your choice with the PRINT operand. The following example shows that
the object module in JONES.PRGM.OBJ is to be loaded. The listing produced by the MAP option
is to be placed in the JONES.LISTING.LOADLIST data set.

READY
loadgo prgm map print(listing)

Note: that if you omit the descriptive qualifier from the print data set name, the system
assumes LOADLIST. If you omit the user-supplied name, the system assumes it has the same
user-supplied name as the object module. For example, if the listing is to be placed in the
JONES.PRGM.LOADLIST data set, enter:

72 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

(~"

i\,

,/
I I

\ ;' ,_

o

READY
loadgo prgm map print

Using the same example, if you want the listing to appear on your terminal, enter an
asterisk in the PRINT operand.

READY
loadgo prgm map print(*)

Error messages are listed on the terminal as well as on the print data set when you specify a
data set name instead of an asterisk. If you want the error messages to appear only on the
print data set, enter the NOTERM operand. For example,

READY
loadgo prgm map print noterm

Figure 13 shows how the COBOL program created and compiled in Figure 11 can be loaded.
The loading operation shown in Figure 13 is the equivalent of the link editing and execution
shown in Figure 12. The same data sets required for execution of your program in Figure 12
are required in this example. The object module resides in PROG2.0BJ. A load module is not
produced by the loader, therefore, only PROG2.COBOL, PROG2.0BJ, and INPUT.DATA are
deleted at the end. It is assumed you are using your user identification as part of the data set
names.

READY
edit input.data new
INPUT

EDIT
save
EDIT
end·
READY

input data

allocate dataset(input.data) file(input) old
READY
allocate file(work) new block(100) space(300,10)
READY
allocate dataset(*) file(print)
READY
loadgo prog2 map print(*)

loader listings and output from your program

READY
delete
READY

(prog2.* input.data)

Figure 13. Loading a Program

Executing Programs at a Tenninal 73

Section V: Testing a Program at a Terminal

The operating system provides you with facilities to test your program from the terminal. They
are the test facilities, if any, provided by your compiler, and the TSO TEST command. The
compiler test facilities are described in the publications associated with the compiler. A brief
description of the TEST command follows.

The TEST command allows you to "debug" your program. That is, it helps you to test a
program for proper execution and to find programming errors. To use TEST effectively, you
should be familiar with the assembler language. If you are using another language, for example
COBOL, you can still use the TEST command to obtain listings and other information to give to
your installation's system programmer who can help you debug your program. (You can use
the full facilities of the TEST command to debug your program if you can correlate the
statements in your source program listing to the resultant assembler language statements in the
object listing.)

Refer to TSO Command Language Reference for a complete description of the facilities of
the TEST command. If you prefer, you can elect not to test your program. Simply enter any
command you wish after receiving the abnormal termination and READY messages.

If you are not an assembler language programmer, your system programmer will probably
provide you with a test procedure. The most common situation he may provide for occurs
when your program is executing and you receive a message that the program has abnormally
terminated. If you enter a carriage return after the error message and "READY", a dump will
be taken. Your other choices are to enter any command, or to enter the word 'TEST' with no
operands. He may tell you to enter the TEST command and then the LOAD subcommand with
the name of a program that will test your program. For example, if the name of the program
that will test yours is DPTEST, use the following sequence.

MYPROG ENDED DUE TO ERROR +
?
SYSTEM ABEND CODE OCl
READY
test
TEST
load (dptest)

If the system programmer does not give you the name of a testing program, he may instruct
you to use the TEST command and a set of its subcommands that produce listings of your
program and other pertinent information. For example, he could ask you to perform
procedures similar to the following.:

Example 1:

MYPROG ENDED DUE TO ERROR +
READY
test
TEST
listpsw
SYSTEM MASK KEY AMWP INTRPT CODE ILC CC PROG MASK INSTR ADDR

11111111 D 0101 0061 11 00 0000 067AB8
TEST
where 67ab8.
67AB8. LOCATED AT +38 IN (load-module name.csectname) UNDER TCB

LOCATED AT 660DO.
TEST
list 67ab8.-32n length(32)

74 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

r"
\ '- , ..

C
·--,···
, .•...

o

----- - -_._._-_ ...

First, you begin testing by entering the TEST command. You can now use the sub commands of
TEST to "debug" your program.

Enter the LISTPSW subcommand to determine the address of the instruction that failed in your
program. The last five characters of the PSW that is listed can then be entered with the
WHERE subcommand and the system will then provide the location and the program name in
which the abend occurred. When LIST is entered in the preceeding manner, the thirty-two
bytes of instructions prior to the abend will be displayed.

At this time all the registers may be listed in the following manner to aid you in solving the
problem.

list Or:15r

If you wish to trace the execution of your program you may enter the following:

Example 2:

at +0:+200 (go)
at +32
at +8c
at +10a
go +0

In this case breakpoints will be set at every instruction in your program between relative
addresses 0 and 200 (inclusive), stopping at the first invalid opcode encountered. Breakpoints
set at relative address 32, 8C, and lOA supplement the previous settings. The last GO causes
the program to resume execution from the beginning (assuming the first address contains a
valid instruction). Before execution of the instruction at any of the breakpoint locations a
message is printed at the terminal. If the location is other than 32, 8C, or lOA, execution
continues because of the GO subcommand in the subcommand list of the first AT. Before 32,
8C or lOA are executed, the associated AT subcommand causes control to return to the
terminal so that you can enter any TEST subcommands before continuing execution.

Example 3:

To supply new values for a range of registers, you can enter:

Or=(x' 0' ,x' 0' ,x' 0')

The values specified would be assigned starting with register 0, register l, etc. until all values
in the list have been assigned.

Example 4:

If you want to display storage at a known relative address you may enter:

list +34
+34 47FOC220

If you want not only to display storage, but also to find out the absolute address associated
with the relative address, you can enter:

list +34+0
A0680. 47FOC220

Testing a Program at a Terminal 75

Example 5:

To list an area of storage greater than 256 bytes, you must use the MULTIPLE keyword of the
LIST subcommand. For example, to find a module name that is a DC within the instructions of
a module, enter:

list a0680 c 1(256) m(4)

(List the storage beginning at location A0680, translate into printable characters, for length
4 x 256)

When You Would Use Test

There are two basic situations in which you might want to use the TEST command:

• You want to TEST a program currently active in the system.
• You want to TEST a program not currently being executed.

You may want to TEST a currently executing program either because it has begun to
abnormally terminate, or because you want to check through the current environment to see
that the program is executing properly.

