
Systems

GC26-3830-1
File No. S370-30

OS /VS 2 System
Programming Library:
Data Management

Release 3

Second Edition (February 1975)

This edition replaces the previous edition (numbered GC26-383f)..0) and makes that edition
obsolete.

This edition applies to Release 3 of OS/VS2 and to all subsequent releases of that system
unless otherwise indicated in new editions or technical newsletters. (Information on the
Mass Storage System is only for planning purposes until the availability of that product.)

Significant system changes are summarized under "Summary of Amendments" following
the list of figures. In addition, miscellaneous editorial and technical changes have been
made throughout the publication. Each technical change is marked by a vertical line to the
left of the change.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest Virtual Storage Supplement (to IBM System/360 and System/370 Bibliography),
GC20-000I. and the technical newsletters that amend the bibliography, to learn which
editions and technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms forreaocls comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, System Development
Division, LDF Publishing-Department 104, 1501 California Avenue, Palo Alto,
California 94304. All comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1974, 1975

PREFACE

Prerequisite Reading

This publication provides information on how to modify and extend the data
management capabilities of the OS/VS2 system control program; the
intended audience is system programmers.

Some topics included are:

• Using catalog management macro instructions

• Maintaining the volume table of contents

• Executing your own channel programs

• Using XDAP to read and write data sets on direct-access devices

• Password-protecting your data sets

The OS/VS2 system control program provides simpler ways (for example,
access-method services, job control language, utility programs, access-method
routines) to do each of these things. The information presented in this book
(consisting of macro specifications and how-to information) is intended to
provide greater flexibility in using the data management capabilities of
OS/VS2.

Other topics presented are:

• Using system macro instructions to refer to, validate, and modify system
data areas

• Adding to the image library and retrieving FCB images

Readers are expected to understand how to:

• Code programs in assembler language as described in
OS/VS - DOS/VS - VM/370 Assembler Language, GC33-4010.

• Use the standard linkage conventions as described in OS/VS2 Supervisor
Services and Macro Instructions, GC28-0683.

• Maintain the catalog and VTOC as described in as/VS2 Access Method
Services, GC26-3841, as/vs Utilities, GC35-0005, and as/vs Data
Management Services Guide, GC26-3783.

• Use the access methods to do input/output using the data management
macros as described in OS / VS Data Management Services Guide,
GC26-3783, and OS/VS Data Management Macro Instructions,
GC26-3793.

• Protect data sets as described under "IEHPROGM" in OS/VS Utilities,
GC3S-000S.

More specific prerequisite reading is listed at the beginning of each chapter, as
it relates to the particular topic.

Preface 3

Related Reading

How to Use This Book

All of the chapters of this publication refer to OS/VS2 System
Programming Library: Handbook for Debugging, GC28-0632, which
contains detailed descriptions of system control blocks and common work
areas. More specific related reading is listed at the beginning of each chapter,
as it relates to the topic under discussion.

You can use the chapter on catalog management macro instructions to
retrieve catalog information or add, delete, and update catalog entries for
non-VSAM data sets.

If you want to read a data set control block, rename a data set, or delete a
data set using the system macros, the chapter on maintaining the volume table
of contents (VTOC) provides macro specifications, coding examples, and
how-to information.

If you want to code your own channel programs to modify the control
program or to provide support for unsupported I/O devices, the chapter on
using EXCP provides detailed descriptions of the control blocks you must
provide and the functions you must perform.

Macro specifications and how-to information are provided for using the
XDAP macro instruction to read from and write to direct-access devices
without using access-method routines (SAM, ISAM, or BDAM).

If you want to use data set protection for your facility, the chapter on data set
protection:

1. Tells how to build a PASSWORD data set.

2. Describes how the system control program responds to job control
language and IEHPROGM utility statements in maintaining the
PASSWORD data set.

3. Tells you how to use the PROTECT macro instruction to maintain (add
records to, delete records from, changes records in) and read the
PASSWORD data set.

The chapter on system macro instructions provides how-to information and
macro specifications for:

1. Using system mapping macros to allow you to access system control blocks
and work areas using symbolic names.

2. Examining device-type information in unit control blocks (UCBs).

3. Modifying a job file control block (JFCB) before opening a data set.

4. Stopping the processing of specified I/O requests, pemlanently or
temporarily.

5. Protecting your data sets by verifying data extent blocks.

You can use the coding examples and how-to information in the last chapter
to help you add a universal character set (UCS) image or a forms control
buffer (FCB) image to the system image library (SYS1.1N.lAGELIB).

4 OS/VS2 System Programming Library: Data Management

CONTENTS

Preface .. 3
Prerequisite Reading .. 3
Related Reading ... 4
How to Use This Book ... 4

Figures ... 9

Summary of Amendments .. 11
Release 3 ... 11
Release 2 ... 11

Using Catalog Management Macro Instructions ... 13
Retrieving Information from a VS2 Catalog .. 13

Retrieving Information by Data Set Name (LOCATE and CAMLST
NAME) .. 14

Retrieving Information by Generation Data Set Name (LOCATE and
CAMLST NAME) .. 16

Retrieving Information by Alias (LOCATE and CAMLST NAME) 17
Working with Non-VSAM Catalog Entries .. 18

Cataloging a Non-VSAM Data Set (CATALOG and CAMLST CAT) .. 19
Uncataloging a Non-VSAM Data Set (CATALOG and CAMLST

UNCAT) ... 20
Recataloging a Non-VSAM Data Set (CATALOG and CAMLST

RECAT) .. 21

Maintaining the Volume Table of Contents .. 25
Introduction .. 25

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH) 26
Reading a DSCB by Actual Device Address (OBTAIN and CAMLST
SEEK) ... 28

Deleting a Data Set (SCRATCH and CAMLST SCRATCH) 29
Renaming a Data Set (RENAME and CAMLST RENAME) 31

Executing Your Own Channel Programs (EXCP) ... 35
Executing Channel Programs in System and Problem Programs 36

System Use of EXCP ... 36
Use of EXCP in Problem Programs ... 37
EXCP Operations in a Nonpageable Address Space 37

EXCP Requirements .. 37
Channel Program ... 37
Control Blocks ... 38

Input/Output Block (lOB) .. 38
Event Control Block (ECB) .. 38
Data Control Block (DCB) ... 38
Data Extent Block (DEB) ... 38

Channel Program Execution ... 39
Initiation of the Channel Program .. 39
Modification of a Channel Program during Execution 40
Completion of Execution ... 40
Interruption Handling and Error Recovery Procedures 41

Appendages ... 42
Start I/O (SIO) Appendage ... 43
Program Controlled Interruption (PCI) Appendage 43
End-of-Extent (EOE) Appendage ... 44
Channel-End (CHE) Appendage ... 45

Contents 5

Abnormal-End (ABE) Appendage .. 45
Making Your Appendages Part of the System .. 47

The Authorized Appendage List (IEAAPPOO) 0 ••••••••••••••••••••••••• 47
Block Multiplexor Channel Programming Notes .. 48
Macro Specifications for Use with EXCP " 49

DCB-Define Data Control Block for EXCP ... 50
Foundation Block Parameters .. 50
EXCP Interface Parameters .. 52
Foundation Block Extension and Common Interface Parameters 52
Device-Dependent Parameters .. 54

OPEN-Initialize Data Control Block ... 57
EXCP-Execute Channel Program ... 60
ATLAS-Assigning an Alternate Track and Copying Data from the
Defective Track .. 60

Using ATLAS .. 62
Operation of the ATLAS Program .. 63

EOV -End of Volume ... 64
CLOSE-Restore Data Control Block .. 65

Control Block Fields ... 66
Input/ Output Block Fields ... 66
Event Control Block Fields ... ; 68
Data Extent Block Fields ... 69

Executing Fixed Channel Programs in Real Storage (EXClPVR) 69
Building the List of Data Areas to be Fixed ... 70
Page Fix and Start-I/O (SIO) Appendage ... 71
Page Fix List Processing ... 71

SIO Appendage .. 71

Using XDAP to Read and Write to Direct-Access Devices 73
Introduction .. 73
XDAP Requirements ... 74
Macro Specifications for Use with XDAP ... 74

DCB-Define Data Control Block .. 74
OPEN-Initialize Data Control Block ... 74
XDAP-Execute Direct-Access Program .. 75
EOV-End of Volume ... 77
CLOSE-Restore Data Control Block .. 77

Control Blocks Used with XDAP ... 78
Event Control Block .. 78
Input/ Output Block ... 78
Direct-Access Channel Program .. 79

Conversion of Relative Block Address to Actual Device Address 79
Conversion of Actual Device Address to Relative Track Address 80
Obtaining Sector Number of a Block on a Device with the RPS Feature 81

Password Protecting Your Data Sets ... 83
lntroduction .. 83

PASSWORD Data Set Characteristics ... 85
Creating Protected Data Sets ... 85

Tape Volumes Containing More Than One Password-Protected
Data Set ... 85

Protection Feature Operating Characteristics .. 86
Termination of Processing ... 86
Volume Switching ... 86
I)ata Set Concatenation ... 86
SCRATCH and RENAME Functions ... 87

6 OS/VS2 System Programming Library: Data Management

Counter Maintenance .. 87
Using the PROTECT Macro Instruction to Maintain the PASSWORD
Data Set : .. 87

PASSWORD Data Set Characteristics and Record Format When You
Use the PROTECT Macro Instruction .. 87
Number of Records for Each Protected Data Set 87
Protection Mode Indicator ... 88

PROTECT Macro Specification ... 88
Return Codes From the PROTECT Macro ... 88

System Macro Instructions .. 93
Introduction .. 93
Mapping System Data Areas .. 93

IEFUCBOB-Mapping the UCB .. 93
IEFJFCBN-Mapping the JFCB " .. 94
CVT -Mapping the CVT " .. 94

Obtaining I/O Device Characteristics .. 94
DEVTYPE Macro Specification .. 94
Device Characteristics Information .. 95
Output for Each Device Type ." .. 96

Reading and Modifying a Job File Control Block .. 98
OPEN-Initialize Data Control Block for Processing the JFCB 99
RDJFCB-Read a Job File Control Block .. 100

Ensuring Data Security by Validating the Data Extent Block 101
DEBCHK-Macro Specification ... 103

Purging and Restoring I/O Requests .. 105
PURGE-Halt or Finish I/O-Request Processing 107
Modifying the lOB Chain ... 108
RESTORE-Reprocess I/O Requests ... 109

Adding to the Image Library and Retrieving FeB Images 111
Adding a UCS Image to the Image Library .. 111
Adding an FCB Image to the Image Library .. 113
Retrieving an FCB Image ... 115

Index ... 117

Contents 7

FIGURES

Figure 1. Entry Points. Returns, and Available Work Registers for
Appendages ... 42

Figure 2. Data Control Block for EXCP (After Open) 51
Figure 3. Input/Output Block Format .. 67
Figure 4. Event Control Block After Posting of Completion Code

(EXCP) ... 69
Figure 5. Event Control Block After Posting of Completion Code

(XDAP) .. 78
Figure 6. The XDAP Channel Programs ... 79
Figure 7. Parameter List for ADD Function ... 89
Figure 8. Parameter List for REPLACE Function 90
Figure 9. Parameter List for DELETE Function 91
Figure 10. Parameter List for LIST Function .. 92
Figure 11. Return Codes from the PROTECT Macro Instruction 92
Figure 12. Macro Definition, JCL, and Utility Statements for

Adding the PURGE Macro to Your Macro Library 106
Figure 13. Macro Definition, JCL, and Utility Statements for

Adding the RESTORE Macro to Your Macro Library 106
Figure 14. The PIRL and lOB Chain .. 109

Figures 9

SUMMARY OF AMENDMENTS

Release 3

Mass Storage System (MSS)

Release 2

Some restrictions are given for using the RDJFCB macro instruction if the
data set resides on MSS virtual volumes.

MSS virtual devices are not supported by the ATLAS macro instruction.

The MSS virtual volume DEVD code for PCI appendage is provided in the
EXCP section of the manual.

Reduction of Services Done by Catalog Management Macros

These services are no longer done by catalog management macros:

• Reading a block by relative block address

• Building and deleting indexes

• Connecting and disconnecting control volumes

• Cataloging a data set by creating required index levels

• Uncataloging a data set and removing index levels

Protected Use of Appendages

JFCB Modifications

New Purge Options

The chapter "Executing Your Own Channel Programs (EXCP)" explains,
under "The Authorized Appendage List (IEAAPPOO)," how to prevent
unauthorized access to an appendage by putting its name in SYS l.P ARMLIB.

Some JFCB modifications can compromise the security of a
password-protected data set. The section "Reading and Modifying a Job File
Control Block" in "System Macro Instructions" lists them.

You can now specify additional options with the PURGE macro instruction
by using a longer parameter list. See "PURGE-Halt or Finish I/O-Request
Processing" in the chapter "System Macro Instructions."

Procedure for Retrieving an FCB Image

If you want to modify an FCB image in virtual storage before loading it into a
forms control buffer, the chapter "Adding to the Image Library and
Retrieving FCB Images" gives a sequence of macro instructions that you can
use to read the FCB image into virtual storage. See "Retrieving an FCB
Image" in that chapter.

Summary of Amendments II

USING CATALOG MANAGEMENT MACRO
INSTRUCTIONS

Using catalog management macro instructions, you can do the following
things:

• Retrieve information from a VS2 catalog. (Three kinds of catalogs qualify
as VS2 catalogs: the VS2 master catalog, user (or private) catalogs, and
CVOLs (control volumes) that are brought to an OS/VS2 system from
other OS systems.)

• Catalog non-VSAM data sets.

• Uncatalog non-VSAM data sets.

• Recatalog non-VSAM data sets.

Before using the information in this chapter, you should be familiar with the
information contained in the following publications:

• OS/VS - DOS/VS - VM/370 Assembler Language, GC33-4010, which
contains information you will need to code programs in the assembler
language.

• OS/VS2 Access Method Services, GC26-3841, which tells how to use
programs that offer the same services as catalog management macros and
additional services that catalog management macros cannot provide.

• OS/VS2 JCL, GC28-0692, which tells how to catalog and uncatalog data
sets using job control language statements.

Specifications for coding the macro instructions are presented with each
function to be performed. Accompanying the descriptions are coding
examples and programming notes; exceptional return codes follow the coding
examples. In the functional descriptions, offsets into data areas are numbered
from zero (the first byte is byte zero).

Retrieving Information from a VS2 Catalog
To retrieve information from a VS2 catalog, use the LOCATE and CAMLST
macro instructions. You specify the entry you want to read into your work
area by using the fully qualified name of a data set. When you specify a fully
qualified data set name, a list of volumes on which the data set resides will be
read into your work area. This volume list always begins with a 2-byte entry
that is the number of volumes in the list. If the data set resides on more than
20 volumes, only the first 20 volumes are returned. To get a listing of more
than 20 volumes, it's necessary to use access method services.

If you specify a partially qualified data set name, no information will be
returned to your work area.

Using Catalog Management Macros 13

Retrieving Information by Data Set Name (LOCATE and
CAMLST NAME)

When you specify a data set name, a volume list is built in your work area. A
volume list consists of an entry for each volume on which part of the data set
resides; it is preceded by a 2-byte field that contains a count of the number of
volumes in the list. The count field is followed by a variable number of
12-byte entries. Each 12-byte entry consists of a 4-byte device code, a 6-byte
volume serial number, and a 2-byte data set sequence number. As many as 20
of these 12-byte entries can be built in your work area. (Device codes are
presented in OS/VS2 System Programming Library: lIandbook for
Debugging.)

If the named data set is stored on only one volume, bytes 252-254 of your
area may contain the relative track address of the DSCB for that data set;
otherwise these bytes are zero. Byte 255 contains zeros.

The format is:

[symbol] LOCATE
listname CAMLST

list-addrx

list-addrx
NAME
, dsname-relexp
" area-relexp

points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

NAME
this operand must be coded as shown to retrieve infonmation from a VS2
catalog by name.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The
area that contains the name must be 44 bytes long. The name may be
defined by a C-type Define Constant (DC) instruction.

area-relexp
specifies the virtual storage location of your 265-byte work area, which
you must define. The work area must begin on a doubleword boundary.
The first 256 bytes of the work area will contain a vollllme list that is built
from the catalog. If a non-VSAM data set resides on one volume, bytes
252-254 may contain the relative track address of the DSCB. This address
is relative to the beginning of the volume. (If the return code in register 0 is
not 0, the work area will contain zeros.)

14 OS/VS2 System Programming Library: Data Management

Example: In the following example, the catalog entry containing a list of the
volumes on which data set A.B resides is read into virtual storage. The search
for the catalog entry starts in the STEPCAT or JOBCAT (JCL-specified user
catalogs), if either is specified, and continues in the master catalog. If A.B is
not found in the STEPCAT, JOBCAT, or master catalog and a user catalog
has an alias name A, it is also searched.

* INDAB
AB
LOCAREA

*
*

LOCATE

Check Returns

CAMLST
DC
DS
DS

INDAB

NAME,AB"LOCAREA
CL44'A.B'
OD
265C

READ CATALOG ENTRY
FOR DATA SET A. B
INTO VIRTUAL STORAGE
AREA NAMED LOCAREA.
LOCAREA MAY ALSO
CONTAIN A 3-BYTE
TTR

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to search
for a catalog entry using the name of a data set. AD, the second operand,
specifies the virtual storage location of a 44-byte area into which you have
placed the fully qualified name of a data set. LOCAREA, the fourth operand,
specifies a 265-byte area you have reserved in virtual storage.

After execution of these macro instructions, the 265-byte area contains a
volume list or a volume control block for the data set A.B. If data set A.B
resides on only one volume, bytes 252-254 of your area may contain the
relative track address of the DSCB for data set A.B.

Control will be returned to your program at the next executable instruction
after the LOCATE macro instruction. If the block has been successfully read
from the catalog, register 15 will contain zeros. Otherwise, register 15 will
contain one of the following return codes.

Code Meaning

4 Either the required catalog volume was not mounted or is not open; register 0
will be set to O.

8 Either the catalog entry could not be found (register 0 will be set to 0), or the
operator did not supply the correct password for a password-protected VSAM
data set (register 0 will be set to 56).

20 A syntax error exists in the name (for example, nine characters, a double
delimiter, blank name field, or a qualified name when a simple name is
needed).

24 An uncorrectable error was found when processing the catalog. Register 0 will
contain the catalog return code.

28 The relative track address (TTR) cannot be supplied to LOCATE.

Using Catalog Management Macros 15

Retrieving Information by Generation Data Set Name (LOCATE
and CAMLST NAME)

You specify the name of a generation data set by using the fully qualified
generation index name and the relative generation number of the data set.
The value of a relative generation number reflects the position of a data set in
a generation data group. The following values can be us(~d:

• Zero--specifies the latest data set (highest generation number) cataloged
in a generation data group.

• Negative number-specifies a data set cataloged before the latest data set.

• Positive number-specifies a data set not yet cataloged in the generation
data group.

When you use zero or a negative number as the relative generation number, a
volume list is built in virtual storage and the relative generation number is
replaced by the absolute generation name.

When you use a positive number as the relative generation number, an
absolute generation name is created and replaces the relative generation
number. Nothing is read into your work area, because there are no entries in
the catalog.

The format is:
r--------.------.-----~---

[symbol] LOCATE
listname CAMLST

list-addrx

list-addrx
NAME
, dsname-relexp
" area-relexp

points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

NAME
this operand must be coded as shown in order to read a block from the
catalog by generation data set name.

dsname-relexp
specifies the virtual storage location of the name of the generation index
and the relative generation number. The area that contains these must be
44 bytes long. The name may be defined by a C-type Define Constant
(DC) instruction.

area-relexp
specifies the virtual storage location of your 265-byte work area, which
you must define. The work area must begin on a doubleword houndary.
The first 256 bytes of the work area will contain a volume list that is built
from the catalog. If the data set resides on one volume, bytes 252-254 may
contain the relative track address of the DSCB. This address is relative to
the beginning of the volume.

16 OS/VS2 System Programming Library: Data Management

Example: In the following example, the list of volumes that contain generation
data set A.PA Y(-3) is read into virtual storage. The search for the catalog
entry starts in the STEP CAT or JOBCAT (JCL-specified user catalogs), if
either is specified, and continues in the master catalog. If A.B is not found in
the STEPCAT, JOBCAT, or master catalog and a user catalog has an alias
name A, it is also searched.

LOCATE INDGX READ CATALOG ENTRY

* FOR

Check Returns

INDGX CAMLST NAME,APAY"LOCAREA DATA SET A.PAY (-3)
APAY DC CL44' A. PAY(-3)' INTO YOUR STORAGE
LOCAREA DS OD AREA NAMED LOCAREA.

DS 265C LOCAREA MAY ALSO

* CONTAIN A 3-BYTE

* T'TR

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to search
the catalog for a catalog entry by using the name of a data set. APA Y, the
second operand, specifies the virtual storage location of a 44-byte area into
which you have placed the name of the generation index and the relative
generation number of a data set in the generation data group. LOCAREA,
the fourth operand, specifies a 265-byte area you have reserved to receive the
catalog information.

After execution of these macro instructions, your 265-byte area contains: the
catalog entry for generation data set A.PA Y(-3). If data set A.PA Y(-3)
resides on one volume, bytes 252-254 of your area may contain the relative
track address of the DSCB for that data set (relative to the beginning of the
volume). In addition, the system will have replaced the relative generation
number that you specifieq in your 44-byte area with the data set's absolute
generation name. Control will be returned to your program at the next
executable instruction after the LOCATE macro instruction. If the entry has
been located and read successfully, register 15 will contain zeros. Otherwise,
register 15 will contain one of the return codes described in the previous
example.

Retrieving Information by Alias (LOCATE and CAMLST NAME)

For each of the preceding functions, you can specify an alias as the name of a
data set. Each function is performed exactly as previously described, with one
exception: the alias name specified is replaced by the true name.

The format is:

[symbol] LOCATE list-addrx
listname CAMLST NAME

, dsname-relexp
" area-relexp

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

NAME
this operand must be coded_as shown to retrieve information from a VS2
catalog.

Using Catalog Management Macros 17

dsname-relexp
specifies the virtual storage location of a fully qualified data set name, the
first or only name of which is the alias. The area that contains the name
must be 44 bytes long. The name may be defined by a C-type Define
Constant (DC) instruction.

area-relexp
specifies the virtual storage location of your 265-byte work area, which
you must define. The work area must begin on a double word boundary.
The first 256 bytes of the work area will contain a volume list that is read
from a VS2 catalog. If the data set resides on one volume, bytes 252-254
may contain the relative track address of the DSCB. This address is relative
to the beginning of the volume.

Example: In the following example, the catalog entry containing a list of the
volumes on which data set A.B.C resides is read into virtual storage. (Data set
A.B.C, however, is addressed by an alias name, X.B.C.) The search for the
catalog entry starts in the STEPCAT or JOBCAT (JCL-specified user
catalogs), if either is specified, and continues in the master catalog. If X.B.C
is not found in the STEPCA T, JOBCA T, or master catalog and a user catalog
has an alias name X, it is also searched.

LOCATE INDAB READ CATALOG ENTRY

* FOR

Check Returns

INDAB CAMLST NAME,ABC"LOCAREA DATA SET X.B.C INTO
ABC DC CL44 ' X. B . C. ' VIRTUAL STORAGE AREA
LOCAREA DS OC NAMED LOCAREA.

DS 265C LOCAREA MAY ALSO

* CONTAIN 3-BYTE TTR

The LOCATE mac.ro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to search
the catalog for an entry using the name of a data set. ABC, the second
operand, specifies the virtual storage location of a 44-byte area into which
you have placed the fully qualified name of a data set. (In this case, data set
A.B.C is addressed by its alias X.B.C.) LOCAREA, the fourth operand,
specifies a 265-byte area you have reserved in virtual storage.

After execution of these macro instructions, the 265-byte area contains: a
volume list for the data set A.B.C. If data set A.B.C resides on only one
volume, bytes 252-254 of your area may contain the relative track address of
the DSCB for data set A.B.C (relative to the beginning of the volume).

Working with Non-VSAM Catalog Entries
You can catalog, uncatalog, and recatalog non-VSAM data sets by using
combinations of the CATALOG and CAMLST macro instructions.
CA T ALOG macro instructions are used to point to CAMLST macro
instructions; CAMLST macro instructions are used to specify cataloging
options.

18 OS/VS2 System Programming Library: Data Management

Cataloging a Non-VSAM Data Set (CATALOG and
CAMLSTCAT)

The format of the CATALOG and CAMLST macros is:

[symbol] CATALOG list-addrx
listname CAMLST CAT

, name-relexp
" vollist-relexp
,[DSCBTTR= dscb ttr-relexp]

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

CAT
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully qualified name of a data
set. The name cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by blanks. The name may be defined by a
C-type Define Constant (DC) instruction.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list.
The list must begin on a halfword boundary and consist of an entry for
each volume on which the data set is stored. The first two bytes of the list
indicate the number of entries in the volume list; the number cannot be
zero. Each 12-byte volume list entry consists of a 4-byte device code, a
6-byte volume serial number, and a 2-byte data set sequence number. The
sequence number is always zero for direct access volumes. (Device codes
are presented in. OS/VS2 System Programming Library: Handbook for
Debugging.)

DSCB1TR=dscb ttr-relexp
specifies the virtual storage location of the 3-byte relative track address
(TTR) of the format-l data set control block (DSCB) for a data set that
resides on only one volume. The address is relative to the beginning of the
VTOC.

Using Catalog Management Macros 19

Example: In the following example, the non-VSAM data set named A.B.C is
cataloged. The data set is stored on two volumes.

CATALOG ADDABC

Check Returns

CATALOG DATA SET A. B. C.

ADDABC
DSNAME
VOLUMES

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC

CAT,DSNAME"VOLUMES
CL6 ' A. B. C' ONE BLANK FOR DELIMITER
H' 2 ' DATA SET ON TWO VOLUMES
X'30C02008' 2314 DISK DEVICE CODE
CL6' 000014' VOLUME SERIAL NUMBER
H' 0 ' DATA SET SEQUENCE NUMBER
X'30C02008' 2314 DISK DEVICE CODE
CL6' 000015' VOLUME SERIAL NUMBER
H'O' SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro instruction.
CAT, the first operand of CAMLST, specifies that a data set is to be
cataloged. DSN AME, the second operand, specifies the virtual storage
location of the area in which the name A.B.C was placed. VOLUMES, the
fourth operand, specifies the virtual storage location of the volume list that
was built.

If there is a STEPCAT or JOBCAT (JCL-specified user catalogs), data set
A.B. C will be cataloged in whichever is specified. If there is neither, A.B. C
will be cataloged in the master catalog, unless a user catalog has an alias name
A and is connected to the master catalog; then A.B.C will be cataloged in the
user catalog. A.B. C cannot be cataloged in any catalog already having an
entry named A.

Control will be returned at the instruction following the CATALOG macro
instruction. If A.B. C was successfully cataloged, register 15 will contain
zeros. Otherwise, register 15 will contain one of the following return codes.

Code Meaning

4 Either the required catalog volume was not mounted or is not open.

8 The existing catalog structure is inconsistent with the operation requested. (If
register 0 is set to 0, the catalog entry already exists.)

20 Space is not available on the catalog.

28 An uncorrectable error was encountered when processing the catalog. (If
register 0 is set to 0, an error was found in the catalog parameter list.)

Uncataloging a Non-VSAM Data Set (CATALOG and
CAMLST UNCAT)

When the UNCAT operand of the CAMLST macro instruction is used, a data
set reference is removed.

The format of the CATALOG and CAMLST macros is:

~s~_m_b_O_l]~C_A_T_A_L_O_G __ ~I~_t-_ad_d_~ _________________________ l listname CAMLST UNCAT
, name-relexp

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

UNCAT
this operand must be coded as shown.

