
Systems

GC26-3838-1
File No. 5370-30

OS/VS Virtual Storage
Access Method (VSAM)
Programmer's Guide

VS1 Release 4
VS2 Release 3

Second Edition (February 1975)

This edition replaces the previous edition (numbered GC26-3838-0) and makes that edition
obsolete.

This edition applies both to Release 4 of OS/VS 1 and to Release 3 of OS/VS2, and to all
subsequent releases of either system unless othe.rwise indicated in new editions or technical
newsletters. (Information on enhanced VSAM under OS/VS2 is only for planning
purposes until the availability of the OS/VS VSAM Independent Component Release for
Release 3 of that system.)

Significant system changes are summarized under "Summary of Amendments" following
the list of figures. In addition, miscellaneous editorial and technical changes applicable to
either or both of OS/VS 1 and OS/VS2 have been made throughout the publication. Each
technical change is marked by a vertical line to the left of the change; there are no
significant changes for Release 3 of OS/VS2.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the

/
latest Virtual Storage SUPP.lement (to IBM, System/360 and System/370 Bibliography),
GC20-0001, and the technical newsletters that amend the bibliography, to learn which
editions and technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, System Development
Division, LDF Publishing-Department J04, 1501 California Avenue, Palo Alto,
California 94304. All comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1973, 1975

USING TIllS PUBLICATION

This publication describes the use of VSAM (Virtual Storage Access
Method), an access method of OS/VS (Operating System/Virtual Storage). It
is intended for Assembler language programmers who intend to use VSAM
macro instructions to process data and for higher-level language programmers
who may want to use ISAM programs to process data. The publication has
the following major divisions:

• "Introduction," which introduces basic VSAM concepts that the reader
needs in order to use VSAM.

• "Opening and Closing a Data Set," which describes job control language
and the OPEN and CLOSE macros.

• "Control Block Macros," which describes VSAM macros used to construct
the control blocks required to open and use data sets and exit routines, and
to modify, test, and display fields in control blocks.

• "Request Macros," which describes macros used to retrieve, store, update,
and erase records, and to suspend processing and terminate requests.

• "Using ISAM Programming with VSAM," which describes how data sets
can be converted to VSAM's format and can be processed using an ISAM
processing program.

• "User-Written Exit Routines," which describes how to write the exit
routines that can be used with VSAM.

• "Appendix A: Summary of Macros," which summarizes, for ease of
reference, the format of the macros used to communicate with VSAM.

• "Appendix B: List, Execute, and Generate Forms of GENCB, MODCB,
SHOWCB, and TESTCB," which explains how to code reentrant programs
with the macros that generate, modify, test, and display control blocks at
execution.

• "Appendix C: Operand Notation for GENCB, MODCB, SHOWCB, and
TESTCB," which gives aU of the ways of coding operands in the macros
that generate, modify, test, and display control blocks at program
execution time.

• "Glossary ," which defines VSAM terms.

• "Index," which is a subject index to this publication.

COIIl'e"tioU U.d;" tile hbliCiltiOll
The conventions used in this publication for writing the macro and JCL
statements indicate whether an operand is optional, how to specify the value
for an operand, and how to punctuate a macro or statement. The conventions
are:

• Expressions enclosed in brackets, [], are optional.

• Items separated by an OR sign, I, and enclosed in braces, {}, are
alternatives, only one of which may be specified.

• An underlined item, item, is the default when you don't specify anything
for an operand.

• Ellipses, ... , indicate that you may repeat the preceding item.

Using This Publication 3

• Capitalized BOLD expressions, parentheses, commas, and equal signs must
be entered as shown, except that, unless otherwise noted, parentheses
aren't required if you specify only one item.

• Lowercase italic expressions are variables for which YOlU may specify one
of a number of expressions.

VSAM and Access Method Services Publications

The VSAM and Access Method Services libraries have bec~n revised and
expanded. Books listed below that are designated OS / VS.l apply only to
Release 4 of OS/VSl. Books designated OS/VS2 apply only to Release 3 of
OS/VS2. Four new books designated OS/VS2 Independent Component
apply only to the release of VSAM as an independent component for use with
Release 3 of OS/VS2. The shared book applies to OS/VSl, OS/VS2, and
the independent component.

This publication makes frequent references to the VSAM and Access Method
Services publications. Rather than list all the titles at each reference point, the
text will refer to the appropriate publication for the particlLllar subject.

The VSAM and Access Method Services publications are:

• OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications, GC26-3819, which provides information about advanced
applications of VSAM. The topics, which do not apply to make normal use
of VSAM, include: gaining access to control intervals; I/O buffering;
constructing parameter lists for the macros that generate, modify, and
examine control blocks at execution; processing the indtex as data; sharing
resources; and displaying fields of the catalog.

• OS/VSl Access Method Services, GC26-3840, OS/VS2 Access Method
Services, GC26-3841, and OS/VS2 Independent Component: Access
Method Services, GC26-3843, which contain a complete description of
the commands that are used to copy, print, and load data sets. They also
describe the relationships among components, the structure of components,
the use of the catalog, and Access Method Services commands that are
used to define and delete data sets, list catalog entries, and move data sets
from one operating system to another. These publications are directed to
the person responsible for establishing and maintaining data sets in an
installation.

• OS/VSl Access Method Services Logic, SY35-0008, OS/VS2 Access
Method Services Logic, SY35-0010, and OS/VS2 Independent
Component: Access MetJwd Services Logic, SY26-3845, which describe
the internal logic of Access Method Services.

• OS/VSl Virtual Storage Access Method (VSAM) Logic, SY26-3841,
which describes the internal logic of VSAM and of VSAM catalog
management.

• OS/VS2 Catalog Management Logic, SY26-3826, and OS/VS2
Independent Component: Catalog Management Logic, SY26-3847, which
describe the internal logic of VSAM catalog managemelllt.

• OS/VS2 Virtual Storage Access Method (VSAM) Logic, SY26-3825,
and OS/VS2 Independent Component: Virtual Storage Access Method
(VSAM) Logic, SY26-3846, which describe the internal logic of VSAM,
excluding VSAM catalog management.

4 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Other .Required PubliCiltiOllS

Related PubliCiltiOllS

The reader also needs to be familiar with some of the information presented
in the following publications:

• OS/VS Data Management Services Guide, GC26-3783, which presents
basic concepts such as access method, direct-access storage, and the
distinction between data-set organization and data-set processing.

• OS/VSl JCL Reference, GC24-5099, which describes the JCL
parameters for VS 1 referred to in this publication.

• OS/VS2 JCL, GC28-0692, which describes the JCL parameters for VS2
referred to in this publication and describes dynamic allocation.

• OS/VS2 System Programming Library: TSO, GC28-0629, which
describes dynamic allocation.

The reader may need to be familiar with some of the information presented in
the following publications:

• OS/VS2 TSO Command Language Reference, GC28-0646, and
OS/VS2 TSO Terminal User's Guide, GC28-0645, which describe the
TSO option of OS/VS2.

Other publications referred to in this publication are:

• OS/VS Checkpoint/Restart, GC26-3784

• OS/VS Message Library: VSl System Messages, GC38-1001

• OS/VS Message Library: VS2 System Messages, GC38-1002

• OS / VS 1 System Data Areas, SY28-0605

• OS/VS2 Data Areas, SYB8-0606

Using This Publication S

CONTENTS

Using This PubHcation ... 3
Conventions Used in the Publication ... 3
VSAM and Access Method Services Publications 3
Other Required Publications .. 5
Related Publications ... 5

Figures ... 11

Summary of Amendments .. 13

Introduction ... 15
Types of Data Sets .. 16

Key-Sequenced Data Set .. 17
Entry-Sequenced Pata Set ... 17
Relative Record Data Set ... 17

Alternate Indexes 18
Alternate-Index Clusters .. 18
Alternate-Index Paths .. 19
Alternate-Index Records .. 19

System Header Information ... 19
Alternate-Index Keys ... 19
Alternate-Index Pointers .. 20

Alternate-Index Maintenance .. 20
Processing Options ... 21

Types of Access .. 21
Retrieve by Key ... 22
Delete by Key .. 24
Store by Key. 24
Retrieve by Address .. 25
Delete by Address .. 25
Store by Address .. 25

Exit Routines for Special Processing .. 26
Utility Functions Carried Out by Access Method Services 26
Processing a VSAM Data Set with an ISAM Program 27
Using the Time Sharing Option (TSO) with VSAM 27

Opening and Closing a Data Set .. 29
How to Code JCL .. 29

Coding a DD Statement for a User Catalog ... 29
Coding the AMP Parameter ... 31

OPEN Macro (Connect Program and Data) .. 33
Return Codes from OPEN ... 35

Example: OPEN Macro ... 35
CLOSE Macro (Disconnect Program and Data) .. 37

Return Codes from CLOSE ... 38

Control Block Macros ... 41
Specifying Options at Assembly or Execution ... 41
Return Codes from the GENCB, MODCB, SHOWCB, and
TESTCB Macros ... 42

ACB Macro (Generate an Access-Method Control Block) 44
Example: ACB Macro ... 50

EXLST Macro (Generate an Exit List) .. 51
Example: EXLST Macro ... 52

Contents 7

RPL Macro (Generate a Request Parameter List) .. 52
Example: RPL Macro ... 57

GENCB Macro (Generate an Access-Method Control Block) 57
Example: GENCB Macro (Generate an Access-Method
Control Block) ... "' 62

GENCB Macro (Generate an Exit List) .. 63
Example: GENCB Macro (Generate an Exit List) 65

GENCB Macro (Generate a Request Parameter List) 65
Example: GENCB Macro (Generate.a Request Parameter List) 70

MODCB Macro (Modify an Access-Method Control Block) 71
Example: MODCB Macro (Modify an Access-Method
Control Block) .. 72

MODCB macro (Modify an Exit List) ... 72
Example: MODCB Macro (Modify an Exit List) 73

MODCB Macro (Modify a Request Parameter List) 73
Example: MODCB Macro (Modify a Request
Parameter List) .. 74

SHOWCB Macro (Display an Access-Method Control Block 75
Example: SHOWCB Macro (Display an Access-Method
Control Block) .. '79

Example: SHOWCB Macro (Display an Exit List Address) 79
SHOWCB Macro (Display an Exit List) .. 80

Example: SHOWCB Macro (Display the Length of an Exit List) 81
SHOWCB Macro (Display a Request Parameter List) 82

Example: SHOWCB Macro (Display a Physical-Error Message) 84
TESTCB Macro (Test an Access-Method Control Block) 85

Example: TESTCB Macro (Use an ERET Routine) 88
Example: TESTCB Macro (Test for Data-Set Attributes) 89

TESTCB Macro (Test an Exit List) .. 90
Example: TESTCB Macro (Use a Branch Table) 91

TESTCB Macro (Test a Request Parameter List) .. 92
Example: TESTCB Macro (Test a Request Parameter List) 94

Request Macros ... 95
Return Codes from the Request Macros .. 95
Feedback-Field Codes .. 96

Function Codes .. 97
Logical Errors .. 97
Physical Errors ... 100

GET Macro (Retrieve a Record) .. 102
Example: Keyed-Sequential Retrieval ... 103
Example: Skip-Sequential Retrieval ... 103
Example: Addressed-Sequential Retrieval ... 105
Example: Keyed-Direct Retrieval .. 107
Example: Addressed-Direct Retrieval ... 108
Example: Switch from Direct to Sequential Retrieval 109

PUT·Macro (Store a Record) ... 110
Example: Keyed-Sequential Insertion .. 111
Example: Record RBAs When Loading ... 112
Example: Skip-Sequential Insertion .. 113
Example: Keyed-Direct Insertion ... 114
Example: Addressed-Sequential Addition .. 115
Example: Keyed Sequential Update ... 116
Example: Keyed-Direct Update .. 117
Example: Addressed-Sequential Update ... 118
Example: Mark Records Inactive .. 119

8 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

ERASE Macro (Delete a Record) .. 119
Example: Keyed-Direct Deletion ... 120
Example: Addressed-Sequential Deletion .. 121

POINT Macro (Position for Access) .. 122
Example: Position with POINT ... 122

CHECK Macro (Suspend Processing) ... 123
Example: Check Return Codes after an Asynchronous Request 124
Example: Check Return Codes after a Synchronous Request 124
Example: Overlap Processing .. 125
Example: Suspend a Request for Many Records 126

ENDREQ Macro (Terminate a Request) ... 127
Example: Release Positioning for Another Request 127

Using ISAM Programming with VSAM .. 129
How an ISAM Program Can Process a VSAM Data Set 130
Converting an Indexed-Sequential Data Set ... 134

JCL for Converting from ISAM to VSAM .. 135
JCL for Processing with the ISAM Interface ... 135

AMP Parameter Specification .. 137
Restrictions in the Use of the ISAM Interface ... 139

Example: Converting a Data Set ... 140
Example: Issuing a SYNADAF Macro .. 141

User-Written Exit Routines ... 143
LERAD Exit Routine to Analyze Logical Errors 143
SYNAD Exit Routine to Analyze Physical Errors 143
Exception Exit Routine .. 145
EODAD Exit Routine to Process End-of-Data 145
JRNAD Exit Routine to Journalize Transactions 146
User-Security-Verification Routine .. 147

Appendix A: Summary of Macros .. 149
ACB (Generate an Access-Method Control Block) 149
CHECK (Suspend Processing) .. 149
CLOSE (Disconnect Program and Data) ... 149
ENDREQ (Terminate a Request) .. 149
ERASE (Delete a Record) ... 149
EXLST (Generate an Exit List) ... 150
GENCB (Generate an Access-Method Control Block) 150
GENCB (Generate an Exit List) ... 150
GENCB (Generate a Request Parameter List) 151
GET (Retrieve a Record) ... 152
MODCB (Modify an Access~Method Control Block) 152
MODCB (Modify an Exit List) ... 152
MODCB (Modify a Request Parameter List) .. 153
OPEN (Connect Program and Data) ... 154
POINT (Position for Access) ... 154
PUT (Store a Record) .. 154
RPL (Generate a Request Parameter List) .. 154
SHOWCB (Display Fields of an Access-Method Control Block) 154
SHOWCB (Display Fields of an Exit List) .. 155
SHOWCB (Display Fields of a Request Parameter List) 155
TESTCB (Test a Field of an Access-Method Control Block) 156
TESTCB (Test a Field of an Exit List) .. 157
TESTCB (Test a Field of a Request Parameter List) 157

Contents 9

Appendix D: List, Execute, and Generate Forms of GENCD, MODCD,
SHOWCD, and 1'ESTCD .. 159
List-Form Keyword .. 159
Execute-Form Keyword ... 160
Generate-Form Keyword ... 161
Optional and Required Operands ... 161

List Form of GENCB .. 161
Execute Form of GENCB .. 162
Generate Form of GENCB .. 162
List Form of MODCB .. 162
Execute Form of MODCB ... 162
Generate Form of MODCB ... 162
List Form of SHOWCB ... 163
Execute Form of SHOWCB ... 163
Generate Form of SHOWCB ... 163
List Form of TESTCB ... 163
Execute Form of TESTCB ... 163
Generate Form of TESTCB .. " 164

Use of List, Execute, and Generate Forms " 164
Example: Generate Form .. 164
Example: Remote-List Form ... 165
Example: Execute Form ... 165
Example: Simple-List and Execute Forms ... 165

Appendix C: Operand Notation for GENCD, MOD CD, SHOWCD,
and 1'ESTCD ... 167
Operands with GENCB .. 168
Operands with MODCB ... 169
Operands with SHOWCB ... 170
Operands with TESTCB ... 171

Glossary ... 173

Index ... 177

10 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

FIGURES

Figure 1. Comparison of Key-Sequenced, Entry-Sequenced,
and Relative Record Data Sets .. 18

Figure 2. JCL DO Parameters .. 30
Figure 3. OPEN Return Codes in the ERROR Field of the

Access-Method Control Block .. 36
Figure 4. CLOSE Return Codes .. 39
Figure 5. GENCB, MODCB, SHOWCB, and TESTCB Return

Codes .. 43
Figure 6. MACRF Options .. 49
Figure 7. OPTCD Options ... 56
Figure 8. FIELDS Operand Keywords for an Access-Method

Control Block .. 77
Figure 9. FIELDS Operand Keywords for a Request Parameter

List .. 83
Figure 10. Logical-Error Return Codes in Feedback Field 98
Figure 11. Physical-Error Return Codes in Feedback Field 100
Figure 12. Physical-Error Message Format .. 100
Figure 13. Use of ISAM Processing Programs ... 129
Figure 14. QISAM Error Conditions .. 131
Figure 15. BISAM Error Conditions .. 132
Figure 16. Register Contents for DCB-Specified ISAM SYNAD

Routine .. 132
Figure 17. Register Contents for AMP-Specified ISAM SYNAD

Routine .. 133
Figure 18. ABEND Codes Issued by the ISAM Interface 133
Figure 19. DEB Fields Supported by ISAM Interface 134
Figure 20. DCB Fields Supported by ISAM Interface 136
Figure 21. Contents of Registers at Entry to LERAD 143
Figure 22. Contents of Registers at Entry to SYNAD 144
Figure 23. Contents of Registers at Entry to EODAD 145
Figure 24. Contents of Registers at Entry to JRNAD 147
Figure 25. Communication with User-Security-Verification Routine 148
Figure 26. Reentrant Programming .. 164
Figure 27. GENCB Operands .. 168
Figure 28. MODCB Operands ... 169
Figure 29. SHOWCB Operands ... 170
Figure 30. TESTCB Operands ... 171

Figures 11

SUMMARY OF AMENDMENTS

Support for the new functions and data structures listed below has been
added to this pUblication. The changes apply to Release 4 of OS/VSl. Users
of Release 3 of OS/VS2 who plan to install the VSAM ICR (independent
component release) on their system may use the new information for planning
purposes only until the ICR is available. There are no significant changes for
Release 3 of OS/VS2.

The changes are:

• Multiple indexes enable subsets of a single data set to be uniquely named,
mounted, and processed.

• Control interval size is no longer dependent upon the size of the largest
record in a data set. Logical records may span control intervals within a
single control area.

• New options allow the sharing of I/O-related control blocks, channel
programs, and buffers among several VSAM data sets open at the same
time. Definitive descriptions of these options are published in OS/VS
Virtual Storage Access Method (VSAM) Options for Advanced
Applications.

• Relative record data sets, a new type of data organization, permit the
arithmetic calculation of the control interval containing a required record
and of the record's position within the control interval.

• GET -previous processing, a variation of sequential retrieval, returns the
previous record (relative to current positioning) rather than the next
record.

• Improved control-interval processing is an optional performance
enhancement that reduces the time and the number of CPU instructions
required to gain access to a control interval. This processing is described in
OS /VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications.

• Enhanced space reclamation makes it possible to reuse a single data set
many times as a work file.

Summary of Amendments 13

INTRODUCTION

VSAM gives you both direct access to records in any order and sequential
access to records that follow one another. You can identify a record for
retrieval by its key (a unique value in a predefined field in the record), by its
displacement from the beginning of the data set, or by its relative record
number. These alternative types of access and access options enable you to
design a program to suit your requirements for processing data.

With VSAM you can build one or more alternate indexes over a single base
data set, so that you need not keep multiple copies of the same information
organized in different ways for different applications. In terms of access, an
alternate index serves the same purpose as a primary index, but it does not
account for space in the base data set and does not require unique keys.

The Access Method Services commands are used to establish and maintain
data sets and to copy and print data sets. These commands are described in
the appropriate Access Method Services publication.

The macros described in this publication include control block macros and
request macros. The macros that are used to build control blocks, described in
the chapter "Control Block Macros," are:

• ACB, which is used to build an access-method control block at assembly
time.

• EXLST, which is used to build an exit list, which identifies available exit
routines; the exit list is built at assembly time.

• RPL, which is used to build a request parameter list at assembly time.

• GENCB, which is used to build an access-method control block, an exit
list, or a request parameter list at execution time.

The macros that are used to modify, display, and test the contents of control
blocks, also described in the chapter "Control Block Macros," are:

• MODCB, which is used to modify an access-method control block, an exit
list, or a request parameter list at execution time.

• SHOWCB, which is used to display fields in an access-method control
block, an exit list, or a request parameter list at execution time.

• TESTCB, which is used to test the contents of fields in an access-method
control block, an exit list, or a request parameter list at execution time.

The macros. used to store, retrieve, and erase records, to position VSAM in a
data set, to suspend processing, and to terminate requests, described in the
chapter "Request Macros," are:

• GET, which is used to retrieve a record.

• PUT, which is used to store a record.

• ERASE,which is used to delete a record.

• POINT, which is used to position VSAM at a record.

• CHECK, which is used to suspend processing.

• ENDREQ, which is used to terminate a request.

Introduction 15

Types of Data Sets
VSAM has key-sequenced, entry-sequenced, and relative r,ecord data sets.
The primary difference among the three is the sequence in which data records
are loaded into them.

Records are loaded into a key-sequenced data set in key sequence: that is, in
the order defined by the collating sequence of the contents of the key field in
each of the records. Each record has a unique value, such as employee
number or invoice number, in the key field. To determine where to insert a
new record into the data set in key sequence, VSAM uses an index that pairs
the key of a record with the record's location.

Records are loaded into an entry-sequenced data set without respect to the
contents of the records. Their sequence is determined by the order in which
they are stored: their entry sequence. Each new record is stored after the last
record in the data set.

Records are loaded into a relative record data set in relative record number
sequence, or you can supply the relative record number of each record and
load them in random order. The data set may be described as a string of
fixed-length slots, each of which is identified by a relative rc~cord number.
When a new record is sequentially inserted, VSAM assigns the record either
the next available relative record number in sequence or the: number you
supplied.

When a data set is created, it is defined as a cluster. A cluster can be a
key-sequenced data set, which consists of a data component and an index
component, or it can be an entry-sequenced or relative record data set, which
consists of only a data component.

Any suballocated VSAM data set that does not have an alternate index and is
not associated with key ranges may be used as a work file. That is, you can
treat a filled data set as if it were empty and use it again and again, regardless
of its old contents.

All VSAM data sets are stored on direct-access storage devices. The records
of a data set need not be stored in a continuous area of storage. From your
point of view, the area is continuous, starting at address o. VSAM addresses a
point in the area by its displacement, in bytes, from 0, called its RBA
(relative byte address). For example, the first record in a data set has RBA O.
The second record has an RBA equal to the length of the first record, and so
on. RBAs are independent of a data set's being stored in nonadjacent areas
on a volume or on several volumes.

All VSAM data sets must be cataloged in a VSAM catalog. See the
appropriate Access Method Services publication for a description of the
catalog.

The total space of a data set is considered to be divided into a continuous set
of areas called control areas, which are further divided into control intervals.
When you retrieve a record, the contents of the control interval in which it is
stored are read in by VSAM. A control interval is thus the unit of data
transmission between virtual and auxiliary storage.

Key-sequenced and entry-sequenced data records whose lengths exceed
control interval size may cross, or span, one or more control interval
boundaries within a single control area. Such records are called spanned
records. You must specify your intent to use spanned records when you
define the data set.

16 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Key-Sequenced Data Set

Entry-Sequenced Data Set

Relative Record Data Set

A key-sequenced data set always includes an index, which is a mechanism for
keeping track of records. An index relates key values to the relative locations
of the records.

The RBAs of records can change in a key-sequenced data set when records
are added, deleted, shortened, or lengthened.

A key-sequenced data set permits the full range of options for gaining access
to data: keyed access (as well as addressed and control-interval access),
insertion, deletion, and changing the length of a record. VSAM keeps track of
records in a key-sequenced data set by key field, so that you need refer to a
recQrd only by its key field, and not in some location-dependent manner.

The records in an entry-sequenced data set are in the order they are stored in
time. That is, each new record is stored at the end; none is inserted. Records
cannot be shortened, lengthened, or moved from one location to another.
Records cannot be deleted, although they can be replaced with records of the
same length. Once a record is added to an entry-sequenced data set, it stays
there and keeps its original RBA. An entry-sequenced data set is essentially a
sequential data set, but one whose records can be retrieved at random by
direct access and can be updated. The search argument for direct retrieval is a
record's RBA.

An entry-sequenced data set is appropriate for applications that require no
special ordering of data by the contents of a record. It is appropriate for a log
or a journal, because its order corresponds to the chronology of events. To
retrieve records randomly from 'an entry-sequenced data set, you must keep
track of the records' RBAs and associate RBAs with the contents of records.

A relative record data set has no index. It is a string of fixed-length slots, each
of which is identified by a relative record number from 1 to n, where n is the
maximum number of records that can be stored in the data set. Each record
occupies a slot and is stored and retrieved by the relative record number of
the slot.

Records in a relative record data set are grouped together in control intervals,
just as they are in a key-sequenced or an entry-sequenced data set. Each
control interval contains the same number of slots. The size of each slot is the
record length you specified when you defined the data set.

Relative record data sets can be processed by key or by control interval. With
keyed access, a relative record number is treated like a key. You can update
records in place, delete records, and insert new records into empty slots.
Control-interval processing is described in OS/VS Virtual Storage Access
Method (VSAM) Options for Advanced ,Applications.

You can use a relative record data set in much the same way you would use a
BDAM (basic direct-access method) data set in which the data records are
not ordered by their contents or their entry sequence.

Figure 1 compares key-sequenced, entry-sequenced, and relative record data
sets.

Introduction 17

Alternate Indexes

Altemate-Index Clusters

Key-Sequenced Data Set Entry-Sequenced Data Set Rela:tive Record Data Set

Records are in collating Records are in the order in Records are in relative
sequence by key field which they are entered record number order

Access is by key through an Access in by RBA Accless is by relative
index or by RBA record number, which is

treated like a key

May have one or more May have one or more May not have alternate
alternate indexes alternate indexes indexes

A record's RBA can change A record's RBA cannot change A record's relative
record number cannot
change

Distributed free space is used Space at the end of the data set Empty slots in the data
for inserting records and is used for adding records set are used for adding
changing their length in place records

Space given up by a deleted or A record cannot be deleted, Space given up by a
shortened record is but you can reuse its space for deleted record can be
automatically reclaimed within a record of the same length reused
a control interval

Can have spanned records Can have spanned records Cannot have spanned
records

Can be reused as a work file Can be reused as a work file Can be reused as a work
unless it has an alternate index unless it has an alternate index file

Figure 1. Comparison of Key-Sequenced, Entry-Sequenced, and Relative Record Data
Sets

An alternate index provides a unique way to gain access to a related base data
set, so that you need not keep multiple copies of the same information
organized in different ways for different applications. For example, a payroll
data set indexed by employee number can also be indexed by other fields such
as employee name or department number. See the appropriate Access Method
Services publication for a complete description of the commands used to
define and build an alternate index.

In terms of access, an alternate index performs the same function as the prime
index of a key-sequenced data set. The data set over which the alternate
index is built is the base cluster. It can be a key-sequenced or an
entry-sequenced data set, but not a relative record or a reusa.ble data set.

The alternate index is an indexed cluster (the alternate-index cluster). It
consists of an index component and a data component. The index component
is identical in structure, format, and function to the prime index of a
key-sequenced cluster. Likewise, the format of the alternate-index data
component is identical to the base data set. Therefore, each entry in the
sequence set of an alternate-index index component points to a control
interval in the alternate-index data component.

When building an alternate index, you can use as the alternate key any field
in the base data set's records having a fixed length and a fixed position within
each record. The alternate key must be in the first segment of a spanned
record. For each alternate key, the data component of the alternate index
contains a unique record. This record consists of the alternate key itself,
followed by a pointer that is the prime key or RBA of the base data record
that contains the alternate key. If more than one base data record contains

18 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Altemate-Index Paths

Altemate-Index Records

System Header Information

Alternate-Index Keys

the alternate key then the alternate index record contains a pointer to each
base data record. These duplicate, or nonunique keys are discussed in the
section "Alternate-Index Keys."

A path logically relates a base cluster and each of its alternate indexes. It
provides a way to gain access to the base data through a specific alternate
index. You define a path through Access Method Services. You must name it
and you can give it a password, if you choose. The path name subsequently
refers to the base cluster/alternate-index pair. This means that when you
refer to a path (by way of the OPEN macro, for example), both the base
cluster and the alternate index are affected (opened).

Each record in the data component of an alternate-index cluster is
variable-length and contains system header information, the alternate key,
and at least one pointer to a base data record. Data component records may
span control intervals.

System header information is fixed length and indicates:

• Whether the alternate index record contains (1) prime keys or RBA
pointers and (2) unique or nonunique keys

• The length of each pointer

• The length of the alternate key

Unless the base data records span control intervals, any field in the base data
records that has a fixed length and a fixed position within the record can be
an alternate key. The alternate key must be in the first control interval of a
spanned record. When an alternate index is created, the alternate keys are
extracted from the base data records and ordered in collating sequence. If you
build several alternate indexes over a base cluster, the alternate key fields of
the different alternate indexes may overlap each other in the base data
records. They can also overlap the prime key.

Keys in the index component of an alternate index or of a key-sequenced
base cluster are compressed. Keys in the data component of an alternate
index are not compressed. That is, the entire key is represented in the
alternate-index record.

An alternate key may refer to more than one record in the base cluster. For
example, if an alternate index is established by department number over a
payroll data set organized by employee number, there will be several
employees with the same department number. In other words, there will be
several prime-key pointers (employee numbers) in the alternate-index record,
one for each occurrence of the alternate key (department number) in the base
data set. When multiple pointers are associated with a given alternate key
value, the alternate key is said to be nonunique; if only one pointer is
associated with the alternate key, it.is unique.

Introduction 19

Alternate-Index Pointers

An alternate index uses prime keys if the base cluster is a key-sequenced data
set and RBAs if the base cluster is an entry-sequenced data set.

For a nonunique key, multiple pointers are associated with it. The pointers are
ordered by their arrival times. That is, if a base data record is updated with a
key change, or if a new record is inserted with the same alternate key value
the new prime-key pointer is added to the end of the alternate-index record.
In the case of a key change, the old pointer is deleted.

A prime-key pointer has the same length as the prime key field of the base
data record it points to. The maximum number of pointers that can be
associated with a given alternate key is 32767, provided the maximum record
length for spanned records is not exceeded.

A/temate-Index MaintelUlnce

VSAM assumes alternate indexes are synchronized with th(~ base cluster at all
times and makes no synchronization checks during open processing;
therefore, all structural changes made to a base cluster must be reflected in its
alternate index or indexes. This maintenace is called index upgrade. You can
maintain your alternate indexes or you can have VSAM maintain them. When
the data set is defined with the UPGRADE attribute, VSAM will update the
alternate index immediately when there is a change to the associated base
data cluster. VSAM opens all the UPGRADE alternate indexes for a base
cluster whenever the base cluster is opened for output and updates them if
necessary.

All the alternate indexes of a given base cluster that have the UPGRADE
attribute belong to the upgrade set. The upgrade set is updated whenever a
base data record is inserted, erased, or updated. The upgrading is part of a
request and VSAM completes it before returning control to your program. If
the upgrade fails because of a logical error, any modifications made to the
base data or to another alternate index are nullified, and the request that
caused the upgrade is rejected.

If you specify NOUPGRADE when the data set is defined, you must provide
a way to reflect insertions, deletions, and changes made to the base cluster in
all associated alternate indexes.

20 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Processing Options

Types 0/ Access

Processing options include:

• Types of access (keyed or addressed, and sequential, skip sequential, or
direct)

• Exit routines for special processing

You can gain access to a data set with a mixture of options. For instance, if
you were processing two portions of a data set concurrently, you might
process one portion directly, asynchronously, using a work area; you might
process the other sequentially, synchronously, in .the I/O buffer. You could
also alternate among the options to process a data set, switching, say, from
direct to sequential access when you got to a point where you wanted to
process records in ascending sequence.

Processing options are specified in macros that generate control blocks when
your program is assembled (ACB, EXLST, and RPL macros) or executed
(GENCB macro). Each request for some action is associated with a request
parameter list, which, in association with other control blocks, supplies the
processing options for the request. See the chapter "Control Block Macros"
for a description of the macro instructions and of the specification of the
processing options.

When you issue a request for a record, you can either wait until the request is
completed to continue processing or go on with processing that is not
dependent upon the first request while it is being carried out. Overlapping
processing in this way can improve the performance of your job.

VSAM can keep track concurrently of positions in a data set for many
requests to a data set. You can thus process many portions of a data set
during the same period of time. Such concurrent access may be used to
increase throughput, where each request can be processed independently of
the others.

The standard request for access retrieves, stores, or deletes a single record.
The standard request is described by a parameter list that indicates a single
record. By chaining parameter lists together, you can retrieve or store many
records with one request. You may not use chained parameter lists to update
or delete records; you may use chained parameter lists only to retrieve records
or to store new records.

VSAM allows both sequential and direct access for each of its three types of
data sets. Sequential access of a record depends on the position, with respect
to the key, the relative byte address of the previously processed record, or the
relative record number; direct access does not. During sequential access,
records retrieved by key are in key sequence, records retrieved by RBA are in
entry sequence, and records retrieved by relative record number are in
relative record number sequence. To retrieve records after initial positioning,
you don't need to specify a key, an RBA, or a relative record number. VSAM
automatically retrieves or stores the next record in order, either next in key
sequence, next in entry sequence, or next in relative record number sequence,
depending on whether you're processing by key, by RBA, or by relative
record number.

With direct access, the retrieval or storage of a record is not dependent on the
key, the RBA, or the relative record number of any previously retrieved

Introduction 21

Retrieve by Key

record. You must fully identify the record to be retrieved or stored by key, by
RBA, or by relative record number.

GET-previous processing is a variation of normal keyed or addressed
sequential processing. Instead of retrieving or updating the next record in
ascending sequence (relative to current positoning in the data set),
GET -previous processing returns or updates the next record in descending
sequence. You can select GET -previous processing for POINT, GET, PUT
(update only), and ERASE operations. GET-previous processing is not
permitted with control-interval or skip-sequential processing.

VSAM allows a processing program or its subtasks to process a data set with
multiple concurrent sequential and/or direct requests, each requiring that
VSAM keep track of a position in the data set, with a single opening of the
data set. Access can be to the same part or to different parts of a data set.

You can use a suballocated VSAM data set as a work file, if the data set does
not have an alternate index and is not associated with key ranges. That is, you
can treat a filled data set as if it were empty and use it again. and again
regardless of its old contents. To reuse a data set, you need only to define it
as reusable and specify that it be reset when you open it.

For a key-sequenced data set the primary form of access is keyed access,
using an index. For an entry-sequenced data set without an alternate index,
the only forms of access are addressed (using the RBA deterrmined for a
record when it was stored in the data set) and control-interval access. For a
relative record data set, the only forms of access are keyed (using the relative
record number as the key) and control-interval access. Control-interval access
is described in OS/VS Virtual Storage Access Method (VSAM) Options
for Advanced Applications.

If you use addressed access to process key-sequenced data, you should
consider the possibility that RBAs may have changed during previous keyed
access.

For examples of keyed and addressed retrieval, storage, dele:tion, and update,
see the chapter "Request Macros" later in this publication.

Keyed sequential access for a key-sequenced data set depends on where the
previous macro request positioned VSAM with respect to the key sequence
defined by the index. When your program opens the data set for keyed access,
VSAM is positioned at the first record in the data set in key sequence to begin
keyed sequential processing. The POINT macro instruction positions VSAM
at the record whose key you specify. If the key is a leading portion of the key
field, a generic key, the record positioned to is the first of the records having
the same generic key. A subsequent GET macro retrieves the record VSAM is
positioned at. The GET then positions VSAM at the next record in key
sequence. VSAM checks positioning when processing modes: are changed
between requests. The POINT macro can position either forward or backward
in the data set, depending on whether FWD or BWD was specified for the
OPT CD operand.

When you are processing by way of a path, records from the base cluster are
returned according to ascending or, if you are retrieving the previous record,
descending alternate key values. If there are several records with a nonunique
alternate key, the records are returned in the order in which they were
entered into the alternate index. VSAM sets a return code in the. RPL when
there is at least one more record with the same alternate key. For example, if

22 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

there are three data records with the alternate key 1234, the return code
would be set during the retrieval or records one and two and would be reset
during retrieval of the third record.

Keyed sequential retrieval for a relative record data set causes the records to
be returned in ascending or, if you are retrieving the previous record,
descending numerical order, based on the current positioning for the data set.
Positioning is established in the same way as for a key-sequenced data set,
and the relative record number is treated as a full key. If a deleted record is
encountered during sequential retrieval, it is skipped over and the next record
is retrieved. The relative record number of the retrieved record is returned in
the ARG field of the RPL.

Keyed direct retrieval for a key-sequenced data set does not depend on prior
positioning; VSAM searches the index from the highest level down to the
sequence set to retrieve a record. You can specify the record to be retrieved
by supplying one of the following:

• The exact key of the record

• An approximate key, less than or equal to the key field of the record

• A generic key

You can use approximate specification when you do not know the exact key.
If a record actually has the key specified, VSAM retrieves it; otherwise, it
retrieves the record with the next higher key. Generic key specification for
direct processing causes VSAM to retrieve the first record having that generic
key. If you want to retrieve all the records with the generic key, specify NSP
in your direct request. That causes VSAM to position itself at the next record
in key sequence. You can then retrieve the remaining records sequentially.

When you use direct or skip-sequential access to process a path, a record
from the base data set is returned according to the alternate key you have
specified in the ARG operand of the RPL macro. If the alternate key is not
unique, the record which was first entered with that alternate key is returned
and a return code (duplicate key) is set in the RPL. To retrieve the remaining
records with the same alternate key, specify the NSP option when retrieving
the first record and then switch to sequential processing.

To use direct or skip-sequential access to process a relative record data set,
you must supply the relative record number of the record you want in the
ARG operand of the RPL macro. If you request a deleted record, the request
will cause a no-record-found logical error.

When you indicate the key of the next record to be retrieved during
skip-sequential retrieval, VSAM skips to its index entry by using horizontal
pointers in the sequence set to get to the appropriate sequence-set index
record to scan its entries. 'Qte key of the next record must always be higher in
sequence than the key of the preceding record.

A relative record data set has no index; VSAM takes the number of the
record to be retrieved and calculates the control interval that contains it and
its position within the control interval.

Introduction 23

Delete by Key

Store by Key

An ERASE macro instruction that follows a GET for update deletes the
record that the GET retrieved. A record is physically erased in the data set
when you delete it. The space the record occupied is then available as free
space.

You can erase a record from the base cluster of a path only if the base cluster
is a key-sequenced data set. If the alternate index is in the upgrade set (that
is, UPGRADE was specified when the alternate index was defined), it is
modified automatically when you erase a record. If the altelnate key of the
erased record is unique, the alternate index data record with that alternate key
is also deleted.

You can erase a record from a relative record data set after you have
retrieved the record for update. The record is set to binary zeros and the
control information for the record is updated to indicate an empty slot. You
can reuse the slot by inserting another record of the same length into it.

To store records in ascending key sequence throughout a data set, you can use
sequential, skip-sequential, or direct access. For sequential or skip-sequential
processing, VSAM scans the sequence set of the index; for direct processing,
VSAM searches the index from top to bottom.

A PUT macro instruction stores a record. A PUT for update following a GET
for update stores the record that the GET retrieved. To update a record, you
must previously have retrieved it for update.

When VSAM detects that two or more records are. to be inserted in sequence
into a collating position (between two records) in a data set. VSAM uses a
technique called mass sequential insertion to buffer the records being
inserted, thereby reducing I/O operations. Using sequential instead of direct
access in this case enables you to take advantage of this technique. You can
also extend your data set (resume loading) by using sequential insertion to
add records beyond the highest key or relative record number.

Sequential insertion in a relative record data set causes a rec:ord to be assigned
the next available number in sequence, which is the next available relative
record number greater than the position established by a pmvious record. The
assigned number is returned in the ARG field of the RPL.

Direct or skip-sequential insertion of a record into a relative record data set
causes the record to be placed as specified by the relative record number in
the ARG field of the RPL. You must insert the record into a slot that does
not contain a record.

You can insert and update data records in the base cluster by way of a path,
provided the PUT request does not result in nonunique altelnate keys in an
alternate index which you have defined with the UNIQUE parameter. If the
alternate index is in the upgrade set (that is, you specified UPGRADE when
you defined the alternate index), the alternate index is modified automatically
when you insert or update a data record in the base cluster. If the updating of
the alternate index results in an alternate-index record with no pointers to the
base cluster, the alternate-index record is erased.

24 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Retrieve by Address

Delete by Address

Store by Address

Positioning for addressed sequential retrieval is done by RBA rather than by
key. When a processing program opens a data set for addressed access,
VSAM is positioned at the first record in the data set in entry sequence to
begin addressed sequential processing. A POINT positions VSAM for
sequential access beginning at the record whose RBA you have indicated. A
sequential GET causes VSAM to retrieve the data record at which it is
positioned and positions VSAM at the next record in forward or backward
direction.

With direct processing, you can optionally specify that the position be
maintained following the GET. Your program can then process the
subsequent records sequentially in either a forward or backward direction.