If a program has begun to abnormally terminate, you receive a diagnostic message from the
Terminal Monitor Program and then a READY message. The TMP is in effect asking, "Do you
want to terminate your program or test it?" If you respond with anything but TEST, your
program is abnormally terminated by the abend routine. If, however, you issue the TEST

command (no program name should be supplied), the TEST command processor is given
control, and you can use the TEST subcommands to debug the defective program.

If you just want to look at the current environment of an executing program that is not
terminating abnormally, enter an attention. The currently active program is not detached and
the TMP responds to your interruption by issuing its usual READY message. Issue the TEST

command (no program name) and the currently active program remains in storage under the
control of the TEST command processor. You can then use the TEST subcommands to
investigate the current storage situation.

Note: that in the case of both the ABEND and the attention interruption, you do not enter a
program name following the TEST command. If you enter the TEST command followed by the
name of the currently active program, you lose the current in-storage copy of the program and
TEST loads a new copy.

The second use of the TEST command processor, testing a program not currently being
executed, requires that you enter a program name along with the TEST command. When the
Terminal Monitor Program issues a READY message to request a command, enter the
command, TEST program name. (There are other optional operands of the TEST command but
they are not necessary for this example.) The TEST command processor is given control and it
loads a copy of the named program. The program can be newly written TMP, CP, or
applications program.

Programs to be tested in this manner must be linkage edited members of partitioned data
sets, or object modules in sequential or partitioned data sets, loadable by the Loader program.

While the program is under the control of TEST, you can step through the program,
investigate or alter the environment at any time, change instructions or register contents, force
entry into various subroutines, and perform other debugging operations online and
immediately.

It is this second use of TEST command processor, especially the debugging of newly written
code, that this section discusses.

76 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

("'--',
I
\.-

C
-~

...-",-

This section is not intended to be a complete discussion of the TEST command processor.
For additional discussion of the TEST command and its operands, see TSO Command
Language Reference. The TEST subcommands are listed in Figure 14.

Subcommand Name

= (Assignment)

AT

CALL

COpy

DELETE

CROP

END

EQUATE

FREE MAIN

GETMAIN

GO

LIST

LISTDCB

LISTDEB

LISTMAP

LISTPSW

LISTTCB

LOAD

OFF

QUALIFY

RUN

WHERE

Function

Assigns values to one or more locations.

Establishes breakpoints at specified locations.

Initiates execution of a program at a specified address.

Moves data fields or addresses.

Deletes a load module.

Removes symbolic addresses from the symbol table.

Terminates all functions of the TEST command.

Adds symbolic address to the symbol table.

Frees a specified number of bytes of real storage.

Acquires a specified number of bytes of real storage for use by the program being
processed.

Restarts a program at the point of interruption or at a specified address.

Displays the contents of specified areas of real storage or the contents of specified
registers.

Lists the contents of a Data Control Block (DCB). You must specify the address
of the DCB.

Lists the contents of a Data Extent Block (DEB). You must specify the address of
the DEB.

Displays a storage map of any real storage assigned to a program.

Displays the Program Status Word (PSW). You may specify the address of any
PSW.

Lists the contents of the Task Control Block (TCB). You may specify the address
of any TCB.

Loads a program into real storage for execution.

Removes breakpoints.

Establishes the starting or base location for symbolic or relative addresses;
resolves external symbols within load modules.

Voids all breakpoints so that a program can execute to termination.

Displays the absolute address of a symbol or entrypoint, and its relative location
within the CSECT.

Figure 14. The TEST Subcommands

Addressing Restrictions

The TEST command processor can resolve internal and external symbolic addresses only if
these addresses are available and can be obtained by TEST. Within certain limitations, symbolic
addresses are available for both object modules (processed by the loader) and load modules
(fetched by contents supervision). To ensure availability of symbols, use the EQUATE

subcommand of TEST to define the symbols you intend to use.

External symbols, such as CSECT names, can be available for both object modules and load
modules. Object modules require that the OS Loader had enough real storage to build
in-storage CESD entries. LOAD modules must have been processed by the linkage editor with
the TEST parameter specified, or must have been fetched to main storage by the TEST

command or its LOAD subcommand.

Testing a Program at a Terminal 77

Internal symbols are available only for load modules. You can refer to most internal
symbols in load modules if you specified the TEST parameter during both assembly and link
editing. Certain internal symbols, however, are not available. These include the names on EQU,

DSECT, LTORG, and ORG assembler statements, and the symbolic names contained in system
routines that operate in zero protection key.

Symbolic addresses normally cannot be obtained for modules fetched from data sets which
have been concatenated to SYS 1.LlNKLIB by use of a link library list in a member of
SYS1.PARMLIB. If, however, these modules are brought into real storage by the TEST command
processor (with the LOAD subcommand, or as an operand on the TEST command), then the
symbolic addresses within these modules are available to TEST.

If the necessary conditions for symbol processing are not met, you can use absolute,
relative, or register addressing, but you cannot refer to symbols, unless you have previously
defined them with the EQUATE subcommand of TEST.

Executing a Program Under The Control of TEST

Any program, if it is a linkage edited member of a partitioned data set or an object module in
a sequential or partitioned data set, can be executed under the control of the TEST command
processor.

Issue the command TEST followed by the program name and those operands of the TEST

command that either define the program or are necessary to its operation. These operands may
consists of parameters necessary to the operation of the program under test, the keyword
LOAD or OBJECT depending upon whether the program is a load or an object module, and the
keyword CP or NOCP depending upon whether the program to be tested is a command
processor or not.

~,

\ "

Any parameters that you specify in the TEST command are passed to the named program as
a standard operating system parameter list; that is, when the program under test receives (--...,
control, register one contains a pointer to a list of addresses that point to the parameters. ".

If the program to be tested is a command processor, include the keyword CP (the default is
NOCP). The test routine creates a Command Processor Parameter List, and places its address
into register 1 before loading the program.

Establishing and Removing Breakpoints Within a Program

Use the AT subcommand to establish breakpoints within the program being tested. Then issue
the GO subcommand to begin execution of the program. To begin executing a newly loaded
program, merely enter the subcommand GO - no address is required. When the breakpoints are
encountered, as the program is being executed, processing is temporarily halted, and the
message AT address, is written to the terminal. You can then examine the executing program,
its registers, and data areas to see that it has been executing properly.

There are two methods of accomplishing this.

