
Systems

GC28-0628-0
File No. 5370-36

OS/VS2 System Programming
Library: Supervisor

VS2 Release 3

! tZJ . i)

First Edition (February, 1975)

This edition, with OS/VS2 System Programming Library: Job Management, GC28-0627, and
OS/VS2 System Programming Library: TSO, GC28-0629, obsoletes OS/VS2 System
Programming Library: Job Management. Supervisor, and TSO, GC28-0682-0.

This edition applies to release 3 of OS/VS2 and to all subsequent releases of OS/VS2
until otherwise indicated in new editions or Technical Newsletters. Changes are
continually made to the information herein; before using this publication in connection
with the operation of IBM systems, consult the latest Virtual Storage Supplement to IBM
System/360 and System/370 Bibliography, Ge20-000l, for the editions that are applicable
and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming
Systems Publications, Department])58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. Comments become the property of IBM.

@ Copyright International Business Machines Corporation 1974,1975

Preface

This publication describes supervisor facilities that can be influenced by the
system programmer.

Part I: Supervisor Services discusses supervisor functions restricted to
system programmers and installation-approved personnel, and the macro
instructions and parameters used to obtain the functions.

Part I is divided into .seven topics. For convenience and compatability, these
services are grouped in the same manner as in OS/VS2 Supervisor Services
and Macro Instructions, GC28-0683. Accordingly, some of the subjects
discussed are merely continuations of previous coverage, but are extended
to include discussions of the new functions. However, some subjects
discussed under the topics are completely new, but are restricted in use to
the system programmer.

Part II: Macro Instructions contains the formats and descriptions of the
supervisor macro instructions. It provides system programmers with the
information necessary to code the macro instructions.

Publications referenced:

OS/VS2 System Programming Library: Data Management, GC26-3830.
IBM System/370 Principles of Operation, GA22-7000.
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683.
OS/VS2 Scheduler and Supervisor Logic, SY28-0624,SY28-0625,SY28-0626.
(3 volumes)
OS/VS - DOS/VS - VM/370 Assembler Language, GC33-4010.
OS/VS2 System Programming Library: System Generation Reference,
GC26-3792.

Preface 3

4 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Summary of Amendments

Part I: Supervisor Services

Subtask Creation and Control
Creating a New Task

User Modifications ...
Operator Communication With a Problem Program
Providing an EXTRACT Answer Area

Program Management
Synchronous Exits

Resource Control
Locking

Classes of Locks
Types of Locks
Locking Hierarchy
Locking Considerations
SETLOCK Macro Instruction

The Must Complete Function
Characteristics of the Must Complete Function
Programming Notes '.

Shared Direct Access Storage Devices (Shared DASD)
Devices That Can be Shared
Volume/Device Status
System Configuration . . .
Volume Handling
Macro Instructions Used With Shared DASD

Releasing Devices .
Preventing Interlocks
Volume Assignment
Program Libraries .
Finding the UCB Address

Authorized Program Facility (APF)
Restricting Services/Resources
Assigning Authorization
Defining Authorized Libraries

Changing System Status
Generating an SVC
Generating Inline Code . . .

Interprocessor Communications (IPC)
Service Classes .
Status Conditions

Event Completion .
Cross Memory POST
Bypassing the POST Routine
Waiting for Event Completion

Interruption, Termination, and Dumping Services
Recovery /Termination

Task Termination
Ad'dress Space Termination

Processing Functional Recovery Routines
SETFRR Macro Instruction

SPIE Processing
Dumping Virtual Storage

Using the SDUMP Macro Instruction
SQA Buffer

Using the CHNGDUMP Command
Task Recovery

ST AE/ST AI Exit Routines
Interface to a ST AE/ST AI Exit

ST AE/ST AI Retry Routines .
EST AE Extended Capabilities . .

Contents

..... . 9

..... 11

13
13
14
15
16

17
17

19
19
20
20
21
21
22
22
23
23
24
24
24
25
25
25
25
25
26
26
26
30
30
30
31
32
32
32
32
33
34
35
35
35
36

37
37
37
38
38
39
39
39
39
40
40
41
41
42
42
43

Contents 5

The BRANCH Option
The TERM Option
The PURGE and ASYNCH Parameters

EST AE/EST AI Exit Routines
Interface to an EST AE/EST AI Exit

EST AE/EST AI Retry Routines
Clean-Up Routines

Support for Installation-Written Clean-Up Routines
Programming Considerations

Virtual Storage Management .
The BRANCH Parameter
The KEY Parameter

Real Storage Management
Fixing/Freeing Virtual Storage Contents
Completion Considerations
Virtual Subarea List (VSL)

Miscellaneous Services
Writing Operator Messages

Routing the Message
Writing a Multiple-Line Message

Message Routing Exit Routines . .
Characteristics of M CS
Programming Conventions for WTO/WTOR Routines

Messages Not Using Routing Codes
Writing a WTO/WTOR Exit Routine

Adding a WTO/WTOR Exit Routine to the Control Program
Service Management

Scheduling Service Requests . . .
Service Request Blocks (SRBs)
Priorities
Characteristics of Service Requests

Purging Service Requests
PURGEDQ Parameters

Creating Interruption Request Blocks
Writing SVC Routines

Characteristics of SVC Routines .
Programming Conventions for SVC Routines
Inserting SVC Routines Into the Control Program

Specifying SVC Routines
Inserting SVC Routines During the System Generation Process

Missing Interruption Handler
Establishing a Time Interval

Adding Code to the Power Warning Feature Support
Writing Code for the Machine Check Handler Appendage

Coding Considerations
Writing Code for the Master Scheduler Initialization Routine

Coding Considerations
Control Track Record

Part II: Reference - Macro Instructions
Macro Instruction Forms . . .
Coding the Macro Instructions
Continuation Lines

Descriptions of the Macro Instructions
A TT ACH -- Create a New Task
CALLR TM -- Call Recovery/Termination Manager
CHNGDUMP -- Change Dump Options ..
CIRB - Create Interruption Request Block
DEQ -- Release a Serially Reusable Resource
DEQ (List Form)
DEQ (Execute Form)
DSGNL -- Issue Direct Signal
ENQ -- Request Control of a Serially Reusable Resource
ENQ (List Form)
ENQ (Execute Form)
EST AE -- Extended ST AE

6 ' OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

44
44
44
45
47
49
50
50
50

53
53
53

55
55
56
56

59
59
59
60
60
60
61
62
62
62
63
64
64
64
65
65
66
66
67
67
67
70
70
71
71
71
72
72
73
74
75
76

79
80
80
82

83
84
88
90
94
96
99

100
101
103
106
107
108

EST AE (List Form)
EST AE (Execute Form)

I EVENTS -- Wait for Events
EXTRACT -- Extract TCB Information
EXTRACT (List Form)
EXTRACT (Execute Form)
FREE MAIN -- Free Virtual Storage
FREEMAIN (List Form)
FREE MAIN (Execute Form) . . .
GET MAIN -- Allocate Virtual Storage
GETMAIN (List Form)
GET MAIN (Execute Form)
MODESET -- Change System Status
MODESET (List Form)
MODESET (Execute Form)
NIL -- Provide a Lock Via an AND IMMEDIATE (NI) Instruction
OIL -- Provide a Lock Via an OR IMMEDIATE (01) Instruction
PGFIX -- Fix Virtual Storage Contents
PGFIX (List Form)
PGFREE -- Free Virtual Storage Contents
PGFREE (List Form)
POST -- Signal Event Completion
POST (List Form)
POST (Execute Form)
RGEDQ -- Purge SRB Activity
PURGEDQ (List Form)
PURGEDQ (Execute Form)
QEDIT -- Link to SVC 34
RESERVE -- Reserve a Device
RESERVE (List Form)
RESERVE (Execute Form) ..
RISGNL -- Issue Remote Immediate Signal
RPSGNL -- Issue Remote Pendable Signal .
SCHEDULE -- Schedule System Services for Asynchronous Execution
SDUMP -- Dump Virtual Storage
SDUMP (List Form)
SDUMP (Execute Form)
SETFRR -- Set Up Functional Recovery Routines
SETLOCK -- Control Access to Serially Reusable Resources
SETRP -- Set Return Parameters
SPIE -- Specify Program Interruption Exit
SPIE (List Form)
SPIE (Execute Form)
SPOST -- Synchronize POST
ST AE -- Specify Task Abnormal Exit
ST AE (List Form)
STAE (Execute Form)
ST A TUS -- Change Subtask Status
SYNCH -- Take a Synchronous Exit to a Processing Program
TEST AUTH -- Test Authorization of Caller
WTO -- Write to Operator
WTO (List Form)
WTOR -- Write to Operator With Reply
WTOR (List Form)

Index

110
111
112
113
115
116
117
119
120
121
123
124
125
128
129
130
132
134
137
138
140
141
142
143
144
145
146
147
148
151
152
153
155
157
158
161
162
164
166
173
177
178
179
180
181
184
185
186
190
191
193
196
197
199

201

Contents 7

Figures
Figure 1. EXTRACT ECB and CIB Pointers
Figure 2. Command Input Buffer Contents
Figure 3. EXTRACT Answer Area Fields
Figure 4. Summary of Locking Characteristics
Figure 5. Valid Volume Characteristic and Device Status Combinations
Figure 6. Example of an Interlock Environment
Figure 7. Example of Subroutine Issuing RESERVE and DEQ
Figure 8. Assigning Authorization via SETCODE
Figure 9. Bypassing the POST Routine
Figure 10. EST AE Environment
Figure 11. Virtual Subarea List Entries
Figure 12. Programming Conventions for SVC Routines
Figure 13. Changing the Missing Interruption Handler Time Interval
Figure 14. Logical Placement of Your Code in the Machine Check Handler Appendage
Figure 15. Logical Placement of Your Code in the Master Scheduler Initialization Module
Figure 16. Control Track Record
Figure 17. Storage Assignments on MP Systems
Figure 18. Macro Instruction Coverage . .
Figure 19. Sample Macro Instruction ...
Figure 20. Continuation Coding
Figure 21. Return Code Area Used by DEQ
Figure 22. Return Code Area Used by ENQ
Figure 23. Return Code Area Used by RESERVE
Figure 24. MCSFLAG Fields

8 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

15
15
16
21
24
26
29
31
36
46
56
68
71
73
75
76
77
79
81
82
97

104
150
194

Summary of Amendments
for GC28-0628-0
OS/VS2 Release 3

This edition, with OS/VS2 System Programming Library: Job

Management, GC28-0627, and OS/VS2 System Programming

Library: TSO, GC28-0629, obsoletes OS/VS2 System

Programming Library: Job Management, Supervisor, and TSO,

GC28-0682-0.

Power Warning Feature Support

This edition incorporates system programmer information
previously contained in OS/VS Power Warning Feature
(PWF) Support, ICR Guide, GC28-0686-0.

Virtual Storage Management

New Subpools 227 and 228 are discussed.

Event Completion

The EVENTS macro instruction, and its use, are discussed.

SPIE Macro Instruction

The syntax of the SPIE macro instruction is presented.

Miscellaneous Corrections

EST AE processing
APF
Locking
MODESET
WTO
Command input buffers

Examples

The examples of the standard, list, and execute forms of the
macro instructions are more properly placed at the ends of
their appropriate sections.

Summary of Amendments 9

10 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Part I: Supervisor Services

The supervisor provides the resources that your programs need while assuring that as many of
these resources as possible are being used at a given time. Well designed programs use system
resources efficiently. Knowing the conventions and characteristics of the vs supervisor will
help you design more efficient programs.

This section describes those supervisor services that should be restricted in use to systems
programmers and installation-approved personnel. In most cases, the services correspond to
macro instructions and parameters that are described in part II.

For convenience and compatibility, the services you can request from the supervisor are
grouped in the same manner as in OS/VS2 Supervisor Services and Macro Instructions. The
service groupings may be described as follows:

Subtask Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each other and with
other tasks for execution time.

Program Management: The supervisor can be used to aid communication between segments of
a program. Save areas, address ability , and passage of control from one segment of a program
to another are included in this topic.

Resource Control: Portions of some tasks depend on the completion of events in other tasks,
thus requiring planned task synchronization. Planning is also required when more than one
program uses a serially reusable resource.

Interruption, Termination, and Dumping Services: The supervisor provides facilities for writing
exit routines to handle specific types of interruptions. It is not likely, however, that you will be
able to write routines to handle all types of abnormal conditions. The supervisor therefore
provides for termination of your program when you request it by issuing an ABEND macro
instruction, or when the control program detects a condition that will degrade the system or
destroy data.

Virtual Storage Management: While virtual storage allows you to write large programs without
the need for complex overlay structures, virtual storage must be obtained for your job step.
Virtual storage is allocated by both explicit and implicit requests.

Real Storage Management: The supervisor administers the use of real storage and directs the
movement of virtual pages between auxiliary storage and real storage in page size blocks. The
services provided allow you to release virtual storage contents, load virtual storage areas into
real storage, and page out virtual storage areas from real storage.

In addition to the services outlined above, the supervisor provides the facilities for timing
events, extended precision floating-point simulation, and operator communication with both the
system and application programs.

Part I: Supervisor Services 11

12 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Subtask Creation and Control

One task is created by the control program as a result of initiating execution of the job step
(the job step task). You can create additional tasks in your program. If you do not, however,
the job step task is the only task in a job being executed. The benefits of a multiprogramming
environment are still available even with only one task in the job step; work is still being
performed for other jobs when your task is waiting for an event, such as an input operation, to
occur.

The advantage in creating additional tasks within the job step is that more tasks are
competing for control than the task in the job you are concerned with. When a wait condition
occurs in one of your tasks, it is not necessarily a task from some other job that gets control;
it may be one of your tasks, a portion of your job.

The general rule is that parallel execution of a job step (that is, more than one task in a job
step) should be chosen only when a significant amount of overlap between two or more tasks
can be achieved. The amount of time taken by the control program in establishing and
controlling additional tasks, and your increased effort to coordinate the tasks and provide for
communications between them must be taken into account.

Most of the information concerning subtask creation and control appears in OS/VS2
Supervisor Services and Macro Instructions. This chapter continues discussion in the following
areas:

• task creation (ATTACH macro instruction)
• communication with a problem program (EXTRACT and QEDIT macro instructions)

Creating a New Task

The A TT ACH macro instruction causes the control program to create a new task. The complete
use of the macro instruction is described in OS/VS2 Supervisor Services and Macro Instructions.

The macro instruction has nine parameters which permit the authorized user (protection key
0-7 or supervisor state) greater flexibility in using the services of the macro instruction. If the
parameters are not used by authorized tasks, the default values are assigned. These defaults
include:

• JSTCB=NO -- the attached task is a task in the present job step.

• SM=PROB -- the new task is to run in problem program mode.

• SV AREA= YES -- a save area is needed for the new task.

• KEY =PROP -- the protection key of the newly created task is the same as the task using
ATTACH.

• DISP= YES -- the subtask is to be dispatchable.

• TID=O -- the task identifier of the new task is O.

• JSCB -- omission of this parameter specifies that the address of the job step control block
of the attaching task is also used for the new task.

• NSHSPV and NSHSPL -- omission of these parameters specifies that subpools 236 and
237, if they exist, are to be shared with the subtask.

Subtask Creation and Control 13

User Modifications

Rather than accepting the default values, you can extend the facilities of the ATTACH macro
instruction by coding the following values:

• JSTCB=YES -- the attached task is a new job step task. In this case, the address of the
TCB of the newly created task is placed in the TCBJSTCB field of the attaching TCB.

The first load of a job is attached as a job step task by the initiator. For such an attach,
the program manager will not search the job library of the attaching task. When the job
step task issues ATTACH, LOAD, LINK, or XCTL, the job library of the job step task may
be searched for the load module being fetched.

Also, only under a job step task can a system program (system key or supervisor state)
attach a load module from a nonsystem library.

In order to attach a job step task, the attaching task (and any of its subtasks) must be
job step tasks. If one of these conditions is not met, the new task will not be created.

• SM=SUPV -- the system is to run in supervisor mode when executing the attached task.

Supervisor state is a requirement before privileged instructions (for example, LPSW) can
be executed. You can specify supervisor mode via this parameter or via the MODESET
macro instruction.

• sv AREA=NO -- a save area is not needed for the new task.

The save area is obtained from the user's region. Since it may not always be desirable to
have a save area (for example, the user's region may not be defined at the time of a
system ATTACH), this parameter may be used to specify that no save area should be
created.

• KEY =ZERO -- the protection key of the newly created task is zero.

Protection key zero allows the new task to reference any defined storage and pass all
validity checks.

• DISP=NO -- the subtask is to be nondispatchable.

This parameter causes the primary nondispatchability bit TCBANDSP to be turned on in
the new TCB. As a result, the new TCB will not be dispatched. Thus, this allows the
originating task to alter the new TCB (for example, TCBPKF can be reset to a key other
than zero or the attaching task's key). The new task will remain nondispatchable until
TCBANDSP has been reset via the STATUS macro instruction with the RESET option.
(Note: STATUS START TCB will not make the new TCB dispatchable.)

• TID=task id -- the task identifier specified is to be placed in the TCBTID field of the
attached task.

The task identifier can be set to identify critical system tasks. Other uses of this
parameter are not recommended.

• JscB=jscb address -- the address specified for the JSCB is to be used for the new task.

This parameter sets the TCBJSCB to the address of a job step control block. This action,
normally associated with the creation of a job step task, is not required by ATTACH.

• NSHSPV=subpool number and NSHSPL=subpoollist address -- subpools 236 and 237 are
not to be shared with the new task.

Subpools 236 and 237 are known as the scheduler work area (SWA). This parameter
allows the scheduler to control these subpools.

14 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Operator Communication with a Problem Program

The operator can pass information to a problem program by issuing a STOP or a MODIFY
command. In order to accept these commands, the program must be set up in the following
manner.

An EXTRACT macro instruction is issued to obtain a pointer to the communications ECB and
a pointer to the first command input buffer (CIB) on the CIB chain for the task. The ECB is
posted whenever a STOP or a MODIFY command is issued. The EXTRACT macro instruction is
written as follows, and will return what is indicated in Figure 1.

EXTRACT answer area,FIELDS=COMM

Answer area ..
Address of the ECB address

communication area CIB address

Figure 1. EXTRACT ECB and CIB Pointers

The CIB contains the information specified on the STOP or the MODIFY command, as shown
in Figure 2. If the job was started from the console, the EXTRACT macro'instruction will point
to the START CIB. If the job was not started from the console, the address of the first CIB will
be zero.

o
8

10

Address of next CIS Verb code CIS length

Reserved I TSO terminal 10 Console 10 Reserved

Verb code X'04' START
X'40' STOP
X'44' MODIFY

Variable length data specified on the command.

Reserved

Length of data field

Figure 2. Command Input Buffer Contents

If the address of the START CIB is present, the QEDIT macro instruction should be used to
free this CIB after any parameters passed in the START command have been examined. The
QEDIT macro instruction is written as follows.

QEDIT ORIGIN=address of pointer to CIB,BLOCK=address of CIB

The CIB counter should then be set to allow CIBs to be chained and MODIFY commands will
be accepted for the job. This is also accomplished by using the QEDIT macro instruction:

QEDIT ORIGIN=address of pointer to CIB,CIBCTR=n

The value of n is any integer value from 0 to 255. If n is set to zero, no MODIFY commands
will be accepted for the job. STOP commands, however, will be accepted for the job regardless
of the value set for CIBCTR.

For the duration of the job, the communications ECB may be waited on or checked at any
time to, ~ee if a command' has been entered for the program. The verb code in the CIB should
be examined to determine whether a STOP or a MODIFY command has been entered. After the
data in the CIB has been processed, a QEDIT macro instruction should be issued to free the
CIB.

Subtask Creation and Control 15

The communications ECB will be cleared when no more CIBs remain. Care should be taken
if mUltiple subtasks are examining these fields. Any CIBs not freed by the task will be
unchained by the system when the task is terminated. The area addressed by the pointer
obtained by the EXTRACT macro instruction, the communications ECB, and all CIBs are in
protected storage and may not be altered.

Providing an EXTRACT Answer Area
The EXTRACT macro instruction is used to provide TCB information for either the active task
or one of its subtasks. The information from the requested field is returned in the relative
order shown in Figure 3. If the information from a field is not requested, the associated
fullword is omitted.

GRS

FRS

Reserved

AETX

PRI

CMC

TIOT

COMM

TSO

PSB

TJID

ASID

Answer Are.a Address

00

DO

00 00

00

00 00

00

00

00

00

00

00 00

00 00

r--- 1 Byte --11 *1 '--- 1 Byte

Figure 3. EXTRACT Answer Area Fields

Address --
Address

00 I 00 --
Address

Value I Value

Completion Code

Address

Address

Address

Address

Value

Value .-

1 Byte 1 Byte 4

You must provide an answer area consisting of contiguous fullwords, one for each of the
codes specified in the FIELDS parameter, with the exception of ALL. If ALL is specified, you
must provide a 7-word area to accomodate the GRS, FRS, reserved, AETX, PRI, CMC, and TIOT
fields. The ALL code does not include the COMM, TSO, PSB, TJID, and ASID fields.

Addresses are always returned in the low-order three bytes of the fullword, and the
high-order byte is set to zero. Fields for which no address or value has been specified in the
task control block are set to zero.

For example, if FIELDS=(TIOT,GRS,PRI,TSO,PSB,TJID) is coded, a 6-fullword answer area is
required, and the extracted information will appear in the same relative order as shown in
Figure 3. (That is, GRS will be returned in the first word, PRI in the second word, TIOT in the
third word, etc.)

If FIELDS=(ALL,TSO,PSB,COMM,ASID) is coded, an Il-fullword answer area is required, and
the extracted information will appear in the answer area in the relative order shown above.

16 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Program Management

The supervisor can be used to aid communication between segments of a program. The
descriptions of load module structures, facilities for passing control between programs, and the
use of associated macro instructions are available to all users and are described in OS/VS2
Supervisor Services and Macro Instructions.

Following is a description of synchronous exits and the SYNCH macro instruction associated
with it. The facility should only be used by system programmers or other installation-approved
personnel.

Synchronous Exits
In general, the SYNCH macro instruction is used when a control program in the supervisor state
is to give temporary control to a processing program routine, and when the processing program
is expected to return control to the supervisor state. The program to which control is given
must be in virtual storage when the macro instruction is issued. When the processing program
returns control, the supervisor state bit, the storage protection key bits, the system mask bits,
and the program mask bits of the program status word are restored to the settings they had
before execution of the SYNCH macro instruction.

The use of the SYNCH macro instruction is similar to that of the BALR instruction in that
register 15 may be used for the entry name address.

As an example of the use of. the SYNCH macro instruction, label processing as the result of
an OPEN macro instruction may be carried out to a point at which a user's processing program
indicates that private processing is desired (or necessary). The control program's Open routine
would then issue a SYNCH macro instruction giving the entry name address of the subroutine
required for the user's private 'label processing.

Program Management 17

18 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Resource Control

Planning is required when more than one program uses a serially reusable resource. Planning is
also required when portions of some tasks depend on the completion of events in other tasks.

This chapter discusses some of the services available to control resources, and thus to help
you plan ahead for a more efficient installation. The services discussed include:

• locking (SETLOCK macro instruction)
• must complete function (ENQ and DEQ macro instructions)
• shared DASD (RESERVE and EXTRACT macro instructions)
• authorized program facility (TESTAUTH macro instruction)
• system status (MODESET macro instruction)
• interprocessor communications (nSGNL, RISGNL, and RPSGNL macro instructions)
• event completion (POST, SPOST, and EVENTS macro instructions)

Locking
Adequate control of serial resources is a significant problem in a multiprocessing environment.
Since some uniprocessor serialization techniques (for example, disablement), are no longer
effective, there is the possiblity of multiple tasks, even multiple tasks in the same job step,
using the same serial resource while running concurrently on different CPUs.

To eliminate this problem, a locking mechanism is provided to control access to serially
reusable resources. The lock manager will handle all functions related to the locks (for
example, obtaining or releasing locks, or checking the status of a CPU with respect to a
particular lock). However, a locking technique can not be effective unless all routines that have
the potential for changing the protected resource, or that depend on its status remaining
unchanged for a given period, make use of the locking mechanism.

In MVS, a locking manager controls a new hierarchical locking structure with multiple types
of locks and synchronizes the use of serially reusable resources. Use of the locking manager is
restricted to key 0 programs running in supervisor state, which prevents unauthorized problem
programs from interfering with the serialization process.

To enhance performance, each kind of serially resuable resource is assigned a separate lock.
In this way, a lock held by a CPU on one resource does not prevent the other CPU from using
a different resource.

The locks provided in MVS are:

• Global dispatcher lock (DISP) -- serializes all functions associated with the dispatching
process.

• Auxiliary storage manager lock (ASM) -- serializes use of the global ASM control blocks.

• Real storage manager and virtual storage manager space allocation lock (SALLOC) -

serializes the global functions of real storage management and virtual storage
management.

• lOS synchronization lock (IOSYNCH) -- serializes global lOS functions.

• lOS channel availability table lock (IOSCAT) -- serializes access and updates to the
channel availability table.

• lOS unit control block lock (IOSUCB) -- serializes access and updates to the unit control
blocks. There is one lock per UCB.

• lOS logical channel queue lock (IOSLCH) -- serializes access and updates to the lOS

logical channel queues. There is one lock per channel queue.

Resource Control 19

• System resources manager lock (SRM) -- serializes use of the SRM control algorithms and
associated data.

• Cross memory services lock (CMS) -- serializes on more than one address space where
this serialization is not provided by one or more of the other global locks.

• Local storage lock (LOCAL) -- serializes functions and storage, used by the local
supervisor, within local address space. There is one lock per address space.

Classes 0/ Locks

Two classes of locks exist:

• Global locks -- protect serially resuable resources related to more than one address space.
(For example, a unit control block is protected by a global lock since it relates to the
entire system. Also, a system-related GETMAIN for a global subpool, or a global ENQ,

requires a global lock.)

~ Local locks -- protect the resources assigned to a particular address space. When a CPU

holds a local lock, the queues and control blocks associated with that address space can
be manipulated only by the CPU holding the lock. (For example, an address space-related
GETMAIN for a user sub pool requires a local lock.)

All of the locks described above, with the exception of the local storage lock, are global
locks. These global locks provide system-wide services or use control information in the
common area and must serialize across address spaces. The local locks, on the other hand, do
not serialize across address spaces, but serialize functions executing within the address space.

Types 0/ Locks

Two types of locks exist. The type determines what happens when a CPU makes an
unconditional request for a lock that is held by the other CPU. The types are:

• Spin locks -- prevent the requesting CPU from doing any work until the lock is cleared by
the other CPU. The requesting CPU enters a loop that keeps testing the lock until the
other CPU releases it. As soon as the resource is free, the first CPU can obtain the
resource and continue processing.

• Suspend locks -- prevent the requesting program from doing work until the lock is
available, but allow the CPU to continue doing other work. The request is queued and the
requesting CPU is dispatched to do other work. Upon release of the lock, the highest
priority queued requestor will be given control of the lock.

All of the locks described above, with the exception of the local storage and cross memory
services locks, are spin locks. The LOCAL and CMS locks run enabled and can be interrupted
to run higher priority work. If there is another request for the lock while it is held, the
requestor is suspended and other work is dispatched.

The CMS lock was provided as an enabled global lock for the following reasons:

• Since disabled page faults are not allowed in the system, some global functions could use
a lock which did not require the functions to fix all their code and control blocks.

• Some functions require significant amounts of time under the lock and could impact the
responsiveness of the system. By running these functions logically disabled under the
lock, responsiveness is retained at the expense of some increased contention for the lock.

The other locks were left as disabled spin locks because normally the functions which run
under the locks are of short duration, and the cost in system overhead to perform the status
saving necessary to accept interruptions and allow switching would offset the gain in
responsiveness. Also, the more frequently used functions (for example, lOS interruption

20 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

handler, dispatcher, and storage manager) are needed to perform interruption handling and
task switching, and thus have to remain disabled.

If a lock is unconditionally requested, the lock will be unconditionally obtained. If the lock
is conditionally requested, the requestor will be given the lock if it is available; if the lock is
unavailable, control will be returned to the caller without the lock. (See the COND and
UNCOND parameters on the SETLOCK macro instruction.)

Figure 4 summarizes the characteristics of the locks.

lock
DISP
ASM
SALLOC
IOSYNCH
IOSCAT
IOSUCB
IOSLCH
SRM
CMS
LOCAL

global
X
X
X
X
X
X
X
X
X

Figure 4. Summary of Locking Characteristics

Locking Hierarchy

local

X

spin
X
X
X
X
X
X
X
X

suspend

X
X

To prevent a deadlock between CPUs, the locks are arranged in a hierarchy, and a CPU may
unconditionally request only locks higher in the hierarchy than locks that it currently holds.
The locking hierarchy is the order in which the locks are listed in Figure 4, with DISP being
the highest lock in the hierarchy.

As noted above, some locks are single system locks (for example, DISP), and some locks are
mUltiple locks in which there is more than one lock within the lock type (for example,
IOSUCB).

For those global lock types which have more than one lock, a CPU may only hold one lock
of each type. For example, if a CPU holds a IOSUCB lock, it may not request a different
IOSUCB lock.

The LOCAL lock must be held by the caller when requesting the CMS lock. Also, the LOCAL
lock cannot be released while holdirtg the CMS lock.

It is not necessary to obtain all locks in the hierarchy up to the highest lock needed.
Although only the needed locks have to be obtained, they do, however, have to be obtained in
hierarchy sequence.

Locking Considerations

In MVS the locking function is provided to replace disabling in the control program with a form
of logical disabling which works across both cpus. Locking, however, is not completely
equivalent to disablement in VS2 Release 1, and required some changes in the system. The
significant differences are:

• In VS2 Release 1, a disabled program could issue an SVC and receive control back
disabled. In MVS, a locked routine is n6t allowed to issue an SVC.

• All user-written functions which disabl~ using the MODESET macro instruction, the SSM
instruction, or some other method, should be changed to use the locking function. The
SYSMASK and ENABLE parameters of MODESET are no longer supported; the SSM
instruction causes a program check.

Resource Control 21

• In VS2 Release 1, disablement prevented storage from being freed or paged out while the
storage was being referenced. In MVS, it is necessary to hold the local lock to prevent a
FREEMAIN from being executed on the other CPU even thought a global spin lock is held
on one CPU. To prevent page stealing, it is necessary to either fix the pages or hold the
SALLOC lock.

SETLOCK Macro Instruction

The SETLOCK macro instruction is used to obtain, release, or test a specified lock or set of
locks (using the OBTAIN, RELEASE, and TEST parameters). To use SETLOCK, you must be
executing in supervisor state with protection key O.

Disabled/Enabled State for OBTAIN: When a global spin lock is successfully obtained, control is
returned to the SETLOCK caller with the CPU in a physically disabled state (except for machine
check interruptions).

When a LOCAL lock or CMS lock is successfully obtained, control is returned to the
SETLOCK caller with the CPU in the physically enabled or disabled state that existed prior to
the SETLOCK request. This is also true for unsuccessful attempts to obtain any of the locks
where control is returned to the caller.

Disabled/Enabled State for RELEASE: When a global. spin lock is successfully released, control
is returned to the caller with the CPU in a physically enabled state if no other global spin locks
are held by that CPU; control is returned in a physically disabled state if other global spin locks
are held. Control will also be returned in the disabled state if any disabled supervisor
indicators are on when the RELEASE request is made or if the DISABLED parameter was
specified.

When the LOCAL lock or CMS lock is released, control is returned with the CPU in the
enabled or disabled state that existed prior to the RELEASE request.

For all locks, if the RELEASE operation is unsuccessful and no ABEND condition exists,
control is returned with the CPU in the physically enabled or disabled state that existed prior to
the RELEASE request.

For multiple RELEASE requests (via SPIN, ALL, or (reg) subparameters), the final state is
the same as what would have existed had the locks been released one at a time.

The Must Complete Function
System routines (routines operating under a storage protection key of zero) often engage in
updating and/ or manipulation of system resources such as system data sets, control blocks, and
queues. These resources contain information critical to continued operation of the system. The
system routines must complete their operations on the resource; otherwise, the resource may
be left incomplete or may contain erroneous information.

The ENQ service routine ensures that a routine queued on a critical resource(s) can
complete processing of the resource(s) without interruptions leading to termination. ENQ can
place other tasks in a wait state until the requesting task -- the task issuing a ENQ macro
instruction with the set-must-complete (SMC) parameter -- has completed its operations on the
resource. The requesting task releases the resource and terminates the must complete condition
by issuing a DEQ macro instruction with the reset-must-complete (RMC) parameter.

Because the must complete function serializes operations to some extent, its use should be
minimized -- use the function only in a routine that processes system data whose validity must
be ensured.

22 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

i
As an example, in multitask environments I the integrity of the volume table of contents

(VTOC) must be preserved during updating s~ that all future users may have access to the
latest, correct, version of the VTOC. Thus, in! this case, enqueue on the VTOC and use the must
complete function (to suspend processing of bther tasks) when updating a VTOC.

Just as the ENQ function serializes use of ~ resource requested by many different tasks, the
must complete function serializes execution qf tasks.

I

Characteristics of the Must Complete Function

The must complete function can be used only at the step level, where only the current task in
an address space is allowed to execute. All other tasks, including the initiator task, are placed
in a wait state.

When the must complete function is requested, the requesting task is marked as being in th¢
must complete mode when the resource(s) queued upon are available. All asynchronous exits I

from the requesting task are deferred. The initiator and all other tasks in the job step are set
nondispatchable. Thus, tasks external to the requesting task are prevented from initiating
procedures that will cause termination of the requesting task. Other external events, such as a
CANCEL command issued by an operator, or a job step time expiration, are also prevented
from terminating the requesting task.

The failure of a task which owns a must-complete resource results in the abnormal
termination of the entire job step. The programmer receives a message stating that the failure
occurred in the step must complete status.

Programming Notes

1. All data used by a routine that is to operate in the must complete mode should be
checked for validity to ensure .against a program-check interruption.

2. If a routine that is already in the must complete mode calls another routine, the called
routine also operates in the must complete mode. An internal count is maintained of the
number of SMC requests; an equivalent number of RMC requests is required to reset the
must complete function.

3. Interlock conditions can arise with the use of the ENQ function. Additionally, an
interlock may occur if a routine issues an ENQ macro instruction while in the must
complete mode. The wanted resource may already be queued on by a task made
nondispatchable due to the must complete request already made. Since the resource
cannot be released, job step tasks are abnormally terminated, and system tasks are
retried.

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be used, unless
extreme care is taken, by a routine operating in the must complete mode. An interlock
condition will result if a serially-resuable routine requested by one of these macro
instructions has been requested by one of tasks made nondispatchable by the use of the
SMC parameter or was requested by another task and has been only partially fetched.

5. The time a routine is in the must complete mode should be kept as short as possible -
enter at the last moment and leave as soon as possible. One suggested way is to:

a. ENQ (on desired resource(s))

b.ENQ (on same resource(s)),RET=HAVE,SMC=STEP

Item a gets the resource(s) without putting the routine into the must complete mode.
Later, when appropriate, issue the ENQ with the must complete request (Item b). Issue a

Resource Control 23

DEQ macro instruction to terminate the must complete mode as soon as processing is
finished.

6. The STATUS macro instruction changes the dispatchability status of tasks for users in
supervisor state, with a protection key of 0-7, or APF-authorized. STATUS can also
change the must complete status of a task. In all cases, the task remains enqueued.

Tasks set nondispatchable by the corresponding ENQ macro instruction are made
dispatchable and asynchronous exits from the requesting task are enabled.

Shared Direct Access Storage Devices (Shared DASD)
The Shared DASD facility allows computing systems to share direct access storage devices.
Systems can share common data and consolidate data when necessary. No change to existing
records, data sets, or volumes is necessary to use the facility. However, reorganization of
volumes may be desirable to achieve better performance.

Devices that Can be Shared

The following control units and devices are supported by the Shared DASD option:

• IBM 2314 Direct Access Storage Facility equipped with the two-channel switch -- IBM

2314 Disk Storage Module.

• IBM 2314 Direct Access Storage Facility combined with the IBM 2844 Auxilliary Storage
Control -- IBM Disk Storage Module. Device reservation and release are supported by
this combination with or without the presence of the two-channel switch. Two channels
-one from System A and one from System B -- may be connected to the combination. In
addition, the two-channel switch may be installed in either or both of the control units,
thus permitting as many as four systems to share the devices.

• IBM 2835 Storage Control Unit with two-channel switch -IBM 2305 Fixed Head Storage
Facility.

• IBM 3830 Storage Control Unit with two-channel switch -- IBM 3330 Series Disk Storage
Drive. The IBM 3330 Series devices may also be configured for shared use via the string
switch feature on the IBM 3333 device.

Alternate channels to a device from anyone system may only be specified for the IBM 2314
Direct Access Storage Facility, or the IBM 3330 Series Storage Unit.

Volume / Device Status

The Shared DASD facility requires that certain combinations of volume characteristics and
device status be in effect for shared volumes of devices. Figure 5 shows the combinations that
must be in effect for a volume or device:

System A

Permanently resident
Reserved
Removable
Offline

Systems B, C, D
Permanently resident
Reserved
Offline
Removable or reserved

Figure 5. Valid Volume Characteristic and Device Status Combinations

If a volume/device is marked removable on anyone system, the device must be in offline
status on all other systems. The mount characteristic of a volume and/or device status may be
changed on one system as long as the resulting combination is valid for other systems sharing
the device. No other combination of volume characteristics and device status is supported.

24 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

System Configuration

Operating system configurations do not have to be identical to share a data set. The only
additional equipment needed for the Shared DASD option is either a two-channel switch or a
2844 Auxiliary Control unit. The user must also observe certain restrictions about the data sets
that are shared. The following data sets cannot be shared:

PASSWORD SYS1.NUCLEUS
SYS1.LOGREC SYS1.SVCLIB
SYS1.LPALIB VSAM page spaces
SYS1.MANX Master catalog
SYS1.MANY

Volume Handling

Volume handling on the Shared DASD option must be clearly defined since operator actions on
the sharing system must be performed in parallel. The following rules should be in effect when
using the Shared DASD option:

• Operators should initiate all shared volume mounting and demounting operations. The
system will dynamically allocate devices unless they are in reserved or permanently
resident status, and only the former can be changed by the operator.

• Mounting. and demounting operations must be done in parallel on all sharing systems. A
VARY OFFLINE must be effected on all systems before a device may be dismounted.

• Valid combinations of volume mount characteristics and device status for all sharing
systems must be maintained. To IPL a system, a valid combination must be established
before device allocation can proceed. This valid combination is established either by
specifying mount characteristics of shared devices in VA TLST, or varying all sharable
devices off line prior to issuing START commands and then following parallel mount
procedures.

Macro Instructions Used with Shared DASD

The RESERVE macro instruction is used to reserve a device for use by a particular system; it
must be issued by each task needing device reservation. The EXTRACT macro instruction is
used to obtain the address of the task input/output table (TIOT) from which the UCB address
can be obtained. The topic "Finding the UCB Address" explains this procedure.

Notes on RESERVE: The Set-Must-Complete (SMC) parameter available with the ENQ macro
instruction may also be used with RESERVE.

If a restart occurs when a RESERVE is in effect for devices, the system will not restore the
RESERVE; the user's program must reissue the RESERVE.

Releasing Devices

The DEQ macro instruction is used in conjunction with RESERVE just as it is used with ENQ. It
must describe the saine resource and its scope must be stated as SYSTEMS; however, the
uCB=pointer address parameter is not required. If the DEQ macro instruction is not issued by
a task which has previously reserved a device, the system will free the device when the task is
terminated.

Preventing Interlocks

The more often device reservations occur in each sharing system, the greater the chance of
interlocks occurring. Allowing each task to reserve only one device minimizes the exposure to
interlock. The system cannot detect interlocks caused by program use of the RESERVE macro
instruction and enabled wait states will occur on the system or systems.

Resource Control 25

Volume Assignment

Since exclusive control is by device, not by data set, consider which data sets reside on the
same volume. In this environment it is quite possible for two tasks in two different systems -
processing four different data sets on two shared volumes -- to become interlocked. For
example, as shown in Figure 6, data sets A and B reside on device C, and data sets D and E
reside on device F. Task X in system X reserves device C in order to use data set A; task Y in
system Y tries to reserve device F in order to use data set D. Now task X in system X tries to
reserve device F in order to use data set E and task Y in system Y tries to reserve device C in
order to use data set B. Neither can ever regain control, and neither will complete normally.
When the system has job step time limits, the task, or tasks, in the interlock would be
abnormally terminated when the time limit expires. Moreover, an interlock could mushroom,
encompassing new t.asks as these tasks try to reserve the devices involved in the existing
interlock.

Task X

Reserves

Device C

" / " / " / '-./
/'-.

/ "
/ "

/ / Interlock "

Figure 6. Example of an Interlock Environment

Program Libraries

Task Y

/
/

/

Reserves

Device F

When assigning program libraries to shared volumes, precaution must be taken to avoid
interlock. For example, LINKLIB for system A resides on volume X, while LINKLIB for system
B resides on volume Y. Task A in system A invokes a direct access device space management
function for volume Y, resulting in that device being reserved. Task B in system B invokes a
similar function for volume X, reserving that device. However, each load module transfers to
another load module via XCTL. Since the LINKLIB for each system resides on a volume
reserved by the other system, the XCTL macro instruction cannot complete the operation. An
interlock occurs; since no access to LINKLIB is possible, both systems will eventually enter an
enabled wait state.

Finding the UeB Address

This topic explains procedures for finding the UCB address for use by the RESERVE macro
instruction; it also shows a sample assembler language subroutine which issues the RESERVE

and DEQ macro instructions and can be called by higher level languages.

26 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Providing the Unit Control Block Address to RESERVE: The EXTRACT macro instruction is used
to obtain information from the task control block (TCB). The address of the TIOT can be
obtained from the TCB in response to an EXTRACT. Prior to issuing an EXTRACT macro
instruction, the user sets up an answer area in main storage which is to receive the requested
information. One full word is required for each item to be provided by the control program. If
the user wishes to obtain the TIOT address, he must specify FIELDS=TIOT in the EXTRACT

macro instruction.

The address of the TIOT is then returned by the control program, right adjusted, in the full
word answer area.

The TIOT is constructed by job management routines and resides in virtual storage during
step execution. The TIOT consists of one or more DD entries, each of which represents a data
set defined by a DD statement for the jobstep. Each entry includes the DD name. Associated
with each DD entry is the UCB address of the associated device. In order to find the UCB

address, the user must locate the DD entry in the TIOT corresponding to the DD name of the
data set for which he intends to issue the RESERVE macro instruction.

The UCB address can also be obtained via the dam extent block (DEB) and the data control
block (DCB). The DCB is the block within which data pertinent to the current use of the data
set is stored. The address of the DEB is contained at offset 44 decimal after the DCB has been
opened. The DEB contains an extension of the information in the DCB. Each DEB is associated
with a DCB and the two point to each other.

The DEB contains information concerning the physical characteristics of the data set and
other information that is used by the control program. A device dependent section for each
extent is included as part of the DEB. Each such extent entry contains the UCB address of the
device to which that portion of the. data set has been allocated. In order to find the UCB

address, the user must locate the e~tent entry inthe DEB for which he intends to issue the
RESERVE macro instruction. (In disk addresses of the form MBBCCHHR, the M indicates the
~xtent number starting with 0).

Procedures for Finding the ueB Address of a Reserved Device: For data sets using the queued
access methods in the update mode or for unopened data sets:

1. Extract the TIOT from the TCB.

2. Search the TIOT for the DO name associated with the shared data set.

3. Add 16 to the address of the DD entry found in step 2. This results in a pointer to the
UCB address in the TIOT.

4. Issue the RESERVE macro specifying the address obtained in step 3 as the parameter of
the UCB keyword.

For opened data sets:

1. Load the DEB address from the DCB field labeled DCBDEBAD.

2. Load the address of the field labeled DEBDVMOD in the DEB obtained in step 1. The
result is a pointer to the UCB address in the DEB.