Addressed sequential access retrieves records in forward or backward
direction. If addressed sequential retrieval is used for a key-sequenced data
set, records will not be in their key sequence if there have been control
interval or control area splits.

Addressed direct retrieval requires that the RBA of each individual record be
specified, since previous positioning is not applicable. The address specified
for a GET or a POINT must correspond to the beginning of a data record;
otherwise, the request is invalid.

The ERASE macro can be used only with a key-sequenced data set to delete
a record that you have previously retrieved for update.

With an entry-sequenced data set, you are responsible for marking a record
you consider to be deleted. As far as VSAM is concerned, the record is not
deleted. You can reuse the space occupied by a record marked as deleted by
retrieving the record for update and storing in its place a new record of the
same length.

VSAM does not insert new records into an entry-sequenced data set, but adds
them at the end. With addressed access of a key-sequenced data set, VSAM
does not insert or add new records.

A PUT macro instruction stores a record. A PUT for update following a GET
for update stores the record that the GET retrieved. To update a record, you
must previously have retrieved it for update. You can update the contents of a
record with addressed access, but you cannot alter the record's length.
Neither can you alter the prime key field of a record in a key-sequenced data
set.

To change the length of a record in an entry-seqeunced data set, you must
store it either at the end of the data set (as a new record) or in the place of an
inactive record of the same length. You are responsible for marking the old
version of the record as inactive.

Introduction 25

Exit Routines lor Special Processing

An exit is a branch that VSAM takes to an optional user-supplied routine
when certain unusual conditions occur or when certain recurrent but
unpredictable events happen. Exits are defined for:

• Logical error (LERAD), which is used when the processing program makes
an invalid request for access to data.

• Physical error (SYNAD), which is used to handle physical-error conditions.

• Exception handling (EXCEPTIONEXIT), which monitors physical-error
conditions on a data set basis. This exit is specified via the Access Method
Services DEFINE command and it is taken before a SYl'lAD exit if both
are specified.

• End of data set (EODAD), which is used when the processing program has
attempted to point to or retrieve sequentially a record beyond the last
record in the data set.

• Journalizing a transaction or keeping track of RBA change (JRNAD),
which is used to keep track of of any change to the RBAs of records.

• User-security-verification (USVR), which is used to make security checks
in addition to verification of passwords.

The routine to which VSAM exits may be a subroutine in the processing
program or a separate load module. An exit routine is identified as available
for use in an exit list associated with one or more access-method control
blocks. See the chapter "Control Block Macros" for infonnation on how the
exit list is created, modified, tested, and displayed. See the chapter
"User-Written Exit Routines" for detailed information about the exit
routines. For information about exception exits, see the appropriate Access
Method Services publication.

Utility Functions Carried Out by Access Method Services
Access Method Services is a multifunction service program that is used to
define a VSAM data set and load records into it, convert a sequential or an
indexed-sequential data set to the VSAM format, list VSAM catalog
information or data-set records, copy a data set for reorganization, create a
backup copy of a data set, recover from certain types of damage to a data set,
and make a data set portable from one operating system to another.

26 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Processing a VSAM Data Set with an ISAM Program
VSAM provides an interface program that permits you to use programs coded
to use ISAM (indexed-sequential access method) to process VSAM data sets.
To use the ISAM interface, you must convert indexed-sequential data sets to
VSAM data sets, convert ISAM JCL to VSAM JCL, and ensure that your
existing ISAM programs meet the restrictions for using the interface.

To convert an indexed-sequential data set to a VSAM data set that you can
process either with an ISAM program by way of the ISAM interface or with a
VSAM program, you use Access Method Services to define a key-sequenced
data set in a VSAM catalog and allocate space for it. You may use an ISAM
program by way of the ISAM interface to load records into the data set, or
you may use Access Method Services REPRO command. For more details
about the procedure, see the chapter "Using ISAM Programming with
VSAM'."

Using the Time Sharing Option (TSO) with VSAM
TSO is a subsystem of OS/VS2 that provides conversational time sharing
from remote terminals. You can use TSO with VSAM to:

• Execute Access Method Services commands directly as TSO commands.

• Execute a program to process a VSAM data set.

• Execute a program to call Access Method Services.

• Dynamically allocate a VSAM data set and use VSAM macros to process
the data set.

• Allocate a VSAM data set by way of a LOGON procedure and use either
VSAM or ISAM macros to process the data set.

For details about writing and executing programs and allocating data sets with
TSO, see OS/VS2 TSO Terminal User's Guide, and OS/VS2 TSO
Command Language Reference. For information about dynamic allocation,
see OS/VS2 JCL.

Introduction 27

OPENING AND CLOSING A DATA SET

How to Code JCL

This chapter describes (1) the job control language, required in VS 1 and
optional in VS2, used to connect a data set and the program that is to use it,
how to code the VSAM AMP parameter, and how to identify user catalogs
for jobs or job steps; (2) the OPEN macro; and (3) the CLOSE macro.

A necessary link between a processing program and the data set to be
processed is the data-set name. When JCL is used, the access-method control
block gives the name of the DD statement so that the OPEN macro can make
the connection between the program and the data set named in the DD
statement, and thus connect program and data. When JCL is not used, the
data set can be dynamically allocated. See OS/VS2 JCL and OS/VS2
System Programming Library: TSO for an explanation of dynamic
allocation.

All VSAM data sets are cataloged in a VSAM catalog. To identify a VSAM
data set through JCL, it is sufficient to specify a DD statement of the form:

/ /ddname DD DSNAME=dYname ,DISP= {OLD I SHR}

The DSNAME parameter specifies the name of the data set you are
processing. Each VSAM data set is defined as a component of a cluster: a
key-sequenced data set is made up of a data component and an index
component; and an entry-sequenced and a relative record data set are made
up of only a data component. If you need to process a component separately,
you may specify the component's name in the DSNAME parameter.

If a data set in a job step is defined in a user catalog, it is also necessary to
identify the user catalog either by means of a JOBCAT or a STEPCAT DD
statement or by means of dynamic allocation.

Because the operating system does not disallow OS/VS DD parameters and
subparameters that don't apply to a VSAM data set, you should be aware of
the DD parameters and subparameters that have clear and unambiguous
meaning when used With VSAM. Figure 2 shows the DD parameters and
subparameters that can be used with VSAM and indicates their meaning for a
VSAM data set. DD parameters and subparameters not shown in Figure 2
should be avoided. For an explanation of potential problems you may
encounter with those parameters and subparameters, see the appropriate
Access Method Services publication.

Coding a DD Statement for a User Catalog

The master catalog is assumed to contain the definition of the data set
described in a DD statement if no user catalog is indicated or if the definition
is not found in the user catalog(s) that are indicated. A user catalog is
specified either for all of the steps of a job or for a particular step. To specify
a job user catalog, place a DD statement with the ddname JOBCAT before
the first EXEC statement after the JOB statement and after a JOBLm
statement, if any:

/ /EXAMPLE JOB
//JOBLIB DO DSNAME=USER.LIB,DISP=SHR
//JOBCAT DO DSNAME=usercatalogname,DISP=SHR
/ / EXEC ...

Opening and Closing a Data Set 29

Parameter Subparameter Comment

DDNAME ddname Works as in OS/VS.

DISP SHR Indicates that you are willing to share the data set with other
jobs. This subparameter alone, however, does not guarantee
that sharing will take place. See the appropriate Access
Method Services publication for a full description of data-set
sharing.

OLD

PASS

DSNAME dsname

DUMMY

UNIT address

type

group

p

unitcount

DEFER

VOLUME PRIVATE

RETAIN

SER

Works as in OS/VS; if specified for a VSAM catalog,
however, defaults to SHR.

Works as ip. OS/VS if data and index components reside on
the same type of device.

Works as in OS/VS.

Works as in OS/VS, except that an attempt to read results in
an end-of-data condition, and an attempt to write results in a
return code that indicates the write was successful. If
specified, AMP-'AMORG' must also be specified (see
"Coding the AMP Parameter" later in this chapter).

Must be the address of a valid device for VSAM. If not,
OPEN will fail.

Must be a type supported by VSAM. If :not, OPEN will fail.

Must be a group supported by VSAM. If not, OPEN will fail.

There must be enough units to mount all of the volumes
specified. If sufficient units are available, UNIT -p can
improve performance by avoiding the mounting and
demounting of volumes.

If the number of devices requested is greater than the number
of volumes on which the data set resides, the extra devices are
allocated anyway. If data and index components reside on
unlike devices, the extra devices are allocated evenly between
the unlike device types. If the number of devices requested is
less than the number of volumes on which the data set resides
but greater than the minimum number required to gain access
to the data set, the devices over the minimum are allocated
evenly between unlike device types. If devices beyond the
count specified are in use by another task but are shareable
and have mounted on them volumes containing parts of the
data set to be processed, they will also be allocated to this
data set.

Works as in OS/VS.

Works as in OS/VS.

Works as in OS/VS.

The volume serial number(s) used in the: Access Method
Services DEFINE command for the data set must match the
volume serial numbers in the VOLUME-SER specification
when the data set is defined. After a VSAM data set is
defined, the volume serial number(s) need not be specified on
a DD statement to retrieve or process the data set. If,
however, VOLUME-SER and UNIT-type are specified,
only those volumes specifically named are initially mounted.
Other volumes may be mounted when they're needed if at
least one of the units allocated to the data set is not shareable
and the number of OPENs issued against the volume is less
than or equal to 1, or the unit count is greater than the total
number of volumes initially mounted. One unit is made
unshareable when unit count is less than the number of
volume serial numbers specified or when DEFER is specified.

Figure 2. JCL DD Parameters

30 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Cod;n, the AMP Parameter

To specify a job-step user catalog, place a DD statement with the ddname
STEPCAT.after the EXEC statement of the step:

/ / EXEC ...
//STEPCAT DD DSNAME=usercatalogname,DISP=SHR

The order in which catalogs are searched when an existing entry is to be
located is:

• If a catalog is specified in a CATALOG parameter, only that catalog is
searched. In VS 1, if a catalog is specified in the CATALOG parameter and
it is not also a master, STEPCAT, or JOBCAT catalog, the dname
parameter must also be specified in CATALOG.

• Any user catalog(s) specified in the current job step (STEPCAT) or, if
none is specified for the job step, any user catalog(s) specified for the
current job (JOBCAT). If more than one catalog is specified for the job
step or job, the job-step or job catalogs are searched in order of
concatentation.

• For VS 1, if the entry is not found, the master catalog.

• For VSl, if the entry is not found, the system catalog.

• For VS2, if the entry is not found and the entry's name is a qualified name
and the first qualifier (that is, the first one to eight characters before any
period) is the same as the name or alias of a user catalog or the alias of a
control volume, that user catalog or control volume is searched; otherwise,
the master catalog.

Restriction: Control volumes are not searched when (1) an existing data set is
to be deleted except when the data set to be deleted is anon VSAM data set,
or (2) when an existing data set is to be altered.

VSAM uses one additional JCL parameter: AMP. It has subparameters for:

• Overriding operands specified by way of the ACB, EXLST, and GENCB
macros

• Supplying operands missing from the ACB or GENCB macro

• Indicating checkpoint/restart options

• Indicating options when using ISAM macros to process a key-sequenced
data set

• Indicating that the data set is a VSAM data set when you specify unit and
volume information or DUMMY in the DD statement

• Indicating that you want VSAM to supply storage dumps of the
access-method control block(s) that identify this DD statement

The AMP parameter takes effect when the data set defined by the DD
statement is opened.

Opening and Closing a Data Set 31

The format of the AMP parameter is:

/ / ... DD . .. [AMP=['AMORG']
[,'BUFND= number']
[,'BUFNI= number']
[,'BUFSP= number']
[, 'CROPS = {RCK I NCK I NRE: I NRC},]
[,'OPTCD={I I L I IL},]
[,'RECFM={F I FB I V I VB}']
[,'STRNO= number']
[, 'SYNAD=modulename']
[,'TRACE']]

where:

AMORG
specifies that the DD statement defines a VSAM data S(~t. You need to
(and must) specify AMORO only when you include unit and volume
information or DUMMY in the DD statement. When you specify unit and
volume information or DUMMY, the system doesn't have to search a
catalog to find out what volume(s) are required, and therefore doesn't
know that the DD statement defines a VSAM data set. You never have to
specify unit and volume information unless you want to have a subset of
the volumes on which the data set is stored mounted or want to cause
mounting to be deferred.

BUFND=number
BUFNI=number
BUFSP=number

specifies that one or more of these values is to override whatever was
specified in the ACB or OENCB macro, or that one or more of these
values is to be provided if not previously specified.

CROPS = {RCK I NCK I NRE I NRC}
specifies'Oiie of four checkpoint/restart options, which are described in
detail in OS/VS Checkpoint/Restart. H you specify an option that is not
applicable for a data set, such as the data-erase test for an input data set,
the option is ignored.

RCK
specifies that a data-erase test and data-set-post-checkpoint
modification tests are to be performed.

NCK
specifies that data-set-post-checkpoint modification tlests are not to be
performed.

NRE
specifies that a data-erase test is not to be performed.

NRC
specifies that neither a data-erase test nor data-set-post-checkpoint
modification tests are to be performed.

OPTCD= {II L I IL}
specifies the processing of records flagged for deletion (binary Is in the
first byte) with an ISAM processing program using the ISAM interface. I
and L are described in the chapter "Using ISAM Programming with
VSAM."

32 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

RECFM={F I FB I v I VB}
specifies record format in the same way as the DCB (data control block)
parameter that is used for processing an indexed-sequential data set. You
use it when processing a VSAM data set with an ISAM processing program
to indicate what record format the processing program assumes. The
options are described in the chapter "Using ISAM Programming with
VSAM."

STRNO=number
specifies a value that is to override the STRNO value specified in the ACB
or GENCB macro, or to provide a value if one was not specified.

SYNAD=modulename
specifies a value that is to override the address of a SYNAD exit routine
specified in the EXLST or GENCB macro that generates the exit list. The
exit list intended is the one whose address is specified in the access-method
control block that links this DD statement to the processing program. If no
SYNAD exit was specified, the SYNAD parameter of AMP is ineffective.
You can also use this parameter, when you are processing a VSAM data
set with an ISAM processing program, to provide an ISAM SYNAD
routine or to replace one with another.

TRACE
specifies that Generalized Trace Facility (GTF) is to be active, along with
your processing job, to gather information associated with opening and
closing data sets and end-of -volume processing. You can print the trace
output with the IMDPRDMP service program.

Note: See "AMP Parameter Specification" in the chapter "Using ISAM
Programming with VSAM" for additional information on the use of the AMP
parameter with an ISAM processing program.

Subparameters must be enclosed in apostrophes. Apostrophes can enclose
each individual subparameter or group of subparameters. If you have more
than one pair of apostrophes, you must enclose all of the subparameters in a
pair of parentheses. For example, AMP='AMORG,TRACE' or
AMP=('AMORG','TRACE'). If the subparameters continue from one line to
another, a pair of apostrophes cannot extend from one line to the next, and
you must therefore use a pair of parentheses to enclose all of the
subparameters.

The AMP parameter cannot be defined as a symbolic parameter (a symbol
preceded by an ampersand that stands for a parameter or the value assigned
to a parameter or subparam,eter in a cataloged or in-stream procedure).

OPEN Macro (Connect Program and Data)
Before your program can issue requests for access to a data set, it must open
the data set for processing. Opening a data set causes VSAM to have the
volume(s) on which it is stored mounted if necessary and to verify that the
data set matches the description implied by the ACB or GENCB macro (for
example, MACRF=KEY implies that the data set is a key-sequenced data
set).

OPEN causes VSAM to construct control blocks (other than those you
caused to be built by the ACB, EXLST, and GENCB macros) that it needs to
process your requests for access to the data set. It determines what processing
options are to be used by merging the information in the DD statement and

Opening and Closing a Data Set 33

the catalog definition of the data set with the information in the
access-method control block and the exit list. The order of precedence is:

1. The DD-statement AMP parameters

2. The ACB, EXLST, or GENCB operands

3. The catalog entry for the data set

For example, if information about buffer space is specified both in the DD
statement and in the ACB or GENCB macro, the values in the DD statement
override those in the macro. Catalog information acts as a default when
buffer space specified in the DD statement or in the macro is less than the
minimum specified when the data set was defined or when buffer space is
specified in neither the DD statement nor the macro.

VSAM also checks the password that your program specified against the
appropriate password (if any) in the catalog definition of the data set. The
password required depends on the kind of access specified in the
access-method control block (for example, is access for retrieval or for
update), as follows:

• Full access allows you to perform all operations (retrieving, updating,
inserting, and deleting) on a data set and any index or catalog record
associated with it. The master password allows you to delete or alter the
catalog entry for the data set or catalog it protects.

• Control-interval access requires the control password. The control
password allows you to use control-interval access and to retrieve, update,
insert, or delete records in the data set it protects. See OS/VS Virtual
Storage Access Method (VSAM) Options for AdvancE'd Applications, for
information on the use of control-interval access.

• Update access requires the update password. The update password allows
you to retrieve, update, insert, or delete records in the data set it protects.

• Read access requires the read password. The read password allows you to
examine records in the data set it protects; the read password does not
allow you to add, change, or delete records.

A password of one level authorizes you to do everything that a password of a
lower level authorizes you to do. Password protection is further described in
the appropriate Access Method Services publication.

The format of the OPEN macro is:

[U:bel] I OPEN I (address [,(options)], ...)

where:

label
is one to eight characters that provides a symbolic addre:ss for the OPEN
macro.

address
specifies the address of the access-method control block or DCB for the
data set(s) to be opened. You may specify the address in register notation
(using a register from 2 through 12-in parentheses) or specify it with an
expression that generates a valid relocatable A-type address constant. If
you use register notation to open only one data set, you must enclose the
expression identifying the register in two sets of parentheses: for example,
OPEN «2».

34 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Return Codes from OPEN

Example: OPEN Macro

options
are options parameters for use only in opening nonVSAM data sets. If any
options are specified with the address of an access-method control block,
VSAM ignores them.

Because the OPEN operands are positional, include a comma for options
(even if you don't specify options) before a subsequent operand.

When your program receives control after it has issued an OPEN macro,
register 15 indicates whether all of the VSAM data sets were opened
successfully:

Reg. 15 Condition

o All data sets were opened successfully.

4 All data sets were opened successfully, but one or more warning messages were
issued (codes less than X'80').

8 At least one data set (VSAM or non VSAM) was not opened successfully; the
access-method control block was restored to the contents it had before OPEN
was issued, or, if the data set was already open, the access-method control block
remains open and is not changed.

12 A nonVSAM data set was not opened successfully when a nonVSAM and a
VSAM data set were being opened at the same time; the non VSAM data control
block was not restored to the contents it had before OPEN was issued (and the
data set cannot be opened without the control block's being restored).

If register 15 contains 4,8, or 12, you can find out whether a VSAM data set
had a warning message, or wasn't opened successfully and why, by issuing
SHOWCB to display the ERROR field in each access-method control block
specified in OPEN. (See "SHOWCB Macro (Display an Access-Method
Control Block)" in the chapter "Control Block Macros.") Figure 3 shows the
possible return codes that you may get from OPEN in the ERROR field in the
access-method control block. In addition to these return codes, VSAM writes
a message to the operator console and the programmer's listing to further
explain the error. See OS/VS Message Library: VSl System Messages and
OS/VS Message Library: VS2 System Messages for a listing of VSAM
messages for VSl and VS2, respectively.

In this example, an OPEN macro is used to open two data sets. The
access-method control block for one data set was generated at execution; the
other was generated at assembly.

BLOCK

GENCB BLK=ACB,
DDNAME=DATA

LR
OPEN

ACB

2, 1

(BLOCK, , (2))

An access-method control block.

Address of the control block.

A label is used for the access-method
control block generated by ACB;
register notation is used for the one
generated by GENCB. The two
commas indicate the omission of
options.

Another access-method control block.

Opening and Closing a Data Set 35

Code Condition

o When register 15 contains 0, no error. When register 15 contains 8, either (1)
VSAM is processing the access-method control block for some other request, (2)
the access-method control block is already open, (3) the DDNAME was not
specified correctly in the access-method control block, or (4) the access-method
control block address is invalid.

4 The data set indicated by the access-method control block is already open.

96 Warning message: an unusable data set was opened for input.

100 Warning message: OPEN encountered an empty alternate index that is part of an
upgrade set.

104 Warning message: the time stamp of the volume on which a. data set is stored
doesn't match the system time stamp in the data set's catalog record; this indicates
that extent information in the catalog record may not agree with the extents
indicated in the volume's VTOC.

108 Warning message: the time stamps of a data component and an index component
do not match; this indicates that either the data or the index has been updated
separately from the other.

116 Warning message: the data set was not properly closed. A previous VSAM
program may have abnormally terminated. Data may be lost if processing
continues; the Access Method Services VERIFY command may be used to cause
the data set to be properly closed. See the appropriate Acce:;s Method Services
publication for a description of the VERIFY command.

132 An uncorrectable I/O error occurred while VSAM was reading the job file control
block (JFCB).

136 Not enough virtual-storage space is available in your program's address space for
work areas, control blocks, or buffers.

144 An uncorrectable I/O error occurred while VSAM was reading or writing a catalog
record.

148 No record for the data set to be opened was found in the available catalog(s), or an
unidentified error occurred while VSAM was searching the I;atalog.

152 Security verification failed; the password specified in the ac(;ess-method control
block for a specified level of access doesn't match the password in the catalog for
that level of access.

160 The operands specified in the ACB or GENCB macro are inconsistent with each
other or with the information in the catalog record.

164 An uncorrectable I/O error occurred while VSAM was reading the volume label.

168 The data set is not available for the type of processing you specify, or an attempt
was made to open a reusable data set with the reset option while another user had
the data set open.

176 An error occurred while VSAM was attempting to fix a page: of virtual storage in
real storage.

180 A VSAM catalog specified in JCL either does not exist or is not open, and no
record for the data set to be opened was found in any other catalog.

184 An uncorrectable I/O error occurred while VSAM was completing an I/O request.

188 The data set indicated by the access-method control block is not of the type that
may be specified by an access-method control block.

192 An unusable data set was opened for output.

196 Access to data was requested via an empty path.

Figure 3 (Part 1 of 2). OPEN Return Codes in the ERROR Field of the Access-Method
Control Block

36 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Code Condition

200 Volume is unusable

204 The ACB MACRF specification is GSR and caller is not operating in protect
key 71.

208 The ACB MACRF specification is GSR and caller is using a VSl systeml .

212 The ACB MACRF specification is GSR or LSR and the data set requires create
processingl.

216 The ACB MACRF specification is GSR or LSR and the key length of the data set
exceeds the maximum key length specified in BLDVRpl.

220 The ACB MACRF specification is GSR or LSR and the data set's control interval
size exceeds the size of the largest buffer specified in BLDVRpl.

224 Improved control interval processing is specified and the data set requires create
mode processingl.

232 Reset was specified for a nonreusable data set and the data set is not empty.

236 Indicates a stage or destage error.

240 Format-4 DSCB and catalog timestamp verification failed during volume mount
processing for output processing.

244 The volume containing the catalog recovery area was not mounted and verified for
output processing.

1 Options and restrictions are described in OS/VS Virtual Storage Access Method
(VSAM)Options for Advanced Applications.

Figure 3 (Part 2 of 2). OPEN Return Codes in the ERROR Field of the Access-Method
Control Block

CLOSE Macro (Disconnect Program and Data)
Disconnecting your program from a data set causes VSAM to write out any
buffers of data or index whose contents have changed and which haven't
already been written out. It causes VSAM to put back into the catalog the
updated information that was brought into virtual storage when the data set
was opened, and to write records in the SMF data set if you are using SMF.
VSAM also releases virtual-storage space and restores your access-method
control block(s) to the contents they had when the OPEN macro was issued.
To process the data set again, you must reopen it.

The format of the CLOSE macro is:

[label] CLOSE (address [,(options)], ••.)
[,TYPE=T]

where:

label
is one to eight characters that provides a symbolic address for the CLOSE
macro.

address
specifies the address of the access-method control block or DCB for each
data set to be closed. You may specify the address in register notation
(using a register from 2 through 12-in parentheses) or specify it with an
expression that generates a valid relocatable A-type address constant. If
you specify only one address with a register, you must enclose the
expression identifying the register in two sets of parentheses: for example,
CLOSE «2».

Opening and Closing a Data Set 37

options
are options parameters for use only in closing non VSMf data sets. If any
options are specified with the address of an access-method control block,
VSAM ignores them. Because the CLOSE operands are positional, include
a comma for options (even if you don't specify options) before a
subsequent operand.

TYPE=T
specifies that VSAM is to complete outstanding I/O operations and update
the catalog, but not disconnect the program from the data.

You can issue a temporary CLOSE macro to cause VSAM to complete
outstanding I/O operations, put back into the catalog the updated
information that was brought into virtual storage when the data set was
opened, and write records in the SMF data set if you are using SMF. A
temporary CLOSE doesn't disconnect the program from the data set, so your
program can continue to.process the data set without issuing an OPEN macro
again.

You must close and reopen a newly loaded VSAM data set before you can
issue GETs and PUTs. A temporary close is not adequate for this purpose.

Note: If you are subtask-sharing or if you have issued an asynchronous
request for access to a data set, you must issue a CHECK or an ENDREQ on
all RPLs before you issue a temporary CLOSE. Concurrent data set I/O
activity will cause unpredictable results during a temporary close.

Return Codes from CLSO E

When your program receives control after it has issued a CLOSE macro,
register 15 indicates whether all of the VSAM data sets were closed
successfully:

Reg.15 Condition

o All data sets were closed successfully.

4 At least one data set (VSAM or non VSAM) was not closed successfully.

If register 15 contains 4, you can use SHOWCB to display the ERROR field
in each access-method control block to find out whether a VSAM data set
wasn't closed successfully and Why. (See "SHOWCB Macro (Display an
Access-Method Control Block)" in the chapter "Control Block Macros.")
Figure 4 gives the return codes that the ERROR field may contain following
CLOSE. In addition to these return codes, VSAM writes a message to the
operator's console and the programmer's listing to further explain the error.·
See OS/VS Message Library: VSl System Messages and OS/VS Message
Library: VS2 System Messages, for a listing of messages for VSl and VS2,
respectively.

38 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Code Condition

o No error (set when register 15 contains 0).

4 The data set indicated by the access-method control block is already closed.

132 An uncorrectable I/O error occurred while VSAM was reading the job file control
block (JFCB).

136 Not enough virtual storage was available in your program's address space for a
work area for CLOSE.

144 An uncorrectable I/O error occurred while VSAM was reading or writing a catalog
record.

148 An unidentified error occurred while VSAM was searching the catalog.

184 An uncorrectable I/O error occurred while VSAM was completing outstanding
I/O requests.

Figure 4. CLOSE Return Codes

Control Block Macros 39

CONTROL BLOCK MACROS

The control block macros are used to build control blocks and to modify,
display, and test their contents. Some of these macros work at assembly time;
others work at execution time. The macros are:

• ACB, which is used to generate an access-method control block at
assembly time. An access-method control block must exist before a data
set can be opened.

• EXLST, which is used to generate an exit list at assembly time. An exit list
is a list of user-written routines that can be associated with one or more
access-method control blocks. Except for an exception exit, which is
specified via Access Method Services, a user-written routine must be
identified in an exit list to be available to handle unusual conditions.

• RPL, which is used to generate a request parameter list at assembly time. A
request parameter list is required for use with the request macros to define
the characteristics of the request.

• GENCB, which is used to generate an access-method control block, an exit
list, or a request parameter list at execution time. An access-method
control block must exist before a data set can be opened. An exit list
identifies any user-written routines provided. A request parameter list is
required to define (specify processing) an action for a request macro.

• MODCB, which is used to modify or make an addition to an
access-method control block, an exit list, or a request parameter list at
execution time.

• SHOWCB, which is used to display fields in an access-method control
block, an exit list, or a request parameter list at execution time.

• TESTCB, which is used to test the contents of fields in an access-method
control block, an exit list, or a request parameter list at execution time.

Generating a control block at assembly time (ACB, EXLST, and RPL
macros) has the advantage of generating the control block only once. When a
control block is generated at assembly time, you are, however, exposed to the
possibility of having to reassemble your program if you adopt a new version
of VSAM in which the format of a control block has changed. Generating a
control block at execution time (GENCB macro) has the advantage of not
requiring reassembly of a program if the format of a control block changes in
a subsequent version of VSAM. It has the disadvantage of having to execute
the macro each time the program is executed.

Specifying Options at Assembly or Execution

For specifying processing options, you can use macros that generate control
blocks when your program is assembled (ACB, EXLST, and RPL macros) or
use a macro that generates control blocks when the program is executed
(GENCB macro).

The macros that work at assembly time allow you to specify values for
operands as absolute numeric expressions, as character strings, as codes, as

Control Block Macros 41

expressions that generate valid relocatable A-type address constants. The
macros that work at execution allow you to specify them in those ways and
also in:

• Register notation, where the expression designating a register from 2
tluough 12 is enclosed in parentheses; for example, (2) and (REG), where
REG is a label equated to a number from 2 through 12

• An expression of the form (S,scon), where scon is an expression valid for
an S-type address constant, including the base-displacem.ent form

• An expression of the form (* ,scon), where scon is an expression valid for
an S-type address constant, including the base-displacem.ent form, and the
address specified by scon is indirect-that is, it gives tht~ location of the
area that contains the value for the operand

For most programming applications, you can conveniently use register
notation or absolute numeric expressions for numbers, character strings for
names, and register notation or expressions that generate valid A-type address
constants for addresses. "Appendix C: Operand Notation for GENCB,
MODCB, SHOWCB, and TESTCB" gives all the ways of Icoding each
operand for the macros that work at execution time.

You can write a reentrant program only with execution-tune macros.
"Appendix B: List, Execute, and Generate Forms of GENCB, MODCB,
SHOWCB, and TESTCB" describes alternate ways of coding these macros
for reentrant programs. The standard form of these macros is described in this
chapter.

Return Codes from the GENCB, MODCB, SHOWCB, and
TESTCB Macros

The GENCB, MODCB, SHOWCB, and TESTCB macros are executable
(unlike the ACB, EXLST, and RPL macros): they cause control to be given
to VSAM to perform the indicated task. VSAM indicates the task was
completed by a code in register 15:

Reg. 15 Condition

o Task completed.

4 Task not completed.

8 An attempt was made to use the execute form of a macro (see "Appendix B:
List, Execute, and Generate Forms of GENCB, MODCB, SHOWCB, and
TESTCB") to modify a keyword that isn't in the parameter list.

When register 15 contains 4, register 0 contains a code indicating the reason
VSAM couldn't perform the task. Figure 5 describes each t~rror code that can
be returned in register O.

These macros build a parameter list that describes in codes the actions
indicated by the operands you specify. The parameter list is passed to VSAM
to take the indicated actions. An error can occur because you specified the
operands incorrectly or, if you constructed the parameter list yourself,
because the parameter list was encoded incorrectly. If you eonstruct the list
yourself you can also get in register 0 reason codes 1,2,3, 10, 14, and 18.
See OS/VS Virtual Storage Access Method (VSAM) Options for
Advanced Applications for an explanation of these reason eodes and for an
explanation of how to construct parameter lists for GENCB, MODCB,
SHOWCB, and TESTCB.

42 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Return App6cable
Code Macros*

G,M,S,T

2 G,M,S,T

3 G,M,S,T

4 M,S,T

5 S,T

6 S,T

7 M,S

8 G

9 G

10 G,M

11 M

12 M

13 M

14 G,M,T

15 G,S

16 G,M,S,T

18 G,M,S,T

19 M,S,T

Reason VSAM Couldn't Perform the Task

The request type (generate, modify, show, or test) is invalid.

The block type (access-method control block, exit list, or request parameter list) is invalid.

One of the keyword codes in the parameter list is invalid.

The block at the address indicated is not of the type you indicated (access-method control block,
exit list, or request parameter list).

Access-method control block fields were to be shown or tested, but information is available only
when the data set is an open VSAM data set, and either it isn't open or it is not a VSAM data set.

Access-method control block information about an index was to be shown or tested, but no index
was opened with the data set.

An exit list was to be modified or shown, but the exit indicated isn't present in the exit list. (With
TESTCB, if the indicated exit isn't present, you get an unequal condition.)

There isn't enough virtual storage in your program's address space to generate the access-method
control block(s), exit list(s), or request parameter list(s) and no work area outside your address
space was specified; or inconsistent use of AM= VT AM on list and execute forms (either
AM=VTAM was specified on the list form and not on the execute form, or AM-VTAM was
specified on the execute form and not on the list form).

The work area specified was too small for generation or display of the indicated control block or
fields.

With GENCB, exit-list control-block type was specified and you specified an exit without giving
an address. With MODCB, exit-list control-block type was specified and you specified an exit
without giving an address; in this case, either active or inactive must be specified, but load cannot
be specified.

Either (1) a request parameter list was to be modified, but the request parameter list defines an
asynchronous request that is active (that is, no CHECK or ENDREQ has been issued on the
request) and thus cannot be modified, or (2) MODCB is already issued for the control block, but
hasn't yet completed.

An access-method control block was to be modified, but the data set identified by the
access-method control block is open and thus cannot be modified.

An exit list was to be modified, and you attempted to activate an exit without providing a new
exit address. Because the exit list indicated does not contain an address for that exit, your request
cannot be honored.

One of the option codes (for MACRF, ATRB, or OPTCD) has an invalid combination of option
codes specified (for example, OPTCD=(ADR,SKP».

The work area specified did not begin on a fullword boundary.

A VT AM keyword or subparameter was specified but the AM= VT AM parameter was not
specified. AM= VT AM must be specified in order to process a VT AM version of the control
block.

Two or more keywords of a mutually exclusive group were specified (for example, ARG and
NIB).

A keyword was specified which refers to a field beyond the length of the control block located at
the address indicated (for example, a VT AM keyword, but the control block pointed to is a
shorter, nonVTAM block.

20 S Keywords were specified which apply only if MACRF==LSR or GSR.

·G.GENCB, M.MODCB, S.SHOWCB, T-TESTCB

Figure 5. GENCB, MODCB, SHOWCB, and TESTCB Return Codes

Control Block Macros 43

ACB Macro (Generate an Access-Method Control Block)
Before you can open a data set for processing, you must create an
access-method control block that identifies the data set to be opened,
specifies the type of processing (for example, sequential processing) to be
done, specifies basic options (for example, buffer size), and indicates whether
exit routines are to be used while the data set is being processed.

The ACB macro can be used to build an access-method control block when
the program is assembled. If you adopt a subsequent releasfe of VSAM in
which the format of a control block has changed and have generated
access-method control blocks using the ACB macro, you will have to
reassemble your program.

Values for ACB-macro operands can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid
relocatable A-type address constants.

VSAM allows multiple access-method control blocks to gain access to the
same data set and conserves resources by connecting those ACBs to the same
control block structure. The ACBs must be in the same regiton, and they must
be opening to the same base cluster. The connection occurs independently of
the path selected to the base cluster.

Through MACRF options, you specify whether sharing is to be based on
DDNAME (MACRF=DDN) or data set name (MACRF=DSN). If the DDN
option is selected (or taken as the default), two ACBs that specify the same
DDNAME will share the same control block structure. If the DSN option is
selected, the new ACB will be connected to an existing control block
structure if:

• The existing control block structure also specifies DSN and

• The new and existing control block structures have compatible processing
options

To be compatible, both the new ACB and the existing control block structure
must be consistent in their specification of the following processing options:

• Structure is an entry-sequenced data set

• Structure is a key-sequenced data set

• Structure has MACRF=DFR

• Structure has MACRF = UBF

• Structure has MACRF=ICI

• Structure has MACRF =LSR

• Structure has MACRF=GSR

Those options that apply to the existing structure must also be specified in the
new ACB. Conversely, the options that apply to the new ACB must also be
specified in the existing structure. For example, if the new ACB and the
existing structure both specify MACRF=DFR, the connection will be made.
If the new ACB specifies MACRF=DFR and the existing structure specifies
MACRF=DFR,UBF, no connection will be made.

If compatibility cannot be established, OPEN tries (within the limitations of
the share options specified when the data set was defined) to build a new
control block structure. If it can't, the OPEN fails.

44 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

The format of the ACB macro is:

[label] ACB (AM = VSAM]
[,BSTRNO= number]
[,BVFND= number]
[,BUFNI= number]
[,BUFSP= number]
[,CATALOG = YES I NO]
[,CRA=SCRA I VCRA]
[,DDNAME=ddname]
[,EXLST = address]
[,MACRF=([ADR][,CNV][,KEY]

[,CFX I NFX] -
[,DDN I DSN]
[,DFRI NDF]
[,DIR][,SEQ] [,SKP]
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRM IAIX]
[,NRSIRST]
[,NSR I LSR I GSR]
[,NUB I UBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number] 1...-__ ----' _____ --'--______________________ "_

where:

label
is one to eight characters that provides a symbolic address for the
access-method control block that is assembled and also, if you omit the
DDNAME operand, serves as the ddname.

AM = VSAM
specifies that the access method using this control block is VSAM.

BSTRNO=number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the object
being opened is not a path. If the number specified for BSTRNO is
insufficient, VSAM will dynamically extend the number of strings as
needed for the access to the base cluster. BSTRNO can influence
performance. The VSAM control blocks for the set of strings specified by
BSTRNO are allocated on contiguous virtual storage, whereas this is not
guaranteed for the strings allocated by dynamic extension.

BUFND=number
specifies the number of I/O buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control
interval in the data component. The minimum number you may specify is 1
plus the number specified for STRNO (if you omit STRNO, BUFND must
be at least 2, because the default for STRNO is O. The number can be
supplied by way of the JCL DD AMP parameter as well as by way of the
macro. The default is the minimum number required.

Control Block Macros 45

BUFNI =n umber
specifies the number of I/O buffers VSAM is to use for transmitting the
contents, of index entries between virtual and auxiliary storage for keyed
access. A buffer is the size of a control interval in the index. The minimum
number is the number specified for STRNO (if you omit STRNO, BUFNI
must be at least 1, because the default for STRNO is O. You can supply
the number by way of the JCL DD AMP parameter as well as by way of
the macro. The default is the minimum number required.

BUFSP=number
specifies the maximum number of bytes of virtual storage to be used for
the data and index I/O buffers. VSAM gets the storage in your program's
address space. If you specify less than the amount of space that was
specified in the BUFFERSP ACE parameter of the DEFINE command
when the data set was defined, VSAM overrides your BUFSP specification
upward to the value specified in BUFFERSP ACE. (BUFFERSP ACE, by
definition, is the least amount of virtual storage that will ever be provided
for I/O buffers.) You can supply BUFSP by way of the JCL DD AMP
parameter as well as by way of the macro. If you don't specify BUFSP in
either place, the amount of storage used for buffer allocation is the largest
of:

• the amount specified in the catalog (BUFFERSPACE),

• the amount detennined from BUFND and BUFNI, or

• the minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is less than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount
called for by BUFND and BUFNI, the extra space is allocated as follows:

• When MACRF indicates direct access only, additional index buffers are
allocated.

• When MACRF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and
BUFNI, the number of data and index buffers is decreased as follows:

• When MACRF indicates direct access only, the number of data buffers
is decreased to not less than the minimum number. Then, if required, the
number of index buffers is decreased until the amount: called for by
BUFND and BUFNI complies with the BUFSP amount.

• When MACRF indicates sequential access, the number of index buffers
is decreased to not less than 1 more than the minimum number. Then, if
required, the number of data buffers is decreased to not less than the
minimum number. If still required, 1 more is subtracted from the
number of index buffers.

• Neither the number of data buffers nor the number of index buffers is
decreased to less than the minimum number.

If the index doesn't exist or isn't being opened, only BUJi'ND, and not
BUFNI, enters into these calculations.

46 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

The following examples show how VSAM uses your specifications to
obtain storage:

Example 1: BUFSP not specified
BUFFERSPACE is 32768
BUFND is 24576 (Data control interval is 2048)
BUFNI is 10240 (Index control interval is 1024)
STRNO is 11

BUFSP will be set to 35840 (the minimum needed to process the data set),
since this is the largest value.

Example 2: BUFSP not specified
BUFFERSPACE is 24576
BUFND is 10240 (Data control interval is 1024)
BUFNI is 5120 (Index control interval is 512)
STRNO is 1

BUFSP will be set to 24576, the BUFFERSPACE amount, since this is the
largest value.

Example 3: BUFSP not specified
BUFFERSPACE is 32768
BUFND is 24576 (Data control interval is 2048)
BUFNI is 10240 (Index control interval is 1024)
STRNO is 5

BUFSP will be set to 34816, the sum of BUFND and BUFNI, since this is
the largest value.

