
Systems

GC28-0683-1
File No. S370-:16

OS/VS2 Supervisor Services
and Macro Instructions

VS2 Release 3

Second Edition (June, 1975)

This is a reprint of GC28-0683-0 incorporating changes released in the following Technical
Newsletter:

GN28-2589 (dated February 28, 1975)

This edition applies to release 3 of OS/VS2 and to all subsequent VS2 releases until
otherwise indicated in new editions or Technical Newsletters. Changes are continually made
to the information herein; before using this publication in connection with the operation of
IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions
that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1974, 1975

Preface

This book, intended mainly for the programmer coding. in assembler language, describes how to
use the services of the supervisor, the macro instructions used to request these services, and
the linkage conventions used by the control program to provide these services.

The system programmer interested in additional information on the supervisor should see
OS / VS2 System Programming Library: Job Management, Supervisor, and TSO, GC28-0682.

This book is divided into two parts. Part I, "Supervisor Services", provides explanations and
aids for using the facilities available through the supervisor. Part II, "Macro Instructions",
provides coding information.

Part I is divided into eight topics. Specific topics include:

Linkage Conventions: Well designed programs use system resources efficiently. Knowing the
conventions and characteristics of the supervisor will help you design more efficient
programs.

Subtask Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each otlier and with
other tasks for execution time.

Program Management: The supervisor can be used to aid communication between segments
of a program. Save area, address ability , and passage of control from one segment of a
program to another are discussed.

Resource Control: Portions of some tasks depend on the completion of events in other tasks.
This requires planned task synchronization. Planning is also required when more than one
program uses a serially reusable resource.

Interruption, Termination, and Dumping Services: The supervisor provides facilities for writing
exit routines to handle specific types of interruptions. It is not likely, however, that you will
be able to write routines to handle all types of abnormal conditions. The supervisor
therefore provides for termination of your program when you request it by issuing an
ABEND macro instruction, or when the control program detects a condition that will degrade
the system or destroy data.

Virtual Storage Management: While virtual storage allows you to write large programs without
the need for complex overlay structures, virtual storage must be obtained for your job step.
Virtual storage is allocated by both explicit and implicit requests.

Real Storage Management: The supervisor administers the use of real storage and directs the
movement of virtual pages between auxiliary storage and real storage in page siie blocks.
The services provided allow you to release virtual storage contents, load virtual storage areas
into' real storage, and page out virtual storage areas from real storage.

Miscellaneous Services: In addition to the services outlined above, facilities are provided for
timing events, extended precision floating-point simulation, and operator commdnication
with both the system and application programs. 'I

Part II contains the descriptions and definitions of the supervisor macro instructioHs
available in the OS/vs assembler language. It provides applications programmers coding the
assembler language with the information necessary to code the macro instructions. The
standard, list, and execute forms of the macro instructions are grouped, where applicable, for
ease of reference.

Preface 3

Use of this book requires a basic knowledge of the operating system and of os/vs
assembler language. Books that contain basic information are:

OS/VS2 Planning Guide for Release 2, GC28-0667

OS/VS - DOS/VS - VM/370 Assembler Language, GC33-4010

OS/VS
Checkpoint / Restart, GC26-3784
Data Management Macro Instructions, GC26-3793
Data Management Services Guide, GC26-3783
Linkage Editor and Loader, GC28-6451
Services A ids, GC28-0633

IBM System/370
Principles of Operation, GA22-7000

OS/VS2 System Programming Library: Job Management, Supervisor, and TSO, GC28-0682

4 OS/VS2 Supervisor Services and Macro instructions (VS2 Release 2)

Contents

Part I: Supervisor Services 11

Introduction to Supervisor Services 13
Summary of Services 13

Linkage Conventions 15
Linkage Registers 15
Saving the Calling Program's Registers 16
Establishing a Base Register 17
Providing a Save Area 17
Summary of Conventions to be Followed When Passing and Receiving Control 18

Subtask Creation and Control 21
Creating the Task 21
Priorities 21

Address Space Priority 21
Task Priority 22
Subtask Priority 22
Assigning and Changing Priority 22

Task and Subtask Communications 23

Program Management 25
Load Module Structure Types 25

Simple Structure 25
Dynamic Structure 25

Load Module Execution 25
Passing Control in a Simple Structure 26

Passing Control Without Return 26
Preparing to Pass Control 26
Passing Control 26

Passing Control With Return 27
Preparing to Pass Control 28
Passing Control 28
Analyzing the Return 29
How Conlrol is Returned 30
Return to the Control Program 32

Passing Control in a Dynamic Structure 32
Bringing the Load Module into Virtual Storage 32

Location of the Module 32
The Search for the Load Module 33
Using an Existing Copy 36
Using the LOAD Macro Instruction 36

Passing Control with Return 37
The LINK Macro Instruction . . 37
Using CALL or Branch and Link 39
How Control is Returned 40

Passing Control Without Return . . 40
Passing Control Using a Branch Instruction 40
Using the XCTL Macro Instruction 40

Additional Entry Points 42
Entry Point and Calling Sequence Identifiers as Debugging Aids 43

Resource Control 45
Task Synchronization 45
Using a Serially Reusable Resource 46

Naming the Resource 46
Exclusive and Shared Requests 46.1
Processing the Request 47
Using ENQ and DEQ 48

Duplicate Requests for a Resource 48
Releasing the Resource 48
Conditional and Unconditional Requests 48
Avoiding Interlock 49

Contents 5

InterrupticJR, T ennination, and Dumping Services
Program Interruption Processing
Program Interruption Control Area

Program Interruption Element
Register Contents Upon Entry to User's Exit Routine

Handling Abnormal Conditions
Intercepting Abnormal Termination of Tasks

Interface to an EST AE Exit
Intercepting Abnormal Termination of Subtasks

Interface to an EST AI Exit
EST AE/EST AI Retry Routines

Interface to a Retry Routine
Dumping Services .

ABEND Dumps
SNAP Dumps

Virtual Storace Management
Explicit Requests for Virtual Storage

Specifying the Size of the Area
Types of Explicit Requests
Subpool Handling

Implicit Requests for Virtual Storage
Reenterable Load Modules
Reenterable Macro Instructions
Nonreenterable Load Modules
Freeing of Virtual Storage

Real St.Ql"age Management
Relinquishing Virtual Storage
Loading/Paging Out Virtual Storage Areas
Virtual Subarea List (VSL)

Miscellalaeells Services
Timing Services . . .

Date and Time of Day
Interval Timing

Extended-Precision Floating-Point Simulation
Extended-Precision Division
Division Process
Arithmetic Exceptions
Calling the Simulator
Designing the Exit Routine

Communicating with the System Operator
Writing to the Programmer
Writing to the System Log
Message Deletion

PaR: II: Macm IItstructions

Intr04udioll te Supervisor Macro Instructions
Macro Instruction Forms . . .
Coding the Macro Instructions
Continuation Lines
VS1/VS2 Compatibility

DeKriptIeas ., the Macro Instructions
ABEND - Abnormally Terminate a Task
A TT ACH - Create a New Task
ATT ACH (List Form)
ATTACH (Execute Form)
CALL - Pass Control to a Control Section
CALL (List Form)
CALL (Execute Form)
CHAP - Change Dispatching Priority
DELETE - Relinquish Control of a Load Module
DEQ - R.elease a Serially Reusable Resource
DEQ (List Form)
DEQ (Execute Form)
DETACH - Detach a Subtask

6 OS/VSl Su,ervisor Stntces and Macro Instructions (VSl Release 3)

53
53
53
55
55
56
58
59
60
60
60
61
61
62
62

63
63
63
63
65
68
68
68
69
70

71
71
72
72

75
75
75
75
76
77
77
77
78
79
82
83
83
84

85

87
87
88
89
90

93
95
97

102
103
105
107
108
109
111
113
116
117
119

DOM - Delete Operator Message
DXR - Divide Extended Register
ENQ - Request Control of a Serially Reusable Resource
ENQ (List Form)
ENQ (Execute Form)
EST AE - Extended ST AE
EST AE (List Form) . . .
EST AE (Execute Form)
EVENTS - Events Wait, ECB Initilization, and Table Creation/Deletion
FREE MAIN - Free Virtual Storage
FREEMAIN (List Form)
FREEMAIN (Execute Form)
GETMAIN - Allocate Virtual Storage
GETMAIN (List Form)
GETMAIN (Execute Form)
IDENTIFY - Add an Entry Name . .
LINK - Pass Control to a Program in Another Load Module
LINK (List Form)
LINK (Execute Form)
LOAD - Bring a Load Module into Virtual Storage . . .
PGLOAD - Load Virtual Storage Areas into Real Storage
PGLOAD (List Form)
PGOUT - Page Out Virtual Storage Areas from Real Storage
PGOUT (List Form)
PGRLSE - Release Virtual Storage Contents
PGRLSE (List Form)
PGRLSE (Execute Form)
POST - Signal Event Completion
RETURN - Return Control . . .
SAVE - Save Register Contents .
SEGLD - Load Overlay Segment and Continue Processing
SEGWT - Load Overlay Segment and Wait
SETRP - Set Return Parameters
SNAP - Dump Virtual Storage and Continue
SNAP (List Form)
SNAP (Execute Form)
SPIE - Specify Program Interruption Exit
SPIE (List Form)
SPIE (Execute Form)
ST A TUS - Change Subtask Status
STIMER - Set Interval Timer .
TIME - Provide Time and Date .
TTIMER - Test Interval Timer
WAIT - Wait for One or More Events
WAITR - Wait for One or More Events
WTL - Write to log
WTL (List Form)
WTL (Execute form)
WTO - Write to Operator
WTO (List Form)
WTO (Execute Form) . .
WTOR - Write to Operator with Reply
WTOR (List Form)
WTOR (Execute Form)
XCTL - Pass Control to a Program in Another Load Module
XCTL (List Form)
XCTL (Execute Form)

Index

121
123
124
129
130
132
135
136
138

138.7
141
142
144
147
148
150
152
154
155
156
158
160
161
163
164
165
166
167
169
170
172
173
174
177
180
181
183
185
186
187
189
192
194
196
198
199
200
201
202
205
206
207
209
210
211
213
214

217

Contents 7

mustrations

Figures
Figure 1.
Figure 2.
Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.

Acquiring PARM Field Information
Format of the Save Area
SAVE Macro Instruction Used to Save (A) All Registers but 13 and

16
17

(B) Registers 5-10, 14 and 15 17
Chaining Save Areas in a Nonreenterable Program 18
Chaining Save Areas in a Reenterable Program 18
Levels of Tasks in a Job Step 23
Characteristics of Load Modules . . . 25
Passing Control in a Simple Structure 27
Passing Control With a Parameter List 27
Passing Control With Return 28
Passing Control With CALL 29
Test for Normal Return 30
Return Code Test Using Branching Table 30
Establishing a Return Code 3 I
Using the RETURN Macro instruction 3 I
RETURN Macro Instruction With Flag 32
Search for Module, EP or EPLOC Parameter With DCB=O or DCB Parameter Omitted 34
Search for Module, EP or EPLOC Parameters With DCB Parameter Specifying Private Library 35
Search for Module Using DE Parameter 35
Use of the LINK Macro Instruction With the Job or Link Library 38
Use of the LINK Macro Instruction with a Private Library 38
Use of the BLDL Macro Instruction 38
The LINK Macro Instruction With a DE Parameter 38
Misusing Control Program Facilities Causes Unpredictable Results 42
Event Control Block 45
ENQ Macro Instruction Processing 47
Interlock Condition 50
Two Requests for Two Resources 50
One Request for Two Resources . 50
Program Interruption Control Area 54
Using the SPIE Macro Instruction 54
Program Interruption Element . . 55
Detecting an Abnormal Condition 57
Using the GETMAIN Macro Instruction 64
Virtual Storage Control
Using the List and the Execute Forms of the DEQ Macro Instruction in a Reenterable Program
Releasing Virtual Storage

66
69
72
76
78
80
81
81
82
83
88
89

Interval Timing
Summary of Program Interruptions
Calling the Extended-Precision Floating-Point Simulator
Return Codes From the Extended-Precision Floating-Point Simulator
Interruption Codes Returned by the Simulator
Writing to the Operator
Writing to the Operator With a Reply
Sample Macro Instruction . . .
Continuation Coding
Return Code Area Used by DEQ
DEQ Macro Instruction Return Codes
Return Code Area Used by ENQ
ENQ Return Codes . .
Creating A Table
Parameter List Format
Processing One Event At A Time

115
115
127
128

138.2
138.3
138.5

8 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

Summary of Amendments
for GC28-0683-0
as Updated by GN28-2589
VS2 Release 3

Part I: Supervisor Services

The basic changes in this part of the manual are found in
the chapters:

Resource Control
(EVENTS)

Interruption, Termination, and Dumping Services
(Interface to an ESTAE exit)

Part II: Macro Instructions

The new material in this part of the manual is the insertion
of the EVENTS macro instruction.
The basic changes in this part of the manual are found in
the Introduction to Supervisor Macro Instructions
(Continuation Lines) section and the following macro
instructions and parameters:

DEQ (List Form)

IDENTIFY

Add an Entry Name

POST

Signal Event Completion

STATUS

Change Subtask Status

WTO

W rite to Operator

WTOR (Execute Form)

Summary of Amendments 9

Summary of Amendments
for GC18-0683-0
VSl Release 1

Information in this manual applies to VS2 only.

Part I: Supervisor Services

The basic changes in this part of the manual are found in
the chapt.ers:

Intemlption, Tennination, and Dumping Services
(ABEND, EST AE, and SETRP routines>

Real Storage Management
(PGLOAD and PGOUT routines>

Part II: Macro Instructions

The basic changes in this part of the manual are found in
the following macro instructions and parameters:
ABEND

SYSTEM and USER to designate system or user
completion code.
DUMPOPT- to produce a tailored dump (via using
SNAP).

ATTACH
EST AI - to specify an EST AI exit.
TERM- to schedule exit routine for additional
situations.

RELATED- to self-document macro instruction.

CHAP
RELATED- to self-document macro instruction.

DELETE

RELATED- to self-document macro instruction.

DEQ

RELATED- to self-document macro instruction.

DETACH

RELA TED- to self-document macro instruction.

DOM

REPL Y == to eliminate need for a reply to a WTOR.

ENQ

RELATED- to self-document macro instruction.

ESTAE

to extend recovery capabilities of ST AE.

FREEMAIN
LC, LU, VC, VU, EC, EU, RC, and RU to maintain
compatibility with GETMAIN.

RELATED- to self-document macro instruction.

GETMAIN
RC and RU to maintain compatibility with FREEMAIN.
RELATED- to self-document macro instruction.

LINK
ERRET == to schedule error routine.

LOAD
ERRET - to schedule error routim!.
RELATED- to self-document macro instruction.

PGLOAD

to load virtual areas into real areas.

PGOUT

to page out virtual areas from real areas.

SETRP
to indicate requests a recovery exit may make.

SNAP
SDAT A-(LSQA, SQA, SW A) to allow more areas to be

dumped.

STATUS

SYNCH to stop all subtasks of the caller.

STIMER
GMT- to return Greenwich mean time.

ERRET - to schedule error routine.

TIME
STCK to return TOO clock as unsigned 64-bit
fixed-point number.
ZONE- to return local or Greenwich mean time and
date.

ERRET - to schedule error routine.

TTIMER

ERRET - to schedule error routine.

WAIT

LONG- to specify a long wait.

to OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

Part I: Supervisor Services

Supervisor Services 11

12 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Introduction to Supervisor Services

Summary of Services
The supervisor provides the resources that your programs need while assuring that as many of
these resources as possible are being using at a given time. Well designed programs use system
resources efficiently. Knowing the conventions and characteristics of the vs supervisor will
help you design more efficient programs.

The services you can request from the supervisor can be classified as follows:

Sub task Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each other and with
other tasks for execution time.

Program Management: The supervisor can be used to aid communication between segments of
a program. Save areas, address ability , and passage of control from one segment of a program
to another are discussed.

Resource Control: Portions of some tasks are dependent on the completion of events in other
tasks, thus requiring planned task synchronization. Planning is also required when more than
one program uses a serially reusable resource.

Interruption, Termination, and Dumping Services: The supervisor provides facilities for writing
exit routines to handle specific types of interruptions. It is not likely, however, that you will be
able to write routines to handle all types of abnormal conditions. The supervisor therefore
provides for termination of your program when ,you request it by issuing an ABEND macro
instruction, or when the control program detects a condition that will degrade the system or
destroy data.

Virtual Storage Management: While virtual storage allows you to write large programs without
the need for complex overlay structures, virtual storage must be obtained for your job step.
Virtual storage is allocated by both explicit and implicit requests.

Real Storage Management: The supervisor administers the use of real storage and directs the
movement of virtual pages between auxiliary storage and real storage in page size blocks. The
services provided allow you to release virtual storage contents, load virtual storage areas into
real storage, and page out virtual storage areas from real storage.

In addition to the services outlined above, the supervisor provides the facilities for timing
events, extended precision floating-point simulation, and operator communication with both the
system and application programs.

Introduction to Supervisor Services 13

14 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Linkage Conventions

All programs, regardless of function or relative position in the task, should be designed using
certain conventions and with certain characteristics of the control program in mind. This
chapter describes these conventions and characteristics and discusses the effects they may have
on the execution of your program.

During the execution of a program the services of another program may be required. The
program that requests the services of another program is known as a calling program, and the
program that was requested is known as the called program. For example, when the control
program passes control to program A, program A becomes a called program. If program A in
turn passes control to program B, program A becomes a calling program, and program B
becomes a called program. From the point of view of the control program, however, program
A remains a called program until control is returned by program A. For more information on
this subject, see the discussion under the heading "Task and Subtask Communications" in
"Subtask Creation and Control."

The following conventions are presented assuming one calling and one called program. They
apply, however, to all called, and cal1ing programs operating in the system. If the conventions
presented here are always followed, execution of the called program will not be affected by the
method used to pass control or by the identity of the calling program.

Linkage Registers

Registers 0, 1, 13, 14, and 15 are known as the linkage registers; they are used in fixed ways
by the control program. It is good practice to use these registers in the same way in your
program, since they may be modified by the control program or by your program when system
macro instructions are used. Registers 2-12 are not changed by the control program.

Registers 0 and 1 are used to pass parameters to the control program or to a called
program. The expansions of some system macro instructions result in instructions that load a
value into register 0 or 1 or both, or load the address of a parameter list into register 1. For
other macro instructions, the control program uses register 1 to pass specified parameters to
the program you call.

Register 13 contains the address of the save area provided by the calling program.

Register 14 contains the return address of the calling program or an address within the
control program to which your program is to return control when it has completed execution.

Register 15 contains the entry address when control is passed to your program by the
control program. The entry address of the called routine should be in register 15 when you
pass control to another program. The expansion of some macro instructions results in
instructions that load into register 15 the address of a parameter list to be passed to the
control program. Register 15 is also used by the called program to return a value (a return
code) to the calling program.

The manner in which the control program passes the information in the PARM field of your
EXEC statement is a good example of how the control program uses a parameter register to
pass information. When control is passed to your program from the control program, register 1
contains the address of a fullword on a fullword boundary in your area of virtual storage (refer
to Figure O. The high-order bit (bit 0) of this word is set to 1. This is a convention used by
the control program to indicate the last word in a variable-length parameter list; you must use
the same convention when making requests to the control program. The low-order three bytes
of the fullword contain the address of a two-byte length field on a halfword boundary. The

Linkage Conventions IS

length field contains a binary count of the number of bytes in the P ARM field, which
immediately follows the length field. If the PARM field was omitted in the EXEC statement, the
count is set to zero. To prevent possible errors, the count should always be used as a length
attribute in acquiring the information in the PARM field. If your program is not going to use
this information immedately, you should load the address from register 1 into one of registers
2-12 or store the address in a fullword in your program.

Reg~ster L..I----------..:Iooc------'
4 Bytes

r-----________ ~A~ __________ ____

Full-Word
Boundary

Length Field PARMField 0
t-:-------'---------'

'---y---) ----...... v,...---

Figure 1. Acquiring PARM Field Infonnation

Half-Word
Boundary

Saving the Calling Program's Registers

2 Bytes o to 100 Bytes

The first action a called program should take is to save the contents of the calling program's
registers. The contents of any register the called program modifies and the contents of the
linkage registers must be saved. All registers should be saved to avoid errors when the called
program is modified.

The registers are saved in the 18-word save area provided by the calling program and
pointed to by register 13. The format of this area is shown in Figure 2. As indicated by this
figure, the contents of each register must be saved in a specific location within the save area.
Registers can be saved either with a store-multiple (STM) instruction or with the SAVE macro
instruction. The store-multiple instruction, STM 14,12,12(13), places the contents of all
registers except 13 in the proper words of the save area. Saving register 13 is discussed under
the heading "Providing a Save Area."

16 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

11 I ...

Word Contents
1 Used by PL/I language program
2 Address of previous save area (stored by calling program)
3 Address of next save area (stored by current program)
4 Register 14 (Return address)
5 Register 15 (Entry address)
6 Register 0
7 Register 1
8 Register 2
9 Register 3

10 Register 4
1 1 Register 5
12 Register 6
13 Register 7
14 Register 8
15 Register 9
16 Register 10
17 Register 11
18 Register 12

Figure 2. Fonnat of the Save Area

The SAVE macro instruction generates instructions that store a designated group of registers in the save

area. The registers to be saved are coded in the same order as in an STM instruction. Figure 3 illustrates uses

of the SAVE macro instruction. The T parameter (in B) specifies that the contents of registers 14 and 15 are

to be saved.

(A) PROGNAME
(B) PROGNAME

SAVE(14,12)
SAVE(5, 10),T

Figure 3. SAVE Macro Instruction Used to Save (A) all Registers but 13 and (B) Registers 5-10, 14 and 15

The SAVE macro instruction or the equivalent instructions should be placed at the entry
point to the program.

Establishing a Base Register
In System/370, addresses are resolved by adding a displacement to a base address. You must,
therefore, establish a base register using one of the registers from 2-12 or register 15. If your
program does not use system macro instructions and does not pass control to another program,
a base register can be established using the entry address in register 15. Otherwise, because
both your program and the control program use register 15 for other purposes, you must
establish a base using one of the registers 2-12. This should be done immediately after saving
the calling program's registers.

Providing a Save Area
If any control section in your program passes control to another control section, your program
must provide its own save area. You must also provide a save area when you use certain
system functions, such as GET or PUT. If you establish which registers are available to the
called program or control section, a save area is not necessary. Omitting the save area is not a
good coding practice, however, since any changes in your program might necessitate changing
a called program.

Whether or not your program provides a save area, the address of the calling program's save
area, which you used, must be saved, because you will need it to restore the registers before
you return control to the program that called you. If you are not providing a save area, you
can keep the address in register 13 or store it in a location in virtual storage. If you are
creating your own save area, the following procedure should be followed:

Linkage Conventions 17

I ,

• Store the address of the save area that you used (the address passed to you in register
13) in the second word of the save area you created.

• Store the address of your save area (the address you will pass in register 13) in the third
word of the calling program's save area.

This procedure enables you to find the save area when you need it to restore the registers,
and it enables a trace from save area to save area should one be necessary during a dump.

Figures 4 and 5 show two methods of obtaining a save area and of saving all the registers,
including the addresses of the two save areas. In Figure 4 the registers arc stored in the save
area provided by the calling program by using the STM instruction. Register 12 is then
established as the base register. The address of the caller's save area is then saved in the
second word of the new save area, established by the DC statement. The address of the calling
program's save area is loaded into register 2. The address of the new save area is loaded into
register 13, and then stored in the third word of the caller's save area.

PROGRAM

SAVEAREA

CSECT
STM
LR
USING
ST
LR
LA
ST

DC

14,12,12(13)
12,15
PROGNAME,12
13,SAVEAREA+4
2, 13
13,SAVEAREA
13, 8(2)

18F(3)

Figure 4. Chaining Save Areas in a Nonreenterable Program

In Figure 5, the SAVE macro instruction is used to store registers (an STM instruction could
have been used). The entry address is loaded into register 12, which is established as the base
register. An unconditional GETMAIN macro instruction (discussed in detail under the heading
"Virtual Storage Management") is issued requesting the control program to allocate 72 bytes
of virtual storage from an area outside your program, and to return the address of the area in
register 1. The addresses of the old and new save areas are stored in the assigned locations,
and the address of the new save area is loaded into register 13.

PROGNAME CSECT
SAVE
LR
USING
GETMAIN
ST
ST
LR

(14, 12)
12,15
PROGNAME,12
R,LV=72
13,4(1)
1 , 8(13)
13, 1

Figure 5. Chaining Save Areas in a Reenterable Program

Summary of Conventions to be Followed When Passing and Receiving
Control

The following is a list of conventions to be followed when passing and receiving control. The
actual methods of passing control are described under the heading "Program Management."

By a Called Program Upon Receiving Control:

• Save the contents of registers 0-12, 14, and 15 in the save area provided by the calling
program.

18 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

• Establish a base register.

• Request the control program to allocate storage for a save area if you did not already
allocate it by using a DC statement.

• Store the save area addresses in the assigned locations.

By a Calling Program before Passing Control (Return Required):

• Place the address of your save area in register 13.

• Place the address at which you wish to regain control (the return address) in register 14.

• Place the entry address of the program you are calling in register 15.

• Place the address of the parameter list (if there is one) in register l. (Passing parameters
is discussed under "Program Management.")

By a Calling Program before Passing Control (No Return Required):

• Restore registers 2-12 and 14.

• Place the address of the save area provided by the program that called you in register 13.

• Place the entry address of the program you are calling in register 15.

• Place the addresses of parameter lists in registers 1 and O.

By a Called Program before Returning Control:

• Restore registers 0-12 and 14.

• Place the address of the save area provided by the program you are returning control to
in register 13.

• Place a return code in the low-order byte of register 15 if one is required. Otherwise,
restore register 15.

Linkage Conventions 19

20 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Subtask Creation and Control

One task is created in the address space by the control program as a result of initiating
execution of the job step (the job step task). You can create additional tasks in your program.
If you do not, however, the job step task is the only task in the address space being executed.
The benefits of a multiprogramming environment are still available even with only one task in
the job step; work is still being performed for other address spaces when your task is waiting
for an event, such as an input operation, to occUr.."lt'd(._!_ .. ,., 1; ,

The advantage in creating additional tasks within the job step is that more tasks are
competing for control. When a wait condition occurs i in one of your tasks, it is not necessarily
a task from some other address space that gets control; it may be one of your tasks, a portion
of your job.

The general rule is that parallel execution of a job step (that is, more than one task in an
address space) should be chosen only when a significant amount of overlap between two or
more tasks can be achieved. The amount of time taken by the control program in establishing
and controlling additional tasks, and your increased effort to coordinate the tasks and provide
for communications between them must be taken in"to account.

Creating the Task
A new task is created by issuing an A TT ACH macro instruction. The task that is active when
the ATTACH macro instruction is issued is the originating task; the newly created task is the
subtask of the originating task. The subtask competes for control in the same manner as any
other task in the system, on the basis of priority (both address space priority and task priority
within the address space) and the current ability to use a central processing unit. The address
of the task control block for the subtask is returned in register 1.

If the A TT ACH macro instruction is executed successfully, control is returned to the user
with a hexadecimal code of '00' in register 15.

The entry point in the load module to be given control when the subtask becomes active is
specified as it is in a LINK macro instruction, that is, through the use of the EP. EPLOC, and
DE parameters. The use of these parameters is discussed in "Program Management."
Parameters can be passed to the subtask using the PARAM and VL parameters, also described
under "The LINK Macro Instruction." Additional parameters deal with the priority of the
subtask, provide for communication between tasks, specify libraries to be used for program
linkages, and establish an error recovery environment for the new subtask.

Caution: All modules contained in the libraries for a job step should be uniquely named. If
duplicate module names are contained in these libraries, the results are unpredictable.

Priorities
There are really three priorities to consider: address space priorities, task priorities, and subtask
priorities.

Address Space Priority

Each job initiated results in the creation of an address space. All successive steps in the job
execute in the same address space. The address space has a dispatching priority, which is
normally determined by the control program. The control program will select, and alter, the
priority in order to achieve the best load balance in the system - that is, in order to make the
most efficient use of central processing unit time and other system resources.

Subtask Creation and Control 21

It may be desireable for some jobs to execute at a different address space priority than the
default priority assigned by the system. To assign a priority, you code DPRTY=(valuel,value2)
on the EXEC statement. The address space priority is then determined as follows:

address space dispatching priority = (value1 x 16) + value2

Once the address space dispatching priority is set, it can be altered only by the control
program. (Thus, there is no limit priority associated with an address space.) However, a new
address space priority may be set for succeeding job steps by specifying different values in the
DPRTY parameter on the EXEC statement.

Task Priorhy

Each task in an address space has associated with it a limit priority and a dispatching priority.
These priorities are set by the control program when a job step is initiated. When other tasks
are created in the address space by use of the A TT ACH macro instruction, they may be given
different limit and dispatching priorities by use of the LPMOD and DPMOD parameters,
respectively.

The task dispatching priorities of the tasks in an address space do not affect the order in
which the jobs are selected for execution since the order is selected on the basis of address
space dispatching priority. Once an address space is selected for dispatching, the highest It>

priority task awaiting execution is selected. Thus, task priorities may affect processing within
an address space. Note, however, that in a multiprocessing system, task priorities cannot
guarantee the order in which the tasks will execute since more than one task may be executing
simultaneously in the same address space on different central processing units. In a paging
environment, page faults may alter the order in which the tasks execute.

Subtask Priority

When a subtask is created, the limit and dispatching priorities of the subtask are the same as
the current limit and dispatching priorities of the originating task except when the subtask
priorities are modified by the LPMOD and DPMOD parameters of the ATTACH macro
instruction. The LPMOD parameter specifies the number to be subtracted from the current limit
priority of the originating task. The result of the subtraction is assigned as the limit priority of
the subtask. If the result is zero or negative, zero is assigned as the limit priority. The DPMOD
parameter specifies the number to be added to the current dispatching priority of the
originating task. The result of the addition is assigned as the dispatching priority of the
subtask, unless the number is greater than the limit priority or less than zero. In that case, the
limit priority or 0, respectively, is used as the dispatching priority.

Assigning and Changing Priority

Tasks with a large number of input/output operations should be assigned a higher priority than
tasks with little input/output, because the tasks with much input/output will be in a wait
condition for a greater amount of time. The lower priority tasks will be executed when the
higher priority tasks are in a wait condition. As the input/output operations are completed, the
higher priority tasks get control, so that more I/O can be started.

The priorities of subtasks can be changed by using the CHAP macro instruction. The CHAP
macro instruction changes the dispatching priority of the active task or one of its subtasks. By
adding a positive or negative value, the dispatching priority of an active task or a subtask is
changed. The dispatching priority of an active task can be made less than the dispatching
priority of another task. If this occurs, if the other task is dispatch able it would be given
control after execution of the CHAP macro instruction.

22 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

The CHAP macro instruction can also be used to increase the limit priority of any of an
active task's subtasks. An active task cannot change its own limit priority. The dispatching
priority of a subtask can be raised above its own limit priority, but not above the limit of the
originating task. When the dispatching priority of a sub task is raised above its own limit
priority, the subtask's limit priority is automatically raised to equal its new dispatching priority.

Task and Subtask Communications
The task management information in this section is required only for establishing
communications among tasks in the same job step. The relationship of tasks in a job step is
shown in Figure 6. The horizontal lines in Figure 6 separate originating tasks and subtasks;
they have no bearing on task priority. Tasks A, AI, A2, A2a, B, BI and Bia are all subtasks
of the job-step task; tasks AI, A2, and A2a are subtasks of task A. Tasks A2a and Bia are
the lowest level tasks in the job step. Although task B I is at the same level as tasks A I and
A2, it is not considered a subtask of task A.

Task A is the originating task for both tasks A I and A2, and task A2 is the originating task
for task A2a. A hierarchy of tasks exists within the job step. Therefore the job step task, task
A, and task A2 are predecessors of task A2a, while task B has no direct relationship to task
A2a.

/

/
/

/

8
// "-

/ ,
/ ""-

/
/

Job
Step
Task

/

/
/

// ''>'''-'<---

/ "
/ "-

/ ""-
/ "-

I Ta,:: I I :~~ A21

Figure 6. Levels of Tasks in a Job Step

I
I

---.1 ____ _

I
I
I

I Ta,~ A2a I

...... -
........ -........

B
I
I
I
I
I
I
I
I
I

EJ
I

I
I
I
I
I
I

I Ta,~ Bl·1

Subtask Creation and Control 23

All of the tasks in the job step compete independently for CPU time; if no constraints are
provided, the tasks are performed and are terminated asynchronously. However, since each
task is performing a portion of the same job step, some communication and constraints
between tasks are required, such as notification of the completion of subtasks. If termination
of a predecessor task is attempted before all of the subtasks are complete, those subtasks and
the predecessor task are abnormally terminated.

Two parameters, the ECB and ETXR parameters, are provided in the A TT ACH macro
instruction to assist in communication between a sub task and the originating task. These
parameters are used to indicate the normal or abnormal termination of a subtask to the
originating task. If the ECB or ETXR parameter, or both, are coded in the A TT ACH macro
instruction, the task control block of the subtask is not removed from the system when the
subtask is terminated. The originating task must remove the task control block from the system
after termination of the subtask. This is accomplished by issuing a DETACH macro instruction.
The task control blocks for all sub tasks must be removed before the originating task can
terminate normally.

The ETXR parameter specifies the address of an end-of-task exit routine in the originating
task, which is to be given control when the subtask being created is terminated. The
end-of-task routine is given control asynchronously after the subtask has terminated and must
therefore be in virtual storage when it is required. After the control program terminates the

:"subtask, the end-of-task routine specified is scheduled to be executed. It competes for CPU
." time using the priority of the originating task and of its address space and can be given control

even though the originating task is in the wait condition. Although the DETACH macro
instruction does not have to be issued in the end-of-task routine, this is a good place for it.

The ECB parameter specifies the address of an event control block (discussed under "Task
Synchronization"), which is posted by the control program when the subtask is terminated.
After posting occurs, the event control block contains the completion code specified for the
subtask.

If neither the ECB nor the ETXR parameter is specified in the A TT ACH macro instruction,
the task control block for the subtask is removed from the system when the subtask is
terminated. Its originating task does not have to issue a DETACH macro instruction. A
reference to the task control block in a CHAP or a DETACH macro instruction in this case is
risky as is task termination; since the originating task is not notified of subtask termination,
you may refer to a task control block which has been removed from the system, which would
cause the active task to be abnormally terminated.

!

~H; I" ~ ~ ~ I> t., i ,_ '....J' ,J .. (df' -,

24 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Program Management

This chapter discusses facilities that aid you in designing your programs. Included are
descriptions of load module structures, facilities for passing control between programs and the
use of associated macro instructions.

Load Module Structure Types
Each load module used during a job step can be designed in one of three load module
structures: simple, planned overlay, or dynamic. A simple structure does not pass control to
any other load modules during its execution, and is brought into vit:"4tal storage all at one time.
A planned overlay structure may, if necessary, pass control to other load modules during its
execution, and it is not brought into virtual storage all at one time. Instead, segments of the
load module reuse the same area of virtual storage. A dynamic structure is brought into virtual
storage all at one time, and passes control to other load modules during its execution. Each of
the load modules to which control is passed can be one of the three structure types.
Characteristics of the load module structure types are summarized in Figure 7.

Since the large capacity of virtual storage all but eliminates the need for complex overlay
structures, planned overlays will not be discussed further.

Structure Type
Simple
Planned Overlay
Dynamic

Loaded All at One Time
Yes
No
Yes

Figure 7. Characteristics of Load Modules

Sinmple Struc~re

Passes Control to Other
Load Modules

No
Optional
Yes

A simple structure consists of a single load module produced by the linkage editor. The single
load module contains all of the instructions required and is paged into real storage by the
control program as it is executed. The simple structure can be the most efficient of the two
structure types because the instructions it uses to pass control do not require control-program
assistance. However, any program should be carefully designed to make most efficient use of
paging.

Dynanmic Structure

A dynamic structure requires more than one load module during execution. Each load module
required can operate as either a simple structure or another dynamic structure. The advantages
of a dynamic structure over a simple structure increase as the program becomes more complex,
particularly when the logical path of the program depends on the data being processed. The
load modules required in a dynamic structure are paged into real storage when required, and
can be deleted from virtual storage when their use is completed.

Load Module Execution
Depending on the configuration of the operating system and the macro instructions used to
pass control, execution of the load modules is serial or in parallel. Execution is serial in the vs
operating system unless an A TT ACH macro instruction is used to create a new task. The new
task competes for CPU time independently with all other tasks in the system. The load module
named in the A TT ACH macro instruction is executed in parallel with the load module

Program Management 25

containing the ATTACH macro instruction. The execution of the load modules is serial within
each task.

The following paragraphs discuss passing control for serial execution of a load module.
Creation and management of new tasks is discussed under the headings "Task Creation and
Control."

Passing Control in a Simple Structure
There are certain procedures to follow when passing control to an entry point in the same load
module. The established conventions to use when passing control are also discussed. These
procedures and conventions are the framework for all program interfaces. Knowledge of the
information about addressing contained in the OS/VS - DOS/VS - VM/370 Assembler
Language publication is required.

Passing Control Without Return

Some control sections pass control to another control section of the load module and do not
receive control back. An example of this type of control section is a housekeeping routine at
the beginning of a program which establishes values, initializes switches, and acquires buffers
for the other control sections in the program. The following procedures should be used when
passing control without return.

Preparing to Pass Control

Because control will not be returned to this control section, you must restore the contents of
register 14. Register 14 originally contained the address of the location in the calling program
(for example, the control program) to which control is to be passed when your program is
finished. Since the current control section does not make the return to the calling program, the
return address must be passed to the control section that makes the return. In addition, the
contents of registers 2-12 must be unchanged when your program eventually returns control,
so these registers must also be restored.

If control were being passed to the next entry point from the control program, register 15
would contain the entry address. You should use register 15 in the same way, so that the
called routine remains independent of the program that passed control to it.

Register 1 should be used to pass parameters. A parameter list should be established, and
the address of the list placed in register 1. The parameter list should consist of consecutive
full words starting on a full word boundary, each fullword containing an address to be passed to
the called control section in the three low-order bytes of the word. The high-order bit of the
last word should be set to 1 to indicate that it is the last word of the list. The system
convention is that the list contain addresses only. You may, of course, deviate from this
convention; however, when you deviate from any system convention, you restrict the use of
your programs to those programmers who are aware of your special conventions.

Since you have reloaded all the necessary registers, the save area that you used is now
available, and can be reused by the called control section. You pass the address of the save
area in register 13 just as it was passed to you. By passing the address of the old save area,
you save the 72 bytes of virtual storage for a second, and unnecessary, save area.

Passing Control

The common way to pass control between one control section and an entry point in the same
load module is to load register 15 with a V -type address constant for the name of the external
entry point, and then to branch to the address in register 15. The external entry point must
have been identified using an ENTRY instruction in the called control section if the entry point
is not the same as the control section's name.

26 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

An example of loading registers and passing control is shown in Figure 8. In this example,
no new save area is used, so register 13 still contains the address of the old save area. It is
also assumed for this example that the control section will pass the same parameters it received
to the next entry point. First, register 14 is reloaded with the return address. Next, register 15
is loaded with the address of the external entry point NEXT, using the V -type address constant
at the location NEXT AD D R. Registers 0-12 are reloaded, and control is passed by a branch
instruction using register 15. The control section to which control is passed contains an ENTRY
instruction identifying the entry point NEXT.

L 14,12(13) lCSECT
L 15,NEXTADDR ENTRY NEXT
LM 0,12,20(13) I
BR 15--------> NEXT lSAVE (14, 12)

NEXTADDR DC V(NEXT)

Figure 8. Passing Control in a Simple Structure

An example of passing a parameter list is shown in Figure 9. Early in the routine the
contents of register 1 (that is, the address of the fullword containing the PARM field address)
were stored at the fullword PARMADDR. Register 13 is loaded with the address of the old save
area, which had been saved in word 2 of the new save area. The contents of register 14 are
restored, and register 15 is loaded with the entry address.

EARLY

PARMLIST
DCBADDRS

PARMADDR
NEXTADDR

USING
ST

L
L
L
L
LA
01
LM
BR

DS
DC
DC
DC
DC

*, 12
1,PARMADDR

13,4(13)
0,20(13)
14,12(13)
15,NEXTADDR
1,PARMLIST
PARMADDR,X'80'
2,12,28(13)
15

OA
A(INDCB)
A(OUTDCB)
A(O)
V(NEXT)

Figure 9. Passing Control With a Parameter List

Establish addressability
Save parameter address

Reload address of old save area

Load return address
Load address of next entry point
Load address of parameter list
Turn on last parameter indicator
Reload remaining registers
Pass control

The address of the list of parameters is loaded into register 1. These parameters include the
addresses of two data control blocks (DeBS) and the original register 1 contents. The
high-order bit in the last address parameter (PARMADDR) is set to 1 using an OR-immediate
instruction. The contents of registers 2-12 are restored. (Since one of these registers was the
base register, restoring the registers earlier would have made the parameter list unaddressable.)
A branch instruction using register 15 passes control to entry point NEXT.

Passing Control with Return

The control program passed control to your program, and your program will return control
when it is through processing. Similarly, control sections within your program will pass control
to other control sections, and expect to receive control back. An example of this type of

Program Management 27

control section is a monitoring routine; the monitor determines the order of execution of other
control sections based on the type of input data. The following procedures should be used
when passing control with return.

Preparing to Pass Control

Registers 15 and 1 are used in the same manner they are used to pass control without return.
Register 15 contains the entry address in the new control section and register 1 is used to pass
a parameter list.

Register 14 must contain the address of the location to which control is to be returned
when the called control section completes execution. The address can be the instruction
following the instruction which causes control to pass, or it can be another location within the
current control section designed to handle all returns. Registers 2-12 are not involved in the
passing of control; the called control section should not depend on the contents of these
registers in any way.

You should provide a new save area for use by the called control section as previously
described, and the address of that save area should be passed in register 13. Note that the
same save area can be reused after control is returned by the called control section. One new
save area is ordinarily all you will require regardless of the number of control sections called.

Passing Control

Two standard methods are used for passing control to another control section and providing
for return of control. One is an extension of the method used to pass control without a return,
and requires a V -type address constant and a branch or a branch and link instruction. The
other method uses the CALL macro instruction to provide a parameter list and establish the
entry and return addresses. Using either method, the entry point must be identified by an
ENTRY instruction in the called control section if the entry name is not the same as the control
section name. Figures 10 and 11 illustrate the two methods of passing control; in each
example, it is assumed that register 13 already contains the address of a new save area.

PARMLIST
DCBADDRS

ANSWERAD

NEXTADDR
GOOUT

RETURNPT
AREA

L
CNOP
BAL
DS
DC
DC
DC
DC
DC
BALR

DC

15,NEXTADDR
0,4
1,GOOUT
OA
A(INDCB)
A(OUTDCB)
B'10000000'
AL3(AREA)
V(NEXT)
14, 15

12F'0'

Figure 10. Passing Control With Return

Entry address in register 15

Parameter list address in register
Start of parameter list
Input dcb address
Output dcb address
Last parameter bit on
Answer area address
Address of entry point
Pass control; register 14 contains
return address

Answer area from NEXT

Use of an inline parameter list and an answer area is also illustrated in Figure 10. The
address of the external entry point is loaded into register 15 in the usual manner. A branch
and link instruction is then used to branch around the parameter list and to load register 1
with the address of the parameter list. An inline parameter list such as the one shown in Figure
lOis convenient when you are debugging because the parameters involved are located in the
listing (or the dump) at the point they are used, instead of at the end of the listing or dump.
Note that the first byte of the last address parameter (ANSWERAD) is coded with the
high-order bit set to 1 to indicate the end of the list. The area pointed to by the address in the
ANSWERAD parameter is an area to be used by the called control section to pass parameters

28 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

back to the calling control section. This is a possible method to use when a called control
section must pass parameters back to the calling control section. Parameters are passed back in
this manner so that no additional registers are involved. The area used in this example is
twelve words: the size of the area for any specific application depends on the requirements of
the two control sections involved.

RETURNPT
AREA

CALL

DC

NEXT,(INDCB,OUTDCB,AREA),VL

12F'O'

Figure t t. Passing Control With CALL

The CALL macro instruction in Figure 11 provides the same functions as the instructions in
Figure 10. When the CALL macro instruction is expanded, the parameters cause the following
results:

NEXT
A V-type address constant is created for NEXT, and the address is loaded into register 15.

(INDCB,OUTDCB,AREA)
A-type address constants are created for the three parameters coded within parentheses, and the
address of the first A-type address constant is placed in register 1.

VL
The high-order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. The address of the
instruction following the CALL macro instruction is loaded into register 14 before control is
passed.

In addition to the results described above, the V -type address constant generated by the
CALL macro instruction requires the load module with the entry point NEXT to be link edited
into the same load module as the control section containing the CALL macro instruction. Refer
to the Linkage Editor and Loader publication, if you are interested in finding out more about
this service.

The parameter list constructed from the CALL macro instruction in Figure 11, contains only
A-type address constants. A variation on this type of parameter list results from the following
coding:

CALL NEXT, (INDCB, (6) , (7)) , VL

In the above CALL macro instruction, two of the parameters to be passed are coded as
registers rather than symbolic addresses. The expansion of this macro instruction again results
in a three-word parameter list; in this example, however, the expansion also contains
instructions that store the contents of registers 6 and 7 in the second and third words,
respectively, of the parameter list. The high-order bit in the third word is set to 1 after register
7 is stored. You can specify as many address parameters as you need, and you can use
symbolic addresses or register contents as you see fit.

Analyzing the Return

When control is returned from the control program after processing a system macro
instruction, the contents of registers 2-13 are unchanged. When control is returned to your
control section from the called control section, registers 2-14 contain the same information
they contained when control was passed, as long as system conventions are followed. The
called control section has no obligation to restore registers 0 and 1; so the contents of these
registers mayor may not have been changed.