3. Issue the RESERVE macro specifying the address obtained in step 2 as the parameter of
the UCB keyword.

Resource Control 27

For BDAM data sets the user may reserve the device at any point in the processing in the
following manner:

1. Open the data set.

2. Convert the block address used in the READ/WRITE macro to an actual device address
of the form MBBCCHHR.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

5. Multiply the "M" of the direct access by 16.

6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the
next READ/WRITE operation. The sum is also a pointer to the DCB address for this
extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the parameter of
the DCB keyword.

If the data set is an ISAM data set, QISAM in the load mode should be used only at system
update time. Further, if it is a multivolume ISAM data set, it must be assumed that all jobs will
access the data set through the highest level index. The indexes should never reside in virtual
storage when the data set is being shared. In this case, by issuing a RESERVE macro for the
volume on which the highest level index resides, the user effectively reserves the volumes on
which the prome data and independent overflow areas reside. The following procedures can be
used to achieve this:

1. Open· the data set.

2. Locate the actual device address (MBBCCHHR) of the highest level index. This address
can be obtained from the DCB.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

5. Multiply the "M" of the actual device address located in step 2 by 16.

6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the
next READ/WRITE operation. The sum is also a pointer to the DCB address for this
extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the parameter of
the UCB keyword.

RES and DEQ Subroutines: The assembler language subroutine in Figure 7 can be used by
assembler language programs to issue the RESERVE and DEQ macro instructions. Parameters
that must be passed to the RESDEQ routine, if the RESERVE macro instruction is to be issued,
are:

DDNAME - the eight character name- of the DDCARD for the device to be reserved.

QNAME - an eight character name.

RNAME LENGTH - one byte (a binary integer) that contains the RNAME length value.

RNAME - a name from 1 to 255 characters in length.

The DEQ macro instruction does not require the uCB=pointer address as a parameter. If the
DEQ macro is to be issued, a fullword of binary zeros must be placed in the DDNAME field
before control is passed.

28 OS/VS2~System Programming Library: Supervisor (VS2 Release 3)

RESDEQ

*PROCESS

NEXTDD

FINDUCB
* *PROCESS
WANTDEQ

*PROCESS

*
*

ISSUEDEQ
RETURN

MOVERNAM
ADDRTIOT
SAVE
QNAME
RNAME
RNLEN

CSECT
SAVE
BALR
USING
ST
LA

ST
LR
LR
L

CLC

(14,12),T
2,0
*,2
13,SAVE+4
11,SAVE

11,8(13)
13, 11
9,1
3,0(9)

0(4,3),=F'0'

BE WANTPEQ

SAVE REGISTERS
SET UP ADDRESSABILITY

ADDRESS OF MY SAVE AREA IS
STORED IN THIRD WORD OF CALLER'S
SAVE AREA
ADDRESS OF MY SAVE AREA
ADDRESS OF PARAMETER LIST
DDNAME PARAMETER OR WORD OF
ZEROS
WORD OF ZEROS IF DEQ IS
REQUESTED

FOR DETERMINING THE UCB ADDRESS USING THE TIOT
XR 11,11 REGISTER USED FOR DD ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7,ADDRTIOT ADDRESS OF TASK I/O TABLE

ENTRY LA 7,24(7) ADDRESS OF FIRST DD
CLC o(8,3), 4(7) COMPARE DDNAMES
BE FINDUCB
IC 11 , O(7)
LA 7 , ° (7 , 1 1)
CLC ° , (4, 7) , =F ' ° '
BNE NEXTDD
ABEND 200,DUMP
LA 8,16(7)

FOR DETERMINING THE QNAME
L 7,4(9)
MVC QNAME(8),0(7)

FOR DETERMINING THE RNAME
L 7,8(9)
MVC RNLEN+3(1),0(7)
L 7,RNLEN
STC 7,RNAME

L 6,12(9)
BCTR 7,0
EX 7,MOVERNAM
CLC 0(4,3),=F'0'
BE ISSUEDEQ

LENGTH OF DD ENTRY
ADDRESS OF NEXT DD ENTRY
CHECK FOR END OF TIOT

DDNAME IS NOT IN TIOT, ERROR
ADDRESS OF WORD IN TIOT THAT
CONTAINS ADDRESS OF UCB

REQUESTED
ADDRESS OF QNAME LENGTH
MOVE IN QNAME

AND THE LENGTH OF RNAME
ADDRESS OF RNAME LENGTH
MOVE BYTE CONTAINING LENGTH

STORE LENGTH OF RNAME IN THE
FIRST BYTE OF RNAME PARAMETER
FOR RES/DEQ MACROS
ADDRESS OF RNAME REQUESTED
SUBTRACT ONE FROM RNAME LENGTH
MOVE IN RNAME

RESERVE (QNAME,RNAME,E,0,SYSTEMS),UCB=(8)
B RETURN
DEQ (QNAME,RNAME,O,SYSTEMS)
L 13,SAVE+4 RESTORE REGISTERS AND RETURN
RETURN (1 4 , 1 2) , T
BCR 15, 14
MVC RNAME+1(0),0(6)
DC F'O'
DS 18F
DS 2F
DS CL256
DC F'O'
END

Figure 7. Example of Subroutine Issuing RESERVE and DEQ

Resource Control 29

Authorized Program Facility (APF)

The authorized program facility (APF) limits the use of sensitive system and (optionally) user
services and resources to authorized system and user programs. If an installation has its own
control program extensions and special SVCs that allow the bypass of normal system security
or integrity checks (for example, an SVC that returned control in key 0), and if such SVCs are
not currently restricted from use by an unauthorized program, then the APF facility should be
used to restrict them and to authorize the control program extensions that use them.

Note: The user of APF should be aware that APF authorization is defined such that any SVC
that is restricted by the APF mechanism, can be executed by any system key (0-7) or
privileged mode routine. However, this not true in reverse. An APF-authorized program will
not automatically be allowed system services that are restricted by system key or privileged
mode tests.

Restricting Services / Resources

MVS provide two methods of restricting sensitive system SVcs:

• Sensitive SVcs may be restricted via a parameter on the SCVT ABLE macro instruction
issued at system generation time. The parameter will restrict the use of the SVC to
authorized job steps. If the parameter is not specified, the SVC will be unrestricted. The
SVC first level interruption handler ensures that SVcs restricted in this manner are
accessible only to programs having APF authorization, or executing under supervisor
state or system key 0-7.

• When only a part of the SVc's function is sensitive, the TEST AUTH macro instruction can
restrict particular paths through the SVcs. The TEST AUTH macro instruction, inserted at
appropriate locations in the SVC, returns an authorized or unauthorized indication, and
the SVC must take appropriate action based on this return.

TEST AUTH can also test for system key 0-7 and for supervisor state. The authorization
checks are made in the following order: state, key, and APF. If any checks are successful,
further checks are unnecessary. .

Assigning Authorization

The linkage editor permits an installation to establish authorization for programs either through
a new parameter in the linkage edit step or through a new linkage editor control statement.

To assign an authorization code via the new parameter, AC=l should be coded in the PARM
field, as follows:

//LKED EXEC PGM=HEWL,PARM='AC=l' , __ _

If no authorization code is assigned in the linkage editor job step, the default is
nonauthorization. The authorization code for a given output module can be overridden with
the SETCODE control statement. '

The SETCODE statement is used to establish authorization for a specific output load module.
If it is used, it must be placed before the NAME statement for the load module. The format of
the SETCODE statement is:

SETCODE AC(1)

If more than one SETCODE statement is assigned to a given output load module, the last
statement found will be used.

In the example in Figure 8, the SETCODE statement assigns an authorization code to the
output load module MODt.

30 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

IILKED
IISYSPRINT
IISYSUT1
IISYSLMOD
IISYSLIN
II
II

1*

SETCODE
NAME

EXEC
DD
DD
DD
DD

DD

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(10,5))
DSNAME=SYS1.LINKLIB,DISP=OLD
DSNAME=&&LOADSET,DISP=(OLD,PASS)
UNIT=SYSDA

* AC(1)
MOD 1 (R)

Figure 8. Assigning Authorization via 8ETCODE

Defining Authorized Libraries

This program authorization is accepted by the system only for certain "authorized" system
libraries. The libraries automatically considered authorized are SYS1.SVCLIB and SYSl.LINKLIB.
However, any library may be designated as an authorized library by inclusion of its name in
the SYSl.PARMLIB member IEAAPFOO or IEAPFxx prior to IPL. Such designated libraries are the
equivalent of the above system libraries since nonspecific system requests for routines that will
execute with system key 0-7, supervisor, or APF authorization can be satisfied by a module
loaded from any authorized library. It is the installation's responsibility to control the contents
of such libraries.

Job Step Authorization: Authorization of the first program executed in the job step determines
the authorization of the job step:

• If the first program is not APF,;.authorized, no part of the job step is APF-authorized .

• During the execution of an APF-authorized job step, if a load request is satisfied from an
unauthorized library, the task will be abnormally terminated. It is the responsibility of the
authorized program not to recover from the ABEND in a way that would allow the
unauthorized module to execute.

Note: Because an authorized program normally executes as a job step, executable by any
user, it cannot control the identity of JOBLIBS, STEPLIBs, and so forth, since these libraries are
identified via JCL. Therefore, if two modules of the same name exist on different authorized
libraries, an authorized program attempting to load one of these modules could get the other if
the user executing the authorized program were to misuse the two libraries in question. Thus,
the installation must ensure that duplicate module names are not be permitted across
authorized libraries.

Resource Control 31

Changing System Status

The MODESET macro instruction alters selective fields of the program status word (psw). The
standard form of MODESET may be coded in two separate ways: one form generates an svc
and the other form generates inline code.

Generating an SVC

This form of MODESET, executable as APF-authorized, in supervisor state, or under protection
key 0-7, changes the status of programs between supervisor state and problem program state,
and key zero and rton-key zero. The parameters that must be specified to perform the changes
are MODE and KEY respectively.

The MODE parameter specifies whether bit 15 of the PSW is to be turned on or off. When
bit 15 is one, the CPU is in the problem state. When bit 15 is zero, the CPU is in the
supervisor state.

The KEY parameter specifies whether bits 8-11 are to be set to zero or set to the value in
the caller's TCB. Bits 8-11 form the CPU protection key. The key is matched against a key in
storage whenever information is stored, or whenever information is fetched from a location
that is protected against fetching.

Generating Intine Code

This form of MODESET, executable only in supervisor state, is used to ensure that storage
areas and the control program functions they are associated with have the same protection key.
The EXTKEY parameter of MODESET may be coded to indicate the key to be set in the current
PSW.

The following keys may be set:

• Scheduler
• Job entry subsystem
• Real storage management
• Virtual storage management
• System resource management
• Supervisor
• Data management
• Telecommunications access method
• Key of zero
• Key of TCB
• Key of type 1 SVC issuing MODESET
• Key of type 2, 3, or 4 SVC issuing MODESET

Other parameters of MODESET allow the original key to be saved and restored upon
completion of the desired changes.

Interprocessor Communications (IPC)
Interprocessor communications is a function in a multiprocessing system that provides
communication between CPUs sharing the same control program. Those functions executing on
one or more of the CPUs which require a CPU or program action on one or more of the CPUs
will use the IPC interface to invoke the desired action. The IPC function uses the signal
processor (SIGP) instruction to provide the necessary hardware interface between the CPUs.

32 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Service Classes

The SIGP instruction provides twelve distinct hardware functions to support two classes of IPC
services -- direct and remote:

Direct class - These services are defined for those control program functions which require
the modification or sensing of the physical state of one of the configured CPUs. Ten of the
twelve SIGP hardware functions are defined as IPC direct services, and are accessible via the
DSGNL macro instruction.

Sense: The specified CPU presents its status to the issuing CPU. No other action is caused at
the specified CPU.

Start: The specified CPU is placed in the operating state. The CPU does not necessarily enter
the operating state during the execution of the SIGP instruction. No action is caused at the
specified CPU if that CPU is in the operating state when the order code is accepted.

Stop: The specified CPU stops. The CPU does not necessarily enter the stopped state during
the execution of the SIGP instruction. No action is caused at the specified CPU if that CPU is in
the stopped state when the order code is accepted.

Restart: The specified CPU restarts. The CPU does not necessarily perform the function during
the execution of the SIGP instruction.

Initial Program Reset: The specified CPU performs initial program reset. The execution of the
reset does not affect other CPUs and does not affect channels not configured to the CPU being
reset. The reset operation is not necessarily completed during the execution of the SIGP
instruction.

Program Reset: The specified CPU performs program reset. The execution of the reset does not
affect other CPUs and does not affect channels not configured to the CPU being reset. The
reset operation is not necessarily completed during the execution of the SIGP instruction.

Stop and Store Status: The specified CPU stops and stores status. The CPU does not necessarily
complete the operation, or even enter the stopped state, during the execution of the SIGP
instruction.

Initial Microprogram Load: The specified CPU performs initial program reset and then initiates
the initial-microprogram-Ioad function. The latter function is the same as that which is
performed as part of manual initial micro-program loading. The operation is not necessarily
completed during the execution of the SIGP instruction.

Initial CPU Reset: The specified CPU performs initial CPU reset. The execution of the reset
does not affect other CPUs and does not cause any channels, including those configured to the
specified cPu, to be reset. The reset operation is not necessarily completed during the
execution of the SIGP instruction.

CPU Reset: The specified CPU performs CPU reset. The execution of the reset does not affect
other CPUs and does not cause any channels, including those configured to the specified cPu,
to be reset. The reset operation is not necessarily completed during the execution of the SIGP
instruction.

Remote class - These services are defined for those control program functions which require
the execution of a software function on one of the configured CPUs. The two remaining SIGP
functions are defined as remote services:

External Call: An "external call" external-interruption condition is generated at the specified
CPU. The interruption condition becomes pending during the execution of the SIGP instruction.

Resource Control 33

The associated interruption occurs when the CPU is interruptible for that condition. Only one
external-call condition can be kept pending in a CPU at a time. The external-call function is
accessible via the RPSGNL macro instruction.

Emergency Signal: An "emergency-signal" external-interruption condition is generated at the
specified cpu. The interruption condition becomes pending during the execution of the SIGP
instruction. The associated interruption occurs when the CPU is interruptible for that condition.
At anyone time the receiving CPU can keep pending one emergency-signal condition for each
CPU of the multiprocessing system, including the receiving CPU itself. The emergency-signal
function is accessible via the RISGNL macro instruction.

Status Conditions

Eight status conditions are defined whereby the issuing and specified CPUs can indicate their
-response to the designated hardware function. The status conditions are contained in register 0
and are:

Equipment Check: This condition exists when the CPU executing an instruction detects
equipment malfunctioning that has affected only the execution of the instruction and the
associated hardware function. The order code mayor may not have been transmitted, and may
or may not have been accepted, and the status bits provided by the specified processor may be
in error.

External Call Pending: This condition exists when an external-call interruption condition is
pending in the specified CPU because of a previously issued SIGP instruction. The condition
exists from the time an external-call function is accepted until the resultant external
interruption has been completed. The condition may be due to the issuing CPU or another CPU.
The condition, when present, is indicated only in response to sense and to external call.

Stopped: This condition exists when the specified CPU is in the stopped state. The condition,
when present, is indicated only in response to sense.

Operator Intervening: This condition exists when the specified CPU is executing certain
operations initiated from the console or the remote operator control panel. The particular
manually initiated operations that cause this condition to be present depend on the model and
on the specified functions. This condition, when present, can be indicated in response to all
functions. Operator intervening is indicated in response to sense if the condition is present and
precludes the acceptance of any of the installed orders. The condition may also be indicated in
response to unassigned or uninstalled orders.

Check Stop: This condition exists when the specified CPU is in the check-stop state. The
condition, when present, is indicated only in response to sense,external call, emergency signal,
start, stop, restart, and stop and store status. The condition may also be indicated in response
to unassigned or uninstalled function.

Not Ready: This condition exists when the specified CPU uses reloadable control storage to
perform a function and the required microprogram is not loaded. The not-ready condition may
be indicated in response to all functions except IMPL.

Invalid Function: This condition exists during the communications associated with the execution
of SIGP when the specified CPU decodes an unassigned or uninstalled function code.

34 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Receiver Check: This condition exists when the specified CPU detects malfunctioning of
equipment during the communications associated with the execution of SlOP. When this
condition is indicated, the function has not been initiated and, since the malfunction may have
affected the generation of the remaining receiver status bits, these bits are not necessarily
valid. A machine-check condition mayor may not have been generated at the specified CPU.

For more details on the SlOP instruction, see IBM System/370 Principles of Operation.

Event Completion

Cross Memory POST

The POST macro instruction is used to signify the completion of an event by one routine to
another routine. Usually, the completion of the event is posted in the user's address space.

The authorized user (executing in supervisor state, under protection key 0-7, or
APF-authorized) of the POST macro instruction can use the ASCB and ERRET parameters to
schedule an SRB to be dispatched in an address space other than his own. If the caller is
authorized to specify the ASCB and ERRET parameters, no check is made to determine if the
requested address space is the issuing address space. This use of the POST macro instruction is
sometimes known as "cross-memory post."

The ERRET routine that is given control when the error condition is detected will receive
control enabled, unlocked, in SRB mode, and with the following register contents:

register

o
1
2
3
4-"13
14
15

contents

ECB address
ASCB address
original completion code
completion code from failing address space
unpredictable
return address
ERRET address

The ERRET routine must return control unlocked and enabled.

If cross-memory post is being used, a synchronization problem arises when it becomes
necessary to eliminate an ECB which is a potential target for a cross-memory post request. To
ensure that all outstanding cross-memory post requests for the ECB have completed, the user
must invoke the SPOST macro instruction. (The ECB mayor may not be posted, depending on
existing conditions. See OS/VS2 Scheduler and Supervisor Logic for details.) Since SPOST invokes
the PUROEDQ SVC see description of PUROEDQ for the restrictions on its use.

Bypassing the POST routine

The problem programmer may bypass the POST routine whenever the corresponding WAIT has
not yet been issued. To do this, it is necessary to issue a TEST UNDER MASK (TM) instruction
to determine if the wait bit in the ECB is on. If the wait bit is on, the normal POST routine
must be executed. If the wait bit is not on, a COMPARE AND SWAP (Cs) of the ECB to the
posted condition should be issued. At this time, if the wait bit is on, the normal POST routine
must be executed; if the wait bit is not on, the CS will in effect post the completion of the
event.

Resource Control 35

Figure 9 demonstrates an example of this use of POST.

CSLOOP

DOPOST
POSTDONE

L
L

TM
BO
CS

BZ
POST
EQU

RX,ECB
RY,='40000000'

ECB,X'80'
DOPOST
RX,RY,ECB

POSTDONE
ECB
X

Figure 9. Bypassing the POST Routine

Waiting for Event Completion

Get contents of ECB.
Completion bit and code to be
compared and swapped
Wait bit on?
If yes, then execute post.
Compare and swap completion bit
and code.
Branch if CS is successful.

The EVENTS macro instruction allows a user to wait for the completion of one of a series of
events and be directly informed by the system which of the events have completed. Branch
entry to this function, significantly more efficient than svc entry, is available to users
executing in key 0, supervisor state, and holding only the local lock.

Branch entry is accomplished by specifying BRANCH= YES on the EVENTS macro instruction.
If this parameter is used, the branch entry routine will perform all normal WAIT processing and
ECB initialization. BRANCH=YES may be specified in conjunction with either WAIT=YES,

WAIT=NO, or ECB=.

• If WAIT = YES is specified, control will later be returned to the dispatcher, even though
there may be ECBs posted to the EVENTS table. The local lock will be freed by EVENTS.

Before the EVENTS macro instruction with the WAIT=YES option is specified, the caller is
responsible for establishing the return environment (the PSW and registers in the RB and
TCB). EVENTS will store a pointer to the first completed EVENTS entry into the TCB

register 1 save location. (This service is not available to Type 1 SVCs or SRBs.)

• If WAIT = YES is not specified, control will later be returned to the caller. Th.e local lock
will not be freed by EVENTS.

36 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Interruption, Termination, and Dumping Services

The supervisor offers many services to assist in the detection and processing of abnormal
conditions during the execution of the system. Certain types of abnormal conditions are
detected by the hardware and. cause program interruptions to occur (for examples, if an
attempt is made to execute an instruction with an invalid operation code). Other abnormal
conditions are detected by the software (for example, an attempt to open a data set which is
not defined to the system causes an ABEND to be issued by the Open routine).

Although the supervisor provides facilities for writing exit routines to handle specific types
of interruptions and abnormal conditions, the supervisor provides for termination of your
program when you request it by issuing an ABEND macro instruction, or when the control
program detects a condition that will degrade the system or destroy data.

The services discussed in this chapter include:

• recovery/termination (CALLRTM macro instruCtion)
• functional recovery routines (SETFRR macro instruction)
• program interruption processing (SPIE macro instruction)
• virtual storage dumping (SDUMP macro instruction, CHNGDUMP command)
• task recovery (STAE and ESTAE macro instructions)
• installation-written clean-up routines

Recovery ITermination
The recovery/termination manager (RTM) monitors the flow of control through the recovery
and termination processes for system, address space, and task failures. Its purpose is to select
the appropriate process according to the status of the system and the requests of its invokers.

Some RTM processing is performed on behalf of the caller via the ABEND macro instruction.
Other processing is directed to tasks or routines other than the caller via the CALLRTM macro
instruction. The ABEND macro instruction is available for use to anyone and is documented in
OS/VS2 Supervisor Services and Macro Instructions. The CALLRTM macro instruction is restricted
to key 0 privileged routines and is described in this publication.

Task Termination

If TYPE=ABTERM is specified in the CALLRTM macro instruction, the RTM processing is
directed towards another task. In this situation, the following locking and save area
requirements should be considered:

• If the TCB parameter is specified as 0 (or defaulted to 0), and the ASID parameter is
omitted, the current task in the current address space is abnormally terminated. In this
situation, the caller must be disabled (for example, hold any of the spin locks) and need
not pass a save area via register 13. If dump options are supplied, they must be contained
in fixed pages.

• If the TCB parameter is specified as an address, and the ASID parameter is omitted, the
task associated with the specified TCB in the current address space is abnormally
terminated. In this situation, the caller must own the local lock, and a save area is not
required.

Interruption, Termination, and Dumping Services 37

• If the ASID parameter is specified, the ABTERM function is scheduled as a service request
block SRB. Although there is no specific lock requirement, the caller must pass the
address of an 18-word save area in register 13. In this way, the ASID parameter allows
processing across address spaces and allows processing in the current address space for
routines that cannot acquire the proper locks (possibly because of hierarchy conflicts).

Address Space Termination

If TYPE=MEMTERM is specified in the CALLRTM macro instruction, the RTM processing is
directed towards an address space. In this situation, the following information should be
considered:

• If the ASID parameter is specified as nonzero, the specified address space is abnormally
terminated. The caller need not be disabled or own any locks. The caller must pass the
address of an I8-word save area in register 13.

• If the ASID parameter is specified as 0 or is omitted, the current address space is
abnormally terminated. The caller need not be disabled or own any locks. The caller must
pass the address of an 18-word save area in register 13.

Since the MEMTERM process circumvents all task recovery and task resource manager
processing, its use is restricted to a select group of routines which can determine that task
recovery and task resource manager clean-up is either not warranted or will not successfully
operate in the address space being terminated. These routines include:

• Paging supervisor, when it determines that it cannot swap in the LSQA for an address
space.

• Memory create, when it determines that an address space cannot be initialized.

• RTM or supervisor control FRR, when it determines that uncorrectable translation errors
are occurring in the address space.

• RTM, when it determines that task recovery and termination cannot take place in the
current address space.

• Region control task, when it has determined that the address space may become
permanently deadlocked--that is, unusable--or the status of the address space is
unpredictable due to an error during swap-out processing.

• R TM, when all tasks in the address space have terminated.

Processing Functional Recovery Routines
The system recovery routines of the RTM control the software recovery for supervisor
functions, SRB functions, and all other locked or physically disabled functions. It provides the
interface between the control program and the functional recovery routines (FRRS) defined to
recover the control program.

The FRRs are established to protect these global, SRB, and local functions, and are identified
to the recovery termination manager via the SETFRR macro instruction. When an FRR is
scheduled, it will run in the state of the system (enabled or disabled) as governed by the locks
that were held at the time of the error, or as modified by previously scheduled FRRs.

Each FRR is defined on one of several recovery stacks in the system, each stack providing a
unique recovery environment. When errors occur in a path through supervisory functions, the
system recovery manager uses the recovery stack associated with that path to initiate recovery
by routing control to those FRRs defined on that recovery stack. Through this routing
capability, the system recovery manager provides a critical function in providing recovery from
errors which formerly necessitated re-IPLs of the system.

38 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

SETFRR Macro Instruction

The SETFRR macro instruction provides control program functions with the ability to define
their recovery in the FRR LIFO stack which is used during system recovery management
processing. The LIFO stack is maintained by the recovery termination manager and contains
the addresses of the FRRs that protect a single path through supervisor control and SRB code.
The stack is considered part of the path's operating environment and is therefore saved and
restored by the supervisor control function on interruptions and redispatching.

All SETFRR users must include the DSECTS for the FRR stack (via the IHAFRRS mapping
macro instruction) and the PSA (via the IHAPSA mapping macro instruction) prior to using the
SETFRR macro instruction. In addition, all disabled, locked, and SRB routines which define
recovery must be key 0 supervisor state when using the SETFRR macro instruction.

Note: The size of the FRR stack satisfies the recovery needs of the control program. If
additional FRRs are placed on the stack, thereby causing the size to be exceeded, the routine
issuing the SETFRR macro instruction will be abnormally terminated. Any user-written routines
outside the control program may add one, and only one, FRR to the stack; if more than one is
added, abnormal termination may occur.

SPIE Processing
The SPIE macro instruction provides a problem program with a means of specifying an error
exit routine in response to one or more program error interruptions. SPIE and its related
services are discussed in detail in OS/VS2 Supervisor Services and Macro Instructions.

For the problem programmer, interruptions 1-15 may be specified in the SPIE macro
instruction. For the installation-authorized system programmer, interruption 17 may also be
specified. Interruption 17 designates page faults and may be specified so that the programmer
can control his own page fault processing.

If interruption 17 is to be used, the programmer must page fix the PIE, PICA, and SPIE exit
programs and data areas. The SPIE exit routine must be aware that page faults can occur after
issuing the SPIE macro instruction for interruption 17 and prior to fixing the required control
blocks.

Dumping Virtual Storage
The SNAP and ABEND macro instructions can be used to request dumps, and can be issued by
any user. (These macro instructions are described in OS/VS2 Supervisor Services and Macro
Instructions.) In addition, the system programmer can also use the SDUMP macro instruction to
provide dumps of virtual storage, and the CHNGDUMP command to influence the contents of
the dump.

Using the SDUMP Macro Instruction

The SDUMP macro instruction can be used by system routines to pfovide fast unformatted
dumps of virtual storage. SDUMP invokes SVC DUMP to provide the services. Only one SVC
DUMP may be taken in the system at anyone time. Issuers of SVC DUMP with entry by SVC
must be authorized via APF or have a control program key.

The SVC DUMP routine can schedule a dump in the address space specified by the ASID
parameter of SDUMP. If the user cannot issue an SVC, this service can be initiated by a branch
entry, if desired. If the branch entry is used, the branch entry caller must be key 0, supervisor
state, and must be in SRB mode, or own a lock, or be disabled (with supervisor bit on). The
branch entry interface is by standard linkage conventions. Branch entry callers must issue the
CVT mapping macro instruction with the PREFIX=YES parameter.

Interruption, Termination, and Dumping Services 39

The SVC DUMP routine with entry by SVC can also schedule a dump from the address space
from which it is issued. The caller of this service only must be authorized via APF or have a
control program protection key.

SQA Buffer

A 4K buffer is reserved in the system queue area for the callers of SVC DUMP. A user may
reserve the buffer and fill it with information before invoking SVC DUMP. The buffer should be
used by routines that are involved with volatile data which would be changed or must be
changed before SVC DUMP can dump it.

The buffer is pointed to from the CVTSDBF field of the CVT. Since the buffer is for use for
all callers of SVC DUMP. it must be treated as a serially reusable resource. The high order bit
of CVTSDBF must be checked prior to using the buffer. If the bit is set, it must be assumed
that a dump is in progress anJ the caller must continue processing as if a dump could not be
taken.

The first word in t.he buffer is the actual virtual storage address of the data. The next
halfword is the length of the data. A copy of the data follows this 6-byte de'scriptor field.
More 6-byte fields and data may then be specified in this buffer. If the entire buffer is not
filled, the last data area must be followed by a 6-byte zero descriptor field to indicate the end
of meaningful data.

Using the CHNGDUMP Command

The CHNGDUMP operator command is normally not scheduled by the operator, but is
scheduled by the system programmer to override the current system dump options for
SYSABEND, SYSUDUMP, and SDUMP dumps. The system obtains its normal dump options as
follows:

• SDUMP requests -- the options in the system are the ones indicated in the SDUMP
parameter list.

• SYSABEND or SYSUDUMP user dump requests -- the system obtains its dump
options by merging the dump options in the IEAABDOO or IEADMPOO member of
SYSl.PARMLIB with the options indicated on the DUMPOPT parameter of the ABEND,
SETRP, and CALLRTM macro instruction.

In order to tailor the dump, the dump option merging may take place in several successive
stages. Suppose an error occurred at a low program level, and the recover exit at that level
specified certain dump options on a DUMPOPT parameter. Suppose also that there are two
other recovery exits between the lowest level exit and the recovery exit that actually
precipitates the dump. One of these two exits also specifies certain dump options on a
DUMPOPT parameter.

As the recovery effort percolates up toward the top level recovery exit involved, all the
dump options from all the exits specifying them merge with the parmlib options to produce the
combination of options for the dump the system actually takes.

The CHNGDUMP command can override any or all of these options, regardless of their level
of origin. There are two major parameters for this command, as follows:

• SET -- to override the existing dump options.
• DEL -- to delete any or all overriding dump options set by a previous CHNGDUMP SET

command.

The overriding options indicated with the SET parameter are the only ones that the system
will use for all subsequent jobs and tasks for the life of the IPL, or until they are nullified with
the DEL parameter in a subsequent CHNGDUMP command.

40 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Task Recovery
Task recovery is accomplished through ST AE/ST AI or EST AE/EST AI routines. Issuance of the
ST AE or EST AE macro instruction, or the ATTACH macro instruction with the ST AI or EST AI

parameter, allows the user to intercept a scheduled ABEND. Control is given to a user-spBcified
exit routine in which the user,may diagnose the cause of the ABEND, and specify perform
pre-termination processing, or specify a retry address if he wishes to prevent the termination.

This section begins by explaining the processing of the ST AE/ST AI exit and retry routines. It
then continues by providing the extended capabilities of the EST AE routines. It concludes with
a discussion of EST AE processing.

STAE/STAI Exit Routines

The ST AE macro instruction causes a recovery routine address to be made known to the
control program. This recovery routine is associated with the task and the RB which issued
STAE. Use of the STAI option on the ATTACH macro instruction also causes a recovery routine
to be made known to the control program, but the routine is associated with the subtask
created via ATTACH. Furthermore,' STAI recovery routines are propagated to all lower-level
subtasks of the subtask created with A TT ACH that specified the ST AI parameter.

If a task is scheduled for abnormal termination, the exit routine specified by the most
recently issued ST AE macro instruction is given control and executes under a program request
block created by the SYNCH service routine. Only one ST AE exit routine will receive control.
The ST AE exit routine must specify, by a return code in register 15, whether a retry routine is
to be scheduled. If no retry routine is to be scheduled (return code = 0)) and this is a subtask
with ST AI recovery routines, the ST AI recovery routine is given control. If there is no ST AI

recovery routine, abnormal termination continues.

If there is more than one ST AI recovery routine existing for a task, the newest one receives
control first. If it requests that termination continue (return code = 0), the next STAI routine
will receive control. This will continue until either all ST AI routines have received control and
requested that the termination continue, a STAI routine requests retry (return code = 4 or 12),
or a ST AI routine requests that the termination continue but no further ST AI exits receive
control (return code = 16).

Programs running under a single TCB may issue more than one ST AE macro instruction
with the create (CT) parameter. Each issuance makes the previous STAE environment
temporarily inactive. The environment will become active again when the current ST AE

environment is canceled.

A ST AE environment is canceled when the RB which created it goes away (unless it issues
XCTL L and specified the XCTL= YES parameter on the ST AE macro instruction), when the
ST AE macro instruction is issued with the CANCEL option, or when the ST AE routine receives
control. If a ST AE exit routine receives control and requests retry, the retry routine will have to
reissue the ST AE macro instruction if it wants continued ST AE protection.

A ST AI environment is canceled only if the task completes or if it requests that termination
continue and no further ST AI processing be done. In the latter case, all ST AI exits for the task
are canceled.

Interruption, Termination, and Dumping Services 41

Interface to a STAE/ST AI Exit

Prior to going to a ST AE/ST AI recovery routine, the control program attempts to obtain and
initialize a work area which contains information about the error. This work area is called the
system diagnostic work area (SDWA), and is 512 bytes long. The first word of the SDWA

contains the address of the parameter list specified on the ST AE macro instruction or the ST AI

parameter of the ATTACH macro instruction.

Upon entry to the STAE routine, parameter registers are as follows:

If an SDW A was obtained:

register 2 a code indicating the type of I/O processing performed:
o - active I/O has been quiesced and is restorable.
4 - active I/O has been halted and is not restorable.
8 - no active I/O at ABEND time.

16 - active I/O, if any, was allowed to continue.
register 1 address of the SDW A.
register 13 save area address.
register 14 rturn address.
register 15 address of ST AE exit routine.

If no SDW A was available:

register 0
register 1
register 2
register 13
register 14
register 15

code 12 to indicate that no SDWA was obtained.
ABEND completion code.
address of user-supplied parameter list.
unpredictable.
return address.
address of ST AE exit routine.

When the ST AE or ST AI routine has completed, it should return to the control program via
the contents of register 14. Register 15 should contain one of the following return codes:

return code
o

4,8,12
16

action
Continue the termination. The next ST AI, EST AI, or EST AE exit will be given
control. No other ST AE exits will receive control.
A retry routine is to be scheduled.
No further STAI/EST AI processing is to occur. This code may only be issued by a
ST AI/EST AI exit.

For the following situations, STAE/STAI exits will not be entered:

• If the abnormal termination is caused by an operator's CANCEL, job step timer
expiration, or the detaching of an incomplete task.

• If the failing task has been in a wait state for more than 30 minutes.

• If the ST AE macro instruction was issued by a subtask and the attaching task abnormally
terminates.

• If the recovery routine was specified for a subtask, via the ST AI parameter of the
ATT ACH macro instruction, and the attaching task abnormally terminates.

• If a problem other than those above arises while the control program is preparing to give
control to the ST AE routine.

STAE/STAI Retl'Y Routines

If the ST AE retry routine is scheduled, the system automatically cancels the active ST AE

environment; the preceding ST AE environment, if one exists, then becomes the active one.
Users wanting to maintain ST AE protection during retry must reestablish an active ST AE

environment within the retry routine, or must issue multiple ST AE requests prior to the time
that the retry routine gains control.

42 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Like the ST AE/ST AI exit routine, the ST AE/ST AI retry routine must be in storage when the
exit routine determines that retry is to be attempted. If not already resident in your program,
the retry routine may be brought into storage via the LOAD macro instruction by either the
user's program or exit routine.

If the ST AE/ST AI routine indicates that a retry routine has been provided (return code =
4,8, or 12), register 0 must contain the address of the retry routine. The STAE environment
that requested retry is canceled and the request block queue is purged up to, but not including,
the RB of the program that issued the ST AE macro instruction. This is done by pointing the RB
old psw to an SVC 3 (EXIT) instruction. In addition, open DCBs which can be associated with
the purged RBs are closed and .queued I/O requests associated with the DCBs being closing are
deleted from the I/O restore chain.

The RB purge is an attempt to cancel the effects of partially executed programs that are at a
lower level in the program hierarchy than the program under which the retry will occur.
However, certain effects on the system will not be canceled by this RB purge. Example of
these effects are as follows:

• Subtask created by a program to be purged.
• Resources allocated by the ENQ macro instructions.
• DCBs that exist in dynamically acquired virtual storage.

If there are quiesced restorable input/output operations, they can be restored, in the ST AE
retry routine, by using word 2 in the SDWA. Word 2 contains the pointer to the purged I/O
request list (PIRL) passed as a parameter to SVC Restore. SVC Restore is used to have the
system restore all I/O requests on the PIRL. (For additional information on SVC Restore, see
OS/VS2 System Programming Library: Data Management.)

If an SDW A was obtained, upon entry to the ST AE/ST AI retry routine, register contents are
as follows:

o
Address of the SDW A.
Unpredictable.
Address of an SVC 3 instruction.

Register 0
Register 1
Register 2-13
Register 14
Register 15 Address of the ST AE/ST AI retry routine.

The retry routine should use the FREEMAIN macro instruction to free the 512 bytes of
storage occupied by the work area when the storage is no longer needed. This storage should
be freed fromsubpool 0 which is the default subpool for the FREEMAIN macro instruction.

If the ABEND/STAE interface routine was not able to obtain storage for the work area,
register contents are as follows:

Register 0 12.
Register 1 ABEND completion code.
Register 2 Address of the PIRL; or 0 if I/O is not restorable.

ESTAE Extended Capabilities

The EST AE service routine provides the following increased capabilities over ST AE:

• The BRANCH option to improve performance for SVCS by providing a means of
establishing an EST AE environment without the overhead of an SVC interruption.

• The TERM option to allow EST AE exits to be scheduled for clean-up processing under
certain instances for which ST AE exits did not get control.

• Changes in PURGE and ASYNCH defaults to the most commonly used options.

Interruption, Termination, and Dumping Services 43

The BRANCH Option

ESTAE (or SVC 60) can be branched to by SVcs by specifying BRANCH=YES on the ESTAE
ma~ro instruction. Following are some guidelines that must be followed when specifying
BRANCH=YES:

• pnly an SVC running under an SVRB in key 0 supervisor state may specify BRANCH=YES.

• BRANCH=YES may be used by a given SVC only mice to create anESTAE exit. That is, if
an SVC wishes more than one EST AE exit, it mlist issue EST AE with BRANCH=NO to get
additional exits.

• If BRANCH=YES is used a second time with the create CT option, the ESTAE exit that
was previously established by the earlier BRANCH= YES entry will be overlaid by the new
options. This exit will be overlaid even if subsequent exits have been created with the
ESTAE SVC.

If subsequent exits had been created with the ESTAE SVC, the exit that was just overlaid
,will become the latest exit.

• If BRANCH= YES is used with the OV optiori, the most recently created exit at that RB will
be overlaid. If the most recent exit is not an EST AE exit or if there are not exits in effect
for the user's SVRB, the create option will be assumed and the rules governing it will be
in effect if an exit address is passed. If no exit address is passed, no exit will be created.
In eithet case, a nonzero return code will be returned to the caller.

• If BRANCH= YES is specified and cancel is requested, the most recendy created exit at
that B will be canceled. If no exits exist at that RB or if the most recent exit is not an
ESTAE exit, a nonzero return code will be returned to the caller.

• The user of BRANCH=YES must be running in key 0, supervisor state, under an SVRB,
and must be holding the local lock and only the local lock. The user must also pass the
address oLa 72-byte savearea in register 13. Also, an expansion of the CVT must be in
each module that issues ESTAE with BRANCH=YES.

The TERM Option

TERM specifies that the exit routine assoCiated with EST AE will or will not be scheduled in
certain instances, in addition to normal. EST AE processing. The instances to which TERM
applies. are enumerated under the explanation of the TERM parameter of the EST AE macro
instruction in OS/VS2 Supervisor Services and Macro Instructions, GC28-0683.

The PURGE and ASYNCH Parameters

If the PURGE parameter is not specified on the ESTAE macro instruction, PURGE=NONE will
be assumed (rather than PURGE=QUIESCE as on the STAE macro instruction).

If the ASYNCH parameter is not specified on the ESTAE macro instruction, ASYNCH=YES
will be assumed (rather than ASYNCH=NO as on the STAE macro instruction).

EST AE processing at time of errors provides the following increased capabilities over ST AE:

• Each EST AE exit established by a task is eligihle to receive control. If an error occurs, the
most recently created EST AE will be entered. If it requests that termination continue or if
it fails itself, the next ESTAE exit, if any, will be entered. This will continue until an
EST AE exit requests retry or all exits for the task are exhausted.

• Both STAE and ESTAE exits can exist for the same task. However, only one ST AE exit
will receive control.

• ST AI and EST A E exits will receive control after all EST AE exits and one ST AE exit, if any,
have been processed.

44 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

• The work area (SDW A) passed to an EST AE exit contains additional information including
the resume PSW and general purpose registers of the program whose EST AE exit is now in
control at the time the program was interrupted.

• An EST AE exit may indicate via an EST AE parameter what areas of storage should be
dumped to the SYSABEND or SYSUDUMP data set.

• An EST AE exit may request via an EST AE parameter that the control program free the
SDW A instead of freeing it itself in a retry routine.

• An ESt AE exit may specify via an EST AE parameter what the contents of its registers
should'be on entry to the retry routine. .

• An ESTAE exit remains in effect when its retry routine receives control. It need not
reissue the EST AE to reestablish itself. '

ESTAE/ESTAI Exit Routines

The EST AE' niacro instruction identifies recovery routine address to the control program. This
recovery routine is associated with the task and the RB which issued ESTAE. Use of the ESTAI

option on the ATTACH macro instruction also Identifies a recovery routine to the control
program, but the routine is associated with the subt~sk created via A TT ACH. Furthermore,
ESTAI recovery routines are propagated to all lower-level subtasks of the subtask created with
the ATTACH that specified the ESTAI parameter.

Figure 10 provides an example of an EST AE environment. In this example, the queueing
structure of the EST AE routines is demonstrated, and the propagation of EST AI to lower-level :
sub tasks is shown.

If a task is scheduled for abnormal termination, the recovery routine specified by the most
recently issued EST AE macro instruction is given' control and executes under a program request
block created by the SYNCH service routine. On return, the exit routine may indicate whether a
retry address should be given control or whether termination should continue. If it requests
that termination continue, the next EST AE routine for the task receives control. If all EST AE

routines'request that termination continue, or if none exist, the ESTAI routines, if any, receive:
control.

Before the initial recovery routine receives control, the purge and asynchronous processing
requests specified when the exit was created are performed by the control program. The I/O
processing requested will be performed only for the first exroutinet selected. Subsequent
routines will receive an indication of the I/O processing previously performed, but no
additional 110 processing will be performed. The asynchronous processing request, however,
will be performed for each routines. '

Interruption, Termination, and Dumping Services 45

TCB1

RB1 It SCB It

l ESfAE2 I
ESTAE1
ESTAE2 SCB " ATTACH RB2 + ESTAI3 I ESTAE1 I

TCB2,'

.---.

RB2 f SCB It

I ESTAE4
1
I

ESTAE4
SCB ATTACH RB3

l ESTAI3 J
TCB3 It

RB3
r-.

SCB 1
l ESTAI3 J

(propagated)

Figure 10. ESTAE Environment

When using EST AE/EST AI routines, the following should be considered:

• EST AE or ATTACH may be issued by the EST AE/EST AI exit routine.

• EST AE exits are removed only in the following situations:

- A return code from the exit routine indicates termination.

- The exit routine fails.

- The RB which created the EST AE exit is removed.

- EST AE 0 is issued by a program running at the same RB as the EST AE exit to be
removed.

- An RB undergoing XCTL processing has XCTL=NO specified for the exit.

• If an ESTAE/EST AI exit requests termination or fails, the following occurs:

- All other EST AE exits established by that task are scheduled in LIFO order. When
these are exhausted, the EST AI exits are scheduled.

- Dump options will be accumulated, if they exist.

46 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

- The asynchronous exit indicator will be reset according to the new exit's request.

- I/O options for the new exit will be ignored.

- A new SOW A will be initialized.

- The new exit will be scheduled.