20 OS!VS2 System Programming Library: Data Management

name-relexp
specifies the virtual storage location of the fully qualified name of a data
set or index level. The name cannot exceed 44 characters. If the name is
less than 44 characters, it must be followed by blanks. The name may be
defined by a C-type Define Constant (DC) instruction.

In the following example, the catalog entry for data set A.B. C is removed a
from a VS2 catalog. The search for the catlaog entry starts in the STEPCA T
or JOBCAT (JCL-specified user catalogs), if either is specified, and continues
in the master catalog. If A.B.C is not found in the STEPCAT, JOBCAT, or
master catalog and a user catalog has an alias name A, it is also searched.

*
*

REMOVE
DSNAME

CATALOG REMOVE

Check Returns

CAMLST
DC

UNCAT, DSNAME
CL6'A.B.C'

REMOVE REFERENCES TO
DATA SET A.B.C FROM
CATALOG

ONE BLANK FOR DELIMITER

The CATALOG macro instruction points to the CAMLST macro instruction.
UNCAT specifies that references to a data set be removed from the catalog.
DSNAME specifies the virtual storage location of the area into which you
have placed the fully qualified name of the data set whose references are to
be removed.

Control will be returned to your program at the instruction following the
CATALOG macro instruction. If your data set has been successfully
uncataloged, register 15 will contain zeros. Otherwise, register 15 will contain
one of the following return codes.

Code Meaning

4 Either the required catalog volume was not mounted or is not open.

8 The existing catalog structure is inconsistent with the operation requested. (If
register 0 is set to 0, there was no catalog entry for the specified data set. If
register 0 is set to 60, the uncatalog request was for a VSAM data set.)

28 An uncorrectable error was encountered when processing the volume. (If
register 0 is set to 0, an error was found in the catalog parameter list.)

Recataloging a Non-VSAM Data Set (CATALOG and
CAMLST RECAT)

You can recatalog a cataloged non-VSAM data set by using the CATALOG
and CAMLST macro instructions. Recataloging is usually necessary if a data
set is extended to a new volume.

As in the original cataloging procedure, you must build a complete volume list
in virtual storage. This volume list consists of an entry for each volume on
which the data set resides. The first 2 bytes of the list indicate the number of
entries in the list; the number may not be zero. Each 12-byte volume pointer
consists of a 4-byte device code, a 6-byte volume serial number, and a 2-byte
data set sequence number. The sequence number is always zero for direct
access volumes. (Device codes are presented in OS/VS2 System
Programming Library: Handbook for Debugging.)

Using Catalog Management Macros 21

The format of the CATALOG and CAMLST macros is:

[symbol] CATALOG
listname CAMLST

list-addrx
RECAT
, name-relexp
" vol list-relexp
,[DSCBTTR= dscb ttr-relexp]

~ _______ L __________ ~ ______________________________________ ~

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

RECAT
this operand must be coded as shown.

name-relexp
specifies the virtual storage location of the fully qualified name of a data
set. The name cannot exceed 44 characters. If the name is less then 44
characters, it must be followed by blanks. The name may be defined by a
C-type Define Constant (DC) instruction.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list.
The area must begin on a half-word boundary.

DSCBTTR=dscb ttr-relexp
specifies the virtual storage location of the 3-byte relative track address
(TTR) of the identifier (format-I) DSCB for a data set that resides on only
one volume. The address is relative to the beginning of the volume.

Example: In the following example, the two-volume data set named A.B.C is
recataloged to add a third volume. An entry is added to the volume list, which
previously contained only two entries.

CATALOG RECATLG RECATALOG DATA SET

* A.B.C ADDING A NEW

* VOLUME

Check Returns

RECATLG CAMLST RECAT ,DSNAME , ,VOLUMES
DSNAME DC CL6'A.B.C' POINTER TO THE VOLUME

* LIST.
VOLUMES DC H'3' FOR DELIMI TER ONE BLANK

* THREE VOLUMES.
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'OOOO14' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'OOOO15' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC X'30C02008' 2314 DISK DEVICE CODE
DC CL6'OOOO16' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro instruction.
RECA T, the first operand of CAMLST, specifies that a data set be
recataloged. DSNAME, the second operand, specifies the virtual storage
location of an area into which you have placed the fully qualified name of the
data set to be recataloged. VOLUMES, the fourth operand, specifies the
virtual storage location of the volume list you have built.

Control will be returned to your program at the instruction following the
CAT ALOG macro instruction. If the data set has been successfully

22 OS/VS2 System Programming Library: Data Management

recataloged, register 15 will contain zeros. Otherwise, register 15 will contain
one of the following return codes.

Code Meaning

4 Either the required catalog volume was not mounted or is not open.

8 The existing catalog structure is inconsistent with the operation requested. (If
register 0 is set to 0, there was no catalog entry for the specified data set. If
register 0 is set to 60, the recatalog request was for a VSAM data set.)

20 Space is not available on the catalog.

28 An uncorrectable error was encountered when processing the catalog. (If
register 0 is set to 0, an error was found in the catalog parameter list.)

Using Catalog Management Macros 23

MAINTAINING THE VOLUME TABLE OF
CONTENTS

Introduction

This chapter contains information on how to read and change the volume
table of contents (VTOC) used on direct-access storage device volumes. The
information consists of how-to information, macro specifications, and coding
examples for the OBTAIN, SCRA T~H, and RENAME macro instructions.

More detailed information about how the routines called by these macros
work is available in OS/VS2 DADSM Logic, SY26-3828.

Before using the information in this chapter you should be familiar with the
information contained in the following publications:

• OS/VS - DOS/VS - VM/370 Assembler Language, GC33-4010, which
contains information you will need in order to code programs in the
assembler language.

• OS/VS Data Management Services Guide, GC26-3783, contains a
general description of direct-access device characteristics and the volume
table of contents.

• OS/VS Utilities, GC35-0005, tells how to use utility programs to maintain
the volume table of contents.

• OS/VS2 System Programming Library: Handbook for Debugging,
GC28-0632, which contains descriptions of (1) the data set control block
(DSCB) formats and (2) the contents of the fields of each DSCB.

In the same way that the catalog management routines keep track of
cataloged data sets, the direct-access device space management (DADSM)

. routines maintain the volume table of contents (VTOC) on direct-access
storage devices. This chapter tells how to use the OBTAIN, SCRATCH, and
RENAME macro instructions. These macros are most commonly used by the
system control program and the data set utility programs (IEHMOVE,
IEBCOPY, and IEHPROGM), but you may use them in your own routines.
The functions you can perform with these macros are:

• Reading a data set control block from the VTOC-OBT AIN

• Deleting a data set~SCRA TCH

• Changing the name of a data set-RENAME

You can read a data set control block (DSCB) into virtual storage by using
the OBTAIN and CAMLST macro instructions. There are two ways to
specify the DSCB that you want to read: by usip.g the name of the data set
associated with the DSCB, or by using the absolute track address of the
DSCB. You must provide a 140-byte data area in virtual storage, into which
the DSCB will be read. When you specify the name of the data set, an
identifier (format-lor format-4) DSCB is read into virtual storage. To read a

I
DSCB other than a format-lor a format-4 DSCB, you must specify an
absolute track address (see second example). (DSCB formats and field
descriptions are contained in OS / VS2 System Programming Library:
Handbook for Debugging.)

Maintaining the Volume Table of Contents 25

You can delete a data set by using the SCRATCH and CAMLST macro
instructions. This causes the DSCBs for the data set to be deleted.

You can change a data set name by using the RENAME and CAMLST macro
instructions. This causes the data set name in the identifier (format-I) DSCB
for the data set to be replaced with new name.

Accompanying the descriptions of the macro instructions are coding
examples, programming notes, and exceptional return code descriptions.

Note: OBTAIN, SCRATCH, and RENAME macro instructions cannot be
used with a SYSIN or SYSOUT data set.

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH)

If you specify a data set name using OBTAIN and the CAlv1LST SEARCH
option, the 96-byte data portion of the identifier (format-I) DSCB and the
absolute track address of the DSCB are read into virtual storage. The absolute
track address is a 5-byte field in the form CCHHR. The absolute track
address field will contain zeros for VSAM and VIO data sets.

[symbol] ODT AIN
Iistname CAMLST

Iist-addrx
SEARCH
, dsname-relexp
, vol-relexp
, wkarea-relexp

L-______ L-________ ~ ______________________________________ __

Iist-addrx
points to the parameter list (labeled Iistname) set up by the CAMLST
macro instruction.

SEARCH
tltis operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The
area that contains the name must be 44 bytes long. The name must be
defined by a C-type Define Constant (DC) instruction. Note: A 44
character DSNAME or X'04' can be used to read a format-4 DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume serial number of
the volume on which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 140-byte work area that you must
define.

26 OS/VS2 System Programming Library: Data Management

Example: In the following example, the identifier (format-I) DSCB for data
set A.B.C is read into virtual storage using the SEARCH option. The serial
number of the volume containing the DSCB is 770655.

*
*

OBTAIN

Check Returns

DSCBABC CAMLST
DSABC DC
VOLNUM DC
WORKAREA DS

DSCBABC READ DSCB FOR DATA
SET A. B. C INTO DATA
AREA NAMED WORKAREA

SEARCH,DSABC,VOLNUM,WORKAREA
CL44'A.B.C' DATA SET NAME
CL6'770655' VOLUME SERIAL NUMBER
140C 140-BYTE WORK AREA

The OBTAIN macro instruction points to the CAMLST macro instruction.
SEARCH, the first operand of CAMLST, specifies that a DSCB be read into
virtual storage, using the data set name you have supplied at the address
indicated in the second operand. DSABC, the second operand, specifies the
virtual storage location of a 44-byte area into which you have placed the fully
qualified name of the data set whose format-l DSCB is to be read.
VOLNUM, the third operand, specifies the virtual storage location of a
6-byte area into which you have placed the serial number of the volume
containing the required DSCB. WORKAREA, the fourth operand, specifies
the virtual storage location of a 140-byte work area into which the DSCB is
to be returned.

Control will be returned to your program at the next executable instruction
following the OBTAIN macro instruction. If the DSCB has been successfully
read into your work area, register 15 will contain zeros. Otherwise, register 15
will contain one of the following return codes:

Code Meaning

4 The required volume was not mounted.

8 The format-l DSCB was not found in VTOC of specified volume.

12 A permanent I/O error was encountered or an invalid format-l DSCB was
found when processing the specified volume.

16 Invalid work area pointer.

After execution of these macro instructions, the first 96 bytes of the work
area contain the data portion of the identifier (format-lor format-4) DSCB;
the next 5 bytes contain the absolute track address (CCHHR) of the DSCB.
These 5 bytes will contain zeros for VSAM or VIO data sets.

Maintaining the Volume Table of Contents 27

Reading a DSCB by Actual Device Address (OBTAIN and
CAMLST SEEK)

You can read any DSCB from a VTOC using OBTAIN and the CAMLST
SEEK option. You specify the SEEK option by coding SEEK as the first
operand of the CAMLST macro and by providing the absolute device address
of the DSCB you want to read, unless the DSCB is for a VIO data set. Only
the SEARCH option can be used to read the DSCB of a VIO data set.

The format is:

[symbol] OBTAIN
listname CAMLST

list-addrx
SEEK
, cchhr-relexp
, vol-relexp
, wkarea-relexp

~------~--------~----------------------.---------------.-

list-addrx
points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

SEEK
this operand must be coded as shown.

cchhr-relexp
specifies the virtual storage location of the 5-byte absolute device address
(CCHHR) of a DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume serial number of
the volume on which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 140-byte work area that you must
define.

Example: In the following example, the DSCB at actual-device address
X'OO 00 00 02 07' is returned in the virtual storage location READ AREA ,
using the SEEK option. The DSCB resides on the volume with the volume
serial number 108745.

*
*
*

OBTAIN

Check Returns

ACTADDR CAMLST
CCHHR DC
VOLSER DC
READAREA DS

ACTADDR READ DSCB FROM
LOCATION SHOWN IN CCHHR
INTO STORAGE AT LOCATION
NAMED READAREA

SEEK,CCHHR,VOLSER,READAREA
XL5'0000000107' ABSOLUTE TRACK ADDRESS
CL6' 108745' VOLUME SERIAL NUMBER
140C 140-BYTE WORK AREA

The OBTAIN macro points to the CAMLST macro. SEEK, the first operand
of CAMLST, specifies that a DSCB be read into virtual storage. CCHHR, the
second operand, specifies the storage location that contains the 5-byte
actual-device address of the DSCB. VOLSER, the third operand specifies the
storage location that contains the volume serial number of the volume on
which the DSCB resides. The fourth operand, READ AREA , specifies the
storage location to which the 140-byte DSCB is to be returned.

Control will be returned to your program at the next executable instruction
following the OBTAIN macro instruction. If the DSCB has been successfully

28 OS/VS2 System Programming Library: Data Management

read into your work area, register 15 will contain zeros. Otherwise, register 15
will contain one of the following return codes:

Code Meaning

4 The required volume was not mounted.

8 The format-l DSCB was not found in the VTOC of the specified volume.

12 A permanent I/O error was encountered or an invalid format-4 DSCB was
found when processing the specified volume.

16 Invalid work area pointer.

20 The SEEK option was specified and the absolute track address (CCHH) is not
within the boundaries of the VTOC.

Deleting a Data Set (SCRATCH and CAMLST SCRATCH)

You delete a data set stored on direct-access volumes by using the
SCRATCH and CAMLST macro instructions. This causes all data set control
blocks (DSCBs) for the data set to be deleted, and all space occupied by the
data set to be made available for reallocation. If you want to scratch a data
set being processed using virtual input/output (VIO), the data set must have
been allocated for use by your job. Scratching VIO data sets not allocated to
your job is not allowed.

If the data set to be deleted is sharing one or more cylinders with one or more
data sets (a split-cylinder data set), the space will not be made available for
reallocation until all data sets on the shared cylinders are deleted.

A data set cannot be deleted if th~ expiration date in the identifier (format-I)
DSCB has not passed, unless you choose to ignore the expiration date. You
specify that the expiration date is to be ignored by using the OVRD option in
the CAMLST macro instruction.

If a data set to be deleted is stored on more than one volume, either a device
must be available on which to mount the volumes, or at least one volume must
be mounted. In addition, all other required volumes must be serially
mountable.

When deleting a data set, you must build a volume list in virtual storage. This
volume list consists of an entry for each volume on which the data set resides.
The first two bytes of the list indicate the number of entries in the list. Each
12-byte entry consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte scratch status code. Device codes are presented in
OS/VS2 System Programming Library: Handbook for Debugging.

Volumes are processed in the order that they appear in the volume list. The
volume at the beginning of the list is processed first. If a volume is not
mounted, a message is issued to the operator requesting him to mount the
volume. This is only done if you indicate the direct access device on which
unmounted volumes are to be mounted by loading register 0 with the address
of the UCB associated with the device to be used. (The device must be
allocated to your job.) If you do not load register 0 with a UCB address, its
contents must be zero, and at least one of the volumes in the volume list must
be mounted before the SCRATCH macro instruction is issued.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then set in the
last byte of the volume pointer (the second byte of the scratch status code)
for the unavailable volume, and the next volume indicated in the volume list is
processed.

Maintaining the Volume Table of Contents 29

The format is:
r--.----~----------_r---------------------------------------,

[symbol] SCRATCH
listname CAMLSf

list-addrx

list-addrx
SCRATCH
, dsname-relexp
" vol list-relexp
" [OVRD]

points to the parameter list (labeled listname) set up by the CAMLST
macro instruction.

SCRATCH
this operand must be coded as shown.

dsname-re lexp
specifies the virtual storage location of a fully qualified data set name. The
area that contains the name must be 44 bytes long. The name must be
defined by a C-type Define Constant (DC) instruction.

vol list -relexp
specifies the virtual storage location of an area that contains a volume list.
The area must begin on a half-word boundary.

OVRD
when coded as shown, specifies that the expiration date in the DSCB
should be ignored.

Example: In the following example, data set A.B.C is deleted from two
volumes. The expiration date in the identifier (format-I) DSCB is ignored.

SR 0,0 SET REG 0 TO ZERO
SCRATCH DELABC DELETE DATA SET A. B. C.

* FROM TWO VOLUMES,
* IGNORING EXPIRATION
* DATE IN THE DSCB

DELABC
DSABC
VOLIST

Check Returns

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC

SCRATCH,DSABC, ,VOLIST, ,OVRD
CL44'A.B.C' DATA SET NAMES
H' 2 ' NUMBER OF VOLUMES
X' 30C02008' 2314 DISK DEVICE CODE
CL6' 000017' VOLUME SERIAL NO.
H' 0 ' SCRATCH STATUS CODE
X' 30C02008' 2314 DISK DEVICE CODE
CL6' 000018' VOLUME SERIAL NO.
H' 0' SCRATCH STATUS CODE

The SCRATCH macro instruction points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that a data set be
deleted. DSABC, the second operand, specifies the virtual storage location of
a 44-byte area into which you have placed the fully qualified name of the data
set to be deleted. VOLIST, the fourth operand, specifies the virtual storage
location of the volume list you have built. OVRD, the sixth operand, specifies
that the expiration date in the DSCB of the data set to be deleted be ignored ..

When you attempt to delete a password-protected data set, the operating
system issues a message (IEC30 1 A) to ask the operator at the console or
terminal operator of a remote console to enter the password. The data set will
be scratched only if the password supplied is associated with a "WRITE"
protection mode indicator. The protection mode indicator is described in the
chapter titled "Data Set Protection."

30 OS/VS2 System Programming Library: Data Management

Control is returned to your program at the next executable instruction
following the SCRATCH macro instruction. If the data set has been
successfully deleted, register 15 will contain zeros and the scratch status code
in the volume list entry for each volume will be set to zero. Otherwise,
register 15 will contain one of the return codes that follow. To determine
whether the data set has been successfully deleted from each volume on
which it resides, you must examine the scratch status code, the last byte of
each entry in the volume list.

Return
Code in
Reg. 15

4

8

12

Meaning

No volumes containing any part of the data set were mounted, nor did
register 0 contain the address of a unit that was available for mounting a
volume of the data set. The data set may be a VIO data set that was not
allocated during your job. (This return code is accompanied by a scratch
status code of 5 in each entry of the volume list.)

An unusual condition was encountered on one or more volumes.

The volume list passed was invalid. The scratch status code, the last byte of
each volume list entry, will not have been modified during scratch processing.

After the SCRATCH macro instruction is executed, the last byte of each
12-byte entry in the volume list indicates the following conditions in binary
codes:

Scratch
Status
Code

o

2

3

4

5

6

7

Meaning

All DSCBs for the data set have been deleted from the VTOC on the volume
pointed to.

The VTOC of this volume does not contain the format-1 DSCB for the data
set to be deleted.

The macro instruction failed when the correct password was not supplied in
the two attempts allowed, or an attempt was made to scratch a VSAM data
space.

The data set was not deleted from this volume because either the OVRD
option was not specified or the retention cycle has not expired.

A permanent I/O error was encountered or an invalid format-1 DSCB was
found when processing this volume.

It could not be verified that this volume was mounted, and no device was
available on which this volume could be mounted.

The operator was unable to mount this volume.

The specified data set could not be scratched because it was being used.

Renaming a Data Set (RENAME and CAMLST RENAME)

You rename a data set stored on one or more direct-access volumes by using
the RENAME and CAMLST macro instructions. This causes the data set
name in all identifier (format-I) DSCBs for the data set to be replaced by the
new name that you supply. (VIO data sets cannot be renamed.)

If a data set to be renamed is stored on more than one volume, either a device
must be available on which to mount the volumes, or at least one volume must
be mounted. In addition, all other volumes of the data set must be serially
mountable.

When renaming a data set, you must build a volume list in virtual storage.
This volume list consists of an entry for each volume on which the data set
resides. The first two bytes of the list indicate the number of entries in the list.

Maintaining the Volume Table of Contents 31

Each 12-byte volume list entry consists of a 4-byte device code, a 6-byte
volume serial number, and a 2-byte rename status code. Device codes are
presented in OS/VS2 System Programming Library: Handbook for
Debugging. Volumes are processed in the order they appear in the volume list.
The first volume on the list is processed first. If a volume is not mounted, a
message is issued to the operator requesting him to mount the volume. This is
only done if you indicate the direct-access device on which unmounted
volumes are to be mounted by loading register 0 \Wth the address of the UCB
associated with the device to be used. (The device must be allocated to your
job.) If you do not load register 0 with a UCB address, its contents must be
zero, and at least one of the volumes in the volume list must be mounted
before the RENAME macro instruction is executed.

If the operator cannot mount a volume in the volume list, he issues a reply
indicating that he cannot fulfill the request. A condition code is then set in the
last byte of the volume list entry (the second byte of the rename status code)
for the unavailable volume, and the next volume indicated in the volume list is
processed or requested.

The format is:

[symbol] RENAME
listname CAMLST

list-addrx

list-addrx
RENAME
, dsname-relexp
,new name-relexp
, vol list-relexp

points to the parameter list (labeled list name) set up by the CAMLST
macro instruction.

RENAME
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The
area that contains the name must be 44 bytes long. The name must be
defined by a C-type Define Constant (DC) instruction.

new name-relexp
specifies the virtual storage location of a fully qualified data set name that
is to be used as the new name. The area that contains the name must be 44
bytes long. The name must be defined by a C-type Define Constant (DC)
instruction.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list.
The area must begin on a halfword boundary.

32 OS/VS2 System Programming Library: Data Management

Example: In the following example, data set A.B.C is renamed D.E.F. The
data set resides on two volumes.

DSABC
OLDNAME
NEWNAME
VOLIST

SR
RENAME

Check Returns

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC
DC

0,0
DSABC

SET REG 0 TO ZERO
CHANGE DATA SET
NAME A.B.C. TO D.E.F

RENAME,OLDNAME,NEWNAME,VOLIST
CL44'A.B.C' OLD DATA SET NAME
CL44'D.E.F' NEW DATA SET NAME
H ' 2 ' TWO VOLUMES
X' 30C02008' 2314 DISK DEVICE CODE
CL6' 000017' VOLUME SERIAL NO.
H ' 0 ' RENAME STATUS CODE
X' 30C02008' 2314 DISK DEVICE CODE
CL6'000018' VOLUME SERIAL NO.
H' 0 ' RENAME STATUS CODE

The RENAME macro instruction points to the CAMLST macro instruction.
RENAME, the first operand of CAMLST, specifies that a data set be
renamed. OLDNAME, the second operand, specifies the virtual storage
location of a 44-byte area into which you have placed the fully qualified name
of the data set to be renamed. NEWNAME, the third operand, specifies the
virtual storage location of a 44-byte area into which you have placed the new
name of the data set. VOLIST, the fourth operand, specifies the virtual
storage location of the volume list you have built.

Control is returned to your program at the next executable instruction
following the RENAME macro instruction. If the data set has been
successfully renamed, register 15 will contain zeros, and the rename status
code in the volume list entry for each volume will be set to zero. Otherwise,
register 15 will contain one of the return codes that follow. To detennine
whether the data set has been successfully renamed on each volume on which
it resides, you must examine the rename status code, the last byte of each
entry in the volume list.

Return
Code in
Reg. 15

4

8

12

Meaning

No volumes containing any part of the data set were mounted, nor did
register 0 contain the address of a unit that was available for mounting a
volume of the data set to be renamed. The data set may be a VIO data set,
which can't be renamed. (This return code is accompanied by a rename status
code of 5 in each entry of the volume list.)

An unusual condition was encountered on one or more volumes.

The volume list passed was invalid. The rename status code, the last byte of
each volume list entry, will not have been modified during rename processing.

Maintaining the Volume Table of Contents 33

After the RENAME macro instruction is executed, the last byte of each
12-byte entry in the volume list indicates the following conditions in binary
code:

Rename
Status
Code

o

2

3

4

5

6

7

Meaning

The format-l DSCB for the data set has been renamed in the VTOC on the
volume pointed to.

The VTOC of this volume does not contain the format- t DSCB for the data
set to be renamed.

The macro instruction failed when the correct password was not supplied in
the two attempts allowed, or the user tried to rename a VSAM data space.

A data set with the new name already exists on this volume.

A permanent I/O error was encountered or an invalid format-l DSCB was
found when trying to rename the data set on this volume.

It could not be verified that the volume was mounted. and no device was
available on which the volume could be mounted.

The operator was unable to mount this volume.

The specified data set could not be renamed on this volume because it was
being used.

When you attempt to rename a password-protected data set, the operating
system issues a message (IEC301A) to ask the operator or remote console
operator to verify the password. The data set will be renamed only if the
password supplied is associated with a "WRITE" protection mode indicator.
The chapter titled "Password Protecting Your Data Sets" provides a
description of the protection mode indicator.

34 OS!VS2 System Programming Library: Data Management

EXECUTING YOUR OWN CHANNEL PROGRAMS
(EXCP)

The execute-channel-program (EXCP) macro instruction provides you with
device dependence in organizing data and controlling I/O devices. This
chapter contains a general description of the function and application of the
EXCP macro instruction, accompanied by descriptions of specific control
blocks and macro instructions used with EXCP. Factors that affect the
operation of EXCP, such as device variations and program modification, are
also discussed.

Before reading this chapter, you should be familiar with system functions and
with the structure of control blocks, as well as with the operational
characteristics of the I/O devices required by your channel programs.
Operational characteristics of specific I/O devices are contained in IBM
publications for each device.

To understand this chapter, you need to understand the information in these
publications:

• OS/VS Data Management Services Guide, GC26-3783, which explains ,~ __ _
the standard procedures for I/O processing under the operating system.

• OS/VS - DOS/VS - VM/370 Assembler Language, GC33-4010, which
contains the information necessary to code programs in the assembler
language.

• OS/VS Data Management Macro Instructions, GC26-3793, which
describes the system macro instructions that can be used in programs
coded in the assembler language.

• OS/VS2 System Programming Library: Handbook for Debugging,
GC28-0632, which contains format and field descriptions of the system
control blocks referred to in this chapter.

The execute-channel-program (EXCP) macro instruction causes a
supervisor-call interruption to pass control to the I/O supervisor. (I/O
supervisor is the name this chapter uses for two VS2 components, the EXCP
processor and the I/O supervisor. For your purposes, it's unnecessary to
understand how input/output processing is divided between the two.) EXCP
also provides the I/O supervisor with control information regarding a channel
program to be executed. When an IBM access method is being used, an
access-method routine is responsible for issuing EXCP. If you are not using
an IBM access method, you must issue EXCP in your program. (The EXCP
macro instruction cannot be used to process SYSIN, SYSOUT, or VSAM data
sets.)

You issue EXCP primarily for I/O programming situations to which the
standard access methods do not apply. If you are writing your own access
method, you must include EXCP for I/O operations. EXCP must also be
used for processing nonstandard labels, including reading and writing labels
and positioning magnetic tape volumes.

To issue EXCP, you must provide a channel program (a list of channel
command words) and several control blocks in your program area. The I/O
supervisor then schedules l/O requests for the device you have specified,
executes the specified I/O commands, handles I/O interruptions, directs error
recovery procedures, and posts the results of the I/O requests.

Executing Your Own Channel Programs (EXCP) 35

Executing Channel Programs in System and Problem
Programs

System Use of EXCP

This section briefly explains the procedures performed by the system and the
programmer when EXCP is issued by the routines of IBM access methods.
The additional procedures that you must perform when issuing EXCP
yourself are then described by direct comparison.

When using an IBM access method to perform I/O operations, the
programmer is relieved of coding channel programs and constructing the
control blocks necessary for the execution of channel programs. To permit
I/O operations to be handled by an access method, the programmer need
only issue the following macro instructions:

• A DCB macro instruction, which produces a data control block (DCB) for
the data set to be retrieved or stored.

An OPEN macro instruction that initializes the data control block and
produces a data extent block (DEB) for the data set.