Program Management 29

When control is returned, register 15 can contain a return code indicating the results of the
processing done by the called control section. If used, the return code should be a multiple of
4, so a branching table can be used easily, and a return code of 0 should be used to indicate a
normal return. The control program frequently uses this method to indicate the results of the
requests you make using system macro instructions; an example of the type of return codes the
control program provides is shown in the description of the IDENTIFY macro instruction.

The meaning of each of the codes to be returned must be agreed upon in advance. In some
cases, either a "good" or "bad" indication (zero or nonzero) will be sufficient for you to
decide your next action. If this is true, the coding in Figure 12 could be used to analyze the
results. Many times, however, the results and the alternatives are more complicated, and a
branching table, such as shown in Figure 13, could be used to pass control to the proper
routine.

Note: Explicit tests are required to ensure that the return code value does not exceed the
branch table size.

RETURNPT LTR
BNZ

15, 15
ERROR TN

Figure 12. Test for Normal Return

RETURNPT
RETTAB

B
B
B
B
B

RETTAB(15)
NORMAL
COND1
COND2
GIVEUP

Test return code for zero
Branch if not zero to error routine

Branch to table using return code
Branch to normal routine
Branch to routine for condition 1
Branch to routine for condition 2
Branch to routine to handle impossible
~)ituations

Figure 13. Return Code Test Using Branching Table

How Control is Returned

In the discussion of the return under "Analyzing the Return" it was indicated that the control
section returning control must restore the contents of registers 2-14. Because these are the
same registers reloaded when control is passed without a return, refer to the discussion under
"Passing Control Without Return" for detailed information and examples. The contents of
registers 0 and 1 do not have to be restored.

Register 15 can contain a return code when control is returned. As indicated previously, a
return code should be a multiple of four with a return code of zero indicating a normal return.
The return codes other than zero that you use can have any meaning, as long as the control
section receiving the return codes is aware of that meaning.

The return address is the address originally passed in register 14; control should always be
returned to that address. You can either use a branch instruction such as BR 14, or you can
use the RETURN macro instruction. An example of each method of returning control is
discussed in the following paragraphs.

Figure 14 is a portion of a control section used to analyze input data cards and to check for
an out-of-tolerance condition. Each time an out-of-tolerance condition is found, in addition to
some corrective action, one is added to the value at the address ST A TUSBY. After the last data
card is analyzed, this control section returns to the calling control section, which bases its next
action on the number of out-of-tolerance conditions encountered. The coding shown in Figure

30 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

14 loads register 14 with the return address. The contents of register 15 are set to zero, and
the value at the address STATUSBY (the number of errors) is placed in the low-order eight bits
of the register. The contents of register 15 are shifted to the left ~wo places to make the value
a multiple of four. Registers 2-12 are reloaded, and control is returned to the address in
register 14.

L 13,4(13)
L 14,12(13)
SR 15, 15
IC 15,STATUSBY
SLA 15,2
LM 2,12,28(13)
BR 14

STATUSBY DC x'OO'

Figure 14. Establishing a Return Code

Load address of previous save area
Load return address
Set register 15 to zero
Load number of errors
Set return code to multiple of 4
Reload registers 2-12
Return

The RETURN macro instruction is provided to save coding time. The expansion of the
RETURN macro instruction provides instructions that restore a designated range of registers,
load return code in register 15, and branch to the address in register 14. In addition, the
RETURN macro instruction can be used to flag the save area used by the returning control
section~ this flag, a byte containing all ones, is placed in the high-order byte of word four of
the save area after the registers have been restored. The flag indicates that the control section
that used the save area has returned to the calling control section. You will find that the flag is
useful when tracing the flow of your program in a dump. For a complete record of program
flow, a separate save area must be provided by each control section each time control is
passed.

The contents of register 13 must be restored before the RETURN macro instruction is issued.
The registers to be reloaded should be coded in the same order as they would have been
designated had a load-multiple (LM) instruction been coded. You can load register 15 with the
return code before you write the RETURN macro instruction, you can specify the return code
in the RETURN macro instruction, or you can reload register 15 from the save area.

The coding shown in Figure 15 provides the same result as the coding shown in Figure 14.
Registers 13 and 14 are reloaded, and the return code is loaded in register 15. The RETURN

macro instruction reloads registers 2-12 and passes control to the address in register 14. The
save area used is not flagged. The RC= 15 parameter indicates that register 15 already contains
the return code, and the contents of register 15 are not to be altered.

L 13,4(13) Restore save area address
L 14,12(13) Return address in register 14
SR 15, 15 Zero register 15
IC 15,STATUSBY Load number of errors
SLA 15,2 Set return code to multiple of 4
RETURN (2, 12) , RC=(15) Reload registers and return

$TATUSBY DC X'OO'

Figure 15. Using the RETURN Macro Instruction

Figure 16 illustrates another use of the RETURN macro instruction. The correct save area
address is again established, and then the RETURN macro instruction is issued. In this example,
registers 14 and 0-12 are reloaded, a return code of 8 is placed in register 15, the save area is
flagged, and control is returned. Specifying a return code overrides the request to restore
register 15 even though register 15 is within the designated range of registers.

Program Management 31

L 13,4(13)
RETURN (14,12),T,RC=8

Figure 16. RETURN Macro Instruction With Flag

Return to the Control Program

The discussion in the preceding paragraphs has covered passing control within one load
module, and has been based on the assumption that the load module was brought into virtual
storage because of the program name specified in the EXEC statement. The control program
established only one task to be performed for the job step. When the logical end of the
program is reached, control passes to the return address passed (in register 14) to the first
control section in program. When the control program receives control at this point, it
terminates the task it created for the job step, compares the return code in register 15 with
any COND values specified on the JOB and EXEC statements, and determines whether or not
subsequent job steps, if any are present, should be executed.

Passing Control in a Dynamic Structure
The discussion of passing control in a simple structure provides the background for the
discussion of passing control in a dynamic structure. Within each load module, control should
be passed as in a simple structure. If you can determine which control sections will make up a
load module before you code the control sections, you should pass control within the load
module without involving the control program. The macro instructions discussed in this section
provide increased linkage capability, but they require control program assistance and possibly
increased execution time.

Bringing the Load Module into Virtual Storage

The load module containing the entry name you specified on the EXEC statement is
automatically brought into virtual storage by the control program. Any other load modules you
require during your job step are brought into virtual storage by the control program when
requested; these requests are made by using the LOAD, LINK, ATTACH, and XCTL macro
instructions. The following paragraphs discuss the proper use of these macro instructions.

Location of the Load Module

Initially, each load module that you can obtain dynamically is located in a library (partitioned
data set). This library is the link library, the job or step library, task library, or a private
library.

• The link library is always present and is available to all job steps of all jobs. The control
program provides the data control block for the library and logically connects the library
to your program, making the members of the library available to your program.

• The job and step libraries are explicitly established by including / / JOBLIB and / /STEPLIB
DD statements in the input stream. The / / JOBLIB DO statement is placed immediately
after the JOB statement, while the / /STEPLIB DO statement is placed among the DO

statements for a particular job step. The job library is available to all steps of your job,
except those that have step libraries. A step library is available to a single job step; if
there is a job library, the step library replaces the job library for the step. For either the
job library or the step library, the control program provides the data control block and
issues the OPEN macro instruction to logically connect the library to your program.

32 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

• Unique task libraries maY'be established by using the TASKLIB parameter of the ATTACH
macro instruction. The issuer of the ATTACH macro instruction is responsible for
providing the DD statement and opening the data set or sets. If the T ASKLIB parameter is
omitted, the task library of the attaching task is propagated to the attached task. In the
following example, task A's job library is LIB 1. Task A attaches task B, specifying
TASKLIB=LIB2 in the ATTACH macro instruction. Task B's task library is therefore LIB2.

When task B attaches task C, LIB2 is searched for task C before LIBI or the link library.
Because task B did not specify a unique task library for task C, its own task library
(LIB2) is propagated to task C and is the first library searched when task C requests that
a module be brought into virtual storage.

Task A
Task B

ATTACH EP=B,TASKLIB=LIB2
ATTACH EP=C

• A private library is defined by including a DD statement in the input stream and is
available only to the job step in which it is defined. You must provide the data control
block and issue the OPEN macro instruction for each data set. You may use more than
one private library by including more than one DD statement and associated data control
block.

A library can be a single partitioned data set, or a collection of such data sets. When it is a
collection, you define each data set by a separate DD statement, but you assign a name only to
the statement that defines the first data set. Thus, a job library consisting of three partitioned
data sets would be defined as follows:

IIJOBLIB DD DSNAME=PDS1, .. .
II DD DSNAME=PDS2, .. .
II DD DSNAME=PDS3 .. .

The three data sets (PDS 1, PDS2, PDs3) are processed as one, and are said to be
concatenated. Concatenation and the use of partitioned data sets is discussed in more detail in
the Data Management Services publication.

Some of the load modules from the link library may already be in virtual storage in an area
called the link pack area. The contents of these areas are determined during the nucleus
initialization process and will vary depending on the requirements of your installation. The link
pack area contains all reenterable load modules from the LPA library, along with data
management load modules; these load modules can be used by any job step in any job.

With the exception of those load modules contained in this area, copies of all of the
reenterable load modules you request are brought into your area of virtual storage and are
available to any task in your job step. The portion of your area containing the copies of the
load modules is called the job pack area.

The Search for the Load Module

In response to your request for a copy of a load module, the control program searches the job
pack area, the task's load list, and the link pack area. If a copy of the load module is found in
one of the pack areas, the control program determines whether that copy can be used (see
"Using an Existing Copy"). If an existing copy can be used, the search stops. If it cannot be
used, the search continues until the module is located in a library. The load module is then
brought into the job pack area or the load list area.

The order in which the libraries and pack areas are searched depends on the parameters
used in the macro instruction requesting the load module. The parameters that define the order
of the search are EP, EPLOC, DE, DCB, and TASKLIB. The EP, EPLOC, and DE parameters are
used to specify the name of the entry point in the load module; you code one of the three
every time you use a LINK, LOAD, XCTL, or ATTACH, macro instruction. The DCB parameter

Program Management 33

is used to indicate the address of the data control block for the library containing the load
module, and is optional. Omitting the DCB parameter or using the DCB parameter with an
address of zero specifies the data control block for the link library or the job or step library.
The TASKLIB parameter is used only for ATTACH.

The following paragraphs discuss the order of the search when the entry name used is a
member name.

The EP and EPLOC parameters require the least effort on your part; you provide only the
entry name, and the control program searches for a load module having that entry name.
Figure 17 shows the order of the search when EP or EPLOC is coded, and the DCB parameter
is omitted or DCB=O is coded.

The job pack area is searched for an available copy.
The requesting task's task library and all the unique task libraries of its antecedent tasks are searched.
The step library is searched; if there is no step library, the job library (if any) is searched.
The link pack area is searched.
The link library is searched.

Figure 17. Search for Module. EP or EPLOC Parameter With OCB=O or OCB Parameter Omitted

When used without the DCB parameter, the EP and EPLOC parameters provide the easiest
method of requesting a load module from the link, job, or step library. The task libraries are
searched before the job or step library, beginning with the task library of the task that issued
the request and continuing through the task libraries of all its antecedent tasks. The job or step
library is then searched, followed by the link library.

A job, step, or link library or a data set in one of these libraries can be used to hold one
version of a load module, while another can be used to hold another version with the same
entry name. If one version is in the link library, you can ensure that the other will be found
first by including it in the job or step library. However, if both versions are in the job or step
library, you must define the data set that contains the version you want to use before that
which contains the other version. For example, if the wanted version is in PDS 1 and the
unwanted version is in PDS2, a step library consisting of these data sets should be defined as
follows:

IlsTEPLIB DD DSNAME=PDS1, .. .
II DD DSNAME=PDS2, .. .

If, however, the first version in the job or step library has been previously loaded and the
version in the link library or the second version in the job library is desired, the DCB
parameter must be coded in the macro instructions.

This is not the case for task libraries. Extreme caution should be used when specifying
module names in unique task libraries, because duplicate names may lead to the wrong module
being given to the task requesting that the module be brought into virtual storage. Once a
module has been loaded, the module name is known to all tasks in the region and a copy of
that module is given to all tasks requesting that that module name be loaded, regardless of the
requester's task library.

If you know that the load module you are requesting is a member of one of the private
libraries, you can still use the EP or EPLOC parameter, This time in conjunction with the DCB
parameter. You specify the address of the data control block for the private library in the DCB
parameter. The order of the search for EP or EPLOC with the DCB parameter is shown in
Figure 18.

34 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

The job pack area of the region is searched for an available copy.
The specified library is searched.
The link pack area is searched.
The link library is searched.

Figure 18. Search for Module, EP or EPLOC Parameters With DCB Parameter Specifying Private Library

Searching a job or step library slows the retrieval of load modules from the link library; to
speed this retrieval, you should limit the size of the job and step libraries. You can best do this
by eliminating the job library altogether and providing step libraries where required. You can
limit each step library to the data sets required by a single step; some steps (such as
compilation) do not require a step library and therefore do not require searching and retrieving
modules from the link library. For maximum efficiency, you should define a job library only
when a step library would be required for every step, and every step library would be the
same.

The DE parameter requires more work than the EP and EPLOC parameters, but it can reduce
the amount of time spent searching for a load module. Before you can use this parameter, you
must use the BLDL macro instruction to obtain the directory entry for the module. The
directory entry is part of the library that contains the module.

To save time, the BLDL macro instruction used must obtain directory entries for more than
one entry name. You specify the names of the load modules and the address of the data
control block for the library when using the BLDL macro instruction; the control program
places a copy of the directory entry for each entry name requested in a designated location in
virtual storage. If you specify the link library and the job or step library, the directory
information indicates from which library the directory entry was taken. The directory entry
always indicates the relative track and block location of the load module in the library. If the
load module is not located on the library you indicate, a return code is given. You can then
issue another BLDL macro instruction specifying a different library.

To use the DE parameter, you provide the address of the directory entry and code or omit
the DCB parameter to indicate the same library specified in the BLDL macro instruction. The
order of the search when the DE parameter is used is shown in Figure 19 for the link, job,
step, and private libraries.

The preceding discussion of the search is based on the premise that the entry name you
specified is the member name. The control program checks for an alias entry point name when
the load module is found ina library. If the name is an alias, the control program obtains the
corresponding member name from the library directory, and then searches the link pack and
job pack areas using the member name to determine if a usable copy of the load module exists
in virtual storage. If a usable copy does not exist in a pack area, a new copy is brought into
the job pack area. Otherwise, the existing copy is used, conserving virtual storage and
eliminating the loading time.

Directory Entry Indicates Link Library and DCB=O or DCB Parameter Omitted.
The job pack area for the region is searched for an available copy.
The link pack area is searched.
The module is obtained from the link library.

Directory Entry Indicates Job, Step, or Task Library and DCB=O or DCB Parameter Omitted.
The job pack area for the region is searched for an available copy.
The module is obtained from the step library; if there is no step library, the module is obtained from
the job library.

DCB Parameter Indicates Private Library
The job pack area for the region is searched for an available copy.
The module is obtained from the specified private library.

Figure 19. Search for Module Using DE Parameter

Program Management 35

As the discussion of the search indicates, you should choose the parameters for the macro
instruction that provide the shortest search time. The search of a library actually involves a
search of the directory, followed by copying the directory entry into virtual storage, followed
by loading the load module into virtual storage. If you know the location of the load module,
you should use the parameters that eliminate as many of these unnecessary searches as
possible, as indicated in Figures 17, 18, and 19. Examples of the use of these figures are
shown in the following discussion of passing control.

U sing an Existing Copy

The control program uses a copy of the load module already in the job pack area if the copy
can be used. Whether the copy can be used or not depends on the reusability 'and current
status of the load module; that is, the load module attributes, as designated using linkage editor
control statements, and whether the load module has already been used or is in use. The status
information is available to the control program only when you specify the load module entry
name on an EXEC statement, or when you use A TT ACH, LINK, or XCTL macro instructions to
transfer control to the load module. The control program protects you from obtaining an
unusable copy of a load module if you always "formally" request a copy using these macro
instructions (or the EXEC statement); if you pass control in any other manner (for instance, a
branch or a CALL macro instruction), the control program, because it is not informed, cannot
protect you. copy.'; ,

All reenterable modules (modules designated as reenterable using the linkage editor) from
any library are completely reusable; only one copy is ever placed in the link pack area or
brought into your job pack area, and you get immediate control of the load module. If the
module is serially reusable, only one copy is ever placed in the job pack area; this copy is
always used for a LOAD macro instruction. If the copy is in use, however, and the request is
made using a LINK, ATTACH, or XCTL macro instruction, the task requiring the load module is
placed in a wait condition until the copy is available. A LINK macro instruction should not be
issued for a serially reusable load module currently in use for the same task; the task will be
abnormally terminated. (This could occur if an exit routine issued a LINK macro instruction for
a load module in use by the main program.)

If the load module is not reusable, a LOAD macro instruction will always bring in a new
copy of the load module; an existing copy is used only if a LINK, ATTACH, or XCTL macro
instruction is issued and the copy has not been used previously. Remember, the control
program can determine if a load module has been used or is in use only if all of your requests
are made using LINK, ATTACH, or XCTL macro instructions.

U sing the LOAD Macro Instruction

The LOAD macro instruction is used to ensure that a copy of the specified load module is in
virtual storage in your region or job pack area if it was not preloaded into the link pack area.
When a LOAD macro instruction is issued, the control program searches for the load module as
discussed previously and brings a copy of the load module into the region if required. When
the control program returns control, register 0 contains the virtual storage address of the entry
point specified for the requested load module, and register 1 contains the length of the loaded
module (in double words) and the authorization code in the high byte. Normally, the LOAD

macro instruction is used only for a reenter able or serially reusable load module, since the load
module is retained even though it is not in use.

The control program also establishes a "responsibility" count for the copy, and adds one to
the count each time the requirements of a LOAD macro instruction are satisfied by the same
copy. As long as the responsibility count is not zero, the copy is retained in virtual storage.

The responsibility count for the copy is lowered by one when a DELETE macro instruction is
issued during the task which was active when the LOAD macro instruction was issued. When a

36 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

task is terminated, the count is lowered by the number of LOAD macro instructions issued for
the copy when the task was active minus the number of deletions. ·When the use count for a
copy in a job pack area reaches zero, the virtual storage area containing the copy is made
available.

Passing Control with Return

The LINK macro instruction is used to pass control between load modules and to provide for
return of control. You can also pass control using branch or branch and link instructions or the
CALL macro instruction; however, when you pass control in this manner you must protect
against multiple uses of nonreusable or serially reusable modules. The following paragraphs
discuss the requirements for passing control with return in each case.

The LINK Macro Instruction

When you use the LINK macro instruction, as far as the logic of your program is concerned,
you are passing control to another load module. Remember, however, that you are requesting
the control program to assist you in passing control. You are actually passing control to the
control program, using an SVC instruction, and requesting the control program to find a copy
of the load module and pass control to the entry point you designate. There is some similarity
between passing control using a LINK macro instruction and passing control using a CALL

macro instruction in a simple structure. These similarities are discussed first.

The convention regarding registers 2-12 still applies; the control program does not change
the contents of these registers, and the called load module should restore them before control
is returned. You must provide the address i.8~egister 13 of the save area for use by the called
load module; the control program does not use this save area. You can pass address
parameters in a parameter list to the load module using register 1; the LINK macro instruction
provides the same facility for constructing this list as the CALL macro instruction. Register 0 is \
used by the control program and the contents may be modified.

There is also some difference between passing control using a LINK macro instruction and
passing control using a CALL macro instruction. When you pass control in a simple structure,
register 15 contains the entry address and register 14 contains the return address. When the
called load module gets control, that is still what registers 14 and 15 contain, but when you
use the LINK macro instruction, it is the control program that establishes these addresses.
When you code the LINK macro· instruction, you provide the entry name and possibly some
library information using the EP, EPLOC, or DE, and DCB parameters. But you have to get this
entry name and library information to the control program. The expansion of the LINK macro
instruction does this by creating a control program parameter list (the information required by
the control program) and placing the address of this parameter list in register 1 S. After the
control program finds the entry name, it places the address in register 1 S.

The return address in your control section is always the instruction following the LINK; that
is not, however, the address that the called load module receives in register 14. The control
program saves the address of the location in your program in its own save area, and places in
register 14 the address of a routine within the control program that will receive control.
Because control was passed using the control program, return must also be made using the
control program.

The control program establishes a use count for a load module when control is passed using
the LINK macro instruction. This is a separate use count from the count established for LOAD

macro instructions, but it is used in the same manner. The count is increased by one when a
LINK macro instruction is issued· and decreased by one when return is made to the control
program or when the called load module issues an XCTL macro instruction.

Program Management 37

Figures 20 and 21 show the coding of a LINK macro instruction used to pass control to an
entry point in a load module. In Figure 20, the load module is from the link, job, or step
library; in Figure 21, the module is from a private library. Except for the method used to pass
control, this example is similar to Figures 10 and 11. A problem program parameter list
containing the addresses INDCB, OUTDCB, and AREA is passed to the called load module; the
return point is the instruction following the LINK macro instruction. A V -type address constant
is not generated, because the load module containing the entry point NEXT is not to be edited
into the calling load module. Note that the EP parameter is chosen, since the search begins
with the job pack area and the appropriate library as shown in Figure 17.

RETURNPT
AREA

LINK

DC

EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=1

12F'0'

Figure 20. Use of the LINK Macro Instruction With the Job or Link Library

OPEN

LINK

PVTLIB DCB

(PVTLIB)

EP=NEXT,DCB=PVTLIB,PARAM=(INDCB,OUTDCB,AREA),VL=1

DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R)

Figure 21. Use of the LINK Macro Instruction With a Private Library

Figures 22 and 23 show the use of the BLDL and LINK macro instructions to pass control.
Assuming that control is to be passed to an entry point in a load module from the link library.
a BLDL macro instruction is issued to bring the directory entry for the member into virtual
storage. (Remember, however, that time is saved only if more than one directory entry is
requested in a BLDL macro instruction. Only one is requested here for simplicity.)

LISTADDR

NAMEADDR

BLDL

DS
DC
DC
DC
DS

O,LISTADDR

OH
H' 01 '
H'60'
CL8'NEXT'
26H

Figure 22. Use of the BLDL Macro Instruction

List description field:
Number of list entries
Length of each entry

Member name
Area required for directory information

LINK DE=NAMEADDR,DCB=0,PARAM=(INDCB,OUTDCB,AREA),VL=1

Figure 23. The LINK Macro Instruction With a DE Parameter

The first parameter of the BLDL macro instruction is a zero, which indicates that the
directory entry is on the link or job library. The second paramete~_ is the address in virtual
storage of the list description field for the directory entry. The firsi)wo bytes at LISTADDR
indicate the length of each entry: If the entry is to be used in aLINK. LOAD. ATTACH, or
XCTL macro instruction, the entry must be 60 bytes in length. A character constant is
established to contain the directory information to be placed there by the control program as a
result of the BLDL macro instruction. The LINK macro instruction in Figure 23 can now be
written. Note that the DE parameter refers to the name field, not the list description field, of
the directory entry.

38 OS/VS2 Supervisor Services and Ma(:ro Instructions (VS2 Release 2)

U sing CALL or Branch and Link

You can save time by passing control to a load module without using the control program.
Passing control without using the control program is performed as follows. Issue a LOAD

macro instruction to obtain a copy of the load module, preceded by a BLDL macro instruction
if you can shorten the search time by using it. The control program returns the address of the
entry point (£0' tegister 0 and the length in double words in register 1. Load this address into
register 15. The linkage requirements are the same when passing control between load modules
as when passing control between control sections in the same load module: register 13 must
contain a save area address, register 14 must contain the return address, and register 1 is used
to pass parameters in a parameter list. A branch instruction, a branch and link instruction, or a
CALL macro instruction can be used to pass control, using register 15. The return will be made
directly to your program.

Note: When control is passed to a load module without using the control program, you must
check the load module attributes and current status of the copy yourself, and you must check
the status in all succeeding uses of that load module during the job step, even when the control
program is used to pass control.

The reason you have to keep track of the usability of the load module has been discussed
previously: you are not allowing the control program to determine whether you can use a
particular copy of the load module. The following paragraphs discuss your responsibilities when
using load modules with various attributes. You must always know what the reusability
attribute of the load module is. If you do not know, you should not attempt to pass control
yourself.

If the load module is reenterable, one copy of the load module is all that is ever required for
a job step. You do not have to determine the status of the copy; it can always be used. The
best way to pass control is to use a CALL macro instruction or a branch or branch and link
instruction.

If the load module is serially reusable, one use of the copy must be completed before the
next use begins. If your job step consists of only one task, preventing· simultaneous use of the
same copy involves making sure that the logic of your program does not require a second use
of the same load module before completion of the first use. An exit routine must not require
the use of a serially reusable load module also required in the main program.

Preventing simultaneous use of the same copy when you have more than one task in the job
step requires more effort Qn your part. You must still be sure that the logic of the program for
each task does not require a second use of the same load module before completion of the first
use. You must also be sure that no more than one task requires the use of the same copy of
the load module at one time; the ENQ macro instruction can be used for this purpose. Properly
used, the ENQ macro instruction prevents the use of a serially reusable resource, in this case a
load module, by more than one task at a time. Refer to "Resource Control" for a complete
discussion of the ENQ macro instruction. A conditional ENQ macro instruction can also be used
to check for simultaneous use of a serially reusable resource within one task.

If the load module is nonreusable, each copy can only be used once; you must be sure that
you use a new copy each time you require the load module. You can ensure that you always
get a new copy by using a LINK macro instruction or by doing as follows:

1. Issue a LOAD macro instruction before you pass control.

2.. Pass control using a branch or a branch and link instruction or a CALL macro instruction
only.

3. Issue a DELETE macro instruction as soon as you are through with the copy.

Program Management 39

How Control is Returned

The return of control between load modules is the same as return of control between two
control sections in the same load module. The program in the load module returning control is
responsible for restoring registers 2-14, possibly loading a return code in register 15, and
passing control using the address in register 14. The program in the load module to which
control is returned can expect registers 2-13 to be unchanged, register 14 to contain the return
address, and optionally, the register 15 to contain a return code. Control can be returned using
a branch instruction or the RETURN macro instruction. If control was passed without using the
control program, control returns directly to the calling program. However, if control was
originally passed using the control program, control returns first to the control program, then
to the calling program.

The action taken by the control program is as follows. When control was passed using a
LINK or A TT ACH macro instruction, the responsibility count was increased by one for the copy
of the load module to which control was passed to ensure that the copy would be in virtual
storage as long as it was required. The return of control indicates to the control program that
this use of the copy is completed, and so the responsibility count is decreased by one. The
virtual storage area containing the copy is made available when the responsibility count reaches
zero.

Passing Control Without Return

The XCTL macro instruction is used to pass control between load modules when no return of
control is required. You can also pass control using a branch instruction; however, when you
pass control in this manner, you must protect against multiple uses of nonreusable or serially
reusable modules. The following paragraphs discuss the requirements for passing control
without return in each case.

Passing Control Using a Branch Instruction

The same requirements and procedures for protecting against reuse of a nonreusable copy of a
load module apply when passing control without return as were stated under "Passing Control
With Return." The procedures for passing control are as follows.

A LOAD macro instruction should be issued to obtain a copy of the load module. The entry
address returned in register 0 is loaded into register 15. The linkage requirements are the same
when passing control between load modules as when passing control between control sections
in the same load module; register 13 must be reloaded with the old save area address, then
registers 14 and 2-12 restored from that old save area. Register 1 is used to pass parameters in
a parameter list. A branch instruction is issued to pass control to the address in register 15.

Note: Mixing branch instructions and XCTL macro instructions is hazardous. The next topic
explains why.

Using the XCTL Macro Instruction

The XCTL macro instruction, in addition to being used to pass control, is used to indicate to
the control program that this use of the load module containing the XCTL macro instruction is
completed. Because control is not to be returned, the address of the old save area must be
reloaded into register 13. The return address must be loaded into register 14 from the old save
area, as must the contents of registers 2-12. The XCTL macro instruction can be written to
request the loading of registers 2-12, or you can do it yourself. If you restore all registers
yourself, do not use the EP parameter. This creates an inline parameter list that can only be
addressed using your base register, and your base register is no longer valid. If EP is used, you
must have XCTL restore the base register for you.

40 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

When using the XCTL macro instruction, you pass parameters in a parameter list, with the
address of the list in register 1. In this case, however, the parameter list (or the parameter
data) must be established in a portion of virtual storage outside the current load module
containing the XCTL macro instruction. This is because the copy of the current load module
may be deleted before the called load module can use· the parameters, as explained in more
detail below.

The XCTL macro instruction is similar to the LINK macro instruction in the method used to
pass control: control is passed by way of the control program using a control program
parameter list. The control program loads a copy of the load module, if necessary, loads the
entry address in register 15, saves the address passed in register 14, and passes control to the
address in register 15. The control program adds one to the responsibility count for the copy
of the load module to which control is to be passed and subtracts one from the responsibility
count for the current load module. The current load module in this case is the load module last
given control using the control program in the performance of the active task. If you have
been passing control between load.modules without using the control program, chances are the
responsibility count will be lowered for the wrong load module copy. And remember, when the
responsibility count of a copy reaches zero, that copy may be deleted, causing unpredictable
results if you try to return control to it.

Figure 24 shows how this could happen. Control is given to load module A, which passes
control to the load module B (step 1) using a LOAD macro instruction and a branch and link
instruction. Register 14 at this time contains the address of the instruction following the
branch and link. Load module B then is executed, independently of how control was passed,
and issues an XCTL macro instruction when it is finished (step 2) to pass control to load
module C. The control program knowing only of load module A, lowers the responsibility
count of A by one, resulting in its deletion. Load module C is executed and returns to the
address which used to follow the branch and link instruction. Step 3 of Figure 24 indicates the
result.

Two methods are available for ensuring that the proper responsibility count is lowered. One
way is to always use the control program to pass control with or without return. The other
method is to use only LOAD and DELETE macro instructions to determine whether or not a
copy of a load module should remain in virtual storage.

Program Management 4 t

Control
~ogram _

Cantrol Program

LOAD B
BALR B

A I
I
I ,

BALR

B I
I
I
I
I ,

XCTLC

r--.----------~ B ,.

---------. B

XCTLC

r----
I
I C

l I
I
I

I-----J RETURN

.-----:J: ... Control
Program

I
C

Program
Control j

To routine which
last issued a LINK
macro instruction.

Figure 24. Misusing Control Program Facilities Causes Unpredictable Results

Additional Entry I)oints

Step 1

Step 2

Step 3

Through the use of linkage editor facilities you can specify as many as 17 different names (a
member name and 16 aliases) and associated entry points within a load module. It is only
through the use of the member name or the aliases that a copy of the load module can be
brought into virtual storage. Once a copy has been brought into virtual storage, however,
additional entry points can be provided for the load module, subject to this restriction. The
load module copy to which the entry point is to be added must be one of the following:

• A copy which satisfied the requirements of a LOAD macro instruction issued during the
same task

• The copy of the load module most recently given control through the control program in
performance of the same task

The entry point is added through the use of the IDENTIFY macro instruction. An IDENTIFY
macro instruction can be issued by any program in the job step except by asynchronous exit
routines established using other supervisor macro instructions.

When you use the IDENTIFY macro instruction, you specify the name to be used to identify
the entry point, and the virtual storage address of the entry point in the copy of the load
module. The address must be within a copy of a load module that meets the requirements
listed above; if it is not, the entry point will not be added, and you will be given a return code
of OC (hexadecimal). The name can be any valid symbol of up to eight characters, and does

42 OS/VS2 Supenisor Senices and MacrQ Instructions (VS2 Release 2)

not have to correspond to a name or symbol within the load module. The name must not be
the same as any other name used to identify any load module available to the control program;
duplicate names cause errors. The control program checks the names of all load modules in the
link pack area, and the job pack area when you issue an IDENTIFY macro instruction, and
provides a return code of 08 if a duplicate is found. You are responsible for not duplicating a
member name or an alias in any of the libraries.

Entry Point and Calling Sequence Identifiers as Debugging Aids
An entry point identifier is a character string of up to 70 characters which can be specified in
a SAVE macro instruction. The character string is created as part of the SAVE macro
instruction expansion.

A calling sequence identifier is a 16-bit binary number which can be specified in a CALL or
a LINK macro instruction. When coded in a CALL or a LINK macro instruction, the calling
sequence identifier is located in the two low-order bytes of the fullword at the return address.
The high-order two bytes of the fullword form a NOP instruction.

Program Management 43

44 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Resource Control

Task Synchronization
Some planning on your part is required to determine what portions of one task are dependent
on the completions of portions of all other tasks. The POST macro instruction is used to signal
completion of an event~ the WAIT and EVENTS macro instructions are used to indicate that a
task cannot proceed until one or more events have occurred. An event control block is used
with the WAIT, EVENTS or POST macro instructions~ it is a fullword on a fullword boundary,
as shown in Figure 25.

An event control block is also used when the ECB parameter is coded in an A TT ACH macro
instruction. In this case the control program issues the POST macro instruction for the event
(subtask termination). Either the 24-bit (bits 8 to 31) return code in register 15 (if the task
completed normally) or the completion code specified in the ABEND macro instruction (if the
task was abnormally terminated) is placed in the event control block as shown in Figure 25.
The originating task can issue aWAIT or EVENTS WAIT = YES macro instruction specifying the
event control block~ the task will not regain control until after the event has taken place and
the event control block is posted (except if an asynchronous event occurs, for example, timer
expiration) .

o 2 31

I w I p I completion code I
Figure 25. Event Control Block

When an event control block is originally created, bits 0 (wait bit) and 1 (post bit) must be
set to zero. If an ECB is reused, bits 0 and 1 must be set to zero before aWAIT, EVENTS
ECB= or POST macro instruction can be specified. Ir, however, the bits are set to zero before
the ECB has been posted, any task waiting for that ECB to be posted will remain in the wait
state. When aWAIT macro instruction is issued, bit 0 of the associated event control block is
set to 1. When a POST macro in$truction is issued, bit 1 of the associated event control block
is set to 1 and bit 0 is set to O. For an EVENTS type ECB, POST also puts the completed ECB
address in the EVENTS table.

AWAIT macro instruction can specify more than one event by specifying more than one
event control block. (Only one WAIT macro instruction can refer to a event control block at a
time, however.) If more than one event control block is specified in aWAIT macro instruction,
the WAIT macro instruction can also specify that all or only some of the events must occur
before the task is taken out of the wait condition. When a sufficient number of events have
taken place (event control blocks have been posted) to satisfy the number of events indicated
in the WAIT macro instruction, the task is taken out of the wait condition.

An optional parameter, LONG=YES or NO, allows you to indicate whether the task is
entering a long wait or a regular' wait. A long wait should never be considered for I/O activity.
However, you might wish to use a long wait when waiting for an ENQ or when using a timer
interval.

Resource Control 45

Using a Serially Reusable Resource
When one or more users of a serially reusable resource modify the resource, simultaneous use
must be prevented. Consider a data area in virtual storage that is being used by programs
associated with several tasks of a job step. Some of the users are only reading records in the
data area; since they are not changing the records, their use of the data area can be
simultaneous. Other users of the data area, however, are reading, updating, and replacing
records in the data area. Each of these users must acquire, update, and replace records one at
a time, not simultaneously. In addition, none of the users that are only reading the records
wish to use a record that another user is updating until after the record has been replaced.
This illustrates why special care must be taken with serially reusable resources.

For all of the uses of the serially reusable resource made during the performance of a single
task, you must prevent incorrect use of the resource yourself. You must make sure that the
logic of your program does not require the second use of the resource before completion of
the first use. Be especially careful when using a serially reusable resource in an exit routine;
since exit routines are given control asynchronously from the standpoint of your program logic,
the exit routine could obtain a resource already in use by the main program. For the uses of
the serially reusable resource by more than one task, the ENQ macro instruction is provided to
ensure that the resource is used serially. The ENQ macro instruction cannot be used to prevent
simultaneous use of the resource within a single task. It can only be used to test for
simultaneous use within one task.

The ENQ macro instruction requests the control program to assign control of a resource to
the active task or another task. The control program determines the status of the resource, and
either grants the request by returning control to the active task, delays assignment of control
by placing the active task in the wait condition, or passes back a return code indicating the
status of the resOurce. When the status of the resource changes so that control can be given to
a waiting task. the task is taken out of the wait condition and placed in the ready condition.
The use of the ENQ macro instruction is discussed in the following paragraphs.

Naming the Resource

You represent the resource in the ENQ macro instruction by two names known as the qname
and the rname, and by a scope indicator. These names mayor may not have any relation to
the actual name of the resource. The control program does not associate the name with the
actual resource; it merely processes requests having the same qname, rname, and scope on a
first-in, first-out basis. It is up to you to associate the names with the actual resource. It is up
to all users of the resource to use qname, rname, and scope to represent the same resource.
The control program treats requests having different qname, rname, and scope combinations as
requests for different resource. Because the actual resource is not identified by the control
program, it is possible to use the resource without issuing an ENQ macro instruction requesting
it. If this happens, the control program cannot provide any protection.

If the resource is used only in the performance of tasks in your job step, you should code
the STEP parameter in the ENQ macro instructions that request the resource, indicating that the
resource is used only in that job step. The control program adds the address space identifier to
the scope so that duplicate qname and rname combinations can be used in different address
spaces. If the resource is available to any address space in the system, the qname, rname, and
scope combination must be agreed upon by all users. The SYSTEM parameter should be coded
in each ENQ macro instruction requesting one of these resources.

When selecting a qname for the resource, do not use SYS as the first three characters;
qnames used by the control program start with SYS and cannot be used.

46 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

Exclusive and Shared Requests

You can request exclusive or shared control of the resources for a task by coding either E or S
in the ENQ macro instruction. If this use of the resource will result in modification of the
resource, you must request exclusive control. If you are requesting use of a serially reusable
load module and passing control yourself, you must request exclusive control, since that
program modifies itself during execution. If you are updating a record in a data area, you must
request exclusive control. If you are only reading a record, and you will not change the record,
you can request shared control.

Resource Control 46. t

46.2 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

In order to protect any user of a serially reusable resource, all users must request exclusive
or shared control on this basis: When a task is given control of a resource in response to a
shared request, control will be given to other tasks simultaneously only in response to other
requests for shared control, never in response to requests for exclusive control. A request for
shared control will protect against modification of the resource by another task only if the
above rules are followed.

Processing the Request

The control program constructs a list for each qname, rname, and scope combination it
receives in an ENQ macro instruction, and enters a request in the list for the task which is
active when the ENQ macro instruction is issued. The request is entered in an existing list when
the control program receives a request specifying a qname, rname, and scope combination for
which a list exists; if no list exists for that qname, rname, and scope combination, a new list is
built. The requests are placed on the list in the order they are received by the control program;
the priority of the task has no effect in this case. Control of the resource is allocated to a task
according to two factors:

• The position on the list of the task's request.

• The exclusive control or shared control requirements of the request which caused the
entry to be added to the list.

Figure 26 shows the status of a list built for a qname, rname, and scope combination. The S or
E next to the entry indicates that the request was for shared or exclusive control. The task
represented by the first entry on the list is always given control of the resource, so the task
represented by ENTRYl (Figure 26, Step 1) is assigned the resource. The request which
established ENTRY2 was for exclusive control, so the corresponding task is placed in the wait
condition, along with the tasks represented by all the other entries in the list.

ENTRY1 (S)

ENTRY2 (E) ENTRY2 (E)

ENTRY3 (S) ENTRY3 (S) ENTRY3 (S)

ENTRY4 (S) ENTRY4 (S) ENTRY4 (S)

ENTRY5 (E) ENTRY5 (E) ENTRY5 (E)

ENTRY6 (S) ENTRY6 (S) ENTRY6 (S)

Step 1 Step 2 Step 3

Figure 26. ENQ Macro Instruction Processing

Eventually, control of the resource is released for the task represented by ENTRYl, and the
entry is removed from the list. As shown in Figure 26, Step 2, ENTRY2 is now first on the list,
and the corresponding task is assigned control of the resource. Because the request which
established ENTRY2 was for exclusive control, the tasks represented by all the other entries in
the list are kept in the wait condition.

Figure 26, Step 3, shows the status of the list after control of the resource is released for
the task represented by ENTRY2. Because ENTRY3 is now at the top of the list, the task
represented by ENTRY3 is given control of the resource. ENTRY3 indicates that the resource
can be shared, and, because ENTRY4 also indicates that the resource can be shared, ENTRY4 is
also given control of the resource. In this case, the task represented by ENTRY5 will not be
given control of the resource until control has been released for both the tasks represented by
ENTRY3 and ENTRY4.

Resource Control 47

The following general rules are used by the control program:

• A task represented by the first entry in the list is always given control of the resource.

• If the request is for exclusive control, the task is not given control of the resource until
its request is the first entry in the list.

• If the request is for shared control, the task is given control either when its request is
first in the list or when all the entries before it in the list also indicate a shared request.

• If the request is for several resources, the task is given control when all of the entries for
an exclusive request are first in the list and all of the entries for a shared request are
either first in the list or are preceded only by entries for other shared requests.

Using ENQ and DEQ

Proper use of the ENQ and DEQ macro instructions is required to avoid duplicate requests, to
avoid tying up the resource, and to avoid interlocking the system. Guides to using them
properly are given in the following paragraphs.

Duplicate Requests for a Resource

A duplicate request occurs when an ENQ macro instruction is issued to request a resource and
a task has already been assigned control of that resource. If the second request results in a
second entry on the list, the control program recognizes the contradiction and refuses to place
the task in the ready condition (for the first request) and in the wait condition (for the second
request) simultaneously. The second request results in a return code or abnormal termination
of the task. You should design your program to ensure that a second request for a resource is
never issued until control of the resource is released for the first use. Again, be especially
careful when using an ENQ macro instruction in an exit routine.

Releasing the Resource

The DEQ macro instruction is used to release a serially reusable resource assigned to a task
through the use of an ENQ macro instruction. The task must be in control of the resource. A
resource cannot be released if the task does not have control. As you have seen, it is possible
for many tasks to be placed in the wait condition while one task is assigned control of the
resource. This may reduce the amount of work being done by the system. Issue a DEQ macro
instruction as soon as possible to release the resource, so that other tasks can be performed. If
a task returns control to the control program without releasing a resource, the resource is
released automatically.

Conditional and Unconditional Requests

The normal use of the ENQ and DEQ macro instruction is to make unconditional requests, and
these are the only requests that have been considered to this point. As you have seen,
abnormal termination of the task occurs when two ENQ macro instructions are issued for the
same resource in performance of the same task or subtask, without an intervening DEQ macro
instruction. Abnormal termination also occurs if a DEQ macro instruction is issued in a task
that has not been assigned control of the resource. Both of these abnormal termination
conditions can be avoided either by careful program design or through the use of the RET
parameter in the ENQ and DEQ macro instructions. The RET parameter (RET=TEST, RET=USE,

RET=CHNG, and RET=HAVE for ENQ; RET=HAVE for DEQ) indicates a conditional request for
or release of a resource.

RET=TEST is used to test the status of the list for the corresponding qname, rname, and
scope combination. An entry is never made in the list when RET = TEST is coded. Instead, a
return code is provided indicating the status of the list at the time the request was made. A

48 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

return code of 8 means the task is queued and has control of the resource. A return code of
20 means the task is queued but does not have control of the resource. A return code of 4
indicates the task would have been placed in the wait condition if the request had been
unconditional. A return code of 0 indicates the task would have been given immediate control
of the resource if the request had been unconditional. RET=TEST is most useful for
determining if the task has already been assigned control of the resource. It is less useful for
determining the status of the list and to take action based on that status. In the interval
between the time the control program checks the status and the time your program checks the
return code and issues another ENQ macro instruction, another task could have been made
active, and the status of the list could have been changed.

RET = USE indicates to the control program that the active task is to be assigned control of
the resource only if the resource is immediately available. A return code of 0 indicates that the
request was put on the list and the task was assigned control of the resource. A return code of
4 indicates that the task would have been placed in the wait condition if the request had been
unconditional. A return code of 8 means the task is queued and has control of the resource. A
return code of 20 means the task is queued but does not have control of the resource. The
request is not put on the list if any return code other than 0 is given. RET=USE can be best
used when there is other processing that can be done without using the resource. You do not
want to wait for the resource if there is other work that you can do.

RET=CHNG indicates to the control program that the caller wishes to have exclusive
control of a resource which he has already requested. A return code of 0 indicates that the
resource was available and was assigned to the exclusive control of the caller. Either the caller
had already requested exclusive control, or the requested change from shared to exclusive
control was honored. A return code of 4 indicates that the requested change in attribute
cannot be honored, because the caller is currently sharing the resource with another user. A
return code of 8 indicates that the user was not queued to receive control of the resource
when he requested the attribute, change. Although this is an error condition, control is returned
to the user. A return code of 20 means the task is queued but docs not have control of the
resource.

RET=HAVE is used in both the ENQ and DEQ macro instructions. An ENQ macro
instruction is treated as a normal request for control unless a request from the same task
already exists. A return code of 8 means the task is queued and has control of the resource. A
return code of 20 means the task is queued but does not have control of the resource. A
return code of 0 indicates that the task was assigned control of the resource. A DEQ macro
instruction is processed as a normal request to release a resource unless the task does not have
control of the resource. A return code of 0 indicates that the resource has been released. A
return code of 8 indicates that the task did not have an entry for the resource. RET=HAVE can
be used to good advantage in an exit routine to avoid abnormal termination.

Avoiding Interlock

An interlock condition arises when two tasks are waiting for each others' completion, yet
neither task can gain access to the resource necessary for its completion. An example of an
interlock is shown in Figure 27. Task A has exclusive access to resource M, and higher-priority
task B has exclusive access to resource N. Task B is placed in a wait condition when it
requests exclusive access to resource M because M is accessible only by task A. The interlock
becomes complete when task A requests exclusive access to resource N, because N is
accessible only by Task B. The same interlock would have occurred if task B issued a single
request for mUltiple resources M and N prior to task A's second request. The interlock would
not have occurred if both tasks had issued single requests for multiple resources. Other tasks
requiring either of the resources are also in a wait condition because of the interlock, although
in this case they did not contribute to the conditions that caused the interlock.