• If all recovery exits (ST AE/ST AI and EST AE/EST AI) fail or indicate termination, the task is
terminated.

• If a non-jobstep task issues ABEND with the STEP option, exits are entered for the
non-jobstep task. If retry is not requested, the jobstep is terminated with the ABEND
code, and only TERM exits will be entered.

• EST AE exits receive control with the same status (supervisor or problem state) that
existed at the time the program issued the EST AE macro instruction to queue the exit.
EST AE exits created by a program running under any control program protection key
(keys 0-7) receives control in key 0; otherwise ESTAE exits receive control with the same
protection key as the program that established the exit.

EST AI exits receive control in the key of the TCB of the task that created them.

• In the following cases:

- forced logoff

- job step timer expiration

- wait time limit for job step exceeded

- ABEND condition because of OET ACH of an incomplete subtask

- EST AI was issued by a subtask and the attaching task abnormally terminates.

The following actions will occur:

- EST AE exit routines will be scheduled if TERM= YES was specified as a parameter when
EST AE was issued.

- All such routines which may exist will get control in LIFO order.

- Any ESTAI exit previously suppressed via return code 16, or any exit previously
entered which specified return code 0, will not be entered again during TERM

processing.

- Retry indications on return will be ignored.

- If the TERM option is used on the EST AE macro instruction issued by an EST AE exit, it
will be ignored.

Although the EST AE routines should issue SETRP to allow the system to free the SDW A, the
freeing could also be accomplished by the retry routine. In this case, it is important to note
that the EST AE recovery routine created under any control program protection key will receive
an SOW A in key 0 storage. Therefore, if the retry routine is executing under a key other than
key 0, it must issue MODESET to become key 0 before issuing the FREEMAIN.

Interf ace to an EST AE/EST AI exit

Prior to going to an EST AE/EST AI recovery routine, the control program attempts to obtain
and initialize a work area which contains information about the error. This work area is called
the system diagnostic work area (SDW A) and is 512 bytes long. The first word of the sow A

contains the address of the parameter list specified on the EST AE macro instruction or the
EST AI parameter of the A TT ACH macro instruction.

Interruption, Termination, and Dumping Services 47

Upon entry to the ESTAE exit routine, parameter registers are as follows:

If an SDW A was obtained:

register 0 a code indicating the type of I/O processing performed:
o - active]/0 has been quiesced and is restorable.
4 - active I/O has been halted and is not restorable.
8 - no active I/O at ABEND time.

16 - no I/O processing was performed.
register 1 address of the SDW A.
register 13 save area address.
register 14 return address.
register 15 entry point address.

If no SDWA was available:

register 0
register 1
register 2
register 13
register 14
register 15

code 12 to indicate that no SDWA was obtained.
ABEND completion code.
address of user-supplied parameter list.
unpredictable.
return address.
entry point address.

When the EST AE/EST AI routine has completed, it should use the SETRP macro instruction to
inform the control program of the actions it desires. This macro instruction will initialize the
SDW A with these options.

If a work area could not be provided by the control program, a register save area will not
be provided either. If no SDWA is available, register 14 must be saved and used as the return
register to the control program.

When the EST AE or EST AI routine has completed, its processing, it should retrun to the
control program via the contents of register 14. Register 15 should contain one of the
following return codes:

return code
o

4
16

action
Continue the termination. Any EST AE exits established prior to this one will receive
control.
A retry routine is to be scheduled, and its address is placed in register o.
Termination should be continued. No further EST AE/EST AI processing should be
performed.

When an EST AE routine requests retry, the RB queue is terminated up to, but not including,
the RB of the program that issued the EST AE macro instruction. This is done by pointing the
RB old psw to an SVC 3 instruction. In addition, open DCBs which can be associated with the
purged RBs are closed and queued I/O requests associated with these DCBs being closed are
deleted from the I/O restore chain.

The RB queue purge is an attempt to cancel the effects of partially executed programs that·
are at a lower level in the program hierarchy than the program under which the retry will
occur. However, certain effects on the system will not be canceled by this RB purge. Example
of these effects are as follows:

• subtasks created by a program to be purged

• resources allocated by the ENQ macro instruction

• DCBs that exist in dynamically acquired virtual storage

If there· are quiesced restorable input/output operations, they can be restored in the EST AE
retry routine by using word 2 in the SDWA. Word 2 contains the pointer to the purged I/O
request list (PIRL) passed as a parameter to SVC Restore. SVC Restore is used to have the
system restore all I/O requests on the PIRL.

48 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

ESTAE/ESTAI Retry Routines

If the EST AE/EST AI retry routine is specified, the following actions will be performed by the
control program prior to scheduling it:

• A dump will be given if requested.
• FREEMAIN of SDW A will be performed, if requested.
• Registers will be updated with user-supplied values, if requested.
• The RB queue will be purged up to the level of the retrying RB.

Outstanding WTORs are not purged prior to scheduling an EST AE routine.

Retry routines run at the RB associated with the requestor of the EST AE exit routine causing
the retry. RBs on the RB queue are always purged to the level of RB associated with the EST AE

exit prior to the scheduling of the retry routine.

EST AE retry routines get control· in the key in which the EST AE macro instruction was
issued. Retry routines should not reissue EST AE to maintain the same exit. They may, however,
issue EST AE to add or change exits.

Like the exit routine, the retry routine must be in storage when the exit routine determines
that retry is to be attempted. If not already resident within the program, the retry routine may
be brought into storage via the LOAD macro instruction by either the user's program or exit
routine.

If an SWDA was obtained, the user has a choice of interfaces to his retry address. The user
can set (in the SWDA) the registers he wishes to have and request that they be passed to the
retry address by coding RETREGS= YES on the SETRP macro instruction. This alternative is
most often used when retrying into: mainline processing.

If no SDWA was obtained or if RETREGS=NO was specified on SETRP, only parameter
registers are passed to the retry address. This alternative is most often used if a special retry
routine is to get control.

The parameter registers are as follows:

If no SWDA was obtained:

12 register 0
register 1
register 2
register 14
register 15

address of the user parameter list established via EST AE or ATTACH with EST AI
pointer to the PIRL if I/O was quiesced and is restorable; otherwise, 0
address of supervisor-:;tssisted exit linkage
entry point address of retry routine

If an SWDA was obtained and the exit did not request register update, or freeing of SWDA:

register 0 0
register 1 address of SDW A
register 2 unpredictable
register 14 address of supervisor-assisted exit linkage
register 15 entry point address of retry routine

If an SWDA was obtained and the exit did not request register update, but did request
freeing of SDWA:

register 0 20
register 1 pointer to the user parameter list established via EST AE or A TT ACH with EST AI
register 2 pointer to the PIRL if I/O was quiesced and is restorable; otherwise, 0
register 14 address of supervisor-:;tssisted exit linkage
register 15 entry point address of retry routine

Interruption, Termination, and Dumping Services 49

Clean-Up Routines
Task and address space termination is the process of removing a task or address space from
the system, releasing the resources from the task or address space, and making the resources
available for reuse. It is the responsibility of the resource managers invoked to establish
clean-up routines to 'clean up' the queues and control blocks associated with the resources.

The responsibilities of the clean-up routines include:

• For task termination, removing all traces of the fact that the TCB for the terminating task
at one time was connected to, allocated to, or associated with the resource in question.
The resource should be left in such a state that it can be reused by another task in the
address space or in the system.

• For address space termination, releasing all system queue area and common storage area
control blocks obtained for the use of the terminating address space. Also, any buffers,
bit settings, pointers, and so on relating to the terminating address space should be reset
to make the system appear as if the ASID or ASCB of the terminating address space never
existed.

The clean-up routine is also responsible for establishing a recovery environment when first
entered to protect itself against errors during its own processing. For SRBs, the clean-up
routine issues the PURGEDQ macro instruction to ensure that all undispatched SRBs are
removed from the SRB dispatching queue.

Support for lnstallation- Written Clean-Up Routines

In order to support installation-written clean-up routines, a CSECT is provided into which an
installation can assemble the names of subsystem clean-up modules. These modules are given
control at the beginning of both the task and address space termination processes to do any
special clean-up processing required by the subsystems. (The processing described above is
performed by the IBM system routines.) After the CSECT is assembled, it is used to replace the
existing CSECT IEAVTRML in load module IGCOOOIC in SYSl.LPALIB.

Initially, the CSECT consists of four 12-byte entries of all zeros. Each of the first three
12-byte entries is to contain a module name in the first 8 bytes; the last 4 bytes of each entry
are reserved and should contain zeroes. The last entry is to consist of all zeroes.

A typical entry for the CSECT may appear as follows:

DC CL8'MODULENM'
DC XL4'OO'

Programming Considerations

All clean-up routines of the resource manager use a standard interface, available through the
IHARMPL mapping macro. On entry to the clean-up routines, the register contents are as
follows:

register
1
13
14
15
0,2-12

contents
pointer to a 4-byte field that contains the address of the interface block.
pointer to a standard save area
return address
entry point of clean-up routine
unpredictable

50 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Registers 0-14 must be saved and restored by the clean-up routine; register 15 is used to
pass a return code back to termination. A return code of 0 indicates a successful clean-up, and
a return code of 4 indicates an unsuccessful clean-up.

The clean-up routines receive control on all task and address space terminations prior to any
of the control program resource manager, and receive control in key 0, supervisor state, with
no locks held. Each clean-up routine must acquire and release any locks it may need to do its
processing.

For task termination, the clean-up routine executes under the TCB of the terminating task,
and executes in the address space of the terminating task.

For address space termination, the clean-up routine executes under a task in the address
space of the master scheduler. The clean-up routine will be able to examine the ASCB for the
address space, queues, and other control blocks which reside in the common area; nothing in
the private area for the terminating address space is accessible.

Interruption, Termination, and Dumping Services 51

52 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Virtual Storage Management

The GET MAIN and FREEMAIN macro instructions allocate and free one or more areas of
virtual storage. Although most of the functions of these macro instructions are available to any
user, several new functions are available only to programs executing in supervisor state under
protection key zero.

One of the new functions permits a branch entry to the GETMAIN and FREE MAIN routines,
rather than an SVC entry. Although use of the this function requires additional work on the
part of the user, the branch entry is significantly more efficient than the SVC entry and does
save some system overhead. This function is provided via the BRANCH parameter.

Another function, available only with the branch entry function, allows the user, executing
in key zero, to specify the actual key in which the requested storage is to be obtained. This
function is provided via the KEY parameter.

The BRANCH Parameter

Branch entry is accomplished by specifying BRANCH= YES on the GETMAIN or FREEMAIN

macro instruction. If the BRANCH parameter is used, the caller must preload register 4 with the
TCB address, preload register 7 with the ASCB address, and hold the local lock prior to entry.
(Note: If the BRANCH parameter is not used, it is still necessary for the current branch entry
user of the macro instruction to alter his code to include the preloading of the ASCB address in
register 7, and to hold the local lock.)

An additional branch entry point (GLBRANCH) is provided to obtain global storage without
the need for holding the local lock. This entry point is available to programs that contain no
references to particular address spaces (for example, timer routines). It is necessary, however,
to hold the SALLOC lock before entering the routine. Although the TCB address and ASCB

address are not required for this entry, register 4 must be loaded with the address of the global
save area pointed to by the CVT; this will be done by the macro expansion.

GLBRANCH may be obtained by coding BRANCH=(YES,GLOBAL) on the GETMAIN or
FREEMAIN macro instruction that includes the positional parameter RC or RD. The subpools
that are supported by this entry are limited to the global subpools - common service area

J subpools 227, 228, 231 and 241, and system queue area subpools 239 and 245. Any other
subpool will be considered an error.

The KEY Parameter

Since branch entry users are required to be executing in key zero at entry time, the KEY

parameter satisfies the need to specify the actual key in which the requested storage is to be
obtained.

The KEY parameter applies only to six new sub pools - 227, 228, 229, 230, 231, and 241.
These subpools allow both global and local storage to be obtained in the requestor's storage

I protection key. Subpools 227 (fetch protected) and 228 (not fetch protected) are fixed global
storage in the common service area, and must be freed explicitly. Subpools 229 (fetch
protected) and 230 (not fetch protected) are local storage allocated from the top of the private
area downward and intermixed with LSQA and SW A, and are freed automatically when the task
terminates. Subpools 231 (fetch protected) and 241 (not fetch protected) are global storage in
the common service area, and must be freed explicitly.

Virtual Storage Management 53

54 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Real Storage Management

The real storage manager (RSM) administers the use of real storage and directs the movement
of virtual pages between auxiliary storage and real storage in page size (4096 bytes) blocks. It
makes all addressable virtual storage in each address space appear as real storage. Only virtual
pages necessary for program execution are kept in real storage; the remainder reside on
auxiliary storage. RSM employs the auxiliary storage manager (ASM) of the data manager to
perform the actual paging I/O necessary to transfer pages in and out of real storage. ASM also
provides DASD allocation and management for paging I/O space on auxiliary storage. RSM

relies on the system resource manager (SRM) for guidance in the performance of some of its
operations.

RSM assigns real storage page fr~mes upon request from a pool of available frames, thereby
associating virtual addresses with real storage addresses. Frames are repossessed upon
termination of use, when freed by a user, when a user is swapped-out or when needed to
replenish the available pool. While a virtual page occupies a real storage frame, the page is
considered pageable unless specified otherwise as a system page that must be resident in real
storage. RSM also allocates virtual equals real (V =R) regions upon request by those programs
that cannot tolerate dynamic relocation. Such a region is allocated contiguously from a
predefined area of real storage and is non pageable.

The paging services provided include the following:

• PGFIX -- Fix virtual storage contents.
• PGFREE -- Free virtual storage contents.
• PGLOAD -- Load virtual storage areas into real storage.
• PGOUT -- Page out virtual storage areas from real storage.
• PGRLSE -- Release virtual storage contents.

The PGFIX and PGFREE functions are available only to authorized system functions and
users. The PGLOAD, PGOUT, and PGRLSE are not restricted and are available to all users;
these functions are described in OS/VS2 Supervisor Services and Macro Instructions.

Fixing/Freeing Virtual Storage Contents
The PGFIX and PGFREE macro instructions provide complementary functions. The PGFIX
macro instruction makes specified storage areas resident in real storage and ineligible for
page-out as long as the virtual address space of the requesting TCB remains in real storage.
The PGFREE macro instruction makes specified storage areas, which were previously fixed via
the PGFIX macro instruction, eligible for page-out. Real frames fixed by PGFIX are not
considered pageable until the same number of PGFREE and PGFIX requests have been issued
for any virtual area.

Page fixing ties up valuable· real storage and is usually detrimental to system performance
unless utilization of the resources is extremely high.

In the PGFIX function, you have the option of specifying the relative real time duration
anticipated for the fix. If you specify LONG= Y; the duration of the fix will be relatively long.
(As a rule of thumb, the duration of a fix is considered long if the interval can be measured on
an ordinary timepiece-that is, in seconds.) If you specify LONG=N, the time duration of the fix
is assumed to be relatively short. A long-term PGFIX is assumed if this option is not specified.

Real Storage Management 55

In both the PGFIX and PGFREE functions, you have the option of specifying that the
contents of the virtual area are to remain intact or be released. If the contents are to be
released, you specify RELEASE=Y; otherwise, you specify RELEASE=N. If you specify PGFIX

with RELEASE=Y, t.he PGRLSE function will be performed before the PGFIX function.

If you specify PGFREE with RELEASE=Y, the PGFREE function will be performed and those
pages of the virtual subarea with zero fix counts will be released; that is, the contents of
virtual areas spanning entire virtual pages that were fixed are expendable and no page-outs for
these pages are necessary.

Note: PGFIX does not prevent pages from being paged out when an entire virtual address
space is swapped out of real storage. Consequently, the user of PGFIX cannot assume a
constant real address mapping for fixed virtual areas in most cases.

Completion Considerations

Under normal circumstances, you can reverse the effect of a PGFIX via a PGFREE when the
need for a PGFIX ceases. However, a PGFIX request will sometimes complete asynchronously if
it requires a page-in operation. In such cases, it may be necessary to explicitly purge PGFIX

operations.

For this reason, the PGFIX function provides a mechanism for signalling event completion.
The mechanism is the standard ECB together with WAIT/POST logic. The requestor supplies an
ECB address and waits on the ECB after a request. The ECB is posted when all requested pages
are fixed in real storage.

Explicit purging of a PGFIX is carried out in one of two ways:

• If the PGFIX is known to be complete, the PGFIX is reversed through the usual PGFREE

function.

• If there is any possibility that the PGFIX has not been posted as complete, the PGFREE

should be issued with an ECB address supplied. This ECB parameter identifies the event
control block that was supplied as an input parameter with the PGFIX being purged. Note
that for the purpose of canceling a PGFIX request that has not yet completed, the ECB

must uniquely identify the PGFIX request. Consequently, to provide for explicit purging,
you must ensure that the ECB address for any incomplete PGFIX can be located in a
purge situation, and that the ECB has not been reused at the time the PGFIX is to be
canceled.

The PGFREE function always completes immediately and requires no ECB address except for
purging considerations.

Virtual Subarea List (VSL)
The virtual subarea list provides the basic input to the page service functions: PGFIX, PGFREE,

PGLOAD, PGRLSE, and PGOUT. The list consists of one or more double word entries, each
entry describing an area of virtual storage. The list must be nonpageable (for example, in SQA

or LSQA) and contained in the address space to be processed.

Each parameter list entry has the format shown in Figure 11.

Byte o
FLAGS

1 2

START ADDRESS

Figure 11. Virtual Subarea List Entries

56 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

3 4

FLAGS

5 6 7

END ADDRESS + 1

Byte 0 Flags:
Bit 0

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Start Address:

(1...

(.1..
C.1.
(. .. 1
(. ...
(. ...
(. ...
C ...

....)

....)

....)

....)
1...)
.l..)
.. 1.)
... 1)

This bit indicates that bytes 1-3 are a chain pointer to the next VSL entry to be
processed; bytes 4-7 are ignored. This feature al10ws several parameter lists to be
chained as a single logical parameter list.
PGFIX is to be performed; reserved, set by macro instruction.
PGFREE is to be performed; reserved, set by macro instruction .
PGLOAD is to be performed; reserved, set by macro instruction.
PGRLSE is to be performed; reserved, set by macro instruction.
Reserved.
Long-term PGFIX is to be performed; reserved, set by macro instruction .
Reserved.

The virtual address of the origin of the virtual area to be processed.

Byte 4 Flags:
Bit 0 (1...

Bit 1 (.1..
Bit 2 (..1.
Bit 3 (. .. 1

Bit 4 (. ...
Bit 5 (. ...
Bit 6 (. ...

Bit 7 C ...

End Address + 1:

....)

....)

....)

....)

1...)
. l..)
.. 1.)

... 1)

This flag indicates the last entry of the list. It is set in the last doubleword entry
in the list.
When this flag is set, the entry in which it is set is ignored .
Reserved.
This flag indicates that a return code of 4 was issued from a page service
function other than PGRLSE.
Reserved .
PGOUT is to be performed; reserved, set by macro instruction.
KEEP REAL option of PGOUT is to be performed; reserved, set by macro
instruction .
Reserved.

The virtual address of the byte immediately following the end of the virtual area.

Real Storage Management 57

58 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Miscellaneous Services

Additional services are provided by the supervisor which do not appropriately fit into the
previous chapters. These services, discussed in this chapter, include:

• operator messages (WTO and WTOR macro instructions)
• user-written message routing exit routines
• service management facilities (SCHEDULE and PURGEDQ macro instructions)
• stage 1 exit effector (CIRB macro instruction)
• user-written SVC routines
• missing interruption handler
• power warning feature support

Writing Operator Messages
The WTO and WTOR macro instructions allow you to write messages to the operator. The
WTOR macro instruction also allows you to request a reply from the operator. A complete
description of the use of these two macro instructions is found in OS/VS2 Supervisor Services
and Macro Instructions.

Routing the Message

The WTO and WTOR macro instructions have two special parameters, MSGTYP and MCSFLAG.

The MSGTYP parameter specifies how the message is to be routed; the MCSFLAG parameter
specifies that the macro expansion is to set bits in the MCSFLAG field as indicated by each
name coded. Only programmers familiar with MCS should use these parameters, since using
them inproperly could impede the entire message routing scheme.

If MSGTYP=Y is specified, the message type specifies that two bytes are to be reserved in
the WTO or WTOR macro expansion so that flags can be set to describe what MSGTYP

functions are desired. If Y is specified, two bytes of zeros are to be included in the macro
expansion at displacement WTO (or WTOR + 8) + 12 + the total length of the message text,
descriptor code, and routing code fields. If MSGTYP=N is specified, or if the MSGTYP

parameter is omitted, the two bytes are not needed and the message will be routed as specified
in the ROUTCDE parameter.

The bit definitions for MSGTYP=Y are:

Bit 0
Bit 1
Bit 2-4
Bit 5
Bit 6-15

MONITOR JOBNAMES
MONITOR STATUS
Reserved
MONITOR SESS
Reserved

When MSGTYP=Y is specified, the issuer of the WTO or WTOR macro instruction that
contains the MSGTYP information must set the appropriate message identifier bit in the
MSGTYP field of the macro expansion. The MCSFLAG field in the macro expansion has been
set to zero, indicating that the MSGTYP field is to be used for the message routing criteria.
When the message type is identified by the system, the message will be routed to all consoles
and TSO terminals in operator modes that had requested that particular type of information. If
there are no consoles or terminals requesting that particular type of information, the WTO
message will not be sent anywhere; however, a WTOR message will be sent to the master
console. The routing codes and REGO MCSFLAG field, if present, will be ignored.

Miscellaneous Services 59

Writing a Multiple-Line Message

The WTO macro instruction is used to write a multiple-line message to one or more operator
consoles. System programs (supervisor state, protection key 0-7, or APF-authorized) may
create a multiple-line message with more than one WTO request.

The first WTO request supplies the first lines of the message. Other WTO requests can then
add lines to the message. The additional lines would appear at the end of the message, and
would continue until an 'END' line is added.

For the first request in a multiple-line sequence, the leftmost three bytes of register zero
must by zero; you must ensure that this is done.

The first request receive a message identifier back in register 1. To add more lines, the next
multiple-line request must have this identifier in the leftmost three bytes of register zero.

If the conditions on register zero are not met, it would appear to SVC 35 (WTO) that the
multiple-line request is adding lines to an existing message, and the new message will not be
created.

Message Routing Exit Routines
This topic provides detailed information on how to write user exit routines that modify the
routing and descriptor codes of WTO or WTOR messages for the vs2 operating system.
Information is provided on inserting this exit routine into the resident portion of the control
program. In addition, a description of the characteristics and configuration of MCS is supplied.

Characteristics of MCS

The multiple console support (MCS) facility routes messages to different functional areas
according to the type of information that the message contains. In MCS, a functional area is
defined as one or more operator's consoles that are doing the same type of work. (Some
examples of functional areas are: (1) the tape pool area, (2) the disk pool area, and (3) the
unit record pool area.) Each WTO and WTOR macro instruction is assigned one or more
routing codes which are used to determine the destination of the message. There are fifteen
routing codes that can be used. When the message is ready to be routed, the routing codes
assigned to the message are compared to the routing codes assigned to each console. If any of
the routing codes match, the message is sent to that console.

If the standard routing codes provided on application and system messages do not cover
special situations at an installation, the routing codes can be modified by coding a user exit
routine. The exit routine receives control prior to the routing of messages so users can examine
the message text and modify the message's routing and descriptor codes. The system will use
the modified routing codes to route the message. Descriptor codes provide a mechanism for
message presentation and deletion, and are explained later in this chapter.

Automatic console switching occurs when permanent hardware errors are detected.
Command-initiated console switching is provided to permit restructuring of the system console
configuration and the hard copy log by system operators. Consoles can be moved into or out
of functional areas at any time during system operation.

A hard copy log records messages, operator and system commands, and operator and system
responses to commands. The hard copy log can be a console device or it can be the system log
(SYSLOG). The number and type of messages recorded on the log is optional. The installation
may wish to record a selected group of messages, or it may wish to record all messages. If
commands are recorded, the system automatically records command responses.

60 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Whenever possible, the hardcopy function should be delegated to an output-only device
(such as a printer) or to the system log.

Programming Conventions For WTO/WTOR Routines

The programming conventions for the WTO/WTOR exit routine are summarized below:

• Exit routine is part of the resident control program. The program should be loaded on a
page boundary.

• Exit routine is any size.

• Exit routine may allow interruptions. The routine will receive control with no locks held;
it should return control with no locks held.

Exit routine is reenterable and serially reusable. Macro instructions whose expansions
store information into an online parameter list should not be used.

• IEECVXIT is name of routine.

• Registers must be saved at entry and restored prior to returning.

• Exit routine may issue WAIT, XCTL, WTO, or WTOR macro instructions.

• Exit routine is part of WTO SVC. If the exit routine terminates abnormally, the WTO

request will be terminated.

• Exit from the routine is via the RETURN macro instruction.

• Format of text and codes is:

Message flagging and text (128 characters padded with blanks)

Routing codes (4 bytes) Descriptor codes (4 bytes)

In the routing code field, a bit setting of "1" indicates that the WTO or WTOR was assigned
that particular routing code. Bit assignments and their meanings are:

Bit AssigOment Meaning

Byte 0
Bit 0 Routing code 1 Master Console Action
Bit 1 Routing code 2 Master Console Information
Bit 2 Routing code 3 Tape Pool
Bit 3 Routing code 4 Direct Access Pool
Bit 4 Routing code 5 Tape Library
Bit 5 Routing code 6 Disk Library
Bit 6 Routing code 7 Unit Record Pool
Bit 7 Routing code 8 Teleprocessing Control

Byte 1
Bit 0 Routing code 9 System Security
Bit 1 Routing code 10 System Error/Maintenance
Bit 2 Routing code 11 Programmer Information
Bit 3 Routing code 12 Emulators·
Bit 4 Routing code 13 Available for Customer Usage
Bit 5 Routing code 14 Available for Customer Usage
Bit 6 Routing code 15 Available for Customer Usage
Bit 7 Routing code 16 Reserved

Byte 2 Reserved

Byte 3 Reserved

Miscellaneous Services 61

In the descriptor code field, a bit setting of "1" indicates that the WTO or WTOR was
assigned that particular descriptor code. Bit assignments and their meanings are:

Bit

Byte 0
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Byte 1
Bit 0
Bit I

Byte 2

Byte 3

Assignment

Descriptor code 1
Descriptor code 2
Descriptor code 3
Descriptor code 4
Descriptor code 5
Descriptor code 6
Descriptor code 7
Descriptor code 8

Descriptor code 9
Descriptor code 10

11 through 16

Meaning

System Failure
Immediate Action Required
Eventual Action Required
System Status
Immediate Command Response
Job Status
Application Program/Processor
Out-of-Line Message

DISPLAY or MONITOR command response
Dynamic Status Displays
Reserved

Reserved

Reserved

Messages Not Using Routing Codes

There are certain messages that the exit routine does not see. These are messages that have the
MSGTYP parameter in the WTO or WTOR macro instruction coded with the JOBNAMES,
STATUS, or Y parameter, multiple-line WTOs (including status displays) and messages that are
being returned to the requesting console, that is, a response to a DISPLAY A command.
Routing of these messages is on criteria other than the routing codes; therefore, the system
bypasses the exit routine.

Writing a WTO/WTOR Exit Routine

To modify the standard routing codes and descriptor codes, a WTO/WTOR Exit Routine must
be written. This routine will be part of the control program. If a message's routing code field is
used by the operating system to route the message, the routine will receive control prior to the
routing of the message. When the routine receives control, register 1 contains a pointer to a
word that points to the first word of the message text. The message text field is 128 bytes
long, followed by a four-byte routing code field and a four-byte descriptor code field. The exit
routine may examine but not modify the message text.

A message will be sent to only those locations specified in the modified routing codes. All
messages with modified routing codes are sent to the hard copy log when the log is included in
the operating system. When the log is not included, the exit routine must not suppress
messages that contain a routing code of 1, 2, 3, 4, 7, 8, or 10 since messages with these codes .
are necessary for system maintenance. Message suppression is turning off all routing codes of a
message by setting the routing code field to zero, thus causing the message to be discarded.
WTO messages can be suppressed. If a WTOR message is suppressed, it will be sent to the
master console by the operating system.

Adding a WTO/WTOR Exit Routine to the Control Program

The WTO/WTOR exit routine is standard. If the user does not specify one, the IBM-supplied
module IEECVXIT is included.

To enter the exit routine into the control program before system generation, the linkage
editor should be used to replace the dummy WTO/WTOR exit routine IEECVXIT in SYS1.AOSC5
with the WTO/WTOR exit routine. The linkage editor should be instructed to load IEECVXIT on
a page boundary.

62 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

To enter the exit routine into the control program after system generation, the linkage editor
should be used to replace the dummy WTO/WTOR exit routine IEECVXIT in the SYSl.LPALIB
with the user-written WTO/WTOR exit routine.

Service Management
Service Management facilities provide a basic set of system services which allow internal
system components to structUf'e themselves to run enabled, nonserialized, and in parallel on a
multiprocessing system with considerably less overhead than would be required by using
existing task management services. The facilities provided by service management are those
services required to:

• Introduce a service request to execute a service routine into the queue of work within the
system.

• Perform priority dispatching of the requested service routine.
• Support the needs of recovery/termination for cleaning up the asynchronous processes.

The first two facilities are accomplished via the SCHEDULE macro instruction; the third
facility is accomplished via the PURGEDQ macro instruction.

The main features of this new support are:

• A new control block, called a service request block (SRB), which represents a service
request. This block, like a TCB, identifies a unit of work to the dispatcher. The block is
smaller than a TCB, and requires ~ess information to be specified about each request.

• The SCHEDULE macro service, which enters SRBs into the dispatchable work queue with
a minimum of overhead.

• Changes to the dispatcher to operate under this new service request control structure in
addition to the old task structure. Maximum performance is provided when dispatching
service requests. In addition, SRBs may be scheduled to different address spaces either at
a priority equal to the specified address space or at an independent priority higher than
any address space.

Service management provides a system-wide dispatching facility which can be used to
increase parallel processing on multiple CPUs. The programs benefiting the most from these
facilities are those which have independently dispatch able units of work, but are forced to run
as a single task.

In addition, service management facilities make the system aware of the smaller units of
work and allow the service requests' to be dispatched in paraller on multiple CPus at a higher.
priority than the task work.

The service management facilities also provide a mechanism which is used for almost all
communications between address spaces, and is used to run some parts of interruption handlers
as service requests allowing more enablement and parallelism for these services. For example,
when an interruption occurs, the interruption handler collects the necessary information about
the interruption and schedules a service request block (SRB). The interruption handler can then
start I/O requests which were waiting for the I/O path and accept any additional pending
interruptions. By delaying complete processing of the interruption, this approach allows faster
reuse of channels and lower disabled interruption time.

The scheduling of the SRB provides the ability:

• to complete the interruption process on any CPU, not just the one which took the
interruption

• to process the interruption enabled except where specific serialization through locks is
used

Miscellaneous Services 63

• to switch from the random address space where the interruption was taken to the address
space of the user which originally requested the I/O. This latter capability provides the
interruption handler routine with addressability to the user's control blocks necessary to
complete the interruption processing.

Scheduling Service Requests

The introduction of a service request into the queue of work is accomplished via the
SCHEDULE macro instruction. To use this macro, you must provide the following information:

• The address of a previously obtained and formatted service request block (SRB) that is to
represent the request until it is actually dispatched. The contents of the SRB supplied
define the attributes of the routine to be given control. Once the service routine is given
control, the SRB is no longer needed by the system and may be released.

• The priority of the request relative to other requests in the system. The service may be
scheduled at either local or global priorities.

The SCHEDULE macro instruction does not obtain storage for the SRB. It simply causes the
indicated SRB to be queued at the appropriate priority. When the request subsequently
becomes the highest priority work in the system, the dispatcher will dispatch it in the address
space specified by the SRB.

Service Request Blocks (SRBs)

Service requests are represented by service request blocks (SRBs). These control blocks are
supplied by the function requesting a service. The basic information contained in an SRB is:

• The address space in which the asynchronous routine will be dispatched.

• The protection key assumed by the routine.

• The entry point of the routine.

• The address of the resource manager termination routine responsible for cleaning up the
SRBs which have been scheduled but not yet dispatched.

• The address of a status save area.

• A fullword parameter to be loaded into register 1 on entry to the routine.

• CPU affinity requirements.

• The level (system or nonquiesceable) at which the request is to be scheduled.

• The ASID/TCB associated with the routine.

• A forward chaining field used to queue the request.

Priorities

Services may be scheduled for execution at either global or local priorities. Service requests
queued at the global level are given a priority which is above that of any address space,
regardless of the actual address space in which they will be dispatched. Service requests at the
local level are given a priority equal to that of the address space in which they will be
dispatched, but higher than that of any task within that address space.

Within the global and local priorities, there are two additional priority levels. One of the
levels is for general system usage; the other (called the nonquiesceable level) is for specialized
functions necessary to perform a quiesce of SRBs.

Service requests at the nonquiesceable level continue to be dispatched while the address
space is in the process of being quiesced. Requests queued at the system level in an address
space will not be dispatched while the quiesced status is in effect. Usage of the nonquiesceable
level is restricted in the following manner: At times, it is necessary to stop the dispatching of

64 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

SRBs in an address space -- that is, prevent new SRBs from being dispatched and allow all SRBs
that have already been dispatched to complete their processing. However, some of the
dispatched SRBs may have been suspended due to lock requests or page faults. Since page fault
processing and rescheduling of the suspended SRBs makes use of SRBs themselves, it is
necessary to have a nonquiesceable level at which these SRBS can be scheduled while the other
SRBs have been stopped.

Characteristics of Service Requests

Service routines have the following characteristics:

• All routines are entered in supervisor state, enabled, and unlocked. On entry, the address
of the SRB is in register 0 and the exit address is in register 14. Thc routines cannot enter
problem program mode and must establish a recovery environment.

• The routines may not issue SVCs. (However, ABEND may be issued.)

• The routines are nonpreemptible -- that is, although the routines are run enabled and
may be interrupted by an asynchronous interruption, they will not lose control to higher
priority tasks or SRBs until control is given up voluntarily. However, service routines may
lose control due to synchronous events which cause suspension of the program in control
-- for example, page faults and unconditional requests for suspend-type locks. In this
case, full status of the process is saved and other work is dispatched; the service request
will be redispatched when the problem is resolved.

• The routines may take page faults. Page faults encountered in the unlocked state will be
handled per service request; page faults encountered in the locked state will prevent other
processing which requires the lock from proceeding until the page fault is resolved.

• The routines may request any lock through the SETLOCK interface.

• The routines must return control to the address supplied in register 14, and must return
control in supervisor state with no locks held. All cleanup must be performed prior to
exiting.

Purging Service Requests

When a task or address space terminates abnormally, outstanding requests for the task or
address space must also be terininated. The PURGEDQ macro instruction establishes a standard
mechanism for purging these requests. To use this macro, you must provide the following
information:

• The address space identifier of the address space in which the SRB is scheduled to be
dispatched. If. none is specified, the current address space is assumed.

• The address space of the task control block of the task associated with the SRB for which
the purge is to be performed. If none is specified, the current TCB is assumed in the
current address space.

• The address of the resource manager termination routine. If no address is supplied, the
purge is performed for all resource managers.

The PURGEDQ routine dequeues all nondispatched SRBs and waits for completion of any
active SRBs. After all of the SRBs have been de queued or completed, the resource manager
termination routine specified in the SRB is given control and the required cleanup is performed
for each dequeued SRB. No locks should be held when PURGEDQ is invoked.

Miscellaneous Services 65

PURGEDQ Parameters

The inputs to the PURGEDQ macro instruction are specified by the ASID, ASIDTCB, and RMTR
parameters.

The ASID parameter specifies the address of a half word containing an address space
identifier. PURGEDQ will search for SRBs scheduled to be dispatched into the address space
specified by this parameter. If an address space other than the current address space is
indicated, only SRBs which have not yet been dispatched will be affected as PURGEDQ will not
wait for SRBs already dispatched but not completed. If this parameter is omitted, the current
address space will be assumed.

The caller of PURGEDQ can purge the SRBs associated with a specific task by coding the
ASIDTCB parameter. The ASIDTCB parameter specifies the address of a double word associated
with the TCB for ~hich SRBs are to be purged. If the parameter is omitted, the purge will occur
for SRBs associated with the current task in the current address space. The following table
describes the acceptable values for the ASIDTCB parameter, and the meaning of the values:

Bytes 0 - 7 zero

Bytes 0 - 1 reserved
Bytes 2 - 3 nonzero ASID
Bytes 4 - 7 zero

Bytes 0 - 1 reserved
Bytes 2 - 3 nonzero ASID
Bytes 4 - 7 nonzero TCB

address

All SRBs are to be purged.

All SRBs associated with the specified
address space (SRBPASID field)
are to be purged.

All SRBs associated with the specified
address space (SRBP ASID field) and the
specified task (SRBPTCB field) are to
be purged.

All other values are unacceptable and will produce unpredictable results.

The RMTR parameter specifies the address of the resource manager termination routine.

Creating Interruption Request Blocks

The CIRB macro instruction causes the Stage 1 Exit Effector routine to create and initialize an
interruption request block (IRB). The IRB is used to control an asynchronous user exit routine
requested by the caller.

The Stage 1 routine obtains a work area in which the caller may construct interruption
queue elements (IQEs), and obtains a register save area in which the user exit routine may later
save the registers of the requesting program. The routine obtains space for the IRBs (and IQES)
and the work area from local supervisor queue space. The work area follows and is
continguous to the IRB. The register save area, if requested, is obtained from subpool zero of
the user program's region, and is therefore not contiguous to either the IRB or its work area.

After the storage for the IRBs and optional work and storage areas is obtained, the Stage 1
Exit Effector routine initializes the IRB. The initialization is accomplished according to the flag
bits passed to the routine in register 1.

The information initialized in the IRB includes the save area address, the size of the IRB, the
entry point of the user exit, the PSW to be loaded to start execution, and a series of flags
communicating actions to be taken when the asynchronous exit routine terminates.

For details on the Stage 1 exit effector, and for information on the Stage 2 and 3 exit
effectors, see OS/VS2 Scheduler and Supervisor Logic.

66 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Writing SVC Routines
~

User-written SVC routines become part of the control program, so you must folow the same
programming conventions used by SVC routines supplied with VS2. Four types cif SVC routines
are supplied with VS2, and the programming conventions for each type differ. The general
characteristics of the four types are described in the following text, and the programming
conventions for all types are shown in tabular form.

Characteristics of SVC Routines

All SVC routines receive control in the supervisor state. You should keep the following
characteristics in mind when deciding what type of SVC routine to write:

• Location of the routine -- Your svc routine can be either in storage at all times as part
of the resident control program, or in the fixed or pageable link pack area. Types 1 and 2
svc routines are part of the resident control program, and types 3 and 4 are in the link
pack areas. No transient areas are provided in MVS.

• Size of the routine -- svc routines are not limited in size, but should be kept under one
page if disabled global locks are obtained.

• Design of the routine -- All svc routines must be reenterable. If you wish to aid system
facilities in recovering from machine malfunctions, your svc routines must be refreshable.

• Authorization -- At nucleus initialization, all svc routines that are to be loaded into the
fixed or pageable LPA must be contained in SYS1.SVCLIB, SYS1.LPALIB, or SYS1.LINKLIB.
After the initial load of type 4 SVCs, subsequent loads may be contained in any
authorized library.

• Loads -- Type 3 SVCS have one load; type 4 SVcs may have multiple loads. Since type 4
SVcs require XCTL overhead, and since there are no size limitations for type 4 svcs, type
4 SVCS have no advantage over type 3 SVcs. Unless an SVC is to be used in another
system as well as in MVS, type· 4 SVC routines should never be used.

• Serialization -- In MVS, locking has generally replaced CPU disablement as the technique
for serializing multiple CPU fuctions. If you write SVC routines which must serialize with
other parts of the control program, you must use the same locking conventions as the
control program. If you write two or more SVC routines which must serialize with each
other, you can use either, the locking facilities or the ENQ/DEQ services.

SVC routines can receive control with one or more locks held. You must define which locks
are to be acquired for your SVC routines during system generation. (For more information on
locking, see the discussion under Resource Control.)

SVC routines are normally entered enabled. However, an SVC routine will be entered
disabled if it was specified that a disabled spin lock is to be acquired for the routine. (See
reference code 2 on the following page.)

Programming Conventions for SVC,Routines

The programming conventions for the four types of SVC routines are summarized in Figure 12.
Details about many of the conventions are in the reference notes that follow. The notes are
referred to by the numbers in the last column of the figure. If a reference note for a
convention does not pertain to a specific type of SVC routine, that type is indicated by an
asterisk.

Miscellaneous Services 67

Conventions Type 1 Type 2 Type 3 Type 4 Reference Code

Part of resident control
Yes Yes No No program

--
Size of routine Any Any Any Any

Reenterable routine Yes Yes Yes Yes 1
- .-

Refreshable routine No* No* Yes Yes 2
-

Locking requirements Yes No No No 3
--

Entry point Must be the first byte of the routine or load module, and must
be on a doubleword boundary

.-
Number of routine Numbers assigned to your SVC routines should be in

descending order from 255 through 200
.-

Name of routine IGCnnn IGCnnn IGCOOnnn IGCssnnn 4

Register contents at entry Registers 3, 4, 5,6,7, and 14 contain communication pointers; 5
time registers 0, 1, .13, and 15 are para meter registers

--
May contain relocatable data Yes* Yes* No No 6

--
Supervisor request block No SVRB 200 200 200 7
(SVRB) size exists

- --
May issue WAIT macro No* Yes Yes Yes 8
instruction _._- f---- --
May issue XCT L macro No* No* No* Yes 9
instruction

--
May pass control to what None Any Any Any 10
other types of SVC routines

- --
Type of linkage with other Not Issue supervisor call (SVC) instruction 11
SVC routines Applicable

--
Exit from SVC routine Branch using return register 14 12

--
Method of abnormal ABTERM ABEND
termination

Recovery FRR ESTAE or FRR 13

Note: Reference code does not apply to items marked with *.

Figure 12. Programming Conventions for SVC Routines

68 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Reference SVC Routine
Code Types

1 all

2 3,4

3 all

4 all

5 all

Reference Notes

If your SVC routine is to be reenterable, you cannot use macro instructions
whose expansions store information into an inline parameter list.

Types 3 and 4 in the page able LP A must be refreshable. Types 3 and 4 in the
fixed LP A must be reenterable, but not necessarily refreshable.

The following conventions on locking requirements apply:
Type 1 SVC routines always receive control with the local lock held and
must not release the local lock. Additional locks may be requested prior
to entry via the SVCT ABLE macro instruction or may be requested
dynamically within the SVC routine.
Types 2, 3, and 4 may also request locks via the SVCTABLE macro
instruction or may obtain them dynamically.
Types 1 and 2 may request that any locks be held on entry. Types 3 and
4 may only request that the LOCAL or LOCAL and CMS lock be held.
If no locks are held or obtained, or only suspend locks (LOCAL and
CMS) are held or obtained, the SVC routine executes in supervisor state,
key 0, enabled mode.
If disabled spin locks are held or obtained, the SVC routine executes in
supervisor state, key 0, disabled mode. No SVCs may be issued.
SVCs may not take disabled page faults. Therefore, if a disabled spin
lock is held, the SVC routines must ensure that any referenced pages are
fixed. For types 3 and 4, all pages containing code must be fixed.
An FRR may be defined for any SVC routine that holds or obtains locks
to provide for abnormal termination (see reference note 9).

You must use the following conventions when naming SVC routines:
Types 1 and 2 must be named IGCnnn; nnn is the decimal number of
the svc routine. You must specify this name in an ENTRY, CSECT, or
START instruction.
Type 3 must be named IGCOOnnn; nnn is the signed decimal number of
the SVC routine.
Type 4 must be named IGCssnnn; nnn is the signed decimal number of
the SVC routine, and ss is the number of the load module minus one.
For example, ss is 01 for the second load module of the routine.