Example 4: BUFSP is 30696
BUFFERSP ACE is 30696
BUFND is 24576 (Data control interval is 2048)
BUFNI is 10240 (Index control interval is 1024)
STRNO is 6
MACRF=(KEY,DIR,OUT)

BUFND will be reduced to 18432, and BUFNI remains the same, since the
original BUFND and BUFNI are more than BUFSP.

Example 5: Same as example 4, except MACRF=(KEY,SEQ,OUT)

BUFNI will be reduced to 7168 (for 1 more than the STRNO number of
buffers), and BUFND will be reduced by 2048 to 22528, since the original
BUFND and BUFNI are more than BUFSP.

CATALOG=YES I NO
specifies whether a catalog is being opened as a catalog (YES) or as a data
set (NO). When NO is coded (or taken as the default), you can process the
catalog with request macros. When YES is coded, a catalog must be
processed with an SVC designed for that purpose.

CRA=SCRAIUCRA
specifies that a catalog recovery area is to be opened and that the control
blocks are to be built in either system storage (SCRA) or user storage
(UCRA). If you specify SCRA and issue record management requests, you
must operate in key O. If you specify UCRA, you must be authorized by
the system and you must supply the master password of the master catalog.

Control Block Macros 47

DDNAME=ddname
is one to eight characters that identifies the data set that you want to
process by specifying the JCL DO statement for the data set. You may
omit DDNAME and provide it by way of the label or by way of the
MODCB macro before opening the data set. MODCB is described later in
this chapter.

EXLST=address
specifies the address of a list of addresses of exit routines that you are
providing. The list is established by the EXLST or GENCB macro. If you
use the EXLST macro, you can specify its label here as the address of the
exit list. If you use GENCB, you can specify the address returned by
GENCB in register 1 or the label of an area you supplied to GENCB for
the exit list. Omitting this operand indicates that you have no exit routines.
Exit routines are described in the chapter "User-Written Exit Routines."

MACRF= ([ADR][,CNV][,KEY]
[,CFX I NFX] -
[,DDNIDSN]
[,DFRI NDF]
[,DIR][,SEQ][,SKP]
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRMIAIX]
[,NRS I RST]
[,NSR I LSR I GSR]
[,NUB I UBF])

specifies the kind(s) of processing you will do with the d:ata set. The
options must be meaningful for the data set. For example, if you specify
keyed access for an entry-sequenced data set, you cannot open the data
set. You must specify all of the types of access you're going to use,
whether you use them concurrently or by switching from one to the other.
Figure 6 gives the options; they are arranged in groups, and each group has
a default value (indicated by underlining). You may specify options in any
order. You may specify both ADR and KEY to process a key-sequenced
data set. You may specify both DIR and SEQ; with keyed access, you may
specify SKP as well. If you specify OUT and want simply to retrieve some
records as well as update, delete, or insert others, you neled not also specify
IN.

MAREA=address
specifies the address of an optional OPEN / CLOSE/TCLOSE message
area.

MLEN =number
specifies the length of an optional OPEN/CLOSE/TCLOSE message
area. Default=O; maximum=32K.

PASSWD=address
specifies the address of a field that contains the highest-lc~vel password
required for the type(s) of access indicated by the MACRF operand. The
first byte of the field pointed to contains the length (in binary) of the
password (maximum of 8 bytes). Zero indicates that no password is
supplied. If the data set is password-protected and you don't supply a
required password in the access-method control block, VSAM gives the
console operator the opportunity to supply it when you open the data set.

48 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Option Meaning

ADR

CNV
KEY

CFX
NFX

DDN
DSN

DFR
NDF

DIR
SEQ
SKP

ICI
NCI

IN

OUT

NIS
SIS

NRM
AIX

NRS
RST

NSR
LSR
GSR

NUB
UBF

Addressed access to a key-sequenced or an entry-sequenced data set; RBAs are
used as search arguments and sequential access is by entry sequence
Control-interval access l

Keyed access to a key-sequenced or relative record data set; keys and relative
record numbers are used as search arguments and sequential access is by key or
relative record number

Control blocks built by OPEN are page-fixed l

Control blocks built by OPEN are page-fixed only during actual I/O

Sub task shared control block connection based on common ddnames
Subtask shared control block connection based on common data set names

Writes deferred when possible l

Writes not deferred

Direct access to a key-sequenced, entry-sequenced, or a relative record data set
Sequential access to a key-sequenced, entry-sequenced, or a relative record data set
Skip-sequential access to a key-sequenced or a relative record data set; used only
with keyed access in a forward direction.

Processing limited to control-interval processing l

Processing other than control-interval processing

Retrieval of records of a key-sequenced, entry-sequenced, or a relative record data
set
Storage of new records in a key-sequenced, entry-sequenced, or relative record
data set (not allowed with addressed access to a key-sequenced data set); update of
records in a key-sequenced, entry-sequenced, or relative record data set; deletion
of records from a key-sequenced data set

Normal insert strategy
Sequential insert strategy (split control intervals and control areas at the insert
point rather than at the midpoint when doing direct PUTs)

The object to be processed is the one named in the specified ddname
The object to be processed is the alternate index of the path specified by ddname

Data set is not reusable
Data set is reusable (high-used RBA is reset to 0 during OPEN processing)

Nonshared resources
Local shared resources l

Global shared resourcesl

Management of I/O buffers is left up to VSAM
Management of I/O buffers is left up to the user; allowed only with
control-interval accessl

1 Described in OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications f

Figure 6. MACRF Options

STRNO=number
specifies the number of requests requiring concurrent data-set positioning
VSAM is to be prepared to handle. The default is 1. A request is defined
by a given request parameter list or chain of request parameter lists. See
"RPL Macro (Generate a Request Parameter List)" and "GENCB Macro
(Generate a Request Parameter List)" later in this chapter for information
on request parameter lists. When records are loaded into an empty data set,
the STRNO value in the access-method control block must be 1.

OS/VS dynamically extends the number of strings as needed by concurrent
requests for this ACB, and this automatic extension can influence
performance. The VSAM control blocks for the set of strings specified by
STRNO are allocated on contiguous virtual storage, but this is not guaranteed
for the strings allocated by dynamic extension.

Control Block Macros 49

Example: ACB Macro

You could specify for STRNO the total number of request parameter lists or
chains of request parameter lists that you are using to define requests.
(VSAM needs to remember only one position for a chain of request
parameter lists.) However, each position beyond the minimum number that
VSAM needs to be able to remember requires additional virtual storage space
for:

• A minimum of one data I/O buffer and, for keyed access, one index I/O
buffer (the size of an I/O buffer is the control-interval size of a data set)

• Internal control blocks and other areas

In this example, the ACB macro is used to identify a data slet to be opened
and to specify the types of processing to be performed. The access-method
control block generated by this example is built when the program is
assembled.
BLOCK ACB

FIELD DC

AM=VSAM,BUFND=4,
BUFNI=3,
BUFSP=19456,
DDNAME=DATASETS,
EXLST=EXITS,
MACRF=(KEY,DIR,
SEQ, OUT) ,
PASSWD=FIELD,
STRNO=2

BLOCK gives symbolic address of the
access-method control block.

FL 1 ' 6' ,C' CHANGE' The update password: CHANGE has 6
characters.

The ACB macro's operands are:

• BUFND, BUFNI, and BUFSP, which specify four I/O buffers for data;
three I/O buffers for index entries; and 19,456 bytes of lbuffer space,
enough space to accommodate control intervals of data that are 4096 bytes
and control intervals of index entries that are 1024 bytes"

• DDNAME, which specifies that this access-method control block is
associated with a DD statement named DAT ASETS.

• EXLST, which specifies that the exit list associated with this
access-method control block is named EXITS.

• MACRF, which specifies keyed-direct and keyed-sequential processing for
both insertion and update.

• PASSWD, which specifies the location, FIELD, of the password provided.
FIELD contains the length of the password as well as the password itself.

• STRNO, which specifies that two requests will require concurrent
positioning.

50 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

EXLST Macro (Generate an Exit List)
The EXLST macro is used to generate an exit list when the program is
assembled. See the chapter "User-Written Exit Routines" for a description of
the exit routines. The EXLST macro is coordinated with the EXLST operand
of an ACB or GENCB macro used to generate an ACB: you must code the
EXLST operand to make use of the exit list. One or more access-method
control blocks may use the same exit list-the exit routines indicated by the
list would do the exit processing for the data sets identified by the control
blocks.

Values for EXLST macro operands can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid
relocatable A-type address constants.

The format of the EXLST macro is:

[label] EXLST [AM=VSAM]
[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,il N][,L])]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,A I N][,L])]

where:

label
is one to eight characters that provides a symbolic address for the exit list
that is established.

AM = VSAM
specifies that the access method using the control block is VSAM.

[EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,A I N][,L])]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,! I N][,L])]

specify that you are supplying a routine for the exit specified. The exits and
values that can be specified for them are:

EO DAD
specifies that an exit is provided for special processing when the end of
a data set is reached by sequential access.

JRNAD
specifies that an exit is provided for journalizing as you process data
records.

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

address
is the address of a user-supplied exit routine. The address must
immediately follow the equal sign.

AIN
specifies that the exit routine is active (A) or not active (N). VSAM
does not enter a routine whose exit is marked not active.

Control Block Macros 51

Example: EXLST Macro

L
specifies that the address is the address of an eight-byte field that
contains the name of an exit routine in a partitioned data set that is
identified by a JOBLm or STEPLm DD statement or in
SYS 1.LINKLm. VSAM is to load the exit routine for exit processing. If
L is omitted, the address gives the entry point of the exit routine in
virtual storage. L may precede or follow the A or N specification.

In this example, an EXLST macro is used to identify exit routines that are
provided for analyzing logical and physical errors. The label, EXITS, of the
EXLST macro is used in an ACB or GENCB macro that gtmerates an
access-method control block to associate the exit list with an access-method
control block. The exit list generated by this example is buillt when the
program is assembled.

EXITS EXLST EODAD=(ENDUP, N), EXITS gives symbolic address of the
LERAD= LOG I CAL, exit list.

ENDUP
LOGICAL
ROUTNAME DC

SYNAD=(ROUTNAME,
L)

C'PHYSICAL'

The EXLST macro's operands are:

EODAD routine.

LERAD routine.

Pad shorter names with blanks:
C'SYN 'or CLS'SYN'.

• EODAD, which specifies that the end-of-data routine is located at ENDUP
and is not active.

• LERAD, which specifies that the logical-error routine is ~ocated at
LOGICAL and is active.

• SYNAD, which specifies that the physical-error routine's name is located
at ROUTNAME.

RPL Macro (Generate a Request Parameter List)
After you have connected your program to the data set, you can issue
requests for access to it. A request parameter list defines a request. Each
request macro (GET, PUT, ERASE, POINT, CHECK, and ENDREQ) gives
the address of the request parameter list that defines it. See the chapter
"Request Macros" for information on these macros.

The RPL macro can be used to generate a request parameter list when your
program is assembled. The operands of the RPL macro are optional in some
cases, but required in others. It is not necessary to omit operands that are not
required for a request; they are ignored. Thus, for example, itf you switch from
direct to sequential retrieval with a request parameter list, you don't have to
zero out the address of the field containing the search argument
(ARG = address).

Values for RPL-macro operands can be specified as absolut(~ numeric
expressions, character strings, codes, and expressions that generate valid
relocatable A-type address constants.

Request parameter lists can be linked together in a chain. A request macro
points to the first request parameter list, which points to the second, and so
on. The effect of chaining request parameter lists is to cause a single request

52 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

macro to operate on multiple records. For example, if a GET macro points to
a chain of five request parameter lists, five records can be retrieved with a
single GET.

The format of the RPL macro is:

[label] RPL (ACB= address)
(,AM=VSAM]
[,AREA= address]
[,AREALEN = number]
[,ARG= address]
[,ECB = address]
[,KEYLEN = number]
[,MSGAREA= address]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPTCO=([ADR I CNV I KEY]

[,OIR I SEQ I SKP]
[,ARD I LRD]
[,FWD I BWO]
[,ASY I SYN]
[,NSP I NUP I UPO]
[,KEQ I KGE]
[,FKS I GEN]
[,LOC I MVE])]

[,RECLEN = number-] -
[,TRANSID= number]

where:

label
is one to eight characters that provides a symbolic address for the request
parameter list that is generated. You can use it in the request macros to
give the address of the list. You can use it in the NXTRPL operand of the
RPL macro, when you are chaining request parameter lists, to indicate the
next list.

ACB=address
specifies the address of the access-method control block that identifies the
data set to which access will be requested. If you used the ACB macro to
generate the control block, you may specify the label of that macro for the
address. If the ACB operand is not coded, you must specify the address
before issuing the request.

AM = VSAM
specifies that the access method using the control block is VSAM.

AREA =address
specifies the address of a work area to and from which VSAM moves a
data record if you request it to do so (with the RPL operand
OPTCD=MVE). If your request is to process records in the I/O buffer
(OPTCD=LOC), VSAM puts into this work area the address of a data
record within the I/O buffer.

Control Block Macros 53

AREALEN =number
specifies the length, in bytes, of the work area whose address is specified
by the AREA operand. Its minimum for OPTCD=MVE is the size of a
data record (of the largest data record, for a data set with records of
variable length). For OPTCD=LOC the area should be 4 bytes to contain
the address of a data record within the I/O buffer.

ARG=address
specifies the address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For keyed access
(OPTCD=KEY), the search argument is a full or generic key or relative
record number; for addressed access (OPTCD=ADR), it is an RBA.1f
you specify a generic key (OPTCD=GEN), you must aliso specify in the
KEYLEN operand how many of the bytes of the full key you are using for
the generic key.

ECB=address
specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard OS/VS completion codes, which are described in OS/VSl
System Data Areas and OS/VS2 Data Areas). This operand is always
optional.

KEYLEN =number
specifies the length, in bytes, of the generic key (OPTCD=GEN) you are
using for a search argument (given in the field addressed by the ARG
operand). This operand is specified as a number from 1 through 255; it is
required when the search argument is a generic key. For full-key searches,
VSAM knows the key length, which is taken from the catalog definition of
the data set when you open the data set.

MSGAREA=address
specifies the address of an area that you may optionally supply for VSAM
to send you a message in case of a physical error. The format of a
physical-error message is given under "Physical Errors" in the chapter
"Request Macros."

MSGLEN =number
specifies the size, in bytes, of the message area indicated in the
MSGAREA operand. If MSGAREA is specified, MSGLEN is required.
The size of a message is 128 bytes; if you provide less than 128 bytes, no
message is returned to your program.

NXTRPL=address
specifies the address of the next request parameter list in a chain. Omit this
operand from the macro that generates the last list in the chain. When you
issue a request that is defined by a chain of request parameter lists, indicate
in the request macro the address of the first parameter list in the chain.

54 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

OPTCD=([ADR I CNV I KEY]
[,DIR I SEQ I SKP]
[,ARD I LRD]
[,FWD I BWD]
[,ASY I SYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKS I GEN]
[,LOC I MVED

specifies the options that govern the request defined by the request
parameter list. Each group of options has a default; options are shown in
Figure 7 with defaults underlined. Only one option from each group can be
specified. Some requests do not require an option from all of the groups to
be specified. The groups that aren't required are ignored; thus, you can use
the same request parameter list for a combination of requests (GET, PUT,
POINT, for example) without zeroing out the inapplicable options each
time you go from one request to another.

RECLEN =number
specifies the length, in bytes, of a data record being stored. This parameter
is required for a PUT request.

For GET requests, VSAM puts the length of the record retrieved in this field
in the request parameter list. It will be there if you update and store the
record.

TRANSID=number
specifies a number that relates modified buffers in a buffer pool. Used in
shared resource applications and described in OS / VS Virtual Storage
Access Method (VSAM) Options for Advanced Applications.

You can use the ECB to determine that an asynchronous request is complete
before issuing a CHECK macro. (If you issue a CHECK before a request is
complete, you give up control and must wait for completion.) You can also
test for completion with the TESTCB I/O=COMPLETE operand. TESTCB
is described later in this chapter.

Each request parameter list in a chain should have the same OPTCD options.
Having different options may cause logical errors. You can't chain request
parameter lists for updating or deleting records--only for retrieving records
or storing new records. You can't process records in the 110 buffer with
chained request parameter lists. (OPTCD=UPD and LOC are invalid for a
chained request parameter list.)

With chained request parameter lists, a POINT, a sequential or
skip-sequential GET, or a direct GET with positioning requested
(OPTCD=NSP) causes VSAM to position itself at the record following the
record identified by the last request parameter list in the chain.

Control Block Macros 55

Option Meaning

ADR

CNV

KEY

DIR
SEQ
SKP

ARD
LRD

FWD
OWD

ASY

SYN

Addressed access to a key-sequenced or an entry-sequenced data set: RBAs are
used as search arguments and sequential access is done by entry sequence
Control-interval access (this type of access is described in OS/VS Virtual Storage
Access Method (VSAM) Options for Advanced Applications)
Keyed access to a key-sequenced or relative record data set: keys or relative record
numbers are used as search arguments and sequential access is done by key or
relative record number sequence

Direct access to a key-sequenced, entry-sequenced, or relative record data set
Sequential access to a key-sequenced, entry-sequenced, or relative record data set
Skip sequential access to a key-sequenced or a relative record. data set: used with
keyed access only

User's argument determines record to be located, retrieved, or stored
Last record in the data set is to be located (POINT) or retrieved (GET direct);
requires OPTCD=BWD

Processing to proceed in forward direction
Processing to proceed in backward direction; for keyed (KEY) or addressed (ADR)
sequential (SEQ) or direct (DIR) requests; valid for POINT, GET, PUT, and
ERASE operations; establish positioning by a POINT with OPTCD-BWD or by a
GET direct with OPTCD-NSP

Asynchronous access; VSAM returns to the processing program after scheduling a
request so the program can do other processing while the request is being carried
out
Synchronous access; VSAM returns to the processing program after completing a
request

NSP With OPTCD-DIR only, VSAM is to remember its position (for subsequent
sequential access); that is, the position is not to be forgotten unless an ENDREQ
macro is issued

NUP A data record that is being retrieved will not be updated or deleted; a record that is
being stored is a new record; VSAM doesn't remember its position for direct
requests into a work area

UPD A data record that is being retrieved may be updated or delett:d; a record that is
being stored or deleted was previously retrieved with OPTCD-UPD; VSAM
remembers its position for sequential and direct requests

KEQ For GET with OPTCD-(KEY,DIR) or (KEY,SKP) and for POINT with
OPTCD==KEY, the key (full or generic) that you provide for a search argument
must equal the key or relative record number of a record

KGE For the same cases as KEQ, if the key (full or generic) that you provide for a
search argument doesn't equal that of a record, the request applies to the record
that has the next higher key

FKS A full key is provided as a search argument
GEN A generic key is provided as a search argument; give the length in the KEYLEN

operand

LOC For retrieval, VSAM leaves the data record in the I/O buffer for processing; not
valid for PUT or ERASE; valid for GET with OPTCD==UPD, but to update the
record, you must build a new version of the record in a work area and modify the
request parameter list OPTCD from LOC to MVE before issuing a PUT

MVE For retrieval, VSAM moves the data record to a work area for processing, and for
storage, VSAM moves it from the work area to the I/O buffer

Figure 7. OPTCD Options

56 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: RPL Macro

In this example, an RPL macro is used to generate a request parameter list
named PARMLIST.
ACCESS ACB

PARMLIST RPL

WORK OS

SEARCH OS

MESSAGE OS

MACRF=(SKP,OUT),
OONAME=PAYROLL

ACB=ACCESS,
AM=VSAM,
AREA=WORK,
AREALEN=125,
ARG=SEARCH,
OPTCO=(SKP,UPO)

CL125

CL8

CL128

Most OPTCD defaults are appropriate
to assumptions.

The ACB macro, named ACCESS, specifies skip-sequential retrieval for
update. Further details may be provided on a DD statement named
PAYROLL.

The RPL macro's operands are:

• ACB, which associates the request parameter list with the access-method
control block generated by ACCESS.

• AREA and AREALEN, which specify a work area, WORK, that is 125
bytes long.

• ARG, which specifies that the search argument is defined at SEARCH.
The search argument is eight bytes long.

• MSGAREA and MSGLEN, which specify a message area, MESSAGE,
that is 128 bytes long. The message area is provided for physical-error
messages.

• OPTCD, which specifies skip-sequential processing and specifies that a
retrieved record may be updated or deleted.

Because KEYLEN is not coded, a full-key search is assumed.

GENCB Macro (Generate an Access-Method
Control Block)

Before you can open a data set for processing, you must create an
access-method control block that identifies the data set to be opened,
specifies the type of processing (for example, sequential processing) to be
done, specifies basic options (for example, buffer size), and indicates whether
exit routines are to be used while the data set is being processed.

The GENCB macro is used to build an access-method control block when the
program is executed. Generation at execution has the advantage of requiring
no reassembly of a program when you adopt a new version of VSAM in
which control block formats might have changed.

Control Block Macros 57

The operands of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCS" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter for information on the return codes used to
indicate whether the GENCB request was successful.

The format of the GENCB macro used to generate an access-method control
block is:

[label] GENCB BLK=ACB
[,AM = VSAM]
[,BSTRNO= number]
[,BUFND= number]
[,BVFNI= number]
[,BVFSP= number]
[,CATALOG=YES I NO]
[,COPIES= number]
[,CRA=SCRA I VCRA]
[,DDNAME=ddname]
[,EXLST = address]
[,LENGTH=number]
[,MACRF=([ADR][,CNV][,KE~]

[,CFX I NFX]
[,DDN I DSN]
[,DFRINDF]
[,DIR][,SEQ][,SKP'l
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRMI AIX]
[,NRS I RST]
[,NSR I LSR I GSR]
[,NUB I VBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number]
[, W AREA= address]

where:

label
is one to eight characters that provides a symbolic address for the GENCB
macro.

BLK=ACB
specifies that you are generating an access-method control block.

AM = VSAM
specifies that the access method using this control block is VSAM.

58 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

BSTRNO=number
specifies the number of strings initially allocated for access to the base
cluster of a path. The default is STRNO. BSTRNO is ignored if the object
being opened is not a path. If the number specified for BSTRNO is
insufficient, VSAM will dynamically extend the number of strings as
needed for the access to the base cluster. BSTRNO can also influence
performance. The VSAM control blocks for the set of strings specified by
BSTRNO are allocated on contiguous virtual storage, whereas this is not
guaranteed for the strings allocated by dynamic extension.

BUFND=number
specifies the number of I/O buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control
interval in the data component. The minimum number you may specify is 1
plus the number specified for STRNO (if you omit STRNO, BUFND must
be at least 2, because the default for STRNO is 1). The number can be
supplied by way of the JCL DD AMP parameter as well as by way of the
macro. The default is the minimum number required. A larger number for
BUFND can improve the performance of sequential access.

BUFNI=number
specifies the number of I/O buffers VSAM is to use for transmitting index
entries between virtual and auxiliary storage for keyed access. A buffer is
the size of a control interval in the index. The minimum number is the
number specified for STRNO (if you omit STRNO, BUFNI must be at
least 1, because the default for STRNO is 1). You can supply the number
by way of the JCL DD AMP parameter as well as by way of the macro.
The default is the minimum number required. A larger number for BUFNI
can improve the performance of keyed-direct retrieval.

BUFSP=number
specifies the maximum number of bytes of virtual storage to be used for
the data and index I/O buffers. VSAM gets the storage in your program's
address space. If you specify less than the amount of space that was
specified in the BUFFERSP ACE parameter of the DEFINE command
when the data set was defined, VSAM overrides your BUFSP specification
upward to the value specified in BUFFERSP ACE. (BUFFERSP ACE, by
definition, is the least amount of virtual storage that will ever be provided
for I/O buffers.) You can supply BUFSP by way of the JCL DD AMP
parameter as well as by way of the macro. If you don't specify BUFSP in
either place, the amount of storage used for buffer allocation is the largest
of:

• the amount specified in the catalog (BUFFERSPACE),

• the amount determined from BUFND and BUFNI, or

• the minimum storage required to process the data set with its specified
processing options

If BUFSP is specified and the amount is less than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount
called for by BUFND and BUFNI, the extra space is allocated as follows:

• When MACRF indicates direct access only, additional index buffers are
allocated.

Control Block Macros 59

• When MACRF indicates sequential access, one additional index buffer
and as many data buffers as possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and
BUFNI, the number of data and index buffers is decreased as follows:

• When MACRF indicates direct access only, the number of data buffers
is decreased to not less than the minimum number. Then if required, the
number of index buffers is decreased until the amount called for by
BUFND and BUFNI complies with the BUFSP amount.

• When MACRF indicates sequential access, the number of index buffers
is decreased to not less than 1 more than the minimum number. Then, if
required, the number of data buffers is decreased to not less than the
minimum number. If still required, 1 more is subtracted from the
number of index buffers.

• Neither the number of data buffers nor the number of index buffers is
decreased to less than the minimum number.

If the index doesn't exist or isn't being opened, only BUFND, and not
BUFNI, enters into these calculations.

CATALOG=YESINO
specifies whether a catalog is being opened as a catalog (YES) or as a data
set (NO). When NO is coded (or taken as the default), you can process the
catalog with request macros. When YES is coded, a catalog must be
processed with an SVC designed for that purpose.

COPIES =n umber
specifies the number of copies of the access-method control block VSAM
is to generate. All of the copies are identical. You can use MODCB to
tailor each one for the data set and processing you want for it. MODCB is
described in this chapter.

CRA=SCRAIUCRA
specifies that a catalog recovery area is to be opened and that the control
blocks are to be built in either system storage (SCRA) or user storage
(UCRA). If you specify SCRA and issue record management requests, you
must operate in key O. If you specify UCRA, you must be authorized by
the system and you must supply the master password of the master catalog.

DDNAME=ddname
is one to eight characters that identifies the data set that you want to
process by specifying the JCL DD statement for the data set. You may
omit DDNAME and provide it by way of the MODCB macro before
opening the data set. MODCB is described later in this chapter.

EXI.JST=address
specifies the address of a list of addresses of exit routines that you are
providing. The list is established by the EXLST or GENCB macro. If you
use the EXLST macro, you can specify its label here as the address of the
exit list. If you use GENCB, you can specify the address returned by
GENCB in register 1. Omitting this operand indicates that you have no
exit routines. Exit routines are described in the chapter "User-Written Exit
Routines. "

LENGTH=number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the access-method control block(s). (See the WARBA
operand.)

60 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

MACRF=([ADR][,CNV][,KEY]
[,CFX I NFX] -
[,DDNIDSN]
[,DFRINDF]
[,DIR][,SEQ][,SKP]
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRMI AIX]
[,NRSI RST]
[,NSR I LSR I GSR]
[,NUB I UBF])

specifies the kind(s) of processing you will do with the data set. The
options must be meaningful for the data set. For example, if you specify
keyed access for an entry-sequenced data set, you cannot open the data
set. You must specify all of the types of access you're going to use,
whether you use them concurrently or by switching from one to the other.
The options are shown earlier in Figure 6; they are arranged in groups, and
each group has a default value (indicated by underlining). You may specify
options in any order. You may specify both ADR and KEY to process a
key-sequenced data set. You may specify both DIR and SEQ; with keyed
access, you may specify SKP as well. If you specify OUT and want simply
to retrieve some records as well as update, delete, or insert others, you
need not also specify IN.

MAREA=address
specifies the address of an optional OPEN / CLOSE/TCLOSE message
area.

MLEN =n umber
specifies the length of an optional OPEN / CLOSE/TCLOSE message
area.

PASSWD=address
specifies the address of a field that contains the highest-level password
required for the type(s) of access indicated by the MACRF operand. The
first byte of the field contains the length (in binary) of the password
(maximum of 8 bytes). Zero indicates that no password is supplied. If the
data set is password-protected and you don't supply a required password in
the access-method control block, VSAM gives the console operator the
opportunity to supply it when you open the data set.

STRNO=number
specifies the number of requests requiring concurrent data-set positioning
VSAM is to be prepared to handle. A request is defined by a given request
parameter list or chain of request parameter lists. See "RPL Macro
(Generate a Request Parameter List)" and "GENCB Macro (Generate a
Request Parameter List)" in this chapter for information on request
parameter lists.

W AREA =address
specifies the address of an area in which the access-method control
block(s) is to be generated. (Otherwise VSAM obtains virtual-storage
space for the area and returns its address to you in register 1 and its length
in register 0.) The area must begin on a fullword boundary. This operand is
paired with the LENGTH operand, which must be given if you specify an
area address.

Control Block Macros 61

If you did not specify an area in which the access-method (:ontrol block was
to be generated, VSAM returns to your program the address of the area
containing the control block(s) in register 1 and the length of the area in
register O. You can find out the length of each control block by dividing the
length of the area by the number of copies. The address of each control block
can then be calculated by this offset from the address in register 1. You can
find the length of an access-method control block with the SHOWCB macro.
SHOWCB is described later in this chapter.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WARBA and LENGTH parameters) for them enables you to
address all of them with one base register and to avoid repetitive requests for
virtual storage.

Example: GENCB Macro (Generate an Access-Method Control Block)

In this example, a GENCB macro is used to identify a data set to be opened
and to specify the types of processing to be performed. Thf: access-method
control block generated by this example is built when the program is
executed.
GENCB GENCB

ST

ACBADDR DS

FIELD DC

BLK=ACB,AM=VSAM,
BUFND=4,BUFNI=3,
BUFSP=19456,
DDNAME=DATASETS,
EXLST=EXITS,
MACRF=(KEY,DIR,
SEQ, OUT),
PASSWD=FIELD,
STRNO=2

1,ACBADDR

F

FL 1 I 6 I, C I CHANGE'

The GENCB macro's operands are:

1 copy generated; VSAM gets the
storage for it, because the W AREA and
LENGTH operands have been omitted.

Save the address of the access-method
control block.

The address of th(: access-method
control block is saved in ACBADDR.

CHANGE, the password, has 6
characters.

• BUFND, BUFNI, and BUFSP, which specify four I/O buffers for data;
three I/O buffers for index entries; and 19,456 bytes of buffer space,
enough space to accommodate control intervals of data that are 4096 bytes
and of index entries that are 1024 bytes.

• DDNAME, which specifies that this access-method control block is
associated with a DD statement named DAT ASETS.

• EXLST, which specifies that the exit list associated with this
access-method control block is named EXITS.

• MACRF, which specifies keyed direct and keyed sequential processing for
both insertion and update.

• P ASSWD, which specifies the location, FIELD, of the password provided.

• STRNO, which specifies that two requests will require concurrent
positioning.

62 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

GENCB Macro (Generate an Exit List)
The GENCB macro can be used to generate an exit list when the program is
executed. The GENCB macro is coordinated with the EXLST operand of the
ACB or GENCB macro used to generate an access-method control block to
make use of the exit list. One or more access-method control blocks may use
the same exit list-the exit routines indicated by the list would do all the exit
processing for the data sets identified by the control blocks.

The operands of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter for information on return codes used to
indicate whether the GENCB request was successful.

The format of the GENCB macro used to generate an exit list is:

[label] GENCB BLK=EXLST
[,AM=VSAM]
[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,AI N][,L])]
[,LERAD=(address [,~ I N][,L])]
[,SYNAD=(address [,! I N][,L])]
[,COPIES= number]
[,LENGTH= number]
[, W AREA = address]

where:

label
is one to eight characters that provides a symbolic address for the GENCB
macro.

BLK=EXLST
specifies that you are generating an exit list.

AM = VSAM
specifies that the access method using this control block is VSAM.

[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,AI N][,L])]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,'! I N][,L])]

specify that you are supplying a routine for the exit named. If none of
these is specified, VSAM generates an exit list with inactive entries for all
of the exits. The exits and values that can be specified for them are:

EODAD
specifies that an exit is provided for special processing when the end of
a data set is reached by sequential access.

JRNAD
specifies that an exit is provided for journalizing as you process data
records.

Control Block Macros 63

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

address
is the address of a user-supplied exit routine. The address must
immediately follow the equal sign.

AIN

L

specifies that the exit routine is active (A) or not active (N). VSAM
does not enter a routine whose exit is marked not active.

specifies that the address is the address of an eight-byte field that
contains the name of an exit routine in a partitioned data set that is
identified by a JOBLffi or STEPLIB DD statement or in
SYS I.LINKLffi. VSAM is to load the exit routine for exit processing. If
L is omitted, the address gives the entry point of the exit routine in
virtual storage. L may precede or follow the A or N specification.

COPIES =number
specifies the number of copies of the exit list you want generated. GENCB
generates as many copies as you specify (default is 1) when your program
is executed. All of the copies are the same. You can use MODCB to
change some or all of the addresses in a list. MODCB is described later in
this chapter.

LENGTH=number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the exit list(s). (See the W AREA operand.)

W AREA =address
specifies the address of an area in which the exit list(s) is to be generated.
(Otherwise VSAM obtains virtual-storage space for the area and returns its
address in register 1 and its length in register 0.) The an,a must begin on a
fullword boundary. This operand is paired with the LENGTH operand,
which must be given if you specify an area address.

If you do not specify an area in which the exit list is to be generated, VSAM
returns to your program the address of the area in which th.e exit list(s) is
generated in register 1, and the length of the area in register O. You can find
out the length of each exit list by dividing the length of the area by the
number of copies. The address of each exit list can then be calculated by this
offset from the address in register 1. You can find the length of an exit list
with the SHOWCB macro, described under "SHOWCB Macro (Display an
Exit List)" later in this chapter.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WAREA and LENGTH) for them enables you to address all of them
with one base register and to avoid repetitive requests for virtual storage.

64 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: GENeB Macro (Generate an Exit List)

In this example, a GENCB macro is used to generate an exit list when the
program is executed.
EXITS GENCB BLK=EXLST,

EOD

LOGICAL

ERROR

ST

DC

EXLSTADR DS

EODAD=(EOD, N),
LERAD=LOGICAL,
SYNAD=(ERROR,
A,L)

1,EXLSTADR

C'PHYSICAL'

F

The GENCB macro's operands are:

Address of the exit list is saved.

EODAD routine.

LERAD routine.

Name of the SYNAD module.

Save area for exit-list address.

• BLK, which specifies that an exit list is to be generated.

• EODAD, which specifies that the end-of-data routine is located at EOD
and is not active.

• LERAD, which specifies that the logical-error routine is located at
LOGICAL; because neither A nor N is specified, the LERAD routine is
marked active by default.

• SYNAD, which specifies that the physical-error routine's name is located
at ERROR.

Because no area was specified in which the exit list was to be generated,
VSAM obtained virtual storage for the exit list and returned the address in
register 1. Immediately after the GENCB macro, the address of the exit list,
contained in register 1, is moved to EXLST ADR. EXLST ADR may be
specified in a GENCB macro that generates an access-method control block
or in a MODCB, SHOWCB, or TESTCB macro that modifies, displays, or
tests fields in an exit list.

GENeB Macro (Generate a Request Parameter List)
After you have connected your program to the data set, you can issue
requests for access to it. A request parameter list defines a request. Each
request macro (GET, PUT, ERASE, POINT, CHECK, and ENDREQ) gives
the address of a request parameter list that defines the request.

The GENCB macro can be used to generate the request parameter list when
the program is executed. Using the GENCB macro gives you independence
from possible changes in the format of the request parameter list in future
releases of VSAM. It also gives you the ability to generate many copies of the
list.

If you use GENCB to generate request parameter lists as you need them, and
later free the space, you should first issue the ENDREQ macro for each
request parameter list to free the VSAM resources used for keeping track of
positions in the data set.

The operands of the GENCB macro to generate a request parameter list are
optional in some cases, but required in others. It is not necessary to omit
operands that are not required for a request; they are ignored. Thus, for

Control Block Macros 65

example, if you switch from direct to sequential retrieval with a request
parameter list, you don't have to zero out the address of the field containing
the search argument (ARG==address).

The operands of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTClB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter for information on the return codes used to
indicate whether the GENCB request was successful.

The format of the GENCB macro used to generate a request parameter list is:

[label] GENCB BLK==RPL
[,ACB== address]
[,AM== VSAM]
[,AREA== address]
[,AREALEN == number]
[,ARG== address]
[,COPIES== number]
[,ECB == address]
[,KEYLEN == number]
[,LENGTH== number]
[,MSGAREA== address]
[,MSGLEN == number]
[,NXTRPL== address]
[,OPfCD==([ADR I CNV I KEli:]

[,DIR I SEQ I SKP]
[,ARO I LRD]
[,FWD I BWD]
[,ASYI SYN]
[,NSP I NUP I UPI)]
[,KEQIKGE]
[,RSI GEN]
[,LOC I MVE])]

[,RECLEN == number]
[,TRANSID== number]
[, W AREA== address]

where:

label
is one to eight characters that provides a symbolic address for the GENCB
macro. See the discussion of the COPIES operand for addressing lists
generated by GENCB.

BLK==RPL
specifies that you are generating a request parameter list.

66 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

ACB=address
specifies the address of the access-method control block that identifies the
data set to which access will be requested. If you omit this operand, you
must issue MODCB to specify the address of the access-method control
block before you issue a request. MODCB is described later in this
chapter.

IAM=VSAM
specifies that the access method using this control block is VSAM.

AREA =address
specifies the address of a work area to and from which VSAM moves a
data record if you request it to do so (with the RPL operand
OPTCD=MVE). If you request to process records in the I/O buffer
(OPTCD=LOC), VSAM puts into this work area the address of a data
record within the I/O buffer.

AREALEN =number
specifies the length, in bytes, of the work area whose address is specified
by the AREA operand. Its minimum for OPTCD=MVE is the size of a
data record (of the largest data record, for a data set with records of
variable length). For OPTCD=LOC the area should be 4 bytes to contain
the address of a data record within the I/O buffer.

ARG=address
specifies th~ address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For keyed access
(OPTCD=KEY), the search argument is a full or generic key; for
addressed access (OPTCD=ADR), it is an RBA. If you specify a generic
key (OPTCD=GEN), you must also specify in the KEYLEN operand how
many of the bytes of the full. key you are using for the generic key.

COPIES=number
specifies the number of copies of the request parameter list you want
generated. GENCB generates as many copies as you specify (default is 1)
when your program is executed.

The copies of a request parameter list can be used to:

• Chain lists together to gain access to many records with one request.

• Define many requests to gain access to many parts of a data set
concurrently.

All of the copies generated are identical; you have to use MODCB to tailor
them to specific requests. MODCB is described in this chapter.

ECB=address
specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard OS/VS completion codes, which are described in OS/VSl
System Data Areas, and OS/VS2 Data Areas). This operand is always
optional.

KEYLEN =number
specifies the length, in bytes, of the generic key (OPTCD-GEN) you are
using for a search argument (given in the field addressed by the ARG
operand). This operand is required with a search argument that is a generic
key. The number can be 1 through 255. For full-key searches, VSAM
knows the key length, which is taken from the catalog definition of the
data set when you open the data set.

Control Block Macros 67

LENGTH= number
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the request parameter list(s). (See the WARBA
operand.) You can find out how long a request parameter list is with the
SHOWCB macro, described later in this chapter.

MSGAREA=address
specifies the address of an area that you are supplying for VSAM to send
you a message in case of a physical error. The format of a physical-error
message is given under "Physical Errors" in the chapter "Request
Macros." This operand is always optional.

MSGLEN =number
specifies the size, in bytes, of the message area indicated in the
MSGAREA operand. The size of a message is 128 bytes; if you provide
less than 128 bytes, no message is returned to your program. This operand
is required when MSGAREA is coded.

NXTRPL=address
specifies the address of the next request parameter list in a chain. Omit this
operand from the macro that generates the only or last list in the chain.
When you issue a request that is defined by a chain of request parameter
lists, indicate in the request macro the address of the first parameter list in
the chain .. A single request macro can be defined by multiple request
parameter lists, such that a GET, for example, can cause VSAM to retrieve
two or more records.

OPTCD=([ADR I CNV I KEY]
[,DIR I SEQ I SKP]
[,ARD I LRD]
[,FWD I BWO]
[,ASYI SYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKSI GEN]
[,LOC I MVE])

specifies the options that govern the request defined by the request
parameter list. Each group of options has a default; options are shown
earlier in Figure 7 with defaults underlined. Only one option from each
group is effective for a request. Some requests do not require an option
from all of the groups to be specified. The groups that aren't required are
ignored; thus, you can use the same request parameter list for a
combination of requests (GET, PUT, POINT, for example) without
zeroing out the inapplicable options each time you go from one request to
another.

RECLEN =number
specifies the length, in bytes, of a data record being stored. With
fixed-length records, set it and forget it. This operand is required for PUT
requests. For GET requests, VSAM puts the length of the record retrieved
in this field in the request parameter list. It will be there if you update and
store the record.

TRANSID= number
specifies a number that relates modified buffers in a buffer pool. Used in
shared resource applications and described in OS / VS Virtual Storage
Access Method (VSAM) Options for Advanced Applications.

68 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

W AREA =address
specifies the address of an area in which the request parameter list(s) is to
be generated. (Otherwise VSAM obtains virtual-storage space for the area
and returns its address to you in register 1 and its length in register 0.) The
area must begin on a fullword boundary. This operand is paired with the
LENGTH operand, which must be given if you specify an area address.