Resource Control 49

Task A
ENQ (M,A,E,8,SYSTEM)

ENQ (N,B,E,8,SYSTEM)

Figure 27. Interlock Condition

Task B

ENQ (N,B,E,8,SYSTEM)
ENQ (M,A,E,8,SYSTEM)

The above example involving two tasks and two resources is a simple example of an
interlock. The example could be expanded to cover many tasks and many resources. It is
imperative that interlocks be avoided. The following procedures indicate some ways of
preventing interlocks.

• Do not request resources that are not immediately required. If you can use the serially
reusable resources one at a time, you should request them one at a time and release one
before requesting the next.

• Share resources as much as possible. If the requests in the lists shown in Figure 27 had
been for shared resources, there would have been no interlock. This does not mean you
should share a resource that you will modify. It does mean that you should analyze your
requirements for the resources carefully, and not request exclusive control when shared
control would suffice.

• The ENQ macro instruction can be written to request control of more than one resource
at a time. The requesting program is placed in a wait state until all of the requested
resources are available. Those resources not being used by any other program
immediately become exclusively available to the waiting program and are unavailable to
any other programs that may request them. For example, instead of coding the two ENQ

macro instructions shown in Figure 28, the one ENQ Macro instruction shown in Figure
29 could be coded. If all requests were made in this manner, the interlock shown in
Figure 27 would be avoided. All of the requests from one task would be processed
before any of the requests from the second task. The DEQ macro instruction should

(') "
release a resource as seen as it is no longer needed.

ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM)
ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM)

Figure 28. Two Requests For Two Resources

ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM,NAME3ADD,NAME4ADD,E,10,SYSTEM)

Figure 29. One Request For Two Resources

• If the use of one resource a/ways depends on the use of a second resource, then the pair
of resources can be defined as one resource in the ENQ and DEQ macro instructions. This
procedure can be used for any number of resources that are always used in combination.
There would be no protection of the resources if they are also requested independently,
however. The request would always have to be for the set of resources.

• If there are many users of a group of resources and some of the users require control of
a second resource while retaining control of the first resource, it is still possible to avoid
interlocks. In this case the order in which control of the resources is requested should be
the same for each user. For instance, if resources A, B, and C are required in the
performance of many tasks, the requests should always be made in the order of A, B,

SO OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

and C. An interlock situation will not develop, since requests for resource A will always
precede requests for resource B.

The above is not an exhaustive list of the procedures to be used to avoid an interlock. You
could also make repeated requests for control specifying the RET=USE parameter, which would
prevent the task from being placed in the wait condition; if no interlock was developing, of
course, this would be a waste of execution time. The solution to the interlock problem in all
cases requires the cooperation of aU the users of the resources.

Resource Control 51

52 OS/VS2 Supervisor Services and Macro Ins •. ructions (VS2 Release 2)

Interruption, Termination, and Dumping Services

The supervisor offers many services to assist in the detection and processing of abnormal
conditions during the execution of the system. Certain types of abnormal conditions are
detected by the hardware and cause program interruptions to occur (for example, if an attempt
is made to execute an instruction with an invalid operation code). Other abnormal conditions
are detected by the software (for example, an attempt to open a data set which is not defined
to the system causes an ABEND to be issued by the Open routine).

Although the supervisor provides facilities for writing exit routines to handle specific types
of interruptions and abnormal conditions, the supervisor provides for termination of your
program when you request it by issuing an ABEND macro instruction, or ~J!e!1 the control
p!?~ram detects a condition that will degrade the system or destroy data.

Program Interruption Processing
Some conditions encountered in a program cause a program interruption. These conditions
include incorrect parameters and parameter specifications, as well as exceptional results, and
are known generally as program exceptions. For certain exceptions (fixed-point and decimal
overflow, exponent underflow and significance), interruptions can be disabled by setting the
corresponding bits in the program status word to zero.

When a task becomes active for the first time, all program interruptions that can be disabled
are disabled, and a standard control program exit routine, included when the system was
generated, is provided. This control program exit routine is given control when certain program
interruptions occur; it issues an ABEND macro instruction specifying task abnormal termination
and requesting a dump. By issuing the SPIE macro instruction, you can specify your own exit
routine to be given control for one or more types of program exceptions. The macro
instruction specifies the address of the exit routine to be given control when specified program
exceptions occur. If the SPIE macro instruction specifies an exception for which the
interruption has been disabled, the control program enables the interruption when the macro
instruction is issued.

The SPIE macro instruction can be issued by any problem program being executed in
performance of the task. When the task is active, your exit routine receives control for all
interruptions resulting from exceptions specified in the SPIE macro instruction unless the
current routine for the task is operating in supervisor mode. For other program interruptions,
control is given to the control program exit routine. Each succeeding SPIE macro instruction
completely overrides specifications in the previous macro instruction.

Program Interruption Control Area
The expansion of each standard or list form SPIE macro instruction contains a control program
parameter list called the program interruption control area (PICA). The PICA and another
control program area called the program interruption element (PIE) contain the information
that enables the control program to intercept user-specified program interruptions. Together,
the PIE and the PICA associated with it are called the "SPIE environment." (The PIE is
described later in this section.) The PICA, as shown in Figure 30, contains the new program
mask for the interruption types that can be disabled, the address of the exit routine to be given
control when one of the specified interruptions occurs, and a code for interruption types
(exceptions) specified in the SPIE macro instruction.

Interruption, Tennination. and Dumping Services 53

Displacement

(Bytes) o

0000
! I Program
I Mask
I

Figure 30. Program Interruption Control Area

2 3 4 5

Exit Routine Address Interruption Type

The control program maintains a pointer (in the PIE) to the PICA referred to by the last
SPIE macro instruction executed. This PICA may have been created by the last SPIE (standard
or list form) or may have been created previously and referred to by the last SPIE (execute
form). Each program that issues a SPIE macro instruction, before returning control to the
calling program or passing control to another program via an XCTL macro instruction, must
cause the control program to adjust the SPIE environment to the condition that existed or to
eliminate the SPIE environment if one did not exist on entry to the program. When the
standard or execute form of the SPIE macro instruction is issued, the control program returns
the address of the previous PICA in register 1. If no SPIE environment existed when the
program was entered, the control program returns zeros in register 1.

The effect of the last SPIE macro instruction is canceled by issuing a SPIE macro instruction
with no parameters. This action does not reestablish the effect of the previous SPIE; it does
create a new PICA that contains zeros, thus indicating that no user exit routine is to process
interruptions. Any previous SPIE environment may be reestablished, regardless of the number
or type of subsequent SPIE macro instructions issued, by using the execute form of the SPIE
macro instruction specifying the appropriate value that had been returned in register 1 by the
control program. If a PICA address is specified (as opposed to zeros), the PICA must still be
valid (not overlaid). The SPIE environment will be eliminated by specifying zeros as the PICA

address.

Figure 31 shows how to restore a previous PICA. The first SPIE macro instruction designates
an exit routine called FIXUP that is to be given control if fixed-point overflow occurs. The
address returned in register 1 is stored in the fullword called HOLD. At the end of the
program, the execute form of the SPIE macro instruction is used to restore the previous PICA.

SPIE FIXUP, (8) Provide exit routine for fixed-point overflow
ST 1 , HOLD Save address returned in register 1

L 5,HOLD Reload returned address
SPIE MF=(E, (5)) Use execute form and old PICA address

HOLD DC F'O'

Figure 31. Using the SPIE Macro Instruction

Program Interruption Element

At the 'first execution of a SPIE macro instruction during the performance of a task, the control
program creates a 32-byte program interruption elem,ent (PIE) in the virtual storage area
assigned to the job step. Because the PIE is freed when the SPIE environment is eliminated (by
specifying a PICA address of zero in the execute form of a SPIE macro instruction), a PIE will
also be created whenever a SPIE macro instruction is issued and no PIE exists. The format of
the PIE is shown in Figure 32.

54 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Displacement
(Bytes) 0 2 3

4
Reserved I PICA Address

: (Interruption Codes)
Old Program Status Word

L _______________

12
Register 14

16
Register 15

20
Register 0

24
Register 1

28
Register 2

32

Figure 32. Program Interruption Element

The PICA address in the program interruption element is the address of the program
interruption control area used in the last execution of a SPIE macro instruction for the task.
When control is passed to the routine indicated in the PICA, the old program status word
contains the interruption coc;le in bits 16-31; these bits can be tested to determine the cause of
the program interruption. The contents of registers 14, 15, 0, 1, and 2 at the time of the
interruption are stored by the control program as indicated.

Register Contents Upon Entry to User's Exit Routine

When control is passed to the designated exit routine, the register contents are as follows:

Register 0: Internal control program information.

Register 1: Address of the program interruption element for the task that caused the
interruption.

Registers 2-12: Same as when the program interruption occurred.

Register 13: Address of the save area for the main program. The exit routine must not use
thO 'f · .: ~ J1' r -t-IS save area. ,-~,j".t),,_'.~ ';P it':';: vh.0\....CA..~ Vti,Q f'>\.(cJ...c' t:.' r{'

I "

Register 14: Return address (to the control program).

Register 15: Address of the exit routine.

The exit routine must be in virtual storage when it is required, and must return control to
the control program using the address passed in register 14. The control program restores
registers 14, 15, 0, 1, and 2 from the program interruption element after control is returned,
but does not restore the contents of registers 3-13. If a program interruption occurs when the
program interruption exit routine is in control, the control program exit routine is given
control.

To determine which type of interruption occurred, the exit routine can test bits 28 through
31 of the old program status word (opsw) in the program interruption element. The routine
can then take corrective action or can simply ignore the exceptional condition.

Interruption, Termination, and Dumping Services 55

The exit routine can alter the contents of the registers when control is returned to the
interrupted program. For registers 3 through 13, the routine alters the contents of the actual
registers. For registers 14 through 2, the routine alters the contents of the register save area in
the program interruption element, because the control program reloads these registers from this
area when it returns control to the interrupted program. The exit routine can also alter the last
four bytes of the OPSW in the program interruption element. By changing the OPSW, the
routine can select any return point in the interrupted program.

Handling Abnormal Conditions

It is not possible to provide procedures for all possible conditions which can occur during the
execution of a program. You should, of course, be sure that you can process all valid data, and
that your program satisfies all the requirements of the problem. The more general you make
the program, the greater the number of additional routines you will require to handle special
cases. But you will not be able to provide routines to detect and correct all of the special or
abnormal conditions that can occur.

The control program does a great deal of checking for abnormal conditions. A standard
program interruption routine is provided to detect and process errors such as protection
violations or addressing errors. The data management and supervisor routines provide some
error checking facilities to ensure that, based on the information you have provided, only valid
data is being processed, and that no requests with conflicting requirements have been made.
For the abnormal conditions that can possibly be corrected, control is returned to your
program with a return code indicating the probable source of the error. For conditions that
indicate that further processing would result in degradation of the system or destruction of
existing data, the control program abnormal termination routine is given control.

There will be abnormal conditions unique to your program, of course, that the control
program cannot detect. Figure 33 is an example of one of these. The routine shown in Figure
33 checks a control field in an input parameter list to determine which function the program is
to perform. Only characters between 1 and 4 are valid in the control field. The presence of
any other character is invalid, but the routine must be prepared to detect and handle these
characters. The routine should indicate its inability to continue processing by returning control
to the calling program with an error return code. The calling program should then try to
interpret the return code and to recover from the error. If it cannot do so, the calling program
should detach its incomplete subtasks, execute its usual termination procedures, and return
control to its calling program, again with an error return code. This procedure may result in
termination of all the tasks of a job step; if it does, the COND parameters of the JOB and
EXEC statements may be used to determine whether subsequent job steps should be executed.

S6 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

RTN1
Yes

RTN2
Yes

RTN3
Yes

RTN4
Yes

No

\ t· .. 11. '''' ~J -.("C il 'h 1 {\ ~/\--lL.V)'-"
/.V-\:'J {; WL};; J ilf . ~,J:G: i \ ~ 11-1 m..)

,6l0 H.f ~l tv" ~., (. if~t.R /'0:Y'(, '1_, ': (\1:'(""
wL,t1 L..j1"Q ~l>-rf;Ak!.-\~~.t, •

C1l'Ir.. l..-t t-<V ((..i'\, .. : .;tW'\.J.J ;: .J,.. ;..[t-;lli'.I;·1J 1 '4#

,,{ t'-~, J...l: \ '1 W/U"" t . V ~~, '1 ttlr'JA-<J ~ .,e!11l,t' L I

i~"""\ " r '~J '.) • '~,e {' (. Figure 33. Detecting an Abnormal Condition

An alternative to this procedure is to pass control to the control program abnormal
termination routine by issuing an ABEND macro instruction. In this case, if an error exit
routine was established via the EST AE macro instruction or the A TT ACH macro instruction with
the EST AI or ST AI option, the error exit routine gets contro1. (This error exit routine also
receives control if the system issues an ABEND macro instruction.) The exit can then determine
its actions with regard to the abnormal condition. This approach permits the implementation of l
mainline routines which contain less error handling code (for example, there is no need to
check return codes after invocation of a subroutine if the subroutine issues an ABEND>' The
error handling functions can be packaged in the EST AE/EST AI exits which execute only when
an error occurs.

The position within the job step hierarchy of the task for which the ABEND macro
instruction is issued determines the exact function of the abnormal termination routine. If an
ABEND macro instruction is issued when the job step task (the highest level or only task) is
active, or if the STEP parameter is coded in an ABEND macro instruction issued during the
performance of any task in the job'step, all the tasks in the job st~p are terminated. An
ABEND macro instruction (without a STEP parameter) that is issued in performance"of any task
other than the job step task usually causes only that task and the subtasks of that task to be
abnormally terminated. However~ if the abnormal termination cannot be fulfilled as requested,
it may be necessary for the control program to abnormally terminate the job step task. The

Interruption, T ennination, and Dumping Services 57

r
L

abnormal termination routine works in the same manner whether it is given control from the
control program or a problem program.

If the job step is not to be terminated, the following actions are taken:

• The resources owned by the terminating task and all of its subtasks are released, starting
with the lowest level task.

• The (system or user) completion code specified in the ABEND macro instruction is placed
in the task control block of the active task (the task for which the ABEND macro
instruction was issued).

• If the ECB parameter was written in the A TT ACH macro instruction issued to create the
active task, the ECB is posted with the completion code specified in the ABEND macro
instruction.

• If the ETXR parameter was written in the A TT ACH macro instruction issued to create the
active task, the end-of -task exit routine is scheduled to be given control when the
originating task'occomes active. 1 i [I '

< ,'" ,~ I','. <,/·.,c;'t
• If neither the ECB nor ETXR parameter was written when the A TT ACH macro instruction

was issued, a DETACH macro instruction is issued by the control program for the active
task.

If the job step is to be terminated, the following actions are taken:

• The resources owned by each task are released, starting with the lowest level task, for all
tasks in the job step. No end-of-task exit routine is given control.

• The (system or user) completion code specified in the ABEND macro instruction is
written on the system output device.

• Unless you specify otherwise in your job control statements, the remaining job steps in
the job are skipped. However, the statements defining these steps are checked for proper
syntax.

It is possible to restart a job step that has been abnormally terminated. Restart can occur
either at the beginning of the job step or at an internal checkpoint. A detailed discussion of
checkpoint and restart appears in Checkpoint/Restart.

Intercepting Abnormal Termination of Tasks
Abnormal termination of a task can be intercepted through the use of the EST AE macro
instruction. When a task that has previously issued an EST AE macro instruction is scheduled
for abnormal termination, control is passed to the user at his EST AE exit routine address.
Within the EST AE exit routine, the user can perform pre-termination functions and diagnose
the error. He can also determine whether abnormal termination should continue for the task,
or whether normal processing can resume at some retry point.

When the abnormal termination is scheduled, the EST AE exit routine must be resident. It
may either be part of the program issuing EST AE or be brought into virtual storage via the
LOAD macro instruction.

A single user program can issue more than one EST AE macro instruction with the CT

(create) parameter. All EST AE requests issued by programs running under the same task are
queued so that the exit established by the most recent EST AE request will be the first to get
control. If this exit fails or requests that the abnormal termination continue, the exit
established by the previous EST AE request will get control.

If the user wishes to use the same exit routine for several tasks at the same time, it must
be reenterable. For convenience, it is recommended that all EST AE exit routines be reenterable.

58 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

The user can cancel or overlay the current EST AE request; that is, the one most recently
made. If no EST AE requests are active for the task when a cancel or overlay is issued, or if the
user attempts to cancel or overlay an ESTAE request not associated with his~t:equest block leyel
of control, he will be informed that his request is invalid by a return code. An EST AE request
can be canceled by issuing the EST AE macro instruction with the EST AE exit routine address
specified as zero. Overlaying is done by issuing an EST AE macro instruction specifying OV.

Every program should cancel all EST AE exits it has created before returning control to its
caller.

Interface to an ESTAE exit

Before the initial ESTAE exit routine receives control, the I/O and asynchronous processing
requests specified in the EST AE macro instruction are fulfilled. The I/O processing requests
will be performed only for the first exit selected; subsequent exits, if entered, will receive an
indication of the I/O status, but no additional I/O processing will be performed. The
asynchronous exit processing requests, however, will be fulfilled for each exit.

Before each EST AE exit receives control, the control program attempts to obtain and
initialize a work area which will control information about the error. This work area is called
the System Diagnostic Work Area (SDWA). (The SDWA mapping macro - IHASDWA - must be
included in the routine.) The first word of the SDWA contains the address of the parameter list
established via the EST AE macro instruction. If the SDW A is obtained, the contents of the
registers on entry to the ESTAE exit routine are:

register 0

register 1
registers 2-12
register 13
register 14
register 15

A code indicating the type of I/O processing performed:
o Active I/O has been quiesced and is restorable.
4 - Active I/O has been halted and is not restorable.
8 - No I/O was active at time of ABEND.
16 - No I/O processing was performed.
Address of the SDWA.
Unpredictable.
Address of a n'-byte register save area.
Return address.
Entry point address.

The exit routine is enabled and has the same protection key as the routine which established
the exit as long as that routipe was under a problem program protection key (keys 8-15). An
EST AE exit created by a program running under any other control program protection key
(keys 0-7) receives control in key O. Entry is made to the ESTAE exit via the SYNCH macro
instruction.

When the EST AE exit has completed its analysis of the error, it should use the SETRP macro
instruction to inform the control program of the actions it desires. The SETRP macro
instruction will initialize the sow A with the desired options.

Return from the EST AE exit can optionally be effected via the SETRP REGS parameter or by
a BR 14 instruction.

If storage was not available for the sow A, the register contents upon entry to the EST AE

exit routine are as follows:

register 0
register 1
register 2
registers 3-13
register 14
register 15

12 (decimal).
ABEND completion code.
Address of the parameter list specified on the EST AE macro instruction, or O.
Unpredictable.
Return address.
Entry point address.

Interruption, Tennination, and Dumping Services 59

The exit routine is enabled and has the same protection key as the routine which established
the exit as long as that routine was under a problem program protection key (keys 8-15). An
EST AE exit created by a program running under any other control program protection key
(keys 0-7) receives control in key O. Entry is made to the EST AE exit via the SYNCH macro
instruction.

If the control program could not provide a work area, a register save area will not be
provided either. In this case, register 14 must be saved and used as the return register to the
control program.

If a work area (SDW A) was not provided, the user must place a return code in register 15
before returning control to the control program from the EST AE exit routine. The return code
indicates whether ABEND processing is to be continued for the task or whether termination can
be circumvented and a retry address given control. The return codes placed in register 15 may
be:

o - Termination should be continued. (Any EST AE exits that were established prior to this exit will
receive control.)

4 - A retry address is provided. (This address must be placed in register 0.)

The ESTAE exit routine returns control via BR 14.

Intercepting Abnormal Termination of Subtasks
To provide an exit in your program to intercept abnormal termination of a subtask, use the
EST AI parameter of the A TT ACH macro instruction you issue to create the subtask. The EST AI

request issued for any subtask will be extended to all subtasks. For example, suppose task A

attaches task B and uses the EST AI parameter of A TT ACH. When task B attaches task C, the
ESTAI request issued by A will be active for C as well as B.

Since more than one subtask abnormally terminate at the same time, the EST AI exit routine
may be used by more than one task concurrently. Therefore, the exit routine must be
reenterable.

Interface to an ESTAI exit

EST AI exits are entered after all EST AE exits that exist for a given task have received control
and have either failed or requested that the termination continue.

The interface to EST AI exits is the same as that for ESTAE exits. However, one additional
option is available for EST AI. In relinquishing control to the system, return code 16 may be
specified either on the SETRP macro instruction if an SDW A exists or in register 15 if an SDW A

is not available. The return code means that the termination should be continued and no
further EST AI exits should receive control for that task.

EST AE/EST AI Retry Routines
If a given EST AE/EST AI exit routine requests that the termination be continued, the control
program will give control to the next oldest EST AE/EST AI exit which exists for the task.
However, if a given EST AE/EST AI exit routine requests that a retry address be given control, a
dump will be taken if requested (unless suppressed by the exit), and no further ESTAE/ESTAI

exits will be processed. Instead, the address specified as the retry address will be given control.

The EST AE/EST AI retry routine, like the EST AE/EST AI exit routine must be in virtual storage
when the exit routine determines that retry is to be attempted. If not already resident within
your load module, it may be brought into storage via the LOAD macro instruction.

An EST AE retry routine will execute under the request block that issued the ESTAE macro
instruction; all newer request blocks will be purged before the retry routine is passed control.

60 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

An EST AI retry routine will execute under the request block for the latest EST AE or EST AI

exit routine. (A request block will exist for a previous EST AE or EST AI exit if one had
abnormally terminated during execution.) If no previous ESTAE or ESTAI exit has failed, the
RB queue is purged until only program request blocks PRBs remain. Then, the retry routine will
get control under the newest PRB left on the queue.

When control is passed to a retry address, the EST AE macro instruction does not have to be
reissued to continue to use the same EST AE exit. However, EST AE may be issued to add or
change exits.

Internaption, Tennination, and Dumping Services 60.1

60.2 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

If an SDWA was passed to the exit and FRESDWA=YES was not specified on the SETRP

macro instruction, the retry routine should issue the FREEMAIN macro instruction to free the
storage occupied by the SDWA when it is no longer needed. The subpool number and the
length which should be used on the FREEMAIN macro instruction are contained within the
SDWA.

Interface to a Retry Routine

There are two different interfaces to the retry routine:

• If an SDW A was obtained, you can set in the SDW A the register contents you wish to
have and request that they be passed to the retry routine by coding RETREGS= YES in the
SETRP macro instruction. This alternative is most often used in mainline processing.

• If no SDW A was obtained or if RETREGS=NO was specified on the SETRP macro
instruction, only parameter registers are passed to the retry routine. This alternative is
most often used if a special retry routine is to get control.

The register contents are as follows:

If an SDW A was not obtained:

register 0
register 1
register 2

registers 3-13
register 14
register 15

12.
Address of the user parameter list established via the EST AE macro instruction.
Address of the purge I/O restore list (PIRL) if I/O was quiesced and is restorable.
Otherwise, O.
Unpredictable.
Address of an SVC 3 instruction.
Entry point address of retry routine.

If an SDWA was obtained and the exit did not request register update (RETREGS=NO) or
release of the SDWA (FRESDWA=NO):

register 0
register 1
registers 2-13
register 14
register 15

O.
Address of SDW A.
Unpredictable.
-Address of an SVC 3 instruction.
Entry point address of retry routine.

If an SDW A was obtained and the exit did not request register update but did request
release of the SDW A:

register 0
register 1
register 2
registers 3-13
register 14
register 15

20.
Address of the user parameter list established via the EST AE macro instruction.
Address of the PIRL if I/O was quiescd and is restorable. Otherwise, O.
Unpredictable.
Address of an SVC 3 instruction.
Entry point address of retry routine.

If the exit requested register update (RETREGS=YES), the registers as they appear in the
SDW A will be passed to the retry routine.

In all cases, the routine runs enabled, and the protection key is the same key of the routine
that established the exit.

Dumping Services
There are two types of storage dumps that can be requested by a problem program of the
operating system:

• A dump obtained through use of the DUMP parameter in the ABEND macro instruction or
the DUMP=YES parameter on the SETRP macro instruction in a recovery exit.

• A dump obtained through use of the SNAP macro instruction.

Interruption, Tennination, and Dumping Sel'Yices 61

ABEND Dumps

An ABEND macro instruction initiates error processing for a task. The DUMP option of ABEND

requests a dump of storage and the DUMPOPT option may be used to specify the areas to be
displayed. These dump options may be expanded by an EST AE or EST AI routine. The control
program usually requests a dump for you when it issues an ABEND macro instruction.

This dump will be provided only if a SYSABEND or SYSUDUMP DO statement is included in
the job step. If the DD statement is provided and dump options are requested, the dump will
contain all requested areas in addition to the default dump options that were
installation-selected for the SYSABEND or SYSUDUMP DD statement. If the DD statement is
provided and no dump options are requested, only the installation-selected dump options will
be provided.

There is one execption to the processing described above. If the operator issues the
CHNGDUMP command, the command will override all options specified by the installation and
all options specified during the abnormal condition processing.

If a dump is requested and the EST AE/EST AI exit also requests retry, the dump will be taken
by the control program prior to passing control to the retry address.

The data set containing the dump can reside on any device which is supported by the basic
sequential access method (BSAM). The dump is placed in the data set described by the DO

statement you provide. If a printer is selected the dump is printed immediately. However, if a
direct access or tape device is designated, a separate job must be scheduled to obtain a listing
of the dump, and to release the space on the device.

SNAP Dumps

A SNAP dump may be requested by a task at any time during its processing by issuing a SNAP

macro instruction. For a SNAP dump, the DD statement may have any name except SYSABEND

and SYSUDUMP.

Like the ABEND dump, the data set containing the dump can reside on any device which is
supported by BSAM. The dump can reside on any device which is supported by BSAM. The
dump is placed in the data set described by the DO statement you provide. If a printer is
selected, the dump is printed immediately. However, if a direct access or tape device is
designated, a separate job must be scheduled to obtain a listing of the dump, and to release
the space on the device.

To obtain a dump using the SNAP macro instruction, you must provide a data control block
and issue an OPEN macro instruction for the data set before any SNAP macro instructions are
issued. The data control block must contain the following parameters: DSORG==PS,

RECFM==VBA, MACRF==W, BLKSIZE=882, and LRECL=125. (The data control block is discussed
in the Data Management Services manual.) If your program is to be processed by the loader,
you should also issue a CLOSE macro instruction for the SNAP data control block.

62 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Virtual Storage Management

You obtain the use of the virtual storage area assigned to your job step through implicit and
explicit requests for virtual storage. The use of a LINK macro instruction is an example of an
implicit request; the control program allocates storage before bringing the load module into
your job pack area. The use of the GETMAIN macro instruction is an explicit request for a
certain number of bytes of virtual storage to be allocated to the active task. In addition to
your requests for virtual storage, requests are made by the control program and data
management routines for areas to contain some of the corttrol blocks required to manage your
tasks. . I,

Note: If your job step is to be executed as a nonpageable ' (V=R) task, the REGION parameter
value specified on the job or exec\lte statement determines the amount of virtual (real) storage
reserved for the job step. If you run out of storage because of a system failure, such as in a
GETMAIN request, increase the REGION parameter size.

The following paragraphs discuss some of the techniques that can be applied for efficient
use of the virtual storage area reserved for your job step. These techniques apply as well to the
data management portions of your programs. The specific data management storage allocation
facilities are discussed in the Data Management Services and Data Management Macro
Instructions publications; the principles discussed here provide the background you need to use
these facilities.

Explicit Requests for Virtual Storage
Virtual storage can be explicitly requested for the use of the active task by issuing a GETMAIN

macro instruction. The request is satisfied by allocating a portion of the virtual storage area
reserved for the job step. The virtual storage area is usually not set to zero when allocated.
(The storage is zeroed for the initial allocation of a page).

You release virtual storage by issuing a FREEMAIN maCro instruction. This does not release
the area from control of the job step, but makes the area available to satisfy the requirements
of additional requests for any task in the job step. The virtual storage assigned to a task is also
given up to a different task in the same job step when the task terminates, except as indicated
under "Subpool Handling." Releasing virtual storage for use by other job steps is discussed
under "Relinquishing Virtual Storage .. "

Specifying the Size of the Area

Virtual storage areas are always allocated to the task in multiples of eight bytes and may begin
on either a double word or page boundary. The request for virtual storage is given in terms of
bytes; if the number specified is not a multiple of eight, it is rounded to the next higher
multiple of eight. You can make repeated requests for a small number of bytes as you need the
area or you can make one large request to completely satisfy the requirements of the task.
There are two reasons for making one large request: it is the only way you can be sure of
getting contiguous storage and avoid fragmenting your address space, and because you only
make one request, the amount of control program overhead is less.

Types of Explicit Requests

There are four methods of explicitly requesting virtual storage using a GETMAIN macro
instruction. Each of the methods, which are designated by coding an associated character in
the parameter field of the GETMAIN macro instruction, has certain advantages, depending on
the requirements of your program. The last three methods do not produce reenterable coding

Virtual Storage Management 63

unless coded in the list and execute forms, as indicated in "Implicit Requests." The methods
are as follows:

Register Type: Specifics a request for a single area of virtual storage of a specified length. The
address of the area is returned in register 1. This type of request produces reent{!rable coding,
because parameters are passed to the control program in registers, not in a parameter list.

Element Type: Specifics a request for a single area of virtual storage of a specified length. The
control program places the address of the allocated area in a fullword that you supply.

Variable Type: Specifics a request for a single area of virtual storage with a length between
two values you specify. The control program attempts to allocate the maximum length you
specify; if not enough storage is available to allocate the maximum length, the largest area with
a length between the two values is allocated. The control program places the address of the
area and the length allocated in two consecutive fullwords that you supply.

List Type: Specifies a request for one or more areas of virtual storage of specified lengths.

In addition to the above methods of requesting virtual storage, you can designate the
request as conditional or unconditional. If the request is unconditional and sufficient virtual
storage is not available to fill the request, the active task is abnormally terminated. If the
request is conditional, however, and insufficient virtual storage is available, a return code of 4
is provided in register 15; a return code of 0 is provided if the request was satisfied.

An example of using the GETMAIN macro instruction is shown in Figure 34. The example
assumes a program that operates most efficiently with a work area of 16,000 bytes, with a fair
degree of efficiency with 8,000 bytes or more, inefficiently with less than 8,000 bytes. The
program uses a reenterable load module having an entry name of REENTMOD, and will use it
again later in the program; to save time, the load module was brought into the job pack area
using a LOAD macro instruction so that it will be available when it is required.

GETMAIN EC,LV=16000,A=ANSWADD,

LTR 15,15
BZ PROCEED 1

DELETE EP=REENTMOD
GETMAIN VU,LA=SIZES,A=ANSWADD

L 4,ANSWADD+4

CH 4,MIN

BNL PROCEED 1

PROCEED2
PROCEED 1
MIN DC H'8000'
SIZES DC F'4000'

DC F'16000'

ANSWADD DC F'O'
DC F'O'

Figure 34. Using the GETMAIN Macro Instruction

64 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Conditional request for
16,000 bytes in processor
storage
Test return code
If 16,000 bytes allocated,
proceed
If not, delete module and
try to get smaller amount
of virtual storage
Load and test allocated
length
If 8,000 or more, use
procedure 1
If less than 8,000 use
procedure 2

Min. size for procedure 1
Min. size for procedure 2
Size of area for maximum
efficiency
Address of allocated area
Size of allocated area

Subpool Handling

A conditional request for a single element of storage with a length of 16,000 bytes is
requested in Figure 34. The return code in register 1 S is tested to determine if the storage is
available~ if the return code is 0 (the 16,000 bytes were allocated), contrul is passed to the
processing routine. If sufficient storage is not available, an attempt to obtain more virtual
storage is made by issuing a DELETE macro instruction to free the area occupied by the load
module REENTMOD. A second GETMAIN macro instruction is issued, this time an
unconditional request for an area between 4,000 and 16,000 bytes in length. If the minimum
size is not available, the task is abnormally terminated. If at least 4,000 bytes are available, the
task can continue. The size of the area actually allocated is determined, and one of the two
procedures (efficient or inefficient) is given control.

In an operating system, subpools of virtual storage are provided to assist in virtual storage
management and for communications between tasks in the same job step. Because the use of
subpools requires some knowledge of how the control program manages virtual storage, a
discussion of virtual storage control is presented here.

Virtual Storage Control: When the job step is given a region of virtual storage, all of the
storage area available for your use within that region is unassigned. Subpools are created only
when a GETMAIN macro instruction is issued designating a subpool number (other than 0) not
previously specified. If no subpool number is designated, the virtual storage is allocated from
subpool 0, which is created for the job step by the control program when the job-step task is
initiated.

For purposes of control and virtual storage protection, the control program considers all
virtual storage within the region in terms of 4096-byte blocks. These blocks are assigned to a
subpool, and space within the blocks is allocated to a task by the control program when
requests for virtual storage are made. When there is sufficient unallocated virtual storage
within any block assigned to the designated subpool to fill a request, the virtual storage is
allocated to the active task from that block. If there is insufficient unallocated virtual storage
within any block assigned to the subpool, a new block (or blocks, depending on the size of the
request) is assigned to the subpool, and the storage is allocated to the active task. The blocks
assigned to a subpool are not nec~ssarily contiguous unless they are assigned as a result of one
request. Only blocks within the region reserved for the associated job step can be assigned to a
subpool.

Figure 3S is a simplified view of a virtual-storage region containing four 4096-byte blocks
of storage. All the requests are for virtual storage from subpool O. The first request from some
task in the job step is for 1008 bytes; the request is satisfied from the block shown as Block A
in the figure. The second request,· for 4000 bytes, is too large to be satisfied from the unused
portion of Block A, so the control program assigns the next available block, Block B, to
subpool 0, and allocates 4000 bytes from Block B to the active task. A third request is then
received, this time for 2000 bytes. There is not sufficient unallocated area remaining in Block
B (blocks are checked in the order first in, first out), but there is enough area in Block A, so
an additional 2000 bytes are allocated to the task from Block A. All blocks are searched for
the closest fitting free area which will then be assigned. If the request had been for 96 bytes
or less, it would have been allocated from Block B. Because all tasks may share subpool 0,
Request 1 and Request 3 do not have to be made from the same task, even though the areas
are contiguous and from the same 4096 byte block. Request 4, for 6000 bytes, requires that
the control program allocate the area from 2 contiguous blocks which were previously
unassigned, Block D and Block C. These blocks are assigned to subpool O.

Virtual Storage Management 65

Request 1: 1008 bytes Request 2: 4000 bytes

Request 3: 2000 bytes 6000 bytes

Block A Block B Block C ,,--~_D ____ J
4096 Bytes

Figure 35. Virtual Storage Control

As indicated in the preceding example, it is possible for one 4096-byte block in subpool 0
to contain many small areas allocated to many different tasks in the job step, and it is possible
that numerous blocks could be split up in this manner. Areas acquired by a task other than the
job-step task are not released automatically on task termination. Even if FREEMAIN macro
instructions were issued for each of the small areas before a task terminated, the probable
result would be that many small unused areas would exist within each block while the control
program would be continually assigning new blocks to satisfy new requests. To avoid this
situation, you can define subpools for exclusive use by individual tasks.

Any subpool can be used exclusively by a single task or shared by several tasks. Each time
that you create a task, you can specify which sub pools are to be shared. Unlike other subpools,
subpool 0 is shared by a task and its subtask, unless you specify otherwise. When sub pool 0 is
not shared, the control program creates a new subpool 0 for use by the subtask. As a result,
both the task and its subtask can request storage from subpool 0 but both will not receive
storage from the same 4096-byte block. When the subtask terminates, its virtual storage areas
in subpool 0 are released; since no other tasks share this subpool, complete 4096-byte blocks
are made available for reallocation.

When there is a need to share subpool 0, you can define other subpools for exclusive use by
individual tasks. When you first request storage from a sub pool other than subpool 0, the
control program assigns a new 4096-byte block to that subpool, and allocates storage from
that block. The task that is then active is assigned ownership of the subpool and, t.herefore, of
the block. When additional requests are made by the same task for the same subpool, the
requests are satisfied by allocating areas from that block and as many additional blocks as are
required. If another task is active when a request is made with the same subpool number, the
control program assigns a new block to a new subpool, allocates storage from the new block,
and assigns ownership of the new subpool to the second task.

A task can specify sub pools numbered from 0 to 127. FREEMAIN macro instructions can be
issued to release any complete subpool except subpool 0, thus releasing complete 4096-byte
blocks. When a task terminates, its unshared subpools are released automatically.

Owning and Sharing: A subpool is initially owned by the task that was active when the
subpool was created. The subpool can be shared with other tasks, and ownership of the
subpool can be assigned to other tasks. Two macro instructions are used in the handling of
subpools: the GETMAIN macro instruction and the ATTACH macro instruction. In the
GETMAIN macro instruction, the SP parameter can be written to request storage from subpools
o to 127; if this parameter is omitted, subpool 0 is assumed. The parameters that deal with
subpools in the ATTACH macro instruction are:

66 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

• GSPV and GSPL, which give ownership of one or more subpools (other than subpool 0) to
the task being created.

• SHSPV and SHSPL, which share ownership of one or more subpools (other than subpool
0) with the new subtask.

• SZERO, which determines whether subpool 0 is shared with the subtask.

All of these parameters are optional. If they are omitted, no subpools are given to the
subtask, and only subpool 0 is shared.

Creating a Subpool: A new subpool is created whenever SHSPV or SHSPL is coded on an
ATT ACH macro instructions or a GETMAIN macro instruction is issued, and the subpool(s)
specified does not exist for the active task. A new subpool zero is created for the subtask if
SZERO=NO is specified on ATTACH. If one of the ATTACH macro instruction parameters
causes the subpool to be created, the subpool number is entered in the list of subpools owned
by the task, but no blocks are assigned and no storage is actually allocated. If a GETMAIN

macro instruction results in the creation of a subpool, the subpool number is assigned to one
or more 4096-byte blocks, and the requested storage is allocated to the active task. In either
case, ownership of the subpool belongs to the active task; if the subpool is created because of
an A TT ACH macro instruction, ownership is transferred or retained depending on the
parameter used.

Transferring Ownership: An owning task gives ownership of a subpool to a direct subtask by
using the GSPV or GSPL parameters in the A TT ACH macro instruction issued when that subtask
is created. Ownership of a subpool can be given to any subtask of any task, regardless of the
control level of the two tasks involved and regardless of how ownership was obtained. A
subpool cannot be shared with one or more sub tasks and then transferred to another subtask,
however; an attempt to do this results in abnormal termination of the active task. Ownership
of a subpool can only be transferred if the active task has ownership; if the active task is
sharing a subpool and an attempt is made to pass ownership to a subtask, the subtask receives
shared control and the originating task relinquishes the sub pool. Once ownership is transferred
to a sub task or relinquished, any subsequent use of that subpool number by the originating
task results in the creation of a new subpool. When a task that has ownership of one or more
subpools terminates, all of the virtual storage areas in those sub pools are released. Therefore,
the task with ownership of a subpool should not terminate until all tasks or sub tasks sharing
the subpool have completed their use of the subpool.

If GSPV or GSPL specifies a subpool which does not exist for the active task, no action is
taken.

Sharing a Subpool: Shared use of a subpool can be given to a direct subtask of any task with
ownership or shared control of the subpool. Shared use is given by specifying the SHSPV or
SHSPL parameters in the A TT ACH macro instruction issued when the sub task is created. Any
task with ownership or shared control of the subpool can add to or reduce the size of the
subpool through the use of GETMAIN and FREEMAIN macro instructions. When a task that has
shared control of the subpool terminates, the sub pool is not affected.

Subpools in Task Communication: The advantage of subpools in virtual storage management is
that, by assigning separate subpools to separate subtasks, the breakdown of virtual storage into
small fragments is reduced. An additional benefit from the use of subpools can be realized in
task communication. A subpool can be created for an originating task and all parameters to be
passed to the subtask placed in the subpool. When the subtask is created, the ownership of the
subpool can be passed to the subtask. After all parameters have been acquired by the subtask,
a FREEMAIN macro instruction can be issued, under control of the subtask, to release the
subpool virtual storage areas. In a similar manner, a second subpool can be created for the
originating task, to be used as an answer area in the performance of the subtask. When the

Virtual Storage Management 67

subtask is created, the subpool ownership would be shared with the subtask. Before the
subtask is terminated, all parameters to be passed to the originating task are placed in the
subpool area; when the subtask is terminated, the subpool is not released, and the originating
task can acquire the parameters. After all parameters have been acquired for the originating
task, a FREE MAIN macro instruction again makes the area available for reuse.

Implicit Requests for Virtual Storage
You make an implicit request for virtual storage every time you issue a LINK, LOAD, ATTACH,

or XCTL macro instruction. In addition, you make an implicit request for virtual storage when
you issue an OPEN macro instruction for a data set. This section discusses some of the
techniques you can use to cut down on the amount of real storage required by a job step, and
the assistance given you by the control program.

Reenterable Load Modules

A reenterable load module is designed so that it does not modify itself during execution. Only
one copy of the load module is paged into real storage to satisfy the requirements of any
number of tasks in a job step. This means that even though there are several tasks in the job
step and each task concurrently uses the load module, the only real storage needed is an area
large enough to hold one copy of the load module (plus a few bytes for control blocks). The
same amount of real storage would be needed if the load module were serially reusable;
however, the load module could not be used by more than one task at a time.

Reenterable Macro Instructions

All of the macro instructions described in this manual can be written in reenterable form.
These macro instructions are classified as one of two types: macro instructions which pass
parameters in registers 1 and 0, and macro instructions which pass parameters in a list. The
macro instructions that pass parameters in registers present no problem in a reenterable
program; when the macro instruction is coded, the required parameter values should be
contained in registers. For example, the POINT macro instruction requires that the DCB address
and block address be coded as follows:

POINT deb address, block address

One method of coding this in a reenterable program would be to require that both of these
addresses refer to a portion' of storage allocated to the active task through the use of a
GETMAIN macro instruction. The addresses would change for each use of the load module.
Therefore, you would load two of the general registers 2-12 with the addresses, and designate
the appropriate registers when you code the macro instruction. If register 4 contains the DCB

address and register 6 contains the block address, the POINT macro instruction is written as
follows:

POINT (4) , (6)

The macro instructions that pass parameters in a list require the use of special forms of the
macro instruction when used in a reenterable program. The macro instructions that pass
parameters in a list are identified within their descriptions in the macro instruction section of
this manual. The expansion of the standard form of these macro instructions results in an
in-line parameter list and executable instructions to branch around the list, to load the address
of the list, and to pass control to the required control program routine. The expansions of the
list and execute forms of the macro instruction simply divide the functions provided in the
standard form expansion: the list form provides only the parameter list, and the execute form

68 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

provides executable instructions to modify the list and pass control. You provide the
instructions to load the address of the list into a register.

The list and execute forms of a macro instruction are used in conjunction to provide the
same services available from the standard form of the macro instruction. The advantages of
using list and execute forms are as follows:

• Any parameters that remain constant in every use of the macro instruction can be coded
in the list form. These parameters can then be omitted in each of the execute forms of
the macro instruction which use the list. This can save appreciable coding time when you
use a macro instruction many times. (Any exceptions to this rule are listed in the
description of the execute form of the applicable macro instruction.)

• The execute form of the macro instruction can modify any of the parameters previously
designated. (Again, there are exceptions to this rule.)

• The list used by the execute form of the macro instruction can be located in a portion of
virtual storage assigned to the task through the use of the GETMAIN macro instruction.
This ensures that the program remains reenterable.

Figure 36 shows the user of the list and execute forms of a DEQ macro instruction in a
reenterable program. The length of the list constructed by the list form of the macro
instruction is obtained by subtra~ting two symbolic addresses; virtual storage is allocated and
the list is moved into the allocated area. The execute form of the DEQ macro instruction does
not modify any of the parameters in the list form. The list had to be moved to allocated
storage because the control program can store a return code in the list when RET =HAVE is
coded. Note that the coding in a routine labeled MOVERTN is valid for lengths up to 255 bytes
only. Some macro instructions do produce lists greater than 255 bytes when many parameters
are coded (for example, OPEN and CLOSE with many data control blocks, or ENQ and DEQ

with many resources), so in actual practice a length check should be made.

LA
LA
SR
BAL
DEQ

~,MACNAME
5,NSIADDR
5,3
14,MOVERTN
, MF=(E, (1))

Load address of list form
Load address of end of list
Length to be moved in register 5
Go to routine to move list
Release allocated resource

* The MOVERTN allocates storage from subpool 0 and moves up to 255
* bytes into the allocated area. Register 3 is from address,
* register 5 is length. Area address returned in register 1.
MOVERTN GETMAIN R,LV=(5),

LR 4,1 Address of area in register 4
BCTR 5,0 Subtract 1 from area length
EX 5,MOVEINST Move list to allocated area
BR 14 Return

MOVEINST MVC 0(0,4),0(3)

MACNAME
NSIADDR
NAME 1
NAME 2

DEQ

DC
DC

(NAME1,NAME2,8,SYSTEM),RET=HAVE,MF=L

CL8'MAJOR'
CL8'MINOR'

Figure 36. Using the List and the Execute Fonns of the DEQ Macro Instruction in a Reenterable Program

Nonreenterable Load Modules

The use of reenterable load modules does not automatically conserve virtual storage; in many
applications it will actually prove wasteful. If a load module is not used in many jobs and if it
is not employed by more than one task in a job step, there is no reason to make the load

Virtual Storage Managem~nt 69

module reenterable. The allocation of virtual storage for the purpose of moving coding from
the load module to the allocated area is a waste of both time and virtual storage when only
one task requires the use of the load module.

You should not make a load module reenterable or serially reusable if reusability is not
really important to the logic of your program. Of course, if reusability is important, you can
issue a LOAD macro instruction to load a reusable module, and later issue a DELETE macro
instruction to release its area.