Before your SVC routine receives control, the contents of all registers are
saved.

In general, the location of the register save area is unknown to the routine
that is called. When your SVC routine receives control, the status of the
register is as follows:

Register 0 and 1 contain the same information as when the SVC routine
was called.
Register 2 contains unpredictable information.
Register 3 contains the starting address of the communication vector
table.
Register 4 contains the address of the task control block (TCB) of the
task that called the SVC routine.
Register 5 contains the address of the supervisor request block (SVRB),
if a type 2, 3, or 4 SVC routine is in control. If a type 1 SVC routine is
in control, register 5 contains the address of the last activ~ request
block.
Register 6 contains the entry point address.
Register 7 contains the address of the address space control block
(ASCB).
Registers 8 through 12 contain unpredictable information.
Register 13 contains the same information as when the SVC routine was
called.
Register 14 contains the return address.
Register 15 contains the same information as when the SVC routine was
called.

You must use register 0, 1, and 15 if you want to pass information to the
calling program. The contents of registers 2 through 14 are restored when
control is returned to the calling program.

MisceUaneous Services 69

Reference
Code

6

7

8

9

10

11

12

13

SVC Routine
Types

3,4

2,3,4

2,3,4

4

all

all

all

all

Reference Notes

Since relocatable address constants are not relocated when a type 3 or 4 SVC
routine is loaded into virtual storage, you cannot use them in coding these
routines; nor can you use macro instructions whose expansions contain
relocatable address constants. Types 1 and 2 are not affected by this
restriction since they are part of the resident control program.

The SVRB is no longer extendable, but is a fixed size of 200 bytes. When a
type 2, 3, or 4 SVC routine receives control, register 5 contains the address
of the SVRB within this 200-byte area. This SVRB contains a 40-byte
"extended save area." In addition, an area is provided for a STAE control
block (SCB); this SCB will be used by the recovery termination manager
when an EST AE or EST AI is issued within an SVC routine.

You can issue the WAIT macro instruction if you hold no locks. You can
issue WAIT macro instructions that await either single or multiple-events.
The event control block (ECB) for single-event waits or the ECB list and
ECBS for mUltiple-event waits must be in virtual stroage.

When you issue an XCTL macro instruction in a routine under control of a
type 4 SVRB, the new load module must be located in the fixed or pageable
link pack area.

The contents of registers 2 throught 13 are unchanged when control is passed
to the load module; register 15 contains the entry point of the called load
module.

No SVC routines except ABEND may be called if locks are held. ABEND
may be called at any time.

No locks may be held. If locks are held, branch entry to SVCs is acceptable,
or the locks may be freed, the SVC issued, and the locks reobtained.

Branch using return register 14 should be used. Otherwise, if locks are held,
SVC 3 results in abnormal termination.

If an SVC routine is entered with a lock held or if an SVC routine obtains a
lock, it should specify a functional recovery routine (FRR) for a long as the
lock is held (see SETFRR macro instruction). The FRR receives control if an
error occurs, and ensures the validity of the data being serialized by the lock;
the FRR either recovers or releases the lock and continues with termination.

If no FRR is specified, the recovery termination manager will release the lock
and terminate the task. No cleanup of the data is performed. (Note that the
lock is released before any STAI/ESTAI/EST AE (or ST AE) recovery routine
is entered.
If no locks are acquired for or by an SVC routine, then an EST AE may be
used to define your recovery processing (see EST AE and SETRP macro
instructions).

Inserting SVC Routines Into the Control Program

You insert SVC routines into the control program during the system generation. Before your

SVC routine can be inserted the routine must be a member of a cataloged partitioned data set

named SYS1.name, where the name is a name of your choice. The data set must be an

authorized library (see discussion on APF).

The following text describes the informaion you must supply during system generation. You

will find a description of the macro instructions required during system generation in the

OS/VS2 System Programming Library: System Generation Reference publication.

Specifying SVC Routines

You use the SVCTABLE macro instruction to specify the SVC number, the type of SVC routine,

and the locks that are required for your SVC.

70 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Inserting SVC Routines During: the System Generation Process

To insert an SVC routine during system generation, the name of the partitioned data set
and the names of the members to be included must be specified in the DATASET macro
instruction:

• For each type 1 or 2 SVC, a member (containing one or more SVC routines) should be
specified in the DATASET macro instruction that is being used to define SYSl.NUCLEUS .

• For each type 3 or 4 SVC, a member (containing only one SVC routine) should be
specified in the DATASET macro instruction that is being used to define SYSl.LPALIB.

Missing Interruption Handler
The missing interruption handler checks whether expected I/O interruptions occur within a
specified period of time. If the interruptions do not occur, the operator is notified so that steps
can be taken to correct the situation before system status is harmed.

The missing interruption handler checks for pending device ends, channel ends, DDR swaps,
and MOUNT commands. When a pending condition is found, the condition is indicated in the
UCB of the device. After the specified time elapses, another check is made for the pending
condition. If the condition is still pending, a message is issued informing the operator what
condition is pending and what operator action is required.

Establishing a Time Interval

The IBM-supplied CSECT IGFINTVL provides a time interval of 3 minutes. If the interval is not
changed or is incorrectly modified, an interval of 3 minutes is assumed.

To change the time interval, specify the desired interval in a modification of the CSECT
IGFINTVL as indicated in Figure 13.

//MODIFY
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

JOB
EXEC
DD
DD
DD
NAME
VERIFY
REP

MSGLEVEL=(1,1)
PGM=AMASPZAP
SYSOUT=A
DSNAME=SYS1.LPALIB,DISP=OLD
* IGFDIO IGFINTVL
0000 FOFOFOF3
0000 FOFOFXFX

Figure 13. Changing the Missing Interruption Handler Time Interval

In the REP statement in Figure :13, FXFX represents the time interval, and must be replaced
within the range FOF1 to F9F9. If FOFO is specified, the time interval defaults to 3 minutes.

If a new time interval is specified, it does not take effect immediately. The new time
interval becomes effective only after the next IPL of the system, and only if the CLPA
parameter is specified at the IPL.

Note: The CSECT IGFINTVL is eight bytes in length, and initially contains the character string
C'00030000', where 3 indicates the time interval.

MisceUaneous Services 71

Adding Code to the Power Warning Feature Support
The Power Warning Feature Support, along with its ~upporting hardware prevents the loss of
information in real storage at the occurrence of a utility power disturbance. The supporting
hardware must include an Uninterruptable Power Supply to provide alternate power and
equipment to signal the Power Warning Feature Support routines when a disturbance occurs.

The Power Warning Feature Support, after receiving the signal of a power disturbance, and
determining the significance of the disturbance can transfer the contents of real storage to
disk. After utility power is restored, the customer can use the Power Warning Feature Support
'restore' routine to refresh the contents of real storage from disk.

Adding code to the machine check handler appendage -- You can add code that will be executed
after receipt of the signal that indicates that a sustained power disturbance has occurred. Your
code can then permit transfer of real storage to a warn data set or have control returned to the
supervisor. Insert your code in the machine check handler appendage ICFBDFOO.

Adding code to the master scheduler initialization module -- You can add code that will execute
when a warn data set contains an image of real storage and the system operator chooses FORM
during system IPL. Your code will execute just before the warn data sets are erased and
reformatted. Insert your code in the Power Warning Feature Support Initialization module
ICFBIFOO.

Note: For details on the warn data set, see OS/VS2 System Programming Library: System
Generation Reference, GC26-3792.

Note: Your code must replace instructions, in either of the routines, that are bracketed with
asterisks and specifically identified with comments. Since adding code to the Power Warning
Feature Support requires considerable programming skill, before attempting any addition you
should carefully examine the complexities involved.

Writing Code lor the Machine Check Handler Appendage

You can insert code which will be executed when the Power Warning Feature Support is
entered due to a power warning interrupt that would noqnally cause the transfer of real
storage to the warn data set. After your code executes you can either cause control to transfer
control to the dump routine or have control returned to the machine check handler for the
system to continue processing.

As shown in Figure 14, the machine check handler appendage consists of three parts: 1) the
warning appendage, 2) your code, and 3) the dump routine.

The warning appendage routine, after a power interruption, receives control from the
system's machine check handler. This warning appendage monitors the power interruption
during the time delay you specified in the CTRLPROG macro instruction at system generation.
If a machine check occurs during the time delay, the remainder of the time delay is canceled.

Normally your code receives control at the end of the time delay, assuming the power
interruption is still present. If the utility power returns before the expiration of the time delay,
control returns to the supervisor, via the machine check handler.

The dump routine transfers the contents of real storage to a warn data set. After execution
of the dump routine, the system enters a wait state.

72 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

To include you code:

• Obtain the source code for ICFBDFOO.

• Replace the code that is bracketed with asterisks with your code.
• Reassemble the modified ICFBDFOO.

• Re-linkedit the nucleus data set SYS1.NUCLEUS (IEANUCOl), replacing the old ICFBDFOO,

with your modified one.
• Re-IPL your system.

Machine Check New PSW

Machine Check
" Interrupt Handler

Machine Check Handler Appendage
(ICFBDFOO) r-------

Warning

-_. - --------,
Appendage "'II,.

Check environment
and time delay

I

Your Code

Return Code 4 •

Return Code 0 _

_ ...

Dump Routine

Write real storage
to a warn data set

I
System Wait State

• Code X'026' if successful

• Code X'027' if not successful

L ________________ J
Figure 14. Logical Placement of Your Code in the Machine Check Handler Appendage

Coding Considerations

At entry to your code, Register 9 addresses the PWF Communication area, Register 14
contains the return address, and Register 15 contains the address of your first instruction.
Your code must save and restore all the general registers except register 15, prior to the exit
from your code. You must also restore all control registers and all real storage outside of your
inserted code. Register 15 must be set to 0 if you wish real storage to be transferred to a warn
data set, or be set to 4 if you wish to resume system operations with all power warning
interrupts disabled.

Miscellaneous Services 73

Your code will be entered:

• Key zero.
• Disabled for all interrupts.
• In supervisor state.
• In extended control mode with Dynamic Address Translation (DAT)

(No DAT in MVS)

Your code must not:

• Use supervisor services.
• Contain Address Constants A-type or V -type since your code may be relocated.

Note: With a multiprocessing system, your program will be executed by only one CPU.

Writing Code for the Master Scheduler Initialization Routine

You can write a routine that will execute, when there is a real storage image on a warn data
set, Just before warn data sets are· erased and reformatted.

As shown in Figure 15, during IPL, if the warn data set contains information from real
storage, the system operator can choose to respond either REST or FORM. REST will cause real
storage to be refreshed with the contents of the warn data set. FORM will cause a transfer of
control to your code; after your code returns control, the warn data sets will be erased and
reformatted by the Power Warning Feature Support. If you have not inserted any code, FORM

will immediately cause the warn data set to be erased and reformatted.

To include you code:

1. Obtain the source code for ICFBI,FOO.

2. Replace the code bracketed with asterisks, with your code.

3. Reassemble the modified ICFBIFOO.

4. Inserted your modified ICFBIFOO as follows:

• If you have not generated your system -- replace the old IGFBIFOO on DUB with your
modified ICFBIFOO and generate your system .

• If you have generated your system -- re-linkedit your modified ICFBIFOO found in DUB,

with the master scheduler initialization module found in SYSI.UNKUB in the system
library. The master scheduler initialization module is: IEEMB860 for MVS, or IEEVIPL
for VS2 Release 1. .

74 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Master Scheduler Initialization Routine

IPL ,------
I
I
I

------,
r-----1-------; I

Determine that a warn
data set contai ns an
image of real storage. I

I
I
I

REST

L _______ _
ICFBDE99

Restore
Routine

Refresh real storage
from warn data set

I
I
I
I

FORM

I
I
I
I
I
I
I

L __ --~
System Wait State
• Restore was successful

Code X'026'

• Restore was not successful
Code X'027'

Return to IPL

Figure 15. Logical Placement of Your Code in Master Scheduler Initialization Module

Coding Considerations:

At entry to your code: Register 13 addresses the register saVe area, Register 14 contains the
return address, and Register 1 S contains the address of your first instruction. Register 1 points
to a word that contains the address of the TIOT for the warn data set.

If your code attempts to read information on the warn data set, it should first reference the
control record to get vital information about the data set. The control record is the first record
on logical cylinder 0 on each warn data set. This record indicates if the warn data set contains
information from real storage and indicates its format. The format of the control record is
shown in Figure 16.

When your code gets control the environment is as follows:

• Your code is pageable.
• Your code is transient.
• Your code can not obtain permanent storage within the region.
• Consoles are available for your code to write to operator.
• Job Scheduler and SYSIN/SYSOUT services are not available.

If your system is an MIS8 or M168 multiprocessor, you must consider that the first address
after the last unused address starts a new cylinder on the warn data set. As shown in Figure
17, addresses 0, 2000K, and 5000K start new cylinders. An unused address refers to a location
in real storage that is not available because of settings of the console switches.

Miscellaneous Services 75

Control Track Record

This record is located on cylinder 0 on each warn data set.

Size/Bits
Offset Length Name Description

0 (0) 4 ICFCTID This is the identifier of the first word of the control track
record.
It always contains CNTL.

4 (4) 128 ICFCTCF This area contains 128 byte-indicators. One indicator can be
allocated to each of 128 cylinders. (128 cylinders will
accomodate 16 megabytes of real storage.) Each byte indicator
is structured as follows:

00 Indicates no data on this cylinder.
01.. Real storage has been t~a:l:l§f~rred to this cylinder and this

cylinder contains no defective tracks.
10 Real storage has been transferred to this cylinder, and this

cylinder contains a defective track.
.. xx xxxx Contains the track number of either the defective or spare

track. (The spare track is the last track on the cylinder.)
132(84) 1 ICFCTFLA Status flags.

00 .. 00 .. The data set is formatted, but contains no data.
10 .. 00 .. This data set contains a successful transfer from real storage.
00 .. 10 .. This data set contains a partial transfer from real storage.
10 .. 01.. This data set contains a successful transfer from real storage,

but at least one track was found defective.
.. xx .. xx Reserved. Set to zero .

l33(85) 3 Reserved.
136(88) 4 ICFCTTS Track size. Number of bytes in each track.
140(8C) 4 ICFCTAWA The real storage address of the PFW Communication area in

real storage.
144(90) 128 ICFCTBl1 This area contains eight 16-byte fields. Each 16-byte field

represents a contiguous area of real storage on this data set.
144(90) 16 ICFCTBll Infonnation concerning 1st contiguous area os real storage.

4 ICFCTBll Contains the real storage address of the 1st byte represented by
this field. (In this case, this byte contains O's.)

4 ICFCTB12 Contains the cylinder and track on this data set where this
contiguous real storage begins.

4 ICFCTB13 Contains the real storage address of the last byte represented
by this field.

4 ICFCTB14 Contains the cylinder and track on this data set where this
contiguous real storage ends.

l60(AO) 16 ICFCTB21-24 Information concerning 2nd contiguous area of real storage.
176(BO) 16 ICFCTB31-34 Information concerning 3rd contiguous area of real storage.
192(CO) 16 ICFCTB41-44 Information concerning 4th contiguous area of real storage.
208(DO) 16 ICFCTB51-54 Information concerning 5th contiguous area of real storage.
224(EO) 16 ICFCTB61-64 Information concerning 6th contiguous area of real storage.
240(FO) 16 ICFCTB71-74 Information concerning 7th contiguous area of real storage.
256(100) 16 ICFCTB81-84" Information concerning 8th contiguous area of real storage.
272(110) 8 ICFCTST Contains a true reading (binary) of the time-of-day clock when

system was last IPLed: or if after a dump, the time at which
processing of last PLD began.

280(118) 8 ICFCTED Contains a true reading (binary) of time-of-day clock at the
end of the last real storage transfer to the warn data set.

288(120) 4 ICFTTPC Total number of tracks of each cylinder.
292(124) 4 ICFCTRDA The address of this device. This field is set just before entering

the restore routine.

Figure 16. Control Track Record

76 OS/VS2 System Programming Library: Supervisor (VS2 Release 3)

Physical Real Storage

Storage
configuration
assignments

Address-
\ , \ \ \' assignment of

\ \ , , \ \...Q~OOOK __ _

\ ",
\ \ ' \ \..3.000K ~ 3000K

\ '\
\ \, " '--?Q9Q..K ...!~OOO~
\ \ \

\ , \ ... :,ynavailable

1 Megabyte

1 Megabyte

1 Megabyte

1 Megabyte '\ ------
'\ LUna~~~~ __ I-------~

1 Megabyte

1 Megabyte

Note: Addresses 1000K to 2000K, and 3000K to 5000K are unused.
The first address after a unused address starts a new cylinder.