• You can specify a list of sub commands when you issue the AT subcommand. When a
breakpoint is encountered, the TEST command processor issues each of the specified
sub commands as if it had been entered from the terminal at that time. The sub commands
execute and display the results of their execution at the terminal. If you specify GO as
the last subcommand, control is automatically returned to the program under TEST at the
point of interruption. If you do not specify GO as the last subcommand in the list, control
is returned to you, at the terminal, after the last subcommand is executed. If you
determine from the information displayed by the subcommands, that your program has
executed properly up to that breakpoint, issue the GO subcommand. Your program

78 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

C)

resumes execution at the point of interruption and continues execution until another
breakpoint, or the end of the program, is reached.

• If you do not specify a list of sub commands when you issue the AT subcommand, the
TEST command processors returns control to you at the terminal each time a breakpoint
is encountered. You can then check on your program's execution by entering the TEST
sub commands directly from the terminal.

Issue the OFF subcommand with no address operand to remove all breakpoints previously
established. Issue the OFF subcommand followed by an address, a list of addresses, or a range
of addresses to remove a single breakpoint, several breakpoints, or all breakpoints occurring
within the range of addresses.

Displaying Selected Areas of Storage

Use the various LIST subcommands to display the contents of a specified area of real storage,
registers, or various control blocks at your terminal, or to write this information to a data set.
There are six variations of the LIST subcommand; they are:

LIST
LISTMAP
LISTICB
LISTDEB
LISTDCB
LISTPSW

LIST: Use the LIST subcommand to display areas of storage or the contents of registers. The
address required as an operand of the LIST subcommand can be one address, a list of
addresses, or a range of addresses. The address may be specified as a symbolic address if a
symbol table exists and contains the requested symbolic address. If no symbolic table exists
(the program was not linkage edited or did not have a symbol table), you can use the EQUATE
subcommand to create a symbolic address for any location within the program, or you can
specify the address as a relative address, an absolute address, or as a register containing an
address.

If you use the LIST subcommand to list information found at an address specified by a
symbol contained in a symbol table, the information is displayed in the character type and the
length specified in the symbol table. You can, however, override the attributes contained in the
symbol table by including attribute operands on the LIST subcommand.

Use the LIST subcommand at any point during the execution of your program (use AT or an
ATTENTION to stop the execution of the program), to determine whether data areas and
registers contain proper data. If the data displayed is not what it should be, use the TEST
subcommands to determine why the data is not as expected, or to modify the data in real
storage and continue execution of the program.

LISTMAP: Use the LISTMAP subcommand to display at your terminal a map of all real storage
assigned to the program under test. Some of the information displayed after issuance of the
LISTMAP subcommand is:

• Region size.
• Task Control Block address.
• Program name, length, and location in real storage.
• Active Request Blocks, RB types, and the names of the programs associated with each of

the R~s.

Testing a Program at a Terminal 79

LISTTCB: Use the L1STTCB subcommand to display the entire Task Control Block of the
program under test, or any fields of that TCB. The information displayed is formatted, and
each field is identified according to the field names contained in the publication OS/VS2
System Data Areas. -

If you want to display the TCB for the program under test, enter the subcommand L1STTCB
with no address. If you want to display another TCB on the TCB queue, you must include the
address of the TCB as an operand of the L1STTCB subcommand.

LISTDEB: Use the L1STDEB subcommand to display the Basic section and any direct access
sections of any valid Data Extent Block (DEB), or any fields of that DEB. The information
displayed is formatted according to the field names of the Data Extent Block as contained in
the publication OS/VS2 System Data Areas.

The L1STDEB subcommand requires the address of a DEB as an operand.

LISTDCB: Use the L1STDCB subcommand to display the contents of a Data Control Block
(DCB). The information displayed is formatted, and each field is identified according to the
field names contained in the publication OS/VS2 System Data Areas.

The LISTDCB subcommand requires the address of a DCB as an operand. If you have
created the DCB within the program under test, use the address of the DCB macro instruction
used to create the DCB. You can also obtain the address of the DCB from the DEBDCBAD field
of the DEB displayed with the LISTDEB subcommand.

LISTPSW: Use the L1STPSW subcommand to display the current Program Status Word or any
of the PSWs at your terminal. If you issue the subcommand L1STPSW with no address following
the subcommand, the current PSW is displayed at your terminal. If you want to display any of
the other PSWs at your terminal, supply the address of the PSW you want to see as an operand
of the L1STPSW subcommand. A list of the permanent real storage locations of all PSWs can be
found in the IBM System/3 70 Principles of Operation publication.

The psw is displayed formatted by field, i.e., system mask, key, AMWP, interruption code,
ILD, CC, program mask, and instruction address.

Changing Instructions, Data Areas, or Register Contents

Once you have listed those areas of real storage that help you determine just what has
occurred in your program, you can use the assignment function of the TEST command to make
corrections within the real storage copy of the code, or to change the contents of data areas or
registers.

Simply enter the address at which you want the new data entered, a code indicating the
data type, and the new data you want entered at that address. The address must conform to
the address restrictions already discussed. The new data must be contained within single
quotes. The data type codes can be found in the publication TSO Command Language
Reference.

One problem that can arise during a debugging session occurs when you want to replace a
section of the program under test but the replacement code is longer than the section to be
replaced. If you merely type in the beginning address of the section to be replaced, followed
by a portion of code longer than the segment to be replaced, you will overlay some functional
code. You can solve this problem with the GETMAIN subcommand of TEST.

Issue the TEST subcommand GETMAIN to obtain a work area in which to build your
replacement segment of code. The GETMAIN subcommand writes out the address of the
beginning of the real storage area it obtained for you. Use the Assignment of Values function
of the TEST command to place a branch to the new area at the address in your module that ("
begins the code you want to replace. Use the Assignment of Values function to build your _,._~:

80 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

-- -------------------._--------- --------------------- --- ----------

c··.·." 'J
/

code segment in the newly written code, place a branch back to the point within your module
at which you want processing to resume. You can then use the GO subcommand to restart
your program at some point before the branch. Your program will execute through the branch
instruction and into the new instructions and branch back into your original code. Later, you
can use the LIST subcommand to display the newly written code in a form useful to you, enter
it into your program with the TSO EDIT command, and reassemble your now executable
module.

Forcing Execution of Program Subroutines

Certain paths through some programs are difficult to test because the combination of events
leading to that path is difficult to produce.

One example of this problem is processing after return codes. Your module might respond
differently according to the codes returned to it by some other module or some other, not yet
written, section of code. You can use the AT subcommand to insert a breakpoint in your
program at the point where it passes control to the not yet existing code; the assignment
function of TEST to set register 15 to the desired return code; and the GO subcommand to
begin execution of your program at the point where control would have been returned. Using
this sequence of TEST subcommands, you can test your module's response to each possible
return code.