Note: If your module is reenterable or serially reusable, the load module must be link edited,
with the desired attribute, into a library.

Freeing of Virtual Storage

The control program establishes two responsibility counts for every load module brought
into virtual storage in response to your requests for that load module. The responsibility counts
are lowered as follows:

• If the load module was requested in a LOAD macro instruction, that responsibility count
is lowered when using a DELETE macro instruction.

• If the load module was requested in a LINK, ATTACH, or XCTL macro instruction, that
responsibility count is lowered when using an XCTL macro instruction or by returning
control to the control program.

• When a task is terminated, the responsibility counts are lowered by the number of
requests for the load module made in LINK, LOAD, ATTACH, and XCTL macro
instructions during the performance of that task, minus the number of deletions indicated
above.

The virtual storage area occupied by a load module can be released by issuing a FREE MAIN

macro instruction when the responsibility counts reach zero. When you plan your program, you
can design the load modules to give you the best trade-off between execution time and
efficient paging. If you use a load module many times in the course of a job step, issue a
LOAD macro instruction to bring it into virtual storage; do not issue a DELETE macro
instruction until the load module is no longer needed. Conversely, if a load module is used
only once during the job step, or if its uses are widely separated, issue a LINK macro
instruction to obtain the module and issue an XCTL from the module (or return control to the
control program) after it has been executed.

There is a minor problem involved in the deletion of load modules containing data control
blocks. An OPEN macro instruction must be issued before the data control block is used, and a
CLOSE macro instruction issued when it's no longer needed. If you do not issue a CLOSE

macro instruction for the data control block, the control program issues one for you when the
task is terminated. However, if the load module containing the data control block has been
removed from virtual storage, the attempt to issue the CLOSE macro instruction causes
abnormal termination of the task. You must either issue the CLOSE macro instruction yourself
before deleting the load module, or ensure that the data control block is still in virtual storage
when the task is terminated (possibly by issuing a GETMAIN and creating the DCB in the area
that had been allocated by the G ETMAIN).

70 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Real Storage Management

The real storage manager (RSM) administers the use of real storage and directs the movement
of virtual pages between aUXiliary storage and real storage in page size (4096 bytes) blocks. It
makes all addressable virtual storage in each address space appear as real storage. Only virtual
pages necessary for program execution are kept in real storage, the remainder reside on
auxiliary storage. RSM employs the auxiliary storage manager (ASM) of the Data Manager to
perform the actual paging I/O necessary to transfer pages in and out of real storage. ASM also
provides OASO allocation and management for paging I/O space on auxiliary storage. RSM
relies on the system resources manager (SRM) for guidance in the performance of some of its
operations.

RSM assigns storage page frames upon request from a pool of available frames, thereby
associating virtuual addresses witb real storage addresses. Frames are repossessed upon
termination of use, when freed by a user, when a user is swapped-out, or when needed to
replenish the available pool. While a virtual page occupies a real storage frame, the page is
considered pageable unless specified otherwise as a system page that must be resident in real
storage. RSM also allocates virtual equals real (V=R) regions upon request by those programs
that cannot tolerate dynamic relocation. Such as region is allocated contiguously from a
predefined area of real storage and is non-pageable. Programs in this region do run in
translation mode, although addressing is one to one virtual to real.

The paging services provided in vs2 include the following:

• PGRLSE - Release virtual storage contents.

• PGLOAO - Load virtual storage areas into real storage.

• PGOUT - Page out virtual storage areas from real storage.

The PGRLSE function allows the user and the system to make available space in both real
storage and auxiliary storage that is known to be of no future use. Proper use of this function
can increase the amount of storage available to the system and prevent needless paging I/O
activity. Usage of PGRLSE may improve operating efficiency when the using program can
discard the contents of a large virtual storage area (circumscribing one or more pages) and
reuse the virtual storage pages; paging operations may be eliminated for those virtual storage
pages when they are reused.

The proper use of the PGLOAD and PGOUT functions will tend to decrease system overhead
resulting from page faults and to clean out of real storage those pages no longer required for
program execution or not required for some period in the future.

Relinquishing Virtual Storage
When an area of virtual addressable storage within your program no longer has significant
contents, you can make this storage available by issuing a PGRLSE macro instruction. The
PGRLSE macro makes available all real and external page storage wholly associated with the
area of virtual address space specified. As shown in Figure 37 if the specified addresses are
not on page boundaries, the low address is rounded up and the high address is rounded down;
then, the pages contained betwe~n the addresses are released. The virtual space remains, but
its contents are forfeited. When the using program can discard the contents of a large virtual
area (one or more complete pages) and reuse the virtual space without the necessity of paging
operations, PGRLSE may improve operating efficiency.

Real Storage Management 71

1 page

r-~

~~ I ...-----ill ~ 10
-------R-e-le-a-Sed-v i~U.1 storage 1

address 2
(high)

address 1
(low)

Figure 37. Releasing Virtual Storage

All storage obtained for your program by the GETMAIN macro instruction is automatically
freed by the control program when the job step terminates. Freeing storage in this manner
requires no action on your part. When you issue a FREEMAIN macro instruction, FREE MAIN
does the equivalent of PGRLSE for any resulting free page.

Loading/Paging Out Virtual Storage Areas
The PGLOAD macro instruction essentially provides a page-ahead function. By loading
specified virtual storage areas into real storage, you can attempt to ensure that certain pages
will be in real storage when needed. Page faults can occur, however, and these pages may be
paged out.

With PGLOAD, you have the option of specifying that the contents of the virtual area is to
remain intact or be released. If you specify RELEASE=Y, the current contents of entire virtual
4K pages to be brought in may be discarded and a new real frames assigned without page-in
operations; if you specify RELEASE=N, the contents are to remain intact and later used.

If you specify PGLOAD with RELEASE=Y, the PGRLSE function will be performed before the
PGLOAD function. That is, no page-in is needed for areas defining entire virtual pages since
the contents of those pages are expendable.

The PGOUT function initiates page-out operations for specified virtual address pages that are
in real storage. The real storage frames will be made available for reuse upon completion of
the page-out operation unless you specify the KEEPREL parameter in the macro inst.ruction. An
area that does not encompass one or more complete pages will be copied to auxiliary storage,
but the real frames will not be freed.

Virtual Subarea List (VSL)
The virtual subarea list provides the basic input to the page service functions: PGLOAD,

PGRLSE, and PGOUT. The list consists of one or more double word entries, each entry
describing an area of virtual storage. The list must be nonpageable and contained in the
address space of the subarea to be processed.

Each parameter list entry has the following format:

Byte o
FLAGS

2

START ADDRESS

3

72 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

4

FLAGS

5 6

END ADDRESS + 1

7

Byte 0 Flags:
Bit 0 (1...

Bit 1 (.1..
Bit 2 (..1.
Bit 3 (...1
Bit 4 C ...
Bit 5 (. ...
Bit 6 C ...
Bit 7 (. ...

Start Address:

....)

....)

....)

....)
1...)
.1..)
..1.)
. .. 1)

This bit indicates that bytes 1-3 are a chain pointer to the next VSL entry to be
processed; parameter list entry; bytes 4-7 are ignored. This feature allows several
parameter lists to be chained as a single logical parameter list.
Reserved.
Reserved.
PGLOAD is to be performed; reserved, set by macro instruction.
PGRLSE is to be performed; reserved, set by macro instruction.
Reserved.
Reserved.
Reserved.

The virtual address of the origin of the virtual area to be processed.

Byte 4 Flags:
Bit 0 (1...

Bit 1 C1..
Bit 2 C.1.
Bit 3 C .. 1

Bit 4 C ...
Bit 5 C ...
Bit 6 C ...

Bit 7 C ...

End Address + 1:

. ...)

....)

....)

....)

1...)
. 1..)
.. 1.)

... 1)

This flag indicates the last entry of the list. It is set in the last double word entry
in the list.
When this flag is set, the entry in which it is set is ignored.
Reserved.
This flag indicates that a return code of 4 was issued from a page service
function other than PGRLSE.
Reserved.
PGOut is to be performed; reserved, set by macro instruction .
KEEPREAL option of PGOUT is to be performed; reserved, set by macro
instruction .
Reserved.

The virtual address of the byte immediately following the end of the virtual area.

Real Storage Management 73

74 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Miscellaneous Services

Timing Services
Interval timing is a standard feature of VS. It provides the ability to request the date and time
of day and provides for setting, testing, and canceling intervals of time.

Date and Time of Day

The operator is responsible for initially supplying the correct date and the time of day in terms
of a 24-hour clock. You request the date and time of day using the TIME macro instruction.
The control program returns the date in register 1 and the time of day in register 0 or in a
doubleword supplied by you if the MIC or STCK parameter was specified.

If ZONE=GMT is specified, the returned time of day and date will be for Greenwich Mean
Time. If ZONE=LT is specified or if the ZONE parameter is omitted, the local time of day and
date will be returned. However, if STCK is specified, the ZONE parameter will be ignored.

All references to time of day use the time-of-day (TOO) clock, a 64-bit binary counter. The
TOO clock runs continuously while the power is on; the clock is not affected by the system
stop-conditions. The operator normally sets the clock only after an interruption of CPU power
has caused the clock to stop, and restoration of power has restarted it. The operator sets the
clock during system initialization in response to a system message. (For more information
about the TOO clock, see IBM System/3 70 Principles of Operation.)

Interval Timing

A time interval, up to a maximum of 24 hours, can be established for any task in the job step
through the use of the STIMER macro instruction, and the time remaining in the interval can be
tested and canceled through the lise of the TTIMER macro instruction. Each task in the job
step can have an active time interval.

When you request a time interval, you also specify the manner in which the interval is to be
decreased, through the use of the. TASK, REAL, or WAIT parameter of the STIMER macro
instruction. REAL and WAIT both indicate that the interval is to be decreased continuously,
whether the associated task is active or not. TASK indicates that the interval is to be decreased
only when the associated task is active. If REAL or TASK is coded, the task continues to
compete with the other ready tasks for control; if WAIT is coded, the task is placed in the wait
condition until the interval expires, at which time the task is placed in the ready condition.

When TASK or REAL is designated, the address of a timer completion exit routine can be
specified. This is the first routine to be given control when the associated task is made active
after the completion of the time interval. (If the address of the exit routine is not specified,
there is no notification of the completion of the time interval.) The exit routine must be in
virtual storage when required, and must save and restore registers and return control to the
address in register 14. After control is returned to the control program, control is passed to the
next instruction in the main program.

Figure 38 shows the use of a time interval when testing a new loop in a program. The
STIMER macro instruction sets a time interval of 5.12 seconds, which is to be decreased only
when the task is active, and provides the address of a routine called F1XUP to be given control
when the time interval expires. The loop is controlled by a BXLE instruction.

Miscellaneous Services 75

STIMER TASK,FIXUP,BINTVL=TIME Set time interval
LOOP

TM TIMEXP,X'Ol' Test if fixup routine entered
BC 1,NG Go out of loop if time interval expired
BXLE 12,6,LOOP If processing not complete, repeat loop
TTIMER CANCEL If loop completes, cancel remaining time

NG

USING FIXUP,lS Provide addressability
FIXUP SAVE (14, 12) Save registers

01 TIMEXP,X'Ol ' Time interval expired, set switch in loop

RETURN (14, 12) Restore registers

TIME DC X'OOOOO200' Timer is 5.12 seconds
TIMEXP DC X'OO' Timer switch

Figure 38. Interval Timing

The loop continues as long as the value in register 12 is less than or equal to the value in
register 7. If the loop stops, the TTIMER macro instruction causes any time remaining in the
interval to be canceled; the exit routine is not given control. If, however, the loop is still in
effect when the time interval expires, control is given to the exit routine FIXUP. The exit
routine saves registers and turns on the switch tested in the loop. The FIXUP routine could also
print out a message indicating that the loop did not go to completion. Registers are restored
and control is returned to the control program. The control program returns control to the
main program and execution continues. When the switch is tested this time, the branch is
taken out of the loop. Caution should be used to prevent a timer exit routine from issuing an
STIMER specifying the same exit routine. An infinite loop may occur.

The priorities of other tasks in the system may also affect the accuracy of the time interval
measurement. If you code REAL or WAIT, the interval is decreased continuously and may
expire when the task is not active. (This is certain to happen when WAIT is coded.) After the
time interval expires, assuming the task is not in the wait condition for any other reason, the
task is placed in the ready condition and then competes for CPU time with the other tasks in
the system that are also in the ready condition. The additional time required before the task
becomes active will then depend on the relative dispatching priority of the task.

Extended-Precision Floating-Point Simulation

The System/370 Extended-Precision Floating-Point Simulator provides full extended-precision
arithmetic for all vs users. A divide macro instruction (DXR) is provided for the models that
have the extended-precision floating arithmetic facility and all seven instructions are provided
for the models that do not. The instructions provided are:

Name
ADD NORMALIZED (extended)
LOAD ROUNDED (extended to long)
LOAD ROUNDED (long to short)
MULTIPLY (extended)
MULTIPLY (long to extended)
MULTIPLY (long to extended)
SUBTRACT NORMALIZED (extended)

Mnemonic
AXR
LRDR
LRER
MXR
MXDR
MXD
SXR

For more details on the instructions, see System/3 70 Principles of Operation.

76 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Thus, you can use extended-precision floating-point instructions whether or not your
particular machine model has the extended-precision floating-point facility. To do so, write a
program-interruption-handling exit routine. The exit routine is required:

• If your machine model already has the extended-precision floating-point facility, and you
also wish to use the extended-precision floating-point divide (DXR) macro instruction.

• If your machine model does· not have the extended-precision floating-point instructions,
but you wish to use these instructions and the extended-precision floating-point divide
instruction.

To determine if the extended-precision floating-point feature is installed in your CPU, call
the module IEAXPSIM, which returns a pointer to the appropriate simulator.

The format of the extended-precision floating-point divide (DXR) instruction is described in
the macro instructions section, and the formats of the other extended-precision floating-point
instructions are described in System/3 70 Principles of Operation.

Extended-Precision Division

To perform extended-precision division, use the DXR macro instruction:

DXR reg1,reg2

where reg1 contains the dividend, reg2 the divisor.

The first parameter (the dividend) is divided by the second parameter (the divisor) and is
replaced by the normalized quotient. No remainder is preserved. For a discussion of
normalization, refer to the section "Floating-Point Arithmetic" in System/3 70 Principles of
Operation.

Division Process

The quotient fraction has 28 hexadecimal digits and is developed such that it is the largest
number for which the absolute value of the product of the quotient and the divisor fractions is
either equal to or less than the absolute value of the adjusted (normalized) dividend fraction.
All digits of the dividend and divisor fractions are involved in the operation; the dividend
fraction is extended with low-order zeros.

The sign of the quotient is determined by the rules of algebra; however, if the quotient is
made a true 0, its sign is made plus.

Unless the quotient is made a true 0, the characteristic, sign, and high-order 14 hexadecimal
digits of the normalized quotient fraction replace the high-order part of the first parameter.
The low-order 14 hexadecimal digits of the quotient fraction replace the low-order fraction of
the first parameter. The low-order sign is made equal to the high-order sign, and the low-order
characteristic is made 14 less than the high-order characteristic. However, when the subtraction
of 14 causes the low-order characteristic to become less than 0, it is made 128 greater than its
correct value. Extended-precision arithmetic is further discussed in System/3 70 Principles of
Operation.

Arithmetic Exceptions

The following exceptions can occur when using the DXR macro instruction.

• Exponent overflow.

• Exponent underflow.

• Floating-point divide.

Miscellaneous Services 77

Exponent overflow is recognized when the characteristic of the normalized quotient exceeds
127 and the fraction of the quotient is not O. The operation is completed by making the
high-order characteristic 128 less than the current value. If the low-order characteristic also
exceeds 127, it is decreased by 128. The quotient fraction and sign remain unchanged. A
program interruption for exponent overflow then occurs.

Exponent underflow is recognized when the characteristic of the normalized quotient is less
than 0 and neither parameter fraction is 0. If the exponent underflow mask bit is set, the
operation is completed by making the characteristics of both parts 128 greater than their
correct values. The quotient fraction and sign remain unchanged. A program interruption for
exponent underflow then occurs. If the exponent underflow mask is 0, a program interruption
does not occur;. instead, the operation is completed by making both the high-order and
low-order parts of the quotient a true O.

Exponent underflow is not recognized when the low-order characteristic is less than 0 and
the high-order characteristic is greater than or equal to O. Similarly, exponent underflow is not
recognized when one or both of the parameters underflow during prenormalization, but the
quotient can be expressed without encountering underflow.

The floating-point divide exception is recognized when the divisor fraction is O. The
operation is suppressed, and a program interruption for floating-point divide occurs.

When the dividend fraction is 0, the quotient is made a true 0, and a possible exponent
overflow or underflow is not recognized. A division of 0 by 0, however, causes the operation
to be suppressed and an interruption for floating-point divide to occur.

The condition code remains unchanged for all arithmetic exceptions. Figure 39 describes the
program interruptions that can occur.

Interruption Type Description

Op~ration The instruction is not installed.

Specification Registers other than 0 or 4 are specified, or
positions) 6-23 do not contain O's.

Exponent Overflow The characteristic of the normalized quotient
exce,eds) 27, and neither operand fraction is O.

Exponent Underflow The characteristic of the normalized quotient is
less than 0, neither operand fraction is 0, and the
exponent underflow mask bit is set.

Floating-Point Divide The divisor fraction is 0.

Figure 39. Summary of Program Interruptions

Calling the Simulator

Action Taken

The operation is suppressed.

The operation is suppressed.

The operation is completed.

The operation is completed.

The operation is suppressed.

To use the extended-precision floating-point instructions that your machine model does not
have, call the extended-precision floating-point simulator from a program-interruption-handling
exit routine. The simulator is a program that is automatically included in your operating system
at system generation time. Writing an exit routine to handle program interruptions is discussed
under "Program Interruption Processing."

To use the extended-precision floating-point simulator, specify in the SPIE macro instruction
that your exit routine is to receive control if an operation exception occurs. In addition, the
exit routine must perform the following tasks, in this order:

78 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

• Check that the exception is for floating-point divide.

• Prepare a parameter list to pass to IEAXPSIM.

• Pass control to IEAXPSIM, using standard operating system conventions.

• Prepare a parameter list to pass to the simulator.

• Pass control to the simulator, using standard operating system conventions.

• Check the code returned by the simulator.

• Perform corrective action if necessary.

In addition, the exit routine may perform the following tasks:

• Load the IEAXPSIM module, using the LOAD macro instruction, before its use.

• Delete the IEAXPSIM module, using the DELETE macro instruction, after its use.

• Load the simulator, using the LOAD macro instruction, the first time it is needed.

• Delete the simulator, using the DELETE macro instruction, at the end of the job step.

Designing the Exit Routine

The following paragraphs and Figure 40 should help you design your exit routine.

The parameter list that you pass to IEAXPSIM must be pointed to by register 1 and must
contain a pointer to a doubleword area into which IEAXPSIM will move the name of the
simulator module to which you will pass control.

The parameter list that you pass to the simulator must be pointed to by register 1 and must
contain the following:

1. A pointer to the PIE.

2. A pointer to the area containing the contents of general registers 0 through 15 at
interrupt time.

3. A pointer to a work area.

4. A pointer to a byte that is nonzero if the last bit of the quotient for a DXR need not be
correct.

MlsceUaneous Senkes 79

USING EXTPRE,15
EXTPRE STM 3,13,SIMSV+12 Save registers not in PIE

TOSIM

LR 4,15
USING EXTPRE,4
MVC SIMSV(12),20(1)
MVC SIMSV+56(8),12(1)
ST 1L~,RET
ST 1,PARMB
LA 13,SAVESIM
L 1:), SIMADD
LTR 15,15
BNZ TOSIM
LOAD EP=IEAXPSIM
LR 15,0
LA 1,PARMA
BALR 14,15
DELETE EP=IEAXPSIM

Establish addressability
Registers 0-2 from PIE
Registers 14-15 from PIE
Save return address
Pointer to PIE
Load save area address

Does SIMADD contain address?
If so, go directly to simulator

Put IEAXPSIM's address in register
Load pointer to doubleword
Get simulator's address

LOAD EPLOC=SIMUL Load simulator
LR 15,0 Put simulator's address in register
ST O,SIMADD Save address of simulator
LA 1,PARMB Parameter list address
BALR 14,15 go to simulator
LTR 15,15 Error or exceptional
BZ GOODOUT Condition?

*HERE THE EXIT ROUTINE SHOULD DETERMINE THE ERROR OR THE
*EXCEPTIONAL CONDITION THAT OCCURRED IN SIMULATING AND
*TAKE APPROPRIATE ACTION.

B OUT
GOODOUT EQU *
*HERE THE EXIT ROUTINE SHOULD TAKE APPROPRIATE ACTION WHEN
*NO ERROR OR EXCEPTIONAL CONDITION OCCURRED DURING SIMULATION.

OUT L 14,RET
LM 3,13,SIMSV+12 Restore registers
BR 14 Return

*WHEN THE EXIT ROUTINE NO LONGER NEEDS THE SIMULATOR,
*THE ROUTINE SHOULD DELETE IT.

DELETE EPLOC=SIMUL

PARMA DS X' 80' ,AL3(SIMUL) Pointer to simulator
SIMUL DS D Simulator name
PARMB DS F For pointer to PIE

name

DC A(SIMSV) Address of register area
DC A(WORK) Address of work area
DC X' 80' , A 13 (ZERO) Divide adjust switch

pointer
ZERO DC X'O' Adjust switch for divide
WORK DC SOD Work area
SIMSV DS 16F Register area
SIMADD DC F'O' Address of simulator
RET DS F Return address
SAVESIM DS 18F Save area

Figure 40. Calling the Extended-Precision Floating-Point Simulator

The work area must be at least 30 doublewords (240 bytes) if your installation's machine
model has the extended-precision floating-point facility or at least 50 doublewords (400 bytes)
if it does not. The exit routine shown in Figure 40 can be used for either type machine model
because its work area is 50 doublewords.

To obtain the name of the extended-precision floating-point simulator installed in your
system, call the module IEAXPSIM, which returns a pointer to the name of the simulator in "the
double word that you provide. In Figure 40, the double word is SIMUL.

Before passing control to the simulator, you can use the LOAD macro instruction to bring
the simulator into virtual storage if it is not already there. The entry point name is specified as

80 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

the name returned from IEAXPSIM. After issuing LOAD, you can pass control to the simulator,
using standard calling conventions.

Upon regaining control from the simulator, the exit routine should check register 15 for one
of the two return codes shown in Figure 41.

Hexadecimal
Code
00

Meaning

The operation was successful.
FF The operation was not successful, or an exceptional condition occurred.

Figure 41. Return Codes From the Extended-Precision Floating-Point Simulator

If the return code is X'FF', the exit routine determines the kind of error encountered by the
simulator by examining the interruption code. Figure 42 shows the possible settings of the
interruption code.

Meaning of Interruption
The simulator found that the operation was not an extended-precision floating-point
operation and returned control without further processing. 0001
Protection exception l 3 0100
Addressing exception l 3 0101
Specification exception l 2 3 0110
Exponent overflow exception4 1100
Exponent underflow exception4 1101
Significance exception4 1110
Floating-point divide4 1111

lWhen the simulator encounters these exceptions, it stops processing and returns control to the exit routine.
2An incorrect extended-precision floating-point register was specified, the third byte of the DXR macro

instruction was not X'OO' or a register other than 0 or 4 was specified in the R 1 or R2 field of the DXR
macro instruction.

3The error occurred during the processing of an MXD macro instruction.
4The error occurred during simulation.

Figure 42. Interruption Codes Returned by the Simulator

The simulator adjusts the condition code in the old PSW in the PIE (bits 34-35) to indicate
the result of an AXR or SXR macro instruction. When a program interruption occurs within the
simulator while fetching the argument of the MXD macro instruction, the instruction address in
the PSW in the PIE is restored to its setting at operation-interruption time.

The simulator never alters the program check old PSW at location 40. Its interruption code
will be an operation exception except for the MXD macro instruction, when it may be a
protection, addressing, or specification exception.

The simulator should be deleted by the using program if it was obtained by the LOAD
macro instruction.

If the full simulator (IEAXPALL) is loaded on a CPU that already has the extended-precision
floating-point facility, no abnormal conditions result. Only the DXR macro instruction is
simulated. However, the simulation of the DXR function is slower than if the IEAXPDXR were
used, since the other extended-precision operations in the divide algorithm are also simulated.

If IEAXDXR is loaded on a CPU without the extended-precision floating-point facility, a OCI
ABEND occurs when an extended-precision divide is simulated. In the simulation of the other
extended-precision macro instructions, a return code of X'FF' is passed to the caller and no
simulation is attempted.

MisceUaneous Services 81

Communicating with the System Operator

The WTO and the WTOR macro instructions allow you to write messages to the operator. The
WTOR macro instruction also allows you to request a reply from the operator. Messages can be
sent to (and replies received from) as many as 32 operator consoles.

There are two basic forms of the WTO macro instruction: the single-line form, and the
multiple-line form.

The following should be considered when issuing multiple-line WTO messages.

• Only the first line of a multiple-line WTO message is passed to the user-written WTO exit
routine.

• When a console switch takes place, unended multiple-line WTO messages and
multiple-line WTO messages in the process of being written to the original console are not
moved to the new console.

• When a hard copy switch takes place from the system log to an active operator's console,
M L WTO messages in the process of being written to the system log are not moved to the
new hard copy device.

• The leftmost three bytes of register zero must be zero for a mUltiple line message. You
must ensure that this is done.

• When the system hard copy log is an active operator's console, only the hard copy
versions of multiple-line messages are written to the console.

• Since the hard copy log receives a copy of every message in the system, an active
operator's console should be used as the hard copy log only in an emergency.

See the macro instructions section for an explanation of the parameters in the single-line
and multiple-line forms of the WTO macro instruction.

The message is routed using the routing codes specified in the WTO macro instruction. At
system generation, each operator's console in the system is assigned routing codes which
correspond to the functions that the installation wants that console to perform. When any of
the routing codes assigned to a message match any of the routing codes assigned to a console,
the message is sent to that console.

Disposition of the message is indicated through the descriptor codes specified in the WTO

macro instruction. Descriptor codes classify WTO messages so that they may be properly
presented on, and deleted from, display devices. Each WTO macro instruction should contain
one descriptor code. The descriptor code is not printed or displayed as part of the message
text. If a descriptor code of 1 or 2 is coded into the WTO macro instruction, an indicator (* or
@) is inserted as the first character of the message. The indicator informs the operator that he
is required to take some immediate action. If a descriptor code other than 1 or 2 is coded, a
blank is inserted as the first character, indicating that no immediate action is needed.

A sample WTO macro instruction is shown in Figure 43.

Single-line WTO
format

'BREAKOFF POINT REACHED. TRACKING COMPLETED. I, C
ROUTCDE=14,DESe=7

Multiple- WTO
line format
(list form)

('SUBROUTINES CALLED' ,e),
('ROUTINE TIMES CALLED' ,L),('SUBQUER' ,D),
('ENQUER' , D) , ('WRI TER' , D) ,
('DQUER' , DE) ,
ROUTCDE=(2,14),DESC=(7,8),MF=L

Figure 43. Writing to the Operator

82 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

C
C
C
e

To use the WTOR macro instruction, you code the message exactly as designated in the
single-line WTOR macro instruction. (The WTOR macro instruction cannot be used to pass
multiple-line messages.) When the message is written, the control program adds a
two-character message identifier before the message to associate the reply with the message.
The control program also inserts an indicator as the first character of all WTOR messages,
thereby informing the operator that immediate action is required. You must, however, indicate
the response desired. In addition, you must supply the address of the area in which the control
program is to place the reply, and' you must indicate the length of the reply. The length of the
reply may not be zero. You also supply the address of an event control block which the
control program posts after the reply has been placed, left-adjusted, in your designated area.

A sample WTOR macro instruction is shown in Figure 44. The reply is not necessarily
available at the address you specified until aWAIT macro instruction has been issued.

ECBAD,ECBAD Clear ECB XC
WTOR 'STANDARD OPERATING CONDITIONS? REPLY YES OR NO',

REPLY, 3, ECBAD,ROUTCDE=(1,15),DESC=7

ECBAD
REPLY

WAIT

DC
DC

ECB=ECBAD

F'O'
C'bbb'

Figure 44. Writing to the Operator With a Reply

Event.control block
Answer area

When a WTOR macro instruction is issued any console receiving the message has the
authority to reply. The first reply received by the control program is returned to the issuer of
the WTOR, providing the syntax of the reply is correct. If the syntax of the reply is not correct,
another reply is accepted. The WTOR is satisfied when the control program moves the reply
into the issuer's reply area and posts the event control block. Each console that received the
original WTOR will also receive the accepted reply unless it's a security message. The master
console may answer any WTOR, even if he did not receive the original message.

Writing to the Programmer
The WTO and the WTOR macro instructions allow you to write messages to the programmer, as
well as to the operator. r

To write a message to the programmer, you must specify ROUTCDE= 11 in the WTO or the
WTOR macro instruction.

Writing to the System Log
The system log consists of one SYSOUT data set on which the communication between the
operator and the system is recorded. You can use the system log by coding the information
that you wish to log in the "text" parameter of the WTL macro instruction.

When the WTL macro instruction is executed, the control program places your text in one of
the buffers and, when the buffer is full, writes the buffer onto the system log data set. The
control program writes the text of your WTL macro instruction on the master console instead
of on the system log if the system log is not active.

Although when using the WTL macro instruction you code the message within apostrophes,
the written message does not contain the apostrophes. The message can include any character
that is valid for the WTO macro instruction and is assembled and written the same way as the
WTO macro instruction. MCS routing codes and descriptor codes are not assigned, since they
are not needed by the WTL macro instruction.

Miscellaneous Services 83

Message Deletion
If your system is using a cathode-ray tube (CRT) display as a console, unnecessary messages
can be deleted from the operator's screen by the programmer. The control program assigns a
message identification number to each WTO and WTOR message and returns the message
identification number in register 1. The DOM macro instruction uses the identification number
to indicate which message is to be deleted. The message identification number must not be
confused with the reply identification number that is assigned to WTOR replies.

You can also use the DOM macro instruction to inhibit operator messages from appearing on
any operator console by specifying REPLY = YES on the macro. The issuer of the DO M with
REPLY = YES must be a task in the same job step and address space as the issuer of the WTRO

macro instruction or must be a task executing in supervisor mode, under protection key 0-7, or
authorized by APF.

84 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Part II: Macro Instructions

Part II: Macro Instructions 85

86 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Introduction to Supervisor Macro Instructions

You can communicate service requests to the control program using a set of macro instructions
provided by IBM. These macro instructions are available only when programming in the
assembler language, and are processed by the assembler program using macro definitions
supplied by IBM and placed in the macro library when the system was generated.

The processing of the macro instruction by the assembler program results in a macro
expansion, generally consisting of data and executable instructions in the form of assembler
language statements. The data fields are the parameters to be passed to the requested control
program routine; the executable instructions generally consist of a branch around the data,
instructions to load registers, and either a branch instruction or a supervisor call (SYC) to give
control to the proper program. The exact macro expansion appears as part of the assembler
output listing.

Macro Instruction Fonns
When written in the standard form, some of the macro instructions result in instructions that
store into an inline parameter list. The option of storing into an out-of-line parameter list is
provided to allow the use of these macro instructions in a reenterable program. You can
request this option through the use of list and execute forms. When list and execute forms
exist for a macro instruction, their descriptions follow the description of the standard form.

Use the list form of the macro instruction to provide a parameter list to be passed either to
the control program or to a problem program, depending on the macro instruction. The
expansion of the list form contains no executable instructions; therefore registers cannot be
used in the list form.

Use the execute form of the macro ,instruction in conjunction with one or two parameter
lists established using the list form. The expansion of the execute form provides the executable
instructions required to modify the parameter lists and to pass control to the required program.
Only the A TT ACH. LINK, and XCTL macro instructions use two parameter lists: a problem
program list, resulting from the address parameter and YL parameters, and a control program
list, resulting from the remaining parameters. The control program list is required, and the
problem program list is optional in these macro instructions.

The CALL. OEQ. ENQ, and SNAP macro instructions can result in variable length parameter
lists. The length of the parameter list generated by the list form of the macro instruction must
be equal to the maximum length list required by any execute form that refers to the list. The
maximum length list can be constructed in one of three methods:

• Code the parameters required for the maximum length execute form in the list form.

• Provide a OS instruction immediately following the list form to allow for the maximum
length parameter list.

• Acquire a maximum length list by using commas in the list form to indicate the maximum
number of parameters. For example, the STORAGE parameter of the SNAP macro
instruction could be coded as STORAGE=(""",,) to allow for five pairs of addresses. The
actual addresses would be provided in the execute forms.

The decriptions of the following macro instructions assume that the standard begin, end,
and continue columns are used - for example, column 1 is assumed as the begin column. To
change the begin, end, and continue columns, code the ICTL instruction to establish the coding
format you wish to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see OS/VS - DOS/VS - VM/370 Assembler Language.

Introduction to Supervisor Macro Instructions 87

Coding the Macro Instructions

The table appearing near the beginning of each macro instruction indicates how the macro
instruction is to be coded. The table does not attempt to explain the meanings of the
parameters; the parameters are explained following the table.

Figure 45 presents a sample macro instruction, TEST, and summarizes all the coding
information that is available for it. The table is divided into three columns.

name

b

<f~ TEST

b

MATH
@)--. HIST

GEOG

. DATA=data add,

@f.--~""" .LNG=data length

,FMT=HEX
@~--t .. ~ ,FMT=DEC

.FMT=BIN

,PASS=value

Figure 45. Sample Macro Instruction

name: symbol. Begin name in column 1.

One or more blanks must precede TEST.

One or morc blanks must follow TEST.

data add,: RX-type address, or register (2) - (t 2) .

data length: symbol or decimal digit, with a maximum value of
256.

Default: FMT=HEX

value: symbol, decimal digit, or register (I) or (2) - (12).
Default: PASS=65.

• The first column, 0, contains those parameters that are required for that macro
instruction. If a single line appears in that column, @, the parameter on that line is
required and must be coded. If two or more lines appear together, @, the parameter
appearing on one and only one of the lines must be coded.

• The second column, 0, contains those parameters that are optional for that macro
instruction. If a single line appears in that column, @, the parameter on that line is
optional. If two or m~re lines appear together, ®, the parameter appearing on one
and only one of the lines may be coded if desired.

• The third column, (0, provides additional information for coding the macro instruction.
When subsitution of a variable is required, the following classifications should be
understood:

symbol: any symbol valid in the assembler language. That is, an alphabetic character
followed by 0-7 alphameric characters, with no special characters and no blanks.

decimal digit: any decimal digit up to the value indicated in the parameter description. If
both symbol and decimal digit are indicated, an absolute expression is also allowed.

register (2) - (12): one of general registers 2 through 12, specified within parentheses,
previously loaded with the right-adjusted value or address indicated in the parameter
description. The unused high-order bits must be set to zero. The register may be designated
symbolically or with an absolute expression.

register (0): general register 0, previously loaded as indicated under register (2) - (12)
above. Designate the register as (0) only.

88 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

register (1): general register 1, previously loaded as indicated under register (2) - (12)
above. Designate the register as (1) only.

RX-type address: any address that is valid in an Rx-type instruction (for example, LA).

A-type address: any address that may be written in an A-type address constant.

default: a value that is used in default of a specified value, and that is assumed if the
parameter is not coded.

Use the parameters to specify the services and options to be performed, and write them
according to the following general rules:

• If the selected parameter is written in all capital letters (for example, STEP, DUMP, or
RET=USE), code the parameter exactly as shown.

• If the selected parameter is written in italics (for example, value or comp code),
substitute the indicated value, address, or name.

• If the selected parameter is a combination of capital letters and italics separated by an
equal sign (for example, EP=entry point), code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

• Read the table from top to bottom, and code the parameters in the order shown. Code
commas and parentheses exactly as shown.

• If a parameter is selected to be coded read column 3 before proceeding to the next
parameter. Column 3 will often contain notes pertaining to restrictions on coding the
parameters.

Continuation Lines

You can continue the parameter field of a macro instruction on one or more additional lines
according to the following rules:

1. Enter a continuation character (not blank, and not part of the parameter coding) in
column 72 of the line.

2. Continue the parameter field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 46 shows an
example of each method. Additional information on the continuation of any assembler
language macro instruction is provided in the publication OS / VS - DOS / VS - VM /370
Assembler Language.

NAME 1

NAME 2

OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAX
ND5,OPERAND6 THIS IS ONE WAY

OP20PERAND1,OPERAND2, THIS IS ANOTHER WAY X
OPERAND3, X
OPERAND4

Figure 46. Continuation Coding

Introduction to Supervisor Macro Instructions 89

VSl/VS2 Compatibility
This publication describes VS2 macro instructions only, However, all macro < instructions and
parameters defined in this publication may also be executed on a YS 1 system, with the
following exceptions. If these exceptions are coded, assembler errors will result.

ABEND macro instruction
SYSTEM
USER
DUMPOPT==

ATTACH macro instruction
GSPY-
GSPL-
SHSPY=
SHSPL-
SZERO=
TASKLIB-
STAI-
ESTAI-
PURGE-
ASYNCH-
TERM-
RELATED-

CHAP macro instruction
RELATED-

DELETE macro instruction
RELATED=

DEQ macro instruction
RELATED-

DET ACH macro instruction
STAE-
RELATED-

DOM macro instruction
REPLY-

ENQ macro instruction
RELATED-

EST AE macro instruction
FREEMAIN macro instruction

LC
LU
L
,C

YU
EC
EU
RC
RU
LA
RELATED-

GETMAIN macro instruction
RC
RU
LC
LU
RELATED-

LINK macro instruction
ERRET-

LOAD macro instruction
ERRET
RELATED-

PGLOAD macro instruction
PGOUT macro instruction
SETRP macro instruction
SNAP macro instruction

SDA T A-(LSQA,SQA,SW A)
ST A TUS macro instruction
STIMER macro instruction

MICVL.

90 OS/VSl Supenisor Services and Macro IDstnactIons (VSl Release 3)

STIMER macro instruction
MICVL=
GMT=
ERRET=

TIME macro instruction
STCK
ZONE=
ERRET==

TTIMER macro instruction
MIC
ERRET=

WAIT macro instruction
LONG=

WTO macro instruction
multiple line message formats

Introduction to Supervisor Macro Instructions 91

92 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Descriptions of the Macro Instructions

Descriptions of the Macro Instructions 93

94 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

ABEND - Abnormally Terminate a Task

The ABEND macro instruction is used to initiate error processing for a task. ABEND can
request a full or tailored dump of virtual storage areas and control blocks pertaining to the
tasks being abnormally terminated, and can specify that the entire job step is to be abnormally
terminated. Before the task is terminated, an EST AE exit gets control. This exit may recover
the task and allow it to retry.

If the job step task is abnormally terminated or if ABEND specifies job step termination, the
completion code is recorded on the system output device, and the remaining job steps in the
job are either skipped or executed as specified in their job control statements.

If the job step is not to be terminated, the following actions are taken:

• The task that was active when ABEND was· issued is terminated, along with all of the
subtasks of that active task.

• The completion code is posted as indicated in the completion code parameter description
below.

• The end-of-task exit routine specified in the ATTACH macro instruction that created the
task which issued ABEND is selected to be given control. The exit ~~utineJs given control "~ -
wh,~Rtp.e originatin$ ta:sJ:c . .of the task fOf which ABE:ND was Issued becomes active. None .
of the end-o{':'t:ask exit routines specified for any subtasks of the iask for which ABEND

was issued are given control.

The ABEND macro instruction is written as follows:

name

b

ABEND

b

comp code

,DUMP
"STEP
",code type
,DUMP,STEP
,DUMP"code type
"STEP,code type
,DUMP,STEP,code type

,DUMPOPT=jJarm list addr

name: symbol. Begin name in column 1.

One or more blanks must precede ABEND.

One or more blanks must follow ABEND.

comp code: symbol, decimal or hexadecimal digit, or register (1) or
(2) - (12).
Value range: 0 - 4095

code type: USER or SYSTEM.
Default: code type = USER.

parm list addr: RX-type address, or register (2) - (12).

The parameters are explained below:

comp code
specifies the completion code associated with the abnormal termination. If the job step is to
be terminated, the decimal representation of the user completion code or the hexadecimal
representation of the system completion code is recorded on the system output device. If the
job step is not to be terminated, the completion code is placed in the TCB of the active task,
and in the ECB specified in the ECB parameter of the A TT ACH macro instruction issued to
create the active task.

ABEND - AbnonnaUy Tenninate a Task 95

,DUMP

"STEP
",code type
,DUMP,STEP
,DUMP"code type
"STEP, code type
,DUMP,STEP,code type

specifies options available with the ABEND macro instruction:

DUMP specifies that a dump is requested of virtual storage areas assigned to the task and
control blocks pertaining to the task. A separate dump is provided for each of the tasks
being terminated as a result of ABEND. If a / /SYSABEND or / /SYSUDUMP DD statement is
not provided, the DUMP parameter is ignored.

STEP specifies that the entire job step of the active task is to be abnormally terminated.

code type specifies that the completion code is to be treated as a USER or SYSTEM code.

,DUMPOPT -parm list addr
specifies the address of a parameter list valid for the SNAP macro instruction. The parameter
list is used to produce a tailored dump, and may be created by using the list form of the
SNAP macro instruction, or a compatible list may be created. The TCB and DCB options
available on SNAP will be ignored if they appear in the parameter list; the TCB used will be
that of the task being terminated, the DCB used will be provided by the ABDUMP routine. If
a / /SYSABEND or / /SYSUDUMP DD statement is not provided, the DUMPOPT parameter is
ignored.

If the dump options specified include ranges of storage areas to be dumped, only the storage
areas in the first four ranges will be dumped.

Example 1

Operation: Terminate with a user completion code of 432.

ABEND 432

Example 2

Operation: Terminate with the user completion code that is contained in register 5. The entire
job step is to be terminated.

ABEND (5)"STEP

96 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

ATTACH - Create a New Task

The A TT ACH macro instruction causes the control program to create a new task and indicates
the entry point in the program to be given control when the new task becomes active. The
entry point name that is specified must be a member name or an alias in a directory of a
partitioned data set, or must have been specified in an IDENTIFY macro instruction. If the
specified entry point cannot be located, the new subtask is abnormally terminated.

The address of the task control block for the new task is returned in register 1. The new
task is a subtask of the originating task; the originating task is the task that was active when
the A TT ACH macro instruction was issued. The limit and dispatching priorities of the new task
are the same as those of the originating task unless modified in the ATTACH macro instruction.

The load module containing the program to be given control is brought into virtual storage
if a usable copy is not available in virtual storage. The issuing program can provide an event
control block, in which termination of the new task is posted, an exit routine to be given
control when the new task is terminated, and a p~rameter list whose address is passed in
register 1 to the new task. If the ECB or EXTR parameter is coded, a DETACH macro
instruction must be issued to remove the subtask from the system before the program that
issued the ATTACH macro instruction terminates. If the ECB or EXTR parameter is not coded,
the subtask is automatically removed from the system upon completion of its execution. The
A TT ACH macro instruction can also be used to specify that ownership of virtual subpools is to
be assigned to the new task, or that the subpools are to be shared by the originating task and
the new task.

The ATTACH macro instruction cannot be issued in a ST AE exit routine. The program
issuing the A TT ACH macro instruction must not terminate before all of its subtasks have
terminated.

The standard form of the ATTACH macro instruction is written as follows:

ATIACH - Create a New Task 97

name

b

ATTACH

b

EP=entry name
EPLOC=entry name addr
DE=list entry addr

,DCB=deb addr

,LPMOD=limit prior nmbr

,DPMOD=disp prior nmbr

,PARAM=(addr)
,PARAM=(addr),VL= I

,ECB=eeb addr

,ETXR=exit rtn addr

,GSPV=subpoo/ nmbr
,GSPL=subpoo/ list addr

,SHSPV =subpoo/ nmbr
,SHSPL=subpoo/ list addr

,SZERO=YES
,SZERO=NO

,TASKLIB=deb addr

,STAI=(exit addr)
,ST AI=(exit addr,pllrm addr)
,EST AI=(exit addr)
,ESTAI=(exit addr,parm addr)

,PURGE=QUIESCE
,PURGE=NONE
,PURGE=HALT

,ASYNCH=NO
,ASYNCH=YES

,TERM=NO
,TERM=YES

,RELATED=va/ue

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow ATTACH.

entry name: symbol.
entry name addr: A-type address, or register (2) - (12),
list entry addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit, or register (2) - (12),

disp prior nmbr: symbol, decimal digit, or register (2) - (12).

addr: A-type address, or register (2) - (12),
Note: addr is one or more addresses, separated by commas. For
example, PARAM=(addr,addr,addr)

eeb addr: A-type address, or register (2) - (12).

exit rtn addr: A-type address, or register (2) - (12).

subpoo/ nmbr: symbol, decimal digit, or register (2) - (12),
subpoo/ list addr: A-type address, or register (2) - (12),

subpoo/ nmbr: symbol, decimal digit. or register (2) - (12).
subpoo/ list addr: A-type address, or register (2) - (12).

Default: SZERO= YES

deb addr: A-type address, or register (2) - (12),

exit addr: A-type address, or register (2) - (12).
parm addr: A-type address, or register (2) - (12).

Note: PURGE may be specified only if STAI or EST AI is specified.
Default for STAI: PURGE=QUIESCE
Default for ESTAI: PURGE=NONE

Note: ASYNCH may be specified only if ST AI or ESTAI is
specified.
Default for STAI: ASYNCH=NO
Default for ESTAI: ASYNCH=YES

Note: TERM may be specified only if EST Al is specified.
Default: TERM=NO

value: any valid macro keyword specification.

The parameters are explained below:

EP = entry name
EPLOC = entry name addr
DE = list entry addr

specifies the entry name, the address of the entry name, or the address of the name field of
a 60-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

,DCB =dcb addr
specifics the address of the data control block for the partitioned data set containing the
entry name described above. (Note: The DCB must be opened before the ATTACH macro
instruction is executed.)