If you do not specify an area in which the request parameter list is to be
generated, VSAM returns to your program the address of the area in which
the request parameter list(s) was generated in register 1, and the length of the
area in register O. You can find the length of each list by dividing the length
of the area by the number of copies. You can then calculate the address of
each list by using the length of each list as an offset.

If you are generating control blocks by issuing several GENCBs, specifying
an area (WARBA and LENGTH parameters) for them enables you to
address all of them with one base register and to avoid repetitive requests for
virtual storage.

You can use the ECB to determine that an asynchronous request is complete
before issuing a CHECK macro. (If you issue a CHECK before a request is
complete, you give up control and must wait for completion.) You can also
test for completion with the TESTCB I/O=COMPLETE operand.

When GENCB is used to build a chain of request parameter lists, the request
parameter lists may be chained using only GENCB macros or using GENCB
and MODCB macros together. When only GENCB is used, the request
parameter lists are created in reverse order, as follows:

SECOND
LR
FIRST

GENCB BLK=RPL
2,1
GENCB BLK=RPL,NXTRPL=(2)

SECOND GENCB creates the second request parameter list, which makes its
address available for the first request parameter list. The address of the
request parameter list is returned in register 1 and is loaded into register 2.
FIRST GENCB creates the first request parameter list and supplies the
address of the next request parameter list using register notation. GENCB
and MODCB macros may be used together to create a chain of request
parameter lists, as follows:

GENCB BLK=RPL,COPIES=2
LR 2,0
SRL 2,1
LR 3,1
LA 4,0(2,3)
MODCB RPL=(3),NXTRPL=(4)

The GENCB macro creates two request parameter lists. The length of the
parameter lists is returned in register 0 and loaded into register 2. The address
of the area in which the lists were created (and, therefore, the address of the
first one) is returned in register 1 and loaded into register 3. The SRL
statement divides the total length of the area (register 2) by 2. The LA
statement loads the address of the second request parameter list into register
4. The MODCB macro modifies the first request parameter list (register 3) by
supplying the address of the second request parameter list (register 4) in the
NXTRPL operand.

Each request parameter list in a chain should have the same OPTCD options.
Having different options may cause logical errors. You can't chain request
parameter lists for updating or deleting records--only for retrieving records
or storing new records. You can't process records in the I/O buffer with

Control Block Macros 69

chained request parameter lists. (OPTCD=UPD and LOC are invalid for a
chained request parameter list.)

With chained request parameter lists, a POINT, a sequential or
skip-sequential GET, or a direct GET with positioning requested
(OPTCD=NSP) causes VSAM to position itself at the record following the
record identified by the last request parameter list in the chain.

Example: GENeB Macro (Generate a Request Parameter List)

In this example, a GENCB macro is used to generate a request parameter list.
ACCESS GENCB BLK=RPL,

ACCESS ACB

WORK OS

SEARCH OS

MESSAGE OS

ACB=ACCESS,
AM=VSAM,
AREA=WORK,
AREALEN=125,
ARG=SEARCH,
MSGAREA=MESSAGE,
MSGLEN=128,
OPTCO=(SKP,UPO)

MACRF=(SKP,OUT)

CL125

CL8

CL128

The GENCB macro's operands are:

• BLK, which specifies that a request parameter list is to be generated.

• ACB, which specifies that the request parameter list is associated with a
data set and processing options identified by ACCESS.

• AREA and AREALEN, which specify a 125-byte work area to be used for
processing records.

• ARG, which specifies the address of the search argument.

• MSGAREA and MSGLEN, which specify a 128-byte area to be used for
physical-error messages.

70 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

MODCB Macro (Modify an Access-Method Control
Block)

The MODCB macro can be used to modify the contents of an access-method
control block. By using MODCB, you don't have to know the format of the
control block.

MODCB allows you to tailor access-method control blocks generated with
the GENCB macro for specific uses.

The operands of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter for information on the return codes used to
indicate whether the MODCB request was successful.

The format of the MODCB macro used to modify an access-method control
block is:

[label] MODCB ACB=address
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI= number]
[,BVFSP= number]
[,CATALOG=YES I NO]
[,CRA=SCRA I VCRA]
[,DDNAME=ddname]
[,EXLST = address]
[,MACRF=([ADR][,CNV][,KEY]

[,CFXI NFX]
[,DDNI DSN]
[,DFR I NDF]
[,DIR][,SEQ] [,SKP]
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRM I AIX]
[,NRS I RST]
[,NSR I LSR I GSR]
[,NUB I UHF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number]

where:

label
is one to eight characters that provides a symbolic address for the MODCB
macro.

Control Block Macros 71

ACB=address
specifies the address of the access-method control block to be modified.
The data set identified by the access-method control block must not be
opened. A request to modify the access-method control block of an open
data set will fail.

The remaining operands represent operands of the ACB macro that can be
modified. The value specified replaces the value, if any, presently in the
access-method control block. There are no defaults. See "ACB Macro
(Generate an Access-Method Control Block)" earlier in this chapter for an
explanation of these operands.

If MODCB is used to modify a MACRF option, other optilons are unaffected,
except when they are inconsistent. For example, if you specify
MACRF=ADR in the MODCB and MACRF=KEY is already indicated in
the control block, both ADR and KEY will now be indicated. But if you
specify MACRF=UBF in the MODCB and NUB is indicated, only UBF will
now be indicated.

Ilf MODCB is used to change the address of an ACB, you must first issue an
ENDREQ macro.

Example: MODCB Macro (Modify an Access-Method Control Block)

In this example, a MODCB macro is used to modify the name of the exit list
in an access-method control block.

MODCB ACB=BLOCK,
EXLST=EGRESS

BLOCK was genc~rated at assembly.

MODCD Macro (Modify an Exit list)
The MODCB macro can be used to modify an exit list.

The operands of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, :IlS S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCR" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter for information on the retUln codes used to
indicate whether the MODCB request was successful.

The format of the MODCB macro used to modify an exit list is:

[label] MOOCH EXLST = address
[,EODAD=([address][,A I N][,ll])]
[,JRNAD=([address][,A I N][,L])]
[,LERAD=([address][,A I N][,L»]
[,SYNAD=([address][,A I N][,L])]

where:

label
is one to eight characters that provides a symbolic address for the MODCB
macro.

72 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

EXLST ==address
specifies the address of the exit list to be modified. You can modify an exit
list at any time-that is, before or after opening the data set(s) for which
the list indicates exit routines. You cannot add an entry to an exit list: if
you generate a list without an EODAD exit, for instance, you cannot later
modify the list to contain one.

The remaining operands represent operands of the EXLST macro that can be
modified or added to an exit list. See "EXLST Macro (Generate an Exit
List)" earlier in this chapter for an explanation of these operands.

Example: MODCR Macro (Modify an Exit List)

In this example, a MODCB macro is used to activate an exit in an exit list.

EOD

MODCB EXLST=(*,
EXLSTADR) ,
EODAD=(EOD,L,A)

DC

EXLSTADR DS

C'ENDUP'

F

The MODCB macro's operands are:

Indirect notation is used to specify the
address of the exit list, which was
generated at execution.

When the exit list was generated, its
address was saved here.

• EXLST, which specifies that the address of the exit list to be modified is
located at EXLST ADR.

• EODAD, which specifies that the entry for the end-of-data routine is to be
marked active in the exit list whose address resides at EXLST ADR. The
name of the end-of-data routine, ENDUP, is located at EOD.

MODCD Macro (Modify a Request Parameter List)
The MODCB macro can be used to modify a request param(;;ter list.

The operands of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter for information on the return codes used to
indicate whether the MODCB request was successful. Typical modifications
to a request parameter list are to change the indication of length of a record
(RECLEN) when you're processing a data set with variable-length records
and to change the type of request (OPTCD), such as from direct to sequential
access or from full-key search argument to generic-key search argument.

Control Block Macros 73

The format of a MODCB macro used to modify a request parameter list is:

[label] MODCR

where:

label

RPL= address
[,ACR= address]
[,AREA= address]
[,AREALEN = number]
[,ARG= address]
[,ECR= address]
[,KEYLEN = number]
[,MSGAREA= address]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPTCD=([ADR I CNV I KEY]I

[,DIR I SEQ I SKP]
[,ARO I LRD]
[,FWD I RWD]
[,ASYI SYN]
[,NSP I NUP I UPD]
[,KEQI KGE]
[,FK.S I GEN]
[,LOC I MVE])]

[,RECLEN = number]
[,TRANSID= number]

is one to eight characters that provides a symbolic address for the MODCB
macro.

RPL=address
specifies the address of the request parameter list to be modified. You may
not modify an active request parameter list; that is, one that defines a
request that has been issued but not completed. To modify such a request
parameter list, you must first issue a CHECK or an ENDREQ macro.

The remaining operands represent operands of the RPL macro that can be
modified. The value specified replaces the value, if any, presently in the
request parameter list. There are no defaults. See "RPL Ma.cro (Generate a
Request Parameter List)" earlier in this chapter for an explanation of these
operands.

If MODCB is used to modify an OPTCD option within a group of options,
the current option for that group is changed, because only one option in a
group is effective at a time.

Example: MODCR Macro (Modify a Request Parameter List)

In this example, a MODCB macro is used to modify the record-length field in
a request parameter list.

L 3, length
MODCB RPL=(2),

RECLEN=(3)

74 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Load the new record length.
Register 2 contains the address of the
request parameter list. Register 3
contains the record length.

The MODCB macro's operands are:

• RPL, which specifies that register 2 contains the address of the request
parameter list to be modified.

• RECLEN, which specifies that the record-length field is to be modified.
The contents of register 3 will replace any current value in the RECLEN
field.

SHOWCB Macro (Display an Access-Method
Control Block)

The SHOWCB macro can be used to cause VSAM to move the contents of
various fields in an access-method control block into your work area. You
might want to learn the reason for an error or to collect information about a
data set in order to alter your program logic or print a message or report as a
result of the examination.

The operands of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter for information on the return codes used to
indicate whether the SHOWCB request was successful.

The format of the SHOWCB macro used to display fields in an access-method
control block is:
~----~----------~--------------'---------------------

[label] SHOWCB

where:

label

ACB= address
,AREA= address
,LENGTH= number
[,OBJECT=DATA I INDEX]
,FIELDS = ([ACBLEN][,AVSPAC][,BFRFND]

[,BSTRNO][,BUFND][,BUFNI]
[,BUFNO][,BUFRDS][,BUFSP]
[,CINV] [,DDNAME] [,ENDRBA]
[,ERROR] [,EXLST] [,FS]
[,KEYLEN][,LRECL][,MAREA]
[,MLEN] [,NCIS] [,NDELR] [,NEXCP]
[,~XT][,NlNSR][,NIXL][,NLOGR]

[,NRETR] [,NSSS] [,NUIW]
[,NUPDR][,PASSWD][,RKP]
[,STMST][,STRMAX][,STRNO]
[,UIW])

is one to eight characters that provides a symbolic address for the
SHOWCB macro.

Control Block Macros 75

ACB=address
specifies the address of the access-method control block whose fields are to
be displayed. If you used the ACB macro with a label, you can specify the
label here. The ACB operand is optional when you wish to display the
length of an access-method control block (FIELDS=ACBLEN). (All
access-method control blocks have the same length, so you need not
specify the address of a particular one.)

AREA =address
specifies the address of a work area that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS operand. The
contents of the fields are displayed in the order you specify them. The area
must begin on a fullword boundary.

LENGTH =n umber
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. See the FIELDS operand for the
fields that can be displayed and for the length of each field. If the area is
not large enough for all of the fields, VSAM doesn't disp[ay any of their
contents and returns an error code indicating it (see "Return Codes from
the GENCB, MODCB, SHOWCB, and TESTCB Macros" earlier in this
chapter).

OBJECT=DATAI~EX
specifies whether fields are to be displayed for the data or for the index.

FIELDS=([ACBLEN] [,AVSPAC][,BFRFND][,BSTRNO] [,BUFND]
[,BUFNI][,BUFNO][,BUFRDS][,BUFSP]
[,CINV] [,DDNAME][,ENDRBA]
[,ERROR][,EXLST] [,FS]
[,KEYLEN] [,LRECL] [,MAREA] [,MLEN] [,NCIS]
[,NDELR][,NEXCP][,NEXT]
[,NINSR][,NIXL][,NLOGR]
[,NRETR] [,NSSS] [,NUIW] [,NUPDR]
[,PASSWD][,RKP][,STMST] [,STRMAX]
[,STRNO][,UIW])

specifies the fields whose contents are to be displayed. Some of the fields
can be displayed at any time; others only after a data set is opened. The
ones that can be displayed only after a data set is opened can, in the case
of a key-sequenced data set that has been opened for keyed access, pertain
either to the data or to the index. See the OBJECT operand. Figure 8
explains the keywords you can code in the FIELDS operand for an
access-method control block.

76 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Key- FuD-
word words Description of the Field

The following fields can be displayed at any time

ACBLEN

BSTRNO

BUFND

BUFNI

BUFSP

DDNAME

ERROR

EXLST

MAREA

MLEN

PASSWD

STRMAX

STRNO

2

Length of an access-method control block (displaying the length of an
access-method control block gives your program independence from
changes in the length that may occur from release to release of
VSAM)

Number of strings initially allocated for access to the base cluster by a
path

Number of I/O buffers to be used for data, as specified in the ACB
(orGENCB)

Number of I/O buffers to be used for index entries, as specified in the
ACB (or GENCB)

Amount of space specified in the ACB (or GENCB) for I/O buffers

Name of the DD statement that identifies the data set

The code returned by VSAM after the opening or closing of the data
set (see "OPEN Macro" and "CLOSE Macro")

Address of the exit list, if any; 0 if none

Address of the message area, if any; 0 if none

Length of the message area, if any; 0 if none

Address of the field containing the password; the first byte of the field
contains the length of the password (in binary)

Maximum number of strings concurrently active

Number of requests for which VSAM is prepared to remember its
position in the data set

Figure 8 (Part 1 of 2). FIELDS Operand Keywords for an Access-Method Control Block

Control Block Macros 77

Key- FuI-
word words Description of the Field

The following fields can be displayed only after the data set is opened

AVSPAC

BFRFND

BUFNO

BUFROS

CINV

ENDRBA

FS

KEYLEN

LRECL

NelS

NDELR

NEXCP

NEXT

NINSR

NIXL

NLOOR

NRETR

NSSS

NUIW

NUPDR

RKP

STMST 2

UIW

Amount of available space in the data component or index
component, in bytes

Number of successful looks-aside 1

Number of I/O buffers actually in use for the d:ata component or
index component

Number of buffer reads1

Control-interval size for the data component or index component

Ending RBA of the space used by the data component or index
component; not the RBA of any record in the data set, but of the last
used byte in the data set

Percent of free control intervals per control area in the data
component (0 for OBJECT-INDEX)

Length of the key of reference of the key field of data records in the
data component (whether OBJECT-DATA or INDEX)

Length of data records in the data component (maximum length for
variable-length data records) or of index record:s in the index
component (control-interval length minus 7)

Number of control intervals that have been split in the data
component (0 for OBJECT-INDEX)

Number of records that have been deleted from the data component
(0 for OBJECT-INDEX)

Number of EXCP macros that VSAM has issued for access to the data
component or index component since it was opened

Number of extents now allocated to the data component or index
component (the maximum that can be allocated is 123)

Number of records that have been inserted into (or added to) the data
component (0 for OBJECT-INDEX)

Number of levels in the index of the data component (0 for
OBJECT-INDEX)

Number of data records in the data component i(O for
OBJECT-INDEX)

Number of records that have ever been retrieved from the data
component (0 for OBJECT-INDEX)

Number of control areas that have been split in the data component
(0 for OBJECT-INDEX)

Number of writes not initiated by user1

Number of records in the data component that have ever been
updated (0 for OBJECT-INDEX)

Displacement of the key of reference of the key field from the
beginning of a data record (whether OBJECT-DATA or INDEX)

System time stamp, which gives the time and day of the last time the
data component or index component was closed, with bit 51 (counting
from 0 at the left) equivalent to one microsecond and bits 52 through
63 unused

Number of user-initiated writes1

IDescribed in OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications

Figure 8 (Part 2 of 2). FIELDS Operand Keywords for an Access-Method Control Block

78 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: SHOWCD Macro (Display an Access-Method Control Dlock)

In this example, a SHOWCB macro is used to display fields in an
access-method control block. The fields displayed (KEYLEN, LRECL, and
RKP) permit the program to modify variables to process anyone of a number
of data sets that have different-sized key fields and records and different
placements of key field in a record.

SHOWCB ACB=CONTROL,
AREA=DISPLAY,
FIELDS=(KEYLEN,
LRECL, RKP) ,
LENGTH=12

DISPLAY DS OF
KEY LEN DS F

LRECL DS F

RKP DS F

The SHOWCB macro's operands are:

Align on fullword boundary.

• ACB, which specifies the address of the access-method control block to be
displayed.

• AREA, which specifies that the area to be used to display access-method
control block fields is to begin on a fullword boundary.

• FIELDS, which specifies that the KEYLEN, LRECL, and RKP fields are
to be displayed.

• LENGTH, which specifies that the length of the area to be used for the
display is 12 bytes, enough to accommodate the specified fields.

This display enables the program to set up its variables for the particular data
set it has opened.

Example: SHOWCD Macro (Display an Exit List Address)

In this example, a SHOWCB macro is used to get the address of an exit list by
displaying the address in an access-method control block that uses the exit
list.

SHOWCB ACB=address,
AREA=address,
FIELDS=EXLST,
LENGTH=4

The SHOWCB macro's operands are:

• ACB, which specifies the address of an access-method control block from
which the address of an exit list is to be displayed.

• AREA and LENGTH, which specify an area and length, four bytes, to be
used to display the address of the exit list.

• FIELDS, which specifies that the EXLST field in an access-method control
block is to be displayed.

Control Block Macros 79

SHoweD Macro (Display an Exit List)
The SHOWCB macro can be used to display fields in an exjt list.

The operands of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCD, and TESTCB
Macros" earlier in this chapter for information on the return codes used to
indicate whether the SHOWCB request was successful.

The format of the SHOWCB macro used to display fields ill an exit list is:

[label] SHOWeD [EXLST=address,]
AREA= address
,LENGm= number
,FIELDS = ([EODAD](,EXLLEN][,JRNAD]

[,LERAD][,SYNAD])

where:

label
is one to eight characters that provides a symbolic address for the
SHOWCB macro.

AREA =address
specifies the address of a work area that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS operand. The
contents of the fields are displayed in the order you specify them. The area
must begin on a fullword boundary.

LENGm=number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. Each exit-list field requires a
fu1lword. If the area is not large enough for all of the fields, VSAM doesn't
display any of their contents and returns an error code indicating it (see
"Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter).

[EXLST=address]
specifies the address of the exit list whose fields are to be displayed. If you
used the EXLST macro with a label, you can specify the label here. The
EXLST operand is optional only when you wish to display the length that
an exit list can have (see FIELDS=EXLLEN below).

FIELDS = ([EODAD] [,EXLLEN] [,JRNAD]
[,LERAD][,SYNAD])

specifies the values to be displayed, as follows:

EODAD
specifies that the address of the end-of-data-set routinie is to be
displayed.

EXLLEN
specifies that the length of the exit list indicated in the EXLST operand
or if EXLST is omitted, the maximum length an exit ltmgth can have,
is to be displayed.

80 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

JRNAD
specifies that the address of the joumaling routine is to be displayed.

LERAD
specifies that th~ address of the logical-error analysis routine is to be
displayed.

SYNAD
specifies that the address of the physical-error analysis routine is to be
displayed.

You can use SHOWCB to display the address of an exit routine only if the
exit routine is indicated in the exit list. If it isn't, the SHOWCB request will
fail. Use TESTCB to test whether an entry for a given exit type is present in
the exit list and to find out whether the exit is active and whether the routine
is to be loaded.

Example: SHOWeD Macro (Display the Length of an Exit List)

In this example, a SHOWCB macro is used to display the maximum length of
an exit list. The maximum length of an exit list is subsequently used in a
GENCB macro to get virtual storage for an exit list.

SHOWCB AREA=LENGTH,
FIELDS=EXLLEN,
LENGTH=4

L o ,LENGTH

GETMAIN R,LV=(O)

LR 2,1

GENCB BLK=EXLST,
LENGTH=(*,
LENGTH) ,
WAREA=(2)

LENGTH DS F

The SHOWCB macro's operands are:

Amount of storage for GETMAIN.

Address of storage for GENCB.

Indirect notation for length of work
area.

Contains the length of GENCB's work
area.

• AREA and LENGTH, which specify the area, which begins on a fulIword
boundary, and its length, four bytes, that is to be used for the display.

• FffiLDS, which specifies that the maximum length of an exit list is to be
displayed. Because only EXLLEN is specified, the EXLST operand is
omitted.

The GENCB macro specifies a work area in which an exit list is to be
generated. The length of the work area is located at LENGTH, where the
maximum length of an exit list was put as a result of the SHOWCB macro.

Control Block Macros 81

SHoweD Macro (Display a Request Parameter list)
The SHOWCB macro can be used to display fields in a request parameter list.

The operands of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appen.dix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution. See "Return
Codes from the GENCB, MODCB, SHOWCB, and TESTCB Macros" earlier
in this chapter for information on the return codes used to indicate whether
the SHOWCB request was successful.

The format of the SHOWCB macro used to display fields in a request
parameter list is:

[label]

where:

label

SHOWCB RPL= address
,AREA= address
,LENGm= number
,FIELDS = ([ACB][,AIXPC] [,AREA] [,AREALEN]

[,ARG][,ECB][,FDBK] [,FfNCD]
[,KEYLEN] [,MSGAJREA] [,MSGLEN
[,NXTRPL][,RBA][,1RECLEN]
[,RPLLEN][, TRANSID])

is one to eight characters that provides a symbolic address for the
SHOWCB macro.

AREA =address
specifies the address of a work area that you are supplying for VSAM to
display the contents of the fields you specify in the FIELDS operand. The
contents of the fields are displayed in the order you specify them. The area
must begin on a fullword boundary.

LENGm=number
specifies the length, in bytes, of the work area that you are providing for
VSAM to display the indicated fields in. Each request parameter list field
requires a fullword. If the area is not large enough for all of the fields,
VSAM doesn't display any of their contents and returns an error code
indicating it (see "Return Codes from the GENCB, MODCB, SHOWCB,
and TESTCB Macros" earlier in this chapter).

RPL=address
specifies the address of the request parameter list whose fields are to be
displayed. If you used the RPL macro with a label, you ca.n specify the
label here. The RPL operand is optional when you wish to display the
length of a request parameter list (FIELDS=RPLLEN). (All VSAM
request parameter lists have the same length, so you need not specify the
address of a particular one.)

82 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

FIELDS=([ACBU,AIXPC] [,AREA] [,AREALEN] [,ARG]
[,ECBU,FDBKU,FfNCD U,KEYLEN]
[,MSGAREA] [,MSGLEN]
[,NXTRPL] [,RBA] [,RECLEN]
[,RPLLENU, TRANSID])

specifies the fields whose contents are to be displayed. Figure 9 explains
the keywords you can code in the FIELDS operand for a request
parameter list.

Key
word

ACB

AIXPC

AREA

AREALEN

ARG

ECB

FDBK

I FfNCD

KEYLEN

MSGAREA

MSGLEN

NXTRPL

RBA

RECLEN

RPLLEN

TRANSID

FuR-
words Description of the Field

Address of the access-method control block that relates the request
parameter list to the data

Number of alternate-index pointers

Address of the work area which the program uses to process a data
record to which access is defined by the request parameter list

Length of the work area whose address is given in AREA

Address of the field containing a search argument, if search arguments
are being used

Address of an event control block, if any, in which VSAM indicates the
completion of requests defined by the request parameter list

The feedback field into which VSAM puts a return code upon
completion of a request (for asynchronous requests, you must issue a
CHECK to cause VSAM to put a return code into the feedback field;
the meaning of the code in this field depends on the contents of register
15, which indicates whether the request was successful or failed because
of a logical or physical error-see "Return Codes from the Request
Macros" in the next chapter)

Code that describes the function in which a logical or physical error
occurred; indicates whether the upgrade set may have been modified
incorrectly by the request

Length of the search argument, if a generic key is used for a search
argument

Address of the area, if any, into which VSAM puts physical-error
messages

Length of the message area, if any

Address of the next request parameter list, if another one is chained to
this one

Relative byte address of the most recently processed record; you could
use it to record the RBAs of records that you are retrieving or storing
sequentially or by key

Length of the data record, access to which is defined by the request
parameter list

Length of a request parameter list

Number that relates modified buffers in a buffer pool; described in
OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications

Figure 9. FIELDS Operand Keywords for a Request Parameter List

Control Block Macros 83

Example: SHOWeD Macro (Display a Physical-Error Message)

In this example, a SHOWCB macro is used to display a physical-error
message. This example assumes that there is no SYNAD routine (or the
SYNAD exit is inactive), in which case, VSAM returns control to your
program following the last executable instruction if a physical error occurs.
Register 15 indicates a physical error (12), and the feedbac:k field in the
request parameter list contains a code identifying the error; the message area
contains more details about the error. Register 1 points to the request
parameter list.
REQUEST RPL MSGAREA=

CHECKO

MESSAGES,
MSGLEN=128

SHOWCB AREA=MSGADOR,
FIELOS=MSGAREA,
LENGTH=4,
RPL=REQUEST

LTR

BNZ

15,15

CHECKO

MESSAGES OS CL128

MSGAOOR OS F

Display failed.

For VSAM to give you a detailed
message about a physical error.

For displaying the address of the
message area with SHOWCB.

The RPL macro in this example provides for a message area, MESSAGES, of
128 bytes to be used for any physical-error message.

The SHOWCB macro's operands are:

• AREA and LENGTH, which specify a four-byte area, MSGADDR, to be
used for displaying the address of the message area for the associated
request parameter list .

• FIELDS, which specifies that the address of the message area is to be
displayed.

• RPL, which specifies the name, REQUEST, of the request parameter list
for which the message-area address is to be displayed.

84 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

TESTCB Macro (Test an Access-Method Control Block)
With the TESTCB macro, you can cause VSAM to set the condition code in
the PSW (program status word) as a result of a comparison between the
contents of a field that you specify and a value that you specify. Only one
keyword can be specified each time TESTCB is issued. You might want to do
this to:

• Find out whether an action (for example, opening a data set or activating
an exit) has been done by VSAM or your program

• Find out what kind of a data set is being processed in order to alter your
program logic as a result of the test.

You examine the PSW condition code after issuing a TESTCB macro (and
examining the return code in register 15). For keywords specified as an option
or a name, you test for an equal or unequal comparison; for keywords
specified as an address or a number, you test for an equal, unequal, high, low,
not-high, or not-low condition.

VSAM compares A to B, where A is the contents of the field and B is the
value to which it is to be compared. A low condition means, for example, that
A is lower than B-that is, that the value in the control block is lower than
the value you specified. You may specify only one keyword to be tested.
These keywords are the same as those that can be specified in the SHOWCB
macro to display fields in an ACB. Fields can be tested at the same time they
are displayed. If you specify a list of option codes for a keyword (for example,
MACRF=(ADR,DIR», each of them must equal the corresponding value in
the control block for you to get an equal condition.

Some of the fields can be tested at any time; others only after a data set is
opened. The ones that can be tested only after a data set is opened can, in the
case of a key...;sequenced data set, pertain either to the data or to the index.
See the OBJECT operand.

The operands of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" earlier in this chapter for information on the return codes used to
indicate whether the TESTCB request was successful.

Control Block Macros 85

Only one keyword can be specified each time you issue the macro. The
format of the TESTeB macro used to test a field in an access-method control
block is:

[label] TESTCB ACB=address
[,ERET= address]
[,OBJECT=DATA I INDEX]
, {A TRB=([ESDS][,KSDS][,REPL]

[,RRDS][,SP AN][,SSWD]
[,UNQ][,WCK]) I

CATALOG = YES I NO I
CRA=SCRAIUCRAI
MACRF=([ADR][,AIX][,CFX][,CNV]

[,DDN] [,DFR][,DIR] [,DSN]
[,GSR][,ICI][,IN][,KEY]
[,LSR][,NCI][,NDF] [,NFX]
[,NIS] [,NRM] [,MtS] [,NSR]
[,NUB] [,OUT][,RST][,SEQ]
[,SIS][,SKP][,UBf']) 1

OFLAGS=OPENI
OPENOBJ=PATHIBASEI~I
ACBLEN=number I
AVSPAC=number I
BSTRNO= number I
BUFND= number I
BUFNI= number I
BUFNO= number I
BUFSP= number I
CINV = number I
DDNAME=ddname I
ENDRBA= number I
ERROR= number I
EXLST= address I
FS=number I
KEYLEN = number I
LRECL= number I
MAREA= address I
MLEN=number I
NCIS= number I
NDELR= number I
NEXCP= number I
NEXT= number I
NINSR= number I
NIXL= number I
NLOGR= number I
NRETR= number I
NSSS= number I
NUPDR= number I
PASSWD=address I
RKP= number I
STMST= address I
STRNO= number}

86 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

where:

ACB=address
specifies the address of the access-method control block whose information
you want to test. You may omit it only if you're testing the length of an
access-method control block (ACBLEN = number). (All VSAM
access-method control blocks· have the same length.)

ERET =address
specifies the address of a routine that VSAM is to give control if, because
of an error, it is unable to test for the condition you specify. For example,
testing A VSP AC in an access-method control block for an unopened data
set would fail. VSAM indicates in register 15 whether it could do the test
and, if not, indicates in register 0 the reason it couldn't. (The reasons are
discussed earlier in this chapter under "Return Codes from the GENCB,
MODCB, SHOWCB, and TESTCB Macros.") A failure trying to execute
TESTCB indicates a basic logical problem in the processing program, so
the error routine would probably issue an ABEND. If it lets the program
continue, it must branch to the continuation point itself-and not return to
VSAM.

OBJECT = {DATA ! INDEX}
specifies whether you want to test a field for data or for index.

I ATRB=([ESDS][,KSDS][,REPL][,RRDS][,SPAN][,SSWD][,UNQ][,WCK])
specifies, for an open data set, the attribute that is to be tested for, as
follows:

ESDS
entry-sequenced data set

KSDS
key-sequenced data set

REPL
some portion of the index is replicated

RRDS
relative record data set

SPAN
data set contains spanned records

SSWD
sequence set is adjacent to the data

UNQ
unique keys

WCK
write operations for the data set are being verified

CATALOG = YES ! NO
specifies that a test is to be made to determine, anytime, whether or not the
access-method control block specifies a catalog data set.

CRA=SCRA!UCRA
specifies that a test is to be made to determine, anytime, whether catalog
recovery area control blocks are to be built in system storage or user
storage.

Control Block Macros 87

MACRF=([ADR](,AIX](,CFX](,CNV](,DDN](,DFR]
[,DIR][,DSN][,GSR] [,ICI] [,IN] [,KEY] [,LSR] [,NCI]
[,NDF] [,NFX] [,NIS] [,NRM] [,NRS] [,NSR] [,NUB] [,OUT] [,RST]
[,SEQ] [,SIS] [,SKP][,UBF])

specifies that a test is to be made to determine, anytime, what option or
combination of options is being used for processing.

OFLAGS=OPEN
specifies that a test is to be made to determine, after open, whether the
data set identified by the control block has been opened.

OPENOBJ=PATHIBASEIAIX
specifies that a test is to be made to determine, after open, whether an
opened object is a path, a base cluster, or an alternate index.

The remaining operands represent fields in an access-method control block
that can be compared with the value specified. These fields are the same as
those that can be displayed by using the SHOWCB macro. See Figure 8 for
an explanation of these fields.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCB by using a branch table, for example, but don't alter the
PSW condition code that VSAM set to indicate the result of a test until
you've had a chance to test it.

Example: TESTCD Macro (Use an ERET Routine)

In this example, a TESTCB macro is used to determine whether the data set
defined by the access-method control block CLOPEN has been opened. An
ERET routine, which gets control automatically when a test: is unsuccessful, is
provided.

OPEN

UNOPEN

ERROR

TESTCB ACB=CLOPEN,
ERET=ERROR,
OFLAGS=OPEN

BNE UNOPEN

88 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Is the data set open?

Go to routine for an unopen data set.

Answer to test question was yes.

Answer to test question was no.

An ERET routine to analyze any failure
of VSAM to carry out the test-same
routine could serve: other TESTCBs.

Examp.,e: TESTeD Macro (Test for Data-Set Attributes)

In this example, a TESTCB macro is used to determine whether a data set is a
key-sequenced or an entry-sequenced data set.

LIST RPL

KEY SEQ

CHECKO

SHOWCB AREA=DATAFACT,
FIELDS=ACB,
LENGTH=4,
RPL=LIST

LTR 15,15

BNZ CHECKO

TESTCB ACB= (* ,
DATAFACT) ,
ATRB=KSDS,
ERET=CHECKO

BE KEYSEQ

DATAFACT DS F

The SHOWCB macro's operands are:

Is the data set key-sequenced?

Yes.

Data set is key sequenced.

Display or test failed.

For displaying address of
access-method control block.

• AREA and LENGTH, which specify a four-byte area, DATAFACT,
aligned on a fullword boundary, to be used for the display.

• FIELDS and RPL, which specify that the address of the access-method
control block in the LIST request parameter list is to be displayed.

The TESTCB macro's operands are:

• ACB, which specifies that a field in the access-method control block, the
address of which is located at DATAFACT, is to be tested. The SHOWCB
macro put the address of the access-method control block at DATAFACT.

• A TRB, which specifies that the access-method control block is to be tested
to determine whether it is a key-sequenced data set.

• ERET, which specififies that a routine named CHECKO is to be given
control if an error occurs that makes it impossible to make the test.

There is no need to examine the feedback field in an EODAD routine because
it can be assumed to contain the end-of-data-set indication.

Control Block Macros 89

TESTeD Macro (Test an Exit List)
The TESTCB macro can be used to test fields in an exit list.

The operands of the TESTCB macro can be expressed as a.bsolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTCB" gives all the ways
of coding each operand for the macros that work at execution.

The fonnat of the TESTCB macro used to test fields in an exit list is:
~.----~--------~-----------------------------------~

[label] TESTeD

where:

label

EXLST= address
[,ERET = address]
,EODAD={O I ([address][,A I N][,L»} I

JRNAD = {O I ([address)[,A I N][,L»} I
LERAD={O I ([address)[,A I N][,L»} I
SYNAD={O I ([address)[,A I N][,L»}

[,EXLLEN = number]

is one to eight characters that provides a symbolic address for the TESTCB
macro.

EXLST=address
specifies the address of the exit list whose infonnation you want to test.
You may omit it only if you're testing the maximum length of an exit list
(EXLLEN =number).

ERET ==address
specifies the address of a routine that VSAM is to give control if, because
of an error, it is unable to test for the condition you specify. For example,
testing A VSPAC in an access-method control block for a.n unopened data
set would fail. VSAM indicates in register 15 whether it could do the test
and, if not, indicates in register 0 the reason it couldn't. (The reasons are
discussed earlier in this chapter under "Return Codes from the GENCB,
MODCB, SHOWCB, and TESTCB Macros.") A failure trying to execute
TESTCB indicates a basic logical problem in the processing program, so
the error routine would probably issue an ABEND. If it lets the program
continue, it must branch to the continuation point itself--and not return to
VSAM.

EODAD={O I ([address)[,A I N)[,L»} I
JRNAD={O I ([address][,A I N)[,L»} I
LERAD={O I ([address][,A I N)[,L»} I
SYNAD={O I ([address][,A I N)[,L])}

specifies the exit about which you are asking a yes-no question. If you code
more than one operand for an exitname, each of them must equal the
corresponding value in the control block for you to get an equal condition.
The values that can be tested are:

o
specifies that a test is to be made to determine whether an entry is
provided for the exit in the exit list.

90 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

address
specifies that a test is to be made to determine whether this is the
address of the exit. Tests for an address result in an equal, unequal,
high, low, not-high, or not-low condition. Tests for a combination of an
address and A, N, or L result in an equal or unequal condition.

AIN
specifies that a test is to be made to determine whether an exit is active
(A) or not active (N). Tests for A or N result in an equal or unequal
condition.

L
specifies that a test is to be made to determine whether the address is
the location of an 8-byte field containing the name of a module to be
loaded rather than the entry point of the routine. Tests for L result in an
equal or unequal condition.

EXLLEN =number
specifies either the maximum length that an exit list can have (if you don't
code the EXLST operand) or the actual length of the exit list indicated by
the EXLST operand. If you specify an exit, you may not also specify
EXLLEN; if you specify EXLLEN, you may not also specify an exit.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCB by using a branch table, for example, but don't alter the
PSW condition code that VSAM set to indicate the result of a test until
you've had a chance to test it.

Example: TESTeB Macro (Use a Branch Table)

In this example, a TESTCB macro is used to test whether ENDPROC is the
routine supplied for the EODAD exit in the exit list EXITS, and whether the
EODAD exit is active. A branch table is used to determine whether the test is
successful.

TESTCB EODAD=(ENDPROC, Is ENDPROC supplied and is the exit
A), EXLST=EXITS active?

B *+4{ 15)

If the test was made successfully, register 15
contains 0 and the next instruction is executed.

B TEST1

If it was unsuccessful, register 15 contains 4 and
the next instruction is executed.

TEST1

YES

NO

ABEND

BNE

2,DUMP

NO

Yes, ENDPROC is supplied and active.

ENDPROC isn't supplied, or the exit
isn't active.

Control Block Macros 91

TESTeD Macro (Test a Request Parameter List)
The TESTCB macro can be used to test fields in a request parameter list.

The operands of the TESTCB macro can be expressed as absolute numeric
expressions~ as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. "Appendix C: Operand
Notation for GENCB, MODCB, SHOWCB, and TESTeS" gives all the ways
of coding each operand for the macros that work at execution.

See "Return Codes from the GENCB, MODCB, SHOWCB, and TESTCB
Macros" for information on the return codes used to indicate whether the
TESTCB request was successful earlier in this chapter.

The format of the TESTCB macro to test fields in a request parameter list is:

[label] TESTCB RPL= address
[,ERET = address]
{AIXFLAG=AIXPKP I
AIXPC= number I
FfNCD= number I
I/O=COMPLETE I
OPTCD= ([ADR][,ARD][ASY][,BWD]

[,CNV][,DIR][,FKS][,FWD]
[,GEN][,KEQ][,KEY] [,KGE][,LOC]
[,LRD][,MVE][,NSP][,NUP][,SEQ]
[,SKP][,SYN][,UPI)]) I

ACB=address I
AREA= address I
AREALEN = number I
ARG= address I
ECB = address I
FDBK= number I
KEYLEN = number I
MSGAREA= address I
MSGLEN=number I
NXTRPL= address I
RBA= number I
RECLEN = number I
RPLLEN = number I
TRANSID= number}

where:

label
is one to eight characters that provides a symbolic address for the TESTCB
macro.

RPL=address
specifies the address of the request parameter list whos{~ information you
want to test. You may omit it only if you're testing the length of a request
parameter list (RPLLEN=number). (All request param,eter lists have the
same length.)

92 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

ERET=address
specifies the address of a routine that VSAM is to give control if, because
of an error, it is unable to test for the condition you specify. For example,
testing A VSP AC in an access-method control block for an unopened data
set would fail. VSAM indicates in register 15 whether it could do the test
and, if not, indicates in register 0 the reason it couldn't. (The reasons are
discussed earlier in this chapter under "Return Codes from the GENCB,
MODCB, SHOWCB, and TESTCB Macros.") A failure trying to execute
TESTCB indicates a basic logical problem in the processing program, so
the error routine would probably issue an ABEND. If it lets the program
continue, it must branch to the continuation point itself-and not return to
VSAM.

AIXFLAG=AIXPKP
specifies that prime-key pointers are used rather than RBAs.

AIXPC= number
specifies the pointer count.

FfNCD= number
specifies whether the upgrade set is correct or may have been modified by
a request. These codes are described under "Function Codes" in the
chapter "Request Macros."

10 = COMPLETE
specifies that a test is to be made to determine whether an asynchronous
request has been completed. (When you issue a CHECK macro, you
suspend processing until a request has been completed if it hasn't yet been
completed.)

OPTCD=([ADR][,ARD][,ASY][,BWD][,CNV][,DIR][,FKS][,FWD]
[,GEN][,KEQ] [,KEY][,KGE][,LOC][,LRD] [,MVE][,NSP]
[,NUP][,SEQ][,SKP] [,SYN][,UPD])

specifies that a test is to be made to determine what option or combination
of options is being used for the request.

The remaining operands specify fields in a request parameter list and values;
the contents of a field are to be compared to the specified value. These fields
are the same as those that can be displayed by using a SHOWCB macro. See
Figure 9 under "SHOWCB Macro (Display a Request Parameter List)" for
an explanation of these fields. Fields can be tested at the same time they are
displayed.