• A macro instruction (e.g., GET, WRITE) that requests I/O operations.

Access method routines will then:

1. Create a channel program that contains channel commands for the I/O
operations on the appropriate device.

2. Construct an input/output block (lOB) that contains information about
the channel program.

3. Construct an event control block (ECB) that is later posted with a
completion code each time the channel program terminates.

4. Issue an EXCP macro instruction to pass the address of the lOB to the
routines that initiate and supervise the I/O operations.

The I/O supervisor will then:

5. Construct a request queue element (RQE) for scheduling the request.

6. If the requestor is in a pageable address space, fix the buffers so that they
cannot be paged out and translate the requestor's virtual channel program
into a real channel program.

7. Issue a start input/output (SIO) instruction to cause the channel to execute
the real channel program.

8. Process I/O interruptions and schedule error recovery procedures when
necessary.

9. Post a completion code in the event control block after the channel
program has been executed.

Note: If the requestor is in a nonpageable address space, he provides a real
channel program, so item 6 is not performed.

The programmer is not concerned with these procedures and does not know
the status of I/O operations until they are completed. Device-dependent
operations are limited to those provided by the macro instructions of the
particular access method selected.

36 OS/VS2 System Programming Library: Data Management

Use of EXCP in Problem Programs

To issue the EXCP macro instruction directly, you must perform the
procedures that the access methods perform, as summarized in items 1
through 4 of the preceding discussion. You must, in addition to constructing
and opening the data control block with the DCB and OPEN macro
instructions, construct a channel program, an input/output block, and an
event control block before you can issue EXCP. The I/O supervisor always
handles items 5 through 9.

After issuing EXCP, you should issue aWAIT macro instruction, specifying
the address of the event control block, to determine whether the channel
program has terminated. If volume switching is necessary, you must issue an
EOV macro instruction. When processing of the data set has been completed,
you must issue a CLOSE macro instruction to restore the data control block.

EXCP Operations in a Nonpageable Address Space

EXCP Requirements

Channel Program

User-constructed channel programs for I/O operations in a nonpageable
address space are not translated. Because the address space is nonpageable,
any CCWs created by the user have correct real data addresses. (Translation
would only recreate the user's channel program, so the CCWs are used
directly.)

Modification of an active channel program by data read in or by CPU
instructions is legitimate in a nonpageable address space, but not in a
pageable address space.

This section describes the channel program that you must provide in order to
issue EXCP. The control blocks that you must either construct directly, or
cause to be constructed by use of macro instructions, are also described.

The channel program supplied by you and executed through EXCP is
composed of channel command words (CCWs) on double word boundaries.
Each channel command word specifies a command to be executed and, for
commands initiating data transfer, the area to or from which the data is to be
transferred.

Channel command word formats used with specific I/O devices can be found
in IBM publications for those devices. All channel command words described
in these publications can be used, with the exception of REWIND and
UNLOAD (RUN). In addition, both data chaining and command chaining
may be used.

Chaining is the successive loading of channel command words into a channel
from contiguous doubleword locations in real storage. Data chaining occurs
when a new channel command word loaded into the channel defines a new
storage area for the original I/O operation. Command chaining occurs when
the new channel command word specifies a new I/O operation. For detailed
information about chaining, refer to IBM System/3 70 Principles of
Operation, GA22-7000.

To specify either data chaining or command chaining, you must set
appropriate bits in the channel command word, and indicate the type of

Executing Your Own Channel Programs (EXCP) 37

Control Blocks

Input/Output Block (lOB)

Event Control Block (ECB)

Data Control Block (DCB)

Data Extent Block (DEB)

chaining in the input/output block. Both data and command chaining should
not be specified in the same channel command word; if they are, data
chaining takes precedence.

If a channel program includes a list of channel command words that chain
data for reading operations, no channel command word may alter the
contents of another channel command word in the same list. (If such
alteration were allowed, specifications could be placed into a channel
command word without being checked for validity. If the specifications were
incorrect, the error could not be detected until the chain was completed. Data
could be read into incorrect locations and the system could not correct the
error.)

When using EXCP, you must be familiar with the function and structure of
the input/output block (lOB), the event control block (ECB), the data
control block (DCB), and the data extent block (DEB). lOB and ECB fields
are illustrated in the section "Control Block Fields." DCB fields are
illustrated in the section "Macro Specifications for Use with EXCP." Brief
descriptions of these control blocks follow.

The input/output block is used for communication between the problem
program and the system. It provides the addresses of other control blocks, and
maintains information about the channel program, such as the type of
chaining and the progress of I/O operations. You must define the
input/ output block and specify its address as the only parameter of the EXCP
macro instruction.

The event control block provides you with a completion code that describes
whether the channel program was completed with or without error. AWAIT
macro instruction, which can be used to synchronize I/O operations with the
problem program, must identify the event control block. You must define the
event control block and specify its address in the input/output block.

The data control block provides the system with information about the
characteristics and processing requirements of a data set to be read or written
by the channel program. A data control block must be produced by a DCB
macro instruction that includes parameters for EXCP. If appendages are not
being used, a short DCB is constructed. Such a DCB does not support
reduced error recovery. You specify the address of the data control block in
the input/output block.

The data extent block contains one or more extent entries for the associated
data set, as well as other control information. An extent defines all or part of
the physical boundaries on an I/O device occupied by, or reserved for, a
particular data set. Each extent entry contains the address of a unit control
block (UCB), which provides information about the type and location of an
I/O device. More than one extent entry can contain the same UCB address.
For all I/O devices supported by the operating system, th(~ data extent block

38 OS/VS2 System Programming Library: Data Management

is produced during execution of the OPEN macro instruction for the data
control block. The system places the address of the data extent block into the
data control block.

Channel Program Execution
This section explains how the system uses your channel program and control
blocks after you issue EXCP.

Initiation 0/ the Channel Program

By issuing EXCP, you request the execution of the channel program specified
in the input/output block. The I/O supervisor validates the request by
checking certain fields of the control blocks associated with this request. If
the I/O supervisor detects invalid information in a control block, it initiates
abnormal termination procedures.

The I/O supervisor gets:

• the address of the data control block from the input/output block

• the address of the data extent block from the data control block

• the address of the unit control block from the data extent block

It places the lOB, TCB, DEB, and UCB addresses and other information
about the channel program into an area called a request queue element
(RQE). (Unless you are providing appendage routines--described in the
section "Appendages"-you should not be concerned with the contents of
RQEs.)

If you have provided a start I/O (SIO) appendage, the I/O supervisor now
passes control to it. The return address from the SIO appendage determines
whether the I/O supervisor must:

• execute the I/O operation normally, or

• skip the I/O operation.

See" Appendages" in this chapter for a description of the SIO appendage and
its linkage to the I/O supervisor.

If you are issuing EXCP from in a pageable address space, the channel
program you construct contains virtual addresses. Because channels cannot
use virtual addresses, the I/O supervisor must:

• translate your virtual channel program into one that uses only real
addresses.

• fix in real storage the pages used as I/O areas for the data transfer
operations specified in your channel program.

The I/O supervisor builds the translated (real) channel program in a portion
of real storage called the system queue area. If the I/O device is other than a
2314 or 2319 direct-access device or a magnetic tape device, the I/O
supervisor then places the address of the translated channel program into the
channel address word (CAW) and issues a start input/output (SIO)
instruction.

Before issuing the SIO instruction for a 2314 or 2319 direct-access device,
the I/O supervisor issues an initial seek, which is overlapped with other
operations. You specify the seek address in the input/output block. When the

Executing Your Own Channel Programs (EXCP) 39

seek has completed, the I/O supervisor constructs a command chain to
reissue the seek, sets the file mask specified in the data extent block, and
passes control to your real channel program. (You cannot: issue the initial seek
or set the file mask yourself. The file mask is set to prohibit seek-cylinder
commands, or, if space is allocated by tracks, seek-track Gommand~. If the
data set is open for INPUT or RDBACK, write commands are also
prohibited.)

Before issuing SIO for a magnetic tape device, the I/O su.pervisor constructs a
command chain to set the mode specified in the data extent block and passes
control to your real channel program. (You cannot set the mode yourself.)

Modification of a Channel Program During Execution.

Completion of Execution

Any problem program that modifies an active channel program with CPU
instructions or with data read in by an I/O operation must be run in a
nonpageable address space. It cannot run in a pageable address space because
of the channel program translation performed by the I/O supervisor. (In a
pageable address space, an attempt to modify an active channel program
affects only the virtual image of the channel program, not: the real channel
program being executed by the channel.)

A program of this type can be changed to run in a pageable address space by
issuing another EXCP macro for the modified portion of the channel
program.

The system considers the channel program completed when it receives an
indication of a channel end condition in the channel status word (CSW).
Unless a channel-end or abnormal-end appendage directs otherwise, the
request queue element for the channel program is made available, and a
completion code is placed into the event control block. The completion code
indicates whether errors are associated with channel end. If device end occurs
simultaneously with channel end, errors associated with device end (i.e., unit
exception or unit check) are also accounted for.

If device end occurs after channel end, and an error is associated with device
end, the completion code in the event control block does not indicate the
error. However, the status of the unit and channel is saved in the unit control
block (UCB) for the device, and the UCB is marked as intercepted. The
input/output block for the next request directed to the I/O device is also
marked as intercepted. The error is assumed to be permanent, and the
completion code in the event control block for the intercepted request
indicates interception. The IFLGS field of the data control block is also
flagged to indicate a permanent error. Note that if a write-tape-mark or
erase-long-gap CCW is the last or only CCW in your channel program, the
I/O supervisor will not attempt recovery procedures for device end errors. In
these circumstances, command chaining a NOP CCW to your
write-tape-mark or erase-long-gap CCW ensures initiation of device-end
error recovery procedures.

To be prepared for device-end errors, you should be familiar with device
characteristics that can cause such errors. After one of your channel programs
has terminated, you should not release buffer space until you have determined
that your next request for the device has not been intercepted. You may
reissue an intercepted request.

40 OS/VS2 System Programming Library: Data Management

Inten-uption Handling and Error Recovery Procedures

An I/O interruption allows the CPU to respond to signals from an I/O device
which indicate either termination of a phase of I/O operations or external
action on the device. A complete explanation of I/O interruptions is
contained in IBM System/370 Principles of Operation, GA22-7000. For
descriptions of interruptions by specific devices, refer to IBM publications for
each device.

If error conditions are associated with an interruption, the I/O supervisor
schedules the appropriate device-dependent error routine. The channel is then
restarted with another request that is not related to the channel program in
error. (The paragraphs following this one under this topic discuss "related"
channel programs.) If the error recovery procedures fail to correct the error,
the system places ones in the first two bit positions of the IFLGS field of the
data control block. You are informed of the error by an error code that the
system puts in the event control block.

If a channel program depends on the successful completion of a previous
channel program-as when one channel program retrieves data to be used in
building another-the previous channel program is called a "related" request.
Such a request must be identified to the I/O supervisor. To find out how, see
"Input/Output Control Block Fields" in the section "Control Block Fields."

If a permanent error occurs in the channel program of a related request, the
I/O supervisor does the following:

• Removes the request queue elements for all dependent channel programs
from their queue and makes them available.

• Chains together the lOBs (input/output blocks) for the dependent channel
programs .

• Creates a PIRL (purged I/O restore list) and, at an offset of X'14', stores
the address of the first lOB in the chain .

• Puts the address of the PIRL in the DEBUSPRG field of the data extent
block.

The lOB chain reflects the order in which request queue elements are
removed from their queue. If you want to inspect the chain, refer to Figure
14; it shows the format of the chain. If you want to modify the chain,
additionally refer to "Modifying the lOB chain" in the chapter "System
Macro Instructions."

For all requests dependent on the channel program in error, the system places
completion codes into the event control blocks. The DCBIFLGS field of the
data control block is also flagged. Any requests for a data control block with
error flags are posted complete without execution. To reissue requests
dependent on the channel program in error, you must reset the first two bits
of the DCBIFLGS field of the data control block to zeros. You then issue a
RESTORE macro instruction, specifying, as the only parameter, the address
of the DEBUSPRG field of the data extent block. This causes execution of all
the dependent channel programs. (The RESTORE macro definition and how
to add it to the macro library are in "System macro Instructions.")
Alternatively, to restart only particular channel programs rather than all of
them, you may reissue EXCP for each channel program desired.

Executing Your Own Channel Programs (EXCP) 41

Appendages
An appendage is a programmer-written routine that provides additional
control over I/O operations. By using appendages, you can examine the
status of I/O operations and determine the actions to be taken for various
conditions. An appendage may receive control when one of the following
occurs:

• Start I/O

• Program controlled interruption

• End of extent

• Channel end

• Abnormal end

Appendages get control in supervisor state, receiving the following pointers
from the I/O supervisor:

• Register 1: Points to the request queue element for the channel program.

• Register 2: Points to the input/output block (lOB).

• Register 3: Points to the data extent block (DEB).

• Register 4: Points to the data control block (DCB).

• Register 6: Points to the seek address if control is given to an
end-of-extent appendage.

• Register 7: Points to the unit control block (UCB).

• Register 13: Points to a 16-word area you can use to save input registers
or data.

• Register 14: Points to the location in the I/O supervisor to which control
is to be returned after execution of an appendage. When returning control
to the I/O supervisor, you may use displacements from the return address
in register 14. Allowable displacements are summarized in Figure 1 and
described later for each appendage.

• Register 15,' Points to the entry point of the appendage.

Appendages Entry Point Returns Avail:i1ble Work Reg*

EOE Reg 15 Reg 14 + 0 Return
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Try Again

SIO Reg 15 Reg 14 + 0 Normal Reg. 10, 11, and 13
Reg 14 + 4 Skip

PCI Reg 15 Reg 14 + 0 Normal Reg. 10, 11, 12, and 13

CHE Reg 15 Reg 14 + 0 Normal
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP
Reg 14+ 12 By-Pass

ABE Reg 15 Reg 14 + 0 Normal
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP
Reg 14 + 12 By-Pass

·Certain register conventions for passing parameters from appendages to the I/O supervisor must be
followed. These conventions are described in the appendage descriptions.

Figure 1. Entry Points, Returns, and Available Work Registers for Appendages

42 OS/VS2 System Programming Library: Data Management

Start-IIO (SIO) Appendage

The processing done by appendages is subject to these requirements and
restrictions:

• Register 9, if used, must be set to binary zeros before control is returned to
the system. All other registers, except those indicated in the descriptions of
each appendage, must be saved and restored if they are used. Figure 1
summarizes register conventions.

• No SVC instructions or instructions that change the status of the system
(for example, WTO, LPSW, or any privileged instructions) can be issued.

• Loops that test for the completion of I/O operations must not be used.

• Storage used by the supervisor or I/O supervisor must not be altered.

The types of appendages are described in the following sections, with
explanations of when they are created, how they return control to the system,
and which registers they may use without saving and restoring their contents.

Unless an error procedure is in control, the I/O supervisor passes control to
the SIO appendage just before the I/O supervisor translates your channel
program. If I/O activity is not initiated because of a busy condition and the
I/O request has not been translated, the appendage is not reentered before
the SIO instruction is issued.

Optional return vectors give the I/O requestor the following choices:

Reg. 14 + 0
Normal return. Normal channel program translation and SIO instruction
execution occur.

Reg. 14 + 4
Skip the I/O operation. The channel program is not posted complete, but
the request queue element is made available. You may post the channel
program as follows:

1. Save necessary registers.

2. Put the address of the post routine-found at CVTOPT01 in the
communications vector table-in register 15.

3. Place TCB address from the DEB in register 12.

4. Place ECB address from the lOB in register 11.

5. Set the completion code in register 10.

6. Go to the post routine using BALR 14,15.

Program Controlled Interruption (PCI) Appendage

This appendage is entered at least once if the channel finds one or more PCI
bits on in a channel program, and may be entered as many times as the
channel finds PCI bits on. Before the appendage is entered, the contents of
the channel status word are placed in the "channel status word" field of the
input/ output block.

A PCI appendage will be reentered if an error recovery procedure is retrying
a channel program in which a PCI bit is on. The lOB error flag is set when the
error recovery procedure is in control (lOB FLAG 1 = X'20'). (Refer to the

Executing Your Own Channel Programs (EXCP) 43

topic "Block Multiplexor Channel Programming Notes" later in this chapter
for special PCI conditions encountered with command retry.)

If you want to post the channel program from a PCI appendage, you can use
the procedure described for the start-I/O appendage, un]ess the PCI
appendage uses real storage addresses. In the latter case, follow this
procedure:

1. Put the completion code in register 10.

2. Put X'80' in the high-order byte of register 11 and the address of the ECB
in the low-order bytes.

3. Put X'80' in the high-order byte of register 12 and the address of a BR 14
instruction in the low-order bytes.

4. Put in register 13 the address of the ASCB (address space control block)
for the address space in which the EXCP macro was issued. The address of
the ASCB can be found in PSAAOLD in fixed low storage by the program
issuing the EXCP macro or by any other appendage.

5. Put the address of the post routine-found at CVTOPTOI in the
communications vector table-in register 15.

6. Go to the post routine using BALR 14,15.

This procedure can be used even if the PCI appendage uses virtual storage
addresses, but performance may be slightly slower.

To return control to the I/O supervisor for normal interruption processing,
use the return address in register 14.

End-oj-Extent (EOE) Appendage

This appendage is entered when the seek address specified in the
input/ output block is outside the allocated extent limits indicated in the data
extent block.

If you use the return address in register 14 to return control to the system, the
abnormal-end appendage is entered. An end-of-extent error code (X'42') is
placed in the "ECB code" field of the input/output block for subsequent
posting in the ECB.

You may use the following optional return addresses:

• Contents of register 14 plus 4-The channel program is posted complete;
its request element is returned to the available queue.

• Contents of register 14 plus 8-The request is tried again.

You may use registers 10 through 13 in an end-of-extent appendage without
saving and restoring their contents.

Note: If an end-of-cylinder or file-protect condition occurs, the I/O
supervisor updates the seek address to the next higher cylinder or track
address, and re-executes the request. If the new seek address is within the
data set's extent, the request is executed; if the new seek address is not within
the data set's extent, the end-of-extent appendage is entered. If you wish to
try the request in the next extent, you must move the new seek address to the
location pointed to by register 6.

If a file protect is caused by a full seek (command code=07) embedded
within a channel program, the request is flagged as a pennanent error, and the
abnormal end appendage is entered.

44 OS/VS2 System Programming Library: Data Management

Channel-End (CHE) Appendage

This appendage is entered when a channel end (CHE), unit exception (VEX)
with or without channel end, or channel end with wrong length record (WLR)
occurs without any other abnormal-end conditions.

If you use the return address in register 14 to return control to the I/O
supervisor, the channel program is posted complete, and its request element is
made available. In the case of unit exception or wrong length record, the error
recovery procedure is performed before the channel program is posted
complete, and the 10BEX flag (X'04') in 10BFLAG 1 is set on. The condition
code may be directly tested by using a BC instruction. A CC=O means no
VEX or WLR accompanied this interruption. The CSW status may be
obtained from the 10BCSW field.

If the appendage takes care of the wrong length record and/or unit exception,
it may tum off the 10BEX (X'04') flag in 10BFLAGl and return normally.
The event will then be posted complete (completion code X'7F' under normal
conditions, taken from the high-order byte of the 10BECBCC field). If the
appendage returns normally without resetting the IOBEX flag to zero, the
request will be routed to the associated device error routine, and then the
abnormal-end appendage will be immediately entered with the completion
code in 10BECBCC set to X'41 '.

You may use the following optional return addresses:

• Contents of register 14 plus 4-The channel program is not posted
complete, but its request element is made available. You may post the
channel program by using the calling sequence described under the
start-I/O appendage. This is especially useful if you wish to post an ECB
other than the ECB in the input/output block.

• Contents of register 14 plus 8-The channel program is not posted
complete, and its request element is placed back on the request queue so
that the I/O operation can be retried. For correct re-execution of the
channel program, you must re-initialize the 10BFLAG 1, IOBFLAG2, and
IOBFLAG3 fields of the input/output block and set the "Error Counts"
field to zero. As an added precaution, the IOBSENSO, 10BSENS 1, and
IOBCSW fields should be cleared.

• Contents of register 14 plus 12-The channel program is not posted
complete, and its request element is not made available. (This return must
be used if, and only if, the appendage has passed the ROE to the exit
effector for use in scheduling an asynchronous routine.)

You may use registers 10 through 13 in a channel-end appendage without
saving and restoring their contents.

Abnonnal-End (ABE) Appendage

This appendage may be entered on abnormal conditions, such as: unit check,
unit exception, wrong length indication, program check, protection check,
channel data check, channel control check, interface control check, chaining
check, out-of-extent error, and intercept condition (i.e., device end error). It
may also be entered when an EXCP is issued for a request queue element that
has already been purged.

1. When this appendage is entered due to a unit exception and/or wrong
length record indication, IOBECBCC is set to X'41'. For further
information on these conditions see "Channel-End (CHE) Appendage."

Executing Your Own Channel Programs (EXCP) 45

2. When the appendage is entered due to an out-of-extent error, the
IOBECBCC is set to X'42'.

3. When this appendage is entered with IOBECBCC set t.o X'4B', it is due to:

a. the tape ERP encountering an unexpected load point, or

b. the tape ERP finding zeros in the command address field of the CSW.

4. When the appendage is first entered due to an intercept condition, the
IOBECBCC is set to X'7E'. If it is then determined that the error
condition is permanent, the appendage will be entered a second time with
the IOBECBCC set to X'44'. The intercept condition signals that an error
was detected at device end after channel end on the previous request.

5. When the appendage is entered due to an EXCP being issued to an already
purged request queue element, this request will enter the abnormal end
appendage with the IOBECBCC set to X'48'. This applies only to related
requests.

6. If the appendage is entered with IOBECBCC set to X'7F', it may be due
to a unit check, program check, protection check, channel data check,
channel control check, interface control check, or chaining check. If the
10BECBCC is X'7F', it is the first detection of an error in the associated
channel program. If the 10BEX flag (bit 5 of the 10BFLAG 1) is on, the
10BECBCC field will contain a 41, 42, 48, 4B, or 4F in hexadecimal,
indicating a permanent I/O error.

To determine if an error is permanent, you should check the 10BECBCC
field of the lOB. To determine the type of error, check the channel status
word and the sense information in the lOB. However, when the 10BECBCC
is X'42', X'48', or X'4F', these fields are not applicable. For X'44' the CSW
is applicable, but the sense is valid only if the unit check bit is set.

If you use the return address in register 14 to return control to the system, the
channel program is posted complete, and its request element is made
available. You may use the following optional return addresses:

• Contents of register 14 plus 4-The channel program jis not posted
complete, but its request element is made available. You may post the
channel program by using the calling sequence described under the
start-I/O appendage.

• Contents of register 14 plus 8-The channel program is not posted
complete, and its request element is placed back on the request queue so
that the request can be retried. For correct re-execution of the channel
program, you must re-initialize the 10BFLAG 1, IOBFLAG2, and
IOBFLAG3 fields of the input/output block and set the 10BERRCT field
to zero. As an added precaution, the 10BSENSO, IOBSENS 1, and
10BCSW fields should be cleared.

• Contents of register 14 plus 12-The channel program is not posted
complete, and its request element is not made available. (This return must
be used if, and only if, the appendage has passed the ROE to the exit
effector for use in scheduling an asynchronous routine.)

You may use registers 10 through 13 in an abnormal-end appendage without
saving and restoring their contents.

46 OS/VS2 System Programming Library: Data Management

Making Your Appendages· Part of the System
Before your appendages can be executed, they must become members of
either the SYS I.LP ALm or SYS I.SVCLm data set. There are two ways to
put appendages into SYS1.LPALm or SYS1.SVCLIB: they can be included
at system generation using the DATAS the DATASET macro instruction (a
full explanation appears in OS/VS2 System Programming Library: System
Generation Reference, or they can be link-edited into SYS1.LPALffi or
SYS I.SVCLIB after the system has been generated. Each appendage must
have an 8-character member name, the first six characters being IGGOl9, the
last two being anything in the range of characters from WA to Z9. Note,
however, if your program runs in a non-page able address space and uses a
PCI appendage, the PCI appendage and any appendage that the PCI
appendage refers to cannot be placed in SYS l.LP ALIB. Instead, these
appendages must be placed in either SYS1.SVCLIB or the fixed link pack
area (LPA). For information on providing a list of programs to be fixed in
storage, see OS/VS2 System Programming Library: Initialization and
Tuning Guide, GC28-068l.

The Authorized Appendage List (IEAAPPOO)

If an "unauthorized" program opens a DCB to be used with an EXCP macro
instruction, the names of any appendages associated with the DCB must be
listed in the IEAAPPOO member of SYS l.P ARMLIB. (An "authorized"
program is one that runs in a protection key less than 8 or one that has been
marked as authorized by the Authorized Program Facility.)

If your appendages were put in SYS1.LPALIB or SYS1.SVCLIB at system
generation, their names are automatically put in IEAAPPOO. If your
appendages were added to SYS I.LP ALm or SYS l.SVCLIB after system
generation, you can add IEAAPPOO to SYS I.P ARMLIB and put the names of
the appendages in it in one job step with the IEBUPDTE utility.

Here is an example of JCL statements and IEBUPDTE input that will add
IEAAPPOO to SYS I.P ARMLm and put the names of one EOE appendage,
two SIO appendages, two CHE appendages, and one ABE appendage in
IEAAPPOO:

II
IISYSPRINT
IISYSUT2
IISYSIN
.1
EOEAPP WA,
SIOAPP Xl,X2,
CHEAPP Z3, Z4,
ABEAPP Z2
1*

EXEC
DD
DD
DD
ADD

IEBUPDTE
SYSOUT=A
DSN=SYS1.PARMLIB,DISP=OLD

*
NAME=IEAAPPOO,LIST=ALL

Note the following about the IEBUPDTE input:

• The type of appendage is identified by six characters that begin in
column 1. EOEAPP identifies an EOE appendage, SIOAPP an SIO
appendage, CHEAPP a CHE appendage, and ABEAPP an ABE
appendage. (The PCI appendage identifier, PCIAPP, is not shown because
the example adds no PCI appendage name to IEAAPPOO.)

• Only the last two characters in an appendage's name are specified,
beginning in column 8.

Executing Your Own Channel Programs (EXCP) 47

• Each statement that identifies one or more appendage names ends in a
comma, except the last statement.

You can also use IEBUPDTE to add appendage names later or delete
appendage names. Here is an example of JCL statements and IEBUPDTE
input that adds the names of a PCI and ABE appendage to the IEAAPPOO
appendage list that was created in the preceding example, and deletes the
name of an SIO appendage from that list:

II
IISYSPRINT
IISYSUT2
IISYSIN
.1
PCIAPP Y1 ,
EOEAPP WA,
SIOAPP X1 ,
CHEAPP Z3, Z4,
ABEAPP Z2, Z4
1*

EXEC
DD
DD
DD
REPL

IEBUPDTE
SYSOUT=A
DSN=SYS1.PARMLIB,DISP=OLD

*
NAME=IEAPPOO,LIST=ALL

Note the following about the IEBUPDTE input:

• The command to IEBUPDTE in this case is REPL (replace).

• All the appendage names that are to remain in IEAAPPOO are repeated.

• IGG019Z4 is both a CHE and ABE appendage.

Block Multiplexor Channel Programming Notes
Command retry is a function of the block multiplexor channel supporting the
3340 Disk Storage, the 3330 Disk Storage, and the 2305 Fixed Head Storage
devices. When the channel receives a retry request, it repeats the execution of
the channel command word (CCW) requiring no additional input/output
interrupts. For example, a control unit may initiate a retry procedure to
recover from a transient error.