98 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

,LPMOD = limit prior nmbr
specifies the number (255 or less) to be subtracted from the current limit priority of the
originating task. The result is the limit priority of the new task. If this parameter is omitted,
the current limit priority of the originating task is assigned as the limit priority of the new
task.

,DPMOD =disp prior nmbr
specifies the signed number (255 or less) to be algebraically added to the current
dispatching priority of the originating task. The result is assigned as the dispatching priority
of the new task, unless it is greater than the limit priority of the new task. If the result is
greater, the limit priority is assigned as the dispatching priority.

If a register is designated, a negative number must be in two's complement form in the
register. If this parameter is omitted, the dispatching priority assigned is the smaller of either
the new task's limit priority or the originating task's dispatching priority.

,P ARAM = (addr)
,PARAM=(addr),VL= 1

specifies address(es) to be passed to the control program. Each address is expanded inline
to a fullword on a fullword boundary, in the order designated. Register 1 contains the
address of the first word when the program is given control. (If this parameter is not coded,
register 1 is not altered.)

VL = 1 should be designated only if the called program can be passed a variable number of
parameters. VL= I causes the high-order bit of the last address to be set to 1; the bit can be
checked to find the end of the list.

,ECB =ecb addr
specifies the address of an event control block to be used by the control program to indicate
the termination of the new task. The return code (if the task is terminated normally) or the
completion code (if the task is terminated abnormally) is also placed in the event control
block. If this parameter is coded, a DETACH macro instruction must be issued to remove the
subtask from the system after the subtask has been terminated.

,ETXR = exit rln addr
specifics the address of the end-of -task exit routine to be given control after the new task is
normally or abnormally terminated. The exit routine is given control when the originating
task becomes active 'after the subtask is terminated, and must be in virtual storage when
required. If the same routine is used for more than one subtask, it must be reenterable. If
this parameter is coded, a DETACH macro instruction must be issued to remove the subtask
from the system after the subtask has been terminated.

The contents of the registers when the exit routine is given control are as follows:

Register
o
I
2-12
13
14
15

Contents
Control program information.
Address of the task control block for the task that was terminated.
Unpredictable.
Address of a save area provided by the control program.
Return address (to the control program).
Address of the exit routine.

The exit routine is responsible for saving and restoring the registers.

A IT ACH - Create a New Task 99

,GSPV =subpool nmbr
,GSPL =subpool list addr

specifies a virtual storage sub pool number less than 128 or the address of a list of virtual
storage subpool numbers each less than 128. Ownership of each of the specified subpools is
assigned to the new task. Programs of the originating task can no longer GETMAIN or
FREEMAIN the associated virtual storage areas.

If GSPL is specified, the first byte of the list contains the number of remaining bytes in the
list; each of the following bytes contains a virtual storage sub pool number.

,sHSPV =subpool nmbr
,SHSPL =subpool list addr

specifies a virtual storage subpool number less than 128 or the address of a list of virtual
storage subpool numbers each less than 128. Programs of both originating task and the new
task can use the associated virtual storage areas.

If SHSPL is specified, the first byte of the list contains the number of remaining bytes in the
list; each of the following bytes contains a virtual storage subpool number.

,SZERO = YES
,SZERO=NO

specifies whether subpool 0 is to be shared with the subtask. YES specifies that subpool 0 is
to be shared; NO specifies that subpool 0 is not to be shared.

,T ASKLIB =dcb addr
specifies that a task library DCB address has been supplied and is stored in TCBJLB.
Otherwise, TCBJLB is propagated from the originating task. (Note: The DCB must be opened
before the A TT ACH macro instruction is executed.)

,STAI = (exit addr)
,STAI = (exit addr,parm addr)
,ESTAI = (exit addr)
,ESTAI = (exit addr,parm addr)

specifies whether a STAI or EST AI SCB is to be created; any SCBs queued to the originating
task are propagated to the new task.

The exit addr specifies the address of the STAI or EST AI exit routine which is to receive
control if the subtask abnormally terminates; the exit routine must be in virtual storage at
the time of abnormal termination. The parm addr is the address of a parameter list which
may be used by the ST AI or EST AI exit routine.

,PURGE = QUIESCE
,PURGE = NONE
,PURGE = HALT

specifies what action is to be taken with regard to I/O operations when the subtask is
abnormally terminated. No action may be specified (NONE), a halting of I/O operations may
be requested (HALT), or a quiescing of I/O operations may be indicated (QUIESCE).

,ASYNCH=NO
,ASYNCH = YES

specifies whether asynchronous exits are to be allowed when a subtask abnormal
termination occurs.

100 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

ASYNCH=YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their normal
processing are going to be requested by the EST AE exit routine.

• PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE=NONE is specified and the CHECK macro instruction is issued in the EST AE exit
routine for any access method that requires asynchronous interruptions to complete
normal input/output processing.

Note: If ASYNCH= YES is specified and the ABEND was originally scheduled because of an
error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

,TERM=NO
,TERM = YES

specifies whether the exit routine associated with the EST AE request is also to be scheduled
in the following situations:
-CANCEL

- Forced LOGOFF
-Job step timer expiration
- Wait time limit for job step exceeded
- ABEND condition because incomplete task detached when ST AE option not specified on

DETACH

- EST AE macro instruction issued by subtask and attaching task abnormally terminates

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and EST AE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')
FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1, 'FREE STORAGE')

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04
08

OC

Meaning
Successful completion.
ATT ACH was issued in a ST AE exit; processing not completed.
Insufficient storage available for control block for ST AI/EST AI request; processing not
completed.
Invalid exit routine address or invalid parameter list address specified with ST AI
parameter; processing not completed.

Note: For any return code other than 00, register 1 is set to zero upon return.

Note: The program manager processing for ATTACH is performed under the new subtask,
after control has been returned to the originating task. Therefore, it is possible for the
originating task to obtain return code 00, and still not have the subtask successfully created
(for example, if the entry name could not be found by the program manager). In such cases,
the new subtask is abnormally terminated.

ATTACH - Create a New Task 101

ATTACH (List Form)

Two parameter lists are used in an ATTACH macro instruction: a control program parameter
list and an optional problem program parameter list. You can construct only the control
program parameter list in the list form of A TT ACH. Address parameters to be passed in a
parameter list to the problem program can be provided using the list form of the CALL macro
instruction. This parameter list can be referred to in the execute form of ATTACH.

The list form of the ATTACH macro instruction is written as follows:

name

b

ATTACH

b

EP=entry name
EPLOC=entry name addr
DE=list entry addr

,DCB=deb addr

,LPMOD==Iimit prior nmbr

,DPMOD=disp prior nmbr

,ECB=eeb addr

,ETXR=exit rtn addr

,GSPV=subpool nmbr
,GSPL=subpool list addr

,sHSPV =subpool nmbr
,SHSPL=subpool list addr

,SZERO=YES
,SZERO-NO

,T ASKLIB=deb addr

,ST AI-(exit addr)
,STAI=(exit addr,parm addr)
,ESTAI=(exit addr)
,ESTAI-(exit addr,parm addr)

,PURGE-QUIESCE
,PURGE-NONE
,PURGE-HALT

,ASYNCH=NO
,ASYNCH. YES

,TERM-NO
,TERM-YES

,RELATED-value

,SF-L

name: symbol. Begin name in column 1.

One or more blanks must precede A TT ACH.

One or blanks must follow A TT ACH.

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

limit prior nmbr: symbol or decimal digit.

disp prior nmbr: symbol or decimal digit.

eeb addr: A-type address.

exit rln addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

·Default: SZERO-YES

deb addr: A-type address.

exit addr: A-type address.
parm addr: A-type address.

Note: PURGE may be specified only if ST Al or EST AI is specified.
Default for ST AI: PURGE-QUIESCE
Default for EST AI: PURGE-NONE

Note: ASYNCH may be specified only if ST AI or EST AI is
specified.
Default for ST AI: ASYNCH-NO
Default for ESTAI: ASYNCH-YES

Note: TERM may be specified only if EST AI is specified.
Default: TERM-NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ATTACH macro instruction,
with the following exceptions:

,sF-L
specifies the list form of the ATTACH macro instruction.

102 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

A Tf ACH (Execute Form)

Two parameter lists are used in ATTACH: a control program parameter list and an optional
problem program parameter list. Either or both of these parameter lists can be remote and can
be referred to and modified by the execute form of ATTACH. If only the problem program
parameter list is remote, parameters that require use of the control program parameter list
cause· that list to be constructed inline as part of the macro expansion.

The execute form of the ATTACH macro instruction is written as follows:

name

b

ATTACH

b

EP=entry name
EPLOC=entry name addr
DE =lis I entry addr

,DCB=deb addr

,LPMOD=limil prior nmbr

,DPMOD=disp prior nmbr

,PARAM=(addr)
,PARAM=(addr), VL= 1

,ECB=eeb addr

,ETXR=exil rln addr

,GSPV =subpool nmbr
,GSPL=subpool lisl addr

,SHSPV =subpool nmbr
,SHSPL=supoool lis I addr

,SZERO=YES
,SZERO=NO

,TASKLIB=deb addr

,ST AI=(exil addr)
,ST AI=(exil addr,parm addr)
,EST AI=(exil addr)
,EST AI=(exit addr,parm addr)

,PURGE=QUIESCE
,PURGE=NONE
,PURGE=HAL T

,ASYNCH=NO
,ASYNCH-YES

,TERM=NO
,TERM=YES

,RELA TED=value

,MF==(E, prob addr)
,SF=(E, elrl addr)
,MF=(E, prob addr),SF=(E, etrl addr)

name: symbol. Begin name in column I.

One or more blanks must precede A TT ACH.

One or more blanks must follow A TT ACH.

enlry name: symbol.
enlry name addr: RX-type address, or register (2) - (12).
lisl entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit, or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2) - (12).

addr: RX-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For
example, PARAM=(addr,addr,addr)

eeb addr: RX-type address, or register (2) - (12).

exit rln addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (I2)
subpool list addr: RX-type address, or register (2) - (2).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

exit addr: RX-type address, or register (2) - (12).
parm addr: RX-type address, or register (2) - (2).

Note: PURGE may be specified only if ST AI or EST AI is specified.

Note: ASYNCH may be specified only if ST AI or EST AI is
specified.

Note: TERM may be specified only if EST AI is specified.

value: any valid macro keyword specification.

prob addr: RX-type address, or register (I) or (2) - (12).
elrl addr: RX-type address, or register (2) - (I2) or (15).

The parameters are explained under the standard form of the ATTACH macro instruction,
with the following exceptions:

ATTACH (Execute Fonn) 103

,MF - (E, prob addr)
,SF - (E, ctrl addr)
,MF - (E, prob addr),SF - (E, ctrl addr)

specifies the execute form of the ATTACH macro instruction using either a remote problem
program parameter list or a remote control program parameter list. Any problem program or
control program parameters are provided in parameter lists expanded inline.

Note: If ST AI is specified on the execute form, the following fields are overlaid in the control
program parameter list: exit addr, parm addr, PURGE, and ASYNCH. If parm addr is not
specified, zero is used; if PURGE or ASYNCH are not specified, defaults are used.

If ESTAI is specified on the execute form, then the following fields are overlaid: exit addr,
parm addr, PURGE, ASYNCH, and TERM. If parm addr is not specified, zero is used; if
PURGE, ASYNCH, or TERM are not specified, defaults are used.

If the ST AI or EST AI is to be specified, it must be completely specified on either the list or
execute form, but not on both forms.

Example 1

Operation: Cause the program named in the list to be attached. Established RTN as an end of
task exit routine.

ATTACH DE=LISTNAME,ETXR=RTN

Example 2

Operation: Cause PROGRAMt to be attached, share subpool S, wait on WORDt to synchronize
processing with that of the subtask, and establish EXIT 1 as an EST AI exit.

ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAE=(EXIT1)

104 OS/VS2 Supenisor Services and Macil'o Instructions (VS2 Release 2)

CALL - Pass Control to a Control Section

The CALL macro instruction passes control to a control section at a specified entry point as
follows:

• OVERLAY: The overlay segment containing the designated entry point is brought into
virtual storage if required, and control is passed to the segment.

Refer to Linkage Editor and Loader for details on overlay. The CALL macro instruction
cannot be used in an asynchronous exit routine .

• NON-OVERLAY: If a symbol is designated, the linkage editor includes the load module
containing that entry point in the same load module containing the CALL instruction.
When the CALL macro instruction is executed, control is passed to the control section at
the specified entry point.

The linkage relationship established when control is passed is the same as that created by a
BAL instruction; that is, the issuing program expects control to be returned. The control
program is not involved in passing control, so the reusability of the called program must be
maintained by the user.

An address parameter list can be constructed and a calling sequence identifier can be
provided.

The standard form of the CALL macro instruction is written as follows:

name

b

CALL

b

entry name

.(addr)

.(addr),VL

',ID==id nmbr

name: symbol. Begin name in column 1.

One or more blanks must precede CALL.

One or more blanks must follow CALL.

entry name: symbol or register (15).

addr: A-type address, or register (2) - (12) .
Note: addr is one or more addresses, separated by commas. For
example, (addr,addr,addr)

id nmbr: symbol or decimal digit, with a maximum value of 4095.

The parameters are explained below:

entry name
specifies the entry name to be given control.

, (addr)
,(addr),VL

specifies address(es) to be passed to the control program. Each address is expanded inline
to a fullword on a fullword boundary, in the order designated. Register 1 contains the
address of the first parameter when the program is given control. (If this parameter is not
coded, register 1 is not altered.)

VL should be coded only if the called program can be passed a variable number of
parameters. VL causes the high-order bit of the last address parameter to be set to 1; the bit
can be checked to find the end of the list.

CALL - Pass Control to a Control Section 105

,ID=id nmbr
specifies an identifier useful for debugging purposes only. The last fullword of the macro
expansion is a NOP instruction containing the identifier value in bytes 3 and 4.

Upon entry to the called program, the register contents are as follows:

Register
1
14
15

Meaning
Address of parameter list, if present.
Return address.
Entry address of called program.

106 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

CALL (List Form)

The list form of the CALL macro instruction is used to construct a nonexecutable problem
program parameter list. This list form generates only ADCONs of the address parameters. This
problem program parameter list can be referred to in the execute form of a CALL, LINK,
A TT ACH, or XCTL macro instruction.

The list form of the CALL macro instruction is written as follows:

name

b

CALL

b

name: symbol. Begin name in column I.

One or more blanks must precede CALL.

One or more blanks must follow CALL.

addr: A-type address . . (addr)
Jaddr),VL Note: addr is one or more addresses. separated by commas. For

example, (addr.addr,addr)

.MF=L

The parameters are explained under the standard form of the CALL macro instruction, with
the following exceptions:

,MF-L
specifies the list form of the CALL macro instruction.

CALL (List Fonn) 107

CALl, (Execute Form)

A remote problem program parameter list is referred to and can be modified by the execute
form of the CALL macro instruction. Only executable instructions and a YCON of the entry
point are generated.

The execute form of the CALL macro instruction is written as follows:

name

b

CALL

b

entry name

,(addr)
,(addr),YL

,ID=id nmbr

,MF=(E,prob addr)

name: symbol. Begin name in column 1.

One or more blanks must precede CALL.

One or more blanks must follow CALL.

entry name: symbol or register (15).

addr: RX-type address, or register (2) - (12)-
Note: addr is one or more addresses, separated by commas. For
example, (addr,addr,addr)

id nmbr: symbol or decimal digit, with a maximum value of 4095.

prob addr: Rx-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the CALL macro instruction, with
the following exceptions:

,MF = (E,prob addr)
specifies the execute form of the CALL macro instruction. This form uses a remote problem
program parameter list. If the address parameters are also specified in this form, the
ADCONS of the parameter are placed on contiguous fullword boundaries beginning at the
address specified in the MF parameter, and sequentially overlaying corresponding fullwords
in the existing list.

Example 1

Operation: Call the entry point contained in register 15, and pass three addresses to the
control program.

CALL (15),(ADDR1,ADDR2,ADDR3)

108 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

CHAP - Change Dispatching Priority

CHAP changes the dispatching priority of the task or any of its sub tasks relative to the other
tasks in the address space. It does not change the priority relative to other tasks in the system.
CHAP may also change the limit priority of a subtask. (See the section "Priorities" in this
publication.) The algebraic sum of the priority value and the dispatching priority of the subject
task determines the new dispatching priority.

• If the subject task is the task executing CHAP, its dispatching priority is set equal to the
sum of the priority value and the dispatching priority. This value is not set at less than
zero or greater than the limit priority for the task. Its limit priority is unaffected.

• If the subject task is a subtask of the task executing CHAP, its dispatching priority is set
equal to the sum of the priority value and the dispatching priority. This value is not set at
less than zero or greater than the limit priority of the task executing CHAP. After this
modification, if the subtask's dispatching priority exceeds its limit priority, the limit
priority is made equal to the dispatching priority.

The CHAP macro instruction is written as follows:

name name: Begin name in column 1.

t'>

CHAP

t'>

One or more blanks must precede CHAP.

One or more blanks must follow CHAP.

priority value priority value: symbol, decimal digit, or register (0) or (2) - (12).

feb addr: RX-type address, or register (1) or (2) - (12). ,'S'
,teb addr Default: oS'

,RELA TED=value value: any valid macro keyword specification.

The parameters are explained below:

priority value

,'S'

specifies the signed value to be added to the dispatching priority of the specified task. If the
value is negative and contained in a register, it must be in two's complement form.

,teb addr
specifies the address of a fullword on a fullword boundary containing the address of a task
control block for a subtask of the active task. If'S' is coded or assumed, the dispatching
priority of the active task is updated.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example;
CHAP and EST AE).

CHAP - Change Dispatching Priprity 109

The parameter may be used, for example, as follows:

GET1
FREE1

Example 1

GETMAIN
FREEMAIN

R,LV=4096,RELATED=(FREE1,'GET STORAGE')
R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

Operation: Lower by 2 the dispatching priority of the subtask TCB, whose address is in a
full word which is addressed by register 1. The subtask TCB will be repositioned on the
dispatching queue in accordance with its new dispatching priority.

CHAP -2, (1)

Example 2

Operation: Cause the Tca of the task issuing CHAP to be repositioned at the bottom of the
group of TCBs on the dispatching queue for the address space, having the same dispatching
priority as that task.

CHAP 0

110 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

DELETE - Relinquish Control of a Load Module

The DELETE macro instruction cancels the effect of a previous LOAD macro instruction. If
DELETE cancels the only outstanding LOAD request for the module and no other requirements
exist for the module, the virtual storage occupied by the load module is released and is
available for reassignment by the control program.

The entry name specified in the DELETE macro instruction must be the saIl}e as that
specified in the LOAD macro instruction that brought the load module into storage. Also, the
DELETE macro instruction must be issued by the same task that issued the LOAD macro
instruction.

Any module loaded by a task will not be removed from virtual storage until the DELETE

macro instruction is issued or end of task is reached. In addition, any module loaded by a
system task will not be removed from virtual storage until a DELETE macro instruction is
issued by a system task or end of task is reached.

The DELETE macro instruction is written as follows:

name

b

DELETE

b

EP=entry name
EPLOC=entry name addr
DE=list entry addr

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede DELETE.

One or more blanks must follow DELETE.

entry name: symbol.
entry name addr: RX-type address, or register (0) or (2) - (12).
list entry addr: RX-type address, or register (0) or (2) - (12).

value: any valid macro keyword specification.

The parameters are explained below:

EP =entry name
EPLOC =entry name addr
DE = list entry addr

specifies the entry name, the address of the entry name, or the address of a 60-byte list
entry for the entry name that was constructed using the BLDL macro instruction. If EPLOC
is coded, the name must be padded to eight bytes, if necessary.

,RELATED == value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and ESTAE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')
FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

DELETE - ReUnquish Control of a Load Module tIt

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

Example 1

Meaning
Successful completion of requested function.
Request was not issued for this module, or attempt was made to delete a system
module.

Operation: Remove a module (PGMTOVL Y) from virtual storage.

DELETE EP=PGMTOVLY

ttl OS/VS1 Supervisor Services and Macro Instructions (VS1 Release 1)

DEQ - Release a Serially Reusable Resource

DEQ removes control of one or more (maximum is 65,535) serially reusable resources from the
active task. Register 15 is set to 0 if the request is satisfied. An unconditional request to
release a resource from a task that is not in control of the resource, or a request that contains
invalid parameters results in abnormal termination of the task.

The standard form the the DEQ macro instruction is written as follows:

narne

b

DEQ

b

qnarne addr

,rnarne addr

,rnarne length

,
,STEP
,SYSTEM
,SYSTEMS

, var1234

,RET=HAVE
,RET=NONE

,RELATED-value

narne: symbol. Begin narne in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

qnarne addr: A-type address, or register (2) - (12).

marne addr: A-type address, or register (2) - (12).

marne length: symbol, decimal digit, or register (2) - (12).
Note: rnarne length must be coded if a register is specified for rnarne
addr.

Default: STEP

var1234: The preceding 4 parameters may be repeated up to 65,535
times.

Default: RET=NONE

value: any valid macro keyword specification.

The parameters are explained below:

specifies the beginning of the resource description.

qname addr
specifies the address in virtual storage of an 8-character name. The qname must be the
same name specified for the resource in an ENQ macro instruction.

,mame addr
specifies the address in virtual storage of the name used in conjunction with qname and
scope to represent the resource acquired by a previous ENQ macro instruction. The name
can be qualified and must be from 1 to 255 bytes long. The rname must be the same name
specified for the resource in an ENQ macro instruction.

DEQ - Release a SeriaUy Reusable Resource t 13

,rnarne length
specifies the length of the rnarne described above. The length must have the same value as
specified in the previous ENQ macro instruction. If this parameter is omitted, the assembled
length of the rnarne is used. You can specify a value between 1 and 255 to override the
assembled length, or you may specify a value of 0. If ° is specified, the length of the rnarne
must be contained in the first byte at the rnarne addr specified above.

,STEP
,SYSTEM
,SYSTEMS

specifies the scope of the resource. You must specify the same STEP, SYSTEM, or SYSTEMS

option as you used in the ENQ macro instruction requesting the resource.

, var1234
specifies that up to 65,535 resources may be specified in the DEQ macro instruction.

specifies the end of the resource description.

,RET = HAVE
,RET = NONE

specifies that the request for releasing the resources named in DEQ is to be honored only if
the active task has been assigned control of the resources or if ENQ was executed with ECB

(HAVE) or specifies an unconditional request to release all the resources (NONE). If this
parameter is omitted, the request for release is unconditional, and the active task is
abnormally terminated if it has not been assigned control of the resources.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and ESTAE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREEl ,'GET STORAGE')
FREEl FREEMAIN R, LV=4096, A=(1), RELATED=(GETl , 'FREE STORAGE')

Return codes are provided by the control program only if RET=HAVE is designated. If all of
the return codes for the resources named in DEQ are 0, register 15 contains 0. If any of the
return codes are not 0, register 15 contains the address of a virtual storage area containing the
return codes as shown in Figure 47. The return codes are placed in the parameter list resulting
from the macro expansion in the same sequence as the resource names in the DEQ macro
instruction. The return codes are shown in Figure 48.

114 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Address
Returned in
Register 15

12

24

36
...

2

........-

3

-

Return
Codes

RC 1

RC2

RC 3

4 12

<

.
......

~~----~--~~---]J 0
RCN

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

Figure 47. Return Code Area Used by DEQ

Code
o
4

8

Meaning
The resource has been released.
The resource has been requested for the task, but the task has not been assigned
control. The task is not removed from the wait condition. (This return code could
result if DEQ is issued within an exit routine which was given control because of an
interruption.)
Control of the resource has not been requested by the active task, or the resource has
already been released.

Figure 48. DEQ Macro Instruction Return Codes

DEQ - Release a Serially Reusable Resource 115

DEQ (List Form)

Use the list form of DEQ to construct a control program parameter list. The number of qname,
mame, and scope combinations in the list form of DEQ must be equal to the maximum number
of qname, rname and scope combinations in any execute form of DEQ that refers to that list
form.

The list form of the DEQ macro instruction is written as follows:

narne

b

DEQ

b

qnarne addr

,rnarne addr

,marne length

,STEP
,SYSTEM
,SYSTEMS

var1234

,RET=HAVE
,RET=NONE

,RELATED=value

. MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

qname addr: A-type address.

rnarne addr: A-type address.

rname length: symbol or decimal digit.

Default: STEP

var1234: The preceding 4 parameters may be repeated up to 65,535
times.

value: any valid macro keyword specification .

The parameters are explained under the standard form of the DEQ macro instruction, with
the following exceptions:

,MF== L
specifies the list form of the DEQ macro instruction.

116 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

DEQ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the DEQ macro. The parameter list can be generated by the list form of either the DEQ or
the ENQ macro instruction.

The execute form of the DEQ macro instruction is written as follows:

name

b

DEQ

b

qname addr

,rname addr

,rnarne length

,STEP
,SYSTEM
,SYSTEMS

, var! 234

,RET=HAVE
,RET=NONE

, RELA TED=value

,MF=(E ,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

Note: (and) are the beginning and end of a parameter list. The
entire list is optional. If nothing in the list is desired, the (,), and all
parameters between (and) should not be specified. If something in
the list is desired, the (,), and all parameters in the list should be
specified as indicated at the left.

qname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digit, or register (2) - (12).

Default: STEP

var! 234: The preceding 4 parameters may be repeated up to 65,535
times.

Note: See note opposite (above.

Default: RET=NONE

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the DEQ macro instruction, with
the following exceptions:

,MF = (E , ctrl addr)
specifies the execute form of the DEQ macro instruction using a remote control program
parameter list.

Example 1

Operation: Release control of the resource in Example 1 of ENQ, if it has been assigned to the
current TCB. The length of the rname is explicitly defined as 9 characters.

DEQ (MAJOR1,MINOR1,9,STEP),RET=HAVE

DEQ (Execute Fonn) 117

Example 2

Operation: Unconditionally release control of the resources in Example 2 of ENQ. The length
of the rname for the first resource is 3 characters.

DEQ (MAJOR4,MINOR4,3,STEP,MAJOR2,MINOR2"SYSTEM,
MAJOR3,MINOR3"SYSTEMS)

III OS/VSl Supervisor Services and Macro Instructions (VSl Release 3)

DETACH - Detach a Subtask

The DETACH macro instruction is used to remove from the system a subtask created by an
ATTACH macro instruction that specified the ECB or ETXR parameter. Each subtask created in
this manner must be removed from the system before the originating task terminates. Failure
to remove these subtasks causes abnormal termination of the originating task and all of its
subtasks. Issuing a DETACH macro instruction that specifies a subtask created without the ECB

or ETXR parameter also causes abnormal termination of the originating task when the specified
subtask has already terminated. Issuing a DETACH macro instruction that specifies a subtask
that has not terminated causes termination of that subtask and all of its subtasks. A DETACH

macro instruction can be issued only for subtasks created by the active task.

The DETACH macro instruction is written as follows:

name

h

DETACH

h

feb addr

,STAE=NO
,STAE=YES

. RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede DETACH.

One or more blanks must follow DETACH.

feb addr: symbol, RX-type address, or register (I) or (2) - (12).

Default: ST AE=NO

value: any valid macro keyword specification .

The parameters are explained below:

teb addr
specifies the address of a full word on a fullword boundary containing the address of the
task control block for the subtask to be removed from the system.

,STAE=NO
,STAE = YES

specifies whether the exit routine specified in a ST AE macro instruction issued by the
subtask, or ST AI/EST AE/EST AI exits existing for the subtasks, is or is not to be given
control if the subtask is detached before it has been terminated. If a retry routine is
specified by the ST AE exit routine, it is not given control.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and EST AE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')
FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

DET ACH - Detach a Subtask t t 9

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

Example 1

Meaning
Successful completion.
An incomplete subtask was detached with ST AE== YES specified; DETACH processing
successfully completed.

Operation: Cause the subtask to be removed from the address space. The address of the TCB

is in the fullword labeled SA VEWORD.

DETACH SAVEWORD

Example 2

Operation: In addition to causing the subtask to be removed from the address space, give
control to the most recent ST AE exit established by the subtask if the subtask has not yet been
terminated.

DETACH (1),STAE=YES

110 OS/VS2 Supervisor Services and Macro Instnactions (VS2 Release 2)

DOM - Delete Operator Message

The DOM macro instruction is used with MCS with DIDOCS only. It is used to delete an
operator message or group of messages from display on graphic consoles or to inhibit operator
messages from ever appearing on any operator consoles. When a program no longer requires
that a message be displayed, the DOM macro instruction should be issued to delete the
message.

Depending on the timing of the DOM relative to the WTO(R), the message mayor may not
be displayed. If the message is being displayed, it is removed when space is required for other
messages.

When a WTO or WTOR macro instruction is executed, the control program assigns an
identification number to the message. The control program returns the assigned identification
number (24 bits and right-justified) to the issuing program in general register 1. When display
of the message is no longer needed, the DOM macro instruction is coded using the
identification number that was returned in general register 1.

The DOM macro instruction is written as follows:"

name

b

DOM

b

MSG==reg
MSGLlST=list addr

,REPLY=-YES

name: symbol. Begin name in column 1.

One or more blanks must precede DOM.

One or more blanks must follow DOM.

reg: register (1) or (2) - (12).
list addr: symbol. RX-type address. or register (l) or (2) - (12).

The parameters are explained below:

MSG==reg
MSG LIST list addr

specifies the message numbers of messages to be deleted.

For MSG, the register contains the 24-bit, right-justified identification number of the
message to be deleted. Use this parameter to delete a single message. If you use register 1,

. the macro expansion is shortened by two bytes.

For MSGLlST, the address is of a list of one or more fullwords, each word containing a
24-bit, right-justified identification number of a message to be deleted. A maximum of 60
identification numbers may be in the message list. If more than 60 identification numbers
are in the list, only the first 60 are processed. Begin the list on a fullword boundary.
Indicate the end of the list by setting the high-order bit of the last fuUword entry to 1. If
you use register 1, the macro expansion is shortened by four bytes. If any register 2 through
12 is used, the macro expansion is shortened by two bytes.

,REPLY-YES
specifies that the need for a reply to a WTOR message has been eliminated. This parameter
must be specified if a WTOR message is to be deleted.

OOM - Delete Operator Messaae 111

Example 1

Operation: Delete an operator message whose message id is in register 1.

DOM MSG=(R 1)

Example 2

Operation: Delete a list of operator messages, some of which may be WTORs.

DOM MSGLIST=ID2,REPLY=YES

122 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

DXR - Divide Extended Register

The DXR macro instruction is used to divide one extended-precision floating-point number by
another. A detailed description of the division process and extended precision and rounding is
given in IBM System/3 70 Principles of Operation.

To use the DXR macro instruction, you must provide a SPIE exit routine to process the
program exception caused (intentionally) by execution of the DXR instruction. The SPIE exit
routine is described in the section on Extended-Precision Floating-Point Simulation in the
Services section of this publication.

The DXR macro instruction is written as follows:

name

b

DXR

b

dividend reg

,divisor reg

name: symbol. Begin name in column 1.

One or more blanks must precede DXR.

One or more blanks must follow DXR.

dividend reg: symbol or decimal digit. The only permitted registers
are 0 and 4.

divisor reg: symbol or decimal digit. The only permitted registers are
o and 4.

The parameters are explained below:

dividend reg
specifies the register that contains the dividend. The quotient is placed in this register; the
remainder is discarded.

,divisor reg
specifies the register that contains the divisor.

Example 1

Operation: Divide the extended-precision floating-point number in register 0 by the
extended-precision floating-point number in register 4.

DXR 0,4

DXR - Divide Extended Register 123

ENQ - Request Control of a Serially Reusable Resource

ENQ requests the control program to assign control of one or more (up to 65,535) serially
reusable resources to the active task. If any of the resources are not available, the active task
may be placed in a wait condition until all of the requested resources are available. Once
control of a resource has been assigned to a task, it remains with that task until one of the
programs of the same task issues a DEQ macro instruction specifying the same resource.
Register ISis set to 0 if the request is satisfied.

You can also use ENQ to determine the status of the resource; whether it is immediately
available or in use, and whether control has been previously requested for the active task in
another ENQ macro instruction.

You may request either shared or exclusive use of a resource. The resource is represented in
the ENQ by a pair of names, the qname and the rna me, and a scope value. The control
program does not correlate the names with the actual resource. ENQ simply coordinates access
to whatever it is the names represent. The names may be given meaning restricted to a job
step or across job steps. In either case, all programs for which coordination of the resource is
provided must represent it by the same name.

Issuing two ENQ macro instructions for the same resource without an intervening DEQ

macro instruction results in abnormal termination of the task, unless the second ENQ

designates RET = TEST, USE, CHNG, or HA YEo If normal termination of a task is attempted
while the task still has control of any serially reusable resources, all requests made by this task
will be automatically dequeued. If resource input addresses are incorrect, the task is abnormally
terminated.

The standard form of the ENQ macro instruction is written as follows:

124 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

name

1)

ENQ

1)

qname addr

,rname addr

,
,E
,S

,mame length

,STEP
,SYSTEM
,SYSTEMS

, var12345

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr: A-type address, or register (2) - (12).

mame addr: A-type address, or register (2) - (12).

Default: E.

mame length: symbol, decimal digit, or register (2) - (12).
Note: mame length must be coded if a register is specified for mame
addr.
Default: assembled length of mame)i

Default: STEP.

var12345: The preceding 5 parameters may be repeated up to
65,535 times.

Default: RET=NONE.

value: any valid macro keyword specification.

The parameters are explained below:

specifies the beginning of the resource description.

qname addr
specifies the address in virtual storage of an 8-character name. Every program issuing a
request for a serially reusable resource must use the same qname, mame, and scope to
represent the resource.

,rname addr

,E
,S

specifies the address in virtual storage of the name used in conjunction with qname to
represent a single resource. The name can be qualified and must be from 1 to 255 bytes
long.

specifies whether the request is for exclusive (E) or shared (S) control of the resource. If
the resource is modified while under control' of the task, the request must be for exclusive
control; if the resource is not modified, the request should be for shared control.'

ENQ - Request Control of a SeriaDy Reusable Resource 125

,rname length
specifies the length of the rna me described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length, or you may specify a value of O. If 0 is specified, the length
of the rname must be contained in the first byte at the rname addr specified above.

,STEP
,SYSTEM
,SYSTEMS

specifies the scope of the resource used only within the job step of the issuing program
(STEP), used by programs of more than one address space (SYSTEM), or shared between
systems (SYSTEMS). If STEP is specified, a request for the same qname and rname from a
program in another address space denotes a different resource. If SYSTEM is specified,
requests for the same qname and rname from programs of other address spaces denote the
same resource; if SYSTEMS is specified, requests for the same qname and rname from
programs of other address spaces in the various systems denote the same resource.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the same resource.
If two macro instructions specify the same qname and rname, but one specifies STEP and
the other specifies SYSTEM or SYSTEMS, they are treated as requests for different resources.
Also when one resource is used by a single address space and another resource is used by
several address spaces in one or more systems, the same qname and rname can be used for
both.

,var12345
specifies that up to 65,535 resources may be specified in the ENQ macro instruction.

specifies the end of the resource description.

,RET-CHNG
,RET-HAVE
,RET-TEST
,RET-USE
,RET-NONE

specifies the type of request for all of the resources named above.

CHNG the status of the resource specified is to be changed from shared to exclusive
control.

HAVE control of the resources is requested only if a request has not been made previously
for the same task.

TEST the availability of the resources is to be tested, but control of the resources is not
requested.

USE control of the resources is to be assigned to the active task only if the resources are
immediately available. If any of the resources are not available, the active task is not placed
in a wait condition.

NONE control of all the resources is unconditionally requested.

126 OS/VS2 Supenlsor Senlces and Macro Instructions (VS2 Release 2)

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and ESTAE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096, RELATED={ FREEl, 'GET STORAGE')
FREE1 FREEMAIN R,LV=4096,A={ 1),RELATED={GET1,'FREE STORAGE')

Return codes are provided by the control program only if you specify RET=TEST, RET=USE,

RET=CHNG, or RET=HAVE; otherwise, return of the task to the active condition indicates that
control of the resource has been assigned (or previously assigned) to the task. If all return
codes for the resources named in the ENQ macro instruction are 0, register 15 contains O. If
any of the return codes are. not 0, register 15 contains the address of a storage area containing
the return codes, as shown in Figure 49. The return codes are placed in the parameter list
resulting from the macro expansion in the same sequence as the resource names in the ENQ

macro instruction. The return codes are shown in Figure 50.

Address
Returned in
Register 15

I

12

24

36
~ .. -

CI

2

Figure 49. Return Code Area Used by ENQ

....

3

Return
Codes

!
RC 1

RC 2

RC 3

4

(

-

12

.

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

ENQ - Request Control of a Serially Reusable Resource 127

Hexadecimal
Code

o

4

8

20

Meaning
For RET-TEST, the resource was immediately available.
For RET-USE or RET-HAVE, control of the resource has been assigned to the
active task.
For RET.CHNG, the status of the resource has been changed to exclusive.
For RET-TEST or RET-USE, the resource is not immediately available.
For RET-CHNG, the status cannot be changed to shared.
For RET-TEST, RET-USE, or RET-HAVE, a previous request for control of the
same resource has been made for the same task. Task has control of resource.
For RET-CHNG, the resource has not been queued.
If bit 3 is on - shared control of resource; if bit 3 is off - exclusive control.
A previous request for control of the same resource has been made for the same task.
Task does not have control of resource.

Figure 50. ENQ Return Codes

128 OS/VS2 Supervisor Services and Macro instructions (VSl Release 2)

ENQ (List Form)

Use the list form of ENQ to construct a control program parameter list. Any number of
resources can be specified in the ENQ macro instruction; therefore, the number of qname,
mame, and scope combinations in the list form the ENQ macro instruction must be equal to
the maximum number of qname, rna me, and scope combinations in any execute form of the
macro instruction that refers to that list form.

The list form of the ENQ macro instruction is written as follows:

name

b

ENQ

b

qname addr

,rname addr

,
,E
,S

,mame length

,
,STEP
,SYSTEM
,SYSTEMS

,varJ2345

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,RELATED=value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

" One or more blanks must follow ENQ.

qname addr: A-type address.

mame addr: A-type address.

Default: E

rna me length: symbol or decimal digit.
Default: assembled length of mame

Default: STEP

varJ2345: The preceding 5 parameters may be repeated up to 65,535
times.

Default: RET=NONE

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ENQ macro instruction, with
the following exceptions:

,MF==L
specifies the list form of the ENQ macro instruction.

ENQ (List Fonn) 129

EN~~ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the ENQ macro instruction. The parameter list can be generated by the list fonn of ENQ.

The execute form of the ENQ macro instruction is written as follows:

narne

b

ENQ

b

qnarne addr

,marne addr

,E
,S

,rnarne length

,STEP
,SYSTEM
,SYSTEMS

, varl2345

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

,RELATED=value

,MF=(E ,clrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

Note: (and) are the beginning and end of a parameter list. The
entire list is optional. If nothing in the list is desired, then (,). and
all parameters between (and) should not be specified. If something
in the list is desired, then (,), and all parameters in the list should
be specified as indicated at the left.

qname addr: RX-type address, or register (2) - (12).

rnarne addr: RX-type address, or register (2) - (12).

Default: E

rname length: symbol, decimal digit, or register (2) - (12),

Default: STEP

var12345: The preceding 5 parameters may be repeated up to 65.535
times.

Note: See note opposite (above.

Default: RET=NONE

value: any valid macro keyword specification.

clrl addr: RX-type address, or register (1) or (2) - (12),

The parameters are explained under the standard form of the ENQ macro instruction, with
the following exceptions:

,MF = (E ,ctrl addr)
specifies the execute form of the ENQ macro instruction using a remote control program
parameter list.

Example 1

Operation: Request control of a serially reusable resource that is known only within the
address space (STEP) The resource is only to be obtained if immediately available. The
resource will be used for read-only purposes. The length of marne is allowed to default.

ENQ (MAJOR1,MINOR1,S"STEP),RET=USE

130 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Example 2

Operation: Unconditionally request exclusive control of 3 resources. The scope of each
resource differs (STEP, SYSTEM, and SYSTEMS respectively). The rnarne length of the third
resource is 8 characters.

ENQ (MAJOR4,MINOR4,E",MAJOR2,MINOR2",SYSTEM,
MAJOR3,MINOR3,E,8,SYSTEMS)

ENQ (Execute Fonn) 131

EST AE - Extended ST AE

The EST AE macro instruction is used to extend the recovery capability facilities of the ST AE

(Specify Task Abnormal Exit) macro instruction. Issuance of the ST AE or EST AE macro
instruction or A TT ACH with the ST AI or EST AI option allows the user to intercept a scheduled
ABEND. Control is given to a user specified exit routine in which the user may perform
pre-termination processing, diagnose the cause of ABEND, and specify a retry address if he
wishes to avoid the termination. These exits operate in both problem program and supervisor
modes.

EST AE provides the increased capabilities over ST AE to allow EST AE exits to be scheduled
for clean-up processing under certain instances for which ST AE exits did not get control, and
to default parameters to the most commonly used options.

Note: The STAE macro instruction is available for compatibility with Release 1 of VS2 and
with MYT and MFT, and is described in OS/VS2 System Programming Library: Job
Management, Supervisor, and TSO. However, it is recommended that ESTAE be used.

The standard form of the ESTAE macro instruction is written as follows:

name

tJ

ESTAE'

tJ

exit addr
o

,CT
,OY

,PARAM=/ist addr

,XCTL=NO
,XCTL=YES

,PURGE=NONE
,PURGE=QUIESCE'
,PURGE=HAL T

,ASYNCH=YES
,ASYNCH=NO

,TERM=NO
,TERM=YES

,RELATED =value

name: symbol. Begin name in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow ESTAE.

exit addr: A-type address, or register (2) - (12).

Default: CT,

list addr: A-type address, or register (2) - (12).

Default: XCTL=NO

Default: PURGE=NONE

Default: ASYNCH=YES

Default: TERM=NO

value: any valid macro keyword specification.

The parameters are explained below:

exit addr
o

specifies the address of an EST AE exit routine to be entered if the task issuing this macro
instruction terminates abnormally. If 0 is specified, the most recent ESTAE exit is canceled.

,CT
,OY

specifies the creation of a new EST AE exit (CT) or indicates that parameters passed in this
EST AE macro instruction are to overlay the data contained in the previous EST AE exit (OY).

132 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

,P ARAM = list addr
specifies the address of a user-defined parameter list containing data to be used by the
EST AE exit routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

specifies that the EST AE macro instruction will be canceled (NO) or will not be canceled
(YES) if an XCTL macro instruction is issued by this program.

,PURGE = NONE
,PURGE = QUIESCE
,PURGE = HALT

specifies that all outstanding requests for I/O operations will not be saved when the ESTAE
exit is taken (HALT), that I/O processing will be allowed to continue normally when the
ESTAE exit is taken (NONE), or that all outstanding requests for I/O operations will be
saved when the ESTAE exit is taken (QUIESCE). If QUIESCE is specified, the user's retry
routine can restore the outstanding I/O requests.

Notes: If any IBM-supplied access method, except EXCP, is being used, the PURGE=NONE
option is recommended. If this is done, all control blocks affected by input/output
processing may continue to change during EST AE exit routine processing.

If PURGE=NONE is specified and the ABEND was originally scheduled because of an error in
input/ output processing, an ABEND recursion will develop when an input/output
interruption occurs, even if the exit routine is in progress. Thus, it will appear that the exit
routine failed when, in reality, input/output processing was the cause of the failure.

ISAM Notes: If ISAM is being used and PURGE=HALT is specified or PURGE=QUIESCE is
specified but I/O is not restored:

• Only the input/output event on which the purge is done will be posted. Subsequent event
control blocks (ECBS) will not be posted.

• The ISAM check routine will treat purges I/O as normal I/O.

• Part of the data set may be destroyed if the data set is being updated or added to when
the failure occurred.

,ASYNCH = YES
,ASYNCH=NO

specifies that asynchronous exit processing will be allowed (YES) or prohibited (NO) while
the user's ESTAE exit is executing.

ASYNCH=YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their normal
processing are going to be requested by the EST AE exit routine.

• PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE=NONE is specified and the CHECK macro instruction is issued in the ESTAE exit
routine for any access method that requires asynchronous interruptions to complete
normal input/output processing.

Note: If ASYNCH=YES is specified and the ABEND was originally scheduled because of an
error in asynchronous exit handling, an ABEND recursion will develop whe~ an
asynchronous exit handling was the cause of the failure.

EST AE - Extended ST AE 133

,TERM-NO
,TERM-YES

specifies that the exit routine associated with the EST AE request will be scheduled (YES) or
will not be scheduled (NO), in addition to normal ESTAE processing, in the following
situations:

• Cancel by operator.

• Forced logoff.

• Expiration of job step timer.

• Exceeding of wait time limit for job step.

• ABEND condition because of DETACH of an incomplete subtask when the ST AE option
was not specified on the DETACH.

• ABEND of the attaching task when the EST AE macro instruction was issued by a subtask.

• ABEND of job step task when a non-job step task requested ABEND with the STEP
option.

When the exit routine is entered because of one of the preceding reasons, retry will not be
permitted. If dump is requested at the time of ABEND, it is taken prior to entry into the
exits.

Note: If DETACH was issued with the STAE parameter, the following will occur for the task
to be detached:

• All EST AE exits will be entered.

• The most recently established ST AE exit will be entered.

• All ST AI/EST AI exits will be entered unless return code 16 is returned from one of the
STAI exits.

In these cases, entry to the exit is prior to dumping and retry will not be permitted.

,RELATED - value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and ESTAE).

The parameter may be used, for example, as follows: , .
GET1 GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')
FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1, 'FREE STORAGE')

Control is returned to the instruction following the EST AE macro instruction. When control
is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

OC

to
14

Meaning
Successful completion of EST AE request.
EST AE OV was specified with a valid exit address, but the current exit .is either
nonexistant, not owned by the user's RB, or is not an EST AE exit.
Cancel (an exit address equal to zero) was specified and either there are no exits for
this TCB, the most recent exit is not owned by the caller, or the most recent exit is not
as EST AE exit.
An unexpected error was encountered while processing this request.
ESTAE was unable to obtain storage for an SCB.