Using TEST After a Program Abend

If a program running under TSO begins to ABEND, a diagnostic message containing the ABEND

code is written to the terminal, ABEND proce~sing is halted, and control is returned to either
the TMP or TEST. If the program was running under the control of the TEST command
processor, control is returned to TEST and you can immediately begin to use the TEST

subcommands to determine the cause of the error. If the program was not running under TEST,

control is returned to the Terminal Monitor Program. You can then enter the command TEST
(no program name should be entered), to place the abnormally terminating program under
control of the TEST command processor.

Use the ABEND code to determine the type of interruption that occurred. Issue the WHERE

subcommand to determine where the interruption occurred.

The WHERE subcommand is especially helpful. If you enter the WHERE subcommand, the
current instruction address is displayed at the terminal. If you then enter WHERE followed by
that instruction address, WHERE responds by printing out the program name, the CSECT name,
the offset of the current instruction address within the CSECT, and the address of the
abnormally terminating task's TCB.

The instruction address, and the information returned by the WHERE subcommand pinpoint
the point of error.

Use the LIST subcommand to display the instructions leading up to the error condition, and
to display data areas and registers used in those instructions. This information should be
sufficient to determine the cause of the error.

Testing a Program at a Tenninal 81

Determining Data Set Information

If you want to investigate the condition of any of your data sets, perform the following
operations:

1. Use the LlSTTCB subcommand to display the TCB for the terminating task.
2. Use the contents of the TCBDEB field as an operand of the LlSTDEB subcommand to

gain access to the Data Extent Block queue.
3. Use the contents of the DEBDCBAD field in each of the DEBs in the DEB queue, or the

addresses of any' DCB macro instructions coded within your program, as an operand of
the LISTDCB macro instruction, to list the Data Control Blocks.

These control blocks contain the addresses of other control blocks useful in the debugging
process.

82 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

('
"'"

(~"
' ... ~ ... , '

-- ... _---_ .. _-- .- .. ----. ------------- .. _-----_._-- _ , .. _._----

(

'''''''1

I

/

C)

Section VI: Command Procedures

When a function is to be performed frequently and the commands necessary would require
considerable entry time at a terminal, the function may be performed by using a command
procedure. A command procedure is a data set containing the appropriate TSO commands for
performing a specific function. The command procedure data set is created with the EDIT

command by specifying a CLIST data set type and then coding the commands you need. You
use the EXEC command to invoke the command procedure.

Although the function remains the same, the specific values for the operands of the
commands may vary each time the command procedure is invoked. To allow you the flexibility
of varying the input to a command procedure, symbolic values may be coded within the
procedure itself. Then, when you invoke the command procedure with the EXEC command,
you can supply specific values (as operands of EXEC) that replace the symbolic values.

The execution of a command procedure may be controlled by using three control
statements: PROC, WHEN, and END. The first statement in a command procedure is the PROC

statement, which indicates those values within the command procedure that are to be symbolic.
The WHEN statement analyzes return codes from a program or compiler invoked by the
command procedure and returns control to a specified command within the procedure if a
return code condition is met. The END statement is used to terminate the execution of a
command procedure.

Once a command procedure has been written, you can document it by specifying what
function it performs and what information it needs.

The major topics discussed in this section are the following:

• Creating Command Procedures

• Establishing Symbolic Values

• Writing a Conditional Command Procedure

• Calling Command Procedures

• Allocating a Terminal

• Nested Procedures

For additional information about the syntax and function of command procedure statements or
any TSO commands used in a command procedure refer to TSO Command Language
Reference.

Creating Command Procedures

You use the EDIT command to create a command procedure. The CLIST operand designates
the data set being created as a command list (CLIST) data set - one that contains a command
procedure.

Command Procedure Statements

A command procedure can also contain command procedure statements that control the
execution of the procedure. The command procedure statements are:

PROC defines the symbolic values in a procedure. (See "Writing a Command Procedure with
Symbolic Values.")

Command Procedures 83

WHEN initiates or terminates a procedure (or a command within a procedure) according to
certain conditions. (See "Writing a Conditional Command Procedure.")

END is used in the WHEN statement to end a procedure.

Writing a Simple Command Procedure

The following sample EDIT session shows how to create a CLIST data set named "listpgm" that
loads and passes control to a program named "weekly", after all~cating three data sets
required by "weekly."

edit listpgm clist new

INPUT

alloc dataset(input) file(indata) old
alloc dataset(output) block(100) space(300,10)
alloc dataset(list) file(print)
call weekly
(null line)

EDIT

end

NOTHING SAVED
ENTER SAVE OR END-

save

EDIT The data set "listpgm", containing the command
procedure created above, is retained as a
permanent data set.

Note: The fully qualified name (see naming conventions) assigned to this data set will be:

userid.LISTPGM.CLIST

Writing a Command List (CLIST) into a Partitioned Data Set

The following sample EDIT session shows how to create the same command procedure as in
the previous example, but this session will place the procedure into a member of a partitioned
data set, "list" member of "clistlib."

edit clistlib(list) clist new

INPUT

alloc dataset(input) file(indata) old
alloc dataset(output) block(100) space(300,10)
alloc dataset(list) file(print)
call weekly

save

EDIT The system allocates a partitioned
data set name "clistlib". When SAVE
is entered, the system creates the
member "list" and stores this command
list into it.

Defining a Private Command Procedure Library

A terminal user can define his own partitioned data set to contain command procedures. The
sample session in the preceding paragraph shows how to define a partitioned data set named
"clistlib." A member is created and given the name of the command procedure it is to contain. r··· ..

\ /

84 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

,. ",~ ...
I
\.... /

Subsequent command procedures can be kept in additional members of CLISTLIB.

Once created and cataloged, this personal command procedure library (CLISTLIB data set)
would have to be allocated by a potential user. The following ALLOCATE command shows how
to allocate CLISTLIB as a command procedure:

ALLOC DATASET(CLISTLIB) FILE(SYSPROC)

A Compiler Command Procedure

Figure 15 shows a command procedure that invokes the PL/I (F) compiler. This procedure
would be created with the EDIT command as a command list (CLIST) data set under an
appropriate member name such as PLIG.

1 PROC 1 NAME
2 ALLOCATE DATASET(&NAME .. PLI)FILE(SYSIN)
3 ALLOCATE DATA SET(&NAME .. LIST) FILE(SYSPRINT) BLOCK(125)
4 SPACE(300,100)
5 ALLOCATE DATASET(&NAME .. OBJ)FILE(SYSLIN) BLOCK(80) SPACE(250,100)
6 ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
7 ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)
8 CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO'
9 FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)

Figure 15. A Command Procedure to Invoke the PL/I(F) Compiler

Record 1 is a PROC statement, defining a single positional parameter to be supplied by the
user when the procedure is invoked, in this case, the name of his program. Whatever value the
user specifies when calling the procedure will be filled into the following commands wherever
, & NAME' appears.