A command retry during the execution of a channel program may cause any
of the following conditions to be detected by the initiating program:

• Modifying CCWs: A CCW used in a channel program must not be
modified before the CCW operation has been successfully completed.
Without the command retry function, a command was fetched only once
from storage by a channel. Therefore, a program could determine through
condition codes or program controlled interruptions (PCI) that a CCW had
been fetched and accepted by the channel. This permitted the CCW to be
modified before re-execution. With the command retry function, this
cannot be done, since the channel will fetch the CCW from storage again
on a command retry sequence. In the case of data chaining, the channel
will retry commands starting with the first CCW in the data chain.

• Program Controlled Interrupts: A CCW containing a PCI flag may cause
multiple program controlled interruptions to occur. This happens if the
PC I-flagged CCW was retried during a command retry procedure, and a
PCI could be generated each time the CCW is re-executed.

• Residual Count: If a channel program is prematurely terminated during
the retry of a command, the residual count in the channel status word
(CSW) will not necessarily indicate how much storage was used. For
example, if the control unit detects a "wrong length record" elTor
condition, an erroneous residual count is stored in the CSW until the

48 OS/VS2 System Programming Library: Data Management

command retry is successful. When the retry is successful, the residual in
the CSW is the correct length of the data transfer. Since the channel will
not allow more data to be transferred than is specified in the count field of
the CCW, this situation will occur only when reading variable records or
undefined record types.

• Command Address: When data chaining with command retry, the CSW
may not indicate how many CCWs have been executed at the time of a
PCI. For example:

CCW#

1
2
3
4

Channel Program

Read, data chain
Read, data chain
Read, data chain, PCI
Read, command chain

In this example, assume that the control unit signals command retry on
Read #3 and the CPU accepts the PCI after the channel resets the
command address to Read # 1 because of command retry. The CSW stored
for the PCI will contain the command address of Read #1, when actually
the channel has progressed to Read #3.

• Testing Buffer Contents on Data Read: Any program that tests a buffer
to determine when a CCW has been executed and continues to execute
based on this data may get incorrect results if an error is detected and the
CCW is retried.

Macro Specifications for Use With EXCP
If you are using the EXCP macro instruction, you must also use DCB, OPEN,
CLOSE, and, in some cases, the EOV macro instruction. The parameters of
these macro instructions and the EXCP macro instructions are explained here.
A diagram of the data control block is included with the description of the
DCB macro instruction.

Executing Your Own Channel Programs (EXCP) 49

DCB-Define Data Control Block for EXCP

Foundation Block Parameters

The EXCP form of the DCB macro instruction produces a data control block
that can be used with the EXCP macro instruction. You must issue a DCB
macro instruction for each data set to be processed by your channel programs.
Notation conventions and format illustrations of the DCB macro instruction
are given in OS/VS Data Management Macro Instructions. DCB
parameters that apply to EXCP may be divided into four categories,
depending on the following portions of the data control block that are
generated when they are specified:

• Foundation block. This portion is required and is always 12 bytes in
length. You must specify two of the parameters in this category.

• EXCP interface. This portion is optional. If you specilfy any parameter in
this category, 20 bytes are generated.

• Foundation block extension and common interface. This portion is
optional and is always 20 bytes in length. If this portion is generated, the
device-dependent portion is also generated.

• Device dependent. This portion is optional and is gem~rated only if the
foundation block extension and common interface portion is generated. Its
size ranges from 4 to 20 bytes, depending on specifications in the DEVD
parameter. However, if you do not specify the DEVD parameter (and the
foundation extension and common interface portion is generated), the
maximum 20 bytes for this portion are generated.

Some of the procedures performed by the system when the data control block
is opened and closed (such as writing file marks for output data sets on
direct-access volumes) require information from optional data control block
fields. You should make sure that the data control block is large enough to
provide all information necessary for the procedures you want the system to
handle.

Figure 2 shows the relative position of each portion of an opened data control
block. The fields corresponding to each parameter of the: DCB macro
instruction are also designated, with the exception of DDNAME, which is not
included in a data control block that has been opened. The fields identified in
parentheses represent system information that is not associated with
parameters of the DCB macro instruction.

Sources of information for data control block fields other than the DCB
macro instruction are data definition (DD) statements, data set labels, and
data control block modification routines. You may use any of these sources to
specify DCB parameters. However, if a portion of the data control block is
not generated by the DCB macro instruction, the system does not accept
information intended for that portion from any alternative source.

DDNAME=symbol
The name of the data definition (DD) statement that describes the data St!t
to be processed. This parameter must be given.

MACRF=(E)
The EXCP macro instruction is to be used in processing the data set. This
operand must be coded.

50 OS!VS2 System Programming Library: Da~a Management

0
The device dependent portion of the data control block varies

::" in length and format according to specifications in the DSORG ~

and DEVD parameters. Illustrations of this portion for each de-
vice type are included in the description of the DEVD parameter.

20

BUFNO BUFCB

--'-
24

BUFL DSORG

28

IOBAD

32 BFTEK,
BFALN, EODAD
HIARC

36

RECFM EXLST

--
40

(TIOT) MACRF

44

(lFLGS) (DEB Address)

48

(OFLGS) Reserved

52

OPTCD Reserved

56
Reserved

60
EOEA PCIA

--
64

SIOA CENDA

68
XENDA Reserved

Figure 2. Data Control Block Format for EXCP (After OPEN)

I Device
Dependent

Common
Interface

Foundation
Block
Extension

Foundation
Block

EXCP
Interface

Executing Your Own Channel Programs (EXCP) 51

EXCP Interface Parameters

REPOS={YI~}
Magnetic tape volumes: This parameter controls whether the DDR routine
will attempt to reposition the volume after swapping devices. (To have the
DDR routine attempt to reposition your tape volume, you must maintain
the block count in the DCBBLKCT field.)

y -Yes, attempt to reposition.

N-No, do not attempt to reposition.

If the operand is omitted, N is assumed.

EOEA=symbol
2-byte identification of an EOE appendage that you have entered into the
LPA library. (See Note A.) .

PCIA=symbol
2-byte identification of a PCI appendage that you have~ entered into the
LPA library. (See Note A.)

SIOA=symbol
2-byte identification of a SIO appendage that you have entered into the
LPA library. (See Note A.)

CENDA=symbol
2-byte identification of a CHE appendage that you have entered into the
LPA library. (See Note A.)

XENDA=symbol
2-byte identification of an ABE appendage that you have entered into the
LPA library. (See Note A.)

OPTCD=Z
indicates that for magnetic tape (input only) a reduced error recovery
procedure (5 reads only) will occur when a data check is encountered. It
should be specified only when the tape is known to contain errors and the
application does not require that all records be processed. Its proper use
would include error frequency analysis in the SYNAD routine.
Specification of this parameter will also cause generation of a foundation
block extension. This parameter is ignored unless it was selected at system
generation.

IMSK=value
Any specification indicates that the system will not use mM-supplied error
routines.

Foundation Block Extension and Common Interface Parameters

EXLST = address
the address of an exit list that you have written for exceptional conditions.
The format of this exit list is given in OS/VS Data Management Services
Guide.

EODAD=address
the address of your end-of-data set routine for input data sets. If this
routine is not available when it is required, the task is abnormally
terminated.

52 OS/VS2 System Programming Library: Data Management

DSORG= IPS IDA}
the data set organization. PS means that records will be read or written
sequentially; DA, nonsequentially.

For direct-access devices, if you specify PS, you must maintain the following
fields of the device-dependent portion of the data control block so that the
system can write a file mark for output data sets:

• The track balance (DCBTRBAL) field, which contains a 2-byte binary
number that indicates the remaining number of bytes on the current track.

• The full disk address (DCBFDAD) field, which indicates the location of
the current record. The address is in the form MBBCCHHR.

These fields are written into the format-l DSCB and are used by Open
routines for staging "MSS data sets. Staging is done only up to the last cylinder
specified by these fields if the data set is re-opened for OUTPUT, INOUT, or
OUTIN.

IOBAD=address
the address of an input/output block (lOB). If a pointer to the current lOB
is not required, you may use this field for any purpose.

The following parameters are not used by the EXCP routines. They provide
additional information that the system will store for later use by access
methods that read or update the data set.

RECFM=code
the record format of the data set. Record format codes are given in
OS/VS Data Management Macro Instructions. When writing a data set
to be read later, the RECFM, LRECL, and BLKSIZE should be specified
to identify the data set attributes. LRECL and BLKSIZE can only be
specified in a DD statement, since these fields do not exist in a DCB used
by EXCP.

BFfEK={S I E}
the buffer technique, either simple or exchange.

BFALN={F I D}
the word boundary alignment of each buffer, either fullword or
doubleword.

BUFL=length
the length in bytes of each buffer; the maximum length is 32,767.

BUFNO=number
the number of buffers assigned to the associated data set; the maximum
number is 255.

BUFCB = address
the address of a buffer pool control block, i.e., the 8-byte field preceding
the buffers in a buffer pool.

Executing Your Own Channel Programs (EXCP) 53

Device-Dependent Parameters

DEVD=code
the device on which the data set may reside. The codes are listed in order
of descending space requirements for the data control block:

Code Device

DA Direct access

TA Magnetic tape

PT Paper tape

PR Printer

PC Card punch

RD Card reader

Note: For MSS virtual volumes, DA should be used.

If you do not wish to select a specific device until job set-up time, you should
specify the device type requiring the largest area.

The following diagrams illustrate the device-dependent portion of the data
control block for each combination of device type specified in the DEVD
parameter and data set organization specified in the DSORG parameter.
Fields that correspond to device-dependent parameters in addition to DEVD
are indicated by the parameter name. For special services, you may have to
maintain the fields shown in parentheses. The special services are explained in
the note that follows the diagram.

Device-dependent portion of data control block when DEVD=DA and
DSORG=PS:

4 5
Reserved DCBFDAD

~.----
8

13
DCBDVTBL

16 17 18
DCBKEYLE DCBDEVT DCBTRBAL

For output data sets, the system uses the contents of the full disk address
(DCBFDAD) field plus one to write a file mark when the data control block
is closed, provided the track balance (DCBTRBAL) field indicates that space
is available. You must maintain the contents of these two fields yourself if the
system is to write a file mark. OPEN will initialize DCBD'VTBL and
DCBDEVT.

Device-dependent portion of data control block when DEVD=DA and
DSORG=DA:

1
16

DCBKEYLE Reserved

54 OS/VS2 System Programming Library: Data Management

Device-dependent portion of data control block when DEVD=TA and
DSORG=PS:

12
DCBBLKCT

16 17 18 19
DCBTRTCH Reserved DCBDEN Reserved

The system uses the contents of the block count (DCBBLKCT) field to write
the block count in trailer labels when the data control block is closed or when
the EOV macro instruction is issued. You must maintain the contents of this
field yourself if the system is to have the correct block count. (Note: The I/O
supervisor increments this field by the contents of the 10BINCAM field at
the completion of each I/O request.)

When using EXCP to process a tape data set open at a checkpoint, you must
be careful to maintain the correct count; otherwise, the system may position
the data set incorrectly when restart occurs. If REPOS== Y, the count must be
maintained by you for repositioning during dynamic device reconfiguration.

Device-dependent portion of data control block when DEVD=PT and
DSORG=PS:

1
16

DCBCODE Reserved

Device-dependent portion of data control block when DEVD=PR and
DSORG=PS:

1
16

DCBPRTSP Reserved

Device-dependent portion of data control block when DEVD=PC or RD and
DSORG=PS:

16 18
DCBMODE,DCBST ACK Reserved

The following DCB operands pertain to specific devices and may be specified
only when the DEVD parameter is specified.

KEYLEN = length
for direct-access devices, the length in bytes of the key of a physical
record, with a maximum value of 255. When a block is read or written, the
number of bytes transmitted is the key length plus the record length.

Executing Your Own Channel Programs (EXCP) 55

CODE=value
for paper tape, the code in which records are punched:

Value Code

IBM BCD

F Friden

B Burroughs

C National Cash Register

A ASCII

T Teletype1

N no conversion (format-F records only)

If this parameter is omitted, N is assumed.

DEN=value
for magnetic tape, the tape recording density in bits per inch:

Value

7 -track tape device
o 200 (2400 only)
1 556
2 800
3
4

Density

9-track tape device

800(NRZI)
1600(PE)
6250(OCR)

NRZI-Non-return-to-zero change to ones recording
PE-phase encoded recording
OCR-group coded recording

If this parameter is omitted, the highest density available: on the device is
assumed.

TRTCH=value
for 7-track magnetic tape, the tape recording technique:

Value Tape Recording Technique

C Data conversion feature is available.

E Even parity is used. (If omitted, odd parity is assumed.)

T BCDIC to EBCDIC translation is required.

MODE=value
for a card reader or punch, the mode of operation. Either C (column
binary mode) or E (EBCDIC code) may be specified.

STACK=value
for a card punch or card reader, the stacker bin to receive cards, either 1
or 2.

PRTSP = value
for a printer, the line spacing, either 0, 1, 2, or 3.

1 Trademark of Teletype Corporation

56 OS/VS2 System Programming Library: Data Management

OPEN-Initialize Data Control Block

The OPEN macro instruction initializes one or more data control blocks so
that their associated data sets can be processed. You must issue OPEN for all
data control blocks that are to be used by your channel programs. (A dummy
data set may not be opened for EXCP.) Some of the procedures performed
when OPEN is executed are:

• Reading in the JFCB (job file control block)-unless the TYPE=J option
of the macro instruction was coded.

• Construction of the data extent block (DEB).

• Transfer of information from the JFCB and data set labels to the DCB.

• Verification or creation of standard labels.

• Tape positioning.

• Loading of your appendage routines.

The parameters of the OPEN macro instruction are:

[symbol] OPEN (deb address
,[(options)], ...)

deb address--A-type Address or (2-12)
the address of the data control block to be initialized. (More than one data
control block may be specified.)

optionl
the intended method of 110 processing of the data set. You may specify
this parameter as either INPUT, RDBACK, or OUTPUT. For each of
these, label processing when OPEN is executed is as follows:

INPUT - Header labels are verified.
RDBACK - Trailer labels are verified.
OUTPUT - Header labels are created.

If this parameter is omitted, INPUT is assumed.

option2
the volume disposition that is to be provided when volume switching
occurs. The operand values and meanings are as follows:

REREAD - Reposition the volume to process the data set again.
LEAVE - No additional positioning is performed at end-of-volume

processing.
DISP - Specifies that a tape volume is to be disposed of in the

manner implied by the DD statement associated with the
data set. Direct-access volume positioning and disposition
are not affected by this parameter of the OPEN macro
instruction. There are several dispositions that can be
specified in the DISP parameter of the DD statement:
DISP=PASS, DELETE, KEEP, CATLG, or UNCATLG.
Only DISP=P ASS has significance at the time an
end-of-volume condition is encountered. The
end-of-volume condition may result from the issuance of an
FEOV macro instruction or may be the result of reaching
the end of a volume.

Executing Your Own Channel Programs (EXCP) 57

If DISP=PASS was coded in the DD statement, the tape
will be spaced forward to the logical end of the data set on
the current volume.

If a DISP option other than DISP=PASS is coded on the
DD statement, the action taken when an end-of-volume
condition occurs depends (1) on how many tape units are
allocated to the data set and (2) on how many volumes are
specified for the data set in the DD statement. This is
determined by the UNIT= and VOLUME= operands of
the DD statement associated with the data set. If the
number of volumes is greater than the number of units
allocated, the current volume will be rewound and
unloaded. If the number of volumes is less than or equal to
the number of units, the current volume is merely rewound.

58 OS/VS2 System Programming Library: Data Management

If you intend to process a multivolume direct data set, you must cause Open
routines to build a data extent block for each volume and issue mount
messages for them. This can be done by reading in the JFCB with a RDJFCB
macro instruction and opening each volume of the data set. The following
piece of code illustrates the procedure:

*
*
*
*
*
*

RDJFCB DCB1
SR R3,R3

IC

LA

LA

R3,JFCBNVOL

R4,DCB1

R5,1

LOOP EQU *

READS IN THE JFCB
CLEARS REG 3; IT WILL
HOLD COUNT OF VOLS TO
BE OPENED
PUTS # OF VOLS
IN REG 3
R4 POINTS TO DCB FOR
VOL TO BE OPENED
PUTS SEQUENCE # OF
FIRST VOL TO BE
OPENED IN REG 5

STH R5 , JFCBVLSQ PUTS SEQ # OF VOL
* TO BE OPENED WHERE
* OPEN RTNS LOOK

OPEN ((R4) , OUTPUT) , TYPE=J OPENS ONE VOL
* NOTE THAT THE TYPE=J OPTION OF THE MACRO MUST BE USED

LA R4,DCB2-DCB1(R4) INCREMENT REG 4 TO
* POINT TO THE DCB FOR
* THE NEXT VOL TO BE
* OPENED

LA R5, 1 (R5) INCREMENT TO SEQ # OF
* NEXT VOL TO BE OPENEr

BCT R3, LOOP LOOP UNTIL ALL VOLS
* OPEN

JFCB DS
ORG

JFCBVLSQ DS

* ORG
JFCBNVOL DS

ORG

CL176
JFCB+70
H

JFCB+117
FL1

JFCB READ IN HERE

SEQ # OF VOL TO BE \
OPENED

OF VOLS IN DATA SET

* MAPPING MACRO IEFJFCBN MAY ALSO BE USED
DCB1 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB2 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB3 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB4 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCBS DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
* THIS PROCEDURE WORKS FOR 5 VOLS OR LESS; THE' JFCB
* EXTENSION, WHICH IDENTIFIES ADDITIONAL VOLS, CAN'T
* BE READ IN
EXITS DS

*
*
*

DC
OF
X' 87' ,AL3(JFCB) 87 IDENTIFIES THIS AS

THE EXIT LIST ENTRY
THAT SHOWS WHERE JFCB
WILL BE READ IN

Use of the ROJFCB macro instruction and the OPEN macro instruction with
the TYPE=J option is explained in detail in "Reading and Modifying a Job
File Control Block."

Executing Your Own Channel Programs (EXCP) 59

EXCP.-Execute Channel Program

The EXCP macro instruction requests the initiation of the I/O operations of
a channel program. You must issue EXCP whenever you want to execute one
of your channel programs. The format of the EXCP macro instruction is:

~Symbo/ll EXCP _ I iob-address]

iob-address--A-type address, (2-12), or (1)
the address of the input/output block of the channel program to be
executed.

ATUS-Assigning an Alternate Track and Copying Data from
the Defective Track

A program that uses the EXCP macro instruction for input and output may
use the A TLAS macro instruction, during the execution of the program, to
obtain an alternate track and to copy a defective track OJt1to the alternate
track. With the use of ATLAS, the program can recover from permanent
(hard) errors encountered in the execution of the following types of I/O
commands:

• Search ID.

• Write. (The error condition must be confirmed during the execution of the
channel program by a CCW that checks the data written.)

• Read count. Errors in the CCIll-IR part of the count area can be recovered
from unless the record is the home address or record zero. Errors in the
KDD part of the count area cannot be recovered from unless the user has
identified the defective record.

I Note: ATLAS may be used for all direct-access devices with the exception of
MSS volumes (3330V).

Your DCB must include the DCBRECFM field, and the field must show
whether the data set is in the track overflow format. If it is, recovery from
errors in last records on tracks depends on your identifying the track overflow
record segments.

Recovery takes the form of obtaining an alternate good track and copying the
defective track onto the good alternate one. Unless a reexecution of the
channel program by ATLAS can correct the defect, the user should examine,
and if necessary replace, defective records in a subsequent job if the data set
is to be processed again.

The format is:

[symbol] ATLAS

60 OS/VS2 System Programming Library: Data Management

P ARMADR= { address}
[,CHANPRG= {R I NR}]
[,CNTP'fR= {~ iF}]
[,WRITS = {YES I NO}]

PARMADR
Address of a parameter address list of the following format:

0

t Parameter list

4

t lOB for the channel program that encountered the error

8

t Count area field

The count area field contains the CCHHRKDD of a defective record or
the CCHH of a track that is to be copied.

addres~-type address, (2-12), or (1)

CHANPRG= { ! I NR }
specifies whether the channel program that encountered the error can be
executed again.

R - Channel program may be executed again by ATLAS. Before
permitting re-execution of the channel program by ATLAS, you
must reset the error indications of the previous execution fields in
the DCBIFLGS. (See the example of the use of ATLAS below.)

NR - Channel program may not be executed again.

If this parameter is omitted, R is assumed.

CNTPTR
. specifies whether the count area field contains a full count area
(CCHHRKDD) or a partial count area (CCHH).

P - Part of the count area (the CCHH address of the track to be copied).

F - Full count area (CCHHRKDD count of the record that was found
defective).

If this parameter is omitted, P is assumed.

WRITS
track overflow segment identification.

If your data set is in the track overflow format, this identification
determines recovery from errors in last records on tracks.

YES - If this is the last record on the track, it is a segment other than the
last of a track overflow record.

NO - If this is the last record on the track, it is the last or only segment of
a track overflow record.

If this parameter is omitted, it is assumed that it cannot be established
whether a last record is a segment of an overflow record.

Executing Your Own Channel Progr~s (EXCP) 61

Using ATLAS

If a channel program encounters a unit check condition (shown in the CSW)
in its execution, the 110 supervisor program will place th(~ sense bytes in the
lOB. ATLAS can be used to recover from sense conditions shown by the
following bit settings:

IOBSENSO X'08'

IOBSENSl X'80'

IOBSENS 1 X'02'

Data check (except in the count area)

Data check in the count area

Missing address marker (see the following for
combinations of this bit setting which ATLAS
cannot handle).

However, defects in the home address record or the record zero record cannot
be recovered from through the use of ATLAS. These conditions are shown
by:

IOBSENSl X'02' and IOBSENSO X'Ol '-home address defect.

IOBSENSl X'OA'-record zero defect, or, home address cannot be
located.

Also, before using ATLAS, you must reset error indications as follows:

NI DCBIFLGS,X'3F' Reset the DCBIFLGS error indications.

The ATLAS program will attempt to find a good alternate track and will
attempt to copy the defective track onto the good track, including all error
conditions in either key or data areas. The error conditions may be rectified
by reexecuting the channel program or through the use of the IEHA TLAS
utility program in a subsequent step.

Example: the following illustrates the use of the ATLAS macro instruction.

*

*

*
*
*

EXCP MYIOB
WAIT ECB=MYECB
TM MYECB,X'7F'
BO NEXT

TM
BZ

TM
BO
TM
BO
TM

IOBCSW+3,X'02'
OTHER

IOBSENSO,X'08'
ATLASGO
IOBSENS1,X'80'
ATLASGO
IOBSENS1,X'OA'

BO
ATLASGO EQU

OTHER

*
*
*
* NI DCBIFLGS,X'3F'
*

TEST FOR I/O ERROR
NO, SUCCESSFUL, GO TO
ANOTHER ROUTINE
UNIT CHECK
NO, DO OTHER ERROR
PROCESSING
DATA CHECK
YES, VALID ERROR
DATA CHECK IN COUNT
YES, VALID ERROR
MISSING ADDRESS
MARKER AND NO RECORD
FOUND
YES, ATLAS CANNOT
HANDLE ERROR; DO
OTHER ERROR
PROCESSING.
NO, MISSING ADDRESS
MARKER ONLY.
RESE'I' ERROR
INDICATORS

ATLAS PARMADR=THERE,CHANPRG=R

62 OS/VS2 System Programming Library: Data Management

Operatiolll of the ATLAS Program

The ATLAS program (SVC 86):

• Establishes the availability and address of the next alternate track from the
format-4 DSCB of the VTOC.

• Brings all count fields from the defective track into storage to establish the
description of the track.

• Initializes the alternate track. (Writes the home address and record zero.)

• Brings the key and data areas of each record into storage, one at a time,
and combines them with their new count area to write the complete record
onto the alternate track.

• When the copying is finished, chains the alternate to the defective track
and updates the VTOC. .

Control is returned to your program at the next executable instruction
following the ATLAS macro instruction. The success of the ATLAS macro
instruction can be determined by examining the contents of register 15, which
will contain one of the return codes described below. If register 15 contains 0,
36, 40, or 44, the contents of register ° may be significant.

Decimal
Return
Code

o
Meaning

Successful completion. Key and data areas have been copied from the defective
track onto a good alternate one. The only error encountered was in the record
identified by the user's CCHHRKDD value.

If the channel program is reexecutable, it has been successfully reexecuted.

4 This device type does not have alternate tracks that can be assigned by
programming.

8 All alternate tracks for the device have been assigned.

12 A request for storage (GETMAIN macro instruction) could not be satisfied.

16 All attempts to initialize and transfer data to an alternate track failed. The
number of attempts made is equal to 10% of the assigned alternates for the
device.

20 The type of error shown by the sense byte cannot be handled through the use
of the ATLAS macro instruction. The condition is other than a data check (in
the count or data areas) or a missing address marker.

24 The format-4 DSCB of the VTOC cannot be read; therefore alternate track
information is not available to ATLAS.

28 The record specified by the user was the format-4 DSCB and it could not be
read.

32 An error found in count area of last record on the track cannot be handled
because last-record-on-track identification is not supplied.

36 An error was encountered when reading or writing the home address record or
record zero. No error recovery has taken place. If register 0 contains
X'OI 00 00 00', the defect is in record zero.

40 Successful completion. Key and data areas have been copied from the defective
track onto a good alternate one. However, the alternate track may have
records with defective key or data areas. Register 0 identifies the first three
found defective as follows:

nRRR

n-The number of record numbers that follow (0, 1,2, or 3).

R-The number of the record found defective but copied anyhow.

Executing Your Own Channel Programs (EXCP) 63

EOV.-End of Volume

Decimal
Return
Code Meaning

If the channel program is reexecutable, it has been successfully reexecuted.

44 Error/Errors encountered and no alternate track has b(:en assigned. The retum
parameter register (register 0) will contain the R of a maximum of three error
records.

Error conditions that return this code are:

1. ATLAS received an error indication for a record with a data length in the
count field of zero. Recovery was not possible because a distinction cannot
be made between an EOF record and an invalid data length.

2. An error occurred while reading the count field of a record and the KDD
(key length-data length) was found to be defective.

3. More than three records on the specified track contained errors in their
count fields.

48 No errors found on the track, no alternate assigned. ATLAS will not assign an
alternate unless a track has at least one defective record.

52 I/O error in reexecuting user's channel program. A good alternate is chained
to the defective track and data has been transferred. The user's control blocks
will give indication of the error condition causing failure in re-execution of his
channel program.

56 The DCB reflects a track overflow data set, but the UCB device type shows
that the device does not support track overflow.

60 The CCHH of the user-specified count area is not within the extents of his data
set.

64 The device is an MSS virtual device, which is not supported.

The EOV macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition, EOV causes switching of
volumes and verification or creation of standard labels. For an end-of-data set
condition, EOV causes your end-of-data set routine to be entered. Before
processing trailer labels on a tape input data set, you must decrement the
DCBBLKCT field. You issue EOV if switching of magnetic tape or
direct-access volumes is necessary, or if secondary allocation is to be
performed for a direct-access data set opened for output.

For magnetic tape, you must issue EOV when either a tapemark is read or a
reflective spot is written over. In these cases, bit settings in the I-byte
DCBOFLGS field of the data control block determine the action to be taken
when EOV is executed. Before issuing EOV for magnetic tape, you must
make sure that appropriate bits are set in DCBOFLGS. Bit positions 2,3,6,
and 7 of DCBOFLGS are used only by the system; you are concerned with
bit positions 0,1,4, and 5. The use of these DCBOFLGS bit positions is as
follows:

Bit 0
set to 1 indicates that a write command was executed and that a tape mark
is to be written.

Bit 1
indicates that a backward read was the last 110 operation.

Bit 4
indicates that data sets of unlike attributes are to be concatenated.

64 OS/VS2 System Programming Library: Data Management

Bit 5
indicates that a tape mark has been read.