Figure 17. Storage Assignments on MP Systems

Warn Data Set

-.m~~~.,

~
~~~f":, I 

"-I, 
I, 

, I Not used 

" 

Miscellaneous Services 77 



78 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



Part II: Reference - Macro Instructions 

You can communicate service requ~sts to the control program using a set of macro instructions 
provided by IBM. Whereas most of the macro instructions have no restrictions on use by 
applications programmers some of the macro instructions should be restricted in use to systems 
programmers and installation-approved personnel. 

This section describes those Supervisor macro instructions that should be 
installation-controlled. Some macro instructions should be totally restricted in use; these are 
described fully in this book. Other macro instructions are not restricted in use, but do contain 
some parameters that should be restricted; in these cases, only the parameters that should be 
restricted are fully described in this book. In all cases, however, the format of the complete 
macro instruction is described. 

Figure 18 l~ts all macro instructions described in this book, and indicates which ones are 
fully described and which ones are partially described. 

Macro Instruction 

CALLRTM 
CHNGDUMP 
CIRB 
DSGNL 
EXTRACT 
MODESET 
NIL 
OIL 
PGFIX 
PGFREE 
PURGEDQ 
QEDIT 
RESERVE 
RISGNL 
RPSGNL 
SCHEDULE 
SDUMP 
SETFRR 
SETLOCK 
SPOST 
STAE 
SYNCH 
TESTAUTH 

ATTACH 
DEQ 
ENQ 
ESTAE 
EVENTS 
FREEMAIN 
GETMAIN 
POST 
SETRP 
SPIE 
STATUS 
WTO 
WTOR 

Fully 
Described 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

Figure 18. Macro Instruction Coverage 

Partially 
Described 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

Part II: Reference - Macro Instructions 79 



The macro instructions are available only when programming in the assembler language, and 
are processed by the assembler program using macro definitions supplied by IBM and placed in 
the macro library when the system was generated. The processing of the macro instruction by 
the assembler program results in a macro expansion, generally consisting of data and 
executable instructions in the form of assembler language statements. The data fields are the 
parameters to be passed to the requested control program routine; the executable instructions 
generally consist of a branch around the data, instructions to load registers, and either a 
branch instruction or a supervisor call (svC) to give control to the proper program. The exact 
macro expansion appears as part of the assembler output assembler output listing. 

Macro Instruction Forms 
When written in the standard form, some of the macro instructions result in instructions that 
store into an inline parameter list. The option of storing into an out-of-line parameter list is 
provided to allow the use of these macro instructions in a reenterable program. You can 
request this option through the use of list and execute forms. When list and execute forms 
exist for a macro instruction, their descriptions follow the description of the standard form. 

Use the list form of the macro instruction to provide a parameter list to be passed either to 
the control program or to a problem program, depending on the macro instruction. The 
expansion of the list form contains no executable instructions; therefore registers cannot be 
used in the list form. 

Use the execute form of the macro instruction in conjunction with one or two parameter 
lists established using the list form. The expansion of the execute form provides the executable 
instructions required to modify the parameter lists and to pass control to the required program. 

The descriptions of the following macro instructions assume that the standard begin, end, 
and continue columns are used -- for example, column 1 is assumed as the begin column. To 
change the begin, end, and continue columns, code the ICTL instruction to establish the coding 
format you wish to use. If you do not use ICTL, the assembler recognizes the standard 
columns. To code the ICTL instruction, see OS/VS - DOS/VS - VM/370 Assembler Language. 

Coding the Macro Instructions 
The table appearing near the beginning of each macro instruction indicates how the macro 
instruction is to be coded. The table does not attempt to explain the meanings of the 
parameters; the parameters are explained following the table. 

Figure 19 presents a sample macro instruction, TEST, and summarizes all the coding 
information that is available for it. The table is divided into three columns. 

80 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



name 

t:> 

~TEST 
t:> 

~ __ MATH 

6-- H1ST 
GEOG 

,DA T A =data addr 

(@--~ ....... ,LNG=data length 

fn:1\ ,FMT=HEX 8 "",FMT=DEC 
,FMT=BIN 

,P ASS=value 

Figure 19. Sample Macro Instruction 

name: symbol. Begin name in column 1. 

One or more blanks must precede TEST. 

One or more blanks must follow TEST. 

data addr: RX-type address, or register (2) - (12). 

data length: symbol or decimal digit, with a maximum value of 256. 

Default: FMT=HEX 

value: symbol, decimal digit, or register (1) or (2) - (12). 
Default: PASS=65 

• The first column,®, contains those parameters that are required for that macro 
instruction. If a single line appears in that column,@, the parameter on that line is 
required and must be coded. If two or more lines appear together, @' the parameter 
appearing on one and only one of the lines must be coded. 

• The second column@, contains those parameters that are optional for that macro 
instruction. If a single line appears in that column,@ , the parameter on that line is 
optional. If two or more lines appear together, @' the parameter appearing on one and 
only one bf the lines may be coded if desired. 

• The third column,@, provides additional information for coding the macro instruction. 
When substitution of a variable is required, the following classifications should be 
understood: 

symbol: any symbol valid in the assembler language. That is, an alphabetic character followed 
by 0-7 alphameric characters, with no special characters and no blanks. 

decimal digit: any decimal digit up to the value indicated in the parameter description. If both 
symbol and decimal digit are indicated, an absolute expression is also allowed. 

register (2) - (12): one of general registers 2 through 12, specified within parentheses, 
previously loaded with the right-adjusted value or address indicated in the parameter 
description. The unused high-order bits must be set to zero. The register may be designated 
symbolically or with an absolute expression. 

register (0): general register 0, previously loaded as indicated under register (2) - (12) above. 
Designate the register as (0) only. 

register (1): general register 1, previously loaded as indicated under register (2) - (12) above. 
Designate the register as (1) only. 

RX-type address: any address that is valid in an Rx-type instruction (for example, LA). 

A-type address: any address that may be written in a A-type address constant. 

Part II: Reference - Macro Instructions 81 



default: a value that is used in default of a specified value, and that is assumed if the parameter 
is not coded. 

Use the parameters to specify the services and options to be performed, and write them 
according to the following general rules: 

• If the selected parameter is written in all capital letters (for example, STEP, DUMP, or 
RET=USE), code the parameter exactly as shown. 

• If the selected parameter is written in italics (for example, value or comp code), 
substitute the indicated value, address, or name. 

• If the selected parameter is a combination of capital letters and italics separated by an 
equal sign (for example, EP==entry point), code the capital letters and equal sign as 
shown, and then make the indicated substitution for the italics. 

• Read the table from top to bottom. 

• Code commas and parentheses exactly as shown. 

• Positional parameters (parameters without equal signs) appear first and must be coded in 
the order shown. Keyword parameters (parameters with equal signs) may be coded in 
any order. 

• If a parameter is selected, read column 3 before proceeding to the next parameter. 
Column 3 will often contain notes pertaining to restrictions on coding the parameter. 

Continuation Lines 

You can continue the parameter field of a macro instruction on one or more additional lines 
according to the following rules: 

1. Enter a continuation character (not blank, and not part of the parameter coding) in 
column 72 of the line. 

2. Continue the parameter field on the next line, starting in column 16. All columns to the 
left of column 16 must be blank. 

You can code the parameter field being continued in one of two ways. Code the parameter 
field through column 71, with no blanks, and continue in column 16 of the next line; or 
truncate the parameter field by a comma, where a comma normally falls, with at least one 
blank before column 71, and then continue in column 16 of the next line. Figure 20 shows an 
example of each method. 

NAME 1 

NAME 2 

OP1 

OP2 

Figure 20. Continuation Coding 

OPERAND 1 , OPERAND2 , OPERAND 3 , OPERAND4, OPERA-X 
ND5,OPERAND6 THIS IS ONE WAY 
OPERAND1,OPERAND2, THIS IS ANOTHER X 
OPERAND3, WAY X 
OPERAND4 

82 OS/VS2 System Programming Library: Supervis.or (VS2 Release 3) 



Descriptions of the Macro Instructions 

Descriptions of the Macro Instructions 83 



ATrACH - Create a New Task 

The ATTACH macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the JSTCB, SM, SVAREA, KEY, DISP, JSCB, TID, NSHSPV, 

NSHSPL parameters. These parameters are restricted in use and should only be used with tasks 
in supervisor mode, having a system protection key. If they are used with other tasks, the 
default values are used. 

The syntax of the complete ATTACH macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the ATTACH macro instruction is written as follows: 

84 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



name 

1:> 

ATTACH 

1:> 

EP=enlry name 
EPLOC=entry name addr 
DE=list entry addr 

,DCB=deb addr 

,LPMOD=limit prior nmbr 

,DPMOD=disp prior nmbr 

,P ARAM=(addr) 
,P ARAM= (addr) , VL= 1 

,ECB=eeb addr 

,ETXR=exit rln addr 

,GSPV=subpool nmbr 
,GSPL=subpoo/ list addr 

,SHSPV =subpool nmbr 
,SHSPL=subpool list addr 

,SZERO=YES 
,SZERO=NO 

,T ASKLlB=deb addr 

,ST AI=(exit addr) 
,STAI=(exit addr,parm addr) 
,ESTAI=(exit addr) 
,ESTAI=(exit addr,parm addr) 

,PURGE=QUIESCE 
,PURGE=NONE 
,PURGE=HAL T 

,ASYNCH=NO 
,ASYNCH= YES 

,TERM=NO 
,TERM=YES 

,JSTCB=NO 
,JSTCB=YES 

,SM=PROB 
,SM=SUPV 

,SVAREA=YES 
,SVAREA=NO 

,KEY=PROP 
,KEY=ZERO 

,DISP=YES 
,DISP=NO 

,JSCB=jseb addr 

,TID=task id 

,NSHSPV =subpool nmbr 
,NSHSPL=subpool list addr 

,RELA TED=value 

. name: symbol. Begin name in column 1. 

One or more blanks must precede A TT ACH. 

One or more blanks must follow A TT ACH. 

entry name: symbol. 
entry name addr: A-type address, or register (2) - (12). 
list entry addr: A-type address, or register (2) - (12). 

deb addr: A-type address, or register (2) - (12). 

limit prior nmbr: symbol, decimal digit, or register (2) - (12). 

disp prior nmbr: symbol, decimal digit, or register (2) - (12). 

addr: A-type address, or register (2) - (12). 
Note: addr is one or more addresses, separated by commas. For 
.example, P ARAM= (addr,addr, addr) 

eeb addr: A-type address, or register (2) - (12). 

exit rtn addr: A-type address, or register (2) - (12). 

subpool nmbr: symbol, decimal digit, or register (2) - (12). 
subpool list addr: A-type address, or register (2) - (12). 

subpool nmbr: symbol, decimal digit, or register (2) - (12). 
subpool list addr: A-type address, or register (2) - (12). 

.Default: SZERO= YES 

deb addr: A-type address, or register (2) - (12). 

exit addr: A-type address, or register (2) - (12). 
parm addr: A-type address, or register (2) - (12). 

Note: PURGE may be specified only if ST AI or EST AI is specified. 
Default for STAI: PURGE=QUIESCE 
Default for EST AI: PURGE=NONE 

Note: ASYNCH may be coded only if ST AI or EST AI is specified. 
Default for STAI: ASYNCH=NO 
:Default for ESTAI: ASYNCH=YES 

Note: TERM may be specified only if EST AI is specified. 
Default: TERM=NO 

Default: JSTCB=NO 

Default: SM=PROB 

Default: SV AREA= YES 

Default: KEY =PROP 

Default: DISP=YES 

:jseb addr: A-type address, or register (2) - (12). 

:task id: decimal digits 0-255, or register (2) - (12). 
'Default: TID=O 

subpool nmbr: symbol, decimal digit, or register (2) - (12). 
subpool list addr: A-type address, or register (2) - (12). 

. value: any valid macro keyword specification. 

, 
A TT ACH - Create a New Task 85 



The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instructions. 

,JSTCB-NO 
,JSTCB-YES 

specifies whether the attached task is a new job step (YES) or a task in the present job step 
(NO). If YES is specified, the address of the TCB of the newly created task is placed in the 
TCBJSTCB field of the TCB; if NO is specified, the TCBJSTCB field of the task using ATTACH 

is propagated to the new task. 

,SM-PROB 
,SM=SUPV 

specifies that the system is to run in problem program mode (PROB) or in supervisor mode 
(SUPV) when executing the attached task. 

,SV AREA - YES 
,SVAREA=NO 

specifies whether a save area is needed for the attaching task. If YES is specified, the 
ATT ACH routine will obtain a 72-byte save area. If both attaching and attached task share 
subpool zero, the save area is obtained there; otherwise, it is obtained from a new 4K-byte 
block. 

,KEY-PROP 
,KEY-ZERO 

specifies whether the protection key of the newly created task should be zero (ZERO) or 
copied from the TCBPKF field of the TCB for the task using ATTACH (PROP). 

,DISP-YES 
,DISP-NO 

specifies whether the subtask is to be dispatchable (YES) or nondispatchable (NO). (Note: If 
DISP=NO is specified, the attaching task must use the STATUS macro instruction to reset the 
TCBANDSP nondispatchability bit to 0, before the ATTACH processing can be completed for 
the new task.) 

,JSCB == jscb addr 
specifies the address of the job step control block. If specified, the JSCB is used for the new 
task. Otherwise, the JSCB of the attaching task is also used for the new task. 

,TID ==task id 
specifies the task identifier to be placed in the TCBTID field of the attached task. 

,NSHSPV ==subpool nmbr 
,NSHSPL =subpool list addr 

specifies the virtual storage subpool number 236 or 237, or the address of a Hst of virtual 
storage subpool numbers 236 and 237. The subpools specified will not be shared with the 
subtask. 

If NSHSPL is specified, the first byte of the list contains the number of bytes remaining in 
the list; each of the following bytes contains a virtual storage subpool number. 

,RELATED - value 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 
instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and ESTAE). 

86 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 

FREE 1 FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1,'FREE STORAGE') 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 
08 

OC 

14 

18 

Meaning 

Successful completion. 
ATTACH was issued in a ST AE exit; processing not completed. 
Insufficient storage available for control block for ST AI/EST AI request; processing not 
completed. 
Invalid exit routine address or invalid parameter list address specified with ST AI 
parameter; proces~ing not completed. 
Authorized task specifying JSTCB= YES was not itself a job step task; processing not 
completed. 
Attempt to create a new subtask would result in both job step tasks and non-job step 
tasks being subtasks of current task; processing not completed. 

Note: For any return code other than 00, register 1 is set to zero upon return. 

Note: The program manager processing for ATTACH is performed under the new subtask, 
after control has been returned to the originating task. Therefore, it is possible for the 
originating task to obtain return code 00, and still not have the subtask successfully created 
(for example, if the entry name could not be found by the program manager). In such cases, 
the new subtask is abnormally terminated. 

Ignored Parameters 

The following parameters, available with Release 1 of os/vs2, are ignored if coded in MVS: 

GIVEJPQ= YES 
GIVEJPQ=NO . 
TSLOGON=YES 
TSLOGON=NO 
LSQA=n 

Example 1 

Operation: Attach program SYSPROGM, which will run with protection key 0 and in supervisor 
mode. Subpool 0 is not to be shared, and the new task is not to have a savearea provided. 

ATTACH EP=SYSPROGM,KEY=ZERO,SM=SUPV,SZERO=NO,SVAREA=NO 

Example 2 

Operation: Attach as a new job step the program name addressed in register 7. The new task 
is to run in problem program mode,. a savearea is to be provided, a job step control block is 
provided, subpool 0 is not to be shared, a task library DCB is provided, and the new task is to 
be nondispatchable. 

ATTACH EPLOC=(7),SM=PROB,JSTCB=YES,SVAREA=YES,SZERO=NO, 
JSCB=(5),DISP=NO,TASKLIB=(8) 

ATTACH - Create a New Task 87 



CALLRTM - Call Recovery I Termination Manager 

The CALLRTM macro instruction is used to direct the services of the recovery/termination 
manager to a task or address space other than itself or its callers. The recovery/termination 
manager selects the appropriate recovery or termination process according to the status of the 
system and the requests of its invokers. 

CALLRTM may be used only by key 0 supervisor state routines. After execution of the 
macro instruction, control is returned to the caller. 

The CALLRTM macro instruction is written as follows: 

name 

b 

CALLRTM 

b 

TYPE=ABTERM 
TYPE=MEMTERM 

,COMPCOD=eomp code 

,ASID=ASID addr 

,TCB =!cb addr 

,DUMP=YES 
,DUMP=NO 

,STEP=NO 
,STEP=YES 

,DUMPOPT=:parm list addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede CALLRTM. 

One or more blanks must follow CALLRTM. 

comp code: symbol, decimal digit, or register (2) - (12). 

ASID addr: decimal digits 0 - 32,765 or register (2) - (15). 

tcb addr: 0, or register (0) or (2) - (12). 
Note: This parameter may only be specified with TYPE=ABTERM. 

Default: DUMP=YES 
Note: This parameter may only be specified with TYPE==ABTERM. 

Default: STEP==NO 
Note: This parameter may only be specified with TYPE=ABTERM. 

parm list addr: register (3) - (t 5). 

The parameters are explained below: 

TYPE == ABTERM 
TYPE == MEMTERM 

specifies that the services of the recovery/termination manager is being directed towards 
another task (ABTERM) or that an address space is to be terminated (MEMTERM). For 
MEMTERM, all recovery processing in the address space is circumvented. 

,COMPCOD ==comp code 
specifies the completion code associated with the abnormal termination. This parameter can 
be specified as a hexadecimal code (x'80A'), a decimal code (2058), or a register containing 
a hexadecimal code; in all cases, the result is hexadecimal. 

,ASID ==ASID addr 
specifies the address space identifier of the address space to be terminated (for MEMTERM) 

or the address space identifier containing the TCB of the task to be terminated (for 
ABTERM). 

,TCB ==tcb addr 
specifies the TCB address of the task to be terminated. 

88 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



,DUMP == YES 
,DUMP=NO 

specifies that a dump is (YES) or is not (NO) to be taken. If the DUMPOPT parameter is not 
also specified, the contents of the dump is defined by the / /SYSABEND or / /SYSDUMP DD 

statement and the system or user defined defaults. 

,STEP=NO 
,STEP = YES 

specifies that the entire job step is (YES) or is not (NO) to be abnormally terminated. 

,DUMPOPT =parm list addr 
specifies the address of a parameter list valid for the SNAP macro instruction. The parameter 
list is used ~o produce a tailored dump, and may be created by using the list form of the 
SNAP macro instruction, or a compatible list may be created. The TCB and DCB options 
available on SNAP will be ignored if they appear in the parameter list; the TCB used will be 
for the task that received ABEND, the DCB used will be provided by the ABDUMP routine. If 
a / /SYSABEND or / /SYSDUMP DO statement is not. provided, the DUMPOPT parameter is 
ignored. 

Example 1 

Operation: Terminate the current address space with a completion code of 123. 

CALLRTM TYPE=MEMTERM,COMPCOD=123,ASID=O 

Example 2 

Operation: Schedule ABTERM of the TCB whose address is specified in register 8. The ABTERM 

of this TCB will take place in the address space identified by the ASID specified in register 5, 
and will have a completion code of 123. 

CALLRTM TYPE=ABTERM,COMPCOD=123,ASID=(5),TCB=(8) 

CALLRTM - Call Recovery/Termination Manager 89 



CHNGDUMP - Change Dump Options 

When the system or a user requests a SYSABEND or SYSUDUMP dump, the system uses the 
dump options specified in the SYS1.PARMLIB member or on the ABEND, CALLRTM, or SETRP 

macro instructions. When a SDUMP dump is requested, the options are obtained from the 
SDUMP parameter list. 

The CHNGDUMP command is used to override these options. 

The SET option of the CHNGDUMP command is written as follows: 

CHNGDUMP 
CD 

b 

SET 

,NO DUMP 
,SDUMP 
,SYSABEND 
,SYSUDUMP 

,NODUMP 
,Q=code 
=(dump codes) 
=(dump codes),Q=eode 

,NODUMP 
,SDATA=(sys data codes) 
,PDAT A=(prob data codes) 
,SDAT A=(sys data codes) 

,PDATA=(prob data codes) 

One or more blanks must follow CHNGDUMP or CD. 

Note: If NODUMP is specified, no other parameters may be 
specified. 

Note: These parameters are specified only when SDUMP is 
specified above. 
code: YES OR NO. 
dump codes: Any combination of the following, separated by 
commas: 

PSA 
ALLPSA 
NUC 
SQA 

LSQA 
RGN . 
LPA 

TRT 
CSA 
SWA 

Note: These parameters are specified only when SYSABEND or 
SYSUDUMP is specified above. 
sys data codes: Any combination of the following, separated by 
commas: 

NUC SWA ENQ 
SQA CB TRT 
LSQA ALLSDATA 

prob data codes: Any combination of the following, separated by 
commas: 

PSW 
REGS 
SPLS 

ALLPDATA JPA 
SA LPA 
SAH ALLPA 

The parameters are explained below: 

SET 
specifies that the current system dump options are to be overridden by those options 
specified in this command. 

,NODUMP 
,SDUMP 
,SYSABEND 
,SYSUDUMP 

specifies whether SDUMP, SYSABEND, or SYSUDUMP dumps are to be taken. If NODUMP is 
specified, no dumps are to be taken. If SDUMP, SYSABEND, or SYSUDUMP is specified, see 
the explanation of the parameters that follow. 

90 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



,NODUMP 
,Q=code 
=(dump codes) 
= (dump codes),Q = code 

specifies the parameters that may be specified with SDUMP. 

NODUMP specifies that no SDUMP dumps are to be taken. 

Q specifies that the system should be placed (YES) or should not be placed (NO) is a 
quiesced state while dumping the system queue area and the common service area. 

The dump codes specify the SDUMP areas to be included in the SDUMP dump: 

ALLPSA - prefix storage area for all CPUs 
PSA - prefix storage area for the dumping CPU 
NUC - resident nuclues 
SQA - system queue area 
LSQA --:- local system queue area 
RGN - address space being dumped 
LPA - link pack area for dumping task 
TRT - GTF incore trace buffers (when GTF is active) 
CSA - common service area 
SW A - scheduler work area 

,NODUMP 
,SDAT A = (sys data codes) 
,PDATA=(prob data codes) 
,SDATA=(sys data codes),PDATA=(prob data codes) 

specifies the parameters that may be specified with SYSABEND or SYSUDUMP. 

NODUMP specifies that no SYSABEND or SYSUDUMP dumps are to be taken. 

SDATA specifies the system areas to be included in the SYSABEND or SYSUDUMP dump: 
ALLSDATA - all of the following SDATA areas 
NUC - resident nuclues 
SQA - system queue area 
LSQA - local system queue area 
SW A --.:... scheduler work area 
CB - task· control blocks 
ENQ - enqueued control blocks 
TRT - GTF incore trace buffers (when GTF is active) 

PDAT A specifies the problem program areas to be included in the SYSABEND or 
SYSUDUMP dump: 
ALLPDATA - all of the following PDATA areas 
PSW - program status word 
REGS - general registers 
SPLS - virtual storage subpools 
SA - save area linkage information and back-trace through the save area 
SAH - save area linkage information 
JPA - job pack area 
LP A - link pack area associated with the task 
ALLP A - job pack area and link pack area associated with the task 

CHNGDUMP - Change Dump Options 91 



The DEL option of the CHNGDUMP command is written as follows: 

CHNGDUMP 
CD 

b One or more blanks must follow CHNGDUMP or CD. 

DEL 

,ALL 
,SDUMP 
,SYSABEND 
,SYSUDUMP 

,ALL 
,Q=code 
=(dump codes) 
=(dump codes),Q=-.code 

,ALL 
,SDAT A=(sys data codes) 
,PDA T A=(prob data codes) 
,SDA T A=(sys data codes), 

PDATA=(prob data codes) 

Default: ALL 
Note: If ALL is specified or assumed, no other parameters may be 
specified. 

Default: ALL 
Note: These parameters are specified only when SDUMP is 
specified above. 
code: YES or NO 
dump codes: any combination of the following, separated by 
commas: 

ALLPSA 
PSA 
NUC 
SQA 

Default: ALL 

LSQA 
RGN 
LPA 

TRT 
CSA 
SWA 

Note: These parameters are specified only when SYSABEND or 
SYSUDUMP is specified above. 
sys data codes: any combination of the following, separated by 
commas: 

ALLSDAT A LSQA 
NUC SWA ENQ 
SQA CB TRT 

prob data codes: any combination of the following, separated by 
commas: 

ALLSDATA SPLS 
PSW SA 
REGS SAH 

JPA 
LPA 
ALLPA 

The parameters are explained under the SET option of the CHNGDUMP command, with the 
following exceptions: 

DEL 
specifies that the dump overrides previously set in the CHNGDUMP command are to be 
discontinued, and that the system is to use the options obtained from the SYS l.P ARMLIB 

data set, the ABEND, CALLRTM, and SETRP macro instructions, and the SDUMP parameter 
list. Any options specified on a CHNGDUMP SET command and not specified on a 
CHNGDUMP DEL command remain in effect. 

ALL 
specifies that all dump option overrides specified on the CHNGDUMP SET command are to 
be discontinued. If SDUMP, SYSABEND, or SYSUDUMP is specified, all SDUMP, SYSABEND, or 
SYSUDUMP overrides, respectively, are to be discontinued. 

Example 1 

Operation: Place the system in a quiesced state while dumping the system queue area and the 
common service area. This command applies to all occurrences of SDUMP. 

CHNGDUMP SET,SDUMP,Q=YES 

92 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



Example 2 

Operation: All system areas and only three problem program areas (program status word, 
general registers, and virtual storage subpools) are to be dumped to the data set defined by the 
SYSUDUMP DD statement. 

CHNGDUMP SET,SYSUDUMP,PDATA=(PSW,REGS,SPLS),SDATA=ALLSDATA 

CHNGDUMP - Change Dump Options 93 



CIRB - Create Interruption Request Block 

The CIRB macro instruction is included in SYSl.MACLIB and must be included in the system at 
system generation time if the macro instruction is to be used. The issuing of this macro 
instruction causes a supervisor routine (called the exit effector routine) to create an 
interruption request block (IRB) if one does not already exist for the requesting task. In 
addition, other parameters of this macro instruction may specify the building of a register save 
area and/or a work area to contain interruption queue elements, which are used by supervisor 
routines in the scheduling of the execution of user exit routines. 

The CIRB macro instruction is written as follows: 

name 

b 

CIRB 

b 

EP==entry name addr 

,KEY=PP 
,KEY=SUPR 

,MODE=PP 
,MODE=SUPR 

,SVAREA=NO 
,SV AREA= YES 

,RETIQE= YES 
,RETIQE=NO 

,ST AB=(DYN) 

, WKAREA=workarea size 

,BRANCH=NO 
,BRANCH= YES 

,RETRN=NO 
,RETRN=YES 

name: symbol. Begin name in column 1. 

One or more blanks must precede CIRB. 

One or more blanks must follow CIRB. 

entry name addr: RX-type address, or register (0) or (2) - (12). 

Default: KEY=PP 

Default: MODE=PP 

Default: SVAREA=NO 

Default: RETIQE=YES 

workarea size: Decimal digit, or register (2) - (12). 
Default: zero 

Default: BRANCH=NO 

Default: RETRN=NO 
Note: This parameter has meaning only if RETIQE=NO is specfied 
above. 

The parameters are explained below: 

EP =entry name addr 
specifies the address of the entry name of the user's asynchronous exit routine. 

,KEY=PP 
,KEY=SUPR 

specifies whether the asynchronous exit routine will operate with a key of zero (SUPR) or 
with a key obtained from the TCB of the task issuing the CIRB macro instruction (pp). 

,MODE=PP 
,MODE=SUPR 

specifies whether the asynchronous exit routine will be executed in problem program (pp) or 
supervisor (SUPR) mode. 

94 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



,SVAREA=NO 
,SV AREA = YES 

specifies whether a 72-byte register save area is to be obtained from the virtual storage 
assigned to the problem program. If a save area is requested, CIRB places the save area 
address in the IRB. The address of this area is passed to the user routine via register 13. 

,RETIQE = YES 
,RETIQE=NO 

specifies whether the associated queue elements are request queue elements (YES) or 
interruption queue elements (NO). 

,STAB = (DYN) 
specifies that the IRB (including the work area) will be freed by EXIT. 

,WKAREA=workarea size 
specifies the size, in doublewords; of the work area to be included in the IRB. The area may 
be used to build IQE'S. The maximum size is 255 double words. 

,BRANCH=NO 
,BRANCH = YES 

specifies that branch linkage (YES) or SVC linkage (NO) to CIRB will be provided. 

,RETRN=NO 
,RETRN=YES 

specifies that the IQE will (YES) or will not (NO) be returned to the available queue when 
the asynchronous exit terminates. 

Ignored Parameters 

The following parameters, available with Release 1 of OS/VS2, are ignored if coded in MVS: 

TYPE=IRB 
ENABLE = YES 
STAB = (RE) 

The following parameters are no longer acceptable: 

TYPE = TIRB 
ENABLE = NO 

Example 1 

Operation: Create an IRB to be used in scheduling an asynchronous exit. The exit will be 
scheduled via the IQE interface to Stage 2 Exit Effector, and will receive control in the 
supervisor state. The IRB will freed when it terminates. The exit will receive control at the 
IQERTN label. 

CIRB EP=IQERTN,MODE=SUPR,RETIQE=NO,STAB=(DYN),BRANCH=NO 

Example 2 

Operation: Create an IRB to be used in scheduling an asynchronous exit. The RQE interface to 
Stage 2 Exit Effector will be used to schedule the routine. The exit will get control at the 
RQETEST label. 

CIRB EP=RQETEST,KEY=SUPR,MODE=SUPR,STAB=(DYN),BRANCH=NO 

CIRB - Create Interruption Request Block 95 



DEQ - Release a Serially Reusable Resource 

The DEQ macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the RMC, GENERIC, TCB, and UCB parameters. These 
parameters are restricted in use and should only be used with tasks that are authorized. 

The syntax of the complete DEQ macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the DEQ macro instruction is written as follows: 

name 

b 

DEQ 

b 

qname addr 

,rname addr 

,rnarne length 

, 
,STEP 
,SYSTEM 
,SYSTEMS 

, var1234 

,RET=HAVE 
.RET=NONE 

,RMC=NONE 
,RMC=STEP 
,GENERIC=NO 
,GENERIC=YES 

,TCB =tcb addr 

,UCB=ucb addr 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede DEQ. 

One or more blanks must follow DEQ. 

qname addr: A-type address, or register (2) - (12). 

rname addr: A-type address, or register (2) - (12). 

rname length: symbol, decimal digit, or register (2) - (12). 
Note: rname length must coded if a register is specified for rname 
addr. 

Default: STEP 

var1234: The preceding 4 parameters may be repeated up to 65,53'5 
times. 

Default: RMC=NONE 
Default: GENERIC=NO 
Note: If GENERIC=YES is specified, you must also specify 
RET=HAVE above. 

tcb addr: A-type address, or register (2) - (12). 
Note: TCB cannot be specified with RMC above. 

ucb addr: RX-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instructions. 

,RMC=NONE 
,RMC = STEP 
,GENERIC = NO 
,GENERIC = YES 

specifies optional parameters available to the system programmer: 

RMC specifies that the reset-must-complete function is not to be used (NONE) or that the 
requesting task is to release the resources and terminate the must complete function (STEP). 

96 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



The NONE or STEP subparameter. must agree with the subparameter specified in the SMC 

parameter of the corresponding ENQ macro instruction. 

GENERIC specifies whether or not (YES or NO) all queue elements for the task under the 
specified major name will be dequeued, regardless of whether they have control of the 
resource. 

,TCB=fCb addr 
specifies the address of a fullword on a fullword boundary that contains the address of a 
TCB on whose behalf the DEQ is to be done. The caller (not the directed task) will be 
abnormally terminated if the RET parameter is omitted and an attempt is made to DEQ a 
resource not requested or not owned by the directed task. 

,UCB =ucb addr 
specifies the address of a fullword that contains the address of a UCB for the device. 

Return codes are provided by the control program only if RET=HAVE is designated. If all of 
the return codes for the resources named in DEQ are 0 register 15 contains O. If any of the 
return codes are not 0 register 15 contains the address of a virtual storage area containing the 
return codes as shown in Figure 21. 

Address 
Returned in 
Register 15 

12 

24 

36 
~ 

2 3 

Return 
Codes 

! 
RC 1 

RC 2 

RC 3 

4 

( 

~ 

A 

12 

Return codes are 
12 bytes apart, 
starting 3 bytes 
from the address 
in register 15. 

C~I ~--'------r-I-RCN II 0 
Figure 21. Return Code Area Used by DEQ 

DEQ - Release a Serially Reusable Resource 97 



The return codes are placed in the parameter list resulting from the macro expansion in the 
same sequence as the resource names in the DEQ macro instruction. The return codes are 
shown below. 

Hexadecimal 
Code 
o 
4 

8 

Example 1 

Meaning 
The resource has been released. 
The resource has been requested for the task, but the task has not been assigned 
control. The task is not removed from the wait condition. (This return code could 
result if DEQ is issued within an exit routine which was given control because of an 
interruption. ) 
Control of the resource has not been requested by the active task, or the resource has 
already been released. 

Operation: Unconditionally release control of the resource in Example 1 of ENQ, and reset the 
'must-complete' state. 

DEQ (MAJOR1,MINOR1,8,STEP),RMC=STEP 

Example 2 

Operation: Conditionally release control of the resource in Example 2 of ENQ. 

DEQ (MAJOR2,MINOR2,4,SYSTEM),TCB=(R2),RET=HAVE 

Example 3 

Operation: Unconditionally release control of the resource (device) in Example 1 of RESERVE. 

DEQ (MAJOR3,MINOR3"SYSTEMS),UCB=(R3) 

98 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



DEQ (List Form) 

The list form of the DEQ macro instruction is written as follows: 

name 

b 

DEQ 

b 

qname addr 

,mame addr 

,mame length 

, 
,STEP 
,SYSTEM 
,SYSTEMS 

, var1234 

,RET=HAVE 
,RET=NONE 

,RMC=NONE 
,RMC=STEP 
,GENERIC=NO 
,GENERIC=YES 

,TCB =tcb addr 

,UCB=ucb addr 

,RELATED=value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede DEQ. 

One or more blanks must follow DEQ. 

qname addr: A-type address. 

mame addr: A-type address. 

mame length: symbol or decimal digit. 

Default: STEP 

var1234: The preceding 4 parameters may be repeated up to 65,535 
times. 

:Default: RET=NONE 

Default: RMC=NONE 
.Default: GENERIC=NO 
Note: If GENERIC= YES is specified, you must also specify 
RET =HA VE above. 

. tcb addr: A-type address. 
Note: TCB cannot be specified with RMC above, and must be 
specified on the list form if used on the execute form. 

ucb addr: A-type address. 

value: any valid macro keyword specification. 

The parameters restricted in use are: explained under the standard form of the DEQ macro 
instruction. The other parameters are explained in OSjVS2 Supervisor Services and Macro 
Instructions. 

DEQ - Release a Serially Reusable Resource 99 



DEQ (Execute Form) 

The execute form of the DEQ macro instruction is written as follows: 

name 

b 

DEQ 

b 

qname addr 

,rname addr 

,rname length 

, 
,STEP 
,SYSTEM 
,SYSTEMS 

, var1234 

,RET=HAVE 
,RET=NONE 

,RMC=NONE 
,RMC=STEP 
,GENERIC=NO 
,GENERIC=YES 

,TCB=tcb addr 

,UCB=ucb addr 

,RELA TED=value 

,MF=(E ,ctrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede DEQ. 

One or more blanks must follow DEQ. 

Note: ( and) are the beginning and end of a parameter list. The 
entire list is optional. If nothing in the list is desired, then (, ), and 
all parameters between ( and ) should not be specified. If something 
in the list is desired, then (, ), and all parameters in the list should 
be specified as indicated at the left. 

qname addr: RX-type address, or register (2) - (12). 

rname addr: RX-type address, or register (2) - (12). 

rname length: symbol, decimal digit, or register (2) .. (12). 

var1234: The preceding 4 parameters may be repeated up to 65,535 
times. 

Note: See note opposite ( above. 

Note: If GENERIC=YES is specified, you must also specify 
RET=HAVE above. 

fcb addr: RX-type address, or register (2) - (12). 
Note: TCB cannot be specified with RMC above, and must be 
specified on the execute form if used on the list form. 

ucb addr: RX-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

elrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters restricted in use are explained under the standard form of the DEQ macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

100 OS/VS2 System Programming Libl'ary: Supervisor (VS2 Release 3) 



DSGNL - Issue Direct Signal 

The DSGNL macro instruction uses the signal processor (SIGP) instruction to modify or sense 
the physical state of one of the CPUS in a tightly coupled multiprocessing system. Ten of the 
twelve SIGP hardware functions are defined as direct services and are accessible via the DSGNL 

macro instruction. The other two SIGP functions are accessible via the RISGNL and RPSGNL 

macro instructions. 

The DSGNL macro instruction is written as follows: 

name 

b 

DSGNL 

b 

SENSE 
START 
STOP 
RESTART 
IPR 
PR 
SSS 
IMPL 
ICPUR 
CPUR 
(0) 

,CPU=PCCA addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede DSGNL. 

One or more blanks must follow DSGNL. 

PCCA addr: RX-type address, or register 0). 

The· parameters are explained below: 

SENSE 
START 
STOP 
RESTART 
IPR 
PR 
SS.S 
IMPL 
ICPUR 
CPUR 
(0) 

specifies the action to be performed. If (0) is specified, the code indicating the desired 
function has already been loaded into bits 24-31 of register O. The actions and codes are: 

SENSE 
START 
STOP 
RESTART 
IPR 
PR 
SSS 
IMPL 
ICPUR 
CPUR 

Code 
01 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 

Action 
State of specified CPU is to be sensed 
Start function 
Stop function 
Restart function 
Initial program reset function 
Program reset function 
Stop and store status function 
Initial microprogram load function 
Initial CPU reset function 
CPU reset function 

Note: Codes OA, OB, and OC are only valid on a Model 168. 

DSGNL - Issue Dire~t Signal 101 



,CPU =PCCA addr 
specifies the address of the physical configuration communication area (PCCA) of the CPU 

on which the function is to be executed. 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 
00 
04 

08 
12 
16 

Meaning 
Function successfully initiated, but not necessarily completed. 
Function not completed because access path to the addressed processor was busy or 
the addressed processor was in a state where it could not accept and respond to the 
function code. 
Function unsuccessful. Status returned in register o. 
Specified CPU is either not installed, not configured into the system, or powered off. 
CPU is a uniprocessor and does not have signal processor sending and receiving 
capabilitites. 

With a return code of 8, register 0 contains: 

Bits 
o 
1-23 
24 
25 
26 
27 
28 
29 
30 
31 

Example 1 

'Meaning 
Equipment check 
Reserved 
External call pending 
Stopped 
Operator intervening 
Check stop 
Not ready 
Reserved 
Invalid function 
Receiver check 

Operation: The state of the CPU whose PCCA is located at PCCA is requested. If the CPU is 
executing or is in a wait state, a return code of 0 in register 15 will be provided; otherwise, a 
return code of 8 with status indicators in register 0 will be returned. 

DSGNL SENSE,CPU=PCCA 

Example 2 

Operation: The CPU whose PCCA address is in register 1 will be placed in the STOP state. 

DSGNL STOP,CPU=( 1 ) 

102 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



EN Q - Request Control of a Serially Reusable Resource 

The ENQ macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the SMC, ECB, and TCB parameters. These parameters are 
restricted in use and should only be used with tasks that are authorized. 

The syntax of the complete ENQ macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the ENQ macro instruction is written as follows: 

name 

t> 
ENQ 

t> 

qname addr 

,rname addr 

, 
,E 
,S 

,mame length 

, 
,STEP 
,SYSTEM 
,SYSTEMS 

,var12345 

,RET=CHNG 
,RET=HAVE 
,RET=TEST 
,RET=USE 
,RET=NONE 

,SMC=NONE 
,SMC=STEP 
,ECB=eeb addr 
,TCB=teb addr 

,RELATED=va[ue 

name: symboL Begin name in column 1. 

One or more blanks must precede ENQ. 

One or more blanks must follow ENQ. 

qname addr: A-type address, or register (2) - (12). 

mame addr: A-type address, or register (2) - (12). 

Default: E 

mame length: symbol, decimal digit, or register (2) - (12). 
Default: assembled length of mame 
Note: mame length must be coded if a register is specified for 
mame addr. . 

Default: STEP 

var12345: The preceding 5 parameters may be repeated up to 
65,535 times. 

Default: RET=NONE 

ecb addr: A-type address, or register (2) - (12). 
teb addr: A-type address, or register (2) - (12). 
Default: SMC=NONE 
Note: ECB cannot be specified with RET above. 
Note: TCB cannot be specified with RET=HAVE or RET=NONE 
above. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instructions. 

ENQ - Request Control of a Serially Reusable Resource 103 



,SMC=NONE 
,SMC=STEP 
,ECB =ecb addr 
,TCB =tcb addr 

specifies optional parameters available to the system programmer: 

SMC specifies that the set-must-complete function is not to be used (NONE) or that it is to 
place other tasks for the step nondispatchable until the requesting task has completed its 
operations on the resource (STEP). 

ECB specifies the address of an ECB, and conditionally requests all of the resources named 
in the macro instruction. 

TCB specifies the address of a fullword on a fullword boundary that contains the address of 
a TCB on whose behalf the ENQ is to be done. 

Return codes are provided by the control program only if you specify RET=TEST, RET.USE, 
RET=CHNG, or RET=HAVE; otherwise return of the task to the active condition indicates that 
control of the resource has been assigned to the task. If all return codes for the resources 
named in the ENQ macro instruction are 0, register 15 contains 0. If any of the return codes 
are not 0, register 15 contains the address of a storage area containing the return codes, as 
shown in Figure 22. 

Address 
Returned in 
Register 15 

12 

24 

36 
- -

CI 

2 

Figure 22. Return Code Area Used by ENQ 

3 

Return 
Codes 

RC 1 

RC 2 

RC 3 

4 12 

( 

.... ~-RC N "'-----r--""Il 0 

104 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 

Return codes are 
12 bytes apart, 
starting 3 bytes 
from the address 
in register 15. 



The return codes are placed in the parameter list resulting from the macro expansion in the 
same sequence as the resource names in the ENQ macro instruction. The return codes are 
shown below. 

Hexadecimal 
Code 
o 

4 

8 

20 

Example 1 

Meaning 
For RET=TEST, the resource was immediately available. 
For RET=USE, RET=HAVE, or ECB=, control of the resource has been assigned to 
the active task. 
For RET=CHNG, the status of the resource has been changed to exclusive. 
For RET=TEST or RET=USE, the resource is not immediately available. 
For RET=CHNG, the status cannot be changed to shared. 
For ECB=, the ECB will be posted when available. 
For RET=TEST, RET=USE, RET=HAVE, or ECB=, a previous request for control 
of the same resource has been made for the same task. Task has control of resource. 
For RET=CHNG, the resource has not been queued. 
If bit 3 is on - shared control of resource; if bit 3 is off -- exclusive control. 
A previous request for control of the same resource has been made for the same task. 
Task does not have control of resource. 

Operation: Unconditionally request exclusive control of a serially reusable resource that is 
known only within the address space (STEP), and place other tasks for the step 
nondispatchable until the requesting task has completed its operations on the resource. 

ENQ (MAJOR1,MINOR1,E,8,STEP),SMC=STEP 

Example 2 

Operation: Conditionally request control of a serially reusable resource in behalf of another 
task. The resource is known by more than one address space, and is only wanted if 
immediately available. 

ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2),RET=USE 

ENQ - Request Control of a Serially Reusable Resource 105 



ENQ (List Form) 

The list form of the ENQ macro instruction is written as follows: 

name 

b 

ENQ 

b 

qname addr 

,rname addr 

, 
,E 
,S 

,mame length 

, 
,STEP 
,SYSTEM 
,SYSTEMS 

, var12345 

,RET=CHNG 
,RET=HAVE 
,RET=TEST 
,RET=USE 
,RET=NONE 

,SMC=NONE 
,SMC=STEP 
,ECB=ecb addr 
,TCB=O 

,RELATED=value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede ENQ. 

One or more blanks must follow ENQ. 

qname addr: A-type address. 

mame addr: A-type address. 

Default: E 

rname length: symbol or decimal digit. 
Default: assembled length of rname 

Default: STEP 

var12345: The preceding 5 parameters may be repeated up to 
65,535 times. 

Default; RET=NONE 

ecb addr: A-type address. 
Default: SMC=NONE 
Note: ECB cannot be specified with RET above. 
Note: TCB cannot be specified with RET=HAVE or RET=NONE 
above, and must be specified on the list form if used on the execute 
form. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained under the standard form of the ENQ macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

106 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



ENQ (Execute Form) 

The execute form of the ENQ macro instruction is written as follows: 

name 

b 

ENQ 

b 

qname addr 

,rname addr 

, 
,E 
,S 

,marne length 

, 
,STEP 
,SYSTEM 
,SYSTEMS 

, var12345 

,RET=CHNG 
,RET=HAVE 
,RET=TEST 
,RET=USE 
,RET=NONE 

,SMC=NONE 
,SMC=STEP 
,ECB=ecb addr 
,TCB=tcb addr 

,RELATED=value 

,MF=(E ,ctrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede ENQ. 

One or more blanks must follow ENQ. 

Note: ( and ) are the beginning and end of a parameter list. The 
entire list is optional. If nothing in the list is desired then (, ), and 
all parameters between ( and ) should not be specified. If something 
in the list is desired, then (, ), and all parameters in the list should 
be specified as indicated at the left. 

qname addr: RX-type address, or register (2) - (12). 

marne addr: RX-type address, or register (2) - (12). 

rname length: symbol, decimal digit, or register (2) - (12). 

var12345: The preceding 5 parameters may be repeated up to 
65,535 times. 

Note: See note opposite ( above. 

ecb addr: A-type address, or register (2) - (12). 
tcb addr: A-type address, or register (2) - (12). 
Note: ECB cannot be specified with RET above. 
Note: TCB cannot be specified with RET=HAVE or RET=NONE 
above. 

value: any valid macro keyword specification. 

clrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters restricted in use are explained under the standard form of the ENQ macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

Note: If ECB (or TCB) is specified in the execute form, ECB=O (or TCB=O) must be specified 
in the list form. 

ENQ (List Form) 107 



ES1~AE - Extended ST AE 

The EST AE macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the RECORD, BRANCH, and SVEAREA parameters. These 
parameters are restricted in use and should only be used by types 2, 3, and 4 SVcs executing 
in supervisor state, under protection key 0, and owning the local lock. 

The syntax of the complete EST AE macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the EST AE macro instruction is written as follows: 

name 

b 

ESTAE 

b 

exit addr 
o 

,CT 
,OV 

,PARAM=/ist addr 

,XCTL=NO 
,XCTL=YES 

,PURGE=NONE 
,PURGE=QUIESCE 
,PURGE=HAL T 

,ASYNCH= YES 
,ASYNCH=NO 

,TERM=NO 
,TERM=YES 

,BRANCH=NO 
,BRANCH= YES, 

SVEAREA=.mve area 

,RECORD=NO 
,RECORD=YES 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede EST AE. 

One or more blanks must follow EST AE. 

exit addr: A-type address, or register (2) - (12). 

Default: CT 

list addr: A-type address, or register (2) - (12). 

Default: XCTL=NO 

Default: PURGE=NONE 

Default: ASYNCH= YES 

Default: TERM=NO 

Default: BRANCH=NO 
save addr: A-type address, or register (2) - (12) or (13). 

Default: RECORD=NO 

value: any valid macro keyword specification. 

The parameters restricted in use are explained below. The explanation of the other parameters 
is as explained in OS/VS2 Supervisor Services and Macro Instructions. 

,BRANCH=NO 
,BRANCH == YES,sVEAREA =save addr 

specifies that an SVC 60 entry to the EST AE service routine is not to be performed (NO) or 
that a branch entry is to be performed (YES). (The branch entry is for type 2, 3, or 4 SVcs 
only.) The save area is a 72-byte area used to save the general registers. If BRANCH=YES is 
specified, the caller must be in key 0 and own the local lock. 

,RECORD=NO 
,RECORD = YES 

specifies that the SDWA workarea will not be written to SYS1.LOGREC (NO) or that the 
entire SDWA workarea, both fixed and variable, will be written to SYS1.LOGREC (YES). 

108 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



ControLis returned to the instruction following the ESTAE macro instruction. When control is 
returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 
00 
04 

08 

OC 

10 
14 

Example 1 

Meaning 
Successful completion of EST AE request. 
EST AE OV was specified with a valid exit address, but the current exit is either 
nonexistent, not owned by the user's RB, or is not an EST AE exit. 
BRANCH=YES was issued for the current SVRB with a create request; the previous 
BRANCH= YES exit is canceled and the new exit is made the current exit. 
Cancel or an exit ,address equal to zero was specified, and either there are no exits for 
this TCB, the most recent exit is not owned by the caller, or the most recent exit is not 
an EST AE exit. 
An unexpected error was encountered while processing this request. 
EST AE was unable to obtain storage for an SCB. 

Operation: Take the EST AE exit specified by reg~ster 4, allow asynchronous exit processing, do 
not allow special error processing, do not branch enter SVC 60, and default to CT (create) and 
PURGE=NONE. 

ESTAE (4),ASYNCH=YES,TERM=NO,BRANCH=NO 

ESTAE - Extended ST AE 109 



EST1AE (List Form) 

The list form of the EST AE macro instruction is used to construct a remote control program 
parameter list. 

The list form of the EST AE macro instruction is written as follows: 

name 

b 

ESTAE 

b 

exit addr 

,P ARAM=list addr 

,PURGE=NONE 
,PURGE=QUIESCE 
,PURGE=HALT 

,ASYNCH= YES 
,ASYNCH=NO 

,TERM=NO 
,TERM=YES 

,RECORD=NO 
,RECORD= YES 

,RELATED=value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede EST AE. 

One or more blanks must follow EST AE. 

exit addr: A-type address. 

list addr: A-type address. 

Default: PURGE=NONE 

Default: ASYNCH= YES 

Default: TERM=NO 

Default: RECORD=NO 

value: any valid macro keyword specification. 

The parameters restricted in use are explained under the standard form of the EST AE macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

110 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



EST AE (Execute Form) 

A remote control program parameter list is used in, and can be modified by, the execute form 
of the EST AE macro instruction. Tbe control program parameter list can be generated by the 