Records 2 through 7 allocate the data sets required by the PL/I compiler. Record 2 allocates
the input data set containing the source program. Although this data set is probably already
allocated, since the user has most likely just created it with EDIT, this ALLOCATE command
will reallocate it with the DDNAME 'SYSIN.' This data set is always OLD; NOBLOCK or SPACE

values have to be supplied. The data set name will be formed from the program name supplied
by the EXEC command, followed by the characters '.PLI' Two periods are necessary in the
model command, since the first one indicates the following characters are to be concatenated
to the supplied value. Records 3 through 5 similarly allocate and assign standard names to the
data sets to hold the program listing and the object program. Since these are new data sets, the
BLOCK and SPACE values must be supplied. Records 6 and 7 allocate the two utility, or
temporary work, data sets the compiler needs. No data set name is specified, so a
system-generated name will be assigned to them, and the data sets will automatically be
deleted by a FREE command. All the other data sets will be kept and cataloged. To use the
same procedure again for the same program, the user should enter DELETE commands for
SYSIN and SYSPRINT.

Record 8 invokes the PL/I compiler by its load module name, and passes to it the list of
options to control execution. When the compiler completes processing, the FREE command in
record 9 releases all the data sets except the object module.

Figure 16 shows how the procedure might be used from the terminal. The user enters record
1, is the EXEC command invoking the procedure contained in data set "PLIF". The LIST

keyword on the command specifies that each command is to be printed out at the terminal as
it is executed. The system responds with records 2-9. Note that the name supplied with the
EXEC command has been filled in as part of the data set name field in the ALLOCATE

commands. The system continues to list commands through line 8, then notifies the user it is
again ready to accept commands from the terminal with the READY message in line 9. The

Command Procedures 85

user enters the LOADGO command to bring his compiled object program into storage for
execution.

1
2
3

4

5
6
7
8
9

exec plif 'exp' list
ALLOCATE DATA SET(EXP.PLI) FILE(SYSIN)
ALLOCATE DATA SET(EXP.LIST) FILE(SYSPRINT) BLOCK(125)
SPACE(300,100)
ALLOCATE DATA SET(EXP.OBJ) FILE(SYSLIN) BLOCK(80)
SPACE(250, 100)
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)
CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO'
FREE FILE(SYSUT1\SYSUT3,SYSIN,SYSPRINT)
READY

10 allocate dataset(*) file(sysin)
11 READY

12 allocate dataset(*) file(sysout)
13 READY

14 loadgo exp.obj plilib

Figure 16. Use of a Command Procedure

If the procedure is a member of the command procedure library, the user can use the EXEC
command implicitly, as shown in Figure 17. When the system does not find 'PUP' defined in
the command library, it looks for the command procedure in the command procedure library.
The individual commands are not displayed at the terminal. When the procedure completes, the
READY message is displayed, and the user can load his program for execution.

plif exp
READY

Figure 17. Implicit Use of EXEC Command

Establishing Symbolic Values

A Sample Proc Statement

The following PROC statement indicates that there are three positional symbolic
values(&INPUT, &OUTPUT, and &UST) and one optional symbolic value (&UNES) in the
command procedure that this PROC statement applies to:

PROC 3 INPUT OUTPUT LIST LINES()

The number '3' identifies the number of positional operands (symbolic values) to be
substituted for by the potential user. If none of the symbolic values being defined are
positional, a "0" must be entered following "PROC". Following the required number operand,
the positional symbolic values appear (minus their ampersands). Following the positional
symbolic values (if any), the keyword symbolic values appear (minus their ampersands). The
command procedure defined by the PROC statement above appears in the following paragraph.

Writing a Command Procedure With Symbolic Values

A symbolic value is a symbol that is replaced by an actual value each time a command
procedure executes. Without symbolic values a command procedure can perform only one fixed
function. But with them, each user can tailor the command procedure to his specific needs by
substituting actual values for the symbolic ones.

The PROC statement is the means by which you can define certain values in a command
procedure referred to by symbolic values. The potential user actually substitutes values by

86 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

r--"

1"-.... \

\.....j'

C)

--_ ... _--_. __ . __ _---

including them as operands on the EXEC command when requesting the services of your
command procedure. For the syntax of the EXEC command or the PROC statement, refer to
the pUblication: TSO Command Language Reference.

Symbolic Values

Symbolic values in a command procedure (identified by ampersands) are defined (without
ampersands) by the operands on the PROC statement. There are two types of symbolic values
used in command procedures:

Positional a required operand; it must be substituted for (in the order in which it appears) in
the EXEC command entered by a potential user. It cannot exceed 252 characters.

Keyword an optional operand; it may be substituted for (in any order following the positional
operands) in the EXEC command entered by a potential user. It cannot exceed 31
characters. A keyword may have a default value.

A Sample Command Procedure with Symbolic Values
The following example uses the preceding sample PROC statement to establish symbolic values
in the command procedure example that appears under the earlier heading, "Writing a Simple
Command Procedure":

PROC 3 INPUT OUTPUT LIST LINES ()
ALLOC DATASET(&INPUT.) FILE(INDATA) OLD
ALLOC DATASET(&OUTPUT.) BLOCK(100) SPACE(300,10)
ALLOC DATASET(&LIST.) FILE(PRINT)
CALL WEEKLY'&LINES.'

Note:
• When the symbolic value must be followed by a special character (i.e., a right

parenthesis, apostrophe, or a period), you must end the symbolic value with a period.
(See each of the symbolic values in the example above).

• The optional (keyword) symbolic value" & LINES " has been added to the basic example
to show how a parameter string that is to be passed to the program named "WEEKLY"

can also be designated as a symbolic value.

Assigning Defaults for Optional Symbolic Values

Another function of the PROC statement is assigning default values to optional symbolic values
in a command procedure. You can assign a default value by enclosing it in parentheses that
immediately follow the symbolic value in the PROC statement. Then, if the user of your
command procedure fails to code an actual value for the symbolic value in question, the
system will substitute your default value for it.

A PROC Statement That Assigns a Default

In the basic command procedure example being used in this section, you might want to assign
the number "35" as a default value for the optional symbolic value" & LINES " . The following
example illustrates how this is accomplished:

proc 3 input output list lines(35)

Note: You cannot assign default values to positional symbolic values.