You may specify only one keyword. If you code a list of option codes (for
example, OPTCD=(KEY,DIR», each of them must equal the corresponding
value in the control block for you to get an equal condition.

If you omit a routine to handle error conditions, you can examine register 1 5
following TESTCB by using a branch table, for example, but don't alter the
PSW condition code that VSAM set to indicate the result of a test until
you've had a chance to test it. Examples of using an ERET routine and using
a branch table are given at the end of the section.

Control Block Macros 93

Example: TESTeD Macro (Test a Request Parameter List)

TESTCB RPL=(3),
RECLEN=80

BE NOCHNGE
CHANGE

NOCHNGE

The TESTeB macro's operands are:

Because the record length in the request
parameter list was not 80, the length
indicator must be modified so that it is
80.

Because the record length in the request
parameter list was 80, no change is
required.

• RPL, which specifies that the address of the request parameter list to be
tested is contained in register 3.

• RECLEN, which specifies that the record length indicated in the request
parameter list is to be tested to determine whether it is 80.

94 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

REQUEST MACROS

This chapter describes the macro instructions that cause some action to be
taken regarding data or processing. The request macros are:

• GET, which causes a record to be retrieved.

• PUT, which causes a record to be stored.

• ERASE, which causes a record previously retrieved for update to be
deleted from a key-sequenced data set.

• POINT, which causes VSAM to position at the desired record.

• CHECK, which causes processing to be suspended to await the completion
of some event.

• ENDREQ, which causes a specified request to be terminated.

GETIX and PUTIX, which cause an index record to be retrieved and stored,
are described in OS/VS Virtual Storage Access Method (VSAM) Options
for Advanced Applications.

Each request macro makes use of a request parameter list; the request
parameter list defines the action to be taken. For example, when a GET
macro points to a request parameter list that specifies synchronous, sequential
retrieval, the next record in sequence is retrieved. When an ENDREQ macro
points to a request parameter list, any current request (for example, a PUT)
for that request parameter list is ended immediately.

A return code in register 15 and a code in the feedback field of the request
parameter list indicate what happened as a result of a request macro. The
return codes in register 15, feedback-field codes, and the request macros are
described below.

Return Codes from Request Macros

After you issue a request macro for access to data or a CHECK or ENDREQ
macro, register 15 contains a return code. The meaning of the return code
depends on whether processing is asynchronous or synchronous.

After you issue an asynchronous request for access to a data set, VSAM
indicates in register 15 whether the request was accepted, as follows:

Reg. 15 Condition

o Request was accepted.

4 Request was not accepted because the request parameter list indicated by the
request (RPL-address) was active for another request.

If the asynchronous request was accepted, you issue a CHECK after doing
your other processing so VSAM can indicate in register 15 whether the
request was completed successfully, set a return code in the feedback field,
and exit to any appropriate exit routine. If the request was not accepted, you
should either wait until the other request is complete (for example, by issuing
a CHECK on the request parameter list) or terminate the other request (using
ENDREQ). Then you can reissue the rejected request.

Request Macros 95

Feedback-Field Codes

After a synchronous request, or a CHECK or ENDREQ m.acro, register 15
indicates whether the request was completed successfully, ~LS follows:

Reg. IS Condition

o Request completed successfully.

4 Request was not accepted because the request parameter list indicated by the
request (RPL-address)was active for another request.

S Logical error; specific error is indicated in the feedback field in the RPL.

12 Physical error; specific error is indicated in the feedback field in the RPL.

Paired with the 0, 8, and 12 indicators in register 15 are codes in the feedback
field of the request parameter list. The feedback codes for the 0, or
successful, indicator in register 15, which doesn't cause VSAM to exit to an
exit routine, are:

FORK
Code Condition

o Request completed successfully.

4 Request completed successfully. For retrieval, VSAM mounted another volume
to locate the record; for storage, VSAM allocated additional space or mounted
another volume.

8 Duplicate key follows.

12 Write-buffer suggested (shared resources only).

You can examine the feedback field of the request parameter list with the
SHOWCB or TESTCB macro. You may code your examination routine
immediately following the request macro. However, logical errors, physical
errors, and reaching the end of the data set all cause VS~I to exit to the
appropriate exit routine, if you provide it.

Coordinate error checking in your program with your error-analysis exit
routines. If they terminate the program, for instance, you would not need to
code a check for an error after a request. But if a routine returns to VSAM to
continue processing, you might check register 15 after a request to determine
whether there was an error. Even though the error was handled by an exit
routine, you may want to modify processing in light of the error.

96 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

F"IIctioll Code,

Logical Errors

When a logical or physical error occurs, VSAM provides a code that identifies
the function being attempted when the error occurred and indicates whether
the alternate-index upgrade set is correct following the request that failed.
The function code can be displayed and tested by the SHOWCB and
TESTCB macros. The codes and their meanings are:

Code Function Upgrade Set Status

X'OO' An attempt to access the Correct
base cluster

X'Ot' An attempt to access the May be incorrect
base cluster

X'02' An attempt to access the Correct
alternate index over a
base cluster

X'03' An attempt to access the May be incorrect
alternate index over a
base cluster

X'04' Upgrade processing Correct

X'OS' Upgrade processing May be incorrect

If a logical error occurs and you have no LERAD routine (or the LERAD exit
is inactive), VSAM returns control to your program following the last
executed instruction. Register 15 indicates a logical error (8), and the
feedback field in the request parameter list contains a code identifying the
error. Register 1 points to the request parameter list. Figure 10 gives the
logical-error return codes in the feedback field and explains what each one
means.

Request Macros 97

FORK
Code Condition

4 End of data set encountered (during sequential or skip-sequential retrieval), or
the search argument is greater than the high key of the data set. Either no
EODAD routine is provided, or one is provided and it retlllrned to VSAM and
the processing program issued another GET.

8 You attempted to store a record with a duplicate key, or there is a duplicate
record for an alternate index with the unique key option.

12 You attempted to store a record out of ascending key sequence in skip-sequential
mode; record had a duplicate key; for skip-sequential proc:essing, your GET,
PUT, and POINT requests are not referencing records in nscending sequence;
or, for skip-sequential retrieval, the key requested is lower than the previous key
requested. For shared resources, buffer pool is full.

16 Record not found.

20 Record already held in exclusive control by another requester.

24 Record resides on a volume that can't be mounted.

28 Data set cannot be extended because VSAM can't allocate additional
direct-access storage space. Either there is not enough spal::e left to make the
secondary allocation request or you attempted to increase the size of a data set
while processing with SHROPT-4 and DISP-SHR.

32 You specified an RBA that doesn't give the address of any data record in the
data set.

36 Key ranges were specified for the data set when it was defined, but no range was
specified that includes the record to be inserted.

40 Insufficient virtual storage in your address space to complete the request.

44 Work area not large enough for the data record (GET with OPTCD-MVE).

64 As many requests are active as the number specified in the STRNO parameter of
the ACB macro; therefore, another request cannot be activated.

68 You attempted to use a type of processing (output or control-interval processing)
that was not specified when the data set was opened.

72 You made a keyed request for access to an entry-sequenced data set, or you
issued a GETIX or PUTIX to an entry-sequenced or relative record data set.

76 You issued an addressed or control-interval PUT to add to a key-sequenced data
set, or you issued a control-interval PUT to a relative record data set.

80 You issued an ERASE request for access to an entry-sequenced data set, or you
issued an ERASE request for access to an entry-sequenced data set via a path.

84 You specified OPTCD-LOC for a PUT request or in a request parameter list in
a chain of request parameter lists.

88 You issued a sequential GET request without having caused VSAM to be
positioned for it, or you changed from addressed access to keyed access without
causing VSAM to be positioned for keyed-sequential retrieval; there was no
sequential PUT insert for a relative record data set, or you attempted an illegal
switch between forward and backward processing.

92 You issued a PUT for update or an ERASE without a prevnous GET for update
or a PUTIX without a previous GETIX.

96 You attempted to change a key while making an update.

100 You attempted to change the length of a record while making an addressed
update.

Figure 10 (Part 1 of 2). Logical-Error Return Codes in Feedback Field

98 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

FDRK
Code Condition

104 The RPL options are either invalid or conflicting in one of the following ways:

(1) SKP was specified and either KEY was not specified or BWD was
specified

(2) BWD was specified for CNV processing

(3) FWD and LRD were specified

(4) Neither ADR, CNV, nor KEY was specified in the RPL

(5) WRTBFR, MRKBFR, or SCHBFR was issued, but either TRANSID was
greater than 31 or the shared resource option was not specified

(6) ICI processing was specified, but a request other than a GET or a PUT was
issued

108 RECLEN specified was larger than the maximum allowed, equal to 0, or smaller
than the sum of the length and the displacement of the key field; RECLEN was
not equal to record (slot) size specified for a relative record data set.

112 KEYLEN specified was too large or equal to O.

116 During initial data-set loading (that is, when records are being stored in the data
set the first time it's opened), GET, POINT, ERASE, direct PUT,
skip-sequential PUT, or PUT with OPTCD-UPD is not allowed. For initial
loading of a relative record data set, the request was other than a PUT insert.

132 An attempt was made in locate mode to retrieve a spanned record.

136 You attempted an addressed GET of a spanned record in a key-sequenced data
set.

140 Inconsistent spanned record.

144 Invalid pointer (no associated base record) in an alternate index.

148 The maximum number of pointers in the alternate index has been exceeded.

152 Not enough buffers are available to process your request (shared resources
only).

192 Invalid relative record number.

196 You issued an addressed request to a relative record data set.

200 You attempted addressed or control-interval access through a path ..

204 PUT insert requests are not allowed in backward mode.

Figure 10 (Part 2 of 2). Logical-Error Return Codes in Feedback Field

Request Macros 99

Physical Errors

If a physical error occurs and you have no SYNAD routine (or the SYNAD
exit is inactive), VSAM returns control to your program following the last
executable instruction. Register 15 indicates a physical error (12), and the
feedback field in the request parameter list contains a code identifying the
error; the message area contains more details about the error. Register 1
points to the request parameter list. Figure 11 gives the physical-error return
codes in the feedback field and explains what each one indicates.

FDBI{
Code Condition

4 Read error occurred for a data set.

8 Read error occurred for an index set.

12 Read error occurred for a sequence set.

16 Write error occurred for a data set.

20 Write error occurred for an index set.

24 Write error occurred for a sequence set.

Figure 11. Physical-Error Return Codes in Feedback Field

Figure 12 gives the format of a physical-error message. The format and some
of the contents of the message are purposely similar to the format and
contents of the SYNADAF message, which is described in OS/VS Data
Management Macro Instructions.

Fleld Bytes Lenatb Discussion

Message 0-1 2 Binary value of 128
Length

2-3 2 Unused (0)

Message 4-5 2 Binary value of
Length - 4 (provided for compatibility with SYNADAF

message)

6-7 2 Unused (0)

Address of 8-11 4 The I/O buffer associated with the data in relation
I/O Buffer to which the error occurred

The rest of the message is in printable format:

Date 12-16 5 YYDDD (year and day)

17 Comma (,)

Time 18-25 8 HHMMSSTH (hour, minute, second, and tenths and
hundredths of a second)

26 Comma (,)

RBA 27-34 8 Relative byte address of the record in relation to
which the error occurred ..

35 Comma(,)

Component 36-41 6 "DATA" or "INDEX"
TYPE

42 Comma (,)

Volume Serial 43-48 6 Volume serial number of the vonume in relation
Number to which the error occurred

49 Comma(,)

Figure 12 (Part 1 of 3). Physical-Error Message Format

100 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Field

Job Name

Step Name

Unit

Device Type

ddname

Channel
Command

Message

Bytes

50-57

58

59-66

67

68-70

71

72-73

74

75-82

83

84-89

90

91-105

Lengtb

8

8

3

2

8

6

15

Discussion

Name of the job in which error occurred

Comma (,)

Name of the job step in which error occurred

Comma(,)

The unit, CUU (channel and unit), in relation to
which the error occurred

Comma (,)

The type of device in relation to which the error
occurred (always DA for direct access)

Comma(,)

The ddname of the DD statement defining the data
set in relation to which the error occurred

Comma (,)

The channel command that caused the error in the
first two bytes, followed by "- OP"

Comma (,)

Messages are divided according to ECB condition
codes:

X'41' "INCORR LENGTH"
"UNIT EXCEPTION"
"PROGRAM CHECK"
"PROTECTION CHK"
"CHAN DATA CHK"
"CHAN CTRL CHK"
"INTFCE CTRL CHK"
"CHAINING CHK"
"UNIT CHECK"

If the type of unit check can be determined, the 'UNIT CHECK' message
is replaced by one of the follOWing:

" CMD REJECT"
" INTREQ"
"BUS OUT CK"
"EQPCHECK"
"DATA CHECK"
"OVERRUN"
"TRACK COND CK"
"SEEK CHECK"
"COUNT DATA CHK"
"TRACK OVERRUN"
"CYLINDER END"
"INY ALID SEQ"
"NO RECORD FOUND"
"FILE PROTECT"
"MISSING A.M."
"OVERFL INCP"

X'48'-"PURGED REQUEST"

X'4F'-"R.HA.RO. ERROR"

For any other ECB completion code-"UNKNOWN
COND."

106 Comma (,)

Figure 12 (Part 2 of 3). Physical-Error Message Format

Request Macros 101

Fleld Bytes Length DIscussion

Physical 107-120 14 BBCCHHR (bin, cylinder, head,
Direct-Access and record)
Address

121 1 Comma(,)

Access 122-127 6 "VSAM"
Method

Figure 12 (Part 3 of 3). Physical-Error Message Format

GET Macro (Retrieve a Record)
The GET macro is used to retrieve a record.

The GET macro is used with the PUT macro to update records. See "PUT
Macro (Store a Record)" later in this chapter for examples that show the use
of the GET macro to update records. The GET macro is used with the
ERASE macro to delete records in a key-sequenced or relative record data
set. See "ERASE Macro (Delete a Record)" later in this chapter for examples
that show the use of the GET macro to delete records.

The format of the GET macro is:

EbelJ IGET I RPL= address

where:

label
is one to eight characters that provides a symbolic address for the GET
macro.

RPL= address
specifies the address of the request parameter list that defines this GET
request. You may specify the address in register notation (using a register
from 1 through 12, enclosed in parentheses) or specify it with an
expression that generates a valid relocatable A-type address constant.

102 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

1

Example: Keyed-Sequential Retrieval

In this example, a GET macro is used to sequentially retrieve records by key.
Fixed-length, tOO-byte records are moved to a work area. Processing is
synchronous.
INPUT ACB

RETRVE RPL

LOOP GET

LTR

BNZ

B

ERROR

IN DS

MACRF=(KEY,
SEQ, IN)

ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY,SEQ,
SYN,NUP,MVE)

RPL=RETRVE

15,15

ERROR

LOOP

CL100

All MACRF and OPTCD options
specified are defaults and could have
been omitted.

This GET or identical GETs can be
issued, with no change in the request
parameter list, to retrieve subsequent
records in key sequence.

Request wasn't accepted or failed.

IN contains a data record after GET is
completed.

The records are retrieved in key sequence. No search argument has to be
specified; VSAM is positioned at the first record in key sequence when the
data set is opened, and the next record is retrieved automatically as each GET
is issued. The branch to ERROR could also be taken if the end of the data set
is reached.

Example: Skip-Sequential Retrieval

In this example, a GET macro is used to retrieve variable-length records
synchronously. Records are to be processed in the I/O buffer. The search
argument is full key, compared greater-than-or-equal; key length is eight
bytes.

The records are retrieved in key sequence, but some records are skipped.
Skip-sequential retrieval is very similar to keyed-direct retrieval, except that
you must retrieve records in ascending sequence (with skips) rather than in a
random sequence.

GENCB BLK=ACB,
DDNAME=INPUT,
MACRF=(KEY,
SKP, IN)

LTR 15,15

BNZ CHECKO

LR 2,1

VSAM gets an area in virtual storage to
generate the access-method control
block and returns the address in register
1.

Request Macros 103

LOOP

GENCB BLK=RPL,ACB=(2),
AREA=RCOADOR,
AREALEN=4,
ARG=SRCHKEY,
OPTCO=(KEY,SKP,
SYN,NUP,KGE,FKS,
LOC)

LTR 15,15

BNZ CHECKO

LR 3, 1

MVC SRCHKEY,source

GET RPL=(3)

LTR 15,15

BNZ ERROR

Address of the I'equest parameter list.

Search argument for retrieval, moved in
from a table or ill transaction record.

SHOWCB AREA=RCOLEN, Display the length of the record.

ERROR

CHECKO

RCDADOR

SRCHKEY

RCDLEN

LTR

BNZ

B

OS

OS

OS

FIELOS=RECLEN,
LENGTH=4,RPL=(3)

15, 15

CHECKO

LOOP

F

CL8

F

Request wasn't accepted or failed.

Generation or display failed.

Work area into which VSAM puts the
address of a datfl record within the I/O
buffer (OPTCD-LOC).

Search argument for retrieval.

For displaying variable record lengths.

The macros and instructions are described, as follows:

• The first GENCB generates an access-method control block, which
specifies keyed, skip-sequential, and input processing. The address of the
access-method control block is stored in register 2.

• The second GENCB generates a request parameter list. The address of the
request parameter list is stored in register 3.

• MVC moves the search argument into SRCHKEY, the area defined for the
search argument.

• GET specifies that the record pointed at by the request parameter list
whose address is in register 3 is to be retrieved. Records are retrieved by a
skip-sequential search through the sequence set of the index.

104 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Addressed-Sequential Retrieval

In this example, one GET macro is used to retrieve multiple fixed-length,
20-byte records. The records are moved to a work area (only option).
BLOCK ACB DDNAME=INPUT,

GENCB

LTR

BNZ

LA

LR

LR

SR

DR

LR

LR

LA

AR

MODCB

LTR

BNZ

AR

LA

LOOP GET

LTR

BNZ

B

MACRF=(ADR,SEQ,
IN)

BLK=RPL,
COPIES=10,
ACB=BLOCK,
OPTCD=(ADR,SEQ,
SYN,NUP,MVE)

15,15

CHECKO

3,10

2, 1

1 ,0

0,0

0,3

3, 1

4,2

5,RECAREA

4,3

RPL=(2),
NXTRPL= (4) ,
AREA=(5),
AREALEN=20

15,15

CHECKO

2,3

5,20(5)

RPL=(2)

15,15

ERROR

LOOP

Number of lists (10).

Address of the first list.

Length of all of the lists. Registers 0 and
1 contain length and address of the
generated control blocks when VSAM
returns control after GENCB.

Prepare for following division.

Divide number of lists into length of all
of the lists.

Save the resulting length of a single list
for an offset.

Save address of the first list.

Address of the first work area.

Do the following six instructions ten
times to set up all of the request
parameters lists. The tenth time,
register 4 must be set to 0 to indicate
the last request parameter list in the
chain.

Address the next list.

In each request parameter list, indicate
the address of the next list and the
address and length of the work area.

Address the next list.

Address the next work area.

Restore register 2 to address the first list
before continuing to process.

Process the ten records that have been
retrieved by the GET.

Request Macros lOS

CHECKO

ERROR

RECAREA DS CL200

Display the feedback field
(FIELDS-FDBK) of each request
parameter list to find out which one had
an error.

Space for a work. area for each of the
ten request parameter lists.

The GENCB macro generates ten request parameter lists; the lists are
subsequently chained together by using the MODCB macro to modify the
NXTRPL operand in each copy. Because SEQ is specified in each request
parameter list and no previous request has been issued against the
access-method control block since it was opened, retrieval begins at the
beginning of the data set. Each time the GET macro is executed, VSAM is
positioned at the next record in RBA sequence. VSAM moves each record
into the work area provided for the request parameter list that identifies the
record.

If an error occurred for one of the request parameter lists in the chain and
you have supplied error-analysis routines, VSAM takes a LERAD or SYNAD
exit before returning to your program. Register 15 is set to indicate the status
of the request. A code of 0 indicates that no error was associated with any of
the request parameter lists. Any other code indicates that an error occurred
for one of the request parameter lists. You should issue.a SHOWCB macro
for each request parameter list in the chain to find out which one had an
error. VSAM doesn't process any of the request parameter lists beyond the
one with an error.

106 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example:: Keyed-Direct Retrieval

In this example, a GET macro is used to retrieve fixed-length, l00-byte
records directly by key. The key length is 15 bytes; the search argument is a
five-byte generic key, compared equal. The control blocks are generated at
assembly.
INPUT ACB

RETRVE RPL

LOOP MVC

GET

LTR

BNZ

B

ERROR

IN DS

KEYAREA DS

MACRF=(KEY,
DIR, IN)

ACB=INPUT,
AREA=IN,
AREALEN=4,
OPTCD=(KEY,DIR,
SYN,NUP,KEQ,GEN,
LaC) ,
ARG=KEYAREA,
KEYLEN=5

KEYAREA, source

RPL=RETRVE

15, 15

ERROR

LOOP

CL4

CL5

You specify all parameters for the
request in the RPL macro.

Search argument for retrieval, moved in
from a table or a transaction record.

This GET or identical GETs can be
issued with no change in the RPL: just
specify each new search argument in
the field KEY AREA.

Process the record.

Request wasn't accepted or failed.

VSAM puts here the address of the
record within the I/O buffer.

You specify the search argument here.

The generic key specifies a class of records. For example, if you search on the
first third of employee number, VSAM positions at and retrieves the first of
presumably several records that start with the specified characters. To retrieve
all of the records in that class, either switch to sequential access or to a
full-key search with greater-than-or-equal comparison.

Request Macros 107

Example: Addressed-Direct Retrieval

In this example, a GET macro is used to retrieve fixed-length, 20-byte
records. The records are to be moved to a work area.
BLOCK ACB DDNAME=INPUT, Access-method control block generated

MACRF=(ADR,DIR, at assembly.
IN)

GENCB BLK=RPL, Request parameter list generated at
COPIES= 1 , execution.

LOOP

CHECKO

ERROR

IN

ACB=BLOCK,
OPTCD=(ADR,DIR,
SYN, NUP ,MVE),
ARG=SRCHADR,
AREA=IN,
AREALEN=20

LTR 15,15

BNZ CHECKO

LR 2, 1

MVC SRCHADR,sQurce

GET RPL=(2)

LTR 15, 15

BNZ ERROR

B LOOP

DS CL20

SRCHADR DS CL4

Address of the li:~t.

Search argument for retrieval,
calculated or moved in from a table or a
transaction record.

Process the record.

Generation failed.

Request wasn't a<:cepted or failed.

VSAM puts a record here for each GET
request.

You specify the RBA search argument
here for each request.

The RBA provided for a search argument must match the RBA of a record.
Keyed insertion and deletion of records in a key-sequenced data set will
probably cause the RBAs of some records to change. Therefore, if you
process a key-sequenced data set by addressed-direct access (or by
addressed-sequential access using POINT), you need to keep track of
changes. You can use the JRNAD exit for this purpose. Sef~ "EXLST Macro
(Generate an Exit List)" in the chapter "Control Block Ma.cros."

108 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Switch from Direct to Sequential Retrieval

In this example, GET macros are used to retrieve fixed-length, tOO-byte
records. The control blocks were generated at assembly, but the MODCB
macro is used to modify the request parameter list to permit switching from
keyed-direct to keyed-sequential retrieval. For the direct request preceding
sequential requests, the search argument is an eight-byte, generic key,
compared equal. Positioning is requested for direct requests.
INPUT ACB MACRF= (KEY, D IR , Both direct and sequential access

RETRVE RPL

LOOP MVC

LOOP 1 GET
LTR
BNZ

SEQ MODCB

LTR
BNZ
B

DIR MODCB

LTR
BNZ
B

ERROR

SEQ, IN) specified.

ACB=INPUT,
AREA=IN,
AREALEN=100,
OPTCD=(KEY,DIR,
SYN,NSP,KEQ,GEN,
MVE) ,
ARG=KEYAREA,
KEYLEN=8

KEYAREA,source

RPL=RETRVE
15,15
ERROR

RPL=RETRVE,
OPTCD=SEQ
15,15
CHECKO
LOOP 1
RPL=RETRVE,
OPTCD=DIR
15,15
CHECKO
LOOP

NSP specifies that VSAM is to
remember its position.

Search argument for direct retrieval,
moved in from a table or a transaction
record.

Decide whether to switch from one type
of access to the other.
If now sequential:

To remain sequential, branch to
LOOP!
To switch to direct, branch to
DIR

If now direct:
To remain direct, branch to
LOOP
To switch to sequential, branch to
SEQ

Alter request parameter list for
sequential access.

No search argument required.

Alter request parameter list for direct
access.

Prepare new search argument.

Request wasn't accepted or failed.

Request Macros 109

CHECKO

IN DS
KEYAREA DS

CL100
CL8

Modification failed.

VSAM puts retrieved records here.

Specify the generic key for a direct
request here.

Positioning is associated with a request parameter list; the :MODCB macro is
used to modify a single request parameter list that alternately defines requests
for both types of access rather than use a different request parameter list for
each type.

With direct retrieval, VSAM doesn't remember its position for subsequent
sequential retrieval unless you explicitly request it (OPTCD==NSP or UPD).
After a direct GET for update, VSAM is positioned for a slllbsequent PUT,
ERASE, or sequential GET. If you modify OPTCD==(DIR,NUP) to
OPTCD==SEQ, you must issue POINT to get VSAM positioned for sequential
retrieval, as NUP indicates that no positioning is desired with a direct GET.

If you have chained many request parameter lists together, one position is
remembered for the whole chain. For example, if you issue a GET that gives
the address of the first request parameter list in the chain, the position of
VSAM when the GET request is complete is.at the record following the
record defined by the last request parameter list in the chain. Therefore,
modifying OPTCD== (DIR,NSP) in each request parameter list in a chain to
OPTCD==SEQ implies continuing with sequential access relative to the last of
the direct request parameter lists.

PUT Macro (Store a Record)
The PUT macro is used to store a record.

The format of the PUT macro is:

~el] IpUT I RPL== address

where:

label
is one to eight characters that provides a symbolic address for the PUT
macro.

RPL= address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Note: If the PUT macro is being used to load records into an empty data set,
the STRNO value in the access-method control block must be 1.

110 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Keyed-Sequential Insertion

In this example, a PUT macro is used to perform keyed-sequential insertion.
Variable-length records with a key length of 15 bytes are to be moved from a
work area. Some records will be inserted between existing records; other
records will be added at the end of the data set.
BLOCK ACB

LIST RPL

LOOP L

MODCB

LTR

BNZ

PUT

LTR

BNZ

B

CHECKO

ERROR

BUILDRCD DS

DDNAME=OUTPUT,
MACRF=(KEY,SEQ,
OUT)

ACB=BLOCK,
AREA=BUILDRCD,
AREALEN=250,
OPTCD=(KEY,SEQ,
SYN,NUP,MVE)

2,source

RPL=LIST,
RECLEN=(2)

15, 15

CHECKO

RPL=LIST

15, 15

ERROR

LOOP

CL250

Put length of record to be inserted into
register 2.

Indicate record length in request
parameter list.

Modification failed.

Request wasn't accepted or failed.

Work area for building records.

The request parameter list, LIST, is associated with the access-method control
block, BLOCK. The length of each record to be inserted is put into register 2,
which is subsequently used by MODCB to change the record length in the
request parameter list. The record length is, therefore, correctly indicated in
the request parameter list before the PUT macro is issued. The execution of
the PUT macro causes VSAM to skip ahead (never back) to the next record.

Request Macros 111

Example: Record RBAs When Loading

In this example, a PUT macro is used to record the RBAs of records as they
are loaded into a key-sequenced data set. The RBAs are recorded in a table
with 20-byte entries (4 bytes for RBA, 15 bytes for associllted key, and 1
byte of padding so the next entry begins on a fullword boundary).

LOOP

ERROR
CHECKO

LA 3,RBATABLE Address the beginning of the table.

L 2,sQurce Put length of record to be inserted into
register 2.

MODCB RPL=LIST, Indicate record length in request
RECLEN=(2) parameter list.

LTR 15, 15
BNZ CHECKO
PUT RPL=LIST
LTR 15,15
BNZ ERROR
SHOWCB AREA= (3) , Each SHOWCB puts a record's RBA

FIELDS=RBA, into the table.
LENGTH=4,
RPL=LIST

LTR 15, 15
BNZ CHECKO
MVC 4(15,3),keyfield Put the record's key field in the table.

LA 2,20(3) Point to the next entry.

B LOOP
Request wasn't accepted or failed.

Modification or di!lplay failed.

DSECT Get enough virtual storage for as many
table entries as there are records in the
data set.

RBATABLE DS OF
RBA
KEY

DS
DS
DS

CL4
CL15
CL1 Padding to keep each RBA entry on a

fullword boundary: SHOWCB's display
area must be on a flllllword boundary.

The need to process a key-sequenced data set by address should be unusual,
but by recording the RBA of each record in a key-sequenced data set, you
have search arguments for possible processing of the data set by
addressed-direct retrieval and by addressed-sequential retrieval using the
POINT macro. (You don't need to know RBAs to process a key-sequenced
data set by simple addressed-sequential retrieval, since you go from the
beginning without any skips.)

You can display the RBA of a record after you issue a GET or a POINT, as
well as after you issue a PUT.

112 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Skip-Sequential Insertion

In this example, one Pur macro is used to insert multiple fixed-length,
tOO-byte records. Records are to be moved asynchronously from a work area.
OUTPUT ACB MACRF=(KEY,SKP,

OUT)

GENCB BLK=RPL,
COPIES=5,
ACB=OUTPUT,
AREALEN=100,
OPTCD=(KEY,SKP,
ASY , NUP , MVE) ,
RECLEN=100

LTR 15,15

BNZ CHECKO

Calculate length of each list and use register
notation with the MODCB macro to complete
each list.

MODCB RPL=(2),
AREA=(3),
NXTRPL=(4)

LTR 15,15

BNZ CHECKO

Increase the value in each register and repeat the
MODCB until all five request parameter lists
have been completed. The last time, register 4
must be set to o.

LOOP

PUT RPL=(2)

LTR 15,15

BNZ NOTACCEP

CHECK RPL=(2)

LTR 15,15

BNZ ERROR

B LOOP

CHECKO

NOTACCEP

ERROR

WORK DS CL500

Generate 5 request parameter lists at
execution.

Restore address of first list in register 2.

Build 5 records in WORK.

Register 2 points to the first request
parameter list in the chain. The five
records in WORK are stored with this
one PUT request.

Generation or modification failed.

Display the feedback field in each
request parameter list to find out which
one had an error.

Contains five l00-byte work areas.

Request Macros 113

Example: Keyed-Direct Insertion

You give no search argument for storage: VSAM knows tht~ position of the
key field in each record and extracts the key from it. Skip sequential insertion
differs from keyed-direct insertion in the sequence in which records may be
inserted (ascending nonconsecutive sequence versus random sequence) and in
performance.

With skip-sequential insertion, if you insert two or more records into a control
interval, VSAM doesn't write the contents of the buffer to direct-access
storage until you have inserted all of the records. With direct insertion,
VSAM writes the contents of the buffer after you have inserted each record.

In this example, a PUT macro is used to move fixed-length, l00-byte records
from a work area.

OUTPUT ACB

DIRECT RPL

LOOP PUT

MACRF=(KEY,DIR,
OUT)

ACB=OUTPUT,
AREA=WORK,
AREALEN=100,
OPTCD=(KEY,DIR,
ASY,NUP,MVE),
RECLEN=100

RPL=DIRECT

LTR 15,15

BNZ NOTACCEP

CHECK RPL=DIRECT

LTR 15, 15

BNZ ERROR

B

NOTACCEP

ERROR

LOOP

WORK DS CL100

The macros are described, as follows:

Request wasn't accepted.

Request failed.

Work area.

• ACB specifies that the data set, OUTPUT, into which records are to be
inserted, is opened for keyed-direct, ouput processing .

• RPL specifies that the record to be inserted into the OUTPUT data set
resides in a l00-byte area, WORK.

VSAM extracts the key from the key field of each record found at WORK.
Using keyed-direct access is very similar to using skip sequential access.

114 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Addressed-Sequential Addition

In this example, a PUT macro is used to add variable-length records to a data
set. The data set is assumed to be an entry-sequenced data set because
records cannot be inserted into or added to a key-sequenced data set with
addressed access.
BLOCK ACB MACRF=(ADR,SEQ,

LIST RPL

LOOP

L

MODCB

LTR

BNZ

PUT

LTR

BNZ

B

CHECKO

ERROR

NEWRCD DS

OUT)

ACB=BLOCK,
AREA=NEWRCD,
AREALEN=100,
OPTCD=(ADR,SEQ,
SYN,MVE)

3,sQurce

RPL=LIST,
RECLEN=(3)

15,15

CHECKO

RPL=LIST

15, 15

ERROR

LOOP

CL100

Build the record.

Put the length of the record into register
3.

Indicate length of new record.

Modification failed.

Request wasn't accepted or failed.

Build record in this work area.

Each record is stored in the next position after the last record in the data set.
You do not have to specify an RBA or do any explicit positioning (with the
POINT macro). Addressed addition of records is always identical to loading a
data set: when additional space is required, VSAM extends the data set.

The only difference between addressed-sequential and addressed-direct
addition is when the buffers are written to external storage. The buffer is
written to external storage only when it is full for sequential addition; it is
written after each record for direct addition. You cannot use direct storage to
load records into a data set for the first time; you must use sequential storage.

Request Macros 115

Example: Keyed-Sequential Update

In this example, GET and PUT macros are used to retrievfl and update
fixed-length, 50-byte records. Records are updated synchronously in a work
area. This example requires the use of a work area because: you cannot update
a record in the I/O buffer.
UPDATA ACB MACRF=(KEY,SEQ,

OUT)

LIST RPL ACB=UPDATA, UPD indicates tbe record may be stored
AREA=WORK, back (or deleted),
AREALEN=50,
OPTCD=(KEY,SEQ,
SYN,UPD,MVE)

LOOP GET RPL=LIST

LTR 15,15

BNZ ERROR

Decide whether to update the record.

B

Do update the record.

ERROR

WORK

PUT

LTR

BNZ

B

DS

LOOP

RPL=LIST

15,15

ERROR

LOOP

CL50

Don't update it; retrieve another.

Store the record back.

Request wasn't accepted or failed.

VSAM puts the retrieved record here.

A GET for update (OPTCD=UPD) must precede a Pur for update. Besides
retrieving the record to be updated, GET positions VSAM a~t the record
retrieved, in anticipation of the succeeding update (or deletion). It is not
necessary for you to store back (or delete) the record that you retrieved for
update. VSAM's position at the record previously retrieved :allows you to
issue another GET to retrieve the following record. You cannot then,
however, store back the previous record: the position for update has been
forgotten because of the following GET.

116 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Keyed-Direct Update

In this example, GET and PUT macros are used to retrieve and update
records. The MODCB macro is used to modify record length (RECLEN) in
the request parameter list when an update causes the record length to change.
The maximum record length is 120 bytes. The search argument is a full key
(five bytes), compared equal.

INPUT

UPDTE

ACB

RPL

MACRF=(KEY,DIR,
OUT)

ACB=INPUT,
AREA=IN,
AREALEN=120,
OPTCD=(KEY,DIR,
SYN,UPD,KEQ,FKS,
MVE) ,
ARG=KEYAREA,
KEYLEN=5

Process input and get search argument into
KEY AREA; proceed to retrieve a record.

LOOP GET RPL=UPDTE

LTR 15,15

BNZ ERROR

SHOWCB RPL=UPDTE,
AREA=RLNGTH,
FIELDS=RECLEN,
LENGTH=4

LTR 15,15

BNZ CHECKO

Update the record. Does the update change the
record's length?

STORE

ERROR

CHECKO

IN

KEY AREA

RLNGTH

B

L

MODCB

LTR

BNZ

PUT

LTR

BNZ

B

DS

DS

DS

STORE

5, length

RPL=UPDTE,
RECLEN=(5)

15, 15

CHECKO

RPL=UPDTE

15, 15

ERROR

LOOP

CL120

CL5

F

UPD indicates the record may be stored
back (or deleted).

Display the length of the record.

No, length not changed.

Yes, load new length into register 5.

Modify length indication in the request
parameter list.

Request wasn't accepted or failed.

Display or modification failed.

Work area for retrieving, updating, and
storing a record.

Search argument for retrieving a
record.

Area for displaying the length of a
retrieved record.

Request Macros 117

You cannot update records in the I/O buffer. A direct GET for update
positions VSAM at the record retrieved, in anticipation of storing back (or
deleting) the record. This positioning also allows you to switch to sequential
access to retrieve the next record.

You.don't have to store back a record that you retrieve for update, but if you
don't store it back before another retrieval, it's too late to do so.

Example: Addressed-Sequential Update

In this example, GET and PUT macros are used to retrieve and update
records in an entry-sequenced data set. The records are variable in length,
maximum 200 bytes. The lengths of the records are not changed by update
(the length of a record can never be changed by addressed access).

ENTRY ACB

ADRUPD RPL

LOOP GET

LTR

BNZ

MACRF=(ADR,SEQ,
OUT)

ACB=ENTRY, UPD indicates update (or deletion).
AREA=WORK,
AREALEN=200,
OPTCD=(ADR,SEQ,
SYN,UPD,MVE)

RPL=ADRUPD

15, 15

ERROR

SHOWCB RPL=ADRUPD, Find out how long 1I:he record is.

LTR

BNZ

PUT

LTR

BNZ

B

ERROR

CHECKO

WORK DS

RLNGTH DS

AREA=RLNGTH,
FIELDS=RECLEN,
LENGTH=4

15, 15

CHECKO

RPL=ADRUPD

15, 15

ERROR

LOOP

Request wasn't accepted or failed.

Display failed.

CL2 0 0 Record-processing work area.

F Display area for length of records.

If you have inactive records in your entry-sequenced data set, you may reuse
the space they occupy by retrieving the records for update and restoring a
new record in their place.

With a key-sequenced data set, it is not possible to change the length of
records by addressed update because the index is not used and VSAM could
not split a control interval if required because of changing record length.

118 OS/VS Virtual Storage Access Method (YSAM) Programmer's Guide

Examplf~: Mark Records Inactive

Addressed-direct update varies from sequential update in the specification of
an RBA for a search argument.

In this example, GET and PUT macros are used to retrieve a record from an
entry-sequenced data set and to mark it as inactive. The record is marked as
inactive by putting a hexadecimal 'FF' in first byte of a record. The inactive
record will not be sequentially retrieved except for update.
ENTRYSEQ ACB MACRF=(ADR,DIR,

OUT)

LIST RPL ACB=ENTRYSEQ, UPD indicates update: storing the
AREA=RECORD, record back marked inactive.
AREAL EN = 1 00 ,
OPTCD=(ADR,DIR,
SYN,UPD,MVE)

LOOP GET RPL=LIST

LTR 15,15

BNZ ERROR

Decide whether you still want the data in the
record.

B

ERROR

RECORD

LOOP

MVI

PUT

LTR

BNZ

B

DS

RECORD,X'FF'

RPL=LIST

15,15

ERROR

LOOP

CL100

Yes, retrieve the next record.

No, flag the record inactive.

Storing the record with an inactive
indicator is equivalent to deletion for an
entry-sequenced data set.

Request wasn't accepted or failed.

Work area for marking records.

Records of an entry-sequenced data set can't be deleted. If a record loses its
usefulness for your application, your program can mark it inactive by placing
a unique flag in some conventional part of the record so that when your
programs retrieve the record thereafter they can recognize and bypass it. You
can use the space occupied by an inactive record by retrieving it for update
and storing a new record in its place.

ERASE Macro (Delete a Record)
The ERASE macro is used with the GET macro to delete records in a
key-sequenced or relative record data set.

The format of the ERASE macro is:

I [/abel] I ERASE I RPL- address

where:

label
is one to eight characters that provides a symbolic address for the ERASE
macro.

Request Macros 119

Example: Keyed-Direct Deletion

RPL- address
specifies the address of a request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with aln expression that
generates a valid relocatable A-type address constant.

In this example, GET and ERASE macros are used to retrieve and delete
records. Not every record retrieved for deletion is deleted. The search
argument is a full key (5 bytes), compared equal.

DELETE ACB MACRF=(KEY,DIR,
OUT)

LIST RPL ACB=DELETE, UPD indicates deltetion.
AREA=WORK,
AREALEN=50,
ARG=KEYFIELD,
OPTCD=(KEY,DIR,
SYN,UPD,MVE,FKS,
KEQ)

LOOP MVC KEYFIELD, source Search argument for retrieval, from a
table or transaction record.

GET RPL=LIST

LTR 15,15

BNZ ERROR

Decide whether to delete the record.

B LOOP

ERASE RPL=LIST

LTR 15, 15

BNZ ERROR

B LOOP

ERROR

WORK DS CLSO

KEYFIELD DS CL5

No, retrieve the next record.

Yes, delete the record.