134 OS/VS1 Supervisor Senkes and Macro Instructions (VS1 Release 1)

EST AE (List Form)

The list form of the ESTAE macro instruction is used to construct a remote control program
parameter list.

The list form of the ESTAE macro instruction is written as follows:

name

b

ESTAE

b

exit add,
o
,PARAM=/ist add,

,PURGE=NONE
,PURGE=QUIESCE
,PURGE=HAL T

,ASYNCH= YES
,ASYNCH=NO

,TERM=NO
,TERM=YES

,RELA TED=value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow EST AE.

exit add,: A-type address.

list add,: A-type address.

Default: PURGE=NONE

Default: ASYNCH= YES

Default: TERM=NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the EST AE macro instruction, with
the following exceptions:

,MF-L
specifies the list form of the ESTAE macro instruction.

EST AE (List Fonn) 135

EST AE (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the EST AE macro instruction. The control program parameter list can be generated by the
list form of the EST AE macro instruction. If the user desires to dynamically change the
contents of the remote EST AE parameter list, he may do so by coding a new exit address
and/ or a new parameter list address. If exit address or P ARAM is coded, only the associated
field in the remote EST AE parameter list will be changed. The other field will remain as it was
before the current ESTAE request was made.

The execute form of the EST AE macro instruction is written as follows:

name

b

ESTAE

b

exit addr
o
,CT
,OY

,PARAM==/ist addr

,XCTL==NO
,XCTL==YES

,PURGE=NONE
,PURGE==QUIESCE
,PURGE==HALT

,ASYNCH== YES
,ASYNCH==NO

,TERM==NO
,TERM=YES

,RELATED==value

,MF==(E ,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow EST AE.

exit addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

etrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the EST AE macro instruction, with
the following exceptions:

,MF - (E ,etrl addr)
specifies the execute form of the EST AE macro instruction using a remote control program
parameter list.

136 OS/VS2 Supervisor Services and Matro Instructions (VS2 Release 2)

Example 1

Operation: Request an overlay of the existing ESTAE recovery exit (at ADDR), with the
following options: parameter list is as PLIST, I/O will be halted, no asynchronous exits will be
taken, ownership will be transferred to the new request block resulting from any XCTL macro
instructions.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

Example 2

Operation: Provide the pointer to the recovery code in the register called EXITPTR, contain the
address of the EST AE exit parameter list in register 9. Register 8 points to the area where the
ESTAE parameter list (created with the MF-L option) was moved.

ESTAE (EXITPTR),PARAM=(9),MF=(E,(8»

EST AE (Execute Fonn) 137

EVENTS - Wait for One or More Events to Complete

The EVENTS macro instruction is a functional specialization of the WAIT ECBLIST= macro
facility with the advantages of notifying the program that events 'have completed and the order
in which they completed.

The macro performs the following functions:

• Creates and deletes EVENTS tables.

• Initializes and maintains a list of completed event control blocks.

• Provides for single or multiple ECB processing.

For a detailed explanation of how to use EVENTS to perform these functions see "Using the
EVENTS Macro Instruction" in this section.

The EVENTS macro instruction is written as follows:

name

b

EVENTS

b

ENTRIES-n
ENTRIES=DEL,TABLE=table address
T ABLE=table address

,WAIT=NO
,WAIT=YES

,ECB=ecb address
,LAST==Iast address

name: symbol. Begin name in column 1.

One or more blanks must precede EVENTS.

One or more blanks must follow EVENTS.

n: variable. decimal digit 1-32,767.
table address: symbol, RX-type address, or register (2)-(12).
Note: If ENTRIES-n or ENTRIES=DEL,TABLE=table address
is specified, no other parameter should be specified.

Default: None.

ecb address: symbol, RX-type address, or register (2)-(12).
last address: symbol, RX-type address, or register (2)-(12).
Note: Optional parameters are only valid when T ABLE=table
address is the only required parameter specified.

The parameters are explained below:

ENTRIES=n
n is a decimal number from 1 to 32,767 which specifies the maximum number of completed
ECB addresses that can be processed in an EVENTS table concurrently.

Note: When this parameter is specified no other parameter should be specified.

ENTRIES = DEL,TABLE table address
specifies the EVENTS table whose address is specified by TABLE=table address is to be
deleted. The user is responsible for deleting all of the tables he creates; however, all existing
tables are automatically freed at task termination.

Note: When this parameter is specified no other parameter should be specified.

TABLE table address
specifies either a register number or the address of a word containing the address of the
EVENTS table associated with the request. The address specified with the operand TABLE
must be that of an EVENTS table created by this task.

138 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

,WAIT-NO
,WAIT-YES

specifies whether or not to put the issuing program in a wait state when there are no
completed events in the EVENTS table (specified by the TABLE== parameter).

,EeB == ecb 'address
specifies either a register number or the address of a word containing the address of an
event control block. The EVENTS macro initializes the ECB, thus identifying it as being
eligible for POSTing. The ECB must be initialized only after it is eligible for POSTing.

Note:

• Register 1 should not be specified for the ECB address.

• This parameter may not be specified with the LAST == parameter.

• If only ECB initialization is being requested, neither WAIT==NO nor WAIT==YES should be
specified, to prevent any unnecessary WAIT processing from occurring.

,LAST - last address
specifies either a register number or the address of a word containing the address of the last
EVENT parameter list entry processed.

Note:

• Register 1 should not be specified for the LAST address.

• This parameter should not be specified with the ECB== parameter.

EVENTS - Wait for One or More Events to Complete 138.1

Using the EVENTS Macro Instruction
The following explains the different uses of EVENTS:

• Creating EVENTS Tables - When ENTRIES=n is specified, the system creates an
EVENTS table with "n" entries for completed ECB addresses. This table is queued on the
EVENTS table queue associated with the task. (There is no limit to the number of
EVENTS tables that can be queued for a single task.) The address of the EVENTS table is
returned to the user in register 1. See Figure 51 below:

C Register 1 I
~ EVENTS Table ...,

>- Header Section

...;
ENTRY1

ENTRY2

Variable Length

, .. ru
Entry Section

'r-- r~

ENTRYn-1

ENTRYn

Figure 51. Creating a Table

• Deleting EVENTS Tables·- When ENTRIES=DEL,TABLE=table address is specified, the
EVENTS table whose address is specified by the T ABLE=table address parameter shall be
deleted. The address specified with the TABLE operand must be that of an EVENTS table
created by this task. The user is responsible for deleting all of the tables he creates;
however, all existing tables are automatically freed at task termination.

• Initializing ECBs - When an ECB is created, bits 0 (wait bit) and bit 1 (post bit) must
be set to zero. When an EVENTS ECB= macro instruction is issued, bit 0 of the
associated event control block is set to 1. When a POST macro instruction is issued, bit 1
of the associated event control block is set to 1 and bit 0 is set to O. If the ECB is reused,
bit 0 and bit 1 must be set to zero before either a WAIT, EVENTS ECB=, or POST macro
instruction can be specified. If, however, the bits are set to zero before the ECB has been
posted, any task waiting for that ECB to be posted will remain in wait state.

• Maintaining a List of Completed EVENT Control Blocks - After the ECB has been
initialized the POST macro set the complete bit and puts the address of the completed
ECB in the EVENTS table.

• Providing Single or Multiple ECB Processing - When the WAIT parameter is specified
and there are completed ECBs in the EVENTS table, the address of the parameter list is
returned in register 1. The parameter list has the following format:

138.2 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

I Register 1 I

......

~ ECB1

~~
---+- ECB2 ~~

---- ECBm-1

80 ---+- ECBm

Figure 52. Parameter List Format

The parameter list contains completed ECB addresses in post occurrence order. The high
order bit of the last word in the list is set to 1. The user may choose to process the entire list
(see LAST parameter) or one event at a time by successive EVENTS requests with the W AIT=
option.

However, if WAIT=NO is specified and no ECBs are posted in the EVENTS table, register 1
contains a zero when the user receives control.

When a user has processed more than one ECB in the parmeter list, returned from the
previous EVENTS WAIT= macro, the LAST= parameter should be used to indicate the last ECB
processed. The EVENTS macro removes from the parameter list all entries from the first thru
the last specified by LAST, and then completes processing the request according to the WAIT =
specification.

EVENTS - Wait for One or More Events to Complete 138.3

In the illustration below, ECBs 6 through 10 were posted to the parameter list while the user
was processing 1 through 5.

EVENTS TABLE:=table address, WAIT=YES

I Register 1 I
~~

Returns ------ECB1

------ ECB2

------ ECB3

Processing --..,.. ECB4

80 ------ ECB5

(Load register 2 with address of the last entry processed.)

EVENTS TABLE==table address, WAIT=YES, LAST=(2)

I Register 1 I
~~

------ ECB6

Returns ~ECB7

------ ECB8

----... ECB9

Processing 80 --+ ECB10

138.4 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

This figure demonstrates processing one event at a time.

Issuing EVENTS T ABLE=tableaddress, WAIT=YES for the
first time will initiate:

I Register 1 I
~ Parameter List

---- ECB1

------ ECB2

---- ECB3

---- ECB4

80 --"'ECB5

The second time that EVENTS TABLE=table address, WAIT=YES
is issued will initiate:

I Register 1 I
~ Parameter List

~

Figure 53. Processing One Event At A Time

Example 1

The following shows total processing via EVENTS.

EVENTS It ECB InltiaDzation

START

EVENTS ENTRIES=1000

R1,TABADD

ECBA

80

ST

WRITE

LA
EVENTS

R2,ECBA
TABLE=TABADD,ECB=(R2)

----- ECB2

---- ECB3

---- ECB4

----'ECB5

EVENTS - Wait for One or More Events to Complete 138.5

Parameter List Processing

LOOPl

LOOP2

BEGIN

EVENTS
LR
B
EVENTS
LR
EQU

TM
BO
LA
B

Deleting EVENTS Table

EVENTS

TABADD

Example 2

TABLE=TABADD,WAIT=YES
R3,Rl PARMLIST ADDR
LOOP2 GO TO PROCESS ECB
TABLE=TABADD,WAIT=YES,LAST=(R3)
R3,Rl SAVE POINTER
*

PROCESS COMPLETED EVENTS
0(R3),X'80' TEST FOR MORE EVENTS
LOOP 1 IF NONE, GO WAIT
R3,4(,R3) GET NEXT ENTRY
LOOP2 GO PROCESS NEXT ENTRY

TABLE=TABADD,ENTRIES=DEL

DS F

Processing One ECB at a Time.

EVENTS
ST

NEXTREC GET

RETEST

TABLE

ENQ
READ
LA
EVENTS
WRITE
LA
EVENTS
LTR
BNZ

B

DS

ENTRIES=10
1 , TABLE
TPDATA,KEY
(RESOURCE,ELEMENT,E"SYSTEM)
DECBRW,KU,,'S' ,MF=E
3,DECBRW
TABLE=TABLEADDR,ECB=(3),WAIT=YES
DECBRW,K,MF=E
3,DECBRW
TABLE=TABLEADDR,ECB=(3),WAIT=NO
1 , 1
NEXTREC
RETEST

F

138.6 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

FREEMAIN - Free Virtual Storage

The FREEMAIN macro instruction releases one or more areas of virtual storage, or an entire
virtual storage subpool, previously assigned to the active task as a result of a GETMAIN macro
instruction. The active task is abnormally terminated if the specified virtual storage does not
start on a double word boundary or, for an unconditional request, if the specified area or
subpool is not currently allocated to the active task. Register 15 is set to 0 to indicate
successful completion. For a conditional FREEMAIN, register 15 is set to 4 if the specified area
or subpool is not currently allocated to the active task.

In the parameters discussed below, EU, LU, and vu specify unconditional requests and result
in the same processing as E, L, and v, respectively. The two formats for these requests are
available to maintain compatibility with the GETMAIN formats.

The standard form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC,LA=length addr
LU,LA=length addr
L,LA=length addr
VC
VU
V
EC,L V =length value
EU,LV=length value
E,LV=length value
RC,LV=length value
RC,SP=subpool nmbr
RU,LV=length value
RU,SP=subpool nmbr
R,L V =length value
R,SP=subpool nmbr

,A=addr

,SP=subpool nmbr

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12). If R is
specified, register (0) may also be specified.
subpool nmbr: symbol, decimal digit 0-127, or register (2) - (2).
If R is specified, register (0) may also be specified.
Note: If the forms RC,SP=subpool nmbr or RU,SP=subpoo/ nmbr
or R,SP=subpool nmbr are specified, no other parameters may be
specified.

addr: A-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit 0-127,or register (2) - (12). If
R is specified above, register (0) may also be specified.

value: any valid macro keyword specification.

FREEMAIN - Free Virtual Storage 138.7

138.8 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

The parameters are explained below:

LC,LA = length addr
LU ,LA = length addr
L,LA === length addr
VC
VU
V
EC,L V = length value
EU ,LV === length value
E,LV -length value
RC,L V = length value
RC,SP =subpool nmbr
RU,LV = length value
RU,SP =subpool nmbr
R,L V === length value
R,SP =subpool nmbr

specifies the type of FREEMAIN request:

LC and LU and L indicates conditional (LC) and unconditional (LU and L) list requests, and
specifies release of one or more areas of virtual storage. The length of each virtual storage
area is indicated by the values in a list beginning at the address specified in the LA

parameter. The address of each of the virtual storage areas must be provided in a
corresponding list whose address is specified in the A parameter. All virtual storage areas
must start on a doubleword boundary.

VC and VU and V indicates conditional (vc) and unconditional (vu and v) variable
requests, and specifies release of single areas of virtual storage. The address and length of
the virtual storage area are provided at the address specified in the A parameter.

EC and EU and E indicates conditional (EC) and unconditional (EU and E) element requests.
and specifies release of single areas of virtual storage. The length of the single virtual
storage area is indicated in the LV parameter. The address of the virtual storage area is
provided at the address indicated in the A parameter.

RC and RU and R indicates conditional (RC) and unconditional (RU and R) register requests,
and specifies release of single areas of virtual storage from the subpool indicated, or
specifies release of the entire subpool indicated. If the release is not for the entire subpool,
the address of the virtual storage area is indicated in the A parameter. The length of the
area is indicated in the LV parameter. The virtual storage area must start on a double word
boundary.

Note: A conditional request indicates that th,e task is not to be abnormally terminated if
virtual storage is not allocated to the active task; an unconditional request indicates that the
task is to be abnormally terminated in this situation.

LA specifies the virtual storage address of one or more consecutive fullwords starting on a
fullword boundary. One word is required for each virtual storage area to be released; the
high-order bit in the last word must be set to 1 to indicate the end of the list. Each word
must contain the required length in the low-order three bytes. The full words in this list must
correspond with the fullwords in the associated list specified in the A parameter. If the
words are within an area to be released, they must be completely within the area and must
not begin in the first two words of the first area. The words must not overlap the virtual
storage area specified in the A parameter.

FREEMAIN - Free Virtual Storage 139

LV specifies the length, in bytes, of the virtual storage area being released. The value
should be a multiple of 8; if it is not, the control program uses the next high multiple of 8.
If R is coded, LV=(O) may be designated; the high-order byte of register 0 must contain the
subpool number, and the low-order three bytes must contain the length (in this case, the SP

parameter is invalid).

,A=addr
specifies the virtual storage address of one or more consecutive fullwords, starting on a
fullword boundary. If the words are within an area to be released, they must be conpletely
within the area and must not begin in the first two words of the first area. If E, EC, EU. R,

RC, or RU is designated, one word, which contains the address of the virtual storage area to
be released, is required. If v, VS, or VU is coded, two words are required; the first word
contains the address of the virtual storage area to be released, and the second word contains
the length of the area. If L, LC, or LU is coded, one word is required for each virtual storage
area to be released; each word contains the address of one virtual storage area. If R, RC, or
RU is coded, any of the registers 1 through 12 can be designated, in which case the address
of the virtual storage area, not the address of the fullword, must have previously been
loaded into the register. The specification of register 1 saves two bytes in the macro
expansion.

,SP=subpool nmbr
specifies the subpool number of the virtual storage area to be released. The subpool number
can be between 0 and 127. If the SP parameter is optional and is omitted, subpool 0 is
assumed. If the SP parameter must be coded, it specifies the number of the subpool to be
released, and the valid range is 1 through 127. Subpool 0 cannot be released. If R is coded,
sP=(O) can be designated, in which case the subpool number must be previously loaded into
the high-order byte of register 0; the three low-order bytes must be set to O.

,RELA TED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and ESTAE).

The parameter may be used, for example, as follows:

GET1 GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')
FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1, 'FREE STORAGE')

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

Meaning
Virtual storage was freed.
Not all virtual storage was freed.

140 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

FREEMAIN (List Form)

Use the list form of the FREEMAIN macro instruction to construct a nonexecutable control
program parameter list.

The list form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC
LU
L
VC
VU
V
EC
EU
E

,LA=length addr
, LV =Iength value

,A=addr

,SP=subpool nmbr

,RELATED=value

,MF=L

name: symbol. Begin name in column I.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: A-type address.
length value: symbol or decimal digit.
Note: LA may only be specified with LC, LU, or Labove.
Note: LV may only be specified with EC, EU, or E above.

addr: A-type address.

subp'ool nmbr: symbol or decimal digit 0-127.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the FREEMAIN macro instruction,
with the following exceptions:

,MF=L
specifies the list form of the FREEMAIN macro instruction.

FREEMAIN (List Fonn) 141

FREEMAIN (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the FREEMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN.

The execute form the the FREEMAIN macro instruction is written as follows:

name

t:>

FREEMAIN

t:>

LC
LU
L
VC
VU
V
EC
EU
E

,LA=length addr
,LV=length value

,A=addr

,SP=subpool nmbr

,RELA TED=value

,MF=(E ,etrl prog)

name: symbol. Begin name in column I.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12)
Note: LA may only be specified with LC. LU, or Labove.
Note: LV may only be specified with EC, EU, or E above.

addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit 0-127. or register (2) - (12)

value: any valid macro keyword specification.

etrl prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the FREEMAIN macro instruction,
with the following exceptions:

,MF = (E ,ctrl prog)
specifies the execute form of the FREE MAIN macro instruction using a remote control
program parameter list.

Example 1

Operation: Free 400 bytes of storage from subpool 10, where the storage address is contained
in register 1. If the storage was allocated to the task, register 15 will contain 0 on return; if
the storage was not aJlocated to the task or was partially free, the status of the storage remains
unchanged, and a 4 is returned in register 15.

FREEMAIN RC,LV=400,A=(1),SP=10

Example 2

Operation: Free all of subpool 3 (if any) that belongs to the current task. A return will be
made to the caller even if there is no subpool 3 for the current task.

FREEMAIN RU,SP=3,A=(2)

142 OS/VSl Supervisor Services and Macro Instructions (VSl Release 3)

Example 3

Operation: Free from subpool 5 three areas of lengths 200, 800, and 32 previously obtained
by a list type GETMAIN which placed the addresses in AREADD. If any of these areas are not
allocated to the task, the task will be abnormally terminated.

FREEMAIN

LNTHLIST
AREAADD

LU,LA=LNTHLIST,A=AREAADD,SP=5

DC F'200' ,F'800' ,X'80' ,FL3'32'
DS 3F

FREEMAIN (Execute Forpl) 143

GETMAIN - Allocate Virtual Storage

The GETMAIN macro instruction requests the control program to allocate one or more areas of
virtual storage to the active task. The virtual storage areas are allocated from the specified
subpool in the virtual storage area assigned to the associated job step. The virtual storage areas
each begin on a double word or page boundary and are not clear~~I~o I~' ~p~n }1~?.c.~tp~>J!he
total of the lengths specified must not exceed the length available when' tne task assigned I ,"
ownership terminates, or through the use of the FREEMAIN macro instructions.

The standard form of the GETMAIN macro instruction is written as follows:

name

b

GETMAIN

b

LC,LA-Iength addr,A-addr
LU ,LA-length addr, A -addr
VC,LA-Iength addr, A -addr
VU ,LA=length addr,A =addr
EC,LV =Iength value,A =addr
EU,LV=length value,A=addr
RC,LV =Iength value
RU,LV=length value
R,L V =Iength value

,SP=subpool nmbr

,BNDRY=DBLWD
,BNDRY=PAGE

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12). If R is
specified, register (0) may also be specified.
addr: A-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit 0-127, or register (2) - (12).
Note: If R,LV=(O) is specified above, SP may not be specified.

Default: BNDRY=DBLWD
Note: This parameter may not be specified with R above.

value: any valid macro keyword specification.

The parameters are explained below:

LC,LA == length addr,A =addr
LU ,LA -length addr,A =addr
VC,LA -length addr,A=addr
VU,LA -length addr,A=addr
EC,L V -length value,A =addr
EU,LV -length value,A=addr
RC,L V -length value
RU,LV -length value
R,LV -length value

specifies the type of GETMAIN request:

LC and LU indicates conditional (LC) and unconditional (LU) list requests, and specifies
requests for one or more areas of virtual storage. The length of each virtual storage area is
indicated by the values in a list beginning at the address specified in the LA parameter The
address of each of the virtual storage areas is returned in a list beginning at the address
specified in the A parameter. No virtual storage is allocated unless all of the requests in the
list can be satisfied.

144 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

VC and VU indicates conditional (ve) and unconditional (vu) variable requests, and
specifies requests for single areas of virtual storage. The length of the single virtual storage
area is between the two values at the address specified in the LA parameter. The address
and actual length of the allocated virtual storage area are returned by the control program
at the address indicated in the A parameter.

EC and EU indicates conditional (EC) and unconditional (EU) element requests, and
specifies requests for single areas of virtual storage. The length of the single virtual storage
area is indicated in the LV parameter. The address of the allocated virtual storage area is
returned at the address indicated in the A paramater.

RC and RU and R indicates conditional (RC) and unconditional (RU and R) register requests,
and specifies requests for single areas of virtual storage. The length of the single virtual area
is indicated in the LV parameter. The address of the allocated virtual storage area is
returned in register 1. (R generates the original SVC 10 calling sequence, whereas RU

generates a new SVC 120 and associated parameter format.)

Note: A conditional request indicates that the task is not to be abnormally terminated if
virtual storage is not allocated to the active task an unconditional request indicates that the
task is to be abnormally terminated in this situation.

LA specifies the virtual storage address of consecutive fullwords starting on a fullword
boundary. Each fullword must contain the required length in the low-order three bytes, with
the ligh-order byte set to O. The lengths should be multiples of 8 ~ if they are not, the
control program uses the next higher multiple of 8. If VC or VU was coded, two words are
required. The first word contain the minimum length required, the second word contains the
maximum length. If LC or LU Was coded, one word is required for each virtual storage area
requested~ the high-order bit of the last word must be set to 1 to indicate the end of the
list. The list must not overlap the virtual storage area specified in the A parameter.

LV specifies the length, in bytes, of the requested virtual storage. The number should be a
multiple of 8~ if it is not, the control program uses the next higher multiple of 8. If R is
specified, LV=(O) may be coded~ the low-order three bytes of register 0 must contain the
length, and the high-order byte must contain the subpool number.

A specifies the virtual storage address of consecutive fullwords, starting on a fullword
boundary. The control program places the address of the virtual storage area allocated in
one or more words. If E was coded, one word is required. If L was coded, one word is
required for each entry in the LA list. If V was coded, two words are required. The first
word contains the address of the virtual storage area, and the second word contains the
length actually allocated. The list must not overlap the virtual storage area specified in the
LA parameter.

,SP =subpool nmbr
specifies the number of the subpool from which the virtual storage area is to be allocated. If
this parameter is omitted, subpool 0 is assumed.

,BNDR Y = DBLWD
,BNDRY = PAGE

specifies that alignment on a doubleword boundary (DBLWD) or alignment with the start of
a virtual page on a 4K boundary (PAGE) is required for the start of a requested area.

GETMAIN - ADocate Virtual Storage 145

,RELATED - value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and ESTAE).

The parameter may be used, for example, as follows:

GET1 GETMAIN R,LV=4096,RELATED=(FREE1, 'GET STORAGE')
FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

Meaning
Virtual storage requested was allocated.
No virtual storage was allocated.

146 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

GETMAIN (List Form)

Use the list form of the GETMAIN macro instruction to construct a control program paramater
list.

The list form of the GETMAIN macro instruction is written as follows:

name

1)

GETMAIN

1)

LC
LU
VC
VU
EC
EU

,LA=length addr
,LV -length value

,A=addr

,SP-.subpool nmbr

,BNDRY-DBLWD
,BNDRY-PAGE

,RELATED-value

,MF=L

name: symbol. Begin name in column I.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address.
length value: symbol or decimal digit.
Note: LA may not be specified with EC or EU ahove.
Note: LV may not be specified with LC. LU, Vc. or VU ahove.

addr: A-type address.

subpool nmbr: symbol or decimal digit 0-127.

Default: BNDRY=DBLWD

value: any valid macro keyword specification.

The parameters are explained under the standard form of the GETMAIN macro instruction.
with the following exceptions:

,MF-L
specifies the list form of the GETMAIN macro instruction.

GETMAIN (List Fonn) 147

GETMAIN (Execute Fonn)

A remote control program parameter list is used in, and can be modified by, the execute form
of the GETMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN.

The execute form of the GETMAIN macro instruction is written as follows:

name

b

GETMAIN

b

LC
LU
VC
VU
EC
EU

,LA=length addr
,LV=length value

,A=addr

,SP==subpool nmbr

,BNDRY=DBLWD
,BNDRY=PAGE

,RELA TED=value

,MF=(E ,ctrl prog)

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12).
Note: LA may not be specified with EC or EU above.
Note: LV may not be specified with LC, LU, VC, or VU above.

addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit 0-127, or register (2) - (12).

Default: BNDRY=DBLWD

value: any valid macro keyword specification.

clrl prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the GETMAIN macro instruction,
with the following exceptions:

,MF == (E ,etrl prog)
specifies the execute form of the GETMAIN macro instruction using a remote control
program parameter list.

Example 1

Operation: Obtain 400 bytes of storage from subpool 10. If the storage is available, the
address will be returned in register 1 and register 15 will contain 0; if storage is not available,
register 15 will contain 4.

GETMAIN RC,LV=400,SP=10

148 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Example 2

Operation: Obtain 48 bytes of storage from default subpool O. If the storage is available, the
address will be stored in the word at AREAADDR; if the storage is not available, the task will
be abnormally terminated.

GETMAIN EU,LV=48,A=AREAADDR

AREAADDR DS F

GETMAIN (Execute Fonn) 149

IDENTIFY - Add an Entry Name

The IDENTIFY macro instruction is used to add an entry name to a copy of a load module
currently in virtual storage. The copy must be one of the following:

• A copy that satisfied the requirements of a LOAD macro instruction issued during the
execution of the current task.

• The last load module given control, if control was passed to the load module using a
LINK, A TT ACH, or XCTL macro instruction.

The IDENTIFY macro instruction may not be issued by an asynchronous exit routine.
Normally, the IDENTIFY macro assigns the identified entry point as reentrant. A user issuing
this macro should be sure that his program is reenterable, otherwise, results are unpredictable.

An exception is the case of a non-authorized user identifying WTO a module from an
authorized library. In this case, the identified entry point is assigned the same attributes
(reentrant, serially reusable, non-reusable load only) as the main entry point.

The IDENTIFY macro instruction is written as follows:

name

b

IDENTIFY

b

EP:::entry name
EPLOC:::entry name addr

,ENTRY:::entry addr added

The parameters are explained below:

EP -entry name
EPLOC -entry name addr

name: symbol. Begin name in column 1.

One or more blanks must precede IDENTIFY.

One or more blanks must follow IDENTIFY.

entry name: symbol
entry name addr: RX-type address, or register (0) or (2) - (12).

entry addr added: RX-type address, or register (1) or (2) - (12).

specifies the entry name. or address of the entry name. The name does not have to
correspond to any symbol or name in the load module, and must not correspond to any
name, alias, or added entry name for a load module in the link pack area queue, or the job
pack area of the job step. If EPLOC is coded, the name must be padded to eight bytes, if
necessary.

,ENTRY -entry addr added
specifies the virtual storage addresss of the entry name being added.

150 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04
08

OC
10
14

18
lC

24

Meaning
Successful completion of requested function.
Entry name and address already exist.
Entry name duplicates the name of a load module currently in virtual storage; entry
address was not added.
Entry address is not within an eligible load module; entry address was not added.
Request issued by an asynchronous exit routine; entry address was not added.
Request was previously issued using the same entry name but a different address;
request was isnored.
Parameter list is invalid or is not on a word boundary.
Extent list . length is not positive or a mUltiple of 8, or extent address is not on a double
word boundary, is not addressable, or is not in caller's region.
Unexpected system error.

IDENTIFY - Add an Entry Name ISO. I

1S0.2 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

,

Example 1

Operation: Add an entry name (PGMT AL2A) to a load module in virtual storage. Register 3
contains the entry point address.

IDENTIFY EP=PGMTAL2A,ENTRY=(R3)

IDENTIFY - Add an Entry .Name IS I

LINK - Pass Control to a Program in Another Load Module

The LINK macro instruction is used to pass control to a specified entry name in another load
module; the entry name must be a member name or an alias in a directory of a partitioned
data set. The load module containing the program is brought into virtual storage if a useable
copy is not available.

The linkage relationship established is the same as that created by a BAL instruction; control
is returned to the instruction following the LINK macro instruction after execution of the called
program. The problem program optionally can provide a parameter list to be passed to the
called program. If the called program terminates abnormally, or if the specified entry point
cannot be located, the task is abnormally terminated.

The standard form of the LINK macro instruction is written as follows:

name

b

LINK

b

EP=entry name
EPLOC=entry name addr
DE=list entry addr

,DCB=deb addr

,PARAM=(addr)
,PARAM=(addr),VL=: 1

,ID=id nmbr

,ERRET=err rln addr

name: symbol. Begin name in column 1.

One or more blanks must precede LINK.

One or more blanks must follow LINK.

entry name: symbol.
entry name addr: A-type address, or register (2) - (12).
list entry addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

addr: A-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For
example, (addr,addr,addr)

id nmbr: symbol or decimal digit, with a maximum value of 4095.

err rln addr: A-type address, or register (2) - (12).

The parameters are explained below:

EP =entry name
EPLOC =entry name addr
DE = list entry addr

specifies the entry name, the address of the entry name, or the address of a 60-byte list
entry for the entry name that was constructed using the BLDL macro instruction. If EPLOC

is coded, the name must be padded to eight bytes, if necessary. '

152 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

,DCB -deb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above. This parameter must indicate the same DCB used in the BLDL
mentioned above.

If the DCB parameter is omitted or if DCB=O is specified when the LINK macro instruction
is issued by the job step task, the data sets referred to by either the STEPLIB or JOBLIB DD
statement are first searched for the entry point name. If the entry point name is not found,
the link library is searched.

If the DCB parameter is omitted or if DCB=O is specified when the LINK macro instruction
is issued by a subtask, the data sets associated with one or more data control blocks
referred to by previous A TT ACH macro instructions in the subtasking chain are first
searched for the entry point name. If the entry point name is not found, the search is
continued as if LINK had been issued by the job step task.

,PARAM = (addr)
,PARAM == (addr), VL -= 1

specifies address(es) to be passed to the called program. Each address is expanded inline to
a fullword on a full word boundary, in the order designated. Register 1 contains the address
of the first parameter when the program is given control. (If this parameter is not coded,
register 1 is not altered.)

VL == 1 should be designated only if the called program can be passed a variable number of
parameters. VL-t causes the high-order bit of the last address parameter to be set to 1; the·
bit can be checked to find the end of the list.

,ID == id nmbr
specifies an identifier useful for debugging purposes only. The last fullword of the macro
expansion is a NOP instruction containing the identifier value in bytes 3 and 4.

,ERRET -err rtn addr
specifies the address of the routine to be given control when an error condition other than
input parameter errors is detected.

LINK - Pass Control to a Program in Another Load Module 153

LINK (List Fonn)

Two parameter lists are used in a LINK macro instruction: a control program parameter list and
problem program parameter list. Only the control program parameter list can be constructed in
the list form of LINK. Address parameters to be passed in a parameter list to the problem
program can be provided using the list form of CALL. This parameter list can be referred to in
the execute form of LINK.

The list form of the LINK macro instruction is written as follows:

name

b

LINK

b

EP=entry name
EPLOC=entry name addr
DE=list entry addr

,DCB=deb addr

,ERRET=err rln add"

,SF=L

name: symbol. Begin name in column 1.

One or more blanks must precede LINK.

One or more blanks must follow LINK.

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

err rtn addr: A-type address.

The parameters are explained under the standard from of the LINK macro instruction, with
the following exceptions·

,SF=L
specifies the list form of the LINK macro instruction.

154 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

LINK (Execute Form)

Two parameter lists are used in a LINK macro instruction: a control program parameter list and
an optional problem program parameter list. Either or both of these lists can be remote and
can be referred to and modified by the execute form of LINK. If only one of the parameter
lists is remote, parameters that require use of the other parameter list cause that list to be
constructed inline as part of the macro expansion.

The execute form of the LINK macro instruction is written as follows:

name

tJ

LINK

tJ

EP=entry name
EPLOC==entry name addr
DE=list entry addr

,DCB=deb addr

,PARAM=faddr)
,PARAM=faddr), VL= 1

,ID=id nmbr

,ERRET=err rln addr

,MF=(E ,prob addr}
,SF=(E ,etr! addr)
,MF=(E ,prob addr},SF=(E ,etr! addr}

name: symbol. Begin name in column 1.

One or more blanks must precede LINK.

One or more blanks must follow LINK.

entry name: symbol.
entry name addr: RX-type address or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

addr: RX-type address, or register (2) - (12).
Note: addr is one or more addresses. separated by commas. For
example, (addr,addr,addr)

id nmbr: symbol or decimal digit, with a maximum value of 4095.

err rtn addr: A-type address.

prob addr: RX-type address. or register (1) or (2) - (12)
etrl addr: RX-type address. or register (2) - (12) or (15),

The parameters are explained under the standard form of the LINK macro instruction, with
the following exceptions:

,MF = (E ,prob addr)
,SF = (E ,prob addr)
,MF = (E ,prob addr),SF = (E ,elrl addr)

specifies the execute form of the LINK macro instruction. This form uses a remote problem
program parameter list, a remote control program parameter list, or both.

Example 1

Operation: Pass control to a specified entry name (PGMLKRUS) in another load module. Let
the system find the module form available libraries.

LINK EP=PGMLKRUS

LINK (Execute Form) 155

LOAD - Bring a Load Module into Virtual Storage

The LOAD macro instruction is used to bring the load module containing the specified entry
name into virtual storage, if a usable copy is not available in virtual storage.

The responsibility count for the load module is increased by one. On output, the high-order
byte of register 1 contains the authorization code of the loaded module and the low three
bytes contain the module's length in doublewords. Control is not passed to the load module;
instead, the virtual storage address of the designated entry point is returned in register O. The
load module remains in virtual storage until the responsibility count is reducted to 0 through
task terminations or until the effects of all outstanding LOAD requests for the module have
been canceled (using the DELETE macro instruction), and there is no other requirement for
the module.

The entry name in the load module must be a member name or an alias in a directory of a
partitioned data set. If the specified entry name cannot be located, the task is abnormally
terminated.

The LOAD macro instruction is written as follows:

name

b

LOAD

b

EP==entry name
EPLOC==entry name addr
DE-list entry addr

,DCB==dcb addr

,ERRET==err rln addr

,RELATED-value

name: symbol. Begin name in column I.

One or more blanks must precede LOAD.

One or more blanks must follow LOAD.

entry name: symbol.
entry name addr: RX-type address or register (0) or (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (1) or (2) - (12).

err rln addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained below:

EP-entry name
EPLOC -entry name addr
DE -list entry addr

specifies the entry name, the address of the entry name, or the address of a 60-byte list
entry for the entry name that was constructed using the BLDL macro instruction. If EPLOC

is coded, the name must be padded to eight bytes, if necessary.

156 OS/VS2 Supenisor Services and Macro Instructions (VS2 Release 2)

,DeB -deb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above. This parameter must indicate the same DCB used in the BLDL

mentioned above.

If the DCB parameter is omitted or if DCB=O is specified when the LOAD macro instruction
is issued by the job step task, the data sets referred to by either the STEPUB or JOBUB DO
statement are first search~d for the entry name. If the entry name is not found, the link
library is searched.

If the DCB parameter is olllitted or if DCB=O is specified when the LOAD macro instruction
is issued by a subtask, th¢ data sets associated with one or more data control blocks
referred to by previous A TT ACH macro instructions in the sub tasking chain are first
searched for the entry name. If the entry name is not found, the search is continued as if
the LOAD, had been issued by the job step task.

,ERRET =err rtn addr
specifies the address of the routine to be given control when an error condition other than
input parameter errors is detected.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and EST AE).

The parameter may be used, for example, as follows:

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')
FREE1 FREEMAIN R,LV=4096,A=(1),RELATED=(GET1, 'FREE STORAGE')

Example

Operation: Bring a load module containing a specified entry name (PGMLKRUS) into virtual
storage. Let the system find the module from available libraries.

LOAD EP=PGMLKRUS

LOAD - Bring a Load Module into Virtual Storage 157

PGLOAD - Load Virtual Storage Areas into Real Storage

The PGLOAD macro instruction is used to load specified virtual storage areas into real storage
in anticipation of future needs. That is, PGLOAD is essentially a page-ahead function. Note,
however, that a page that has been loaded via PGLOAD is eligible for page-out selection in the
same manner as a page that has been demand-paged into real storage.

The misuse of this function can have adverse effects on system performance. Causing
unnecessary pages to be brought into real storage will force more useful pages to be displaced
and, consequently, cause unnecessary paging activity. Proper use of this function, however, will
tend to decrease system overhead resulting from page faults.

The standard form of the PGLOAD macro instruction is written as follows:

name

b

PGLOAD

b

R

,A=Start addr

,ECB=ecb addr

,EA=end addr

,RELEASE=N
,RELEASE=Y

name: symbol. Begin name in column 1.

One or more blanks must precede PGLOAD.

One or more blanks must follow PGLOAD.

start addr: A-type address, or register (1) or (2) - (I2).

ecb addr: A-type address, or register (0) or (2) - (12).

end addr: A-type address, or register (2) - (I2) or (I5).
Default: start addr + 1

Default: RELEASE=N
Note: RELEASE= Y may only be specified with EA above.

The parameters are explained below:

R
specifies that no parameter list is being supplied with this request.

,A -start addr
specifies the start address of the virtual area to be loaded.

,EeB -ecb addr
specifies the address of an ECB that is used to signal event completion.

,EA - end addr
specifies the end address + 1 of the virtual area to be loaded.

,RELEASE - N
,RELEASE=Y

specifies that the contents of the virtual area is to remain intact (N) or be released (Y).

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

08
10

Meaning
Operation completed normally; ECB posted complete.
Operation abnormally terminated. Operation incomplete because of invalid address in
virtual subarea list entry; ECB posted complete.
Operation proceeding; ECB will be posted when all page-ins are complete.
Operation abnormally terminated. Virtual subarea list entry or ECB address invalid; no
ECB is posted.

158 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

If the ECB parameter is coded, the ECB is unchanged if the request was initiated but not
complete (return code 8), or if an ABEND was issued with return code 10. Otherwise, the ECB
is posted complete with code

o - Operation completed successfully.
4 - Operation incomplete because of invalid address in VSL entry.

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has
completed, with code

o Operation completed successfully.
4 - Operation incomplete because of paging error; requesting TCB will be abnormally terminated.

Incompatible Parameters

The following parameters were valid in Release 1 of OS/VS2, but are not supported in
Release 2:

ECBIND -address
will probably cause errors.

PGLOAD - Load Virtual Storage Areas into Real Stonge 159

PGLOAD (List Fonn)

The list form of the PGLOAD macro instruction llses a virtual subarea list.

The list form of the PGLOAD macro instruction is written as follows:

name

b

PGLOAD

b

L

,LA=list addr

,ECB=ecb addr

,RELEASE=N
,RELEASE=Y

name: symbol. Begin name in column 1.

One or more blanks must precede PGLOAD.

One or more blanks must follow PGLOAD.

list addr: A-type address, or register (1) or (2) - (t 2).

ecb addr: A-type address, or register (0) or (2) - (12).

Default: RELEASE= N

The parameters are explained under the standard form of the PGLOAD macro instruction,
with the following exceptions:

L
specifies that a parameter list is being supplied with this request.

,LA=/ist addr
specifies the address of the first entry of a virtual subarea list.

Example 1

Operation: Page-in a single byte of virtual storage, causing the entire 4096-byte page
containing that byte to be paged into real storage.

PGLOAD R,A=(R3)

Example 2

Operation: Page-in the virtual storage lying in the range addressed by registers 3 and 4, and
notify the requestor via posting of the ECB when the page-ins are complete.

PGLOAD R,A=(R3),EA=(R4),ECB=(R5)

Example 3

Operation: Discard the contents of the virtual pages totally encompassed by START AD and
ENDAD before new real storage frames are assigned.

PGLOAD R, A=s'rANDARD , EA=ENDAD , RELEASE=Y

160 OS/VS2 Supervisor Services and MaCl'o Instructions (VS2 Release 2)

PGOUT - Page Out Virtual Storage Areas from Real Storage

The PGOUT macro instruction is used to initiate page-out operations for specified virtual
storage areas that are in real storage. The PGOUT function is complementary to the PGLOAD
function. You have the option of specifying that the virtual pages to be paged out either
remain valid in real storage or be marked invalid and the real frames assigned to them be made
available for reuse. The use of this option will not prevent page faults from occurring on the
specified storage.

The misuse of this function, like the misuse of the PGLOAD function, can have adverse
effects on system performance. On the other hand, proper use of this function will tend to
clean out of real storage those pages no longer needed for program execution or not required
for some period in the future.

The standard form of the PGOUT macro instruction is written as follows:

name

b

PGOUT

b

R

,A==Start addr

,EA==end addr

,KEEPREL==N
,KEEPREL==Y

name: symbol. Begin name in column 1.

One or more blanks must precede PGOUT.

One or more blanks must follow PGOUT.

start addr: A-type address, or register (1) or (2) - (12).

end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1

Default: KEEPREL==N

The parameters are explained below:

R
specifies that no parameter list is being supplied with this request.

,A -start addr
specifies the start address of the virtual area to be paged out .

. ,EA -end addr
specifies the end address + 1 of the virtual area to be paged out.

,KEEPREL-N
,KEEPREL-Y

specifies that the virtual pages will be marked invalid and the real storage frames freed for
reuse (N) or that the virtual pages will not be invalidated (Y).

PGOUT - Page Out Virtual Storage Areas From Real Storage 161

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

OC

10

Meaning
Operation completed normally; paging I/O proceeding asynchronously.
Operation abnormally terminated. Operation incomplete because of invalid address in
virtual subarea list entry.
One or more pages specified to be paged out were not paged out. Either the pages
were in the nucleus, in unusable real frames, in SQA or LSQA, in V=R area allocated
region, or were page fixed, or the system resources necessary to perform the page out
operations were momentarily unavailable. Paging I/O is proceeding normally for all
other pages.
Operation abnormally terminated. Virtual subarea list entry or ECB address invalid.

162 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

PGOUT (List Form)

The list form of the PGOUT macro instruction uses a virtual subarea list.

The list form of the PGOUT macro instruction is written as follows:

name

1)

PGOUT

1)

name: symbol. Begin name in column 1.

One or more blanks must precede PGOUT.

One or more blanks must follow PGOUT.

L

,LA=list addr

,KEEPREL=N
,KEEPREL=Y

list addr: A-type address, or register (1) or (2) - (12),

Default: KEEPREL= N

The parameters are explained under the standard form of the PGOUT macro instruction,
with the following eX,ceptions:

L
specifies that a parameter list is being supplied with this request.

,LA = list addr
specifies the address of the first entry of a virtual subarea list.

Example 1

Operation: Page-out the area of real storage totally encompassed by the start and end virtual
boundaries specified.

PGOUT R,A=(R3),EA=(R4)

Example 2

Operation: Create an auxiliary storage copy of a virtual area before continuing to use the area.
The area will remain in real storage after the page-outs complete.

PGOUT R,A=(R3),EA=(R4),KEEPREL=Y

PGOUT (List Form) 163

PGRIJSE - Release Virtual Storage Contents

The PGRLSE macro instruction is used to release to the system all real storage and auxiliary
storage associated with specified virtual storage areas. Use PGRLSE when a large area (one or
more complete pages) of virtual storage within your program no longer has significant
contents.

Functionally, PGRLSE is equivalent to a FREEMAIN macro instruction followed by a
GETMAIN macro instruction. That is, the virtual space is maintained, but the contents of the
space is nullified. Thus, you can help reduce system overhead by releasing virtual storage when
you no longer need it.

Proper use of this function can increase the amount of storage available to the system and
prevent needless paging I/O activity. Usage of PGRLSE may improve operating efficiency when
the using program can discard the contents of a large virtual storage area and reuse the virtual
storage pages; paging operations may be eliminated for those virtual storage pages when they
are reused.

The standard form of the PGRLSE macro instruction is written as follows:

name

b

PGRLSE

b

LA=low addr

,HA=high addr

name: symbol. Begin name in column 1.

One or more blanks must precede PGRLSE.

One or more blanks must fol1ow PGRLSE.

low addr: A-type address, or register (0) or (2) - (12L

high addr: A-type address, or register (I) or (2) - (12).

The parameters are explained below:

LA=low addr
specifies the address of the lower boundary of the area to be released.

,HA =high addr
specifies the address of the upper boundary + 1 of the area to be released.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

Meaning
Successful completion.
Execution failed. The area specified, or a portion of the area. is protected from the
requesting program. Any valid portion of the area preceding the protected area is
released.

164 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

PGRLSE (List Form)

The list form of the PGRLSE macro instruction is used to construct a control program
parameter list.