list form of the ESTAE macro instruction. If the user desires to dynamically changed the 
contents of the remote EST AE parameter list, he may do so by coding a new exit address 
and/ or a new parameter list address. If exit addr((ss or P ARM= is coded, only the associated 
field in the remote EST AE parameter list will be changed. The other field will remain as it was 
before the current EST AE request Was made. 

The execute form of the ESTAE macro instruction is written as follows: 

name 

b 

ESTAE 

b 

exit addr 
o 
,CT 
,OV 

,PARAM=list addr 

,XTCL=NO 
,XCTL=YES 

,PURGE=NONE 
,PURGE=QUIESCE 
,PURGE=HALT 

,ASYNCH= YES 
,ASYNCH=NO 

,TERM=NO 
,TERM=YES 

,BRANCH=NO 
,BRANCH= YES, 

SVEAREA=;save addr 

,RECORD=NO 
,RECORD= YES 

,RELA TED=value 

,MF=(E ,ctrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede EST AE. 

One or more blanks must follow EST AE. 

exit addr: RX-type address, or register (2) - (12). 

list addr: RX-type address, or register (2) - (12). 

save addr: RX-type address, or register (2) - (12) or (13). 

value: any valid macro keyword specification. 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters restricted in use are explained under the standard form of the ESTAE macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

Example 1 

Operation: Take the ESTAE exit labeled ADDR, allow synchronous exit processing, halt I/o, 
allow special error processing, branch enter SVC 60, provide 72-byte save area at SADDR, and 
execute the execute form of the macro instruction. EXEC is the label of the EST AE parameter 
list built by the list form of the macro instruction. 

ESTAE ADDR,ASYNCH=YES,PURGE=HALT,TERM=YES,BRANCH=YES, 
SVEAREA=SADDR,MF=(E,EXEC) 

EST AE - Extended ST AE 111 



EVENTS - Wait for Events 

The EVENTS macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the BRANCH parameter. This parameter is restricted in use 
and should only be used by programs executing in supervisor state, under protection key 0, 
and owning the local lock. 

The syntax of the complete EVENTS macro instruction is shown below. However, only the 
explanation of the restricted parameter is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The EVENTS macro instruction is written as follows: 

name 

b 

EVENTS 

b 

name: symbol. Begin name in column 1. 

One or more blanks must precede EVENTS. 

One or more blanks must follow EVENTS. 

ENTRIES==nmbr nmbr. decimal digits 1-32767. 
ENTRIES=DEL,TABLE=tab addr tab addr. symbol, RX-type address, or register (2) -(12). 
T ABLE=tab addr Note: If the ENTRIES parameter is specified as indicated in the 

first two formats, no other parameters may be specified. 

,ECB=ecb addr 
,LAST =last addr 

,WAIT=YES 
,WAIT=NO 

,BRANCH=NO 
,BRANCH=YES 

ecb addr. symbol, RX-type address, or register (2) - (12). 
last addr. symbol, RX-type address, or register (2) - (12). 
Note: If LAST is specified, WAIT must also be specified. 

Default: BRANCH=NO 

The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instructions. 

,BRANCH = NO 
,BRANCH = YES 

specifies that an SVC entry (BRANCH=NO) or a branch entry (BRANCH=YES) is to be 
performed. 

112 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



EXTRACT - Extract TCD Information 

The EXTRACT macro instruction causes the control program to provide information from 
specified fields of the task control block or a subsidiary control block for either the active task 
or one of its subtasks. The information is placed in an area provided by the problem program. 

The standard form of the EXTRACT macro instruction is written as follows: 

name name: symbol. Begin name in column 1. 

\) 

EXTRACT 

\) 

One or more blanks must precede EXTRACT. 

One or more blanks must follow EXTRACT. 

answer addr answer addr: A-type address, or register (2) - (12). 

tcb addr: A-type address, or register (2) - (12). 
Default: 's' 

,'S' 
,tcb addr 

,FIELDS=(tcb info) tcb info: any combination of the following, separated by commas: 
ALL PRI TSO 
GRS CMC PSB 
FRS TIOT TJID 
AETX COMM ASID 

The parameters are explained below: 

answer addr 
specifies the address of the answer area to contain the requested information. The address is 
of one or more fullwords, starting on a fullword boundary. The number of fullwords 
required is the same as the number of fields specified in the FIELDS parameter, unless ALL 
is coded. If ALL is coded, seven fullwords are required. 

,'S' 
,teb addr 

specifies the address of a fullword on a fullword boundary containing the address of a task 
control block for a subtask of the active task. if'S' is coded or assumed, no address is 
specified and the active task is assumed. 

,FIELDS -(teb info) 
specifies the task control block information requested: 

ALL requests information from the GRS, FRS, reserved, AETX, PRI, CMC, and TIOT fields. 
(If ALL is specified, 7 words are required just for ALL.) 

GRS is the address of the save area used by the control program to save the general 
registers 0-15 when the task is not active. 

FRS is the address of the save area used by the control program to save the floating point 
registers 0, 2, 4, and 6 when the task is not active. 

AETX is the address of the end of task exit routine specified in the ETXR parameter of the 
A TT ACH macro instruction used to create the task. 

PRI is the current limit (third byte) and dispatching (fourth byte) priorities of the task. The 
two high-order bytes are set to zero. 

CMC is the task completion code. If the task is not complete, the field is set to zero. 

TIOT is the address of the task input/output table. 

EXTRACT - Extract TCB Information 113 



COMM is the address of the command scheduler communications list. The list consists of a 
pointer to the communications event control block and a pointer to the command input 
buffer. The high-order bit of the last pointer is set to one to indicate the end of the list. 

TSO is the address of a byte in which a high bit of 1 indicates a TSO address space, and a 
high bit of 0 indicates a non-TSO address space. 

PSB is the address of the protected storage control block, which is extracted from the job 
step control block. 

TJlD is the address space identifier (ASID) for a TSO address space, and zero for a non-TSO 
address space. 

ASID is the address space identifier. 

Example 1 

Operation: Provide information from all the fields of the indicated TCB except ASID. WHERE 
is the label of the answer area, ADDRESS is the label of a fullword which contains the address 
of the subtask TCB for which information is to be extracted. 

EXTRACT WHERE,ADDRESS,FIELDS=(ALL,TSO,COMM,PSB,TJID) 

Example 2 

Operation: Provide information from the current TCB, as above. 

EXTRACT WHERE,'S' ,FIELDS=(ALL,TSO,COMM,PSB,TJID) 

114 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



EXTRACT (List Form) 

The list form of the EXTRACT macro instruction is used to construct a remote control program 
parameter list. 

The list form of the EXTRACT macro instruction is written as follows: 

name 

1) 

EXTRACT 

1) 

answer addr 

,OS' 
,tcb addr 

,FIELDS=(tcb info) 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede EXTRACT. 

One or more blanks must follow EXTRACT. 

answer. addr: A-type address. 

tcb addr: A-type address. 
Default: oS' 

tcb info: any combination of the following, separated by commas: 
ALL PRI TSO 
GRS CMC PSB 
FRS TIOT TJID 
AETX COMM ASID 

The parameters are explained qnder the standard form of the EXTRACT macro instruction, with 
the following exceptions: 

,MF=L 
specifies the list form of the EXTRACT macro instruction. 

EXTRACT - Extract TCD Information 115 



EXTRACT (Execute Fonn) 

The execute form of the EXTRACT J..Ilacro instruction uses, and can modify, a remote control 
program parameter list. If the FIELDS parameter restricted in use is coded in the execute form, 
any TCB information specified in a previous FIELDS parameter is cancelled and must be 
respecified if required for this execution of the macro instruction. 

The execute form of the EXTRACT macro instruction is written as follows: 

name 

b 

EXTRACT 

b 

answer addr 

,'S' 
,leb addr 

,FIELDS=(teb info) 

,MF=(E, etri addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede EXTRACT. 

One or more blanks must follow EXTRACT. 

answer addr: RX-type address, or register (2) - (12). 

leb addr: RX-type address, or register (2) - (12). 

teb info: any combination of the following, separated by commas: 
ALL PRI TSO 
GRS CMC PSB 
FRS TIOD TJID 
AETX COMM ASID 

elrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the EXTRACT macro instruction, with 
the following exceptions: 

,MF == (E, ctrl addr) 
specifies the execute form of the EXTRACT macro instruction using a remote control 
program parameter list. 

116 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



FREEMAIN - Free Virtual Storage 

The FREEMAIN macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the BRANCH and KEY parameters. These parameters are 
restricted in use and should only be used by programs executing in supervisor state, under 
protection key o. 

The syntax of the complete FREEMAIN macro instruction is shown below. However, only 
the explanation of the restricted parameters is presented. Explanation of the other parameters 
can be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the FREEMAIN macro instruction is written as follows: 

name 

b 

FREEMAIN 

b 

LC,LA=length addr 
LU ,LA=length addr 
L,LA=length addr 
VC 
VU 
V 
EC,LV=length value 
EU ,LV =Iength value 
E,L V =length value 
RC,LV =Iength value 
RC,SP=subpool nmbr 
RU,LV=length value 
RU,SP=subpool nmbr 
R,LV=length value 
R,SP=subpool nmbr 

,A=addr 

,SP=subpool nmbr 

,BRANCH=YES 
,BRANCH=(YES,GLOBAL) 

,KEY=nmbr 

,RELATED=va/ue 

name: symbol. Begin name in column 1. 

One or more blanks must precede FREEMAIN. 

One or more blanks must follow FREEMAIN. 

length addr: A-type address, or register (2) - (12). 
length value: symbol, decimal digit, or register (2) - (12). If R is 
specified, register (0) may also be specified. 
subpool nmbr: symbol, decimal digit 0-127, or register (0) or (2) -
(12). If R,SP=(O) is specified, the high order byte of register 0 must 
contain the subpool number and the low order 3 bytes must contain 
the length value. 
Note: If the formats RC,SP=subpoo/ nmbr or RU,SP=subpoo/ nmbr 
or R,SP=subpoo/ nmbr are specified, no other parameters may be 
specified. 

addr: A-type address, or register (2) - (12). 

subpoo/ nmbr: symbol, decimal digit 0-127, or register (0) or (2) -
(12). If R,SP=(O) is specified, the high order byte of register 0 must 
contain the subpool number and the low order 3 bytes must contain 
the length value. 

Note: BRANCH=(YES,GLOBAL) may only be specified with RC 
or RU above. 

nmbr: decimal digits 0-15, or register (2) - (12). 
Note: This parameter may be specified only if BRANCH above is 
also specified. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instruction. 

,BRANCH = YES 
,BRANCH = (YES,GLOBAL) 

specifies that a branch entry is to be used instead of an SVC entry. If (YES,GLOBAL) is 
specified, the GLBRANCH entry point to service global storage requests without the need for 
the local memory lock will be used; the SALLOC lock must be held. 

If BRANCH=YES is specified, the caller must pre-load register 4 with the TCB address, 
pre-load register 7 with the ASCB address, and hold the local memory lock prior to entry. 

FREEMAIN - Free Virtual Storage 117 



If BRANCH=(YES,GLOBAL) is specified, the SP parameter may only designate subpools 227, 
228, 231, 239, 241, dr 245. 

,KEY ==key nmbr 
specifies the key (in bits 24-27 of the register) in which the requested storage was obtained. 
This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and allows both 
global and local storage to be freed in the requestor's storage protection key. 

When control is returned, register 15 may contain the following return code: 

Hexadecimal 
Code 
8 

Meaning 
Part of area being freed is still fixed. 

The parameters restricted in use are explained under the standard form of the FREEMAIN 

macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

Example 1 

Operation: Free 400 bytes of storage addressed by register 1 via a branch entry. If the 
storage is successfully freed, register 15 will contain 0; otherwise, register 15 will contain a 
nonzero value. 

FREEMAIN EC,LV=400,A=(1 ),BRANCH=YES 

Example 2 

Operation: Free all storage in subpool 239. Register 3 has been preset to contain the storage 
key of the storage to be released. If the request is unsuccessful, the caller will be abnormally 
terminated. 

FREEMAIN RU,SP=239,KEY=(3),BRANCH=(YES,GLOBAL) 

118 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



FREEMAIN (List Form) 

The list form of the FREEMAIN macro instruction is written as follows: 

name 

b 

FREEMAIN 

b 

LC 
LU 
L 
VC 
VU 
V 
EC 
EU 
E 

,LA=length addr 
,LV =length value 

,A=addr 

,SP=subpool nmbr 

,RELATED=value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede FREEMAIN. 

One or more blanks must follow FREEMAIN. 

length addr: A-type address. 
length value: symbol or decimal digit. 
Note: LA may only be specified with LC, LU, or Labove. 
Note: LV may only be specified with EC, EU, or E above. 

addr: A-type address. 

subpool nmbr: symbol or decimal digit 0 - 127. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained under the standard form of the FREEMAIN 

macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macr,o 
Instructions. 

FREEMAIN - Free Virtual Storage 119 



FREEMAIN (Execute Form) 

The execute form of the FREEMAIN macro instruction is written as follows: 

name 

b 

FREEMAIN 

b 

LC 
LU 
L 
VC 
VU 
V 
EC 
EU 
E 

,LA=length addr 
,LV =length value 

,A=addr 

,SP=subpool nmbr 

,BRANCH= YES 

,RELATED=value 

,MF=(E ,clrl prog) 

name: symbol. Begin name in column 1. 

One or more blanks must precede FREE MAIN . 

One or more blanks must follow FREEMAIN. 

length addr: RX-type address or register (2) - (12). 
length value: symbol, decimal digit, or register (2) - (12). 
Note: LA may only be specified with LC, LU, or Labove. 
Note: LV may only be specified with EC, EU, or E above. 

addr: RX-type address, or register (2) - (12) 

subpool nmbr: symbol, decimal digit, or register (0) or (2) - (12). 

value: any valid macro keyword specification. 

ctrl prog: RX-type address, or register. (1) or (2) - (12). 

120 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



GETMAIN - Allocate Virtual Storage 

The GETMAIN macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the BRANCH and KEY parameters. These parameters are 
restricted in use and should only be used by programs executing in supervisor state, under 
protection key o. 

The syntax of the complete GETMAIN macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the GETMAIN macro instruction is written as follows: 

name 

b 

GETMAIN 

b 

LC,LA=length addr,A=addr 
LU,LA=length addr,A=addr 
VC,LA=length addr,A=addr 
VU ,LA=length addr,A=addr 
EC,L V =length value,A=addr 
EU ,LV =length value,A=addr 
RC,L V =length value 
RU,LV=length value 
R,L V =length value 

,SP=subpool nmbr 

,BNDRY=DBLWD 
,BNDRY=PAGE 

,BRANCH= YES 
,BRANCH=(YES,GLOBAL) 

,KEY =key number 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede GETMAIN. 

One or more blanks must follow GETMAIN. 

length addr: A-type address, or register (2) - (12). 
length value: symbol, decimal digit, or register (2) - (12). If R is 
specified, register (0) may also be specified. 
addr: A-type address, or register (2) - (12). 

subpool nmbr: symbol, decimal digit 0 - 127, or register (0) or (2) -
(12). 
Note: If R,LV=(O) is specified above, SP may not be specified. 

Default: BNDRY=DBLWD 
Note: This parameter may not be specified with R above. 

Note: BRANCH=(YES,GLOBAL) may only be specified with RC 
or RU above. 

key nmbr: decimal digits 0-15, or register (2) - (12). 
Note: This parameter may be specified only if BRANCH above is 
also specified. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instructions. 

,BRANCH = YES 
,BRANCH = (YES,GLOBAL) 

specifies that a branch entry is to be used instead of an SVC entry. If (YES,GLOBAL) is 
specified, the GLBRANCH entry point to service global storage requests without the need for 
the local memory lock will be used; the SALLOC lock must be held. 

If BRANCH= YES is specified, the caller must pre-load register 4 with the TCB address, 
pre-load register 7 with the ASCB address, and hold the local memory lock prior to entry. 

If BRANCH=(YES,GLOBAL) is specified, the SP parameter may only designate subpools 227, 
228,231,239, 241, or 245. 

GETMAIN - Allocate Virtual Storage 121 



,KEY =key nmbr 
specifies the key (in bits 24-27 of the register) in which the requested storage is to be 
obtained. This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and allows 
both global and local storage to be obtained in the requester's storage protection key. 

When control is returned, register 15 may contain the following return code: 

Hexadecimal 
Code 
8 

Example 1 

Meaning 
On request for SQA or LSQA, no real storage page is available. 

Operation: Obtain 248 bytes of storage from the user's region via a branch entry. If the 
routine is in supervisor state, subpool 252 will be used; otherwise, subpool 0 will be used. If 
the storage cannot be obtained, the caller will be abnormally terminated. 

GETMAIN EU,LV=248,A=AREAADDR,BRANCH=YES 

Example 2 

Operation: Obtain one page of storage from the common service area, and cause the acquired 
storage to be initialized with a storage key of 9. A return code of 0 (if successful) or 4 (if 
unsuccessful) will be returned. 

GETMAIN RC,LV=4096,SP=231,BRANCH=(YES,GLOBAL),BNDRY=PAGE,KEY=9 

122 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



GETMAIN (List Form) 

The list form of the GETMAIN macro instruction is written as follows: 

name 

t> 

GETMAIN 

t> 

LC 
LU 
VC 
VU 
EC 
EU 

,LA =length addr 
,LV =length value 

,A=addr 

,SP=subpool nmbr 

,BNDRY=DBLWD 
,BNDRY=PAGE 

,RELATED=value 

,MF=L 

name: Begin name in column 1. 

One or more blanks must precede GETMAIN. 

One or more blanks must follow GETMAIN. 

length addr: A-type address. 
length value: symbol or decimal digit. 
Note: LA may be specified with EC or EU above. 
Note: LV may not be specified with LC, LU, VC or VU above. 

addr: A-type address. 

subpool nmbr: symbol or decimal digit 0-127. 

Default: BNDRY=DBLWD 

value: any valid macro keyword specification. 

The parameters restricted in use are explained under the standard form of the GETMAIN 

macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

GETMAIN - Allocate Virtual Storage 123 



GE~rMAIN (Execute Form) 

The execute form of the GETMAIN macro instruction is written as follows: 

name 

'0 

GETMAIN 

'0 

LC 
LU 
VC 
VU 
EC 
EU 

,LA=length addr 
,LV =length value 

,A=addr 

,SP=subpool nmbr 

,BNDRY=DBLWD 
,BNDRY=PAGE 

,BRANCH=YES 

, RELATED=value 

,MF=(E ,etrl prog) 

name: symbol. Begin name in column 1. 

One or more blanks must precede GETMAIN. 

One or more blanks must follow GETMAIN. 

length addr: RX-type address or register (2) - (12). 
length value: symbol, decimal digit, or register (2) - (12). 
Note: LA may not be specified with EC or EU above. 
Note: LV may not be specified with LC, LU, VC, or VU above. 

addr: RX-type address, or register (2) - (12). 

subpool nmbr: symbol, decimal digit 0-127, or register (0) or (2) -
(12). 

Default: BNDRY=DBLWD 

value: any valid macro keyword specification. 

etrl prog: RX-type address, or register (1) or (2) - (12). 

The parameters restricted in use are explained under the standard form of the GETMAIN macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 

Instructions. 

124 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



MODESET - Change System Status 

The MODESET macro instruction is used to change system status by altering the PSW key or 
mode indicator. It causes a supervisor routine (IEAVMODE) to alter the RB old program status 
word (RBOPSW) so that the desired PSW will be loaded when MODESET returns to the caller. 
MODESET also generates inline code that saves and/or changes the protection key in the 
current psw. 

The standard form of the MODESET macro instruction has two forms: the form that 
generates an SVC and the form that generates inline code. The form that generates inline code 
uses the SPKA instruction (see IBM System/370 Principles of Operation), and is executable only 

I in supervisor state. The form that generates an SVC is executable by users in supervisor state, 
under protection key 0-7, or APF-authorized. 

The standard form of the MODESET macro instruction that generates inline code is written 
as follows: 

name 

b 

MODESET 

b 

EXTKEY=key 
KEYADDR=key addr 

,SA VEKEY =old key addr 

,WORKREG=reg 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede MODESET. 

One or more blanks must follow MODESET. 

key: one of the following: 
SCHED SRM ZERO 
JES SUPR TCB 
RSM DATAMGT RBTI 
VSM TCAM RBT234 

key addr: A-type address or register (2). 
Note: The WORKREG parameter is required if the following are 
specified: 

EXTKEY=TCB 
EXTKEY =RBTI 

EXTKEY =RBT234 
KEY ADDR=A-type address 

old key addr: A-type address or register (2). 
Note: If KEY ADDR=(2) is specified above, then SA VEKEY =(2) 
cannot be specified. 
Note: The WORKREG parameter is required if SA VEKEY = A-type 
address is specified. 

reg: decimal digits 0 - 15. 

value: any valid macro keyword specification. 

The parameters are explained below: 

EXTKEY=key 
KEY ADDR = key addr 

specifies the key to be set in the current PSW or the address of the key. 

SCHED - Scheduler key. 

JES - Job entry subsystem key. 

RSM - Real storage management key. 

VSM - Virtual storage management key. 

SRM - System resource management key. 

SUPR - Supervisor key. 

DATAMGT - Data management key. 

MODE SET - Change System Status 125 



TCAM - Telecommunications access method key. 

ZERO - Key of zero is to be set. 

TCB - Key is to be obtained from TCB field TCBPKF. 

RBTI - Key is to be obtained from the RBOPSW field of the active RB of type_ 1 SVC routine 
issuing MODESET. 

RBT234 - Key is to be obtained from the RBOPSW field of the RB preceding SVRB of 
type 2, 3, or 4 SVC routine issuing MODESET. 

KEYADDR specifies a location 1 byte in length which contains the key in bit positions 0-3. 
If register (2) is specified, the key is contained in bit positions 24-27 (bits 28-31 are 
ignored). This parameter permits a previously saved key to be restored. 

,SAVEKEY =old key addr 
specifies a location 1 byte in length where the current PSW key is to be saved, in bit 
positions 0-3. If register (2) is specified, the key is left in register 2. 

,WORKREG = reg 
specifies the register into which the contents of register 2 are to be saved while performing 
the SA VEKEY function, or the working register to be used by the EXTKEY or KEY ABDR 

function. If WORKREG=2 is specified, no register saving takes place. 

,RELATED = value 
specifies information used to self -document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 
instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GETl GE'I'MAIN R,LV=4096,RELATED=( FREEl, 'GET STORAGE u 
) 

FREEl FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1,'FREE STORAGE') 

Note: This form of the macro instruction does not generate any return codes. 

126 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



The standard form of the MODESET macro instruction that generates an SVC is written as 
follows: 

name 

b 

MODESET 

b 

KEY=ZERO 
KEY=NZERO 

,MODE=PROB 
,MODE=SUP 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede MODESET. 

One or more blanks must follow MODESET. 

Note: KEY is required only if no other parameter is specified. 

Note: MODE is required only if no other parameter is specified. 

value: any valid macro keyword specification. 

The parameters are explained below: 

KEY==ZERO 
KEY==NZERO 

specifies that the PSW key (bits 8-11) is to be either set to zero (ZERO) or set to the value 
in the caller's TCB (NZERO). 

,MODE=PROB 
,MODE==SUP 

specifies that the PSW mode indicator (bit 15) is to be either turned on (PROB) or turned 
off (sup). 

Note: This form of the macro instruction does not generate any return codes. 

Example 1 

Operation: Save the current PSW key, and change the key to that of the scheduler. 

MODESET EXTKEY=SCHED,SAVEKEY=KEYSAVE,WORKREG=1 

Example 2 

Operation: Change to supervisor mode and key zero. 

MODESET KEY=ZERO,MODE=SUP 

MODESET - Change System Status 127 



MODESET (List Form) 

The list form of the MODESET macro instruction is written as follows: 

name 

1:> 

MODESET 

1:> 

RELATED=va!ue, 

MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede MODESET .. 

One or more blanks must follow MODESET. 

value: any valid macro keyword specification. 

The parameters are explained under the standard form of the MODESET macro instruction, 
with the following exceptions: 

MF=L 
specifies the list form of the MODESET macro instruction. 

128 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



MODESET (Execute Form) 

The execute form of the MODESET macro instruction is written as follows: 

name 

t:> 

MODESET 

t:> 

RELATED=value, 

MF=(E ,list addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede MODESET. 

One or more blanks must follow MODESET. 

value: any valid macro keyword specification. 

list addr: RX-type address, or register (1). 

The parameters are explained under the standard form of the MODESET macro instruction, 
with the following exceptions: 

MF = (E , list addr) 
specifies the execute form of the MODESET macro instruction, using a parameter list 
address. 

Incompatible Parameters 

The ENABLE and SYSMASK parameters, available with Release 1 of YS2, are no longer 
supported on MODESET. The. functions formerly available via ENABLE and SYSMASK are now 
provided by the SETLOCK macro instruction and the STNSM and STOSM instructions. 

MODESET (List Fonn) 129 



NIL ,- Provide a Lock Via an AND IMMEDIATE (NI) Instruction 

The NIL macro instruction is used to provide a lock on a byte of storage on which an AND 
IMMEDIATE (NO instruction is to be executed. The byte of storage exists in a multiprocessing 
environment and the possibility exists that the byte may be changed by another CPU at the 
same time. Storage modification during NIL processing is accomplished in the same manner as 
that used by the COMPARE AND SWAP (CS) instruction 

For details on the AND IMMEDIATE and COMPARE AND SWAP instructions, see IBM 
System/370 Principles of Operation. 

The NIL macro instruction is written as follows: 

b 

NIL 

b 

name 

byte addr 

,mask 

,REF=stor addr 

,WREGS=(regJ,reg2,reg3) 
,WREGS=(regJ,reg2) 
,WREGS=(regJ"reg3) 
,WREGS=(,reg2,reg3) 
,WREGS=(regl) 
,WREGS=(,reg2) 
,WREGS=("reg3) 

name: symbol. Begin name in column 1. 

One or more blanks msut precede NIL. 

One or more blanks must follow NIL. 

byte addr: A-type address. 

mask: symbol or self defining term. 

stor addr: A-type address. 

regJ: symbol, or decimal digits 0-16. 
reg2: symbol, or decimal digits 1-16. 
reg3: symbol, or decimal digits 0-16. 
Default for regJ: 0 
Default for reg2: 1 
Default for reg3: 2 

The parameters are explained below: 

byte addr 
specifies the address of the byte to which the AND function is to be applied. 

,mask 
specifies the value to be ANDed to the byte at the address specified above. 

,REF=stor addr 
specifies the address of a storage location on a fullword boundary. This address provides the 
means by which the COMPARE AND SWAP instruction may be executed. The address must 
be less than or equal to the byte address specified above, and the difference between the 
addresses must be less than 4096. The two addresses must be addressable via the same base 
register. 

,WREGS = (regJ,reg2,reg3) 
,WREGS = (reg J ,reg2) 
,WREGS = (regJ"reg3) 
,WREGS = (,reg2,reg3) 
,WREGS = (regJ) 
,WREGS = (,reg2) 
,WREGS = ("reg3) 

specifies the work registers to be used to perform the COMPARE AND SWAP instruction. 
regJ is used to contain the 'old' byte; reg2 is used to contain the 'updated' byte; and reg3 
is used to contain the mask. 

130 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



Example 1 

Operation: Provide a lock on the byte of storage specified by the address STRESTAT. UCBOB 

is the address used to reference the byte, and FSRTECGS is the mask used. 

NIL SRTESTAT,FSRTECGS,WREGS=(15,4,5),REF=UCBOB 

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction 131 



OII.J - Provide a Lock Via an OR IMMEDIATE (01) Instruction 

The OIL macro instruction is used to provide a lock on a byte of storage on which an OR 
IMMEDIATE (01) instruction is to be executed. The byte of storage exists in a multiprocessing 
environment and the possibility exists that the byte may be changed by another CPU at the 
same time. Storage modification during OIL processing is accomplished in the same manner as 
that used by the COMPARE AND SWAP (CS) instruction. 

For details on the AND IMMEDIATE and COMPARE AND SWAP instructions, see IBM 
System/370 Principles of Operation. 

The OIL macro instruction is written as follows: 

lJ 

OIL 

lJ 

name 

byte addr 

,mask 

,REF=stor addr 

,WREGS=(reg],reg2,reg3) 
,WREGS=(reg],reg2) 
,WREGS=(reg]"reg3) 
,WREGS=(,reg2,reg3) 
,WREGS=(reg 1) 
,WREGS=(, reg2) 
,WREGS=("reg3) 

name: symbol. Begin name in column 1. 

One or more blanks must precede OIL. 

One or more blanks must follow OIL. 

byte addr: A-type address. 

mask: symbol or self defining term. 

s/or addr: A-type address. 

reg]: symbol, or decimal digits 0-16. 
reg2: symbol, or decimal digits 0-16. 
reg3: symbol, or decimal digits 0-16. 
Default for reg]: 0 
Default for reg2: 1 
Default for reg3: 2 

The parameters are explained below: 

byte addr 
specifies the address of the byte to which the OR function is to be applied. 

,mask 
specifies the value to be ORed to the byte at the address specified above. 

,REF=stor addr 
specifies the address of a storage location on a fullword boundary. This address provides the 
means by which the COMPARE AND SWAP instruction may be executed. The address must 
be less than or equal to the byte address specified above, and the difference between the 
addresses must be less than 4096. The two addresses must be addressable via the same base 
register. 

,WREGS = (regl,reg2,reg3) 
,WREGS = regl,reg2) 
,WREGS = (regl"reg3) 
,WREGS = (,reg2,reg3) 
,WREGS = (regl) 
,WREGS = (,reg2) 
,WREGS = ("reg3) 

specifies the work registers to be used to perform the COMPARE AND SWAP instruction. 
regl is used to contain the 'old' byte; reg2 is used to contain the 'updated' byte; and reg3 
is used to contain the mask. 

132 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



Example 1 

Operation: Provide a lock on the byte of storage specified by the address SRTESTAT. UCBOB 

is the address used to reference the byte, and SRTECHGS is the mask used. 

OIL SRTESTAT,SRTECHGS,WREGS=( 15,4,5),REF=UCBOB 

OIL - Provide a Lock Via an OR IMMEDIATE (01) Instruction 133 



PGFIX - Fix Virtual Storage Contents 

The PGFIX macro instruction makes virtual storage areas resident in real storage and ineligible 
for page-out while the requesting task's address space occupies real storage. The PGFlX 

function is available only to authorized system functions and users. 

PGFIX does not prevent pages from being paged out when an entire address space is 
swapped out of real storage. Consequently, when using the PGFlX macro instruction, you can 
not assume a constant real address mapping for fixed pages that are susceptible to swapping. 

The standard form of the PGFlX macro instruction is written as follows: 

name 

b 

PGFlX 

b 

R 

,A=start addr 

,ECB=ecb addr 

,EA=end addr 

,LONG=Y 
,LONG=N 

,RELEASE=N 
,RELEASE=Y 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede PGFlX. 

One or more blanks must follow PGFlX. 

start addr: A-type address, or register (I) or (2) - (12). 

ecb addr: A-type address, or register (0) or (2) - (12). 

end addr: A-type address, or register (2) - (12) or (15). 
Default: start addr + 1 

Default: LONG= Y 

Default: RELEASE=N 
Note: RELEASE= Y may only be specified with EA above. 

value: any valid macro keyword specification. 

The parameters are explained below: 

R 
specifies that no parameter list is being supplied with this request. 

,A =start addr 
specifies the start address of the virtual, area to be fixed. 

,ECB =ecb addr 
specifies the address of the ECB that is used to signal event completion. 

,EA =end addr 
specifies the end address + 1 of the virtual area to be fixed. 

,LONG=Y 
,LONG=N 

specifies that the relative real time duration anticipated for the fix is long (Y) or short (N). 

,RELEASE=N 
,RELEASE=Y 

specifies that the contents of the virtual area is to remain intact (N) or be released (Y). 

,RELATED = value 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

134 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 
instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and EST AE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 
FREE1 FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1, 'FREE STORAGE') 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 

08 

10 

Meaning 

Operation completed normally; ECB posted complete. 
Operation abnormally terminated. Operation incomplete because of invalid address in 
virtual subarea list entry; ECB posted complete. 
Operation proceeding; ECB will be posted when all requested pages are fixed in real 
storage. 
Operation abnormally terminated. Virtual subarea list entry or ECB address invalid; no 
ECB is posted. 

The ECB is unchanged if the request was initiated but not complete (return'code 8), or if an 
ABEND was issued with return code 10. Otherwise, the ECB is posted complete with code 

o - Operation completed successfully. 

4 - Operation incomplete because of invalid address in VSL entry. 

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has 
completed, with code 

o - Operation completed successfully. 

4 - Operation incomplete because of paging error; requesting TCB will be abnormally 
terminated. 

Incompatible Parameters 

The following parameters were valid in Release 1 of os/vs2, but are not supported in MVS: 

SUSPEND = N, will be ignored. 
SUSPEND = Y, will be ignored. 
ECBIND = address, will probably cause errors. 

Example 1 

Operation: Fix a single byte of virtual storage addressed by register 3. Note that the full 
4096-byte page containing the specified byte will actually be fixed. The storage will be long 
fixed. 

PGFIX R,A=(R3),ECB=(R5) 

Example 2 

Operation: Fix virtual storage without using a virtual subarea list. Storage will be long fixed. 

PGFIX R,A=(R3),EA=(R4),ECB=ECB1 

PGFIX - Fix Virtual Storage Contents 135 



Example 3 

Operation: -Fix, but not long-fix, virtual storage, and ensure that the pages fully included in 
the address range are to be forfeited before fixing the area specified by registers 3 and 4. 

PGFIX R,A=( R3 ), EA=( R4), ECB=( RS), LONG=N ,RELEASE=Y 

136 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



PGFIX (List Form) 

The list form of the PGFIX macro instruction uses a virtual subarea list. 

The list form of the PGFIX macro instruction is written as follows: 

name 

tJ 

PGFIX 

tJ 

L 

name:' symbol. Begin name in column 1. 

One or more blanks must precede PGFIX. 

One or more blanks must follow PGFIX. 

,LA=list addr 

,ECB=ecb addr 

,LONG=N 
,LONG=Y 

list addr: A-type address, or register (1) or (2) - (12). 

ecb addr: A-type address, or register (0) or (2) - (12). 

Default: LONG=N 

,RELEASE=N 
,RELEASE=Y 

,RELATED=value 

Default: RELEASE=N 

value: any valid macro keyword specification. 

The parameters are explained under the standard form of the PGFIX macro instruction, with 
the following exceptions: 

L 
specifies that a parameter list is being supplied with this request. 

,LA=list addr 
specifies the address of the first entry of a virtual subarea list. , 

Example 1 

Operation: Fix virtual storage, providing a virtual subarea list addressed by register 5. 

PGFIX L,LA=(R5),ECB=(R6) 

PGFIX (List Fonn) 137 



PGFREE - Free Virtual Storage Contents 

The PGFREE macro instruction makes virtual storage areas that fixed via the PGFIX macro 
instruction eligible for page-out. The PGFREE function is available only to authorized system 
functions and users. 

Note that a fixed page is not considered page able until the number of PGFREEs issued for 
the page is equal to the number of PGFIXes previously issued for that page. That is, a page is 
not automatically removed from real storage as the result of the issuance of a PGFREE macro 
instruction. 

The standard form of the PGFREE macro instruction is written as follows: 

name 

1) 

PGFREE 
1) 

name: symbol. Begin name in column 1. 

One or more blanks must precede PGFREE. 

One or more blanks must follow PGFREE. 

R 

,A =start addr 

,ECB=ecb addr 

,EA=end addr 

start addr: A-type address, or register (1) or (2) - (12). 

ecb addr: A-type address, or register (0) or (2) - (12). 

end addr: A-type address, or register (2) - (12) or (15). 
Default: start addr + 1 

,RELEASE=N 
,RELEASE=Y 

,RELA TED=value 

Default: RELEASE=N 
Note: RELEASE= Y may only be specified with EA above. 

value: any valid macro keyword specification. 

The parameters are explained below: 

R 
specifies that no parameter list is being supplied with this request. 

,A=start addr 
specifies the start address of the virtual area to be freed. 

,ECB =ecb addr 
specifies the address of the ECB that was used in a prior PGFIX request. This parameter is 
used if there is any possibility that the ECB for the previously issued PGFIX was not posted 
complete. 

,EA =end,addr 
specifies the end address + 1 of the virtual area to be freed. 

,RELEASE=N 
,RELEASE=Y 

specifies that the contents of the virtual area is to remain intact (N) or be released (Y). 

,RELATED = value 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The k~IaA TED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 

138 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and EST AE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 
FREE 1 FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1, 'FREE STORAGE') 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 

Meaning 

Operation completed normally. 
04 Operation abnormally terminated. Operation incomplete because of invalid address in 

virtual subarea list entry. 
10 Operation abnormally terminated. Virtual subarea list entry or ECB address invalid. 

Incompatible Parameters 

The following parameters were valid in Release 1 of OS/VS2, but are not supported in MVS: 

ECBIND = address, will probably cause errors. 

Example 1 

Operation: Free the storage in Example 1 of standard-form PGFIX. 

PGFREE R,A=(R3) 

Example 2 

Operation: Free the storage in Example 2 of standard-form PGFIX. 

PGFREE R,A=(R3),EA=(R4) 

Example 3 

Operation: Free the storage in Example 3 of standard-form PGFIX, and forfeit the pages full 
included in the address range. 

PGFREE R,A=(R3),EA=(R4),ECB=(R5),RELEASE=Y 

PGFREE - Free Virtual Storage Contents 139 



PGF'REE (List Form) 

The list form of the PGFREE macro instruction uses a virtual subarea list. 

The list of the PGFREE macro instruction is written as follows: 

name 

b 

PGFREE 

b 

L 

,LA=list addr 

,ECB==ecb addr 

,RELEASE=N 
,RELEASE=Y 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede PGFREE. 

One or more blanks must follow PGFREE. 

list addr: A-type address, or register (1) or (2) - (12). 

ecb addr: A-type address, or register (0) or (2) - (12). 

Default: RELEASE=N 

value: any valid macro keyword specification. 

The parameters are explained under the standard form of the PGFREE macro instruction, with 
the following exceptions: 

L 
specifies that a parameter list is being supplied with this request. 

,LA = list addr 
specifies the address of the first entry of a virtual subarea list. 

Example 1 

Operation: Free the storage in Example 1 of list-form PGFIX. 

PGFREE L,LA=(R5) 

140 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



POST - Signal Event Completion 

The POST macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the ASCB and ERRET parameters. These parameters are 
restricted in use and should only be used with tasks in supervisor state, APF-authorized, or 
with protection key 0-7. 

The syntax of the complete POST macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the POST macro instruction is written as follows: 

name 

b 

POST 

b 

ecb addr 

,comp code 

,ASCB==addr,ERRET=err addr 

,RELA TED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede POST. 

One or more blanks must follow POST. 

ecb addr: RX-type address, or register (2) - (12). 

comp code: symbol, decimal or hexadecimal digit, or register (0) or 
(2) - (12). 
Range of values: 0 - 230_1 
Default: 0 

addr: RX-type address, or register (2) - (12). 
err addr: RX-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instructions. 

,ASCB =addr,ERRET =err addr 
specifies the address of the ASCB of the address space containing the ECB begin posted, and 
the address of the routine to be given control when an error condition resulting from a 
POST failure is detected. 

Example 1 

Operation: Post an event control block whose address is ECB, where the address space 
containing the ECB has an ASCB specified by register 5, and where ERRRTN is the routine to 
be given control on error conditions. 

POST ECB,ASCB=(REG5),ERRET=ERRRTN 

Example 2 

Operation: Post the ECB from example 1 with a hexadecimal completion code of 3FF. 

POST ECB,X'3FF' ,ASCB=(REG5),ERRET=ERRRTN 

POST - Signal Event Completion 141 



POST (List Form) 

The list form of the POST macro instruction is written as follows: 

name 

t:> 

POST 

t:> 

ecb addr 

,ASCB ==addr,ERRET =err addr 

,RELA TED=value 

,MF=L 

name: symbol. Begin name in ~olumn 1. 

One or more blanks must precede POST. 

One or more blanks must follow POST. 

ecb addr: A-type address. 

addr: A-type address. 
err addr: A-type address. 

value: any valid macro keyword specification. 

The parameters are explained under the standard form of the POST macro instruction, with the 
following exceptions: 

,MF=L 
specifies the list form of the POST macro instruction. 

142 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



POST (Execute Form) 

The execute form of the POST macro instruction is written as follows: 

name 

b 

POST 

b 

ecb addr 

,comp code 

,ASCB=addr,ERRET=err addr 

,RELATED=value 

,MF=(E ,prob addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede POST. 

One or more blanks must follow POST. 

ecb addr: RX-type address, or register (2) - (12). 

comp code: symbol, decimal or hexadecimal digit, or register (0) or 
(2) - (12). 
Range of values: 0 - 230_1 

addr: RX-type address, or register (2) - (2). 
err addr: RX-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

prob addr: RX-type address, or register 0) or (2) - (12). 

The parameters are explained under the standard form of the POST macro instruction, with the 
following exceptions: 

,MF = (E ,prob addr) 
specifies the execute form of the POST macro instruction using a remote control program 
parameter list. 

POST (Execute Form) 143 



PURGEDQ - Purge SRD Activity 

The PURGEDQ macro instruction provides the facility for a task to purge particular SRB 
activity. Because an SRB routine is dispatched asynchronously to the actual issuance of a 
SCHEDULE macro ipstruction, the conditions that existed in the system at the time the 
SCHEDULE was issued may have totally changed by the time the routine is dispatched. If, in 
this time interval, the environment that the asynchronous routine requires to run successfully 
has been changed, the results would be unpredictable. For this reason, the PURGEDQ macro 
instruction is available to: 

• Dequeue SRBs not yet dispatched. 
• Dequeue or allow completed processing for SRBs previously scheduled . 
• 'Clean up' each dequeued SRB. 

The standard form of the PURGEDQ macro instruction is written as follows: 

name 

b 

PURGEDQ 

b 

RMTR=RMTR addr 

,ASID=ASID addr 

,ASIDTCB=TCB addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede PURGEDQ. 

One or more blanks must follow PURGEDQ. 

RMTR addr: RX-type address, or register (2) - (12). 

ASID addr: RX-type address, or register (2) - (12). 

TCB addr: RX-type address, or register (2) - (12). 

The parameters are explained below: 

RMTR=RMTR addr 
specifies the address of the resource manager termination routine. 

,ASID =ASID addr 
specifies the address of a halfword containing the address space identifier. PURGEDQ will 
search for SRBs scheduled to be dispatched into the address space specified by ASID. 

,ASIDTCB = TCB addr 
specifies the address of a doubleword in the following format: 

bytes 0-1 Reserved 
bytes 2-3 ASID or zero 
bytes 4-7 TeB address or zero 

Example 1 

Operation: All SRBS scheduled into the current address space and related to the current 
(terminating) task are to be purged by the RMTR routine lEA VRSPG. 

PURGEDQ RMTR:::IEAVRSPG 

144 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



PURGEDQ (List Form) 

The list form of the PURGEDQ macro instruction is used to construct a remote program 
parameter list. 

The list form of the PURGEDQ macro instruction is written as follows: 

name 

b 

PURGEDQ 

b 

RMTR=RMTR addr 

,ASID=ASID addr 

,ASIDTCB=TCB addr 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede PURGEDQ. 

One or more blanks must follow PURGEDQ. 

RMTR addr: A-type address. 

ASID addr: A-type address. 

TCB addr: A-type address. 

The parameters are explained under the standard form of the PURGEDQ macro instruction, 
with the following exceptions: 

,MF=L 
specifies the list form of the PURGEDQ macro instruction. 

PURGEDQ (List Form) 145 



PUltGEDQ (Execute FOlm) 

The execute form of the PURGEDQ macro instruction uses a remote control program parameter 
list. The parameter list is constructed using the list form of PURGEDQ. 

The execute form of the PURGEDQ macro instruction is written as follows: 

name 

b 

PURGEDQ 

b 

RMTR=RMTR addr 

,ASID=ASID add,. 

,ASIDTCB=TCB addr 

,MF=(E, clrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede PURGEDQ. 

One or more blanks must follow PURGEDQ. 

RMTR addr: RX-type address, or register (2) - (12). 

ASID addr: RX-type address, or register (2) - (12). 

TCB addr: RX-type address, or register (2) - (12). 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the PURGEDQ macro instruction, 
with the following exceptions: 

,MF = (E, etrl addr) 
specifies the execute form of the PURGEDQ macro instruction, using a remote control 
program parameter list. 

Example 1 

Operation: All SRBs scheduled into the address space designated by register 6 are to be 
purged by the RMTR routine IEAVRSPG. Register 1 is a pointer to the parameter list, and 
register 7 indicates that all SRBs are to be purged. 

PURGEDQ MF=(E,R1 )),ASID=(R6),ASIDTCB=(R7),RMTR=IEAVRSPG 

146 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



QEDIT - Link to SVC 34 

The QEDIT macro instruction generates the required entry parameters and the linkage to SVC 
34 for the following uses: 

• Dechaining and freeing of a command input buffer (CIB) from the CIB chain for a task. 
• Setting a limit for the number of CIBs that may be simultaneously chained for a task. 

The QEDIT macro instruction is written as follows: 

name 

b 

QEDIT 

b 

ORIGIN=CIB addr plr 

,BLOCK=CIB addr 

,CIBCTR=CIB nmbr 

name: symbol. Begin name in column 1. 

One or more blanks must precede QEDIT. 

One or more blanks must follow QEDIT. 

CIB addr plr: RX-type address, or register (2) - (12). 

CIB addr: RX-type address, or register (2) - (12). 

CIB nmbr: decimal digit, with a maximum value of 255. 

The parameters are explained below: 

ORIGIN ==CIB addr plr 
specifies the address of the pointer to the first CIB chain for the task. This address is 
obtained using the EXTRACT macro instruction. If ORIGIN is the only parameter specified, 
the caller must be executing under system key 0-7; in this case, the entire CIB chain will be 
freed. 

,BLOCK==CIB addr 
specifies the address of the CIB that is to be freed from the CIB chain for a task. 

,CIBCTR==CIB nmbr 
specifies the limit for the number of CIBS to be chained at any time for a task. 

Example 1 

Operation: Free the entire CIB chain, where register 8 contains the address of the pointer to 
the CIB chain. 

QEDIT ORGIN=(8) 

Example 2 

Operation: Free the CIB whose address is in register 5 from the CIB chain. Register 8 contains 
the address of the pointer to the CIB chain. 

QEDIT ORIGIN=(8),BLOCK=(5) 

QEDIT - Link to SVC 34 147 



RESERVE - Reserve a Device 

The RESERVE macro instruction is used to reserve a device for use by a particular system; it 
must be issued by each task needing device reservation. The RESERVE macro instruction 
protects the issuing task from interference by other tasks in the system. If a task issues two 
RESERVE instructions for the same resource without an intervening DEQ an abnormal 
termination will result unless the second RESERVE specifies the keyword parameter RET = or 
ECB=. (If a restart occurs when a RESERVE is in effect for devices, the system will not restore 
the RESERVE; the user's program must reissue the RESERVE.) Even if a DEQ is not issued for a 
particular device, termination routines will release devices reserved by a terminating task. 

To use the shared DASD option in higher level languages, an assembler language subroutine 
should be written to issue the RESERVE macro instruction. The following information should be 
passed to this routine: ddname, qnameaddress, rnameaddress, rnamelength, and RET parameter. 

The standard form of the RESERVE macro instruction is written as follows: 

name 

t> 

RESERVE 

t> 

qname addr 

,rname addr 

, 
,E 
,S 

,rname length 

,SYSTEMS 

,RET=TEST 
,RET=USE 
,RET=HAVE 

,ECB=ecb addr 

,UCB=ucb addr 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede RESERVE. 

One or more blanks must follow RESERVE. 

qname addr: A-type address, or register (2) - (12). 

rname addr: A-type address, or register (2) - (12). 

Default: E 

rname length: symbol, decimal digit, or register (2) - (12). 

ecb addr: A-type address, or register (2) - (12). 

ucb addr: A-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

The parameters are explained below: 

specifies the beginning of the resource description. 

qname addr 
specifies the address in virtual storage of an 8-character name. The name should not start 
with SYS, so that it will not conflict with system names. Every task issuing RESERVE against 
the same resource must use the same qname and rna me to represent the resource. 

,rname addr 
specifies the address in virtual storage of the name used in conjunction with qname to 
represent a single resource. The name can be qualified, and must be from 1 to 255 bytes 
long. 

148 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



,E 
,S 

specifies whether the request is for exclusive (E) or shared (8) control of the resource. If 
the resource is modified while under control of the task, the request must be for exclusive 
control; if the resource is not modified, the request should be for shared control. 

,rname length 
specifies the length of the rname described above. If this parameter is omitted, the 
assembled length of the rname is used. You can specify a value between 1 to 255 to 
override the assembled length, or you may specify a value of O. If 0 is specified, the length 
of the rname must be contained in the first byte at the rname addr specified above. 

,SYSTEMS 
specifies that the resource is shared between systems. 

specifies the end of the resource description. 

,RET = TEST 
,RET=USE 
,RET = HAVE 

specifies a conditional request for all the resources name above. 

RET == TEST the availability of the resources is to be tested, but control of the resources is 
not requested. 