Request wasn't accc:~pted or failed.

Examine the data ff~cord here.

Search argument.

When you retrieve a record for deletion (OPTCD=UPD, same as retrieval for
update), VSAM is positioned at the record retrieved, in anticipation of a
succeeding ERASE (or PUT) request for that record. You are not required to
issue such a request, though. Another GET request nullifies any previous
positioning for deletion or update.

Keyed-sequential retrieval for deletion varies from direct in not using a search
argument (except for possible use of the POINT macro). Skip-sequential
retrieval for deletion (OPTCD=(SKP,UPD» has the same effect as direct,
but it is faster or slower depending on the number of control intervals
separating the records being retrieved.

120 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Addressed-Sequential Deletion

In this example, the ERASE macro is used to delete records from a
key-sequenced data set. Not every record retrieved for deletion is deleted.
Skipping is effected by POINT macro.
DELETE ACB

REQUEST RPL

LOOP

B

MVC

POINT

CHECK

LTR

BNZ

RETRIEVE GET

CHECK

LTR

BNZ

MACRF=(ADR,SEQ,
OUT)

ACB=DELETE, UPD indicates deletion.
AREA=WORK,
AREALEN=100,
ARG=ADDR,
OPTCD=(ADR,SEQ,
ASY,UPD,MVE)

RETRIEVE

ADDR,source

RPL=REQUEST

RPL=REQUEST

15,15

ERROR

RPL=REQUEST

RPL=REQUEST

15, 15

ERROR

Decide whether you need to skip to
another position (forward or
backward).

No, bypass the POINT.

Yes, move search argument for POINT
into search-argument field.

Position VSAM to the record to be
retrieved next.

Decide whether to delete the record.

ERROR

ADDR

WORK

B

ERASE

CHECK

LTR

BNZ

B

DS

DS

LOOP

RPL=REQUEST

RPL=REQUEST

15,15

ERROR

LOOP

F

CL100

No, skip ERASE and CHECK.

Yes, delete the record.

Request wasn't accepted or failed.

RBA search argument for POINT.

Work area.

Addressed deletion is allowed only for a key-sequenced data set. The records
of an entry-sequenced data set are fixed. When records are deleted using
addressed deletion from a key-sequenced data set, the index is not updated.

Request Macros 121

POINT Macro (Position for Access)

Example: Position with POINT

The POINT macro is used to position for access.

The format of the POINT macro is:

I [labelJ I POINT I RPL= address

where:

label
is one to eight characters that provides a symbolic address for the POINT
macro.

RPL= address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

In this example, the POINT macro is used to position at a re:cord identified by
a full key (five-byte) search argument, compared equal.

BLOCK ACB

POSITION RPL

LOOP MVC

POINT
LTR
BNZ

LOOP 1 GET
LTR
BNZ

DDNAME=IO

ACB=BLOCK,
AREA=WORK,
AREALEN=50,
ARG=SRCHKEY,
OPTCD={KEY,SEQ,
SYN,KEQ,FKS)

SRCHKEY, source

RPL=POSITION
15, 15
ERROR
RPL=POSITION
15, 15

ERROR
Process the record. Decide whether to skip to
another position (forward or backward).

ERROR

B

B

SRCHKEY DS

WORK DS

LOOP
LOOP 1

CL5

CLSO

Default MACRF options sufficient.

ARG operand and KEQ and FKS
OPTCD options dc~fine the POINT
request.

Search argument for positioning,
moved in from a table or a transaction
record.

Yes, skip.

No, continue in consecutive sequence.

Request wasn't acc(!pted or failed.

Search-argument fi'eld for POINT
request.

VSAM puts a record here for each GET
request.

122 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

No access is gained to a record with POINT. POINT causes VSAM to be
positioned ahead or back to the specified record for a subsequent sequential
GET request, which retrieves the record. If, after positioning, you issue a
direct request by way of the same request parameter list, VSAM doesn't
remember the position established by the POINT. VSAM would then either
be positioned somewhere else or not positioned at all, depending on whether
OPTCD=NSP or UPD was specified or OPTCD=NUP.

Positioning by address is identical to positioning by key, except that the
search argument is an RBA, which must be matched equal to the RBA of a
record in the data set.

I When a POINT is issued for a subsequent VSAM request, both the POINT
and the request must be in the same processing mode.

CHECK Macro (Suspend Processing)
The CHECK macro is used to suspend processing to await the completion of
VSAM's processing of the request.

The format of the CHECK macro is:

I [label] I CHECK I RPL= address

where:

label
is one to eight characters that provides a symbolic address for the CHECK
macro.

RPL= address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Request Macros t 23

Example: Check Return Codes after an Asynchronous Request

In this example, return codes are checked after an asynchronous request. The
CHECK macro is used to cause an exit to be taken if there is a logical or
physical error or if the end of the data set is reached.
REQPARMS RPL OPTCD=ASY

REJECTED

FAILURE

GET

LTR

RPL=REQPARMS

15, 15

BNZ REJECTED

CHECK RPL=REQPARMS

LTR

BNZ

15,15

FAILURE

Was the request completed
successfully?

Zero indicates the: request was
accepted. If it wasn't accepted, register
15 contains 4: REQP ARMS is active for
another request.
Continue to work on something that is
not dependent on the request.

CHECK would cause one of the three
exits to be taken if there was a logical or
physical error or iF the end of the data
set was reached and an active exit list
exists.

Test return indication in register 15.

Zero indicates the request completed
successfully. If it failed, register 15
contains 8 or 12: there was a logical or a
physical error.

Always test register 15 after the CHECK unless you provide exit routines
that terminate processing. If a routine returns to VSAM, register 15 is reset
and control is passed back to your program immediately aftl!r the CHECK.
An error-analysis routine normally issues SHOWCB or TESTCB to examine
the feedback field in the request parameter list, so that when your processing
program gets control back, it doesn't have to analyze the error-but it may
alter its processing if there was an error. If you don't provide an error-analysis
routine, your program can issue SHOWCB or TESTCB to analyze an error
when it gets control back following the CHECK.

Example: Check Return Codes after a Synchronous Request

With synchronous processing, you should test register 15 after the request
because the request may not have been accepted (register 15 contains 4) or
because an error might have occurred (8 or 12):

GET RPL=REQPARMS

LTR 15, 15

BNZ REJFAIL

REJFAIL

124 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Was the request completed
successfully?

If branch isn't taken, request was
accepted and completed successfully.

Example: Overlap Processing

In this example, the CHECK macro is used to await completion of a request
before continuing to other processing. Access is asynchronous.

BLOCK ACB

LIST RPL

LOOP GET

LTR

BNZ

Do other processing.

CHECK

LTR

BNZ

Process the record.

B

NOTACCEP

ERROR

WORK DS

ACB=BLOCK,
AREA=WORK,
AREALEN=50,
OPTCD=ASY

RPL=LIST

15,15

NOTACCEP

RPL=LIST

15,15

ERROR

LOOP

CL50

Asynchronous access.

Suspends your processing to await
completion of GET if necessary and to
cause VSAM to indicate return codes.

Request wasn't accepted.

Request failed.

Work area.

After issuing the request, make sure that VSAM accepted it before you go on
to do other processing. When you have done as much other processing as you
can, issue the CHECK macro. VSAM will not give you back control now
until the request is complete. If you don't want to issue CHECK until you
know the request is complete, use the ECB operand of the RPL macro or the
IO=COMPLETE operand of the TESTCB macro. After you issue the
CHECK, VSAM immediately returns a code and takes an exit, if necessary.
See "RPL Macro (Generate a Request Parameter List)" and "GENCB Macro
(Generate a Request Parameter List)" in the chapter "Control Block
Macros" for information on the ECB operand.

Request Macros 125

Example: Suspend a Request for Many Records

In this example, a CHECK macro is issued for the first request parameter list
in a chain of parameter lists. If an error occurred for one of the request
parameter lists in the chain and you have supplied error-analysis routines,
VSAM takes a LERAD or SYNAD exit before it returns control to your
program after the CHECK.
FIRST RPL

SECOND RPL

THIRD RPL

LOOP GET

LTR

BNZ

Do other processing.

CHECK

LTR

BNZ

ACB=BLOCK,
AREA=AREA 1 ,
AREALEN=50,
NXTRPL=SECOND,
OPTCD=ASY

ACB=BLOCK,
AREA=AREA2 ,
AREALEN=50,
NXTRPL=THIRD,
OPTCD=ASY

ACB=BLOCK,
AREA=AREA3 ,
AREALEN=50,
OPTCD=ASY

RPL=FIRST

15,15

NOTACCEP

RPL=FIRST

15, 15

ERROR

Process the three records retrieved by the GET.

B LOOP

NOTACCEP

ERROR

AREA 1 DS CL50

AREA2 DS CL50

AREA3 DS CL50

Last list doesn't indicate a next list.

Request gives the address of the first
request parameter list.

Request wasn't accepted.

Display the feedback field
(FIELDS-FDBK) of each request
parameter list to find out which one had
an error.

A single GET request causes VSAM to
put a record in each of AREA 1,
AREA2, and AREA3.

After the CHECK, register 15 is set to indicate the status of the request. A
code of 0 indicates that no error was associated with any of the request
parameter lists. Any other code indicates that an error occurred for one of the
request parameter lists. You should issue a SHOWCB macro for each request
parameter list in the chain to find out which one had an error. VSAM doesn't
process any of the request parameter lists beyond the one with an error.

126 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

ENDREQ Macro (Terminate a Request)
The ENDREQ macro is used to terminate a request.

The format of the ENDREQ macro is:

I [label] I ENDREQ I RPL= address

where:

label
is one to eight characters that provides a symbolic address for the
ENDREQ macro.

RPL= address
specifies the address of the request parameter list that defines the request.
You may specify the address in register notation (using a register from 1
through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

Example: Release Positioning for Another Request

In this example, the ENDREQ macro is used to cause VSAM to release
positioning for a request parameter list. There are three request parameter
lists, all of which require VSAM to have the ability to remember its position,
one only temporarily and two until VSAM is explicitly requested to forget its
position. VSAM is given the ability to remember only two positions
concurrently (STRNO=2).

BLOCK ACB MACRF=(SEQ, DIR),
STRNO=2

SEQ RPL ACB=BLOCK, VSAM must remember its position.
OPTCD=SEQ

DIRUPD RPL ACB=BLOCK, VSAM must remember its position until
OPTCD=(DIR,UPD) explicitly requested to forget it by PUT

orENDREQ.

DIRNUP RPL ACB=BLOCK, VSAM must be able to temporarily
OPTCD=(DIR,NUP) remember its position.

LOOP GET RPL=SEQ VSAM now remembers its position for
this request.

LTR 15,15
BNZ ERROR
GET RPL=DIRNUP VSAM remembers its position for this

request only while it is processing the
request.

LTR 15,15

BNZ ERROR
GET RPL=DIRUPD VSAM can therefore remember its

position for this request, even though
STRNO-2.

LTR 15,15
BNZ ERROR

Request Macros 127

Decide whether to update the record.

B FORGET
PUT RPL=DIRUPD

LTR 15,15
BNZ ERROR
B LOOP

FORGET ENDREQ RPL=DIRUPD

ERROR

LTR
BNZ
B

15,15

ERROR
LOOP

No.

Yes, update the record, causing VSAM
to forget its position for DIRUPD.

Cause VSAM to forget its position for
DIRUPD.

Request wasn't accepted or failed.

The use of ENDREQ illustrated here is to cause VSAM to forget its position
for one request parameter list so a request defined by another request
parameter list can be issued. When PUT is issued after a DIRUPD GET
request, ENDREQ need not be issued, since PUT causes VSAM to forget its
position (the next DIRUPD GET doesn't depend on VSAM's remembering
its position). You need to cause VSAM to forget its position when you have
issued requests for as many request parameter lists requiring concurrent
positioning as the number you specified for STRNO (in the ACB macro) and
you want to issue a request for yet another request parameter list. In the
example, DIRNUP cannot be reissued unless VSAM is freed from
remembering its position for either SEQ or DIRUPD. VSAM remembers its
position for SEQ because SEQ's requests are sequential and depend on
VSAM's remembering its position. Another result of ENDlREQ is that buffers
are written out if required.

To cause VSAM to give up its position associated with a chain of request
parameter lists, specify the first request parameter list in th.e chain in your
ENDREQ macro.

ENDREQ can also be used to cancel an asynchronous request-rather than
suspending processing with CHECK. But simply ignoring ~L request whose
completion you are not interested in is adequate.

Because VSAM remembers its position after a direct GET with
OPTCD-UPD, if no PUT or ENDREQ follows, you can switch to sequential
access and use the positioning for a GET.

128 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

USING ISAM PROGRAMMING WITH VSAM

New Data Sets

VSAM, through its ISAM interface program, enables a debugged program
that processes an indexed-sequential data set to process a key-sequenced data
set. The key-sequenced data set may have been converted from an
indexed-sequential or a sequential data set (or another VSAM data set) or
may have been loaded by one of your own programs. The loading program
may be coded with VSAM macros or with ISAM macros or PL/I or COBOL
statements. That is, you can load records into a newly defined key-sequenced
data set with a program that was coded to load records into an
indexed-sequential data set.

There are some minor restrictions on the types of processing an ISAM
program may do if it is to be able to process a key-sequenced data set. These
restrictions are described in "Restrictions in the Use of the ISAM Interface"
later in this chapter.

Significant performance improvement can be gained by modifying an ISAM
program that issues multiple ·OPEN and CLOSE macros to switch between a
QISAM and BISAM DCB. The ISAM program can be modified to open the
QISAM and BISAM DCBs at the beginning of the program and to close them
when all processing is complete. The performance improvement is
proportional to the frequency of OPEN and CLOSE macros in the ISAM
program.

Figure 13 shows the relationship between ISAM programs processing VSAM
data with the ISAM interface and VSAM programs processing the data.

ISAM
Interface

Access

Interpret Each Request

Access

VSAM

Existing ISAM Programs

Unmodified

Modified to
Meet Restrictions

ISAM Programs
Converted to
VSAM Programs

(To take advantage of additional
functions of VSAM)

Figure 13. Use of ISAM Processing Programs

Using ISAM Programming With VSAM 129

How an ISAM Program Can Process a VSAM Data Set
When a processing program that uses ISAM (assembler-language macros,
PL/I or COBOL) issues an OPEN to open a key-sequenced data set, the
ISAM interface is given control to:

• Construct control blocks that are required by VSAM.

• Load the appropriate ISAM interface routines into virtual storage.

• Initialize the ISAM DCB (data control block) to enable the interface to
intercept ISAM requests.

• Take the DCB exit requested by the processing program ..

The ISAM interface intercepts each subsequent ISAM request, analyzes it to
determine the equivalent keyed VSAM request, defines the keyed VSAM
request in a request parameter list, and initiates the request ..

The ISAM interface receives return codes and exception codes for logical and
physical errors from VSAM, translates them to ISAM codes, and routes them
to the processing program or error-analysis (SYNAD) routine by way of the
ISAM DCB or DECB. Figure 14 shows QISAM error conditions and the
meaning they have when the ISAM interface is being used.

Figure 15 shows BISAM error conditions and the meaning they have when
the ISAM interface is being used.

If invalid requests occur in BISAM that didn't occur previollsly and the
request parameter list indicates that VSAM isn't able to handle concurrent
data-set positioning, the value specified for the STRNO AMP parameter
should be increased. If the request parameter list indicates an exclusive-use
conflict, reevaluate the share options associated with the data.

Figure 16 gives the contents of registers 0 and 1 when a SYNAD routine
specified in a DCB gets control.

You may also specify a SYNAD routine by way of the DD AMP parameter
(see "JCL for Processing with the ISAM Interface" later in this chapter).
Figure 17 gives the contents of registers 0 and 1 when a SYNAD routine
specified by way of AMP gets control.

130 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Request PlU'lUDeter
Byte and Offset QISAMMe Error Detected By LIst Error Code Interface/VSAM Me

DCBEXCDI

Bit 0 Record not found Interface Record not found (SETL K for a deleted
record)

VSAM 16 Record not found

VSAM 24 Record on non-mountable volume

Bit 1 Invalid device address Always zero

Bit 2 Space not found VSAM 28 Data set cannot be extended

VSAM 40 Virtual storage not available

Bit 3 Invalid request Interface Two consecutive SETL requests

Interface Invalid SETL (I or ID)

Interfac~ Invalid generic key (KEY-O)

VSAM 4 Request after end-of -data

VSAM 20 Exclusive use conflict

VSAM 36 No key range defined for insertion

VSAM 64 Placeholder not available for concurrent
data-set positioning

VSAM 96 Key change attempted

Bit 4 Uncorrectable input VSAM 4 Physical read error (register 15 contains
error a value of 12) in the data component

VSAM 8 Physical read error (register 15 contains
a value of 12) in the index component

VSAM 12 Physical read error (register 15 contains
a value of 12) in the sequence set of the
index

Bit 5 Uncorrectable output VSAM 16 Physical write error (register 15 contains
error a value of 12) in the data component

VSAM 20 Physical write error (register 15 contains
a value of 12) in the index component

VSAM 24 Physical write error (register 15 contains
a value of 12) in the sequence set of the
index

Bit 6 Unreachable block VSAM Logical error not covered by other
(input) exception codes

Bit 7 Unreachable block VSAM Logical error not covered by other
(output) exception codes

DEBEXCm

Bit 0 Sequence check VSAM 12 Sequence check

Interface Sequence check (occurs only during
resume load)

Bit 1 Duplicate record VSAM 8 Duplicate record

Bit 2 DCB closed when error VSAM Error in Close
routine entered

Bit 3 Overflow record Interface Always one

Figure 14 (Part 1 of 2). QISAM Error Conditions

Using ISAM Programming With VSAM 131

Byte and Offset QISAM Meaning Error Detected By

Bit 4 Length of logical Interface
record is greater than
DCBLRECL(VLR
only)

VSAM

Bits 5-7 Reserved

Figure 14 (Part 2 of 2). QISAM Error Conditions

Byte and Offset BISAM Meaning Error Detected By

DECBEXCt

Bit 0 Record not found VSAM

VSAM

Bit 1 Record length check VSAM

Bil2 Space not found VSAM

Bit 3 Invalid request Interface

VSAM

VSAM

VSAM

VSAM

Bit 4 Uncorrectable I/O VSAM
error

Bit 5 Unreachable block VSAM

Bit 6 Overflow record Interface

Bit 7 Duplicate record VSAM

DECBEXC2

Bits 0 - 5 Reserved

Bit 6 Channel program
initiated by an
asynchronous routine

Bit 7 Previous macro was Interface
READKU

Figure 15. BISAM Error Conditions

Reg. BISAM

Request Parameter
List Error Code

108

Request Parameter
List Error Code

16

24

108

28

20

36

64

96

8

QISAM

Interface/VSAM Meaning

Length of Logical record is greater than
DCBLRECL (VLR only)

Invalid record lenl~th

Always zero

Interface/VSAM Meaning

Record not found

Record on non-mountable volume

Record length che(;k

Data set cannot be extended

No request paramder list available

Exclusive-use conflict

No key range defined for insertion

Placeholder not available for concurrent
data-set positioning

Key change attempted

Physical error (regiister 15 will contain a
value of 12)

Logical error not covered by any other
exception code

Always one for READ requests

Duplicate record

Always zero

Always zero

Previous macro was READ KU

o Address of the DECB 0, or, for a sequence check, the address of a field
containing the higher key involvc:d in the check

Address of the DECB o
Figure 16. Register Contents for DCB-Specified ISAM SYNAD Roultine

132 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

ABEND Code Error Detected By

03B OPEN

031 VSAM

VSAM

LOAD

LOAD

039 VSAM

001 VSAM

BISAM

BISAM

Reg. BISAM

o Address of the DECB

Address of the DCB

QISAM

0, or, for a sequence check, the address of a field
containing the higher key involved in the check

Address of the DCB

Figure 17. Register Contents for AMP-Specified ISAM SYNAD Routine

If your SYNAD routine issues the SYNADAF macro, registers 0 and 1 are
used to communicate. When you issue SYNADAF, register 0 must have the
same contents it had when the SYNAD routine got control and register 1
must contain the address of the DCB.

When you get control back from SYNADAF, the registers have the same
contents they would have if your program were processing an
indexed-sequential data set: register 0 contains a completion code and register
1 contains the address of the SYNADAF message.

The completion codes and the format of a SYNADAF message are given in
OS/VS Data Management Macro Instructions.

Figure 18 shows abnormal-end (ABEND) codes issued by the ISAM interface
when there is no other method of communicating the error to the user.

If a SYNAD routine specified by way of AMP issues the SYNADAF macro,
the operand ACSMETH may specify either QISAM or BISAM, regardless of
which of the two is used by your processing program.

A dummy DEB is built by the ISAM interface to support:

• References by the ISAM processing program

• Checkpoint/ restart

• Abnormal end

ABEND
Module/Routine Issued By Error Condition

OPEN/VALID CHECK OPEN Validity check; either (1) Access Method Services
and DCB values for LRECL, KEYLE, and RKP
do not correspond, or (2) DISP-OLD, the DCB
was opened for output, and the number of logical
records is greater than zero (RELOAD is implied)

SYNAD SYNAD SYNAD (ISAM) was not specified and a VSAM
physical and logical error occurred

SCAN/GET and SETL SYNAD SYNAD (ISAM was not specified and an invalid
request was found

LOAD/RESUME LOAD SYNAD (ISAM) was not specified and a sequence
check occurred

LOAD LOAD SYNAD (ISAM) was not specified and the RDW
(Record Descriptor Word) was greater than
LRECL

SCAN/EODAD SCAN End-of-data was found, but there was no EODAD
exit

SYNAD II 0 error detected

SYNAD BISAM II 0 error detected during check

BISAM BISAM Invalid request

Figure 18. ABEND Codes Issued by the ISAM Interface

Using ISAM Programming With VSAM 133

Figure 19 shows the DEB fields that are supported by the ISAM interface;
field meanings are the same as in ISAM, except as noted.

DEB Section Bytes Flelds Supported

PREFIX 16 LNOTH

BASIC 32 TCBAD, OPATB, DEBAD, OFLGS (DISP ONLY),
FLOSI (ISAM-interface bit), AMLNO (104), NMEXT(2).
PRIOR, PROTO, DEBID, DCBAD, EXSCL (O-DUMMY
DEB),APPAD

ISAM DEVICE 16 EXPTR, FPEAD

DIRECT ACCESS 16 UCBAD (VSAM UCB)

ACCESS METHOD 24 WKPT5 (ISAM-interface control bllockpointer), FREED
(pointer to IDAIIFBF)

Figure 19. DEB Fields Supported by ISAM Interface

Converting an Indexed-Sequential Data Set
Access Method Services is used to convert an indexed-sequential data set to a
key-sequenced data set. Assuming that a master and/ol user catalog has been
defined, define a key-sequenced data set with the attributes, performance
options, etc., that you want and then you use the Access ~fethod Services
REPRO command to convert the indexed-sequential records and load them
into the key-sequenced data set. See the appropriate Access Method Services
publication for information about defining a key-sequenced data set and
about converting an indexed-sequential data set. VSAM builds the index for
the key-sequenced data set as it loads the data set.

Each volume of a multivolume component must be on the same type of
device; the data component and the index component, however, may be on
volumes of devices of different types.

When you define the key-sequenced data set into which the
indexed-sequential data set is to be copied, you must specify the attributes of
the VSAM data set for variable- and fixed-length records. For variable-length
records:

• VSAM record length equals ISAM DCBLRECL-4

• VSAM key length equals ISAM DCBKEYLE

• VSAM key position equals ISAM DCBRKP-4

For fixed-length records:

• VSAM record length (average and maximum must be the same) equals
ISAM DCBLRECL (+ DCBKEYLE, if ISAM DCBRKP equals 0 and
records are unblocked)

• VSAM key length equals ISAM DCBKEYLE

• VSAM key position equals ISAM DCBRKP

Care should also be taken with the level of sharing allowed when the
key-sequenced data set is defined. If the ISAM program opens multiple DCBs
pointing to different DD statements, a share-options value of 1, which is the
default, allows only the first DD statement to be opened. See the appropriate
Access Method Services publication for a description of the~ share-options
values.

134 OS/VS Virtual Storage Access Method (V SAM) Programmer's Guide

JCL fo.r Converting from ISAM to VSAM

In VSl and VS2 systems, JCL is used to identify data sets and volumes for
allocation. In a VS2 system, data sets can also be allocated dynamically. See
OS/VS2 JCL and OS/VS2 System Programming Library: TSO for a
description of dynamic allocation.

If JCL is used to describe an indexed-sequential data set to be converted to
VSAM using the Access Method Services REPRO command, include
DCB=DSORG=IS. The key-sequenced data set that is to receive the
converted data set need not be described in J CL if it is to reside in a
previously defined data space. If it is to reside alone in a data space, the data
set is either allocated dynamically by name (in which case the volume on
which it is to reside must be mounted) in a VS2 system or is defined in a DD
statement in VSl or VS2 that includes DISP=OLD, volume and unit
information, the AMP parameter, and DSNAME=dsname, where dsname is
the name of the key-sequenced data set. In a VSl or VS2 system, use a
STEPCAT or JOBCAT DD statement as described in the chapter "Opening
and Closing a Data Set" to make user catalogs available; in a VS2 system,
you may also use dynamic allocation.

With ISAM, deleted records are flagged as deleted, but are not actually
removed from the data set. If your program depends upon a record's only
being flagged and not actually removed, you may want to keep these flagged
records when you convert and continue to have your programs process these
records. The Access Method Services REPRO command has a parameter
(ENVIRONMENT) that causes VSAM to keep the flagged records when you
convert.

JCL for Processing with the ISAM Interface
To execute your ISAM processing program to process a key-sequenced data
set, replace the ISAM DD card with a VSAM DD card using the DDNAME
that was used for ISAM. The VSAM DD card names key-sequenced data set
and gives any necessary VSAM parameters (by way of AMP). Specify
DISP=MOD for resume loading and DISP=OLD for all other processing.
You don't have to specify anything about the ISAM interface itself. The
interface is automatically brought into action when your processing program
opens a DCB whose associated DD statement describes a key-sequenced data
set (instead of an indexed-sequential data set). If you have defined your
VSAM data set in a user catalog, specify the user catalog in a JOBCAT or
STEPCAT DD statement.

The DCB parameter in the DD statement that identifies a VSAM data set is
invalid. Certain DCB-type information may be specified in the AMP
parameter, which is described later in this chapter.

Figure 20 shows the DCB fields supported by the ISAM Interface.

Using ISAM Programming With VSAM 135

Field
Name

BFALN

BLKSI

BUFCB

BUFL

BUFNO

DDNAM

DEBAD

DEVT

DSORG

EODAD

ESETL

EXCDI

EXCD2

EXLST

FREED

GET/PUT

KEYLE

LRAN

LRECL

LWKN

MACRF

NCP

NCRHI

OFLGS

OPTCD

RECFM

RKP

RORGI

RORG2

RORG3

SETL

ST

Meaning

Same as in ISAM; defaults to a doubleword

Set equal to LRECL if not specified

Same as in ISAM

The greater value of AMDLRECL or DCBLRECL if not specified

For QISAM, one; for BISAM, the value of STRNO if not specified

Same as in ISAM

During the DCB exit, contains the address of the OPEN work area; after
the DCB exit, contains the address of the dummy DEB built by the ISAM
interface

Set from the VSAM UCB TYPE

Same as in ISAM

Same as in ISAM

Address of the ISAM interface ESETL routine

See the QISAM exception codes

See the QISAM exception codes

Same as in ISAM

Address of the ISAM-interface dynamic buffering routine (IDAIIFBF)

For QISAM LOAD, the address of the ISAM-intedace PUT routine; for
QISAM SCAN, 0, the address of the ISAM-interface GET routine, 4, the
address of the ISAM-interface PUTX routine, and 8, the address of the
ISAM-interface RELSE routine

Same as in ISAM

Address of the ISAM-interface READ K/WRITE K routine

Set to the maximum record size specified in the A<:cess Method Services
DEFINE command if not specified (adjusted for variable-length, fixed,
unblocked, and RKP-O records)

Address of the ISAM-interface WRITE KN routine

Same as in ISAM

For BISAM, defaults to one

Set to a value of 8 before DCB exit

Same as in ISAM

Bit 0 (W), same as in ISAM; bit 3 (I), dummy records are not to be
written in the VSAM data set; bit 6 (L), dummy re(;ords are to be treated
as in ISAM; all other options ignored

Same as in ISAM; default to unblocked, variable-Ie:ngth records

Same as in ISAM

Set to a value of 0 after DCB exit

Set to a value of X'7FFFF' after DCB exit

Set to a value of 0 after DCB exit

For BISAM, address of the ISAM-interface CHECK routine; for QISAM,
address of the ISAM-interface SETL routine

Bit 1 (key-sequence check), same as in ISAM; bit 2 (loading has
completed), same as in ISAM

Figure 20 (Part 1 of 2). DCB Fields Supported by ISAM Interface

136 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Field
Name

SYNAD

TIOT

WKPT1

WKPT5

Meaning

Same as in ISAM

Same as in ISAM

For QISAM SCAN, + 112 address of the W1CBF field pointing to the
current buffer

Address of the IS AM-interface control block (IICB)

WKPT6 For QISAM LOAD, address of the dummy DCB work area vector
pointers; the only field supported is ISLVPTRS+4-pointer to KEYSA VE

Figure 20 (Part 2 of 2). DCB Fields Supported by ISAM Interface

AMP Parameter Specification

When an ISAM processing program is run with the ISAM interface, the AMP
parameter enables you to specify:

• The need for extra index buffers for simulating the residency of the highest
level(s) of an index in virtual storage (BUFNI)

• Whether to remove records flagged (OPTCD)

• What record format (RECFM) is used by the processing program

• The number of concurrent BISAM and QISAM (basic and queued
indexed-sequential access methods) requests that the processing program
may issue (STRNO)

• The name of an ISAM exit routine to analyze physical and logical errors
(SYNAD)

The AMP parameter has some subparameters that are peculiar to the ISAM
interface. The other subparameters of AMP (AMORG, BUFND, BUFSP,
CROPS, and TRACE), which can also be used with the interface, are
described in "How to Code JCL" in the chapter "Opening and Closing a
Data Set." The format of the AMP parameter (with the subparameters
discussed here) is:

/ / ... DO ••• [AMP='AMORG'[, 'BUFNI= number']
[,'OPfCD={I I L IlL}']
[,'RECFM={F I FB I V I VB}']
[, 'STRNO= number']
[, 'SYNAD=modulename ']]

where:

AMORG
specifies that a VSAM data set is to be processed.

BUFNI=number
specifies the number of I/O buffers VSAM is to use for index records. If
you don't specify BUFNI, VSAM uses as many index buffers as the
number specified for STRNO (1 if you don't specify STRNO). You may
specify for BUFNI a number 1 greater than STRNO (2 if you don't specify
STRNO) to simulate having the highest level of an ISAM index resident. If
you specify for BUFNI a number 2 or more greater than STRNO, you
simulate having intermediate levels of the index resident.

Using ISAM Programming With VSAM 137

OPfCD= {I I L I IL}
specifies how records flagged for deletion are to be treated. The values that
can be specified are:

L

I

IL

specifies that a record marked for deletion by your processing program
is to be kept in the data set. Although this parameter has the same
meaning and restrictions for the ISAM interface as it has for ISAM, it
may have to be specified in the AMP parameter when it wasn't
previously needed in the ISAM job control language .. It is required when
OPTCD=L is not specified in the DCB in the processing program
because OPTCD is not merged into the DSCB when the ISAM interface
is used.

specifies, when coded along with OPTCD=L in the DCB, that records
marked for deletion by your processing program are not written into the
data set by the ISAM interface. If OPTCD=I is specified in the AMP
parameter, but OPTCD=L isn't specified in the processing program's
DCB, records flagged for deletion are treated like any other records:
that is, AMP='OPTCD=I', without L anywhere specified, has no
effect.

specifies that if your processing program writes a record marked for
deletion, the ISAM interface is not to put the record into the data set.
(It issues a VSAM ERASE to delete the old record if your processing
program had previously read the record for update.) The result of this
parameter is the same as when AMP='OPTCD=I' is coded along with
OPTCD=L in the DCB in the processing program.

RECFM={F I FB I V I VB}
specifies the ISAM record format that your processing program is coded
for. Although this parameter thas the same meaning and restrictions for the
ISAM interface as it has for ISAM, it may have to be specified in the AMP
parameter when it wasn't previously required in the ISAM job control
language. RECFM is required when it is not specified in the DeB in the
processing program because RECFM is not merged into the DSCB when
the ISAM interface is used. All VSAM requests are for unblocked records.
If your program issues a request for blocked records, the ISAM interface
sets the overflow-record indicator for each record to indlicate that each is
being passed to your program unblocked. If RECFM isn't specified in the
AMP parameter or in the processing program's DCB, V is the default.

STRNO=number
specifies the number of request parameter lists the proc(~ssing program can
tie up concurrently. Neither VSAM nor the ISAM interface can anticipate
the number, so you must indicate it in the STRNO parameter. Specify a
number at least equal to the number of BISAM and QISAM requests that
your program can issue concurrently. (If you have subtasks, add the
number of such requests for each subtask together, plus an additional one
for each subtask that sequentially processes the same data set.) In a create
step, STRNO cannot be greater than 1.

138 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

SYNAD=modulename
specifies the name of a routine that the ISAM interface is to load and exit
to if a physical or logical error occurs when you are gaining access to the
key-sequenced data set. If your processing program already indicates a
SYNAD routine, the routine specified in the AMP SYNAD parameter
replaces it.

The ISAM interface uses a request parameter list to describe a request that
your program issues. The interface uses the same request parameter list over
and over:

• With BISAM, a READ for update ties up a request parameter list until a
WRITE or FREEDBUF is issued (at which time the interface issues an
ENDREQ for the request parameter list).

• With QISAM, a request parameter list is tied up until an ESETL is issued
(at which time the interface issues ENDREQ).

If the processing program issues an ISAM request when no more request
parameter lists are available, the ISAM interface returns an ISAM code that
indicates an invalid request. If you're running subtasks, it's possible to reissue
the invalid request and have it complete successfully when another subtask
frees a request parameter list.

The SYNAD routine must not issue VSAM macros or check for VSAM return
codes. The ISAM interface translates all VSAM codes to appropriate ISAM
codes.

You need not modify or replace a SYNAD routine that issues only a CLOSE,
ABEND, SYNADAF, or SYNADRLS macro or merely examines DCB or
DECB exception codes.

Restrictions in the Use of the ISAM Interface
Some restrictions were indicated earlier in this chapter that may require you
to modify an ISAM processing program to process a key-sequenced data set.
All VS and VSAM restrictions apply to the use of the ISAM interface; for
example:

• VSAM doesn't allow the OPENJ macro: if your program issues it, remove
it or replace it with the OPEN macro.

• If your processing program was coded on the assumption that the
indexed-sequential data set it was processing was a temporary data set, you
may need to modify the program: a VSAM data set cannot be temporary.

Additional restrictions are:

• A program must run successfully under ISAM; the interface doesn't check
for parameters that are invalid for ISAM.

i
. If your ISAM program creates dummy records with a maximum key to

avoid overflow, remove that code for VSAM.

• If your program counts overflow records to determine reorganization
needs, its results will be meaningless with VSAM data sets.

• The work area into which data records are read must not be shorter than a
record. If your processing program is designed to read a portion of a record
into a work area, you must change the design. The interface takes the
record length indicated in the DCB to be the actuallength of the data

Using ISAM Programming With VSAM 139

Example: Converting a Data Set

record. The record length in a BISAM DECB is ignored except when you
are replacing a variable-length record with the WRITE macro.

• You may share data among subtasks that specify the same DO statement in,
their DCB(s), and VSAM ensures data integrity. But if you share data
among subtasks that specify different DO statements for the data, you are
responsible for data integrity. The ISAM interface doesn't ensure DCB
integrity when two or more DCBs are opened for a data set. Not all of the
fields in a DCB can be counted on to contain valid information.

• If your processing program issues the SETL I or SETL ID instruction, you
must modify the instruction to some other form of the SETL or take it out.
The ISAM interface cannot translate a request that dep1ends on a specific
block or device address.

• Although asynchronous processing may be specified in :an ISAM
processing program, all ISAM requests are handled syD(~hronously by the
ISAM interface; WAIT and CHECK requests are always satisfied
immediately. The ISAM CHECK macro doesn't result in a VSAM
CHECK macro's being issued but merely causes exception codes in the
DECB (data event control block) to be tested.

• For processing programs that use locate processing, the ISAM interface
constructs buffers to simulate locate processing.

• For blocked-record processing, the ISAM interface simulates
unblocked-record processing by setting the overflow-re<:ord indicator for
each record. (In ISAM, an overflow record is never blocked with other
records.) The ISAM RELSE instruction causes no action to take place.

• If your ISAM SYNAD routine examines information that cannot be
supported by the ISAM interface (for example, the lOB), specify a
replacement ISAM SYNAD routine in the AMP parameter of the VSAM
DO statement.

• Dynamic allocation with TSO (use LOGON PROC).

• CATALOG/DADSM macros in the ISAM processing program must be
replaced with Access Method Services commands.

In this example, the indexed-sequential data set to be converted
(ISAMDAT A) is cataloged either in the system catalog or in a VSAM
catalog. A key-sequenced data set, VSAMDAT A, has previously been
defined in user catalog USERCTLG. Because both the indexed-sequential
and key-sequenced data set are cataloged, unit and volume information need
not be specified.

ISAMDATA contains records flagged for deletion; these records are to be
kept in the VSAM data set.

IICONVERT JOB
IIJOBCAT DD DISP=SHR,DSNAME=USERCTLG
IISTEP EXEC PGM=IDCAMS
IISYSPRINT DD SYSOUT=A
IIISAM DD DISP=OLD,DSNAME=ISAMDATA,DCB=DSORG=IS
IIVSAM DD DISP=OLD,DSNAME=VSAMDATA
IISYSIN DD *

1*

REPRO INFILE(ISAM ENVIRONMENT(DUMMY))
OUTFILE(VSAM)

140 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

To drop records flagged for deletion in the indexed-sequential data set, omit
ENVIRONMENT(DUMMY).

Example: Issuing a SYNADAF Macro

The following example illustrates how a SYNAD routine specified by way of
AMP may issue a SYNADAF macro without preliminaries-registers 0 and 1
already contain what SYNADAF expects to find.

AMPSYN CSECT

USING *, 15 Register 15 contains the entry address
toAMPSYN.

SYNADAF ACSMETH=QISAM Either QISAM or BISAM may be

STM

BALR

USING

L

L

TM

BO

TM

BO

BISAM TM

BO

QISAM TM

BO

INVBISAM EQU

INVQISAM EQU

LM

DROP

14,12,12(13)

7,0

*,7

15,132(1)

14,128(1)

42(15),X'40'

QISAM

43(15),X'40'

QISAM

24(14),X'10'

INVBISAM

80 (15) , X ' 10'

INVQISAM

*
*
14,12, 12(13)

7

USING AMPSYN,15

SYNADRLS

BR 14

END AMPSYN

specified.

Load address of next instruction into
register 7 for base register.

The address of the DCB is stored 132
bytes into the SYNADAF message.

The address of the DECB is stored 128
bytes into the SYNADAF message.

Does the DCB indicate QISAM scan?

Yes.

Does the DCB indicate QISAM load?

Yes.

Does the DECB indicate an invalid
BISAM request?

Yes.

The routine might print the SYNADAF
message or issue ABEND.

Does the DCB indicate an invalid
QISAM request?

Yes.

The routine might print the SYNADAF
message or issue ABEND.

When the processing program closes the data set, the interface issues VSAM
PUT macros for ISAM PUT locate requests (in load mode), deletes the
interface routines from virtual storage, frees virtual-storage space that was
obtained for the interface, and gives control to VSAM.

Using ISAM Programming With VSAM 141

USER-WRITfEN EXIT ROUTINES

User-written routines may be supplied to:

• Analyze logical errors

• Analyze physical errors

• Perform end-of-data processing

• Record transactions made against a data set

• Perform user-security verification

LElUD Exit Routine to AlUllyu Logical En-on

A LERAD routine should examine the feedback field in the request
parameter list to determine what logical error occurred. What the routine does
after determining the error depends on your knowledge of the kinds of things
in the processing program that may have caused the error. After a logical
error is corrected, return to VSAM. If the error cannot be corrected, close the
data set and either terminate processing or return to VSAM.

Figure 21 gives the contents of the registers when VSAM exits to the LERAD
routine.

Rea. Contents

o Unpredictable.

Address of the request parameter list that contains the feedback field the routine
should examine. The register must contain this address if you return· to VSAM.

2-13 Same as when the request macro was issued. Register 13, by convention, contains
the address of your processing program's 72-byte save area, which may not be
used as a save area by the LERAD routine if the routine returns control to
VSAM.