If bits 0 and 5 of DCBOFLGS are both off when EOV is executed, the tape
is spaced past a tapemark, and standard labels, if present, are verified on both
the old and new volumes. The direction of spacing depends on bit 1. If bit 1 is
off, the tape is spaced forward; if bit 1 is on, the tape is backspaced.

If bit 0 is on when EOV is executed, a tapemark is written immediately
following the last data record of the data set. Standard labels, if specified, are
created on the old and the new volume.

After issuing EOV for sequentially organized output data sets on
direct-access volumes, you can determine whether additional space was
obtained on the same or a different volume. You do this by examining the
data extent block (DEB) and the unit control block (UCB). If neither the
address of the UCB, as shown in the DEB, nor the volume serial number, as
shown in the UCB, have changed, additional space was obtained on the same
volume. Otherwise, space was obtained on a different volume.

The only parameter of the EOV macro instruction is:

I [symbol] I EOV I deb address

deb addres9-A-type address, (2-12), or (1)
the address of the data control block that is opened for the data set. If this
parameter is specified as (1), register 1 must contain this address.

Note: To learn how the system disposes of a tape volume when an EOV
macro is issued, see the discription of the DISP parameter in
"OPEN-Initialize Data Control Block."

CLOSE--Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You must issue
CLOSE for all data control blocks that were used by your channel programs.
Some of the procedures performed when CLOSE is executed are:

• Release of data extent block (DEB)

• Removal of information transferred to data control block fields when
OPEN was executed

• Verification or creation of standard labels

• Volume disposition

• Release of programmer-written appendage routines

When CLOSE is issued for data sets on magnetic tape volumes, labels are
processed according to bit settings in the DCBOFLGS field of the data
control block. Before issuing CLOSE for magnetic tape, you must set the
appropriate bits in DCBOFLGS. The DCBOFLGS bit positions that you are
concerned with are listed in the EOV macro instruction description.

For information about the forms of the CLOSE macro and their parameters,
refer to OS/VS Data Management Macro Instructions.

Executing Your Own Channel Programs (EXCP) 65

Control Block Fields

Input/Output Block Fields

The fields of the input/output block, event control block, and data extent
block are illustrated and explained here; the data control block fields have
been described with the parameters of the DCB macro instruction in the
section "EXCP Programming Specifications."

The input/output block (lOB) is not automatically constructed by a macro
instruction; it must be defined as a series of constants and must be on a
fullword boundary. For unit-record and tape devices, the lOB is 32 bytes in
length. For direct-access, teleprocessing, and graphic devices, 8 additional
bytes must be provided. You may want to use the system mapping macro
IEZIOB, which expands into a DSECT, to help in constnlcting an lOB.

In Figure 3, the diagonally-ruled areas indicate fields in which you must
specify information; the shaded areas indicate fields in which you may specify
information. The other fields are used by the system and must be defined as
all zeros. You may not place information into these fields, but you may
examine them.

10BFLAGI (1 byte)
You must set bit positions 0, 1, and 6. One-bits in positions 0 and 1
indicate data chaining and command chaining, respectively. (If both data
chaining and command chaining are specified, the system does not use
error recovery routines except for the 2671, 1052, 2150 and the
direct-access devices.) A one-bit in position 6 indicates that the channel
program is not a 'related' request; that is, the channel program is not
related to any other channel program. If you intend to issue an EXCP
macro with a BSAM, QSAM, or BP AM data control block, you may want
to turn on bit 7 to prevent access-method appendages from processing the
I/O request.

IOBFLAG2 (1 byte)
If you set bit 6 in the 10BFLAG 1 field to zero, then bits 2 and 3 in this
field must be set to:

• 00, if any channel program or appendage associated with a related
request might modify this lOB or channel program.

• 01, if the conditions requiring a 00 setting don't apply, but the CHE or
ABE appendage might retry this channel program if it completes
normally or with the unit-exception or wrong-length-record bits on in
the CSW.

• lOin all other cases.

The three combinations of bits 2 and 3 represent the three kinds of related
requests, known as type 1 (00), type 2 (01), and type 3 (10). The type you
use determines how much the I/O supervisor can overlap the processing of
related requests. Type 3 allows the greatest overlap, normally making it
possible to quickly reuse a device after a channel-end interruption.
(Related requests that were executed on an earlier system are executed as
type-l requests if not modified.)

66 OS/VS2 System Programming Library: Data Management

IOBECBCC

8(8)
IOBFLAG3

12(C)

16(10)

IOBSIOCC

20(14)

Reserved

24{ 18)

IOBRESTR

Figure 3. Input/Output Block Format

IOBSENSO

IOBCSW

IOBRESTR+l

IOBERRCT

IOBSENSI

All
Devices

Direct
Access
Storage
Devices
(DASD)

IOBSENSO and IOBSENSI (2 bytes)
are placed into the input/output block by the system when a unit check
occurs. On occasion the system is unable to obtain any sense bytes because
of unit checks when sense commands are issued. In this case the system
simulates sense bytes by moving X'IOFE' to IOBSENSO and IOBSENSl.

IOBECBCC (1 byte)
the first byte of the completion code for the channel program. The system
places this code in the high-order byte of the event control block when the
channel program is posted complete. The completion codes and their
meanings are listed under "Event Control Block Fields."

IOBECBPT (3 bytes)
the address of the 4-byte event control block that you have provided.

IOBFLAG3 (1 byte)
is used only by the system.

Executing Your Own Channel Programs (EXCP) 67

Even' Control Block Fields

10BCSW (7 bytes)
the low-order seven bytes of the channel status word, which are placed
into this field each time a channel-end or PCI interruption occurs.

10BSIOCC (1 byte)
in bits 0 and 1, the instruction-length code; in bits 2 and 3, the start I/O
(SIO) condition code for the SIO instruction the system issues to start the
channel program; and in bits 4 through 7, the program mask.

10BST ART (3 bytes)
the starting address of the channel program to be executed.

Reserved (1 byte)
used only by the system.

IOBDCBPT (3 bytes)
the address of the data control block of the data set to be read or written
by the channel program.

IOBRESTR (1 byte)
used by the system for volume repositioning in error recovery procedures.

IOBRESTR+ 1 (3 bytes)
used by the system, if a related channel program is permanently in error, to
chain together lOBs that represent dependent channel programs. To learn
more about the conditions under which the chain is built, refer to
"Interruption Handling and Error Recovery Procedures."

IOBINCAM (2 bytes)
for magnetic tape, the amount by which the block count (DCBBLKCT)
field in the device-dependent portion of the data control block is to be
incremented. You may alter these bytes at any time. For forward
operations, these bytes should contain a binary positive integer (usually
+ 1); for backward operations, they should contain a binary negative
integer. When these bytes are not used, all zeros must be specified.

Reserved (2 bytes)
used only by the system.

IOBSEEK (first byte, M)
for direct-access devices, the extent entry in the data extent block that is
associated with the channel program (0 indicates the first entry; 1 indicates
the second, etc.). For teleprocessing and graphic devices, it contains the
VCB index.

IOBSEEK (last 7 bytes, BBCCHHR)
for direct-access devices, the seek address for your channel program.

You must define an event control block (ECB) as a 4-byte area on a fullword
boundary. When the channel program has been completed, the input/output
supervisor places a completion code containing status information into the
ECB (Figure 4). Before examining this information, you must test for the
setting of the "complete bit." If the complete bit is not on, and your problem
program cannot perform other useful operations, you should issue aWAIT
macro instruction that specifies the event control block. Under no
circumstances should you construct a program loop that tests for the complete
bit.

68 OS/VS2 System Programming Library: Data Management

Data Extent Block Fields

The data extent block (DEB) is constructed by the system when an OPEN
macro instruction is issued for the data control block. You may not modify
the fields of the DEB, but you may examine them. The DEB format and field
descriptions are contained in OSjVS2 System Programming Library:
Handbook for Debugging.

bit

o

WAIT bit=O COMPLETE bit= 1 Remainder of completion code

2 31

Wait bit
A one-bit in this position indicates that the WAIT macro instruction has been issued,
but the channel program has not been completed.

Complete bit
A one-bit in this position indicates that the channel program has been completed; if it
has not been completed, a zero-bit is in this position.

Completion code
This code, which includes the wait and complete bits, may be one of the following
4-byte hexadecimal expressions:

Code Meaning

7FOOOOOO The channel program has terminated without error.

41000000 The channel program has terminated with a permanent error.

42000000 The channel program has terminated because a direct-access extent
address has been violated.

4400000O The channel program wasn't started because of a permanent error
associated with the previous request. You may reissue the EXCP macro
instruction to start the channel program.

48000000 The request queue element for a channel program has been made available
after it has been purged.

4BOOOOOO One of the following errors occurred during error recovery processing for
a tape device.

• The CSW command address in the lOB is zeros.

• An unexpected load point was encountered.

4FOOOOOO Error recovery routines have been entered because of direct-access error
but are unable to read the home address or record O.

Figure 4. Event Control Block After Posting of Completion Code (EXCP)

Executing Fixed Channel Programs in
Real Storage (EXCPVR)

The EXCPVR macro instruction provides you with the same functions as the
EXCP macro instruction (that is, a device-dependent means of performing
input/output operations). In addition, it allows your program to improve the
efficiency of the I/O operations in a paging environment by translating its
own virtual channel programs to real channel programs. Authorized programs
are allowed to execute in a page able area and provide the I/O supervisor with
real channel programs. This eliminates the translation of channel programs by
the I/O supervisor.

Executing Your Own Channel Programs (EXCP) 69

Problem programs are authorized to use the EXCPVR macro instruction
under the authorized program facility (APF). A description of how to
authorize a program can be found in the OS /VS2 System Programming
Library: Job Management, Supervisor, and TSO, GC28-0682.

~bo/lIEXCPVR __ ~I_io_b_-a_dd __ re_s_s __________________ . ______ ___

iob-addres!i--A-type address, (2-12), or (1)
the address of the input/output block of the channel program to be
executed.

To use EXCPVR, you must do all the things you would do to execute an
EXCP request; in addition you must:

1. Code PGFX=YES in the DCB associated with the EXCPVR requests and
provide a page-fix (PGFX) appendage.

2. Fix the data area that contains your channel program, t.he data areas that
are referred to by your channel program, your PCI appendage (if your
program can generate program controlled interrupts), and any area
referred to by your PCI appendage. You fix these data areas by building a
list that contains these addresses of these areas. You should build the list in
your PGFX appendage.

3. Determine whether the data areas in virtual storage specified in the address
fields of your CCWs cross page boundaries. If they do, you must build an
indirect address list (IDAL) and put the address of the IDAL in the
affected CCW.

4. Translate the addresses in your CCWs from virtual to real addresses.

Items 3 and 4 must be done in your start-I/O (SIO) appendage. A description
of the SIO appendage is presented in the section titled "Appendages."

Building the List 0/ Datil Areas to be Fixed

The I/O supervisor expects programs using the EXCPVR macro instruction
to pass a list of data areas to be fixed. This list is to be built in the PGFX
appendage, as described below.

The data areas you will want to consider fixing in real storage are:

1. The channel program.

2. The data areas from which your channel program will be writing and to
which your channel program will be reading.

3. The PCI appendage.

4. Any control blocks or other areas referred to in your PCI appendage (for
example, the DEB).

You need not fix areas that have already been fixed, such as the modules that
reside in the fixed link pack area (LPA).

70 OS/VS2 System Programming Library: Data Management

Page Fix (PGFX) and Start-I/O (SIO) Appendage

Page FIX List Processing

SIO Appendage

This appendage comprises two essentially independent appendages. The
complete appendage can be viewed as a re-enterable subroutine having two
entry points, one for the SIO appendage and one for the PGFX appendage.

The SIO entry point is located at offset 0 in the subroutine; any other location
in the appendage may be branched to from this entry point. The entry point
of the PGFX appendage is at offset +4 in the subroutine.

Page FIX (PGFX) Appendage: The purpose of this appendage is to list all of
the areas that must be fixed to prevent paging exceptions during the execution
of the current I/O request. This appendage may be entered more than once.
However, each time it is entered, it must create the same list of areas to be
fixed, including the boundary of any items used to create the list. The
appendage may use the 16-word save area pointed to by register 13. Registers
10, 11, and 13 may be used as work registers.

Each page fix entry placed in the list by the appendage must have the
followin~ double word format:

X'QQ'
Starting virtual address X'QQ' Ending virtual address
of area to be fixed of area to be fixed + 1

1-4--1 Byte ---...1.-- 3 Bytes ----.1~1 Byte-----.I....- 3 Bytes__...I

On return from your PGFX appendage to the I/O supervisor (via the return
address provided in register 14), register 10 must point to the first page-fix
entry and register 11 must contain the number of page-fix entries in the work
area. The I/O supervisor then fixes the pages corresponding to the areas
listed by the PGFX appendage. The pages remain fixed until the associated
I/O request terminates.

If you are using EXCPVR to execute your channel program, you must
translate the virtual addresses in the operands of your channel program to real
addresses. This should be done in your SIO appendage. If indirect addressing
is required, the SIO appendage should also build the IDALs and tum on the
IDAL indicators in the associated CCWs.

Translating Virtual Addresses and BuDding the IDAL: You can use the load real
address (LRA) instruction to convert the virtual addresses in the channel
program to real addresses. You must also check the areas whose addresses
appear in bits 8-31 of your CCWs to determine whether the data areas cross
page boundaries. If they do, you must provide an entry in the indirect address
list (IDAL) for each page boundary crossed. The channel uses the IDAL to
identify the address at which it will continue reading or writing when a page
boundary is crossed during a read or write operation. You can also use the
LRA to translate the virtual addresses in the IDAL to real addresses. The
IDAL must contain real addresses when it is processed by the channel.

Executing Your Own Channel Programs (EXCP) 71

ccw

o

Command
Code

Address of the IDAL 04

7 8 31 32 39 40

Byte Count

47 48

IDAL

o
First Indirect Address

4
Second Indirect Address

8
Subsequent Indirect

'Cddress J

Note 1: You must put one entry in the mAL for each page boundary your
data area crosses.

Note 2: If the CCW has an mAL address rather than a data address, bit 37
must be set to signal this to the channel.

Note 3: The number of entries needed in the mAL is determined from the
count in the CCW as follows:

Number of mAL entries= «CCW count - 1)/2048) + 1

72 OS/VS2 System Programming Library: Data Management

USING XDAP TO READ AND WRITE TO
DIRECT-ACCESS DEVICES

Introduction

The execute direct-access program (XDAP) macro instruction provides you
with a means of reading, verifying, or updating blocks on direct-access
volumes without using an access method and without writing your own
channel program. This chapter explains what the XDAP macro instruction
does and how you can use it. The control block generated when XDAP is
issued and the macro instruction used with XD AP are also discussed.

Since most of the specifications for XDAP are similar to those for the execute
channel program (EXCP) macro instruction, you should be familiar with the
"Executing Your Own Channel Programs (EXCP)" chapter of this
publication, as well as with the information contained in OS / VS Data
Management Services Guide, GC26-3783, which provides how-to
information for using the access method routines of the system control
program.

Execute direct-access program (XDAP) is a macro instruction that you may
use to read, verify, or update a block on a direct-access volume. If you are not
using the standard mM data access methods, you can, by issuing XDAP,
generate the control information and channel program necessary for reading
or updating the records of a data set. (XDAP cannot be used, however, to
read, verify, or update a SYSIN, SYSOUT, or VSAM data set.)

You cannot use XDAP to add blocks to a data set, but you can use it to
change the keys of existing blocks. Any block configuration and any data set
organization can be read or updated.

Although the use of XDAP requires less storage than do the standard access
methods, it does not provide many of the control program services that are
included in the access methods. For example, when XDAP is issued, the
system does not block or deblock records and does not verify block length.

To issue XDAP, you must provide the actual device address of the track
containing the block to be processed. You must also provide either the block
identification or the key of the block, and specify which of these is to be used
to locate the block. If a block is located by identification, both the key and
data portions of the block may be read or updated. If a block is located by
key, only the data portion can be processed.

For additional control over I/O operations, you may write appendages, which
must be entered into the LPA library. Descriptions of these routines and their
coding specifications are contained in the "Executing Your Own Channel
Programs (EXCP)" section of this publication.

Using XDAP to Read and Write to Direct-Access Devices 73

XDAP Requirements
When using the XDAP macro instruction, you must, somewhere in your
program, code a DCB macro instruction, which produces a data control block
(DCB) for the data set to be read or updated. You must also code an OPEN
macro instruction, which initializes the data control block and produces a data
extent block (DEB). The OPEN macro instruction must be executed before
any XDAP macro instructions are executed.

When the XDAP macro instruction is assembled, a control block and
executable code are generated. This control block may be logically divided
into three sections:

• An event control block (ECB), which is supplied with a completion code
each time the direct-access channel program is termina.ted.

• An input/output block (lOB), which contains information about the
direct-access channel program.

• A direct-access channel program, which consists of three or four channel
command words (CCWs). The type of channel program generated depends
on specifications in the parameters of the XDAP macro instruction. When
executed, it locates a block by either its actual address or its key and reads,
updates, or verifies the block.

When the channel program has terminated, a completion ·eode is placed into
the event control block. After issuing XDAP, you should therefore issue a
WAIT macro instruction, specifying the address of the event control block, to
regain control when the direct-access program has terminated. If volume
switching is necessary, you must issue an EOV macro instruction. When
processing of the data set has been completed, you must issue a CLOSE
macro instruction to restore the data control block.

Macro Specifications for Use with XDAP
When you are using the XDAP macro instruction, you m1.llst also code DCB,
OPEN, CLOSE, and, in some cases, the EOV macro instructions. The
parameters of the XDAP macro instruction are listed and described here. For
the other required macro instructions, special requirements or options are
explained, but you should refer to "Macro Specifications for Use with EXCP"
for listings of their parameters.

DCB-De/ine Data Control Block

You must issue a DCB macro instruction for each data set to be read,
updated, or verified by the direct-access channel program. Refer to
"DCB--Define Data Control Block for EXCP" to learn which macro
illstruction parameters to code.

OPEN-Initialize Data Control Block

The OPEN macro instruction initializes one or more data control blocks so
that their associated data sets can be processed. You must issue OPEN for all
data control blocks that are to be used by the direct-access program. Some of
the procedures performed when OPEN is executed are:

• Construction of data extent block (DEB).

74 OS/VS2 System Programming Library: Data Management

• Transfer of information from DD statements and data set labels to the data
control block.

• Verification or creation of standard labels.

• Loading of programmer-written appendage routines.

The two parameters of the OPEN macro instruction are the address(es) of the
data control block(s) to be initialized, and the intended method of I/O
processing of the data set. The method of processing may be specified as
either INPUT or OUTPUT; however, if neither is specified, INPUT is
assumed.

XDA.P-Execute Direct-A.ccess Program

The XDAP macro instruction produces the XDAP control block (i.e., the
ECB, lOB, and channel program) and executes the direct-access channel
program. The format of the XDAP macro instruction is:

[symbol] XDAP eeb-symbol
,type
,deb-addr
,area-addr
, length-value
,[key-addr
, keylength-value]
, blkref-addr
,[seetor-addr]
[,MF=={E I L}]

eeb-symbol-symbolor (2-12)
the symbolic name to be assigned to the XDAP event control block.
Registers can be used only with MF -E.

type - {RI I RK I WI I WK I VI I VK }
the type of I/O operation intended for the data set and the method by
which blocks of the data set are to be located. One of the combinations
shown must be coded in this field.

The codes and their meanings are:

R - Read a block.

W - Update a block.

V - Verify that the device is able to read the contents of a block, but do
not transfer data.

I - Locate a block by identification. (The key portion, if present, and
the data portion of the block are read, updated, or verified.)

K - Locate a block by key. (Only the data portion of the block is read,
updated, or verified.) If you code this value, you must code the
key-addr key-length-value operands.

Using XDAP to Read and Write to Direct-Access Devices 75

dcb-addr-A-type address or (2-12)
the address of the data control block for the data set. If this data control
block is also being used by a sequential access method (BSAM, BP AM,
QSAM), you must reassemble the XDAP macro instnlction. Otherwise,
sequential access method appendages will be called at the conclusion of the
XDAP channel program.

area-addr-A-type address or (2-12)
the address of an input or output area for a block of the data set.

length-va/~bsexp or (2-12)
the number of bytes to be transferred to or from the input or output area.
If blocks are to be located by identification and the data set contains keys,
the value must include the length of the key. The maximum number of
bytes transferred is 32,767.

key-addr-RX-type address or (2-12)
when blocks are to be located by key, the address of a virtual storage field
that contains the key of the block to be read, updated, or verified ..

keylength-value-absexp or (2-12)
when blocks are to be located by key, the length of the key. The maximum
length is 255 bytes.

blkref-addr-RX-type address or (2-12)
the address of a field in virtual storage containing the actual device address
of the track containing the block to be located. The a(:tual address of a
block is in the form MBBCCHHR, where M indicates which extent entry
in the data extent block is associated with the direct-access program; BB is
not used but must be zero; CC indicates the cylinder address; HH indicates
the actual track address; and R indicates the block identification. R is not
used when blocks are to be located by key. (See "Conversion of Relative
Block Address to Actual Device Address" later in this chapter for more
detailed information.)

sector-addr--:J1X-type address or (2-12)
the address of a 1-byte field containing a sector value. The sector-address
parameter is used for rotational position sensing (RPS) devices only. The
parameter is optional, but its use will improve channel performance. When
the parameter is coded, a set-sector CCW (using the sector value indicated
by the data address field) precedes the Search-ID-Equal command in the
channel program. The sector-address parameter is ignored if the type
parameter is coded as RK, WK., or YK.. If a sector-address is specified in
the execute form of the macro, then a sector-address, not necessarily the
same, must be specified in the list form. The sector address in the
executable form will be used.

Note: No validity check is made on either the address or the sector value
when the XDAP macro is issued. However, a unit check/command reject
interruption will occur during channel-program execUltion if the sector
value is invalid for the device or if the sector-addr operand is used when
accessing a device without RPS. (See "Obtaining Sector Number of a
Block on a Device with the RPS Feature" later in this chapter for more
detailed information.)

MF=
you may use the L-form of the XDAP macro instruction for a macro
expansion consisting of only a parameter list, or the E-form for a macro
expansion consisting of only executable instructions.

76 OS/VS2 System Programming Library: Data Management

EOV.-End 0/ Volume

MF=E
The first operand (ecb-symbol) is required and may be coded as a symbol
or supplied in register 2-12. The type, dcb-addr, area-addr, and
length-value operands may be supplied in either the L- or E-form. The
blkref-addr operand may be supplied in the E-form or moved into the
lOB SEEK field by you. The sector-addr is optional; it may be coded either
in both the L- and E-form or in neither.

MF=L
The first two operands (ecb-symbol and type) are required and must be
coded as symbols. If you choose to code length-value or keylength-value,
they must be absolute expressions. Other operands, if coded, must be
A-type addresses. (Blkref-addr is ignored if coded.)

The dcb-addr, area-addr, blkref-addr, and sector-value operands may be
coded as RX-type addresses or supplied in register 2-12. The length-value
and keylength-value operands can be specified as an absolute expression or
decimal integer or supplied in register 2-12.

The EOV macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition, EOV causes switching of
volumes and verification or creation of standard labels. For an end-of-data set
condition, EOV causes your end-of-data set routine to be entered. When
using XDAP, you issue EOV if switching of direct-access volumes is
necessary, or if secondary allocation is to be performed for a direct-access
data set opened for output.

The only parameter of the EOV macro instruction is the address of the data
control block of the data set.

CLOSE--Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You must issue
CLOSE for all data sets that were used by the direct-access channel program.
Some of the procedures performed when CLOSE is executed are:

• Release of data extent block (DEB)

• Removal of information transferred to data control block fields when
OPEN was executed

• Verification or creation of standard labels

• Release of programmer-written appendage routines

The CLOSE macro instruction must identify the address of at least one data
control block to be restored, and may specify other options. See OS/VS
Data Management Macro Instructions to learn what these options are and
how they are specified.

Using XDAP to Read and Write to Direct-Access Devices 77

Control Blocks Used with XDAP

Event Control Block

Input/Output Block

The three control blocks generated during execution of the XDAP macro
instruction are described here.

The event control block (ECB) begins on a fullword boundary and occupies
the first 4 bytes of the XDAP control block. Each time the direct-access
channel program terminates, the I/O supervisor places a completion code
containing status information into the event control block (Figure 5). Before:
examining this information, you must wait for the completion of the channel
program by issuing a WAIT macro instruction that specifies the address of the
event control block.

The input/output block (lOB) is 40 bytes in length and :immediately follows
the event control block. The "Control Block Fields" section in the EXCP
section of this publication contains a diagram of the input/output block
(Figure 3). You may wish to examine the IOBSENSO, IOBSENSl, and
IOBCSW fields if the ECB is posted with X'41 '.

Completion code]

'---1..---'--------

WAIT bit COMPLETE bit

bit
o

Wait bit

2 31

A one bit in this position indicates that the direct-access channl~l program has not been
completed.

Complete bit
A one bit in this position indicates that the channel program ha~ been completed; if it
has not been completed, a zero bit is in this position.

Completion code
This code, which includes the wait and complete bits, may be one of the following
4-byte hexadecimal expressions:

Code Interpretation

7FOOOOOO Direct-access program has terminated without error.

41000000 Direct-access program has terminated with permanent error.

42000000 Direct-access program has terminated because a direct-access extent address
has been violated.

4FOOOOOO Error recovery routines have been entered because of direct-access error but
are unable to read home address or record O.

Figure 5. Event Control Block After Posting of Completion Code (XDAP)

78 OS/VS2 System Programming Library: Data Management

Direct-Access Channel Program

The direct-access channel program is 24 bytes in length (except when set
sector is used for RPS devices) and immediately follows the input/output
block. Depending on the type of I/O operation specified in the XDAP macro
instruction, one of four channel programs may be generated. The three
channel command words for each of the four possible channel programs are
shown in Figure 6.

Type of I/O Operation CCW Command Code

Read by identification 1 Search ID Equal
2 Transfer in Channel

Verify by identification 1 3 Read Key and Data

Read by key 1 Search Key Equal
2 Transfer in Channel

Verify by keyl 3 Read Data

Write by identification 1 Search ID Equal
2 Transfer in Channel
3 Write Key and Data

Write by key 1 Search Key Equal
2 Transfer in Channel
3 Write Data

1 For verifying operations, the third CCW is flagged to suppress the transfer of information to virtual storage.

Figure 6. The XDAP Channel Programs

When a sector address is specified with an RI, VI, or WI operation, the
channel program is 32 bytes in length. Each of the channel programs in
Figure 6 would be, in this case, preceded by a set sector command.

Conversion of Relative Track Address to Actual Device
Address

To issue XDAP, you must provide the actual device address of the track
containing the block to be processed. If you know only the relative track
address, you can convert it to the actual address by using a resident system
routine. The entry point to this conversion routine is labeled IECPCNVT.
The address of the entry point (CVTPCNVT) is in the communication vector
table (CVT). The address of the CVT is in location 16. (For the
displacements and descriptions of the CVT fields, see OS/VS2 Data Areas.)

Using XDAP to Read and Write to Direct-Access Devices 79

The conversion routine does all its work in general registers. You must load
registers 0, 1, 2, 14, and 15 with input to the routine. Register usage is as
follows:

Register Use

o Must be loaded with a 4-byte value of the form TIRN, where TI is the
number of the track relative to the beginning of the data set, R is the
identification of the block on that track, and N is the concatenation number
of a BPAM data set. (0 indicates the first data set in the concatenation, an
unconcatenated BPAM data set, or a non-BPAM data set.)

Must be loaded with the address of the data extent block (DEB) of the data
set.