Documenting a Command Procedure with Symbolic Values

A command procedure containing symbolic values can be made available to all the
programmers at an installation. The efficient use of your command procedure by the

Command Procedures 87

programmers is dependent on how well it is documented. Figure 18 illustrates this
documentation.

Command Procedure Name: CLISTLIB(LIST)

Purpose: Scan Master Input File & Print a Report
Symbolic Values:

INPUT OUTPUT LIST LINES(35)

INPUT - Required.
OUTPUT - Required.
LIST - Required.
LINES(35) Optional.

Replace with name of input data set.
Replace with name of output data set.
Replace with name of output da.ta set.
Code the parameter string value you
want passed to the load module named
"WEEKLY" when it receives control.
If you do not code this value, the default
value "35" is passed to "WEEKLY".

Command Procedure:

PROC 3 INPUT OUTPUT LIST LINES(35)
ALLOC DATASET(&INPUT.) FILE(INDATA) OLD
ALLOC DATASET(&OUTPUT. BLOCK9100) SPACE(300,10)
ALLOC DATASET(&LIST.)FILE(PRINT)
CALL WEEKLY '&LINES.'

Figure 18. Documentation of a Command Procedure with Symbolic Values

Examples of Symbolic Substitution

• Positional parameters (These must be specified on the EXEC command).

Here is the procedure statement for a CLIST data set called PRl:

PROC 3 PARM1 PARM2 PARM3

If the user enters at the terminal
,0

exec pr1 A20 input

TSO makes the following substitutions within the command procedure:

10
20
INPUT

replaces
replaces
replaces

&PARM1
&PARM2
&PARM3

• Keyword parameters (these need not be specified on the EXEC command).

Here is the procedure statement for a CLIST data set called PR2:

PROC 0 KEY1 KEY2(1) KEY3(10)

(The zero indicates there are no positional parameters)

Figure 19 describes the results of substitution within the command procedure:

exec pr2

EXEC COMMAND
ENTERED AT TERMINAL

exec pr2 'key1 key2 key3'

exec pr2 'key1(8) key2(input) key3(5)'

Figure 19. Substitution Using Keyword Parameters

88 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

VALUES SUBSTITUTED FOR
&KEY1 &KEY2 &KEY3

null ~ll 10
string tri
KEY1 nu 1 null

string string
(not INPUT 5
valid)

c

...... _---... _--_ .. _----- _---_ .. _---_. __ ._._._----

Writing a Conditional Command Procedure
The WHEN statement can be used in any command procedure that contains a CALL or a
LOADGO command. It allows you to insert processing checkpoints at strategic points in the
procedure. If a program should experience an error condition, any commands in the command
procedure that have not been executed would be executed, regardless of the error condition.
To prevent this potentially wasteful processing within a command procedure, the WHEN

statement has been included as a command procedure function.

Using the WHEN Statement

The WHEN statement is the means by which you can test the return codes of programs that
have been invoked with a CALL or a LOADGO command from within a command procedure. If
the return you test for is found, you can either end the procedure, or else execute another
command or procedure at that point. If the return code you test for is not found, the
remainder of your procedure will execute normally.

SYSRC Operand of WHEN

You use the SYSRC operand to specify the return code, or range of return codes, that you want
to test for (from programs invoked by an immediately preceding CALL or LOADGO command,
only).

Executing an Alternate Procedure

Again refering to the sample command procedure "LISTPGM", assume that you want to
execute a backup procedure that resides in the data set named "COSCO.CHECKOUT.CLIST", if
the program "WEEKLY" produces a return code of 8. The following WHEN statement would be
inserted:

ALLOC DATASET(INPUT) FILE(INDATA) OLD
ALLOC DATASET(OUTPUT) BLOCK(100) SPACE(300,10)
ALLOC DATASET(LIST) FILE(PRINT)
CALL WEEKLY
WHEN SYSRC(= 8) EXEC CHECKOUT

Note:

• When CHECKOUT completes processing, the terminal returns to command mode or to the
command procedure that invoked LISTPGM.

• The complete syntax of the WHEN statement appears in the publication: TSO Command
Language Reference.

Executing an Alternate Command

Again refering to the sample command procedure "LISTPGM", assume that you want to
execute a LIST command if the program "WEEKLY" produces a return code greater than 8.
The following WHEN statement would be inserted:

CALL WEEKLY
WHEN SYSRC(GT 8) LIST COSCO.DEBUG

Command Procedures 89

Ending a Command Procedure Strategically

Assume that you want to end a command procedure prematurely if a given CALL command
produces a return code less than 8. The followin'g WHEN statement would be inserted:

CALL 'SYS1.LINKLIB(IEQCB100)' 'NODECK'
WHEN SYSRC(LT 8) END

Testing Conditions for Termination

The programs invoked with a CALL or LOADGO command can issue a return code (a number
to indicate its relative 'success'). The return codes of IBM-supplied programs are listed in the
publications associated with the program. Only those user programs written in the assembler
language or PL/I can issue return codes. (For description of how to issue return codes, see
Assembler F Programmer's Guide and PL/ I (F) Programmer's GUide.) User return codes
are usually standardized in each installation.

You can insert a WHEN statement after any CALL or LOADGO command or a processor
(such as a compiler or link editor) in the command procedure to test its return code. If the test
you request is true, you have the option of ending the command procedure or of executing
another procedure or another command. If the test you request is not true, the command
procedure will continue its course. The test is specified with the SYSRC operand of the WHEN

statement. For example, assume that you want to end a procedure named proc4 if a given
CALL command produces a return code of 8. Enter the following WHEN statement after the
command you want to test:

call 'sys1.linklib(ieqcb100)' 'nodeck'
when sysrc(eq 8) end

If instead of ending proc4 when the test is true, you want to execute another procedure that
resides in the JONES.PROC5.CLIST data set, enter:

when sysrc(eq 8) exec proc5

If the test is true, proc5 will replace the procedure that requested its execution. When procS is
done, no other commands in proc4 will be executed. Now the system will be ready for a
command from the terminal or will return to the command procedure that invoked proc4. If
instead of executing a procedure, you want to enter a LIST command, enter:

when sysrc(eq 8) list pgm.list snum

90 OS/VS2 TSO Tenninal User's Guide (VS2 Release 2)

(...-..

\ " ... ,

Ending the Command Procedure

You may write an END statement after the last line of the command procedure. When the
system encounters an END statement in a command procedure it sends a READY message to
the terminal so you can enter another command.

Calling Command Procedures

You use the EXEC command to call a CLIST data set, or a member of the Command Procedure
Library, in order to execute the command procedure that resides therein.