14 Return address to VSAM.

15 Entry address to the LERAD routine. The register doesn't contain the
logical-error indicator.

Figure 21. Contents of Registers at Entry to LERAD

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and
returns to VSAM, it must provide a save area and restore registers 13 and 14,
which are used by these macros.

If a logical error occurs and no LERAD routine is provided (or the LERAD
exit is inactive), VSAM returns codes in register 15 and in the feedback field
of the request parameter list to identify the error. See "Logical Errors" in the
chapter "Request Macros" for a description of these return codes.

SYNA.D Exit Routine to Analyze Physical En-on

VSAM exits to a SYNAD routine if a physical error occurs when you request
access to data. It also exits to a SYNAD routine when you close a data set if a
physical error occurs while VSAM is writing the contents of a buffer out to
direct-access storage.

A SYNAD routine should examine the feedback field in the request
parameter list to identify the type of physical error that occurred. It should
then get the address of the message area, if any, from the request parameter

User-Written Exit Routines 143

list, so that it can examine the message for detailed informa~tion about the
error.

The main problem with a physical error is the possible loss of data. You
should try to recover your data before continuing to process. Input operations
(ACB MACRF=IN) are generally less serious than output or update
operations (MACRF=OUT), because your request was not attempting to
alter the contents of the data set.

If the routine cannot correct an error, it might print the physical-error
message, close the data set, and terminate the program. If the error occurred
while VSAM was closing the data set, and if another error occurs after the
exit routine issues a CLOSE macro, VSAM doesn't exit to the routine a
second time.

If the SYNAD routine returns to VSAM, whether the error was corrected or
not, VSAM drops the request and returns to your processing program at the
instnlction following the last executed instruction. Register 15 is reset to
indicate that there was an error, and the feedback field in the request
parameter list identifies it.

Physical errors affect positioning: if a GET was issued that would have
positioned VSAM for a subsequent sequential GET and an error occurs,
VSAM is positioned at the control interval next in key (RPL OPTCD=KEY)
or in entry (OPTCD=ADR) sequence after the control interval involved in
the error. The processing program can therefore ignore the error and proceed
with sequential processing. With direct processing, the likelihood of
reencountering the control interval involved in the error depends on your
application.

Figure 22 gives the contents of the registers when VSAM exits to the SYNAD
routine.

Reg. Contents

o Unpredictable.

Address of the request parameter list that contains a feedbac:k return code and
the address of a message area, if any. If you issued a request macro, the request
parameter list is the one pointed to by the request macro; if you issued a CLOSE
macro, the request parameter list was built by VSAM to process the close
request. Register 1 must contain this address if the SYNAD routine returns to
VSAM.

2-13 Same as when the request macro or CLOSE macro was issued. Register 13, by
convention, contains the address of your processing program's 72-byte save area,
which may not be used by the SYNAD routine if it returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the SYNAD routine. The register doesn't contain the
physical-error indicator.

Figure 22. Contents of Registers at Entry to SYNAD

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and
returns to VSAM, it must provide a save area and restore registers 13 and 14,
which are used by these macros.

See "Physical Errors" in the chapter "Request Macros" for the format of a
physical-error message that can be written by the SYNAD routine.

If a physical error occurs and no SYNAD routine is provided (or the SYNAD
exit is inactive), VSAM returns codes in register 15 and in the feedback field

144 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Exception Exit Ro"tine

of the request parameter list to identify the error. See "Physical Errors" in the
chapter "Request Macros" for a description of these return codes.

You can provide an exception exit routine to monitor I/O errors associated
with a data set. The name of your routine is specified via the Access Method
Services DEFINE command.

If an I/O error occurs while a program with a specified SYNAD routine is
processing a data set with a specified exception exit, the exception exit is
taken first.

See the appropriate Access Method Services publication for information
about how exception exits are established, changed, or nullified.

EODAD Exit Routine to Process End-of-Data

VSAM exits to an EODAD routine when an attempt is made to sequentially
retrieve or point to a record beyond the last record in the data set (one with
the highest key for keyed access and the one with the highest RBA for
addressed access). (VSAM doesn't take the exit for direct requests that
specify a record beyond the end.) If the EODAD exit isn't used, the condition
is considered a logical error (FDBK code X'04') and can be handled by the
LERAD routine, if one is supplied.

The typical actions of an EODAD routine are to issue completion messages,
close the data set, and terminate processing without returning to VSAM. If
the routine returns to VSAM and another GET request is issued for access to
the data set, VSAM exits to the LERAD routine.

If a processing program retrieves records sequentially with a request defined
by a chain of request parameter lists, the EODAD routine must determine
whether the end of the data set was reached for the first request parameter
list in the chain. If not, then one or more records have been retrieved but not
yet processed by the processing program.

Figure 23 gives the contents of the registers when VSAM exits to the
EODAD routine.

Reg. Contents

o Unpredictable.

Address of the request parameter list that defines the request that occasioned
VSAM's reaching the end of the data set. The register must contain this address if
you return to VSAM.

2-13 Same as when the request macro was issued. Register 13, by convention, contains
the address of your processing program's 72-byte save area, which may not be
used as a save area by the EODAD routine if it returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the EODAD routine.

Figure 23. Contents of Registers at Entry to EODAD

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and
returns to VSAM, it must provide a save area and restore registers 13 and 14,
which are used by these macros.

The type of data set whose end was reached can be determined by examining
the request parameter list for the address of the access-method control block

User-Written Exit Routines 145

that connects the program to the data set and testing its A TRB
characteristics.

JRNAD Exit Routine to Joumaliu T1'tlllSactions
A JRNAD routine can be provided to record transactions ;against a data set
and to keep track of changes in the RBAs of records. VSAM takes the
JRNAD exit each time the processing program issues a GET, PUT, or
ERASE; each time data is shifted right or left in a control interval or is moved
to another control interval to accommodate a record's being deleted, inserted,
shortened, or lengthened; and path time an I/O error occurs.

Because the JRNAD is taken for I/O errors, a journal exit may zero out, or
otherwise alter, the physical-error return code, so that a series of operations
may continue to completion, even though one or more of the operations
failed.

Figure 24 gives the contents of the registers when VSAM exits to the JRNAD
routine.

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB, it must
restore register 14; which is used by these macros, before it returns to VSAM.

If the exit routine uses register 1, it must restore it with the parameter-list
address before returning to VSAM. (The routine must return for completion
of the request that caused VSAM to exit.)

For journalizing transactions (when VSAM exits because of a GET, PUT, or
ERASE), you can use the SHOWCB macro to display information in the
request parameter list about the record that was retrieved, stored, or
deleted-FmLDS= (AREA,KEYLEN ,RBA,RECLEN), for example. You
can also use the TESTCB macro to find out whether a GET or a PUT was for
update (OPTCD=UPD).

For recording RBA changes, you must calculate how many records there are
in the data being shifted or moved, so you can keep track of the new RBA for
each one. With fixed-length records, you calculate the number by dividing the
record length into the number of bytes of data being shifted. With
variable-length records, you could calculate the number by using a table that
not only identifies the records (by associating a record's key with its RBA),
but also gives their length.

Some control-interval splits involve data being moved to two new control
intervals, and control-area splits normally involve many control intervals'
contents being moved. In these cases, VSAM exits to the JRNAD routine for
each separate movement of data to a new control interval.

You should provide a routine to keep track of RBA changes caused by
control-interval and control-area splits. RBA changes that occur by way of
keyed access to a key-sequenced data set must also be recorded if you intend
to process the data set later by direct-addressed access.

If your JRNAD routine only journals transactions it should ignore reason
X'OC' and return to VSAM; conversely, it should ignore reasons X'OO',
X'04', and X'08' if it only records RBA changes.

The JRNAD exit must be indicated as active before the data set for which the
exit is to be used is opened, and the exit must not be made inactive during
processing. If you define more than one access-method control block for a
data set and want to have a JRNAD routine, the first ACB you open for the
data set must specify the exit list that identifies the routine.

146 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Reg. CoateDts

o Unpredictable.

Address of a parameter list with the following format:

4 bytes Address of the request parameter list that defines the request that
caused VSAM to exit to the routine

4 bytes Address of a 5-byte field that identifies the data set being processed.
This field has the format:

4 bytes Address of the access-method control block that is specified
by the request parameter list that defines the request that
occasioned the JRNAD exit's being taken

1 byte Indication of whether the data set is the data (X'OI ') or the
index (X'02') component

4 bytes For RBA changes only, the RBA of the first byte of data that is being
shifted or moved

4 bytes For RBA changes only, the number of bytes of data that is being
shifted or moved (this number doesn't include free space, if any, or
control information---except for a control-area split, when the whole
contents of a control interval are moved to a new control interval)

4 bytes For RBA changes only, the RBA of the first byte to which data is
being shifted or moved

1 byte Indication of the reason VSAM exited to the JRNAD routine:

1 byte

X'OO'
X'04'
X'OS'
X'OC'
X'10'
X'14'
X'IS'
X'IC'

GET request
PUT request
ERASE request
RBAchange
Read spanned record segment
Write spanned record segment
Reserved
Reserved

For shared resources:1

X'20'
X'24'
X'28'
X'2C'

Reserved.

Control area split
Input error
Output error
Buffer write

2-13 Unpredictable.

14 Return address to VSAM.

15 Entry address to the JRNAD routine.

lDescribed in OS/VS Virtual Storage Access Method (VSAM Options for Advanced
Applications.

Figure 24. Contents of Registers at Entry to JRNAD

User-Sec"rity-Verificatio" Ro"ti"e
If you use VSAM password protection, you may also have your own routine
to check a requester's authority. VSAM transfers control to your routine,
which must reside in SYS 1.LINKLm, when a requester gives a correct
password other than the master password.

You may, through the Access Method Services DEFINE command, identify
your user security-verification routine (USVR) and associate up to 256 bytes
of your own security information with each data set to be protected. This
information-the user security-authorization record (USAR)-is made
available to the USVR when the routine gets control. You may restrict access
to the data set as you choose; for example, you may require that the owner of

User-Written Exit Routines 147

a data set give his ID when he defines the data set and then allow only the
owner to gain access to the data set.

Figure 25 gives the contents of the registers when VSAM gives control to the
USVR.

Reg. Contents

o Unpredictable.

Address of a parameter list with the following format:

44 bytes Name of the data set for which authority to process is to be verified
(the name you specified when you defined it with Access Method
Services)

8 bytes Prompting code (or Os)

8 bytes Owner identification (or Os)

8 bytes The password that the requester gave (it has been verified by VSAM)

2 bytes Length of the USAR (in binary)

TheUSAR

2-13 Unpredictable.

14 Return address to VSAM.

15 Entry address to the USVR. When the routine returns to VSAM, it indicates by the
following codes in register 15 whether the requester has been authorized to gain
access to the data set:

o Authority granted

not 0 Authority withheld

Figure 25. Communication with User-Security-Verification Routine

148 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

APPENDIX A: SUMMARY OF MACROS

For easy reference, the formats of all of the macros described in this book are
repeated in this one place in alphabetical order.

BLDVRP, DLVRP, GETIX, MRKBFR, PUTIX, SCHBFR, SHOWCAT, and
WRTBFR are described in OS/VS Virtual Storage Access Method (VSAM)
Options for Advanced Applications.

ACB (Generate an Access-Method Control Block)

[label] ACB (AM = VSAM]
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI= number]
[,BUFSP= number]
[,CATALOG = {YES I NO]
[,CRA= {SCRA I VCRA]
[,DDNAME=ddname]
[,EXLST = address]
[,MACRF=([ADR][,CNV][,KEY]

[,CF'XI NFX]
[,DDNI DSN]
[,DFRINDF]
[,DIR][,SEQ][,SKP]
[,ICI I NCI]
[,IN][,OUT]
[NIS I SIS]
[,NRMI AIX]
[NRSIRST]
[NSR I LSR I GSR]
[,NUB I UBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number]

CHECK (Suspend Processing)

I [label] I CHECK I RPL= address

CLOSE (Disconnect Program and Data)

[label] CLOSE (address [,(options)] •••]
[,TYPE=T]

ENDREQ (Terminate a Request)

I [label] I ENDREQ I RPL= address

ERASE (Delete a Record)

I [label] I ERASE I RPL=address

Appendix A: Summary of Macros 149

EXLST (Generate an Exit List)

~·--·--~------~--------------------------------I

[label] EXLST [AM = VSAM]
[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,AI N][,L])]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,A I N)[,L])]

GENCB (Generate an Access-Method Control Block)

GENCB (Generate an Exit List)

[label] GENCB BLK=ACB
[,AM = VSAM]
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI= number]
[,BUFSP= number]
[,CATALOG = {YES I NO]
[,COPIES= number]
[,CRA= {SCRA I VCRA]
[,DDNAME=ddname]
[,EXLST= address]
[,LENGTH= number]
[,MACRF=([ADR][,CNV][,KEt]

[,CFXINFX]
[,DDNI DSN]
[,DFRINDF]
[,DIR][,SEQ][,SKPI]
[,ICI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRM I AIX]
[,NRSI RST]
[,NSR I LSR I GSR]
[,NUB I UBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= address]
[,W AREA = address]

---.--.~--------~----------------------------~

[label] GENCB BLK=EXLST
[,AM = VSAM]
[,COPIES= number]
[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,AI N][,L])]
[,LENGTH= number f
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,A I N][,L])]
[,W AREA = address] -

ISO OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

GENCB (Generate a Request Parameter List)

[label] GENCB BLK=RPL
[,ACB= address]
[,AM = VSAM]
[,AREA= address]
[,AREALEN = number]
[,ARG= address]
[,COPIES= number]
[,ECB = address]
[,KEYLEN = number]
[,LENGTH= number]
[,MSGAREA= address]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPfCO=([ADR \ CNV \ KEY]

[,OIR \ SEQ \ SKP]
[ARD \LRD]
[FWD \ BWD]
[,ASY\ SYN]
[,NSP \ NUP \ UPO]
[,KEQ \ KGE]
[,FKS\ GEN]
[,LOC \ MVE])]

[,RECLEN= number-] -
[, TRANSID= number]
[, W AREA= address]

Appendix A: Summary of Macros 151

GET (Retrieve a Record)

ru:be/] I GET

MODCD (Modify an Access-Method Control Block)

[label] MODCB

MOOCD (Modify an Exit List)

[label] MODCB

I RPL= address

ACB= address
[,BSTRNO= number]
[,BUFND= number]
[,BUFNI= number]
[,BUFSP= number]
[,CAT ALOG= {YES I NO]
[,CRA= {SCRA I VCRA]
[,DDNAME=ddname]
[,EXLST= address]
[,MACRF=([ADR][,CNV][,KEY]

[,CFXI NFX]
[,DDNIDSN]
[,DFRINDF]
[,DIR][,SEQ][,SKP]
[lCI I NCI]
[,IN][,OUT]
[,NIS I SIS]
[,NRMIAIX]
[,NRSIRST]
[,NSR I LSR I GSRJI
[,NUB I UBF])]

[,MAREA= address]
[,MLEN = number]
[,PASSWD= address]
[,STRNO= number]

EXLST= address
[,EODAD=(address [,A I N][,L])]
[,JRNAD=(address [,A I N][,L])]
[,LERAD=(address [,A I N][,L])]
[,SYNAD=(address [,A I N][,L])]

152 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

MOOCR (Modify a Request Parameter List)

[label] MODCD RPL= address
[,ACB= address]
[,AREA= address]
[,AREALEN == number]
[,ARG= address]
[,ECD== address]
[,KEYLEN = number]
[,MSGAREA= address]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPfCD==([ADR I CNV I KEY]

[,ARDI LRD]
[,FWD I DWD]
[,DIR I SEQ I SKP]
[,ASYISYN]
[,NSP I NUP \ UPD]
[,KEQ\KGE]
[,FKS\GEN]
[,LOC \ MVE])

(,RECLEN = number]
[,TRANSID= number]

Appendix A: Summary of Macros 153

OPEN (Connect Program and Data)

I~[-ffl-b-el-]~I~O-P-E-N----~I-(a-dd--re-~-[-,~-~-tl-o~--)-] •• -.)------.----------~

POINT (Position for Access)

I [label] I POINT I RPL= address

PUT (Store a Record)

I [label] I PUT I RPL= address

RPL (Generate a Request Parameter List)

r--.--.--~------~-------------------------------~

[label] RPL ACB=address
[,AM=VSAM]
[,AREA= address]
[,AREALEN = number]
[,ARG= address]
[,ECB = address]
[,KEYLEN = number]
[,MSGAREA= address]
[,MSGLEN = number]
[,NXTRPL= address]
[,OPfCD=([ADR I CNV I KEY]

[,DIR I SEQ I SKP]
[,AltO I LRD]
[,FWD I BWO]
[,ASYISYN]
[,NSP I NUP I UPD]
[,KEQ I KGE]
[,FKSI GEN]
[,LOC I MVEJ)]

[,RECLEN = number]
[,TRANSID= number]

SHOWCB (Display Fields of an Access-Method Control Block)

[label] SHOWCB ACB=address
,AREA= address
,LENGTH= number
[,OBJECT-{DATA I INDEX]
,FIELDS-([,ACBLEN][,A VSPAC][,BFRFND]

[,BSTRNO][,BUFND][,BUFNI]
[,BUFNO][,BUFRDS][,BUFSP]
[,CINV] [,DDNAME][,ENDRBA]
[,ERROR] [,EXLST] [,FS]
[,KEYLEN] [,LRECL] [,MAREA]
[,MLEN] [,NCIS] [,NDELR]
[,NEXCP] [,NEXT][,N1NSR]
[,NIXL] [,NLOGR][,NRETR]
[NSSS] [,NUIW] [,NlJPDR]
[,P ASSWD][,RKP][,STMST]
[,STRMAX][,STRNO][UIW»

154 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

SHoweD (Display Fields of an Exit List)

[label] SHOWCD AREA= address
,EXLST = address
,FlELDS=([EODAD][,EXLLEN][,JRNAD]

[,LERAD][,SYNAD])
,LENGTH= number

SHoweD (Display Fields of a Request Parameter List)

[label] SHOWCD AREA= address
,FlELDS=([ACB][,AIXPC][,AREA][,AREALEN]

[,ARG][,ECD][,FDDK][,FfNCD]
[,KEYLEN][,MSGAREA]
[,MSGLEN][,NXTRPL][,RBA]
[,RECLEN][,RPLLEN][,TRANSID]

,LENGTH= number
,RPL= address

Appendix A: Summary of Macros 155

TESTeB (Test a Field of an Access-Method Control Block)

[label] TESTCB ACB=address
[,ERET= address]
[,OBJECT = DATA I INDEX]
, {A TRB = ([ESDS][,KSDS][,IU:PL][,RRDS]

[,SPAN][,SSWD][,UNQ][,WCK]) I
CATALOG = {YES I NO} I
MACRF= ([ADR] [,AIX] [,CFX] [,CNV] [,DDN]

[,DFR][,DIR][,DSN][,GSR][,ICI] I
[,IN] [,KEY] [,LSR] [,N CI][,NDF] I
[,NFX][,NIS],NR1VI][,NRS][,NSR] I
[,NUB][,OUT][,SEQ][SIS][,SKP] I
[,UBF] I

OFLAGS=OPENI
OPENOBJ={PATH I BASE I AIX} I
ACBLEN = number I
AVSPAC=number I
BSTRNO= number I
BUFND= number I
BUFNI= number I
BUFNO= number I
BUFSP= number I
CINV = number I
DDNAME=ddname I
ENDRBA= number I
ERROR= number I
EXLST= address I
FS=number I
KEYLEN = number I
LRECL= number I
MAREA= address I
MLEN=number I
NCIS=number I
NDELR= number I
NEXCP= number I
NEXT= number I
NINSR= number I
NIXL= number I
NLOGR= number I
NRETR= number I
NSSS= number I
NUPDR= number I
PASSWD=address I
RKP= number I
STMST= address I
STRNO= number}

156 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

TESTCR (Test a Field of an Exit List)

[label] TESTCD ,EXLST = address
[,ERET= address]
{EODAD={O I ([address][,A I N][,L»} I
JRNAD={O I ([address][,A I N][,L»} I
LERAD={O I ([address][,A I N][,L»} I
SYNAD= {O I ([address][,A I N][,L»} }
[,EXLLEN = number]

TESTCD (Test a Field of a Request Parameter List)

[label] TESTCD RPL= address
[,ERET= address]
{IO=COMPLETE I
OPfCD=([ADR][,ARD][,ASY][,DWD][,CNV]

[,DIR][,FKS][,FWD)(,GEN][,KEQ]
[,KEY][,KGE],LOC)[,LRD)[,MVE]
[,NSP)[,NUP][,SEQ][,SKP)[,SYN]
[,UPD» I

RBA= number I
RECLEN=number I
RPLLEN = number I
ACD= address I
AIXFLAG=AIXPKP I
AIXPC= number I
AREA= address I
AREALEN = number I
ARG= address I
ECD=address I
FDDK= number I
FfNCD= number I
KEYLEN = number I
MSGAREA= address I
MSGLEN = number I
NXTRPL= address I
TRANSID= number}

Appendix A: Summary of Macros 157

APPENDIX D: LIST, EXECUTE, AND GENERATE
FORMS OF GENCD, MODCD, SHOWCD, AND
TESTeD

List-Form Keyword

The standard forms of the GENCB, MODCB, SHOWCB, and TESTCB
macros build a parameter list describing in codes the actions indicated by the
operands you specify and pass the list to VSAM to take the indicated action.
The list, execute, and generate forms of GENCB, MODCB, SHOWCB, and
TESTCB allow you to write reentrant programs, share parameter lists, and to
modify a parameter list before using it.

Following is a brief description of the list, execute, a~d generate forms:

• The list form is used to build the parameter list either inline (referred to as
simple list) or in an area remote from the macro expansion (referred to as
remote list). Both the simple- and the remote-list forms allow you to build
a single parameter list that can be shared.

• The execute form is used to modify a parameter list and to pass it to
VSAM for action.

• The generate form is used to build the parameter list in a remote area and
to pass it to VSAM for action.

The list, execute, and generate forms of the GENCB, MODCB, SHOWCB,
and TESTCB macros have the same format as the standard forms, with the
exception of:

• An additional keyword, MF

• Some operands' being optional or not allowed

The sections that follow describe the format of the MF keyword and the use
of list, execute, and generate forms. They indicate the optional and required
operands.

The format of the MF keyword for the list form is:

MF={L I (L,address [, label])}

where:

L
specifies that this is the list form of the macro.

address
specifies the address of a remote area in which the parameter list is to be
built. The area must begin on a fullword boundary. You can specify the
address in register notation or as an expression valid for a relocatable
A-type address constant or a direct or indirect S-type address constant.

label
is a unique name that is used in an EQU instruction in the expansion of the
macro; label is equated to the length of the parameter list. You do not have
to know the length of the parameter list if you code label; the expansion of
the macro determines the amount of storage required.

Appendix B: List, Execute, and Generate Forms of GENeB, MODeB, SHOWeB, and TESTeB 159

Execute-Form Keyword

Because the MF=L expansion does not include executabl,e code, register
notation and expressions that generate S-type address constants cannot be
used.

If you code MF=L, the parameter list is built inline, which means that the
program is not reentrant if the parameter list is modified at execution.

If you code MF=(L,address), the parameter list is built in the remote area
specified, and the area must be large enough for the parameter list.

The size, in fullwords, of a parameter list is:

• For GENCB, 4, plus 3 times the number of ACB, EXLST, or RPL
keywords specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or
SYNAD)

• For MODCB, 3, plus 3 times the number of ACB, EXIST, or RPL
keywords specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or
SYNAD)

• For SHOWCB, 5, plus 2 times the number of fields specified in the
FIELDS operand

• For TESTCB, 8 (plus 1 for DDNAME, STMST, EODAD, JRNAD,
LERAD, or SYNAD)

If you code MF = (L,address,label), the parameter list is built in the remote
area specified. The expansion of the macro equates label with the length of
the parameter list.

The fonnat of the MF keyword for the execute form is:

MF=(E, address)

where:

E
specifies that this is the execute form of the macro.

address
is the address of the parameter list.

The expansion of the execute form of the macro results in 4executable code
that causes:

1. A parameter list to be modified if requested

2. Control to be passed to a routine that satisfies the request

You may not use the execute form to add an entry to a parameter list. If you
try to add an entry, an error code of 8 is returned to you in register 15.

160 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Generate-Form Keyword
The format of the MF keyword for the generate form is:

MF=(G,address [, label])

where:

G
specifies that this is the generate form of the macro.

address
specifies the address of a remote area in which the parameter list is to be
built. The area must begin on a fullword boundary.

label
is a unique name that is used in an EQU instruction in the expansion of the
macro; label is equated to the length of the parameter list. You do not have
to know the length of the parameter list if you code label; the expansion of
the macro determines the amount of storage required.

If you code MF = (G ,address), the parameter list is built in the remote area
specified.

If you code MF = (G ,address,label), the parameter list is built in the remote
area specified. The expansion of the macro equates the length of the
parameter list to label.

Optional and Required Operands

Ust Form of GENCB

Keywords that are required in the standard forms of the GENCB, MODCB,
SHOWCB, and TESTCB macros may be optional in the list, execute, and
generate forms or may not be allowed in the execute form. The meaning of
the keywords, however, and the notation that may be used to express
addresses, names, numbers, and option codes are the same. See the chapter
"Control Block Macros" for the meaning of keywords. See "Appendix C:
Operand Notation for GENCB, MODCB, SHOWCB, and TESTCB" for an
explanation of how operands may be coded.

The format of the list form of GENCB is:

[label) GENCB BLK={ACBIEXLSTIRPL}
[,AM=VSAM)
[,COPIES= number)
[, keyword = {address I name I number loption} , •••)
[,LENGTII= number)
,MF={L I (L,address[,label)H
[, W AREA= address]

Appendix B: List, Execute, and Generate Forms of GENeB, MODeB, SHOWeB, and TESTeB 161

Execute Form of GENCB

The format of the execute form of GENeB is:

[label] GENCB BLK-{ACBIEXLSTIRPL}
[,AM=-VSAM]
[COPIES- number]
[, keyword - {address I name I n:umber loption} , •••]
[,LENG1H- number]
,MF-(F., address)
[, W AREA- address]

Generate Form of GENCB

The format of the generate form of the GENeB macro is:

[label] GENCB BLK-{ACBIEXLSTIRPL}
[,AM-VSAM]
[,COPIES- number]
[, keyword - {address I name I number loption} , •••]
[,LENG1H- number]
,MF-(G,address [, label])
[, W AREA- address]

List Form of MODCB

The format of the list form of MODeB is:

[label] MODCB {ACBIEXLSTIRPL}-address
, keyword - {address I name I number loption} , •••
,MF-{L I (L,address [, label])}

Execute Form of MODCB

The format of the execute form of MODeB is:

[label] MODCD [{ACB I EXLST I RPL} - addre.fs]
[, keyword - {address I name I number loption} , •••]
,MF-(E, address}

Generate Form of MODCB

The format of the generate form of MODeB is:

I[Wbe __ /] __ ~M __ O_D_C_B __ ~_{A_C_D_I_E_XUIT ____ IRP __ L_} ___ a_~_~_~_~ ___________ ~ , keyword =- {address I name I number I option } , ••••
,MF-(G,address [,label])

162 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

List Form of SHOWCD

The format of the list form of SHoweB is:

[label] SHOWeD [{ACD I EXLST I RPL} = address]
,AREA= address
,FIELDS = (keyword [, keyword , .••])
,LENGTH= number
,MF-{L I (L,address [, /abel])}
[,OBJECT-{DATA I INDEX]

Execute Form of SHOWCD

The format of the execute form of SHoweB is:

[label] SHOWCD [{ACD I EXLST I RPL}-address]
,AREA- address
,MF-{E,address)
[,OBJECT - {DATA I INDEX]

Generate Form of SHOWCD

The format of the generate form of SHoweB is:

[label] SHOWCD [{ACD I EXLST I RPL}- address]
,AREA- address
,FIELDS-(keyword [, keyword , ••.])
,LENGTH= number
,MF - (G, address [, label])
[,OBJECT-{DATA I INDEX]

List Form of TESTCD

The format of the list form of TESTeB is:

[label] TESTCD [{ACD I EXLST I RPL}=address]
[,ERET- address]
,keyword- {address I name I number loption}
,MF-{L I (L,address [, label])}
[,OBJECT=-{DATA I INDEX]

Execute Form of TESTCD

The format of the execute form of TESTeB is:

[label] TESTCD [{ACD I EXLST I RPLI-address]
[,ERET- address]
[, keyword - {address lname I number I

option]
,MF-(E, address)
[,OBJECT-{DATA I INDEX]

Appendix D: List, Execute, and Generate Forms of GENCD, MOD CD, SHOWCD, and TESTCD 163

Generate Form of TESTCB

The format of the generate form of TESTeB is:

[label] TESTCD [{ACD I EXLST I RPL} = addre'ss]
[,ERET = address]
, keyword = {address I name I number I option}
,MF=(G, address [, label])
[,OBJECf={DATA I INDEX]

Use of List, Execute, and Generate Forms

Example: Generate Form

Again, the list, execute, and generate forms allow you to use GENeB,
MODeD, SHOWeB, and TESTeB in reentrant programs and allow you to
share parameter lists. Figure 26 indicates which forms of these macros should
be used in reentrant/ nonreentrant and shared/ nonshared environments.

Reentrant Nomeentrant

Shared MF-(Laddress [,label]) MF-L
MF-(E, address) MF-(E, address)

Nonsbared MF-(G, address [,label]) StandardForm

Figure 26. Reentrant Programming

The figure shows that:

• To share parameter lists in a reentrant program, the remote-list form
should be used in conjunction with the execute form.

• To share parameter lists in a nonreentrant program, the simple-list form
should be used in conjunction with the execute form.

• If you do not intend to share parameter lists, the generate form should be
used in reentrant programs and the standard form should be used for
nonreentrant programs.

The examples that follow illustrate how the list, execute, and generate forms
work.

In this example, the generate form of GENeB is used to create a default
request parameter list in a reeentrant environment.

LA 10,LENl

GETMAIN R,LV=(10)

LR
GENCB

2, 1

BLK=RPL,
MF= (G , (2) , LEN 1)

Get length of the parameter list.

Get storage for the area in which the
parameter list is to be built.

Save address of parameter-list area.

The macro expansion equates LENt to the length of the parameter list, as
follows:

+LENI EQU 16

164 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Example: Remote-List Form

Example: Execute Form

In this example, the remote-list form of MODCB is used to build a parameter
list that will later be used to modify the MACRF bits in an access-method
control block.

LA 8,LEN2 Get length of the parameter list.

GETMAIN R, LV=(8) Get storage for the area in which the
parameter list is to be built.

LR 3 , 1 Save address of the parameter-list area.

MODCB ACB=ANYACB,
MACRF=(KEY,DIR),
MF= (L, (3) , LEN 2)

The macro expansion equates the length of the parameter list to LEN2, as
follows:_

+LEN2 EQU 24

In this example, the execute form of MODCB is used to modify the address
of the access-method control block and MACRF codes in the parameter list
created by the remote-list form of MODCB in the previous example.

MODCB ACB=MYACB,MACRF=(ADR,SEQ,OUT),MF=(E,(3))

Example!: Simple-List and Execute Forms

In this example, the execute form of TESTCB is used to modify a field that
was not specified in the list-form TESTCB.

TESTCB SYNAD=(,A),MF=(E,PLIST1)

Constants

PLIST1 TESTCB EXLST=EXL1,LERAD=(LOGERR,A),MF=L

The second TESTCB macro is in simple-list form, which causes a parameter
list to be built inline. Because the second TESTCB does not include a
SYNAD keyword, the first TESTCB, which is in execute form, cannot find a
SYNAD entry in the parameter list; a return code of 8 is returned in register
15.

Appendix B: List, Execute, and Generate Forms of GENCB, MODCB, SHOWCB, and TESTCB 165

APPENDIX C: OPERAND NOTATION FOR
GENCD, MODCD, SHOWCD, AND TESTCD

The addresses, names, numbers, and options required with operands in
GENCB, MODCB, SHOWCB, and TESTCB can be expressed in a variety of
ways:

• An absolute numeric expression, for example, STRNO-3 and
COPIES==10

• A character string, for example, DDNAME-DATASET

• A code or a list of codes separated by commas and enclosed in
parentheses, for example, OPTCD==KEY or OPTCD-(KEY,DIR,IN)

• An expression valid for a relocatable A-type address constant, for example,
AREA== MYAREA + 4

• A register from 2 through 12 that contains an address or numeric value, for
example, SYNAD==(3); equated labels can be used to designate a register,
for example, SYNAD==(ERR), where the following equate statement has
been included in the program: ERR EQU 3

• An expression of the form (S,scon), where soon is an expression valid for
an S-type address constant, including the base-displacement form

• An expression of the form (* ,scon), where scon is an expression valid for
an S-type address constant, including the base-displacement form; the
address specified by scon is indirect, that is, it is the address of an area that
contains the value of the keyword

H an indirect S-type address constant is used, the value it points to must meet
the following criteria:

• H it is a numeric quantity or an address, it must occupy a fullword of
storage.

• H it is an alphameric character string, it must occupy two words of storage,
be left aligned, and be filled on the right with blanks.

The expressions that can be used depend on the keyword specified.
Additionally, register and S-type address constants cannot be used when
MF==L is specified. See "Appendix B: List, Execute, and Generate forms of
GENCB, MODCB, SHOWCB, and TESTCB."

Appendix C: Operand Notation for GENCD, MODCD, SHOWCD, and TESTCD 167

Operands with GENCB
Figure 27 shows the expressions that can be used in the GENeB macro.

lDdIrect
Absolute Character S-Type S-Type A-Type
Numeric Code StrtDa Register Address Address Address

GENCB Keywords

AM X
BLK X
COPIES X X X X
LENGTH X X X X
WARBA X X X X

ACB Keywords (BLK-ACB)

BSTRNO X X X X
BUFND X X X X
BUFNI X X X X
BUFSP X X X X
CATALOG X
CRA X
DDNAME X X
EXLST X X X X
MACRF X
MAREA X X X X
MLEN X X X
PASSWD X X X X
STRNO X X X X

EXI.SI' Keywords (BLK-EXlSO

EO DAD X X X X
JRNAD X X X X
LERAD X X X X
SYNAD X X X X
A X
N X
L X

RPL Keywords (BLK-RPL)

ACB X X X X
AREA X X X X
AREALEN X X X X
ARG X X X X
ECB X X X X
KEYLEN X X X X
MSGAREA X X X X
MSGLEN X X X X
NXTRPL X X X X
OPTCD X
RECLEN X X X X
TRANSID X X X X

Figure 27. GENCB Operands

168 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Operands with MOD CD
Figure 28 shows the expressions that can be used in the MODCB macro.

lDdirect
Absolute Character S-Type S-Type A-Type
Numeric Code StrIDg Repter Address Address Address

MODCR Keyword

{ACB I EXLST I RPL} X X X X

ACR Keywords

BSTRNO X X X X
BUFND X X X X
BUFNI X X X X
BUFSP X X X X
CATALOG X
CRA X
DDNAME X X
EXLST X X X X
MACRF X
MAREA X X X X
MLEN X X X X
PASSWD X X X X
STRNO X X X X

EXLST Keywords

EODAD X X X X
JRNAD X X X X
LERAD X X X X
SYNAD X X X X
A X
N X
L X

RPL Keywords

ACB X X X X
AREA X X X X
AREALEN X X X X
ARG X X X X
ECB X X X X
KEYLEN X X X X
MSGAREA X X X X
MSGLEN X X X X
NXTRPL X X X X
OPTCD X
RECLEN X X X X
TRANSID X X X X

Figure 28. MODCB Operands

Appendix C: Operand Notation for GENCB, MODCD, SHOWCD, and TESTCD 169

Operands with SHoweD
Figure 29 shows the expressions that can be used in the SHOWeB macro.

IncUrect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Addres.1J Address

SHOWCD Keywords

{ACB I EXLST I RPL} X X X X
AREA X X X X
FIELDS X
LENGTH X X X X
OBJECT X

Figure 29. SHOWCB Operands

170 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Operands with TESTeD
Figure 30 shows the expressions that can be used in the TESTCB macro.

lDdIred
AbsoIate Cbuader S-Type S-Type A-Type
N.aeric Code StrIae Repter Address Address Address

TFSI'CB Keywords

{ACB I EXLST I RPL} X X X X
ERET X X X X
OBJECT X

ACB Keywords

ACBLEN X X X X
ATRB X
AVSPAC X X X X
BSTRNO X X X X
BUFND X X X X
BUFNI X X X X
BUFNO X X X X
BUFSP X X X X
CATALOG X
CRA X
CINV X X X X
DDNAME X X
ENDRBA X X X X
ERROR X X X X
EXLST X X X X
FS X X X X
KEYLEN X X X X
LRECL X X X X
MACRF X
MAREA X X X X
MLEN X X X X
NCIS X X X X
NDELR X X X X
NEXCP X X X X
NEXT X X X X
NINSR X X X X
NIXL X X X X
NLOGR X X X X
NRETR X X X X
NSSS X X X X
NUPDR X X X X
OFLAGS X
OPENOBJ X
PASSWD X X X X
RKP X X X X
STMST X
STRNO X X X X

EXLST Keywords

EODAD X X X X
EXLLEN X X X X
JRNAD X X X X
LERAD X X X X
SYNAD X X X X
A X
N X
L X

Figure 30 (Part 1 of 2). TESTCB Operands

Appendix C: Operand Notation for GENCB, MODCB, SHOWCB, and TESTCB 171

ladirect
Absolute Character S-Type S-Type A-Type
Numeric Code String Register Address Address Address

RPL Keywords

ACB X X X X
AIXFLAG X
AIXPC X X X X
AREA X X X X
AREALEN X X X X
ARG X X X X
ECB X X X X
FDBK X X X X
FTNCD X
10 X
KEYLEN X X X X
MSGAREA X X X X
MSGLEN X X X X
NXTRPL X X X X
OPTeD X
RBA X X X X
RECLEN X X X X
RPLLEN X X X X
TRANSID X X X X

Figure 30 (Part 2 of 2). TESTCB Operands

172 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

GLOSSARY

The following terms are defined as they are used in this book.
If you do not find the term you are looking for, refer to the
index or t.o the IBM Data Processing Glossary, GC20-1699.

Access Method Services: A multifunction service program that
is used to define VSAM data sets and allocate space for them,
convert indexed-sequential data sets to key-sequenced data
sets, modify data-set attributes in the catalog, reorganize data
sets, facilitate data portability between operating systems,
create backup copies of data sets, help make inaccessible data
sets accessible, list the records of data sets and catalogs,
define and build alternate indexes, and convert OS catalogs
to OS/VS2 catalogs.

addressed-direct access: The retrieval or storage of a data
record identified by its RBA, independent of the record's
location relative to the previously retrieved or stored
record. '-"ee also keyed-direct access, addressed-sequential
access, and keyed-sequential access.)

addressed-sequential address: The retrieval or storage of a data
record in. its entry sequence relative to the previously
retrieved or stored record .. (See also keyed-sequential access,
addressed-direct access, and keyed-direct access.)

alternate Index: A collection of index entries organized by the
alternate keys of its associated base data records. It provides
an alternate means of locating records in the data component
of a cluster on which the alternate index is based.

alternate key: One or more consecutive characters taken from
a data record and used to build an alternate index or to locate
one or more base data records via an alternate index. (See
also generic key, key, key field, and prime key.)

alternate Index cluster: The data and index components of an
alternate index.

appUcation: As used in this publication, the use to which an
access method is put or the end result that it serves;
contrastl~d to the internal operation of the access method.

base cluster: A key-sequenced or entry-sequenced data set
over which one or more alternate indexes are built.

catalog: (See master catalog and user catalog.)

catalog recovery area: (See CRA.)

cluster: A named structure consisting of a group of related
components (e. g. a data component with its index
component). A cluster may consist of a single component.
(See also base cluster and alternate-index cluster.)

coDating sequence: An ordering assigned to a set of items, such
that any two sets in that assigned order can be collated. As
used in this publication, the order defined by the System/370
8-bit code for alphabetic, numeric, and special characters.

component: A named, cataloged collection of stored records.
A component, the lowest member of the hierarchy of data
structures that can be cataloged, contains no named subsets.

control area: A group of control intervals used as a unit for
formatting a data set before adding records to it. Also, in a
key-sequenced data set, the set of control intervals pointed to
by a sequence-set index record; used by VSAM for
distributing free space and for placing a sequence-set index
record adjacent to its data.

control-area spit: The movement of the contents of some of
the control intervals in a control area to a newly created
control area, to facilitate the insertion or lengthening of a
data record when there are no remaining free control
intervals in the original control area.

control Intenal: A fixed-length area of auxiliary-storage space
in which VSAM stores records. It is the unit of information
transmitted to or from auxiliary storage by VSAM.

control-Intenal access: The retrieval or storage of the contents
of a control interval.

control-intenal spit: The movement of some of the stored
records in a control interval to a free control interval, to
facilitate the insertion or lengthening of a record that won't
fit in the original control interval.

eRA: Catalog recovery area. An entry-sequenced data set
that exists on each volume owned by a recoverable catalog,
including the catalog itself. The CRA contains self-describing
records that are duplicates of catalog records that describe
the volume.

data Integrity: Preservation Df data or programs for their
intended purpose. As used in this publication, the safety of
data from inadvertent destruction or alteration.

data record: A collection of items of information from the
standpoint of its use in an application, as a user supplies it to
VSAM for storage.

data security: Prevention of access to or use of data or
programs without authorization. As used in this publication,
the safety of data from unauthorized u~e, theft, or purposeful
destruction.

data set: The major unit of data storage and retrieval in the
operating system, consisting of data in a prescribed
arrangement and described by control information to which
the system has access. As used in this publication, a collection
of fixed- or variable-length records in auxiliary storage,
arranged by VSAM in key sequence or in entry sequence.
(See also key-sequenced data set and entry-sequenced data
set.)

data space: A storage area defined in the volume table of
contents of a direct-access volume for the exclusive use of
VSAM to store data sets, indexes, and catalogs.

direct access: The retrieval or storage of data by a reference to
its location in a data set rather than relative to the previously
retrieved or stored data. (See also addressed-direct access
and keyed-direct access.)

distributed free space: Space reserved within the control
intervals of a key-sequenced data set for inserting new
records into the data set in key sequence; also, whole control
intervals reserved in a control area for the same purpose.

entry sequence: The order in which data records are physically
arranged (according to ascending RBA) in auxiliary storage,
without respect to their contents. (Contrast to key sequence.)

entry-sequenced data set: A data set whose records are
loaded without respect to their contents, and whose RBAs
cannot change. Records are retrieved and stored by addressed
access, and new records are added at the end of the data set.