2 Must be loaded with the address of an 8-byte area that is to receive the
actual address of the block to be processed. The converted address is of the
form MBBCCHHR, where M indicates which extent entry in the data extent
block is associated with the direct-access program (0 indicates the first
extent, 1 indicates the second, etc.); BB is two bytes of zeros; CC is the
cylinder address; HH is the actual track address; and R is the block number.

3-8 Are not used by the conversion routine.

9-13 Are used by the conversion routine and are not restored.

14 Must be loaded with the address to which control is to be returned after
execution of the conversion routine.

15 Is used by the conversion routine as a base register and must be loaded with
the address at which the conversion routine is to receive control.

Conversion of Actual Device Address to Relative Track
Address

To get the relative track address when you know the actual device address,
you can use the conversion routine labeled IECPRLTV. The address of the
entry point (CVTPRL TV) is in the communication vector table (CVT). The
address of the CVT is in location 16.

The conversion routine does all its work in general registers. You must load
registers 1, 2, 14, and 15 with input to the routine. Register usage is as
follows:

Register Use

o Will be loaded with the resulting TIRO to be passed 1back to the caller.

Must be loaded with the address of the data extent block ~DEB) of the data
set.

2 Must be loaded with the address of an 8-byte area containing the actual
address to be converted to a TIR. The actual address is of the form
MBBCCHHR.

3-8 Are not used by the conversion routine.

9-13 Are used by the conversion routine and are not restored.

14 Must be loaded with the address to which control is to be returned after
execution of the conversion routine.

15 Is used by the conversion routine as a base register and must be loaded with
the address at which the conversion routine is to receive control.

80 OS!VS2 System Programming Library: Data Management

Obtaining Sector Number of a Block on a Device with the
RPS Feature

To obtain the performance improvement given by rotational position sensing,
you should specify the sector-addr parameter in the XDAP macro. For
programs that can be used with both RPS and non-RPS devices, the UCBRPS
bit (bit 3 at an offset of 17 bytes into the UCB) should be tested to determine
whether the device has rotational position sensing. If the UCBRPS bit is off, a
channel program with a "set sector" command must not be issued to the
device.

The sector-addr parameter on the XDAP macro specifies the address of a one
byte field in your region. You must store the sector number of the block to be
located in this field. You can obtain the sector number of the block by using a
resident conversion routine, IECOSCR 1. The address of this routine is in field
CVTOSCRI of the CVT, and the address of the CVT is in location 16. The
routine should be invoked via a BALR 14,15 instruction.

For RPS devices, the conversion routine does all its work in general registers.
You must load registers 0, 2, 14, and 15 with input to the routine. Register
usage is as follows:

Register Use

o For fixed, standard blocks or fixed, unblocked records not in a partitioned
data set: Register 0 must be loaded with a 4-byte value in the form XXKR,
where XX is a 2-byte field containing the physical block size, K is a I-byte
field containing the key length, and R is a I-byte field containing the number
of the record for which a sector value is desired. The high-order bit of
register 0 must be turned off (set to 0) to indicate fixed-length records.

For all other cases: Register 0 must be loaded with a 4-byte value in the
form BBIR, where BB is the total number of key and data bytes on the track
up to, but not including, the target record; I is a I-byte key indicator (1 for
keyed records, 0 for records without keys); and R is a I-byte field containing
the number of the record for which a sector value is desired. The high-order
bit of register 0 must be turned on (set to 1) to indicate variable-length
records.

Not used by the sector-convert routine.

2 Must be loaded with a 4-byte field in which the first byte is the UCB device
type code for the device (obtainable from UCB+ 19), and the remaining
three bytes are the address of a I-byte area that is to receive the sector value.

3-8,12,13 Not used.

9-11 Used by the convert routine and are not saved or restored.

14 Must be loaded with the address to which control is to be returned after
execution of the sector conversion routine.

15 Used by the conversion routine as a base register and must be loaded with
the address of the entry point to the conversion routine.

Using XDAP to Read and Write to Dit:ect-Access Devices 81

PASS'WORD PROTECflNG YOUR DATA SETS

Introduction

OS/VS password protection does not apply to VSAM data sets. Information
about VSAM data set protection is in OS/VS Virtual Storage Access
Method (VSAM) Programmers Guide, GC26-3838, and OS/VS2 Access
Method Services, GC26-3841. To use the data set protection feature of the
operating system, you must create and maintain a PASSWORD data set
consisting of records that associate the names of the protected data sets with
the password assigned to each data set. There are four ways to maintain the
PASSWORD data set:

• You can write your own routines.

• You can use the PROTECT macro instruction.

• You can use the utility control statements of the IEHPROGM utility
program.

• For OS/VS2 systems with TSO, you can use the TSO PROTECT
command.

This chapter discusses only the first two of the four ways-it provides
technical detail about the PASSWORD data set that is necessary for writing
your own routines, and it describes how to use the PROTECT macro
instruction. (The last two of the four ways are discussed in other publications,
as indicated in the list of publications below.)

Before using the information in this chapter, you should be familiar with
information in several related publications. The following publications are
recommended:

• OS/VS Data Management Services Guide, GC26-3783, which contains a
general description of the data set protection feature.

• OS/VS Message Library: VS2 System Messages, GC28-1002, which
contains a description of the operator messages and replies associated with
the data set protection feature for VS2.

• OS/VS2 JCL, GC28-0692, which contains a description of the data
definition (DO) statement parameter used to indicate that a data set is to
be password protected.

• OS/VS2 DADSM Logic, SY26-3828, which contains a description of the
PASSWORD data set record format.

• OS/VS Utilities, GC35-()()05, which contains a description of how to
maintain the PASSWORD data set using the utility control statements of
the IEHPROGM utility program.

• OS/VS2 TSO Command Language Reference, GC28-0646, which
describes the use of the TSO PROTECT command.

In addition to the usual label protection that prevents opening of a data set
witbout the correct data set name, the operating system provides data set
security options that prevent unauthorized access to confidential data.
Password protection prevents access to data sets, until a correct password is
entered by the system operator, or, for TSO, a remote terminal operator.

Password Protecting Your Data Sets 83

The following are the types of access allowed to password protected data sets:

• PWREAD /PWWRITE-A password is required to read or writer.

• PWREAD /NOWRITE-A password is required to read. Writing is not
allowed .

• NOPWREAD/PWWRITE-Reading is allowed without a password. A
password is required to write.

To prepare for use of the data set protection feature of the operating system,
you place a sequential data set, named PASSWORD, on the system residence
volume. This data set must contain at least one record for each data set placed
under protection. In turn, each record contains a data set name, a password
for that data set, a counter field, a protection mode indicator, and a field for
recording any information you desire to log. On the system residence volume,
these records are formatted as a "key area" (data set name and password)
and a "data area" (counter field, protection mode indicator, and logging
field). The data set is searched on the "key area."

You can write routines to create and maintain the P ASS\VORD data set. If
you use the PROTECT macro instruction to maintain the PASSWORD data
set, see the section in this chapter called "Using the PROTECT Macro
Instruction to Maintain the PASSWORD Data Set" If you use the
IEHPROGM utility program to maintain the PASSWORD data set, see
OS/VS Utilities. These routines may be placed in your own library or the
system's library (SYSl.LINKLIB). You may use a data management access
method or EXCP programming to read from and write to the PASSWORD
data set.

If a data set is to be placed under protection, it must have a protection
indicator set in its label (format-l DSCB or header 1 tape label). This is done
by the operating system when the data set is created, by the IEHPROGM
utility program, or, by the PROTECT macro when creating or adding the
control password. The protection indicator is set in response to a value in the
LABEL= operand of the DD statement associated with the data set being
placed under protection. OS/VS2 JCL describes the LABEL operand.

Note: Data sets on magnetic tape are protected only when standard labels are
used.

Password-protected data sets can only be accessed by programs that can
supply the correct password. When the system control program receives a
request to open a protected data set, it first checks to see if the data set has
already been opened for this job step. If so, only the access mode will be
checked to determine whether it is compatible with the protection mode under

.. which it was previously opened. If the data set has not been previously
opened by this job step, or if the access mode is not compatible with the
protection mode under which it was previously opened, a message is issued
that asks for the password. The message goes to the operator console, or, if
the program requesting that the data set be opened is running under TSO in
the foreground, to the TSO terminal operator. If you want the password
supplied by another method in your installation, you can modify the
READPSWD source module or code a new routine to replace READPSWD
in SYSl.LPALIB.

84 OS/VS2 System Programming Library: Data Management

PASSWORD Data Set Characteristics

The PASSWORD data set must reside on the same volume as your operating
system. The space you allocate to the PASSWORD data set must be
contiguous, i.e., its OSCB must indicate only one extent. The amount of space
you allocate depends on the number of data sets your installation wants to
protect. Each entry in the PASSWORD data set requires 132 bytes of space.
The organization of the PASSWORD data set is physical sequential, the
record format is unblocked, fixed-length records (RECFM=F). These records
are 80 bytes long (LRECL=80,BLKSIZE=80) and form the data area of the
PASSWORD data set records on direct-access storage. In these direct-access
storage records, the data area is preceded by a key area of 52 bytes
(KEYLEN=52). The key area contains the fully qualified data set name of up
to 44 bytes and a password of one to eight bytes, left justified with blanks
added to fill the areas. The password assigned may be from one to eight
alphameric characters in length. OS/VS2 DADSM Logic describes the
PASSWORD data set record format.

You can protect the PASSWORD data set itself by creating a password
record for it when your program initially builds the data set. Thereafter, the
PASSWORD data set cannot be opened (except by the operating system
routines that scan the data set) unless the operator enters the password.

Note:If a problem occurs on a password-protected system data set,
maintenance personnel must be provided with the password in order to access
the data set and resolve the problem.

Creating Protected Data Sets

A data definition (DO) statement parameter (LABEL=) is used to indicate
that a data set is to be placed under protection. Operating procedures at your
installation must ensure that password records for all data sets currently under
protection are entered in the PASSWORD data set. You may, for example,
create a data set and set the protection indicator in its label, without entering
a password record for it in the PASSWORD data set. However, once the data
set is closed, any subsequent attempt to open results in termination of the
program attempting to open the data set, unless the password record is
available and the operator can honor the request for the password. (Note that
if the protection mode is NOPWREAD and the request is to open the data set
for' input, no password will be required.)

Tape Volumes Containing More Than One Password-Protected Data Set

To password-protect a data set on a tape volume containing other data sets,
you must password-protect all the data sets on the volume. (Standard
Labels-SL, SUL, AL, or AUL- are required. See OS/VS Tape Labels for
definitions of these label types and the protection-mode indicators that can be
used.)

If you issue an OPEN macro instruction to create a data set following an
existing, password-protected data set, the password of the existing data set
will be verified during open processing for the new data set. The password
supplied must be associated with a PWWRITE protection-mode indicator.

Password Protecting Your Data Sets 85

Protection Feature Operating Characteristics

Termination of Processing

Volume Switching

Data Set Concatenation

The topics that follow provide information concerning actions of the
protection feature in relation to termination of processing, volume switching,
data set concatenation, SCRATCH and RENAME functions, and counter
maintenance.

Processing is terminated when:

1. The operator cannot supply the correct password for the protected data set
being opened after two tries.

2. A password record does not exist in the PASSWORD data set for the
protected data aset being opened.

3. The protection mode indicator in the password record, and the method of
I/O processing specified in the Open routine do not agree, e.g., OUTPUT
specified against a read-only protection mode indicator.

4. There is a mismatch in data set names for a data set involved in a volume
switching operation. This is discussed in the next topic.

The system ensures a continuation of password protection when volumes of a
multivolume data set are switched. It accepts a newly-mounted tape volume,
to be used for input, or a newly-mounted direct-access volume, regardless of
its use, if these conditions are met:

• The data set name in the password record for the data set is the same as
the data set name in the JFCB. (This ensures that the problem program has
not changed the data set name in the JFCB since the data set was opened.)

• The protection-mode indicator in the password record is compatible with
the processing mode and a valid password has been supplied.

The system accepts a newly-mounted tape volume to be used for output
under any of these conditions:

• The security indicator in the HDR 1 label indicates password protection,
the data set name in the password record is the same as the data set name
in the JFCB, and the protection-mode indicator is compatible with the
processing mode. (If the data set name in the JFCB has been changed, a
new password is requested from the operator.)

• The security indicator in the HDRllabel does not indicate password
protection. (A new label will be written with the security indicator
indicating password protection.)

• Only a volume label exists. (A HDRI label will be written with the security
indicator indicating password protection.) .

A password is requested for every protected data set that is involved in a
concatenation of data sets, regardless of whether the other data sets involved
are protected or not.

86 OS/VS2 System Programming Library: Data Management

SCRATCH and RENAME Functions

Counter Maintenance

To delete or rename a protected data set, it is necessary that the job step
making the request be able to supply the password. The system first checks to
see if the job step is currently authorized to write to the data set. If not,
message IEC301A is issued to request the password. The password provided
must be associated with.a "WRITE" protection-mode indicator.

The operating system increments the counter in the password record on each
usage, but no overflow indication will be given (overflow after 65,535
openings). You must provide a counter maintenance routine to check and, if
necessary, reset this counter.

Using the PROTECT Macro Instruction to Maintain the
PASSWORD Data Set

To use the PROTECT macro instruction, your PASSWORD data set must be
on the system residence volume. The PROTECT macro can be used to:

• Add an entry to the PASSWORD data set.

• Replace an entry in the PASSWORD data set.

• Delete an entry from the PASSWORD data set.

• Provide a list of information about an entry in the PASSWORD data set;
this list will contain the security counter, access type, and the 77 bytes of
security information in the "data area" of the entry.

In addition, the PROTECT macro, updates the DSCB of a protected
direct-access data set to reflect its protection status; this feature eliminates
the need for you to use job control language whenever you protect a data set.

PASSWORD Data Set Characteristics and Record Format When
You Use the PROTECT Macro Instruction

When you use the PROTECT macro, the record format and characteristics of
the PASSWORD data set are no different from the record format and
characteristics that apply when you use your own routines to maintain it.

Number of Records for Each Protected Data Set

When you use the PROTECT macro, the PASSWORD data set must contain
at least one record for each protected data set. The password (the last 8 bytes
of the "key area") that you assign when you protect the data set for the first
time is called the control password. In addition, you may create as many
secondary records for the same protected data set as you need. The passwords
assigned to these additional records are called secondary passwords. This
feature is helpful if you want several users to have access to the same
protected data set, but you also want to control the manner in which they can
use it. For example: one user could be assigned a password that allowed the
data set to be read and written, and another user could be assigned a
password that allowed the data set to be read only.

Note: The PROTECT macro will update the protection mode indicator in the
format-l DSCB in the protected data set only when you issue it for adding,
replacing, or deleting a control password.

Password Protecting Your Data Sets 87

Protection Mode Indicator

You can set the protection mode indicator in the password record to four
different values:

• X'OO' to indicate that the password is a secondary password and the
protected data set is to be read only (PWREAD).

• X'80' to indicate that the password is the control password and the
protected data set is to be read only (PWREAD).

• X'OI' to indicate that the password is a secondary password and the
protected data set is to be read and written (PWREAD/PWWRITE).

• X'81' to indicate that the password is the control password and the
protected data set is to be read and written (PWREAD/PWRITE).

Because the DSCB of the protected data set is updated only when the control
password is changed, you may request protection attributes for secondary
passwords that conflict with the protection attributes of the control password.

Because of the sequence in which the protection status of a data set is
checked, the following defaults will occur:

If control password is:

1. PWREAD/PWRITE or
PWREAD/NOWRITE

2. NOPWREAD/PWWRITE

Secondary password must be:

PWREAD/PWWRITE or
PWREAD/NOWRITE

NOPWREAD/PWWRITE

If the control password is set to either of the settings in item 1 above, the.
secondary password will be set to To PWREAD /PWRITE if you try to set it
to NOPWREAD/PWWRITE.

If the control password is changed from either of the settlings in item 1 to the
setting in item 2 above, the secondary password will be automatically reset to
NOPWREAD/PWWRITE.

If the control password is changed from the setting in item 2 to either of the
settings in item 1 above, the secondary password is set by the system to
PWREAD/PWWRITE.

PROTECT Macro Specification

The format is:

~bol) I PROTECT I parameter list address]

parameter list address-A.-type address, (2-12), or (1)
indicates the location of the parameter list. The parameter list must be set
up before the PROTECT macro is issued. The address of the parameter list
may be passed in register 1, in registers 2 through 12, or as an A-type
address. The first byte of the parameter list must be used to identify the
function (add, replace, delete"or list) you want to perform. See Figures 7
through 1 0 for the parameter lists and codes used to identify the functions.

Retum Codes From the PROTECT Macro

When the PROTECT macro finishes processing, register 15 contains a return
code that indicates what happened during the processing. Figure 11 contains
the return codes and their meanings.

88 OS/VS2 System Programming Library: Data Management

0 1
X'OI ' 000000

4 5
Length of data set name Pointer to data set name

8 9
00 000000

12 13
00 Pointer to control password

16 17
Number of volumes Pointer to volume list

20 21
Protection code Pointer to new password

24 25
String length Pointer to string

o X'OI'.
Entry code indicating ADD function.

13 Pointer to control password.
The control password is the password assigned when the data set was placed under
protection for the first time. The pointer can be 3 bytes of binary zeros if the new
password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you
have to specify the number of volumes in this field. A zero indicates that the catalog
information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you
provide the address of a list of volume serial numbers in this field. Zeros indicate
that the catalog information should be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates default
protection (for the ADD function; the default protection is the type of protection
specified in the control password record of the data set); X'01' indicates that the
data set is to be read and written; X'02' indicates thl:'.t the data set is to be read only;
and X'03' indicates that the data set can be read without a password, but a password
is needed to write into it. The PROTECT macro will use the protection code value,
specified in the parameter list, to set the protection mode indicator in the password
record.

21 Pointer to new password.
If the data set is being placed under protection for the first time, the new password
becomes the control password. If you are adding a secondary entry, the new
password is different from the control password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in the
optional information field of the password record. If you don't want to add
information, set this field to zero.

25 Pointer to string.
The address of the character string that is going to be put in the optional
information field. If you don't want to add additional information, set this field to
zero.

Figure 7. Parameter List for ADD Function

System Macro Instructions 89

0 1

X'02' 000000

4 5
Length of data set name Pointer to data set name

f---" -
8 9

00 Pointer to current password

12 13
00 Pointer to control password

16 17
Number of volumes Pointer to volume list

-.
20

24

21
Protection code Pointer to new password

25

String Length Pointer to string

o X'02'.
Entry code indicating REPLACE function.

9 Pointer to current password.
The address of the password that is going to be replaced.

13 Pointer to control password.
The address of the password assigned to the data set when it was first placed under
protection. The pointer can be set to 3 bytes of binary zero if the current password is
the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you
have to specify the number of volumes in this field. A zero indicates that the catalog
information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you
have to provide the address of a list of volume serial numbers in this field. If this
field is zero, the catalog information will be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates that the
protection is default protection (for the REPLACE function the default protection is
the protection specified in the current password record of the data set); X'OI'
indicates that the data set is to be read and written; X'02' indicates that the data set
is to be read only; and X'03' indicates that the data set can be read without a
password, but a password is needed to write into the data set.

21 Pointer to new password.
The address of the password that you want to replace the current password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in the
optional information field of the password record. Set this fielld to zero if you don't
want to add additional information.

25 Pointer to string.
The address of the character string that is going to be put in the optional
information field of the password record. Set the address to zero if you don't want to
add additional information.

Figure 8. Parameter List for REPLACE Function

90 OS/VS2 System Programming Library: Data Management

0 1
X'03' 000000

4 5
Length of data set name Pointer to data set name

8 9

00 Pointer to current password

12 13
00 Pointer to control password

16 17
Number of volumes Pointer to volume list

o X'03'.
Entry code indicating DELETE function.

9 Pointer to current password.
The address of the password that you want to delete. You can delete either a control
entry or a secondary entry.

13 Pointer to control password.
The address of the password assigned to the data set when it was placed under
protection for the first time. The pointer can be 2 bytes of binary zero if the current
password is also the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you
have to specify the number of volumes in this field. A zero indicates that the catalog
information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you wantto have it flagged as protected, you
have to provide the address of a list of volume serial numbers in this field. If this
field is zero, the catalog information will be used.

Figure 9. Parameter List for DELETE Function

System Macro Instructions 91

0

4

8

1
X'04' Pointer to 80 byte buffer

5
Length of data set name Pointer to data set name

9
00 Pointer to current password

o X'04'.
Entry code indicating LIST function.

Address of 80-byte buffer.
The address of a buffer where the list of information can be returned to your
program by the macro instruction.

9 Pointer to current password.
The address of the password of the record that you want listed.

Figure 10. Parameter List for LIST Function

Register IS

o
4

Meaning

The updating of the PASSWORD data set was successfully completed.

The PASSWORD of the data set name was already in the password data
set.

8 The password of the data set name was not in the PASSWORD data set.

12 A control password is required or the one supplied is incorrect.

16 The supplied parameter list was incomplete or incorrect.

20 There was an I/O error in the PASSWORD data :set.

**24 The PASSWORD data set was full.

28 The validity check of the buffer address failed.

*32 The LOCATE macro failed. LOCATE's return code is in register 1, and
the number of indexes searched is in register o.

*36 The OBTAIN macro failed. OBTAIN's return code is in register 1.

*40 The DSCB could not be updated.

44 The PASSWORD data set does not exist.

*48 Tape data set cannot be protected.

*52 Data set in use.

·For these return codes, the PASSWORD data set has been updated, but the DSCB has not been flaggCQ to
indicate the protected status of the data set.

"For this return code, a message is written to the console indicating that the PASSWORD data set is full.

Figure 11. Return Codes from the PROTECT Macro Instruction

92 OS/VS2 System Programming Library: Data Management

SYSn:M MACRO INSTRUCTIONS

Introduction

This chapter describes miscellaneous macro instructions that allow you either
to modify control blocks or to obtain information from control blocks and
system tables.

Before reading this chapter, you should be familiar with the information in the
following publications:

• OS/VS - DOS/VS - VM/370 Assembler Language, GC33-4010, which
contains the information necessary to code programs in the assembler
language.

• OS/VS2 System Programming Library: ilandboo...k _pl5;bugging,'"
GC28-0632, which contains format and field descriptions of the data areas
referred to in this chapter.

The system macro instructions are described in these functional groupings:

• Mapping (IEFUCBOB, IEFJFCBN, and CVT)

• Obtaining device characteristics (DEVTYPE)

• Manipulating the JFCB (RDJFCB)

• Data security (DEBCHK)

• Manipulating queues (PURGE and RESTORE)

Mapping System Data Areas
The IEFUCBOB, IEFJFCBN, and CVT macro instructions are used as
DSECT expansions that define the symbolic names of fields within the unit
control block (UCB), job file control block (JFCB), and communication
vector table (CVT), respectively. When coding these instructions, you must
precede each with a DSECT statement.

The CVT, IEFUCBOB, and IEFJFCBN macro definitions are in a
distribution library named SYS 1.AMACLIB. Before you can issue the
macros, you must copy them from SYS l.AMACLIB into SYS l.MACLIB.
The IEBCOPY utility can be used to copy the macros.

The fields in these blocks are shown and described in OS/VS2 System
Programming Library: "Handbook .. :f.i;¢' Debugging.

lEFUCBOB-Mapp;ng the UCB

This macro instruction defines the symbolic names of all fields in the unit
control block (UCB). Code this macro instruction with blank name and
operand fields, and precede it with a DSECT statement.

The format is:

I [symbol] I DSECf
IEFUCBOB

"---"--------1

System Macro Instructions 93

lEFJFCBN-Mapping the JFCB

CV1'.-Mapping the CVT

This macro instruction defines the symbolic names of all fields in the job file
control block (JFCB). Code this macro instruction with blank name and
operand fields, and precede it with a DSECT statement.

The format is:

~[SymbOI] I DSECT J
IEFJFCBN

-----1.----------1---__ _

This macro instruction defines the symbolic names of all fields in the
communication vector table (CVT). Code this macro instruction with blank
name and operand fields, and precede it with a DSECT statement.

The format is:

~~_Sym __ OO_I_]~I_~VT_SE_C_T ____ ~ ________________ . _____________ J.

Obtaining I/O Device Characteristics
Use the DEVTYPE macro instruction to request information relating to the
characteristics of an I/O device, and to cause this infomtation to be placed
into a specified area. (The results of a DEVTYPE macro instruction executed
before a checkpoint is taken should not be considered valid after a
checkpoint/ restart occurs.)

The topics that follow discuss the macro itself, device characteristics, and
particular output for particular devices.

DEJITYPE Macro Specification

!

The format is:

[symbol] DEVTYPE ddloc-addrx
, area-addrx
[,DEVTAB]
[,RPS]

ddloc-addrx
the address of an 8-byte field that contains the symbolic name of the DD
statement to which the device is assigned. The nat:ne must be left justified
in the 8-byte field, and must be followed by blanks if the name is less than
eight characters. The doubleword need not be on a doubleword boundary.

area-addrx
the address of an area into which the device information is to be placed.
The area can be one, two, five, or six fullwords, depending on whether or
not the DEVT AB and RPS operands are specified. The area must be on a
fullword boundary.

94 OS/VS2 System Programming Library: Data Management

DEVTAB
This operand is only required for direct-access devices. If DEVT AB is
specified, the following number of words of information is placed in your
area:

• For direct-access devices - 5 words

• For non-direct-access devices - 2 words

If you do not code DEVT AB, one word of information is placed in your
area if the reference is to a graphics or teleprocessing devices; for any
other type of device, two words of information are placed in your area.

RPS
If RPS is specified, DEVT AB must also be specified. The RPS parameter
causes one additional full word of RPS information to be included with the
DEVT AB information.

Note: Any reference for a DUMMY data set in the DEVTYPE macro
instruction will cause eight bytes of zeroes to be placed in the output area.
Any reference to a SYSIN or SYSOUT data set causes X'00000102' to be
placed in word 0 and 32,760 (X'00007FP8') to be placed in word 1 in the
output area.

Device Characteristics In/ormation

The following information is placed into your area as a result of issuing a
DEVTYPE macro:

Word 0
Describes the device as defined in the UCBTYP field of the VCB. For a complete
description of this field, refer to OS/VS2 System Programming Library: Handbook for
Debugging.

Word 1
Maximum blocksize. For direct-access devices, this value is the maximum size of an
unkeyed block; for magnetic or paper tape devices, this value is the maximum
blocksize allowed by the operating system. For all other devices, this value is the

maximum blocksize accepted by the device.

If DEVT AB is specified, the next three fullwords contain the following
information about direct-access devices:

Word 2
Bytes 0-1 The number of physical cylinders on the device.

Bytes 2-3 The number of tracks per cylinder.

Word 3

Bytes 0-1 Maximum track length. Note that for the 2305,3330,3330-1, and 3340
direct-access devices, this value is not equal to the value in word one
(maximum blocksize) as it is for other IBM direct-access devices.

Byte 2 Block overhead, keyed block-the number of bytes required for gaps and
check bits for each keyed block other than the last block on a track.

Byte 3 Block overhead-the number of bytes required for gaps and check bits hr
a keyed block that is the last block on a track.

Bytes 2-3 Block overhead-the number of bytes required for gaps and check bits for
any keyed block on a track including the last block. Use of this form is
indicated by a one in bit 4, byte 1 of word 4.

System Macro Instructions 95

Word 4

Byte 0

Byte 1

Bytes 2-3

Block overhead, block without key-the number of bytes to be subtracted
if a block is not keyed.

bit 0

bits 1-3
bit 4

bits 5-6
bit 7

If on, the number of cylinders, as indicated in word 2, bytes
0-1 are invalid. This bit will be on only for 3340 devices.

Reserved.
If on, bytes 2 and 3 of word 3 contain a halfword giving the
block overhead for any block on a tral;k, including the last
block.
Reserved.
If on, a tolerance factor must be applied to all blocks except
the last block on the track.