RET = USE control of the resources is to be assigned to the active task only if the resource 
are immediately available. 

RET = HAVE control of the resources is requested only if a request has not been made 
previously for the same task. 

,ECB =ecb addr 
specifies the address of an ECB, and conditionally requests the resource named in the macro 
instruction. 

,UCB =ucb addr 
specifies the address of a fullword that contains the address of the UCB for the device to be 
reserved. 

,RELATED = value 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 
instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and EST AE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 
FREE1 FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1,'FREE STORAGE') 

RESERVE - Reserve a Device 149 



Return codes are provided by the control program only if you specify RET = TEST, RET = USE, 

RET=HAVE, or ECB=; otherwise, return of the task to the active condition indicates that 
control of the resource has been assigned to the task. If return code for the resource named in 
the RESERVE macro instruction is 0, register 15 contains 0. If the return code is not 0, register 
15 contains the address of a storage area containing the return codes, as shown in Figure 23. 

Address 
Returned in 
Register 15 

12 

24 

36 
".. -

2 3 

Return 
Codes 

RC 1 

RC 2 

RC 3 

A 

4 

~ 

12 

Return codes are 
12 bytes apart, 
starting 3 bytes 
from the address 
in register 15. 

Figure 23. Return Code Area Used by RESERVE 

The return code is placed in the parameter list resulting from the macro expansion. The 
return codes are shown below. 

Hexadecimal 
Code 

o 

4 

8 

20 

Example 1 

Meaning 

For RET=TEST, the resource was immediately available. 
For RET=USE,RET=HAVE, or ECB=, control of the resource has been assigned to 
the active task. 
For RET=TEST or RET=USE, the resource is not immediately available. 
For ECB=, the ECB will be posted when available. 
A previous request for control of the same resource has been made for the same task. 
Task has control of resource. If bit 3 is on - shared control of resource; if bit 3 is off 
- exclusive control. 
A previous request for control of the same resource has been made for the same task. 
Task does not have control of resource. 

Operation: Unconditionally reserve exclusive control of a device. The length of the rname is 
allowed to default. 

RESERVE (MAJOR3,MINOR3,E"SYSTEMS),UCB=(R3) 

150 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



RESERVE (List Form) 

The list form of the RESERVE macro is written as follows: 

name 

b 

RESERVE 

b 

qname addr 

,mame addr 

, 
,E 
,S 

,mame length 

, 
,SYSTEMS 

,RET=TEST 
,RET=USE 
,RET=HAVE 

,ECB=ecb addr 

,UCB=O 

,RELATED=value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede RESERVE. 

One or more blanks must follow RESERVE. 

qname addr: A-type address. 

mame addr: A-type address. 

mame length: symbol or decimal digit. 
Note: mame length must be coded if a register is specified for 
mame addr above. 

ecb addr: A-type address. 

value: any valid macro keyword specification. 

The parameters are explained under the standard form of the RESERVE macro instruction, with 
the following exceptions: 

,MF=L 
specifies the list form of the RESERVE macro instruction. 

RESERVE (List Form) 151 



RESERVE (Execute Forni) 

The execute form of the RESERVE macro instruction is written as follows: 

name 

b 

RESERVE 

b 

qname addr 

,mame addr 

, 
,E 
,S 

,rname length 

, 
,SYSTEMS 

,RET=TEST 
,RET=USE 
,RET=HAVE 

,ECB=ecb addr 

,UCB=ucb addr 

,RELATED=value 

,MF=(E, ctrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede RESERVE. 

One or more blanks must follow RESERVE. 

Note: ( and ) are the beginning and end of a parameter list. The 
entire list is optional. If nothing in the list is desired, the (, ), and 
all parameters between ( and ) should not be specified. If something 
in the list is desired, then (, ), and all parameters in the list should 
be specified as indicated at the left. 

qname addr: RX-type address, or register (2) - (12). 

mame addr: RX-type address, or register (2) - (12). 

mame length: symbol, decimal digit, or register (2) - (12). 

ecb addr: RX-type address, or register (2) - (12). 

ucb addr: RX-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the RESERVE macro instruction, with 
the following exceptions: 

,MF = (E, etrl addr) 
specifies the execute form of the RESERVE macro instruction using a remote control 
program parameter list. 

152 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



RISGNL - Issue Remote Immediate Signal 

The RISGNL macro instruction uses the emergency signal (ES) function of the signal processor 
(SIGP) instruction to invoke the execution of a specified software program on one of the CPUs 
in a tightly coupled multiprocessing system. The program may be requested to execute in 
parallel or serially with the function requesting the program. 

Ten of the twelve SIGP hardware functions are defined as direct services and are accessible 
via the DSGNL macro instruction. The other SIGP function is accessible via the RPSGNL macro 
instruction. 

The RISGNL macro instruction is written as follows: 

name 

b 

RISGNL 

b 

PARALLEL 
SERIAL 

,CPU=PCCA addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede RISGNL. 

One or more blanks must follow RISGNL. 

PCCA addr: RX-type address, or register 0). 

,EP=entry name addr 

,PARM=parm addr 

entry name addr: RX-type address, or register (12). 

parm addr: RX-type address, or register (11). 

The parameters are explained below: 

PARALLEL 
SERIAL 

specifies that control is to be returned to the caller when the specified receiving routine has 
been given control (PARALLEL) or has completed execution (SERIAL) on the designated 
cpu. 

,CPU =PCCA addr 
specifies the address of the physical configuration communication area (PCCA) of the cpu 
on which the function is to be performed. 

,EP =entry name addr 
specifies the address of the entry name of the receiving routine to be executed on the 
specified cpu. 

,PARM =parm addr 
specifies the address of a user-defined fullword parameter to be passed to the receiving 
routine. 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 

04 
08 

12 

16 

20 

Meaning 

Specified receiving routine has been given control or has completed execution, as 
requested. 
Function not initiated because addressed CPU not online. 
Function unsuccessful. Emergency signal could not be generated on CPU. Status 
returned in register o. 
Function unsuccessful. Specified CPU is either not installed, not configured into 
system, or powered off. 
CPU is a uniprocessor and does not have signal processor sending and receiving 
capabilities. 
CPU alive bit was turned off during the remote immediated window spin routine. 

RISGNL - Issue Remote Immediate Signal 153 



With a return code of 8, register 0 contains: 

Bits 

o 
1-24 
25 
26 
27 
28 
29 
30 
31 

Example 1 

Meaning 

Equipment check 
Reserved 
Stopped 
Operator intervening 
Check stop 
Not ready 
Reserved 
Invalid function 
Receiver check 

Operation: The routine whose address is in register 12 is to be given control on the CPU 

whose PCCA address is in register 1. The routine will execute in parallel with the caller who 
invoked RISGNL. 

RISGNL PARALLEL,CPU=(1 ),EP=(12) 

Example 2 

Operation: The routine whose address is in register 12 is to be given control on the CPU 

whose PCCA address is· in register 1. The routine will complete before the caller of RISGNL 

receives control again. Register 11 will contain the address of a parameter to be passed. 

RISGNL SERIAL,CPU=(1 ),EP=(12),PARM=(11) 

154 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



RPSGNL - Issue Remote Pendable Signal 

The RPSGNL macro instruction uses the external call (EC) function of the signal processor 
(SIGP) instruction to invoke the execution of one of six software programs on one of the CPus 
in a tightly coupled multiprocessing system. 

Ten of the twelve SIGP hardware functions are defined as direct services and are accessible 
via the DSGNL macro instruction. The other SIGP function is accessible via the RISGNL macro 
instruction. 

The RPSGNL macro instruction is written as follows: 

name 

b 

RPSGNL 

b 

name: symbol. Begin name in column 1. 

One or more blanks must precede RPSGNL. 

One or more blanks must follow RPSGNL. 

SWITCH 
SIO 
RQCHECK 
GTFCRM 
MODE 
MFITCH 

,CPU =PCCA addr PCCA addr: RX-type address, or register (1). 

The parameters are explained below: 

SWITCH 
SIO 
RQCHECK 
GTFCRM 
MODE 
MFITCH 

specifies the action to be performed: 

SWITCH Memory/task switch function 

SIO lOS start I/O function 

RQCHECK Timer supervision TQE check function, to ensure that TQE in real time queue is 
being timed. 

GTFCRM GTF function, to modify monitor call control registers 

MODE RMS function, to modify RMS-oriented control registers 

MFI TCH MFl function, to issue TCH instructions on CPU to which channels are attached. 

,CPU ==PCCA addr 
specifies the address of the physical configuration communication area (PCCA) of the CPU 
on which the function is to be executed. 

RPSGNL - Issue Remote Pendable Signal ISS 



When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 

04 
08 

12 
16 

Meaning 

Specified CPU is online and has been notified that the specified service is to be 
executed. 
Function not initiated because addressed CPU not online. 
Function unsuccessful. External call signal could not be generated on CPU. Status 
returned in register O. 
Specified CPU is either not installed, not configured into system, or powered off. 
CPU is a uniprocessor and does not have signal processor sending and receiving 
capabilities. 

With a return code of 8, register 0 contains: 

Bits 

o 
1-25 
26 
27 
28 
29-30 
31 

Example 1 

Meaning 

Equipment check 
Reserved 
Operator intervening 
Check stop 
Not ready 
Reserved 
Receiver check 

Operation: The service routine of memory switch is to be given control on the CPU whose 
PCCA address is in register 1. 

RPSGNL SWITCH,CPU=(1) 

Example 2 

Operation: The lOS start I/O routine is to be given control on the CPU whose PCCA address is 
in register 1. 

RPSGNL SIO,CPU=( 1 ) 

156 OS/VS2 System Prograll!l1!ing Library: Supervisor (VS2 Release 3) 



SCHEDULE - Schedule System Services for Asynchronous Execution 

The SCHEDULE macro instruction schedules system services for asynchronous execution. These 
services may be scheduled for execution in any address space and may be scheduled at either 
global or local priorities. 

Services scheduled at a global priority will have a priority that is greater than, and 
independent of, any address space priority. Services scheduled at a local priority will have the' 
priority of the specific address space they execute in, but will still have a priority greater than 
that of any task within the address space. 

The SCHEDULE macro instruction is written as follows: 

name 

b 

SCHEDULE 

b 

SRB==SRB addr 

,SCOPE=LOCAL 
,SCOPE=GLOBAL 

name: symbol. Begin name in column 1. 

One or more blanks must precede SCHEDULE. 

One or more blanks must follow SCHEDULE. 

SRB addr: RX-type address, or register (1) or (2) - (12). 

Default: SCOPE=LOCAL. 

The parameters are explained below: 

SRB=SRB addr 
specifies the address of the service request block (SRB). 

,SCOPE = LOCAL 
,SCOPE = GLOBAL 

specifies whether the service is to be scheduled at a local or global priority. 

Example 1 

Operation: Schedule an SRB at a global priority. 

SCHEDULE SRB=(1 ),SCOPE=GLOBAL 

Example 2 

Operation: Schedule an 'SRB at a local priority. 

SCHEDULE SRB=( 1 ),SCOPE=LOCAL 

SCHEDULE - Schedule System Services for Asynchronous Execution 157 



SDUMP - Dump Virtual Storage 

The SDUMP macro instruction provides a dumping capability for the system routines. It invokes 
SVC DUMP to provide a fast unformatted dump of virtual storage to a data set. It is intended 
to be used by system routines that suffer errors. 

SVC DUMP is available only to authorized programs. Issuers of SDUMP with entry by SVC 

must be authorized via APF or have a control program key. Branch entry callers must be key 
0, supervisor state, and must be in SRB mode, or own a lock, or be disabled (with supervisor 
bit on). 

The service of initiating an SVC DUMP in any address space is provided for caners who. need 
to dump an address space other than the one in which they are running. A branch entry to this 
service is also provided for callers who wish a dump of their own or another address space but 
cannot issue an SVC. 

The standard form of the SDUMP macro instruction is written as follows: 

name 

b 

SDUMP 

b 

HDR='dump title 
HDRAD=dump title addr 

,DCB=dcb addr 

,ASID=ASID addr 

,ECB=ecb addr 

,SDATA=(data code) 

name: symbol. Begin name in column 1. 

One or more blanks must follow SDUMP. 

One or more blanks must follow SDUMP. 

dump title: from 1 to 100 characters. 
dump title addr: A-type address, or register (2) - (12). 

dcb addr: A-type address, or register (2) - (12). 

ASID addr: A-type address, or register (2) .. (12). 

ecb addr: A-type address, or register (2) - (12). 

data code: any combination of the following, separated by 
commas: 

SQA RGN 
ALLPSA LPA 
PSA TRT 
NUC CSA 
LSQA SWA 

,STORAGE=(strt addr,end addr) strt addr: A-type address, or register (2) - (12). 
,LIST=/ist addr end addr: A-type address, or register (2) - (12). 

list addr: A-type address, or register (2) - (12). 
Note: One or more pairs of addresses may be specified, separated 
by commas. For example: 
,STORAGE=(strt addr,end addr,strt addr,end addr) 

,BUFFER=NO Default: BUFFER=NO 
,BUFFER= YES 

,QUIESCE=YES Default: QUIESCE=YES 
,QUIESCE=NO 

,BRANCH=NO Default: BRANCH=NO 
,BRANCH=YES Note: If BRANCH is specified, ASID must also be specified. 

158 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



The parameters are explained below: 

HDR = <dump title' 
HDRAD =dump title addr 

specifies the title or address of the title to be used for the dump. If HDR is specified, the 
title must appear enclosed in apostrophes, although the apostrophes do not appear in the 
actual title. If HDRAD is specified, the first byte at the indicated address specifies the length 
of the title in bytes. 

,DCB=dcb addr 
specifies the address of a previously opened data control block for the data set that is to 
contain the dump. If this parameter is omitted, one of the SYS1.DUMP data sets will be used. 

,ASID =ASID addr 
specifies the address of a half word containing the address space identifier of the address 
space to be dumped. If this parameter is omitted, the current address space will be dumped. 
If 0 is specified, the dump is scheduled in the current address space. 

,ECB =ecb addr 
specifies the address of a fullword containing the address of an event control block that is 
posted on completion of a scheduled dump. If this parameter is omitted, the caller is not 
notified of the completion of the scheduled dump. 

,SDATA=(data code) 
specifies the system control program information to be dumped: 

SQA - The system queue area. 
ALLPSA - All of the prefixed storage areas in the system. 
PSA - The prefixed storage area for the current cpu. 
NUC - The nucleus. 
LSQA - The local system queue area for the address space being dumped. 
RGN - The allocated pages in the private area of the address space being dumped. This 
includes the LSQA and the sw A. 

LPA - The active link pack area modules and SVCS for the address space being dumped. 
TRT - The GTF trace buffers if GTF tracing is active, or the supervisor trace table if it is 
not active. If a dump occurs in a GTF address space, no attempt will be made to include 
trace information. 
CSA - The common service area subpools. 
SW A - The scheduler work area subpools in the address space being dumped. 

,STORAGE=(strt addr,end addr) 
,LIST = list addr 

specifies one or more pairs of starting and ending address or a list of starting and ending 
addresses of areas to be dumped. (Each starting address must be less than its corresponding 
ending address.) The storage list must contain an even number of addresses, and each 
address must occupy one fullword. In the list, the high order bit of the fullword containing 
the last ending address of the list must be set to 1; all other high order bits must be set to 
o. 

,BUFFER = NO 
,BUFFER = YES 

specifies that the contents of the SQA buffer is (YES) or is not (NO) to be included in the 
dump. (The SQA buffer does not include the SDUMP parameter list or any data pointed to 
by the parameter list.) 

SDUMP - Dump Virtual Storage 159 



,QUIESCE - YES 
,QUIESCE - NO 

specifies that the system is to be set nondispatchable until the contents of the SQA and the 
CSA are dumped (YES), or that the system is to be left dispatchable (NO). If SDATA 

parameter does not specify SQA or CSA, the QUIESCE= YES request is ignored. 

,BRANCH-NO 
,BRANCH-YES 

specifies that a branch entry is to be used for interfacing with SVC DUMP to schedule a 
dump (YES), or that an SVC 51 instruction is to be generated for interfacing with SVC 
DUMP. This parameter can only be used by key 0, supervisor state routines that are in SRB 

mode, locked, or disabled to schedule a dump. 

If the ASID parameter was not specified, register 15 contains one of the following return 
codes when control is returned: 

Hexadecimal 
Code 
00 
04 
08 

Meaning 
A complete dump was taken. 
A partial dump was taken. 
The system was unable to take a dump. 

If the ASID parameter was specified, register 15 contains one of the following return codes 
when control is returned: 

Hexadecimal 
Code 
00 

08 

Meaning 
A dump was scheduled. If an ECB was supplied, it will be posted on completion of the 
dump. 
The system was unable to schedule a ,dump. 

If an ECB was supplied, one of the following codes is returned: 

Hexadecimal 
Code 
00 
04 
08 

Example 1 

Meaning 
A complete dump was taken. 
A partial dump was taken. 
The system was unable to take a dump. 

Operation: This example shows how SVC DUMP may be branch entered to initiate a dump in 
an address space for callers who cannot issue an SVC. Areas to be dumped are requested via 
three parameters (BUFFER, SDATA, and STORAGE). The dump will have the title indicated in 
the HDR parameter, and the caller requests to be notified of the completion of the scheduled 
dump via the ECB parameter. 

SDUMP HDR='USER DATA FOR TEST A' ,DCB=TESTADCB,BUFFER=YES, 
ASID=TSTAASID,ECB=(8),QUIESCE=YES,BRANCH=YES, 
STORAGE=(A,B,C,D,(9),E),SDATA=(ALLPSA,PSA,NUC,SQA,LSQA, 
RGN,LPA,SWA,CSA) 

160 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



SDUMP (List Form) 

Use the list form of the SDUMP macro instruction to construct a control program parameter 
list. You can specify any number of storage addresses using the STORAGE parameter. 
Therefore, the number of starting and ending address pairs in the list form of SDUMP must be 
equal to the maximum number of addresses specified in the execute form of the macro 
instruction. 

The list form of the SDUMP macro instruction is written as follows: 

name 

b 

SDUMP 

b 

HDR='dump title' 
,HDRAD=dump title addr 

,DCB=dcb addr 

,SDATA=(data code) 

,STORAGE=(strt addr,end addr) 
,LIST ==list addr 

,BUFFER=NO 
,BUFFER= YES 

,QUIESCE=YES 
,QUIESCE=NO 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede SDUMP. 

One or more blanks must follow SDUMP. 

dump title: from 1 to 100 characters. 
dump title addr: A-type address. 

dcb addr: A-type address. 

data code: any combination of the following, separated by 
commas: 

SQA RGN 
ALLPSA LPA 
PSA TRT 
NUC CSA 
LSQA SWA 

strt addr: A-type address. 
end addr: A-type address. 
Note: One or more pairs of addresses may be specified, separated 
by commas. For example: 
,STORAGE=(strt addr,end addr,strt addr,end addr) 

Default: BUFFER=NO 

Default: QUIESCE= YES 

The parameters are explained under the standard form of the SDUMP macro instruction, with 
the following exceptions: 

,MF=L 
specifies the list form of the SDUMP macro instruction. 

SDUMP (List Form) 161 



SDUMP (Execute Form) 

A remote control program parameter list is referred to and can be modified by the execute 
form of the SDUMP macro instruction. 

If you code one or more of the SDAT A parameters on the execute form of the macro 
instruction, any SDATA parameters coded on the list form will be lost. 

The execute form of the SDUMP macro instruction is written as follows: 

name 

b 

SDUMP 

HDR='dump title' 
HDRAD=dump title addr 

,DCB=dcb addr 

,ASID==ASID addr 

,ECB=ecb addr 

,SDATA==(data code) 

,STORAGE=(strt addr,end addr) 
,LIST-list addr 

,BUFFER=NO 
,BUFFER= YES 

,QUIESCE= YES 
,QUIESCE=NO 

,BRANCH=NO 
,BRANCH= YES 

,MF=(E, ctrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede SDUMP. 

One or more blanks must follow SDUMP. 

dump title: from 1 to 100 characters. 
dump title addr: RX-type address, or register (2) - (12). 

dcb addr: RX-type address, or register (2) - (12). 

ASID addr: RX-type address, or register (2) - (12). 

ecb addr: RX-type address, or register (2) - (12). 

data code: any combination of the following, separated by 
commas: 

SQA RGN 
ALLPSA LPA 
PSA TRT 
NUC CSA 
LSQA SWA 

strt addr: RX-type address, or register (2) - (12). 
end addr: RX-type address, or register (2) - (12). 
list addr: RX-type address, or register (2) - (12). 
Note: One or more pairs of addresses may be specified, separated 
by commas. For example: 
,STORAGE==(strt addr,end addr,strt addr,end addr) 

Note: If BRANCH is specified, ASID must also be specified. 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the SDUMP macro instruction, with 
the following exceptions: 

,MF = (E, etrl addr) 
specifies the execute form of the SDUMP macro instruction using a remote control program 
parameter list. 

162 OS/VS2 System Programming Library: Supervisor (VS2 Release.J) 



Example 1 

Operation: The execute form is used to add (SDATA areas) and change (BUFFER and 
QUIESCE) options in the SDUMP parameter list. The list form of SDUMP was previously used to 
create the basic SDUMP parameter list located by register 1. 

SDUMP SDATA=(SQA,LPA),BUFFER=NO,QUIESCE=NO,MF=(E,( 1)) 

SDUMP (Execute Form) 163 



SETFRR - Set Up Functional Recovery Routines 

The SETFRR macro instruction provides control program functions with the ability to define 
their recovery in the FRR (functional recovery routine) LIFO stack which is used during 
processing of the system recovery manager. Each branch-entered control program function can 
use SETFRR to define its own unique recovery environment. 

The SETFRR macro instruction can be used to add, delete, or replace FRRs in the LIFO 
stack, or to purge all FRRS in the stack. The macro instruction also optionally returns to the 
user the address of a parameter area that is eventually passed to the FRR when an error 
occurs. The parameter area can be initialized with information such as tracking data that may 
be useful to the FRR. 

SETFRR has no external linkages and expands directly inline. Users of SETFRR must be key 
o supervisor state and must hold a lock or be in SRB mode. 

The SETFRR macro instruction is written as follows: 

name 

b 

SETFRR 

b 

A,FRRAD=FRR addr 
R,FRRAD=FRR addr 
D 
P 

,WRKREGS=(regl,reg2) 

,PARMAD=j1arm area addr 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede SETFRR. 

One or more blanks must follow SETFRR. 

FRR addr: A-type address, or register (2) - (12). 

regl: decimal digits 1-15. 
reg2: decimal digits 1-15. 

parm area addr: A-type address, or register (2) - (12). 
Note: This parameter may only be specified with A or R above. 

value: any valid macro keyword specification. 

The explanation of the parameter is as follows: 

A,FRRAD-FRRAD addr 
R,FRRAD -FRRAD addr 
D 
p 

specifies the operation to be performed on the FRR LIFO stack: 
A - an FRR address is to be added to the stack. 
R - the FRR address last added to the stack is to be replaced by another FRR address. 
D - the FRR address last added to the stack is to be deleted. 
P - all entries in the stack are to be purged. 
FRRAD specifies the address of a fullword containing the FRR address that is to be added 
or replaced. The parameter specifies the FRR address in a register or specifies the address 
of a storage location containing the FRR address. 

,WRKREGS -(regl,reg2) 
specifies two unique general purpose registers to be used as work registers in the code 
generated by the SETFRR macro expansion. 

164 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



,PARMAD ==parm area addr 
specifies the address of a fullword containing the address of where the parameter area is to 
be placed after the FRR address has either been added to the stack or has replaced an FRR 

address on the stack. The parameter area is a 24-byte area that is eventually passed to the 
FRR when an error occurs. 

,RELATED == value 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 
instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 

FREE 1 FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1,'FREE STORAGE') 

Example 1 

Operation: Add an FRR to the FRR stack, and return the address of the parameter list to the 
issuer of the SETFRR. The FRR address contained in register (Rl) is placed on the FRR stack in 
the next available FRR entry. Register (R2) will contain the address of the parameter list 
associated with this FRR entry. Registers R3 and R4 are work registers used in the code 
generated by SETFRR in performing its operations. 

SETFRR A,FRRAD=(R1 ),PARMAD=(R2),WRKREGS=(R3,R4) 

Example 2 

Operation: Delete the last FRR added to the FRR stack. 

SETFRR D,WRKREGS=(1,6) 

SETFRR - Set Up Functional Recovery Routines 165 



SETLOCK - Control Access to Serially Reusable Resources 

The SETLOCK macro instruction is used to control access to serially reusable resources. Each 
kind of serially reusable resource is assigned a separate lock. To use SETLOCK, you must be 
executing in supervisor state with protection key O. 

SETLOCK can be used to: 

• Obtain a specified lock or set of locks. 
• Release a specified lock or set of locks. 
• Test a specified lock or set of locks to determine if the lock is held by the requesting 

cpu. 

Two classes of locks exist: global and local. Two types of locks exist: spin and suspend. The 
descriptions of these locks and the hierarchy structure in which these locks are arranged are 
described under locking in this publication. 

The OBTAIN option of SETLOCK macro instruction is written as follows: 

name 

b 

SETLOCK 

b 

OBTAIN 

,TYPE=IOSCAT,ADDR=(t 1) 
,TYPE=IOSUCB,ADDR=(1l) 
,TYPE=IOSLCH,ADDR=(1l) 
,TYPE=IOSYNCH,ADDR=( 11) 
,TYPE=ASM,ADDR=(11) 
,TYPE=DISP 
,TYPE=SALLOC 
,TYPE=SRM 
,TYPE=CMS 
,TYPE=LOCAL 

,MODE=COND 
,MODE= UNCOND 
,MODE= UNCOND,DISABLED 

,REGS=SAVE 
,REGS=USE 

,RELA TED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede SETLOCK. 

One or more blanks must follow SETLOCK. 

Note: DISABLED may not be specified if TYPE=CMS or 
TYPE=LOCAL is specified above. 

value: any valid macro keyword specification. 

The parameters are explained below: 

OBTAIN 
specifies that the lockword is to be obtained or locked on the caller's behalf. 

166 OS/VS2System Programming Library: Supervisor (VS2 Release 3) 



,TYPE == IOSCAT,ADDR- (11) 
,TYPE == IOSUCB,ADDR = (11) 
,TYPE- IOSLCH,ADDR- (11) 
,TYPE == IOSYNCH,ADDR - (11) 
,TYPE == ASM,ADDR == (11) 
,TYPE-DISP 
,TYPE == SALLOC 
,TYPE-SRM 
,TYPE-CMS 
,TYPE - LOCAL 

specifies the type of lock that is to be obtained on the caller's behalf. 

ADDR == (11) specifies that the address of the lockword indicated by the TYPE parameter has 
been loaded into register 11 prior to the SETLOCK request. 

IOSCAT lOS channel availability table lock. It is a global spin lock used by lOS to serialize 
access and updates to the channel availability table. 

IOSUCB lOS unit control block lock. These locks (one per UCB) are global spin locks used 
to serialize access and updates to UCBS. 

IOSLCH lOS logical channel queue lock. These locks (one per channel queue) are glocal 
spin locks used to serialize access and updates to the lOS logical channel queues. 

IOSYNCH lOS synchronization lock. It is a global spin lock used to serialize the global lOS 
functions. 

ASM Auxiliary storage manager lock. It is a global spin lock used to serialize use of the 
\ global ASM control blocks. 

DISP Global dispatcher lock. It is a global spin lock used to serialize all functions 
associated with the dispatching of storage. 

SALLOC Real storage manager and virtual storage manager space allocation lock. It is a 
global spin lock used to serialize the global functions of RSM and VSM. 

SRM Systems resource manager lock. It is a global spin lock used to serialize use of the 
SRM control algorithms and associated data. 

CMS Cross memory services lock. It is a global suspend lock used to serialize on more than 
one virtual storage where this serialization is not provided by one or more of the global 
locks. 

LOCAL Storage in which lock of the storage the SETLOCK caller is executing. It is a local 
suspend lock used by supervisor functions which require serialization within that. .. 
particular storage only. 

,MODE-COND 
,MODE - UNCOND 
,MODE == UNCOND,DISABLED 

specifies whether the lock is to be conditionally or unconditionally obtained. 

COND specifies that the lock is to be conditionally obtained. That is, if the lock is not 
owned by another CPU, it will be acquired on the caller's behalf. If the lock is already 
held, control will be returned to the caller indicating that the lock is held and that either 
the caller already owns the lock or that another CPU or storage owns the lock. 

SETLOCK - Control Access to Serially Reusable Resources 167 



UNCOND specifies that the lock is to be unconditionally obtained. That is, if the lock is not 
owned by another CPu, it will be acquired on the caller's behalf. If the lock is already 
held by the caller, control will be returned to the caller indicating that he already owns 
the lock. If the lock is held by another CPu, the caller's CPU will either spin on the lock 
until it is released or suspend the SETLOCK caller until the lock is released. 

DISABLED specifies that the caller is already in a physically disabled state. 

,REGS = SAVE 
,REGS = USE 

specifies the use of registers 11 through 1. 

SAVE specifics that register contents are to be saved. Registers 11 through 14 will be saved 
in t he area pointed to by register 13, and will be restored upon completion of the 
SETLOCK request. The savearea will consist of at least 5 words. Register 15 will contain 
the return code. 

USE specifies that registers 14, 15, 0, and 1 are available for use. Registers 11, 12, and 13 
will be saved in registers 15, 0, and 1, respectively, and will be restored upon completion 
of the SETLOCK request. Register 14 will be used as a link register; register 15 will 
contain the return code. 

Note: If neither SAVE nor USE is specified, registers 11-14 are destroyed and register 13 
contain the return code. 

,RELATED = value 
specifits information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 
instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GETl GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 

FREEl FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1,'FREE STORAGE') 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 

04 
08 

Example 1 

Meaning 

The lock was successfully obtained. The lock was free and is now held on the caller's 
behalf. 
The lock was already held by the caller. The lockword id matches the caller's id. 
The obtain process was unsuccessful. The lockword id does not match the caller's id. 

Operation: The global dispatcher lock DISP is to be conditionally requested. The RELATED 

parameter indicates that the DISP lock serializes the TCB resource, and the lock will either be 
freed at the location represented by NAME or SYMI in module IEFVHA or by SYM2 in module 
IEFVFA. 

SETLOCK OBTAIN,TYPE=DISP,MODE=COND,RELATED=(TCB,IEFVHA(NAME, 
SYMl ),IEFVFA(SYM2)) 

168 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



The RELEASE option of the SETLOCK macro instruction is written as follows: 

name 

1) 

SETLOCK 

1) 

RELEASE 

,TYPE=IOSCAT,ADDR=(t 1) 
,TYPE=IOSUCB,ADDR=(t 1) 
,TYPE=IOSLCH,ADDR=(ll) 
,TYPE=IOSYNCH,ADDR=(t 1) 
,TYPE=ASM,ADDR=(t 1) 
,TYPE=DISP 
,TYPE=SALLOC 
,TYPE=SRM 
,TYPE=CMS 
,TYPE=LOCAL 
,TYPE=SPIN 
,TYPE=ALL 
, TYPE=(reg) 

,DISABLED 

,REGS=SAVE 
,REGS=USE 

,RELATED=va[ue 

, name: symbol. Begin name in column 1. 

One or more blanks must precede SETLOCK. 

One or more blanks must follow SETLOCK. 

reg: decimal digit 2 - 10. 

Note: DISABLED may not be specified if TYPE=CMS or 
TYPE=LOCAL is specified above. 

value: any valid macro keyword specification. 

The parameters are explained under the OBTAIN option of the SETLOCK macro instruction, 
with the following exceptions: 

RELEASE 
specifies that the lockword is to be released. 

,TYPE = SPIN 
,TYPE = ALL 
,TYPE = (reg) 

specifies the type of lock that is to be released. 

SPIN All spin locks currently held by the CPU are to be released. 

ALL All locks currently held by the CPU are to be released. 

(reg) The specified register contains a bit string identifying the locks to be released. A 
value of 1 indicates that the lock held is to be released; a value of 0 indicates that the 
status of the lock will not change. The bit meanings are: 

Bit 19 DISP 

Bit 20 ASM 
Bit 21 SALLOC 
Bit 22 IOSYNCH 

Bit 23 IOSCAT 

Bit 24 IOSUCB 

Bit 25 IOSLCH 

Bit 26 Reserved 
Bit 27 Reserved 
Bit 28 Reserved 
Bit 29 SRM 

Bit 30 CMS 
Bit 31 LOCAL 

SETLOCK - Control Access to SeriaUy Reusable Resources 169 



.DISABLED 
specifies that control is to be returned to the caller with the CPU in a physically disabled 
state (except for machine check) when a lock is successfully released. This form should be 
used only by those routines which do not have the disabled supervisor indicator on when 
they are executing and which, upon release of a global spin lock, must remain physically 
disabled due to noninterruptibility or no recursion restraints. 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 
08 

Meaning 

The lock was successfully released. 
The lock was not owned. The lock was free when the release request was issued. 
The release process was unsuccessful. The lockword id does not match the caller's id. 

Note: No return codes are supported for multiple releases. That is, return code register 
contents are unpredictable. 

Example 1 

Operation: The local lock is requested to be released. 

SETLOCK RELEASE,TYPE=LOCAL,RELATED=(TCBRQ,MOD1(NAME1), 
MOD2 ( NAME2 ) ) 

Example 2 

Operation: The IOSUCB lock whose address is in register 11 is requested to be released. 

SETLOCK RELEASE,TYPE=IOSUCB,ADDR=(11 ),RELATED=(AXYZ,MOD1(LABEL)) 

170 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



The TEST option of the SETLOCK macro instruction is written as follows: 

name 

b 

SETLOCK 

b 

TEST 

,TYPE=IOSCAT 
,TYPE=IOSUCB 
,TYPE=IOSLCH 
, TYPE=IOSYNCH 
,TYPE=ASM 
,TYPE=DISP 
,TYPE=SALLOC 
,TYPE=SRM 
,TYPE=CMS 
,TYPE=LOCAL 
,TYPE=SPIN 
,TYPE=ALL 
,TYPE==(reg) 

,ADDR==(reg) 

,BRANCH=(HELD,addr) 
,BRANCH= (NOTHELD, addr) 

,REGS==(reg) 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede SETLOCK. 

One or more blanks must follow SETLOCK. 

reg: decimal digit 2 - 12 

reg: decimal digit 2 - 12 
Note: ADDR may not be specified if any of the following was 
specified above: 

TYPE=DISP 
TYPE=SALLOC 
TYPE=SRM 
TYPE=CMS 

addr: RX-type address. 

reg: decimal digit 2 - 12. 

TYPE=LOCAL 
TYPE=SPIN 
TYPE=ALL 
TYPE=(reg) 

Note: REGS may only be specified if any of the following was 
specified above: 

TYPE=SPIN TYPE=ALL TYPE=(reg) 

value: any valid macro keyword specification. 

The parameters are explained under the OBTAIN or RELEASE option of the SETLOCK macro 
instruction, with the following exceptions: 

TEST 
specifies that the lockword is to be checked to determine if it is currently held by the 
requesting CPU. 

,BRANCH = (HELD,addr) 
,BRANCH = (NOTHELD,addr) 

specifies that the return code setting output of the macro instruction is to be suppressed and 
replaced by a direct branch to the specified address. 

If HELD is specified, the address will be branched to if the specified lock, or at least one 
lock for TYPE=ALL or TYPE=SPIN, or all the specified locks for TYPE=(reg) are held by the 
requesting CPU. 

If NOTHELD is specified, the address will be branched to if the specified lock is not 
currently held by the requesting CPU, or if not all the locks specified for TYPE=(reg) are 
held, or if no lock for TYPE=ALL or TYPE=SPIN is held. 

,REGS = (reg) 

specifies the register containing a bit string identifying which locks are held. If the bit string 
is partially correct (that is, one of the locks specified are not held), the connected string is 
returned in the register specified. 

SETLOCK - Control Access to Serially Reusable Resources 171 



When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 

04 

Example 1 

Meaning 

The lock was held by the requestor, or all the locks were held (if the request was for 
several locks via a register), or at least one lock was held (if TYPE=ALL or 
TYPE=SPIN was specified). 
The lock was not held by anybody, or not all the locks were held (if the request was 
for several locks via a register), or no lock was held (if TYPE=ALL or TYPE=SPIN 
was specified). 

Operation: If the local lock is not held, a branch to DSRLLINT is to be performed; otherwise, 
the next sequential instruction is to be executed. 

SETLOCK TEST,TYPE=LOCAL,BRANCH=(NOTHELD,DSRLLINT) 

172 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



SETRP - Set Return Parameters 

The SETRP macro instruction is used to indicate the various requests that a recovery exit may 
return. 

The macro instruction is valid only for exits established via functional recovery exits and 
EST AE/EST AI/EST AR exits. The table following the description of the macro instruction 
indicates which parameters are valid ;for each situation. 

The SETRP macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the RECORD, RECPARM, FRELOCK and CPU parameters. 
These parameters are restricted in use and should be used only by programs excuting in 
supervisor state or under protection key 0-7 and executing as a functional recovery routine. 

The syntax of the complete SETRP macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The SETRP macro instruction is written as follows: 

SETRP - Set Return Parameters 173 



name 

b 

SETRP 

b 

WKAREA=(reg) 

,REGS=(regJ) 
,REGS=(regl,reg2) 

,DUMP=IGNORE 
,DUMP=YES 
,DUMP=NO 

,DUMPOPT=jJarm list addr 

,RC=O 
,RC=4 
,RC=16 

,RET ADDR=retry addr 

,RETREGS=NO 
,RETREGS= YES 
,RETREGS= YES,RUB=info addr 

,FRESDW A=NO 
,FREDSW A= YES 

,COMPCOD=code 
,COMPCOD=(code,USER) 
,COMPCOD=(code,SYSTEM) 

,FRELOCK=(locks) 

,CPU=reg 

,RECORD=IGNORE 
,RECORD=YES 
,RECORD=NO 

,RECPARM=record list addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede SETRP. 

One or more blanks must follow SETRP. 

reg: decimal digits 1-12. 
Default: WKAREA=(1) 

regl: decimal digits 0-12, 14, 15. 
reg2: decimal digits 0-12, 14, 15. 
Note: If reg1 and reg2 are both specified, order is 14, 15, 0-12. 

Default: DUMP=IGNORE 

parm list addr: RX-type address, or register (2) - (12). 
Note: This parameter may be specified only if DUMP= YES is 
specified above. 

Default: RC=O 

retry addr: RX-type address, or register (2) - (12). 
Note: This parameter may be specified only if RC=4 is specified 
above. 

info addr: RX-type address, or register (2) - (12). 
Default: RETREGS=NO 
Note: This parameter may be specified only if RC=4 is specified 
above. 

Default: FRESDW A=NO 
Note: This parameter may be specified only if RC=4 is specified 
above. 

code: symbol, decimal digit, or register (2) - (12). 
Default: COMPCOD=(code,USER) 

locks: any combination of the following, separated by commas: 
DISP IOSCAT(lockword) 
SRM IOSUCB(lockword) 
SALLOC IOSLCH(lockword) 
CMS IOSYNCH(lockword) 
LOCAL ASM(lockword) 

10 ck word: RX-type address. 
Note: This parameter may be specified only if RC=O is specified 
above. 

reg: decimal digits 2-12. 

Default: RECORD=IGNORE 

record list addr: RX=type address, or register (2) - (12). 
Note: This parameter may be specified only if RECORD=IGNORE 
or RECORD=YES is specified above. 

The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instructions. 

174 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



,FRELOCK = (locks) 
specifies the locks to be freed and the corresponding lockwords: 
DISP - Global dispatcher lock. 
SRM - Systems resource manager lock. 
SALLOC - Real storage manager and virtual storage manager space allocation lock. 
CMS - Cross memory services lock. 
LOCAL - Storage lock of the storage the caller is executing in. 
IOSCAT - lOS channel availability table lock. 
IOSUCB - lOS unit· control block lock. 
IOSLCH - lOS logical channel queue lock. 
IOSYNCH - lOS synchronization lock. 
ASM - Auxiliary storage manager lock. 

,CPU = (reg) 
specifies the register that contains the logical CPU identification of the CPU holding the 
resource that this CPU is waiting for. 

,RECORD = IGNORE 
,RECORD = YES 
,RECORD=NO 

specifies that the entire SDW A, both fixed and variable areas, is to be written on 
SYS1.LOGREC (YES), is not to be written on SYS1.LOGREC (NO), or is to be written as 
indicated prior to the SETRP macro instruction (IGNORE). 

,RECPARM = record list addr 
specifies the address of a user-supplied record parameter list. The parameter list consists of 
three 8-byte fields: 

• The first field contains the module name (microfiche name). 
• The second field contains the CSECT name. 
• The third field contains the FRR identification. 

The three fields are left-justified, and padded with blanks. 

The variable information record, containing two 2-byte length fields at the beginning of the 
record consists of: 

• The first field, filled in by the system, specifies the total length available to the user 
(exclusive of the two length fields) 

• The second field, filled in by the user, contains the actual length of the record. 

The following table indicates which parameters are available to functional recovery routines 
(FRRs) and which parameters are available to ESTAE/ESTAE exits. 

Parameter FRR EST AE 

WKAREA x x 
REGS x 
DUMP x 
DUMPOPT x x 
RC=O x x 
RC=4 x x 
RC=16 x 
RETADDR x 
RETREGS x x 
RUB x x 
FRESDWA x x 
COMPCOD x x 
FRELOCK x x 
CPU x 
RECORD x x 
RECPARM x x 

SETRP - Set Return Parameters 175 



Example 1 

Operation: Request continue with termination and freeing of the IOSCAT and SRM locks. The 
IOSCA T lockword is label x. 

SETRP RC=O,FRELOCK=(IOSCAT(X),SRM) 

Example 2 

Operation: Cause a restart interruption on the CPU identified by the contents of register 7. In 
this example, the interrupted function is spinning on a lock currently being held by the CPU 
identified in register 7. 

SETRP CPU=(7) 

176 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



SPIE - Specify Program Interruption Exit 

The SPIE macro instruction is described in the OSjVS2 Supervisor Services and Macro 
Instructions, with the exception of interruption type 17. This interruption type designates page 
faults and may be specified by an installation-authorized system programmer. 

The syntax of the complete SPIE macro instruction is shown below. 

The standard form of the SPIE macro instruction is written as follows: 

name 

fj 

SPIE 

fj 

name: symbol. Begin name in column 1. 

One or more blanks must precede SPIE. 

One or more blanks must follow SPIE. 

exit addr, (interrupts) exit addr: A-type address, or register (2) - (12). 
interrupts: decimal digits 1-15, or 17 expressed as 

single values: (2,3,4,7,8,9,10) 
ranges of values: «2,4),(7,10» 
combinations: «2,4),6,8,( 1 0, 13), 15) 

The parameters are explained below: 

exit addr, (interrupts) 
specifies the address of the exit routine to be given control when a program interruption of 
the type specified occurs. The interruption types are: 

Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
17 

Interruption Type 

Operation 
Privileged operation 
Execute 
Protection 
Addressing 
Specification 
Data 
Fixed-point overflow (maskable) 
Fixed-point divide 
Decimal overflow (maskable) 
Decimal diy;ide 
Exponent overflow 
Exponent underflow (maskable) 
Significance (maskable) 
Floating-point divide 
Page fault 

Note: If a specified program interruption type is maskable, the corresponding bit is set to 1. 
Interruption types not specified above are handled by the control program. 

Note: As shown in the table above, interruption types can be designated as one or more 
single numbers, as one or more pairs of numbers (designating ranges of values), or as any 
combination of the two forms. For example, (4,8) indicates interruption types 4 and 8; «4,8)) 
indicates interruption types 4 through 8. 

Example 1 

Operation: Give control to an exit routine for interruptions 1,5,7,8,9, and 10. DOITSPIE is the 
address of the SPIE exit routine. 

SPIE DOITSPIE, ( 1 ,5, 7 , ( 8, 10 ) ) 

SPIE - Specify Program Interruption Exit 177 



SPIE (List Form) 

Use the list form of the SPIE macro instruction to construct a control program parameter list 
in the form of a program interruption control area. 

The list form of the SPIE macro instruction is written as follows: 

name 

b 

SPIE 

b 

exit addr 

,(interrupts) 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must follow SPIE. 

One or more blanks must follow SPIE. 

exit addr: A-type address. 

interrupts: decimal digits 1-15, or 17, expressed as 
single values: (2,3,4,7,8,9,10) 
ranges of vaues: «2,4,),(7, to» 
combinations: «2,4),6,8,( 1 0,13),15) 

The parameters are explained under the standard form of the SPIE macro instruction, with the 
following exceptions: 

,MF=L 
specifies the list form of the SPIE macro iI)struction. 

178 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



SPIE (Execute Form) 

A remote control program parameter list (program interruptions control area) is used in, and 
can be modified by, the execute form of the SPIE macro instruction. The PICA (program 
interruptions control area) can be generated by the list form of SPIE, or you can use the 
address of the PICA returned in register 1 following a previous SPIE macro instruction. If this 
macro instruction is being issued to reestablish a previous SPIE environment, code only the MF 

parameter. 

The address of the remote control program parameter list associated with any previous SPIE 

environment is returned by the· SPIE macro instruction. 

The execute form of the SPIE macro instruction is written as follows: 

name 

b 

SPIE 

b 

exit addr 

, (interrupts) 

,MF=(E,etrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede SPIE. 

One or more blanks must follow SPIE. 

exit addr: RX-type address, or register (2) - (12). 

interrupts: decimal digits 1-15, or 17, expressed as 
single values: (2,3,4,7,8,9,10) 
ranges of values: «2,3),(7,10» 
combinations: «2,4) ,6,8, 0 0, 13),15) 

etrl addr: RX-type address, or register 0) or (2) - (2). 

The parameters are explained under the standard form of the SPIE macro instruction, with the 
following exceptions: 

,MF = r.e,ctrl,addr) 
specifies the execute form of the SPIE macro instruction using a remote control program 
parameter list. 

SPIE - Specify Program Interruption Exit 179 



SP()ST - Synchronize POST 

The SPOST macro instruction is used in a cross-memory post environment to ensure that all 
outstanding cross-memory post requests for the ECB specified have completed. SPOST resolves 
a synchronization problem that arises when it becomes necessary to eliminate an ECB which is 
a potential target for a cross-memory post request. 

For explanation of the parameters in a cross-memory post request, see the POST macro 
instruction. 

SPOST invokes th(;! PURGEDQ SVC. For details, see the PURGEDQ macro instruction. 

The SPOST macro instruction is written as follows: 

name 

b 

SPOST 

name: symbol. Begin name in column 1. 

One or more blanks must precede SPOST. 

Note: SPOST contains no optional or required parameters. 

Example 1 

Operation: Execute the SPOST macro instruction, with a comment. 

SPOST ,ISSUE SPOST 

180 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



STAE - Specify Task Abnormal Exit 

The ST AE macro instruction enables: the user to intercept a scheduled ABEND and to have 
control returned to him at a specified exit routine address. The ST AE macro instruction 
operates in both problem program a~d supervisor modes. 

Note: The ST AE macro instruction is available for compatibility with release 1 of YS2 and 
with MFT and MYT. However, it is recommended that EST AE be used. 

The standard form of the ST AE macro instruction is written as follows: 

name 

b 

STAE 

b 

exit addr 
o 

,CT 
,OY 

,P ARAM=list addr 

,XCTL=NO 
,XCTL;=YES 

,PURGE=QUIESCE 
,PURGE=HALT 
,PURGE=NONE 

,ASYNCH=NO 
,ASYNCH= YES 

,RELA TED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede ST AE. 

One or more blanks must follow ST AE. 

exit addr: A-type address, or register (2) - (12). 

Default: CT 

list addr: A-type address, or register (2) - (12). 

Default: XCTL=NO 

Default: PURGE=QUIESCE 

Default: ASYNCH=NO 

value: any valid macro keyword specification. 

The parameters are explained below: 

exit addr 
o 

specifies the address of a ST AE exit routine to be entered if the task issuing this macro 
instruction terminates abnormally; If 0 is specified, the most recent ST AE request is 
canceled. 

,CT 
,OV 

specifies the creation of a new STAE exit (CT) or indicates that the parameters passed in this 
STAE macro instruction are to overlay the data contained in the previous STAE exit (OY). 

,PARAM=list addr 
specifies the address of a user-defined parameter list containing data to be used by the ST AE 

exit routine when it is scheduled for execution. 

,XCTL=NO 
,XCTL=YES 

specifies that the STAE macro instruction will be canceled (NO) or will not be canceled (YES) 

if an XCTL macro instruction is issued by this program. 

STAE - Specify Task Abnormal Exit 181 



,PURGE = QUIESCE 
,PURGE = HALT 
,PURGE = NONE 

specifies that all outstanding requests for I/O operations will not be saved when the STAE 
exit is taken (HALT), that I/O processing will be allowed to continue normally when the 
ST AE exit is taken (NONE), or that all outstanding requests for I/O operations will be saved 
when the STAE exit is taken (QUIESCE). For QUIESCE, at the end of the STAE exit routine, 
the user can code a retry routine to handled the outstanding I/O requests. 

Note: If any IBM-supplied access method, except EXCP, is being used, the PURGE=NONE 
option is recommended. If this is done, all control blocks affected by input/output processing 
may continue to change during ST AE exit routine processing. 

If PURGE=NONE is specified and the ABEND was originally scheduled because of an error in 
input/ output processing, an ABEND recursion will develop when an input/output interruption 
occurs, even if the exit routine is in progress. Thus, it will appear that the exit routine failed 
when, in reality, input/output processing was the cause of the failure. 

[SAM Notes: If ISAM is being used and PURGE=HAL T is specified or PURGE=QUIESCE is 
specified but I/O is not restored: 

• Only the input/output event on which the purge is done will be posted. Subsequent event 
control blocks (ECBS) will not be posted. 

• The ISAM check routine will treat purged I/O as normal I/O. 

• Part of the data set may be destroyed if the data set is being updated or added to when 
the failure occurred. 

,ASYNCH=NO 
,ASYNCH = YES 

specifies that asynchronous exit processing will be allowed (YES) or will not be allowed (NO) 
while the ST AE exit is executing. 

ASYNCH=YES must be coded if: 

• Any supervisor services that require asynchronous interruptions to complete their normal 
processing are going to be requested by the ST AE exit routine. 