Glossary 173

field: In a record or a control block, a specified area used for
a particular category of data or control information.

generic key: A high-order portion of a key, containing
characters that identify those records that are significant for a
certain application. For exampl~, it might be desirable to
retrieve all records whose keys begin with the generic key AB,
regardless of the full key values.

index: As used in this publicatipn, an ordered collection of
pairs, each consisting of a key and a pointer, used by VSAM
to sequence and locate the records of a key-sequenced data
set.

index record: A collection of index entries that are retrieved
and stored as a group. (Contrast to data record.)

ISAM interface: A set of routines that allow a processing
program coded to use ISAM (indexed-sequential access
method) to gain access to a key-sequenced data set.

Job catalog: A catalog made available for a job by means of
the JOBCA T DD statement.

key: One or more characters within an item of data that are
used to identify it or control its use. As used in this
publication, one or more consecutive characters taken from a
data record, used to identify the record and establish its order
with respect to other records. (See also key field and generic
key.)

key field: A field located in the same position in each record
of a data set, whose contents are used for the key of a record.

key sequence: The collating sequence of data records,
determined by the value of the key field in each of the data
records. May be the same as, or different from, the entry
sequence of the records.

key-sequelllCed data set: A data set whose records are loaded in
key sequence and controlled by an index. Records are
retrieved and stored by keyed access or by addressed access,
and new records are inserted in the data set ill key sequence
by means of distributed free space. RBAs of records can
change.

keyed-direct access: The retrieval or storage of a data record
by use of either an index that relates the record's key to its
relative location in the data set or a relative record number,
independent of the record's location relative to the previously
retrieved or stored record. (See also addressed-direct access,
keyed-sequential access, and addressed-sequential access.)

keyed-sequential access: The retrieval or storage of a data
record in its key or relative record sequence relative to the
previously retrieved or stored record, as defined by the
sequence set of an
index. (See also addressed-sequential access, keyed-direct
access, and addressed-direct access.)

master catalog: A catalog that contains extensive data-set and
volume information that VSAM requires to locate data sets,
to allocate and deallocate storage space, to verify the
authorization of a program or operator to gain access to a
data set, and to accumulate usage statistics for data sets.

password: A unique string of characters stored in a catalog
that a program, a computer operator, or a terminal user must
supply to meet security requirements before a program gains
access to a data set.

path: A named, logical entity composed of one or more
clusters (an alternate index and its base cluster, for example).

physical record: A physical unit of recording on a medium. For
example, the physical unit between address markers on a
disk.

pointer: An address or other indication of location. For
example, an RBA is a pointer that give~1 the relative location
of a data record or a control interval in the data set to which
it belongs.

portability: The ability to use VSAM data sets with different
operating systems. Volumes whose data sets are cataloged in
a user catalog can be demounted from storage devices of one
system, moved to another system, and mounted on storage
devices of that system. Individual data sets can be transported
between operating systems using Access Method Services.

prime index: The index component of a key-sequenced data
set that has one or more alternate indexes. (See also index
and alternate index.)

prime key: (See key.)

random access: (See direct access.)

RBA: Relative byte address. The displacement of a data
record or a control interval from the beuinning of the data set
to which it belongs; independent of the manner in which the
data set is stored.

record: (See index record, data record, sltored record.)

recovenble catalog: A catalog defined with the recoverable
attribute. Duplicate catalog entries are put into CRAs that
can be used to recover data in the event of catalog failure.
(See also CRA.)

relative byte address: (See RBA.)

relative record data set: A data set whose records are loaded
into fixed-length slots.

relative record IH8IIber: A number that identifies not only the
slot, or data space, in a relative record data set but also the
record occupying the slot. Used as the key for keyed access to
a relative record data set.

replcadon: (See index replication.)

reusable data set: A VSAM data set that <:an be reused as a
work file, regardless of its old contents. Must not be a base
cluster.

RPL striag: A set of chained RPLs (the sc:t may contain one or
more RPLs) used to gain access to a VSAM data set by action
macros (GET, PUT, etc). Two or more RPL strings may be
used for concurrent direct or sequentiall'equests made from a
processing program or its subtasks.

security: (See data security.)

sequence cbecklna: The process of verifyi:ng the order of a set
of records relative to some field's collating sequence.

sequence set: The lowest level of the index of a key-sequenced
data set; it gives the locations of the control intervals in the
data set and orders them by the key sequence of the data
records they contain. The sequence set and the index set
together comprise the index.

sequential access: The retrieval or storage of a data record in
either its entry sequence, its key sequence or its relative
record number sequence, relative to the previously retrieved
or stored record. (See also addressed-sequential access and
keyed-sequential access.)

174 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

shared resources: A set of functions that permit the sharing of
a pool of I/O-related control blocks, channel programs, and
buffers among several VSAM data sets open at the same
time.

IkIp-sequlential access: Keyed-sequential retrieval or storage of
records here and there throughout a data set, skipping
automatically to the desired record or collating position for
insertion.: VSAM scans the sequence set to find a record or a
collating position. Valid for processing in ascending
sequences only.

spanaed ('ecord: A logical record whose length exceeds control
interval ~ength, and as a result, crosses, or spans, one or more
control interval boundaries within a single control area.

step eatallog: A catalog made available for a step by means of
the STEIPCAT DD statement.

stored re,cord: A data record, together with its control
information, as stored in auxiliary storage .

...... de set: All the alternate indexes that VSAM has been
instructed to update whenever there is a change to the data
component of the base cluster.

user catalog: An optional catalog used in the same way as the
master catalog and pointed to by the master catalog. It also
lessens the contention for the master catalog and facilitates
volume portability.

vertical pointer: A pointer in an index record of a given level
that give:s the location of an index record in the next lower
level or the location of a control interval in the data set
controlled by the index.

Glossary 175

INDEX

For additional information about any subject listed in this
index, refer to the publications that are listed under the same
subject in either OS/VSJ Master Index, GC24-5104, or
OS/VS2 Master Index, GC28-0693.

This inde:x makes no page references to the glossary.

A
A option, in EODAD, JRNAD, LERAD, and SYNAD

operands
specified in EXLST macro 51
specified in GENCB macro 64
specified in MODCB macro 72
tested in TESTCB macro 91

ABEND codes issued by ISAM interface 133
ACB macro 44

examples 50
ACB operand

in BLK operand in GENCB macro 58
in FIELDS operand 83
in GENCB macro 65
in MODCB macro

modifying access-method control block 71
modifying request parameter list 74

in RPL macro 53
in SHOWCB macro 75
in TESTCB macro

testing access-method control block 86
testing request parameter list 92

ACBLEN operand
in FIELDS operand 76
in TESTCB macro 86

access {Jee keyed access and addressed access)
mixing types of 21
specifying type of 2"1-22

access-method control block
changing 71
defining with ACB macro 44
fields of, displayed with the SHOWCB macro 75
generating with the GENCB macro 57
modifying 71
specifying number to be generated 60
testing a field of 85

Access Method Services 26
active exit 51,64,72,91
addressc!d access

deletion 25
direct processing 21,25
marking records inactive with entry-sequenced data

sets 25
positioning VSAM for subsequent access 25,122
retrieval 25
sequential processing 21,25
storage 25

addressed-direct access 21,25
examples 108,

addressed-sequential access 21,25
examples 105,115,118,121

ADRoption
in MACRF operand 49
in OPTeD operand 56

AIX option
in MACRF operand 49
in OPENOBJ operand 88

AIXFLAG operand, in TESTCB macro 93
AIXPC operand, in TESTCB macro 93
AIXPC option, in FIELDS operand 83
AIXPKP value, in AIXFLAG operand in TESTCB macro 93
allocation 29
alternate index

compared to prime index 18
defined 18

alternate-index cluster 18
alternate-index maintenance 20
alternate-index path 19

keyed access to 22-24
alternate-index pointers

maximum number 20
mUltiple 20
prime keys 20
RBAs 20

alternate-index records 19
alternate keys 18,19

compression of 19
overlapping of 19
restriction in spanned records 18

AM operand
in ACB macro 45
in EXLST macro 51
in GENCB macro 58
in RPL macro 53

amendments, summary of 13
AMORG subparameter, in AMP parameter 32
AMP JCL DD parameter 31

checkpoint/restart 32
general description 31
ISAM interface 137

ARD option, in OPTCD operand 56
AREA operand

in FIELDS operand 83
in GENCB macro 65
in MODCB macro 74
in RPL macro 53
in SHOWCB macro 75,80,82
in TESTCB macro 92

AREALEN operand
in FIELDS operand 83
in GENCB macro 66
in MODCB macro 74
in RPL macro 53
in TESTCB macro 92

ARG operand
in FIELDS operand 83
in GENCB macro 66
in MODCB macro 74
in RPL macro 53
in TESTCB macro 92

assembly time, specifying processing options at 41
using the ACB macro 44
using the EXLST macro 51
using the RPL macro 52

ASY option, in OPTCD operand 56
asynchronous processing 21,56
A TRB operand, in TESTCB macro 87

Index 177

authorization record, user-security 147
authorization to process a data set

passwords 34
user-security-verification routine 147

A VSP AC operand

B

in FIELDS operand 78
in TESTCB macro 86

base cluster 18
restriction 18

BASE option, in OPENOBJ operand 88
basic direct-access method (BDAM) 17
basic ind.exed sequential access method (BISAM), error

conditions 130,132
BDAM (basic direct-access method) 17
beginning sequential access 24,25
BFRFND option, in FIELDS operand 78
BISAM (basic indexed sequential access method), error

conditions 132
BLDVRP macro 149
BLK operand, in GENCB macro

generating access-method control block 58
generating exit list 63
generating re9uest parameter list 66

bold expressions, in notational conventions 4
braces, use of 3
brackets, use of 3
BSTRNO operand

in ACB macro 45
in FIELDS operand 77
in GENCB macro 59
in MODCB macro 71
in TESTCB macro 86

buffer, I/O
defining minimum space 46-47,59
examples 47
for data control intervals 45,59
for index control intervals 46,59
multiple request parameter lists 49-50,61
overriding values for 32
provided by user 49
relation to processing program work area 56
specifying size and number 46,59

BUFND operand
examples 47
in ACB macro 45
in FIELDS operand 76
in GENCB macro 59
in MODCB macro 71
in TESTCB macro 86
interaction with BUFNI and BUFSP

operands 46-47,49,61
BUFND subparameter, in AMP parameter 32
BUFNI operand

examples 47
in ACB macro 45
in FIELDS operand 76
in GENCB macro 59
in MODCB macro 71
in TESTCB macro 86
interaction with BUFND and BUFSP operands 46-47,49

BUFNI subparameter, in AMP parameter 32
IS AM interface 137

BUFNO operand
in FIELDS operand 78
in TESTCB macro 86

BUFRDS option, in FIELDS operand 78
BUFSP operand

examples 47
in ACB macro 46-47
in FIELDS operand 76
in GENCB macro 59
in MODCB macro 71
in TESTCB macro 86
interaction with BUFND and BUFl'-lI operands 46-47,49
relation to BUFFERS PACE parame:ter of DEFINE

command 46-47,49
BUFSP subparameter, in AMP parameter 32
BWD option

c

in OPTCD operand 56
relative to POINT macro 22

capitalization, in notational conventions 4
catalog, JCL used 29
CATALOG operand

in ACB macro 47
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 87

catalog record, interaction with AMP parameter 33
CFX option, in MACRF operand 49
chaining request parameter lists

specified in GENCB 68,69
specified in RPL 52

changes in RBA
exit routine for recording 145
key-sequenced data set 17

changing a record's length ~ee shortening a record and
lengthening a record)

changing control blocks and lists 71,72,73
CHECK macro 123

examples 124
checking return codes ~ee return codes)
checkpoint/restart, specifying in AMP JCL DD

parameter 32
CINV operand

in FIELDS operand 78
in TESTCB macro 86

CLOSE macro
disconnecting program from data 37
error return codes from 38
ISAM interface 139
temporary 37

cluster 16
CNV option

in MACRF operand 49
in OPTCD operand 56

COBOL language 139
codes, return

from alternate index upgrade requests 97
from CLOSE macro 39
from GENCB, MODCB, SHOWCB, and TESTCB

macros 43
from OPEN macro 36
from request macros 95

coding the VSAM JCL parameter AMP 31,137
collating sequence 17
COMPLETE (in 10 operand in TESTCD macro) 93

178 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

concurrent access, effect on amount of I/O buffer space 49
concurrent requests, dynamic string extension for 49
condition code, PSW, set with TESTCB macro 85
connecting program to data 33
control area split, recQrding RBA changes for 146
control block

access-method control block 41
changing

access-method control block 71
exit list 72
request parameter list 73

displaying contents of
access-method control block 75
exit list 80
request parameter list 82

exit list 41
macros 41
modifying

access-method control block 71
exit list 72
request parameter list 73

request parameter list 41
sharing 44
testing contents of

access-method control block 85
exit list 90
request parameter list 92

control-interval access
password 34
restriction with GET-previous 22
specifying in the macros 49,56

control-interval split, recording RBA changes for 146
conventions, notational 3
converting data sets to VSAM format

example 140
indexed-sequential data sets 134

COPIES operand, in GENCB macro
copies of access-method control blocks 60
copies of exit lists 64
copies of request parameter lists 67

CRAoperand
in ACB macro 47
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 87

CROPS subparameter, in AMP parameter 32

D
data buffer, specifying space for 45,47,59
data I/O buffers 45,47,59
data integrity

checkpoint/restart 32
passwords 34

DATA option, in OBJECT operand 75,87
data security

authorization routine 147
passwords 34

data set
allocation 29
alternate-index cluster 18
base cluster 18
cataloging 29
closing 37
cluster 16
entry sequenced 17
indexed sequential 134

key sequenc~d 17
opening 33
organization 16
relative record 17
reusing 16

DCB fields supported by ISAM interface 136
DD statement

CJee JCL)
DDN option, in MACRF operand 44
DDNAME (as basis for sharing resources) 44
DDNAME operand

in ACB macro 48
in FIELDS operand 76
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 86

DDNAME parameter, in JCL 30
DEB fields supported by ISAM interface 134
DEFER subparameter, in JCL 30
defining requests for access to data 95
deleting a record

addressed 25,121
changing RBAs 17
comparison with ISAM 135
keyed 24,120
marking record inactive with entry-sequenced data set 25

DFR option, in MACRF operand 49
DIR option

in MACRF operand 49
in OPTCD operand 56

direct access
addressed 22,25
keyed 22,24
positioning for subsequent sequential access 22,24

disconnecting a program from data 37
DISP parameter, in JCL 30
displaying a control block

access-method control block 75
exit list 80
request parameter list 82

DLVRP macro 149
DSN option, in MACRF operand 49
DSNAME (as basis for sharing resources) 44
DSNAME parameter, in JCL 30
DUMMY parameter, in JCL 30
duplicate keys 19
dynamic string extension 45,49

E
ECB operand

in FIELDS operand 83
in GENCB macro 67
in MODCB macro 74
in RPL macro 54
in TESTCB macro 92

ellipses, in notational conventions 3
end of data set, method of indicating 37
end-of-data set processing 145
end-of-file indicator, updated by CLOSE macro 37
ENDRBA operand

in FIELDS operand 78
in TESTeB macro 86

ENDREQ macro 127
examples 127

entry sequence 16

Index 179

entry-sequenced data set
(see also data set)
compared to a key-sequenced and a relative record data

set 18
defini tion 16
keeping track of relative byte addresses 145,146
marking records inactive n 9

EODAD exit routine
coding 145
contents of registers at entry 145
handling end-of-data-set processing 145,146
specifying the exit with EXLST macro 51

EODAD operand
in EXLST macro 51
in FIELDS operand 80
in GENCB macro 63
in MODCB macro 72
in TESTCB macro 90

ERASE macro 119
examples 120

erasing a record
addressed 121
changing relative byte addresses 17
comparison with ISAM 138
keyed 120
marking record inactive with entry-sequenced data

set 119
ERET operand, in TESTCB macro

used to test a request parameter list 93
used to test an access-method control block 87
used to test an exit list 90

error codes, VSAM and ISAM comparison 131,132
error exit routine

logical errors 143
physical errors 143

ERROR field, in access-method control block
displaying 76
return codes from CLOSE macro 38
return codes from OPEN macro 35
testing 86

error messages 100
ERROR operand

in FIELDS operand 76
in TESTCB macro 86

error return codes
from alternate index upgrade requests 97
from CLOSE macro 38
from GENCB, MODCB, SHOWCB, and TESTCB

macros 42
from OPEN macro 35
from request macros 95

ESDS attribute, in A TRB operand 87
event control block

specified in GENCB 67
specified in RPL 54
used to indicate completion of request 54,67

examining a control block
displaying

fields in access-method control block 75
fields in exit list 80
fields in request parameter list 82

testing
fields in access-method control block 85
fields in exit list 90
fields in request parameter list 92

exception exit 26, 145

execute form 159
example 165
of GENCB macro 162
of MODCB macro 162
of SHOWCB macro 163
of TESTCB macro 163

execution time, specifying processing options at 41
exit list

changing 72
defining with the EXLST macro 51
displaying fields of 80
generating with the GENCB macro 63
modifying 72
testing a field of 90

exit routines 17,143
EODAD 145
exception exit 97
for alternate-index upgrade requests. 97
for end-of-data condition 145
for journalizing a transaction 146
for logical-error condition 143
for physical-error condition 143
JRNAD 146
LERAD 143
SYNAD 143
user-security-verification routine 147
USVR 147

EXLLEN operand
in FIELDS operand 80
in TESTCB macro 91

EXLST macro 51
example 52

EXLST operand
in ACB macro 48
in BLK operand in GENCB macro 63
in FIELDS operand 76
in GENCB macro 60
in MODCB macro

modifying access-method control block 71
modifying exit list 73

in SHOWCB macro 80
in TESTCB macro

testing access-method control block 86
testing exit list 90

extension, dynamic string 45,49

F
FDBK field, in request parameter list

displaying
fields in access-method control block 76
fields in exit list 80
fields in request paremeter list 83

return codes from request macros 95
testing

fields in access-method control block 85
fields in exit list 90
fields in request parameter list 92

FDBK operand
in FIELDS operand 83
in TESTCB macro 92

feedback-field codes 96
fields, examining control-block

displaying
fields in access-method control block 76
fields in exit list 80
fields in request parameter list 83

180 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

fields, examining control"block displaying (continued)
testing

fields in access-method control block 85
fields in exit list 90
fields in request parameter list 92

FIELDS operand, in SHOWCB macro
fields in access-method control block 76
fields in exit list 80
fields in request parameter list 83

FKS option, in OPTCD operand 56
FS operand

in FIELDS operand 78
in TESTCB macro 86

FTNCD field, in request parameter list
displaying 83
testing 93

FTNCD option
in FIELDS operand 83
in TESTCB macro 93

function codes 97
FWD option

G

in OPTCD operand 56
relative to POINT macro 22

GEN option, in OPTCD operand 56
GENCB macro

examples 62,65,70
execute form 162
generate form 162
list form 161
operand notation for 168
return codes from 42
used to code a reentrant program 159,164
used to generate

a.ccess method control block 57
exit list 63
request parameter list 65

generate form 159
example 164
of GENCB macro 162
of MODCB macro 162
of SHOWCB macro 163
of TESTCB macro 164

generating control blocks and lists 41
generic key (partial key) 22
GET macro 102

examples 103
positioning 22

GETIX macro 96
GET-previous processing

defined 22
restriction 22
specifying in RPL macro 56

getting a record
addressed 25
keyc;:d 22
positioning 22
skipping 23

GSR option, in MACRF operand 49

H
high-level languages 129

I
ICI option, in MACRF operand 49
index upgrade 20
insertion, mass sequential 24
I/O buffer

defining minimum space 46-47,59
examples 47
for data control intervals 45,49
for index control intervals 46,59
multiple request parameter lists 49-50,61
relation to processing program work area 56
specifying size and number 46,59

10 operand in TESTCB macro 93
IN option, in MACRF operand 49
inactive exit

specified in EXLST macro 51
specified in GENCB macro 64
specified in MODCB macro 72
tested for in TESTCB macro 91

inactive records, in entry-sequenced data set, marking 119
index I/O buffers 46,49
INDEX option, in OBJECT operand 75,87
indexed-sequential access method (see ISAM)
indexed-sequential data set, converting to VSAM format 134
input/output buffer (see I/O buffer)
inserting a record 110

changing RBAs 17,146
example 111,113,114

integrity of data
checkpoint/restart 32
passwords 34

interface (see ISAM interface)
interpreting ISAM requests 130
10 operand, in TESTCB macro 93
ISAM (indexed-sequential access method)

(see also indexed-sequential data set and ISAM interface)
data set, converted to a key-sequenced data set 134
program, used to process a VSAM data set 130

ISAM data set (see indexed-sequential data set)
ISAM interface

ABEND codes issued by 133
BISAM error conditions, meaning of 132
converting data sets and JCL 134
DCB fields supported by 136
DEB fields supported by 134
error conditions, correspondence to VSAM 130,132
processing with 130
purpose 27
QISAM error conditions, meaning of 131
restrictions 139
SYNAD, registers when routine is specified by AMP 133
SYNAD, registers when routine is specified by DCB 132
use of AMP parameter 137

italics, in notational conventions 4

J
JCL (job control language)

AMP DD parameter 31
converting from ISAM to VSAM 135
ISAM interface 135
parameters and subparameters used with VSAM 30
processing a VSAM data set 29
specifying VSAM catalogs 29

job control language (see JCL)
JOB CAT JCL statement 29

Index 181

journalizing transactions 146
JRNAD exit routine

coding 146
contents of registers at entry 147
journalizing transactions 146
specifying the exit with EXLST macro 51

JRNAD operand

K

in EXLST macro 51
in FIELDS operand 81
in GENCB macro 63
in MODCB macro 72
in TESTCB macro 90

KEQ option, in OPTCD operand 56
KEY

alternate 18,19
compressed 19
generic 22
nonunique 19
prime 20
unique 19

KEY option
in MACRF operand 49
in OPTCD operand 56

key sequence 17
key-sequenced data set

comparison with entry-sequenced and relative record data
set 18

definition 16
keeping track of relative byte addresses 145

keyed access
addition 24
deletion 24
insertion 24
retrieval 22
skipping 24
storage 24

keyed access to a key-sequenced data set 22
keyed access to a path 22
keyed access to a relative record data set 22
keyed-direct access

examples 107, 109,114, 116, 120
for deletion 24
for retrieval 22
for storage 24

keyed-sequential access
examples 103,109,111,116
for deletion 24
for retrieval 22
for storage 24

KEYLEN operand
in FIELDS operand

length of key field 78
length of search argument 83

in GENCB macro 67
in MODCB macro 74
in RPL macro 54
in TESTCB macro

length of key field 86
length of search argument 92

KGE option, in OPTCD operand 56
KSDS attribute, in A TRB operand 87

L
L option, in EODAD, JRNAD, LERAD, and SYNAD

operands
specified in EXLST macro 51
specified in GENCB macro 64
specified in MODCB macro 72
tested in TESTCB macro 91

languages, programming 129
LENGTH operand

in GENCB macro
area for access-method control block 60
area for exit list 64
area for request parameter list 68

in SHOWCB macro
area for access-method control block 76
area for exit list 80
area for request parameter list 82

lengthening a record
changing RBAs 17,146
entry-sequenced data set 17

LERAD exit routine
analyzing logical errors 143
coding 143
contents of registers at entry .143
specifying the exit with EXLST macro 51

LERAD operand
in EXLST macro 51
in FIELDS operand 81
in GENCB macro 63
in MODCB macro 72
in TESTCB macro 90

list form 159
example 165
of GENCB macro 161
of MODCB macro 162
of SHOWCB macro 163
of TESTCB macro 163

load mode, when VSAM data set is empty 49
LOC option, in OPTCD operand 56
locate processing

retrieval 22,25
simulation by ISAM interface 140

logical-error-analysis exit routine 143
logical-error function codes 97
logical-error return codes from request macros 95
lower case, in notational conventions 4
LRD option, in OPTCD operand 56
LRECL operand

in FIELDS operand 78
in TESTCB macro 86

LSR option, in MACRF operand 49

M
MACRF operand

in ACB macro 48
in GENCB macro 61
in MODCB macro 71
in TESTCB macro 88
interaction with PASSWD operand 48,61
restriction with shared control blocks 44

macros, VSAM
(see also Access Method Services)
ACB 44
BLDVRP 149
CHECK 123

182 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

Macros, VSAM (continued)
CLOSE 37
control block 41
DLVRP 149
ENDREQ 127
ERASE 119
EXLST 51
GENCB

used to generate an access-method control block 57
used to generate an exit list 63
used to generate a request parameter list 65

GET 102
GETIX 149
MODCB

used to modify an access-method control block 71
used to modify an exit list 72
used to modify a request parameter list 73

OPEN 33
POINT 122
PUT 110
PUTIX 149
return codes from

control block macros 42
request macros 95

RPL 52
SCHBFR 149
SHOWCAT 149
SHOWCB used to display an access-method control

block 75
used to display an exit list 80
used to display a request parameter list 82

summary of VSAM macros 149
TESTCB

used to test an access-method control block 85
used to test an exit list 90
used to test a request parameter list 92

WRTBFR 149
maintaining an alternate index 20
making a user catalog available 29
MAREA operand

in ACn macro 49
in FIElLDS operand 77
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 86

marking n~cords inactive in an entry-sequenced data set,
example 119

mass sequential insertion 24
master password 34
messages 100
method of indicating the end of a data set 37
MF operand, in GENCB, MODCB, SHOWCB, and TESTCB

macros 159
MLEN op(~rand

in ACB macro 49
in FIELDS operand 77
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 86

MODCB macro
examples 72,73,74
execute form 162
generate form 162
list form 162
operand notation for 169
return codes from 42
used to code a reentrant program 159,164
used to modify

access-method control block 71,72
exit list 72
request parameter list 73

modifying a control block
access-method control block 71
exit list 72
request parameter list 73

monitoring data set errors 145
MRKBFR macro 149
MSGAREA operand

in FIELDS operand 83
in GENCB macro 68
in MODCB macro 74
in RPL macro 54
in TESTCB macro 92

MSGLEN operand
in FIELDS operand 83
in GENCB macro 68
in MODCB macro 74
in RPL macro 54
in TESTCB macro 92

multiple-request processing
number of I/O buffers used in 49-50,61
specifying the number of requests 49-50,61

MVE option, in OPTCD operand 56

N
N option, in EODAD, JRNAD, LERAD, and SYNAD

operands
specified in EXLST macro 51
specified in GENCB macro 64
specified in MODCB macro 72
tested in TESTCB macro 91

NCI option, in MACRF operand 49
NCIS operand

in FIELDS operand 78
in TESTCB macro 86

NDELR operand
in FIELDS operand 78
in TESTCB macro 86

NDF option, in MACRF operand 49
NEXCP operand

in FIELDS operand 78
in TESTCB macro 86

NEXT operand
in FIELDS operand 78
in TESTCB macro 86

NFX option, in MACRF operand 49
NINSR operand

in FIELDS operand 78
in TESTCB macro 86

NIS option, in MACRF operand 49
NIXL operand

in FIELDS operand 78
in TESTCB macro 86

NLOGR operand
in FIELDS operand 78
in TESTCB macro 86

Index 183

nonunique keys 19
NO option, in CATALOG operand

in ACB macro 47
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 87

notation, operand, for GENCB, MODCB, SHOWCB, and
TESTCB macros 167

notational conventions 3
noting RBA changes 145

for control area splits 146
for control interval splits 146

NRETR operand
in FIELDS operand 78
in TESTCB macro 86

NRM option, in MACRF operand 49
NRS option, in MACRF operand 49
NSP option, in OPTCD operand 56
NSR option, in MACRF operand 49
NSSS operand

in FIELDS operand 78
in TESTCB macro 86

NUB option, in MACRF operand 49
NUIW option, in FIELDS operand 78
NUP option, in OPTCD operand 56
NUPDR operand

in FIELDS operand 78
in TESTCB macro 86

NXTRPL operand

o

in FIELDS operand 83
in GENCB macro 68
in MODCB macro 74
in RPL macro 55
in TESTCB macro 92

OBJECT operand
in SHOWCB macro 75
in TESTCB macro 87

OFLAGS operand, in TESTCB macro 88
OLD, subparameter in JCL 30
OPEN (in OFLAGS operand in TESTCB macro) 88
OPEN macro

connecting program to data 33
error return codes from 36
example 35
ISAM interface 130,139

OPEN/CLOSE/TCLOSE message area
in ACB macro 49
in FIELDS operand 77
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 86

OPENOBJ operand, in TESTCB macro 88
operand notation for GENCB, MODCB, SHOWCB, and

TESTCB macros 167
OPTCD operand

in GENCB macro 68
in MOOCB macro 74
in RPL macro 55,56
in TESTCB macro 93
with chained request parameter lists 55,69

OPTCD subparameter, in AMP parameter 32
options

exit routines 26

types of access 21
types of data sets 16

OR sign (I), in notational conventions 3
OUT option, in MACRF operand 49
overlapping processing, example 125

p
parameter list

exit list 41
specified in EXLST macro 51
specified in GENCB macro 63

of GENCB, MODCB, SHOWCB, or TESTCB macro 159
estimating size for list form of macros 160
sharing among macros 164

request parameter list 41
parentheses, in notational conventions 4
partial key (generic key) 22
PASS subparameter, in JCL 30
PASSWD operand

in ACB macro 48
in FIELDS operand 77
in GENCB macro 61
in MODCB macro 71
in TESTCB macro 86
interaction with MACRF 48,61

passwords
field containing password for OPEN 34
levels of authorization 34

path 19
PATH option, in OPENOBJ operand 88
physical-error analysis

ISAM interface 132
SYNAD exit routine 143

physical-error function codes 97
physical-error message 100
physical-error return codes from requ(!st macros 96
PL/I language 129
POINT macro 122

example 122
relative to GET-previous processing 22
restriction 123

positioning, concurrent
additional buffer required for 49
giving up a position 127

positioning for sequential access
by entry sequence 25
by key sequence 22,122
by relative record number 23
done by POINT macro 122

preparing to open a data set 29
prime keys 20
PRIVATE subparameter, in JCL 30
processing options 21

direct access 21
identifying record by key, address, or relative record

number 21
overlapping processing 125
providing exit routines 26
specified at assembly or execution 21,41

processing types 21-25
{Jee also keyed access and addressed access)
specifying 41

processing with the ISAM interface 26,129
program, reentrant 159
programming languages 129
PSW condition code, set with TESTCB 85

184 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

publications
related 5
required 5
VSAM and Access Method Services 4

punctuation, in notational conventions 4
PUT macro 110

examples 111
PUTIX macro 96

Q
QISAM (queued indexed-sequential access method) 130
queued indexed-sequential access method (QISAM) 130

R
random access (see direct access)
RBA (relative byte address)

changeability in control area and control interval
splits 146

changeability in key-sequenced data set 17
definition 16
example, recording when loading records 112
unchangeability in entry-sequenced data set 18

RBA operand
in FIELDS operand 83
in TESTCB macro 92

reading a record
addressed 25
keyed 22
skipping 23

read-only password 34
RECFM subparameter, in AMP parameter 32
RECLEN operand

in FIELDS operand 83
in GENCB macro 68
in MODCB macro 74
in RPL macro 55
in TESTCB macro 92

record
alternate-index 19
format with ISAM interface, specified in RECFM

parameter 138
length, specified in GENCB 68
length, specified in RPL 55
relative 17
spanned 16

recording data set errors 145
reentrant program

form of GENCB macro used to code 159
form of MODCB macro used to code 159
form of SHOWCB macro used to code 159
form of TESTCB macro used to code 159

register notation
in CLOSE macro 37
in GENCB, MODCB, SHOWCB, and TESTCB

macro 164
in OPEN macro 33
in request macros 102,110,120,122,123,127

relative byte address (see RBA)
relative rt~cord data set

compared with entry-and key-sequenced data sets 18
defined 16
keyed access 22,23,15

relative record number
defined 17
used a'S a key 17

release position, example 127
remote terminals 27
REPL attribute, in A TRB operand 87
request macros 95

CHECK 123
ENDREQ 127
ERASE 119
GET 102
logical-error return codes from 95
physical-error return codes from 100
POINT 122
PUT 110

request parameter list
chaining 55,68
changing 73
defining with the RPL macro 52
displaying fields of 82
fields of, displayed with the SHOWCB macro 82
generating with the GENCB macro 65
modifying 73
testing a field of 92

requesting access to data 95
resource sharing 44
restart 32
restrictions in the use of the ISAM interface 139
RETAIN subparameter, in JCL 30
retrieving a record

addressed 25
keyed 22
skipping 23

retrieving an index record 96
return codes

checking, example 124
from alternate index upgrade requests 97
from CLOSE macro 38
from GENCB, MODCB, SHOWCB, and TESTCB

macros 42
from OPEN macro 35
from request macros 95

reusable data set 16
restrictions 16
specifying in ACB macro 49

RKP operand
in FIELDS operand 78
in TESTCB macro 86

RPL macro 52
examples 57

RPL operand
in BLK operand in GENCB macro 66
in CHECK macro 123
in ENDREQ macro 127
in ERASE macro 119
in GET macro 102
in MODCB macro 74
in POINT macro 122
in PUT macro 110
in SHOWCB macro 82
in TESTCB macro 92

RPLLEN operand
in FIELDS operand· 83
in TESTCB macro 92

RRDS attribute, in A TRB operand 87
RST option, in MACRF operand 49

Index 185

s
SCHBFR macro 149
SCRA option, in CRA operand

in ACB macro 47
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 87
retriction 47,60/71

search argument
full key 22,56
generic (partial) key 22,56
RBA 17
relative record number 23

searching catalogs, order of 31
security of data

authorization routine 147
passwords 34

security-authorization record, user 147
security-verification routine, user 147
SEQ option

in MACRF operand 49
in OPTCD operand 56

sequential access
addressed 25
keyed 22
positioning 22,122
skipping 23

SER subparameter, in JCL 30
service program ~ee Access Method Services)
shared resources 44
sharing control blocks

based on DDNAME 44
based on DSNAME 44

sharing parameter lists among GENCB, MODCB,
SHOWCB, and TESTCB 164

shortening a record
changing RBAs 17
entry-sequenced data set 18

SHOWCAT macro 149
SHOWeB macro

examples 79,81,84
execute form 163
generate form 163
listform 163
operand notation for 167
return codes from 42
used to code a reentrant program 159
used to display fields of

access-method control block 75
exit list 80
request parameter list 82

SHR subparameter, in JCL 30
SIS option, in MACRF operand 49
skip-sequential access

examples 103,113
restriction with GET-previous 22

SKP option
in MACRF operand 49
in OPTCD operand 56

SPAN attribute, in A TRB operand 87
spanned records 16
SSWD attribute, in A TRB operand 87
STEPCAT JCL statement 29
STMST operand

in FIELDS operand 78

in TESTCB macro 86
storage requirements, I/O buffers 4~7 ,59
storing a record

addressed 25
keyed 22
skipping 23

storing an index record 96
string extension, dynamic 45,49
STRMAX option, in FIELDS operand 77
STRNO operand

examples 47
in ACB macro 49
in FIELDS operand 77
in GENCB macro 61
in MODCB macro 71
in TESTCB macro 86

STRNO subparameter, in AMP parameter 33
ISAM interface 138

substituting processing parameters by way of JCL 32
summary of amendments 13
summary of macros used to gain access to data 149
suspending processing, example 126
SYN option, in OPTCD operand 56
SYNAD exit routine

analyzing physical errors 143
coding 143
contents of registers at entry 144
physical-error message 100
specifying the exit with EXLST macro 51
using ISAM interface 138

contents of registers at entry 133
example 141

SYNAD operand
in EXLST macro 51
in FIELDS operand 80
in GENCB macro 63
in MODCB macro 72
in TESTCB macro 90

SYNAD subparameter, in AMP parameter
with ISAM 139
with VSAM 33

SYNADAF macro, in ISAM program 133
synchronous processing

specified in MODCB macro 74
specified in RPL macro 56

system catalog, in order of catalog search 31

T
T (in TYPE operand in CLOSE macro) 38
temporary CLOSE macro 38
terminals 27
terminating a request before completion 127
TESTCB macro

examples 88,89,91,94
execute form 163
generate form 164
list form 163
operand notation for 171
return codes from 42
setting PSW condition code 85
used to code a reentrant program 159
used to test a field of

access-method control block 85
exit list 90
request parameter list 92

186 OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide

testing a control block
access-method control block 85
exit list 90
request parameter list 92

Time Sharing Option (TSO) 27
TRACE subparameter, in AMP parameter 33
tracing 33
transactions, journalizing 146
TRANSID operand

in GENCB macro 68
in MODCB macro 74
in RPL macro 55
in TESTCB macro 92

TRANSID option, in FIELDS operand 83
translating ISAM requests 130
TSO (Time Sharing Option) 27
TYPE operand, in CLOSE macro 38

u
UBF option, in MACRF operand 49
UCRA option, in CRA operand

in ACB macro 47
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 87
restrictions 47,60,71

UIW option, in FIELDS operand 78
underlining, in notational conventions 3
unique keys 19
UNIT parameter, In JCL 30
UNQ attribute, in A TRB operand 87
UPD option, in OPTCD operand 56
update password 34
updating a record, example 116

(see also storing a record, lengthening a record, and
shortening a record)

upgrade! set 20
status following request that fails 97

upper case, in notational conventions 4
USAR {user security-authorization record) 147
user buffering 49
user catalog

JCL 29
order of search 31
specified for job 29
specified for job step 29

user security-authorization record 147
user security-verification routine 147

contents of registers at entry 147
using passwords to authorize access to data 34
USVR (user security-verification routine) 147
utility program (see Access Method Services)

v
verification routine, user-security 147
VOLUME parameter, in JCL 30

w
W AREA operand, in GENCB

generating access-method control block 61
generating exit list 64
generating request parameter list 69

WCK attribute, in A TRB operand 87
work area

processing a record in 53,67
relation to I/O buffer 53,67
specifying

generating access-method control block 61
generating exit list 64
generating request parameter list 69

work data set 16
restrictions 16
specifying in ACB macro 49

writing a record
addressed 25
keyed 24
skipping 23

WRTBFR macro 149

y
YES option, in CATALOG operand

in ACB macro 47
in GENCB macro 60
in MODCB macro 71
in TESTCB macro 87
restriction 47,60

Index 187

OS/VS Virtual Storage Access Method
(VSAM) Programmer's Guide
GC26-3838-1

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

GC26·3838·1

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
System Development Division
LD F Publishing- Department J04
1501 California Avenue
Palo Alto, California 94304

Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternationall

First Class Permit
Number 439
Palo Alto, California

.,--._--._--
""0 ... o co ...
Q,)

3
3
CD ..,
Cli"
G>
c
a:
CD

'T1

~
z
?
CJ')
w
.......
o
W
9

GC26-3838-1

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

o
en
< en
~
;+
c::
~

~
o ...,
C,)

co
(1)

);>
(")
(")
(1)
II>
II>

s:
(1)
~

:T
o a..

"< en
);>
s:

" (1)

z
!='
~
'-J
o
W
o

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	replyA
	replyB
	xBack