Tolerance factor-this factor is used to calculate the effective length of a
block. The calculation should be performed as follows:

Step 1 add the block's key length to the block's data length.
Step 2 test bit 7 of byte 1 of word 4. If bit 7 is 0, perform step 3.

If bit 7 is 1, multiply the sum computed in step 1 by the
tolerance factor. Shift the result of the multiplication
nine bits to the right.

Step 3 add the appropriate block overhead to the value

obtained above.

If DEVT AB and RPS are specified, the next fullword contains the following
information:

Word 5
Bytes 0-1 RO overhead for sector calculations

Byte 2

Byte 3

Number of sectors for the device

Number of data sectors for the device

Output for Each Device Type

Maximum
Record Size DEVTAB RPS
(Word I, (Words 2, 3, and 4, (Word 5,

Devicet In Decima1) In Hexadecimal) In Hexadecimall)

2540 Reader 80 Not Applicable Not Applicabl'~
2540 Reader wi CI 80 Not Applicable Not Applicable
2540 Punch 80 Not Applicable Not Applicabl,~
2540 Punch w/CI 80 Not Applicable Not Applicabh!

2501 Reader 80 Not Applicable Not Applicable
2501 Reader w/CI 80 Not Applicable Not Applicable

2520 Reader-Punch 80 Not Applicable Not Applicable
2520 Reader-Punch w ICI 80 Not Applicable Not Applicabl,e
2520 B2-B3 80 Not Applicable Not Applicable
2520 B2-B3 w/CI 80 Not Applicable Not Applicable

96 OS/VS2 System Programming Library: Data Management

Maximum
Record Size DEVTAB RPS
(Word 1, (Words 2, 3, and 4, (Word 5,

Devicet In Decimal) In Hexadecimal) In Hexadecimal)

1287 Optical Reader 0 Not Applicable Not Applicable
1288 Optical Reader 0 Not Applicable Not Applicable

13886 Optical Reader 0 Not Applicable Not Applicable
3890 Document Processor 0 Not Applicable Not Applicable
1419/1275 Reader/Sorter 0 Not Applicable Not Applicable
3505 Reader 80 Not Applicable Not Applicable
3505 Reader w/CI 80 Not Applicable Not Applicable
3525 Punch 80 Not Applicable Not Applicable
3525 Punch w/CI 80 Not Applicable Not Applicable

1403 Printer 120* Not Applicable Not Applicable
1403 w/UCS 120* Not Applicable Not Applicable
1404 Printer 120* Not Applicable Not Applicable
1443 Printer 120* Not Applicable Not Applicable
3211 Printer 132* Not Applicable Not Applicable

2671 Paper Tape Reader 32760 Not Applicable Not Applicable

1052 Printer-Keyboard 130 Not Applicable Not Applicable
1053 Printer Not Applicable Not Applicable

3210 Printer-Keyboard 130 Not Applicable Not Applicable
3215 Printer-Keyboard 130 Not Applicable Not Applicable

2400 (9-trac:k) 32760 Not Applicable Not Applicable
2400 (9-track, p.e.) 32760 Not Applicable Not Applicable
2400 (9-trac:k, d.d.) 32760 Not Applicable Not Applicable
2400 (7-track) 32760 Not Applicable Not Applicable
2400 (7-trac:k, d.c.) 32760 Not Applicable Not Applicable
2495 Tape Ca'rtridge Reader 0 Not Applicable Not Applicable

3400 (9-track, p.e.) 32760 Not Applicable Not Applicable
3400 (9-track, d.d.) 32760 Not Applicable Not Applicable
3400 (7 track) 32760 Not Applicable Not Applicable

2314/2319 DAS Facility 7294 OOCBOO 141 C7E922D2DOI 0216 Not Applicable

2305-1 Fixed-Head Storage 14138 0030000838E80278CA080200 02985A57

2305-2 Fixed-Head Storage 14660 006AOOO83AOAOI215B080200 o 14OB4B1
3330 Disk Storage 13030 019BOOI3336DBFBF38000200 OOED807C

!3330V MSS Virtual device 13030 019BOOI3336DBFBF38000200 OOED807C

3330-1 Disk Storage 13030 032FOOI3336DBFBF38000200 OOED807C
3340 Disk Storage(35 megabytes) 8368 015DOOOC2157F2F24BOOO200 0125403D

(70 megabytes) 8368 02BAOOOC2157F2F24BOOO200 0125403D

2250-1 Display Unit Not Applicable Not Applicable
2250-2 Display Unit Not Applicable Not Applicable
2253-3 Display Unit Not Applicable Not Applicable

Legend

CI-card image feature, d.c.-data conversion, d.d.-dual density, p.e.-phase encoding, UCS-universal character set, wi-with

* Although (;ertain models can have a larger line size, the minimum line size is assumed.

tDevice codes are presented in OS/VS2 System Programming Library: Handbook for Debugging.

Communication Equipment

1030, 1050,83B3, TWX,2250, S360
1060,115A,1130
2780
2740

Record Size

Not Applicable
Not Applicable
Not Applicable
Not Applicable

Control is returned to your program at the next executable instruction
following the DEVTYPE macro instruction. If the information concerning the
ddname you specified has been successfully moved to your work area, register

System Macro Instructions 97

15 will contain zeros. Otherwise, register 15 will contain X'04', indicating that
the ddname was not found.

Reading and Modifying a Job File Control Block
To accomplish the functions that are performed as a result of an OPEN macro
instruction, the Open routine requires access to information that you have
supplied in a data definition (00) statement. This infomlation is stored by
the system in a job file control block (JFCB).

In certain applications, you may find it necessary to modify the contents of a
JFCB before issuing an OPEN macro instruction. For example, suppose you
are adding records to the end of a sequential data set. Yem might want to add
a secondary allocation quantity to allow the existing data. set to be extended
when the space currently allocated is exhausted. To assist you, the system
provides the RDJFCB macro instruction. This macro instruction causes a
specified JFCB to be moved from the SW A (scheduler work area), where it is
stored, to an area specified in an exit list. (The use of the RDJFCB macro
instruction with an exit list is shown under "RDJFCB-Read a Job File
Control Block." The symbolic names and field descriptions of the JFCB are
contained in OS/VS2 System Programming Library: llandbook for
Debugging.) When you subsequently issue the OPEN macro instruction, you
must indicate, by specifying the TYPE=J operand, that you want to open the
data set using the JFCB in the area you specified.

At the conclusion of open processing, the JFCB is moved back to the SW A,
unless you set the JFCBTSOM field of the JFCB to X'08' before you issued
the OPEN macro instruction.

Some of the modifications that are commonly made to the JFCB include:

• Moving the creation and expiration date fields of the DSCB into the JFCB
(see Note 1).

• Moving the secondary allocation quantity from the OSCB into the JFCB
(see Note 1).

• Moving the OCB fields from the OSCB into the JFCH.

• Adding volume serial numbers to the JFCB (see Note: 1).

• Modifying the data set sequence number field in the JFCB.

• Modifying the number-of-volumes field in the JFCB (see Note 1).

Note 1: Care must be taken in using RDJFCB if the data set resides on MSS
virtual volumes such that:

• The expiration date added does not conflict with othe:r volumes within the
specified MSVGP.

• The secondary allocation quantity should be in cylinder increments and be
a multiple of the primary allocation quantity to avoid fragmentation.

• The number of volumes must not exceed the number available in the
specified MSVGP.

• Any volume serial numbers added to the JFCB should exist in the
MSVGP.

98 OS/VS2 System Programming Library: Data Management

Some JFCB modifications can compromise the security of existing,
password-protected data sets. The following modifications are specifically not
allowed, unless the program making the modifications is authorized or can
supply the password:

• Changing the disposition of a password-protected data set from OLD or
MOD to NEW.

• Changing the data set name or one or more of the volume serial numbers
when the disposition is NEW.

• Changing the label processing specifications to bypass label processing.

Note: An authorized program is one that is either in supervisor state,
executing in one of the system protection keys (keys 0 through 7), or
authorized under the Authorized Program Facility.

OPEN-Initialize Data (;ontrol Block lor Processing the JFCB

The OPEN macro instruction initializes one or more data control blocks so
that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro instruction, except for
the TYPE=J option, is contained in OS/VS Data Management Ma.ero
Instructions. The TYPE=J option, because it is used in conjunction with
modifying a JFCB, should be used only by the system programmer or only
under his supervision.

[symbol] OPEN (deb-addr
,[(options)], ...)
[,TYPE=J]

TYPE=J
specifies that for each data control block referred to, you have supplied a
job file control block (JFCB) to be used during initialization. A JFCB is an
internal representation of information in a DD statement.

During initialization of a data control block, its associated JFCB may be
modified with information from the data control block or an existing data
set label or with system control information.

The system always creates a job file control block for each DD control
statement. The job file control block is placed in the SW A (scheduler work
area). Its position, in relation to other JFCBs created for the same job step,
is noted in a table in virtual storage.

When this operand is specified, you must also supply a DD statement.
However, the amount of information given in the DD statement is at your
discretion because you can modify many fields of the system-created job
file control block. If you specify DUMMY on your DD statement, the
Open routine will ignore the JFCB DSNAME and open the data set as
Dummy. (See the examples of the RDJFCB macro instruction for a coding
example that modifies a system-created JFCB.)

Note: The DD statement must specify at least:

• Device allocation (refer to OS/VS2 JCL for methods of preventing
share status.)

• A ddname corresponding to the associated data control block
DCBDDNAM field.

System Macro Instructions 99

RDJFCB-Read a Job File Control Block

The RDJFCB macro instruction causes a job file control block (JFCB) to be
moved from the SW A (scheduler work area) into an area of your choice for
each data control block specified.

[symbol] RDJFCB (deb-address
,[(options)], ...)

deb-address, (options)
(same as the dcbaddress, optionl, and option2 operands of the OPEN
macro instruction, as shown in OS/VS Data Management Macros)

Although the option operands are not meaningful during the execution of
the RDJFCB macro instruction, these operands can appear in the list form
of either the RDJFCB or OPEN macro instruction to generate identical
parameter lists, which can be referred to with the execute form of either
macro instruction.

Examples: The macro instruction at EXl creates a parameter list for two data
control blocks: INVEN and MASTER. In creating the list, both data control
blocks are assumed to be opened for input; option2 for both blocks is assumed
to be DISP. The macro instruction at EX2 reads the system-created JFCBs
for INVEN and MASTER from the SW A into the area you specified, thus
making the JFCBs available to your problem program for modification. The
macro instruction at EX3 modifies the parameter list entry for the data
control block named INVEN and indicates, through the TYPE=J operand,
that the problem program is supplying the JFCBs for system use.

EX 1 RDJFCB (INVEN, , MASTER) , MF=L

EX2 RDJFCB MF= (E, EX 1)

. .
EX] OPEN (, (RDBACK, LEAVE)) , TYPE=J , MF= (E, EX 1)

INVEN DCB EXLST=LSTA, •••
MASTER DCB EXLST=LSTB, •••
LSTA DS OF

DC X'07'
DC AL3(JFCBAREA)

JFCBAREA DS OF,176C

LSTB DS OF

Multiple data control block addresses and associated options may be specified
in the RDJFCB macro instruction. This facility makes it possible to read
several job file control blocks in parallel.

An exit list address must be provided in each data controll block specified by
an RDJFCB macro instruction. Each exit list must contain an active entry
that specifies the virtual storage address of the area into which a JFCB is to

100 OS/VS2 System Programming Library: Data Management

be placed. A full discussion of the exit list and its use is contained in OS/VS
Data Management Services Guide. The format of the job file control block
exit list entry is as follows:

Type of Exit
UstEntry

Job file
control block

Hexadecimal Code
(hIgh .. order byte)

07

Contents of Exit Ust Entry
(the low-order bytes)

Address of a 176-byte area to be provided if
the RDJFeB or OPEN (TYPE-J) macro
instruction is used. This area must begin on a
fullword boundary and must be located within the
user's region.

The virtual storage area into which the JFCB is read must be at least 176
bytes long.

The data control block may be open or closed when this macro instruction is
executed.

If the JFCB is read successfully for all DCBs in the parameter list, a return
code of zero is placed in register 15. If the JFCB is not read for any of the
DCBs because the DDNAME is blank or a DD statement is not provided,
then a return code of 4 is placed in register 15.

Cautions: The following errors cause the results indicated:

Error Result

A DO statement has not A return code of 4 is placed in
been provided. register 15.

DDNAME field in DeB is blank. A write-to-programmer is issued, the
request for this DeB is ignored, and
a return code of 4 is placed in
register 15.

A virtual storage address has Abnormal termination of task.
not been provided.

Note that if you want to open a VTOC data set to change its contents (that
is, open it for OUTPUT, OUTIN, INOUT, or UPDAT), your program must
be authorized under the Authorized Program Facility (APF). APF provides
security and integrity for your data sets and programs. Details on how you
authorize your program are provided in OS/VS2 System Programming
Library:, Job Management, Services, and TSO, GC28-0682.

If the RDJFCB routine fails while processing a DCB associated with your
RDJFCB request, your task is abnormally terminated. None of the options
available through the DCB ABEND exit, as described in OS/VS Data
Management Services Guide, is available when a RDJFCB macro instruction
is issued.

Ensuring Data Security by Validating the Data Extent
Block

Protecting one user's data from inadvertent or malicious access by an
unauthorized user depends on protection of the data extent block (DEB). The
DEB is a critical control block because it contains information about the
device a data set is mounted on and describes the location of data sets on
direct-access device storage volumes. The DEB also contains the address of
the appendage vector table (A VT). Using the AVT, a user with malicious
intent can modify the A VT to give control to his own routine in supervisor
state to read from and write to data sets to which he would otherwise be
denied access.

System Macro Instructions 101

To guarantee protection of the DEB, the DEBCHK. macro instruction is
provided. The DEBCHK. macro is issued by several components of the system
control program. For example:

• the Open access method executors issue the macro to add the address of a
DEB they have built to a list of valid addresses called the DEB table. The
DEB validity checking routine builds and maintains a DEB table for each
job step.

• the I/O supervisor uses the macro to verify that the DEB passed with each
EXCP request is in the DEB table.

• the Close component issues the macro to remove a DEB from the DEB
table.

If you code a routine that builds a DEB, you must add the address of the DEB
you built to the DEB table. If you code a routine that depends on the validity
of a DEB that is passed to your routine, you should verify that the DEB
passed to your routine has a valid entry in the DEB table. Use the
lYPE=ADD and the TYPE= VERIFY operands of the macro, respectively.

Additional details about the functions provided by the DEB validity checking
routine and about the contents of the DEB table are available in OS / VS2
O/C/EOV Logic, SY26-3827.

The DEBCHK. macro instruction provides four functions:

• adds the address of a DEB to the DEB table, which is located in protected
storage. The DEB table contains the address of every user DEB associated
with a given job step. Every system control program component that builds
a user DEB must add the address of that DEB to a DEB table.

• verifies that the DEB table associated with a given job step contains the
address of a valid DEB. Any system control program component or
problem program can use this function to verify that a DEB is valid.

• deletes the address of a DEB from the DEB table. Any program that
deletes a user DEB must, before it deletes the DEB, issue a DEBCHK.
macro with a TYPE=DELETE operand to delete the address of the DEB
from the DEB table. If the DEB validity checking routilne encounters an
error while deleting the address from the DEB table, the job step is
abnormally terminated.

• deletes the address of a DEB from the DEB table in th(~ same way as the
preceding function, except that, instead of terminating the job step, this
function merely returns an error code in register 15. This function is
provided to prevent recurring abnormal termination. The format of the
DEBCHK. and a description of the operands follow:

102 OS/VS2 System Programming Library: Data Management

DEBCIIK-Mllcro Speci/iClltio"

[symbol] DEBCHK cbaddr
[,TYPE = {VERIFY I ADD I DELETE I PURGE}]
[,AM={amtjpel(amaddr) I «amreg»}]
[,MF=L]

cbaddr RX-Type Address, (2-12), or (1)
a control block address passed to the DEBCHK. routine. This operand is
ignored if MF==L is coded. For verify, add, and delete requests, cbaddr is
the address of a data control block (DCB) that points to the DEB whose
address is either verified to be in the DEB table, added to the DEB table,
or deleted from the DEB table. For the purge function, cbaddr is the
address of the DEB whose pointer is to be purged from the table: no
reference is made to the DCB.

TYPE= { VERIFY I ADD I DELETE I PURGE}
indicates the function to be performed .. H MF =L is coded, TYPE is
ignored. The functions are:

VERIFY
This function is assumed if the TYPE operand is not coded. The control
program checks the DEB table to determine whether the DEB pointer is in
the table at the location indicated by the DEBTBLOF field of the DEB;
the DEBAMTYP field in the DEB is compared to the AM operand value,
if given. The two must be equal. TYPE= VERIFY can be issued in either
supervisor or problem state.

ADD
Before the DEB pointer can be added to the table, the DEB itself must be
queued on the current TCB DEB chain (the TCBDEB field contains the
address of the first DEB in the chain). The DEB address is added to the
DEB table at some offset into the table. That offset value is placed in the
DEBTBLOF field of the DEB, and the access method type is inserted into
the DEBAMTYP field of the DEB. A zero is placed in the DEBAMTYP
field if the AM operand is not coded. TYPE = ADD can be issued only in
supervisor state.

DELETE
The DEB and tu~ OCB must point to each other before the DEB address
can be deleted from the DEB table. TYPE==DELETE can be issued only in
supervisor state.

PURGE
The DEB pointer is removed from the DEB table without checking the
DCB. TYPE = PURGE can be issued only in supervisor state.

System Macro Instructions 103

AM
specifies an access method value. Each value corresponds to a particular
access method type (note that BPAM and SAM have the same values):

Type Value

TCAMAP X'84'
SUBSYS X'8t'
ISAM X'80'
BDAM X'40'
SAM X'20'
BPAM X'20'
TAM X'lO'
GAM X'08'
TCAM X'04'
EXCP X'02'
VSAM X'Ot'
NONE X'OO'

The operand can be coded in one of the following three ways, only the first
of which is valid for the list form (MF=L) of the instluction.

amtype
refers to the access method: ISAM, BDAM, SAM, BP AM, TAM (which
refers to BTAM only), GAM, TCAM, EXCP, or VSAM. TCAMAP
identifies a TCAM application-program DEB. SUBSYS identifies a
subsystem of the system control program, such as at. job entry subsystem.
NONE indicates that no access method or subsystem is specified.

amaddr
is the RS-type address of the access method value. This format may not
be coded when MF=L is used.

amreg
is one of the general registers 1-14 that contains the access method
value in its low-order byte (bit positions 24-31). The high-order bytes
are not inspected. This form may not be used when MF=L is coded.

The use of amaddr and amreg should be restricted to those cases where
the access method value has been generated previously by the MF=L form
of DEBCHK. If MF=L is not coded, the significance of the AM operand
depends upon the TYPE.

MF

If TYPE is ADD and AM is specified, the access method value is
inserted in the DEBAMTYP field of the DEB, and all subsequent
DEBCHK macros referring to this DEB must either specify the same
AM or omit the operand. When the AM operand is omitted for
TYPE=ADD, a null value (0) is placed in the DEB and all subsequent
DEBCHK macros must omit the AM operand.

If AM is specified when the TYPE is PURGE, DELETE, or VERIFY,
the access method value is compared to the value in the DEBAMTYP
field of the DEB. If AM is omitted, no comparison is made.

indicates the list form of the DEBCHK macro instruction. When MF=L is
coded, a parameter list is built consisting of the access method value that
corresponds to the AM keyword. This value may be referenced by name in
another DEBCHK macro by coding AM=(amaddr), or it may be inserted
into the low-order byte of a register before issuing another DEBCHK
macro by coding AM=((amreg)).

t 04 OS/VS2 System Programming Library: Data Management

If the DEBCHK routine completes successfully, register 15 will be set to 0
when control is returned to your program. Otherwise, register 15 will contain
one of the following decimal codes:

Code Meaning

4 Either (a) the DEB table associated with the job step does not exist; or (b) the
DEBTBLOF field of the DEB was set to zero or a negative number, or was larger
than the DEB table; or (c) register 1 did not contain the same address as the DEB
table entry.

8 An invalid TYPE was specified. (The DEBCHK routine was entered by a branch,
not by the macro.)

12 Your program was not authorized and TYPE was not VERIFY.

16 DEBDCBAD did not contain the address of the DCB that was passed to the
DEBCHK routine.

20 The AM value does not equal the value in the DEBAMTYP field.

24 The DEB is not on the DEB chain and TYPE-ADD was specified.

28 TYPE=ADD was specified for a DEB that was already entered in the DEB table.

32 The DEB table exceeded the maximum size (32,760 bytes) and TYPE=ADD.

Purging and Restoring 110 Requests
The system's purge routines, guided by a parameter list you pass them,
perform either a halt or a quiesce operation. In a halt operation the purge
routines stop the processing of specified I/O requests that were initiated with
an EXCP macro instruction. In a quiesce operation the purge routines:

• Allow the completion of I/O requests that were initiated with an EXCP
macro instruction and are currently controlled by the I/O supervisor.

• Stop the processing of those requests that are not yet controlled by the I/O
supervisor, but save the lOBs of the requests so that they can be
reprocessed (restored) later.

The system's restore routines make it possible to reprocess I/O requests that
are quiesced. (Note: Not covered here is the purge and restore processing that
takes in I/O requests not initiated by an EXCP macro instruction. See
OS/VS2 I/O Supervisor Logic, SY26-3823, if you want to know the full
scope of purge and restore processing.)

You can give control to the purge and restore routines in two ways: (1) by
loading register 1 with the address of the parameter list and issuing SVC
instructions or (2) by issuing the PURGE and RESTORE macro instructions.
If your installation requires the use of macro instructions, you must add the
macro definitions to the macro library (SYS1.MACLm) or place them in a
partitioned data set and concatenate this data set to the macro library. The
macro definitions, JCL, and utility statements needed to add the macros to
your macro library are presented in Figures 12 and 13. Whether you issue the
macro instructions or the SVC instructions, you must first build a parameter
list. The SVC instructions are SVC 16 for PURGE and SVC 17 for
RESTORE.

System Macro Instructions 105

PURGE Macro Def ini tion

&LIST
MACRO

&NAME PURGE
AIF

&NAME IHBINNRA
('&LIST'EQ") .El
&LIST LOAD REG 1
16 SVC

MEXIT
.El IHBERMAC

MEND
01 , 147 LIST ADDR MISSING

Control Statements Required

//jobname JOB {parameter}
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD *
./ ADD NAME=PURGE,LIST=ALL

./ ENDUP
/*

PURGE macro definition

Figure 12. Macro Definition, JCL, and Utility Statements for Adding PURGE Macro to
Your Macro Library

RESTORE Macro Definition
MACRO

&NAME RESTORE &LIST
AlF ('&LIST' EQ "). El

&NAME IHBINNRA &LIST LOAD REG 1
SVC 17 ISSUE SVC FOR RESTORE
MEXIT

. El IHBERMAC 01 , 150 LIST ADDR MISSING
MEND

Control Statements Required

//jobname JOB {parameters}
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
/ /SYSUT2 DD DSNAME=SYS 1 . MACLIB, DISP=OLD
//SYSIN DD DATA
./ ADD NAME=RESTORE,LIST=ALL

./ ENDUP
/*

RESTORE macro definition

Figure 13. Macro Definition, JCL, and Utility Statements for Adding RESTORE Macro to
. Your Macro Library

106 OS/VS2 System Programming Library: Data Management

PURGE--Halt or Fi"ish I IO-Req"est Processi"g

The macro instruction used to call the purge routines is coded as follows:

I [symbol] I PURGE I parameter-list address

parameter list address, RX-type address, (2-12) or (1)
specifies the address of a parameter list, 12 or 16 bytes long, that you have
built on a fullword boundary in your storage. The parameter list address
can be specified as an RX-type constant or in registers 2-12 or 1.

The format and contents of the parameter list are as follows:

Byte Contents

o A byte in which you specify what the purge routines will do. These are the
bit settings and their meanings:

1,2,3

4

5,6,7

8

9,10,11

1....... Purge I/O requests to a single data set.

0....... Either purge I/O requests associated with a TCB or address
space, or purge I/O requests to more than one data set .

. 1.. Post ECBs associated with purged I/O requests .

.. 1..... Halt I/O-request processing. (Quiesce I/O-request processing if
0) .

... 1.... Purge related requests only. (Valid only if a data-set purge is
requested.)

.... 0... Reserved-must be zero .

..... 1.. Do not purge the TCB's request-block chain of asynchronously
scheduled processing .

...... 1. Purge I/O requests associated with a TCB .

.... ... 1 This is a 16-byte parameter list. Additional purge options are
specified in bytes 12-15. (If this bit is off, the purge routines
don't put a return code in byte 4 of this list or in register 15.)

The address of a DEB if you're purging I/O requests to a single data set.
The address of the first DEB in a chain of DEBs if you're purging I/O
requests to more than one data set. (The second word of each DEB but the
last must point to the next DEB in the chain; the second word of the last
DEB must contain zeros.)

A byte of zeros. (If bit 7 of byte 0 is on, the purge routines will put a code
in this byte: X'7F' if the purge operation is successful; X'40' if it isn't.)

The address of the TCB associated with the I/O requests you want purged
(but only if you turned on bit 6 of byte 0). May be zeros if the TCB is the
one you're running under.

A byte of zeros.

The address of a word in your storage or the address of the DEBUSPRG
field (which is X'11' bytes more than the DEB address in this parameter
list). At whichever address you specify, the purge routines store a pointer
to the purged I/O restore list, or PIRL. In the PIRL is a pointer to the first
lOB in the chain of lOBs. The location of the pointer and format of the
chain are shown in Figure 14.

System Macro Instructions 107

Modifying the lOB Chain

Byte

12

Contents

A byte in which you can specify additional purge options. These are the
bit settings and their meanings:

.. 1. Purge I/O requests associated with an address space. (You must
be in supervisor state.)

... 1 Check the validity of all the DEDs associated with the purge
operation if this is a data-set purge. Vanidate this parameter list,
whatever the type of purge operation, by ensuring that there are
no inconsistencies in the selection of purge options. (If the caller
is in problem state, these actions are taken regardless of the bit
setting.)

.... 1... Ensure that I/O requests will be reprocessed (restored) under
their original TCD. (If zero and this byte is meaningful (bit 7 of
byte 0 is on), the I/O requests will be reprocessed under the TCD
of the program making the resotre request.)

..... 0.. Must be zero.

13 A byte of zeros.

14, 15 The two-byte 10 of the address space associated with the I/O requests you
want purged. (Only meaningful if bit 2 of byte 12 is on.)

Control will be returned to your program at the instruction following the PURGE macro
instruction. If the purge operation was successful, register 15 will contain zeros. Otherwise,
register 15 will contain one of the following hexadecimal return codes:

Code Meaning

4 Your request to purge I/O requests associated with a given TCD was not honored
because that TCD did not point to the job step TCD, as it must when the
requestor is in problem state.

8 Either you requested an address-space purge operation but were not in supervisor
state or you requested a data-set purge operation but supplied no data-area
address in bytes 1, 2, and 3 of the purge parameter list.

14 Another purge request has preempted your request. You may want to reissue
your purge request in a time-controlled loop.

Note: Register 15 will contain zeros, regardless of the outcome of the purge
operation, if you set bit 7 in byte 0 of the parameter list to zero.

If you want to change the order in which purged I/O requests will be restored
or prevent a purged request from being resotred, you may change the
sequence of lOBs in the lOB chain or remove an lOB from the chain. The
address of the lOB chain can be obtained from the PIRL (see Figure 14).
(The address of the PIRL will be at the location pointed to by bytes 9-11 of
the purge parameter list.)