Calling a Command Procedure in a CLIST Data Set

The following sample EXEC command shows how to call the command procedure "LISTPGM"
that appears in a previous paragraph entitled, "Writing a Simple Command Procedure."

EXEC LISTPGM.CLIST
or
EXEC LISTPGM

Note:

• CLIST, the descriptive qualifier of the. command procedure name, is the default value.
Thus, it is sufficient to code the command procedure name without the descriptive
qualifier if the command procedure resides in the CLIST data set.

• Command procedures do not have to be stored in CLIST data sets.

Calling a Command Procedure in a Command Procedure Library

An installation's command procedures are stored in a partitioned data set known as the
Command Procedure Library.

Implicit Form of the Exec Command

To call a command procedure that is stored in a member of a command procedure library data
set, you may use the implicit form of EXEC. If this is the case, you do not code EXEC on the
command. The following example of the implicit form of the EXEC command shows how to
call the command procedure that is stored in the member named "COMPILE" of your
installation's command procedure library:

compile

Note: The system searches the command library, before it searches the command procedure
library, for the name that you enter. Therefore, a member in your command procedure library
should not have the same name as a command in your command library.

Calling a Command Procedure in any Other Data Set

Nprmally, a command procedure is stored in either a CLIST data set or in a member of a
command procedure library. However, if a command procedure happens to be stored in any
other type data set, it can only be called by entering the fully qualified data set name, enclosed
in apostrophes, with the EXEC command. The following sample' EXEC command shows how to
call a command procedure that is stored in a data set named "userid.COMPROC.CP":

EXEC 'userid.COMPROC.CP'

Command Procedures 91

Calling a Command Procedure With Symbolic Values

When you decide to use one of your installation's command procedures, first decide which
of the symbolic values you must replace with your own values. Then decide which of the
optional symbolic values (if any) you want to use. Don't forget to consider the optional
symbolic values that have defaults. Then enter your own values as operands on the EXEC
command that you use to call the command procedure. Your values must follow the name of
the data set, or of the data set member, that contains the procedure. The required values must
be entered in the same order in which they appear on the PROC statement that defines the
procedure you are calling. Optional values must be entered following the required values, in
any order. The following example shows how to ~ th,F ~ommand procedure named
"CLISTLIB(LIST)", that is documented in Figure' ~ ~I

Known: The name of the master tape data set containing last week's inventory
. .. PH.OLDDATA.DATA

The name of the master type data set to contain this week's inventory

The name of the output data set that will go to the terminal user . .

The parameter value to be passed to the program named "WEEKLY"

PH.NEWDAT A.DAT A

PH.OUTDAT A.DAT A

10
1JC'iC Cf..v.r/ltr 1

Enter: \ist l'lddata newdata outdata lines(10)

Allocating a Terminal
In TSO programming, you can use the ALLOCATE command to allocate your terminal as a data
set, for either input or output. The ALLOCATE command is discussed in the publication: TSO
Command Language Reference. You can also allocate your terminal from within a command
procedure.

How to List Output at Your Terminal

An installation can include an optional symbolic value in command procedures to allow their
programmers to have their own listings printed out at their terminals if the output is generated
by a command procedure.

Figure 20 shows the sample documentation of a command procedure named
"LISTUPDT(NEWPART)" . This command procedure contains an optional symbolic value,
"QUTPUT(*)", that can allocate the user's terminal as an output data set.

Command procedure Name: LISTUPDT (NEWPART)
Purpose: Update Inventory List
Symbolic Values:

WEEKIN

WEEKIN
WEEKOUT
OUTPUT(*)

WEEKOUT

- Required.
- Required.
- Optional.

Command Procedure:

NEW OUTPUT(*)

Replace with name of input data set.
Replace with name of output data set.
Routes reports generated by this procedure
to your terminal. If you want to route
the report to a data set, replace
the * with the data set name.

PROC 2 WEEKIN WEEKOUT OUTPUT(*)
ALLOC DATASET(&WEEKIN.) FILE(INPUT) OLD
ALLOC DATASET(&WEEKOUT.) FILE(OUTPUT) NEW
ALLOC DATASET(&OUTPUT.)'FILE(REPORT)
CALL INVUPDT

Figure 20. Allocating a Terminal in a Command Procedure

92 OS/VS2 TSO Terminal User's Guide (VS2 Release 2)

C"······'·
,./ ~'

Nested Procedures

A command procedure can be made into a compile-load-go sequence -- the equivalent of the
RUN command -- by using the procedure nesting and conditional execution capabilities. For
instance, in Figure 21, note that the user enters two ALLOCATE commands, defining terminal
input and output for execution time, and a LOADGO command to invoke his program. Like the
commands used to invoke the compiler, these would normally be used every time the user
wants to invoke his program, and therefore can be reasonably placed in a command procedure.
This second procedure can be called from the compiler-invoking procedure, making it a
compile-load-go procedure.

The procedure to load and execute the user program might be defined under a suitable
name such as LOGO. The FREE command in record 2 is the same as the one in the PLIF

procedure. It needs to be repeated here since it will not be executed in that procedure, as
explained below. Records 3 and 4 allocate the terminal for SYSIN or SYSPRINT I/O statements
in the user program, and statement 5 is the LOADGO command causing the program to be
brought into storage and given control.

1 PROC 1 NAME 1
2 FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)
3 ALLOCATE DATASET(*) FILE(SYSIN)
4 ALLOCATE DATASET(*) FILE(SYSPRINT)
5 LOADGO &NAM1 .. 0BJ PLILIB
6 END

Figure 21. A Command Procedure to Invoke a User Program

It would be possible to call this procedure from the PLIF procedure by inserting a record
containing:

exec ldgo '&name'

However, it would be preferable to call it only when the return code from the compiler
indicates successful execution is likely, that is, no serious errors were detected during
compilation. To test the compiler return code, the user inserts a WHEN statement:

when sysrc(le 4) exec Idgo '&name'

The WHEN statement immediately follows the CALL command invoking the compiler. If the
compiler return code is less than or equal to four ('LE 4'), indicating that no errors or only
minor errors were detected, the EXEC command is executed, and the procedure ends. If the
return code is greater than four, the EXEC command will be ignored, the FREE command is
executed, and the procedure ends. The terminal returns to command mode, and the user will
probably use the LIST command to display the compiler listing, determine the errors in the
source program, correct them with the EDIT command, and reinvoke the procedure for another
compilation. Figure 22 shows the modified PLIP command procedure. A DELETE command has
been added for the object module, since it is not executable. Figure 23 shows a use of the
procedure for a successful compilation. The LIST operand is specified to display each command
as it is executed.