• PURGE=QUIESCE is specified for any access method that requires asynchronous 
interruptions to complete normal input/output processing. 

• PURGE=NONE is specified and the CHECK macro instruction is issued in the ST AE exit 
routine for any access method that requires asynchronous interruptions to complete 
normal input/output processing. 

Note: If ASYNCH=YES is specified and the ABEND was originally scheduled because of an 
error in asynchronous exit handling, an ABEND recursion will develop when an asynchronous 
interruption occurs. Thus, it will appear that the exit routine failed when, in reality, 
asynchronous exit handling was the cause of the failure. 

,RELATED = value 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at· the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 
instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and ESTAE). 

182 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE') 
FREE1 FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1, 'FREE STORAGE') 

Control is returned to the instruction following the ST AE macro instruction. When control is 
returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 
08 
OC 

10 

Example 1 

Meaning 

Successful completion of ST AE request. 
ST AE was unable to obtain storage for ST AE request. 
Attempt was made to cancel or overlay a nonexistent ST AE request. 
Exit routine or parameter list address was invalid, or ST AI request was missing a TeB 
address. 
Attempt was made to cancel or overlay a STAE request of another user, or an 
unexpected error was encountered while processing this request. 

Operation: Request an overlay of the existing STAE recovery exit with the following options: 
new exit address is ADDR, parameter list is at PLIST, I/O will be halted, no asynchronous exits 
will be taken, ownership will be transferred to the new request block resulting from any XCTL 

macro instructions. 

STAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO 

STAE - Specify Task Abnormal Exit 183 



STAE (List Form) 

The list form of the ST AE macro instruction is used to construct a remote control program 
parameter list. 

The list form of the STAE macro instruction is written as follows: 

name 

'b 

STAE 

'b 

exit addr 

,P ARAM=list addr 

,PURGE=QUIESCE 
,PURGE=HALT 
,PURGE=NONE 

,ASYNCH=NO 
,ASYNCH= YES 

,RELATED=value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede ST AE. 

One or more blanks must follow ST AE. 

exit addr: A-type address. 

list addr: A-type address. 

Default: PURGE=QUIESCE 

Default: ASYNCH=NO 

value: any valid macro keyword specification. 

The parameters are explained under the standard form of the ST AE macro instruction, with the 
following exceptions: 

,MF=L 
specifies the list form of the ST AE macro instruction. 

184 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



ST AE (Execute Form) 

A remote control program parameter list is used in, and can be modified by, the execute form 
of the ST AE macro instruction. The control program parameter list can be generated by the list 
form of the ST AE macro instruction.· If the user desires to dynamically changed the contents of 
the remote ST AE parameter list, he may do so by coding a new exit address and/or a new 
parameter list address. If exit address or PARM= is coded, only the associated field in the 
remote ST AE parameter list will be changed. The other field will remain as it was before the 
current ST AE request was made.. ' 

The execute form of the STAE macro instruction is written as follows: 

name 

b 

STAE 

b 

exit addr 
o 
,CT 
,OV 

,PARAM=/ist addr 

,XCTL=NO 
,XCTL=YES 

,PURGE=QUIESCE 
,PURGE=HALT 
,PURGE=NONE 

,ASYNCH=NO 
,ASYNCH= YES 

,RELATED=value 

,MF=(E, ctrl addr) 

name: symbol. Begin name in column l. 

One or more blanks must precede ST AE. 

One or more blanks must follow ST AE. 

exit addr: RX-type address, or register (2) - (12). 

list addr: RX-typc address, or register (2) - (12). 

value: any valid macro keyword specification. 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the STAE macro instruction, with the 
following exceptions: 

,MF = (E, ctrl addr) 
specifies the execute form of the ST AE macro instruction using a remote control program 
parameter list. 

Example 1 

Operation: Provide the pointer to the recovery code in the register called EXITPTR, contain the 
address of the ST AE exit parameter list in register 9. Register 8 points to the area where the 
STAE parameter list (created with the MF=L option) was moved. 

STAE (EXITPTR),PARAM=(9),MF=(E,(8)) 

STAE (Execute Form) 185 



STATUS - Change Subtask Status 

The STATUS macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of those parameters that are restricted in use and available only 
to authorized callers. These restricted parameters allow the caller to manipulated the 
dispatchability of TCBS, SRBS, ASCBS, a STEP, or the SYSTEM. 

The description of the STATUS macro instruction has been divided into two parts: the 
ST ART /STOP option, and the SET/RESET option. 

The START/STOP options of the STATUS macro instruction are written as follows: 

name 

b 

STATUS 

b 

START 
STOP 

,TCB=teb addr 
,SRB 
,SRB,ASID=ASID addr 
,SYNCH 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede STATUS. 

One or more blanks must follow STATUS. 

teb addr: RX-type address, or register (2) - (12), or o. 
ASID addr: RX-type address, or register (2) - (12). 
Note: ASID may only be specified with START. 
Note: SYNCH may only be specified with STOP. 

value: any valid macro keyword specification. 

The parameters are explained below: 

START 
STOP 

specifies that the START/STOP count is to be adjusted and the dispatchability bits are to be 
set/reset. 

,TCB =tcb addr 
,SRB 
,SRB,ASID=ASID addr 
,SYNCH 

specifies the status of the stop/start function: 

TCB specifies the address of a full word on a fullword boundary containing the address of 
the TCB that is to have its START/STOP count adjusted. 

SRB specifies that the STOP function affects the dispatchability of system-level SRBS only; 
aU other tasks in the address space area set/reset nondispatchable. For START, the ASID 
addr specifies the address of a halfword containing the address space identifier. 

SYNCH specifies that the STOP function affects all the subtasks of the caller. If any of the 
sub tasks are deferring STOPs when the request is issued, the caller is placed in a WAIT 
condition. The issuer is taken out of the wait state when all deferred stops are complete. 

186 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



,RELATED = value 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH., GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 
instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE') 
FREE1 FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1, 'FREE STORAGE') 

STATUS - Change Subtask Status 187 



The SET/RESET options of the STATUS macro instruction are written as follows: 

name 

b 

STATUS 

b 

SET 
RESET 

,MC 
,MC,STEP 
,SO 
,ND 

,SYSTEM 
,STEP 
,STEP,(mask} 
,teb addr,(mask} 
" (mask) 

,E 

,ASID=ASID addr 

,RELATED=va!ue 

name: symbol. Begin name in column 1. 

One or more blanks must precede STATUS. 

One or more blanks must follow STATUS. 

Note: If MC or MC,STEP is specified, no other parameters may be 
specified. 

mask: for SD, any of decimal digits 1-32 (except 18), separated by 
commas; for ND, any of decimal digits 1-16 (except 14), separated 
by commas. 
teb addr: RX-type address, or register (2) - (12). 
Default: STEP 

Note: This parameter may only be specified with teb addr, (mask). 

ASID addr: RX-type address, or register (2) - (12). 
Note: For SET, this parameter may only be specified with teb 
addr,(mask}. For RESET, this parameter may not be specified with 
SYSTEM. 

value: any valid macro keyword specification. 

The parameters are explained below: 

SET 
RESET 

specifies that the TCBs or ASCBs are to be set or reset nondispatchable. 

,MC 
,MC,STEP 
,SO 
,NO 

specifies the nondispatchability status: 

NO specifies that the primary nondispatchability bits are affected by this request. 

SO specifies that the secondary nondispatchability bits are affected by this request. 

MC and MC,STEP specifies that the initiator and all TCBs in the job step TCBs (except the 

issuer's TCB) are to be set/reset nondispatchable. STEP indicates that the 
set-must-complete indicator in the issuer's TCB and a count in the ASCB are to be 

set/reset. 

188 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



,SYSTEM 
,STEP 
,STEP, (mask) 
,tcb addr,(mask) 
" (mask) 

,E 

specifies more information on the nondispatchability status: 

SYSTEM specifies that all ASCBS are to be set/reset nondispatchable except for certain 
exempt ones (for examples, the master scheduler or the issuer). 

STEP specifies that all job step TCBs (except the issuer's TCB) are to be set/reset 
nondispatchable. 

tcb addr specifies that the specified TCB and all its subtasks are to be set/reset 
nondispatchable. 

(mask) specifies the nondispatchability bits that are to be set/reset. 

specifies that only the specified TCB is to be set/reset nondispatchable. 

,ASID =ASID addr 
specifies the address of a halfword containing the address space identifier. 

,RELATED = value 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services ; 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and on macro 
instructions that relate to previous occurrences of the same macro instructions (for example, 
CHAP and EST AE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE') 

FREE1 FREEMAIN R,LV=4096,A=( 1 ),RELATED=(GET1,'FREE STORAGE') 

Example 1 

Operation: Set primary nondispatchability bit 3 for the specified TCB and all its subtasks. 

STATUS SET,ND,TCBADDR,(3) 

STATUS - Change Subtask Status 189 



SYNCH - Take a Synchronous Exit to a Processing Program 

The SYNCH macro instruction makes it possible for a supervisor routine to take a synchronous 
exit to a processing program. The SYNCH routine initializes a PRB (program request block) and 
schedules execution of the requested program. After the processing program has been 
executed, the supervisor routine that issued the SYNCH macro instruction regains control. 

The SYNCH macro instruction is written as follows: 

name 

b 

SYNCH 

b 

entry name addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede SYNCH. 

One or more blanks must follow SYNCH. 

entry name addr: RX-type address, or register (2) - (12) or (15). 

The parameters are explained below: 

entry name addr 
specifies the address of the entry name of the processing program to receive control. 

Example 1 

Operation: Take a synchronous exit to a processing program whose entry name address is 
specified in register 8. 

SYNCH (8) 

Example 2 

Operation: Take a synchronous exit to a processing program labeled SUBRTN. 

SYNCH SUBRTN 

190 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



TEST AUTH - Test Authorization of Caller 

The TESTAUTH macro instruction is used on behalf of a privileged or sensitive function to 
verify that its caller is appropriately authorized. 

TEST AUTH supports the authorized program facility (APF) - a facility that permits the 
identification of programs that are authorized to use restricted functions. In addition, 
TEST AUTH provides the capability for testing for system key 0-7 and supervisor state. 

The TESTAUTH macro instruction is written as follows: 

name 

tJ 

TESTAUTH 

tJ 

FCTN=jctn 
FCTN =jctn,AUTH=auth 

,STATE=NO 
,STATE=YES 

,KEY=NO 
,KEY=YES 

,RBLEVEL=2 
,RBLEVEL=1 

,BRANCH=NO 
,BRANCH= YES 

name: symbol. Begin name in column 1. 

One or more blanks must precede TEST AUTH. 

One or more blanks must follow TEST AUTH. 

jctn: decimal digit 1 or register (2) - (12). 
auth: decimal digit 0 or 1, or register (2) - (12). 

Default: STATE=NO 

Default: KEY =NO 

Default: RBLEVEL=2 

Default: BRANCH=NO 

The parameters are explained below: 

FCTN =fctn 
FCTN =fctn,AUTH =auth 

specifies the authorization (via APF) of a program. 

FCTN = 1 specifies that APF-authorization is checked. 

AUTH = 0 specifies that the job step is not authorized to perform any restricted function. 

AUTH = 1 specifies that the job step is authorized to perform restricted functions. 

Note: If FUNC= 1 is specified by itself (that is, without the AUTH parameter), the JSCB is used 
to check for authorization. AUTH should only be coded when it is not possible for TEST AUTH . 
to acquire the code from the JSCB. 

,STATE=NO 
,STATE = YES 

specifies whether or not (YES or NO) a check is to be made for supervisor/problem program 
state. (Supervisor state is authorized, problem program state is not authorized.) 

,KEY=NO 
,KEY = YES 

specifies whether or not (YES or NO) a check is to be made of the protection keys. 
(Protection keys 0-7 are authorized, protection keys 8-15 are not authorized.) 

,RBLEVEL=2 
,RBLEVEL= 1 

specifies whether the TESTAUTH caller is a type 2, 3, or 4 SVC (RBLEVEL=2), or a type 1 
SVC (RBLEVEL=l). 

TESTAUTH - Test Authorization of Caller 191 



,BRANCH=NO 
,BRANCH = YES 

specifies a branch entry (YES) or an SVC entry (NO). 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 

Example 1 

Meaning 

Task is authorized. 
Task is not authorized. 

Operation: Test jobstep for APF authorization. 

TESTAUTH AUTH=l,FCTN=l 

Example 2 

Operation: Test for APF authorization and supervisor state, and do not check protection keys. 

TESTAUTH STATE~YES,KEY=NO,FCTN=l 

192 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



WTO - Write to Operator 

The WTO macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the AREAID, MSGTYP, and MCSFLAG parameters. The 
MSGTYP and MCSFLAG parameters should only be used by system programmers familiar with 
MCS, since using the parameters improperly could impede the entire message routing scheme. 
The AREAID parameter can only be be used by APF-authorized users. 

The syntax of the complete WTO macro instruction is shown below. However, only the 
explanation of the AREAID, MSGTYP and MCSFLAG parameters are presented. Explanation of 
the other parameters can be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the WTO macro instruction is written as follows: 

name 

b 

WTO 

b 

'msg' 
('text') 
(,text', line type) 

,ROUTCDE=(route code) 

,DESC=(desc code) 

,AREAID=id char 

,MSGTYP=(msg type) 

,MCSFLAG=(field name) 

name: symbol. Begin name in column 1. 

One or more blanks must precede WTO. 

One or more blanks must follow WTO. 

msg: Up to 124 characters. 
text: Up to 124 characters. 
The permissable line types and text lengths are shown below: 
line type VS2 text 

C 34 char 
L 70 char 
D 70 char 
DE 70 char 
E 

Up to 10 occurrences of the second and/or third formats may be 
coded. 

route code: decimal digit from 1 to 16. The route code is one or 
more codes, separated by commas. 

desc code: decimal digit from 1 to 16. The desc code is one or 
more codes, separated by commas. 

id char: alphabetic character A - Z. 

msg type: any of the following 
N SESS,JOBNAMES 
Y SESS,ST A TUS 
SESS JOBNAMES,ST ATUS 
JOBNAMES SESS,JOBNAMES,ST ATUS 
STATUS 

field name: any combination of the following, separated by 
commas: 

REGO 
RESP 
REPLY 
BRDCST 

HRDCPY 
QREGO 
NO TIME 
NOCPY 

The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instruction. 

WTO - Write to Operator 193 



,AREAID = id char 
specifies a display area of the console screen on which a multiple-line message is to be 
written. This parameter is useful only for out-of-line (descriptor code 8 and 9) MLWTO 
messages which are be sent to CRT consoles. 

The character Z designates the message area (the screen's general message area, rather than 
a defined display area); it is assumed nothing is specified. 

Note: You must be APF-authorized to use this parameter. Also, if an area is specified by this 
parameter, there exists the possibility that this area will be overlaid by a currently running 
dynamic display. 

,MSGTYP = (msg type) 
specifies how the message is to be routed. 

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console and TSO 
terminal in operator mode which issued the MONITOR SESS, MONITOR JOBNAMES, or 
MONITOR STATUS command, respectively. When the message type is identified by the 
operating system, the message will be routed to only those consoles that had requested the 
information. 

For Y or N, the message type specifies whether flags are to be set in the WTO macro 
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and MONITOR 
ST A TUS) are desired. N, or omission of the MSGTYP parameter, indicates that the message is 
to be routed as specified in the ROUTCDE parameter. 

,MCSFLAG = (field name) 
specifies that the macro expansion should set bits in the MCSFLAG field as indicated by each 
name coded. The names and corresponding bit settings are shown in Figure 24. 

Name Bit 

0 
REGO 1 

RESP 2 
3 

REPLY 4 
BRDCST 5 
HRDCPY 6 
QREGO 7 

NOTIME 8 
9-12 

NOCPY 13 

14-15 

Meaning 

Invalid entry. 
Message is to be queued to the console whose scource ID is passed in register 
o. 
The WTO is an immediate command response. 
Invalid entry. 
The WTO macro instruction is a reply to a WTOR macro instruction. 
Message should be broadcast to all active consoles. 
Message queued for hard copy only. 
Message is to be queued unconditionally to the console whose source ID is 
passed in Register o. 
Time is not appended to the message. 
Invalid entry. 
If the WTO or WTOR macro instruction is issued by a program in the 
supervisor state, the message is not queued for hard copy. Otherwise, this 
parameter is ignored. 
Invalid entry. 

Note: Invalid specifications are ignored and produce an appropriate error message from the assembler. 

Figure 24. MCSFLAG Fields 

Example 1 

Operation: Send a WTO message to the hardcopy log only. 

WTO 'THIS MSG IS TO HARDCOPY ONLY WITH RC=ALL' ,MCSFLAG=HRDCPY, 
ROUTCDE=( 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) 

194 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



Example 2 

Operation: Send a WTO message to all active consoles and broadcast it to all consoles or 
terminals which have issued MONITOR commands. 

WTO 'THIS MSG IS BROADCAST WITH RC=ALL' ,MCSFLAG=BRDCST, 
ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) 

Example 3 

Operation: Send a WTO message to all consoles and TSO terminals which have issued a MN 

JOBNAMES command. 

WTO 'WTO BY MSGTYP=JOBNAMES WITH RC=ALL,NO CONSOLE MONITORING 
JOBNAMES' ,MSGTYP=JOBNAMES,ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11, 
12,13,14,15,16) 

wro -Write to Operator 195 



WTO (List Form) 

The list form of the WTO macro instruction is described in the OS/VS2 Supervisor Services and 
Macro Instructions, with the exception of the AREAID, MSGTYP and MCSFLAG parameters. 
These parameters are restricted in use, and are described below. 

The list form of the WTO macro instruction is written as follows: 

name 

t> 

WTO 

t> 

'msg' 
('text') 
('text',line type) 

,ROUTCDE=(route code) 

,DESC=(desc code) 

,AREAID=id char 

,MSGTYP=(msg type) 

,MCSFLAG=(field name) 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede WTO. 

One or more blanks must follow WTO. 

msg: up to 124 characters. 
The permissable line types and text lengths are shown below: 
line type VS2 text 

C 34 char 
L 70 char 
D 70 char 
DE 70 char 
E 

Up to 10 occurrences of the second and/or third formats may be 
coded. 

route code: decimal digit from 1 to 16. The route code is one or 
more codes, separated by commas. 

desc code: decimal digit from 1 to 16. The desc code is one or 
more codes, separated by commas. 

id char: an alphabetic character A-Z. 

msg type: anyone of the following: 
N SESS,JOBNAMES 
Y SESS,STATUS 
SESS JOBNAMES,STATUS 
JOBNAMES SESS,JOBNAMES,STATUS 
STATUS 

field name: any combination of the following, separated by 
commas: 

REGO 
RESP 
REPLY 
BRDCST 

HRDCPY 
QREGO 
NOTIME 
NOCPY 

The parameters restricted in use are explained under the standard form of the WTO macro 
instruction. The explanation of the other parameters is as explained in OS/VS2 Supervisor 
Services and Macro Instructions. 

196 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



WTOR - Write to Operator with Reply 

The WTOR macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the MSGTYP and MCSFLAG parameters. These parameters 
should only be used by system programmers familiar with MCS, since using the parameters 
improperly could impede the entire message routing scheme. 

The syntax of the complete WTOR macro instruction is shown below. However, only the 
explanation of the MSGTYP and MCSFLAG parameters are presented. Explanation of the other 
parameters can be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the WTOR macro instruction is written as follows: 

name 

b 

WTOR 

b 

msg 

,reply addr 

,reply length 

,ecb addr 

,ROUTCDE=(route code) 

,DESC=(desc code) 

,MSGTYP=(msg type) 

,MCSFLAG=(field name) 

name: symbol. Begin name in column 1. 

One or more blanks must precede WTOR. 

One or more blanks must follow WTOR. 

msg: up to 121 characters. 

reply addr: A-type address, or register (2) - (12). 

reply length: symbol, decimal digit, or register (2) - (12). The 
minimum length is 1; the maximum length is 115 when the operator 
enters REPLY id, 'reply' and 119 when the operator enters Rid, 
'reply' . 

ecb addr: A-type address, or register (2) - (12). 

route code: decimal digit from 1 to 16. The route code is one or 
more codes, separated by commas. 

desc code: decimal digit from 1 to 16. The desc code is one or 
more codes, separated by commas. 

msg type: anyone of the following: 
N SESS,JOBNAMES 
Y SESS,STATUS 
SESS JOBNAMES,ST ATUS 
JOBNAMES SESS,JOBNAMES,ST ATUS 
STATUS 

field name: any combination of the following, separated by 
commas: 

REGO 
RESP 
REPLY 
BRDCST 

HRDCPY 
QREGO 
NOTIME 
NOCPY 

The parameters restricted in use are explained below. The other parameters are explained in 
OS/VS2 Supervisor Services and Macro Instructions. 

,MSGTYP = (msg type) 
specifies how the message is to be routed. 

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console or TSO 

terminal in operator mode which issued the MONITOR SESS, MONITOR JOBNAMES, or 
MONITOR STATUS command, respectively. When the message type is identified by the 
operating system, the message will be routed to only those consoles that had requested the 
information. 

For Y or N, the message type specifies whether flags are to be set in the WTO macro 
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and MONITOR 

WTOR - Write to Operator with Reply 197 



STATUS) are desired. N, or omission of the MSGTYP parameter, indicates that the message is 
to be routed as specified in the ROUTCDE parameter. 

,MCSFLAG = (field name) 
specifies that the macro expansion should set bits in the MCSFLAG field as indicated by each 
name coded. The names and corresponding bit settings are shown in Figure 24 that appears 
in the description of WTO. 

Example 1 

Operation: Send a WTOR message to the hardcopy log only. 

WTOR 

Example 2 

'THIS MSG IS TO HARDCOPY ONLY WITH RC=ALL' ,MCSFLAG=HRDCPY, 
ROUTCDE= ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 ° , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 ) 

Operation: Send a WTOR message to all active consoles and broadcast it to all consoles or 
terminals which have issued MONITOR commands. 

WTOR 

Example 3 

'THIS MSG IS BROADCAST WITH RC=ALL' ,MCSFLAG=BRDCST, 
ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) 

Operation: Send a WTOR message to all consoles and TSO terminals which have issued a MN 

JOBNAMES command. 

WTOR 'WTOR BY MSGTYP=JOBNAMES WITH RC=ALL, NO CONSOLE MONITORING 
JOBNAMES' ,MSGTYP=JOBNAMES,ROUTCDE=( 1,2,3,4,5,6,7,8,9,10,11, 
12,13,14,15,16 ) 

198 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



WTOR (List Form) 

The list form of the WTOR macro instruction is described in the OS/VS2 Supervisor Services and 
Macro Instructions, with the exception of the MSGTYP and MCSFLAG parameters. These 
parameters are restricted in use, and are described below. 

The list form of the WTOR macro instruction is written as follows: 

name 

t> 

WTOR 

t> 

'msg' 

, 
,reply addr 

, 
,reply length 

, 
,ecb addr 

,ROUTCDE=(route code) 

,DESC=(desc code) 

,MSGTYP=(msg type) 

,MCSFLAG=(fieid name) 

name: symbol. Begin name in column 1. 

One or more blanks must precede WTOR. 

One or more blanks must follow WTOR. 

msg: up to 121 characters. 

reply addr: an A-type address. 

reply length: symbol or decimal digit. The minimum length is 1; the 
maximum length is 115 when the operator enters REPLY id, 'reply' 
and 119 when the operator enters Rid, 'reply'. 

ecb addr: A-type address. 

route code: decimal digit from 1 to 16. The route code is one or 
more codes, separated by commas. 

desc code: decimal digit from 1 to 16. The desc code is one or 
more codes, separated by commas. 

msg type: anyone of the following: 
N SESS,JOBNAMES 
Y SESS,ST A TUS 
SESS JOBNAMES,ST A TUS 
JOBNAMES SESS,JOBNAMES,ST ATUS 
STATUS 

field name: any combination of the following, separated by 
commas: 

REGO 
RESP 
REPLY 
BRDCST 

HRDCPY 
QREGO 
NO TIME 
NOCPY 

The parameters restricted in use are explained under the standard form of the WTOR macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

WTO (List Form) 199 



200 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



Indexes to OS/VS2 publications are consolidated in the 
OS/VS2 Master Index, GC28-0693, and the OS/VS2 Master 
Index of Logic, GY28-0694. For additional information 
about any subject listed below, refer to other publications 
listed for the same subject in the Master Index. 

A parameter 
FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 
PGFIX macro instruction 134 
PGFREE macro instruction 138 
SETFRR macro instruction 164 

A-type address 
meaning 81 

ABEND macro instruction 37,39 
ADDR parameter 167 
address, space termination 38 
ALL parameter 92 
allocate virtual storage (GETMAIN) 121-124 
AND IMMEDIATE (NI) instruction, providing a lock via 

130-131 . 
APF (authorized program facility) 30~31 
AREAID parameter 194 
ASCB parameter 141 
ASID parameter 

CALLRTM macro instruction 88 
PURGEDQ macro instruction 144 
SDUMP macro instruction 159 
STATUS macro instruction 186,189 

ASIDTCB parameter 144 
ASM (auxiliary storage manager lock) 19 
ASYNCH parameter 

ATTACH macro instruction 85 
EST AE macro instruction 108 
ST AE macro instruction 182 

asynchronous execution, scheduling system services for 
157 

A TT ACH macro instruction 84-87 
use of restricted parameters 13-14 

AUTH parameter 191 
authorization 30 
authorization, testing 191-192 
authorized library 31 

SVC routines 67 
authorized program facility (APF) 30-31 
auxiliary storage manager lock (ASM) 19 

BLOCK parameter 147 
BNDRY parameter 121 
branch entry 

EVENTS 36 
GETMAIN and FREEMAIN 53 
SDUMP 39 

BRANCH parameter 
CIRB macro instruction 95 
EST AE macro instruction 108 
EVENTS macro instruction 112 
FREEMAIN macro instruction 117 
G ETMAIN macro instruction 121 
SDUMP macro instruction 160 
SETLOCK macro instruction 171 
TESTAUTH macro instruction 192 

BUFFER parameter 159 

call recovery/termination manager (CALLRTM) 88-89 
CALLR TM macro instruction 88-89 

use of 37-38 
CD (CHNGDUMP) command 90-93 
change dump options (CHNGDUMP) 90-93 
change subtask status (STATUS) 186-189 
change system status (MODESET) 125-129 
channel ends 71 
check stop status condition 34 

CHNGDUMP command 90-93 
use of 40 

CIB (command input buffer) 15 
CIBCTR parameter 147 
CIRB macro instruction 94-95 

use of 66 
classes of locks 20 
CMS (cross memory services lock) 20 

SVC routines 69 
coding the macro instructions 80-82 
command input buffer (CIB) 15 
common service area subpools 53 
COMPARE AND SWAP (CS) instruction 

NIL macro instruction 130 
OIL macro instruction 132-133 
POST macro instruction 35 

COMPCOD parameter 
CALLRTM macro instruction 88 
SETRP macro instruction 174 

console switching 60 
continuation lines 82 

Index 

control access to serially reusable resources (SETLOCK) 
166-172 

control track record 76 
CPU parameter 

DSGNL macro instruction 
RISGNL macro instruction 
RPSGNL macro instruction 
SETRP macro instruction 

CPU reset function 33 
CPUR parameter 101 

102 
153 
155 

175 

create a new task (ATTACH) 84-87 
create interruption request block (CIRB) 94-95 
cross-memory post 35 
cross memory services lock (CMS) 20 
CS (COMPARE AND SWAP) instruction 130,132 
CT parameter 

EST AE macro instruction 108 
ST AE macro instruction 181 

D parameter 164 
DCB parameter 

ATT ACH macro instruction 85 
SDUMP macro instruction 159 

DDR swaps 71 
DE parameter 85 
decimal digit 

meaning 81 
default 

meaning 82 
DEL parameter 92 
DEQ macro instruction 96-100 

and RESERVE 148 
execute form 100 
list form 99 
standard form 96-98 
use of restricted parameters 22-24 

SC parameter 
WTO macro instruction 193 
WTOR macro instruction 197 

descriptor codes 62 
device ends 34 
device, reserving a 148-152 
direct class 33 
direct signal, issuing 101-102 
DISABLED parameter 170 
disabling 20 
DISP (global dispatcher lock) 19 
DISP parameter 86 
DPMOD parameter 85 
DSGNL macro instruction 101-102 

use of 33 
dump options, changing 90-93 

Index 201 



DUMP parameter 
CALLRTM macro instruction 89 
SETRP macro instruction 174 

dump virtual storage (SDUMP) 158-163 
DUMPOPT parameter 

CALLRTM macro instruction 89 
SETRP macro instruction 174 

dumps of virtual storage 39-40 

E parameter 
ENQ macro instruction 103 
FREEMAIN macro instruction 117 
RESERVE macro instruction 149 
STATUS macro instruction 189 

EA parameter 
PGFIX macro instruction 134 
PGFREE macro instruction 138 

EC (external call) function 33 
EC parameter 

FREEMAIN macro instruction 117 
GE'fMAIN macro instruction 121 

ECB parameter 
ATTACH macro instruction 85 
ENQ macro instruction 104 
EVENTS macro instruction 112 
PGFIX macro instruction 134 
PGFREE macro instruction 138 
RESERVE macro instruction 149 
SDUMP macro instruction 159 

ECBIND parameter 
PGFIX macro instruction 135 
PGFREE macro instruction 139 

emergency signal (ES) function 34 
ENABLE parameter 

CIRB macro instruction 95 
MODESET macro instruction 129 

ENQ macro instruction 103-107 
execute form 107 
list form 106 
standard form 103-105 
use of restricted parameters 22-24 

I ENTRIES parameter 112 
EP parameter 

ATT ACH macro instruction 85 
CIRB macro instruction 94 
RISGNL macro instruction 153 

EPLOC parameter 85 
equipment check status condition 34 
ERRET parameter 141 
ES (emergency signal) function 34 
EST AE environment 46 
EST AE exit routine 45-48 
EST AE extended capabilities 43-45 
EST AE macro instruction 108-111 

exe(:ute form 111 
list form 110 
standard form 108-109 
use of 43-49 

EST AE retry routine 49 
EST AI exit routine 45-48 
EST AI parameter 85 
EST AI retry routine 49 
ETXR parameter 85 
EU parameter 

FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 

event completion 35-36 
EVENTS 36 
PGFIX 56 
POST 35 
SPOST 35 

EVENTS macro instruction 112 
use of 36 

examples 
ATTACH 87 
CALLRTM 89 
CHNGDUMP 92,93 
CIRB 95-
DEQ 98 
DSGNL 102 

ENQ 105 
ESTAE 109,111 
EXTRACT 114 
FREEMAIN 118 
GETMAIN 122 
MODESET 127 
NIL 131 
OIL 133 
PGFIX 135,136,137 
PGFREE 139,140 
POST 141 
PURGEDQ 144,146 
QEDIT 147 
RESERVE 150 
RISGNL 154 
RPSGNL 156 
SCHEDULE 157 
SDUMP 160,163 
SETFRR 165 
SETLOCK 168,170,172 
SETRP 176 
SPIE 177 
SPOST 180 
STAE 183,185 
STATUS 189 
SYNCH 190 
TESTAUTH 192 
WTO 195 
WTOR 198 

execute form of macro instruction 
use of 80 

extended ST AE (EST AE) 108-111 
external call (EC) function 33 
external call pending status condition 34 
EXTKEY parameter 125 
EXTRACT macro instruction 113-116 

execute form 116 
list form 115 
standard form 113-114 
use of 15-16,27 

extract TCB information (EXTRACT) 113-116 

FCTN parameter 191 
FIELDS parameter 113 
fix virtual storage contents (PGFIX) 134-137 
frames, page 55 
free virtual storage (FREEMAIN) 117 -120 
free virtual storage contents (PGFREE) 138-140 
FREEMAIN macro instruction 117 -120 

disabling 22 
execute form 120 
list form 119 
standard form 117-118 
use of restricted parameters 53 

FRELOCK parameter 175 
FRESDWA parameter 174 
FRR stack 38 
FRRAD parameter 164 
FRRs (functional recovery routines) 38-39 
functional recovery routines (FRRs) 38-39 

setting up 164-165 

GENERIC parameter 96 
GETMAIN macro instruction 121-124 

execute form 124 
list form 123 
standard form 121-122 
use of restricted parameters 53 

GIVEJPQ parameter 87 
GLBRANCH 53 
global dispatcher lock (DISP) 19 
global locks 20 

user-written SVC routines 69 
global priority 64-65 
global storage 

subpools 53 
global subpools 53 
GSPL parameter 85 
GSPV parameter 85 

202 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



G TFCRM parameter 155 

hardcopy log 60 
HDR parameter 159 
HDRAD parameter 159 
hierarchy, locking 21 

ICFBDFOO 73 
ICFBIFOO 74 
ICPUR parameter 101 
ICTL instruction 80 
IEAVTRML 50 
IGFINTVL 71 
IHAFRRS mapping macro instruction 39 
IHAPSA mapping macro instruction 39 
IHARMPL mapping instruction 50 
IMPL parameter 101 
initial CPU reset function 33 
initial microprogram load function 33 
initial program reset function 33 
installation-written clean-up routines 50-51 
interlock conditions 26 
interprocessor communications 32-35 
interruption handler, missing 71 
interruption request block, creating 66 
interruption, termination, and dumping services 37-51 
interruption request block (lRB) 94,66 
invalid function status condition 34 
lOS channel availability table lock (lOSCAT) 19 
lOS logical channel queue lock (lOSLCH) 19 
lOS synchronization lock (lOSYNCH) 19 
lOS unit control block lock (lOSUCB) 19 
IOSCAT (lOS channel availability table lock) 19 
IOSLCH (lOS logical channel queue lock) 19 
IOSUCB (lOS unit control block lock) 19 
IOSYNCH (lOS synchronization lock) 19 
IPR parameter 101 
IRB (interruption request block) 66 
issue direct signal (DSGNL) 101-102 
issue remote immediate signal (RISGNL) 153-154 
issue remote pend able signal (RPSGNL) 155-156 

job step authorization 31 
J SCB parameter 86 
JSTCB parameter 86 

KEY parameter 
A TT ACH macro instruction 
CIRB macro instruction 94 
FREEMAIN macro instruction 
GETMAIN macro instruction 
MODESET macro instruction 
TEST AUTH macro instruction 

KEYADDR parameter 125 . 

L parameter 

86 

118 
122 
127 
191 

FREEMAIN macro instruction 117 
PGFIX macro instruction 137 
PGFREE macro instruction 140 

LA parameter 
FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 
PGFIX macro instruction 137 
PGFREE macro instruction 140 

label processing 17 
LAST parameter 112 
LC parameter 

FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 

link to SVC 34 (QEDIT) 147 
linkage editor 30 
list form of macro instruction 

use of 80 
LIST parameter 159 
LOCAL (local storage lock) 20 

GETMAIN and FREEMA,IN 53 

SVC routines 69 
local locks 20 
local priority 64-65 
local storage 

subpools 53 
local storage lock (LOCAL) 20 
locking 19-22 

classes of locks 20 
considerations 21-22 
hierarchy 21 
locks 19-20 
manager 19 
types of locks 20-21 

LONG parameter 134 
long-term fix 55 
LPMOD parameter 85 
LSQA parameter 87 
LU parameter 

FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 

LV parameter 
FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 

machine check handler appendage 
adding code to 72-74 

macro instruction forms 80 
master scheduler initialization module 

adding code to 74-75 
MC parameter 188 
MCS (multiple console support) 60 
MCSFLAG parameter 

WTO macro instruction 194 
WTOR macro instruction 198 

message routing 60 
message routing exit routines 60-63 
MF parameter 

DEQ macro instruction 99,100 
ENQ macro instruction 106,107 
EST AE macro instruction 110,111 
EXTRACT macro instruction 115,116 
FREEMAIN macro instruction 119,120 
GETMAIN macro instruction 123,124 
MODE SET macro instruction 128,129 
POST macro instruction 142,143 
PURGEDQ macro instruction 145,146 
RESERVE macro instruction 151,152 
SDUMP macro instruction 161,162 
SPIE macro instruction 178,179 
STAE macro instruction 184,185 
WTO macro instruction 196 
WTOR macro instruction 199 

MF1TCH parameter 155 
miscellaneous services, supervisor 59-77 
missing interruption handler 71 
MODE parameter 

CIRB macro instruction 94 
MODESET macro instruction 127 
RPSGNL macro instruction 155 
SETLOCK macro instruction 167 

MODESET macro instruction 125-129 
disabling 21 
execute form 129 
list form 128 
standard form 125-127 
use of 32 

MOUNT command 71 
MP systems 29 
MSGTYP parameter 

WTO macro instruction 194 
WTOR macro instruction 197 

multiple console support (MCS) 60 
multiple-line message 60 
multiple locks 21 
must complete function 22-24 

ND parameter 188 
NI (AND IMMEDIATE) instruction 130 
NIL macro instruction 130-131 

Index 203 



NODUMP parameter 90 
nonquiesceable priority level 64 
not rcady status condition 34 
NSHSPL parameter 86 
NSHSPV parameter 86 

OBTAIN parameter 166 
01 (OR IMMEDIATE) instruction 132 
OIL macro instruction 132-133 
operator 

writing to with reply 193-196 
writing to without reply 197-199 

operator intervening status condition 34 
operator messages 59-60 
OR IMMEDIATE (01) instruction, providing a lock via 

132-133 
ORIGIN parameter 147 
OV parameter 

EST AE macro instruction 108 
ST AE macro instruction 181 

P parameter 164 
page fixing 55 
page frames 55 
PARALLEL parameter 153 
P ARAM parameter 

ATTACH macro instruction 85 
EST AE macro instruction 108 
ST AE macro instruction 181 

PARM parameter 153 
P ARMAD parameter 165 
partitioned data set 

SVC routines 70 
PDATA parameter 91 
PGFIX macro instruction 134-137 

list form 137 
standard form 134-136 
use of 55-56 
virtual subarea list 56-57 

PGFREE macro instruction 138-140 
list form 140 
standard form 138-139 
use of 55-56 
virtual subarea list 56-57 

PGLOAD macro instruction 55 
virtual subarea list 56-57 

PGOUT macro instruction 55 
virtual subarea list 56-57 

PGRLSE macro instruction 55 
virtual subarea list 56-57 

POST macro instruction 141-143 
execute form 143 
list form 142 
standard form 141 
use of restricted parameters 35 

POST, synchronizing 180 
power warning feature support 72-77 
PR parameter 101 
priorities 64-65 
program management 17 
program reset function 33 
provide a lock via an AND IMMEDIATE (NI) instruction 

(NIL) 130-131 
provid{: a lock via an OR IMMEDIATE (01) instruction 

(OIL) 132-133 
PURGE parameter 

'A TT ACH macro instruction 85 
ESTAE macro instruction 108 
ST AE macro instruction 182 

purge SRB activity (PURGEDQ) 144-146 
PURGEDQ macro instruction 144-146 

and SPOST 180 
execute form 146 
list form' 145 
standard form 144 
use of 65-66 

Q parameter 91 

QEDIT macro instruction 147 
use of 15 

QUIESCE parameter 160 

R parameter 
FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 
PGFIX macro instruction 134 
PGFREE macro instruction 138 
SETFRR macro instruction 164 

RBLEVEL parameter 191 
RC parameter 

FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 
SETRP macro instruction 174 

real storage manager and virtual storage manager space 
allocation lock (SALLOC) 19 

real storage management 55-57 
real storage manager 55 
receiver check status condition 34 
RECORD parameter 

EST AE macro instruction 108 
SETRP macro instruction 175 

recovery environment 37 
recovery/termination 37 -38 
recovery/termination manager (RTM) 37 
recovery/termination manager, calling 88-89 
RECP ARM parameter 175 
reenterable SVC routines 67 
REF parameter 

NIL macro instruction 130 
OIL macro instruction 132 

reference - macro instructions and commands 79-198 
refreshable SVC routines 67 
register (0) 

meaning 81 
register (1) 

meaning 81 
register (2) - (12) 

meaning 81 
REGS parameter 

SETLOCK macro instruction 168,171 
SETRP macro instruction 174 

RELATED parameter 
ATTACH macro instruction 86 
DEQ macro instruction 96 
ENQ macro instruction 103 
EST AE macro instruction 108 
FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 
MODESET macro instruction 126 
PGFIX macro instruction 134 
PGFREE macro instruction 138 
POST macro instruction 141 
RESERVE macro instruction 149 
SETFRR macro instruction 164 
SETLOCK macro instruction 168 
ST AE macro instruction 182 
STATUS macro instruction 186,189 

release a serially reusable resource (DEQ) 96-100 
RELEASE parameter 

PGFIX macro instruction 134 
PGFREE macro instruction 138 
SETLOCK macro instruction 169 

remote class 33 
remote immediate signal, issuing 153-154 
remote pendable signal, issuing 155-156 
request control of a serially reusable resource (ENQ) 

103-107 
reserve a device (RESERVE) 148-152 
RESERVE macro instruction 148-152 

execute form 152 
list form 151 
standard form 148-150 
use of 25-28 

RESET parameter 188 
resource control 19-36 
restart function 33 
REST ART parameter 101 

204 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



RET parameter 
DEQ macro instruction 96 
ENQ macro instruction 103 
RESERVE macro instruction 149 

RETADDR parameter 174 
RETIQE parameter 95 
RETREGS parameter 174 
RETRN parameter 95 
return codes 

ATTACH macro instruction 87 
D EQ macro instruction 97 -98 
DSGNL macro instruction 102 
ENQ macro instruction 104-105 
EST AE macro instruction 109 
FREEMAIN macro instruction 118 
GETMAIN macro instruction 122 
PGFIX macro instruction 135 
PGFREE macro instruction 139 
RESERVE macro instruction 149-150 
RSIGNL macro instruction 153-154 
RPSGNL macro instruction 156 
SDUMP macro instruction 160 
SETLOCK macro instruction 168,170,172 
STAE macro instruction 183 
TEST AUTH macro instruction 192 

return parameters, setting 173-176 
RISGNL macro instruction 153-154 

use of 34 
RM C parameter 96 
RMTR parameter 144 
ROUTCDE parameter 

WTO macro instruction 193 
WTOR macro instruction 197 

routing codes 61 
RPSGNL macro instruction 155-156 

use of 34 
RQCHECK parameter 155 
RTM (recovery/termination manager) 37 
RU parameter 

FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 

RUB parameter 174 
RX-type address 

meaning 81 

S parameter 
ENQ macro instruction 103 
EXTRACT macro instruction 113 
RESERVE macro instruction 149 

SALLOC (real storage manager and virtual storage 
manager space allocation lock) 19 

GETMAIN and FREEMAIN 53 
SA VEKEY parameter 126 
SCHEDULE macro instruction 157 

and PURGEDQ 144 
use of 63-64 

schedule system services for asynchronous execution 
(SCHEDULE) 157 

SCOPE parameter 157 
SD parameter 188 
SDA T A parameter 

CHNGDUMP command 91 
SDUMP macro instruction 159 

SDUMP dump requests 40 
SDUMP macro instruction 158-163 

execute form 162-163 
lis't form 161 
standard form 158-160 
use of 39-40 

SDUMP parameter 90 
sense function 33 
SENSE parameter 101 
SERIAL parameter 153 
serialization 67 
serially reusable resources 

controlling access to 166-172 
locking 19-22 
releasing 96-100 
requesting control of 103-107 

service classes 33-34 
service management 63-66 

service request block (SRB) 63,64 
SET parameter 188 

CHNGDUMP command 90 
ST A TUS macro instruction 188 

set return parameters (SETRP) 173-176 
set up functional recovery routines (SETFRR) 164-165 
SETCODE statement 30 
SETFRR macro instruction 164-165 

use of 38-39 
SETLOCK macro instruction 166-172 

use of 22 
SETRP macro instruction 173-176 
shared DASD 24-29 
SHSPL parameter 85 
SHSPV parameter 85 
signal event completion (POST) 141-143 
signal processor (SIGP) instruction 

DSGNL macro instruction 101 
RISGNL macro instruction 153 
RPSG NL macro instruction 155 

SIGP (signal processor) instruction 32-35 
single system locks 21 
SIO parameter 155 
SM parameter 86 
SMC parameter 104 
SP parameter 

FREE MAIN macro instruction 117 
GETMAIN macro instruction 121 

special clean-up processing 50 
specify program interuption exit (SPIE) 177 -179 
specify task abnormal exit (ST AE) 181-185 
SPIE macro instruction 177 -179 

execute form 179 
list form 178 
standard form 177 
use of restricted interruptions 39 

spin locks 20 
SVC routines 69 

SPOST macro instruction 180 
use of 35 

SQA buffer 40 
SRB (service request block) 63,64 
SRB activity, purging 144-146 
SRB parameter 

SCHEDULE macr'o instruction 157 
STATUS macro instruction 186 

SRM (system resource manager lock) 20 
SSM instruction 21 
SSS parameter 101 
STAB parameter 95 
ST AE environment 41-42 
ST AE exit routines 41-42 
STAE macro instruction 181-185 

execute form 185 
list form 184 
standard form 181-183 
use of 41-43 

ST AE retry routine 42-43 
stage 1 exit effector 66 
stage 2 exit effector 66 
stage 3 exit effector 66 
ST AI environment 41-42 
ST AI exit routines 41-42 
STAI parameter 85 
ST AI retry routine 42-43 
start function 33 
ST ART parameter 

DSGNL macro instruction 101 
STATUS macro instruction 186 

STATE parameter 191 
status conditions 34-35 
STATUS macro instruction 186-189 
STEP parameter 

. CALLR TM macro instruction 89 
DEQ macro instruction 96 
ENQ macro instruction 103 
STATUS macro instruction 188 

stop and store status function 33 
stop function 33 
STOP parameter 

DSGNL macro instruction 101 
ST A TUS macro instruction 186 

Index 205 



stopped status condition 34 
STORAGE parameter 159 
subpoo1s 

common service area 53 
fetch protected 53 
global 53 
not fetch protected 53 
sytem queue area 53 
227 53 
228 53 
229 53 
230 53 
231 53 
236 13 
237 13 
239 53 
241 53 
245 53 

subtask creation and control 13-16 
sub task status, changing 186-189 
supervisor services 11-78 
suspend locks 20 
SUSPEND parameter 135 
SV AREA parameter 

A TT ACH macro instruction 86 
CIRB macro instruction 95 

SVC DUMP 39-40 
SVC routines, user-written 67-71 

characteristics 67 
inserting 70 
programming conventions 67-70 
specifying 70 

SVC 34, linking to 147 
SVCTABLE macro instruction 70 
SVEAREA parameter 108 
SVRB 

SVC routines 70 
SWITCH parameter 155 
symbol 

m{~aning 81 
SYNCH macro instruction 189 

USI! of 17 
SYNCH parameter 186 
synchronize POST (SPOST) 180 
synchronous exits, taking 190 
SYSABEND dump requests 40 
SYSABEND parameter 90 
SYSMASK parameter 129 
system generation 

SVC routines 70 
system log 61 
SYSTEM parameter 

DEQ macro instruction 96 
ENQ macro instruction 103 
STATUS macro instruction 188 

system queue area subpools 53 
system resource manager lock (SRM) 20 
system status 125-129,32 
SYSTEMS parameter 

DEQ macro instruction 96 
ENQ macro instruction 103 
RESERVE macro instruction 149 

SYSUDUMP dump requests 140 
SYSUDUMP parameter 90 
SYS 1.LINKLIB 

power warning feature support 74 
SVC routines 67 

SYSl.LPALIB 
clean-up routines 50 
SVC routines 67 

SYSl.NUCLEUS 
power warning feature support 73 

SYSl.SVCLIB 
SVC routines 67 

SZERO parameter 85 

I TABLE parameter 112 
take asynchronous exit to a processing program (SYNCH) 

190 

task abnormal exit 
extended 108-111 
specifying 181-185 

task, creating a new 34-87 
task recovery 41-49 
task termination 37-38 
T ASKLIB parameter 85 
TCB information, extracting 113-n 6 
TCB parameter 

CALLRTM macro instruction 88 
DEQ macro instruction 97 
ENQ macro instruction 104 
STATUS macro instruction 186 

TERM parameter 
ATTACH macro instruction 85 
EST AE macro instruction 108 

test authorization of caller (TESTAUTH) 191-192 
TEST parameter 171 
TEST UNDER MAST (TM) instruction 35 
TESTAUTH macro instruction 191-192 

use of 30 
TID parameter 86 
time interval for missing interruption handler 71 
TM (TEST UNDER MASK) instruction 35 
TSOLOGON parameter 87 
TYPE parameter 

CALLRTM macro instruction 88 
CIRB macro instruction 95 
SETLOCK macro instruction 167,169 

types of locks 20-21 

UCB parameter 
DEQ macro instruction 97 
RESERVE macro instruction 149 

user-written message routing exit routines 60-63 
user-written SVC routines 67-71 

V parameter 117 
VC parameter 

FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 

virtual storage 
allocating 121-124 
dumping 158-163,39-40 
freeing 117-120 

virtual storage contents 
fixing 134-137,55-56 
freeing 138-140,55-56 

virtual storage, dumping 39-40 
virtual storage management 53 
virtual subarea list (VSL) 56-57 
VL parameter 85 
volume handling 25 
VSL (virtual subarea list) 56-57 
VU parameter 

FREEMAIN macro instruction 117 
GETMAIN macro instruction 121 

I wait for events (EVENTS) 112 
WAIT macro instruction 

SVC routines 70 
I WAIT parameter 112 

WKAREA parameter 
CIRB macro instruction 95 
SETRP macro instruction 174 

WORKREG parameter 126 
WREGS parameter 

NIL macro instruction 130 
OIL macro instruction 132 

write-to-operator (WTO) 193-196 
write-to-operator-with-reply (WTOR) 197-199 
WRKREGS parameter 164 
WTO macro instruction 193-196 

list form 96 
standard form 193-195 
use of restricted parameters 59-63 

206 OS/VS2 System Programming Library: Supervisor (VS2 Release 3) 



WTOR macro instruction 197-199 
list form 199 
standard form 197-198 
use of restricted parameters 59-63 

XCTL macro instruction 
SVC routines 70 

XCTL parameter 
EST AE macro instruction 108 
ST AE macro instruction 181 

Index 207 



GC28-0628-0 

llrIDllir 
(!) 

International Business Machines Corporation 
Data Proce!.sing Division 
1133 Westcillester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World 'rrade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternational) 

o 
U'J -< 
U'J 
I\l 
U'J 
"tI 
:. 
U'J 
c 
i 
""'I 
< 
Vi' 
Q 
U'J 
W 
-....J 
o 
W 
$ 

G') 
(') 
I\l 
00 
6 
0') 
I\l 
00 
6 



(") 

s. 
." o 
c: 
~ 
0' 
::I 
OQ 

r-
:i' 
II) 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

OS/VS2 System Programming Library: 
Supervisor 

GC28-0628-0 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

Are the tables used to describe the macro instructions in this publication 
an improvement over the brackets-and-braces syntax? 

What is your occupation? 

READER'S 
COMMENl 
FORM 

Number oflatest Technical Newsletter (if any) concerning this publication: ---""-------

Please indicate your address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
("C't"",,,,h,,, .. ,,, <>n TRM r'lffl{,p m rpnrp~pntMive wil1 he hannv to forward your comments.) 



GC28-0628-0 

Your comments, please ... 

This manual is part of a library that serves as a reference source for system analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

() 

S. 
Q 
." 
o 
c:: 
:to 
0" 
:::l 

OQ 

r 
5' 
(I) 

I 
Fold Fold 

- - -- --- - - - ----- - .-----~ 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

I nternational Business Machines Corporation 
Department D58, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

First Class 
Permit 81 

I 
I 
I 

Poughkeepsie I 
New York 

I 
I 

o en -< . en 

"" en 
\J 

!. 

I g> 
i 

I ~. 
I Q 

I ~ 
o 

I W 
,.£? 

. , 
----------------~ 

Fold 

llJ]3llir 
I!.I 

International Business Machines Corporation 
Data Processing Division 
1133 Westchl~ster Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Tr'ade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



(') 

S. 
Q 
." 
o 
is: 
l> 
0' 
:::l 

IIQ 

r 
5' 
~ 

OS/VS2 System Programming Library: 
Supervisor 

GC28-0628-0 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

Are the tables used to describe the macro instructions in this publication 
an improvement over the brackets-and·braces syntax? 

What is your occupation? 

Number of latest Technical Newsletter (if any) concerning this publication: 

Please indicate your address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

READER'S 
COMMENT 
FORM 



GC28-0628-0 

Your comments, please ... 

This manual is part of a library that serves as a reference source for system analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

I 
Fold Fold 

- - - - - - - - - - - - - - - - - - --~ 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

I nternational Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

First Class 
Permit 81 
Poughkeepsie 
New York 

I 
I 
I 
I 

I 
I 

o 
SQ 
< en 
I\.) 

en 
-0 
!. 
en 

I ~ 
I ~. 
I Q 

I ~ 
o 

I w 
I~ 

I 
-----------------------~ 

Fold 

llrnrur 
® 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World irrade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold 

G> 
() 
I\.) 
OJ 
6 
0) 
I\.) 
OJ 
6 