An lOB representing an I/O request that completed in error can be added to
the lOB chain asa means of retrying the I/O request. Only an abnormal-end
appendage, however, can add an lOB to an lOB chain; it cannot add the lOB
directly, but must call a system routine to do it.

To get the address of the routine, an abnormal-end appendage must:

1. Get the address of the I/O supervisor appendage table from an offset of
X'14' bytes into the CVT.

2. Pick up the routine's address from an offset of X'14' bytes into the I/O
supervisor appendage table.

108 OS/VS2 System Programming Library: Data Management

The routine requires this input:

• Zeros in register O.

• The address of an ROE in register 1.

• The address of a 16-word save area in register 13.

• A return address in register 14.

• Its entry-point address in register 15.

When the routine returns to the abnormal-end appendage, the lOB associated
with the ROE that was passed will have been added to the end of the lOB
chain.

RESTORE-Reprocess I/O Requests

The RESTORE macro is coded as follows:

I [symbol] I RESTORE I restore address

restore addres9-RX-type address, (2-12) or (1)
the same address you specified at byte 9 of the purge parameter list.

PIRL

PIRRSTR 20(14)

__ --t----tl Pointer to the first lOB. I I If 1 's, no I/O request was quiesced.

l...-..-- lOB 1 (first lOB in chain)

,~

L

10BRESTR 25(19)

I
I

Pointer to the next
lOB in the chain.

10Bn (last lOB in chain)

10BRESTR 25(19)

Contains 1 's.

Figure 14. The PIRL and lOB Chain

I

System Macro Instructions 109

ADDING TO THE IMAGE LmRARY AND
RETRlEVING FCB IMAGES

This chapter provides a detailed description of how to add either an mM UCS
(universal character set) image or an mM FCB (forms control buffer) image
to SYS I.IMAGELm. It also describes a procedure that can be used to read
an FCB image into virtual storage for the purpose of modifying it before
loading it into the forms control buffer.

Before reading this section, you should be familiar with the information in
these publications:

• IBM 2821 Control Unit, GA24-3 312, contains the information necessary
to create a user-designed chain/train for the 1403 Printer.

• OS/VS Data Management Macro Instructions, GC26-3793, describes
the SETPRT macro instruction that loads a UCS image and an FCB image
into their respective buffers.

• OS/VS2 JCL, GC28-0692, describes the UCB and FCB parameters that
can be specified in a DD statement to load the UCS and FCB buffers when
they are opened.

• IBM 3211 Printer and 3811 Control Unit Component Description,
GA24-3543, contains the information necessary to create a user-designed
train for the 3211 Printer.

Adding a UCS Image to the Image Library
All mM standard character set images are included in SYS1.IMAGELm at
system generation, when you code the DA T AMGT macro. You may
subsequently add a character set image to SYS I.IMAGELm by following
these rules:

1. The member name must be either the four characters UCSI for the 1403
or UCS2 for the 3211 printer. The member name must be followed by a
unique character set code that is one to four characters long. This character
set code can be any valid combination of letters and numbers according to
the rules for assembler language symbols. The single letters U or C should
not be used as a character set code since they are symbols for special
conditions recognized by the system. The assigned character set code must
be specified on the DD statement or SETPRT macro instruction to load the
image into the UCS buffer.

2. The first byte in the load module of a character set image specifies whether
or not the image is a default. X'80' indicates a default image; X'OO'
indicates that the image is not to be used as a default. (Default images may
be used by the system for jobs that do not request a specific image.)

3. The second byte of the load module indicates the number of lines (n) to be
printed for image verification.

4. Each byte of the next n bytes indicates the number of characters to be
printed on each verification line. (Note: For the 3211 printer, the
maximum number of characters printed per line is 48; the associative bytes
are not printed during verification.)

Adding to the Image Library and Retrieving FeB Images III

5. A 240-byte 1403 ues image or a 512-byte 3211 ues image must follow
the previously described fields. (A 3211 ues image has 432 characters,
followed by 15 bytes of X'OO', 64 bytes of associative bits, and a reserved
byte (byte 512) of X'OO'.) Two apostrophes or two ampersands must be
coded to represent a single apostrophe or a single ampersand, respectively,
which is a part of a character set image.

The following code is an example of adding a 1403 ues image, 1M, to the
image library.

IIADDIM
IISTEP
II
IIASM.SYSIN
UCS1IM

1*

JOB MSGLEVEL=l
EXEC PROC=ASMFCL, P ARM. ASM= ' NODECK, LOAD' ,

PARM.LKED='LIST,NCAL,NE,OL'
DD *
CSECT
DC X' 80 ' (THIS IS A DEFAULT IMAGE)
DC AL 1 (6) (NUMBER OF LINES TO BE PRINTED)
DC AL 1 (39) (39 CHARACTERS PRINTED ON 1 ST LINE)
DC AL 1 (42) (42 CHARACTERS PRINTED ON 2ND LINE)
DC ALl (39) (39 CHARACTERS PRINTED ON 3RD LINE)
DC AL 1 (39) (39 CHARACTERS PRINTED ON 4TH LINE)
DC AL 1 (42) (42 CHARACTERS PRINTED ON 5TH LINE)
DC AL 1 (39) (39 CHARACTERS PRINTED ON 6TH LINE)
DC C' 1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*, .. '
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'
DC C' 1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*, .. '
DC C' 1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*, .. '
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*, .. #-$'
DC C' 1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*, '. '
END

IILKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS1IM),DISP=OLD

The following example shows the code used to add a 3211 ues image (IMG)
to the image library. A 3211 ues image has 432 characters, followed by 15
bytes of X'OO', 64 bytes of associative bits, and a reserved byte (byte 512) of
X'OO'. Two ampersands must be coded to represent a single ampersand that is
part of the character set image.

The 64 bytes of associative bits must be coded to avoid data checks. To
determine how to code these bits for a particular chain, see IBM 3211
Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer Control
Unit Component Description and Operator's Guide, GA24-3543.

Note: Executing the ASMFeL procedure does not actually generate
executable code. The assembler/linkage editor is used as a vehicle to load the:
ues image into the image library.

112 OS/VS2 System Programming Library: Data Management

//ADDIMG
//STEP
//
//ASM.SYSIN
UCS2IMG

*
*

JOB MSGLEVEL=1
EXEC PROC=ASMFCL, PARM.ASM= 'NODECK, LOAD , ,

PARM.LKED='LIST,NCAL,OL'
DD *
CSECT
DC X'80'
DC AL 1 (9)
DC AL1 (48)
DC AL1 (48)
DC AL1(48)
DC AL1 (48)
DC AL1 (48)
DC AL 1 (48)
DC AL1 (48)
DC AL1 (48)
DC AL 1 (48)

(THIS IS A DEFAULT IMAGE)
(NUMBER OF LINES TO BE PRINTED)
(48 CHARACTERS PRINTED ON 1 ST LINE)
(48 CHARACTERS PRINTED ON 2ND LINE)
(48 CHARACTERS PRINTED ON 3RD LINE)
(48 CHARACTERS PRINTED ON 4TH LINE)
(48 CHARACTERS PRINTED ON 5TH LINE)
(48 CHARACTERS PRINTED ON 6TH LINE)
(48 CHARACTERS PRINTED ON 7TH LINE)
(48 CHARACTERS PRINTED ON 8TH LINE)
(48 CHARACTERS PRINTED ON 9TH LINE)
THE FOLLOWING NINE LINES REPRESENT
THE TRAIN IMAGE

DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC C'1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432'
DC 15X' 00' RESERVED FIELD, BITS 433-447

* THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
* UCSB BYTE POSITIONS 448-511

/*
//LKED.SYSLMOD

DC X'C01010101010101010100040404240004010'
DC X'101010101010101010004041000040401010'
DC X'101010101010004040000000101010101010'
DC X'10101010004040444800'
DC X' 00 ' RESERVED FIELD, BYTE 512
END

DD DSNAME=SYS1.IMAGELIB(UCS2IMG),DISP=OLD

Adding an FeB Image to the Image Ubrary
Two standard FCB images, SID 1 and SID2, can be included in
SYS1.IMAGELffi during system generation for a 3211 printer. SIDI prints
six lines per inch on a 8 1/2 inch form. SID2 prints six lines per inch on an
eleven inch form. Channels for both images are evenly spaced with channel
one on the fourth line and channel nine on the last line.

In addition to the ffiM-supplied images, user images can be defined. Each
user image is added to the image library a~ part of a load module. To add an
FCB image to the image library, follow these rules:

1. The member name cannot exceed eight bytes. The first four characters of
this member name must be FCB2. The characters that follow FCB2
identify the FCB image and are referred to as the image identifier. Any
combination of characters that are valid in assembler language can be used
with the exception of a single "S"or a single "U" as an image identifier.
The image identifier must be specified in a DO statement or in the
SETPRT macro instruction to load the image in the FCB buffer.

2. The first byte of the load module of a forms control image specifies
whether or not the image is a default. A default image is indicated by X'80'
and is used for all jobs that do not have the FCB parameter coded on the
00 statement; X'OO' indicates that the image is not to be used as a default.

Adding to the Image Library and Retrieving FCB Images 113

3. The second byte of the load module indicates the number of bytes to be
transferred to the control unit to load the FCB image. This count includes
the byte, if used, for the print position indexing feature.

4. The third byte of the load module (the first byte of the FCB image) is
either the print position indexing byte or the lines per inch byte. The print
position indexing byte is optional and, when used, precedes the lines per
inch byte. A description of the print position indexing feature and its use
may be found in IBM 3211 Printer, 3216 Interchangeable Train
Cartridge, and 3811 Printer Control Unit Compone,,,t Description and
Operator's Guide, GA24-3543.

The form image begins with lines per inch byte and must be as long as the
form. For example, if you are printing six lines per inch on an eleven inch
form, the form image must be 66 bytes long. The lines per inch byte
defines the number of lines per inch and a channel:

• X'ln' means eight lines are printed per inch.

• X'On' means six lines are printed per inch.

5. All remaining bytes (lines) must contain X'On' except the last byte .. The
last byte must be X' In'. The letter n can be a hexadecimal value from 1 to
C, representing a channel (one to twelve); or it can be zero (0), which
means no channel is indicated.

In the following example, an FCB load module is assemblled and added to
SYS I.IMAGELm. The image defines a print density of eight lines per inch on
an eleven inch form with a right shift of 15 line character positions (1 1/2
inches).

114 OS/VS2 System Programming Library: Data Management

IIADDFCB
IISTEP
II

JOB MSGLEVEL= 1
EXEC PROC=ASMFCL , PARM.ASM= 'NODECK, LOAD , ,

PARM.LKED='LIST,NCAL,OL'
IIASM.SYSIN DD *
FCB2IDl CSECT
*THIS EXAMPLE IS FOR A FORM LENGTH OF 11 INCHES
*WITH 8 LINES OF PRINT PER INCH (88 LINES)

DC X' 80 ' THIS IS A DEFAULT IMAGE
DC AL 1 (89) LENGTH OF FCB IMAGE
DC X ' 8F ' OFFSET PRINT LINE 1 5

*CHARACTER POSITIONS TO THE RIGHT

1*
IILKED.SYSLMOD

DC X' 10' 8 LINES PER INCH-NO CHANNEL FOR LINE
DC XL4 ' 0 ' 4 LINES NO CHANNEL
DC X ' 01 ' CHANNEL 1 IN LINE 6
DC XL6 ' 0 ' 6 LINES NO CHANNEL
DC X' 02 ' CHANNEL 2 IN LINE 13
DC XL6'0'
DC X' 03'
DC XL6'0'
DC X' 04'
DC XL6'0'
DC X'05'
DC XL6' 0'
DC X'06'
DC XL6' 0'
DC X' 07'
DC XL6'0'
DC X'08'
DC XL6'0'
DC X'09'
DC XL6'0'
DC X'OA'
DC XL6'0'
DC X'OB'
DC XL6'0'
DC X' OC' CHANNEL 12 IN LINE 83
DC XL4 ' 0 ' 4 LINES NO CHANNEL
DC X' 10 ' LINE 88--LAST LINE IN IMAGE
END

DD DSNAME=SYS1.IMAGELIB(FCB2ID1),DISP=OLD

Retrieving an FeB Image
If you want to modify an FCB image in virtual storage before loading it into a
forms control buffer, you can use this sequence of macro instructions to read
the FCB image into virtual storage:

1. An IMGLm macro instruction, with the OPEN parameter.

2. A BLDL macro instruction, to determine whether the FCB image you want
is in the image library.

3. A LOAD macro instruction, to load the image into virtual storage.

After the image has been read in, it's necessary to issue another IMGLIB
macro, but this time with the CLOSE parameter and the address of the DCB
that was built by the first IMGLm macro. A SETPRT macro instruction can
be used to load the forms control buffer with the modified image.

Adding to the Image Library and Retrieving FCB Images 115

The format of the BLDL and the SETPRT macros is given in OS/VS Data
Management Macro Instructions; the format of the LOAD macro is given in
OS/VS2 Supervisor Services and Macro Instructions. Shown here is the
format of the IMGLffi macro:

Embo/11 IMGLm I {OPEN I CLOSE,addr }

OPEN
specifies that a DCB is to be built for SYSl.IMAGELffi and that
SYS I.IMAGELffi is to be opened. The address of the DCB is returned in
register 1.

CLOSE
specifies that SYS I.IMAGELffi is to be closed.

addr
RX-type address of word that points to the DCB. If coded in the form
(1-12), then the register contains the address of the DeB, not the address
of the fulIword.

Return codes for IMGLffi OPEN:

Decimal
ReturDCode

o

4

8

Meaning

Successful.

Either the volume containing SYS1.IMAGELIB is not mounted or a
required catalog volume was not mounted.

Either SYS 1.IMAGELIB does not exist on the volume to which the
catalog points, or it is not cataloged.

12 An error occurred in reading the catalog or VTOC.

BLDL and LOAD are the only macros that may refer to the DeB built by the IMGLffi
macro.

116 OS/VS2 System Programming Library: Data Management

INDEX

For additional information about any subject listed in this
index, refer to the publications that are listed under the same
subject in OS/VS2 Master Index, GC28-0693.

A
abnormal-end appendage 45-46
access method routines

functions performed in I/O operations 36
alias name .

use in retrieving catalog information 17
alternate track, assigning 60
appendages

abnormal-end (ABE) 45-46
channel-end (CHE) 45
end-of-extent (EOE) 40
entry points 38
listing in SYS1.PARMLIB 47
naming convention 47
page fix 71
PCI 43
programming restrictions 43
protecting use of 47
regist(~r usage 42
returns 42
start-I/O (SIO) 42,71

assigning alternate track 60
ATLAS macro instruction

coding example 62
how to use 60-64
operations performed 62
return codes 63-64
specification 60-61
with track overflow option 60

authorized appendage list 47

B
BFALN operand of DCB macro 53
BFTEK operand of DCB macro 53
block multiplexor programming notes 48
BUFCB operand of DCB macro 53
BUFL operand of DCB macro 53
BUFNO operand of DCB macro 53

c
CATALOG and CAMLST macro instructions

with CAT operand 19
with RECA T operand 22
with UNCA T operand 21

catalog maintenance
using CATALOG macro 19-23
using LOCATE macro 14-16

cataloging non-VSAM data sets
coding example 18
macro specifications 19
return codes 20

CCW (channel command word)
(fee alro channel program)
transla.tion, virtual addresses to
real addresses 71

CENDA operand of DCB macro 52
channel program

appendages used with 42
execution 39-41
initiation 39
related 41
restrictions or modification 41
translation 71

channel-end appendage 45
checking the DEB 101-105
checkpointed data sets

processed with EXCP macro 55
CLOSE macro instruction

used with EXCP macro 65
used with XDAP macro 77

CODE operand of DCB macro 55
command retry for 2305,2330, and 3340 48
communication vector table (CVT) mapping macro 94
completion codes

(fee also return codes)
following use of EXCP macro 69
following use of XDAP macro 78

control blocks
DCB 49-56
ECB 65
FCB 113-115
lOB 66-67
PIRL 41,107

control password 84
conversion

actual device address to relative track address 80
relative track address to actual device address 79
of sector value for RPS devices 81

creating protected data sets 83
CVT (communication vector table) mapping macro 94

D
DADSM routines 25
data extent block (DEB)

use with EXCP macro 38
validating 101-105

data set control block (fee DSCB)
data set security (fee password protection)
DCB

fields used with EXCP macro 50
foundation block 50

DCBFDAD field, maintaining 54
DCBIFLGS field of DCB

permanent I/O error indica.tors 40
DCBOFLGS field of DCB

meanings of bit settings 64
DCBTRBAL field, maintaining 54
DDR (dynamic device reconfiguration)

repositioning tape data sets 52
DEB (data extent block)

use with EXCP macro 38
validating 10 1-105

DEBCHK macro instruction
functions of 101-102
specification 103

defective track (fee assigning alternate track)

Index 117

deleting a data set
coding example 30
macro instructions for 29
with password protection 30
return codes 31
when volume not mounted 29

DEVD operand of DCB macro 53-54
device characteristics 95-97
device selection

how specified in DCB 51-53
device-dependent parameters in DCB 53-56
DEVTYPE macro instruction

output from 95-97
for RPS devices 95
specification 94

direct-access device
channel program (XDAP macro) 73-77

DSCB, reading from VTOC
by actual device address 28

coding example 28
macro specifications 28
return codes 29

by da.ta set name 26
coding example 27
macro specifications 26
return codes 27

DSECT expansions (see CVT,IEFJFCBN,IEFUCBOB)
DSORG operand of DCB macro 53

E
ECB fields

used with EXCP macro 68
used with XDAP macro 78

end-of -extent appendage 44
end-of -volume

condition 64
macro instruction 65

EODAD operand of DCB macro 52
EOV (end-of-volume) macro instruction

used with EXCP macro 64
used with XDAP macro 77

error recovery procedures 41
event control block (ECB) fields

used with EXCP macro 68
used with XDAP macro 78

EXCP macro instruction
control blocks used with

DEB 69
DCB 50
ECB 68
lOB 66

macro specifications 49-60
multivolume data set requirement 59
in nonpageable address space 37
other macros used with

ATLAS 60
CLOSE 61
DCB 50
EOV 60
OPEN 57 ?/ek/

in problem programs 37
in real storage 69
in system control programs 36

EXCPVR macro instruction 69

118 OS/VS2 System Programming Library: Data Management

executing channel programs
in problem programs 37
in system control programs 36

exit list entry for RDJFCB 100
EXLST operand of DCB macro 52
expiration date, overriding 29

F
FCB (forms control buffer) image

adding image to SYS1.IMAGELIB 113
how to modify before loading 113
retrieving 116
rules 113

fixing data areas with EXCPVR 70
format-l DSCB, reading from VTOC 26
forms control buffer (see FCB image)
foundation block of DCB 50

G
generation data set name

use in retrieving catalog informatioll1 16

I
IDAL (indirect address list) 71
IEAAPPOO, authorized appendage list 46-47
IEBUPDTE UTILITY

use in listing appendages in
SYS1.PARMLIB 46-47

IECPCNVT (relative track address to actual device address
conversion routine) 79
IECPRL TV (actual device address to n~lative track address
conversion routine) 80
IECOSCRI (sector conversion routine) 81
IEFJFCBN macro instruction 94
IEFUCBOB macro instruction 93
IEHA TLAS utility program 60-64
1M GLIB macro instruction 116
IMSK operand of DCB macro 52
indirect address list (IDAL) 70
interruption handling procedures 41
lOB fields

used with EXCP macro 65
used with XDAP macro 78

10BAD operand of DCB macro 53
10BSENS fields with ATLAS macro 62
10 B-chain modification 108
I/O appendages (see appendages)
I/O device characteristics 95-97

J
JFCB (job file control block)

(see also RDJFCB macro instruction)
mapping macro 94
modification restrictions 98
processing 99-101

job file control block (see JFCB)

K
KEYLEN operand of DCB macro 55

L
LABEL operand of DD statement

password protected data set 85
LOCATE and CAMLST macro instructions

retrieving catalog information
by alias name 17-18
by data set name 14
by generation name 16

M
MACRFE(E) operand of DCB macro 50
macros

ATLAS 60
CATALOG 18-23
CLOSE

used with EXCP macro 65
used with XDAP macro 77

CVT 94
DCB 50
DEBCHK 103
DEVTYPE 94
EOV

used with EXCP macro 64
used with XDAP macro 77

EXCP 60
IEFJFCBN 94
IEFUCBOB 93
1M GLIB 116
LOCATE 14-18
OBTAIN 26-28
OPEN

for JFCB 99
used with EXCP macro 57-58
used with XDAP macro 74

PROTECT 88
PURGE 105
RDJFCS 100
RENAME 31
RESTORE 109
SCRATCH 29-30
XDAP 75

maintaining
(see also PROTECT macro instruction)
PASSWORD data set 83
volume table of contents (VTOC) 25-34
VS2 catalogs 24

mapping macros
CVT 94
IEFJFCBN 94
IEFUCBOB 93

MODE operand of DCB macro 57
modifying

channel program during execution 40
FCB image 115
lOB chain 108
JFCB 98

multivoluffil~ data set
processing with EXCP macro 59

N
nonpageable address space

EXCP operations in 37
NOPWREAD 84,85,88
NOWRITE 84,88

o
OBTAIN macro instruction 26-28
obtaining a sector number (RPS devices) 81
OPEN macro instruction

TYPE-J 101
used with EXCP macro

dummy data set restriction 59
label processing 57
procedures performed 57
volume disposition 57-59

opening a VTOC
restriction on changing contents 101

OPENJ (OPEN, TYPE-J) 99
OPTCDEZ operand of DCB macro 52
output data sets

maintaining DCBLKCT field 52

p
page boundaries 71
page fix

appendage 71
list 71

password
control 87
parameter list 88

add a record 89
delete a record 91
list a record 92
replace a record 90

protection mode indicator 88
record 85
secondary 87
standard label restriction 84

PASSWORD data set
characteristics 85
creating 85

password protecting data sets 83-92
password-protection

counter maintenance 87
data set concatenation 86
termination 86
volume switching 86

PCI (program controlled interruption)
appendage 43
operand of DCB macro 52

PIRL (purged I/O restore list)
use in restoring I/O requests 107

posting completion code in ECB
following use of EXCP macro 68
following use of XDAP macro 78

printer image
forms control buffer (FCB) 113-116
universal character set (UCS) 111-113

program controlled interruption
(PCI) appendage 43

Index 119

PROTECT macro instruction
parameter list 88
return codes 92
specification 88

protection mode indicator 88
PRTSP operand of DCB macro 56
PURGE macro instruction

adding to macro library 105
definition 107
parameter list 107
return codes 108
specification 107

PWREAD 84,88
PWWRITE 84,88

R
RDJFCB macro instruction

coding example 100
exit list entry for 101
return codes 10 1
specification 100

reading catalog information
using an alias name 17 -18
using a data set name 15
using a generation name 16

reading and modifying a JFCB 98-101
READPSWD module 84
recataloging a data set

coding example 24
macro specification 23
return codes 24

RECFM operand of DCB macro 53
recovering from permanent I/O errors <see ATLAS macro
instruction)
register

conventions for appendages 42
usage by I/O supervisor 41

related channel programs 41
related requests 41
relative generation number 16
RENAME macro instruction

return code 33
specification code 31-33
status code 34

renaming a data set
coding example 33
macro specification 32
with password protection 34

RESTORE macro instruction
adding to macro library 105
definition 105
specification 109

restore-chain modification 108
restoring lOBs 108
retrieving catalog information <see reading catalog
information)
return codes

ATLAS macro 63
CATALOG macro 20-21
LOCATE macro 16
OBTAIN macro 29
RDJFCB macro 101
RENAME macro 33
SCRATCH macro 31

RPS (rotational position sensing) devices
used with XDAP macro 81

120 OS/VS2 System Programming Library: Data Management

s
SCRATCH macro instruction

coding example 30
macro specification 29
return codes 31
status codes 31

scratching a data set
with password protection 30
when volume not mounted 29

secondary password 87
sector

address in XDAP macro 76
conversion routine 81

SIO operand of DCB macro 52
STACK operand of DCB macro 56
standard label restriction

password data sets 84
stand-alone seek for 2314 and 2319 39
start-I/O appendage 42,70
status code

deleting a multivolume data set 31
renaming a multivolume data set 34

system control blocks, mapping macros for
CVT 94
IEFJFCBN 94
IEFUCBOB 93

system macro instructions (see macros)

T
track, assigning alternate 60
translation of channel programs

by I/O supervisor
in nonpageable address space 73
in pageable address space 39
in your own program 73

TRTCH operand of DCB macro 56

u
UCB (unit control block)

getting information from <See DEVTYPE macro
instruction)

mapping macro 93
UCS (universal character set) image

adding to SYS1.IMAGELIB 111
for 1403 printer 111
for 3211 printer 111

uncataloging a non-V SAM data set
coding example 21
macro specification 21
return codes 22

universal character set (UCS) image (see UCS image)
unit check with ATLAS macro 63
unit control block (UCB)

getting information from (see DEVTYPE macro
instruction)

mapping macro 93

v
validating the DEB 101-105
volume list

definition 13
renam(~ status code 34
scratch status code 31
use in catalog maintenance 13

volume status code 31,34
volume switching 57-59
volume table of contents (VTOC), maintaining

using OBTAIN macro 26-29
using RENAME macro 31-34
using SCRATCH macro 29-31

VS2 catalogs, maintaining
using CATALOG macro 18-23
using LOCATE macro 13-18

VTOC <s-ee volume table of contents)

w
WAIT macro instruction

used with EXCP macro 37
"WRITE" protection mode indicator 30,34

x
XDAP channel program 79
XDAP macro instruction

control blocks used with 78
macros required with

CLOSE 77
DCB 74
EOV 77
OPEN 74

specification 75
XENDA operand of DCB macro 52

123
1403 printer

UCS image 111
coding example 112

2314 stand-alone seek 39
2319 stand-alone seek 39
3211 printer

FCB image 113
coding example 115

UCS image 112
coding example 113

Index 121

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New Yark 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

.. 4

0
~
< en
I\J

en
-<
III
CD
3
'"'0 ..,
tS ..,
III

3
3
3'
cc
r
cr= ..,
III ..,
-<

0
III
III

s:
III
:J 4 III cc
CD
3
CD
:J

" CD
z
?
en w
-..J
0
W
9
'"'0 ..,
3'
CD
Co

:J

C
en
~
G)
(")
I\J
0>
W co
w
<?

OS/VS2 System Programming Library:

Data Management
GC26-3830-1

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not usc this form to ask technical questions ahout IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, jo h title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

GC26·3830·'

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation
System Development Division
LDF Publishing- Department J04
1501 California Avenue
Palo Alto, California 94304

Fold and Staple

I nternational Business Machines Corporation

Data Processing Division

1133 Westchester Avenue. White'Plains. New York 10604
(U.S.A. only)

IBM World Trade Corporation

821 United Nations Plaza. New York. New York 10017
(I nternational)

First Class Permit

Number 439

Palo Alto, California

1 __ -

1 __ -
1 __ -
1 __ -
1 __ -
1 __ -

o
C/)

<
C/)
I\,)

C/)
<
~
CD
3
-C ..,
o

(,Q ..,
Q)

3
3
3'

(,Q

r a: ..,
Q) ..,
<

OS/VS2 System Programming Library:

Data Management

GC26-3830-J

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
coopl~ration.

Reader's
Comment
Form

GC26·383{J·'

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
System Development Division
LDF Publishing-Department J04
1501 California Avenue
Palo Alto, California 94304

Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White' Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

First Class Permit
Number 439
Palo Alto, California

._--

o en
< en
"->
en
<
~
CD
3
'"0 ...,
o
to ...,
OJ
3
3
:;'
to

r
0: ...,
OJ ...,
<

-n
CD
:2:
o
en
w,
a
W a
'"0 ...,
:;'
......
~
:;'
c
en
l>

C>
n
"-> en
W
00
w
9