Command Procedures 93

PROC 1,NAME
ALLOCATE DATASET(&NAME .. PLI) FILE(SYSIN)
ALLOCATE DATASET(&NAME .. LIST) FILE(SYSPRINT) BLOCK(125) SPACE(300,100)
ALLOCATE DATASET(&NAME .. OBJ) FILE(SYSLIN) BLOCK(80) SPACE(250,100)
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)
CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO'
WHEN SYSRC(LE 4) EXEC LDGO '&NAME.'LIST
FREE FILE(SYSUT1,SYSUT3)
DELETE &NAME .. OBJ
END

Figure 22. A Command Procedure for a CompUe-Load-GO Sequence

exec plif 'derv' list
ALLOCATE DATASET(DERV.PLI) FILE(SYSIN)
ALLOCATE DATASET(DERV.LIST) FILE(SYSPRINT) BLOCK(80) SPACE(300,100)
ALLOCATE DATASET(DERV.OBJ) FILE(SYSLIN) BLOCK(80) SPACE(250,100)
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)
CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO'
WHEN SYSRC(LE 4) EXEC LDGO 'DERV' LIST
FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)
ALLOCATE DATASET(*) FILE(SYSIN)
ALLOCATE DATASET(*) FILE(SYSPRINT)
LOADGO DERV.OBJ PLILIB

Figure 23. Using a Compile-Load-Go Command Procedure

94 OS/VS2 TSO TenninaI User's Guide (VS2 Release 2)

" -,
' ,._ .. ,)

•

(
'~""

l ,.
........... '.

Where more than one page reference is given, the
major reference is first.

Indexes to systems reference library manuals are
consolidated in the OS/VS2 Master Index,
GC28-0663. For additional information about any
subject in this index, refer to other publications
listed for the same subject in the Master Index.

abbreviating keyword operands 14
abend, using TEST command after 81
account number 27
addressing restrictions for testing 77
allocation

data set 62
terminal 92

assigning
an alias name 57
data set attributes 64

attention interruption 17

basic TSO information
data set naming conventions 22
system - provided aids 17
terminals 12
TSO commands 13

breakpoints
establishing 78
removing 78

changing
data areas 80
instructions 80
register contents 80

character deletion 12
command procedure

complier 85
conditional 89
creating 83
definition 83
documenting 87
,private library 84
statements 83
symbolic values 86
writing 84

command qualifiers 58
complier data set names 66
compiling a program 66
creating

a data set 37
a program 65
an updated copy of a data set 55

current line pointer '
finding 41
positioning 42

data set
allocation 62
assigning attributes 64
creatmg '37
creating an updated copy 55

default names 24
deleting 60
inserting data 45
naming conventions 22
partitioned 25
passwords 25
protecting 59
types 26
renaming 57

replacing data 47
saving 56
storing a new data set 54
updating 44

default
d.ata set names 24
descriptive qualifiers 24
tab settings 39

defining operational characteristics 30
deleting data from a data set 44
delimiters 15
descriptive qualifiers 22
displaying

session time used 33
storage areas 79

documenting a command procedure 87

edit mode 35
EDIT subcommand functions 36
ending

a command procedure 90
a terminal session 34
edit functions 56

entering
data at a terminal 35
subcommands 35

exceptions to data set naming comventions 22
executing

a program 69
a program at a terminal 61
a program under TEST

finding the current line pointer 41
forcing execution of program subroutines 81
freeing an allocated data set 65

HELP command 20
HELP syntax 21

identifying
data sets 37
yourself to the system 27

informational messages 20
input mode 35
inserting data in a data set 45
introduction 11

keyword
abbreviating 14
operands 14
symbolic values 87

line deletion 12
line by line data entry 13
link editing a compiled program 67
listing

data set contents 53
data set information 59

loading a program 71
logging - on 29

messages
broadcast 20
informational 20
mode 18
prompting 19

Index

Index 95

mode
edit 35
input 35
messages 18
switching modes 36

nested procedures 92

operands
abbreviating 14
keyword 14
positional 14

operational characteristics
defining 30
terminal 30
user profile 30

partitioned data sets 25
passwords 25
performance group 27
positional

operands 14
symbolic value 87

positioning the current line pointer 42
procedure name 27
program product compilers 61
prompting messages 19
protecting a data set 59

qualifiers, common 58
quoted string notation 51

receiving broadcast messages 31
renaming

a data set 57
a partitioned data set member 57
common qualifiers 58

renumbering lines of data 52
replacing data in a data set 47

saving updates to a data set 56

96 OS!VS2 TSO Terminal User's Guide (VS2 Release 2)

sending messages 32
specifying data set passwords 25
storing a new data set 54
subcommands

description 15
of TEST 77

summary of amendments 9
symbolic values

command procedures 86
default 87
keyword 87
optional 87
positional 87
symbolic substitution 88

syntax
interpretation of HELP 21
notation conventions 15

SYSRC operand of WHEN 89

tab settings 39
terminal

characteristics 30
entering information 12
standard conventions 12
using 12

TEST subcommands 77
testing a program at terminal 74
time, session 33
TSO commands, using 13

updating a data set 44
user

attributes 29
identification 22
profile 30

user - supplied name 22
using

data set naming conventions 22
system - provided aids 17
terminals 12
TSO commands 12

WHEN statement 83

•

(~ .•... "

..

GC28-0645-1

lr~~
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

\
... ,

0 en
< en
I\.)

-I en
0
-I
(I) ..,
3
:;' / ,
~

C
VI
(I) ..,
VI-

C)
c a:
(I)

en
w

'" 0
to>
~

"tJ
::::!.
::l
rot
(I)
C.

::l

C
en
~

C)
(")
I\.)
(X)

6
~
91

..

. ,.

t

OS/VS2 TSO Terminal User's Guide

GC28·0645·1

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional pUblications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? - __ _
Number of latest Technical Newsletter (if any) concerning this publication: ____________ _
Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. Elsewhere, an
IBM office or representative will be happy to forward your comments.

READER'S
COMMENT
FORM

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

1-

I
Fold Fold

- - ----'- - - - ---- - -----~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class
Permit 81
Poughkeepsie
New York

I
I
I
I

I
I
I
I
I
I
I
1

'I
-----------------------~

Fold

l1~~,
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

"

0
en -< en
I\,)

~ en
0
~
(!)
~

2.
::J
~ /'
C I

II) " (!) '",." ,
~

","

G)
c
0.:
(!)

en
w
-.....I
0
W
co

~
::J
.-+
(!)

c..
::J

C en
~

G)
("')
I\,)
(X)

6
0)
~

~

C.---')