The list form of the PGRLSE macro instruction is written as follows:

name

b

PGRLSE

b

LA=low add"

HA=high add"

MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede PGRLSE.

One or more blanks must follow PGRLSE.

low add,: A-type address.

high add,: A-type address.

The parameters are explained under the standard form of the PGRLSE macro instruction,
with the following exceptions:

MF=L
specifies the list form of the PGRLSE macro instruction.

PGRLSE (List Form) 165

PGRI..ISE (Execute Form)

A remote control program parameter list is referred to, and can be modified by, the execute
form of the PGRLSE macro instruction.

The execute form of the PGRLSE macro instruction is written as follows:

name

t>

PGRLSE

t>

LA=low addr.

HA=high addr.

MF=(E .clrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede PGRLSE.

One or more blanks must follow PGRLSE.

low addr: A-type address. or register (0) or (2) - (12).

high addr: A-type address, or register (t) or (2) - (t 2).

clrl addr: RX-type address. or register (2) - (12).

The parameters are explained under the standard form of the PGRLSE macro instruction,
with the following exceptions:

MF = (E ,etrl addr)
specifies the execute form of the PGRLSE macro instruction using a remote control program
parameter list.

Example 1

Operation: Release the contents of the pages included within the specified areas. Only those
pages fully encompassed will be nullified.

PGRLSE LA=(R4),HA=(R5)

Example 2

Operation: Perform the operation in Example 1, but use A-type addresses.

PGRLSE LA=LOWADDR,HA=HIGHADDR

166 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

POST - Signal Event Completion

Use the POST macro instruction to have the specified ECB (event control block) set to indicate
the occurrence of an event. If this event satisfies the requirements of an outstanding WAIT or
EVENTS macro instruction, the waiting task is taken out of the wait state and dispatched
according to its priority. The bits in the ECB are set as follows:

Bit 0 of the specified ECB is set to 0 (wait bit).
Bit 1 is set to 1 (complete bit).
Bits 8 through 31 are set to the specified completion code.

The POST macro instruction is written as follows:

name

b

POST

b

ecb addr

,comp code

,RELA TED=value

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: RX-type address. or register (1) or (2) - (12).

comp code: symbol. decimal digit. or register (0) or (2) - (12).
Range of values: 0 - 224_ 1
Default: 0

value: Any valid macro keyword specification.

The explanation of the parameters is as follows:

ecb addr
specifies the address of a fullword on a fullword boundary containing the address of an
event control block representing the event.

,comp code
specifies the completion code to be placed in the event control block upon completion.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH. GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and ESTAE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')
FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

POST - Signal Event Completion 167

Example 1

Operation: Signal event completion with a default completion code. POSTECB is the address of
an ECB.

POST POSTECB

Example 2

Operation: Signal event completion with a completion code of X'7FF'. POSTECB is the address
of an ECB.

POST POSTECB,X'7FF'

168 OS/VS2 Supervisor Services and Macro (n.litructions (VS2 Release 3)

RETURN - Return Control

The RETURN macro instruction restores the control to the calling program and signals normal
termination of the called program. The return of control is always made by executing a branch
instruction using the address in register 14. The RETURN macro instruction can restore a
designated range of registers, provide a return code in register 15, and flag the save area used
by the called program.

If registers are to be restored, or if an indicator is to be placed into the save area, register
13 must contain the address of the save area, which must have the standard format.

The RETURN macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b

RETURN

b

One or more blanks must precede RETURN.

One or more blanks must follow RETURN.

(regJ)
(regJ,reg2)

,T

,RC=ret code

regJ and reg2: decimal digits, and in the order 14, 15,0 through
12.

ret code: decimal digit, symbol, or register (15). The maximum
value is 4095.

The parameters are explained below:

(regJ)
(regJ,reg2)

,T

specifies the register or range of registers to be restored from the save area pointed to by
the address in register 13. If you omit this parameter, the contents of the registers are not
altered. Do not code this parameter when returning control from a program interruption exit
routine.

causes the control program to flag the save area used by the called program. A byte
containing alII's is placed in the high-order byte of word 4 of the save area after the
registers have been loaded; this designates that a called program has executed a return to its
caller. Do not specify this parameter when returning control from an exit routine.

,RC ret code
specifies the return code to be passed to the calling program. If a symbol or decimal digit is
coded, the return code is placed right-adjusted in register 15 before return is made; if
register 15 is coded, the return code has been previously loaded into register 15 and the
contents of register 15 are not altered or restored from the save area. (If you omit this
parameter, the contents of register 15 are determined by the reg] and reg2 parameters.)

Example 1

Operation: Restore registers 14-12, flag the save area, and return with a code of O.

RETURN (14,12),T,RC=O

RETURN - Return Control 169

SAVE - Save Register Contents

The SAVE macro instruction stores the contents of the specified registers in the save area at
the address contained in register 13. If you wish, you may specify an entry point identifier.
Write the SAVE macro instruction only at the entry point of a program because the code
resulting from the macro expansion requires that register 15 contain the address of the SAVE
macro prior to its execution. Do not use the SAVE macro instruction in a program interruption
exit routine.

The SAVE macro instruction is written as follows:

name

b

SAVE

b

name: symbol. Begin name in column 1.

One or more blanks must precede SAVE.

One or more blanks must follow SAVE.

,T

(reg /)
(reg/,reg2)

,id name

reg/ and reg2: decimal digits, and in the order 14, 15,0 through
12.

id name: character string of up to 70 characters or as an *.

The parameters are explained below:

(reg 1)
(reg 1 ,reg2)

,T

specifies the register or range of registers to be stored in the save area at the address
contained in register 13. The registers are stored in words 4 through 18 of the save area.

specifies that registers 14 and 15 are to be stored in word 4 and 5, respectively, of the save
area. This parameter permits you to save two noncontiguous sets of registers.

If you specify both T and reg 2 , and if reg1 is any of registers 14, 15,0, 1, or 2, all of
registers 14 through the reg2 value are saved.

,id name
specifies an identifier to be associated with the SAVE macro instruction. If an asterisk (*) is
coded, the identifier is the name associated with the SAVE macro instruction, or, if the
name field is blank, the control section name is used. The identifier aids in locating a
program's save area in a dump. If the CSECT instruction name field is blank, the parameter
is ignored.

Whenever a symbol or an asterisk is coded, the following macro expansion occurs:

• A count byte containing the number of characters in the identifier name is assembled
four bytes following the address contained in register 15.

• The character string containing the identifier name is assembled starting at five bytes
following the address contained in register 15.

• An instruction to branch around the count and identifier fields is assembled.

170 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Example 1

Operation: Save registers 14-12, and associate the identifier with the CSECT name.
SAVE (1 4 , 1 2) , , *

SAVE - Save Register Contents 171

SEGLD - Load Overlay Segment and Continue Processing

The SEGLD macro instruction causes the control program to load th€ specified segment and
any segments in its path that are not part of a path already in virtual storage. Control is not
passed to the specified segment, but is returned to the instruction following the SEGLD macro
instruction. Processing is overlapped with the loading of the segment. Refer to the oS/VS

Linkage Editor and Loader for details on overlay.

The SEGLD macro instruction is written as follows:

name

b

SEGLD

b

ext seg name

name: symbol. Begin name in column 1.

One or more blanks must precede SEGLD.

One or more blanks must follow SEGLD.

ext seg' name: symbol.

The parameters are explained below:

ext seg name
specifies the name of a control section or an entry name in the required section. An
exclusive reference is not allowed. The name does not have to be identified by an EXTRN

statement.

Example 1

Operation: Cause the control program to load segment PGM54.

SEGLD PGM54

172 OS/VS2 Supenisor Senices and Ma(:ro Instructions (VS2 Release 2)

SEGWT - Load Overlay Segment and Wait

The SEGWT macro instruction causes the control program to load the specified segment and
any segments in its path that are not part of a path already in virtual storage. Control is not
passed to the specified segment; control is not returned to the segment issuing the SEGWT
macro instruction until the requested segment is loaded. Refer to the publication OS /VS
Linkage Editor and Loader for details on overlay operations. The SEGWT macro instruction
cannot be used in an asynchronous exit routine.

The SEGWT macro instruction is written as follows:

name

b

SEGWT

b

ext seg name

name: symbol. Begin name in column 1.

One or more blanks must precede SEGWT.

One or more blanks must follow SEGWT.

ext seg name: symbol.

The parameters are explained below:

ext seg name
specifies the name of a control section or an entry name in the required section. An
exclusive reference is not allowed. The name does not have to be identified by an EXTRN

statement.

Example 1

Operation: Cause the control program to load segment PGMWT.

SEGWT PGMWT

SEGWT - Load Overlay Segment and Wait 173

SETRP - Set Return Parameters

The SETRP macro instruction is used to indicate the various requests that a recovery exit may
make. It may be used only if a System Diagnostic Work Area (SDW A) was passed to the
recovery exit. The macro instruction is valid only for EST AE/EST AI exits. (The SDW A mapping
macro - IHASDWA - must be included in the routine which issues SETRP.)

The SETRP macro instruction is written as follows:

name

b

SETRP

b

WKAREA=(reg)

,REGS=(regl)
,REGS=(reg} ,reg2)

,DUMP=IGNORE
,DUMP-YES
,DUMP-NO

,DUMPOPT -parm list addr

,RC-O
,RC-4
,RC=16

,RET ADDR=retry addr

name: symbol. Begin name in column 1.

One or more blanks must precede SETRP.

One or more blanks must follow SETRP.

reg: decimal digits 1-12.
Default: WKAREA=(I)

reg}: decimal digits 0-12, 14, 15.
reg2: decimal digits 0-12, 14, 15.
Note: If reg} and reg2 are both specified, order is 14, 15, 0-12.

Default: DUMP=IGNORE

parm list addr: RX-type address, or register (2) - (12).
Note: This parameter may be specified only if DUMP-YES is
specified above.

Default: RC=O

retry addr: RX-type address, or register (2) - (12).
Note: This parameter may be specified only if RC==4 is specified
above.
reg info addr: RX-type address, or register (2) - (12).

,RETREGS=NO reg info addr: RX-type address, or register (2) - (12).
,RETREGS-YES Default: RETREGS==NO
,RETREGS=YES,RUB=reg info addr Note: This parameter may be specified only if RC=4 is specified

above.

,FRESDWA=NO
,FRESDWA=YES

,COMPCOD=eomp code
,COMPCOD=(comp code,USER)
,COMPCOD-(comp code,SYSTEM)

Default: FRESDWA=NO
Note: This parameter may be specified only if RC=4 is specified
above.

comp code: symbol, decimal digit, or register (2) - (12).
Default: COMPCOD==(comp code,USER)

174 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

The parameters are explained below:

,WKAREA = (reg)
specifies the address of the SDWA passed to the recovery exit. If this parameter is omitted
the address of the SDW A must be in register 1.

,REGS = (reg 1)
,REGS = (reg1,reg2)

specifies the register or range of registers to be restored from the save area pointed to by
the address in register 13. If REGS is specified, a branch on register 14 instruction will also
be generated to return control to the control program. If REGS is not specified, the user
must code his own return.

,DUMP - IGNORE
,DUMP-YES
,DUMP=NO

specifies that the dump option fields will not be changed (IGNORE), will be zeroed (NO), or
will be merged with dump options specified in previous dump requests, if any (YES). If
IGNORE is specified, a previous exit had requested a dump or a dump had been requested
via the ABEND macro instruction, and the previous request will remain intact. If NO is
specified, no dump will be taken.

,DUMPOPT=parm list addr
specifies the address of a parameter list that is valid for the SNAP macro instruction. The
parameter list may be created by using the list form of the SNAP macro instruction, or a
compatible list may be created. The TCB and DCB options available on SNAP will be ignored
if they appear in the parameter list. The TCB used will be the one for the task that suffered
the error; the DCB used will be one created by the control program and using as a DDNAME
either SYSABEND or SYSUDUMP.

,RC=O
,RC=4
,RC- 16

specifies the return code the user exit routine sends to recovery processing to indicate what
further action is required:

o - Continue with termination, causes entry into previously specified recovery routine, if any.
4 - Retry using the retry address specified.
16 - Suppress further ESTAI/STAI processing (for ESTAI only).

,RETADDR=retry addr
specifies the address of the retry routine to which control is to be given.

,RETREGS = NO
,RETREGS - YES
,RETREGS = YES,RUB -reg info addr

specifies the contents of the registers on entry to the retry routine. If NO is specified or
defaulted, only parameter registers (14-2) are passed; all others are unpredictable. If YES is
specified, the contents of the SDW ASRSV field will be used to initialize the registers. For
EST AE exits, this field contains the registers at the last interruption of the RB level at which
retry will occur. For EST AI exits, the contents of SDA WSRSV must be set by the user either
before SETRP is issued or by use of the RUB parameter; any field not set will cause the
corresponding register to contain 0 on entry to the retry routine.

RUB specifies the address of an area (register update block) that contains register update
information. The data specified in this area will be moved into the SDW A and will be loaded
into the general purpose registers on entry to the retry routine.

SETRP - Set Return Parameters 175

The maximum length of the RUB is 66 bytes:

• The first two bytes represent the registers to be updated, register 0 cor,responding to bit
0, register 1 corresponding to bit 1, and so on. The user indicates which of the registers
are to be stored in the sow A by setting the corresponding bits in these two bytes.

• The remaining 64 bytes contain the update information for the registers, in the order
0-15. If all 16 registers are being updated, this field consists of 64 bytes. If only one
register is being updated, this field consists of only 4 bytes for that one register.

For example, if only registers 4, 6, and 9 are being updated:

• Bits 4, 6, and 9 of the first two bytes are set.

• The remaining field consists of 12 bytes for registers 4, 6, and 9; the first 4 bytes are for
register 4, followed by 4 bytes for register 6, and 4 final bytes for register 9.

,FRESDWA=NO
,FRESDW A = YES

specifies that the entire sow A be freed (YES) or not be freed (NO) prior to entry into the
retry routine.

,COMPCOD =comp code
,COMPCOD = (comp code, USER)
,COMPCOD = (comp code, SYSTEM)

specifies the user or system completion code that the user wishes to pass to subsequent
recovery exits.

Example 1

Operation: Request continue with termination, suppress dumping, restore register 14 from the
save area and pass control to the location it contains, contain the sow A in the location
addressed by register 3, and change the completion code to 10.

SETRP RC=O,DUMP=NO,REGS=(14),WKAREA=(3),COMPCOD=(X'OOA' ,USER)

Example 2

Operation: Retry using the address specified at location X, take a dump before retry, use the
contents of sow ASRSV to initialize the registers, free the sow A before control is passed to the
retry address, and restore registers 14-12.

SETRP RC=4,RETREGS=YES,DUMP=YES,FRESDWA=YES,REGS=(14, 12),RETADDR=X

176 OS/VS2 Supervisor Senices and Macro Instructions (VS2 Release 2)

SNAP - Dump Virtual Storage and Continue

The SNAP macro instruction is used to obtain a dump of some or all of the storage assigned to
the current job step. Some or all of the control program fields can also be dumped.

You must provide a data control block and issue an OPEN macro instruction for the data set
before an SNAP macro instructions are issued. The DCB macro instruction must contain the
following parameters:

DSORG=PS,RECFM=VBA,MACRF=(W),BLKSIZE=nnn,LRECL=125,
and DDNAME=any name but SYSABEND or SYSUDUMP

BLKSIZE must be either 882 or 1632. A SNAP data set that is opened in a problem program
that will be processed by the system loader should be closed by the problem program.

The data set containing the dump can reside on any device supported by BSAM (basic
sequential access method). The dump is placed in the data set described by the DD statement
the user provides. If a printer is selected, the dump is printed immediately; if a direct access or
tape device is designated, a separate job must be scheduled to obtain a listing of the dump.

Sufficient unused storage must be available in the area assigned to the· job step' to hold the
control program dump routine and, if not already in storage, the BSAM data management
routines.

The standard form of the SNAP macro instruction is written as follows:

name

b

SNAP

b

DCB=dcb addr

,TCB=fCb addr

,ID=id nmbr

,SDATA=ALL
,SDAT A=('sys data code)

,PDATA=ALL
,PDATA=(prob data code)

,STORAGE=(strt addr,end addr)
,LIST -list addr

name: symbol. Begin name in column 1.

One or more blanks must precede SNAP.

One or more blanks must follow SNAP.

dcb addr: A-type address, or register (2) - (12).

fcb addr: A-type address, or register (2) - (12).

id nmbr: symbol, decimal digit, or register (2) - (12).
Value range: 0 - 255

sys data code: any combination of the following, separated by
commas. If only one code is specified, the parentheses need not
be coded.

NUC CB
SQA Q
LSQA TRT
SWA

prob data code: any combination of the following, separated by
commas. If only one code is specified, the parentheses need not
be coded.

PSW
REGS
SA or SAH
JPA or LPA or ALLPA
SPLS

strt addr: A-type address, or register (2) - (12).
end addr: A-type address, or register (2) - (12).
list addr: A-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified,
separated by commas. For example:
STORAGE=(strt addr,end addr,strt addr,end addr)

SNAP - Dump Virtual Storage and Continue 177

The parameters are explained below:

DCB =dcb addr
specifies the address of a previously opened data control block for the data set that is to
contain the dump.

,TCB =tcb addr
specifies the address of a fullword on a fullword boundary containing the address of the
task control block for a task of the current job step. If omitted, or if the fullword contains
0, the dump is for the active task. If a register is designated, the register can contain 0 to
indicate the active task, or can contain the address of a TeB.

,ID=id nmbr
specifies the number that is to be printed in the identification heading with the dump. If the
number specified is not in the acceptable value range, it will not be printed properly in the
heading.

,SDATA=ALL
,SDA T A = (sys data code)

specifies the system control program information to be dumped:
ALL - All of the following fields.
NUC - All of the control program nucleus except the trace table.
SQA - The system queue area.
LSQA - The local system queue area.
SW A - The scheduler work area related to the task.
CB - The control blocks for the task.
Q - The enqueue control blocks for the task.
TRT - The GTF trace table.

If a dump occurs in a GTF address space, no attempt will be made to include trace
information.

,PDATA=ALL
,PDATA=(prob data code)

specifies the problem program information to be dumped:
ALL - All of the following fields.
PSW - Program status word when the SNAP or ABEND macro instruction was issued.
REGS - Contents of the floating and general registers when the SNAP or ABEND macro
instruction was issued.
SA - Save area linkage information and a back trace through save areas.
SAH - Save area linkage information.
lP A - Contents of job pack area.
LP A - Contents of link pack area.
ALLP A - Contents of job pack area and link pack area.
SPLS - All virtual storage subpools (0-127).

,STORAGE = (strt addr,end addr)
,LIST = list addr

specifies one or more pairs of starting and ending addresses or a list of starting and ending
addresses of areas to be dumped. The areas between the starting and ending addresses are
dumped one full word at a time. If the addresses are not fullword multiples, they are
rounded up or down to fullwords. The list must begin on a fullword boundary. The high
order bit of the fullword containing the last ending address of the list must be set to 1.

t 78 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Control is returned to the instruction following the SNAP macro instruction. When control is
returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

08

OC

Meaning
Successful completion.
Data control block was not open, or an invalid page exception occurred during the
validity check of the DCB parameters.
Task control block address was not valid, an invalid page reference occurred during
the validity check of the TCB address, a subtask is a job step task, or sufficient storage
was not available.
Data control block type (DSORG, RECFM, MACRF, BLKSIZE, or LRECU was
incorrect.

SNAP - Dump Virtual Storage and Continue 179

SNAP (List Form)

Use the list form of the SNAP macro to construct a control program parameter list. You can
specify any number of storage addresses using the STORAGE parameter. Therefore, the number
of starting and ending address pairs in the list form of SNAP must be equal to the maximum
number of addresses specified in any execute form of the macro, or a DS instruction must
immediately follow the list form to allow for the maximum number of addresses.

The list form of the SNAP macro instruction is written as follows:

name

t:>

SNAP

t:>

DCB=dcb addr

,ID=id nmbr

,SDATA=ALL
,SDAT A=(sys data code)

,PDATA=ALL
,PDAT A=(prob data code)

,STORAGE=(strt addr,end addr)
,LIST =list addr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SNAP.

One or more blanks must follow SNAP.

dcb addr: A-type address.

id nmbr: symbol or decimal digit.
Value range: 0 - 255

sys data code: any combination of the following, separated by
commas. If only one code is specified, the parentheses need not
be coded.

NUC
SQA
LSQA
SWA

CB
Q
TRT

prob data code: any combination of the following, separated by
commas. If only one code is specified, the parentheses need not
be coded.

PSW
REGS
SA or SAH
JPA or LPA or ALLPA
SPLS

strt addr: A-type address.
end addr: A-type address.
list addr: A-type address.
Note: One or more pairs of addresses may be specified,
separated by commas. For example:
,STORAGE=(strt addr,end addr,strt addr,end addr)

The parameters are explained under the standard form of the SNAP macro instruction, with
the following exceptions:

,MF=L
specifies the list form of the SNAP macro instruction.

180 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

SNAP (Execute Form)

A remote control program parameter list is referred to and can be modified by the execute
form of the SNAP macro instruction.

If you code only the DCB, ID, MF, or TCB parameters in the execute form of the macro
instruction, the bit settings in the parameter list corresponding to the SDAT A, PDA T A, LIST,

and STORAGE parameters are not changed. However, if you code one or more of the SDATA,

PDA T A, LIST parameters, the bit settings from the previous request are reset to zero, and only
the areas requested in the current macro instruction are dumped.

The execute form of the SNAP macro instruction is written as follows:

name

b

SNAP

b

DCB=dcb addr

,TCB=tcb addr
,TCB='S'

,ID=id nmbr

,SDATA=ALL
,SDATA=(sys data code)

,PDATA=ALL
,PDATA==fprob data code)

,STORAGE=(strt addr.end addr)
,LIST =list addr

,MF=(E .ctrf addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SNAP.

One or more blanks must follow SNAP.

dcb addr: RX-type address, or register (2) - (12).

tcb addr: RX-type address, or register (2) - (12).

id nmbr: symbol, decimal digit, or register (2) - (12).
Value range: 0 - 255.

sys data code: any combination of the following, separated by
commas. If only one code is specified, the parentheses need not
be coded.

NUC
SQA
LSQA
SWA

CB
Q
TRT

prob data code: any conbination of the following, separated by
commas. If only one code is specified, the parentheses need not
be coded.

PSW
REGS
SA or SAH
JPA or LPA or ALLPA
SPLS

strt addr: RX-type address, or register (2) - (12).
end addr: RX-type address, or register (2) - (t 2).
list addr: RX-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified,
separated by commas. For example:
,STORAGE==fstrt addr,end addr.strt addr.end addr)

ctrf addr: RX-type address. or register (1) or (2) - (12),

SNAP (Execute Form) 181

The parameters are explained under the standard form of the SNAP macro instruction, with
the following exceptions:

,TCB='S'
specifies the task control block of the active task.

,MF = (E ,etrl addr)
specifies the execute form of the SNAP macro instruction using a remote control program
parameter list.

Example 1

Operation: Dump the storage ranges pointed to by register 9, and dump all PDATA and SDATA

options.

SNAP DCB=(8),TCB=(16),PDATA=ALL,SDATA=ALL,LIST=(9)

Example 2

Operation: Dump the storage ranges pointed to by register 9, and dump only the trace table
and enqueue control blocks.

SNAP DCB=(8),TCB=(O),ID=4,LIST(9),SDATA=(TRT,Q)

182 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

SPIE - Specify Program Interruption Exit

The SPIE macro instruction specifies the address of an interruption exit routine and the
program interruption types that are! to cause the exit routine to be given control. If the
program interruption types specified can be masked, the corresponding program mask bit in
the PSW (program status word) is set to 1.

The effect of each SPIE macro instruction issued in performance of a task supersedes the
effect of the previous SPIE issued in performance of the same task. The specified exit routine is
given control when one of the specified program interruptions occurs in any program of the
task.

The SPIE macro instruction can be issued by any subtask of the task; the resulting
environment exists for the entire subtask.

A PICA (program interruption control area) is created as part of the expansion of SPIE. The
PICA contains the exit routine's address and a code indicating the interruption types specified
in SPIE.

The standard form of the SPIE macro instruction is written as follows:

name

b

SPIE

b

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr, (inte"upts) exit addr: A-type address, or register (2) - (12).
interrupts: decimal digits 1-15, expressed as

single values: (2,3,4,7,8,9,10)
ranges of values: «2,4),(7,10»
combinations: «2,4),6,8,(10,13),15)

The parameters are explained below:

ex it addr, (interrupts)
specifies the address of the exit routine to be given control when a program interruption of
the type specified occurs. The interruption types are:

Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Interruption Type
Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data
Fixed-point overflow (maskable)
Fixed-point divide
Decimal overflow (maskable)
Decimal divide
Exponent overflow
Exponent underflow (maskable)
Significance (maskable)
Floating-point divide

SPIE - Specify Program Intel11lptiOR Exit 183

Note: If a specified program interruption type is maskable, the corresponding bit is set to 1.
Interruption types not specified above are handled by the control program ..

Note: As shown in the table above, interruption types can be designated as one or more single
numbers, as one or more pairs of numbers (designating ranges of values), or as any
combination of the two forms. For exmaple, (4,8) indicates interruption types 4 and 8; «4,8»
indicates interruption types 4 through 8.

184 OS/VS1 Supervisor Services and Macro Instructions (VS1 Release 1)

SPIE (List Form)

Use the list form of the SPIE macro instruction to construct a control program parameter list in
the form of a program interruption control area.

The list form of the SPIE macro instruction is written as follows:

name

b

SPIE

b

exit addr

,(interrupts)

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: A-type address.

interrupts: decimal digits 1-15, expressed as
single values: (2,3,4,7,8,9,10)
ranges of values: «2,4),(7,10»
combinations: «2,4),6,8,(10, 13), 15)

The parameters are explained under the standard form of the SPIE macro instruction, with
the following exceptions:

,MF-L
specifies the list form of the SPIE macro instruction.

SPIE (List Form) 185

SPIE (Execute Form)

A remote control program parameter list (program interruptions control area) is used in, and
can be modified by, the execute form of the SPIE macro instruction. The PICA (program
interruptions control area) can be generated by the list form of SPIE, or you can use the
address of the PICA returned in register 1 following a previous SPIE macro instruction. If this
macro instruction is being issued to reestablish a previous SPIE environment, code only the MF

parameter.

The address of the remote control program parameter list associated with any previous SPIE

environment is returned by the SPIE macro instruction.

The execute form of the SPIE macro instruction is written as follows:

name

tJ

SPIE

tJ

exit addr

,(interrupts)

,MF=(E ,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: RX-type address, or register (2) - (12).

interrupts: decimal digits 1-15, expresses as
single values: (2,3,4,7,8,9,10)
ranges of values: «2,4),(7,10»
combinations: «2,4),6,8,(10,13),15)

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standaro form of the SPIE macro instruction, with
the following exceptions:

,MF = (E ,etrl addr)
specifies the execute form of the SPIE macro instruction using a remote control program
parameter list.

Example 1

Operation: Give control to an exit routine for interruptions 1, 5, 7, 8, 9, and 10. DOITSPIE is
the address of the SPIE exit routine.

SPIE DO ITS PIE, (1 , 5 , 7 , (8 , 1 0))

186 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

ST A TUS - Change Subtask Status

The STATUS macro instruction lets the programmer change the dispatchability status of one or
all of his program's subtasks. For example, the STATUS macro instruction can be used to
restart subtasks that were stopped when an attention exit routine was entered.

The STATUS macro instruction is written as follows:

name

b

STATUS

b

START
STOP

,TCB=teb addr
,SYNCH

,RELATED=value

name: symbol. Begin name in column 1.

One or more blanks must precede STATUS.

One or more blanks must follow STATUS.

feb addr: RX-typc address, or register (2) - (12).

value: Any valid macro keyword specification.

The parameters are explained below:

START
STOP

specifies that the START or STOP count in the task control block specified in the TCB
parameter will be decreased (for START) or increased (for STOP) by 1. If the TCB
parameter is not coded, the count is decreased/increased by 1 in the task control blocks for
all the subtasks of the originating task.

Note: This parameter does not assure that the subtaskts) is stopped when control is returned
to the issuer. A subtask can have a "stop deferred" condition which would cause that
particular subtask to remain dispatchable until stops are no longer deferred. In an MP
environment, it would be possible to have a task issue the STATUS macro with the STOP
parameter and resume processing while the subtask (for which the STOP was issued) is
re-dispatched to another cPU. A method of preventing this possibility is by issuing the STATUS
macro with the STOP and SYNCH parameters.

,TCB =tcb addr
specifies the address of a fullword on a fullword boundary containing the address of the
task control block that is to have its START/STOP count adjusted. (If a register is specified,
however, the address is of the TCB itself.) If this parameter is not coded, the count is
adjusted in the task control blocks for all the subtasks of the originating task.

,SYNCH
specifies that the STOP function effects all the sub tasks of the caller. If any of the subtasks
are deferring STOPs when the request is issued, the caller is placed in a WAIT condition. The
issuer is taken out of the wait state when all deferred STOPS are complete.

Note: When using the STOP,SYNCH parameters extreme caution should be exercised to prevent
interlocks within an address space.

The STOP-SYNCH function is performed by processing each of the subtasks of the issuer and
either setting it non-dispatchable or marking it with a "stop pending" indicator (the latter
occurs when stops are currently being deferred for a subtask). When at least one stop has

ST ATUS - Change Subtask Status 187

been deferred, the issuer is placed in a wait condition until all "stop pendings" have taken
effect. Interlocks occur when a subtask, that has stops deferred, requires a resource or function
that a non-dispatchable subtask owns. Thus, when using STATUS with STOP,SYNCH
parameters, an interlock can occur when the following conditions occur simultaneously:

• One sub task (that has stops deferred) is waiting for a rousource that will not be available
until the STOP,SYNCH issuer starts the task that owns the resource .

• The STOP,SYNCH issuer is waiting for all subtasks to become non-dispatchable.

One method of preventing this type of interlock is to establish a timer exit, via the STIMER

macro, before specifying STOP with the SYNCH parameter. Then if the interlock occurs, the
issuer's timer exit will get control and the subtask(s) can be restarted.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and ESTAE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')
FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

Example 1

Operation: Stop all subtasks.

STATUS STOP

Example 2

Operation: Stop a specific subtask. WHERETCB is a fullword specifying the address of a
subtask TCB.

STATUS STOP,TCB=WHERETCB

Example 3

Operation: Start a specific subtask. WHERETCB is a fullword specifying the address of a
subtask TCB.

STATUS START,TCB=WHERETCB

188 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

STIMER - Set Interval Timer

The STIMER macro instruction is used to set a programmer timer to a specified time interval
(less than 24 hours) or to an interval that will expire at a specified time of day. An optional
timer completion routine is given control when the time interval expires; if no timer completion
routine is specified, no indication that the time interval has expired is provided. Only one time
interval per task is in effect at a time. A second STIMER macro instruction issued before the
first time interval expires overrides the first interval and exit routine.

The time interval may be a 'real-time interval' (measured continuously in real time), 'task
time interval' (measured only while the task is in execution.) If a real time interval is specified,
the task may elect to either continue (REAL) or suspend (WAIT) execution during the interval.
If the task elects to continue execution, it may optionally specify an exit routine to be given
control on completion of the time interval. If the task elects to suspend execution, it is
restarted at the next sequential instruction on completion of the time interval. If a task time
interval is specified, the task must continue. It may optionally specify an exit routine to be
given control on completion of the interval.

The. STIMER macro instruction is written as follows:

name

b

STIMER

b

REAL
REAL ,exit rtn addr
TASK
TASK ,exit rtn addr
WAIT

,BINTVL::::;S'tor addr
,DINTVL::::;S'tor addr
,GMT ::::;S'tor addr
,MICVL::::;S'tor addr
,TOD::::;S'tor addr
,TUINTVL::::;S'tor addr

,ERRET==err rtn addr

name: symbol. Begin name in column 1.

One or more blanks must precede STIMER.

One or more blanks must follow STIMER.

exit rtn addr: RX-type address, or register (0) or (2) - (12).

stor addr: RX-type address, or register (1) or (2) - (12).
Note: The GMT and TOD parameters must not be specified
with TASK above.

err rtn addr: RX-type address or register (2) - (12).

The parameters are explained below:

REAL
REAL ,exit rtn addr
TASK
TASK ,exit rtn addr
WAIT

specifies whether the timer interval is a real-time interval (REAL or WAIT) or a task-time
interval (TASK):

For REAL, the interval is decreased continuously. If the TOD or GMT parameter is coded,
the interval expires at the indicated time of day.

For TASK, the interval is decreased only when the associated task is active.

STIMER - Set Interval Timer 189

For WAIT, The interval is decreased continuously. The task is to be placed in the wait
condition until the interval expires.

The exit rtn addr is the address of the timer completion exit routine to be given control
after the specified time interval expires. The routine must be in virtual storage when it is
required. The contents of the registers when the exit routine is given control are as follows:

Register
0- 1
2 - 12
13
14
15

Contents
Control program information.
Unpredictable.
Address of a control-program-provided save area.
Return address (to the control program).
Address of the exit routine.

The exit routine is responsible for saving and restoring registers. The exit routine executes
as a subroutine, and must return control to the control program.

,BINTVL =stor addr
,DINTVL ::::astor addr
,GMT -stor addr
,MICVL =stor addr
,TOO -stor addr
,TUINTVL -stor addr

specifies that the time be returned:

For BINTVL, the address is in virtual storage containing the time interval. The time interval
is presented as an unsigned 32-bit binary number; the low-order bit has a value of 0.01
second.

For DINTVL, the address is a doubleword on a doubleword boundary in virtual storage
containing the time interval. The time interval is presented as unpacked decimal digits of the
form:

HHMMSSth, where: HH is hours (24-hour clock)
MM is minutes
SS is seconds
t is tenths of seconds
h is hundredths of seconds

For GMT, the address is an 8-byte area containing the Greenwich mean time at which the
interval is to be completed. The time is presented as unpacked decimal digits of the form
HHMMSSth, as described above under DINTVL.

For MICVL, the address is a doubleword on a double word boundary containing the time
interval. The time interval is represented as an unsigned 64-bit binary number; bit 51 is the
low-order bit of the interval value and equivalent to 1 microsecond.

For TOO, the address is a doubleword on a doubleword boundary containing the time of
day at which the interval is to be completed. The time of day is presented as unpacked
decimal digits of the form HHMMSSth, as described above under DINTVL.

For TUINTVL, the address is a fullword on a fullword boundary containing the time
interval. The time interval is presented as an unsigned 32-bit binary number; the low-order
bit has a value of one timer unit (approximately 26.04166 microseconds).

,ERRET -err rtn addr
specifies the address of the routine to be given control when the STIMER function cannot be
performed because of damaged clocks; if this parameter is omitted, the STIMER fUJ.lction
would be abnormally terminated.

190 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Notes:

• The time interval specified by an STIMER macro instruction has no relation' to the time
interval specified in an EXEC statement.

• If WAIT is specified in a system running a single task, no production work is performed
while the time interval is in effect. Notify the system operator not to cancel the job.

• If the optional exit routine address and WAIT are not specified, no indication of
completion of the time interval is provided.

• The TTIMER macro instruction provides a facility for determining the remaining time
interval associated with STIMER.

The priorities of other tasks in the system may also affect the accuracy of the time interval
measurement. If you code REAL or WAIT, the interval is decreased continuously and may
expire when the task is not active. (This is certain to happen when WAIT is coded.) After the
time interval expires, assuming the task is not in the wait condition for any other reasons, the
task is placed in the ready condition and competes for control with the other ready tasks in the
system. The additional time required before the task becomes active depends on the relative
dispatching priority of the task.

Example 1

Operation: Request the user's asynchronous exit routine, located at location EXIT, to receive
control after the number of hundredths of seconds specified at INTVLONG has elapsed in real
time.

STIMER REAL,EXIT,BINTVL=INTVLONG

STIMER - Set Interval Tbner .191

TIM~: - Provide Time and Date

The TIME macro instruction causes the control program to return either the local time of day
and date or the Greenwich mean time of day and date. The time of day and date are only as
accurate as the corresponding information entered by the operator, and the system response
time.

The date is returned in register 1 as packed decimal digits of the form

OOYYDDDC, where: YY is the last two digits of the year
DDD is the day of the year
C is a 4-bit sign character that allows the data to be unpacked and printed

The time of day, based on a 24-hour clock, is returned in different forms, as designated by
the parameters shown below. For the DEC, BIN, and TU parameters, the time of day is
returned in register O. For the MIC and STCK parameters, the time of day is returned in the
specified address.

The TIME macro instruction is written as follows:

name

b

TIME

b

DEC
BIN
TU
MIC ,slor addr
STCK ,slor addr

,ZONE=LT
,ZONE=GMT

,ERRET=err rln addr

name: symbol. Begin name in column 1.

One or more blanks must precede TIME.

One or. more blanks must follow TIME.

Default: DEC
stor addr: RX-type address or register (0) or (2) - (12).

Default: ZONE=LT.
Note: This parameter has no meaning if STCK above is
specified.

err rln addr: A-type address, or register (2) - (12).

The parameters are explained below:

DEC
BIN
TV
MIC,stor addr
STCK ,stor addr

specifies that the time of day be returned:

For DEC, the time of day is returned in register 0 as packed decimal digits of the form

HHMMSSth, where: HH is hours (24-hour clock)
MM is minutes
SS is seconds
t is tenths of seconds
h is hundredths of seconds

For BIN, the time of day is returned in register 0 as an unsigned 32-bit binary number. The
low-order bit is equivalent to 0.01 seconds.

For TV, the time of day is returned in register 0 as an unsigned 32-bit binary number. The
low-order bit is approximately 26.04166 microseconds (one timer unit).

192 OS/VS1 Supervisor Services and Macro Instructions (VS1 Release 1)

For MIC, the time of day is returned in microseconds. The stor addr is the address of an
8-byte area in storage with bit 51 equivalent to one microsecond:

For STCK, the contents of the TOD clock is returned as an unsigned 64-bit fixed-point
number, where bit 51 is equivalent to 1 microsecond. The stor addr is the address of an
8-byte area in storage.

,ZONE-LT
,ZONE-GMT

specifies that the local time and date (LT) or the Greenwich mean time and date (GMT) is
to be returned.

,ERRET -err rtn addr
specifies the address of the routine to. be given control when the TIME function cannot be
performed because of damaged clocks. If this· parameter is omitted, the TIME function would
be abnormally terminated.

Example 1

Operation: Request the system to store the time-of-day clock in the address pointed to by
register 2. The user's routine TIMEERR is to receive control if the time-of -day clock is unusable
in a uniprocessing system or if both time-of -day clocks are unusable in a multiprocessing
system.

TIME STCK,(2),ERRET=TIMEERR

TIME - Provide Time and Date 193

1TIMER - Test Interval Timer

If TU is specified or assumed, the TTIMER macro instruction causes the control program to
return in register 0 the amount of time remaining in a timer interval previously set by an
STIMER macro instruction. The time remaining is returned as an unsigned 32-bit binary number
specifying the number of timer units (approximately 26.04166 microsecond units) remaining in
the interval. If a time interval has not been set or has already expired, register 0 contains O.
TTIMER can also be used to cancel the remaining time interva1.

If MIC is specified, the remaining time is returned to the doubleword area specified in the
address. Bit 51 of the area is the low-order bit of the interval value and equivalent to 1
microsecond. If a time interval has not been set or has already expired the area is set to O.

The TTIMER macro instruction is written as follows:

name

b

TTIMER

b

CANCEL

,TU
,MIC ,sto, add,

,ERRET=err ,tn add,

name: symbol. Begin name in column 1.

One or more blanks must precede TTIMER.

One or more blanks must follow TTIMER.

Default: TU
Slo, add,: RX-type address, or register (0) or (2) - (12).

err rtn add,: RX-type address, or register (2) - (12).

The parameters are explained below:

CANCEL
specifies that the remaining time interval and exit routine, if any, are to be canceled. If
CANCEL is not designated, the unexpired portion of the time interval remains in effect.

If WAIT was coded in the STIMER macro instruction that established the interval, the task is
not taken out of the wait condition and CANCEL is ignored.

,TU
,MIC ,stor addr

specifies that the remaining time in the interval be returned:

For TU, the time is returned in register 0 as an unsigned 32-bit binary number. The
low-order bit is approximately 26.04166 microseconds (one timer unit).

For MIC, the time is returned in microseconds. The stor addr is the double word area on a
doubleword boundary where the remaining interval is to be stored.

,ERRET -err rtn addr
specifies the address of the routine to be given control when the TTIMER function cannot be
performed because of damaged clocks. If this parameter is omitted, the TTIMER function
would be abnormally terminated.

194 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Example 1

Operation: Cancel the task's current time interval. The time remaining, if any, should be
returned in timer units in register O.

TTIMER CANCEL,TU

TriMER - Test Interval Timer 195

WAIT - Wait for One or More Events

The WAIT macro instruction is used to inform the control program that performance of the
active task cannot continue until one or more specific events, each represented by a different
ECB (event control block), have occurred. Bit 0 and bit 1 of each ECB must be set to 0 before
it is used. The control program takes the following action:

• For each event that has already occurred (each ECB is already posted), the count of the
number of events is decreased by 1.

• If the number of events is 0 by the time the last event control block is checked, control
is returned to the instruction following the WAIT macro instruction.

• If the number of events is not 0 by the time the last ECB is checked, control is not
returned to the issuing program until sufficient ECBs are posted to bring the number to O.
Control is then returned to the instruction following the WAIT macro instruction.

The WAIT macro instruction is written as follows:

name

b

WAIT

b

event nmbr,

ECB=ecb addr
ECBLlST=ecb list addr

,LONG-NO
,LONG-YES

,RELATED-value

name: symbol. Begin name in column 1.

One or more blanks must precede WAIT.

One or more blanks must follow WAIT.

event nmbr: symbol, decimal digit, or register (0) or (2) - (12).
Default: 1
Value range: 0-255

ecb addr: RX-type address, or register (t) or (2) - (12).
ecb list addr: RX-type address, or register (t) or (2) - (t 2).

Default: LONG-NO

value: Any valid macro keyword specification.

The parameters are explained below:

event nmbr,
specifies the number of events waiting to occur.

ECB -ecb addr
ECBLIST -ecb list addr

specifies..-the address oLa fullword on a fullword boundary containing the_address of"anEC-B
.Ql'dRe address of a virtual storage area containing one or more consecutive fullwords on a
full word boundary. Each fullword contains the address of an ECB; the high order bit in the
last fullword must be set to 1 to indicate the end of the list.

The ECB parameter is valid only if the number of events is specified as one or is omitted.
The number of ECBs in the list specified by the ECBLlST form must be equal or greater than
the specified number of events .

• LONG-NO
.LONG-YES

specifies whether the task is entering a long wait (YES) or a regular wait (NO).

196 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

,RELATED - value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format 'and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macro instructions that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on macro
instructions that relate to previous occurrences of the same macro instructions (for example,
CHAP and EST AE).

The parameter may be used, for example, as follows:

GETl GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE')
FREEl FREEMAIN R,LV=4096,A=(1),RELATED=(GET1,'FREE STORAGE')

Caution: A job step with all of its tasks in aWAIT condition is terminated upon expiration of
the time limits that apply to it.

Example: You have previously initiated one or more-activities to be completed asynchronously
to your processing. As each activity was initiated, you set up an ECB in which bits 0 and 1
were set to O. You now wish to suspend you task via the WAIT macro instruction until a
specified number of these activities has been completed.

Completion of each activity must be made known to the system via the POST macro
instruction. POST causes an addressed ECB to be marked complete. If completion of the event
satisfies the requirements of an outstanding WAIT, the waiting task is marked ready and will be
executed when its priority allows.

Example 1

Operation: Wait for one event to occur (with a default count).

WAIT ECB=WAITECB

Example 2

Operation: Wait for 2 events to occur.

WAIT 2, ECBLIST=LISTECBS

LISTECBS

Example 3

DC A(ECB1)
DC A(ECB2)
DC X' 80'
DC AL3 (ECB3)

Operation: Enter a long wait for a task.

WAIT 1,ECBLIST=LISTECBS,LONG=YES

LISTECBS DC A(ECBl)
DC A(ECB2)
DC X' 80'
DC AL3(ECB3)

WAIT - Wait for One or More Events 197

WAIrrR - Wait for One or More Events

The W AITR macro instruction is executed in exactly the same manner as the WAIT macro
instruction. Although the LONG option is not available on the W AITR macro instruction,
W AITR is interpreted as having a long wait.

Note: The W AITR macro instruction is available for compatibility with MFT.

The WAITR macro instruction is written as follows:

name

b

WAITR

b

event nmbr,

ECB=ecb addr
ECBLIST =ecb list addr

name: symbol. Begin name in column 1.

One or more blanks must precede W AITR.

One or more blanks must follow W AITR.

event nmbr: symbol, decimal digit, or register (0) or (2) - (12).
Default: 1
Value range: 0-255

ecb addr: RX-type address, or register (1) or (2) - (12).
ecb list addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained below:

event nmbr,
specifies the number of events waiting to occur.

ECB =ecb addr
ECBLIST =ecb list addr

specifies the address of an ECB or the address of a virtual storage area containing one or
more consecutive fullwords on a fullword boundary. Each fullword contains the address of
an ECB; the high order bit in the last fullword must be set to 1 to indicate the end of the
list.

The ECB parameter is valid only if the number of events is specified as one or is omitted.
The number of ECBs in the list specified by the ECBLIST form must be equal to or greater
than the specified number of events.

Example 1

Operation: Wait for one event to occur (with a default count).

WAITR ECB=WAITECB

Example 2

Operation: Wait for 2 event to occur.

WAITR

LISTECBS

2,ECBLIST=LISTECBS

DC A(ECBl)
DC A(ECB2)
DC X' 80'
DC AL3 (ECB3)

198 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

WTL - Write To Log

The WTL macro instruction causes a message to be written to the system log. The message can
include any character that can be used in a C-type (character) DC statement, and is assembled
as a variable-length record.

The standard form of the WTL macro instruction is written as follows:

name

b

WTL

b

'msg'

name: symbol. Begin name in column 1.

One or more blanks must precede WTL.

One or more blanks must follow WTL.

msg: Up to 126 characters.

The parameters are explained below:

'msg'
specifies the message to be written to the system log. The message must be enclosed in
apostrophes, which will not appear in the system log.

WTL - Write to Log 199

WTIJ (List Fonn)

The list form of the WTL macro instruction is used to construct a control program parameter
list. The message parameter must be provided in the list form of the macro instruction.

The list form of the WTL macro instruction is written as follows:

name

1:>

WTL

1:>

'msg
,MF-L

name: symbol. Begin name in column 1.

One or more blanks must precede WTL.

One or more blanks must follow WTL.

msg: Up to 126 characters.

The parameters are explained under the standard form of the WTL macro instruction, with
the following exceptions:

,MF-L
specifies the list form of the WTL macro instruction.

200 OS/VS2 Supervisor Semces and Macro Instructions (VS2 Release 2)

WTL (Execute Form)

The execute form of the WTL macro instruction uses a remote control program parameter list.
The parameter list can be generated by the list form of WTL. You cannot modify the message
in the execute form.

The execute form of the WTL macro instruction is written as follows:

name

b

WTL

b

MF=(E ,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede WTL.

One or more blanks must follow WTL.

etrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the WTL macro instruction, with
the following exceptions:

MlF-(E ,etrl addr)
specifies the execute form of the WTL macro instruction. This form uses a remote control
program parameter list.

Example 1

OJ~eration: Write a message to the system log.

WTL 'THIS IS THE STANDARD FORMAT FOR THE WTL MACRO'

E:"ample 2

Ojlteration: Write a message constructed in the list form of WTL.

WTL MF= (E, (R2))

WTL (Execute Fonn) 201

wro - Write to Operator

The WTO macro instruction causes a message to be written to one or more operator consoles.

The standard form of the WTO macro instruction is written as follows:

name

b

WTO

b

'msg
('text')
('text', line type)

,ROUTCDE=(route code)

,DESC=(desc code)

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

msg : Up to 124 characters.
The permissable line types and text lengths are shown below:

line type VS2 text
C 34 char
L 70 char
D 70 char
DE 70 char
E

Default: D
Up to 10 occurrences of the second and/or third formats may be
coded.

route code: decimal digit from 1 to 16. The route code is one or
more codes, separated by commas.

desc code: decimal digit from 1 to 16. The desc code is one or
more codes, separated by commas.

The parameters are explained below:

'msg'
("texf)
('text',line type)

specifies the message or multiple-line message to be written to one or more operator
consoles.

The first format is used to write a single-line message to the operator. In the format, the
message must be enclosed in apostrophes, which not appear on the console. It can include
any character that can be used in a character (C-type) DC instruction, except the New Line
control character (punch combination 11-9-5). The message is assembled as a
variable-length record.

The second and third formats are used to write a multiple-line message to the operator. The
message may be up to ten lines long; the system truncates the message at the end of the
tenth line. The ten-line limit does not include the control line (message IEE9321I), as
explained under line type C below.

Note: If the second format is coded without repetition, for example, ('text'), the message will
appear as a single-line message.

The text is one line of the multiple-line message A line consists of a character string
enclosed in apostrophes (the apostrophes do not appear on the operator console). Any
character valid in a C-type DC instruction may be coded except a New Line control
character. The maximum number of characters depends on which line type is specified.

Note: The leftmost three bytes of register zero must be zero for a multiple-line message. The
user must ensure that this is done.

202 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

C

L

D

The line type defines the type of information contained in the 'text' field of each line of the
message:

indicates that the 'text' parameter is the text to be contained in the control line of the
message. The control line normally contains a message title. C may only be coded for the
first line of a multiple-line message. If this parameter is omitted and descriptor code 9 is
coded, the system generates a control line (message IEE932I) containing only a message
identification number. The control line remains static during framing operations on a display
console (provided that the message is displayed in an out-of-line display area). Control lines
are optional.

indicates that the 'text' parameter is a l~belline. Label lines contain message heading
information; they remain static during framing operations on a display console (provided
th.at the message is displayed in an out-of-line display area). Label lines are optional. If
coded, lines must either immediately follow the control line or another label line or be the
first line of the multiple-line message if there is no control line. Only two label lines may be
coded per message.

indicates that the 'text' parameter contains the information to be conveyed to the operator
by the multiple-line message. During framing operations on a display console, the data lines
are paged.

DE

E

indicates that the 'text' parameter contains the last line of information to be passed to the
operator.

indicates that the previous line of text was the last line of text to be passed to the operator.
The 'text' parameter, if any, coded with a line type of E is ignored.

,ROUTCDE=route code
specifies the routing code(s} to be assigned to the message.

The routing codes are:

I Master Console Action
2 Master Console Information
3 Tape Pool
4 Direct Access Pool
5 Tape Library
6 Disk Library
7 Unit Record Pool
8 Teleprocessing Control

9
to
II
12
13
14
15
16

System Security
System Error/Maintenance
Programmer Information
Emulators
Reserved for customer use
Reserved for customer use
Reserved for customer use
Reserved for future expansion

Note: Routing codes 1,2,3,4,7, 8, and 10 cause hard copy of the message when display
consoles are used or more than one console is active. All other routing codes may go to hard
copy as a SYSGEN option or as a result of a VARY HARDCPY command.

,DIESC = (desc code)
specifies the message descriptor code(s} to be assigned to the message.

WTO - Write to Operator 203

The descriptor codes are:

1 System Failure 6 Job Status
2 Immediate Action Required
3 Eventual Action Required

7
8

Application Program/Processor
Out-of-Line Message

4 System Status 9 Operator Request
5 Immediate Command Response 10

11-16
Dynamic Status Displays
Reserved for future use

Note: All WTO messages with descriptor codes of 1 or 2 are action messages. An asterisk is
printed before the first character of an action message to indicate a need for operator
action.

If both the ROUTCDE and DESC parameters are omitted and the message is not a MLWTO

message, the routing code specified in the OLDWTOR parameter of the system generation
SCHEDULR macro instruction is assigned; if the OLDWTOR parameter is omitted, no routing
code is assigned. Routing codes should be used with MLWTO messages. If DESC is specified
with no ROUTCDE a default of zero routing code will be generated.

When control is returned, general register 1 contains the identification number (24 bits and
right-justified) assigned to the message.

Return codes from execution of a WTO using the multiple-line feature are as follows:

Hexadecimal
Code

00
04

08
12

16

20

Meaning
No errors encountered.
Number of lines passed was 0; request is ignored. Number of lines passed was greater
than 10; only 10 lines are processed. Message text length for a line was less than 1; all
lines up to error line are processed.
ID passed in register 0 does not match any on queue. Request is ignored.
Invalid line type. An end has been forced at the point of the error except if the first
line is an E line, in which case the request is ignored.
Request specified routing code 11 (WTP). Request is ignored for routing code 11 but is
processed for other routing codes if specified.
ML WTO request to hard copy only. Request is ignored.

Note: No return codes are issued by the WTO service routine if the MLWTO feature is not
used.

204 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

WTO (List][fonn)

Thle list form of the WTO macro instruction is used to construct a control program parameter
list.

The list form of the WTO macro instruction is written as follows:

name

b

WTO

b

'msg'
('text')
('text', line type)

,ROUTCDE=:(route code)

,DESC-{desc code)

,MF-L

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

msg: Up to 124 characters
The permissable line types and text lengths are shown below:

line type VS2 text
C 34 char
L 70 char
D 70 char
DE 70 char
E

Default: D
Up to 10 occurrences of the second and/or third formats may be
coded.

route code: decimal digit from 1 to 16. The route code is one or
more codes, separated by commas.

desc code: decimal digit from 1 to 16. The desc code is one or
more codes, separated by commas.

The parameters are explained under the standard form of the WTO macro instruction, with
the following exceptions:

.MF-L
specifies the list form of the WTO macro instruction.

wrO(Ust Form) 105

WT() (Execute Form)

The execute form of the WTO macro instruction uses a remote control program parameter list.
The parameter list can be generated by the list form of WTO. The message cannot be modified
in the execute form of the macro instruction.

The execute form of the WTO macro instruction is written as follows:

name

b

WTO

b

MF=(E ,etrl addr)

name: symbol. Begin in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

etrl addr: RX-type address, or register (I) or (2) - (t 2).

The parameters are explained under the standard form of the WTO macro instruction, with
the following exceptions:

MF - (E ,ctrl addr)
specifies the execute form of the WTO macro instruction using a remote control program
parameter list.

Example 1

Operation: Write a WTO message to all active consoles.

WTO 'NDP00005 ENDED',ROUTCDE=
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

Example 2

Operation: Write a message with a pre-built parameter list pointed to by register 1.

WTO MF=(E,(1))

106 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

WTOR - Write to Operator with Reply

The WTOR macro instruction causes a message requiring a reply to be written to one or more
operator consoles and the system log. The macro instruction also provides the information
required by the control program to return the reply to the issuing program.

The standard form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

'msg'

,reply addr

,reply length

,ecb addr

,ROUTCDE=(route code)

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

msg: Up to 121 characters.

reply addr: A-type address, or register (2) - (12).

reply length: symbol, decimal digit, or register (2) - (12). The
minimum length is 1: the maximum length is 115 when the
operator enters REPLY id, 'reply' and 119 when the operator
enters Rid, 'reply'.

ecb addr: A-type address, or register (2) - (12).

route code: decimal digit from 1 to 16. The route code is one or
more codes, separated by commas.

The parameters are explained below:

'msg'
specifies the message to be written to the operator's console. The message must be enclosed
in apostrophes, which will not appear on the console. It can include any character that can
be used in a character (C-type) DC instruction, except the New Line control character
(punch combination 11-9-5). The message is assembled as a variable-length record.

Note: All WTOR messages are action messages. An indicator is printed before the first
character of an action message to indicate a need for operator action.

,reply addr
specifies the address in virtual storage of the area into which the control program is to place
the reply. The reply is left-justified at this address.

,reply length
specifies the length, in bytes, of the reply message.

,ecb addr
specifies the address of the event control block (ECB) to be used by the control program to
indicate the completion of the reply.

,ROUTCDE=(route code)
specifies the routing code(s) to be assigned to the message.

WTOR - Write to Operator With Reply 207

The routing codes are:

1 Master Console Action
2 Master Console Information
3 Tape Pool
4 Direct Access Pool
5 Tape Library
6 Disk Library
7 Unit Record Pool
8 Teleprocessing Control

9
10
11
12
13
14
15
16

System Security
System Error/Maintenance
Programmer Information
Emulators
Reserved for customer use
Reserved for customer use
Reserved for customer use
Reserved for future expansion

When control is returned, general register 1 contains the identification number (24 bits and
right-justified) assigned to the message.

Ignored Parameters
The parameter DESC==(desc code) is meaningless if coded in Release 2 of os/vs2 since all
WTOR messages are assigned descriptor codes of 7 (application program/processor).

108 OS/VS1 Supenisor Services and Macro instructions (VS1 Release 1)

WTOR (List Form)

The list form of the WTOR macro instruction is used to construct a control program parameter
list. The message parameter must be provided in the list form.

The list form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

'msg'

,reply addr

,reply length

,eeb addr

,ROUTCDE==(route code)

. MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must fonow WTOR.

msg: Up to 121 characters.

reply addr: A-type address.

reply length: symbol or decimal digit. The minimum length is 1;
the maximum length is t t 5 when the operator enters REPLY id,
'reply' and t 19 when the operator enters Rid, 'reply'.

ecb addr: A-type address.

route code: decimal digit from 1 to 16. The route code is one or
more codes, separated by commas .

The parameters are explained under the standard form of the WTOR macro instruction, with
the following exceptions:

.MF-L
specifies the list form of the WTOR macro instruction.

WTOR (List Fonn) 209

WTOR (Execute Form)

The execute form of the WTOR macro instruction uses a remote control program parameter
list. The parameter list can be generated by the list form of WTOR.

The execute form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

,reply addr

,
,reply length

,
,ecb addr

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

reply addr: RX-type address, or register (2) - (12).

reply length: symbol, decimal digit, or register (2) - (12). The
minimum length is 1; the maximum length is 115 when the
operator enters REPLY id, 'reply' and 119 when the operator
enters Rid, 'reply'.

ecb addr: RX-type address, or register (2) - (12).

,MF=(E ,ctrl addr) cfrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the WTOR macro instruction, with
the following exceptions:

,MF == (E ,ctrl addr)
specifies the execute form of the WTOR macro instruction using a remote control program
parameter list. The parameter list must be aligned on a fullword boundary. The list form of
WTOR provides this alignment.

Example 1

Operation: Write a WTOR message to all active consoles.

WTOR 'THIS IS WTOR NUMBER 001 ',REPLY, 18,ECB1,
ROUTCDE= (1 , 2 , 3,4, 5, 6, 7 ,8,9, 10, 1 1 , 1 2 , 1 3, 14, 1 5 , 16)

210 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

XCTL - Pass Control to a Program in Another Load Module

. The XCTL macro instruction causes control to be passed to a specified entry name in another
load module; the entry name must be a member name or an alias in a directory of a
partitioned data set. The load module containing the entry name is brought into storage if a
usable copy is not available. The storage occupied by the load module that issued the XCTL is
eligible for reassignment by the control program is no other requirement exists for that load
module. The program executing the XCTL macro instruction is logically removed from the
active task, and the program gaining control is established as a subprogram of the program
(system or user) that placed the issuer of XCTL into execution.

No return is made to the program issuing the XCTL macro instruction; the use count for the
load module containing the XCTL macro instruction is lowered by 1. A return to the program
that placed the issuer of XCTL into execution is required for successful completion of the task.
For this reason, registers 2 through 14, the program interruption control area, and the program
mask must be restored to the conditions that existed when the load module received control
before the XCTL macro instruction can be issued. If the specified entry cannot be located, the
task is abnormally terminated.

The standard form of the XCTL macroinstruction is written as follows:

name

t)

XCTL

t>

(regJ),
(reg 1,reg2),

EP=entry name
EPLOC=entry name addr
DE=list entry addr

,DCB=deb addr

name: symbol. Begin name in column I.

One or more blanks must precede XCTL.

One or more blanks must follow XCTL.

reg 1 and reg2: decimal digits or A-type addresses, and in the
order 2 through 12.

entry name: symbol.
entry name addr: A-type address or register (2) - (12).
list entry addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

The parameters are explained below:

(regJ),
(regl,reg2),

specifies the register or range of registers to be restored from the save area at the address
contained in register 13.

EP =entry name
EPLOC =entry name addr
DE = list entry addr

specifies the entry name, the address of the entry name, or the address of a 60-byte list
entry for the entry name that was constructed using the BLDL macro instruction. If EPLOC
is coded, the name must be padded to eight bytes, if necessary.

XCTL - Pass Control to a Program in Another Load Module 211

,DeB -deb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above. This parameter must indicate the same DCB used in the BLDL

mentioned above. The DCB must not be defined in the program issuing the XCTL macro
instruction.

If the DCB parameter is omitted or if DCB=O is specified when the XCTL macro instruction
is issued by the job step task, the data sets referred to by either the STEPLIB or JOBLIB D
statement are first searched for the entry name. If the entry name is not found, the link
library is searched.

If the DCB parameter is omitted or if DCB=O is specified when the XCTL macro instruction
is issued by a subtask, the data sets associated with one or more data control blocks
referred to be previous A TT ACH macro instructions in the sub tasking chain are first
searched for the entry point name. If the entry point name is not found, the search is
continued as if the XCTL had been issued by the job step task.

212 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

XCTL (List Form)

Two parameter lists are used in an XCTL macro instruction: a control program parameter list
and an optional problem program parameter list. Only the control program parameter list can
be constructed in the list form of XCTL. Address parameters to be passed in a parameter list to
the problem program can be provided using the list form of the CALL macro instruction. This
parameter list can be referred to in the execute form of XCTL.

The list form of the XCTL macro instruction is written as follows:

name

b

XCTL

b

EP=entry name,
EPLOC=entry name addr,
DE-list entry addr,

DCB-deb addr,

Sf .. L

name: symbol. Begin name in column 1.

One or more blanks must precede XCTL.

One or more blanks must follow XCTL.

entry name: symbol.
entry name addr: A-type addresses.
list entry addr: A-type address.

deb addr: A-type address.

The parameters are explained under the standard form of the XCTL macro instruction, with
the following exceptions:

SF-L
specifies the list form of the XCTL macro instruction.

XCTL (List Fonn) 213

XCT'L (Execute Form)

Two parameter lists are used in the XCTL macro instruction: a control program parameter list
and problem program parameter list. Either or both of these parameter lists can be remote and
can be referred to, and modified by, the execute form of XCTL. If only the problem program
parameter list is remote, parameters that require the control program parameter list cause that
list to be constructed inline as part of the macro expansion. If only the control. program
parameter list is remote, no problem program parameters can be specified.

The execute form of the XCTL macro instruction is written as follows:

name

b

XCTL

b

(reg I),
(regi,reg2),

EP=entry name,
EPLOC=entry name addr,
DE=list entry addr,

DCB=dcb addr,

PARAM=(addr),
PARAM=(addr),VL= 1,

MF=(E ,prob addr)
SF=(E ,ctr! addr)
MF=(E ,prob addr),SF =: (E ,ctr! addr)

name: symbol. Begin name in column 1.

One or more blanks must precede XCTL.

One or more blanks must follow XCTL.

reg} and reg2: decimal digits or RX-type addresses, and in the
order 2 through 12 .•

entry name: symbol.
entry name addr: RX-type address or registers (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

dcb addr: RX-type address, or register (2) - (12).

addr: RX-type address, or register (2) - (12).
addr is one or more addresses, separated by commas. For
example, PARAM=(addr,addr,addr)

prob addr: RX-type address, or register (1) or (2) - (12).
ctr! addr: RX-type address, or register (2) - (12) or (15).

The parameters are explained under the standard form of the XCTL macro instruction, with
the following exceptions:

,P ARAM = (addr)
,PARAM=(addr),VL= 1

specifies address(es) to be, passed to the called program. Each address is expanded inline to
a fullword on a fullword boundary, in the order designated. Register 1 contains the address
of the first parameter when the program is given control. (If this parameter is not coded,
register 1 is not altered.)

VL= 1 should be designated only if the called program can be passed a variable number of
parameters. VL= 1 causes the high-order bit of the last address parameter to be set to 1;
the bit can be checked to find the end of the list.

,MF = (E ,prob addr)
,SF=(E ,etrl addr)
,MF= (E ,prob addr),SF = (E ,etrl addr)

specifies the execute form of the XCTL macro instruction. This form uses a remote problem
program parameter list, a remote control program parameter list, or both.

214 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Example 1

Operation: Pass control via the address of the entry name (XCTLEP), and have registers 2-12
restored. Let the system determine the copy of the module to be used.

XCTL (2 , 1 2) , EPLOC=XCTLEP

XCTL (Execute Form) 215

216 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

Where more than one page reference is given, the
major reference is first.

Indexes to systems reference library manuals are
consolidated in the OS/VS2 Master Index,
GC28-0663. For additional information about any
subject in this index, refer to other publications
listed for the same subject in the Master Index.

A parameter
FREEMAIN macro instruction 140
GETMAIN macro instruction 144
PGLOAD macro instruction 158
PGOUT macro instruction 161

A-type address
meaning 89

ABEND dump 62
ABEND macro instruction 95-96

use of 57-58,62
abnormal condition handling 56·5g
abnormal termination 56-58
abnormally terminate a task (ABEND) 95-96
active task 22
add an entry name (IDENTIFY) 150-151
additional entry points 42-43
address space 21

priority 21
alias name

in ATTACH 97
in LINK 152
in LOAD 156
in XCTL 211

allocate virtual storage (GETMAIN) 144-149
application program/processor descriptor code 204
ASYNCH paraml!ter

ATTACH macro instruction 100
ESTAE macro instruction 133

ATT ACH macro instruction 97-104
with ABEND 95
with CALL 107
with DETACH 119
execute form 103-104
with IDENTIIFY 150
list form 102
standard form 97~ 101
use of 21-24

auxiliary storage manager 71

BAL instruction 105~ 152
base register 17
BIN parameter 192
BINTVL param~:ter 190
BLDL macro instruction

with ATTACH 98
with LINK 152
with LOAD 156
use of 35,38

BNDRY parameter 145
bring a load module into virtual storage (LOAD) 156-157
BSAM

with SNAP 177

CALL macro instruction 105-108
execute form 108
list form 107
standard form 105-106
use of 29,39

called program 15
calling program 1 5
CANCEL parameter 1944
cathode ray tube display 84
change dispatching priority (CHAP) 109-110
change subtask status (STATUS) 187-188
CHAP macro instruction 109-110

use of 22-23
CHNGDUMP command 62
code

descriptor 82
routing 82

coding the macro instructions 88-89
communications

subtask 23
task 23

compatibility 90-91
COMPCOD parameter 176
continuation lines 89
conventions

linkage 15-19
system 26

count, responsibility 70
create a new task (ATTACH) 97-104
CRT display 84
CT parameter 132

date 75
DCB macro instruction

with SNAP 177
DCB parameter

A TT ACH macro instruction 98
LINK macro instruction 153
LOAD macro instruction 157
SNAP macro instruction 178
XCTL macro instruction 212

DE parameter
A TT ACH macro instruction 98
DELETE macro instruction I I 1
LINK macro instruction 152
LOAD macro instruction 156
XCTL macro instruction 211

DEC parameter 192
decimal digit

meaning 88
default

meaning 89
DELETE macro instruction 111-112

with LOAD 156
responsibility count with 70
use of 70

delete operator message (DOM) 121-122
DEQ macro instruction 113-118

and ENQ 124
execute form 117
list form 116
standard form 113-115
use of 46-51

DESC parameter
WTO macro instruction 203
WTOR macro instruction 20R

Index

Index 217

descriptor codes 204,82
detach a task (DETACH) 119-120
DETACH macro instruction 119-120

with ATTACH 97
use of 24

DIDOeS
and DOM 121

DINTVL parameter 190
direct access pool routing code 203,208
disk library routing code 203,208
dispatching priority

address space 21
and ATTACH 97
and CHAP 109
subtask 22
task 22

divide extended register (DXR) 123
DOM macro instruction 121-122

use of 84
DPMOD parameter 99
DPRTY parameter 22
dump

ABEND 62
SNAP 62

DUMP parameter
ABEND macro instruction 96
SETRP macro instruction 175

dump virtual storage and continue (SNAP) 177-182
DUMPOPT parameter

ABEND macro instruction 96
SETRP macro instruction 175

duplicate: names 21
DXR macro instruction 123

use of 76-77
dynamic status displays descriptor code 204
dynamic structure 25

E parameter
ENQ macro instruction 125
FREE MAIN macro instruction 139

EA parameter
PGLOAD macro instruction 158
PGOUT macro instruction 161

EC parameter
FREEMAIN macro instruction 139
GETMAIN macro instruction 144

ECB parameter
ATTACH macro instruction 99
PGLOAD macro instruction 158
WAIT macro instruction 196
W AITR macro instruction 198

ECBIND parameter 159
ECBLIST parameter

WAIT macro instruction 196
W AITR macro instruction 198

emulator routing code 203,208
ENQ macro instruction 124-131

and DEQ 124
execute form 130
list form 129
standard form 124-128
use of 46-51

ENTR Y instruction 26,28
ENTRY parameter 150
EP parameter

ATTACH macro instruction 98
DELETE macro instruction 111
IDENTIFY macro instruction 150
LINK macro instruction 152
LOAD macro instruction 156
XCTL macro instruction 211

EPLOC parameter
ATT ACH macro instruction 98
DELETE macro instruction 111
IDENTIFY macro instruction 150
LINK macro instruction 152
LOAD macro instruction 156
XCTL'macro instruction 211

ERRET parameter
. LINK macro instruction 153
LOAD macro instruction 157
STIMER macro instruction 190
TIME macro instruction 192
TTIMER macro instruction 194

ESTAE macro instruction 132-137
execute form 136
list form 135
standard form 132-134
use of 58-61

EST AE routines 58-61
EST AI parameter 100
EST AI routines 60-61
ETXR parameter 99
EU parameter

FREE MAIN macro instruction 139
GETMAIN macro instruction 144

event control block 45
with ABEND 95
with ATTACH 97
with POST 167
with WAIT 196

EVENTS macro instruction 138-140.4
ECB 139
ENTRIES 138
ENTRIES=DEL,TABLE 138
TABLE 138
WAIT 139

eventual action required descriptor code 204
examples

ABEND 96
ATTACH 104
CALL 108
CHAP 110
DELETE 112
DEQ 117-118
DETACH 120
DOM 122
DXR 123
ENQ 130-131
ESTAE 137
EVENTS 140.3
FREEMAIN 142-143
GETMAIN 148-149
IDENTIFY 151
LINK 155
LOAD 157
PGLOAD 160
PGOUT 163
PGRLSE 166
POST 168
RETURN 169
SAVE 171
SEGLD 172
SEGWT 173
SETRP 176
SNAP 182
SPIE 186
STATUS 188
STIMER 191
TIME 193
TTIMER 195
WAIT 197
WAITR 198

218 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

WTL 201
WTO 206
WTOR 210
XCTL 215

exclusive requests 46-47

Index 218.1

218.2 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 3)

EXEC statement
DPRTY parameter 22
PARM field 15-16
with STIMER 191

execute form of macro instruction
use of 87,68-69

execution
parallel 25
serial 25

exit routines
asynchronous

with CALL '105
with IDENTIFY 150
with SEGWT 173

end-of-task
with ABEND 95
with A TT ACH 97
with EST AE 132
with SETRP 174
with SPIE 183

extended ST AE (EST AE) 132-137
extended-precision floating-point simulation 76-81

frame, page 71
free virtual storage (FREEMAIN) 138-143
FREEMAIN macro instruction 138-143

execute form 142
and GETMAIN 144
list form 141
similar to PGRLSE 164
standard form 13 8-140
use of 63-68

FRESDW A parameter 176

GETMAIN macro instruction 144-149
execute form 148
and FREEMAIN 138
list form 147
similar to PGRLSE 164
standard form 144-146
use of 63-68

GMT parameter 190
graphic display 121
Greenwich Mean Time 75
GSPL parameter 100
GSPY parameter 100
GTRACE macro instruction <.see OS/VS2 System

Programming Library: Service Aids, GC28-0674)

HA parameter 164
hardcopy log 82

ICTL instruction 87
ID parameter

CALL macro instruction 106
LINK macro instruction 153
SNAP macro instruction 178

IDENTIFY macro instruction 150-151
use of 42-43

IEAXPSIM 77
IHASDWA mapping macro 174
immediate action required descriptor code 204
immediate command response descriptor code 204
interlock condition 49-51
interruption, termination, and dumping services 53-62
interruptions, program 53

interval timer
set 189-191
test 194-195

interval timing 75-76

job library 32
JOB statement, with CHAP 109
job status descriptor code 204
job step 21
job step task 21

KEEPREL parameter 161

L parameter
FREEMAIN macro instruction 139
PGLOAD macro instruction 160
PGOUT macro instruction 163

LA parameter
FREEMAIN macro instruction 139
GETMAIN macro instruction 144
PGLOAD macro instruction 160
PGOUT macro instruction 163
PGRLSE macro instruction 164

LC parameter
FREEMAIN macro instruction 139
GETMAIN macro instruction 144

libraries
job 32
link 32
private 33
step 32
task 33

limit priority
subtask 22
task 22

LINK macro instruction 152-155
with CALL 107
execute form 155
with IDENTIFY 150
list form 154
responsibility count with 37
standard form 1 52-1 53
use of 37-38

link library 32
linkage conventions 15-19
linkage registers 15-16
list form of macro instruction

use of 87,68-69
LIST parameter 178
LOAD macro instruction 156-157

and DELETE III
and IDENTIFY 150
responsibility count with 156
use of 36-37

load module
bringing into virtual storage 32-37
characteristics 25
structures 25

load overlay segment and continue processing (SEGLD)
172

load overlay segment and wait (SEGWT) 173
load virtual storage areas into real storage (PGLOAO)

158-160
log

hard copy 82
system 83
with WTL 83,199
with WTOR 207

LONG parameter 196

Index 219

LPMOD parameter 99
LU parameter

FREE MAIN macro instruction 139
GETMAIN macro instruction 144

L V parameter ~
FREEMAIN macro instruction 139
GETMAIN macro instruction 144

macro instruction forms 87
macro instructions 85-215

ABEND 95-96
ATTACH 97-104
CALL 105-108
CHAP 109-110
DCB 177
DELETE 111-112
DEQ 113-118
DETACH 119-120
DOM 121-122
DXR 123
ENQ 124-131
ESTAE 132-137
FREEMAIN 138-143
GETMAIN 144-149
GTRACE (see OS!VS2 System Programming Library:

Service Aids, GC28-0674)
IDENTIFY 150-151
LINK 152-155
LOAD 156-157
PGLOAD 158-160
PGOUT 161-163
PGRLSE 164-166
POST 167-168
RETURN 169
SAVE 170-171
SEGLD 172
SEGWT 173
SETRP 174-176
SNAP 177-182
SPIE 183-186
STAE 132
STATUS 187-188
STIMER 189-191
TIME 192-193
TTIMER 194-195
WAIT 196-197
WAITR 198
WTL 199-201
WTO 202-206
WTOR 207-210
XCTL 211-215

master console action routing code 203.208
master console information routing code 203.208
MCS

with DOM 121
messages

action
with WTO 82-83
with WTOR 82-83

deletion 84
routing 82
to log 83
to operator

with DOM 84
with reply 82-83
with WTL 83
with WTO 82-83
with WTOR 82-83

to programmer'
with DOM 84
with WTL 83

with WTO 83
with WTOR 83

MF parameter
A TT ACH macro instruction 104
CALL macro instruction 107.108
DEQ macro instruction 116,117
ENQ macro instruction 129.130
ESTAE macro instruction 135,136
FREEMAIN macro instruction 141,142
G ETMAIN macro instruction 147,148
LINK macro instruction 155
PGRLSE macro instruction 165,166
SNAP macro instruction 179,181
SPIE macro instruction 185.186
WTL macro instruction 200,201
WTO macro instruction 205,206
WTOR macro instruction 209,210
X CTL macro instruction 214

MIC parameter
TIME macro instruction 192
TTl MER macro instruction 194

MICVL parameter 190
miscellaneous services 75-84
module

reenterable 68
serially reusable 36

MSG parameter 121
MSGLIST parameter 121
multiple-line WTO messages 82

nonreenterable load modules 69

old program status word (OPSW) 55
operator communication

via DOM 84
with timing services 75-76
via WTL 83
via WTO 82-83
via WTOR 82-83

operator request descriptor code 204
originating task 21.97
out-of-line message descriptor code 204
OV parameter 132
overlay segment

with CALL 105
with SEGLD 172
with SEGWT 173

page frame 71
page out virtual storage areas from real storage (PGOUT)

161-163
page-ahead function 72
parallel execution 25
PARAM parameter

A TT ACH macro instruction 99
EST AE macro instruction 133
LINK macro instruction 153
XCTL macro instruction 214

PARM field 15-16
pass control to a control section (CALL> 105-108
pass control to a program in another load module

LINK 152-155
XCTL 211-215

passing control
called program 18-19
calling program 19
conventions 18-19
in a dynamic structure 32-41
in a simple structure 26-32

220 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

PDAT A parameter 178
PGLOAD macro instruction 158-160

and PGOUT 161
list form 160
standard form 158-159
use of 72

PGOUT macro instruction 161-163
list form 163
standard form 161-162
.use of 72

PGRLSE macro instruction 164-166
execute form 166
list form 16~
standard form 164
use of 71-72

planned overlay structure 25
POINT instruction 68
POST macro instruction 167-168

use of 45
priority

address space 21-22
assigning 22
changing 22
dispatching 21·22
limit 21-22
subtask 22
task 22

private library 33
program interruption control area (PICA) 53-54
program interuption element (PIE) 54-55
program interruptions

with SPIE 53
program management 25-44
programmer information routing code 203,208
programmer message

with WTO 83
with WTOR 83

provide time and date (TIME) 192-193
PURGE parameter

ATT ACH macro instruction 100
EST AE macro instruction 133

R parameter
FREEMAIN macro instruction 139
GETMAIN macro instruction 144
PGLOAD macro instruction 158
PGO UT macro instruction 161

RC parameter
FREEMAIN macro instruction 139
GETMAIN macro instruction 144
RETURN macro instruction 169
SETRP macro instruction 175

REAL parameter 189
real storage management 71-73
real storage manager 71
reenterable

load modules 68
macro instructions 68

register (0)
meaning 88

register (1)
meaning 89

register (2) - (12)
meaning 88

register update block (RUB)
with SETRP 175-176

registers
base 17
calling program 16
general 15
linkage 15-1 6

parameter 15
restoring 18
saving 16-17

REGS parameter 175
RELATED parameter

ATTACH macro instruction 101
CHAP macro instruction 109
DELETE macro instruction 111
DEQ macro instruction 114
DET ACH macro instruction 119
ENQ macro instruction 127
EST AE macro instruction 134
FREEMAIN macro instruction 140
GETMAIN macro instruction 146
LOAD macro instruction 157
POST macro instruction 167
ST A TUS macro instruction 187
WAIT macro instruction 197

release a serially reusable resource (DEQ) 113-118
RELEASE parameter 158
release virtual storage contents (PGRLSE) 164-166
relinquish control of a load module (DELETE) 111-112
REPLY parameter 121
request control of a serially reusable resource (ENQ)

124-13 1
resource control 45-51
resources

getting control of 46-47
naming 46
serially reusable 45-51
use of 45-51

responsibility count 70
with LINK 37
with LOAD 36
with XCTL 37

RET parameter
DEQ macro instruction 114
ENQ macro instruction 126

RETADDR parameter 175
RETREGS parameter 175
retry routines, EST AE/EST AI 60-61
return codes

ATTACH macro instruction 101
DELETE macro instruction 112
DEQ macro instruction 114-115
DET ACH macro instruction 120
ENQ macro instruction 127-128
EST AE macro instruction 134
FREEMAIN macro instruction 140
GETMAIN macro instruction 146
IDENTIFY macro instruction 150
PGLOAD macro instruction 158-159
PGOUT macro instruction 161-162
PGRLSE macro instruction 164
SNAP macro instruction 179
WTO macro instruction 204

return control (RETURN) 169
RETURN macro instruction 169

use of 30,32
ROUTCDE parameter

WTO macro instruction 203
WTOR macro instruction 207

'routing codes 203,82
RU parameter

FREEMAIN macro instruction 139
GETMAIN macro instruction 144

RUB (register update block) 175-176
RUB parameter 175
RX-type address

meaning 89

Index 221

S parameter
CHAP macro instruction 109
ENQ macro instruction 125

save area
chaining 18
providing 17

SAVE macro instruction 170-171
use of 16-19,43

save register contents (SAVE) 170-171
SDA TA parameter 178
SDWA (system diagnastic work area) 59-61
SEGLD macro instruction 172
SEGWT macro instruction 173
serial execution 25
serially reusable module 36
serially reusable resource 45-61
services 11-84
set interval timer (STIMER) 189-191
set return parameters (SETRP) 174-176
SETRP macro instruction 174-176

use of 59
SF parameter

ATTACH macro instruction 102,104
LINK. macro instruction 154,155
XCTL macro instruction 213,214

shared requests 46-47
shared subpools 66-67
SHSPL parameter 100
SHSPV parameter 100
signal event completion (POST) 167-168
simple structure 25
single-line WTO message 82
SNAP dump 62
SNAP macro instruction 177-182

execute form 181-182
list form 180
standard form 177-179
use of 62

SP parameter
FREEMAIN macro instruction 140
GETMAIN macro instruction 145

specify program interruption exit (SPIE) 183-186
SPIE macro instruction 183-186

with DXR 123
execute form 186
list form 185
standard form 183-184
use of 53-55

ST AE macro instruction
and EST AE 132

ST AE parameter 119
ST AI parameter 100
START parameter 187
ST A TUS macro instruction 187-188
STCK parameter 192
step library 32
STEP parameter

ABEND macro instruction 96
DEQ macro instruction 114
ENQ macro instruction 126

STIMER macro instruction 189-191
with TTIMER 194
use of 75-76

STM instruction 16
STOP parameter 187
STORAGE parameter 178
structure

dynamic 25
planned overlay 25
simple 25

subpool handling 65-68

subtask 21
creating with A TT ACH 97
deleting with DETACH 119
priority 21

subtask creation and control 21-24
symbol

meaning 88
SYNCH parameter 187
system diagnostic work area (SDWA) 59-61

with EST AE 59-60
with SETRP 61

system error/maintenance routing code 203,208
system failure descriptor code 204
system log 83

with WTL 83
with WTOR 82

SYSTEM parameter
ABEND macro instruction 96
DEQ macro instruction 114
ENQ macro instruction 126

system security routing code 203,208
system status descriptor code 204
SYSTEMS parameter

DEQ macro instruction 114
ENQ macro instruction 126

SZERO parameter 100

T parameter
RETURN macro instruction 169
SAVE macro instruction 170

tape library routing code 203,208
tape pool routing code 203,208
task 21

creating 21
levels of 23
library 33
originating 21
priority 21
subtask 21
synchronization 45-51

task ownership of subpool 66-67
TASK parameter 189
T ASKLIB parameter 100
TCB parameter

SNAP macro instruction 178,182
STATUS macro instruction 187

teleprocessing control routing code 203,208
TERM parameter

ATTACH macro instruction 101
EST AE macro instruction 134

termination, abnormal 56-58
test interval timer (TTIMER) 194-195
TIME macro instruction 192-193

use of 75
time-of-day 75
time-of-day (TOD) clock 75
timer

get time and date 192-193
set timer 189-191
test timer 194-195

TaD parameter 190
transferring subpool ownership 67
TTIMER macro instruction 194-195

use of 75-76
TU parameter

TIME macro instruction 192
TTIMER macro instruction 194

TUINTVL parameter 190

222 OS/VS2 Supervisor Services and Macro Instructions (VS2 Release 2)

unit record pool routing code 203,208
USER parameter 96

V parameter 139
V -type address constant 28
VC parameter

FREEMAIN macro instruction 139
GETMAIN macro instruction 144

virtual storage 63
allocation 144-149
loading areas of 158-160
management, of 63-70
rei ease 164-166
requests for

explicit 63-68
implicit 68-70

virtual storage management 63-70
virtual subarea list 72-73
VL parameter

A TT ACH macro instruction 99
CALL macro instruction 105
LINK macro instruction 153
XCTL macro instruction 214

VU parameter
FREEMAIN macro instruction 139
GETMAIN macro instruction 144

wait condition
from ENQ 124
from STIMER 189
from WAIT 196

wait for one or more events
WAIT 196-197
WAITR 198

WAIT macro instruction 196-197
and POST 167
use of 45

WAIT parameter 189
W AITR macro instruction 198
WKAREA parameter 175
write to log (WTL) 199-201
write to operator

with DOM 121-122
with WTL 199-201
with WTO 202-206
with WTOR 207-210

write to operator (WTO) 202-206
write to operator with reply (WTOR) 207-210
write to programmer

with WTO 202-206
with WTOR 207-210

WTL macro instruction 199-20 I
execute form 201
list form 200
standard form 199
use of 83

WTO macro instruction 202-206
with DOM 121
execute form 206
list form 205
standard form 202-204
use of 82-83

WTOR"macro instruction 207-210
with DOM 121
execute form 210
list form 209
standard form 207-208
use of 82-83

XCTL macro instruction 211-215
execute form 214
with IDENTIFY 150
list form 213
responsibility count with 41
standard form 211-212
use of 40-41

XCTL parameter 133

ZONE parameter 193

Index 223

3C28-0683-1

~rnoo
f)

,ternatlonal Bualneaa Machlnea Corporation
ala Proceulng DlYlalon
133 Weatcheater Avenue, White Plalna, New York 10804
'.S.A. only)

1M World Trade Corporation
t1 United Natlona Plaza, New York, New York 10017
IIternatlonal)

o
en -< en
I\J

en c:
i
:2
(i;'
o
~

:::l
CIl
r-+

2
(')
d,
o
:::l
CIl

C)
("')
I\J
00
6
0')
00
~

OS/VS2 Supervisor Services and Macro Instructions

GC28-0683-1

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to rt~quest system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

Are the tables used to describe the macro instructions in this publication
an improvement over the brackets and braces syntax?

What is your occupation? ___ _
Number of latest Technical Newsletter (if any) concerning this publication: _____ ~ ______ _
Please indicate in the space below if you wish a reply.

Thank YOlLl for your cooperation. No postage stamp necessary if mailed in the U.S.A. Elsewhere, an
IBM office or representative will be happy to forward your comments.

READER'S
COMMENT
FORM

GC28-0683-'

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

o
S.
Q
."
o a:
~

0'
::J
OIl

r-
:i'
II

I
Fold Fold

-'- - --- - -- - ---~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class
Permit 81
Poughkeepsie
New York

I
I
I
I

I
I
I
I
I
I
I
I
I

----------------~
Fold

llrnlli!
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trude Corporation
821 United Nlltlons Plaza, New York, New York 10017
(International)

Fold

o
$;Q
< en
t\J
en
c:
i
~

<
Vi'
o
~

:::::l
(I) ,....
~ c:
n
d.
o
:::::l
(I)

-c
:::!.
:::::l ,....
CD
a.
:::::l

C
en
l>

*

OS/VS2 Supervisor Services and Macro Instructions

G C28·Q.683·1

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests. please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

I' 0Ij e 21)"} ~e .g: c."'~"j'; "\Ii ,. ... ~I" t.:. • \I i rt>. ... 1" ., I .,'
rA')! ,1) ~~Q t: 0."3" ItOSe-c..T"af\o\ "ENTRY"""'Lti SAVE
M4 3GJ ei~t 1~: J~~ cc GOP1. U)J 'I. . ,\

READER'S
COMMENT
FORM

to.je 31 Q.;tt-t tt: ~" II lS re.i,<)tet 13 i..o '~~JlSiev 13
ralje 19,J, ,li'lt -1: ~04\)I! "l1u! t;rs4 II -b Cfn.{' Scco .. J n (41 c.l'l4"j(r:, ... it z. a ?]
.pct~~ 3 C).1 Q.Al\e b : ~,"nj.c It to R!ji ~i~W" 0 U -b COl i ... te:J,J-er 0 It

?a.~ ~() '" i.:.-"'-t -11: (.t,.a.h1~ Ct see",)J it> u~ II
f"j-e 1'1bJ iL\,,-t.1 '-',wl'o: ~~ (6"(8 =ec.b 4<lJ/ is S~ih.'.eJ J 'ed, a.clJ, J is ti..c? 4d.Jrcr;

taf 411 GVQht G.O~ ~~ ~(c)J:J ~ ~c...t ~ ~ &UClJOyJ CD .. \Jai"/~S ~
A,l~"e~J 6f ~'" ec.'. '1~k. l,4"-t cC)~~wA. rk~s "'-Ji-K ~ Q(~f ~~;o..,.
LW6t-e. ~~ 6c~k-.p-t ! dOff ,",'t re4tJ, e.)fpJ4i~ !;<hCilC.L. ~~fL.., .J

t~fO""'~i)tA.t '0 '\.1..t dJU''''~t\~~ c.\f K.Q., Rt'LA-TE 0 p4"'ct~ ~ S\'".-QJ ~ ,; ~ 6k'-(

~~ ~" ~ cui."" t. p~~ [~".'~ ptl>< x'l2111 k... ~(.~ ~
a.Hl5W'1oo.j ~S ,,;('4....J:e,. IF '10't ... --sf ~ :t 6~ ,'-<II ~~ oft ftvt
\A$ot, ~ ~~ k-\4C1\A,S ~4~ ~'M ~s~~ ~ ~",JrIN IFffEe/'lVlIN!

Are the tables used to describe the macro instructions in this publication
an improvement ~ver the brackets and br~ces stntax? J' J ~J

-1 Nb.i I ~ oj t1. ... old hO\-..l-io" e.']. j ... 4~~.b'4.& . Q4~I.(bI" ~ .. s :.i
1 CA~t teo,l c.J~~i i) 6pbi~ntJ ,,. ~",,~.J\1 eldAt$i'l'" LJJl Vt.f hf'(,J "'o~i\o~,

What is your occupation? --(.~~r-~t't!-~~~!'.f~-R~~~~f!'---"'i"T----------
Number of latest Technical News]etter (if any) concerning this publication: _~cU1.4. ______ _
Please indicate in the space below if you wish a reply. T uo~ .e.;.«,Q ~ r-«.pl, ['\'b \1..(' CfC;ittiS~J ~~"J

.Sp~(.il.'l'j). M'1 \\4""« 4.~c{ e.J.ckt.SJ ~\:
P .. ", \ McJ ottt} ,.. tl . nc!. -, () 2.

. "~M Co~f J P'tft. K)~ J:) \At, t tlf' ,,~
SA" '1"bS-e CI\ ~5'lq>

Thank YOll for your cooperation. No postaRc stamp necessary if m:liled in the U,S.A. Elsewhere, an

To: .

Date:

Ie & Tie/Ext.:

/Dept. Name:

p/City, State:

mail address:

Subject:

Reference:

Name Internal Zip City & State

Mr. Paul McJones IBM Corp.
Dept. K55/Bldg. 282
San Jose

October 18, 1976
Alan R. Beebe
Informa it:ion Development
D58/706-2/Poughkeepsie
P. O. Box 390

Your Reader's Comment

Thank you for your reader's comment on OS/VS2 Supervisor
Services and Macro Instructions, GC28-0683-1.

The errors that you found on pages 36, 37, 38, and 50
have been corrected in Technical Newsletter number
GN28-2604, dated January 2, 1976. The other errors
that YOll pointed out on pages 25, 27, 39,. and 196 will
be corrected in a future edition of the manual.

Your comment on the RELATED parameter reinforces a change
that we have been considering. We are going to repeat
the des(:ription of the parameter for each macro, but we
will change the examples to use the appropriate macro
each time.

Thank you for taking the time to write to us.

CM~.)? kf.e~.
Alan R. Beebe

/ek

